
JP1 Version 11

JP1/Automatic Operation Command and API
Reference
3021-3-A91-30(E)

Notices

■ Relevant program products
P-2A2C-E1BL JP1/Automatic Operation 11-50 (for Windows Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, Windows Server 2016)
The above product includes the following:
• P-CC2A2C-EABL JP1/Automatic Operation - Server 11-50 (for Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016)
• P-CC2A2C-EBBL JP1/Automatic Operation - Contents 11-50 (for Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016)
P-2A2C-E3BL JP1/Automatic Operation Content Pack 11-50 (for Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016)
P-822C-E1BL JP1/Automatic Operation 11-50 (for Linux 6 (x64), Linux 7, Oracle Linux 6 (x64), Oracle Linux 7,
CentOS 6 (x64), CentOS 7, SUSE Linux 12)
The above product includes the following:
• P-CC822C-EABL JP1/Automatic Operation - Server 11-50 (for Linux 6 (x64), Linux 7, Oracle Linux 6 (x64), Oracle
Linux 7, CentOS 6 (x64), CentOS 7, SUSE Linux 12)
• P-CC822C-EBBL JP1/Automatic Operation - Contents 11-50 (for Linux 6 (x64), Linux 7, Oracle Linux 6 (x64),
Oracle Linux 7, CentOS 6 (x64), CentOS 7, SUSE Linux 12)
P-822C-E3BL JP1/Automatic Operation Content Pack 11-50 (for Linux 6 (x64), Linux 7, Oracle Linux 6 (x64), Oracle
Linux 7, CentOS 6 (x64), CentOS 7, SUSE Linux 12)

■ Trademarks
HITACHI, HiRDB, JP1 are either trademarks or registered trademarks of Hitachi, Ltd. in Japan and other countries.
Active Directory is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
Citrix and XenDesktop are trademarks of Citrix Systems, Inc. and/or one or more of its subsidiaries, and may be
registered in the United States Patent and Trademark Office and in other countries.
IBM, AIX are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.
Intel is a trademark of Intel Corporation in the U.S. and/or other countries.
Internet Explorer is either a registered trademark or trademark of Microsoft Corporation in the United States and/or
other countries.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft and Hyper-V are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.
Microsoft and SQL Server are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
RSA and BSAFE are either registered trademarks or trademarks of EMC Corporation in the United States and/or other
countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc., in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

JP1/Automatic Operation Command and API Reference 2

UNIX is a registered trademark of The Open Group in the United States and other countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
Other company and product names mentioned in this document may be the trademarks of their respective owners.
This product includes software developed by Andy Clark.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
This product includes software developed by Ben Laurie for use in the Apache-SSL HTTP server project.
This product includes software developed by Daisuke Okajima and Kohsuke Kawaguchi (http://relaxngcc.sf.net/).
This product includes software developed by IAIK of Graz University of Technology.
This product includes software developed by the Java Apache Project for use in the Apache JServ servlet engine project
(http://java.apache.org/).
This product includes software developed by Ralf S. Engelschall <rse@engelschall.com> for use in the mod_ssl project
(http://www.modssl.org/).
Portions of this software were developed at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign.
This product includes software developed by the University of California, Berkeley and its contributors.
This software contains code derived from the RSA Data Security Inc. MD5 Message-Digest Algorithm, including
various modifications by Spyglass Inc., Carnegie Mellon University, and Bell Communications Research, Inc
(Bellcore).
Regular expression support is provided by the PCRE library package, which is open source software, written by Philip
Hazel, and copyright by the University of Cambridge, England. The original software is available from ftp://
ftp.csx.cam.ac.uk/pub/software/programming/pcre/

JP1/Automatic Operation includes RSA BSAFE(R) Cryptographic software of EMC Corporation.
Java is a registered trademark of Oracle and/or its affiliates.

■ Issued
Nov. 2017: 3021-3-A91-30(E)

JP1/Automatic Operation Command and API Reference 3

■ Copyright
All Rights Reserved. Copyright (C) 2016, 2017, Hitachi, Ltd.

JP1/Automatic Operation Command and API Reference 4

Summary of amendments

The following table lists changes in this manual (3021-3-A91-30(E)) and product
changes related to this manual.

Changes Location

JP1/AJS3 is no longer included in JP1/AO, and therefore the stopcluster command is no longer required. Accordingly,
descriptions of this requirement were deleted.

1.1, 1.5

MD5withRSA was deleted from the signature algorithm that can be specified by using thehcmds64ssltool command with
the sigalg option specified.

1.5.6

The value 5 was deleted from the list of return values for the hcmds64dbtrans command executed with the export option
specified.

1.7.4

In addition to the above changes, minor editorial corrections were made.

JP1/Automatic Operation Command and API Reference 5

Preface

This manual describes the commands and API functions of JP1/Automatic Operation. In this manual, JP1/Automatic
Operation is abbreviated to JP1/AO.

For reference information on JP1/AO manuals and a glossary, see the manual JP1/Automatic Operation Overview and
System Design Guide.

■ Intended readers
This manual is intended for:

• Users of the JP1/AO commands

• Users who use the JP1/AO API

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning

Active Directory Microsoft(R) Active Directory

Hyper-V Microsoft(R) Hyper-V(R)

Internet Explorer Microsoft Internet Explorer Microsoft(R) Internet Explorer(R)

Windows Internet Explorer Windows(R) Internet Explorer(R)

Windows Windows 7 Microsoft(R) Windows(R) 7 Enterprise

Microsoft(R) Windows(R) 7 Professional

Microsoft(R) Windows(R) 7 Ultimate

Windows 8.1 Microsoft(R) Windows(R) 8.1 Enterprise

Microsoft(R) Windows(R) 8.1 Pro

Windows 10 Microsoft(R) Windows(R) 10 Enterprise

Microsoft(R) Windows(R) 10 Pro

Windows Server
2008 R2

Windows Server 2008 R2
Datacenter

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server 2008 R2
Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Windows Server 2008 R2
Standard

Microsoft(R) Windows Server(R) 2008 R2 Standard

Windows Server
2012

Windows Server 2012
Datacenter

Microsoft(R) Windows Server(R) 2012 Datacenter

Windows Server 2012
Standard

Microsoft(R) Windows Server(R) 2012 Standard

JP1/Automatic Operation Command and API Reference 6

Abbreviation Full name or meaning

Windows Windows Server
2012 R2

Windows Server 2012 R2
Datacenter

Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Windows Server 2012 R2
Standard

Microsoft(R) Windows Server(R) 2012 R2 Standard

Windows Server
2016

Windows Server 2016
Datacenter

Microsoft(R) Windows Server(R) 2016 Datacenter

Windows Server 2016
Standard

Microsoft(R) Windows Server(R) 2016 Standard

Windows Server Failover Cluster Microsoft(R) Windows Server(R) Failover Cluster

■ Formatting conventions used in this manual
This section describes the conventions used in this manual.

Conventions in syntax explanations
Text formatting Description

Character string Italic characters indicate a variable.
Example: A date is specified in YYYYMMDD format.

Bold - Bold Indicates selecting menu items in succession.
Example: Select File - New.
This example means that you select New from the File menu.

key+key Indicates pressing keys on the keyboard at the same time.
Example: Ctrl+Alt + Delete means pressing the Ctrl, Alt, and Delete keys at the same time.

■ Representation of installation folders
In this manual, the default installation folders for JP1/AO for Windows are represented as follows:

JP1/AO installation folder:
system-drive\Program Files\Hitachi\JP1AO

Common Component installation folder:
system-drive\Program Files\Hitachi\HiCommand\Base64

The installation folders for JP1/AO for Linux are represented as follows:

JP1/AO installation folder

• /opt/jp1ao/

• /var/opt/jp1ao/

Common Component installation folder
/opt/HiCommand/Base64

JP1/Automatic Operation Command and API Reference 7

■ Screenshots included in this manual
Note that, for reasons such as product improvements, the screenshots included in this manual might be partially different
from the product windows you are using.

JP1/Automatic Operation Command and API Reference 8

Contents

Notices 2
Summary of amendments 5
Preface 6

1 Commands 13
1.1 List of commands 14
1.2 Notes on using the commands 16
1.3 Valid characters for arguments in a command 18
1.4 Command description format 19
1.5 Configuration-related commands 20
1.5.1 encryptpassword (creating a password file) 20
1.5.2 hcmds64checkauth (verifying the connection with the external authentication server) 21
1.5.3 hcmds64fwcancel (adding an exception to the Windows Firewall exceptions list) 24
1.5.4 hcmds64intg (deleting or checking authentication data) 24
1.5.5 hcmds64ldapuser (registering and deleting users for LDAP search) 26
1.5.6 hcmds64ssltool (creating a private key and self-signed certificate) 28
1.5.7 setupcluster (configuring a cluster environment) 30
1.6 Operation-related commands 33
1.6.1 deleteremoteconnection (deleting a connection destination definition) 33
1.6.2 deleteservicetemplate (deleting a service template) 35
1.6.3 hcmds64chgurl (updating URL information) 37
1.6.4 hcmds64srv (starting and stopping JP1/AO, and displaying the status of JP1/AO) 38
1.6.5 hcmds64unlockaccount (unlocking a user account) 41
1.6.6 importservicetemplate (importing one or more service templates) 43
1.6.7 listremoteconnections (outputting the list of connection destination definitions) 45
1.6.8 listservices (outputting the list of services or service templates) 48
1.6.9 listtasks (outputting the list of tasks and the detailed task information) 52
1.6.10 setremoteconnection (adding or updating a connection destination definition) 60
1.6.11 stoptask (stopping a task) 63
1.6.12 submittask (executing a service and re-registering the tasks in a batch) 65
1.7 Maintenance-related commands 75
1.7.1 backupsystem (backing up the JP1/AO system) 75
1.7.2 hcmds64dbrepair (re-creating the database) 76
1.7.3 hcmds64dbsrv (starting and stopping the databases) 78
1.7.4 hcmds64dbtrans (backing up and restoring the databases) 79
1.7.5 hcmds64getlogs (collecting log information) 82
1.7.6 restoresystem (restoring the JP1/AO system) 86

JP1/Automatic Operation Command and API Reference 9

2 APIs 90
2.1 List of APIs 91
2.2 Specifications common to APIs 96
2.2.1 Communication protocol 96
2.2.2 Security and authentication 96
2.2.3 Input/output format 97
2.2.4 Namespace 97
2.2.5 Request format 97
2.2.6 Response format 99
2.2.7 Supported methods 99
2.2.8 Domain names and resources that can be managed by APIs 100
2.2.9 Query parameter 100
2.2.10 Request header 102
2.2.11 Using HQL standard 104
2.2.12 Domain object format 105
2.2.13 Response header 106
2.2.14 Members of resources 107
2.2.15 Members to be returned for APIs that execute JP1/AO operations 128
2.2.16 Members to be returned for API functions that acquire executable operations 129
2.2.17 Status code 131
2.2.18 Error information 131
2.3 API description format 133
2.4 Service template-related API functions 134
2.4.1 Acquisition of a list of service templates 134
2.4.2 Acquisition of information about a service template 136
2.4.3 Deletion of a service template 139
2.4.4 Acquisition of a list of operations for a service template 140
2.4.5 Acquisition of the HTML file necessary for importing a service template 142
2.4.6 Import of a service template 144
2.4.7 Acquisition of information necessary for exporting a service template 146
2.4.8 Export of a service template 147
2.4.9 Acquisition of the URL for displaying the details of a service template 149
2.4.10 Acquisition of information necessary for creating a service based on a service template 150
2.4.11 Creation of a service based on a service template 152
2.5 Service-related APIs 155
2.5.1 Acquisition of a list of services 155
2.5.2 Acquisition of service information 157
2.5.3 Editing a service 159
2.5.4 Deletion of a service 162
2.5.5 Acquisition of a list of operations for a service 163
2.5.6 Acquisition of information necessary for executing a service 166

JP1/Automatic Operation Command and API Reference 10

2.5.7 Execution of a service 169
2.5.8 Acquisition of information necessary for resetting the counter for a service 171
2.5.9 Reset of the counter for a service 173
2.5.10 Acquisition of information necessary for the operation to change the status of a service to release 174
2.5.11 Change of the status of a service to release 176
2.5.12 Acquisition of information necessary for the operation to change the status of a service to

maintenance 177
2.5.13 Change of the status of a service to maintenance 179
2.5.14 Acquisition of information necessary for the operation to change the status of a service to disabled 181
2.5.15 Change of the status of a service to disabled 182
2.5.16 Acquisition of the URL for the details of a service 184
2.5.17 Acquisition of information necessary for changing the version of the service template used by a

service 185
2.5.18 Change of the version of the service template used by a service 187
2.6 Schedule-related APIs 190
2.6.1 Acquisition of a list of schedules 190
2.6.2 Acquisition of schedule information 193
2.6.3 Acquisition of a list of operations for a schedule 194
2.6.4 Acquisition of information necessary for canceling a schedule 196
2.6.5 Cancellation of a schedule 198
2.6.6 Acquisition of information necessary for pausing a schedule 200
2.6.7 Pause of a schedule 201
2.6.8 Acquisition of information necessary for resuming a schedule 203
2.6.9 Resume of a schedule 205
2.7 Task-related APIs 208
2.7.1 Acquisition of a list of tasks 208
2.7.2 Acquisition of task information 210
2.7.3 Editing a task 212
2.7.4 Deletion of a task 215
2.7.5 Acquisition of a list of task operations 216
2.7.6 Acquisition of information necessary for stopping task execution 219
2.7.7 Stoppage of task execution 220
2.7.8 Acquisition of information necessary for forcibly stopping a task 222
2.7.9 Forced stoppage of a task 224
2.7.10 Acquisition of information necessary for re-executing a task 226
2.7.11 Re-execution of a task 228
2.7.12 Acquisition of information necessary for responding to a task that is in the status Waiting for

Response 230
2.7.13 Response to a task that is in the status Waiting for Response 232
2.7.14 Acquisition of information necessary for retrying a task (retry from the failed step) 234
2.7.15 Retry from the failed step 236
2.7.16 Acquisition of information necessary for retrying a task (retry from the step after the failed step) 238

JP1/Automatic Operation Command and API Reference 11

2.7.17 Retry from the step after the failed step 239
2.7.18 Acquisition of information necessary for archiving a task 241
2.7.19 Archiving a task 243
2.7.20 Acquisition of a list of steps 245
2.7.21 Acquisition of task logs 247
2.8 List of history-related API functions 253
2.8.1 Acquisition of a list of history records 253
2.8.2 Deletion of history records (with conditions specified) 255
2.8.3 Acquisition of a history record 257
2.8.4 Deletion of history records (with an ID specified) 259
2.8.5 Acquisition of a list of operations for a history record 260
2.9 Property-related APIs 262
2.9.1 Acquisition of a list of property definitions 262
2.9.2 Acquisition of property definition information 269
2.9.3 Acquisition of a list of operations for a property definition 271
2.9.4 Acquisition of lists of property definitions and property values 272
2.9.5 Acquisition of a list of property values 275
2.9.6 Batch update of property values 278
2.9.7 Acquisition of a property value 282
2.9.8 Update of a property value 283
2.9.9 Acquisition of a list of operations for a property value 285
2.9.10 Acquisition of a list of property groups 287
2.10 Service group-related API functions 290
2.10.1 Acquisition of a list of service groups 290
2.10.2 Acquisition of information about a service group 291
2.10.3 Acquisition of a list of operations for a service group 293
2.11 Tag-related API functions 295
2.11.1 Acquisition of a list of tag groups 295
2.11.2 Acquisition of a list of tags 296
2.12 API functions for information management 300
2.12.1 Acquisition of user information 300
2.12.2 Acquisition of version information 301
2.13 API usage example 303

Appendix 308
A Reference Information 309
A.1 Version changes 309

Index 324

JP1/Automatic Operation Command and API Reference 12

This chapter describes the commands available in JP1/AO.

1 Commands

JP1/Automatic Operation Command and API Reference 13

1.1 List of commands

The following tables list the commands available in JP1/AO.

Table 1-1: Configuration-related commands

Command name Function See:

encryptpassword (creating a
password file)

Creates a password file that you can specify as an argument in
a command.

1.5.1 encryptpassword (creating a
password file)

hcmds64checkauth (verifying the
connection with the external
authentication server)

Verifies the settings in the configuration file for external
authentication server linkage and the connection with an
external authentication server when JP1/AO links with the
external authentication server.

1.5.2 hcmds64checkauth
(verifying the connection with the
external authentication server)

hcmds64fwcancel (adding an
exception to the Windows Firewall
exceptions list)

Adds an exception so that Windows Firewall does not block
communication between the JP1/AO server and a Web
browser. You use this command to change the port number on
the JP1/AO server to which the Web browser connects.

1.5.3 hcmds64fwcancel (adding
an exception to the Windows
Firewall exceptions list)

hcmds64intg (deleting or checking
authentication data)

Deletes authentication data stored in the repository on the
server that manages user accounts. This command can also
display the address of the server that stores authentication data.
You use this command to delete authentication data if you
failed to delete those data during the uninstallation of JP1/AO.

1.5.4 hcmds64intg (deleting or
checking authentication data)

hcmds64ldapuser (registering and
deleting users for LDAP search)

Registers the user information required for Active Directory
registration information search when JP1/AO links with Active
Directory. This command can also be used to delete registered
user information.

1.5.5 hcmds64ldapuser
(registering and deleting users for
LDAP search)

hcmds64ssltool (creating private
key and self-signed certificate)

Creates the private key, CSR, self-signed certificate, and self-
signed certificate content file required for SSL connection.

1.5.6 hcmds64ssltool (creating a
private key and self-signed
certificate)

setupcluster (configuring a
cluster environment)

Configures a JP1/AO cluster environment. 1.5.7 setupcluster (configuring a
cluster environment)

Table 1-2: Operation-related commands

Command name Description See:

deleteremoteconnection (deleting a
connection destination definition)

Deletes a connection destination definition
stored in JP1/AO.

1.6.1 deleteremoteconnection
(deleting a connection destination
definition)

deleteservicetemplate (deleting a
service template)

Deletes a service template stored in JP1/AO. 1.6.2 deleteservicetemplate (deleting a
service template)

hcmds64chgurl (updating URL information) Updates access (URL) information that is stored
in the repository for Common Component and
used for starting an application.
You use this command if the system
configuration change is made after operation of
JP1/AO started.

1.6.3 hcmds64chgurl (updating URL
information)

hcmds64srv (starting and stopping JP1/AO,
and displaying the status of JP1/AO)

Starts and stops the services and databases of
JP1/AO. This command can also display the
status of the JP1/AO services.

1.6.4 hcmds64srv (starting and
stopping JP1/AO, and displaying the
status of JP1/AO)

hcmds64unlockaccount (unlocking a user
account)

Unlocks a user account. You use this command
when all the user accounts are locked and the
users cannot log in to JP1/AO.

1.6.5 hcmds64unlockaccount
(unlocking a user account)

1. Commands

JP1/Automatic Operation Command and API Reference 14

Command name Description See:

importservicetemplate (importing one
or more service templates)

Adds one or more service templates to JP1/AO. 1.6.6 importservicetemplate
(importing one or more service
templates)

listremoteconnections (outputting the
list of connection destination definitions)

Outputs the CSV-formatted list of the
connection destination definitions registered in
JP1/AO.

1.6.7 listremoteconnections
(outputting the list of connection
destination definitions)

listservices (outputting the list of services
or service templates)

Outputs the CSV-formatted list of the services
or service templates registered in JP1/AO.

1.6.8 listservices (outputting the list of
services or service templates)

listtasks (outputting the list of tasks and the
detailed task information)

Outputs the CSV-formatted list of the tasks or
histories.
Outputs the detailed task information to a
specified folder.

1.6.9 listtasks (outputting the list of
tasks and the detailed task information)

setremoteconnection (adding or updating
a connection destination definition)

Adds or updates a connection destination
definition by using a connection destination
definition information file (in CSV format).

1.6.10 setremoteconnection (adding or
updating a connection destination
definition)

stoptask (stopping a task) Stops execution of a task by specifying the ID
of the task.

1.6.11 stoptask (stopping a task)

submittask (executing a service and re-
registering the tasks in a batch)

Performs a service by specifying the name of
the service to be performed and the property
values.
Re-registers the scheduled tasks and recurring
tasks in a batch, based on the detailed task
information output by the listtasks
command.

1.6.12 submittask (executing a service
and re-registering the tasks in a batch)

Table 1-3: Maintenance related commands

Command name Description See:

backupsystem (backing up the
JP1/AO system)

Backs up the configuration and database information of JP1/AO to
store the data in the specified folder.

1.7.1 backupsystem (backing
up the JP1/AO system)

hcmds64dbrepair (re-creating
the databases)

Forces the databases to be deleted, re-creates them, and then recovers
them using the backup data. You use this command if any of the
databases is corrupted, and if using the restoresystem
command and the hcmds64dbtrans command with the import
option specified cannot restore the database.

1.7.2 hcmds64dbrepair (re-
creating the database)

hcmds64dbsrv (starting and
stopping the databases)

Starts and stops the databases of JP1/AO. You use this command
when maintaining the databases.

1.7.3 hcmds64dbsrv (starting
and stopping the databases)

hcmds64dbtrans (backing up
and restoring the databases)

Backs up and restores the databases of JP1/AO. You use this
command when re-organizing the databases of JP1/AO.

1.7.4 hcmds64dbtrans
(backing up and restoring the
databases)

hcmds64getlogs (collecting log
information)

Collects log information recorded during JP1/AO operation to
output the information to the archive file.

1.7.5 hcmds64getlogs
(collecting log information)

restoresystem (restoring the
JP1/AO system)

Restores the backup data, such as the configuration and database
information of JP1/AO, obtained by the backupsystem
command.

1.7.6 restoresystem (restoring
the JP1/AO system)

1. Commands

JP1/Automatic Operation Command and API Reference 15

1.2 Notes on using the commands

This section provides a list of notes when you use the commands.

• You must open a command prompt as an administrator if you want to execute any command that requires
Administrator permissions on a Windows Server 2008 host. You can open a command prompt as an administrator
by right-clicking Command Prompt in the Start menu of Windows and then selecting Run as administrator.
However, if the User Account Control (UAC) feature is disabled, you do not have to open a command prompt as
the administrator.

• When the JP1/AO server OS is Windows, if you enable QuickEdit Mode in a command prompt and then click the
command prompt window, the window output is suspended until you disable the QuickEdit mode. For this reason,
we recommend that you do not use the QuickEdit mode.

• If you want to use a command in a cluster environment, run the command in the executing host. However, note that
you can run the hcmds64getlogs command in the standby host.

• If you want to suspend the execution of a command, press the Ctrl+C keys. After the command is suspended, check
the suspension message for any problem. If you want to resume the command, then execute it again.

• Do not press the Ctrl+S keys while a command is being executed. If you do so, the command output is stopped.

• You cannot execute any commands other than the stoptask and submittask commands with other JP1/AO
commands at the same time.

• You might get a return value other than 2 (The command execution has been interrupted) depending on the type of
the command when you interrupt the command immediately after its execution.

• You can execute a maximum of 10 instances respectively for the stoptask and submittask command at the
same time. If you attempt to execute the 11th instance, the following message appears and the task is not executed:
KNAE03236-E No more commands can be executed at the moment. Wait until one or more currently executing
commands end, and then try again.

• When you execute the following commands, you can change the subject identification information that will be output
to the audit log by changing the user-specified properties file (config_user.properties) settings:

• deleteremoteconnection command

• deleteservicetemplate command

• importservicetemplate command

• listremoteconnections command

• listservices command

• listtasks command

• setremoteconnection command

• stoptask command

• submittask command

• When the JP1/AO server OS is Linux, if the maximum size of a core file when it is output is set to 0 in the standard
setting, a core dump is not generated. To generate a core dump when an error occurs, execute the ulimit command
to set the maximum size to unlimited before executing any command.

• If the JP1/AO server OS is Windows, the specified file path is not case sensitive. If the JP1/AO server OS is Linux,
the specified file path is case sensitive.

1. Commands

JP1/Automatic Operation Command and API Reference 16

Related topics
• Topic User-specified properties file (config_user.properties) in the JP1/Automatic Operation Configuration

Guide

1. Commands

JP1/Automatic Operation Command and API Reference 17

1.3 Valid characters for arguments in a command

This section describes the valid characters for arguments in a command.

• You can specify arguments in a command according to the specification of the OS command prompt and shell.
Therefore, if an argument contains any spaces or special characters, you must escape the argument by, for example,
enclosing it in double quotation marks (").

• The following characters are available when you specify a path argument in each command:
Half-width alphanumeric characters, _, ., -, (space), (,), #, @, :, \
However, there are no limitations on the path to be specified in the propertyfile option of the submittask
command.
Note that, if the JP1/AO server OS is Linux, / can also only be used to separate folders.

• If the JP1/AO server OS is Windows, : can only be used to separate the drive letter.

• If the JP1/AO server OS is Windows, \ can only be used to separate folders.

• You cannot specify a path in the UNC format when specifying the path as an argument.

• You cannot use a path whose folder name is preceded or followed by a space character when specifying the path as
an argument. Also, you cannot use a folder name that only has the space characters.

• You cannot use a path whose folder name is preceded or followed by a period (.) when specifying the path as an
argument. Also, you cannot use a folder name that only has the periods.

• Unless otherwise specified, you can use 1-230 characters for the absolute path.

• Unless otherwise specified, arguments for each command are case sensitive.

• The names shown below are reserved keywords in the OS. Do not use them for file and folder names.
CON, PRN, AUX, CLOCK$, NUL, COM0, COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, LPT0,
LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9

1. Commands

JP1/Automatic Operation Command and API Reference 18

1.4 Command description format

This section explains the format of command descriptions.

Each command description has the following information. However, some commands do not have all of the information.

Description
Describes the functionality of the command.

Syntax
Describes the command syntax as follows:
command-name[[/option[value]]...]
The combination of option and value is referred to as an option. The term arguments is also used as a generic term
for options.

Arguments
Describes the arguments of the command.
If the JP1/AO server OS is Linux, replace / with - when you read the description.

Located in
Shows the directory where the command is located.
If the JP1/AO server OS is Linux, replace \ with / when you read the description.

Execute permission
Describes user permission required to execute the command.

Remarks
Contains what you have to be aware of when you use the command.

Return code
Lists the return codes from the command.
For details about the messages shown when the command is executed, see the manual JP1/Automatic Operation
Messages.
Some commands output audit logs. For details about the commands that output audit logs, actions to be audited,
and IDs of the messages to be output, see the topic Event types for which audit log data is output in the manual JP1/
Automatic Operation Administration Guide.

Example
Shows sample usage of the command.

1. Commands

JP1/Automatic Operation Command and API Reference 19

1.5 Configuration-related commands

1.5.1 encryptpassword (creating a password file)

Description
This command creates a password file that you can specify as an argument in a JP1/AO command.

You can execute the command with the user ID and password of a user registered in JP1/AO and the path to the password
file to be created for that user to create an encrypted password file.

By specifying the created password file instead of the password when each command is executed, specifying the
password is no longer needed.

Syntax

encryptpassword
 /user user-ID
 /password password
 /passwordfile password-file-path

Arguments

/user user-ID
This option specifies the user ID of a JP1/AO user for which you want to create a password file.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password password
This option specifies the password of the user indicated by the user option.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are the same as those for the user option.

/passwordfile password-file-path
This option specifies the absolute or relative path to the password file to be created. An error occurs if the specified
path exists.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

1. Commands

JP1/Automatic Operation Command and API Reference 20

Execute permission
Execute the command as a user with Administrator or root permissions. If a user without Administrator or root
permissions executes the command, a message appears asking the user to elevate the permission level.

Execute the command as a user with Administrator permissions. If a user without Administrator permissions executes
the command, a message appears asking the user to elevate the permission level.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 An exclusive error occurred.

5 Communication failed.

6 Authentication failed. (The specified value is invalid.)

7 An invalid path is specified.

8 The output path already exists.

9 The specified path does not exist.

10 The specified path is not accessible.

14 You do not have permission to execute the command.

200 Creating the password file failed.

255 The command execution has been interrupted due to an error other than the above.

Example
The following example shows how to use the command to create, in Windows, a password file for the specified user:

encryptpassword /user user01 /password pass01 /passwordfile passfile

Related topics
• 1.3 Valid characters for arguments in a command

1.5.2 hcmds64checkauth (verifying the connection with the external
authentication server)

Description
This command verifies the settings in the configuration file for external authentication server linkage and the connection
with an external authentication server when JP1/AO links with the external authentication server.

1. Commands

JP1/Automatic Operation Command and API Reference 21

As an external authentication server, JP1/AO can link with JP1/Base or Active Directory.

This command checks whether:

• The values of the keys in the configuration file for external authentication server linkage (exauth.properties)
that are commonly used when JP1/AO links with an external authentication server.

• The auth.server.type key in the configuration file for external authentication server linkage
(exauth.properties) has a valid value specified.
When JP1/AO links with the authentication function in JP1/Base, set the auth.server.type key to jp1base.
When JP1/AO links with Active Directory, set the key to ldap. The key is case sensitive. If the default value for the
auth.server.type key (that is, internal) is specified, an error message appears indicating the setting for using
the external authentication server is not enabled.

• If JP1/AO links with the authentication function in JP1/Base, this command checks whether:

• The same host has JP1/Base and Common Component.

• JP1/AO supports the current version of JP1/Base.

• Users of JP1/Base can be properly authenticated.

• If JP1/AO links with Active Directory, this command checks whether:

• The values of the keys, used for Active Directory linkage, in the configuration file for external authentication
server linkage (exauth.properties).

• JP1/AO can connect to Active Directory.

• A group search can be performed if JP1/AO can connect to Active Directory.

Syntax

hcmds64checkauth
 /user user-name
 /pass password
 [/summary]

Arguments

/user user-name
This option specifies the user name which has already been registered in the external authentication server. Note
that, if JP1/AO links with the authentication function in JP1/Base, you must specify a user name that does not match
the user name that has been registered in the JP1/AO.

/pass password
This option specifies the password for the user name which has already been registered in the external authentication
server.

/summary
This option simplifies the confirmation message that appears when the command is executed. If this option is
specified, the messages to be displayed are limited to messages indicating whether each processing phase is
successful or failed, error messages, and messages indicating the results. However, if an error message similar to
the message indicating the results is to appear, the former error message is omitted and only the latter resulting
message is displayed.

1. Commands

JP1/Automatic Operation Command and API Reference 22

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions.

Return code
Return code Description

0 The command succeeded.

1-99 This code indicates the total number of syntax errors.

100 This is the return code when the number of syntax errors exceeds 100 lines.

101-199 A connection or authentication error occurred.
Unit's place: Number of connection errors
Ten's place: Number of authentication errors
The maximum number of each place is nine. If more than nine errors occur, each place displays nine.

247 The user ID specified in the user option cannot be authenticated because the user ID matches the user
ID which has already been registered in JP1/AO. Specify a user ID that does not match a JP1/AO user
ID.

248 JP1/Base is not installed on the same host as the one on which this command is executed.

249 The unsupported version of JP1/Base is used.

250 The command is executed on the secondary server.

252 The common item setting in the definition file is incorrect.

253 External authentication linkage is not set.

254 The argument is invalid.

255 The command terminated abnormally.

Example
The following example shows how to use the command to verify, in Windows, the connection with the external
authentication server:

hcmds64checkauth /user test01 /pass TTdate00 /summary

Related topics
• 1.3 Valid characters for arguments in a command

1. Commands

JP1/Automatic Operation Command and API Reference 23

1.5.3 hcmds64fwcancel (adding an exception to the Windows Firewall
exceptions list)

Description
This command adds an exception so that Windows Firewall does not block communication between the JP1/AO server
and a Web browser. You use this command when you change the port number on the JP1/AO server to which the Web
browser connects from the default value.

Syntax

hcmds64fwcancel

Located in
Common-Component-installation-folder\bin

Execute permission
Execute the command as a user with Administrator permissions.

Return code
This command has no return code. For this reason, to confirm that the processing is successful, open the Windows
Firewall settings to see that your exception is properly added to the exceptions list.

To check the Windows Firewall settings, in Windows Control Panel, open Windows Firewall.

1.5.4 hcmds64intg (deleting or checking authentication data)

Syntax
This command deletes authentication data stored in the repository on the server that manages user accounts. This
command can also display the address of the server that stores authentication data.

You use this command to delete authentication data if you failed to delete those data during the uninstallation of
JP1/AO.

Syntax

hcmds64intg
 {/delete /type Automation | /print | /primary }
 /user user-ID
 /pass password

Arguments

/delete
This option causes the command to delete authentication data.

1. Commands

JP1/Automatic Operation Command and API Reference 24

/type Automation
This option specifies Automation as the product name of the server that stores authentication data.

/print
This option causes the command to display the name of the program with which authentication data is registered.

/primary
This option causes the command to display the host name or IP address of the server that stores authentication data.

/user user-ID
This option specifies the user ID for connecting the server that stores authentication data. You specify the user ID
of the account with User Management permission.

/pass password
This option specifies the password of the account with User Management permission.

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 Authentication data has already been deleted.

2 Authentication data is stored on the server on which the command is executed.

3 Authentication data is not stored on the server on which the command is executed.

4 Authentication data is not stored on the server on which the command is executed. Also, an authentication
error occurred on the server that stores authentication data.

253 An authentication error occurred on the server that stores authentication data.

254 Communication with the server that stores authentication data failed.

255 The command terminated abnormally.

Example
The following example shows how to use the command to delete, in Windows, authentication data from the server that
manages user accounts:

hcmds64intg /delete /type Automation /user user1 /pass pass1

1. Commands

JP1/Automatic Operation Command and API Reference 25

Related topics
• 1.3 Valid characters for arguments in a command

1.5.5 hcmds64ldapuser (registering and deleting users for LDAP search)

Description
This command registers the user information required for Active Directory registration information search when
JP1/AO links with Active Directory. This command can also be used to delete registered user information.

After you use this command to register the user information, execute the hcmds64checkauth command to verify
that the information can be properly authenticated.

Syntax

hcmds64ldapuser
 {/set /dn user-identifier /pass password | /delete}
 /name {server-identifier | domain-name}
 | /list

Arguments

/set
This option causes the command to register the user information.

/dn user-identifier
This option specifies the user identifier of the user to be registered. Follow RFC 4514 for the possible characters.
The characters &, |, ^, (,), <, and > must be enclosed by double quotation marks (") or escaped with a caret (^).
If you want to specify a value that ends with \, escape it with \.

/pass password
This option specifies the password for the user that is specified with the dn option.

/delete
This option causes the command to delete the registered user information. The information of the user which includes
the server identifier or domain name specified by the name option is deleted.

/name {server-identifier | domain-name}
When registering the user information, specify the server identifier or domain name to which the user is registered.
When deleting the user information, specify the server identifier or domain name of the server in which the user to
be deleted is registered.
However, you cannot specify the domain name if group linkage with Active Directory is disabled and a user for
LDAP search is registered. In that case, specify the server identifier.

/list
This option causes the command to display the list of server identifiers and domain names contained in the registered
user information.

1. Commands

JP1/Automatic Operation Command and API Reference 26

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions. If a user without Administrator or root
permissions executes the command, a message appears asking the user to elevate the permission level.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The argument includes a character that cannot be specified.

3 The registered information cannot be found.

255 The command execution has been interrupted due to an error other than the above.

Example
• Registering the user information in Windows:

To register the user information with the user name smith, belonging in the group Users, in the server with the domain
name example.com, with the password qweasd00:
hcmds64ldapuser /set /dn "CN=suzuki,CN=Users,DC=Example,DC=com" /pass
qweasd00 /name example.com

• Deleting the user information in Windows:
To delete the user information with the server name chicago:
hcmds64ldapuser /delete /name tokyo

• To display the list of registered server identifiers and domain names:
hcdms64ldapuser /list

Output example
The following shows an example of when the list of registered server identifiers and domain names are output:

[ServerName]
chicago
washington
newyork

1. Commands

JP1/Automatic Operation Command and API Reference 27

Related topics
• 1.3 Valid characters for arguments in a command

1.5.6 hcmds64ssltool (creating a private key and self-signed certificate)

Description
This command creates a private key, CSR, self-signed certificate, and the self-signed certificate content file that are
required for SSL connection. The created files are used for the following purposes:

• The CSR is submitted to CA to obtain the SSL server certificate. You can build an SSL connection environment by
combining the obtained SSL server certificate with the private key.

• You can build an SSL connection environment by combining the self-signed certificate and the private key. However,
we recommend that you use this environment for test purposes because the security level is low.

• You can check the information registered in the self-signed certificate by viewing the self-signed certificate content
file.

Syntax

hcmds64ssltool
 /key private-key-file-name
 /csr CSR-file-name
 /cert self-signed-certificate-file-name
 /certtext self-signed-certificate-content-file-name
 [/validity self-signed certificate-expiry-date /dname identification-name-(DN) /
sigalg signing-algorithm]

Arguments

/key private-key-file-name
This option specifies the absolute path to the folder that stores the private key. The absolute path must include the
file name of the private key.

/csr CSR-file-name
This option specifies the absolute path to the folder that stores the CSR. The absolute path must include the file
name of the CSR.

/cert self-signed-certificate-file-name
This option specifies the absolute path to the folder that stores the self-signed certificate. The absolute path must
include the file name of the self-signed certificate.

/certtext self-signed-certificate-content-file-name
This option causes the command to output the content of the self-signed certificate in the text format. Specify the
absolute path to the folder that stores the file. The absolute path must include the name of the text file.

/validity self-signed-certificate-expiry-date
This option specifies the expiry date of the self-signed certificate in the number of days. If this option is omitted,
the expiry date becomes 3,650 days. A specifiable value is a number of days until December 31, 9999.

1. Commands

JP1/Automatic Operation Command and API Reference 28

/dname identification-name-(DN)
This option specifies identification name (DN) written in the SSL server certificate in the attribute-type=attribute-
value format. You can specify a value with multiple attribute types by separating with a comma (,). The attribute-
type is case insensitive. The attribute-value cannot include a double quotation mark (") or backslash (\).
Follow RFC 2253 for character escapes.
Escape the following characters with a backslash (\).

• + , ; < =>

• A space at the top of the character string

• A space at the end of the character string

• A hash mark (#) at the top of the character string

If you omit this option, you will input the attribute values by response input according to the prompt displayed when
you execute the command.
The following table describes attribute types that can be specified in this option.

Table 1-4: List of attribute types that can be specified in the identification name (DN)

Attribute
type

Description of the
attribute type

Prompt displayed for
response input

Attribute value

CN Common Name Server Name Identification name of the JP1/AO server such as a host
name, IP address, and domain name#

OU Organizational Unit Name Organizational Unit Organization name of a small unit such as a department
or division name

O Organization Name Organization Name Organization name of the company or organization#

L Locality Name City or Locality Name of the city or locality (town name in Japan)

ST State or Province Name State or Province Name of the state or province (prefecture in Japan)

C Country Name two-character country-code Country code (JP in Japan)

#
This item is required when you use a response input.

The following shows an example of a response input.

Enter Server Name [default=MyHostname]:example.com
Enter Organizational Unit:Device Manager Administration
Enter Organization Name [default=MyHostname]:HITACHI
Enter your City or Locality:Sanfrancisco
Enter your State or Province:California
Enter your two-character country-code:JP
Is CN=example.com,OU=Device Manager
Administration,O=HITACHI,L=Sanfrancisco,ST=California,C=JP correct? (y/n)
[default=n]:y

If you made a mistake when inputting a value, enter n at the confirmation to perform the response input again.

/sigalg signing-algorithm
Select one of the signing algorithms below. If this option is omitted, SHA256withRSA is assumed.

• SHA1withRSA

• SHA256withRSA

1. Commands

JP1/Automatic Operation Command and API Reference 29

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions.

Remarks
If the attribute type CN of the SSL server certificate does not match the host name, IP address or domain name specified
as the connection target from the Web browser to the JP1/AO server, a server name mismatch warning or error occurs.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

250 Deleting the key store failed.

251 Creating the private key failed.

252 Creating the self-signed certificate failed.

253 Creating the CSR failed.

254 Creating the self-signed certificate content file failed.

255 The command terminated abnormally.

Related topics
• 1.3 Valid characters for arguments in a command

1.5.7 setupcluster (configuring a cluster environment)

Description
This command configures a JP1/AO cluster environment. You need to execute the command on both executing and
standby hosts.

You can execute the command with the path on the shared disk to which the databases and data are backed up to configure
the cluster environment.

After the command is executed, a message appears indicating ongoing processes.

1. Commands

JP1/Automatic Operation Command and API Reference 30

Syntax

setupcluster
 /exportpath path-to-which-the-databases-and-data-are-backed-up

Arguments

/exportpath path-to-which-the-databases-and-data-are-backed-up
This option specifies the absolute or relative path to the folder to which the databases and data on which this command
is executed are backed up. You must specify the folder on the shared disk that has sufficient free space. The maximum
length of the path name is 49 characters.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with Administrator or root permissions. If a user without Administrator or root
permissions executes the command, a message appears asking the user to elevate the permission level.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

5 Communication failed.

7 An invalid path is specified.

9 The specified path does not exist.

10 The specified path is not accessible.

11 The specified folder is not empty.

14 You do not have permission to execute the command.

120 Setting up the cluster failed.

255 The command execution has been interrupted due to an error other than the above.

1. Commands

JP1/Automatic Operation Command and API Reference 31

Example
The following example shows how to use the command to configure a cluster environment in Windows. In this example,
the databases are re-created and the data is backed up in the path on the shared folder specified on the executing host.
(In the case of the standby host, the same command is used.)

setupcluster /exportpath Z:\share

Related topics
• 1.3 Valid characters for arguments in a command

1. Commands

JP1/Automatic Operation Command and API Reference 32

1.6 Operation-related commands

1.6.1 deleteremoteconnection (deleting a connection destination
definition)

Description
This command deletes a connection destination definition stored in JP1/AO.

You can execute the command with the ID of a connection destination definition that you want to delete to delete the
specified connection destination definition.

Syntax

deleteremoteconnection
 /id ID-of-the-connection-destination-definition
 /user user-ID
 {/password password | /passwordfile password-file-path}

Arguments

/id
This option specifies the ID of the connection destination definition that you want to delete. Note that you need to
execute the listremoteconnections command beforehand to check the ID of the connection destination
definition.
The number of possible characters is in the range from 1 to 64 characters.
The possible characters are half-width numeric characters.

/user
This option specifies the user ID for JP1/AO.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password
This option specifies the password of the user indicated by the user option.
You must specify either this option or the passwordfile option. If both options are specified, or if neither is
specified, then you will get an error.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are the same as those for the user option.

/passwordfile
This option specifies the absolute or relative path to the password file for the user specified in the user option. You
can create a password file by using the encryptpassword command.
You must specify either this option or the password option. If both options are specified, or if neither is specified,
then you will get an error.

1. Commands

JP1/Automatic Operation Command and API Reference 33

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with both Administrator or root permissions for the OS and with the Admin role for
JP1/AO. If a user without Administrator or root permissions executes the command, a message appears asking the user
to elevate the permission level.

Remarks
This command can delete one connection destination definition each time the command is executed.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

5 Communication failed.

6 Authentication failed.

14 You do not have permission to execute the command.

240 Deleting the connection destination definition failed.

255 The command execution has been interrupted due to an error other than the above.

Example
The following example shows how to use the command to delete, in Windows, the specified connection destination
definition (whose connection destination definition ID is 12345):

deleteremoteconnection /id 12345 /user user01 /password pass01

Related topics
• 1.3 Valid characters for arguments in a command

1. Commands

JP1/Automatic Operation Command and API Reference 34

1.6.2 deleteservicetemplate (deleting a service template)

Description
This command deletes a service template stored in JP1/AO.

You can execute the command with the service template ID, vendor ID, and version number of a service template that
you want to delete to delete the specified service template.

Syntax

deleteservicetemplate
 /name service-template-ID
 /vendor vendor-ID-of-the-service-template
 /version version-number-of-the-service-template
 /user user-ID
 {/password password | /passwordfile password-file-path}

Arguments

/name service-template-ID
This option specifies the service template ID of the service template that you want to delete.
This option is not case sensitive.
The number of possible characters is in the range from 1 to 64 characters.
The possible characters are half-width alphanumeric characters, -, _, and ..

/vendor vendor-ID-of-the-service-template
This option specifies the vendor ID of the service template that you want to delete.
This option is not case sensitive.
The number of possible characters is in the range from 1 to 64 characters.
The possible characters are half-width alphanumeric characters, -, _, and ..

/version version-number-of-the-service-template
This option specifies the version number of the service template that you want to delete in XX.YY.ZZ format.
The possible characters for XX, YY, and ZZ are two-digit half-width numeric characters, which are from 00 through
99.

• XX: Major version number

• YY: Minor version number

• ZZ: Revision number

/user user-ID
This option specifies the user ID for JP1/AO.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password password
This option specifies the password of the user indicated by the user option.

1. Commands

JP1/Automatic Operation Command and API Reference 35

You must specify either this option or the passwordfile option. If both options are specified, or if neither are
specified, then you will get an error.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are the same as those for the user option.

/passwordfile password-file-path
This option specifies the absolute or relative path to the password file for the user specified in the user option. You
can create a password file by using the encryptpassword command.
You must specify either this option or the password option. If both options are specified, or if neither are specified,
then you will get an error.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with both Administrator or root permissions for the OS and with the Admin or Develop
role for JP1/AO. If a user without Administrator or root permissions executes the command, a message appears asking
the user to elevate the permission level.

Remarks
Use this command to delete a release service template. Note that you need to use the Editor window to delete a
development service template.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

5 Communication failed.

6 Authentication failed.

7 An invalid path is specified.

9 The specified path does not exist.

14 You do not have permission to execute the command.

190 Deleting the service template failed.

255 The command execution has been interrupted due to an error other than the above.

1. Commands

JP1/Automatic Operation Command and API Reference 36

Example
The following example shows how to use the command to delete, in Windows, the specified service template (whose
service template ID is nameA, vendor ID is vendorB, and version number is 01.00.00):

deleteservicetemplate /name nameA /vendor vendorB /version 01.00.00 /user
user01 /password pass01

Related topics
• 1.3 Valid characters for arguments in a command
• Topic Procedure for deleting development service templates in the JP1/Automatic Operation Service

Template Developer's Guide

1.6.3 hcmds64chgurl (updating URL information)

Description
This command updates access (URL) information that is stored in the repository for Common Component and used for
starting an application.

You use this command if either of the following configuration changes is made after operation of JP1/AO started:

• If the port used by a host that has Common Components installed is changed

• If the host name or IP address of a host that has Common Components installed is changed

Syntax

hcmds64chgurl
 {/list |
 /change URL-before-change URL-after-change |
 /change URL-after-change /type Automation}

Arguments

/list
This option causes the command to display the list of URLs and product names currently set up.

