
JP1/Base Function Reference
3021-3-A03-20(E)

JP1 Version 11

Notices

■ Relevant program products
For details about the supported operating systems and the service packs or patches that are required by JP1/Base, see
the Release Notes.
For Windows:
P-2A2C-6LBL JP1/Base 11-50 (for Windows Server 2008 R2, Windows 7, Windows Server 2012, Windows 8,
Windows 8.1, Windows 10, Windows Server 2016)

For UNIX:
P-1J2C-6LBL JP1/Base 11-50 (for HP-UX (IPF))
P-9D2C-6LBL JP1/Base 11-50 (for Solaris (SPARC))
P-1M2C-6LBL JP1/Base 11-50 (for AIX)
P-812C-6LBL JP1/Base 11-50 (for Linux 6 (x64), Linux 7, Oracle Linux 6 (x64), Oracle Linux 7, CentOS 6 (x64),
CentOS 7, SUSE Linux 12)

■ Trademarks
HITACHI, JP1 are either trademarks or registered trademarks of Hitachi, Ltd. in Japan and other countries.
Active Directory is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
IBM, AIX are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc., in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.
SUSE is a registered trademark or a trademark of SUSE LLC in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Visual C++ is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
The following program product contains some parts whose copyrights are reserved by Oracle Corporation and its
affiliates: P-9D2C-6LBL.
The following program product contains some parts whose copyrights are reserved by UNIX System Laboratories,
Inc.: P-9D2C-6LBL.
Other company and product names mentioned in this document may be the trademarks of their respective owners.

JP1/Base Function Reference 2

1. This product includes software developed by the OpenSSL Project for use in
the OpenSSL Toolkit. (http://www.openssl.org/)
2. This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com)
3. This product includes software written by Tim Hudson (tjh@cryptsoft.com)
4. This product includes the OpenSSL Toolkit software used under OpenSSL
License and
Original SSLeay License. OpenSSL License and Original SSLeay License are as
follow:
LICENSE ISSUES
==============
The OpenSSL toolkit stays under a double license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts.
OpenSSL License

/* ==
* Copyright (c) 1998-2017 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"

JP1/Base Function Reference 3

* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).

JP1/Base Function Reference 4

*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given
attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence

JP1/Base Function Reference 5

* [including the GNU Public Licence.]
*/

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning

Visual C++ Microsoft(R) Visual C++(R)

Windows 7 Microsoft(R) Windows(R) 7 Enterprise

Microsoft(R) Windows(R) 7 Professional

Microsoft(R) Windows(R) 7 Ultimate

Windows 8 Windows(R) 8

Windows(R) 8 Enterprise

Windows(R) 8 Pro

Windows 8.1 Windows(R) 8.1

Windows(R) 8.1 Enterprise

Windows(R) 8.1 Pro

Windows 10 Windows(R) 10 Enterprise

Windows(R) 10 Home

Windows(R) 10 Pro

Windows Server 2008 R2 Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Standard

Windows Server 2012 Windows Server 2012 Microsoft(R) Windows Server(R) 2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Standard

Windows Server 2012 R2 Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Microsoft(R) Windows Server(R) 2012 R2 Standard

Windows Server 2016 Microsoft(R) Windows Server(R) 2016 Datacenter

Microsoft(R) Windows Server(R) 2016 Standard

Windows is sometimes used generically, referring to Windows Server 2008 R2, Windows 7, Windows Server 2012, Windows 8, Windows 8.1,
Windows 10 and Windows Server 2016.

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license

JP1/Base Function Reference 6

agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your
country.
No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

■ Edition history
Nov. 2017: 3021-3-A03-20(E)

■ Copyright
Copyright (C) 2016, 2017, Hitachi, Ltd.
Copyright (C) 2017, Hitachi Solutions, Ltd.

JP1/Base Function Reference 7

Summary of amendments

The following table lists changes in this manual (3021-3-A03-20(E)) and product changes related
to this manual.

Changes Location

-- --

Legend:
--: Not applicable

In addition to the above changes, minor editorial corrections were made.

JP1/Base Function Reference 8

Preface

This manual explains in detail the functions provided by JP1/Base and the procedures used to extend the functions of
JP1/Base during development of systems linked to JP1/Integrated Management. This manual is intended for all
operating systems. When there is a difference in the functions available for the supported operating systems, a
distinction to that effect is made in the manual.

■ Intended readers
This manual is intended for users who use JP1/IM and JP1/Base to develop systems that work with JP1/IM.

This manual assumes that the readers understand the functionality of JP1/IM and JP1/Base.

■ Organization of this manual
This manual consists of the following parts:

PART 1: Overview
Part 1 provides a brief overview of customizing and extending the JP1/Base functions.

PART 2: Operation
Part 2 explains how to customize the JP1/Base functions.

PART 3: Reference
Part 3 describes the JP1/Base functions in reference format.

■ JP1/Base manual organization
The JP1/Base documentation is divided into three manuals. Read the manual appropriate to your purpose, referring to
the content of each manual shown in the following table.

Manual Content

JP1/Base User's Guide • Overview and functionality of JP1/Base
• Setup of each function
• Commands, definition files, JP1 events
• Troubleshooting
• Processes, port numbers, operation logs

JP1/Base Messages Messages

JP1/Base Function Reference • Procedures for issuing and acquiring JP1 events with JP1 programs and user
applications

• Functions

■ Conventions: "Administrator permissions" as used in this manual
In this manual, Administrator permissions refers to Administrator permissions for the local PC. The local user, domain
user, or user of the Active Directory environment can perform tasks requiring Administrator permissions if granted
Administrator permissions for the local PC.

JP1/Base Function Reference 9

■ Conventions: Fonts and symbols
The following table explains the text formatting conventions used in this manual:

Text formatting Convention

Bold Bold characters indicate text in a window, other than the window title. Such text includes menus, menu
options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italic Italic characters indicate a placeholder for some actual text to be provided by the user or system. For example:
• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italic characters are also used for emphasis. For example:
• Do not delete the configuration file.

Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output by
the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:
The password is incorrect.

The following table explains the symbols used in this manual:

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the meaning of OR. For
example:
A|B|C means A, or B, or C.

{ } In syntax explanations, curly brackets indicate that only one of the enclosed items is to be selected.
For example:
{A|B|C} means only one of A, or B, or C.

[] In syntax explanations, square brackets indicate that the enclosed item or items are optional. For
example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

... In coding, an ellipsis (...) indicates that one or more lines of coding have been omitted.
In syntax explanations, an ellipsis indicates that the immediately preceding item can be repeated as
many times as necessary. For example:
A, B, B, ... means that, after you specify A, B, you can specify B as many times as necessary.

() Parentheses indicate the range of items to which the vertical bar (|) or ellipsis (...) is applicable.

This symbol is used to explicitly indicate a space. For example, AAA BBB means that you must
place a space between AAA and BBB.

\ When a syntax character shown above is used as an ordinary character, a backslash is prefixed to the
character. For example, \| means | as an ordinary character, not as a syntax character.

JP1/Base Function Reference 10

■ Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of two digits each, separated by a
hyphen. For example:

• version 1.00 (or version 1.0) is written as 01-00

• version 2.05 is written as 02-05

• version 2.50 (or version 2.5) is written as 02-50

• version 12.25 is written as 12-25

The version number might be shown on the spine of a manual as Ver. 2.00, but the same version number would be
written in the program as 02-00.

■ JP1/Base installation folder for Windows
This manual refers to the JP1/Base installation folder in Windows as follows:

Product name Reference to installation folder Installation folder#

JP1/Base installation-folder In an x86 environment:
system-drive:\Program Files\HITACHI\JP1Base

In an x64 environment:
system-drive:\Program Files (x86)\HITACHI\JP1Base

#
Denotes the installation folder used when the product is installed with initial settings. For Windows Vista or later, the manual uses the
expression system-drive:\ProgramData. The actual value is determined by the OS environment variable when the program is installed.
The installation destination might differ depending on the environment.

Example:

This manual uses the following convention to represent the full path of the JevApi.h header file needed to compile
a source file:

installation-folder\include\JevApi.h

For the default installation folder, this path would actually be system-drive:\Program Files\HITACHI
\JP1Base\include\JevApi.h.

■ Other reference information
For other reference information, see Reference Material for this Manual in the JP1/Base User's Guide.

JP1/Base Function Reference 11

Contents

Notices 2

Summary of amendments 8

Preface 9

Part 1: Overview

1 Overview of Customizing and Extending the Functionality of JP1/Base14
1.1 Features 15

1.2 Sample source files of functions 16

Part 2: Operation

2 Issuing and Acquiring JP1 Events 17
2.1 Overview of functions for issuing and acquiring events 18

2.1.1 Prerequisites 19

2.2 Procedures for issuing and acquiring JP1 events 21

2.2.1 Procedure for issuing JP1 events 21

2.2.2 Procedure for acquiring JP1 events 24

2.2.3 Compiling the source files 28

2.3 Migrating user applications from an earlier version 31

2.3.1 Migrating without recompiling 31

2.3.2 Recompiling before migrating 31

Part 3: Reference

3 Functions 32
Function description format 33
Notes common to all functions 34
List of functions 35
JevFreeEvent 37
JevGetArrivedTime 38
JevGetBaseID 39
JevGetClose 40
JevGetCodeSet 41
JevGetDestinationAddress 42
JevGetDestinationServer 43
JevGetDetailInformation 44
JevGetEvent 45
JevGetExtAttrDirect 47

JP1/Base Function Reference 12

JevGetExtID 48
JevGetFirstExtAttr 49
JevGetMessage 50
JevGetNextExtAttr 51
JevGetOpen 52
JevGetProcessID 54
JevGetRegistFactor 55
JevGetRegistGroupID 56
JevGetRegistGroupName 57
JevGetRegistTime 58
JevGetRegistUserID 59
JevGetRegistUserName 60
JevGetSequenceNumber 61
JevGetSourceAddress 62
JevGetSourceSequenceNumber 63
JevGetSourceServer 64
JevRegistEvent 65

Appendixes 67
A Criteria for Setting JP1 Event Attributes 68

A.1 Basic attributes 68

A.2 Extended attributes 69

B Sample Source Files 73

B.1 Details of the sample source files 73

Index 78

JP1/Base Function Reference 13

Part 1: Overview

1 Overview of Customizing and Extending the
Functionality of JP1/Base

This chapter provides an overview of what you can do with JP1/Base by extending its functionality,
along with samples of the functions provided by JP1/Base.

JP1/Base Function Reference 14

1.1 Features

By using JP1/Base functions and definition files, you can perform the following operations:

Issue user-defined JP1 events
You can use JP1/Base to define system-issued events as JP1 events with user-defined event attributes. You can also
configure such events so that they can be issued by user applications. JP1 events defined by users are called user-
defined events. You can freely define the attributes of user-defined events.
You can use the JP1 event issuing function to issue user-defined events. For details about how to use the JP1 event
issuing function to issue user-defined events, see Chapter 2. Issuing and Acquiring JP1 Events.
You can also display in JP1/IM - View the user-defined event attributes that have been added to a user-defined event.
To do this, you must create definition files that contain descriptions of your user-defined event attributes. For details,
see the manual JP1/Integrated Management - Manager Command and Definition File Reference.

