
Job Management Partner 1/Advanced Shell
Description, User's Guide, Reference, and
Operator's Guide

3021-3-362-10(E)

Job Management Partner 1 Version 10

Notices

■ Relevant program products
P-1M12-B1AL Job Management Partner 1/Advanced Shell 10-51 (for AIX V6.1, AIX V7.1)
P-8112-B1AL Job Management Partner 1/Advanced Shell 10-51 (for Red Hat Enterprise Linux 5 Advanced Platform
(x86), Red Hat Enterprise Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64), Red Hat
Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise Linux Server 6 (32-bit x86), and Red Hat Enterprise Linux
Server 6 (64-bit x86_64))
P-1J12-B1AL Job Management Partner 1/Advanced Shell 10-51 (for HP-UX 11i V3 (IPF))
P-9D12-B1AL Job Management Partner 1/Advanced Shell 10-51 (for Solaris 10 (SPARC) and Solaris 11 (SPARC))
P-2412-B1AL Job Management Partner 1/Advanced Shell 10-51 (for Windows Server 2012, Windows 8, Windows 7,
Windows Server 2008, Windows Vista, Windows Server 2003, Windows Server 2003 (x64), and Windows XP)
P-2612-B2AL Job Management Partner 1/Advanced Shell - Developer 10-51 (for Windows Server 2012, Windows 8,
Windows 7, Windows Server 2008, Windows Vista, Windows Server 2003, Windows Server 2003 (x64), and Windows
XP)

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade
Law, and USA export control laws and regulations), and carry out all required procedures.
If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
Active Directory is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc., in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.
HP-UX is a product name of Hewlett-Packard Development Company, L.P. in the U.S. and other countries.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Win32 is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 2

Other company and product names mentioned in this document may be the trademarks of their respective owners.
The following program product contains some parts whose copyrights are reserved by Oracle and/or its affiliates:
P-9D12-B1AL.
The following program product contains some parts whose copyrights are reserved by UNIX System Laboratories,
Inc.: P-9D12-B1AL.
Other product and company names mentioned in this document may be the trademarks of their respective owners.
Throughout this document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name
with the capitalization used by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest
to the accuracy of this information. Use of a trademark in this document should not be regarded as affecting the validity
of the trademark.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names:

Full name or meaning Abbreviation

Microsoft(R) Windows Server(R) 2012 Standard (x64) Windows Server 2012 Windows Server#1

Microsoft(R) Windows Server(R) 2012 Datacenter (x64)

Microsoft(R) Windows Server(R) 2012 Standard

Microsoft(R) Windows Server(R) 2012 Datacenter

Microsoft(R) Windows Server(R) 2012 R2 Standard

Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Microsoft(R) Windows Server(R) 2008 Enterprise Windows Server 2008

Microsoft(R) Windows Server(R) 2008 Standard

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2003, Enterprise Edition#2 Windows Server 2003#3

Microsoft(R) Windows Server(R) 2003, Standard Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition#2

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition#2 Windows Server 2003
(x64)#3