/change URL-before-change URL-after-change
This option causes the command to overwrite the URL related information currently registered with the new URL
related information.
You specify both the URL that is currently registered and the new URL. If you use the option together with the
type option, you only specify the new URL.
If you specify a URL with an IPv6 address, enclose the IP address in [].

/type Automation
This option specifies Automation as the name of the product whose URL is to be changed.

1. Commands

JP1/Automatic Operation Command and API Reference 37

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The URL cannot be found.

253 Restoring the repository failed.

254 Backing up the repository failed.

255 The command terminated abnormally.

Example
The following examples show how to use the command for each case.

• To display, in Windows, the list of URLs and product names currently set up:
hcmds64chgurl /list

• To overwrite, in Windows, the URL related information currently registered with the new URL related information:
hcmds64chgurl /change "http://192.168.11.33:22015" "http://
192.168.11.55:22015"

Related topics
• 1.3 Valid characters for arguments in a command

1.6.4 hcmds64srv (starting and stopping JP1/AO, and displaying the
status of JP1/AO)

Description
This command starts and stops the services and databases of JP1/AO. This command can also display the status of the
JP1/AO services or change how to start the services.

Note that if you execute this command by specifying AutomationWebService for the server option, you can
start, stop, or display the status of, the services listed in the table below.

1. Commands

JP1/Automatic Operation Command and API Reference 38

Table 1-5: List of services that can be targets of this command

Service display name and process Starting Stopping Displaying status

HAutomation Engine Web Service Y Y Y

HBase 64 Storage Mgmt SSO Service Y Y #1 Y

HBase 64 Storage Mgmt Web Service Y Y #1 Y

HBase 64 Storage Mgmt Web SSO Service Y Y #1 Y

Database process#2 Y Y #1 Y

Legend:
Y: The command works. N: The command does not work.

#1:
The service does not stop while a service from the Hitachi Command Suite products is running.

#2
These are the JP1/AO internal processes. The hcmds64srv command does not start and stop HiRDB/
EmbeddedEdition _HD1 that represents the database service.

Syntax

hcmds64srv
 {/start | /stop | /check| /status}
 [/server service-name]

To see the status of services from JP1/AO and all the Hitachi Command Suite products:

hcmds64srv
 /statusall

To change how to start a service or services:

hcmds64srv
 /starttype {auto | manual}
 {/server service-name | /all}

Arguments

/start
This option causes the command to start the service and database specified in the server option.

/stop
This option causes the command to stop the service and database specified in the server option.

/check
This option causes the command to display the status of the service and database specified in the server option.

/status
This option causes the command to display the status of the service and database specified in the server option.

1. Commands

JP1/Automatic Operation Command and API Reference 39

/server service-name
If you want to start and stop only the service, or display its status, of the JP1/AO product, specify
AutomationWebService for service-name. If this option is omitted, the command has an effect on the services
from JP1/AO and all Hitachi Command Suite products that are installed.

/statusall
This option causes the command to display the status of the services and databases, and of the services from the
Hitachi Command Suite products that are registered with Common Component.

/starttype {auto | manual}
This option specifies the start type of the service specified in the server option.
To start the service automatically, use auto. To start the service manually, use manual.

/all
If this option is specified, the command has an effect on the services from JP1/AO and all Hitachi Command Suite
products that are installed.

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions.

Remarks
• When you start and stop the services for JP1/AO in day-to-day operations, start and stop all the services without

specifying the server option. If you want to start only the services from the JP1/AO products with server option,
use HBase for the server option to start the services from Common Component because these services must be
started beforehand.

• Executing the command with the stop option while a task is being processed terminates any processing running
on the connection destination. For this reason, if any task is in execution status (In Progress, Waiting for Response,
Abnormal Detection, or Terminated), you need to wait the status transition of the task to one of the ended status
(Completed, Failed, or Canceled) or stop the execution of all the tasks, and then use the command with the option.

• If the service does not stop within three minutes after the command with the stop option, the command terminates
abnormally with a message indicating a timeout. In this case, wait a little while and then execute the command with
the stop option again.

Return code
The following table lists the return codes from the command with the /start or stop option.

Return code Description

0 The command succeeded.

1 The service has already started (with the start option).
The service has already stopped (with the stop option).

1. Commands

JP1/Automatic Operation Command and API Reference 40

Return code Description

255 The command execution failed.

The following table lists the return codes from the command with the check, status, or statusall option.

Return code Description

0 The service is not running.

1 The service is running.

255 The command execution failed.

The following table lists the return codes from the command with the starttype option.

Return code Description

0 The command succeeded.

255 The command execution failed.

Example
The following examples show how to use the command for each case.

• To start, in Windows, the services from the JP1/AO products:
hcmds64srv /start /server AutomationWebService

• To stop, in Windows, the services from the JP1/AO products:
hcmds64srv /stop /server AutomationWebService

• To check, in Windows, the status of the services from the JP1/AO products:
hcmds64srv /status /server AutomationWebService

Related topics
• 1.3 Valid characters for arguments in a command

1.6.5 hcmds64unlockaccount (unlocking a user account)

Description
This command unlocks a user account. You use this command when all the user accounts are locked and the users cannot
log in to JP1/AO.

Syntax

hcmds64unlockaccount
 /user user-ID
 /pass password

1. Commands

JP1/Automatic Operation Command and API Reference 41

Arguments

/user user-ID
This option specifies the user ID of the user account that you want to unlock. You must specify the user ID with
User Management permission.

/pass password
This option specifies the password of the user account that you want to unlock.

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions.

Remarks
• Only a user account with User Management permission has the ability to unlock user accounts by using the
hcmds64unlockaccount command.

• If the user name or password specified in the options includes characters, &, |, or ̂ , enclose the character with double
quotation marks (") or escape the character with a caret (^). For example, in Windows, if the password is
^a^b^c^, the command can be written as hcmds64unlockaccount /user system /pass
"^"a"^"b"^"c"^" or hcmds64unlockaccount /user system /pass ^^a^^b^^c^^.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

251 An authentication error occurred due to login failure.

252 An authentication error occurred due to a lack of User Management permission.

253 The communication with the authentication server failed.

254 The command is executed on the secondary server.

255 The command terminated abnormally.

Example
The following example shows how to use the command to unlock, in Windows, the specified user (whose user ID is
test01):

hcmds64unlockaccount /user test01 /pass TTdate00

1. Commands

JP1/Automatic Operation Command and API Reference 42

Related topics
• 1.3 Valid characters for arguments in a command

1.6.6 importservicetemplate (importing one or more service templates)

Description
This command adds one or more service templates to JP1/AO. Adding service templates to JP1/AO is called importing
of service templates.

You can execute the command with a single service template package or a zip file in which multiple service template
packages are archived to import the specified service template package into JP1/AO.

Syntax

importservicetemplate
 /file service-template-package-or-zip-file-in-which-multiple-service-template-
packages-are-archived
 /user user-ID
 {/password password | /passwordfile password-file-path}

Arguments

/file service-template-package-or-zip-file-in-which-multiple-service-template-
packages-are-archived

This option specifies the absolute or relative path to the service template package to be imported or zip file in which
multiple service template packages are archived.

/user user-ID
This option specifies the user ID for JP1/AO.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password password
This option specifies the password of the user indicated by the user option.
You must specify either this option or the passwordfile option. If both options are specified, or if neither are
specified, then you will get an error.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are the same as those for the user option.

/passwordfile password-file-path
This option specifies the absolute or relative path to the file that stores the password of the user specified in the
user option.
You must specify either this option or the password option. If both options are specified, or if neither are specified,
then you will get an error.

1. Commands

JP1/Automatic Operation Command and API Reference 43

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

JP1/AO-installation-folder\bin

Execute permission
Execute the command as a user with both the Admin or Develop role and Administrator or root permissions for the OS.
If a user without Administrator or root permissions executes the command, a message appears asking the user to elevate
the permission level.

Remarks
When the command imports a zip file in which multiple service template packages are archived, the command continues
processing even if some of the service template packages cannot be imported. Messages inform you of the service
template packages that could not be imported. If such messages are displayed, check the messages, correct the causes
of the failures, and then re-import the relevant service template packages.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

5 Communication failed.

6 Authentication failed.

7 An invalid path is specified.

9 The specified path does not exist.

14 You do not have permission to execute the command.

180 Importing the service template failed.

255 The command terminated abnormally.

Example
The following examples show how to use the command for each case.

• To import, in Windows, the specified service template package (C:\temp\aaa.st) into JP1/AO:
importservicetemplate /file C:\temp\aaa.st /user user1 /password pass1

1. Commands

JP1/Automatic Operation Command and API Reference 44

• To import, in Windows, a zip file (C:\temp\bbb.zip) in which the specified multiple service template packages
are archived into JP1/AO:
importservicetemplate /file C:\temp\bbb.zip /user user1 /password pass1

Related topics
• 1.3 Valid characters for arguments in a command
• Topic Notes on defining Service Share Properties in the JP1/Automatic Operation Service Template

Developer's Guide

1.6.7 listremoteconnections (outputting the list of connection destination
definitions)

Description
This command outputs the CSV-formatted list of the connection destination definitions registered in JP1/AO.

Syntax

listremoteconnections
 /file output-file-path
 /user user-ID
 {/password password | /passwordfilepassword-file-path}

Arguments

/file
This option specifies the absolute or relative path to the file to which connection destination definition information
is to be output. An error occurs if the specified file exists.

/user
This option specifies the user ID for JP1/AO.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password
This option specifies the password of the user indicated by the user option.
You must specify either this option or the passwordfile option. If both options are specified, or if neither is
specified, then you will get an error.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are the same as those for the user option.

/passwordfile
This option specifies the absolute or relative path to the password file for the user specified in the user option. You
can create a password file by using the encryptpassword command.
You must specify either this option or the password option. If both options are specified, or if neither is specified,
then you will get an error.

1. Commands

JP1/Automatic Operation Command and API Reference 45

Output format
The output items are output in CSV format in a single line per connection destination definition.

The values for each output item are enclosed in double quotation marks ("). Any double quotation mark (") contained
in the value is escaped with another one added in front of the mark.

Table 1-6: Output format of a connection destination definition information file

Output item Description

Id ID of the connection destination definition

Method One of the following values is output as the connection destination type.
• IPv4
• IPv6
• HostName

IP Address/Host Name IP address or host name of the host to connect to

Service Group Service group that is assigned to the connection destination definition

Authentication Whether authentication information has been set is output.
• Enable

Authentication information has been set.
• Disable

Authentication information has not been set.

Protocol The authentication protocol used for communication with the host to connect to is output.
• Windows
• SSH
• Telnet

SSH Authentication Method#1 The authentication method used for communication with the host to connect to is output.
• Password Authentication

Password authentication
• Public Key Authentication

Public key authentication
• Keyboard Interactive Authentication

Keyboard interactive authentication

User ID User ID for logging in to the host to connect to

Password#2 Password for logging in to the host to connect to

Superuser's Password#2 Password for the superuser of the host to connect to

Connection Status The status when JP1/AO last connected to the host is output.
• Connection Successful

Connection was successful.
• Error

Connection failed.
• Unknown

Not connected
• -

Not applicable

If the range of the hosts to connect to is specified, a hyphen (-) will be displayed.

Connected Time The time at which JP1/AO last connected to the host is output.

1. Commands

JP1/Automatic Operation Command and API Reference 46

#1
If Protocol is Windows or Telnet, an empty string is output.

#2
******** is output regardless of whether the password is set.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with both Administrator or root permissions for the OS and with the Admin role for
JP1/AO. If a user without Administrator or root permissions executes the command, a message appears asking the user
to elevate the permission level.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

5 Communication failed.

6 Authentication failed.

7 An invalid path is specified.

8 The file with the same name already exists in the output path.

9 The specified path does not exist.

10 The specified path is not accessible.

13 Outputting the file failed.

14 You do not have permission to execute the command.

220 Obtaining the list of connection destination definitions failed.

255 The command execution has been interrupted due to an error other than the above.

Example
The following example shows how to use the command to output, in Windows, connection destination definition
information as the file C:\temp\list01.csv:

listremoteconnections /file C:\temp\list01.csv /user user01 /password pass01

1. Commands

JP1/Automatic Operation Command and API Reference 47

Related topics
• 1.3 Valid characters for arguments in a command

1.6.8 listservices (outputting the list of services or service templates)

Description
This command outputs the CSV-formatted list of the services or service templates registered in JP1/AO.

You can output the list of the services, including the vendor name and version number, or of the service templates. Note
that debug services are not output.

Syntax

listservices
 /output {services | servicetemplates}
 /file output-file-path
 [/encoding {UTF-8 | Shift_JIS}]
 /user user-ID
 {/password password | /passwordfile password-file-path}

Arguments

/output {services | servicetemplates}
This option specifies which information is output in the list.

• services
Outputs the list of services.

• servicetemplates
Outputs the list of service templates.

/file output-file-path
This option specifies the absolute or relative path to the output file. An error occurs if the specified file exists.

/encoding {UTF-8 | Shift_JIS}
This option specifies the encoding of the output file. If this option is omitted, the default encoding of the OS is used.

/user user-ID
This option specifies the user ID for JP1/AO.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password password
This option specifies the password of the user indicated by the user option.
You must specify either this option or the passwordfile option. If both options are specified, or if neither are
specified, then you will get an error.
The number of possible characters is in the range from 1 to 256 characters.

1. Commands

JP1/Automatic Operation Command and API Reference 48

The possible characters are the same as those for the user option.

/passwordfile password-file-path
This option specifies the absolute or relative path to the password file for the user specified in the user option. You
can create a password file by using the encryptpassword command.
You must specify either this option or the password option. If both options are specified, or if neither are specified,
then you will get an error.

Output format
The output items are output in CSV format in a single line per service or service template.

The values for each output item are enclosed in double quotation marks ("). Any double quotation mark (") contained
in the value is escaped with another one added in front of the mark.

Table 1-7: Output format of the list of services or service templates

Type of output information Output item Content

List of services Name Service name

Favorite Favorite-setting state

Description Description

Service Group Service group name

Service Template Service template name

Vendor Name Vendor name

Version Service version

Tags Tags set for the service

Status Status

Create Date Creation date and time

Modify Date Date and time of the last modification

Submit Date Date and time of the last submission

Reset Date Reset date and time

Executed Count Number of task executions

Completed Count Number of successful terminations

Last Failed Date Date and time of the last failure

Failed Count Number of failed attempts

Submit Count Number of service executions

ID Service ID

Latest Whether the service template is the latest version

Supported Schedule Type Selectable schedule types

Supported Action Type Operations that can be performed for the task

List of service templates Name Service template name

Vendor Vendor name

1. Commands

JP1/Automatic Operation Command and API Reference 49

Type of output information Output item Content

List of service templates Version Service template version

Description Description

Service Template Key Name Service template ID

Vendor ID Vendor ID

Tags Tags set for the service template

Registered Creation time

Updated Time of the last update

Latest Version Whether the service template is the latest version

Used Services Number of services that use the service template

Used Service Templates Number of service templates that use this service
template as a component

Outdated Services Whether any services are using an outdated
version of the service template

Outdated Component Whether an outdated component is being used

Supported Schedule Type Selectable schedule types

Supported Action Type Operations that can be performed for tasks that
use this service template

Release State Release state

The following list shows some examples of file outputs.

• For the list of services

"Name","Favorite","Description","Service Group","Service Template","Vendor
Name","Version","Tags","Status","Create Date","Modify Date","Submit Date","Reset
Date"
,"Executed Count","Completed Count","Last Failed Date","Failed Count","Submit
Count","ID","Latest","Supported Schedule Type","Supported Action Type"
"Remote Command Execution","false","The service executes the commands on the
remote target server.","DefaultServiceGroup","Remote command execution","Hitachi,
Ltd","01.12.00","Basic,OS_Operations"
,"Release","2015-08-28 13:07:25","2015-08-28 13:07:25","2015-08-28
13:20:26","","3","1","2015-08-28
13:17:58","2","3","4005","Yes","immediate,schedule,recurrence","forciblyStop,retry
"

• For the list of service templates

"Name","Vendor","Version","Description","Service Template Key Name","Vendor
ID","Tags","Registered","Updated","Latest Version","Used Services","Used Service
Templates","Outdated Services","Outdated Component","Supported Schedule
Type","Release State","Supported Action Type"
"Get List of Users from Server","Hitachi,Ltd.","02.00.00","Acquires a list of
Windows or UNIX OS
users.","osShowUsers","com.hitachi.software.dna.cts.jp1","AIX,Gather OS
information,Linux,Windows","2016-11-17 13:41:21","2016-11-17
13:41:21","Yes","0","0","No","No","immediate,schedule,recurrence","Release","forci
blyStop,retry"

1. Commands

JP1/Automatic Operation Command and API Reference 50

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with Administrator permissions for the OS.

To output a list of services, the Admin, Develop, Modify, or Submit role must be set for the target service groups from
the user group that the user who executes the command belongs to. The command does not output a list of services for
any service groups for which none of these roles are set.

To output a list of service templates, the Admin, Develop, or Modify role must be set for the target service groups from
the user group that the user who executes the command belongs to.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

5 Communication failed.

6 Authentication failed.

7 An invalid path is specified.

8 The file with the same name already exists in the output path.

9 The specified path does not exist.

10 The specified path is not accessible.

12 An invalid encoding is specified.

13 Outputting the file failed.

14 You do not have permission to execute the command.

160 Obtaining the list of services failed.

161 Obtaining the list of service templates failed.

255 The command execution has been interrupted due to an error other than the above.

Example
The following examples show how to use the command for each case.

1. Commands

JP1/Automatic Operation Command and API Reference 51

• To output, in Windows, the list of registered services to a file in default encoding of the OS:
listservices /output services /file list01 /user user01 /password pass01

• To output, in Windows, the list of registered service templates to a file in UTF-8 encoding:
listservices /output servicetemplates /file list02 /encoding UTF-8 /user
user02 /password pass02

Related topics
• 1.3 Valid characters for arguments in a command

1.6.9 listtasks (outputting the list of tasks and the detailed task
information)

Description
The functionality of the listtasks command is as follows:

Outputting the list of tasks or task histories
If you execute the listtasks command by specifying tasks for the output option, you can output the task
information displayed in the list of tasks in the Tasks window in a CSV-formatted file. Alternatively, if you execute the
command by specifying histories for the output option, you can output the task information displayed in the list
of histories in the Tasks window in a CSV-formatted file. Note that debug tasks are not output to either of the CSV files.

In addition, you can specify a period to filter the task information to be output.

Outputting the detailed task information
If you execute the listtasks command by specifying taskdetails for the output option, the detailed task
information including input property and output property values is output to the detailed task information storage folder.
Note that the detailed information on the debug tasks is not output.

If you execute the submittask command based on the detailed task information# output by the listtasks
command, you can re-register the scheduled tasks and recurring tasks with the same setting in a batch.

#
This detailed task information does not include the definition information (service, service template, user, user group,
service group, connection destinations, service share properties) and the definition file. Use the backupsystem
command to back up those pieces of information.

Figure 1-1: Output and input of the detailed task information

1. Commands

JP1/Automatic Operation Command and API Reference 52

Syntax

listtasks
 [/startrange {yyyy-mm-dd|,yyyy-mm-dd|yyyy-mm-dd,yyyy-mm-dd}]
 /output {tasks | histories | taskdetails}
 {/fileoutput-file-path |/taskdetaildir detailed-task-information-storage-
folder-path}
 [/encoding {UTF-8 | Shift_JIS}]
 /user user-ID
 {/password password | /passwordfile password-file-path}

Arguments

/startrange {yyyy-mm-dd|,yyyy-mm-dd|yyyy-mm-dd,yyyy-mm-dd}
This option specifies the start date or scheduled start date of tasks to filter the tasks to be output.
yyyy must have a four-digit year in half-width numeric characters. mm must have a month from 1 (or 01) to 12 in
half-width numeric characters. dd must have a day from 1 (or 01) to 31 in half-width numeric characters.

• yyyy-mm-dd
This option causes the command to output the tasks that started or are scheduled to start on and after the specified
date.

• ,yyyy-mm-dd
This option causes the command to output the tasks that started or are scheduled to start on and before the
specified date.

• yyyy-mm-dd,yyyy-mm-dd
This option causes the command to output the tasks that started or are scheduled to start within the specified
period. The date on the right side of , can accept any date on and after the date specified on the left side.

For recurring tasks, tasks scheduled to start up to the next time are output, and any tasks scheduled to start
subsequently are not output.
If you want to output waiting tasks, specify a scheduled date and time instead of a start data and time if the tasks
are recurring and scheduled tasks. If they are immediate tasks, specify a submitted data and time. You can check the
submitted date and time in the Task Details window.
If this option is omitted, all the tasks viewable to users are output.
Note that an error occurs if you specify the startrange option when taskdetails is specified for the output
option.

/output {tasks | histories | taskdetails}
This option specifies which one of the following information is output in the list:

• tasks
Outputs the list of tasks from the Tasks window.

• histories
Outputs the list of histories from the Tasks window.

• taskdetails
Outputs the detailed task information including the input property and output property values.

{/file output-file-path |/taskdetaildir detailed-task-information-storage-
folder-path}

• /file output-file-path

1. Commands

JP1/Automatic Operation Command and API Reference 53

This option specifies the absolute or relative path to the file in which the list is output. An error occurs if the
specified file exists.
This option is required if tasks or histories is specified for the output option. An error occurs if this
option is specified when taskdetails is specified for the output option.

• /taskdetaildir detailed-task-information-storage-folder-path
This option specifies the absolute or relative path to an empty folder to which the detailed task information is
output. Note that only a folder on the local disk can be specified. The number of characters that can be specified
is no more than 180 characters for the absolute path. If the relative path is used, the path being converted to the
absolute path must be no more than 180 characters.
An error occurs if the specified folder does not exist, or the specified folder already contains a file or folder.
This option is required if taskdetails is specified for the output option. An error occurs if this option is
specified when tasks or histories is specified for the output option.

/encoding {UTF-8 | Shift_JIS}
This option specifies the encoding of the output file. If this option is omitted, the default encoding of the OS is used.
If taskdetails is specified for the output option, the encoding specified here is applied only to the task list
file (listtasks.csv) located directly under the detailed task information storage folder. The detailed task information,
property file (input property file), and output property file are always output in UTF-8.

/user user-ID
This option specifies the user ID for JP1/AO.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password password
This option specifies the password of the user indicated by the user option.
You must specify either this option or the passwordfile option. If both options are specified, or if neither are
specified, then you will get an error.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are the same as those for the user option.

/passwordfile password-file-path
This option specifies the absolute or relative path to the password file for the user specified in the user option. You
can create a password file by using the encryptpassword command.
You must specify either this option or the password option. If both options are specified, or if neither are specified,
then you will get an error.

Output format
The format of output from the listtasks command is as follows:

When outputting the list of tasks and histories (when tasks or histories is specified
for the output option)
The output items are output in a single line per task in CSV format.

The values for each output item are enclosed in double quotation marks ("). Any double quotation mark (") contained
in the value is escaped with another one added in front of the mark.

1. Commands

JP1/Automatic Operation Command and API Reference 54

Table 1-8: Output items in the list of tasks

Output item Content

Task Name Task name

To Do To Do setting state

Status Status of the task

Scheduled Time Scheduled start date and time

Start Time Start date and time

Completion Time End date and time

Schedule Type Task type

Task ID Task ID

Description Task description

Service Service name

Service Group Service group

Tags Tags set for the service

Submitted By User who executed the task

Submit Time Submitted date and time

Schedule Interval Recurrence pattern

Recurrence Time Recurrence time

Schedule Start Date Start date of recurrence

Notes Memo

Step Start Time Step start date and time

Supported Action Type Operations that can be performed for the task

Service status Service status

#
The configuration type is output only if the Admin or Develop role has been set for the target resource groups from
the user group that the user belongs to.

The following list shows some examples of file outputs.

"Task Name","To Do","Status","Scheduled Time","Start Time","Completion
Time","Schedule Type",
"Task ID","Description","Service","Service Group","Tags","Submitted By","Submit
Time","Schedule Interval",
"Recurrence Time","Schedule Start Date","Notes","Step Start Time","Supported Action
Type","Service Status"
"Remote command execution_20150828130932","FALSE","Failed","","2015/8/28
13:09","2015/8/28 13:09","immediate","4015",
"","Remote command
execution","DefaultServiceGroup","Basic,OS_Operations","System","2015/8/28
13:09","","","","","","forciblyStop,retry","Release"

1. Commands

JP1/Automatic Operation Command and API Reference 55

When outputting the detailed task information (when taskdetails is specified for
the output option)
The following shows the data that is output to the detailed task information storage folder.

Figure 1-2: Structure of the detailed task information storage folder

The following lists the contents of the detailed task information storage folder:

• Detailed task information storage folder
Folder name: Arbitrary name
The folder you specify in the taskdetaildir option.

• Task list file
File name: listtasks.csv
The file you can use to check the list of tasks contained in the detailed task information, and the tasks in that list to
be re-registered by the submittask command.
A flag is added at the end of each line of the task list that is output by specifying tasks for the output option to
indicate whether the task is to be re-registered by the submittask in a batch.
The following shows an output example of the task list.

1. Commands

JP1/Automatic Operation Command and API Reference 56

Figure 1-3: Output example of the task list

The following describes the contents of the header part and data part:

Header part (first line)
Unexecuted Schedule

Data part (second or subsequent lines)
true: The task is to be re-registered in a batch.
false: The task is not to be re-registered in a batch.

A flag in the data part (second line or subsequent lines) becomes true if the task is a planned task (scheduled task
or recurring task) and has not been executed yet, including the following:

• A scheduled task of which execution has not been started when the listtasks command is executed

• A recurring task that has not been canceled when the listtasks command is executed

• A scheduled task and recurring task that are being held when the listtasks command is executed

Note that the task list file is used for checking the tasks to be re-registered by the submittask in a batch. Do not
edit this file.

• Individual detailed task information storage folders
Folder name: task-ID
This folder stores the definition information, property file (input property file), and output property file for individual
tasks. The task ID becomes the folder name, and the number of folders that matches the number of output tasks are
generated.

• Task definition information file
File name: taskdef.xml
The file in which task definition information is output in XML. Do not edit this file.

• Property file (input property file)
File name: input.properties
The input property information set for the task is output in key=value format. For details on the format of the property
file (input property file), see the JP1/Automatic Operation Administration Guide. Note that only input properties
with their visibility set to Edit and Submit Window are output. If no such input property exists, an empty
file is created.
When you perform batch re-registration of the tasks, do not edit the input property file before executing the
submittask command. If the file is edited, the command execution result is not supported by this product.
However, if you want to register the tasks with settings different from the original settings, create a copy of this file

1. Commands

JP1/Automatic Operation Command and API Reference 57

and use the copy. After copying the file, specify items such as the scheduled date and time and task name that can
be specified when executing the service, and then execute the service separately. If you want to change the input
property value, edit the copied file as required, and execute the submittask command with the propertyfile
option.
Note that information items (such as the host name, IP address, and user name) included in the input property values
are output without processing. However, if the data type of the property is password, the obfuscated value is
output.

• Output property file
File name: output.properties
The output property information set for the task is output in key=value format. If no applicable output property
exists, an empty file is created.
Note that information items (such as the host name, IP address, and user name) included in the output property
values are output without processing. However, if the data type of the property is password, the obfuscated value
is output.

• Property value file storage folder
Folder name: value_files
This folder stores property value files.

• Property value file

• Name of a property value file for input properties
input_number#.txt

• Name of a property value file for output properties
output_number#.txt

#
number is a sequential number starting with 0001, and it is obtained for each property type (input or output
property).

If the input or output properties for the service include a composite type property, the value of the property is output
as a text file. For details on the property value file format, see the JP1/Automatic Operation Administration Guide.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with Administrator or root permissions for the OS. If a user without Administrator or
root permissions executes the command, a message appears asking the user to elevate the permission level.

Permission required for the user specified for the user option depends on the argument specified for the output
option.

When tasks or histories is specified for the output option (when outputting the list of tasks or histories)
The Admin, Develop, Modify, or Submit role must be set for the target service group from the user group that the
user specified for the user option belongs to. The command does not output a list of tasks for any service groups
for which none of these roles are set.

1. Commands

JP1/Automatic Operation Command and API Reference 58

When taskdetails is specified for the output option (when outputting the detailed task information)
Specify the user who has the Admin role for the user option. The Admin role which allows access to the entire
resource is required because the information on the entire tasks registered in JP1/AO are output, and the information
is output without processing even if the input property or output property values include information such as the
host name, IP address, user name, and password. Store the output detailed task information in a properly access-
controlled location.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

5 Communication failed.

6 Authentication failed.

7 An invalid path is specified.

8 The file with the same name already exists in the output path.

9 The specified path does not exist.

10 The specified path is not accessible.

11 The specified folder is not empty.

12 An invalid encoding is specified.

13 Outputting the file failed.

14 You do not have permission to execute the command.

150 Obtaining the list of tasks failed.

151 Obtaining the list of histories failed.

152 Obtaining the detailed task information failed.

255 The command execution has been interrupted due to an error other than the above.

Example
The following examples show how to use the command for each case.

• To output, in Windows, the list of registered tasks to a file in default encoding of the OS:
listtasks /output tasks /file list01.csv /user user01 /password pass01

• To output, in Windows, the tasks in the list of tasks that started or are scheduled to start from January 1, 2012 to
March 31, 2012 to a file in UTF-8 encoding:
listtasks /startrange 2012-01-01,2012-03-31 /output histories /file
list02.csv /encoding UTF-8 /user user02 /password pass02

• To output, in Windows, the detailed task information:

1. Commands

JP1/Automatic Operation Command and API Reference 59

listtasks /output taskdetails /taskdetaildir "C:\data\taskdetail" /user
user03 /password pass03

Related topics
• 1.3 Valid characters for arguments in a command
• 1.6.12 submittask (executing a service and re-registering the tasks in a batch)
• 1.7.1 backupsystem (backing up the JP1/AO system)
• 1.7.6 restoresystem (restoring the JP1/AO system)
• Topic Overview of property files in the JP1/Automatic Operation Administration Guide

1.6.10 setremoteconnection (adding or updating a connection destination
definition)

Description
This command registers or updates a connection destination definition by using a connection destination definition
information file (in CSV format).

Before you execute this command, execute the listremoteconnections command, and then edit the output
connection destination definition information file.

Syntax

setremoteconnection
 /file connection-destination-definition-information-file-path
 /user user-ID
 {/password password | /passwordfile password-file-path}

Arguments

/file
This option specifies the absolute or relative path to the connection destination definition information file. An error
occurs if the specified file does not exist.

/user
This option specifies the user ID for JP1/AO.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password
This option specifies the password of the user indicated by the user option.
You must specify either this option or the passwordfile option. If both options are specified, or if neither is
specified, then you will get an error.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are the same as those for the user option.

1. Commands

JP1/Automatic Operation Command and API Reference 60

/passwordfile
This option specifies the absolute or relative path to the password file for the user specified in the user option. You
can create a password file by using the encryptpassword command.
You must specify either this option or the password option. If both options are specified, or if neither is specified,
then you will get an error.

Format of the connection destination definition information file
The following table describes the format of the connection destination definition information file.

Table 1-9: Format of the connection destination definition information file

Item Information to be specified#1

Id To add a connection destination definition:
Specify an empty string.

To update a connection destination definition:
Specify the ID of the connection destination definition containing information that you want to update.

Method Specify one of the following values as the connection destination type. This item is not case sensitive.
• IPv4
• IPv6
• HostName

IP Address/Host
Name

Specify the IP address or host name of the host to connect to.

Service Group Specify the service group to be assigned to the connection destination definition.

Authentication Specify whether to set authentication information. This item is not case sensitive.
• Enable

Sets authentication information.
• Disable

Does not set authentication information.

Protocol#2 Specify the authentication protocol to be used for communication with the host to connect to. This item is not case
sensitive.
• Windows
• SSH
• Telnet

SSH Authentication
Method#2

If you specify SSH for Protocol, specify the authentication method to be used for communication with the host to
connect to. You can also use the character string enclosed in parentheses shown below to specify this item. This item
is not case sensitive.
• Password Authentication (PW)

Password authentication
• Public Key Authentication (PK)

Public key authentication
• Keyboard Interactive Authentication (KI)

Keyboard interactive authentication

User ID#2 Specify the user ID for logging in to the host to connect to. If you specify Windows or SSH for Protocol, make sure
that you also specify this item.

Password#2 Specify the password for logging in to the host to connect to. Make sure that you specify this item in the following
cases:
• When Windows is specified for Protocol
• When Password Authentication or Keyboard Interactive Authentication is specified for
SSH Authentication Method

1. Commands

JP1/Automatic Operation Command and API Reference 61

Item Information to be specified#1

Password#2 In addition, the command works as follows depending on whether a value is specified for Id:

When no value is specified for Id:
• If you specify ******** for Password, an error occurs.

When a value is specified for Id:
• If you specify ******** for Password, the password is not changed.
• If you specify an empty character for Password, the password is deleted.

Superuser's
Password#2

Specify the password for the superuser of the host to connect to. Specify this item when SSH or Telnet is specified
for Protocol.
Note that, if you specify ********, the password is not changed. If you specify an empty character, the password is
deleted.

Connection Status Specify the status when JP1/AO last connected to the host.
• Connection Successful

Connection was successful.
• Error

Connection failed.
• Unknown

Not connected
• -

Not applicable

Connected Time Specify the time at which JP1/AO last connected to the host.

#1
Using a value without enclosing it in double quotation marks (") does not cause an error. However, if the value
contains any double quotation mark ("), escape the mark with another one added in front of the mark.

#2
If you specify Disable for Authentication, specify an empty string.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with both Administrator or root permissions for the OS and with the Admin role for
JP1/AO. If a user without Administrator or root permissions executes the command, a message appears asking the user
to elevate the permission level.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

1. Commands

JP1/Automatic Operation Command and API Reference 62

Return code Description

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

5 Communication failed.

6 Authentication failed.

7 An invalid path is specified.

9 The specified path does not exist.

10 The specified path is not accessible.

14 You do not have permission to execute the command.

230 The information specified as the connection destination definition is invalid.

231 Registration of some connection destination definitions failed.

232 Registration of all connection destination definitions failed.

255 The command execution has been interrupted due to an error other than the above.

Example
The following example shows how to use the command to add or update, in Windows, connection destination definitions
by using the information in the list01.csv file:

setremoteconnection /file list01.csv /user user01 /password pass01

Related topics
• 1.3 Valid characters for arguments in a command

1.6.11 stoptask (stopping a task)

Description
This command stops execution of a task by specifying the ID of the task. However, execution of a debug task cannot
be stopped.

Note that this command cannot forcibly stop execution of a task.

Syntax

stoptask
 /taskid task-ID
 /user user-ID
 {/password password | /passwordfile password-file-path}

1. Commands

JP1/Automatic Operation Command and API Reference 63

Arguments

/taskid task-ID
This option specifies the task ID of the task of which you want to stop execution.
The possible values are half-width numeric characters (in decimal number) in 16 or fewer digits.

/user user-ID
This option specifies the user ID for JP1/AO.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password password
This option specifies the password of the user indicated by the user option.
You must specify either this option or the passwordfile option. If both options are specified, or if neither are
specified, then you will get an error.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are the same as those for the user option.

/passwordfile password-file-path
This option specifies the absolute or relative path to the password file for the user specified in the user option. You
can create a password file by using the encryptpassword command.
You must specify either this option or the password option. If both options are specified, or if neither are specified,
then you will get an error.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with Administrator or root permissions for the OS. If a user without Administrator or
root permissions executes the command, a message appears asking the user to elevate the permission level.

The Admin, Develop, Modify, or Submit role must be set for the service group of the target task from the user group
that the user who executes the command belongs to. The command does not stop any tasks in a service group for which
none of these roles are set.

Remarks
Execute this command when the task, which you want to stop execution of, is either in In Progress, Waiting for Response,
or Abnormal Detection status. If you execute this command in any other status, the command fails with the return code
140.

Return code
The following table lists the return codes from the command.

1. Commands

JP1/Automatic Operation Command and API Reference 64

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

5 Communication failed.

6 Authentication failed.

7 An invalid path is specified.

9 The specified path does not exist.

14 You do not have permission to execute the command.

140 Stopping the execution of the task failed.

255 The command execution has been interrupted due to an error other than the above.

Example
The following example shows how to use the command to stop, in Windows, execution of the specified task (whose
task ID is 1):

stoptask /taskid 1 /user user01 /password pass01

Related topics
• 1.3 Valid characters for arguments in a command
• Topic Stopping tasks (execution stop) in the JP1/Automatic Operation Administration Guide
• Topic Stopping tasks (forced stop) in the JP1/Automatic Operation Administration Guide

1.6.12 submittask (executing a service and re-registering the tasks in a
batch)

Description
The functionality of the submittask command is as follows:

Executing a service
This command executes a specified service based on user-specified information such as the service name, service group
name, and property values. When the task is executed normally, a message reporting the task ID is output. This command
cannot execute debug services. By specifying the options, you can execute a service recursively or at a specified
execution date and time. If you do not specify any options, the command executes the service immediately.

Re-registering the tasks in a batch
This command re-registers the scheduled tasks and recurring tasks in a batch based on the contents of the detailed task
information output by the listtasks command. The re-registered task inherits the settings and conditions from the
original task. This command is a functionality for executing a scheduled or recurring service with the same settings by

1. Commands

JP1/Automatic Operation Command and API Reference 65

referring to the information stored in the detailed task information storage folder. Note that this command is not a
functionality for restoring the same task. The re-registered task is, therefore, a task different from the original task and
has a different task ID. Debug tasks cannot be re-registered.

Procedures before re-registering the tasks in a batch
Perform the following before re-registering the tasks in a batch:

• The detailed task information storage folder must be the folder output by JP1/AO whose version and revision
is the same as those of JP1/AO you use to re-register the tasks in a batch. Batch re-registration of tasks fails if
the detailed task information storage folder output by JP1/AO whose version or revision is different is specified.

• Check that the detailed task information storage folder output by the listtasks command exists.

• Set up the definition information (service, service template, user, user group, service group, connection
destinations, and service share properties) and definition file separately. Restore those settings by using the
backupsystem and restoresystem commands if necessary. Do not change those settings or delete any
service after outputting the detailed task information storage folder by the listtasks command. If the service
settings have been changed, batch re-registration is performed according to the changed settings. If the service
settings have been deleted, re-registration of the corresponding task fails.

• For a scheduled task, confirm that the specified time has not been passed at the time of task re-registration. An
error occurs if the specified time has passed, and you cannot directly re-register the task.

Condition of the tasks that are re-registered in a batch
The tasks that are re-registered in a batch are the unexecuted scheduled tasks and recurring tasks that are in the task
list (listtasks.csv) in the detailed task information storage folder. In the task list, the Unexecuted Schedule
column of the unexecuted scheduled tasks and recurring tasks is true.

Re-registering a scheduled task of which scheduled time has passed
You cannot directly re-register a task of which scheduled time has passed. If you re-register the task in a batch, re-
registration fails with a message indicating that the specified date and time has passed. To check the settings of the
task of which re-registration failed, refer to the task list file (listtasks.csv) in the detailed task information storage
folder, and the property file (input property file) and output property file in the individual detailed task information
storage folder. If you want to register a task of which scheduled time has passed, check the original date and time
in the task list (listtasks.csv) in the detailed task information storage folder, and then execute each service by
specifying a new date and time using the Service window or the submittask command of JP1/AO. Note that the
start time must be equal to or after the current date and time.

Measures to take when there is a task of which re-registration failed
If batch re-registration of tasks fails, a message indicating that task registration failed, and task IDs of the tasks of
which registration failed are displayed. These task IDs are the ones output by the listtasks command. If some
tasks are successfully re-registered, move the individual detailed task information storage folder for the relevant
tasks to another location. Then eliminate the causes of the failure, and execute the command again. Moving the
folders is to prevent duplicate registration of the successful tasks. If the same error occurs after taking the above
measures, contact the system administrator.

Syntax
The syntax of the submittask command is as follows:

When executing a service immediately

submittask
 /servicename service-name
 [/servicegroup service-group-name]

1. Commands

JP1/Automatic Operation Command and API Reference 66

 [/taskname task-name]
 [/taskdescription task-description]
 [/property property-key property-value |
 /propertyfile property-file-path]
 /user user-ID
 {/password password | /passwordfile password-file-path}
 [/wait]

When executing a service at a specified date and time

submittask
 /servicename service-name
 [/servicegroup service-group-name]
 [/taskname task-name]
 [/taskdescription task-description]
 [/property property-key property-value |
 /propertyfile property-file-path]
 /user user-ID
 {/password password | /passwordfile password-file-path}
 /scheduledate yyyy-mm-dd /scheduletime hh:mm

When executing a service recursively

submittask
 /servicename service-name
 [/servicegroup service-group-name]
 [/taskname task-name]
 [/taskdescription task-description]
 [/property property-key property-value |
 /propertyfile property-file-path]
 /user user-ID
 {/password password | /passwordfile password-file-path}
 /recurrencepattern {daily[:{1h|2h|3h|4h|6h|8h|12h|24h}] |
weekly:sun,mon,...,sat | monthly:{dd,dd,...,dd[,endofmonth]| endofmonth}}
 /recurrencetime hh:mm /recurrencestart yyyy-mm-dd

When re-registering the tasks in a batch

submittask
 /reregister
 /taskdetaildir detailed-task-information-storage-folder
 [/setoriginalsubmitter]
 /user user-ID
 {/password password | /passwordfile password-file-path}

Arguments

/servicename service-name
This option specifies the name of the service to be performed.
The number of possible characters is in the range from 1 to 128 characters.

/servicegroup service-group-name
This option specifies the name of the service group that the service to be performed belongs to.
If this option is omitted, the service group associated with the user specified in the argument is used. However, if
more than one service group is associated with that user, an error occurs.

1. Commands

JP1/Automatic Operation Command and API Reference 67

The number of possible characters is in the range from 1 to 80 characters. The possible characters are any characters
other than the unicode characters from U+10000 to U+10FFFF.
Note that, instead of the servicegroup option, you can also specify the service group name by using the
resourcegroup option, which was used in JP1/AO 10-52 and earlier. If you specify All Resources for the
servicegroup option, the service will run as if DefaultServiceGroup is specified.

/taskname task-name
This option specifies the name of the task.
If this option is omitted, the system uses service-name_YYYYMMDDhhmmss (where YYYYMMDDhhmmss is
the time when the service is performed) as a default name.
The number of possible characters is in the range from 1 to 128 characters. The possible characters are any characters
other than the control characters (from \u0000 to \u001F and from \u007F to \u009F).

/taskdescription task-description
This option specifies the description of the task.
If this option is omitted, the value is not set.
The number of possible characters is in the range from 1 to 256 characters. The possible characters are any characters
other than the control characters (from \u0000 to \u001F and from \u007F to \u009F).

/property property-key property-value
This option specifies the property key and value that the service to be performed uses. The system verifies whether
the specified property value is valid according to the service template specifications.
For property keys that are not set in this option, the values specified in the Service Definition window will be used.
If values for required properties are not specified in either the Service Definition window or by this option, an error
occurs.
You can use multiple instances of this option to specify multiple property key and value combinations (format: /
property key-1 value-1 /property key-2 value-2 ...). By default, you can specify a maximum
of 1,000 instances of this option. You can specify the maximum number of properties that can be specified by using
the user-specified properties file (config_user.properties).

• property-key
This option specifies the property key for the service.
The number of possible characters is in the range from 1 to 1,024 characters. The possible characters are half-
width alphanumeric characters, -, _, ., and / .
If the same property key is specified more than once, then an error occurs.

• property-value
This option specifies the property value for the property key.
Any value containing a space or special character must be enclosed in double quotation marks (").

/propertyfile property-file-path
This option specifies the absolute or relative path to the property file, which defines the input property settings that
the service to be performed uses.
For property keys and property values that are not set in the property file specified by this option, the values specified
in the Service Definition window (Create, Edit, or Copy) or the Submit Service window will be used. If values for
required properties are not specified in either the Service Definition window (Create, Edit, or Copy) or in the Submit
Service window, and the values are not defined in the property file specified by this option, an error occurs.
For details on the format of the property file, see the JP1/Automatic Operation Administration Guide.
The following table shows the format of the property file.

1. Commands

JP1/Automatic Operation Command and API Reference 68

/reregister
Specify this option if you re-register the tasks in a batch. Make sure that you also specify the taskdetaildir
option when you specify the reregister option.

/taskdetaildir detailed-task-information-storage-folder
This option is required if the reregister option is specified. This option specifies the absolute or relative path
to the detailed task information storage folder that stores the scheduled or recurring task information you want to
re-register. Note that only a folder on the local disk can be specified. The number of characters that can be specified
for the absolute path is no more than 190 characters.

/setoriginalsubmitter
If you specify this option when re-registering the tasks in a batch, the task submitter after re-registration displays
the name of the user who submitted the original task, not the user who re-registered the task. The user who submitted
the original task is the user who was executing the task at the time when the listtasks command was used to
output the detailed task information. You can check the task submitter after re-registration from the user ID displayed
in the Submitted By column in the Tasks window. You can check the user who was executing the task at the time
when the listtasks command was used to output the detailed task information in the Submitted By column
in the listtasks.csv file that is output in the detailed task information storage folder.
If you omit this option, the user ID specified for the user option of the submittask command becomes the task
submitter after re-registration.
Note that an error does not occur even if "the user who was executing the task at the time when the listtasks
command is used to output the detailed task information" does not exist when re-registering the task. In this case,
the task submitter becomes "the user who is executing the task at the time when the listtasks command is used
to output the detailed task information".

/user user-ID
This option specifies the user ID for JP1/AO. Make sure that you specify the ID of a user that is associated with a
service group that the service specified by the servicename option belongs to.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are half-width alphanumeric characters, !, #, $, %, &, ', (,), *, +, -, ., =, @, \, ^, _, and
|.
This option is not case sensitive.

/password password
This option specifies the password of the user indicated by the /user option.
The number of possible characters is in the range from 1 to 256 characters.
The possible characters are the same as those for the user option.

/passwordfile password-file-path
This option specifies the absolute or relative path to the password file for the user specified in the user option. You
can create a password file by using the encryptpassword command.

/wait
If this option is specified, the command outputs the task execution result (Completed or Failed), and then terminates.
If the wait option is not specified, the command terminates without waiting for the task to terminate. In this case,
a message reporting the task ID is output only when the task execution has started normally.