Acquire JP1 events
JP1 events that a JP1 program or user application has registered with JP1/Base's event database can be acquired
directly by other JP1 programs and user applications. After a user-defined event is issued from a user application to
JP1/Base and the event is registered with the event database as a JP1 event, other user applications can use the event.
You can use the JP1 event acquisition function to acquire JP1 events.
For details about how to use the JP1 event acquisition function to acquire JP1 events, see Chapter 2. Issuing and
Acquiring JP1 Events.

Add extended attributes and messages to events in JP1/SES format
JP1/SES is a JP1 program of Version 5 or earlier. An event that JP1/SES handled is called an event in JP1/SES
format. You cannot display events in the JP1/SES format in the JP1/IM Event Console window, because they do not
have extended attributes. However, by using JP1/Base to add extended attributes to events in JP1/SES format, you
can monitor them in the JP1/IM Event Console window as JP1 events. In addition to adding extended attributes,
you can also add a message.
For details about how to use a definition file to add extended attributes and messages in JP1/SES format, see the
manual JP1/Base User's Guide.

1. Overview of Customizing and Extending the Functionality of JP1/Base

JP1/Base Function Reference 15

1.2 Sample source files of functions

JP1/Base provides you sample source files of functions. Editing and compiling the sample source files enables users to
easily create and issue JP1 events based on the user's environment, as well as to obtain JP1 events. For details of the
sample source files, see Appendix B. Sample Source Files.

1. Overview of Customizing and Extending the Functionality of JP1/Base

JP1/Base Function Reference 16

Part 2: Operation

2 Issuing and Acquiring JP1 Events

This chapter provides an overview of the function for issuing JP1 events with user-defined event
attributes directly from user applications, and the functions for directly acquiring JP1 events in other
JP1 programs and user applications. It also explains the prerequisites and procedures for each
function.

JP1/Base Function Reference 17

2.1 Overview of functions for issuing and acquiring events

Issuing JP1 events
JP1/IM enables you to monitor events by converting application-specific log files, SNMP traps, and the Windows
event log to JP1 events. However, you cannot use JP1/IM to define application-specific event attributes and other
information in detail.
You can use the JP1 event issuing function of JP1/Base to issue user-defined events that include user-defined event
attributes directly from user applications.
These user-defined events that include user-defined event attributes (specific information in extended attributes) can
then be displayed in the Event Details window by using JP1/IM to create definition files.
The following figure provides an overview of issuing a JP1 (user-defined) event to display the user-defined event
attributes.

Figure 2‒1: Overview of issuing a JP1 (user-defined) event to display the user-defined event
attributes

Acquiring JP1 events
JP1/Base allows you to register and manage a wide variety of events issued by a system as JP1 events in the event
database. However, user applications cannot directly use these JP1 events.
By using the JP1 event acquisition functions, user applications are able to acquire and use JP1 events directly from
the JP1/Base event database.
The following figure shows an overview of JP1 event acquisition.

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 18

Figure 2‒2: JP1 event acquisition

2.1.1 Prerequisites
The following lists the prerequisites required for using functions provided by JP1/Base (JP1 event issuing function and
JP1 event acquisition functions).

• An environment for compiling the source files that use the functions (JP1 event issuing function and JP1 event
acquisition functions)

• JP1/Base for the OS in use

• A compiler for the OS in use

(1) Installation of JP1/Base
JP1/Base is required in order to compile and execute the source files that use the functions provided by JP1/Base. This
is because the libraries and header files provided by JP1/Base are used during compiling and execution. Therefore,
before you do anything else, install JP1/Base on the machine on which you will be performing compiling and execution.

(2) Installation of a compiler
To compile the source files that use the functions provided by JP1/Base, you need one of the compilers listed in the
following table. Before you start operations, install one of these compilers on the machine on which you will compile
the source files.

Table 2‒1: Compilers

OS Compiler

Windows • Visual C++(R) 2010
• Visual C++(R) 2012
• Visual C++(R) 2012

HP-UX (IPF) HP C/aC++ A.06.05 or later

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 19

OS Compiler

Solaris (SPARC) Sun Studio 12

AIX • XL C/C++ Enterprise Edition V9.0 for AIX
• XL C/C++ Enterprise Edition V10.1 for AIX
• XL C/C++ Enterprise Edition V11.1 for AIX
• XL C/C++ Enterprise Edition V12.1 for AIX
• XL C/C++ Enterprise Edition V13.1 for AIX

Linux • gcc version 4.4.5
• gcc version 4.4.7
• gcc version 4.8

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 20

2.2 Procedures for issuing and acquiring JP1 events

2.2.1 Procedure for issuing JP1 events
To issue JP1 events:

1. Decide the types and attributes of the JP1 events you want to issue.

2. Write code that uses the JP1 event issuing function.

3. Compile the source files.

To be able to view in JP1/IM - View the user-defined event attributes that are appended to a JP1 event, you must then
use JP1/IM to create the following definition files on a machine where JP1/IM - Manager is installed:

• Definition file for extended event attributes

• Definition file for object types

For details about how to create these definition files using JP1/IM, see the manual JP1/Integrated Management -
Manager Command and Definition File Reference.

(1) Determining the types and attributes of the JP1 events to be issued
To issue JP1 (user-defined) events, you must first decide what kinds of events to issue as JP1 events. The performance
of the JP1/Base event service depends on the number of JP1 events that may be issued. Therefore, we recommend that
you issue JP1 (user-defined) events only for those JP1 events that are needed by JP1/IM to perform system monitoring.

Next, you must determine the types of event attributes you wish to issue. To determine the event attributes, consider
the information you need to know about an application when you monitor events with JP1/IM. Determine the event
attributes of all JP1 (user-defined) events for each application in advance.

You can use the JP1 event attribute values as arguments for initiating automated actions and invoking monitor windows
in JP1/IM. For details on the event attributes used in the example described below, see Appendix A. Criteria for Setting
JP1 Event Attributes.

The example below uses the Windows application SAMPLE to explain issuing the startup event and the abnormal
termination event. The character strings enclosed in parentheses are the names of the arguments in the JP1 event issuing
function.

Types of JP1 events

• Startup event (JP1 event issued at the startup of the application)
Event ID (BaseID): 0x00000001
Message (message): Starts the SAMPLE application.

• Abnormal termination event (JP1 event issued at the abnormal termination of the application)
Event ID (BaseID): 0x00000002
Message (message): The SAMPLE application terminated abnormally.

Event attributes including extended attributes (extattrs): Startup event
Assign the following attributes to the startup event of the SAMPLE application.

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 21

Table 2‒2: Attributes to be assigned to the startup event

Attribute type Item Attribute name Description

Basic attribute Event ID -- 0x00000001

Message -- Starts the SAMPLE application.

Extended attributes
(common attributes)

Event level SEVERITY Notice

User name USER_NAME SAMPLE_USER

Product name PRODUCT_NAME /COMPANY/APP1/SAMPLE_PRODUCT
(product name)

Object type OBJECT_TYPE SAMPLE

Object name OBJECT_NAME SAMPLE_NAME

Root object type ROOT_OBJECT_TYPE ROOT_SAMPLE

Root object name ROOT_OBJECT_NAME ROOT_SAMPLE_NAME

Object ID OBJECT_ID SAMPLE_ID

Occurrence OCCURRENCE START

Start time START_TIME Start time of the SAMPLE application. The
number of seconds from 00:00:00 on UTC
1970-01-01.

Platform type PLATFORM NT

Version information ACTION_VERSION 0600

Extended attributes
(user-specific attributes)

SAMPLE common attribute
1

COMMON_ATTR1 NATIVE

SAMPLE common attribute
2

COMMON_ATTR2 TRUE

SAMPLE start attribute 1 START_ATTR1 SAMPLE1

SAMPLE start attribute 2 START_ATTR2 SAMPLE2

Event attributes including extended attributes (extattrs): Abnormal termination event
Assign the following attributes to the abnormal termination event of the SAMPLE application.

Table 2‒3: Attributes to be assigned to the abnormal termination event

Attribute type Item Attribute name Description

Basic attribute Event ID -- 0x00000002

Message -- The SAMPLE application terminated
abnormally.

Extended attributes
(common attributes)

Event level SEVERITY Error

User name USER_NAME SAMPLE_USER

Product name PRODUCT_NAME /COMPANY/APP1/SAMPLE_PRODUCT
(product name)

Object type OBJECT_TYPE SAMPLE

Object name OBJECT_NAME SAMPLE_NAME

Root object type ROOT_OBJECT_TYPE ROOT_SAMPLE

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 22

Attribute type Item Attribute name Description

Root object name ROOT_OBJECT_NAME ROOT_SAMPLE_NAME

Object ID OBJECT_ID SAMPLE_ID

Occurrence OCCURRENCE END

End time END_TIME End time of the SAMPLE application. The
number of seconds from 00:00:00 on UTC
1970-01-01.

Result code RESULT_CODE Termination code that the SAMPLE application
returns when it terminates

Platform type PLATFORM NT

Version information ACTION_VERSION 0600

Extended attributes(user-
specific attributes)

SAMPLE common
attribute 1

COMMON_ATTR1 NATIVE

SAMPLE common
attribute 2

COMMON_ATTR2 TRUE

SAMPLE end attribute 1 END_ATTR1 SAMPLE1

SAMPLE end attribute 2 END_ATTR2 SAMPLE2

(2) Writing code that uses the JP1 event issuing function
The coding example for the SAMPLE application to issue the startup event is as follows:

#include <stdio.h>
#include <time.h>
#include "JevApi.h"

int regist_start_event()
{
 int rc; /* Return code */
 long status = 0; /* Detailed error code */
 const char* server; /* Event server name */
 long baseID; /* Event ID */
 const char* message; /* Message */
 char starttime[32];
 const char* extattrs[16]; /* Array for storing extended
attributes */

 /* Set the destination event server name. */
 server = NULL;

 /* Set the event ID. */
 baseID = 0x00000001;

 /* Set the message. */
 message = "Starts the SAMPLE application.";

 /* Set the extended attributes. */
 extattrs[0] = "SEVERITY=Notice";
 extattrs[1] = "USER_NAME=SAMPLE_USER";
 extattrs[2] = "PRODUCT_NAME=/COMPANY/APP1/SAMPLE_

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 23

 PRODUCT";
 extattrs[3] = "OBJECT_TYPE=SAMPLE";
 extattrs[4] = "OBJECT_NAME=SAMPLE_NAME";
 extattrs[5] = "OBJECT_ROOT_TYPE=ROOT_SAMPLE";
 extattrs[6] = "OBJECT_ROOT_NAME=ROOT_SAMPLE_NAME";
 extattrs[7] = "OBJECT_ID=SAMPLE_ID";
 extattrs[8] = "OCCURRENCE=START";
 sprintf(starttime, "START_TIME=%ld", time(NULL));
 extattrs[9] = starttime;
 extattrs[10] = "PLATFORM=NT";
 extattrs[11] = "VERSION=0600";
 extattrs[12] = "COMMON_ATTR1=NATIVE";
 extattrs[13] = "COMMON_ATTR2=TRUE";
 extattrs[14] = "START_ATTR1=SAMPLE1";
 extattrs[15] = "START_ATTR2=SAMPLE2";

 /* Register the JP1 event. */
 rc = JevRegistEvent(&status,
 server,
 baseID,
 message,
 extattrs,
 16);
 if(rc < 0) {
 fprintf(stderr,
 "JevRegistEvent() failed. status = %ld\n",
 status);
 return -1;
 }

 return 0;
}

2.2.2 Procedure for acquiring JP1 events
To acquire JP1 events:

1. Determine the types and attributes of the JP1 events you want to acquire.

2. Define an event acquisition filter to specify the JP1 events to acquire.

3. Write code that uses JP1 event acquisition functions.

4. Compile the source files.

(1) Determining the types and attributes of the JP1 events to be acquired
JP1/Base registers a wide variety of event types to the event database as JP1 events. Therefore, you must first determine
the types of events you want to acquire from the event database.