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64 Edition#2

Microsoft(R) Windows Server(R) 2003 R2, Standard x64 Edition

Windows(R) 8.1 Pro Windows 8 Windows#1

Windows(R) 8.1 Enterprise

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 3

Full name or meaning Abbreviation

Windows(R) 8.1 Pro 32-bit version Windows 8 Windows#1

Windows(R) 8.1 Enterprise 32-bit version

Windows(R) 8.1 Pro Pro 64-bit version

Windows(R) 8.1 Enterprise Pro 64-bit version

Windows(R) 8 Pro

Windows(R) 8 Enterprise

Windows(R) 8 Pro 32-bit version

Windows(R) 8 Enterprise 32-bit version

Windows(R) 8 Pro 64-bit version

Windows(R) 8 Enterprise 64-bit version

Microsoft(R) Windows(R) 7 Enterprise Windows 7

Microsoft(R) Windows(R) 7 Professional

Microsoft(R) Windows(R) 7 Ultimate

Microsoft(R) Windows Vista(R) Business Windows Vista

Microsoft(R) Windows Vista(R) Enterprise

Microsoft(R) Windows Vista(R) Ultimate

Microsoft(R) Windows Vista(R) Business 64-bit version

Microsoft(R) Windows Vista(R) Enterprise 64-bit version

Microsoft(R) Windows Vista(R) Ultimate 64-bit version

Microsoft(R) Windows(R) XP Professional Operating System Windows XP

#1: Windows Server and Windows are sometimes referred to collectively as Windows.
#2: These products are sometimes referred to collectively as Windows Server 2003 Enterprise Edition.
#3: These products are sometimes referred to collectively as Windows Server 2003.

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your
country.
No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 4

■ Issued
February 2015: 3021-3-362-10(E)

■ Copyright
All Rights Reserved. Copyright (C) 2014, 2015, Hitachi, Ltd.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 5

Summary of amendments

The following table lists changes in this manual (3021-3-362-10(E)) and product changes related
to this manual.

Changes Location

(Windows only) The who command (script format) can now be used
in UNIX-compatible commands. In addition, the names of the
sample script files for the chmod and su commands were changed.

2.1.1(1), 2.1.1(4), 2.6.6(2), 8.2.2(2), 8.5

The following UNIX-compatible commands are now supported:
• dirname
• expand
• getopt
• stat

Options were also added to the following UNIX-compatible
commands:
• cut
• date
• diff
• expr
• ls

2.1.1(4), 2.1.2(3), 2.5, 8.2.2(1), cut command, date command, diff
command, dirname command, expand command, expr command,
getopt command, ls command, stat command

A setting for suppressing creation of spool job directories during job
execution is now supported (spool job creation suppression
functionality).
As a result, the following environment setting parameter was added:
• SPOOLJOB_CREATE parameter

2.2.3(2), 2.6.8(1), 7.2.1(2), SPOOLJOB_CREATE parameter, adshfile
command, #-adsh_spoolfile command

UTF-8 character encoding is now supported in AIX and HP-UX. 2.2.4, 2.8.4(1)

The following UNIX-compatible commands now support options
in the long-option format:
• cut
• date
• diff
• ls

2.5, 8.1.2, cut command, date command, diff command, ls command,
Appendix C

A job definition script that does not satisfy the default definition for
the CHILDJOB_SHEBANG parameter can now be run as a child job.
In connection with this implementation, the following changes were
made:
• A message concerning child jobs that can be suppressed by the
JOBLOG_SUPPRESS_MSG parameter was added.

• The sample script file execution method was changed from the
function format to the child job format.

2.6.5, 2.6.6(2), 3.1.2(1), 3.2.2, 3.2.3(1), 5.1.11(3), 5.1.11(4),
CHILDJOB_EXT parameter, CHILDJOB_PGM parameter,
CHILDJOB_SHEBANG parameter, JOBLOG_SUPPRESS_MSG
parameter, Appendix C

An output mode that minimizes the types of output messages
(minimum output mode) was added.
As a result, operands were added to the following environment
setting parameters:
• OUTPUT_MODE_CHILD parameter
• OUTPUT_MODE_ROOT parameter

2.6.8(1), 2.6.8(2), 3.3.1, 3.3.2, 3.3.4, 3.4, 3.4.1, 3.4.4,
JOBEXECLOG_PRINT parameter, OUTPUT_MODE_CHILD
parameter, OUTPUT_MODE_ROOT parameter,
OUTPUT_STDOUT parameter, adshexec command, adshscripttool
command, 11.2

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 6

Changes Location

Options were also added to the following commands:
• adshexec command
• adshscripttool command

2.6.8(1), 2.6.8(2), 3.3.1, 3.3.2, 3.3.4, 3.4, 3.4.1, 3.4.4,
JOBEXECLOG_PRINT parameter, OUTPUT_MODE_CHILD
parameter, OUTPUT_MODE_ROOT parameter,
OUTPUT_STDOUT parameter, adshexec command, adshscripttool
command, 11.2

The maximum number of subscripts for an array was increased from
1,023 to 65,535.