/scheduledate
If you want to execute the service according to a schedule, specify the date (year, month, and day) that the service
will be executed in the YYYY-MM-DD format. In YYYY, specify a four-digit year. In MM, specify a month number
from 1 (or 01) to 12. In DD, specify a day number from 1 (or 01) to 31. Note that when you specify the
scheduledate option, you must also specify the scheduletime option. The command execution will fail if:

1. Commands

JP1/Automatic Operation Command and API Reference 69

• The combination of arguments is invalid.
For details on the combination of arguments, see Table 1-10: Argument combination of the submittask
command.

• The date is specified in an incorrect format.

• The execution time determined by the combination of this option and the scheduletime option is earlier than
the current time.

• The specified date is not within the range from 1994-01-01 to 2036-12-31.

/scheduletime
If you want to execute the service according to a schedule, specify the time (hour and minute) in the hh:mm format.
In hh, specify the hour from 00 to 23. In mm, specify the minute from 00 to 59. When you specify the
scheduletime option, you must also specify the scheduledate option. The command execution will fail if:

• The combination of arguments is invalid.
For details on the combination of arguments, see Table 1-10: Argument combination of the submittask
command.

• The time is specified in an incorrect format.

• The execution time determined by the combination of this option and the scheduledate option is earlier than
the current time.

/recurrencepattern {daily[:{1h|2h|3h|4h|6h|8h|12h|24h}] |
weekly:sun,mon,...,sat | monthly:{dd,dd,...,dd[,endofmonth] | endofmonth}}

This option specifies the recurrence pattern of the service execution. When you specify the recurrencepattern
option, you must also specify the /recurrencetime and recurrencestart options. Note that the command
execution fails if either of the following conditions applies:

• The combination of arguments is invalid.
For details on the combination of arguments, see Table 1-10: Argument combination of the submittask
command.

• The specified recurrence pattern is in an invalid format.

There are three types of recurrence pattern: daily, weekly, and monthly. The format of the recurrence pattern differs
by the recurrence pattern type.

Daily
Specify daily to execute the command once a day.
To specify the recurrence interval in hours, specify in the following format: daily:{1h|2h|3h|4h|6h|
8h|12h|24h}. Start with daily:, and then select the time interval from 1h, 2h, 3h, 4h, 6h, 8h, 12h, and
24h.

Weekly
Specify the pattern in the weekly:sun,mon,...,sat format.
Preceded by weekly:, specify one or more days on which you want to execute the service, delimiting them
by a comma (,). To specify days in the abbreviated form, use sun, mon, tue, wed, thu, fri, and sat. The
order of the specified days does not matter. An invalid argument error occurs if the same day is specified for
multiple times.

Monthly
Specify the pattern in the monthly:{dd,dd,...,dd[,endofmonth] | endofmonth} format.
Specify monthly: followed by one or more dates on which to execute the services, with the dates delimited
by commas. To execute the service at the end of the month, specify endofmonth. You can specify the dates
in any order. If you want to specify execution at the end of the month in addition to specific dates, specify

1. Commands

JP1/Automatic Operation Command and API Reference 70

endofmonth at the end of the sequence. Specify dates as single-byte numerals in the range from 1 (or 01) to
31. In the following circumstances, an invalid argument error occurs:
• The same date is specified multiple times
• A nonexistent date such as 0 or below or 32 or above is specified
• endofmonth is specified but not at the end of the sequence
Note that the service will not be executed in a month that does not contain the specified date. For example, if
the task is scheduled to be executed on the 30th or 31st of every month, recurring execution of that task will be
skipped in February.

/recurrencetime hh:mm
This option specifies the time (hour and minute) at which to execute the service in hh:mm. For hh, specify the hour
from 00 to 23. For mm, specify the minute from 00 to 59. When you specify the recurrencetime option, you
must also specify the /recurrencepattern and recurrencestart options. Note that the command
execution fails if either of the following conditions applies:

• The combination of arguments is invalid.
For details on the combination of arguments, see Table 1-10: Argument combination of the submittask
command.

• The specified time is in an invalid format.

/recurrencestart yyyy-mm-dd
This option specifies the date on which to start executing the recurring service in yyyy-mm-dd. For yyyy, specify the
year in four digits. For mm, specify the month from 1 (or 01) to 12. For dd, specify the date from 1 (or 01) to 31.
When you specify the recurrencestart option, you must also specify the /recurrencepattern and
recurrencetime options. Note that the command execution fails if one of the following conditions applies:

• The combination of arguments is invalid.
For details on the combination of arguments, see Table 1-10: Argument combination of the submittask
command.

• The specified date is in an invalid format.

• The specified date is out of the following range: from 1/1/1994 to 12/31/2036.

Argument combination of the submittask command
Table 1-10: Argument combination of the submittask command

Option Immediate
execution of the
service

Scheduled
execution of
the service

Recurring execution
of the service

Re-registration of the
scheduled tasks in a
batch

/servicename Required Required Required --

/servicegroup Optional Optional Optional --

/taskname Optional Optional Optional --

/taskdescription Optional Optional Optional --

/property#1 Optional Optional Optional --

/propertyfile#1 Optional Optional Optional --

/reregister -- -- -- Required

/taskdetaildir -- -- -- Required

/setoriginalsubmitter -- -- -- Optional

1. Commands

JP1/Automatic Operation Command and API Reference 71

Option Immediate
execution of the
service

Scheduled
execution of
the service

Recurring execution
of the service

Re-registration of the
scheduled tasks in a
batch

/user Required Required Required Required

/password#2 Required Required Required Required

/passwordfile#2 Required Required Required Required

/wait Optional -- -- --

/scheduledate -- Required -- --

/scheduletime -- Required -- --

/recurrencepattern -- -- Required --

/recurrencetime -- -- Required --

/recurrencestart -- -- Required --

Legend:
Required: Required. An argument error occurs if omitted.
Optional: Can be omitted.
--: Cannot be specified. An argument error occurs if specified.

#1
Specify either the property option or propertyfile option. An error occurs if you specify both options at
the same time.

#2
Specify either the password option or passwordfile option. An error occurs if you specify both options at
the same time.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with Administrator or root permissions for the OS. If a user without Administrator or
root permissions executes the command, a message appears asking the user to elevate the permission level.

Execute the command as a user with Administrator permissions for the OS. If a user without Administrator permissions
executes the command, a message appears asking the user to elevate the permission level.

Before the service can be executed, make sure that the Admin, Develop, Modify, or Submit role is set for the resource
group of that service from the user group that the user who executes the command belongs to. The command cannot
execute a service in a resource group for which none of these roles are set.

The following describes the permission required for the user specified for the user option.

1. Commands

JP1/Automatic Operation Command and API Reference 72

When executing a service
The Admin, Develop, Modify, or Submit role must be set for the target resource group from the user group that the user
specified for the user option belongs to. The user can only execute a service for which he or she has the execute
permission.

When re-registering a task in a batch
The Admin role must be set for the user specified for the user option.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

5 Communication failed.

6 Authentication failed.

7 An invalid path is specified.

9 The specified path does not exist.

10 The specified path is not accessible.

14 You do not have permission to execute the command.

130 Starting the service failed.

131 The property file does not exist.

132 The property file has an invalid format.

133 The status of the task could not be obtained (when the wait option is specified).

134 The task could not be executed (when the wait option is specified).

136 The data format of the detailed task information storage folder is invalid.

137 Re-registering the planned tasks in a batch partially failed.

138 Re-registering the planned tasks in a batch failed entirely.

139 The version or revision of JP1/AO that was used to output the detailed task information storage folder is
different from the currently installed JP1/AO.

255 The command execution has been interrupted due to an error other than the above.

Example
The following examples show how to use the command for each case.

• To execute, in Windows, a service specified by the service name with the property keys and values:
submittask /servicename service01 /user user01 /password pass01 /property
keyA valueA /property keyB "value B" /property keyC valueC,valueD

1. Commands

JP1/Automatic Operation Command and API Reference 73

• To execute, in Windows, a service specified by the service group and the service name, with the task name, task
description, and property file:
submittask /servicename service02 /servicegroup servicegroupA /taskname
task02 /taskdescription testtask /propertyfile C:\properties.txt /user
user02 /password pass02

• To output, in Windows, the task execution result before the command terminates:
submittask /servicename service03 /user user03 /password pass03 /wait

• To execute, in Windows, a service at a specified time:
submittask /servicename service04 /user user04 /password pass04 /
scheduledate 2014-01-01 /scheduletime 15:30

• To execute, in Windows, a service recursively:
submittask /servicename service05 /user user05 /password pass05 /
recurrencepattern weekly:sun,mon,fri /recurrencetime 15:30 /recurrencestart
2013-06-17

• To re-register, in Windows, planned tasks in a batch:
submittask /reregister /taskdetaildir "C:\data\taskdetail" /user user06 /
password pass06

Related topics
• 1.6.9 listtasks (outputting the list of tasks and the detailed task information)
• 1.3 Valid characters for arguments in a command
• Topic User-specified properties file (config_user.properties) in the JP1/Automatic Operation Configuration

Guide
• Topic Overview of property files in the JP1/Automatic Operation Administration Guide

1. Commands

JP1/Automatic Operation Command and API Reference 74

1.7 Maintenance-related commands

1.7.1 backupsystem (backing up the JP1/AO system)

Description
This command backs up the configuration and database information of JP1/AO to store the data in the specified folder.

Syntax

backupsystem
 /dir backup-data-path
 [/auto]

Arguments

/dir backup-data-path
This option specifies the absolute or relative path to an empty folder in which backup data is collected and stored.
A folder in the local disk drive can only be specified. We recommend that you use a path that has 50 or fewer
characters.

/auto
This option causes the command to automatically start and stop the services and databases of JP1/AO, JP1/OA, and
the Hitachi Command Suite products. If this option is omitted, the services and databases of JP1/AO, JP1/OA, and
the Hitachi Command Suite products are not automatically started and stopped.
If you want to use this option in a cluster environment, services registered with the cluster software must be offline.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with Administrator or root permissions. If a user without Administrator or root
permissions executes the command, a message appears asking the user to elevate the permission level.

Remarks
• Make sure that the folder in which backup files are stored has a sufficient free space. The required free space is as

follows:
Total size of the files to be backed up + 20 MB

• This command does not back up the following files (manual backup, as necessary, is required).

• SSL server certificate file for HTTPS connection

• Private key file for HTTPS connection

• Private key file for public key authentication

1. Commands

JP1/Automatic Operation Command and API Reference 75

• Cluster service control command that was created (in a Linux cluster configuration)

• If you do not specify the auto option, then make sure that the JP1/AO services are not running before executing
this command.
If the services are still running, execute the hcmds64srv command with the stop option to stop the services.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

7 An invalid path is specified.

9 The specified path does not exist.

10 The specified path is not accessible.

11 The specified folder is not empty.

14 You do not have permission to execute the command.

100 Performing the backup failed.

101 Starting or stopping the service failed.

103 An access to the scheduler database failed.

255 The command execution has been interrupted due to an error other than the above.

Example
The following example shows how to use the command to back up, in Windows, data in the specified backup folder
(C:\Users\Backup):

backupsystem /dir "C:\Users\Backup" /auto

Related topics
• 1.3 Valid characters for arguments in a command

1.7.2 hcmds64dbrepair (re-creating the database)

Description
This command forces all the databases to be deleted, re-creates them, and then recovers them using the backup data
obtained by the hcmds64dbtrans command. You use this command if any of the databases is corrupted and using
the restoresystem command and the hcmds64dbtrans command with the import option specified cannot
restore the database.

1. Commands

JP1/Automatic Operation Command and API Reference 76

Syntax

hcmds64dbrepair
 /trans backup-data

Arguments

/trans backup-data
This option specifies the backup data obtained using the hcmds64dbtrans command. Make sure that you specify
the path specified in the /workpath or file option of the hcmds64dbtrans command.

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions.

Remarks
• Stop the JP1/AO system before executing the hcmds64dbrepair command.

• Start the JP1/AO system after executing the hcmds64dbrepair command.

• The command uses the Common-Component-installation-folder\tmp folder or the var/opt/
HiCommand/Base64/tmp folder to extract the backup data. Secure enough space to extract the backup data
according to the size of the data.

• After the command execution, the password of the built-in account (System account) is initialized. Change the
password if necessary.

• In a cluster system, execute this command on the executing host. This command cannot be executed on the standby
host.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

245 Importing the database failed.

246 The definition file is invalid.

247 An attempt to undo setup of the database failed.

248 Stopping a service or database failed.

249 The command cannot be executed on the standby node.

1. Commands

JP1/Automatic Operation Command and API Reference 77

Return code Description

250 The backup data is invalid. (Some files are missing or extracting the archive file failed.)

251 The command has been interrupted due to inconsistency in the product or product version.

252 Setting up the database failed.

253 Starting the service for database failed.

254 The database cannot be re-created due to its incomplete setup.

255 The command terminated abnormally.

Example
The following example shows how to use the command to force all the databases to be deleted, re-create them, and then
recover them by using backed up data, in Windows:

hcmds64dbrepair /trans C:\bkfile1

Related topics
• 1.3 Valid characters for arguments in a command
• Topic Starting a JP1/AO system (non-cluster configuration) in the JP1/Automatic Operation Administration

Guide
• Topic Starting a JP1/AO system (cluster configuration) in the JP1/Automatic Operation Administration

Guide
• Topic Stopping a JP1/AO system (non-cluster configuration) in the JP1/Automatic Operation

Administration Guide
• Topic Stopping a JP1/AO system (cluster configuration) in the JP1/Automatic Operation Administration

Guide
• 1.6.4 hcmds64srv (starting and stopping JP1/AO, and displaying the status of JP1/AO)

1.7.3 hcmds64dbsrv (starting and stopping the databases)

Description
This command starts and stops the databases of JP1/AO. You use this command when maintaining the databases.

Syntax

hcmds64dbsrv
 {/start | /stop}

Arguments

/start
This option causes the command to start the databases.

/stop
This option causes the command to stop the databases.

1. Commands

JP1/Automatic Operation Command and API Reference 78

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions.

Remarks
This command is restricted for database maintenance procedures.

Return code
The following table lists the return codes from the command.

Return code Description

0 The system accepted the start or stop request.

254 The databases are not initialized.

255 The command execution failed.

Example
The following examples show how to use the command for each case.

• To start, in Windows, the databases of JP1/AO:
hcmds64dbsrv /start

• To stop, in Windows, the databases of JP1/AO:
hcmds64dbsrv /stop

Related topics
• 1.3 Valid characters for arguments in a command

1.7.4 hcmds64dbtrans (backing up and restoring the databases)

Description
This command backs up (exports) or restores (imports) the databases of JP1/AO. You use this command when re-
organizing the databases of JP1/AO.

1. Commands

JP1/Automatic Operation Command and API Reference 79

Syntax

To back up (export) the databases of JP1/AO:

hcmds64dbtrans
 /export
 /workpath working-folder-path
 /file archive-file-path
 [/auto]

To restore (import) the databases of JP1/AO:

hcmds64dbtrans
 /import
 /type Automation
 /workpath working-folder-path
 [/file archive-file-path]
 [/auto]

Arguments

/export
This option causes the command to export the databases.

/workpath working-folder-path
This option specifies the absolute path to a working folder that is temporarily used for exporting or importing. A
folder on the local disk drive can only be specified.
Use an empty folder for the working folder when you specify the /file option for exporting or importing.

/file archive-file-path
This option specifies the absolute path to the archive file to which the data is exported or from which the data is
imported. This option is required if the export option is specified.
The archive file is not created if the output file size exceeds 2 GB, or if the amount of disk space for a location in
which the archive file is created is insufficient.

/auto
This option causes the command to automatically start and stop the services and databases of JP1/AO, JP1/OA, and
the Hitachi Command Suite products. If this option is omitted, the services and databases of JP1/AO, JP1/OA, and
the Hitachi Command Suite products are not automatically started and stopped.

/import
This option causes the command to import the databases. All the exiting authentication data is deleted before the
data is imported.

/type Automation
This option specifies Automation as the name of the product whose database is to be imported.

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

1. Commands

JP1/Automatic Operation Command and API Reference 80

Execute permission
Execute the command as a user with Administrator or root permissions.

Remarks
• If the return code 3 is output by an export operation, the database information remains in the directory specified for

the workpath option.
To import this information, set the directory that you specified for the workpath option at the time of the export
operation for the workpath option for the import operation. At this time, do not change the folder structure in the
directory you specified for the workpath option at the time of the export operation. In addition, do not specify
any value for the file option when performing the import operation.

• In the following cases, the directory specified for the /workpath option becomes empty, and the command is
completed.

• When the return code 1, 2, 233, 234, 235, 237, 238, 239, 240, or 255 is output by an export operation

• When the return code 3 is output by an import operation

Return code
The following table lists the return codes from the command with the export option.

Return code Description

0 The command succeeded.

1 Obtaining the product version failed.

2 The databases are not running.

3 Archiving the databases failed.

4 The working folder is not empty.

233 Restarting the databases is being interrupted.

234 The database services are stopped or do not exist.

235 The databases are not initialized.

237 Starting the Hitachi Command Suite products or databases failed.

238 Stopping the Hitachi Command Suite products or databases failed.

239 Starting the databases failed.

240 Stopping the databases failed.

255 The command terminated abnormally.

The following table lists the return codes from the command with the import option.

Return code Description

0 The command succeeded.

1 Obtaining the product version failed.

2 The databases are not running.

3 Extracting the archive file failed.

1. Commands

JP1/Automatic Operation Command and API Reference 81

Return code Description

4 The working folder is not empty.

5 The specified product is not included in the archive file.

6 The specified product is not installed.

7 A version of the product that cannot be imported is found.

8 The working folder has no data to be imported, or the data for importing has an invalid format.

9 You attempted to import the data on the secondary server into the primary server.

10 You attempted to import the data on the primary server into the secondary server.

11 You attempted to import the data into the database in use.

233 Restarting the databases is being interrupted.

234 The database services are stopped or do not exist.

235 The databases are not initialized.

237 Starting the Hitachi Command Suite products or databases failed.

238 Stopping the Hitachi Command Suite products or databases failed.

239 Starting the databases failed.

240 Stopping the databases failed.

255 The command terminated abnormally.

Example
The following examples show how to use the command for each case.

• To back up, in Windows, the databases of JP1/AO:
hcmds64dbtrans /export /workpath "C:\Users\workfolder" /file "C:\backup
\arcfile01" /auto

• To restore, in Windows, the databases of JP1/AO:
hcmds64dbtrans /import /type Automation /workpath "C:\Users\workfolder" /
file "C:\backup\arcfile01" /auto

Related topics
• 1.3 Valid characters for arguments in a command

1.7.5 hcmds64getlogs (collecting log information)

Description
This command collects log information recorded during JP1/AO operation to output the information to the archive file.

Syntax

hcmds64getlogs
 /dir output-folder-path

1. Commands

JP1/Automatic Operation Command and API Reference 82

 [/types Automation]
 [/arc archive-file-name]
 [/logtypes {log | db | csv}]

Arguments

/dir output-folder-path
This option specifies the path to the folder in which the archive file is output. A folder on the local disk drive can
only be specified.
You must specify the absolute or relative path to an empty folder for output-folder-path. If the specified folder path
does not exist, then that folder is newly created.
The maximum length of the path name is 100 characters. The system grants write permission to the folder specified
by this option.

/types Automation
This option specifies Automation as the name of the product whose log information is to be collected. If the JP1/
AO server OS is Windows, this option is not case sensitive. If the JP1/AO server OS is Linux, the option is case
sensitive. If this option is omitted, the command has an effect on JP1/AO and all the installed Hitachi Command
Suite products. Note that, in this case, it might take longer to collect log information.

/arc archive-file-name
This option specifies the name of the archive file created as a result of execution of the data collection tool for
Common Component. If this option is not specified, the archive file is named HiCommand_log.
The archive file is output under the folder specified in the /dir option.
The possible characters for the archive file name are printable ASCII characters (ranged from 0x20 to 0x7E in the
ASCII code) except for some of the special characters (\, /, :, ,, ;, *, ?, ", <, >, |, $, %, &, ', and ̀). The extension
is not necessary.

/logtypes {log | db | csv}
This option specifies the type of a log file for Common Component that you want to collect. The following table
lists the relationship between the log file type and the log files that can be collected.

Table 1-11: Log file types and log files that can be collected

Log file type Log file that can be collected (Windows) Log file that can be collected (Linux)

log • archive-file-name-specified-in-the-arc-option.jar
• archive-file-name-specified-in-the-arc-

option.hdb.jar

• archive-file-name-specified-in-the-/arc-
option_64.jar

• archive-file-name-specified-in-the-arc-
option_64.hdb.jar

db archive-file-name-specified-in-the-arc-option.db.jar archive-file-name-specified-in-the-arc-
option_64.db.jar

csv archive-file-name-specified-in-the-arc-option.csv.jar archive-file-name-specified-in-the-arc-
option_64.csv.jar

If this option is omitted, the system collects all the log files for Common Component. Because of this, we recommend
that you execute the command without this option.
You can specify multiple log file types by entering them separated by half-width space characters such as logtypes
log db csv. If you use the /types and logtypes options at the same time, you must specify log for the
logtypes option.

1. Commands

JP1/Automatic Operation Command and API Reference 83

Output format
The table below shows the list of data collected by the command.

Note that the file content and output format are not disclosed.

Table 1-12: List of data to be collected (when the JP1/AO server OS is Windows)

Archive file Output results

output-destination-folder-specified-in-the-dir-
option\Automation_1st_log.jar

• All files directly under JP1/AO-installation-folder\logs (Subfolders are not
included.)

• All files in JP1/AO-installation-folder\data\task

output-destination-folder-specified-in-the-dir-
option\Automation_log.jar

• FILELIST.txt
• All files in JP1/AO-installation-folder\conf
• All files in JP1/AO-installation-folder\data
• All files in JP1/AO-installation-folder\logs
• All files in JP1/AO-installation-folder\work
• All files in Windows-folder#1\Temp\HITACHI_JP1_INST_LOG
• All files in Windows-folder#1\Temp\jp1common
• Program-Files-folder#2\InstallShield Installation
Information\{C4F6D00E-A9A2-4E57-A21A-
B78B63FF1C54}\setup.ini

• Program-Files-folder#2\InstallShield Installation
Information\{C4F6D00E-A9A2-4E57-A21A-
B78B63FF1C54}\setup.ilg

• REGDATA.DAT

output-destination-folder-specified-in-the-dir-
option\archive-file-name-specified-in-the-arc-
option.jar

Execution result of the data collection tool for Common Component
(hcmds64getlogs, hcmds64ras)

output-destination-folder-specified-in-the-dir-
option\archive-file-name-specified-in-the-arc-
option.hdb.jar

Execution result of the data collection tool for Common Component
(hcmds64getlogs)

output-destination-folder-specified-in-the-dir-
option\archive-file-name-specified-in-the-arc-
option.db.jar

Execution result of the data collection tool for Common Component
(hcmds64getlogs)

output-destination-folder-specified-in-the-dir-
option\archive-file-name-specified-in-the-arc-
option.csv.jar

Execution result of the data collection tool for Common Component
(hcmds64getlogs)

#1:
The Windows-folder is defaulted to C:\WINDOWS.

#2:
The Program-Files-folder is defaulted to C:\Program Files.

Table 1-13: List of data to be collected (when the JP1/AO server OS is Linux)

Archive file Output results

output-destination-folder-specified-in-the-
dir-option/archive-file-name-specified-in-
the-arc-option_64.jar

• FILELIST.txt
• All files in /opt/jp1ao/conf
• All files in /var/opt/jp1ao/data
• All files in /var/opt/jp1ao/logs
• All files in /opt/jp1ao/tools

1. Commands

JP1/Automatic Operation Command and API Reference 84

Archive file Output results

output-destination-folder-specified-in-the-
dir-option/archive-file-name-specified-in-
the-arc-option_64.jar

• All files in /var/opt/jp1ao/work
• All files in /tmp/ HITACHI_JP1_INST_LOG
• Execution result of the data collection tool for Common Component (hcmds64getlogs,
hcmds64ras)

output-destination-folder-specified-in-the-
dir-option/archive-file-name-specified-in-
the-arc-option_64.hdb.jar

Execution result of the data collection tool for Common Component (hcmds64getlogs)

output-destination-folder-specified-in-the-
dir-option/archive-file-name-specified-in-
the-arc-option_64.db.jar

Execution result of the data collection tool for Common Component (hcmds64getlogs)

output-destination-folder-specified-in-the-
dir-option/archive-file-name-specified-in-
the-arc-option_64.csv.jar

Execution result of the data collection tool for Common Component (hcmds64getlogs)

Located in

In Windows:
Common-Component-installation-folder\bin

In Linux:
/opt/HiCommand/Base64/bin

Execute permission
Execute the command as a user with Administrator or root permissions.

Remarks
• Do not interrupt this command while it is running.

• If the hcmds64getlogs command is interrupted, this command has terminated before this command completed
due to insufficient free space in the folder specified in the dir option. In this case, make sure that the folder has
enough free space, and then execute this command again.

• Do not execute more than one hcmdsgetlogs command at the same time.

• When JP1/AO is running in a cluster configuration, execute this command on both the active host and standby host.
You can execute this command even if the JP1/AO server is not running. Therefore, even if an error occurs in a
cluster configuration, you can collect log information without switching nodes. However, if the database is not
running, you cannot obtain the database information.

• If the same option is specified more than once, only the first option is effective.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command terminated abnormally.

1. Commands

JP1/Automatic Operation Command and API Reference 85

Example
The following example shows how to use the command to collect, in Windows, log information in the specified folder
(C:\Users\folder01):

hcmds64getlogs /dir "C:\Users\folder01" /types Automation /arc AO_log

Related topics
• 1.3 Valid characters for arguments in a command

1.7.6 restoresystem (restoring the JP1/AO system)

Description
This command restores the backup data, such as the configuration and database information of JP1/AO, obtained by
the backupsystem command.

The following list shows the data restored when the command is executed:

• Tasks#

• Debug tasks#

• Task histories

• Services

• Debug services

• Service templates

• Users

• User groups

• Service groups

• Connection destination definitions

• Shared service properties

• Various definition files

#
The status of restored tasks and debug tasks is changed after restoration as follows.

Table 1-14: Status of tasks and debug tasks at backup time and after restoration

Status of tasks and debug tasks at
backup time

Status of tasks and debug tasks after restoration

Waiting Canceled (The end date and time of the tasks and debug tasks are set to the date and time
of restoration.)

Holding

In Progress Failed

Waiting for Response

Abnormal Detection

1. Commands

JP1/Automatic Operation Command and API Reference 86

Status of tasks and debug tasks at
backup time

Status of tasks and debug tasks after restoration

Terminated Failed

Completed Completed

Failed Failed

Canceled Canceled

Syntax

restoresystem
 /dir backup-data-path
 [/auto]

Arguments

/dir backup-data-path
This option specifies the absolute or relative path to the backup folder that stores the backup data specified in the
backupsystem command.

/auto
This option causes the command to automatically start and stop the services and databases of JP1/AO, JP1/OA, and
the Hitachi Command Suite products. If this option is omitted, the services and databases of JP1/AO, JP1/OA, and
the Hitachi Command Suite products are not automatically started and stopped.
If you want to use this option in a cluster environment, services registered with the cluster software must be offline.

Located in

In Windows:
JP1/AO-installation-folder\bin

In Linux:
/opt/jp1ao/bin

Execute permission
Execute the command as a user with Administrator or root permissions. If a user without Administrator or root
permissions executes the command, a message appears asking the user to elevate the permission level.

Remarks
• Executing this command creates a temporary file. For this reason, make sure that the folder in which backup files

are stored has a sufficient free space. The required free space is as follows:
Total size of the files to be backed up + 20 MB

• This command does not restore the files below. Manually set the following files again if necessary:

• SSL server certificate file for HTTPS connection

• Private key file for HTTPS connection

• Private key file for public key authentication

• Cluster service control command that was created (in a Linux cluster configuration)

1. Commands

JP1/Automatic Operation Command and API Reference 87

Place the files for HTTPS connection in a location defined in the user_httpsd.conf file, and place the file for
public key authentication in a location defined in the user-specified properties file (config_user.properties).

• If you do not specify the auto option, then make sure that JP1/AO services are not running before executing this
command.
If these services are still running, execute the hcmds64srv command with the stop option to stop the services.

• Be careful if the JP1/AO installation path includes half-width space characters. If there is a file or folder whose path
is the same as the string before the first space character in that path, the restoresystem command will fail with
return code 114. If this happens, move that file or folder to a different path, re-install JP1/AO, and then execute the
restoresystem command again.
For example, assume that JP1/AO is installed in C:\Program Files\HITACHI\JP1AO. In this case, the
restoresystem command will fail if there is a file or folder whose path is C:\Program.

• In the restored tasks and debug tasks, the following operations cannot be selected:

• Retry the Task From the Failed Step

• Retry the Task From the Step After the Failed Step

• In the restored tasks and debug tasks, the progress and status of the step are not displayed.

Return code
The following table lists the return codes from the command.

Return code Description

0 The command succeeded.

1 The argument is invalid.

2 The command execution has been interrupted.

3 The service status is invalid.

4 One of the other commands is running.

7 An invalid path is specified.

9 The specified path does not exist.

10 The specified path is not accessible.

14 You do not have permission to execute the command.

110 Performing the restoration failed.

111 Starting or stopping the service failed.

113 The backup file is invalid.

114 An access to the scheduler database failed.

255 The command execution has been interrupted due to an error other than the above.

Example
The following example shows how to use the command to restore, in Windows, data in the specified backup folder (C:
\Users\Backup):

restoresystem /dir C:\Users\Backup /auto

1. Commands

JP1/Automatic Operation Command and API Reference 88

Related topics
• 1.7.1 backupsystem (backing up the JP1/AO system)
• 1.3 Valid characters for arguments in a command
• Topic User-specified properties file (config_user.properties) in the JP1/Automatic Operation Configuration

Guide

1. Commands

JP1/Automatic Operation Command and API Reference 89

This chapter describes the API functions provided by JP1/AO. The HTTP or HTTPS protocol can
be used for communication with the API functions.

2 APIs

JP1/Automatic Operation Command and API Reference 90

2.1 List of APIs

The following tables list and describe the APIs that can be used for JP1/AO.

Table 2-1: List of API functions for service template functionality

API name Function See

Acquisition of a list of service templates Acquires a list of service templates
registered in JP1/AO.

2.4.1 Acquisition of a list of service templates

Acquisition of information about a service
template

Acquires information about the specified
service template.

2.4.2 Acquisition of information about a
service template

Deletion of a service template Deletes the specified service template. 2.4.3 Deletion of a service template

Acquisition of a list of operations for a service
template

Acquires a list of operations that can be
executed for the specified service template.

2.4.4 Acquisition of a list of operations for a
service template

Acquisition of the HTML file necessary for
importing a service template

Acquires the HTML file necessary for
importing the specified service template.

2.4.5 Acquisition of the HTML file necessary
for importing a service template

Import of a service template Imports the specified service template. 2.4.6 Import of a service template

Acquisition of information necessary for
exporting a service template

Acquires information necessary for
exporting the specified service template.

2.4.7 Acquisition of information necessary
for exporting a service template

Export of a service template Exports the specified service template. 2.4.8 Export of a service template

Acquisition of the URL for displaying the
details of a service template

Acquires the URL for displaying the details
of the specified service template.

2.4.9 Acquisition of the URL for displaying
the details of a service template

Acquisition of information necessary for
creating a service based on a service template

Acquires information necessary for creating
a service from the specified service template.

2.4.10 Acquisition of information necessary
for creating a service based on a service
template

Creation of a service based on a service
template

Creates a service from the specified service
template. You can specify properties when
creating a service.

2.4.11 Creation of a service based on a service
template

Table 2-2: List of APIs for service functionality

API name Function See

Acquisition of a list of
services

Acquires a list of services registered in JP1/AO. 2.5.1 Acquisition of a list of services

Acquisition of service
information

Acquires information about the specified service. 2.5.2 Acquisition of service information

Editing a service Edits the specified service. 2.5.3 Editing a service

Deletion of a service Deletes the specified service. 2.5.4 Deletion of a service

Acquisition of a list of
operations for a service

Acquires a list of operations that can be executed
for the specified service.

2.5.5 Acquisition of a list of operations for a service

Acquisition of information
necessary for executing a
service

Acquires information necessary for executing the
specified service.

2.5.6 Acquisition of information necessary for
executing a service

Execution of a service Executes the specified service. 2.5.7 Execution of a service

Acquisition of information
necessary for resetting the
counter for a service

Acquires information necessary for resetting the
counter for the specified service (initialization of
statistics).

2.5.8 Acquisition of information necessary for resetting
the counter for a service

2. APIs

JP1/Automatic Operation Command and API Reference 91

API name Function See

Reset of the counter for a
service

Resets the counter for the specified service
(initialization of statistics).

2.5.9 Reset of the counter for a service

Acquisition of information
necessary for the operation to
change the status of a service
to release

Acquires information necessary for the operation
to change the status of the specified service to
release.

2.5.10 Acquisition of information necessary for the
operation to change the status of a service to release

Change of the status of a
service to release

Changes the status of the specified service to
release.

2.5.11 Change of the status of a service to release

Acquisition of information
necessary for the operation to
change the status of a service
to maintenance

Acquires information necessary for the operation
to change the status of the specified service to
maintenance.

2.5.12 Acquisition of information necessary for the
operation to change the status of a service to maintenance

Change of the status of a
service to maintenance

Changes the status of the specified service to
maintenance.

2.5.13 Change of the status of a service to maintenance

Acquisition of information
necessary for the operation to
change the status of a service
to disabled

Acquires information necessary for the operation
to change the status of the specified service to
disabled.

2.5.14 Acquisition of information necessary for the
operation to change the status of a service to disabled

Change of the status of a
service to disabled

Changes the status of the specified service to
disabled.

2.5.15 Change of the status of a service to disabled

Acquisition of the URL for
the details of a service

Acquires the URL for displaying the details of the
specified service.

2.5.16 Acquisition of the URL for the details of a service

Acquisition of information
necessary for changing the
version of the service
template used by a service

Acquires information necessary for changing the
version of the service template used by the
specified service.

2.5.17 Acquisition of information necessary for
changing the version of the service template used by a
service

Change of the version of the
service template used by a
service

Applies the service template of any version to the
specified service.

2.5.18 Change of the version of the service template
used by a service

Table 2-3: List of APIs for schedule functionality

API name Function See

Acquisition of a list of
schedules

Acquires a list of schedules set for a task. 2.6.1 Acquisition of a list of schedules

Acquisition of schedule
information

Acquires information about the specified schedule. 2.6.2 Acquisition of schedule information

Acquisition of a list of
operations for a schedule

Acquires a list of operations that can be executed
for the specified schedule.

2.6.3 Acquisition of a list of operations for a schedule

Acquisition of information
necessary for canceling a
schedule

Acquires information necessary for canceling the
specified schedule.

2.6.4 Acquisition of information necessary for
canceling a schedule

Cancellation of a schedule Cancels the specified schedule. 2.6.5 Cancellation of a schedule

Acquisition of information
necessary for pausing a
schedule

Acquires information necessary for pausing the
specified schedule.

2.6.6 Acquisition of information necessary for pausing
a schedule

Pause of a schedule Pauses the specified schedule. 2.6.7 Pause of a schedule

2. APIs

JP1/Automatic Operation Command and API Reference 92

API name Function See

Acquisition of information
necessary for resuming a
schedule

Acquires information necessary for resuming the
specified schedule.

2.6.8 Acquisition of information necessary for
resuming a schedule

Resume of a schedule Resumes the specified schedule. 2.6.9 Resume of a schedule

Table 2-4: List of APIs for task functionality

API name Function See

Acquisition of a list of tasks Acquires a list of tasks. 2.7.1 Acquisition of a list of tasks

Acquisition of task
information

Acquires information about the specified
task.

2.7.2 Acquisition of task information

Editing a task Edits the notes and TODO for the
specified task.

2.7.3 Editing a task

Deletion of a task Deletes the specified task. If the specified
task is not a debug task, this API function
acquires the URL for archiving the task.

2.7.4 Deletion of a task

Acquisition of a list of task
operations

Acquires a list of operations that can be
executed for the specified task.

2.7.5 Acquisition of a list of task operations

Acquisition of information
necessary for stopping task
execution

Acquires information necessary for
stopping execution of the specified task.

2.7.6 Acquisition of information necessary for stopping task
execution

Stoppage of task execution Stops execution of the specified task. 2.7.7 Stoppage of task execution

Acquisition of information
necessary for forcibly
stopping a task

Acquires information necessary for
forcibly stopping the specified task.

2.7.8 Acquisition of information necessary for forcibly stopping a
task

Forced stoppage of a task Forcibly stops the specified task. 2.7.9 Forced stoppage of a task

Acquisition of information
necessary for re-executing a
task

Acquires information necessary for re-
executing the specified task.

2.7.10 Acquisition of information necessary for re-executing a task

Re-execution of a task Re-executes the specified task. 2.7.11 Re-execution of a task

Acquisition of information
necessary for responding to
a task that is in the status
Waiting for Response

Acquires information necessary for
responding to a task that is in the status
Waiting for Response. Among the steps
of the task that has the specified ID,
information about the step that was least
recently placed in the status Waiting for
Response is acquired.

2.7.12 Acquisition of information necessary for responding to a
task that is in the status Waiting for Response

Response to a task that is in
the status Waiting for
Response

Among the steps of the task that has
specified ID, performs a response input
for the step that was least recently placed
in the status Waiting for Response.

2.7.13 Response to a task that is in the status Waiting for Response

Acquisition of information
necessary for retrying a task
(retry from the failed step)

Specifies a task, and acquires
information necessary for retrying the
task from the failed step.

2.7.14 Acquisition of information necessary for retrying a task
(retry from the failed step)

Retry from the failed step Specifies a task, and retries the task from
the failed step.

2.7.15 Retry from the failed step

2. APIs

JP1/Automatic Operation Command and API Reference 93

API name Function See

Acquisition of information
necessary for retrying a task
(retry from the step after the
failed step)

Specifies a task, and acquires
information necessary for retrying the
task from the step after the failed step.

2.7.16 Acquisition of information necessary for retrying a task
(retry from the step after the failed step)

Retry from the step after the
failed step

Specifies a task, and retries the task from
the step after the failed step.

2.7.17 Retry from the step after the failed step

Acquisition of information
necessary for archiving a
task

Acquires the argument template
necessary for archiving the specified
task.

2.7.18 Acquisition of information necessary for archiving a task

Archiving a task Archives the specified task. 2.7.19 Archiving a task

Acquisition of a list of steps Among the steps included in the
specified task, acquires a list of steps
displayed in the Task Details window.

2.7.20 Acquisition of a list of steps

Acquisition of task logs Acquires the task logs for the specified
task.

2.7.21 Acquisition of task logs

Table 2-5: List of history-related API functions

API name Function See

Acquisition of a list of history records Acquires a list of history records. 2.8.1 Acquisition of a list of history records

Deletion of history records (with conditions
specified)

Deletes history records according to the
conditions specified by query parameters.

2.8.2 Deletion of history records (with
conditions specified)

Acquisition of a history record Acquires the history record that has the
specified ID.

2.8.3 Acquisition of a history record

Deletion of history records (with an ID
specified)

Deletes the history record that has the
specified ID.

2.8.4 Deletion of history records (with an ID
specified)

Acquisition of a list of operations for a history
record

Acquires a list of operations that can be
executed for the history record that has the
specified ID.

2.8.5 Acquisition of a list of operations for a
history record

Table 2-6: List of property-related APIs

API name Function See

Acquisition of a list of
property definitions

Acquires a list of property definitions. 2.9.1 Acquisition of a list of property definitions

Acquisition of property
definition information

Acquires information about the specified property
definition.

2.9.2 Acquisition of property definition information

Acquisition of a list of
operations for a property
definition

Acquires a list of operations that can be executed
for the specified property definition.

2.9.3 Acquisition of a list of operations for a property
definition

Acquisition of lists of
property definitions and
property values

Acquires lists of property definitions and property
values.

2.9.4 Acquisition of lists of property definitions and
property values

Acquisition of a list of
property values

Acquires a list of the values of the following
properties:
• Service share properties
• Properties related to specific services
• Properties related to specific schedules

2.9.5 Acquisition of a list of property values

2. APIs

JP1/Automatic Operation Command and API Reference 94

API name Function See

Batch update of property
values

Updates the following property values in a batch:
• Property values related to specific tasks
• Property values related to specific services
• Service share property values
• Property values for multiple services

2.9.6 Batch update of property values

Acquisition of a property
value

Acquires information about the specified property
value.

2.9.7 Acquisition of a property value

Update of a property value Updates the property value that has the
specified ID.

2.9.8 Update of a property value

Acquisition of a list of
operations for a property
value

Acquires a list of operations for the specified
property value.

2.9.9 Acquisition of a list of operations for a property
value

Acquisition of a list of
property groups

Acquires a list of property groups that the
properties retained by a service belong to.

2.9.10 Acquisition of a list of property groups

Table 2-7: List of service group-related API functions

API name Function See

Acquisition of a list of service
groups

Acquires a list of service groups. 2.10.1 Acquisition of a list of service groups

Acquisition of information about a
service group

Acquires information about the specified service
group.

2.10.2 Acquisition of information about a
service group

Acquisition of a list of operations
for a service group

Acquires a list of operations that can be executed for
the specified service group.

2.10.3 Acquisition of a list of operations for a
service group

Table 2-8: List of tag-related API functions

API name Function See

Acquisition of a list of tag groups Acquires a list of tag groups. In addition,
this API function acquires a list of tags
that belong to each tag group.

2.11.1 Acquisition of a list of tag groups

Acquisition of a list of tags Acquires a list of tags that are set for the
specified resource.

2.11.2 Acquisition of a list of tags

Table 2-9: List of APIs for information management

API name Function See

Acquisition of user information Acquires information about users that execute API
functions.

2.12.1 Acquisition of user information

Acquisition of version
information

Acquires the JP1/AO and API versions. 2.12.2 Acquisition of version information

2. APIs

JP1/Automatic Operation Command and API Reference 95

2.2 Specifications common to APIs

The following shows the specifications common to all APIs. Note that the API functions provided by JP1/AO follow
the REST (Representational State Transfer) architecture style.

This section describes the specifications that are specific to JP1/AO. The specifications conform to HTTP1.1 unless
otherwise described.

Note that API in this section refers to the API provided by JP1/AO, and user programs that use APIs (such as a portal
program) are generally called API clients.

2.2.1 Communication protocol
The following shows the communication protocols and port numbers that are used by APIs.

• Communication protocol
API functions support the HTTP and HTTPS protocols. API functions use a protocol that is used by JP1/AO to
communicate with a web browser. For both protocols, version 1.1 is supported. For the detailed specifications of
the communication protocols, see the following standards:

• For the HTTP protocol:
RFC2616

• For the HTTPS protocol:
RFC2818

• Port number
The default port number setting differs depending on the communication protocol and the OS of the JP1/AO server.

• When the communication protocol is HTTP:
22015

• When the communication protocol is HTTPS:
22016

If you want to change the port number, see the topic Procedure to change the port number in the JP1/Automatic
Operation Configuration Guide.

2.2.2 Security and authentication
User authentication is required to issue an API request and receive the response. A JP1/AO API uses the Basic
authentication (Basic Access Authentication) or an authentication using the HSSO token. The HSSO token is necessary
for Single Sign-On. The HSSO token is timed out when 1,000 seconds have passed since it was issued.

In the request header, specify the authentication information to be used for user authentication. The following example
specifies authentication information in the request header.

Example

For Basic authentication:

Authorization: Basic c3lzdGVtOm1hbmFnZXI=

2. APIs

JP1/Automatic Operation Command and API Reference 96

For authentication using the HSSO token

Authorization:HSSO 32bd25936120d68dceabcb49493079f8ef82a4_V0300

If a request with no permission is issued, the JP1/AO server returns status code 401 as the response, and requests user
authentication.

Tip
If Basic authentication or HSSO token-based authentication is used to connect to the JP1/AO server, WWW-
Authenticate: HSSO hsso token is returned in the response header. If you want to use the same
session to connect to the JP1/AO server and issue an API function, specify the request header as follows:

Authorization:HSSO hsso-token

2.2.3 Input/output format
The JSON format or XML format can be used as the data format for API request and response. Specify this data format
in the request header. If you omit specifying the data format, the JSON format is set. UTF-8 is used as the character
encoding for input/output format.

The following example specifies the request header when the XML format is specified as the input/output format.

Example

Accept:application/xml
Content-Type:application/xml

2.2.4 Namespace
If the XML format is used as the data format for API request and response, use the following namespace:

• http://www.hitachi.com/products/it/software/xml/restfw/common/API-version
• http://www.hitachi.com/products/it/software/xml/automation/API-version

2.2.5 Request format
The following shows the request format required for the API to use the functions provided by JP1/AO.

2. APIs

JP1/Automatic Operation Command and API Reference 97

Figure 2-1: Request format (an example when the domain is objects)

The following table describes the components of the request format.

Table 2-10: Components of the request format

Item Description See

Method Specify an operation for the resource. 2.2.7 Supported methods

URL API collection
name

API collection# name. Specify Automation as the fixed
value.

--

API version Specify the API version to be used. See API version in the description of
each API.

Domain name Specify the domain name of the resource that you want to
operate by executing the API function. This request format
is used when the domain is objects.

2.2.8 Domain names and resources
that can be managed by APIs

Resource The functions provided by JP1/AO are provided as API
resources. Specify a resource according to the processing
you want to execute.

Query parameter By adding search conditions to the request, you can filter and
sort output results in the response.

2.2.9 Query parameter

Protocol Specify HTTP as the communication protocol used by the
API. Specify HTTP even when you use HTTP as the
communication protocol.

2.2.1 Communication protocol

Protocol version Specify 1.1 as the version of the communication protocol
used by the API.

Request
header

Host Specify the host information. 2.2.10 Request header

Accept Specify the data format of the response.

Accept-Language Specify the language code for the response.

User-Agent Specify the software information of the API client.

Legend:
--: Not applicable.

#
A collection refers to data subject to processing.

2. APIs

JP1/Automatic Operation Command and API Reference 98

For details and components of the request format, see Request format in the description of each API (differs depending
on the API).

2.2.6 Response format
The following shows the response format.

Figure 2-2: Response format

The following table describes the components of the response format for a request.

Table 2-11: Components of the response format

Item Description See

Status line Protocol Displays the communication protocol
used by the API.

--

Protocol version Displays the version of the
communication protocol used by the
API.

--

Status code Execution result of the request is
returned as the status code.

• See Status code in the description for each API.
• For details about the status code when an error occurs

before an API is executed, see the relevant topic in
2.2.17 Status code.Message Displays the contents of the status

code.

Response
header

Content-Type The response data format specified in
the request header is returned.

2.2.13 Response header

Response body A schema of the data format specified
in the request header is returned.

See Response schema in the description for each API.

Legend:
--: Not applicable.