Next, determine the event attributes to acquire from these JP1 events. When you are deciding which event attributes to
acquire, consider the information you need to know about the application in question. Determine the event attributes of
all JP1 events being acquired for each application in advance.

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 24

The following explanations are based on acquiring the startup events listed in 2.2.1(1) Determining the types and
attributes of the JP1 events to be issued that are issued as JP1 events in the application SAMPLE.

(2) Defining an event acquisition filter to specify the JP1 events to acquire
To select only the JP1 events you want to acquire, you must define an event acquisition filter. For details about the
syntax of event acquisition filters, see the section on filter syntax in the manual JP1/Base User's Guide. This subsection
provides an example of an event acquisition filter for acquiring the startup events listed in 2.2.1(1) Determining the
types and attributes of the JP1 events to be issued that are coded in the application SAMPLE.

To acquire startup events, you must first consider how to create an event acquisition filter with the following conditions:

• Event ID: 0x00000001
• Value of the extended attribute SEVERITY: Notice
• Value of the extended attribute PRODUCT_NAME: /COMPANY/APP1/SAMPLE_PRODUCT

A filter targeting JP1 events that satisfy the above conditions can be used to acquire startup events. The following is an
example of such an event acquisition filter:

B.ID IN 00000001
E.SEVERITY IN Notice
E.PRODUCT_NAME IN /COMPANY/APP1/ SAMPLE_PRODUCT

Note:

• If you specify a Japanese string for a condition of an event acquisition filter, make sure that the character set
matches the locale information (such as the LANG environment variable) used for execution of JP1 event
acquisition functions. If the character set for the string specified for a condition of an event acquisition filter
differs from the locale information used for execution of JP1 event acquisition functions, JP1 events cannot be
acquired.

• If you define an exclusion condition in an event acquisition filter, connect to an event server of version 09-00
or later. An error occurs (JEV_S_FILTER_ERROR) if you connect to an event server of version 08-00 or earlier.

(3) Writing code that uses JP1 event acquisition functions
JP1 event acquisition functions are used when a JP1 program or user application acquires JP1 events. The following
explains how to issue JP1 event acquisition functions to acquire JP1 events from the event database of JP1/Base.

To issue JP1 event acquisition functions:

1. Issue a function that requests starting the acquisition of JP1 events.
Issue the JevGetOpen function to the event server to request starting the acquisition of JP1 events, and to connect
a JP1 program or user application to the event server. Note that the user who requests starting the acquisition of JP1
events must be preconfigured in the users parameter in the event server settings file (conf) for JP1/Base.

2. Issue functions that request acquisition of JP1 events.
Use various functions to acquire JP1 events and the attributes set in the JP1 events.

3. Issue a function that reports ending the acquisition of JP1 events.
Issue the JevGetClose function to the event server to notify the server of the end of JP1 event acquisition, and
to disconnect the JP1 program or user application from the event server.

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 25

For details about JP1 event acquisition functions, see Chapter 3. Functions. For details about what types of event
attributes can be acquired, see Appendix A. Criteria for Setting JP1 Event Attributes.

The following is a coding example for acquiring the startup events listed in 2.2.1(1) Determining the types and attributes
of the JP1 events to be issued that are coded in the application SAMPLE.

#include <stdio.h>
#include <string.h>
#include "JevApi.h"

int get_start_event()
{
 int rc; /* Return code */
 long position; /* Sequence number within the event database */
 long status; /* Status code address */
 char filter[256]; /* Filter statement buffer */
 const char *server; /* Event server name */
 const char *message; /* Pointer to the message */
 const char *name; /* Pointer to the extended attribute name */
 const char *value; /* Pointer to the extended attribute value */
 JEVGETKEY key; /* Handle for acquiring JP1 events */
 JP1EVENT event; /* Handle for accessing JP1 events */
 JEVACCESSTYPE access; /* Action when no JP1 event exists*/

 /* Set the filter statement to acquire JP1 events. */
 strcpy(filter, "B.ID IN 0x00000001\n");
 strcat(filter, "E.SEVERITY IN Notice\n");
 strcat(filter,
 "E.PRODUCT_NAME IN /COMPANY/APP1/SAMPLE_PRODUCT");

 /* Connect to the event server of the physical host. */
 status = 0;
 /* Event server of the physical host to connect to */
 server = NULL;
/* Acquisition starts with sequence number 0 within the event database. */
 position = 0;
 key = JevGetOpen(&status, server, filter, position);
 if(key == NULL){
 fprintf(stderr,
 "JevGetOpen() failed. Status = %ld\n",
 status);
 return -1;
 }

/* Acquire all the JP1 events which match the filter condition. */
 while(1) {
 status = 0;
 /* Error return when no JP1 event matches the filter condition */
 access = JEVGET_NOWAIT;
 event = JevGetEvent(&status, key, access);
 if(event == NULL){
 if(status == JEV_S_NO_EVENT) {
 /* No more JP1 event matches the filter condition. */
 break;
 }
 else {
 /* Error occurred while acquiring JP1 events. */

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 26

 fprintf(stderr,
 "JevGetEvent() failed. Status = %ld\n",
 status);
 JevGetClose(&status, key);
 return -1;
 }
 }

 /* Acquire a message. */
 status = 0;
 rc = JevGetMessage(&status, event, &message);
 if(rc < 0){
 fprintf(stderr,
 "JevGetMessage() failed. Status = %ld\n",
 status);
 JevFreeEvent(&status, event);
 JevGetClose(&status, key);
 return -1;
 }
 else{
 printf("JevGetMessage() message = %s\n", message);
 }

 /* Acquire the (first) extended attribute. */
 status = 0;
 rc = JevGetFirstExtAttr(&status, event, &name, &value);
 if(rc < 0){
 fprintf(stderr,
 "JevGetFirstExtAttr() failed. Status = %ld\n",
 status);
 JevFreeEvent(&status, event);
 JevGetClose(&status, key);
 return -1;
 }
 else{
 printf("JevGetFirstExtAttr() name = %s\n", name);
 printf("JevGetFirstExtAttr() value = %s\n", value);
 }

 /* Acquire the (subsequent) extended attribute. */
 while(1) {
 status = 0;
 rc = JevGetNextExtAttr(&status, event, &name, &value);
 if(rc < 0){
 if(status == JEV_S_EXTATTR_EOD) {
 /* No more extended attribute exists. */
 break;
 }
 else {
 /* Error occurred while acquiring extended attributes. */
 fprintf(stderr,
 "JevGetNextExtAttr() failed.
 Status = %ld\n", status);
 JevFreeEvent(&status, event);
 JevGetClose(&status, key);
 return -1;
 }
 }

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 27

 else {
 printf("JevGetNextExtAttr() name = %s\n", name);
 printf("JevGetNextExtAttr() value = %s\n", value);
 }
 }

 /* Release the memory allocated for the acquired JP1 events. */
 rc = JevFreeEvent(&status, event);
 if(rc < 0){
 fprintf(stderr,
 "JevFreeEvent() failed. Status = %ld\n",
 status);
 JevGetClose(&status, key);
 return -1;
 }
 }

 /* Disconnect the event server.*/
 rc = JevGetClose(&status, key);
 if(rc < 0){
 fprintf(stderr,
 "JevGetClose() failed. Status = %ld\n",
 status);
 return -1;
 }

 return 0;
}

2.2.3 Compiling the source files
To issue and acquire JP1 events, you must first compile and link the code source files.

Files needed for compiling:

• JP1/Base header file (installed when JP1/Base is installed)

• Source files created in C or C++ (user-created files)

The location of the header file is as follows:
Windows: installation-folder\include\JevApi.h
UNIX: /opt/jp1base/include/JevApi.h

Files needed for linking:

• Libraries (installed when JP1/Base is installed)

Note that the required libraries vary by OS and by compiler. The following table lists the libraries required for each
OS.

Table 2‒4: Libraries required for each OS

OS Threading Required library

Windows 32-bit multi-threaded installation-folder\lib\libJevApiA.lib

64-bit multi-threaded installation-folder\lib\libJevApiAx64.lib

HP-UX (IPF) 32-bit single-threaded /opt/jp1base/lib/libJevApiAst32.a

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 28

OS Threading Required library

32-bit multi-threaded /opt/jp1base/lib/libJevApiAmt32.a

64-bit single-threaded /opt/jp1base/lib/libJevApiAst64.a

64-bit multi-threaded /opt/jp1base/lib/libJevApiAmt64.a

Solaris (SPARC) 32-bit single-threaded /opt/jp1base/lib/libJevApiAst.a

32-bit multi-threaded /opt/jp1base/lib/libJevApiAmt.a

• AIX
• Linux

32-bit single-threaded /opt/jp1base/lib/libJevApiAst.a

32-bit multi-threaded /opt/jp1base/lib/libJevApiAmt.a

64-bit single-threaded /opt/jp1base/lib/libJevApiAst64.a

64-bit multi-threaded /opt/jp1base/lib/libJevApiAmt64.a

The table below lists for each OS the options to specify when compiling and linking the source files.

Note:
When you compile and link source files in Visual Studio Integrated Development Environment (GUI) for Windows,
use options that are appropriate for configuring the environment, from among the compile and link options listed in
the tables below.