2.6.15(1), 5.1.3, set command, adshread command, 11.3

A shell can now be coded directly in the adshexec command that
executes a job.

3.2.2, 3.2.4, 5.5.3(1), adshexec command

User-specific postprocessing can now be performed when a job is
terminated forcibly.

1.5, 2.6.21, 3.10.2, 4.3.2, 4.4.6(4), 4.4.6(5), 5.5.3, 6.1.5, 7.2.1(2),
TRAP_ACTION_SIGTERM parameter (in 7.3), 9.2.1, trap command
(in 9.3)

(Windows only) Lowercase letters can now be used in environment
variable names.
As a result, the following environment setting parameter was added:
• VAR_ENV_NAME_LOWERCASE parameter

5.1.2(1), 5.5, 7.2.1(2), VAR_ENV_NAME_LOWERCASE parameter,
export command, typeset command, #-adsh_file command, #-
adsh_file_temp command, #-adsh_spoolfile command

Substring expansion is now supported in variable substitution. 5.1.2(3), 5.1.6(6), 11.3

A method for specifying batch creation of multiple array elements
was added.

5.1.3

Jobs can now store information about executing functions as an
array (array of functions information).
As a result, the following environment setting parameter was added:
• VAR_SHELL_FUNCINFO parameter

5.5.1, 5.5.3, 7.2.1(2), VAR_SHELL_FUNCINFO parameter, #-
adsh_step_start command, #-adsh_step_error command, #-
adsh_step_end command, 11.3, Appendix C

In the formats used to perform variable substitution to the length of
the character string constituting the value of the variable or to the
number of array elements, the units can now be specified for the
length of the character string to be replaced.
As a result, the following environment setting parameter was added:
• VAR_SHELL_GETLENGTH parameter

7.2.1(2), VAR_SHELL_GETLENGTH parameter

Changes were made to what is output as a job definition script file
name when job contents are specified directly in the -r option in
the adshscripttool command.

adshscripttool command

The following messages were added:
KNAX0235-E, KNAX0474-E, KNAX1880-E, KNAX6058-E,
KNAX6072-E, KNAX6097-E, KNAX6385-E, KNAX6718-I,
KNAX7073-I, KNAX7128-E

11.2, 11.3

Changes were made to the explanations of the following messages:
KNAX0411-E, KNAX0441-E, KNAX0445-E, KNAX0449-E,
KNAX1873-E, KNAX5407-E, KNAX6007-E, KNAX6008-E,
KNAX6022-E, KNAX6226-E, KNAX6241-E, KNAX6382-I,
KNAX6997-E, KNAX6710-I, KNAX7450-I, KNAX7451-I,
KNAX7901-I, KNAX7902-I

11.3

Changes were made to the text for the following messages:
KNAX9000-E, KNAX9001-E

11.3

The description about a trap action was added to Glossary. Appendix C

In addition to the above changes, minor editorial corrections were made.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 7

Preface

This manual explains how to use Job Management Partner 1/Advanced Shell to create and execute job definition scripts
for batch jobs.

In this manual, Job Management Partner 1 is abbreviated as JP1.

JP1/Advanced Shell consists of the following products:

• JP1/Advanced Shell (script execution base for batch jobs)

• JP1/Advanced Shell - Developer (script development base for batch jobs)

This manual uses the terms execution environment and development environment to distinguish between the JP1/
Advanced Shell environment and the JP1/Advanced Shell - Developer environment, respectively.