2.2.7 Supported methods
In an API, an operation for a resource is defined as a method.

Specify a method according to the API processing. For details about the method to be specified, see Request format in
the description of each API.

The following table describes the methods supported by an API.

Table 2-12: Supported methods

Method Description

GET Acquires the information and list of resources.

POST Executes JP1/AO processing according to the resource.

2. APIs

JP1/Automatic Operation Command and API Reference 99

2.2.8 Domain names and resources that can be managed by APIs
Specify the domain name for the resource to be operated by the API to be executed, and a resource supported by
JP1/AO.

Note that, for XML requests and response data, the resource names for the objects domain are replaced with singular
names.

The following table describes the list of domain names and resources that can be managed by APIs.

Table 2-13: Domain names and resources that can be managed by APIs

Domain name Resource Description of the resource

objects ServiceTemplates Service templates

Services Services registered in JP1/AO

Schedules Schedules set for tasks

Tasks Tasks created by execution of services

FlowSteps Steps included in a task

TaskLogs Task logs

PropertyDefinitions Definitions of service template properties or service share properties

PropertyInformations Property definitions and property values

PropertyValues Values of service properties, schedule properties, task properties, and service share properties

PropertyGroups Property groups

ServiceGroups Service groups

TagGroups Tag groups

Tags Tags

user UserInfo# Information about a user authenticated by JP1/AO

configuration VersionInfo# Information about JP1/AO and API versions

#
This resource name is not specified for a request because it is included in a response. For details about how to specify
a request, see Request format in the description of each API.

2.2.9 Query parameter
By using query parameters to add search conditions to a request, you can filter and sort output results in the response.

This section describes query parameters supported by JP1/AO.

Query parameter that can be specified for all APIs
The query parameter described in the following table can be specified for all APIs.

2. APIs

JP1/Automatic Operation Command and API Reference 100

Table 2-14: Query parameter that can be specified for all APIs

Parameter Description Specifiable value Defaul
t value

alt Input/output data format can be specified in the same way
as the Content-Type header and Accept header in a request.

xml or json --

Legend:
--: Not applicable.

Query parameters that can be used for some APIs
The query parameters in the table below can be specified for a part of APIs#.

#

• Acquisition of a list of service templates

• Acquisition of a list of services

• Acquisition of a list of schedules

• Acquisition of a list of tasks

• Acquisition of a list of steps

• Acquisition of task logs

• Acquisition of a list of history records

• Acquisition of a list of property definitions

• Acquisition of a list of property values

• Acquisition of lists of property definitions and property values

• Acquisition of a list of property groups

• Acquisition of a list of service groups

• Acquisition of a list of tag groups

• Acquisition of a list of tags

Table 2-15: Query parameters that can be specified for a part of APIs

Parameter Description Specifiable value#1 Defaul
t value

HQL::filter Filters the output results by using the specified conditions. See 2.2.11 Using HQL standard. --

HQL::fields Specify this parameter when you want to filter members to
be included in a response. You can specify multiple
parameters by separating them by commas (,).

Member-name --

HQL::sortBy Sorts the output results by the specified member name. Member-name [{ASC| DESC}](, member-
name [{ASC| DESC}])
• ASC: Ascending order
• DESC: Descending order

ASC

HQL::offset#2 Specifies the position of the heading object whose
information is to be acquired. Specify the maximum
number of objects that can be included in a response with
HQL::count. page takes preference over HQL::offset.

0 to 2147483647 0

2. APIs

JP1/Automatic Operation Command and API Reference 101

Parameter Description Specifiable value#1 Defaul
t value

HQL::count#2 Specify the maximum number of objects that can be
included in a response, starting from the position of the
heading object specified with HQL::offset. pageSize takes
preference over HQL::count. If the total of HQL::count and
HQL::offset exceeds 2,147,483,647, the objects of the
position specified with HQL::offset until the
2,147,483,647th are acquired.

1 to 2147483647 100

page#2 Acquires information about the specified page when a
resource is divided into pages. You must also specify
pageSize. page takes preference over HQL::offset.

1 to 2147483647 --

pageSize#2 Specify the maximum number of objects that can be
displayed in a page. pageSize takes preference over
HQL::count.

1 to 2147483647 --

Legend:
--: Not applicable.

#1
If you want to specify a character string that cannot be expressed as a URL, use UTF-8 encoding and encode the
character string.

#2
You cannot specify the parameters for the following API functions: Acquisition of task logs, Acquisition of a list of
steps, and Acquisition of a list of property groups.

For the pageSize parameter, specify the maximum number of objects to be displayed in a page. For the page parameter,
specify the number of the page to be displayed from among the divided pages. They basically resemble the items Rows/
page and Page of Services of Services List in a JP1/AO window. If you specify the parameters page and pageSize, the
numbers of all resources and pages are returned to the Pagination object. From the value of this object, you can determine
whether the next page exists.

Note that the parameters page and pageSize are used by converting to an HQL::offset value according to the following
formula:

HQL::offset = pageSize * (page - 1)

Therefore, if the parameters page and pageSize exceed the range that can be specified for HQL::offset, the status code
400 (Bad Request) is returned.

Related topics
• 2.2.11 Using HQL standard

2.2.10 Request header
The request header specifies the data format and language code for the response.

2. APIs

JP1/Automatic Operation Command and API Reference 102

Table 2-16: Request header

Header Description Specifiable value Default
value

Whether
specificat
ion is
required

Host Specify the following items as host information:
• Host name or IP address: Host name or IP address of the

JP1/AO server
• Port number: Port number that an API uses to connect to

JP1/AO
When you specify the port number, see 2.2.1 Communication
protocol.

Specify this value
after checking the
user environment.

-- Required

Accept Specify the desired data format for response data. • application/json:
JSON format

• application/xml:
XML format

• multipart/form-
data: multipart
format#1

• text/html: HTML
format#2

application/
json

Required

Accept-
Language

Specify the desired language code for response data. • ja or ja-JP:
Japanese

• zh or zh-CN:
Chinese

• en or en-US:
English

• Locale for other
regions: English

en Required

Content-Type Specify the data format for the request body. • application/json:
JSON format

• application/xml:
XML format

• application/octet-
stream: octet-
stream format#3

application/
json

Optional

Authorization Specify authentication information. For Basic
authentication:

user-information

For authentication
using the HSSO
token:

hsso-token

-- Optional

Legend:
--: Not applicable.

#1
Valid only for the API function Import of a service template.

#2
Valid only for the API function Acquisition of the HTML file necessary for importing a service template.

#3
Valid only for the API function Export of a service template.

2. APIs

JP1/Automatic Operation Command and API Reference 103

2.2.11 Using HQL standard
By specifying HQL (Hitachi Query Language) for HQL::filter, you can filter the target data. A collection refers to data
to be filtered.

Use UTF-8 encoding and encode characters and symbols that cannot be expressed as a URL.

Format
To define a collection of a resource request, use the following expressions:

expression ::= "(" expression ")" | binary-expression | expression junction
expression
junction ::= ("and" | "or")

binary-expression ::= (compare-expression | tuple-expression)

compare-expression ::= name-expression compare-operation value-expression

name-expression ::= property-name | "[" property-name "]"
compare-operation ::= ("eq" | "=" | "ne" | "<>" | "!=" | "gt" | ">" | "lt" | "<" |
"ge" |">=" | "le" |"<=" | "starts" | "ends")
value-expression ::= (string-expression | number-expression |Boolean-expression)

string-expression ::= "'" ([^'] | [']{2})* "'"
number-expression::= ("0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9")+
Boolean-expression::= "true" | "false" |"TRUE" | "FALSE"

tuple-expression ::= name-expression tuple-operation tuple-value-expression

tuple-value-expression ::= "[" value-expression ("," value-expression)* "]"

tuple-operation ::= ("in" | "not in")

property-name is a member name defined in a resource.

value-expression displays whether the expression is a string expression, number expression, or Boolean expression.
This value is different from the actual data type of the member defined in a resource.

The following table describes the relationship between the data types and expression formats.

Table 2-17: Relationship between data types and expression formats

Data type Expression format

integer/long number-expression

enum string-expression

string string-expression

ISO8601String string-expression

URLString string-expression

boolean Boolean-expression

The following table lists and describes the operators supported by HQL in preferential order.

2. APIs

JP1/Automatic Operation Command and API Reference 104

Table 2-18: Operators supported by HQL

Operator Description Specifiable data type Priority

eq Equal number-expression, string-expression (string,
enum), Boolean-expression

1

ne Not equal number-expression, string-expression (string,
enum), Boolean-expression

1

gt Greater than number-expression, string-expression (string,
enum)

1

lt Smaller than number-expression, string-expression (string,
enum)

1

ge Equal or greater than number-expression, string-expression (string,
enum)

1

le Equal or smaller than number-expression, string-expression (string,
enum)

1

starts# Start value string-expression (string, excluding
ISO8601String)

1

ends# End value string-expression (string, excluding
ISO8601String)

1

in Included number-expression, string-expression (string,
enum), Boolean-expression

1

not in Not included number-expression, string-expression (string,
enum), Boolean-expression

1

and Both true compare-expression, tuple-expression 2

or Either of them true compare-expression, tuple-expression 3

#
The operators are not case sensitive.

Usage example
The example below filters the specified line. If you want to specify a character string that cannot be expressed as a URL,
use UTF-8 encoding and encode the character string.

Before URL encoding:
...?HQL::filter=instanceID in [1000,1001,1002] and status = 'running'

After URL encoding:
...?HQL::filter=instanceID%20in%20%5b1000%2c1001%2c1002%5d%20and%20status
%20%3d%20%27running%27

2.2.12 Domain object format
A domain refers to a location in which resources supported by JP1/AO are stored. A domain object refers to a resource.
This section describes the data formats of the members that resources have.

2. APIs

JP1/Automatic Operation Command and API Reference 105

Supported data type
The following table describes the data types supported by the JSON format and XML format.

Table 2-19: Supported data type

Type name Description

boolean true or false

integer 32-bit signed integer

long 64-bit signed integer

string# Text data

#
ISO8601String, URLString, and enum are string-type extended expressions.

Date and time
The following describes how to specify the date and time for a domain object.

To specify the date and time, use ISO8601 format. In this format, you can omit all information except year (yyyy). If
the date or time is omitted, the minimum specifiable value is automatically added. If the time zone is omitted, the time
zone set for the JP1/AO server is set by default.

Note, however, that you cannot omit the date and time if you use HQL::filter to specify them. If you acquire time
information in JSON format, the time is output in a format where a colon (:) is not used for time zone information (for
example, 2014-12-09T18:50:30.500+0900). To specify the time information acquired in JSON format as an input for
an API, add a colon (:) in the time zone (for example, 2014-12-09T18:50:30.500+09:00). If you do not add a colon (:),
an error occurs.

Note that a year, month, date, time, and time zone are displayed in the response body in the format yyyy-
mmddThh:mm:ss.mmmTZD if the data type of a resource member is ISO8601String.

Table 2-20: Format of year-month-date, time, and time zone

Format Example Time processed by JP1/AO

yyyy-mm-ddThh:mm:ss.mmmTZD 2014-12-09T18:50:30.500+09:00 Same as the example.

yyyy-mm-ddThh:mm:ss.mmm 2014-12-09T18:50:30.500.000 2014-12-09T18:50:30.500.000[time-zone-of-the-host-server]

yyyy-mm-ddThh:mm:ssTZD 2014-12-09T18:50:30+09:00 2014-12-09T18:50:30.000+09:00

yyyy-mm-ddThh:mmTZD 2014-12-09T18:50+09:00 2014-12-09T18:50:00.000+09:00

yyyy-mm-ddThhTZD 2014-12-09T18+09:00 2014-12-09T18:00:00.000+09:00

yyyy-mm-dd 2014-12-09 2014-12-09T00:00:00.000[time-zone-of-the-host-server]

yyyy-mm 2014-12 2014-12-01T00:00:00.000[time-zone-of-the-host-server]

yyyy 2014 2014-01-01T00:00:00.000[time-zone-of-the-host-server]

2.2.13 Response header
The following table describes the response headers controlled by JP1/AO.

2. APIs

JP1/Automatic Operation Command and API Reference 106

Table 2-21: Response headers

Header Description

Cache-Control Performs cache control on the response information of an API for which the GET method is specified.

Content-Type Data format of the response data

Content-disposition Added to indicate that the response data is an attachment.

Language Language code of the response data

Location URL information. This information is different from the URL information for the request. This header displays the
URL information for redirection if you must acquire the response data.

WWW-Authenticate Outputs the authenticated HSSO token.

Warning Displays information when the API processing succeeds but there is a problem with the status of the server.

Related topics
• 2.2.10 Request header

2.2.14 Members of resources
Functions provided by JP1/AO are categorized into resources. In the response body, you can acquire resource information
as members. The function-based table below shows the name, data type, description, and whether HQL::filter and
HQL::sortBy is applied, for each returned resource member.

For details on how to specify a year, month, and date, see Table 2-20: Format of year-month-date, time, and time
zone, unless otherwise described.

Table 2-22: Members that can be acquired by Acquisition of a list of services (Resource
(ServiceTemplate))

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID Y

keyName string Service template ID Y

displayName string Display name of the service template Y

iconURL URLString URL of the icon image that is set for the service template N

vendorID string Vendor ID Y

version string Version of the service template Y

vendorName string Vendor name Y

tags string List of tags added to the service template N

createTime ISO8601String Year, month, date, time, and time zone at which the service
template was created

Y

2. APIs

JP1/Automatic Operation Command and API Reference 107

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

modifyTime ISO8601String Year, month, date, time, and time zone at which the service
template was updated

Y

description string Description of the service template Y

releaseState enum Release state of the service template
• debug: Debug
• release: Release

Y

latest boolean Whether the service template is the latest version
• true: Yes
• false: No

Y

imageURL URLString URL of the service overview image N

supportedSchedu
leType

enum csv Schedule type that can be applied to the service template
• immediate: Executed immediately.
• schedule: Executed at the specified date and time.
• recurrence: Executed periodically.

Y

needVUP boolean Whether there is a service using a service template of an older
version
• true: Yes
• false: No

Y

componentOutda
ted

boolean Whether the service template contains a component of an older
version
• true: Yes
• false: No

Y

usedServices integer Number of services using the service template N

usedTemplates integer Number of service templates using the service template as a
service component

N

disableFeatures string Invalid operation for the service template Y

supportedAction
Type#

string Operations that can be performed for the task:
• forciblyStop: Forcibly stop the task
• retry: Retry the task

Y

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of
objects that can be included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by
query parameters (0 to n)

N

Legend:
Y: Applied. N: Not applied.

2. APIs

JP1/Automatic Operation Command and API Reference 108

#
If supportedActionType is not specified, all operations are permitted.

Table 2-23: Members that can be acquired by Acquisition of a list of services (Resource (Services))

Member
name

Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID Y

name string Service name Y

description string Description of the service Y

tags string Tag information separated by commas (,) into tag units is
displayed.

N

serviceTemplat
eName

string Name of the service template that is used as the base of a service Y

createTime ISO8601String Year, month, date, time, and time zone at which the service was
created

Y

modifyTime ISO8601String Year, month, date, time, and time zone at which the service
information was updated

Y

serviceState enum Service type
• debug: Debug
• test: Test
• release: Release
• maintenance: Maintenance
• disabled: Disabled

Y

serviceGroupN
ame

string Name of the service group that the service belongs to Y#

iconURL URLString URL of the icon image that is set for the service template N

vendorName string Vendor name for the service template that is used as the base of
the service

Y

version string Version of the service template that is used as the base of the
service

Y

lastSubmitTime ISO8601String Year, month, date, time, and time zone at which the service was
last executed by the user

Y

favorite boolean Whether the service is registered as a favorite
• true: Yes
• false: No

Y

failedCount integer Number of times tasks that were generated from the service
failed

Y

completedCoun
t

integer Number of times tasks that were generated from the service
ended normally

Y

lastFailedTime ISO8601String Year, month, date, time, and time zone at which a task that was
generated from the service last failed

Y

2. APIs

JP1/Automatic Operation Command and API Reference 109

Member
name

Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

resetTime ISO8601String Year, month, date, time, and time zone at which the counter for
the service was last reset.

Y

executedCount integer Number of times tasks that were generated from the service were
executed

Y

latest boolean Whether the service template used by the service is the latest
version
• true: Yes
• false: No

Y

imageURL URLString URL of the service overview image N

supportedSched
uleType

enum csv Schedule type of the service
• immediate: Executed immediately.
• schedule: Executed at the specified date and time.
• recurrence: Executed periodically.

Y

submitCount integer Number of times the service was executed Y

serviceTemplat
eID

long ID of the service template that is used as the base of the service Y

serviceGroupI
D

long Service group ID Y

supportedActio
nType

string Operations that can be performed for the task:
• forciblyStop: Forcibly stop the task
• retry: Retry the task

Y

pagination Object Information used when a resource is divided into pages N

page integer The page specified in the request (page number) N

pageSize integer The page size specified in the request (maximum number of
objects included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer The number of data items that match the conditions specified by
query parameters (0 to n)

N

Legend:
Y: Applied. N: Not applied.

#
When All Resources is specified, the service is treated as if DefaultServiceGroup is specified.

2. APIs

JP1/Automatic Operation Command and API Reference 110

Table 2-24: Members that can be aquired by Acquisition of a list of schedules (Resource
(Schedules))

Member name Data type Description Whethe
r
HQL::fil
ter or
HQL::s
ortBy is
applied

data Object List of resources N

instanceID long Instance ID Y

name string Task name specified when the service is executed Y

submitter string Execution user name Y

status enum Status of the schedule of the periodic execution task
• complete: The schedule of the periodic execution task is complete. The

task will not be executed.
• running: The schedule of the periodic execution task is running. The task

will be executed periodically.

Y

scheduleType enum Schedule type
• immediate: Executed immediately
• schedule: Executed at the specified date and time.
• recurrence: Executed periodically.

Y

createTime ISO8601String Year, month, date, time, and time zone at which the schedule was created by
service execution

Y

modifyTime ISO8601String Year, month, date, time, and time zone at which task information was updated Y

description string Description of the task Y

scheduledStartTi
me

ISO8601String Year, month, date, time, and time zone at which scheduled task is planed to
start

Y#

recurrenceInterv
al

enum Periodic execution cycle
• daily: Daily
• weekly: Weekly
• monthly: Monthly

Y

recurrenceMinut
es

integer Interval (minutes) of the service is to be executed when the periodic execution
cycle is set to daily:
• 60
• 120
• 180
• 240
• 360
• 480
• 720
• 1440

N

recurrenceDayOf
Week

string Day of week the service is to be executed when the periodic execution cycle
is set to Weekly (1: Sun to 7: Sat)

N

recurrenceDayOf
Month

string Day of month the service is to be executed when the periodic execution cycle
is set to Monthly (1st to 31st)

N

recurrenceLastD
ayOfMonth

boolean Whether to execute on the final day of month
• true: Execute

Y

2. APIs

JP1/Automatic Operation Command and API Reference 111

Member name Data type Description Whethe
r
HQL::fil
ter or
HQL::s
ortBy is
applied

recurrenceLastD
ayOfMonth

boolean • false: Not execute Y

recurrenceStartD
ate

string Date the periodic execution task starts execution (yyyy-mm-dd) Y

recurrenceTime string Time the periodic execution task is executed (hh:mm:ss) Y

serviceState enum Service type
• debug: Debug
• test: Test
• release: Release
• maintenance: Maintenance

Y

serviceID long ID of the service that is the generation source of the schedule Y

supportedAction
Type

string Operations that can be performed for the task:
• forciblyStop: Forcibly stop the task
• retry: Retry the task

Y

pagination Object Information when the resource is divided into pages N

page integer The page number specified in the request (page number) N

pageSize integer The page size specified in the request (maximum number of objects that can
be included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query parameters
(0 to n)

N

Legend:
Y: Applied. N: Not applied.

#
HQL::sortBy is not applied.

Table 2-25: Members that can be acquired by Acquisition of a list of tasks (Resource (Tasks))

Member name Data type Description Whether
HQL::filt
er or
HQL::sor
tBy is
applied

data Object List of resources N

instanceID long Instance ID Y

name string Task name Y

status enum Status of the task Y

2. APIs

JP1/Automatic Operation Command and API Reference 112

Member name Data type Description Whether
HQL::filt
er or
HQL::sor
tBy is
applied

status enum • failed: Failed
• completed: Completed
• canceled: Canceled
• inProgressTerminating: Being stopped
• inProgressWithError: Abnormality detected
• waitingForInput: Waiting for response
• inProgress: In progress
• suspended: Suspended
• waiting: Waiting
• longRunning: Long running

Y

startTime ISO8601String Start year, month, date, time, and time zone of the task Y

completionTime ISO8601String End year, month, date, time, and time zone of the task Y

scheduledStartTime ISO8601String Year, month, date, time, and time zone at which the scheduled task is planned
to be started

Y

submitter string Execution user name Y

submitTime ISO8601String Year, month, date, time, and time zone at which the task was created by service
execution

Y

modifyTime ISO8601String Year, month, date, time, and time zone at which the task information was
updated

Y

serviceState enum Task type
• debug: Debug
• test: Test
• release: Release
• maintenance: Maintenance
• buildDebug: Executed from the debugger.

Y

scheduleType enum Schedule type
• immediate: Executed immediately.
• schedule: Executed at the specified date and time.
• recurrence: Executed periodically.

Y

description string Description of the task Y

serviceName string Name of the service that is the generation source of the task Y

tags string List of tags that are added to the task Y

recurrenceInterval enum Execution interval of the periodic execution task
• daily: Daily
• weekly: Weekly
• monthly: Monthly

Y

recurrenceTime string Execution time of the periodic execution task (hh:mm:ss) Y

recurrenceStartDate ISO8601String Start year, month, and date of the periodic execution task (yyyy-mm-dd) Y

serviceGroupName string Name of the service group that the generation source service of the task belongs
to

Y

toDo boolean Whether TODO is set for the task Y

2. APIs

JP1/Automatic Operation Command and API Reference 113

Member name Data type Description Whether
HQL::filt
er or
HQL::sor
tBy is
applied

toDo boolean • true: Yes
• true: No

Y

notes string Notes added to the task Y

stepStartTime long Year, month, date, time, and time zone at which a step included in the task was
executed for the first time

Y

serviceTemplateID long ID of the service template that is used as the base of the task Y

scheduleID long ID of the schedule that is used as the base of the task Y

serviceGroupID long ID of the service group that the generation source service of the task belongs
to

Y

serviceID long ID of the service that is the generation source of the task Y

pagination Object Information when the resource is divided into pages N

page integer The age specified in the request (page number) N

pageSize integer The page size specified in the request (maximum number of objects that can be
included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query parameters
(0 to n)

N

Legend:
Y: Applied. N: Not applied.

Table 2-26: Members that can be acquired by Response to a task that is in the status Waiting for
Response (Resource (ResponseInput))

Member name Data type Description Whether
HQL::filter
or
HQL::sortB
y is applied

instanceID string Instance ID N

dialogText string Character string displayed in the Add Response window N

labelButton0 string Option 0 N

labelButton1 string Option 1 N

labelButton2 string Option 2 N

labelButton3 string Option 3 N

labelButton4 string Option 4 N

labelButton5 string Option 5 N

labelButton6 string Option 6 N

2. APIs

JP1/Automatic Operation Command and API Reference 114

Member name Data type Description Whether
HQL::filter
or
HQL::sortB
y is applied

labelButton7 string Option 7 N

labelButton8 string Option 8 N

labelButton9 string Option 9 N

screenURL string URL for displaying the Add Response window N

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that can
be included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query
parameters (0 to n)

N

Legend:
N: Not applied.

Table 2-27: Members that can be acquired by Acquisition of a list of steps (Resource (FlowSteps))

Member name Data type Description Whether
HQL::filter
or
HQL::sortB
y is applied

data Object List of resources N

instanceID string Instance ID N

name string Step name N

startTime string Start year, month, date, and time of the step (yyyy-MM-dd hh:mm:ss) N

completionTime string End year, month, date, and time of the step (yyyy-MM-dd hh:mm:ss) N

jobStatus enum Status of the step
• noplan: Not scheduled
• normal: Normal
• warning: Warning
• waiting: Waiting
• holding: Being held
• break: Interrupted
• break_after: Interrupted (After Execution)
• running: Running
• waiting_for_response: Waiting for response
• abnormal_continue: Abnormality detected
• complete: Completed
• error: Failed
• abnormal: Ended with a warning

N

2. APIs

JP1/Automatic Operation Command and API Reference 115

Member name Data type Description Whether
HQL::filter
or
HQL::sortB
y is applied

jobStatus enum • un_exec: Not executed but ended
• bypass: Bypassed and not executed
• terminate: Terminated
• waiting_for_foreach: Waiting to repeat

N

comment string Comment for the step N

stepStatus enum Status of the step (JP1/AO)
• normal: Normal
• warning: Warning
• waiting: Waiting
• holding: Being held
• break: Interrupted
• break_after: Interrupted (After Execution)
• running: Running
• waiting_for_response: Waiting for response
• abnormal_continue: Abnormality detected
• complete: Completed
• error: Failed
• abnormal: Ended with a warning
• un_exec: Not executed but ended
• bypass: Bypassed and not executed
• terminate: Terminated
• waiting_for_foreach: Waiting to repeat

N

pagination Object Information when a resource is divided into pages N

page integer The page specified in the request (page number) N

pageSize integer The page size specified in the request (maximum number of objects that can
be included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query
parameters (0 to n)

N

Legend:
N: Not applied.

Table 2-28: Members that can be acquired by Acquisition of task logs (Resource (Tasklogs))

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID N

text string Body of the task log N

2. APIs

JP1/Automatic Operation Command and API Reference 116

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

totalSize long Total file size of the task logs (unit: byte) N

readSize long Size of the acquired task log (unit: byte) N

lineCount long Number of lines in the acquired task log N

offset long Offset specified when the task log is acquired (unit: byte) N

reverse boolean Whether the task log was acquired in the opposite direction from the offset
• true: The task log was acquired in the opposite direction from the offset.
• false: The task log was acquired in the normal direction from the offset.

N

pagination Object Information when a resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that can be
included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query parameters
(0 to n)

N

Legend:
N: Not applied.

Table 2-29: Members that can be acquired by Acquisition of a list of history records (Resource
(TaskHistory))

Member name Data type Description Whether
HQL::filt
er or
HQL::sor
tBy is
applied

data Object List of resources N

instanceID long Instance ID Y

name string Task name Y

submitter string Execution user name Y

serviceName string Name of the generation source service of the task Y

tags string Tag information (CSV format) N

scheduleType enum Schedule type
• immediate: Executed immediately.
• schedule: Executed at the specified date and time.
• recurrence: Executed periodically.

Y

scheduledStartTime ISO8601String Start year, month, date, time, and time zone of the task that is executed
at the specified date and time

Y

2. APIs

JP1/Automatic Operation Command and API Reference 117

Member name Data type Description Whether
HQL::filt
er or
HQL::sor
tBy is
applied

startTime ISO8601String Start year, month, date, time, and time zone of the task Y

completionTime ISO8601String End year, month, date, time, and time zone of the task Y

stepStartTime ISO8601String Start year, month, date, time, and time zone of the long-running task Y

recurrenceInterval enum Execution interval of the periodic execution task
• daily: Daily
• weekly: Weekly
• monthly: Monthly

Y

recurrenceMinutes integer Interval (minutes) of the service is to be executed when the periodic
execution cycle is set to daily:
• 60
• 120
• 180
• 240
• 360
• 480
• 720
• 1440

N

recurrenceDayOfWeek string (When the periodic execution interval is weekly) Day of the week when
the service is executed (1: Sunday to 7: Saturday)

N

recurrenceDayOfMonth string (When the periodic execution interval is monthly) Day when the service
is executed (1 to 31)

N

recurrenceLastDayOfM
onth

boolean Whether to execute the service on the last day of each month
• true: Yes
• false: No

Y

recurrenceTime string Execution time of the periodic execution task (hh:mm:ss) Y

archiveTime ISO8601String Year, month, date, time, and time zone at which the task was archived Y

taskID long Task ID Y

submitTime ISO8601String Year, month, date, time, and time zone at which the task was executed Y

recurrenceStartDate ISO8601String Start date of the periodic execution task (yyyy-mm-dd) Y

status enum Status of the task
• failed: Failed
• completed: Ended normally
• canceled: Canceled
• inProgressTerminating: Being stopped
• inProgressWithError: Abnormality detected
• waitingForInput: Waiting for response
• inProgress: In progress
• suspended: Suspended
• waiting: Waiting
• longRunning: Long running

Y

description string Description of the task Y

2. APIs

JP1/Automatic Operation Command and API Reference 118

Member name Data type Description Whether
HQL::filt
er or
HQL::sor
tBy is
applied

serviceState enum Release status of the service
• debug: Debug
• test: Test
• release: Release
• maintenance: Maintenance

Y

toDo boolean Whether TODO is set for the task
• true: Yes
• false: No

Y

notes string Notes added to the task Y

serviceGroupName string Name of the service group that the generation source service of the
history record belongs to

Y

serviceGroupID long ID of the service group that the generation source service of the history
record belongs to

Y

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that
can be included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query
parameters (0 to n)

N

Legend:
Y: Applied. N: Not applied.

Table 2-30: Members that can be acquired by Acquisition of a list of property definitions (Resource
(PropertyDefinitions))

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID Y

keyName string Property key name Y

displayName string Display name of the property N

defaultValue string Default value of the property Y

type enum Data type of the property
• boolean

Y

2. APIs

JP1/Automatic Operation Command and API Reference 119

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

type enum • integer
• string
• double
• timestamp(date)
• password
• list
• file

Y

visibility enum Visibility of the property
• config
• exec

Y

scope enum Valid range of the property
• share: Service share property
• local: Property that is valid only for the service

Y

description string Description of the property N

mode enum Input/output type of the property
• in: Input property
• out: Output property

Y

required boolean Whether the property must be specified to execute the service
• true: Required.
• false: Can be omitted.

Y

maxLength integer Maximum length of a character string that can be input in the property Y

minLength integer Minimum length of a character string that can be input in the property Y

minValue string Minimum value that can be input in the property Y

maxValue string Maximum value that can be input in the property Y

pattern string Regular expression pattern of a character string that can be specified for the
property string or password

Y

valueList string Candidate property values that are separated by commas (,) when the data
type of the property is list

Y

propertyGroupName string Property group name Y

validationScript string Property validation processing JavaScript Y

readOnly boolean Whether to suppress a change of the property value
• true: Yes
• false: No

Y

hidden boolean Whether to suppress a display of the property
• true: Yes
• false: No

Y

reference boolean Whether the property value references another property value
• true: Yes
• false: No

Y

serviceTemplateID long Service template ID Y

2. APIs

JP1/Automatic Operation Command and API Reference 120

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that can be
included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query parameters
(0 to n)

N

Legend:
Y: Applied. N: Not applied.

Table 2-31: Members that can be acquired by Acquisition of lists of property definitions and property
values (Resource (PropertyInformation))

Member name Data type Description Whether
HQL::filter
or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID Y

keyName string Property key name Y

displayName string Display name of the property N

defaultValue string Default value of the property Y

value string Current value of the property Y

type enum Data type of the property
• boolean
• integer
• string
• double
• timestamp
• password
• list
• file

Y

visibility enum Visibility of the property
• config: Displayed as an input item for the Service Definition window.
• exec: Displayed as an input item for the Service Definition window and

the Submit Service window

Y

scope enum Valid range of the property
• share: Service share property

Y

2. APIs

JP1/Automatic Operation Command and API Reference 121

Member name Data type Description Whether
HQL::filter
or
HQL::sort
By is
applied

scope enum • local: Property that is valid only for the service Y

description string Description of the property N

mode enum Input/output type of the property
• in: Input property
• out: Output property

Y

required boolean Whether the property must be specified to execute the service
• true: Required.
• false: Can be omitted.

Y

maxLength integer Maximum length of a character string that can be input in the property Y

minLength integer Minimum length of a character string that can be input in the property Y

minValue string Minimum value that can be input in the property Y

maxValue string Maximum value that can be input in the property Y

pattern string Regular expression pattern of a character string that can be specified for the
property string or password

Y

valueList string Candidate property values that are separated by commas (,) when the data
type of the property is list

Y

propertyGroupNa
me

string Property group name Y

validationScript string Property validation processing JavaScript N

readOnly boolean Whether to suppress a change of the property value
• true: Yes
• false: No

Y

hidden boolean Whether to suppress a display of the property
• true: Yes
• false: No

Y

reference boolean Whether the property value refers another property value
• true: Yes
• false: No

N

serviceTemplateI
D

long Service template ID for the resource Y

serviceID long Service ID for the resource Y

taskID long Task ID for the resource Y

scheduleID long Schedule ID for the resource Y

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that can
be included in a page)

N

numPages integer Total number of pages (page number) N

2. APIs

JP1/Automatic Operation Command and API Reference 122

Member name Data type Description Whether
HQL::filter
or
HQL::sort
By is
applied

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query
parameters (0 to n)

N

Legend:
Y: Applied. N: Not applied.

Table 2-32: Members that can be acquired by Acquisition of a list of property values (Resource
(PropertyValues))

Member name Data type Description Whether
HQL::filter
or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID Y

type enum Data type of the property
• boolean
• integer
• string
• double
• timestamp(date)
• password
• list
• file

Y

keyName string Property key name Y

value string Property value Y

serviceID long Service ID of the resource Y

scheduleID long Schedule ID of the resource Y

taskID long Task ID of the resource Y

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that can be
included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query
parameters (0 to n)

N

2. APIs

JP1/Automatic Operation Command and API Reference 123

Legend:
Y: Applied. N: Not applied.

Table 2-33: Members that can be acquired by Acquisition of a list of property groups (Resource
(PropertyGroup))

Member name Data type Description Whether
HQL::filter
or
HQL::sort
By is
applied

keyName string Property group ID Y

displayName string Display name of the property group N

description string Description of the property group N

ordinal integer Display sequence number of the property group N

validationScript string JavaScript for validation processing between properties in the property
group

N

display enum Whether to display the property group
• submit: Displayed in the Submit Service window.
• config: Displayed in the Edit Service window.
• taskDetail: Displayed in the Task Details window.

N

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that can
be included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query
parameters (0 to n)

N

Table 2-34: Members that can be acquired by Acquisition of a list of service groups (Resource
(ServiceGroup))

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID Y

objectID string Instance ID for the Resource Group resource Y

name string Name of the service group Y

description string Description of the service group Y

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

2. APIs

JP1/Automatic Operation Command and API Reference 124

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

pageSize integer pageSize specified in the request (maximum number of objects that can be
included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query parameters
(0 to n)

N

Legend:
Y: Applied. N: Not applied.

Table 2-35: Members that can be acquired by Acquisition of a list of tag groups (Resource
(TagGroup))

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID Y

name string Name of the tag group Y

tag string List of tags that belong to the tag group (CSV format) N

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that can be
included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query parameters
(0 to n)

N

Legend:
Y: Applied. N: Not applied.

Legend:
Y: Applied. N: Not applied.

2. APIs

JP1/Automatic Operation Command and API Reference 125

Table 2-36: Members that can be acquired by Acquisition of a list of tags (Resource (Tag)) (when
the detail query parameter is not specified)

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID Y

name string Tag name Y

tagGroupID long ID of the tag group that the tag belongs to Y

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that can be
included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query parameters
(0 to n)

N

Legend:
Y: Applied. N: Not applied.

Table 2-37: Members that can be acquired by Acquisition of a list of tags (Resource (Tag)) (when
the detail query parameter is specified)

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

data Object List of resources N

instanceID long Instance ID Y

name string Tag name Y

usedTemplates integer Number of release and development service templates using the tag Y

usedServices integer Number of services using the tag Y

usedTasks integer Number of tasks using the tag Y

usedHistories integer Number of history records using the tag Y

usedPlugins integer Number of release plug-ins using the tag Y

usedDevelopPlugin
s

integer Number of development plug-ins using the tag Y

usedDevelopTempl
ates

integer Number of development service templates using the tag Y

2. APIs

JP1/Automatic Operation Command and API Reference 126

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

tagGroupID long ID of the tag group that the tag belongs to Y

pagination Object Information when the resource is divided into pages N

page integer page specified in the request (page number) N

pageSize integer pageSize specified in the request (maximum number of objects that can be
included in a page)

N

numPages integer Total number of pages (page number) N

totalCount integer Total number of returned resources N

count integer Number of data items that match the conditions specified by query parameters
(0 to n)

N

Legend:
Y: Applied. N: Not applied.

Table 2-38: Members of a resource for information management functionality (UserInfo)

Member name Data type Description Whether
HQL::filter
or
HQL::sortB
y is applied

userName string User name N

accessPermission string Access permissions granted to the user N

fullName string Full name of the user N

description string Description of the user N

email string Email address for the user N

resourceGroup ResourceGroup Access permissions granted to the user for each Resource Group
resource

N

Legend:
N: Not applied.

Table 2-39: Members of a resource for information management functionality (ResourceGroup)

Member name Data type Description Whether
HQL::filter
or
HQL::sort
By is
applied

instanceID string Instance ID N

name string Name of the Resource Group resource N

description string Description of the Resource Group resource N

2. APIs

JP1/Automatic Operation Command and API Reference 127

Member name Data type Description Whether
HQL::filter
or
HQL::sort
By is
applied

accessPermission string[] Access permissions granted to the user for each Resource Group
resource

N

Legend:
N: Not applied.

Table 2-40: Members of a resource for information management functionality (VersionInfo)

Member name Data type Description Whether
HQL::filte
r or
HQL::sort
By is
applied

productName string Product name (JP1/Automatic Operation) N

productVersion string Product version N

apiVersionl string API version N

Legend:
N: Not applied.

Table 2-41: Members of a resource for information management functionality (Information)

Member name Data type Description Whether
HQL::filter
or
HQL::sortB
y is applied

message string Message N

messageID string Message ID N

Legend:
N: Not applied.

2.2.15 Members to be returned for APIs that execute JP1/AO operations
Some API functions provided by JP1/AO execute JP1/AO operations. Applicable API functions and returned members
are shown below. For details about requests, see the request format in the description of each API function.

APIs that execute JP1/AO operations
• Import of a service template

• Export of a service template

• Creation of a service based on a service template

2. APIs

JP1/Automatic Operation Command and API Reference 128

• Execution of a service

• Reset of the counter for a service

• Change of the status of a service to release
• Change of the status of a service to maintenance
• Change of the status of a service to disabled
• Change of the version of the service template used by a service

• Cancellation of a schedule

• Pause of a schedule

• Resume of a schedule

• Stoppage of task execution

• Forced stoppage of a task

• Re-execution of a task

• Response to a task that is in the status Waiting for Response

• Retry from the failed step

• Retry from the step after the failed step

• Archiving a task

Table 2-42: Members to be returned for APIs that execute JP1/AO operations

Member name Data type Description

instanceID string Indicates the instance ID.

created string Indicates (in ISO8601 format) the date and time the object was generated.

updated string Indicates the time this object was updated, if asynchronous processing was executed. If
synchronous processing is executed, this member indicates the same time as created.
This member is expressed in ISO8601 format.

completed string Indicates the time the processing was completed, if asynchronous processing was
executed. If synchronous processing is executed, this member indicates the same time
as created. This member is expressed in ISO8601 format.

state string • queued: The operation has not started processing yet. In this status, only stop
processing is accepted.

• running: The operation is running. In this status, only stop processing is accepted.
• failed: The operation failed.
• success: The operation has been successfully completed.
• stopping: The operation is being stopped.
• stopped: The operation is stopped before completion.

affectedResource string Indicates the URL of the API resource created or updated as a result of the operation.

2.2.16 Members to be returned for API functions that acquire executable
operations

Some API functions provided by JP1/AO acquire operations that can be executed for resources, and execution-
destination URLs. Applicable API functions and returned members are shown below. For details about requests, see
the request format in the description of each API function.

2. APIs

JP1/Automatic Operation Command and API Reference 129

APIs that acquire executable operations
• Acquisition of a list of operations for a service template

• Acquisition of the HTML file necessary for importing a service template

• Acquisition of information necessary for exporting a service template

• Acquisition of the URL for displaying the details of a service template

• Acquisition of information necessary for creating a service based on a service template

• Acquisition of a list of operations for a service

• Acquisition of information necessary for executing a service

• Acquisition of information necessary for resetting the counter for a service

• Acquisition of information necessary for the operation to change the status of a service to release
• Acquisition of information necessary for the operation to change the status of a service to maintenance
• Acquisition of information necessary for the operation to change the status of a service to disabled
• Acquisition of the URL for the details of a service

• Acquisition of information necessary for changing the version of the service template used by a service

• Acquisition of a list of operations for a schedule

• Acquisition of information necessary for canceling a schedule

• Acquisition of information necessary for pausing a schedule

• Acquisition of information necessary for resuming a schedule

• Deletion of a task

• Acquisition of a list of task operations

• Acquisition of information necessary for stopping task execution

• Acquisition of information necessary for forcibly stopping a task

• Acquisition of information necessary for re-executing a task

• Acquisition of information necessary for responding to a task that is in the status Waiting for Response

• Acquisition of information necessary for retrying a task (retry from the failed step)

• Acquisition of information necessary for retrying a task (retry from the step after the failed step)

• Acquisition of information necessary for archiving a task

• Acquisition of a list of operations for a history record

• Acquisition of a list of operations for a property definition

• Acquisition of a list of operations for a property value

• Acquisition of a list of operations for a service group

Table 2-43: Members to be returned for APIs that acquire executable operations

Member name Data type Description

name string Operation name

href string Execution-destination URL of the operation

method string Method name
• GET

2. APIs

JP1/Automatic Operation Command and API Reference 130

Member name Data type Description

method string • POST

parameters Object Parameters required when operations are executed

2.2.17 Status code
The following table describes the various status codes that can be returned when an API is executed. The status codes
to be returned depend on the API, so see the description for each API for details.

Table 2-44: Status code

Status
code

Message Description

200 OK Processing the request has been successfully completed.

201 Created If creation of a resource ended successfully, status 201 is returned instead of status 200.

400 Bad Request The content of the request is invalid.

401 Unauthorized Authentication failed. Authentication information or permission information is invalid. The
accepted authentication method is reported by the WWW-Authenticate response header. Specify
the accepted authentication method in the Authorization request header. Alternatively, the user
does not have a permission for the service group or the User Management permission.

403 Forbidden The user does not have execution permission for the request.

404 Not found The requested resource does not exist, or the user does not have permission to operate the requested
resource. Alternatively, a specified query parameter is invalid.

405 Method not allowed The requested method does not exist for this resource.

406 Not acceptable The format of the specified response is not supported.

409 Conflict The request cannot be completed because the data conflicts with data that already exists on the
server, or because the system cannot accept the request in the current status.

412 Precondition failed The request cannot be accepted because it does not satisfy requirements.

415 Unsupported media
type

The format of the specified request is not supported.

500 Server-side error A server processing error occurred.

Related topics
• 2.2.18 Error information

2.2.18 Error information
This section describes the case an error occurs in an API request. If an error occurs in an API request, the schema in the
table below is returned as the response information. For error information other than the schema in the table below, see
the manual JP1/Automatic Operation Messages.

The following table describes the schema of error information.

2. APIs

JP1/Automatic Operation Command and API Reference 131

Table 2-45: Schema of error information

Member name Data type Description

errorSource string API where the error occurred

message string Message of the error

messageID string Message ID. If the error was caused by a wrong XML description in a request, generic error is set for
the message ID.

application string Information about the application that holds the API where an error occurred (Automation)

messageData string Detailed information of the error

Output example
The following example outputs KNAE02102-E as messageID of the error information.

{
 "errorSource" : "http://10.196.184.238:22015/Automation/v1/objects/Tasks/555",
 "message" : "The specified resource does not exist or you do not have access.
After reviewing the content of the following, please re-run.\n- The presence or
absence of resources\n- Access rights to the resource",
 "messageID" : "KNAE02102-E",
 "application" : "Automation"
}

2. APIs

JP1/Automatic Operation Command and API Reference 132

2.3 API description format

The items below provide descriptions for individual APIs. Note that some items might not be described for some APIs.

Function
Describes the function of an API.

Execution permissions
Indicates the permissions and roles that are required to execute an API.

API version
Indicates the version of an API.

Request format
Describes the request format for requesting the use of an API.

Status code
Describes the status code after you execute an API by using the HTTP or HTTPS protocol. For details about the
status code when an error occurs before an API is executed, see 2.2.17 Status code.

Response schema
Describes schema information of the response that is returned when an API is successfully completed.

Usage example
Provides examples of the request for the use of API, and its response.
Note that the HTTP protocol is used in the examples. If the HTTPS protocol is used, replace HTTP with HTTPS
when you read the description.

2. APIs

JP1/Automatic Operation Command and API Reference 133

2.4 Service template-related API functions

2.4.1 Acquisition of a list of service templates

Function
Acquires a list of service templates registered in JP1/AO.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

GET http://host:port/Automation/version/objects/ServiceTemplates

This API function acquires a list of all service templates for which the user who executed the API function has
permissions. By specifying query parameters, you can filter the service templates for which you want to acquire the list.
Specify query parameters in the following format:

?query-parameter=value[&query-parameter=value...]

Table 2-46: List of query parameters that can be specified for the API function Acquisition of a list
of service templates

Query parameter Filter condition

tags Whether all values are contained. You can specify multiple values by separating
them with a comma (,).

q For the following schema, a full-text search is performed to determine whether the
specified value is contained:
• keyName
• displayName
• vendorID
• vendorName
• tags
• description

If you specify multiple values by separating them with a half-width space character,
a full-text search is performed to determine whether all of the specified values are
contained. This query parameter is not case sensitive.

usingServiceTemplateID Service component containing the specified values

vendorID Equal to the specified value. The query parameters are not case sensitive.

keyName

version

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

2. APIs

JP1/Automatic Operation Command and API Reference 134

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to acquire service
templates.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
Data that matches the conditions specified by query parameters in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-the-resources-for-service-template-
functionality(ServiceTemplates)" : value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API function acquires a list of all service templates.