Table 2‒5: Compile options

OS Threading Compile option

Windows 32-bit multi-threaded /MD /I "installation-folder\include"
(Implement in a 32-bit VC++ project configuration)

64-bit multi-threaded /MD /I "installation-folder\include"
(Implement in a 64-bit VC++ project configuration)

HP-UX (IPF) 32-bit single-threaded -Aa# -I/opt/jp1base/include

32-bit multi-threaded -Aa# -mt -I/opt/jp1base/include

64-bit single-threaded +DD64 -Aa# -I/opt/jp1base/include

64-bit multi-threaded +DD64 -Aa# -mt -I/opt/jp1base/include

Solaris (SPARC) 32-bit single-threaded -I/opt/jp1base/include

32-bit multi-threaded -mt -D_THREAD_SAFE -I/opt/jp1base/include

AIX 32-bit single-threaded -I/opt/jp1base/include

32-bit multi-threaded -D_REENTRANT -D_THREAD_SAFE -I/opt/jp1base/
include

64-bit single-threaded -q64 -I/opt/jp1base/include

64-bit multi-threaded -q64 -D_REENTRANT -D_THREAD_SAFE -I/opt/jp1base/
include

Linux 32-bit single-threaded -I/opt/jp1base/include

32-bit multi-threaded -D_REENTRANT -D_THREAD_SAFE -I/opt/jp1base/
include

64-bit single-threaded -m64 -I/opt/jp1base/include

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 29

OS Threading Compile option

64-bit multi-threaded -m64 -D_REENTRANT -D_THREAD_SAFE -I/opt/jp1base/
include

#: The -Aa option for HP-UX (IPF) is needed only when you use the C compiler (cc) to compile. You can replace the -Aa option with the
-Ae option, but do not specify the -Ac option. The -Aa option can be omitted if you use the C++ compiler (aCC).

Table 2‒6: Link options

OS Threading Link option

Windows 32-bit multi-threaded "installation-folder\lib\libJevApiA.lib"
(Implement in a 32-bit VC++ project configuration)

64-bit multi-threaded "installation-folder\lib\libJevApiAx64.lib"
(Implement in a 64-bit VC++ project configuration)

HP-UX (IPF) 32-bit single-threaded /opt/jp1base/lib/libJevApiAst32.a

32-bit multi-threaded -mt /opt/jp1base/lib/libJevApiAmt32.a

64-bit single-threaded +DD64 /opt/jp1base/lib/libJevApiAst64.a

64-bit multi-threaded +DD64 -mt /opt/jp1base/lib/libJevApiAmt64.a

Solaris (SPARC) 32-bit single-threaded /opt/jp1base/lib/libJevApiAst.a -ldl

32-bit multi-threaded /opt/jp1base/lib/libJevApiAmt.a -ldl -lpthread

AIX 32-bit single-threaded /opt/jp1base/lib/libJevApiAst.a -ldl

32-bit multi-threaded /opt/jp1base/lib/libJevApiAmt.a -ldl -lpthread

64-bit single-threaded /opt/jp1base/lib/libJevApiAst64.a -q64 -ldl

64-bit multi-threaded /opt/jp1base/lib/libJevApiAmt64.a -q64 -ldl -
lpthread

Linux 32-bit single-threaded /opt/jp1base/lib/libJevApiAst.a -ldl

32-bit multi-threaded /opt/jp1base/lib/libJevApiAmt.a -ldl -lpthread

64-bit single-threaded /opt/jp1base/lib/libJevApiAst64.a -m64 -ldl

64-bit multi-threaded /opt/jp1base/lib/libJevApiAmt64.a -m64 -ldl -
lpthread

Notes:

• The libraries provided by JP1/Base are static libraries (or an archive for UNIX). They are not DLL import libraries
or shared libraries.

• The libraries provided by JP1/Base are dynamically loaded by means of a DLL (or a shared library for UNIX)
bundled with JP1/Base. This means that created programs will run on a machine on which JP1/Base is not
installed, but certain functions will fail with a JEV_NO_LIBRARY error.

• DLLs dynamically loaded from the libraries provided by JP1/Base for Windows are independent of the libraries
packaged with side-by-side assembly, so no manifest is provided.

• Do not use the -l option when linking the libraries provided by JP1/Base on UNIX.

• When linking on UNIX, we recommend that you use the same linkage editor you used for the compiling (cc,
for example), rather than using ld. If you do use ld to link the files, specify the same options in the same order
as the compiler when it automatically passes to ld.

• To compile source files in the Linux x64 environment, add -m32 to the compile options and link options.

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 30

2.3 Migrating user applications from an earlier version

This section explains the procedure for migrating user applications created in an earlier version of JP1/Base to the current
version.

2.3.1 Migrating without recompiling
JP1/Base assures binary compatibility with user applications created in earlier versions of JP1/Base. Therefore,
previously created user applications can run on the most recent version of JP1/Base without having to be recompiled.

Binary compatibility of the user applications is assured, provided the JP1/Base execution environment version is the
same or later than the JP1/Base development environment version. Therefore, for a user application that is executed by
several different versions of JP1/Base, use a JP1/Base development environment version that is no later than the earliest
version of the JP1/Base execution environment that is being used.

The following table lists examples of the ranges of binary compatibility that are assured between the development
environment and the execution environment of JP1/Base.

Table 2‒7: Examples of the ranges of binary compatibility that are assured

Development environment Execution environment Binary compatibility

If a user application was created in the
following development environment:
• JP1/Base 09-10
• Compiler
• User application

If JP1/Base is a later version:
• JP1/Base 09-50 or later

Y

If JP1/Base is the same version:
• JP1/Base 09-10

Y

If JP1/Base is an earlier version:
• JP1/Base 09-00 or earlier

N

Legend:
Y: Assured.
N: Not assured.

Important
The above table does not consider which OS versions are assured for running user applications generated
by the compiler that is being used. For example, a user application generated with a compiler supported in
JP1/Base 09-10 might not be able to run on an OS for which support was added in JP1/Base 09-50. For
details about which OS versions are assured for running user applications generated with a particular
compiler, see the compiler documentation.

2.3.2 Recompiling before migrating
JP1/Base assures compatibility of source code created in earlier versions. Therefore, by recompiling the source code of
the user application, you can run recompiled user applications on the latest version of JP1/Base without having to modify
the source code.

2. Issuing and Acquiring JP1 Events

JP1/Base Function Reference 31

Part 3: Reference

3 Functions

This chapter describes the functions for issuing and acquiring JP1 events.

JP1/Base Function Reference 32

Function description format

This section lists the headings that are used in this chapter for the descriptions of the JP1 event issuing function and the
JP1 event acquisition functions.

Description
Describes the functionality of the function.

Definition header
Indicates the header for defining the function.

Format
Shows the format of the function.

Argument(s)
Describes the arguments and values that can be specified in the function.

Return value(s)
Describes the values that the function may return after its execution.

Note(s)
Gives the points you must remember when you use the function. For the notes common to all functions, see the next
section Notes common to all functions.

3. Functions

JP1/Base Function Reference 33

Notes common to all functions

The notes common to all functions provided by JP1/Base are as follows.

• For the Windows and UNIX versions, the operation of a function called from a multi-thread program is assured.

• For the Windows and UNIX versions, when using the functions in a multi-thread program, you cannot use any of
these functions in a thread that was generated before the first function was called.

3. Functions

JP1/Base Function Reference 34

List of functions

JP1/Base provides a JP1 event issuing function and the JP1/event acquisition functions described below. The following
two tables list and explain these functions. For details about the event attributes of the JP1 events used by the JP1 event
issuing function and the JP1 event acquisition functions, see Appendix A. Criteria for Setting JP1 Event Attributes.

Table 3‒1: JP1 event issuing function

Function name Explanation

JevRegistEvent Issues a JP1 event to the event server of JP1/Base.

Table 3‒2: JP1 event acquisition functions

Function name Explanation

JevGetOpen Connects the program to the event server of JP1/Base so that the program can
acquire JP1 events.

JevGetEvent Acquires a JP1 event.

JevGetSequenceNumber Acquires a basic attribute of the JP1 event (the serial number of the JP1 event in
the event database).

JevGetBaseID Acquires a basic attribute of the JP1 event (the base part of the event ID).

JevGetExtID Acquires a basic attribute of the JP1 event (the extended part of the event ID).

JevGetRegistFactor Acquires a basic attribute of the JP1 event (registered reason).

JevGetProcessID Acquires a basic attribute of the JP1 event (source process ID).

JevGetRegistTime Acquires a basic attribute of the JP1 event (registered time).

JevGetArrivedTime Acquires a basic attribute of the JP1 event (arrived time).

JevGetRegistUserID Acquires a basic attribute of the JP1 event (source user ID).

JevGetRegistGroupID Acquires a basic attribute of the JP1 event (source group ID).

JevGetRegistUserName Acquires a basic attribute of the JP1 event (source user name).

JevGetRegistGroupName Acquires a basic attribute of the JP1 event (source group name).

JevGetSourceServer Acquires a basic attribute of the JP1 event (source event server name).

JevGetDestinationServer Acquires a basic attribute of the JP1 event (destination event server name).

JevGetSourceAddress Acquires a basic attribute of the JP1 event (source IP address).

JevGetDestinationAddress Acquires a basic attribute of the JP1 event (destination IP address).

JevGetSourceSequenceNumber Acquires a basic attribute of the JP1 event (source serial number).

JevGetCodeSet Acquires a basic attribute of the JP1 event (code set).

JevGetMessage Acquires a basic attribute of the JP1 event (message).

JevGetDetailInformation Acquires a basic attribute of the JP1 event (detailed information).

JevGetExtAttrDirect Acquires an extended attribute of the JP1 event.

JevGetFirstExtAttr Acquires the first extended attribute of the JP1 event.

JevGetNextExtAttr Acquires the next extended attribute of the JP1 event.

JevFreeEvent Deallocates the memory for an acquired JP1 event.

3. Functions

JP1/Base Function Reference 35

Function name Explanation

JevGetClose Disconnects the program from the event server.

The following sections describe the above functions in alphabetical order.

3. Functions

JP1/Base Function Reference 36

JevFreeEvent

Description
This function deallocates the area containing a JP1 event that you can access by using the return value of a
JevGetEvent() function.

Definition header
JevApi.h

Format

int JevFreeEvent(long* lplStatus,
 JP1EVENT event);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒3: Status code and meaning (JevFreeEvent)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

Return values

Situation Explanation

Normal termination The function returns 0.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 37

JevGetArrivedTime

Description
This function acquires the time when the JP1 event arrived, as a basic attribute of the JP1 event. The time is represented
by the number of seconds from 1970-01-01 00:00:00 (UTC).

Definition header
JevApi.h

Format

long JevGetArrivedTime(long* lplStatus,
 JP1EVENT event);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒4: Status code and meaning (JevGetArrivedTime)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

Return values

Situation Explanation

Normal termination The function returns the arrival time of the JP1 event that can be referenced with the specified
handle.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 38

JevGetBaseID

Description
This function acquires the base part of the event ID, as a basic attribute of the JP1 event. The base part of the event ID
is the first four bytes of the eight-byte event ID.

Definition header
JevApi.h

Format

long JevGetBaseID(long* lplStatus,
 JP1EVENT event);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒5: Status code and meaning (JevGetBaseID)

Situation Explanation

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

Return values

Situation Explanation

Normal termination The function returns the base part of the ID of the JP1 event that can be referenced with the
specified handle.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 39

JevGetClose

Description
This function disconnects the program from the event server and closes the JP1-event acquisition handle returned by
the JevGetOpen() function.