■ Intended readers
This manual is intended for individuals interested in using JP1/Advanced Shell to develop, execute, or manage batch
jobs. Readers of this manual must be familiar with the following:

• Windows and UNIX

• JP1/AJS

• JP1/Base

• JP1/IM

■ Organization of this manual
This manual is organized into the following parts, chapters, and appendixes:

PART 1: Overview

1. Overview of JP1/Advanced Shell
JP1/Advanced Shell is a product for creating and executing job definition scripts for batch jobs. Chapter
1 describes the purpose of JP1/Advanced Shell, provides an example of its application to a business
operation, explains the overall system configuration and general procedures, and provides an overview of
JP1/Advanced Shell's operation and functionality in a cluster system.

PART 2: Setup

2. Preparations for Using JP1/Advanced Shell
Chapter 2 discusses the conditions and requirements for using JP1/Advanced Shell, including the program
installation directory, the main programs, prerequisites, installation, environment information settings,
custom job registration, user-reply functionality settings, and environment information settings for cluster
operation.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 8

PART 3: Operation

3. Executing Batch Jobs
Chapter 3 explains how to execute batch jobs and the batch job processing in JP1/Advanced Shell
(execution environment).

4. Using JP1/Advanced Shell - Developer (Windows Only)
Chapter 4 explains how to employ JP1/Advanced Shell - Developer so that you can use JP1/Advanced
Shell Editor to develop job description scripts in a Windows environment. The chapter also explains how
to use the editor to debug job definition script files.

5. Creating Job Definition Scripts
Chapter 5 explains the syntax for job definition scripts.

6. Debugging Job Definition Scripts
Chapter 6 describes the debugger functions of JP1/Advanced Shell.

PART 4: Reference

7. Parameters Specified in the Environment Files
Chapter 7 provides details about the description format used for parameters and commands. You define
in environment files information such as return codes, coverage, system execution logs, and directory
paths. Export parameters are used to define environment variables. Conditional parameters are used to
apply desired environment setting parameters or export parameters specifically to the physical host or
specifically to a particular logical host.

8. Commands Used During Operations
Chapter 8 describes the syntax and details of the commands used for operations.

9. Job Definition Script Commands and Control Statements
Chapter 9 describes in detail the description formats for the standard shell commands, extended shell
commands, extended script commands, script control statements, and reserved script commands used in
job definition scripts.

PART 5: Troubleshooting

10. Troubleshooting
Chapter 10 describes troubleshooting, including how to respond when problems occur, the types of log
information, the troubleshooting information that needs to be collected, and how to collect it.

11. Messages
Chapter 11 lists the messages output by JP1/Advanced Shell and provides detailed information about errors
that might occur.

A. Coverage Information That Is Acquired
Appendix A describes the coverage information that JP1/Advanced Shell acquires.

B. Reference Material for This Manual
Appendix B provides reference information such as a list of related manuals and an explanation of the
abbreviations used in this manual.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 9

C. Glossary
Appendix C is a glossary that explains the terms used in this manual.

■ Conventions: Administrators permissions
This manual uses the term Administrators permissions to refer to the Administrators permissions for a local PC. The
actions of a user who has Administrators permissions for a local PC are no different from those for a local user or
domain user, or for a user working in an Active Directory environment.

■ Conventions: Fonts and symbols
The following table explains the text formatting conventions used in this manual:

Text formatting Convention

Bold Bold characters indicate text in a window, other than the window title. Such text includes menus, menu
options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italic Italic characters indicate a placeholder for some actual text to be provided by the user or system. For example:
• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italic characters are also used for emphasis. For example:
• Do not delete the configuration file.

Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output by
the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:
The password is incorrect.

underline The underline indicates the default value among two or more values enclosed in selection symbols.

The following table explains the symbols used by this manual in syntax explanations:

Symbol Convention

| A vertical bar separates multiple items, and has the meaning of OR. For example:
A|B|C means A, or B, or C.

{ } Curly brackets indicate that only one of the enclosed items is to be selected. For example:
{A|B|C} means only one of A, or B, or C.