Request header:

GET /Automation/v1/objects/ServiceTemplates HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 00:34:32 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
998ebb201be1cf76e7491a1380c4c54d5a59b7_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{

2. APIs

JP1/Automatic Operation Command and API Reference 135

 "data" : [{
 "instanceID" : 560,
 "keyName" : "remoteCommandExe",
 "displayName" : "Execute Remote Command",
 "iconURL" : "http://10.196.184.182:22015/Automation/icon/services/
com.hitachi.software.dna.cts/remoteCommandExe/01.20.00",
 "vendorID" : "Hitachi,Ltd.",
 "version" : "01.20.00",
 "vendorName" : "Hitachi,Ltd.",
 "tags" : "Execute Script,Linux,Windows",
 "createTime" : "2015-07-29T15:27:02.000+09:00",
 "modifyTime" : "2015-07-29T15:27:02.000+09:00",
 "description" : "Executes a command on the remote execution target server.",
 "releaseState" : "release",
 "latest" : true,
 "supportedScheduleType" : "immediate,schedule,recurrence",
 "needVUP" : false,
 "componentOutdated" : false,
 "usedServices" : 0,
 "usedTemplates" : 0,
 "supportedActionType" : "forciblyStop,retry"
 }, {
 "instanceID" : 1116,
 "keyName" : "SP_GenericApplication",
 "displayName" : "Allocate Volumes for Generic Application",
 "iconURL" : "http://10.196.184.182:22015/Automation/icon/services/
com.hitachi.software.dna.cts/SP_GenericApplication/01.20.00",
 "vendorID" : "Hitachi,Ltd.",
 "version" : "01.20.00",
 "vendorName" : "Hitachi, Ltd.",
 "tags" : "Add New Storage",
 "createTime" : "2015-07-29T16:48:25.000+09:00",
 "modifyTime" : "2015-07-29T16:48:25.000+09:00",
 "description" : "Intelligent allocation service that uses sets of volumes from
the associated infrastructure group to be consumed by server(s) running a generic
application",
 "releaseState" : "release",
 "latest" : true,
 "imageURL" : "http://10.196.184.182:22015/Automation/services/custom/
000000000001116/SP_GenericApplication_overview.png",
 "supportedScheduleType" : "immediate,schedule",
 "needVUP" : false,
 "componentOutdated" : false,
 "usedServices" : 0,
 "usedTemplates" : 0,
 "supportedActionType" : "forciblyStop,retry"
 }],
 "count" : 2
}

Related topics
• 2.2.14 Members of resources

2.4.2 Acquisition of information about a service template

Function
Acquires information about the specified service template.

2. APIs

JP1/Automatic Operation Command and API Reference 136

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

GET http://host:port/Automation/version/objects/ServiceTemplates/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to acquire service
templates.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "keyName" : "key-name",
 "displayName" : "display-name",
 "iconURL" : "icon-URL",
 "vendorID" : "vendor-ID",
 "version" : " version ",
 "vendorName" : "vendor-name",
 "tags" : "tag",
 "createTime" : "created-date-and-time",
 "modifyTime" : "updated-date-and-time",
 "description" : "description",
 "releaseState" : "release-state",
 "latest" : {true|false},
 "imageURL" : "imageURL",
 "supportedScheduleType" : "supported-schedule-type",
 "needVUP" : {true|false},
 "componentOutdated" : {true|false},
 "usedServices" : used-services,
 "usedTemplates" : used-Templates,
 "disableFeatures" : "disable-features",
 "supportedActionType" : "supported-action-type"
}

2. APIs

JP1/Automatic Operation Command and API Reference 137

Usage example
In the following example, the API function acquires information about the service template whose instanceID is 1116.

Request header:

GET /Automation/v1/objects/ServiceTemplates/1116 HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 00:36:51 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
a9a6768131e2eff3ecbd5e4457f49e82e0506c_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 1116,
 "keyName" : "SP_GenericApplication",
 "displayName" : "Allocate Volumes for Generic Application",
 "iconURL" : "http://10.196.184.182:22015/Automation/icon/services/
com.hitachi.software.dna.cts/SP_GenericApplication/01.20.00",
 "vendorID" : "com.hitachi.software.dna.cts",
 "version" : "01.20.00",
 "vendorName" : "Hitachi, Ltd.",
 "tags" : "Add New Storage",
 "createTime" : "2015-07-29T16:48:25.000+09:00",
 "modifyTime" : "2015-07-29T16:48:25.000+09:00",
 "description" : "Intelligent allocation service that uses sets of volumes from the
associated infrastructure group to be consumed by server(s) running a generic
application",
 "releaseState" : "release",
 "latest" : true,
 "imageURL" : "http://10.196.184.182:22015/Automation/services/custom/
000000000001116/SP_GenericApplication_overview.png",
 "supportedScheduleType" : "immediate,schedule",
 "needVUP" : false,
 "componentOutdated" : false,
 "usedServices" : 0,
 "usedTemplates" : 0,
 "supportedActionType" : "forciblyStop,retry"
}

Related topics
• 2.2.14 Members of resources

2. APIs

JP1/Automatic Operation Command and API Reference 138

2.4.3 Deletion of a service template

Function
Deletes the specified service template.

Execution permissions
Admin role, Develop role

API version
v1

Request format

DELETE http://host:port/Automation/version/objects/ServiceTemplates/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

204 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to delete service templates.

409 Conflict There is a service generated based on the specified service
template, or there is a service template using the specified
service template as a service plug-in.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Usage example
In the following example, the API function deletes the service template whose instanceID is 1116.

Request header:

DELETE /Automation/v1/objects/ServiceTemplates/1116 HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 204 No Content
Date: Thu, 30 Jul 2015 00:39:20 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
7cfe7ffcd3e5603af8b08e3d2abdfafc5da41e3_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810

2. APIs

JP1/Automatic Operation Command and API Reference 139

Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Related topics
• 2.2.14 Members of resources

2.4.4 Acquisition of a list of operations for a service template

Function
Acquires a list of operations that can be executed for the specified service template.

Execution permissions
Admin role, Develop role, Modyfy role

API version
v1

Request format

GET http://host:port/Automation/version/objects/ServiceTemplates/id/actions

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{
 "name" : "delete",
 "href" : "http://host:port/Automation/version/objects/ServiceTemplates/id",
 "method" : "DELETE",
 "parameters" : []

2. APIs

JP1/Automatic Operation Command and API Reference 140

 }, {
 "name" : "export",
 "href" : "http://host:port/Automation/version/objects/ServiceTemplates/id/
actions/export/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "detailhelp",
 "href" : "http://host:port/Automation/version/objects/ServiceTemplates/id/
actions/detailhelp",
 "method" : "GET",
 "parameters" : []
 }, {
 "name" : "bind",
 "href" : "http://host:port/Automation/version/objects/ServiceTemplates/id/
actions/bind/invoke",
 "method" : "POST",
 "parameters" : []
 }],
 "count" : count
}

Usage example
In the following example, the API function acquires a list of operations for the service template whose instanceID is
1116.

Request header:

GET /Automation/v1/objects/ServiceTemplates/1116/actions HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 00:39:20 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
7cfe7ffcd3e5603af8b08e3d2abdfafc5da41e3_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "name" : "delete",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/ServiceTemplates/
1116",
 "method" : "DELETE",
 "parameters" : []
 }, {
 "name" : "export",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/ServiceTemplates/

2. APIs

JP1/Automatic Operation Command and API Reference 141

1116/actions/export/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "detailhelp",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/ServiceTemplates/
1116/actions/detailhelp",
 "method" : "GET",
 "parameters" : []
 }, {
 "name" : "bind",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/ServiceTemplates/
1116/actions/bind/invoke",
 "method" : "POST",
 "parameters" : []
 }],
 "count" : 4
}

Related topics
• 2.2.14 Members of resources

2.4.5 Acquisition of the HTML file necessary for importing a service
template

Function
Acquires the HTML file necessary for importing a service template. Note that authentication information is not added
to the HTML file. Before executing the API function, make sure that you log in to JP1/AO to secure the session.

Execution permissions
Admin role, Develop role

API version
v1

Request format

GET http://host:port/Automation/version/services/ServiceTemplates/actions/import

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have import permission.

2. APIs

JP1/Automatic Operation Command and API Reference 142

Status code Message Description

406 Not acceptable The specified Accept header is invalid.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

<html>
<body>
<form method="POST" action="http://host:port/Automation/version/services/
ServiceTemplates/actions/import/invoke"
 enctype="multipart/form-data">
<input name="file" type="file"></input>
<input type="submit" value="Submit">
</form>
<body>
</html>

Usage example
In the following example, the API function acquires the HTML file necessary for importing a service template.

Request header:

GET /Automation/v1/services/ServiceTemplates/actions/import HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: text/html

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 00:40:59 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
ea15867727ce4f2cd07d5a48a3dedf919a34577_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: text/html

Response body:

<html>
<body>
<form method="POST" action="http://10.196.184.182:22015/Automation/v1/services/
ServiceTemplates/actions/import/invoke" enctype="multipart/form-data">
 <input name="file" type="file"></input>
 <input type="submit" value="Submit">
 </form>

2. APIs

JP1/Automatic Operation Command and API Reference 143

<body>
</html>

Related topics
• 2.2.14 Members of resources

2.4.6 Import of a service template

Function
Imports the specified service template.

Execution permissions
Admin role, Develop role

API version
v1

Request format

POST http://host:port/Automation/version/services/ServiceTemplates/actions/import/
invoke

In the request body, specify a service template (.st or .zip).

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request The specified file is not a .st or .zip file.
Alternatively, the specified .st or .zip file is corrupted or
invalid.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have import permission.

412 Precondition failed The server is not available.

415 Unsupported media type The specified Content-Type header is invalid.

500 Server-side error An attempt to store the temporary folder failed, or a server
processing error occurred.

Response schema
The following shows the structure of the response body for a request.

2. APIs

JP1/Automatic Operation Command and API Reference 144

{
 "instanceID" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}],
 "result" : [{...}],
 "resultType" : "result-type"
}

Usage example
In the following example, the API function imports a service template
(SP_GenericApplication_01.20.00.st).

Request header:

POST /Automation/v1/services/ServiceTemplates/actions/import/invoke HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json
Content-Length: 2106265
Expect: 100-continue
Content-Type: multipart/form-data; boundary=------------------------5564f06622f7727e

Response header:

HTTP/1.1 100 Continue
HTTP/1.1 200 OK
Date: Wed, 29 Jul 2015 07:48:21 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
9c9f012d1d34b9ede86d68728604c884b85e8_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "f4c5065a-ff42-45df-bca9-e2d79b4b5bb7",
 "created" : "2015-07-29T16:48:26.528+09:00",
 "updated" : "2015-07-29T16:48:26.528+09:00",
 "completed" : "2015-07-29T16:48:26.528+09:00",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.182:22015/Automation/v1/objects/
ServiceTemplates/1116"],
 "result" : [{
 "message" : "The service template was imported successfully (service template
file name: SP_GenericApplication_01.20.00.st).",
 "messageID" : "KNAE03111-I"
 }]
}

2. APIs

JP1/Automatic Operation Command and API Reference 145

Related topics
• 2.2.14 Members of resources

2.4.7 Acquisition of information necessary for exporting a service
template

Function
Acquires information necessary for exporting the specified service template.

Execution permissions
Admin role, Develop role

API version
v1

Request format

GET http://host:port/Automation/version/objects/ServiceTemplates/id/actions/export

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The user does not have permission to acquire service
templates, or the service template does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "export",
 "href" : "http://host:port/Automation/version/objects/ServiceTemplates/id/actions/
export/invoke",
 "method" : "POST",
 "parameters" : []
 }

2. APIs

JP1/Automatic Operation Command and API Reference 146

Usage example
In the following example, the API function acquires information necessary for exporting the service template whose
instanceID is 1116.

Request header:

GET /Automation/v1/objects/ServiceTemplates/1116/actions/export HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 00:42:05 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
c21cd879a4c62f90d8f7c5775ec1194e88a92b_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "export",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/ServiceTemplates/1116/
actions/export/invoke",
 "method" : "POST",
 "parameters" : []
}

Related topics
• 2.2.14 Members of resources

2.4.8 Export of a service template

Function
Exports the specified service template.

Execution permissions
Admin role, Develop role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 147

Request format

POST http://host:port/Automation/version/objects/ServiceTemplates/id/actions/export/
invoke

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

406 Not acceptable The specified Accept header is invalid.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Usage example
In the following example, the API function exports the service template whose instanceID is 1116.

Request header:

POST /Automation/v1/objects/ServiceTemplates/1116/actions/export/invoke HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/octet-stream
Content-Type: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 01:58:34 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
866ad68aa7c23e457456b5b08479fb62250fdf_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Content-disposition: attachment;
filename="com.hitachi.software.dna.cts_SP_GenericApplication_01.20.00.st"
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/octet-stream

Response body:
Binary formatted "com.hitachi.software.dna.cts_SP_GenericApplication_01.20.00.st"

Related topics
• 2.2.14 Members of resources

2. APIs

JP1/Automatic Operation Command and API Reference 148

2.4.9 Acquisition of the URL for displaying the details of a service
template

Function
Acquires the URL for displaying the details of the specified service template.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

GET http://host:port/Automation/version/objects/ServiceTemplates/id/actions/
detailhelp

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "export",
 "href" : "Link-to-the-detail-help",
 "method" : "POST",
 "parameters" : []
 }

Usage example
In the following example, the API function acquires the URL for displaying the details of the service template whose
instanceID is 1116.

Request header:

GET /Automation/v1/objects/ServiceTemplates/1116/actions/detailhelp HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

2. APIs

JP1/Automatic Operation Command and API Reference 149

User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 02:04:35 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
11baaddb4ff5c120d1cca95c75fab1417d2c921_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "detailhelp",
 "href" : "http://10.196.184.182:22015/Automation/services/custom/000000000001116/
r_all_vol_details.html",
 "method" : "GET",
 "parameters" : []
}

Related topics
• 2.2.14 Members of resources

2.4.10 Acquisition of information necessary for creating a service based
on a service template

Function
Acquires information necessary for creating a service based on the specified service template.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

GET http://host:port/Automation/version/objects/ServiceTemplates/id/actions/bind

Status code
The following table describes the various status codes that can be returned as the response to a request.

2. APIs

JP1/Automatic Operation Command and API Reference 150

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The user does not have permission to acquire service
templates, or the service template does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "bind",
 "href" : "http://host:port/Automation/version/objects/ServiceTemplates/id/actions/
bind/invoke",
 "method" : "POST",
 "parameters" : [{...}]
 }

Usage example
In the following example, the API function acquires information necessary for creating a service based on the service
template whose instanceID is 560.

Request header:

GET /Automation/v1/objects/ServiceTemplates/560/actions/bind HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 02:08:29 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
77efd47709df8b7f65468cb4778e804db1e6c_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "bind",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/ServiceTemplates/560/
actions/bind/invoke",
 "method" : "POST",
 "parameters" : [{

2. APIs

JP1/Automatic Operation Command and API Reference 151

 "name" : "Execute Remote Command",
 "description" : "Executes a command on the remote execution target server.",
 "tags" : "Execute Script,Linux,Windows",
 "serviceTemplateName" : "remoteCommandExe",
 "serviceState" : "test",
 "serviceGroupName" : "DefaultServiceGroup",
 "supportedScheduleType" : "immediate,schedule,recurrence",
 "serviceTemplateID" : 560
 }, {
 "type" : "string",
 "keyName" : "common.targetHost",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "type" : "string",
 "keyName" : "common.remoteCommand",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "type" : "string",
 "keyName" : "common.remoteCommandParameter",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }]
}

Related topics
• 2.2.14 Members of resources

2.4.11 Creation of a service based on a service template

Function
Creates a service based on the specified service template. You can specify property values when creating a service.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

POST http://host:port/Automation/version/objects/ServiceTemplates/id/actions/bind/
invoke

The following shows the structure of the request body.

 {
"name" : "bind",

2. APIs

JP1/Automatic Operation Command and API Reference 152

"href" : "http://host:port/Automation/version/objects/ServiceTemplates/id/actions/
bind/invoke",
"method" : "POST",
"parameters" : [{...}]
}

The following table describes the objects that can be specified as parameters (member) in the schema of a request.

Table 2-47: Objects that can be specified as parameters (member)

Function Resource name Number Description

Service Services 1 Service to be created

Property value PropertyValues 0 Input property for the service

The following describes the properties that must be specified for the above objects.

Resource name Member name Number

Services name 1

description

tags

supportedScheduleType

serviceState

serviceGroupName

PropertyValues value 0 to n

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request Failed due to one of the following reasons:
• The argument is invalid.
• Permissions allocated to the service group are invalid.
• The specified service name already exists.
• The number of services or tags has reached the maximum.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to create services.

404 Not found The user does not have permission to acquire service
templates, or the service template does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

2. APIs

JP1/Automatic Operation Command and API Reference 153

{
 "name" : "bind",
 "href" : "http://host:port/Automation/version/objects/ServiceTemplates/id/actions/
bind/invoke",
 "method" : "POST",
 "parameters" : [{...}]
 }

Usage example
In the following example, the API function creates a service based on the service template whose instanceID is 560.

Request header:

POST /Automation/v1/objects/ServiceTemplates/560/actions/bind/invoke HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json
Content-Type: application/json
Content-Length: 1001

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 02:30:37 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
fdef80b1cbd2d625cdbda39c16fda15f68a3d8c_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "55e8c5b7-b0ab-4016-ba62-f334b67c20c4",
 "created" : "2015-07-30T11:30:39.042+09:00",
 "updated" : "2015-07-30T11:30:39.042+09:00",
 "completed" : "2015-07-30T11:30:39.042+09:00",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.182:22015/Automation/v1/objects/Services/
2004"],
 "result" : []
}

Related topics
• 2.2.14 Members of resources

2. APIs

JP1/Automatic Operation Command and API Reference 154

2.5 Service-related APIs

This section describes the operations for managing service resources.

2.5.1 Acquisition of a list of services

Function
Acquires a list of services registered in JP1/AO.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Services

This API function acquires a list of all services for which the user who executed the API function has permissions. By
specifying query parameters, you can filter the services for which you want to acquire the list. Specify query parameters
in the following format:

?query-parameter=value[&query-parameter=value...]

Table 2-48: List of query parameters that can be specified for the API function Acquisition of a list
of services

Query parameter Filter condition

serviceGroupID Equal to the specified value

serviceTemplateID

favorite

propertyKey keyName for a PropertyValues resource that contains the specified value

tags Whether all values are contained. You can specify multiple values by separating
them with a comma (,).

q For the following schema, a full-text search is performed to determine whether the
specified value is contained:
• name
• description
• tags
• serviceTemplateName
• vendorName

If you specify multiple values by separating them with a half-width space character,
a full-text search is performed to determine whether all of the specified values are
contained. This query parameter is not case sensitive.

2. APIs

JP1/Automatic Operation Command and API Reference 155

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
Data that matches the conditions specified by query parameters in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-the-resources-for-service-functionality(Services)" :
value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API acquires a list of all services.

Request header:

GET /Automation/v1/objects/Services HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
Host: 10.196.184.182:22015
User-Agent: curl/7.36.0
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 02:30:37 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
fdef80b1cbd2d625cdbda39c16fda15f68a3d8c_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{

2. APIs

JP1/Automatic Operation Command and API Reference 156

 "data" : [{
 "instanceID" : 5137,
 "name" : "Execute Remote Command",
 "description" : "Executes a command on the remote execution target server.",
 "tags" : "Windows,Linux,Execute Script",
 "serviceTemplateName" : "Execute Remote Command",
 "createTime" : "2015-08-07T14:44:07.000+09:00",
 "modifyTime" : "2015-08-07T14:44:07.000+09:00",
 "serviceState" : "test",
 "serviceGroupName" : "DefaultServiceGroup",
 "iconURL" : "http://10.196.184.182:22015/Automation/icon/services/
com.hitachi.software.dna.cts/remoteCommandExe/01.20.00",
 "vendorName" : "Hitachi,Ltd.",
 "version" : "01.20.00",
 "favorite" : false,
 "failedCount" : 0,
 "completedCount" : 0,
 "executedCount" : 0,
 "latest" : true,
 "supportedScheduleType" : "immediate,schedule,recurrence",
 "submitCount" : 0,
 "serviceTemplateID" : 5106,
 "serviceGroupID" : 3,
 "supportedActionType" : "forciblyStop,retry"
 }],
 "count" : 1
}

Related topics
• 2.2.14 Members of resources

2.5.2 Acquisition of service information

Function
Acquires information about the specified service.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Services/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

2. APIs

JP1/Automatic Operation Command and API Reference 157

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "name" : "service-display-name",
 "description" : "description-text",
 "tags" : "tags"
 "serviceTemplateName" : "service-template-name"
 "createTime" : "created-date-and-time",
 "modifyTime" : "updated-date-and-time",
 "serviceState" : "service-state"
 "serviceGroupName" : "service-group-name",
 "iconURL" : "icon-URL",
 "vendorName" : "vendor-name",
 "version" : "version"
 "lastSubmitTime" : "last-submit-time",
 "favorite" : {true|false},
 "failedCount" : failed-count,
 "completedCount" : completed-count,
 "lastFailedTime" : last-failed-time,
 "resetTime" : reset-time,
 "executedCount" : executed-count,
 "latest" : {true|false},
 "imageURL" : "image-URL",
 "supportedScheduleType" : "supported-schedule-type",
 "submitCount" : submit-count,
 "serviceTemplateID" : service-template-id,
 "serviceGroupID" : service-group-id,
 "supportedActionType" : supported-action-type
}

Usage example
In the following example, the API acquires information about the service whose instanceID is 2015.

Request header:

GET /Automation/v1/objects/Services/2015 HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 11:40:06 GMT

2. APIs

JP1/Automatic Operation Command and API Reference 158

Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
1aa95d66e62d885b5583da3620bd166fd3a3_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 2015,
 "name" : "testService1",
 "description" : "description",
 "tags" : "",
 "serviceTemplateName" : "testService",
 "createTime" : "2014-07-14T01:16:11.000-0700",
 "modifyTime" : "2014-07-14T04:36:30.000-0700",
 "serviceState" : "release",
 "serviceGroupName" : "DefaultServiceGroup",
 "iconURL" : "http://10.196.184.238:22015/Automation/icon/services/
com.hitachi.software/remoteCommandExe/01.20.00",
 "vendorName" : "Hitachi,Ltd.",
 "version" : "01.20.00",
 "lastSubmitTime" : "2014-07-14T01:16:11.000-0700",
 "favorite" : false,
 "failedCount" : 0,
 "completedCount" : 0,
 "executedCount" : 0,
 "latest" : true,
 "supportedScheduleType" : "immediate,schedule,recurrence",
 "submitCount" : 0,
 "serviceTemplateID" : 5106,
 "serviceGroupID" : 3,
 "supportedActionType" : "forciblyStop,retry"
}

2.5.3 Editing a service

Function
Edits the specified service.

You cannot use this API function to change the property values of services. If you want to change property values, see
the topic 2.9.6 Batch update of property values or 2.9.8 Update of a property value.

Users who have the Submit role can update only the favorite property. Users who have the Admin, Develop, or
Modify role can update all properties.

Execution permissions
Admin role, Develop role, Modify role, Submit role

2. APIs

JP1/Automatic Operation Command and API Reference 159

API version
v1

Request format

PUT http://host:port/Automation/version/objects/Services/id

The request schema has the same format as the response body for the API function Acquisition of service information.
The following table describes the object that can be specified as Services (member).

Table 2-49: Object that can be specified as Services (member)

Function Resource name Number Description

Service Services 1 Services resource that has the specified ID

The following table describes the properties that must be specified for this object.

Resource name Member name Number

Services name 1

description

tags

favorite

serviceState

supportedScheduleType

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request The argument is invalid, or the specified service name already
exists.

401 Unauthorized The user does not have login permission.

404 Not found The user does not have permission to acquire services, or the
service does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "name" : "service-display-name",
 "description" : "description-text",

2. APIs

JP1/Automatic Operation Command and API Reference 160

 "tags" : "tags"
 "serviceTemplateName" : "service-template-name"
 "createTime" : "created-date-and-time",
 "modifyTime" : "updated-date-and-time",
 "serviceState" : "service-state"
 "serviceGroupName" : "service-group-name",
 "iconURL" : "icon-URL",
 "vendorName" : "vendor-name",
 "version" : "version"
 "lastSubmitTime" : "last-submit-time",
 "favorite" : {true|false},
 "failedCount" : failed-count,
 "completedCount" : completed-count,
 "executedCount" : executed-count,
 "latest" : {true|false},
 "imageURL" : "image-URL",
 "supportedScheduleType" : "supported-schedule-type",
 "submitCount" : submit-count,
 "serviceTemplateID" : service-template-id,
 "serviceGroupID" : service-group-id,
 "supportedActionType" : supported-action-type
}

Usage example
In the following example, the API function edits the service whose instanceID is 2015.

Request header:

PUT /Automation/v1/objects/Services/2015 HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 11:40:10 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
5929972368348e976584903133f5f8ce93ce2aec_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 2015,
 "name" : "testService1",
 "description" : "description",
 "tags" : "",
 "serviceTemplateName" : "testService",
 "createTime" : "2014-07-14T01:16:11.000-0700",
 "modifyTime" : "2014-07-14T04:36:30.000-0700",
 "serviceState" : "release",
 "serviceGroupName" : "DefaultServiceGroup",

2. APIs

JP1/Automatic Operation Command and API Reference 161

 "iconURL" : "http://10.196.184.238:22015/Automation/icon/services/
com.hitachi.software/remoteCommandExe/01.20.00",
 "vendorName" : "Hitachi,Ltd.",
 "version" : "01.20.00",
 "lastSubmitTime" : "2014-07-14T01:16:11.000-0700",
 "favorite" : false,
 "failedCount" : 0,
 "completedCount" : 0,
 "executedCount" : 0,
 "latest" : true,
 "supportedScheduleType" : "immediate,schedule,recurrence",
 "submitCount" : 0,
 "serviceTemplateID" : 5106,
 "serviceGroupID" : 3,
 "supportedActionType" : "forciblyStop,retry"
}

2.5.4 Deletion of a service

Function
Deletes the specified service.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

DELETE http://host:port/Automation/version/objects/Services/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

204 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to delete services.

409 Conflict There is a task generated from the applicable service.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Usage example
In the following example, the API function deletes the service whose instanceID is 2015.

2. APIs

JP1/Automatic Operation Command and API Reference 162

Request header:

DELETE /Automation/v1/objects/Services/2015 HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Content-Type: application/json
Content-Length: 918
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 204 No Content
Date: Fri, 07 Aug 2015 09:48:51 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
82b94e7adbdb8cebcb060b12f8c32ee2660a34b_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Content-Length: 0
Content-Type: application/json

2.5.5 Acquisition of a list of operations for a service

Function
Acquires a list of operations that can be executed for the specified service.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Services/id/actions

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

2. APIs

JP1/Automatic Operation Command and API Reference 163

Status code Message Description

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{
 "name" : "update",
 "href" : "http://host:port/Automation/version/objects/Services/id",
 "method" : "PUT",
 "parameters" : []
 }, {
 "name" : "submit",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/
submit/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "detailhelp",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/
detailhelp",
 "method" : "GET",
 "parameters" : []
 }, {
 "name" : "delete",
 "href" : "http://host:port/Automation/version/objects/Services/id",
 "method" : "DELETE",
 "parameters" : []
 }, {
 "name" : "reset",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/reset/
invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "release",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/
release/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "maintenance",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/
maintenance/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "disable",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/
disable/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "applyTemplate",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions
applyTemplate/invoke",
 "method" : "POST",
 "parameters" : []
 }],

2. APIs

JP1/Automatic Operation Command and API Reference 164

 "count" : 9
}

Usage example
In the following example, the API function acquires a list of operations that can be executed for the service whose
instanceID is 2004.

Request header:

GET /Automation/v1/objects/Services/2004/actions HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 04:40:59 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
72fe74c462e2a50793542df0c0589289ce3f3_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "name" : "update",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004",
 "method" : "PUT",
 "parameters" : []
 }, {
 "name" : "submit",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/
actions/submit/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "detailhelp",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/
actions/detailhelp",
 "method" : "GET",
 "parameters" : []
 }, {
 "name" : "delete",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004",
 "method" : "DELETE",
 "parameters" : []
 }, {
 "name" : "reset",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/
actions/reset/invoke",
 "method" : "POST",
 "parameters" : []

2. APIs

JP1/Automatic Operation Command and API Reference 165

 }, {
 "name" : "release",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/
actions/release/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "maintenance",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/
actions/maintenance/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "disable",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/
actions/disable/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "applyTemplate",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/
actions/applyTemplate/invoke",
 "method" : "POST",
 "parameters" : []
 }],
 "count" : 9
}

Related topics
• 2.2.14 Members of resources

2.5.6 Acquisition of information necessary for executing a service

Function
Acquires information necessary for executing the specified service.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Services/id/actions/submit

Status code
The following table describes the various status codes that can be returned as the response to a request.

2. APIs

JP1/Automatic Operation Command and API Reference 166

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The user does not have a permission to acquire the service, or the service does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "submit",
 "href" : "http://host:port/Automation/version/objects/Services/id/actions/submit/
invoke",
 "method" : "POST",
 "parameters" : [{...}]
}

The following table describes the objects that can be output as parameters (member).

Table 2-50: Objects that can be output as parameters (member) (Acquisition of information
necessary for executing a service)

Function Resource name Number Description

Schedule Schedule 1 Execution schedule for the service

List of property values PropertyValue 0 to n Input property for the service

Usage example
In the following example, the API function acquires necessary information as a preparation for executing the service
whose instanceID is 2015.

Request header:

GET /Automation/v1/objects/Services/2015/actions/submit HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 04:40:59 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
75cdef77cf941edbf5b2934f6afe1e8e18fdba8a_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache

2. APIs

JP1/Automatic Operation Command and API Reference 167

Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "submit",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2015/actions/
submit/invoke",
 "method" : "POST",
 "parameters" : [{
 "name" : "Execute Remote Command",
 "submitter" : "",
 "scheduleType" : "immediate",
 "description" : "",
 "scheduledStartTime" : "2015-07-30T14:51:23.342+09:00",
 "recurrenceInterval" : "daily",
 "recurrenceDayOfWeek" : "",
 "recurrenceDayOfMonth" : "",
 "recurrenceLastDayOfMonth" : false,
 "recurrenceStartDate" : "2015-07-30",
 "recurrenceTime" : "00:00:00",
 "serviceID" : 5137
 }, {
 "instanceID" : 5112,
 "type" : "string",
 "keyName" : "common.targetHost",
 "value" : "",
 "readOnly" : false,
 "hidden" : false,
 "serviceID" : 5137
 }, {
 "instanceID" : 5135,
 "type" : "string",
 "keyName" : "common.remoteCommand",
 "value" : "",
 "readOnly" : false,
 "hidden" : false,
 "serviceID" : 5137
 }, {
 "instanceID" : 5128,
 "type" : "string",
 "keyName" : "common.remoteCommandParameter",
 "value" : "",
 "readOnly" : false,
 "hidden" : false,
 "serviceID" : 5137
 }]
}

Related topics
• 2.2.14 Members of resources
• 2.5.7 Execution of a service

2. APIs

JP1/Automatic Operation Command and API Reference 168

2.5.7 Execution of a service

Function
Executes the specified service.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Services/id/actions/submit/invoke

The following shows the structure of the request body.

{
 "name" : "submit",
 "href" : "http://host:port/Automation/version/objects/Services/id/actions/submit/
invoke",
 "method" : "POST",
 "parameters" : [{...}]
}

The following table describes the objects that can be specified as parameters (member) in the schema of a request.

Table 2-51: Objects that can be specified as parameters (member)

Function Resource name Number Description

Schedule Schedule 1 Execution schedule of the service

List of property values PropertyValue 0 to n Input property for the service

The tables below describe properties that must be specified for these objects. The following members can be specified
for properties regardless of when the service is executed (immediate, schedule, or recurrence).

Resource name Member name Number

Schedule name 1

description

scheduleType

PropertyValue keyName 0 to n

value

If the timing of service execution is Now or Recurring, the following members can be specified for the property.

Resource name Member name Number Whether the property can be specified

Schedule scheduledStartTime 1 Can be specified when Later is set.

2. APIs

JP1/Automatic Operation Command and API Reference 169

Resource name Member name Number Whether the property can be specified

Schedule recurrenceInterval 1 Can be specified when Recurring is set.

recurrenceMinutes

recurrenceDayOfWeek

recurrenceDayOfMonth

recurrenceLastDayOfMonth

recurrenceStartDate

recurrenceTime

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

201 Created Processing has been successfully completed.

400 Bad Request The argument is invalid.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have a permission for executing the service.

404 Not found The user does not have a permission for acquiring the service, or the service does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceId" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}]
}

The following table describes the objects that can be output as affectedResources (member).

Table 2-52: Objects that can be output as affectedResources (member) (Execution of a service)

Output Resource name Number Description

Link to the created schedule String 1 Link to the created resource for schedule functionality (Schedules)

Link to the created task String Link to the created resource for task functionality (Tasks)

Usage example
In the following example, the API function executes the service whose instanceID is 2015.

2. APIs

JP1/Automatic Operation Command and API Reference 170

Request header:

POST /Automation/v1/objects/Services/2015/actions/submit/invoke HTTP/1.1
Host: 10.196.184.182:22015
Accept: application/json
Content-Type: application/json
Content-Length: 811
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 11:45:34 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
72fe74c462e2a50793542df0c0589289ce3f3_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "3d9069ca-444f-4757-b0c5-a57ddd7d44cf",
 "created" : "2014-07-14T04:45:35.293-0700",
 "updated" : "2014-07-14T04:45:35.293-0700",
 "completed" : "2014-07-14T04:45:35.293-0700",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.182:22015/Automation/v1/objects/
Schedules/2025", "http://10.196.184.182:22015/Automation/v1/objects/Tasks/2026"]
}

Related topics
• 2.2.14 Members of resources

2.5.8 Acquisition of information necessary for resetting the counter for a
service

Function
Acquires information necessary for resetting the counter for the specified service (initialization of statistics).

Execution permissions
Admin role, Develop role, Modify role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 171

Request format

GET http://host:port/Automation/version/objects/Services/id/actions/reset/

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The user does not have permission to acquire services, or the
service does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "reset",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/reset/
invoke",
 "method" : "POST",
 "parameters" : []
}

Usage example
In the following example, the API function acquires information necessary for resetting the counter for the service whose
instanceID is 2004.

Request header:

GET /Automation/v1/objects/Services/2004/actions/reset HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 04:44:34 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
afc7e78858ad7ff3a8e53c84ac519a7e663b97b4_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked

2. APIs

JP1/Automatic Operation Command and API Reference 172

Content-Type: application/json

Response body:
{
 "name" : "reset",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/actions/
reset/invoke",
 "method" : "POST",
 "parameters" : []
}

2.5.9 Reset of the counter for a service

Function
Resets the counter for the specified service (initialization of statistics).

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Services/id/actions/reset/invoke

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to reset counters.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "reset",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/reset/
invoke",

2. APIs

JP1/Automatic Operation Command and API Reference 173

 "method" : "POST",
 "parameters" : []
}

Usage example
In the following example, the API function resets the counter for the service whose instanceID is 2004.

Request header:

GET /Automation/v1/objects/Services/2004/actions/reset HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 04:44:34 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
afc7e78858ad7ff3a8e53c84ac519a7e663b97b4_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "reset",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/actions/
reset/invoke",
 "method" : "POST",
 "parameters" : []
}

2.5.10 Acquisition of information necessary for the operation to change
the status of a service to release

Function
Acquires information necessary for the operation to change the status of the specified service to release.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 174

Request format

GET http://host:port/Automation/version/objects/Services/id/actions/release

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The user does not have permission to acquire services, or the
service does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "release",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/release/
invoke",
 "method" : "POST",
 "parameters" : []
}

Usage example
In the following example, the API function acquires information necessary for changing the status of the service whose
instanceID is 2004 to release.

Request header:

GET /Automation/v1/objects/Services/2004/actions/release HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 04:53:56 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
da3af9677bd825b8186bb9d6f0a67f4dbc78d7_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked

2. APIs

JP1/Automatic Operation Command and API Reference 175

Content-Type: application/json

Response body:

{
 "name" : "release",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/actions/
release/invoke",
 "method" : "POST",
 "parameters" : []
}

2.5.11 Change of the status of a service to release

Function
Changes the status of the specified service to release.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Services/id/actions/release

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The service is in a status that cannot be changed to release.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : "instance-id",
 "created" : "created-date-and-time",

2. APIs

JP1/Automatic Operation Command and API Reference 176

 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}],
 "result" : [{...}],
 "resultType" : "result-type"
}

Usage example
In the following example, the API function changes the status of the service whose instanceID is 2004 to release.

Request header:

POST /Automation/v1/objects/Services/2004/actions/release/invoke HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json
Content-Type: application/json
Content-Length: 175

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 04:55:39 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
2a40239379d63c60ba2537f856c1673efd23746b_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "4c63e655-1ec2-4c70-912f-c1d80be59066",
 "created" : "2015-07-30T13:55:39.457+09:00",
 "updated" : "2015-07-30T13:55:39.457+09:00",
 "completed" : "2015-07-30T13:55:39.457+09:00",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.182:22015/Automation/v1/objects/Services/
2004"],
 "result" : []
}

2.5.12 Acquisition of information necessary for the operation to change
the status of a service to maintenance

Function
Acquires information necessary for the operation to change the status of the specified service to maintenance.

2. APIs

JP1/Automatic Operation Command and API Reference 177

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Services/id/actions/maintenance

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The user does not have permission to acquire services, or the
service does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "maintenance",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/
maintenance/invoke",
 "method" : "POST",
 "parameters" : []
}

Usage example
In the following example, the API function acquires information necessary for changing the status of the service whose
instanceID is 2004 to maintenance.

Request header:

GET /Automation/v1/objects/Services/2004/actions/maintenance HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 05:02:47 GMT

2. APIs

JP1/Automatic Operation Command and API Reference 178

Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
2370bb888129f799683dc8289b0484da547fceb_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "maintenance",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/actions/
maintenance/invoke",
 "method" : "POST",
 "parameters" : []
}

2.5.13 Change of the status of a service to maintenance

Function
Changes the status of the specified service to maintenance.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Services/id/actions/maintenance/
invoke

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The service is in a status that cannot be changed to
maintenance.

412 Precondition failed The server is not available.

2. APIs

JP1/Automatic Operation Command and API Reference 179

Status code Message Description

500 Server-side error The status of the service cannot be changed, or a server
processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}],
 "result" : [{...}],
 "resultType" : "result-type"
}

Usage example
In the following example, the API function changes the status of the service whose instanceID is 2004 to
maintenance.

Request header:

POST /Automation/v1/objects/Services/2004/actions/maintenance/invoke HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json
Content-Type: application/json
Content-Length: 183

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 05:04:40 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
23916dfb9e33860332c7e7995f78c2f2507dbf_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "36a53982-ac92-45aa-acea-21ede67b7df2",
 "created" : "2015-07-30T14:04:41.028+09:00",
 "updated" : "2015-07-30T14:04:41.028+09:00",
 "completed" : "2015-07-30T14:04:41.028+09:00",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.182:22015/Automation/v1/objects/Services/
2004"],

2. APIs

JP1/Automatic Operation Command and API Reference 180

 "result" : []
}

2.5.14 Acquisition of information necessary for the operation to change
the status of a service to disabled

Function
Acquires information necessary for the operation to change the status of the specified service to disabled.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Services/id/actions/disable

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "disable",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/disable/
invoke",
 "method" : "POST",
 "parameters" : []
}

Usage example
In the following example, the API function acquires information necessary for changing the status of the service whose
instanceID is 2004 to disabled.

2. APIs

JP1/Automatic Operation Command and API Reference 181

Request header:

GET /Automation/v1/objects/Services/2004/actions/disable HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 05:05:53 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
4ceed74c19dfb6a6c289e561e1c23f5a9088f58_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "disable",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2004/actions/
disable/invoke",
 "method" : "POST",
 "parameters" : []
}

2.5.15 Change of the status of a service to disabled

Function
Changes the status of the specified service to disabled.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Services/id/actions/disable/invoke

Status code
The following table describes the various status codes that can be returned as the response to a request.

2. APIs

JP1/Automatic Operation Command and API Reference 182

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The service is in a status that cannot be changed to disabled.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}],
 "result" : [{...}],
 "resultType" : "result-type"
}

Usage example
In the following example, the API function changes the status of the service whose instanceID is 2004 to disabled.

Request header:

POST /Automation/v1/objects/Services/2004/actions/disable/invoke HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json
Content-Type: application/json
Content-Length: 175

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 05:07:57 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
3bae2e194f9f7417a578e3d18492e9ccf94388_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

2. APIs

JP1/Automatic Operation Command and API Reference 183

{
 "instanceID" : "ff785246-c3c9-425c-87a5-109336e8b387",
 "created" : "2015-07-30T14:07:58.053+09:00",
 "updated" : "2015-07-30T14:07:58.053+09:00",
 "completed" : "2015-07-30T14:07:58.053+09:00",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.182:22015/Automation/v1/objects/Services/
2004"],
 "result" : []
}

2.5.16 Acquisition of the URL for the details of a service

Function
Acquires the URL for displaying the details of the specified service.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Services/id/actions/detailhelp

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "export",
 "href" : "Link-to-the-detail-help",
 "method" : "POST",
 "parameters" : []
 }

2. APIs

JP1/Automatic Operation Command and API Reference 184

Usage example
In the following example, the API function acquires the URL for displaying the details of the service whose instanceID
is 2004.

Request header:

GET /Automation/v1/objects/Services/2004/actions/detailhelp HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 05:08:56 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
8e609f55fd6858f17ddc4527cd6f890b79153e2_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "detailhelp",
 "href" : "http://10.196.184.182:22015/Automation/services/custom/000000000000560/
remoteCommandExe.html",
 "method" : "GET",
 "parameters" : []
}

2.5.17 Acquisition of information necessary for changing the version of
the service template used by a service

Function
Acquires information necessary for the operation to change the version of the service template used by the specified
service.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 185

Request format

GET http://host:port/Automation/version/objects/Services/id/actions/applyTemplate

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized

403 Forbidden The user does not have permission to acquire service
templates.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "applyTemplate",
 "href" : " http://host:port/Automation/version/objects/Services/id/actions/
applyTemplate/invoke",
 "method" : "POST",
 "parameters" : [{...}]
}

Usage example
In the following example, the API function acquires information necessary for changing the version of the service
template used by the service whose instanceID is 2188.

Request header:

GET /Automation/v1/objects/Services/2188/actions/applyTemplate HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 05:21:04 GMT
Server Cosminexus HTTP Server is not blacklisted
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
95fa1a17b658d5f34912ec64299aadb522e0d6f5_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS

2. APIs

JP1/Automatic Operation Command and API Reference 186

Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "applyTemplate",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Services/2188/actions/
applyTemplate/invoke",
 "method" : "POST",
 "parameters" : [{
 "instanceID" : 2111,
 "keyName" : "SP_GenericApplication",
 "displayName" : "Allocate Volumes for Generic Application",
 "iconURL" : "http://10.196.184.182:22015/Automation/icon/services/
com.hitachi.software.dna.cts/SP_GenericApplication/01.14.00",
 "vendorID" : "com.hitachi.software.dna.cts",
 "version" : "01.14.00",
 "vendorName" : "Hitachi, Ltd.",
 "tags" : "Add New Storage",
 "createTime" : "2015-07-30T14:14:29.000+09:00",
 "modifyTime" : "2015-07-30T14:14:29.000+09:00",
 "description" : "Intelligent allocation service that uses sets of volumes from
the associated infrastructure group to be consumed by server(s) running a generic
application",
 "releaseState" : "release",
 "latest" : false,
 "imageURL" : "http://10.196.184.182:22015/Automation/services/custom/
000000000002111/SP_GenericApplication_overview.png",
 "supportedScheduleType" : "immediate,schedule",
 "needVUP" : false,
 "componentOutdated" : true,
 "usedServices" : 1,
 "usedTemplates" : 0
 }]
}

2.5.18 Change of the version of the service template used by a service

Function
Applies the service template of any version to the specified service.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Services/id/applyTemplate/invoke

2. APIs

JP1/Automatic Operation Command and API Reference 187

The following shows the structure of the request body.

 {
"name" : "applyTemplate",
"href" : "http://host:port/Automation/version/objects/Services/id/applyTemplate/
invoke",
"method" : "POST",
"parameters" : [{...}]
}

The following table describes the object that can be specified as parameters (member) in the schema of a request.

Table 2-53: Object that can be specified as parameters (member)

Function Resource name Number Description

Service template ServiceTemplate 1 Service template to be upgraded

The following table describes the property that must be specified for this object.

Resource name Member name Number

ServiceTemplate insatnceID 1

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the target service template is invalid.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}],
 "result" : [{...}],
 "resultType" : "result-type"
}

2. APIs

JP1/Automatic Operation Command and API Reference 188

Usage example
In the following example, the API function changes the version of the service template used by the service whose
instanceID is 2188.

Request header:

POST /Automation/v1/objects/Services/2188/actions/applyTemplate/invoke HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json
Content-Type: application/json
Content-Length: 1199
Expect: 100-continue

Response header:

HTTP/1.1 100 Continue
HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 05:23:38 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
456eb72dda7029ba9cbdf3dd57233a25247d2717_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "10920fed-ad4f-4be1-9015-bd2066e5312c",
 "created" : "2015-07-30T14:23:38.683+09:00",
 "updated" : "2015-07-30T14:23:38.683+09:00",
 "completed" : "2015-07-30T14:23:38.683+09:00",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.182:22015/Automation/v1/objects/Services/
2188"],
 "result" : []
}

2. APIs

JP1/Automatic Operation Command and API Reference 189

2.6 Schedule-related APIs

This section describes operations for managing schedule functionality set for tasks.

2.6.1 Acquisition of a list of schedules

Function
Acquires a list of schedules set for the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Schedules

This API acquires a list of all schedules for which the user who executed the API has permissions. By specifying query
parameters, you can filter the schedules for which you want to acquire the list. Specify query parameters in the following
format:

?query-parameter=value[&query-parameter=value...]

Table 2-54: List of query parameters that can be specified for the API function Acquisition of a list
of schedules

Query parameter Filter condition

serviceID Equal to the specified value

serviceGroupID

serviceTemplateID

scheduleStatus# Schedule information for unexecuted tasks

#
If you want to acquire schedule information about tasks that have not been executed yet, specify running for
scheduleStatus.

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Example
The following example specifies 2015 for serviceID as a query parameter.

?serviceID=2015

2. APIs

JP1/Automatic Operation Command and API Reference 190

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
Data that matches the conditions specified by query parameters in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-a-resource-for-schedule-functionality(Schedules)" :
value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API acquires a list of all schedules.