The JP1-event acquisition handle returned by the JevGetOpen() function must be closed by using the
JevGetClose() function. In Windows, if the process terminates without calling this function, a system-resource
leak error occurs.

Definition header
JevApi.h

Format

int JevGetClose(long* lplStatus,
 JEVGETKEY key);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status codes that may be returned.

Table 3‒6: Status codes and meanings (JevGetClose)

Status code Meaning

JEV_S_CONNECT_ERROR Failed to connect the event server.

JEV_S_PARAM_ERROR An invalid parameter is specified.

JEV_S_MAXOPEN The number of opened files reached the maximum.

JEV_S_NOMEMORY Memory is insufficient.

JEV_S_IO_ERR An I/O error occurred.

JEV_S_SYSTEM_ERROR A system error occurred (the system resource became insufficient).

key
In key, specify the handle for acquiring the target JP1 event (returned by the JevGetOpen() function).

Return values

Situation Explanation

Normal termination The function returns 0.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 40

JevGetCodeSet

Description
This function acquires the code set as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetCodeSet(long* lplStatus,
 JP1EVENT event,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒7: Status code and meaning (JevGetCodeSet)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired code set. When the corresponding
data does not exist, a NULL pointer is set.

Return values

Situation Explanation

Normal termination The function returns 0. Also, in the area specified in lppszValue, the function stores the pointer
to the code set.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 41

JevGetDestinationAddress

Description
This function acquires the destination IP address as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetDestinationAddress(long* lplStatus,
 JP1EVENT event,
 int* lpnSize,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒8: Status code and meaning (JevGetDestinationAddress)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lpnSize
In lpnSize, specify the pointer to the area for storing the length of the destination IP address. For JP1 events acquired
in an IPv6 environment, the length of the destination IP address must be 16.

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired destination IP address.

Return values

Situation Explanation

Normal termination The function returns 0 and, in the area specified in lppszValue, stores the pointer to the destination
IP address. Also, in the area specified in lpnSize, the function stores the size of the destination
IP address.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 42

JevGetDestinationServer

Description
This function acquires the destination event server name as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetDestinationServer(long* lplStatus,
 JP1EVENT event,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒9: Status code and meaning (JevGetDestinationServer)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired destination event server name. When
the corresponding data does not exist, a NULL pointer is set.

Return values

Situation Explanation

Normal termination The function returns 0. Also, in the area specified in lppszValue, the function stores the pointer
to the destination event server name.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 43

JevGetDetailInformation

Description
This function acquires the detailed information of the JP1 event as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetDetailInformation(long* lplStatus,
 JP1EVENT event,
 long* lplSize,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒10: Status code and meaning (JevGetDetailInformation)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lplSize
In lplSize, specify the pointer to the area for storing the length of the detailed information.

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired detailed information. When the
corresponding data does not exist, a NULL pointer is set.

Return values

Situation Explanation

Normal termination The function returns 0 and, in the area specified in lppszValue, stores the pointer to the detailed
information. Also, in the area specified in lplSize, the function stores the length of the detailed
information.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 44

JevGetEvent

Description
This function acquires a JP1 event that matches the condition specified in the JevGetOpen() function. You can call
this function any number of times to acquire the JP1 events that satisfy the filter condition specified in the
JevGetOpen() function in the order in which the events were registered with the event database.

Definition header
JevApi.h

Format

JP1EVENT JevGetEvent(long* lplStatus,
 JEVGETKEY key,
 JEVACCESSTYPE access);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status codes that may be returned.

Table 3‒11: Status code and meaning (JevGetEvent)

Status code Meaning

JEV_S_CONNECT_ERROR Failed to connect the event server.

JEV_S_INVALID_SERVER The event server name is invalid.

JEV_S_PARAM_ERROR An invalid parameter is specified.

JEV_S_NO_EVENT No JP1 events satisfy the filter condition.

JEV_S_MAXOPEN The number of opened files reached the maximum.

JEV_S_NOMEMORY Memory is insufficient.

JEV_S_IO_ERR An I/O error occurred.

key
In key, specify the handle for acquiring the target JP1 event (returned by the JevGetOpen() function).

access
In access, specify either of the following values for specifying the action to be taken if no JP1 events satisfy the condition
specified for acquiring JP1 events.

JEVGET_WAIT
Does not return the control until the corresponding JP1 event occurs.

JEVGET_NOWAIT
Returns an error immediately if the corresponding JP1 event is not found.

3. Functions

JP1/Base Function Reference 45

Return values

Situation Explanation

Normal termination The function returns the handle for accessing the JP1 event.

Abnormal termination The function returns a null pointer. Also, in the area specified in lplStatus, the function stores the
detailed error code.

3. Functions

JP1/Base Function Reference 46

JevGetExtAttrDirect

Description
This function acquires an extended attribute of the JP1 event.

Definition header
JevApi.h

Format

const char*JevGetExtAttrDirect(long* lplStatus,
 JP1EVENT event,
 const char* lpszName);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status codes that may be returned.

Table 3‒12: Status codes and meanings (JevGetExtAttrDirect)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

JEV_S_NOT_DEFINED The specified attribute is not defined.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lpszName
In lpszName, specify the pointer to the character string that specifies the extended attribute name.

Return values

Situation Explanation

Normal termination The function returns the extended attribute value of the JP1 event that can be referenced with the
specified handle.

Abnormal termination The function returns a null pointer. Also, in the area specified in lplStatus, the function stores the
detailed error code.

3. Functions

JP1/Base Function Reference 47

JevGetExtID

Description
This function acquires the extended part of the event ID, as a basic attribute of the JP1 event. The extended part of the
event ID is the last four bytes of the eight-byte event ID.

Definition header
JevApi.h

Format

long JevGetExtID(long* lplStatus,
 JP1EVENT event);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒13: Status code and meaning (JevGetExtID)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

Return values

Situation Explanation

Normal termination The function returns the extended part of the ID of the JP1 event that can be referenced with the
specified handle.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 48

JevGetFirstExtAttr

Description
This function acquires the first extended attribute specified in the JP1 event.

Definition header
JevApi.h

Format

int JevGetFirstExtAttr(long* lplStatus,
 JP1EVENT event,
 const char** const lppszName,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status codes that may be returned.

Table 3‒14: Status codes and meanings (JevGetFirstExtAttr)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

JEV_S_EXTATTR_EOD This JP1 event includes no more extended attributes.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lppszName
In lppszName, specify the pointer to the area for storing the pointer to the acquired extended attribute name.

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired extended attribute value. When the
corresponding data does not exist, a NULL pointer is set.

Return values

Situation Explanation

Normal termination The function returns 0 and, in the area specified in lppszName, stores the pointer to the extended
attribute name. Also, in the area specified in lppszValue, the function stores the pointer to the
extended attribute value.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 49

JevGetMessage

Description
This function acquires the message in the JP1 event as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetMessage(long* lplStatus,
 JP1EVENT event,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒15: Status code and meaning (JevGetMessage)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired message. When the corresponding
data does not exist, a NULL pointer is set.

Return values

Situation Explanation

Normal termination The function returns 0. Also, in the area specified in lppszValue, the function stores
the pointer to the message.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores
the detailed error code.

3. Functions

JP1/Base Function Reference 50

JevGetNextExtAttr

Description
This function acquires the next specified extended attribute of a JP1 event after an extended attribute is acquired by a
JP1 JevGetFirstAttr() or a JevGetNextAttr() event acquisition function.

Definition header
JevApi.h

Format

int JevGetNextExtAttr(long* lplStatus,
 JP1EVENT event,
 const char** const lppszName,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status codes that may be returned.

Table 3‒16: Status codes and meanings (JevGetNextExtAttr)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

JEV_S_EXTATTR_EOD This JP1 event includes no more extended attributes.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lppszName
In lppszName, specify the pointer to the area for storing the pointer to the acquired extended attribute name.

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired extended attribute value.

Return values

Situation Explanation

Normal termination The function returns 0 and, in the area specified in lppszName, stores the pointer to the next
extended attribute name. Also, in the area specified in lppszValue, the function stores the pointer
to the next extended attribute value.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 51

JevGetOpen

Description
This function connects the program to the event server of JP1/Base so that the program can acquire JP1 events.

Definition header
JevApi.h

Format

JEVGETKEY JevGetOpen(long* lplStatus,
 const char* lpszServer,
 const char* lpszFilter,
 long lPosition);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status codes that may be returned.

Table 3‒17: Status codes and meanings (JevGetOpen)

Status code Meaning

JEV_NO_LIBRARY No library is found.#1 Alternatively, the shared library cannot be found because
too many files are open.

JEV_S_CONNECT_ERROR Failed to connect the event server.

JEV_S_PARAM_ERROR An invalid parameter is specified.

JEV_S_MAXOPEN The number of open files reached the maximum.

JEV_S_NOMEMORY Memory is insufficient.

JEV_S_IO_ERR An I/O error occurred.

JEV_S_SYSTEM_ERROR A system error occurred (system resources became insufficient).

JEV_S_NO_AUTHORITY The JP1 program or user application does not have sufficient authority to
connect the event server.#2

JEV_S_FILTER_ERROR The filter contains an error (excluding errors in regular expressions).

JEV_S_REGEX_ERROR The regular expression specified in the filter contains an error.

JEV_S_REGEX_CANNOY_USED The regular expression library cannot be used.

#1: Check if necessary files have been deleted or if incorrect compile options are specified. If necessary files have been
deleted, reinstall JP1/Base. If compile options are incorrect, reconfigure the option settings.

#2: The users parameter in the event server settings file (conf) for JP1/Base defines the authority to connect the
event server.

3. Functions

JP1/Base Function Reference 52

lpszServer
In lpszServer, specify the pointer to a character string that indicates a destination event server name and ends with \0.
If you specify a null pointer, the function connects the program to the event server that has the same name as the local
host name. Specify an event server name of 256 bytes or less, including the \0.

lpszFilter
In lpszFilter, specify the pointer to a character string ending in \0 that indicates a filter, as described by the filter syntax
section in the manual JP1/Base User's Guide. If you specify a null pointer, the function targets all the JP1 events.

lPosition
In lPosition, specify a serial number in the event database as the position from which to start acquiring JP1 events.

If you specify -1, the function can acquire the JP1 events registered after the issuance of this function. Note that events
that occur during execution of this function might not be acquired. Therefore, acquisition is guaranteed for JP1 events
that are registered after the completion of this function.

Return values

Situation Explanation

Normal termination This function returns the handle for acquiring the JP1 event.

Abnormal termination The function returns a null pointer. Also, in the area specified in lplStatus, the function stores the
detailed error code.