[] Square brackets indicate that the enclosed item or items are optional. A vertical bar is used to delimit multiple
items. For example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

< > Single angle brackets enclose the syntax element that must be used to specify an item.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 10

Symbol Convention

+ The plus sign indicates that the immediately preceding item can be specified multiple times. It is also used to
indicate that the items before and after it are specified together.

Examples:
{A|B}+
Indicates that A or B can be specified multiple times in any order.
CR+LF
Indicates that the carriage return character (CR) and the linefeed character (LF) are specified together.

* The asterisk indicates that the immediately preceding item can be omitted or that it can be specified one or
more times.

Example:
{A|B}*
Indicates that A or B can be specified one or more times in any order or that A and B can both be omitted.

~ A swung dash indicates that the syntax element enclosed by the single angle brackets (< >), double angle
brackets (<< >>), or double parentheses ((())) that follow must be used to specify the item that precedes
the swung dash.

<< >> Double angle brackets enclose the default value for an item.

(()) Double parentheses enclose the permissible range of values that can be specified.

... An ellipsis indicates that the immediately preceding item can be repeated as many times as necessary. For
example:
A, B, B, ... means that, after you specify A, B, you can specify B as many times as necessary.

Denotes a single-byte space.

0: Denotes zero or more spaces (spaces can be omitted).

1: Denotes one or more spaces (at least one space is required).

The following table explains the syntax elements used in this manual:

Syntax element Characters that can be specified

<numeric characters> 0|1|2|3|4|5|6|7|8|9

<uppercase alphabetic characters> A|B|C|...|Z

<lowercase alphabetic characters> a|b|c|...|z

<alphabetic characters> <uppercase alphabetic characters>|<lowercase alphabetic characters>

<special characters> ,|.|/|'|(|)|*|&|+|-|=| (space)|\

<octal> <0|1|2|3|4|5|6|7> +

<decimal> <numeric characters> +

<hexadecimal> 0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F

<integer> A series of signed or unsigned numeric characters

<unsigned integer> <numeric characters> +

ss<symbolic name> {<alphabetic characters>|<numeric characters>|@|#|_ (underscore)} +
Used in: Job names

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 11

Syntax element Characters that can be specified

<environment variable name> {<alphabetic characters>|_ (underscore)}{<alphabetic characters>|_ (underscore)}|
<numeric characters)} *
Used in: Environment variable file definition names, environment variable names, and
extended script commands

<path name> A character string that conforms to the path naming conventions of UNIX or Windows

<command name> A path name consisting of permitted characters other than the path separator

<logical host name> {<alphabetic characters>|<numeric characters>|- (hyphen)} +

<any character string> A string of characters consisting of any combination of alphabetic characters. Note the
following:
• JP1/Advanced Shell does not check the character type.
• Character strings with a meaning appropriate for the location where they are used must

be specified.
• We recommend that you use characters in the range permitted for the symbolic name in

which they are used.

<ASCII character string> A character string consisting exclusively of characters in the ASCII character set, other than
ASCII control characters (a character string in the range from 0x20 to 0x7E)

■ Conventions: common application data folder
This manual uses the term common application data folder to refer to one of the following folders, depending on the
Windows version being used:

Windows Server 2003, Windows Server 2003 (x64), or Windows XP:
system drive:\Documents and Settings\All Users\Application Data

Windows Server 2012, Windows 8, Windows 7, Windows Server 2008, or Windows Vista:
system drive:\ProgramData

■ Conventions: Shared documents folder
This manual uses the term shared documents folder to refer to one of the following folders, depending on the Windows
version being used:

Windows Server 2003, Windows Server 2003 (x64), or Windows XP:
system drive:\Documents and Settings\All Users\Documents

Windows Server 2012, Windows 8, Windows 7, Windows Server 2008, or Windows Vista:
system drive:\Users\Public\Documents

■ Conventions: The JP1/Advanced Shell installation folder in Windows
In this manual, installation folder refers to the folder in which JP1/Advanced Shell has been installed, unless otherwise
stated. The following shows the installation folder when the product is installed with the default settings.