Request header:

GET /Automation/v1/objects/Schedules HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:25:42 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
1aa95d66e62d885b5583da3620bd166fd3a3_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 2060,
 "name" : "testService1_20140714044426_Resubmit",

2. APIs

JP1/Automatic Operation Command and API Reference 191

 "submitter" : "System",
 "scheduleType" : "immediate",
 "createTime" : "2014-07-14T05:19:39.000-0700",
 "modifyTime" : "2014-07-14T05:19:39.000-0700",
 "description" : "",
 "serviceState" : "release",
 "serviceID" : 2015
 }, {
 "instanceID" : 2029,
 "name" : "testService1_20140714045613",
 "submitter" : "System",
 "scheduleType" : "immediate",
 "createTime" : "2014-07-14T04:56:15.000-0700",
 "modifyTime" : "2014-07-14T04:56:15.000-0700",
 "description" : "",
 "serviceState" : "release",
 "serviceID" : 2015
 }, {
 "instanceID" : 2025,
 "name" : "testService1_20140714044426",
 "submitter" : "System",
 "scheduleType" : "immediate",
 "createTime" : "2014-07-14T04:45:34.000-0700",
 "modifyTime" : "2014-07-14T04:45:34.000-0700",
 "description" : "",
 "serviceState" : "release",
 "serviceID" : 2015
 }, {
 "instanceID" : 2056,
 "name" : "Execute remote command_20140714045708",
 "submitter" : "System",
 "scheduleType" : "immediate",
 "createTime" : "2014-07-14T04:57:09.000-0700",
 "modifyTime" : "2014-07-14T04:57:09.000-0700",
 "description" : "",
 "serviceState" : "test",
 "serviceID" : 2040
 }, {
 "instanceID" : 2134,
 "name" : "stop_20140714052330",
 "submitter" : "System",
 "scheduleType" : "immediate",
 "createTime" : "2014-07-14T05:23:32.000-0700",
 "modifyTime" : "2014-07-14T05:23:32.000-0700",
 "description" : "",
 "serviceState" : "test",
 "serviceID" : 2092
 }],
 "count" : 5
}

Related topics
• 2.2.14 Members of resources

2. APIs

JP1/Automatic Operation Command and API Reference 192

2.6.2 Acquisition of schedule information

Function
Acquires information about the specified schedule.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Schedules/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "name" : "registered-service-name",
 "submitter" : "submit-user-name",
 "status" : "status-of-schedule",
 "scheduleType" : "type-of-schedule",
 "createTime" : "created-date-and-time",
 "modifyTime" : "updated-date-and-time",
 "description" : "description-text",
 "scheduledStartTime" : "scheduled-start-time",
 "recurrenceInterval" : "interval-type",
 "recurrenceDayOfWeek" : "interval-of-weekly-job",
 "recurrenceDayOfMonth" : "interval-of-monthly-job",
 "recurrenceLastDayOfMonth" : {true|false},
 "recurrenceStartDate" : "recurrence-start-date",
 "recurrenceTime" : "exec-time-of-day",
 "serviceState" : "service-state",
 "serviceID" : service-id
}

2. APIs

JP1/Automatic Operation Command and API Reference 193

Usage example
In the following example, the API acquires information about the schedule whose instanceID is 2060.

Request header:

GET /Automation/v1/objects/Schedules/2060 HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:26:19 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
55fb30b1218f2ceec1b52d59d1b77b267895821_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 2060,
 "name" : "testService1_20140714044426_Resubmit",
 "submitter" : "System",
 "scheduleType" : "immediate",
 "createTime" : "2014-07-14T05:19:39.000-0700",
 "modifyTime" : "2014-07-14T05:19:39.000-0700",
 "description" : "",
 "serviceState" : "release",
 "serviceID" : 2015
}

2.6.3 Acquisition of a list of operations for a schedule

Function
Acquires a list of operations that can be executed for the specified schedule.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 194

Request format

GET http://host:port/Automation/version/objects/Schedules/id/actions

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{
 "name" : "cancel",
 "href" : "http://host:/Automation/version/objects/Schedules/id/actions/cancel/
invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "suspend",
 "href" : " http://host:port/Automation/version/objects/Schedules/id/actions/
suspend/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "resume",
 "href" : " http://host:port/Automation/version/objects/Schedules/id/actions/
resume/invoke",
 "method" : "POST",
 "parameters" : []
 }],
 "count" : 3
}

Usage example
In the following example, the API acquires a list of operations that can be executed for the schedule whose instanceID
is 2193.

Request header:

GET /Automation/v1/objects/Schedules/2193/actions HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

2. APIs

JP1/Automatic Operation Command and API Reference 195

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:29:28 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f214b39fba479af17375f1ad0e052124041ea60_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "name" : "cancel",
 "href" : "http://10.196.184.238:22015/Automation/v1/objects/Schedules/2193/
actions/cancel/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "suspend",
 "href" : "http://10.196.184.238:22015/Automation/v1/objects/Schedules/2193/
actions/suspend/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "resume",
 "href" : "http://10.196.184.238:22015/Automation/v1/objects/Schedules/2193/
actions/resume/invoke",
 "method" : "POST",
 "parameters" : []
 }],
 "count" : 3
}

Related topics
• 2.2.14 Members of resources

2.6.4 Acquisition of information necessary for canceling a schedule

Function
Acquires information necessary for canceling the specified schedule.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 196

Request format

GET http://host:port/Automation/version/objects/Schedules/id/actions/cancel

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "cancel",
 "href" : "http://host:port/Automation/version/objects/Schedules/id/actions/cancel/
invoke",
 "method" : "POST",
 "parameters" : [{...}]
}

Usage example
In the following example, the API acquires information necessary for canceling the schedule whose instanceID is 2193.

Request header:

GET /Automation/v1/objects/Schedules/2193/actions/cancel HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:34:39 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f214b39fba479af17375f1ad0e052124041ea60_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

2. APIs

JP1/Automatic Operation Command and API Reference 197

Response body:

{
 "name" : "cancel",
 "href" : "http://10.196.184.238:22015/Automation/v1/objects/Schedules/2193/actions/
cancel/invoke",
 "method" : "POST",
 "parameters" : []
}

Related topics
• 2.6.5 Cancellation of a schedule

2.6.5 Cancellation of a schedule

Function
Cancels the specified schedule.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Schedules/id/actions/cancel/invoke

The following shows the structure of the request body.

{
 "name" : "cancel",
 "href" : "http://host:port/Automation/version/objects/Schedules/id/actions/cancel/
invoke",
 "method" : "POST",
 "parameters" : null
}

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 Created Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

2. APIs

JP1/Automatic Operation Command and API Reference 198

Status code Message Description

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is neither Waiting nor Holding.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceId" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}]
}

The following table describes the object that can be output as affectedResources (member).

Table 2-55: Object that can be output as affectedResources (member) (Cancellation of a schedule)

Output Resource name Number Description

Link to the affected schedule String 1 Link to the affected resource for schedule functionality (Schedules)

Usage example
In the following example, the API cancels the schedule whose instanceID is 2193.

Request header:

POST /Automation/v1/objects/Schedules/2193/actions/cancel/invoke HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Content-Type: application/json
Content-Length: 172
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:35:22 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f214b39fba479af17375f1ad0e052124041ea60_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

2. APIs

JP1/Automatic Operation Command and API Reference 199

Response body:

{
 "instanceID" : "7a2924f8-1d5b-4f94-aef0-babccb2eb525",
 "created" : "2014-07-14T05:35:23.113-0700",
 "updated" : "2014-07-14T05:35:23.113-0700",
 "completed" : "2014-07-14T05:35:23.113-0700",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.238:22015/Automation/v1/objects/
Schedules/2193"]
}

2.6.6 Acquisition of information necessary for pausing a schedule

Function
Acquires information necessary for pausing the specified schedule.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Schedules/id/actions/suspend

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "suspend",
 "href" : "http://host:port/Automation/version/objects/Schedules/id/actions/suspend/
invoke",
 "method" : "POST",

2. APIs

JP1/Automatic Operation Command and API Reference 200

 "parameters" : null
}

Usage example
In the following example, the API acquires information necessary for pausing the schedule whose instanceID is 2193.

Request header:

GET /Automation/v1/objects/Schedules/2193/actions/suspend HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:31:38 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f214b39fba479af17375f1ad0e052124041ea60_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "suspend",
 "href" : "http://10.196.184.238:22015/Automation/v1/objects/Schedules/2193/actions/
suspend/invoke",
 "method" : "POST",
 "parameters" : []
}

Related topics
• 2.6.7 Pause of a schedule

2.6.7 Pause of a schedule

Function
Pauses the specified schedule.

Execution permissions
Admin role, Develop role, Modify role, Submit role

2. APIs

JP1/Automatic Operation Command and API Reference 201

API version
v1

Request format

POST http://host:port/Automation/version/objects/Schedules/id/actions/suspend/invoke

The following shows the structure of the request body.

{
 "name" : "suspend",
 "href" : "http://host:port/Automation/version/objects/Schedules/id/actions/suspend/
invoke",
 "method" : "POST",
 "parameters" : null
}

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 Created Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is not Waiting.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceId" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}]
}

The following table describes the object that can be output as affectedResources (member).

Table 2-56: Object that can be output as affectedResources (member) (Pause of a schedule)

Output Resource name Number Description

Link to the affected schedule String 1 Link to the affected Schedules resource

2. APIs

JP1/Automatic Operation Command and API Reference 202

Usage example
In the following example, the API pauses the schedule whose instanceID is 2193.

Request header:

POST /Automation/v1/objects/Schedules/2193/actions/suspend/invoke HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Content-Type: application/json
Content-Length: 174
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:32:16 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f214b39fba479af17375f1ad0e052124041ea60_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "3a6ac368-e49c-49ec-ac5b-380370800551",
 "created" : "2014-07-14T05:32:16.519-0700",
 "updated" : "2014-07-14T05:32:16.519-0700",
 "completed" : "2014-07-14T05:32:16.519-0700",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.238:22015/Automation/v1/objects/
Schedules/2193"]
}

2.6.8 Acquisition of information necessary for resuming a schedule

Function
Acquires information necessary for resuming the specified schedule.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 203

Request format

GET http://host:port/Automation/version/objects/Schedules/id/actions/resume

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Searching for or deleting a resource has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "resume",
 "href" : "http://host:port/Automation/version/objects/Schedules/id/actions/resume/
invoke",
 "method" : "POST",
 "parameters" : [{...}]
}

Usage example
In the following example, the API acquires information necessary for resuming the schedule whose instanceID is 2193.

Request header:

GET /Automation/v1/objects/Schedules/2193/actions/resume HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:33:15 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f214b39fba479af17375f1ad0e052124041ea60_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

2. APIs

JP1/Automatic Operation Command and API Reference 204

Response body:

{
 "name" : "resume",
 "href" : "http://10.196.184.238:22015/Automation/v1/objects/Schedules/2193/actions/
resume/invoke",
 "method" : "POST",
 "parameters" : []
}

Related topics
• 2.6.9 Resume of a schedule

2.6.9 Resume of a schedule

Function
Resumes the specified schedule.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Schedules/id/actions/resume/
invoke

The following shows the structure of the request body.

{
 "name" : "resume",
 "href" : "http://host:port/Automation/version/objects/Schedules/id/actions/resume/
invoke",
 "method" : "POST",
 "parameters" : null
}

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 Created Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

2. APIs

JP1/Automatic Operation Command and API Reference 205

Status code Message Description

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is neither Waiting nor Holding.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceId" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}]
}

The following table describes the object that can be output as affectedResources (member).

Table 2-57: Object that can be output as affectedResources (member) (Resume of a schedule)

Output Resource name Number Description

Link to the affected schedule String 1 Link to the affected resource for schedule functionality (Schedules)

Usage example
In the following example, the API resumes the schedule whose instanceID is 2193.

Request header:

POST /Automation/v1/objects/Schedules/2193/actions/resume/invoke HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Content-Type: application/json
Content-Length: 172
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:33:56 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f214b39fba479af17375f1ad0e052124041ea60_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

2. APIs

JP1/Automatic Operation Command and API Reference 206

Response body:

{
 "instanceID" : "a109b95d-e7ef-4982-ab24-2d062b38e088",
 "created" : "2014-07-14T05:33:56.925-0700",
 "updated" : "2014-07-14T05:33:56.925-0700",
 "completed" : "2014-07-14T05:33:56.925-0700",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.238:22015/Automation/v1/objects/
Schedules/2193"]
}

2. APIs

JP1/Automatic Operation Command and API Reference 207

2.7 Task-related APIs

This section describes the operations for managing task resources.

2.7.1 Acquisition of a list of tasks

Function
Acquires a list of tasks.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tasks

This API acquires a list of all tasks for which the user who executed the API has permissions. By specifying query
parameters, you can filter the tasks for which you want to acquire the list. Specify query parameters in the following
format.

?query-parameter=value[&query-parameter=value...]

Table 2-58: List of query parameters that can be specified for API Acquisition of a list of tasks

Query parameter Filter condition

serviceID Equal to the specified value

scheduleID

serviceGroupID

serviceTemplateID

tags Whether all values are contained. You can specify multiple values by separating them with a comma (,).

q For the following schema, a full-text search is performed to determine whether the specified value is contained:
• name
• submitter
• description
• serviceName
• tags
• notes

If you specify multiple values by separating them with a half-width space character, a full-text search is performed to
determine whether all of the specified values are contained. This query parameter is not case sensitive.

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

2. APIs

JP1/Automatic Operation Command and API Reference 208

Example
The following example specifies 2015 for serviceID as a query parameter.

?serviceID=2015

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request The query parameter is invalid.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
Data that matches the conditions specified by query parameters in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-a-resource-for-task-functionality(Tasks)" :
value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API acquires a list of all tasks.

Request header:

GET /Automation/v1/objects/Tasks HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Fri, 31 Jul 2015 02:00:18 GMT
Server Cosminexus HTTP Server is not blacklisted
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
baa98567d9a18be55be1594ea9677ab1da826a3_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked

2. APIs

JP1/Automatic Operation Command and API Reference 209

Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 3042,
 "name" : "Execute Remote Command_20150731105831",
 "status" : "waiting",
 "scheduledStartTime" : "2015-07-31T11:30:00.000+09:00",
 "submitter" : "System",
 "submitTime" : "2015-07-31T11:00:06.000+09:00",
 "modifyTime" : "2015-07-31T11:00:06.000+09:00",
 "serviceState" : "release",
 "scheduleType" : "schedule",
 "description" : "",
 "serviceName" : "Execute Remote Command",
 "tags" : "Windows,Linux,Execute Script",
 "serviceGroupName" : "DefaultServiceGroup",
 "toDo" : false,
 "notes" : "",
 "serviceTemplateID" : 560,
 "scheduleID" : 3020,
 "serviceGroupID" : 3,
 "serviceID" : 2004,
 "supportedActionType" : "forciblyStop,retry"
 }],
 "count" : 1
}

Related topics
• 2.2.14 Members of resources

2.7.2 Acquisition of task information

Function
Acquires information about the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tasks/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

2. APIs

JP1/Automatic Operation Command and API Reference 210

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "name" : "task-name",
 "status" : "task-status",
 "startTime" : "start-date-and-time",
 "completionTime" : "completion-time",
 "scheduledStartTime" : "schedule-start-date-and-time",
 "submitter" : "submit-user-name",
 "submitTime" : "created-date-and-time",
 "modifyTime" : "updated-date-and-time",
 "serviceState" : "service-state",
 "scheduleType" : "schedule-type",
 "description" : "description",
 "serviceName" : "service-name",
 "tags" : "tags",
 "recurrenceInterval" : "recurrenceInterval",
 "recurrenceTime" : "recurrenceTime",
 "recurrenceStartDate" : "recurrenceStartDate",
 "serviceGroupName" : "serviceGroupName",
 "toDo" : {true|false},
 "notes" : "notes",
 "stepTime" : "step-time",
 "serviceTemplateID" : service-template-id,
 "scheduleID" : schedule-id,
 "serviceGroupID" : service-group-id,
 "serviceID" : service-id,
 "supportedActionType" : supported-action-type
}

Usage example
In the following example, the API acquires information about the task whose instanceID is 3042.

Request header:

GET /Automation/v1/objects/Tasks/3042 HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Fri, 31 Jul 2015 02:02:09 GMT

2. APIs

JP1/Automatic Operation Command and API Reference 211

Server Cosminexus HTTP Server is not blacklisted
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
bb3f961e88fd1fe908176cbea77a395fcdfb56_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 3042,
 "name" : "Execute Remote Command_20150731105831",
 "status" : "waiting",
 "scheduledStartTime" : "2015-07-31T11:30:00.000+09:00",
 "submitter" : "System",
 "submitTime" : "2015-07-31T11:00:06.000+09:00",
 "modifyTime" : "2015-07-31T11:00:06.000+09:00",
 "serviceState" : "release",
 "scheduleType" : "schedule",
 "description" : "",
 "serviceName" : "Execute Remote Command",
 "tags" : "Windows,Linux,Execute Script",
 "serviceGroupName" : "DefaultServiceGroup",
 "toDo" : false,
 "notes" : "",
 "serviceTemplateID" : 560,
 "scheduleID" : 3020,
 "serviceGroupID" : 3,
 "serviceID" : 2004,
 "supportedActionType" : "forciblyStop,retry"
}

2.7.3 Editing a task

Function
Edits the notes and TODO for the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

PUT http://host:port/Automation/version/objects/Tasks/id

The request schema has the same format as the response body for the API function Acquisition of service information.
The following table describes the object that can be specified as Task (member).

2. APIs

JP1/Automatic Operation Command and API Reference 212

Table 2-59: Object that can be specified as Task (member)

Function Resource name Number Description

Task Task 1 Task resource that has the specified ID

The following table describes the properties that must be specified for this object.

Resource name Member name Number

Task notes 1

toDo

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to edit tasks.

404 Not found The user does not have permission to acquire tasks, or the task
does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "name" : "task-name",
 "status" : "task-status",
 "startTime" : "start-date-and-time",
 "completionTime" : "completion-time",
 "scheduledStartTime" : "schedule-start-date-and-time",
 "submitter" : "submit-user-name",
 "submitTime" : "created-date-and-time",
 "modifyTime" : "updated-date-and-time",
 "serviceState" : "service-state",
 "scheduleType" : "schedule-type",
 "description" : "description",
 "serviceName" : "service-name",
 "tags" : "tags",
 "recurrenceInterval" : "recurrenceInterval",
 "recurrenceTime" : "recurrenceTime",
 "recurrenceStartDate" : "recurrenceStartDate",
 "serviceGroupName" : "serviceGroupName",
 "toDo" : {true|false},
 "notes" : "notes",
 "stepTime" : "step-time",
 "serviceTemplateID" : service-template-id,
 "scheduleID" : schedule-id,

2. APIs

JP1/Automatic Operation Command and API Reference 213

 "serviceGroupID" : service-group-id,
 "serviceID" : service-id,
 "supportedActionType" : supported-action-type
}

Usage example
In the following example, the API function edits the notes and TODO for the task whose instanceID is 3042.

Request header:

PUT /Automation/v1/objects/Tasks/3042 HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json
Content-Type: application/json
Content-Length: 666

Response header:

HTTP/1.1 200 OK
Date: Fri, 31 Jul 2015 03:37:03 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
91351d8e544375a67473e7c7494d1aa7c67b24_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 3042,
 "name" : "Execute Remote Command_20150731105831",
 "status" : "completed",
 "startTime" : "2015-07-31T11:30:00.000+09:00",
 "completionTime" : "2015-07-31T11:30:33.000+09:00",
 "scheduledStartTime" : "2015-07-31T11:30:00.000+09:00",
 "submitter" : "System",
 "submitTime" : "2015-07-31T11:00:06.000+09:00",
 "modifyTime" : "2015-07-31T12:37:03.000+09:00",
 "serviceState" : "release",
 "scheduleType" : "schedule",
 "description" : "",
 "serviceName" : "Execute Remote Command",
 "tags" : "Windows,Linux,Execute Script",
 "serviceGroupName" : "DefaultServiceGroup",
 "toDo" : true,
 "notes" : "Notes Test",
 "serviceTemplateID" : 560,
 "scheduleID" : 3020,
 "serviceGroupID" : 3,
 "serviceID" : 2004,
 "supportedActionType" : "forciblyStop,retry"
}* Connection #0 to host 10.196.184.182 left intact

2. APIs

JP1/Automatic Operation Command and API Reference 214

2.7.4 Deletion of a task

Function
Deletes the specified task. If the specified task is not a debug task, this API function acquires the URL for archiving the
task.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

DELETE http://host:port/Automation/version/objects/Tasks/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

204 OK The task was successfully deleted.

303 See Other The URL for deleting the task was successfully
returned as a response. Use the URL shown in the
Location response header to archive the task.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to delete tasks.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Usage example
In the following example, the API function deletes the task whose instanceID is 5169.

Request header:

DELETE /Automation/v1/objects/Tasks/5169 HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
Host: 192.168.146.132:22015
Accept: application/json
User-Agent:useragent1

Response header:

HTTP/1.1 303 See Other
Date: Fri, 07 Aug 2015 07:38:26 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO

2. APIs

JP1/Automatic Operation Command and API Reference 215

10a7b94b76e0747b63ee8e0828c186a5d95f699_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Location: http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169/actions/
archive
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: text/html;charset=utf-8

Response body:

<html><head><title>303 See Other</title></head><body><h1>303 See Other</h1></body></
html>

Related topics
• 2.2.14 Members of resources

2.7.5 Acquisition of a list of task operations

Function
Acquires a list of operations that can be executed for the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tasks/id/actions

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

2. APIs

JP1/Automatic Operation Command and API Reference 216

{
 "data" : [{
 "name" : "update",
 "href" : "http://host:port/Automation/version/objects/Tasks/id",
 "method" : "PUT",
 "parameters" : []
 }, {
 "name" : "delete",
 "href" : "http://host:port/Automation/version/objects/Tasks/id",
 "method" : "DELETE",
 "parameters" : []
 }, {
 "name" : "stop",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/stop/
invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "forceStop",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/forceStop/
invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "resubmit",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/resubmit/
invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "archive",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/archive/
invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "response",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/response/
invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "rerunStart",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/
rerunStart/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "rerunStepStart",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/
rerunStepStart/invoke",
 "method" : "POST",
 "parameters" : []
 }],
 "count" : 9
}

Usage example
In the following example, the API acquires a list of operations that can be executed for the task whose instanceID is
5169.

2. APIs

JP1/Automatic Operation Command and API Reference 217

Request header:

GET /Automation/v1/objects/Tasks/5169/actions HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 07:32:08 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
10fad7e4bd5eb0e56b4740f5efc08e6dc750d972_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "name" : "update",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169",
 "method" : "PUT",
 "parameters" : []
 }, {
 "name" : "delete",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169",
 "method" : "DELETE",
 "parameters" : []
 }, {
 "name" : "stop",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169/actions/
stop/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "forceStop",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169/actions/
forceStop/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "resubmit",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169/actions/
resubmit/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "archive",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169/actions/
archive/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "response",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169/actions/

2. APIs

JP1/Automatic Operation Command and API Reference 218

response/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "rerunStart",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169/actions/
rerunStart/invoke",
 "method" : "POST",
 "parameters" : []
 }, {
 "name" : "rerunStepStart",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169/actions/
rerunStepStart/invoke",
 "method" : "POST",
 "parameters" : []
 }],
 "count" : 9
}

2.7.6 Acquisition of information necessary for stopping task execution

Function
Acquires information necessary for stopping execution of the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tasks/id/actions/stop

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Searching for or deleting a resource has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

2. APIs

JP1/Automatic Operation Command and API Reference 219

{
 "name" : "stop",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/stop/
invoke",
 "method" : "POST",
 "parameters" : []
}

Usage example
In the following example, the API acquires information necessary for stopping execution of the task whose instanceID
is 2026.

Request header:

GET /Automation/v1/objects/Tasks/2026/actions/stop HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:21:37 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f214b39fba479af17375f1ad0e052124041ea60_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "stop",
 "href" : "http://10.196.184.238:22015/Automation/v1/objects/Tasks/2026/actions/
stop/invoke",
 "method" : "POST",
 "parameters" : []
}

Related topics
• 2.7.7 Stoppage of task execution

2.7.7 Stoppage of task execution

Function
Stops execution of the specified task.

2. APIs

JP1/Automatic Operation Command and API Reference 220

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Tasks/id/actions/stop/invoke

The following shows the structure of the request body.

{
 "name" : "stop",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/stop/
invoke",
 "method" : "POST",
 "parameters" : null
}

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 Created Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is neither In Progress, Waiting for Response, nor Abnormal Detection.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceId" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}]
}

The following table describes the object that can be output as affectedResources (member).

2. APIs

JP1/Automatic Operation Command and API Reference 221

Table 2-60: Object that can be output as affectedResources (member) (Stoppage of task execution)

Output Resource name Number Description

Link to the affected task String 1 Link to the updated resource for task functionality (Tasks)

Usage example
In the following example, the API stops execution of the task whose instanceID is 2026.

Request header:

POST /Automation/v1/objects/Tasks/2026/actions/stop/invoke HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Content-Type: application/json
Content-Length: 164
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:23:58 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO d3b775e19041295c9834a332f7936467d94358e_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "f550ef02-b4f8-4332-95da-3b685f2cedf8",
 "created" : "2014-07-14T05:23:59.222-0700",
 "updated" : "2014-07-14T05:23:59.222-0700",
 "completed" : "2014-07-14T05:23:59.222-0700",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.238:22015/Automation/v1/objects/Tasks/
2026"]
}

2.7.8 Acquisition of information necessary for forcibly stopping a task

Function
Acquires information necessary for forcibly stopping the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

2. APIs

JP1/Automatic Operation Command and API Reference 222

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tasks/id/actions/forceStop

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "forceStop",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/forceStop/
invoke",
 "method" : "POST",
 "parameters" : []
}

Usage example
In the following example, the API function acquires information necessary for forcibly stopping the task whose
instanceID is 5283.

Request header:

GET /Automation/v1/objects/Tasks/5283/actions/forceStop HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 09:57:14 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
9bf53394a45188743ac8b2522efcc67284cd_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS

2. APIs

JP1/Automatic Operation Command and API Reference 223

Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "forceStop",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5283/actions/
forceStop/invoke",
 "method" : "POST",
 "parameters" : []
}

2.7.9 Forced stoppage of a task

Function
Forcibly stops the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Tasks/id/actions/forceStop/invoke

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is not In progress, Waiting for response, or
Abnormality detected.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

2. APIs

JP1/Automatic Operation Command and API Reference 224

{
 "instanceId" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}],
 "result" : []
}

Usage example
In the following example, the API function forcibly stops the task whose instanceID is 5381.

Request header:

POST /Automation/v1/objects/Tasks/5381/actions/forceStop/invoke HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Content-Type: application/json
Content-Length: 175
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

{
 "name" : "forceStop",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5338/actions/
forceStop/invoke",
 "method" : "POST",
 "parameters" : []
}

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 10:00:39 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
a2e8ab6f7a9c35323fb7d9331735a9419235ebad_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "68451399-53c2-4f6b-bbdd-be025a61ed02",
 "created" : "2015-08-07T19:00:40.025+09:00",
 "updated" : "2015-08-07T19:00:40.025+09:00",
 "completed" : "2015-08-07T19:00:40.025+09:00",
 "state" : "success",
 "affectedResource" : ["http://192.168.146.132:22015/Automation/v1/objects/Tasks/
5381"],
 "result" : []
}

2. APIs

JP1/Automatic Operation Command and API Reference 225

2.7.10 Acquisition of information necessary for re-executing a task

Function
Acquires information necessary for re-executing the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tasks/id/actions/resubmit

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Searching for or deleting a resource has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "resubmit",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/resubmit/
invoke",
 "method" : "POST",
 "parameters" : [{...}]
}

The following table describes the objects that can be output as parameters (member).

Table 2-61: Objects that can be output as parameters (member) (Acquisition of information
necessary for re-executing a task)

Function Resource name Number Description

Schedule Schedule 1 Execution schedule of the service

List of property values PropertyValue 0 to n Input property of the service

2. APIs

JP1/Automatic Operation Command and API Reference 226

Usage example
In the following example, the API acquires information necessary for re-executing the task whose instanceID is 2026.

Request header:

GET /Automation/v1/objects/Tasks/2026/actions/resubmit HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:03:20 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO c733364e62b52913e477addabfbf8c55f9de831_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "resubmit",
 "href" : "http://10.196.184.238:22015/Automation/v1/objects/Tasks/2026/actions/
resubmit/invoke",
 "method" : "POST",
 "parameters" : [{
 "name" : "testService1_20140714044426_Resubmit",
 "submitter" : "System",
 "scheduleType" : "immediate",
 "description" : "",
 "scheduledStartTime" : "2014-07-14T05:03:20.441-07:00",
 "recurrenceInterval" : "daily",
 "recurrenceDayOfWeek" : "",
 "recurrenceDayOfMonth" : "",
 "recurrenceLastDayOfMonth" : false,
 "recurrenceStartDate" : "2014-07-14",
 "recurrenceTime" : "00:00:00",
 "serviceID" : 2015
 }, {
 "instanceID" : 2012,
 "type" : "string",
 "keyName" : "testProp",
 "value" : "defaultValue",
 "serviceID" : 2015
 }]
}

Related topics
• 2.2.14 Members of resources
• 2.7.11 Re-execution of a task

2. APIs

JP1/Automatic Operation Command and API Reference 227

2.7.11 Re-execution of a task

Function
Re-executes the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Tasks/id/actions/resubmit/
invoke

The following shows the structure of the request body.

{
 "name" : "resubmit",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/resubmit/
invoke",
 "method" : "POST",
 "parameters" : [{...}]
}

The following table describes the objects that can be specified as parameters (member) in the schema of a request.

Table 2-62: Objects that can be specified as parameters (member)

Function Resource name Number Description

Schedule Schedule 1 Execution schedule of the service

List of property values PropertyValue 0 to n Input property of the service

The following describes the properties that must be specified for these objects.

In the case of common settings:

Table 2-63: In the case of common settings

Resource name Member name Number

Schedule name 1

Schedule description

Schedule scheduleType

PropertyValue keyName 0 to n

PropertyValue value

In the case of Now:
No property needs to be specified.

2. APIs

JP1/Automatic Operation Command and API Reference 228

In the case of Later:

Table 2-64: In the case of Later

Resource name Member name Number

Schedule scheduledStartTime 1

In the case of Recurring:

Table 2-65: In the case of Recurring

Resource name Member name Number

Schedule recurrenceInterval 1

Schedule recurrenceMinutes

Schedule recurrenceDayOfWeek

Schedule recurrenceDayOfMonth

Schedule recurrenceLastDayOfMonth

Schedule recurrenceStartDate

Schedule recurrenceTime

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 Created Processing has been successfully completed.

400 Bad Request The argument is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is neither Completed nor Canceled.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}],
 "result" : [{...}],
 "resultType" : "result-type"
}

The following table describes the objects that can be output as affectedResources (member).

2. APIs

JP1/Automatic Operation Command and API Reference 229

Table 2-66: Objects that can be output as affectedResources (member) (Re-execution of a task)

Output Resource name Number Description

Link to the created schedule String 1 Link to the created resource for schedule functionality (Schedules)

Link to the created task String Link to the created resource for task functionality (Tasks)

Usage example
In the following example, the API re-executes the task whose instanceID is 2026.

Request header:

POST /Automation/v1/objects/Tasks/2026/actions/resubmit/invoke HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Content-Type: application/json
Content-Length: 821
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:19:39 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO 5011884058b535482bf6bac7390956be5fc2122_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "d2a2284f-9a94-4be0-8813-e5f991762740",
 "created" : "2014-07-14T05:19:40.089-0700",
 "updated" : "2014-07-14T05:19:40.089-0700",
 "completed" : "2014-07-14T05:19:40.089-0700",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.238:22015/Automation/v1/objects/
Schedules/2060", "http://10.196.184.238:22015/Automation/v1/objects/Tasks/2063"],
 "result" : []
}

2.7.12 Acquisition of information necessary for responding to a task that
is in the status Waiting for Response

Function
Acquires information necessary for responding to a task that is in the status Waiting for Response. Among the steps of
the task that has the specified ID, information about the step that was least recently placed in the status Waiting for
Response is acquired.

2. APIs

JP1/Automatic Operation Command and API Reference 230

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tasks/id/actions/response

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is not Waiting for response.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "response",
 "href" : " http://host:port/Automation/version/objects/Tasks/id/actions/response/
invoke",
 "method" : "POST",
 "parameters" : [{...}]
}

Usage example
In the following example, the API function acquires information necessary for responding to the task whose instanceID
is 3179.

Request header:

GET /Automation/v1/objects/Tasks/3179/actions/response HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

2. APIs

JP1/Automatic Operation Command and API Reference 231

HTTP/1.1 200 OK
Date: Fri, 31 Jul 2015 04:36:56 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
13691d353edd835f6f83942ec70f4ae1411a3f_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "response",
 "href" : "http://10.196.184.182:22015/Automation/v1/objects/Tasks/3179/actions/
response/invoke",
 "method" : "POST",
 "parameters" : [{
 "instanceID" : 3239,
 "dialogText" : "",
 "labelButton0" : "OK",
 "screenURL" : "services/default/index.jsp",
 "taskID" : 3179
 }]
}

2.7.13 Response to a task that is in the status Waiting for Response

Function
Among the steps of the task that has the specified ID, performs a response input for the step that was least recently
placed in the status Waiting for Response.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Tasks/id/actions/response/invoke

The following shows the structure of the request body.

 {
"name" : "enter Response",
"href" : "http://host:port/Automation/version/objects/Tasks/id/actions/response/
invoke",
"method" : "POST",

2. APIs

JP1/Automatic Operation Command and API Reference 232

"parameters" : [{...}]
}

The following table describes the object that can be specified as parameters (member) in the schema of a request.

Table 2-67: Object that can be specified as parameters (member)

Function Resource name Number Description

Task ResponseInput 1 Response input

The following table describes the properties that must be specified for this object.

Resource name Member name Number

ResponseInput instanceId 1

labelbuttonX#

taskId

#
X is replaced with a number.

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request The argument is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is not Waiting for Response.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}],
 "result" : [{...}],
 "resultType" : "result-type"
}

2. APIs

JP1/Automatic Operation Command and API Reference 233

Usage example
In the following example, the API function responds to the task whose instanceID is 3179.

Request header:

POST /Automation/v1/objects/Tasks/3179/actions/response/invoke HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json
Content-Type: application/json
Content-Length: 329

Response header:

HTTP/1.1 200 OK
Date: Fri, 31 Jul 2015 04:42:14 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
5d4cd25fd30d1b8d6b67f2d7b4cc5479a16364f_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "4fb38028-81d7-4573-851a-672e7524a4fc",
 "created" : "2015-07-31T13:42:15.030+09:00",
 "updated" : "2015-07-31T13:42:15.030+09:00",
 "completed" : "2015-07-31T13:42:15.030+09:00",
 "state" : "success",
 "affectedResource" : ["http://10.196.184.182:22015/Automation/v1/objects/Tasks/
3179"],
 "result" : []
}

2.7.14 Acquisition of information necessary for retrying a task (retry from
the failed step)

Function
Specifies a task, and acquires information necessary for retrying the task from the failed step.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 234

Request format

GET http://host:port/Automation/version/objects/Tasks/id/actions/rerunStart

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "rerunStart",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/rerunStart/
invoke",
 "method" : "POST",
 "parameters" : [{...}]
 }

Usage example
In the following example, the API acquires information necessary for retrying the task whose instanceID is 5381 from
the failed step.

Request header:

GET /Automation/v1/objects/Tasks/5381/actions/rerunStart HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: useragent1
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 10:16:10 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f261dfd5d7e3befa74903ab7318a59455a86df3_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

2. APIs

JP1/Automatic Operation Command and API Reference 235

Response body:

{
 "name" : "rerunStart",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5381/actions/
rerunStart/invoke",
 "method" : "POST",
 "parameters" : []
}

Related topics
• 2.7.15 Retry from the failed step

2.7.15 Retry from the failed step

Function
Specifies a task, and retries the task from the failed step.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Tasks/id/actions/rerunStart/invoke

The following shows the structure of the request body.

{
 "name" : "rerunStart",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/rerunStart/
invoke",
 "method" : "POST",
 "parameters" : null
}

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 Created Processing has been successfully completed.

400 Bad Request The argument is invalid.

401 Unauthorized The user does not have login permission.

2. APIs

JP1/Automatic Operation Command and API Reference 236

Status code Message Description

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is not Failed.

412 Precondition failed The server is not running.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceId" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}]
 "result" : [{...}],
 "resultType" : "result-type"
}

The following table describes an object that can be output as affectedResources (member).

Table 2-68: Object that can be output as affectedResources (member) (Retry from the failed step)

Output Resource name Number Description

Link to the affected task String 1 Link to the updated resource for task functionality (Tasks)

Usage example
In the following example, the API retries the task whose instanceID is 5381 from the failed step.

Request header:

POST /Automation/v1/objects/Tasks/5381/actions/rerunStart/invoke HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Content-Type: application/json
Content-Length: 177
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 10:19:44 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
dfd342179388629104cd0bb13d288884bed541b_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked

2. APIs

JP1/Automatic Operation Command and API Reference 237

Content-Type: application/json

Response body:

{
 "instanceID" : "17356cf0-f709-4561-a56b-17a6fbc321e3",
 "created" : "2015-08-07T19:19:44.552+09:00",
 "updated" : "2015-08-07T19:19:44.552+09:00",
 "completed" : "2015-08-07T19:19:44.552+09:00",
 "state" : "success",
 "affectedResource" : ["http://192.168.146.132:22015/Automation/v1/objects/Tasks/
5381"],
 "result" : []
}

2.7.16 Acquisition of information necessary for retrying a task (retry from
the step after the failed step)

Function
Specifies a task, and acquires information necessary for retrying the task from the step after the failed step.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tasks/id/actions/rerunStepStart

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "rerunStart",

2. APIs

JP1/Automatic Operation Command and API Reference 238

 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/
rerunStepStart/invoke",
 "method" : "POST",
 "parameters" : [{...}]
 }

Usage example
In the following example, the API acquires information necessary for retrying the task whose instanceID is 5381 from
the step after the failed step.

Request header:

GET /Automation/v1/objects/Tasks/5381/actions/rerunStepStart HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Content-Type: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 10:24:44 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
7abadbb2b4c4d9c1cf18e5465654ef786a9851_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "rerunStepStart",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5381/actions/
rerunStepStart/invoke",
 "method" : "POST",
 "parameters" : []
}

Related topics
• 2.7.17 Retry from the step after the failed step

2.7.17 Retry from the step after the failed step

Function
Specifies a task, and retries the task from the step after the failed step.

2. APIs

JP1/Automatic Operation Command and API Reference 239

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Tasks/id/actions/rerunStepStart/
invoke

The following shows the structure of the request body.

{
 "name" : "rerunStepStart",
 "href" : "http://host:port/Automation/version/objects/Tasks/id/actions/
rerunStepStart/invoke",
 "method" : "POST",
 "parameters" : null
}

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 Created Processing has been successfully completed.

400 Bad Request The argument is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is not Failed.

412 Precondition failed The server is not running.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceId" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}]
 "result" : [{...}],
 "resultType" : "result-type"
}

2. APIs

JP1/Automatic Operation Command and API Reference 240

The following table describes the object that can be output as affectedResources (member).

Table 2-69: Object that can be output as affectedResources (member) (Retry from the step after
the failed step)

Output Resource name Number Description

Link to the affected task String 1 Link to the updated resource for task functionality (Tasks)

Usage example
In the following example, the API retries the task whose instanceID is 5381 from the step after the failed step.

Request header:

POST /Automation/v1/objects/Tasks/5381/actions/rerunStepStart/invoke HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Content-Type: application/json
Content-Length: 185
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 10:29:33 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
c19a775746fbd61d1efd3658d2b4eacadcfe435_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "852af753-989f-4797-a7dc-50faaf07b896",
 "created" : "2015-08-07T19:29:33.562+09:00",
 "updated" : "2015-08-07T19:29:33.562+09:00",
 "completed" : "2015-08-07T19:29:33.562+09:00",
 "state" : "success",
 "affectedResource" : ["http://192.168.146.132:22015/Automation/v1/objects/Tasks/
5381"],
 "result" : []
}

2.7.18 Acquisition of information necessary for archiving a task

Function
Acquires the argument template necessary for archiving the specified task.

2. APIs

JP1/Automatic Operation Command and API Reference 241

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tasks/id/actions/archive

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "name" : "archive",
 "href" : " http://host:port/Automation/version/objects/Tasks/id/actions/archive/
invoke",
 "method" : "POST",
 "parameters" : []
}

Usage example
In the following example, the API function acquires information necessary for archiving the task whose instanceID is
5169.

Request header:

GET /Automation/v1/objects/Tasks/5169/actions/archive HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 07:28:17 GMT
Server: Cosminexus HTTP Server

2. APIs

JP1/Automatic Operation Command and API Reference 242

Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
58791edf45552caa5592c652b533c730df4b708_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "name" : "archive",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/Tasks/5169/actions/
archive/invoke",
 "method" : "POST",
 "parameters" : []
}

2.7.19 Archiving a task

Function
Archives the specified task.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

POST http://host:port/Automation/version/objects/Tasks/id/actions/archive/invoke

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request The argument is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

409 Conflict The status of the task is not Completed, Failed, or Canceled.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

2. APIs

JP1/Automatic Operation Command and API Reference 243

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : "instance-id",
 "created" : "created-date-and-time",
 "updated" : "updated-date-and-time",
 "completed" : "completed-date-and-time",
 "state" : "state",
 "affectedResources" : [{...}],
 "result" : [{...}],
 "resultType" : "result-type"
}

Usage example
In the following example, the API function archives the task whose instanceID is 5209.

Request header:

POST /Automation/v1/objects/Tasks/5209/actions/archive/invoke HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Content-Type: application/json
Content-Length: 171
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 08:15:46 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
aec4a069aea32fe6d59c8325bfae96af27dde14_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : "0fea3bf2-9747-4d29-a4bf-faaddf22076d",
 "created" : "2015-08-07T17:15:46.474+09:00",
 "updated" : "2015-08-07T17:15:46.474+09:00",
 "completed" : "2015-08-07T17:15:46.474+09:00",
 "state" : "success",
 "affectedResource" : ["http://192.168.146.132:22015/Automation/v1/objects/
TaskHistories/5237"],
 "result" : []
}

2. APIs

JP1/Automatic Operation Command and API Reference 244

2.7.20 Acquisition of a list of steps

Function
Among the steps included in the specified task, acquires a list of steps displayed in the Task Details window. This API
function is for a JP1/AO instance whose version is earlier than V11.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/FlowSteps

Make sure that you specify taskID as a query parameter.

By specifying taskID, you can filter the target task. Among the steps included in the task, you can acquire a list of steps
displayed in the Task Details window. If no query parameter is specified, or if multiple query parameters are specified,
an error occurs. Specify a query parameter in the following format:

?query-parameter=value[&query-parameter=value...]

Table 2-70: List of query parameters that can be specified for the API function Acquisition of a list
of steps

Query parameter Filter condition

taskID Equal to the specified value

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Example
The following example specifies 512 for taskID as a query parameter.

?taskID=512

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 Created Processing has been successfully completed.

400 Bad Request The argument is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not running.

2. APIs

JP1/Automatic Operation Command and API Reference 245

Status code Message Description

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{"member-of-the-resources-for-step-functionality(FlowSteps)" :
value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API acquires a list of steps to be executed by the task whose task ID is 5381.

Request header:

GET /Automation/v1/objects/FlowSteps?taskID=5381 HTTP/1.1
Host: 10.196.184.238:22015
User-Agent: curl/7.36.0
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:51:18 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
f1bd56cdd5e340caa0d6f2419205ba81b3317ef_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : "remoteHostCommandExe_2052",
 "name" : "remoteHostCommandExe",
 "startTime" : "2014-07-14 04:57:10",
 "completionTime" : "2014-07-14 04:57:34",
 "jobStatus" : "normal",
 "comment" : "Executes a command on the remote execution target server and
displays the results.",
 "stepStatus" : "complete"
 }],
 "count" : 1
}

2. APIs

JP1/Automatic Operation Command and API Reference 246

2.7.21 Acquisition of task logs

Function
Acquires the logs for the specified task.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/TaskLogs

Among all tasks for which the user who executed the API function has permissions, this API function acquires the logs
for the task that has the specified taskID. By specifying query parameters, you can filter the tasks for which you want
to acquire the list.

This API acquires the logs for the task that has the specified taskID, in the size specified for readSize or smaller, starting
from the point specified for the offset. If reverse is specified, the API acquires the logs in the size specified for readSize
to the opposite direction from the offset. Specify query parameters in the format below.

Note that logs are acquired line by line. If the log size reaches the specified size, the line being acquired will be discarded.

?query-parameter=value[&query-parameter=value...]

Table 2-71: List of query parameters that can be specified for API Acquisition of task logs

Query parameter Filter condition

taskID Equal to the specified value

readSize Equal to the specified value (however, if the log size reaches readSize at the middle of a task log, task logs before
the task log are acquired.)

offset Equal to the specified value

reverse# Acquires task logs, starting from the point specified for offset , in the opposite direction.

#
Do not specify any values for reverse.

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Example
The following shows an example setting to acquire 1,000-byte task log data for the task whose taskID is 512, starting
from 3,000th byte in the opposite direction.

?taskID=512&offset=3000&readSize=1000&reverse

2. APIs

JP1/Automatic Operation Command and API Reference 247

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 Created Processing has been successfully completed.

400 Bad Request The argument is invalid.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not running.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{"member-of-the-resources-for-task-log-functionality(Tasklogs)" :
value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API function acquires 5,000,000-byte task log data for the task whose taskID is 2052,
starting from the beginning (0th byte).