3. Functions

JP1/Base Function Reference 53

JevGetProcessID

Description
This function acquires the source process ID as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

long JevGetProcessID(long* lplStatus,
 JP1EVENT event);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒18: Status code and meaning (JevGetProcessID)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

Return values

Situation Explanation

Normal termination The function returns the JP1 event-originating process ID that can be referenced with the
specified handle.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 54

JevGetRegistFactor

Description
This function acquires the registration type of the JP1 event, as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetRegistFactor(long* lplStatus,
 JP1EVENT event);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒19: Status code and meaning (JevGetRegistFactor)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

Return values

Situation Explanation

Normal termination The function returns the JP1-event registration type that can be referenced with the specified
handle.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 55

JevGetRegistGroupID

Description
This function acquires the source group ID as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetRegistGroupID(long* lplStatus,
 JP1EVENT event,
 long* lplSize);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒20: Status code and meaning (JevGetRegistGroupID)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lplSize
In lplSize, specify the pointer to the area for containing the event-originating group ID.

Return values

Situation Explanation

Normal termination The function returns 0. Also, in the area specified in lplSize, the function stores the event-
originating group ID.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 56

JevGetRegistGroupName

Description
This function acquires the source group name as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetRegistGroupName(long* lplStatus,
 JP1EVENT event,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒21: Status code and meaning (JevGetRegistGroupName)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired event-originating group name. When
the corresponding data does not exist, a NULL pointer is set.

Return values

Situation Explanation

Normal termination The function returns 0. Also, in the area specified in lppszValue, the function stores the pointer
to the event-originating group name.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 57

JevGetRegistTime

Description
This function acquires the time when the JP1 event was registered, as a basic attribute of the JP1 event. The time is
represented by the number of seconds from 1970-01-01 00:00:00 (UTC).

Definition header
JevApi.h

Format

long JevGetRegistTime(long* lplStatus,
 JP1EVENT event);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒22: Status code and meaning (JevGetRegistTime)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

Return values

Situation Explanation

Normal termination The function returns the registration time of the JP1 event that can be referenced with the specified
handle.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 58

JevGetRegistUserID

Description
This function acquires the source user ID as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetRegistUserID(long* lplStatus,
 JP1EVENT event,
 long* lplSize);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒23: Status code and meaning (JevGetRegistUserID)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lplSize
In lplSize, specify the pointer to the area for storing the event-originating user ID.

Return values

Situation Explanation

Normal termination The function returns 0. Also, in the area specified in lplSize, the function stores the event-
originating user ID.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 59

JevGetRegistUserName

Description
This function acquires the source user name as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetRegistUserName(long* lplStatus,
 JP1EVENT event,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒24: Status code and meaning (JevGetRegistUserName)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired event-originating user name. When
the corresponding data does not exist, a NULL pointer is set.

Return values

Situation Explanation

Normal termination The function returns 0. Also, in the area specified in lppszValue, the function stores the pointer
to the event-originating user name.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 60

JevGetSequenceNumber

Description
The function acquires the serial number in the event database, as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

long JevGetSequenceNumber(long* lplStatus,
 JP1EVENT event);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒25: Status code and meaning (JevGetSequenceNumber)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

Return values

Situation Explanation

Normal termination The function returns the serial number of the JP1 event in the event database that can be referenced
with the specified handle.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 61

JevGetSourceAddress

Description
This function acquires the source IP address as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetSourceAddress(long* lplStatus,
 JP1EVENT event,
 int* lpnSize,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒26: Status code and meaning (JevGetSourceAddress)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lpnSize
In lpnSize, specify the pointer to the area for storing the length of the event-originating IP address. For JP1 events
acquired in an IPv6 environment, the length of the destination IP address must be 16.

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired event-originating IP address.

Return values

Situation Explanation

Normal termination The function returns 0 and, in the area specified in lppszValue, stores the pointer to the event-
originating IP address. Also, in the area specified in lpnSize, the function stores the length of the
event-originating IP address.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 62

JevGetSourceSequenceNumber

Description
This function acquires the serial number for each event-originating program, as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

long JevGetSourceSequenceNumber(long* lplStatus,
 JP1EVENT event);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒27: Status code and meaning (JevGetSourceSequenceNumber)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

Return values

Situation Explanation

Normal termination The function returns the JP1-event serial number for each event-originating program that can be
referenced with the specified handle.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 63

JevGetSourceServer

Description
This function acquires the source event server name as a basic attribute of the JP1 event.

Definition header
JevApi.h

Format

int JevGetSourceServer(long* lplStatus,
 JP1EVENT event,
 const char** const lppszValue);

Arguments

lplStatus
In lplStatus, specify the pointer to the area for containing the status code that this function returns if the function
abnormally terminates. The following explains the status code.

Table 3‒28: Status code and meaning (JevGetSourceServer)

Status code Meaning

JEV_S_PARAM_ERROR An invalid parameter is specified.

event
In event, specify the handle for accessing the target JP1 event (the return value of the JevGetEvent() function).

lppszValue
In lppszValue, specify the pointer to the area for storing the pointer to the acquired event-originating event server name.

Return values

Situation Explanation

Normal termination The function returns 0. Also, in the area specified in lppszValue, the function stores the pointer
to the event-originating event server name.

Abnormal termination The function returns -1. Also, in the area specified in lplStatus, the function stores the detailed
error code.

3. Functions

JP1/Base Function Reference 64

JevRegistEvent

Description
This function issues a JP1 event to the JP1/Base event server. Normal termination of this function assures that the local
event server has successfully accepted the JP1 event.

Definition header
JevApi.h

Format

int JevRegistEvent(long* status,
 const char* server,
 long baseID,
 const char* message,
 const char** extattrs,
 int extcount);

Arguments

status
In status, specify the address of the area for storing the status code returned if this function terminates abnormally. The
following explains the status codes that may be returned.

Table 3‒29: Status codes and meanings (JevRegistEvent)

Status code Meaning

JEV_NO_LIBRARY No library is found.# Alternatively, the shared library cannot be found because too
many files are opened.

JEV_S_CONNECT_ERROR Failed to connect the event service.

JEV_S_INVALID_ID The event ID is invalid.

JEV_S_INVALID_SERVER The event server name is invalid.

JEV_S_INVALID_EXT_NAME An extended attribute name is invalid.

JEV_S_OVER_EXT_COUNT The number of extended attributes exceeds the maximum.

JEV_S_OVER_EXT_SIZE The total size of extended attributes exceeds the maximum.

JEV_S_OVER_MESSAGE The message length exceeds the maximum.

JEV_S_PARAM_ERROR An invalid parameter is specified.

JEV_S_NOT_SUPPORT The version is not supported.

JEV_S_MAXOPEN The number of opened files reached the maximum.

JEV_S_NOMEMORY Memory is insufficient.

JEV_S_IO_ERR An I/O error occurred.

JEV_S_SYSTEM_ERROR A system error occurred.

#: Check if necessary files have been deleted or if incorrect compile options are specified. If necessary files have been
deleted, reinstall JP1/Base. If compile options are incorrect, reconfigure the option settings.

3. Functions

JP1/Base Function Reference 65

server
In server, specify a pointer to a character string that ends with \0 and indicates the name of the destination event server
running on the local host. If you specify a NULL pointer, this function attempts to connect the event server that has the
same name as the local host. Specify an event server name of 256 bytes or less, including the \0.

baseID
In baseID, specify a numeric value that indicates the basic part of the event ID you want to register. You can specify
one of the following values:

• 0x00000000

• 0x00000001 to 0x00001FFF

• 0x7FFF8000 to 0x7FFFFFFF

message
In server, specify a pointer to a character string that ends with \0 and indicates the message you want to register. Specify
a message of 1,024 bytes or less, including the \0.

extattrs
In extattrs, specify a string array containing extended-attribute strings. Each extended-attribute string in the array has
the extended-attribute-name=extended-attribute-value format and ends with \0.

extended-attribute-name is a character string that indicates the meaning of the attribute. You can use up to 32
alphanumeric characters including underscores (_) to specify extended-attribute-name. For alphabetic characters, you
can use upper-case characters only. The specified character string must begin with an alphabetic character.

extended-attribute-value is a character string containing the value of the attribute. The character string can have 0 to
10,000 bytes.

You can specify up to 100 extended attributes. The maximum number of bytes used in all attribute values is 10,000
bytes.

If you specify a NULL pointer as an argument, extended attributes are not registered.

For details on extended attributes, see Appendix A. Criteria for Setting JP1 Event Attributes.

extcount
In extcount, specify the number of extended attributes you want to register. This value is ignored if a NULL pointer is
specified in extattrs.

Return values

Situation Explanation

Normal termination The function returns 0.

Abnormal termination The function returns -1.

Note
If you specify character strings containing the same extended attribute name, the last character string takes effect.

3. Functions

JP1/Base Function Reference 66

Appendixes

JP1/Base Function Reference 67

A. Criteria for Setting JP1 Event Attributes

When you issue a user-defined event, you can set event attributes based on the criteria described in the following sections.
You can also reference the criteria described in the following sections to determine whether to acquire those attributes
when acquiring JP1 events.

A.1 Basic attributes
Note that the event ID and the message are the basic attributes used when user-defined events are issued. Use the other
basic attributes for acquiring JP1 events or other purposes.

Table A‒1: Basic attributes of JP1 events

Attribute Explanation

Serial number The serial number of the JP1 events that arrived at the event server (including local events). Serial numbers
are assigned regardless of the event-originating applications. This attribute is not stored when the JP1 event
is transferred between event servers. The major purpose of this attribute is to ensure that the JP1 event will
not be lost or duplicated when a user application acquires the event or the event is transferred to another
event server.

Event ID An eight-byte value indicating the event-originating application or the event that occurred in the application.
Hitachi programs and user programs are allocated specific ranges of event IDs that they can use. The ranges
of values that can be specified for user applications are from 0 to 0x1FFF and from 0x7FFF8000 to
0x7FFFFFFF. Each event ID must be unique within the entire system. The first four bytes of the event
ID is the basic part and the last bytes of the event ID is the extended part.

Registered reason The registration type of the JP1 event registered with the event server. This attribute is not stored when the
JP1 event is transferred between event servers. There are the following registration types:
1

The event was issued from the local event server to the local event server.
2

The event is issued from the local event server to the remote event server.
3

The event was issued from the remote event server to the local event server.
4

The event was transferred from the remote event server to the local event server on the basis of the
configuration settings.

Source process ID The process ID of the event-originating application program.

Registered time The time when the event was registered at the event-originating event server. The time is based on the clock
of the event-originating host and represented with the number of seconds from 1970-01-01 00:00:00 (UTC).

Arrived time The time when the event was registered at the local event server. The time is represented with the number
of seconds from 1970-01-01 00:00:00 (UTC). This attribute is not stored when the JP1 event is transferred
between event servers.

Source user ID The user ID of the event-originating process. In Windows and Java, this user ID is specified in the
environment setting as a fixed value (-1 to 65,535).

Source group ID The group ID of the event-originating process. In Windows and Java, this group ID is specified in the
environment setting as a fixed value (-1 to 65,535).

Source user name The user name of the event-originating process.

Source group name The group name of the event-originating process. In Windows and Java, this group name is a null string.