x86 environment:
system-drive:\Program Files\Hitachi\JP1AS

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 12

x64 environment:
system-drive:\Program Files(x86)\Hitachi\JP1AS

■ Conventions: Windows menu names used in the manual
The Windows menu names used in this manual assume that you are using one of the following OSs:

Windows 7, Windows Server 2008, Windows Vista, Windows Server 2003, or Windows XP

In Windows 8 and Windows Server 2012, no Start menu is displayed. Instead, you must use the Start window that
can be opened from the lower left corner of the window.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 13

Contents

Notices 2

Summary of amendments 6

Preface 8

Part 1: Overview

1 Overview of JP1/Advanced Shell 27
1.1 Purposes of JP1/Advanced Shell 28

1.1.1 Inheriting assets between the OSs of batch applications 28

1.1.2 Expediting the configuration of batch applications 28

1.1.3 Improving serviceability and maintainability by central management of batch job execution results 29

1.2 Example of application to a business operation 31

1.3 General procedures 32

1.3.1 Procedure for executing batch jobs automatically (working with JP1/AJS) 33

1.3.2 Procedure for using the user-reply functionality 34

1.4 Overview of operation in a cluster system 36

1.5 Overview of functionality 38

Part 2: Setup

2 Preparations for Using JP1/Advanced Shell 40
2.1 Program installation directory 41

2.1.1 Installation folder (Windows only) 41

2.1.2 Installation directory (UNIX only) 45

2.2 Evaluations prior to installation 48

2.2.1 System configuration 48

2.2.2 Programs required in each environment 50

2.2.3 Files used in JP1/Advanced Shell 52

2.2.4 Encoding used in JP1/Advanced Shell 54

2.2.5 Local time settings 55

2.2.6 Notes about standard input 55

2.3 Installing and uninstalling (Windows only) 56

2.3.1 Installing JP1/Advanced Shell (Windows only) 56

2.3.2 Uninstalling JP1/Advanced Shell (Windows only) 58

2.3.3 Installing JP1/Advanced Shell - Custom Job 58

2.3.4 Uninstalling JP1/Advanced Shell - Custom Job 60

2.4 Installing and uninstalling (UNIX only) 61

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 14

2.4.1 Installing JP1/Advanced Shell (UNIX only) 61

2.4.2 Uninstalling JP1/Advanced Shell (UNIX only) 63

2.4.3 Using Hitachi Program Product Installer to display version information (UNIX only) 66

2.5 Specifying environment variables 67

2.6 Specifying environment information for JP1/Advanced Shell 71

2.6.1 Specifying the environment files 71

2.6.2 Converting path names 73

2.6.3 Converting file paths when files are input and output 76

2.6.4 Converting arguments during command execution 78

2.6.5 Defining files to be started as child jobs 79

2.6.6 Specifying definitions for using UNIX-compatible commands 80

2.6.7 Defining the handling of unsupported conditional expressions (Windows only) 81

2.6.8 Defining job execution results and log output information 81

2.6.9 Defining the return codes of extended script commands 89

2.6.10 Sharing among multiple environments 89

2.6.11 Enabling coverage information collection without having to specify the option during batch job
execution 89

2.6.12 Migrating job definition scripts from UNIX to Windows 90

2.6.13 Loading the files specified in the ENV shell variable 92

2.6.14 Defining the process that will be executing the last command in a pipe (UNIX only) 92

2.6.15 Defining the return code in the event of an unresumable error in a job 93

2.6.16 Setting up the user-reply functionality 101

2.6.17 Checking the JP1 environment (UNIX only) 101

2.6.18 Setting up the shell (UNIX only) 101

2.6.19 Creating the directories required for JP1/Advanced Shell 102

2.6.20 Setting up a JP1/AJS environment 104

2.6.21 Performing user-specific postprocessing when a job is terminated forcibly 104

2.7 Specifying environment information for JP1/AJS (applicable when JP1/AJS is used) 106

2.7.1 Registering custom jobs in JP1/AJS - View 106

2.7.2 Defining and executing a jobnet 109

2.7.3 Defining jobs as PC or UNIX jobs 116

2.8 Setting up the user-reply functionality 120