Request header:

GET /Automation/v1/objects/TaskLogs?taskID=10042&offset=0&readSize=5000000 HTTP/1.1
Host:192.168.146.132:22015
User-Agent:sample rest client/1.00.0
Accept:application/json
Accept-Language: en
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Mon, 26 Oct 2015 02:28:09 GMT
Server: Cosminexus HTTP Server
Cache-Control: no-cache
WWW-Authenticate: HSSO
a36baaf736fd84afdc27aecf1559fcb8620792b_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{

2. APIs

JP1/Automatic Operation Command and API Reference 248

 "data" : [{
 "instanceID" : 10042,
 "text" : "**** Windows Server 2008 R2
6.1 TZ=Asia/
Seoul 2015/10/26 11:22:00.450\r\n
 yyyy/mm/dd hh:mm:ss.sss pid tid message-
id message(LANG=en)\r\n
7156 2015/10/26 11:22:00.574 Automation 74170687 36EBDFE4 KNAE08001-
I Started executing plug-in (task name: Execute Remote
Command_20151026112116, task ID: 10042, step ID: /remoteHostCommandExe, execution
ID: @A111).\r\n
7280 2015/10/26 11:22:00.886 Automation 74170687 36EBDFE4 KNAE08129-
I The general command plug-in started (command: a).\r\n
7282 2015/10/26 11:22:00.886 Automation 74170687 36EBDFE4 KNAE08071-
I The setting to elevate to root privileges for SSH connections is now
disabled.\r\n
7307 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08131-E
ER The general command plug-in failed (command: a, plug-in return code: 77).\r\n
7311 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08002-
I Plug-in execution completed (task name: Execute Remote
Command_20151026112116, task ID: 10042, step ID: /remoteHostCommandExe, execution
ID: @A111, plug-in return code: 77).\r\n
7313 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I schema_version=1.1\r\n
7315 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I vendor=com.hitachi.software.dna\r\n
7317 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I name=ExecuteCommandPlugin\r\n
7319 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I version=01.52.01\r\n
7321 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I plugin_type=javaClass\r\n
7323 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I vendor_display_name=Hitachi, Ltd.\r\n
7325 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I display_name=General Command Plug-in\r\n
7327 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I short_description=This plug-in executes a command line on the
destination host.\r\n
7329 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I tags=Basic,Hitachi\r\n
7331 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I enable_SSH_charset_detection=true\r\n
7333 2015/10/26 11:22:10.652 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/account, value=\r\n
7335 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/commandLine, value=?
dna_common.remoteCommand?\r\n
7337 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/commandLineParameter, value=?
dna_common.remoteCommandParameter?\r\n
7339 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/credentialType, value=destination\r\n
7341 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/destinationHost, value=?
dna_common.targetHost?\r\n
7343 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/elevatePrivileges, value=false\r\n
7345 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/keyboardInteractiveAuthentication, value=
\r\n
7347 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/password, value=********\r\n
7349 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-

2. APIs

JP1/Automatic Operation Command and API Reference 249

I property=/remoteHostCommandExe/publicKeyAuthentication, value=\r\n
7351 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/stdoutPattern1, value=((?s).*)\r\n
7353 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/stdoutPattern2, value=\r\n
7355 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/stdoutPattern3, value=\r\n
7357 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/stdoutProperty1,
value=common.stdoutProperty\r\n
7359 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/stdoutProperty2, value=\r\n
7361 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/stdoutProperty3, value=\r\n
7363 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=/remoteHostCommandExe/suPassword, value=********\r\n
7365 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.jp1.password, value=********\r\n
7367 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.jp1.username, value=jp1admin\r\n
7369 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.mail.bcc, value=\r\n
7371 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.mail.cc, value=\r\n
7373 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.mail.from, value=********\r\n
7375 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.mail.notify, value=false\r\n
7377 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.mail.smtp.password, value=********
\r\n
7379 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.mail.smtp.port, value=25\r\n
7381 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.mail.smtp.server, value=\r\n
7383 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.mail.smtp.userid, value=\r\n
7385 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.mail.to, value=\r\n
7387 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.ssh.privatekey.passphrase,
value=********\r\n
7389 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=com.hitachi.software.dna.sys.task.log.level, value=10\r\n
7391 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=common.remoteCommand, value=a\r\n
7393 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=common.remoteCommandParameter, value=\r\n
7395 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=common.stdoutProperty, value=\r\n
7397 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=common.targetHost, value=a\r\n
7399 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=foreach.max_value, value=3\r\n
7401 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=mail.plugin.retry.interval, value=10\r\n
7403 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=mail.plugin.retry.times, value=3\r\n
7405 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=plugin.private.builtin.baseUrl, value=http://WIN-FC6MCPD47CQ:
22015/Automation/\r\n
7407 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.service.category, value=Execute Script,Linux,Windows\r
\n

2. APIs

JP1/Automatic Operation Command and API Reference 250

7409 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.service.name, value=Execute Remote Command\r\n
7411 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.service.resourceGroupName, value=Default Service Group
\r\n
7413 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.service.serviceGroupName, value=Default Service Group\r
\n
7415 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.step.path, value=/remoteHostCommandExe\r\n
7417 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.step.prevReturnCode, value=0\r\n
7419 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.task.description, value=\r\n
7421 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.task.dir, value=C:\\Program Files\\Hitachi\\JP1AO\\data
\\task\\10042\r\n
7423 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.task.id, value=10042\r\n
7425 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.task.name, value=Execute Remote
Command_20151026112116\r\n
7427 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.task.submitter, value=System\r\n
7429 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.task.tags, value=Execute Script,Linux,Windows\r\n
7431 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=reserved.task.url, value=http://WIN-FC6MCPD47CQ:22015/
Automation/launcher/TaskDetails?task_id=10042\r\n
7433 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=account, value=\r\n
7435 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=commandLine, value=a\r\n
7437 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=commandLineParameter, value=\r\n
7439 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=credentialType, value=destination\r\n
7441 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=destinationHost, value=a\r\n
7443 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=elevatePrivileges, value=false\r\n
7445 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=keyboardInteractiveAuthentication, value=\r\n
7447 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=password, value=********\r\n
7449 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=publicKeyAuthentication, value=\r\n
7451 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=stdoutPattern1, value=((?s).*)\r\n
7453 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=stdoutPattern2, value=\r\n
7455 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=stdoutPattern3, value=\r\n
7457 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08004-
I property=suPassword, value=********\r\n
7459 2015/10/26 11:22:10.668 Automation 74170687 36EBDFE4 KNAE08009-
I No standard output exists.\r\n
7461 2015/10/26 11:22:10.746 Automation 74170687 36EBDFE4 KNAE08014-E
ER Cannot resolve the specified host name (error details: a [errno=11004,
syscall=getaddrinfo]). The specified host name could not be resolved. Check your
network and DNS configuration, and then re-execute the service.\r\n
7463 2015/10/26 11:22:10.746 Automation 74170687 36EBDFE4 KNAE08016-E
ER An error occurred while executing the plug-in (task name: Execute Remote
Command_20151026112116, task ID: 10042, step ID: /remoteHostCommandExe, execution

2. APIs

JP1/Automatic Operation Command and API Reference 251

ID: @A111, plug-in return code: 77). The possible causes are as follows\r\n
(1) An error occurred during plug-in execution.\r\n
(2) An operation was performed to forcibly stop the task.\r\n
(3) An operation was performed to stop the product.\r\n
In the dialog box or in Server[n].log, refer to the error message that was output
before and after the error occurred, and take the appropriate action. If there is no
evidence of an operation to forcibly stop a task or to stop the product, and if no
error message was output before or after the error occurred, use the data collection
tool to collect the necessary information, and then contact your system
administrator.\r\n
",
 "totalSize" : 13065,
 "readSize" : 13065,
 "lineCount" : 88,
 "offset" : 0,
 "reverse" : false
 }],
 "count" : 1
}

2. APIs

JP1/Automatic Operation Command and API Reference 252

2.8 List of history-related API functions

2.8.1 Acquisition of a list of history records

Function
Acquires a list of history records.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/TaskHistories

This API function acquires a list of all history records for which the user who executed the API function has permissions.
By specifying query parameters, you can filter the history records for which you want to acquire the list. Specify query
parameters in the following format:

?query-parameter=value[&query-parameter=value...]

Table 2-72: List of query parameters that can be specified for the API function Acquisition of a list
of history records

Query parameter Filter condition

start Whether startTime is equal to or later than the specified value

end Whether completionTime is equal to or earlier than the specified value

serviceGroupID Equal to the specified value

tags Whether all values are contained. You can specify multiple values by separating
them with a comma (,).

q For the following schema, a full-text search is performed to determine whether the
specified value is contained:
• name
• submitter
• serviceName
• tags
• description
• notes

If you specify multiple values by separating them with a half-width space character,
a full-text search is performed to determine whether all of the specified values are
contained. This query parameter is not case sensitive.

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

2. APIs

JP1/Automatic Operation Command and API Reference 253

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
Data that matches the conditions specified by query parameters in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-the-resources-for-history-functionality(TaskHistories)" :
value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API function acquires a list of all history records.

Request header:

GET /Automation/v1/objects/TaskHistories HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Fri, 31 Jul 2015 06:22:25 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
24f87c98d12f4f434cf398edcbe582939cee4d6_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 4006,
 "name" : "Execute Remote Command_20150731105831",

2. APIs

JP1/Automatic Operation Command and API Reference 254

 "submitter" : "System",
 "serviceName" : "Execute Remote Command",
 "tags" : "Windows,Linux,Execute Script",
 "scheduleType" : "schedule",
 "scheduledStartTime" : "2015-07-31T11:30:00.000+09:00",
 "startTime" : "2015-07-31T11:30:00.000+09:00",
 "completionTime" : "2015-07-31T11:30:33.000+09:00",
 "archiveTime" : "2015-07-31T15:22:21.000+09:00",
 "taskID" : 3042,
 "submitTime" : "2015-07-31T11:00:06.000+09:00",
 "status" : "completed",
 "description" : "",
 "serviceState" : "release",
 "toDo" : true,
 "notes" : "Notes Test",
 "serviceGroupName" : "DefaultServiceGroup",
 "serviceGroupID" : 3
 }],
 "count" : 1
}

Related topics
• 2.2.14 Members of resources

2.8.2 Deletion of history records (with conditions specified)

Function
Deletes history records according to the conditions specified by query parameters.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

DELETE http://host:port/Automation/version/objects/TaskHistories

By specifying query parameters, you can filter the history records to be deleted. Specify query parameters in the
following format:

?query-parameter=value[&query-parameter=value...]

Table 2-73: List of query parameters that can be specified for the API function Deletion of history
records (with conditions specified)

Query parameter Filter condition

start Whether startTime is equal to or later than the specified value

2. APIs

JP1/Automatic Operation Command and API Reference 255

Query parameter Filter condition

end Whether completionTime is equal to or earlier than the specified value

serviceGroupID Equal to the specified value

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

204 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to delete history records.

412 Precondition failed The server is not running.

500 Server-side error A server processing error occurred.

Usage example
In the following example, the API function deletes the history records for which serviceGroupID is 1451 and the period
is between July 31 and August 31 in 2015.

Request header:

DELETE /Automation/v1/objects/TaskHistories?
serviceGroupID=1451&start=2015-07-31T11:30:00.000+09:00&end=2015-08-31T11:30:00.000+0
9:00 HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 204 No Content
Date: Fri, 07 Aug 2015 11:17:40 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
e949c7e079a0bc9a137cd1bf3515c72685a506a_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Content-Length: 0
Content-Type: application/json

Related topics
• 2.2.14 Members of resources

2. APIs

JP1/Automatic Operation Command and API Reference 256

2.8.3 Acquisition of a history record

Function
Acquires the history record that has the specified ID.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/TaskHistories/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not
exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "name" : "task-name",
 "submitter" : "submit-user-name",
 "serviceName" : "service-name",
 "tags" : "tags",
 "scheduleType" : "type-of-schedule",
 "scheduledStartTime" : "schedule-start-date-and-time",
 "startTime" : "start-date-and-time",
 "completionTime" : "completion-date-and-time",
 "stepStartTime" : "step-start-time",
 "recurrenceInterval" : "interval-type",
 "recurrenceDayOfWeek" : "interval-of-weekly-job",
 "recurrenceDayOfMonth" : "interval-of-monthly-job",
 "recurrenceLastDayOfMonth" : {true|false},
 "recurrenceTime" : "exec-time-of-day",
 "archiveTime" : "removed-date-and-time",
 "taskID" : task-id,
 "submitTime" : "submit-date-and-time",
 "recurrenceStartDate" : "recurrence-start-date-and-time",

2. APIs

JP1/Automatic Operation Command and API Reference 257

 "status" : "task-status",
 "description" : "description",
 "serviceState" : "service-state",
 "toDo" : {true|false},
 "notes" : "notes",
 "serviceGroupName" : "service-group-name",
 "serviceGroupID" : service-group-id
}

Usage example
In the following example, the API function acquires the history record whose instanceID is 4006.

Request header:

GET /Automation/v1/objects/TaskHistories/4006 HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Fri, 31 Jul 2015 06:24:06 GMT
Server Cosminexus HTTP Server is not blacklisted
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
2615a636c3da92888fe355da9ca7d223e6e214_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 4006,
 "name" : "Execute Remote Command_20150731105831",
 "submitter" : "System",
 "serviceName" : "Execute Remote Command",
 "tags" : "Windows,Linux,Execute Script",
 "scheduleType" : "schedule",
 "scheduledStartTime" : "2015-07-31T11:30:00.000+09:00",
 "startTime" : "2015-07-31T11:30:00.000+09:00",
 "completionTime" : "2015-07-31T11:30:33.000+09:00",
 "archiveTime" : "2015-07-31T15:22:21.000+09:00",
 "taskID" : 3042,
 "submitTime" : "2015-07-31T11:00:06.000+09:00",
 "status" : "completed",
 "description" : "",
 "serviceState" : "release",
 "toDo" : true,
 "notes" : "Notes Test",
 "serviceGroupName" : "DefaultServiceGroup",
 "serviceGroupID" : 3
}

2. APIs

JP1/Automatic Operation Command and API Reference 258

Related topics
• 2.2.14 Members of resources

2.8.4 Deletion of history records (with an ID specified)

Function
Deletes the history record by specifying a task ID.

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

DELETE http://host:port/Automation/version/objects/TaskHistories/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

204 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have permission to delete history records.

412 Precondition failed The server is not running.

500 Server-side error A server processing error occurred.

Usage example
In the following example, the API function deletes the history record for the task whose instanceID is 5237.

Request header:

DELETE /Automation/v1/objects/TaskHistories/5237 HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 204 No Content
Date: Fri, 07 Aug 2015 11:14:12 GMT
Server: Cosminexus HTTP Server

2. APIs

JP1/Automatic Operation Command and API Reference 259

Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
3b6cddc1eaffe8cd8c2bbcc88ce991e8419472cc_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Content-Length: 0
Content-Type: application/json

Related topics
• 2.2.14 Members of resources

2.8.5 Acquisition of a list of operations for a history record

Function
Acquires a list of operations that can be executed for the history record that has the specified ID.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/TaskHistories/id/actions

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not
exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{

2. APIs

JP1/Automatic Operation Command and API Reference 260

 "name" : "delete",
 "href" : "http://host:port/Automation/version/objects/TaskHistories/id",
 "method" : "DELETE",
 "parameters" : []
 }],
 "count" : 1
}

Usage example
In the following example, the API function acquires a list of operations that can be performed for the history record
whose instanceID is 5237.

Request header:

GET /Automation/v1/objects/TaskHistories/5237/actions HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 11:12:20 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
a754baf585ff2447abf34a09fb93ea3b953cfe_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "name" : "delete",
 "href" : "http://192.168.146.132:22015/Automation/v1/objects/TaskHistories/5237",
 "method" : "DELETE",
 "parameters" : []
 }],
 "count" : 1
}

Related topics
• 2.2.14 Members of resources

2. APIs

JP1/Automatic Operation Command and API Reference 261

2.9 Property-related APIs

This section describes the operations for managing property definitions or property values.

2.9.1 Acquisition of a list of property definitions

Function
Acquires a list of property definitions. The API function targets service properties for which the input/output type is in
or out, or service share properties.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/PropertyDefinitions

This API acquires a list of property definitions for all services and tasks for which the user who executed the API has
permissions. By specifying query parameters, you can filter the property definitions for which you want to acquire the
list. Specify query parameters in the following format:

?query-parameter=value[&query-parameter=value...]

Table 2-74: List of query parameters that can be specified for API Acquisition of a list of property
definitions

Query parameter Filter condition

serviceID Equal to the specified value

taskID

serviceTemplateID

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Example
The following example specifies 16731 for serviceID and 512 for taskID as query parameters.

?serviceID=16731&taskID=512

Status code
The following table describes the various status codes that can be returned as the response to a request.

2. APIs

JP1/Automatic Operation Command and API Reference 262

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
Data that matches the conditions specified by query parameters in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-the-resources-for-property-definition-
functionality(PropertyDefinitions)" : value ... }, ...],
 "count" : number-of-data-items-that-matches-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API acquires a list of property definitions for all services and tasks.

Request header:

GET /Automation/v1/objects/PropertyDefinitions HTTP/1.1
Host:192.168.146.132:22015
User-Agent:sample rest client/1.00.0
Accept:application/json
Accept-Language: en
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Mon, 26 Oct 2015 02:47:46 GMT
Server: Cosminexus HTTP Server
Cache-Control: no-cache
WWW-Authenticate: HSSO
552c3db4cc540ed80ae43b191bde72ec914673_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 9002,
 "keyName" : "common.targetHost",
 "displayName" : "Host name of execution target server",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",

2. APIs

JP1/Automatic Operation Command and API Reference 263

 "description" : "Specifies the host name or IP address of the execution target
server. IPv6 addresses are not supported.",
 "mode" : "in",
 "required" : true,
 "maxLength" : 255,
 "minLength" : 1,
 "pattern" : "^[0-9a-zA-Z\\.\\-]*$",
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 9033
 }, {
 "instanceID" : 9097,
 "keyName" : "common.targetHost",
 "displayName" : "Host name of execution target server",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Specifies the host name or IP address of the execution target
server. IPv6 addresses are not supported.",
 "mode" : "in",
 "required" : true,
 "maxLength" : 255,
 "minLength" : 1,
 "pattern" : "^[0-9a-zA-Z\\.\\-]*$",
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 9095
 }, {
 "instanceID" : 5513,
 "keyName" : "service.errorMessage",
 "displayName" : "Summary Message",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Stores a summary message of the task execution results.",
 "mode" : "out",
 "required" : false,
 "propertyGroupName" : "System_Properties",
 "validationScript" : "",
 "readOnly" : true,
 "hidden" : true,
 "reference" : false,
 "serviceTemplateID" : 5485
 }, {
 "instanceID" : 5715,
 "keyName" : "service.errorMessage",
 "displayName" : "Error message",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Set the error message displayed in the Task Details window in
the Messages area.",
 "mode" : "out",
 "required" : false,
 "propertyGroupName" : "reserved.defaultGroup",

2. APIs

JP1/Automatic Operation Command and API Reference 264

 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 5658
 }, {
 "instanceID" : 6087,
 "keyName" : "service.errorMessage",
 "displayName" : "Error message",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Set the error message displayed in the Task Details window in
the Messages area.",
 "mode" : "out",
 "required" : false,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 6096
 }, {
 "instanceID" : 6183,
 "keyName" : "service.errorMessage",
 "displayName" : "Error message",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Set the error message displayed in the Task Details window in
the Messages area.",
 "mode" : "out",
 "required" : false,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 6178
 }, {
 "instanceID" : 9306,
 "keyName" : "service.errorMessage",
 "displayName" : "service.errorMessage",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "",
 "mode" : "out",
 "required" : false,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 9303
 }, {
 "instanceID" : 5594,
 "keyName" : "/FP_GenericApplication/service.errorMessage",
 "displayName" : "Summary Message",
 "defaultValue" : "",
 "type" : "string",

2. APIs

JP1/Automatic Operation Command and API Reference 265

 "visibility" : "exec",
 "scope" : "local",
 "description" : "Stores a summary message of the task execution results.",
 "mode" : "out",
 "required" : false,
 "propertyGroupName" : "/FP_GenericApplication/System_Properties",
 "validationScript" : "",
 "readOnly" : true,
 "hidden" : true,
 "reference" : false,
 "serviceTemplateID" : 5658
 }, {
 "instanceID" : 6177,
 "keyName" : "/localeTest/plugin.destinationHost",
 "displayName" : "display name:Destination host",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "config",
 "scope" : "local",
 "description" : "For this property, specify the IPv4 address, IPv6 address, or
host name of the target host. You must specify a host that is part of a network
configuration in which the server and the target host are able to communicate
directly.",
 "mode" : "in",
 "required" : true,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 6178
 }, {
 "instanceID" : 9029,
 "keyName" : "common.remoteCommand",
 "displayName" : "Command",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Specify the full path of the command to be executed on the
execution target server. If the path contains a space, enclose the entire path in
double quotation marks.",
 "mode" : "in",
 "required" : true,
 "maxLength" : 256,
 "minLength" : 1,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 9033
 }, {
 "instanceID" : 9136,
 "keyName" : "common.remoteCommand",
 "displayName" : "Command",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Specify the full path of the command to be executed on the
execution target server. If the path contains a space, enclose the entire path in
double quotation marks.",
 "mode" : "in",

2. APIs

JP1/Automatic Operation Command and API Reference 266

 "required" : true,
 "maxLength" : 256,
 "minLength" : 1,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 9095
 }, {
 "instanceID" : 5515,
 "keyName" : "fileProvisioning.nfsSetting.nfsEnable",
 "displayName" : "Enable NFS Provisioning",
 "defaultValue" : "true",
 "type" : "boolean",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Enable NFS",
 "mode" : "in",
 "required" : false,
 "propertyGroupName" : "NFS_Settings",
 "validationScript" : "",
 "readOnly" : true,
 "hidden" : true,
 "reference" : false,
 "serviceTemplateID" : 5485
 }, {
 "instanceID" : 10,
 "keyName" : "com.hitachi.software.dna.sys.mail.notify",
 "displayName" : "Email notification",
 "defaultValue" : "false",
 "type" : "boolean",
 "visibility" : "config",
 "scope" : "share",
 "description" : "Enables or disables the email notification functionality.
(Built-in shared service property)",
 "mode" : "in",
 "required" : true,
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 9024,
 "keyName" : "common.remoteCommandParameter",
 "displayName" : "Command parameters",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Specify the parameters for the command to be executed on the
execution target server. If a parameter contains a space, enclose the entire
parameter in double quotation marks.",
 "mode" : "in",
 "required" : false,
 "maxLength" : 1024,
 "minLength" : 1,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 9033
 }, {
 "instanceID" : 9137,
 "keyName" : "common.remoteCommandParameter",

2. APIs

JP1/Automatic Operation Command and API Reference 267

 "displayName" : "Command parameters",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Specify the parameters for the command to be executed on the
execution target server. If a parameter contains a space, enclose the entire
parameter in double quotation marks.",
 "mode" : "in",
 "required" : false,
 "maxLength" : 1024,
 "minLength" : 1,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 9095
 }, {
 "instanceID" : 5690,
 "keyName" : "/FP_GenericApplication/fileProvisioning.nfsSetting.nfsEnable",
 "displayName" : "Enable NFS Provisioning",
 "defaultValue" : "true",
 "type" : "boolean",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Enable NFS",
 "mode" : "in",
 "required" : false,
 "propertyGroupName" : "/FP_GenericApplication/NFS_Settings",
 "validationScript" : "",
 "readOnly" : true,
 "hidden" : true,
 "reference" : false,
 "serviceTemplateID" : 5658
 }, {
 "instanceID" : 5402,
 "keyName" : "fileProvisioning.nfsSetting.nfsPathOption",
 "displayName" : "Path Options",
 "defaultValue" : "true",
 "type" : "boolean",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "",
 "mode" : "in",
 "required" : false,
 "propertyGroupName" : "NFS_Settings",
 "validationScript" : "",
 "readOnly" : true,
 "hidden" : true,
 "reference" : false,
 "serviceTemplateID" : 5485
 }, {
 "instanceID" : 5,
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.server",
 "displayName" : "SMTP server address",
 "defaultValue" : "",
 "type" : "string",
 "visibility" : "config",
 "scope" : "share",
 "description" : "Specifies the SMTP server address. The address can be specified
as an IPv4 or IPv6 address, or as a host name. Only one of the above can be
specified. Multiple addresses cannot be specified by separating them with commas.
(Built-in shared service property)",

2. APIs

JP1/Automatic Operation Command and API Reference 268

 "mode" : "in",
 "required" : false,
 "maxLength" : 255,
 "minLength" : 0,
 "readOnly" : false,
 "hidden" : false
 }],
 "count" : 18
}

Related topics
• 2.2.14 Members of resources

2.9.2 Acquisition of property definition information

Function
Acquires information about the specified property definition.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/PropertyDefinitions/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The requested resource or operation does not exist, or the user does not have
read permission for the resource.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,

2. APIs

JP1/Automatic Operation Command and API Reference 269

 "keyName" : "key-name",
 "displayName" : "display-name",
 "defaultValue" : "default-value",
 "type" : "type",
 "visibility" : "visibility",
 "scope" : "scope",
 "description" : "description",
 "mode" : "mode",
 "required" : {true|false},
 "maxLength" : max-length,
 "minLength" : min-length,
 "minValue" : min-value,
 "maxValue" : max-value,
 "pattern" : "pattern",
 "valueList" : "value-list",
 "propertyGroupName" : "property-group-name",
 "validationScript" : "validation-script",
 "readOnly" : {true|false},
 "hidden" : {true|false},
 "reference" : {true|false},
 "serviceTemplateID" : service-template-id,
}

Usage example
In the following example, the API acquires information about the property definition whose instanceID is 158.

Request header:

GET /Automation/v1/objects/PropertyDefinitions/158 HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:37:24 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO 3096d91c11fd92d841b3513ed988ba758237cd1_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 158,
 "keyName" : "remoteHost",
 "displayName" : "Remote Host",
 "defaultValue" : "",
 "description" : "Specify the IP address or host name of the remote host. The
remote host must be in a network environment that can communicate with the server.
You cannot specify more than one remotehost.",
 "mode" : "in",
 "required" : true,
 "maxLength" : 255,

2. APIs

JP1/Automatic Operation Command and API Reference 270

 "minLength" : 1,
 "pattern" : "^[0-9a-zA-Z\\.\\-]*$",
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 5106
}

2.9.3 Acquisition of a list of operations for a property definition

Function
Acquires a list of operations that can be executed for the specified property definition.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/PropertyDefinitions/id/actions

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The request conflicts with another request, or the request does not match the current status of the object.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{"member-of-the-resources-for-property-definition-
functionality(PropertyDefinitions)" : value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

2. APIs

JP1/Automatic Operation Command and API Reference 271

Usage example
In the following example, the API acquires a list of operations that can be executed for the property definition whose
instanceID is 158.

Request header:

GET /Automation/v1/objects/PropertyDefinitions/158/actions HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:38:20 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO 78d4d9d37740a76bfe7212277228eb2db759bb10_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [],
 "count" : 0
}

2.9.4 Acquisition of lists of property definitions and property values

Function
Acquires lists of property definitions and property values.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/PropertyInformations

When executing the API function, make sure that you specify query parameters to filter property definitions and property
values for which you want to acquire the lists. Specify query parameters in the following format:

2. APIs

JP1/Automatic Operation Command and API Reference 272

?query-parameter=value[&query-parameter=value...]

Table 2-75: Query parameters that can be specified for the API function Acquisition of lists of
property definitions and property values

Query parameter Filter condition

serviceID Equal to the specified value

taskID

scheduleID

shared Targets service share properties.

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{"member-of-the-resources-for--property-definition-and-property-value-
functionality(PropertyInformations)" : value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API function acquires the lists of property definitions and property values for the service
whose serviceID is 2004.

Request header:

GET /Automation/v1/objects/PropertyInformations?serviceID=2004 HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Fri, 31 Jul 2015 06:27:14 GMT

2. APIs

JP1/Automatic Operation Command and API Reference 273

Server Cosminexus HTTP Server is not blacklisted
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
94728cefd3f4c996534144711565199189dd8_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 2010,
 "keyName" : "common.targetHost",
 "displayName" : "Host name of execution target server",
 "defaultValue" : "",
 "value" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Specifies the host name or IP address of the execution target
server. IPv6 addresses are not supported.",
 "mode" : "in",
 "required" : true,
 "maxLength" : 255,
 "minLength" : 1,
 "pattern" : "^[0-9a-zA-Z\\.\\-]*$",
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 560,
 "serviceID" : 2004
 }, {
 "instanceID" : 2013,
 "keyName" : "common.remoteCommand",
 "displayName" : "Command",
 "defaultValue" : "",
 "value" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Specify the full path of the command to be executed on the
execution target server. If the path contains a space, enclose the entire path in
double quotation marks.",
 "mode" : "in",
 "required" : true,
 "maxLength" : 256,
 "minLength" : 1,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 560,
 "serviceID" : 2004
 }, {
 "instanceID" : 2017,

2. APIs

JP1/Automatic Operation Command and API Reference 274

 "keyName" : "common.remoteCommandParameter",
 "displayName" : "Command parameters",
 "defaultValue" : "",
 "value" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "Specify the parameters for the command to be executed on the
execution target server. If a parameter contains a space, enclose the entire
parameter in double quotation marks.",
 "mode" : "in",
 "required" : false,
 "maxLength" : 1024,
 "minLength" : 1,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 560,
 "serviceID" : 2004
 }, {
 "instanceID" : 2016,
 "keyName" : "common.stdoutProperty",
 "displayName" : "Standard output string",
 "defaultValue" : "",
 "value" : "",
 "type" : "string",
 "visibility" : "exec",
 "scope" : "local",
 "description" : "This property contains the character string output to standard
output by the specified command. ",
 "mode" : "out",
 "required" : false,
 "propertyGroupName" : "reserved.defaultGroup",
 "validationScript" : "",
 "readOnly" : false,
 "hidden" : false,
 "reference" : false,
 "serviceTemplateID" : 560,
 "serviceID" : 2004
 }],
 "count" : 4
}

Related topics
• 2.2.14 Members of resources

2.9.5 Acquisition of a list of property values

Function
Acquires a list of the following values:

• Service share properties

• Properties related to a specific service

2. APIs

JP1/Automatic Operation Command and API Reference 275

• Properties related to a specific schedule

• Properties related to a specific task

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/PropertyValues

This API acquires a list of property values for all services, schedules, and tasks, for which the user who executed the
API has permissions. By specifying query parameters, you can filter the property values for which you want to acquire
the list. Specify query parameters in the following format:

?query-parameter=value[&query-parameter=value...]

Table 2-76: Query parameters that can be set for API Acquisition of a list of property values

Query parameter Filter condition

serviceID Equal to the specified value

scheduleID

taskID

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Example
The following example specifies 16731 for serviceID and 512 for taskID as query parameters.

?serviceID=16731&taskID=512

If you want to acquire the property value for a service, schedule, or task, you need to specify a query parameter for the
corresponding serviceID, scheduleID, or taskID. If no query parameter is specified, only service share properties are
returned as the response.

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

2. APIs

JP1/Automatic Operation Command and API Reference 276

Response schema
Data that matches the conditions specified by query parameters in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-the-resources-for-property-value-management-
functionality(PropertyValues)" : value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API acquires a list of property values for all services, schedules, and tasks.

Request header:

GET /Automation/v1/objects/PropertyValues HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:40:06 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO 56ca4c95167e4ce4aeb51fa73a85b2923d65e28e_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 25,
 "type" : "boolean",
 "keyName" : "com.hitachi.software.dna.sys.mail.notify",
 "value" : "false",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 24,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.server",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 18,
 "type" : "integer",
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.port",
 "value" : "25",
 "readOnly" : false,

2. APIs

JP1/Automatic Operation Command and API Reference 277

 "hidden" : false
 }, {
 "instanceID" : 5,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.userid",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 14,
 "type" : "password",
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.password",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 9,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.from",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 20,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.to",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 28,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.cc",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 21,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.bcc",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }],
 "count" : 9
}

Related topics
• 2.2.14 Members of resources

2.9.6 Batch update of property values

Function
Updates the following property values in a batch:

• Property values related to specific tasks

• Property values related to specific services

2. APIs

JP1/Automatic Operation Command and API Reference 278

• Service share property values

• Property values for multiple services

Execution permissions
Admin role, Develop role, Modify role

API version
v1

Request format

PUT http://host:port/Automation/version/objects/PropertyValues

The following shows the structure of the request body.

{
 "pagination" : { },
 "data" : [...],
 "count" : X#
}

#
X is replaced with a number.

The following table describes the object that can be specified as data (member) in the schema of a request.

Table 2-77: Object that can be specified as data (member)

Function Resource name Number Description

Property value PropertyValue 1 PropertyValue resource to be updated

The following table describes the properties that must be specified for this object.

Resource name Member name Number

PropertyValue instanceID 0 to n

value

readOnly

hidden

If you do not specify query parameters, service share properties are updated in a batch.

By specifying the serviceID query parameter, you can filter the property values to be updated in a batch. The attributes
readOnly and hidden can be updated when you specify query parameters. Specify query parameters in the following
format:

?query-parameter=value[&query-parameter=value...]

2. APIs

JP1/Automatic Operation Command and API Reference 279

Table 2-78: Query parameter that can be set for the API function Batch update of property values

Query parameter Filter condition

serviceID Equal to the specified value

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request The property value is invalid, or the resource cannot be edited.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have update permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{"member-of-the-resources-for-property-value-
functionality(PropertyValues)" : value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API function updates service share properties in a batch.

Request header:

PUT /Automation/v1/objects/PropertyValues HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:40:16 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
1aa95d66e62d885b5583da3620bd166fd3a3_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *

2. APIs

JP1/Automatic Operation Command and API Reference 280

Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 25,
 "type" : "boolean",
 "keyName" : "com.hitachi.software.dna.sys.mail.notify",
 "value" : "false",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 24,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.server",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 18,
 "type" : "integer",
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.port",
 "value" : "25",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 5,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.userid",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 14,
 "type" : "password",
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.password",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 9,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.from",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 20,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.to",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }, {
 "instanceID" : 28,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.cc",
 "value" : "",
 "readOnly" : false,
 "hidden" : false

2. APIs

JP1/Automatic Operation Command and API Reference 281

 }, {
 "instanceID" : 21,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.bcc",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
 }],
 "count" : 9
}

2.9.7 Acquisition of a property value

Function
Acquires information about the specified property value.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/PropertyValues/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The requested resource or operation does not exist, or the user does not have read permission for the
resource.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "type" : "type",
 "keyName" : "key-name",
 "value" : "value",
 "readOnly" : {true|false},

2. APIs

JP1/Automatic Operation Command and API Reference 282

 "hidden" : {true|false},
 "serviceID" : service-id,
 "scheduleID" : schedule-id,
 "taskID" : task-id
}

Usage example
In the following example, the API acquires information about the property value whose instanceID is 7.

Request header:

GET /Automation/v1/objects/PropertyValues/7 HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:40:54 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
c9f651825563b97bf5d72fea6b1b1cde07a3f41_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 7,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.cc",
 "value" : "",
 "readOnly" : false,
 "hidden" : false
}

2.9.8 Update of a property value

Function
Updates the property value that has the specified ID.

Execution permissions
Admin role, Develop role, Modify role

2. APIs

JP1/Automatic Operation Command and API Reference 283

API version
v1

Request format

PUT http://host:port/Automation/version/objects/PropertyValues/id

The request schema has the same format as the response body for the API function Acquisition of a property value. The
following table describes the object that can be specified as PropertyValue (member).

Table 2-79: Object that can be specified as PropertyValue (member)

Function Resource name Number Description

Property value PropertyValue 1 PropertyValue resource that has the specified ID

The following table describes the property that must be specified for this object.

Resource name Member name Number

PropertyValue value 1

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request The property value is invalid, or the resource cannot be
edited.

401 Unauthorized The user does not have login permission.

403 Forbidden The user does not have update permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "type" : "type",
 "keyName" : "key-name",
 "value" : "value",
 "readOnly" : {true|false},
 "hidden" : {true|false},
 "serviceID" : service-id,
 "scheduleID" : schedule-id,
 "taskID" : task-id
}

2. APIs

JP1/Automatic Operation Command and API Reference 284

Usage example
In the following example, the API function updates the value of the property whose instanceID is 24.

Request header:

PUT /Automation/v1/objects/PropertyValues/24 HTTP/1.1
Host: 10.196.184.238:22015
User-Agent: useragent1
Accept:application/json
Content-Type: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:40:59 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
d37375c943b0fcff62645a210ed9a96d116e153_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "instanceID" : 24,
 "type" : "string",
 "keyName" : "com.hitachi.software.dna.sys.mail.smtp.server",
 "value" : "server",
 "readOnly" : false,
 "hidden" : false
}

2.9.9 Acquisition of a list of operations for a property value

Function
Acquires a list of operations that can be executed for the specified property value.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 285

Request format

GET http://host:port/Automation/version/objects/PropertyValues/id/actions

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{"member-of-the-resources-for-property-value-
functionality(PropertyValues)" : value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API acquires a list of operations that can be executed for the property value whose
instanceID is 9.

Request header:

GET /Automation/v1/objects/PropertyValues/9/actions HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 14 Jul 2014 12:41:31 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
1aa95d66e62d885b5583da3620bd166fd3a3_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

2. APIs

JP1/Automatic Operation Command and API Reference 286

Response body:

{
 "data" : [{
 "name" : "update",
 "href" : "http://10.196.184.238:22015/Automation/v1/objects/PropertyValues/9",
 "method" : "PUT",
 "parameters" : []
 }],
 "count" : 1
}

2.9.10 Acquisition of a list of property groups

Function
Acquires a list of property groups that the properties retained by a service belong to.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/PropertyGroups

When you execute the API function, make sure that you specify a query parameter to filter property groups for which
you want to acquire the list. You cannot specify multiple query parameters. Specify a query parameter in the following
format:

?query-parameter=value

Table 2-80: List of query parameters that can be specified for the API function Acquisition of a list
of property groups

Query parameter Filter condition

serviceTemplateID Equal to the specified value

serviceID

scheduleID

taskID

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Status code
The following table describes the various status codes that can be returned as the response to a request.

2. APIs

JP1/Automatic Operation Command and API Reference 287

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
Data that matches the conditions specified by a query parameter in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-the-resources-for-property-group-
functionality(PropertyGroups)" : value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-the-query-
parameter(0-to-n)
}

Usage example
In the following example, the API function acquires a list of property groups that the properties retained by the service
whose serviceID is 3134 belong to.

Request header:

GET /Automation/v1/objects/PropertyGroups?serviceID=3134 HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Mon, 03 Aug 2015 04:06:07 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
b3e9a4ed913c5b5bc941f48bfb1333ced0f1fff6_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "keyName" : "reserved.defaultGroup",
 "displayName" : "reserved.defaultGroup",
 "description" : "",
 "ordinal" : 0,
 "validationScript" : "",

2. APIs

JP1/Automatic Operation Command and API Reference 288

 "display" : "config,submit,taskDetail"
 }],
 "count" : 1
}

Related topics
• 2.2.14 Members of resources

2. APIs

JP1/Automatic Operation Command and API Reference 289

2.10 Service group-related API functions

2.10.1 Acquisition of a list of service groups

Function
Acquires a list of service groups.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/ServiceGroups

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

400 Bad Request A query parameter is invalid.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
Data that matches the conditions specified by query parameters in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-the-resources-for-service-group-
functionality(ServiceGroups)" : value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API function acquires a list of service groups.

Request header:

2. APIs

JP1/Automatic Operation Command and API Reference 290

GET /Automation/v1/objects/ServiceGroups HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 07:09:41 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
75f7726f932537efbc38f15ea81c31a8797bab1e_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 3,
 "objectID" : "Automation_RG_DEFAULT",
 "name" : "DefaultServiceGroup",
 "description" : "default service group"
 }, {
 "instanceID" : 2,
 "objectID" : "Automation_RG_ALL",
 "name" : "All Service Groups",
 "description" : "default service groups which contains all services"
 }],
 "count" : 2
}

Related topics
• 2.2.14 Members of resources

2.10.2 Acquisition of information about a service group

Function
Acquires information about the specified service group.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

2. APIs

JP1/Automatic Operation Command and API Reference 291

Request format

GET http://host:port/Automation/version/objects/ServiceGroups/id

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "instanceID" : instance-id,
 "objectID" : "object-id"
 "name" : "name",
 "description" : "description"
}

Usage example
In the following example, the API function acquires information about the service group whose instanceID is 3.

Request header:

GET /Automation/v1/objects/ServiceGroups/3 HTTP/1.1
Host: 192.168.146.132:22015
User-Agent: curl/7.36.0
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 07:11:12 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
1f2d33f62adb5df5ca712acb2a0a430cb986e_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

2. APIs

JP1/Automatic Operation Command and API Reference 292

{
 "instanceID" : 3,
 "objectID" : "Automation_RG_DEFAULT",
 "name" : "DefaultServiceGroup",
 "description" : "default service group"
}

Related topics
• 2.2.14 Members of resources

2.10.3 Acquisition of a list of operations for a service group

Function
Acquires a list of operations that can be executed for the specified service group.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/ServiceGroups/id/actions

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

404 Not found The permission is invalid, or the resource does not
exist.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [],
 "count" : 0
}

2. APIs

JP1/Automatic Operation Command and API Reference 293

Usage example
In the following example, the API function acquires a list of operations that can be performed for the service group
whose instanceID is 5186.

Request header:

GET /Automation/v1/objects/ServiceGroups/5186/actions HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
Host: 192.168.146.132:22015
Accept: application/json
User-Agent: curl/7.36.0

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 07:16:43 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
d5802c6c6df5bf91a24f7f372be1af96a241eae_Vlo8Y30JBWoKHUYTEXAMXx5iHgQ=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [],
 "count" : 0
}

Related topics
• 2.2.14 Members of resources

2. APIs

JP1/Automatic Operation Command and API Reference 294

2.11 Tag-related API functions

2.11.1 Acquisition of a list of tag groups

Function
Acquires a list of tag groups. In addition, this API function acquires a list of tags that belong to each tag group.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/objects/TagGroups

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
The following shows the structure of the response body for a request.

{
 "data" : [{"member-of-the-resources-for-tag-group-functionality(TagGroups)" :
value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-
parameters(0-to-n)
}

Usage example
In the following example, the API function acquires a list of tag groups.

Request header:

GET /Automation/v1/objects/TagGroups HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=

2. APIs

JP1/Automatic Operation Command and API Reference 295

User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 03:37:17 GMT
Server Cosminexus HTTP Server is not blacklisted
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
d72a9887e1aef533d4763b1adf0a391d6cfa6cb_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 34,
 "name" : "Applications",
 "tags" : "SQL Server,XenDesktop,Oracle Database,Cluster,Exchange"
 }, {
 "instanceID" : 42,
 "name" : "Hypervisors",
 "tags" : "VMware vSphere,Hyper-V"
 }, {
 "instanceID" : 45,
 "name" : "Storage Services",
 "tags" : "Replicate Storage,Add Like Storage,Snapshot,Add New Storage"
 }, {
 "instanceID" : 54,
 "name" : "Uncategorized",
 "tags" : "Basic,Hitachi,Windows,Linux"
 }],
 "count" : 4
}

Related topics
• 2.2.14 Members of resources

2.11.2 Acquisition of a list of tags

Function
Acquires a list of tags that are set for the specified resource.

Execution permissions
Admin role, Develop role, Modify role, Submit role

2. APIs

JP1/Automatic Operation Command and API Reference 296

API version
v1

Request format

GET http://host:port/Automation/version/objects/Tags

This API function acquires a list of all tags for which the user who executed the API function has permissions. By
specifying query parameters, you can filter the tags for which you want to acquire the list. Specify query parameters in
the following format:

?query-parameter=value[&query-parameter=value...]

Table 2-81: List of query parameters that can be specified for the API function Acquisition of a list
of tags

Query parameter Filter condition

detail Acquires details of tags.

resourceType#1 ServiceTemplate Equal to the specified value

Service

Task

TaskHistory

#1
If you specify resourceType, query parameters and HQL::filter are valid for the resource specified for resourceType.

For details about other query parameters that can be specified, see 2.2.9 Query parameter.

Status code
The following table describes the various status codes that can be returned as the response to a request.

Status code Message Description

200 OK Processing has been successfully completed.

401 Unauthorized The user does not have login permission.

412 Precondition failed The server is not available.

500 Server-side error A server processing error occurred.

Response schema
Data that matches the conditions specified by query parameters in a request is returned in the response body. The
following shows the schema of the response body.

{
 "data" : [{"member-of-the-resources-for-tag-functionality-(Tags)" :
value ... }, ...],
 "count" : number-of-data-items-that-match-the-conditions-specified-by-query-

2. APIs

JP1/Automatic Operation Command and API Reference 297

parameters(0-to-n)
}

Usage example
In the following example, the API function acquires a list of all tags.

Request header:

GET /Automation/v1/objects/Tags HTTP/1.1
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Fri, 07 Aug 2015 03:38:52 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
d2729dff1c31a47ed713d92612eec93fe7919c8_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "data" : [{
 "instanceID" : 35,
 "name" : "Replicate Storage",
 "tagGroupID" : 45
 }, {
 "instanceID" : 36,
 "name" : "SQL Server",
 "tagGroupID" : 34
 }, {
 "instanceID" : 37,
 "name" : "Add Like Storage",
 "tagGroupID" : 45
 }, {
 "instanceID" : 38,
 "name" : "Snapshot",
 "tagGroupID" : 45
 }, {
 "instanceID" : 39,
 "name" : "Add New Storage",
 "tagGroupID" : 45
 }, {
 "instanceID" : 40,
 "name" : "VMware vSphere",
 "tagGroupID" : 42
 }, {
 "instanceID" : 41,
 "name" : "XenDesktop",
 "tagGroupID" : 34
 }, {

2. APIs

JP1/Automatic Operation Command and API Reference 298

 "instanceID" : 43,
 "name" : "Hyper-V",
 "tagGroupID" : 42
 }, {
 "instanceID" : 44,
 "name" : "Oracle Database",
 "tagGroupID" : 34
 }, {
 "instanceID" : 46,
 "name" : "Cluster",
 "tagGroupID" : 34
 }, {
 "instanceID" : 47,
 "name" : "Exchange",
 "tagGroupID" : 34
 }, {
 "instanceID" : 51,
 "name" : "Basic",
 "tagGroupID" : 54
 }, {
 "instanceID" : 52,
 "name" : "Hitachi",
 "tagGroupID" : 54
 }, {
 "instanceID" : 552,
 "name" : "Windows",
 "tagGroupID" : 54
 }, {
 "instanceID" : 559,
 "name" : "Linux",
 "tagGroupID" : 54
 }, {
 "instanceID" : 564,
 "name" : "Execute Script",
 "tagGroupID" : 54
 }, {
 "instanceID" : 1004,
 "name" : "Report Volume Information to Replication Manager",
 "tagGroupID" : 54
 }],
 "count" : 17
}

Related topics
• 2.2.14 Members of resources

2. APIs

JP1/Automatic Operation Command and API Reference 299

2.12 API functions for information management

This section describes the operations for acquiring user information, or JP1/AO and API version information.

2.12.1 Acquisition of user information

Function
Acquires information about users that execute API functions.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/user

Status code
For details about the status codes that can be returned as the response to a request, see the relevant topic in 2.2.17 Status
code.

Response schema
The following shows the structure of the response body for a request.

{
 "userName" : "user-name",
 "accessPermission" : [...],
 "fullName" : "full-name",
 "description" : "description",
 "email" : "email",
 "resourceGroup" : [{
 "instanceId" : "instance-id",
 "name" : "resource-group-name",
 "description" : "description",
 "accessPermission" : [...]
 }]
}

Usage example
In the following example, the API acquires information about the execution user.