A. Criteria for Setting JP1 Event Attributes

JP1/Base Function Reference 68

Attribute Explanation

Source event server name The event server name of the event-originating application. This attribute indicates the event server name
of the host where the JP1 event originated, even when the JP1 event has been transferred.

Destination event server name This attributes indicates the name of the event server to which the JP1 event will be transferred when the
transfer to the event server is explicitly specified by the event-originating application.

Source IP address The IP address for the event-originating event server. Note that if the JP1 event passes through NAT or a
proxy, or if the JP1 event is transferred by the environment setting, this IP address is not always correct.

Destination IP address The IP address for the destination event server. Note that if the JP1 event passes through NAT or a proxy,
or if the JP1 event is transferred by the environment setting, this IP address is not always correct.

Source serial number The serial number of the JP1 event in the event database at the event-originating host. This serial number
does not change when the JP1 event is transferred.

Code set The name of the code set with which the messages, detailed information, and extended attributes are written.

Message The message should be:
• A clear explanation of the event
• Written in one line without a new line code

Detailed information Any data

A.2 Extended attributes
Extended attributes of JP1 events are classified into common extended attributes and user-specific extended attributes.

(1) Common extended attributes
Table A‒2: Extended attributes of JP1 events (common information)

Attribute name Item Explanation

SEVERITY Event level This attribute indicates the severity of the event. The possible event levels
are as follows:
Emergency, Alert, Critical, Error, Warning, Notice,
Information, and Debug.
For details about event levels (severity), see Table A-3 Event levels.

USER_NAME User name This attribute indicates the name of the user who is executing the job.

PRODUCT_NAME Product name This attribute indicates the product name. The value of this attribute consists
of alphanumeric strings separated by a slant (/). The value must have either
of the following formats and must be unique for each company:
• /company-name/series-name/product-name
• /company-name/product-name

Note also that you cannot use HITACHI, because as a company name it is
a reserved word.

OBJECT_TYPE Object type This attribute indicates the object type. As the value of this attribute, specify
the type of the event-originating object. In the initial status, the object types
listed below are provided. You may want to select or search JP1 events by
specifying these object types in event filters, so you should assign the same
object type to the JP1 events that have the same meaning.
If you want to add new object types, create the definition file for object types
and specify unique object types in the file.
• JOB
• JOBNET

A. Criteria for Setting JP1 Event Attributes

JP1/Base Function Reference 69

Attribute name Item Explanation

• ACTION
• ACTIONFLOW
• PRINTJOB
• PRINTQUEUE
• PRINTER
• BATCHQUEUE
• PIPEQUEUE
• JOBBOX
• LOGFILE
• LINK (for reporting events from a lower communication layer)
• SERVICE (e.g., daemon process)
• PRODUCT (for reporting other program-specific events)
• CONFIGRATION
• SERVER
• BACKUP
• RESTORE
• MEDIA

OBJECT_NAME Object name This attribute specifies the object name. As the value of this attribute,
specify a name that identifies the type of the object. For example, if the
object type is JOB, you may assign the job name.

ROOT_OBJECT_TYPE Root object type This attribute specifies the root object type. As the value of this attribute,
specify the parent object type. This attribute is effective when objects have
a hierarchical structure. For example, if the object type is JOB, the root
object type is JOBNET. If the root object type does not exist, specify the
same value as the object type. In the initial status, the same value as the
object type is defined.

ROOT_OBJECT_NAME Root object name This attribute specifies the root object name. Specify a name that identifies
the root object type. For example, specify a jobnet name.

OBJECT_ID Object ID A combination of this attribute and the PRODUCT_NAME attribute specifies
a character string that uniquely identifies the object instance in the integrated
system. The format of an object ID depends on the other products. This
information is used to open the monitor of a product from the Tool Launcher
window of JP1/IM.

OCCURRENCE Occurrence This attribute specifies an object-specific occurrence that causes the event
to occur. In the initial status, the occurrences listed below are provided. You
can specify an occurrence and an object type in a filter to select a specific
event for a specific object.
ACTIVE

The object became active.
INACTIVE

The object became inactive.
START

The object started.
END

The object terminated.
NOTSTART

The object failed to start.
CANCEL

The object was canceled.

A. Criteria for Setting JP1 Event Attributes

JP1/Base Function Reference 70

Attribute name Item Explanation

LATESTART
Exceeded the scheduled start time.

LATEEND
Exceeded the scheduled end time.

SUBMIT
The object was submitted.

UNSUBMIT
Submitting the object was canceled.

ENQUEUE
The object was added to the queue.

DEQUEUE
The object was removed from the queue.

PAUSE
The object paused.

RELEASE
The object stopped pausing.

RESTART
The object restarted.

CREATE
The object was created.

DELETE
The object was deleted.

MODIFY
The object was modified.

RETRY
The object started a retry.

STOP
The object stopped.

MOVE
The object was moved.

COPY
The object was copied.

NOTICE
The object notified the operator.

REPLY
The object received a reply.

CONNECT
The object was connected.

DISCONNECT
The object was disconnected.

EXCEPTION
An exception occurred.

START_TIME Start time This attribute indicates the execution start or restart time. As the value of
this attribute, specify the number of seconds from 00:00:00 UTC on January
1, 1970. You can specify this attribute only when the OCCURRENCE
attribute is START, RESTART, PAUSE, RELEASE, or END.

END_TIME End time This attribute indicates the time to end execution. As the value of this
attribute, specify the number of seconds from 00:00:00 UTC on January 1,

A. Criteria for Setting JP1 Event Attributes

JP1/Base Function Reference 71

Attribute name Item Explanation

1970. You can specify this attribute only when the OCCURRENCE attribute
is END.

RESULT_CODE Result code This attribute indicates a termination code consisting of decimal numbers.
You can specify this attribute only when the OCCURRENCE attribute is END.

PLATFORM# Platform type This attribute indicates the platform type. Specify a character string for this
attribute to specify the platform type in the definition file for extended event
attributes or in the definition file for opening monitor windows. If you do
not specify this attribute, base is used by default.

ACTION_VERSION# Version information This attribute indicates the version used for opening the monitor window.
This attribute is necessary when the monitor windows to open differ
depending on the version. If you do not specify this attribute, do not specify
a version in the definition file for opening monitor windows.

#
The JP1/IM Event Details window displays these attributes only if they have been defined in the definition file for extended event attributes.

Event levels
The following table explains event levels that may be specified in the SEVERITY common extended attribute. Use
the following criteria as a guideline for setting the event level of user-defined events. Note that the JP1/IM Event
Console window does not display events that did not have an event level specified when they were issued.

Table A‒3: Event levels

Event level Display name Explanation

Emergency Emergency An emergency status. Normally, the events specifying this event level are broadcast to
all users.

Alert Alert A status requiring an immediate recovery, such as damage to the system or database.

Critical Critical A critical status such as a hardware error.

Error Error An error.

Warning Warning A warning message.

Notice Notice A status that does not indicate an error, but indicates a situation that requires careful
handling.

Information Information Information to users.

Debug Debug A message that normally contains information used only for debugging the program.
This event level is not used for JP1 events because an excessive volume of messages
might occur.

(2) User-specific extended attributes
In addition to common extended attributes, you can add user-specific extended attributes for the program to JP1 events.
To add user-specific extended attributes, you must define them with JP1/IM in the definition file for extended event
attributes.

The following shows the rules for creating user-specific extended attributes:

• You can use a symbolic name having no meaning as an attribute name.

• For programs that have the same value in the PRODUCT_NAME extended attribute, there must be a one-to-one
correspondence between attribute names and meanings.

A. Criteria for Setting JP1 Event Attributes

JP1/Base Function Reference 72

B. Sample Source Files

JP1/Base provides the following sample source files written in C:

• sender.c
• receiver.c

The above two sample files are located in the following directory. Use the samples when required.

Windows: installation-folder\tools\event\

UNIX: /opt/jp1base/tools/event/

B.1 Details of the sample source files
This section gives details of the sample source files.

(1) Events handled by the sample source files
Table B‒1: Events handled by the sample source files

Attribute type Item Attribute name Description

Basic attribute Event ID -- 0x00000001

Message -- Starts the SAMPLE application.

Extended attributes
(common
attributes)

Event level SEVERITY Notice

User name USER_NAME Name of the user who executes the application.

Product name PRODUCT_NAME /COMPANY/APP1/SAMPLE_PRODUCT
(product name)

Object type OBJECT_TYPE SAMPLE

Object name OBJECT_NAME SAMPLE_NAME

Root object type ROOT_OBJECT_TYPE ROOT_SAMPLE

Root object name ROOT_OBJECT_NAME ROOT_SAMPLE_NAME

Object ID OBJECT_ID SAMPLE_ID

Occurrence OCCURRENCE START

Start time START_TIME Start time of the SAMPLE application. The
number of seconds from 00:00:00 UTC on
1970-01-01.

Platform PLATFORM NT

Version information ACTION_VERSION 0600

Extended attributes
(user-specific
attributes)

SAMPLE common
attribute 1

COMMON_ATTR1 NATIVE

SAMPLE common
attribute 2

COMMON_ATTR2 TRUE

B. Sample Source Files

JP1/Base Function Reference 73

Attribute type Item Attribute name Description

SAMPLE start
attributes 1

START_ATTR1 SAMPLE1

SAMPLE start
attributes 2

START_ATTR2 SAMPLE2

(2) Coding of sample source files

(a) sender.c code

#include <stdio.h>
#include <time.h>
#include "JevApi.h"

int regist_start_event()
{
 int rc; /* Return code */
 long status = 0; /* Detailed error code */
 const char* server; /* Event server name */
 long baseID; /* Event ID */
 const char* message; /* Message */
 char starttime[32];
 const char* extattrs[16]; /* Array for storing extended attributes */

 /* Set the destination event server name. */
 server = NULL;

 /* Set the event ID. */
 baseID = 0x00000001;

 /* Set the message. */
 message = "Starts the SAMPLE application.";

 /* Set the extended attributes. */
 extattrs[0] = "SEVERITY=Notice";
 extattrs[1] = "USER_NAME=SAMPLE_USER";
 extattrs[2] = "PRODUCT_NAME=/COMPANY/APP1/SAMPLE_PRODUCT";
 extattrs[3] = "OBJECT_TYPE=SAMPLE";
 extattrs[4] = "OBJECT_NAME=SAMPLE_NAME";
 extattrs[5] = "OBJECT_ROOT_TYPE=ROOT_SAMPLE";
 extattrs[6] = "OBJECT_ROOT_NAME=ROOT_SAMPLE_NAME";
 extattrs[7] = "OBJECT_ID=SAMPLE_ID";
 extattrs[8] = "OCCURRENCE=START";
 sprintf(starttime, "START_TIME=%ld", time(NULL));
 extattrs[9] = starttime;
 extattrs[10] = "PLATFORM=NT";
 extattrs[11] = "VERSION=0600";
 extattrs[12] = "COMMON_ATTR1=NATIVE";
 extattrs[13] = "COMMON_ATTR2=TRUE";
 extattrs[14] = "START_ATTR1=SAMPLE1";
 extattrs[15] = "START_ATTR2=SAMPLE2";