2.8.1 Specifying the environment files to use the user-reply functionality 120

2.8.2 Setting up the user-reply functionality after JP1/Advanced Shell has been installed (Windows only)121

2.8.3 Setting up the user-reply functionality after JP1/Advanced Shell has been installed (UNIX only) 124

2.8.4 Specifying environment information in JP1/IM - Manager 128

2.8.5 Specifying environment information in JP1/Base 129

2.9 Running in a cluster configuration 130

2.9.1 Prerequisites and scope of support for cluster operations 130

2.9.2 Specifying environment information for cluster operation 132

2.9.3 How to specify commands during cluster operation 137

2.9.4 Notes about cluster operation 139

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 15

2.9.5 Settings for running a logical host in a non-cluster environment 139

2.10 Installing the HTML manual 144

Part 3: Operation

3 Executing Batch Jobs 145
3.1 Structure of jobs 146

3.1.1 Operator's tasks in JP1/AJS jobs 146

3.1.2 Jobs 146

3.1.3 Job steps 150

3.2 Starting batch jobs 156

3.2.1 Starting jobs by using JP1/AJS from the execution environment 156

3.2.2 Starting batch jobs by using commands from the execution environment 159

3.2.3 Running job definition scripts as child jobs 160

3.2.4 Specifying what is to be executed by a job from the command line 164

3.2.5 Job controller processing after batch jobs have started 166

3.3 Outputting job execution results 167

3.3.1 Specifying the destinations of the standard output and the standard error output 167

3.3.2 Outputting job execution results to spool 168

3.3.3 Suppressing output of specific information messages to job execution logs 172

3.3.4 Suppressing output of information and warning messages to job execution logs 173

3.4 Job execution log 176

3.4.1 Outputting the contents of the job execution log by job type 176

3.4.2 Examples of job execution log output 183

3.4.3 Example of job execution log output (when a child job's spool job is merged into the root job's
spool job) 190

3.4.4 Examples of job execution log output (when the simple output mode or the minimum output mode
is selected) 202

3.4.5 Examples of job execution log output (when only the standard error output is output) 204

3.5 Outputting the executed commands and their arguments 208

3.6 Outputting job definition script operation information 210

3.6.1 Collecting job definition script operation information 210

3.6.2 Outputting job definition script operation information 211

3.6.3 Relationship between dates and times and time zones in the operation information 212

3.6.4 Using multiple OR conditions for output of job definition script operation information 212

3.6.5 Outputting job definition script operation information from different spools 213

3.6.6 Format of operation information 213

3.6.7 Operation information records in CSV format and output items 214

3.6.8 Output items for operation information in CSV format 217

3.6.9 Job definition script operation information that is output 222

3.7 Using the user-reply functionality 223

3.7.1 Prerequisites 223

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 16

3.7.2 Execution method 223

3.7.3 Relationship with JP1/IM - View 223

3.7.4 How to specify the standard input and output as the input source and output destination of the
user-reply functionality 224

3.7.5 How to handle adshecho and adshread commands that terminate with an error 225

3.7.6 Notes 226

3.8 Deleting spool jobs 228

3.9 Acquiring coverage information 230

3.9.1 Overview of coverage information 230

3.9.2 Managing coverage information 231

3.9.3 Accumulating coverage information 235

3.9.4 Displaying coverage information 237

3.9.5 Merging coverage information 250

3.9.6 Coverage auto-acquisition functionality 251

3.10 Forcibly terminating jobs 253

3.10.1 How to forcibly terminate jobs 253

3.10.2 Processing when signals are received (UNIX only) 255

3.10.3 Job processing during forced termination (Windows only) 259

4 Using JP1/Advanced Shell - Developer (Windows Only) 261
4.1 Starting and terminating JP1/Advanced Shell - Developer (Windows only) 262