Request header:

GET /Automation/v1/user HTTP/1.1

2. APIs

JP1/Automatic Operation Command and API Reference 300

Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: curl/7.36.0
Host: 10.196.184.182:22015
Accept: application/json

Response header:

HTTP/1.1 200 OK
Date: Thu, 30 Jul 2015 07:17:47 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO
31fd21f2412025969969b479f296b5be20b267_Vlo8Y30JdDBUB3ljJSVPaRtjBSA=_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-store, no-transform
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "userName" : "System",
 "accessPermission" : ["User Management"],
 "fullName" : "",
 "description" : "Built-in account",
 "email" : "",
 "resourceGroup" : [{
 "instanceID" : "Automation_RG_ALL",
 "name" : "All Service Groups",
 "description" : "default service groups which contains all services",
 "accessPermission" : ["View", "Execute", "Develop", "Modify", "Admin"]
 }]
}

2.12.2 Acquisition of version information

Function
Acquires the JP1/AO and API version.

Execution permissions
Admin role, Develop role, Modify role, Submit role

API version
v1

Request format

GET http://host:port/Automation/version/configuration/version

2. APIs

JP1/Automatic Operation Command and API Reference 301

Status code
For details about the status codes that can be returned as the response to a request, see the relevant topic in 2.2.17 Status
code.

Response schema
The following shows the structure of the response body for a request.

{
 "productName" : "product-name",
 "productVersion" : "product-version",
 "apiVersion" : "api-version"
}

Usage example
In the following example, the API acquires version information.

Request header:

GET /Automation/v1/configuration/version HTTP/1.1
Host: 10.196.184.238:22015
Accept: application/json
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

Response header:

HTTP/1.1 200 OK
Date: Mon, 28 Jul 2014 04:34:59 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO 4e671d509ad3cd624d83afd9da20f55c1c261193_WIN-JLTV0PQLK2A_V0810
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Response body:

{
 "productName" : "JP1/Automatic Operation",
 "productVersion" : "11-00-00",
 "apiVersion" : "01.01.00"
}

2. APIs

JP1/Automatic Operation Command and API Reference 302

2.13 API usage example

The procedure below shows an example of using an API function to execute a service. First, check the instanceID of
the service you want to execute. Then, specify immediate for the schedule type and execute the service.

1. Display a list of resources for service functionality (Services), and check the instanceID of the service you want to
execute.

GET /Automation/v1/objects/Services/ HTTP/1.1
Host:10.197.112.78:22015
User-Agent:sample rest client/1.00.0
Accept:application/json
Accept-Language: ja
Authorization: Basic c3lzdGVtOm1hbmFnZXI=
User-Agent: useragent1

HTTP/1.1 200 OK
Date: Mon, 18 Aug 2014 11:15:01 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO b8712c86fcd026562182a358ea43bb23b09c62_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

{
 "data" : [{
 "instanceID" : 2269, <- Check instanceID.
 "name" : "Execute remote command",
 "description" : "Executes a command on the remote execution target server.",
 "tags" : "OS_Operations,Basic",
 "serviceTemplateName" : "Execute remote command",
 "createTime" : "2014-08-18T16:53:50.000+0900",
 "modifyTime" : "2014-08-18T16:53:58.000+0900",
 "serviceState" : "release",
 "serviceGroupName" : "DefaultServiceGroup",
 "iconURL" : "http://10.197.112.78:22015/Automation/icon/services/
com.hitachi.software.dna.cts.jp1/remoteCommandExe/01.10.00",
 "vendorName" : "Hitachi,Ltd.",
 "version" : "01.10.00",
 "latest" : true,
 "imageURL" : "http://10.197.112.78:22015/Automation/resources/images/overview/
overview.png",
 "serviceTemplateID" : 2204,
 "serviceGroupID" : 2
 }],
 "count" : 1
}

2. Acquire a list of operations that can be performed for the resource that has the instanceID you checked above.

GET /Automation/v1/objects/Services/2269/actions HTTP/1.1
Host:10.197.112.78:22015
User-Agent:sample rest client/1.00.0
Accept:application/json
Accept-Language: ja
Authorization: HSSO b8712c86fcd026562182a358ea43bb23b09c62_V0300

HTTP/1.1 200 OK
Date: Mon, 18 Aug 2014 11:24:41 GMT

2. APIs

JP1/Automatic Operation Command and API Reference 303

Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO b365e6a2cda2b4d195d55fee1461a6ed0889927_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

{
 "data" : [{
 "name" : "submit", <- Check the href information of submit that is used to
execute the service.
 "href" : "http://10.197.112.78:22015/Automation/v1/objects/Services/2269/
actions/submit/invoke",
 "method" : "POST",
 "parameters" : []
 }],
 "count" : 1
}

3. Acquire the request body information that is necessary for the operation to execute the specified service.

GET /Automation/v1/objects/Services/2269/actions/submit HTTP/1.1
Host:10.197.112.78:22015
User-Agent:sample rest client/1.00.0
Accept:application/json
Accept-Language: ja
Authorization: HSSO b8712c86fcd026562182a358ea43bb23b09c62_V0300

HTTP/1.1 200 OK
Date: Mon, 18 Aug 2014 11:26:00 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO 1b9b5891c58315e26cd0cca9aac6d43e572e3db_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

Output the response to the properties.json file.

Contents of properties.json
{
 "name" : "submit",
 "href" : "http://10.197.112.78:22015/Automation/v1/objects/Services/2269/
actions/submit/invoke",
 "method" : "POST",
 "parameters" : [{
 "name" : "Execute remote command_20140818202600",
 "submitter" : "System",
 "scheduleType" : "immediate",
 "description" : "",
 "scheduledStartTime" : "2014-08-18T20:26:00.536+09:00",
 "recurrenceInterval" : "daily",
 "recurrenceDayOfWeek" : "",
 "recurrenceDayOfMonth" : "",
 "recurrenceLastDayOfMonth" : false,
 "recurrenceStartDate" : "2014-08-18",
 "recurrenceTime" : "00:00:00",

2. APIs

JP1/Automatic Operation Command and API Reference 304

 "serviceID" : 2269
 }, {
 "instanceID" : 2275,
 "type" : "string",
 "keyName" : "common.targetHost",
 "value" : "",
 "serviceID" : 2269
 }, {
 "instanceID" : 2271,
 "type" : "string",
 "keyName" : "common.remoteCommand",
 "value" : "",
 "serviceID" : 2269
 }, {
 "instanceID" : 2273,
 "type" : "string",
 "keyName" : "common.remoteCommandParameter",
 "value" : "",
 "serviceID" : 2269
 }]
}

4. Edit the acquired template information as necessary. The following is an example of specifying immediate for
the schedule type.

{
 "name" : "submit",
 "href" : "http://10.197.112.78:22015/Automation/v1/objects/Services/2269/
actions/submit/invoke",
 "method" : "POST",
 "parameters" : [{
 "name" : "Execute remote command_20140818202600",
 "submitter" : "System",
 "scheduleType" : "immediate", <- Specify "immediate".
 "description" : "",
 "scheduledStartTime" : "2014-08-18T20:26:00.536+09:00",
 "recurrenceInterval" : "daily",
 "recurrenceDayOfWeek" : "",
 "recurrenceDayOfMonth" : "",
 "recurrenceLastDayOfMonth" : false,
 "recurrenceStartDate" : "2014-08-18",
 "recurrenceTime" : "00:00:00",
 "serviceID" : 2269
 }, {
 "instanceID" : 2275,
 "type" : "string",
 "keyName" : "common.targetHost",
 "value" : "", <- Change value as necessary.
 "serviceID" : 2269
 }, {
 "instanceID" : 2271,
 "type" : "string",
 "keyName" : "common.remoteCommand",
 "value" : "hostname", <- Change value as necessary.
 "serviceID" : 2269
 }, {
 "instanceID" : 2273,
 "type" : "string",
 "keyName" : "common.remoteCommandParameter",
 "value" : "", <- Change value as necessary.
 "serviceID" : 2269
 }]
}

2. APIs

JP1/Automatic Operation Command and API Reference 305

5. Execute the service by using the edited information.

POST /Automation/v1/objects/Services/2269/actions/submit/invoke HTTP/1.1
Host:10.197.112.78:22015
User-Agent:sample rest client/1.00.0
Accept:application/json
Accept-Language: ja
Content-Type: application/json
Content-Length: 1087
Authorization: HSSO b8712c86fcd026562182a358ea43bb23b09c62_V0300

Request the contents of properties.json.

HTTP/1.1 200 OK
Date: Mon, 18 Aug 2014 11:39:03 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO 8ba382c1f2e81a65d7a252391b262624c6fa61_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

{
 "instanceID" : "4a9141e4-9566-4e42-af08-0f09926f2a5f",
 "created" : "2014-08-18T20:39:04.242+0900",
 "updated" : "2014-08-18T20:39:04.242+0900",
 "completed" : "2014-08-18T20:39:04.242+0900",
 "state" : "success",
 "affectedResource" : ["http://10.197.112.78:22015/Automation/v1/objects/
Schedules/2285" <- URL of the created schedule resource,
 "http://10.197.112.78:22015/Automation/v1/objects/Tasks/2280" <- URL of the
created task resource],
 "result" : []
}

Acquire the Schedule resource created by execution of the service, and check the contents of the resource.

GET /Automation/v1/objects/Schedules/2285 HTTP/1.1
Host:10.197.112.78:22015
User-Agent:sample rest client/1.00.0
Accept:application/json
Accept-Language: ja
Authorization: HSSO b8712c86fcd026562182a358ea43bb23b09c62_V0300

HTTP/1.1 200 OK
Date: Mon, 18 Aug 2014 11:43:00 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO cafcefb87199122267f8ad33772555f9357c8a2_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

{
 "instanceID" : 2285,
 "name" : "Execute remote command_20140818202600",
 "submitter" : "System",
 "scheduleType" : "immediate",

2. APIs

JP1/Automatic Operation Command and API Reference 306

 "createTime" : "2014-08-18T20:39:03.000+0900",
 "modifyTime" : "2014-08-18T20:39:03.000+0900",
 "description" : "",
 "serviceState" : "release",
 "serviceID" : 2269
}

6. Acquire the Task resource created by execution of the service, and check the contents of the resource.

GET /Automation/v1/objects/Tasks/2280 HTTP/1.1
Host:10.197.112.78:22015
User-Agent:sample rest client/1.00.0
Accept:application/json
Accept-Language: ja
Authorization: HSSO b8712c86fcd026562182a358ea43bb23b09c62_V0300

HTTP/1.1 200 OK
Date: Mon, 18 Aug 2014 11:43:59 GMT
Server: Cosminexus HTTP Server
Access-Control-Expose-Headers: WWW-Authenticate
WWW-Authenticate: HSSO 3713abcd1e99d1481c7b92cc9892a95d1a702d6_V0300
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT, HEAD, OPTIONS
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/json

{
 "instanceID" : 2280,
 "name" : "Execute remote command_20140818202600",
 "status" : "failed",
 "startTime" : "2014-08-18T20:39:04.000+0900",
 "completionTime" : "2014-08-18T20:39:13.000+0900",
 "submitter" : "System",
 "submitTime" : "2014-08-18T20:39:03.000+0900",
 "modifyTime" : "2014-08-18T20:39:19.000+0900",
 "serviceState" : "release",
 "scheduleType" : "immediate",
 "description" : "",
 "serviceName" : "Execute remote command",
 "tags" : "",
 "serviceGroupName" : "DefaultServiceGroup",
 "serviceTemplateID" : 2204,
 "scheduleID" : 2285,
 "serviceGroupID" : 2,
 "serviceID" : 2269
}

2. APIs

JP1/Automatic Operation Command and API Reference 307

Appendix

JP1/Automatic Operation Command and API Reference 308

A. Reference Information

This appendix provides reference information about how to use JP1/AO.

A.1 Version changes

(1) Changes in version 11-50
• JP1/AJS3 is no longer included in JP1/AO, and therefore the stopcluster command is no longer required.

Accordingly, descriptions of this requirement were deleted.

• MD5withRSA was deleted from the signature algorithm that can be specified by using thehcmds64ssltool
command with the sigalg option specified.

• The value 5 was deleted from the list of return values for the hcmds64dbtrans command executed with the
export option specified.

(2) Changes in version 11-10
• JP1/AO no longer uses JP1/AJS3 as a task processing engine, and content indicating otherwise was deleted.

• The setupcluster and restoresystem commands no longer use the jp1user option, and content
indicating otherwise was deleted.

• The periodic execution cycle for executing services and tasks can now be specified in hourly units, and a description
of this was added.

• JP1/Base is no longer a prerequisite product for JP1/AO, and descriptions of this requirement were deleted.

• Connection Status and Connected Time were added to the items output for a connection-destination definition
information file.

• Operations that can be performed for tasks can now be specified. Accordingly, Supported Action Type was added
to the items output for a list of services and a list of service templates.

• Supported Action Type was added to the items output for a list of tasks and to the file output examples. The figure
illustrating an output example of a list of tasks was also changed.

• SupportedActionType was added to the members that can be acquired by using the following API functions:
"Acquisition of a list of service templates", "Acquisition of a list of services", and "Acquisition of a list of tasks".

• Supported Action Type was added to the usage examples of the following API functions: "Acquisition of a list of
service templates", "Acquisition of a list of services", and "Acquisition of a list of tasks".

• Supported Action Type was added to the response schema and usage examples of the following API functions:
"Acquisition of information about a service template", "Acquisition of service information", and "Acquisition of
task information".

• Supported Action Type was added to the response schema and usage examples of the following API functions:
"Editing a service" and "Editing a task".

• The periodic execution cycle for executing services and tasks can now be specified in hourly units. Accordingly,
the member recurrenceMinutes was added to the table used for the periodic execution of related APIs.

A. Reference Information

JP1/Automatic Operation Command and API Reference 309

(3) Changes in version 11-01
• When using the submittask to submit services for recurring execution, execution on specified dates and at the

end of the month can now be specified together.

(4) Changes in version 11-00

(a) Changes from the manual (3021-3-088-20)
• The following OSs were added to the supported OSs:

• Linux 7

• Oracle Linux 6 (x64)

• Oracle Linux 7

• CentOS 6 (x64)

• CentOS 7

• SUSE Linux 12

• The following OSs were deleted from the supported OSs:

• Linux 5 (AMD/Intel 64)

• Linux 5 Advanced Platform (AMD/Intel 64)

• Windows was migrated from the 32-bit version to the 64-bit version.

• The installation folders of JP1/AO for Windows and Common Component were changed.

• A description for when JP1/AO is used in an English or Chinese environment was added.

• The port number used between JP1/AO and a web browser was changed.

• JP1/AJS3 and JP1/AO whose versions are 11 can now coexist.

• For the names of the commands that can be executed in Windows, the hcmds part was changed to hcmds64.

• The deleteremoteconnection command that deletes a connection destination definition registered in
JP1/AO was added.

• The listremoteconnections command that outputs a list of connection destination definitions registered in
JP1/AO was added.

• The setremoteconnection command that adds or updates a connection destination definition was added.

• The items that can be output by the listservices command were changed.

• The items that can be output by the listtasks command were changed.

• The following API functions were added:
Service template-related API functions

• Acquisition of a list of service templates

• Acquisition of information about a service template

• Deletion of a service template

• Acquisition of a list of operations for a service template

• Acquisition of the HTML file necessary for importing a service template

• Import of a service template

• Acquisition of information necessary for exporting a service template

A. Reference Information

JP1/Automatic Operation Command and API Reference 310

• Export of a service template

• Acquisition of the URL for displaying the details of a service template

• Acquisition of information necessary for creating a service based on a service template

• Creation of a service based on a service template

Service-related API functions

• Editing a service

• Deletion of a service

• Acquisition of information necessary for resetting the counter for a service

• Reset of the counter for a service

• Acquisition of information necessary for the operation to change the status of a service to release

• Change of the status of a service to release

• Acquisition of information necessary for the operation to change the status of a service to maintenance

• Change of the status of a service to maintenance

• Acquisition of information necessary for the operation to change the status of a service to disabled

• Change of the status of a service to disabled

• Acquisition of the URL for the details of a service

• Acquisition of information necessary for changing the version of the service template used by a service

• Change of the version of the service template used by a service

Task-related API functions

• Editing a task

• Deletion of a task

• Acquisition of information necessary for forcibly stopping a task

• Forced stoppage of a task

• Acquisition of information necessary for responding to a task that is in the status Waiting for Response

• Response to a task that is in the status Waiting for Response

• Acquisition of information necessary for archiving a task

• Archiving a task

List of history-related API functions

• Acquisition of a list of history records

• Deletion of history records (with conditions specified)

• Acquisition of a history record

• Deletion of history records (with an ID specified)

• Acquisition of a list of operations for a history record

Property-related API functions

• Acquisition of lists of property definitions and property values

• Batch update of property values

• Update of a property value

• Acquisition of a list of property groups

A. Reference Information

JP1/Automatic Operation Command and API Reference 311

Service group-related API functions

• Acquisition of a list of service groups

• Acquisition of information about a service group

• Acquisition of a list of operations for a service group

Tag-related API functions

• Acquisition of a list of tag groups

• Acquisition of a list of tags

• According to the addition of the API functions, the following items were added or changed:

• Domain names and resources that can be managed by API functions

• Query parameter

• Request header

• Response header

• Members of resources

• Members to be returned for API functions that execute JP1/AO operations

• Members to be returned for API functions that acquire executable operations

• Descriptions of the status codes were added.

(b) Changes from the manual (3021-3-366(E))
• Linux was added to the supported OSs.

• The installation folders of JP1/AO for Windows and Common Component were changed.

• The port number used between JP1/AO and a web browser was changed.

• Windows was migrated from the 32-bit version to the 64-bit version.

• JP1/AJS3 and JP1/AO whose versions are 11 can now coexist.

• For the names of the commands that can be executed in Windows, the hcmds part was changed to hcmds64.

• The deleteremoteconnection command that deletes a connection destination definition registered in
JP1/AO was added.

• The listremoteconnections command that outputs a list of connection destination definitions registered in
JP1/AO was added.

• The setremoteconnection command that adds or updates a connection destination definition was added.

• The items that can be output by the listservices command were changed.

• The items that can be output by the listtasks command were changed.

• A member that can be acquired by the operation Acquisition of a list of tasks or Acquisition of a list of steps was
changed from endTime to completionTime.

• The following API functions were added:
Service template-related API functions

• Acquisition of a list of service templates

• Acquisition of information about a service template

• Deletion of a service template

A. Reference Information

JP1/Automatic Operation Command and API Reference 312

• Acquisition of a list of operations for a service template

• Acquisition of the HTML file necessary for importing a service template

• Import of a service template

• Acquisition of information necessary for exporting a service template

• Export of a service template

• Acquisition of the URL for displaying the details of a service template

• Acquisition of information necessary for creating a service based on a service template

• Creation of a service based on a service template

Service-related API functions

• Editing a service

• Deletion of a service

• Acquisition of information necessary for resetting the counter for a service

• Reset of the counter for a service

• Acquisition of information necessary for the operation to change the status of a service to release

• Change of the status of a service to release

• Acquisition of information necessary for the operation to change the status of a service to maintenance

• Change of the status of a service to maintenance

• Acquisition of information necessary for the operation to change the status of a service to disabled

• Change of the status of a service to disabled

• Acquisition of the URL for the details of a service

• Acquisition of information necessary for changing the version of the service template used by a service

• Change of the version of the service template used by a service

Task-related API functions

• Editing a task

• Deletion of a task

• Acquisition of information necessary for forcibly stopping a task

• Forced stoppage of a task

• Acquisition of information necessary for responding to a task that is in the status Waiting for Response

• Response to a task that is in the status Waiting for Response

• Acquisition of information necessary for archiving a task

• Archiving a task

List of history-related API functions

• Acquisition of a list of history records

• Deletion of history records (with conditions specified)

• Acquisition of a history record

• Deletion of history records (with an ID specified)

• Acquisition of a list of operations for a history record

Property-related API functions

A. Reference Information

JP1/Automatic Operation Command and API Reference 313

• Acquisition of lists of property definitions and property values

• Batch update of property values

• Update of a property value

• Acquisition of a list of property groups

Service group-related API functions

• Acquisition of a list of service groups

• Acquisition of information about a service group

• Acquisition of a list of operations for a service group

Tag-related API functions

• Acquisition of a list of tag groups

• Acquisition of a list of tags

• According to the addition of the API functions, the following items were added or changed:

• Domain names and resources that can be managed by API functions

• Query parameter

• Request header

• Response header

• Members of resources

• Members to be returned for API functions that execute JP1/AO operations

• Members to be returned for API functions that acquire executable operations

• A description stating that the hcmds64getlogs command can be executed even on the standby server of a cluster
environment was added.

• A description stating that the hcmds64getlogs command can be executed even if the JP1/AO server is stopped
was added.

(5) Changes in version 10-54

(a) Changes in the manual (3021-3-088-20)
• A member that can be acquired by the operation Acquisition of a list of tasks or Acquisition of a list of steps was

changed from endTime to completionTime.

(6) Changes in version 10-52

(a) Changes in the manual (3021-3-088-10)
• Linux was added to the supported OSs.

• According to the addition of the function that manages plug-in versions, the following windows were added:

• Plug-in Version Management dialog box (Apply to All tab)

• Plug-in Version Management dialog box (Individual apply tab)

• A description of how to take action if a message dialog box indicating an unexpected error appears or windows are
not displayed correctly when you log in to JP1/AO was added.

A. Reference Information

JP1/Automatic Operation Command and API Reference 314

• Keyboard interactive authentication is now supported as an authentication method that can be used for SSH
connection with operation-target devices.

• A description stating that the Required check box cannot be edited if you select the reserved plug-in property
plugin.publicKeyAuthentication or plugin.keyboardInteractiveAuthentication was
added.

• A description stating that the hcmdsgetlogs or hcmds64getlogs command can be executed even on the
standby server of a cluster environment was added.

• A description stating that the hcmdsgetlogs or hcmds64getlogs command can be executed even if the JP1/
AO server is stopped was added.

(7) Changes in version 10-50

(a) Changes in the manual (3021-3-088)
• A function that links with Active Directory to manage users was added.

• HTTPS connections are now supported.

• Public key authentication is now supported as a method of authenticating operation-target devices.

• The stopcluster command was added.
Preparations for stopping JP1/AO services in a cluster environment can now be performed.

• The hcmdsldapuser command was added.
The user information that is necessary to search Active Directory registration information when Active Directory
linkage is used can now be edited.

• The hcmdsssltool command was added.
A private key, CSR, self-signed certificate, and a file to contain the self-signed certificate, which are necessary for
SSL connections, can now be created.

• A description stating that the following files are not targets of the backupsystem and restoresystem
commands was added:

• SSL server certificate files for HTTPS connections

• Private key files for HTTPS connections

• Private key files for public key authentication

• API functions are now supported.

(b) Changes in the manual (3021-3-366(E))
• For the manual issued in December 2014 or later, the title and reference number were changed as shown below.

Before the change:
Job Management Partner 1/Automatic Operation GUI and Command Reference (3021-3-315(E))

After the change:
Job Management Partner 1/Automatic Operation GUI, Command, and API Reference (3021-3-366(E))

• Windows Server 2012 R2 was added to the supported OSs.

• With addition of the task monitor function and the service template debugger function, the following windows were
added:

• Task log dialog box

• Debug-Tasks view

A. Reference Information

JP1/Automatic Operation Command and API Reference 315

• Task Monitor view

• Perform Debugging dialog box

• Debug view

• Service template debugging view

• A function that links with Active Directory to manage users was added.

• HTTPS connections are now supported.

• With the change to slide bars, the screenshots of the following windows were changed:

• Main window

• Services dialog box

• Tasks window

• Tasks view

• Task Histories view

• Administration window

• Connection Destinations view

• Service Share Properties view

• User Groups view (User Groups tab)

• User Groups view (Users tab)

• Resource Groups view

• Editor window

• Service template view dialog box

• Service template editing view

• A function for viewing the task log was added to the following windows:

• Waiting for Response Task List dialog box

• In Progress Task List dialog box

• Completed Task List dialog box

• Failed Task List dialog box

• Tasks view

• Task Details dialog box

• A function that retries tasks and a function that forcibly stops tasks were added to the following windows:

• Waiting for Response Task List dialog box

• In Progress Task List dialog box

• Tasks view

• With the addition of the task monitor and service template debugger, the conditions in which the following windows
are displayed were changed:

• Submit Service dialog box

• Task Details dialog box

• Respond dialog box

• Plug-in view

A. Reference Information

JP1/Automatic Operation Command and API Reference 316

• View Service Definition dialog box

• Steps dialog box

• Service template editing view

• Build/Release Result dialog box

The descriptions of items displayed in the following windows were changed:

• Tasks window

• Task Details dialog box

• Editor window

• Service template editing view

• Build/Release Result dialog box

• Return Value was added to the list of steps displayed in the Task Details dialog box. In addition, a description stating
that the statuses displayed in the list of steps can be changed was added.

• Public key authentication is now supported as a method of authenticating operation-target devices.

• Functions that can be executed or specified as root were added to the following windows:

• Plug-in view

• Create Plug-in dialog box

• Edit Plug-in dialog box

• A Release plug-in can now be deleted.

• Content plug-ins that execute commands or scripts are now supported in AIX, HP-UX, and Solaris, in addition to
Windows and Linux.

• The stopcluster command was added.
Preparations for stopping JP1/AO services in a cluster environment can now be performed.

• The hcmdsldapuser command was added.
The user information that is necessary to search Active Directory registration information when Active Directory
linkage is used can now be edited.

• The hcmdsssltool command was added.
A private key, CSR, self-signed certificate, and a file to contain the self-signed certificate, which are necessary for
SSL connections, can now be created.

• The listtasks command can now be used to output the details of multiple tasks. In addition, the submittask
command can now be used to re-register multiple tasks that are to be executed periodically or according to the
schedule.

• A description of the /user option of the hcmdscheckauth command was added, and return value 247 was
added.

• A note on the user name or password to be specified for an option was added.

• A description stating that debug services and debug tasks are not targets of the following commands was added:

• listservices command

• listtasks command

• stoptask command

• submittask command

• The submittask command can now be used to register a command that is to be executed periodically.

A. Reference Information

JP1/Automatic Operation Command and API Reference 317

• A description stating that the following files are not targets of the backupsystem and restoresystem
commands was added:

• SSL server certificate files for HTTPS connections

• Private key files for HTTPS connections

• Private key files for public key authentication

• The description of the JP1/Base service was deleted because the JP1/Base service starts when the JP1/AO service
starts.

• Notes that apply in a cluster system were added.

• The descriptions of the /workpath and /file options were changed. In addition, notes on the hcmdsdbtrans
command were added.

• Explanations of debug services and debug tasks were added in the description of the restoresystem command.
In addition, a description stating that the retry operation cannot be selected for restored tasks and debug tasks was
added.

• API functions are now supported.

• Descriptions of the status icons displayed in windows were added.

(8) Changes in version 10-12

(a) Changes in the manual (3021-3-084-50)
• Windows Server 2012 R2 was added to the supported OSs.

• With addition of the task monitor function and the service template debugger function, the following windows were
added:

• Task log dialog box

• Debug-Tasks view

• Task Monitor view

• Perform Debugging dialog box

• Debug view

• Service template debugging view

• With the change to slide bars, the screenshots of the following windows were changed:

• Main window

• Services dialog box

• Tasks window

• Tasks view

• Task Histories view

• Administration window

• Connection Destinations view

• Service Share Properties view

• User Groups view (User Groups tab)

• User Groups view (Users tab)

• Resource Groups view

A. Reference Information

JP1/Automatic Operation Command and API Reference 318

• Editor window

• Service template view dialog box

• Service template editing view

• A function for viewing the task log was added to the following windows:

• Waiting for Response Task List dialog box

• In Progress Task List dialog box

• Completed Task List dialog box

• Failed Task List dialog box

• Tasks view

• Task Details dialog box

• A function that retries tasks and a function that forcibly stops tasks were added to the following windows:

• Waiting for Response Task List dialog box

• In Progress Task List dialog box

• Tasks view

• With the addition of the task monitor and service template debugger, the conditions in which the following windows
are displayed were changed:

• Submit Service dialog box

• Task Details dialog box

• Respond dialog box

• Plug-in view

• View Service Definition dialog box

• Steps dialog box

• Service template editing view

• Build/Release Result dialog box

The descriptions of items displayed in the following windows were changed:

• Tasks window

• Task Details dialog box

• Editor window

• Service template editing view

• Build/Release Result dialog box

• Return Value was added to the list of steps displayed in the Task Details dialog box. In addition, a description stating
that the statuses displayed in the list of steps can be changed was added.

• Functions that can be executed or specified as root were added to the following windows:

• Plug-in view

• Create Plug-in dialog box

• Edit Plug-in dialog box

• A description stating that debug services and debug tasks are not targets of the following commands was added:

• listservices command

A. Reference Information

JP1/Automatic Operation Command and API Reference 319

• listtasks command

• stoptask command

• submittask command

• Explanations of debug services and debug tasks were added in the description of the restoresystem command.
In addition, a description stating that the retry operation cannot be selected for restored tasks and debug tasks was
added.

• Descriptions of the status icons displayed in windows were added.

(9) Changes in version 10-11

(a) Changes in the manual (3021-3-084-40)
• A Release plug-in can now be deleted.

• Content plug-ins that execute commands or scripts are now supported in AIX, HP-UX, and Solaris, in addition to
Windows and Linux.

• A description of the /user option of the hcmdscheckauth command was added, and return value 247 was
added.

• A note on the user name or password to be specified for an option was added.

• The listtasks command can now be used to output the details of multiple tasks. In addition, the submittask
command can now be used to re-register multiple tasks that are to be executed periodically or according to the
schedule.

• The submittask command can now be used to register a command that is to be executed periodically.

• The description of the JP1/Base service was deleted because the JP1/Base service starts when the JP1/AO service
starts.

• Notes that apply in a cluster system were added.

• The descriptions of the /workpath and /file options were changed. In addition, notes on the hcmdsdbtrans
command were added.

(10) Changes in version 10-10

(a) Changes in the manual (3021-3-084-30)
• New functionality allows the user to develop service templates and plug-ins in the Editor window.

• Configuration Type was added as a display item of the following windows:

• Waiting Task List dialog box

• Waiting for Response Task List dialog box

• In Progress Task List dialog box

• Completed Task List dialog box

• Failed Task List dialog box

• Services window

• Submit Service dialog box

• Add Service dialog box

• Service Definition dialog box

A. Reference Information

JP1/Automatic Operation Command and API Reference 320

• Tasks view

• Task Details dialog box

• Task Histories view

• The limit on simultaneous execution was increased from 2 to 10 for both the submittask and stoptask
commands.

• The Develop role was added to user permissions. It can be used to execute the following commands:

• deleteservicetemplate command

• importservicetemplate command

• listservices command

• listtasks command

• stoptask command

• submittask command

• Configuration Type was added to the output items of the listservices and listtasks commands.

• The following description was added: If you omit specifying the /property option in the submittask
command, the values you entered in the Service Definition dialog box are set for the corresponding property keys.

• The /wait option, which is used to finish the command after outputting the execution results of the task, was added
to the submittask command.

• The /scheduledate and /scheduletime options, which are used to specify when services are to be executed,
were added to the submittask command.

• The limit values for the Editor window were added to the list of limit values.

(b) Changes in the manual (3021-3-315-10(E))
• New functionality allows the user to develop service templates and plug-ins in the Editor window.

• Notes on operating on windows in Windows Server 2012 were added.

• Configuration Type was added as a display item of the following windows:

• Waiting Task List dialog box

• Waiting for Response Task List dialog box

• In Progress Task List dialog box

• Completed Task List dialog box

• Failed Task List dialog box

• Services window

• Submit Service dialog box

• Add Service dialog box

• Service Definition dialog box

• Tasks view

• Task Details dialog box

• Task Histories view

• The following items of the Task Details dialog box were changed:

• Jobnet Information was changed to Step Information.

A. Reference Information

JP1/Automatic Operation Command and API Reference 321

• Jobnet Details was changed to Step Details.

• Root Jobnet Name was deleted.

• Units was changed to Steps.

• Unit Name was changed to Name.

• Comment was changed to Description.

• Telnet was added to the available protocols.

• Plug-in resource files for English, Chinese, and Japanese environments can now be selected.

• Service resource files for English, Chinese, and Japanese environments can now be selected.

• The limit on simultaneous execution was increased from 2 to 10 for both the submittask and stoptask
commands.

• New functionality allows the user to change the subject identification information output to the audit log.

• A description that the setupcluster command is not available in Windows Server 2012 was added.

• The Develop role was added to user permissions. It can be used to execute the following commands:

• deleteservicetemplate command

• importservicetemplate command

• listservices command

• listtasks command

• stoptask command

• submittask command

• Configuration Type was added to the output items of the listservices and listtasks commands.

• The following description was added: If you omit specifying the /property option in the submittask
command, the values you entered in the Service Definition dialog box are set for the corresponding property keys.

• The /wait option, which is used to finish the command after outputting the execution results of the task, was added
to the submittask command.

• The /scheduledate and /scheduletime options, which are used to specify when services are to be executed,
were added to the submittask command.

• The description of JP1/Base services was deleted because these services automatically start when JP1/AO services
start.

• The limit values for the Editor window were added to the list of limit values.

• The list of limit values was modified.

• Items related to functionality in the list of limit values were moved to the Job Management Partner 1/Automatic
Operation Overview and System Design Guide as List of limit values of functions.

(11) Changes in version 10-02

(a) Changes in the manual (3021-3-084-20)
• Notes on operating on windows in Windows Server 2012 were added.

• The following items of the Task Details dialog box were changed:

• Jobnet Information was changed to Step Information.

A. Reference Information

JP1/Automatic Operation Command and API Reference 322

• Jobnet Details was changed to Step Details.

• Root Jobnet Name was deleted.

• Units was changed to Steps.

• Unit Name was changed to Name.

• Comment was changed to Description.

• Telnet was added to the available protocols.

• New functionality allows the user to change the subject identification information output to the audit log.

• A description that the setupcluster command is not available in Windows Server 2012 was added.

• The list of limit values was modified.

(12) Changes in version 10-02

(a) Changes in the manual (3021-3-084-10)
• Items related to functionality in the list of limit values were moved to the Job Management Partner 1/Automatic

Operation Overview and System Design Guide as List of limit values of functions.

A. Reference Information

JP1/Automatic Operation Command and API Reference 323

Index

A
acquisition of history record 257
acquisition of HTML file necessary for importing service
template 142
acquisition of information about service group 291
acquisition of information about service template 136
acquisition of information necessary for archiving task

241
acquisition of information necessary for canceling
schedule 196
acquisition of information necessary for changing
version of service template used by service 185
acquisition of information necessary for creating
service based on service template 150
acquisition of information necessary for executing
service 166
acquisition of information necessary for exporting
service template 146
acquisition of information necessary for forcibly
stopping task 222
acquisition of information necessary for operation to
change status of service to disabled 181
acquisition of information necessary for operation to
change status of service to maintenance 177
acquisition of information necessary for operation to
change status of service to release 174
acquisition of information necessary for pausing
schedule 200
acquisition of information necessary for re-executing
task 226
acquisition of information necessary for resetting
counter for service 171
acquisition of information necessary for responding to
task that is in the status Waiting for Response 230
acquisition of information necessary for resuming
schedule 203
acquisition of information necessary for retrying task
(retry from failed step) 234
acquisition of information necessary for retrying task
(retry from step after failed step) 238
acquisition of information necessary for stopping task
execution 219
acquisition of list of histories 253
acquisition of list of operations for history record 260
acquisition of list of operations for property definition
271
acquisition of list of operations for property value 285
acquisition of list of operations for schedule 194

acquisition of list of operations for service 163
acquisition of list of operations for service group 293
acquisition of list of operations for service template 140
acquisition of list of property definitions 262
acquisition of list of property groups 287
acquisition of list of property values 275
acquisition of list of schedules 190
acquisition of list of service groups 290
acquisition of list of service templates 134
acquisition of list of services 155
acquisition of list of steps 245
acquisition of list of tag groups 295
acquisition of list of tags 296
acquisition of list of task operations 216
acquisition of list of tasks 208
acquisition of lists of property definitions and property
values 272
acquisition of property definition information 269
acquisition of property value 282
acquisition of schedule information 193
acquisition of service information 157
acquisition of task log 247
acquisition of URL for details of service 184
acquisition of URL for displaying details of service
template 149
acquisition of user information 300
acquisition of version information 301
API 90
API description format 133
API functions for information management 300
API usage example 303
archiving task 243

B
backupsystem (backing up JP1/AO system) 75
batch update of property values 278

C
cancellation of schedule 198
change of status of service to disabled 182
change of status of service to maintenance 179
change of status of service to release 176
change of version of service template used by service

187
command description format 19

JP1/Automatic Operation Command and API Reference 324

commands 13
configuration-related commands 20
description format 19
list 14
maintenance-related commands 75
notes on using 16
operation-related commands 33
valid characters for arguments 18

communication protocol 96
configuration-related commands 20
creation of service based on service template 152

D
deleteremoteconnection (deleting connection
destination definition) 33
deleteservicetemplate (deleting service template) 35
deletion of history records (with conditions specified)
255
deletion of history records (with ID specified) 259
deletion of service 162
deletion of service template 139
deletion of task 215
domain name and resource that can be managed by
API 100
domain object format 105

E
editing service 159
encryptpassword (creating password file) 20
error information 131
execution of service 169
export of service template 147

F
forced stoppage of task 224

H
hcmds64checkauth (verifying connection with external
authentication server) 21
hcmds64chgurl (updating URL information) 37
hcmds64dbrepair (re-creating database) 76
hcmds64dbsrv (starting and stopping databases) 78
hcmds64dbtrans (backing up and restoring databases)

79
hcmds64fwcancel (adding exception to Windows
Firewall exceptions list) 24
hcmds64getlogs (collecting log information) 82

hcmds64intg (deleting or checking authentication data)
24

hcmds64ldapuser (registering and deleting user for
LDAP search) 26
hcmds64srv (starting and stopping JP1/AO, and
displaying status of JP1/AO) 38
hcmds64ssltool (creating private key and self-signed
certificate) 28
hcmds64unlockaccount (unlocking user account) 41

I
import of service template 144
importservicetemplate (importing one or more service
templates) 43
input/output format 97

L
list of APIs 91
list of history-related API functions 253
listremoteconnections (outputting connection
destination definition list) 45
listservices (outputting service or service template list)

48
listtasks (outputting task list and detailed task
information) 52

M
maintenance-related commands 75
member of resource 107
member to be returned for API functions that acquire
executable operation 129
member to be returned for API that execute JP1/AO
operation 128

N
namespace 97

O
operation-related commands 33

P
pause of schedule 201
property-related API 262

Q
query parameter 100

JP1/Automatic Operation Command and API Reference 325

R
re-execution of task 228
reference information 309
request format 97
request header 102
reset of counter for service 173
response format 99
response header 106
response to task that is in the status Waiting for
Response 232
restoresystem (restoring JP1/AO system) 86
resume of schedule 205
retry from failed step 236
retry from step after failed step 239

S
schedule-related API 190
security and authentication 96
service group-related API functions 290
service template-related API function 134
service-related API 155
setremoteconnection (adding or updating connection
destination definition) 60
setupcluster (configuring cluster environment) 30
specification common to API 96
status code 131
stoppage of task execution 220
stoptask (stopping task) 63
submittask (executing service and re-registering tasks
in a batch) 65
supported method 99

T
tag-related API functions 295
task-related API 208

U
update of property value 283
using HQL standard 104

JP1/Automatic Operation Command and API Reference 326

6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100-8280 Japan

	JP1/Automatic Operation Command and API Reference
	Notices
	Summary of amendments
	Preface
	Contents
	1. Commands
	1.1 List of commands
	1.2 Notes on using the commands
	1.3 Valid characters for arguments in a command
	1.4 Command description format
	1.5 Configuration-related commands
	1.5.1 encryptpassword (creating a password file)
	1.5.2 hcmds64checkauth (verifying the connection with the external authentication server)
	1.5.3 hcmds64fwcancel (adding an exception to the Windows Firewall exceptions list)
	1.5.4 hcmds64intg (deleting or checking authentication data)
	1.5.5 hcmds64ldapuser (registering and deleting users for LDAP search)
	1.5.6 hcmds64ssltool (creating a private key and self-signed certificate)
	1.5.7 setupcluster (configuring a cluster environment)

	1.6 Operation-related commands
	1.6.1 deleteremoteconnection (deleting a connection destination definition)
	1.6.2 deleteservicetemplate (deleting a service template)
	1.6.3 hcmds64chgurl (updating URL information)
	1.6.4 hcmds64srv (starting and stopping JP1/AO, and displaying the status of JP1/AO)
	1.6.5 hcmds64unlockaccount (unlocking a user account)
	1.6.6 importservicetemplate (importing one or more service templates)
	1.6.7 listremoteconnections (outputting the list of connection destination definitions)
	1.6.8 listservices (outputting the list of services or service templates)
	1.6.9 listtasks (outputting the list of tasks and the detailed task information)
	1.6.10 setremoteconnection (adding or updating a connection destination definition)
	1.6.11 stoptask (stopping a task)
	1.6.12 submittask (executing a service and re-registering the tasks in a batch)

	1.7 Maintenance-related commands
	1.7.1 backupsystem (backing up the JP1/AO system)
	1.7.2 hcmds64dbrepair (re-creating the database)
	1.7.3 hcmds64dbsrv (starting and stopping the databases)
	1.7.4 hcmds64dbtrans (backing up and restoring the databases)
	1.7.5 hcmds64getlogs (collecting log information)
	1.7.6 restoresystem (restoring the JP1/AO system)

	2. APIs
	2.1 List of APIs
	2.2 Specifications common to APIs
	2.2.1 Communication protocol
	2.2.2 Security and authentication
	2.2.3 Input/output format
	2.2.4 Namespace
	2.2.5 Request format
	2.2.6 Response format
	2.2.7 Supported methods
	2.2.8 Domain names and resources that can be managed by APIs
	2.2.9 Query parameter
	2.2.10 Request header
	2.2.11 Using HQL standard
	2.2.12 Domain object format
	2.2.13 Response header
	2.2.14 Members of resources
	2.2.15 Members to be returned for APIs that execute JP1/AO operations
	2.2.16 Members to be returned for API functions that acquire executable operations
	2.2.17 Status code
	2.2.18 Error information

	2.3 API description format
	2.4 Service template-related API functions
	2.4.1 Acquisition of a list of service templates
	2.4.2 Acquisition of information about a service template
	2.4.3 Deletion of a service template
	2.4.4 Acquisition of a list of operations for a service template
	2.4.5 Acquisition of the HTML file necessary for importing a service template
	2.4.6 Import of a service template
	2.4.7 Acquisition of information necessary for exporting a service template
	2.4.8 Export of a service template
	2.4.9 Acquisition of the URL for displaying the details of a service template
	2.4.10 Acquisition of information necessary for creating a service based on a service template
	2.4.11 Creation of a service based on a service template

	2.5 Service-related APIs
	2.5.1 Acquisition of a list of services
	2.5.2 Acquisition of service information
	2.5.3 Editing a service
	2.5.4 Deletion of a service
	2.5.5 Acquisition of a list of operations for a service
	2.5.6 Acquisition of information necessary for executing a service
	2.5.7 Execution of a service
	2.5.8 Acquisition of information necessary for resetting the counter for a service
	2.5.9 Reset of the counter for a service
	2.5.10 Acquisition of information necessary for the operation to change the status of a service to release
	2.5.11 Change of the status of a service to release
	2.5.12 Acquisition of information necessary for the operation to change the status of a service to maintenance
	2.5.13 Change of the status of a service to maintenance
	2.5.14 Acquisition of information necessary for the operation to change the status of a service to disabled
	2.5.15 Change of the status of a service to disabled
	2.5.16 Acquisition of the URL for the details of a service
	2.5.17 Acquisition of information necessary for changing the version of the service template used by a service
	2.5.18 Change of the version of the service template used by a service

	2.6 Schedule-related APIs
	2.6.1 Acquisition of a list of schedules
	2.6.2 Acquisition of schedule information
	2.6.3 Acquisition of a list of operations for a schedule
	2.6.4 Acquisition of information necessary for canceling a schedule
	2.6.5 Cancellation of a schedule
	2.6.6 Acquisition of information necessary for pausing a schedule
	2.6.7 Pause of a schedule
	2.6.8 Acquisition of information necessary for resuming a schedule
	2.6.9 Resume of a schedule

	2.7 Task-related APIs
	2.7.1 Acquisition of a list of tasks
	2.7.2 Acquisition of task information
	2.7.3 Editing a task
	2.7.4 Deletion of a task
	2.7.5 Acquisition of a list of task operations
	2.7.6 Acquisition of information necessary for stopping task execution
	2.7.7 Stoppage of task execution
	2.7.8 Acquisition of information necessary for forcibly stopping a task
	2.7.9 Forced stoppage of a task
	2.7.10 Acquisition of information necessary for re-executing a task
	2.7.11 Re-execution of a task
	2.7.12 Acquisition of information necessary for responding to a task that is in the status Waiting for Response
	2.7.13 Response to a task that is in the status Waiting for Response
	2.7.14 Acquisition of information necessary for retrying a task (retry from the failed step)
	2.7.15 Retry from the failed step
	2.7.16 Acquisition of information necessary for retrying a task (retry from the step after the failed step)
	2.7.17 Retry from the step after the failed step
	2.7.18 Acquisition of information necessary for archiving a task
	2.7.19 Archiving a task
	2.7.20 Acquisition of a list of steps
	2.7.21 Acquisition of task logs

	2.8 List of history-related API functions
	2.8.1 Acquisition of a list of history records
	2.8.2 Deletion of history records (with conditions specified)
	2.8.3 Acquisition of a history record
	2.8.4 Deletion of history records (with an ID specified)
	2.8.5 Acquisition of a list of operations for a history record

	2.9 Property-related APIs
	2.9.1 Acquisition of a list of property definitions
	2.9.2 Acquisition of property definition information
	2.9.3 Acquisition of a list of operations for a property definition
	2.9.4 Acquisition of lists of property definitions and property values
	2.9.5 Acquisition of a list of property values
	2.9.6 Batch update of property values
	2.9.7 Acquisition of a property value
	2.9.8 Update of a property value
	2.9.9 Acquisition of a list of operations for a property value
	2.9.10 Acquisition of a list of property groups

	2.10 Service group-related API functions
	2.10.1 Acquisition of a list of service groups
	2.10.2 Acquisition of information about a service group
	2.10.3 Acquisition of a list of operations for a service group

	2.11 Tag-related API functions
	2.11.1 Acquisition of a list of tag groups
	2.11.2 Acquisition of a list of tags

	2.12 API functions for information management
	2.12.1 Acquisition of user information
	2.12.2 Acquisition of version information

	2.13 API usage example

	Appendix
	A. Reference Information
	A.1 Version changes

	Index