 /* Register the JP1 event. */
 rc = JevRegistEvent(&status,
 server,

B. Sample Source Files

JP1/Base Function Reference 74

 baseID,
 message,
 extattrs,
 16);
 if(rc < 0) {
 fprintf(stderr,
 "JevRegistEvent() failed. status = %ld\n",
 status);
 return -1;
 }

 return 0;
}

int main()
{
 return regist_start_event();
}

(b) receiver.c code

#include <stdio.h>
#include <string.h>
#include "JevApi.h"

int get_start_event()
{
 int rc; /* Return code */
 long position; /* Sequence number within the event database */
 long status; /* Status code address */
 char filter[256]; /* Filter statement buffer */
 const char *server; /* Event server name */
 const char *message; /* Pointer to the message */
 const char *name; /* Pointer to the extended attribute name */
 const char *value;/* Pointer to the extended attribute value */
 JEVGETKEY key; /* Handle for acquiring JP1 events */
 JP1EVENT event; /* Handle for accessing JP1 events */
 JEVACCESSTYPE access;/* Action when no JP1 event exists */

 /* Set the filter statement to acquire JP1 events. */
 strcpy(filter, "B.ID IN 00000001\n");
 strcat(filter, "E.SEVERITY IN Notice\n");
 strcat(filter,
 "E.PRODUCT_NAME IN /COMPANY/APP1/SAMPLE_PRODUCT");

 /* Connect to the event server of the physical host. */
 status = 0;
 /* Event server of the physical host to connect to
 server = NULL; */
/* Acquisition starts with sequence number 0 within the event database. */
 position = 0;
 key = JevGetOpen(&status, server, filter, position);
 if(key == NULL){
 fprintf(stderr,
 "JevGetOpen() failed. Status = %ld\n",
 status);
 return -1;

B. Sample Source Files

JP1/Base Function Reference 75

 }

/* Acquire all the JP1 events which match the filter condition. */
 while(1) {
 status = 0;
/* Error return when no JP1 event matches the filter condition */
 access = JEVGET_NOWAIT;
 event = JevGetEvent(&status, key, access);
 if(event == NULL){
 if(status == JEV_S_NO_EVENT) {
 /* No more JP1 event matches the filter condition. */
 break;
 }
 else {
 /* Error occurred while acquiring JP1 events. */
 fprintf(stderr,
 "JevGetEvent() failed. Status = %ld\n",
 status);
 JevGetClose(&status, key);
 return -1;
 }
 }

 /* Acquire a message. */
 status = 0;
 rc = JevGetMessage(&status, event, &message);
 if(rc < 0){
 fprintf(stderr,
 "JevGetMessage() failed. Status = %ld\n",
 status);
 JevFreeEvent(&status, event);
 JevGetClose(&status, key);
 return -1;
 }
 else{
 printf("JevGetMessage() message = %s\n", message);
 }

 /* Acquire the (first) extended attribute. */
 status = 0;
 rc = JevGetFirstExtAttr(&status, event, &name, &value);
 if(rc < 0){
 fprintf(stderr,
 "JevGetFirstExtAttr() failed. Status = %ld\n",
 status);
 JevFreeEvent(&status, event);
 JevGetClose(&status, key);
 return -1;
 }
 else{
 printf("JevGetFirstExtAttr() name = %s\n", name);
 printf("JevGetFirstExtAttr() value = %s\n", value);
 }

 /* Acquire the (subsequent) extended attribute. */
 while(1) {
 status = 0;
 rc = JevGetNextExtAttr(&status, event, &name, &value);

B. Sample Source Files

JP1/Base Function Reference 76

 if(rc < 0){
 if(status == JEV_S_EXTATTR_EOD) {
 /* No more extended attribute exists. */
 break;
 }
 else {
 /* Error occurred while acquiring extended
 attributes. */
 fprintf(stderr,
 "JevGetNextExtAttr() failed.
 Status = %ld\n", status);
 JevFreeEvent(&status, event);
 JevGetClose(&status, key);
 return -1;
 }
 }
 else {
 printf("JevGetNextExtAttr() name = %s\n", name);
 printf("JevGetNextExtAttr() value = %s\n", value);
 }
 }

 /* Release the memory allocated for the acquired JP1 events. */
 rc = JevFreeEvent(&status, event);
 if(rc < 0){
 fprintf(stderr,
 "JevFreeEvent() failed. Status = %ld\n",
 status);
 JevGetClose(&status, key);
 return -1;
 }
 }

 /* Disconnect the event server. */
 rc = JevGetClose(&status, key);
 if(rc < 0){
 fprintf(stderr,
 "JevGetClose() failed. Status = %ld\n",
 status);
 return -1;
 }

 return 0;
}

int main()
{
 return get_start_event();
}

B. Sample Source Files

JP1/Base Function Reference 77

Index

A
Administrator permissions conventions 9
attributes, basic 68

C
coding example

for acquiring JP1 events 26, 75
for issuing JP1 events 23, 74

common information 69
compiler, installation of 19
compiling

files needed for 28
options 29

conventions
Administrator permissions 9
fonts and symbols 10
version numbers 11

E
event attributes 21
event levels 72
events in JP1/SES format 15
extended attributes 69

common information 69
specific information 72

F
features 15
font conventions 10
function

description format of 33
JevFreeEvent 37
JevGetArrivedTime 38
JevGetBaseID 39
JevGetClose 40
JevGetCodeSet 41
JevGetDestinationAddress 42
JevGetDestinationServer 43
JevGetDetailInformation 44
JevGetEvent 45
JevGetExtAttrDirect 47
JevGetExtID 48
JevGetFirstExtAttr 49

JevGetMessage 50
JevGetNextExtAttr 51
JevGetOpen 52
JevGetProcessID 54
JevGetRegistFactor 55
JevGetRegistGroupID 56
JevGetRegistGroupName 57
JevGetRegistTime 58
JevGetRegistUserID 59
JevGetRegistUserName 60
JevGetSequenceNumber 61
JevGetSourceAddress 62
JevGetSourceSequenceNumber 63
JevGetSourceServer 64
JevRegistEvent 65

functions 32
list of 35
notes common to all 34
sample source files of 16

J
JevFreeEvent 37
JevGetArrivedTime 38
JevGetBaseID 39
JevGetClose 40
JevGetCodeSet 41
JevGetDestinationAddress 42
JevGetDestinationServer 43
JevGetDetailInformation 44
JevGetEvent 45
JevGetExtAttrDirect 47
JevGetExtID 48
JevGetFirstExtAttr 49
JevGetMessage 50
JevGetNextExtAttr 51
JevGetOpen 52
JevGetProcessID 54
JevGetRegistFactor 55
JevGetRegistGroupID 56
JevGetRegistGroupName 57
JevGetRegistTime 58
JevGetRegistUserID 59
JevGetRegistUserName 60
JevGetSequenceNumber 61

JP1/Base Function Reference 78

JevGetSourceAddress 62
JevGetSourceSequenceNumber 63
JevGetSourceServer 64
JevRegistEvent 65
JP1/Base

customizing functionality of 14
extending functionality of 14
features of 15
installation 19

JP1/SES event 15
JP1 event acquisition functions

JevFreeEvent 37
JevGetArrivedTime 38
JevGetBaseID 39
JevGetClose 40
JevGetCodeSet 41
JevGetDestinationAddress 42
JevGetDestinationServer 43
JevGetDetailInformation 44
JevGetEvent 45
JevGetExtAttrDirect 47
JevGetExtID 48
JevGetFirstExtAttr 49
JevGetMessage 50
JevGetNextExtAttr 51
JevGetOpen 52
JevGetProcessID 54
JevGetRegistFactor 55
JevGetRegistGroupID 56
JevGetRegistGroupName 57
JevGetRegistTime 58
JevGetRegistUserID 59
JevGetRegistUserName 60
JevGetSequenceNumber 61
JevGetSourceAddress 62
JevGetSourceSequenceNumber 63
JevGetSourceServer 64
writing code that uses 25

JP1 event issuing function
JevRegistEvent 65
writing code that uses 23

JP1 events
acquisition functions (JP1/Base) 35
attributes, criteria for setting 68
basic attributes 68
defining event acquisition filter 25
determining types and attributes of 21, 24

extended attributes 69
functions for issuing and acquiring 17
issuing function (JP1/Base) 35
overview of function for issuing 18
overview of functions 18
overview of functions for acquiring 18
prerequisites 19
procedure for issuing 21
procedures for acquiring 24

L
linking

files needed for 28
libraries 28
options 30

M
migrating

from earlier version 31
without recompiling 31
with recompiling 31

O
overview 14

R
receiver.c (sample source file for acquiring JP1 events)

73, 75

S
sample source files 73

coding of 74
details of 73
events handled by 73

sender.c (sample source file for issuing JP1 events)
73, 74

SEVERITY 69
event levels 72

source files, compiling 28
specific information 72
symbol conventions 10

U
user-defined events 15

JP1/Base Function Reference 79

V
version number conventions 11

JP1/Base Function Reference 80

6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100‒8280 Japan

	JP1/Base Function Reference
	Notices
	Summary of amendments
	Preface
	Contents
	Part 1: Overview
	1. Overview of Customizing and Extending the Functionality of JP1/Base
	1.1 Features
	1.2 Sample source files of functions

	Part 2: Operation
	2. Issuing and Acquiring JP1 Events
	2.1 Overview of functions for issuing and acquiring events
	2.1.1 Prerequisites

	2.2 Procedures for issuing and acquiring JP1 events
	2.2.1 Procedure for issuing JP1 events
	2.2.2 Procedure for acquiring JP1 events
	2.2.3 Compiling the source files

	2.3 Migrating user applications from an earlier version
	2.3.1 Migrating without recompiling
	2.3.2 Recompiling before migrating

	Part 3: Reference
	3. Functions
	Function description format
	Notes common to all functions
	List of functions
	JevFreeEvent
	JevGetArrivedTime
	JevGetBaseID
	JevGetClose
	JevGetCodeSet
	JevGetDestinationAddress
	JevGetDestinationServer
	JevGetDetailInformation
	JevGetEvent
	JevGetExtAttrDirect
	JevGetExtID
	JevGetFirstExtAttr
	JevGetMessage
	JevGetNextExtAttr
	JevGetOpen
	JevGetProcessID
	JevGetRegistFactor
	JevGetRegistGroupID
	JevGetRegistGroupName
	JevGetRegistTime
	JevGetRegistUserID
	JevGetRegistUserName
	JevGetSequenceNumber
	JevGetSourceAddress
	JevGetSourceSequenceNumber
	JevGetSourceServer
	JevRegistEvent

	Appendixes
	A. Criteria for Setting JP1 Event Attributes
	A.1 Basic attributes
	A.2 Extended attributes

	B. Sample Source Files
	B.1 Details of the sample source files

	Index