4.1.1 Starting JP1/Advanced Shell - Developer 262

4.1.2 Terminating JP1/Advanced Shell - Developer 262

4.2 JP1/Advanced Shell Editor modes (Windows only) 263

4.2.1 Edit mode 263

4.2.2 Debug mode 263

4.3 JP1/Advanced Shell Editor operation (Windows only) 264

4.3.1 JP1/Advanced Shell Editor window 265

4.3.2 Menus in the JP1/Advanced Shell Editor window 267

4.3.3 Mouse and key operations in the JP1/Advanced Shell Editor window 270

4.4 Creating job definition scripts (Windows only) 272

4.4.1 Creating job definition scripts 272

4.4.2 Setting up an operating environment for the editor 272

4.4.3 Setting up an execution environment for job definition scripts 273

4.4.4 Checking syntax 274

4.4.5 Searching for and replacing character strings 276

4.4.6 Debugging 278

4.4.7 Displaying coverage information 291

4.5 Editing existing job definition scripts (Windows only) 292

4.6 Saving job definition scripts (Windows only) 293

4.7 Details of the JP1/Advanced Shell Editor window (Windows only) 294

4.7.1 Options (Format) dialog box 294

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 17

4.7.2 Options (Colors) dialog box 295

4.7.3 Runtime Environment Settings dialog box 297

4.7.4 Error List window 300

4.7.5 Search dialog box 301

4.7.6 Watch List window 302

4.7.7 Add to Watch List dialog box 303

4.7.8 Edit Value dialog box 303

4.7.9 Console 304

5 Creating Job Definition Scripts 306
5.1 Basic elements of job definition scripts 307

5.1.1 Reserved words 307

5.1.2 Variables 307

5.1.3 Arrays 317

5.1.4 Functions 323

5.1.5 Command alias definitions 328

5.1.6 Metacharacters 329

5.1.7 Execution in a separate process (UNIX only) 342

5.1.8 Pattern matching 345

5.1.9 Escape characters 345

5.1.10 Specifying extended script commands 346

5.1.11 Specifying external commands 346

5.1.12 Specifying UNIX-compatible commands 351

5.1.13 Specifying a shell for running job definition scripts and checking formats 352

5.2 Conditionals 353

5.2.1 Control statements 353

5.2.2 Conditional expressions 354

5.3 Arithmetic operations 361

5.3.1 Arithmetic operators 361

5.3.2 Increment and decrement operators 362

5.3.3 Bitwise logical operators 362

5.3.4 Assignment operators 362

5.4 Priority of conditional and arithmetic operations 364

5.5 Shell variables 365

5.5.1 Shell variables set by JP1/Advanced Shell 365

5.5.2 Shell variables whose values are set by the user 367

5.5.3 Function information arrays 368

5.6 Shell options 373

5.6.1 Shell options that can be specified with the set command 373

5.6.2 Shell options that can be specified with the adshexec command 375

5.7 Environment variables for job information 376

5.8 Defining jobs, job steps, and commands 377

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 18

5.8.1 Declaring job names 377

5.8.2 Defining the job end condition 377

5.8.3 Defining job steps 379

5.8.4 Defining commands that terminate normally 384

5.8.5 Defining shell variables that handle path names 386

5.8.6 Calling an external job definition script file from an executing job definition script 389

5.8.7 Return codes of extended script commands and handling of errors 391

5.8.8 Return codes of jobs, job steps, and commands 393

5.8.9 Job cancellation by the standard shell commands 395

5.8.10 Processing in the event of an error during job execution 396

5.8.11 Notes about output of command execution results 401

5.9 Allocating files and performing postprocessing 404

5.9.1 Allocating regular files and performing postprocessing 404

5.9.2 Allocating temporary files and performing postprocessing 415

5.9.3 Allocating program output data files and performing postprocessing 418

5.10 Example coding of a job definition script file 421

6 Debugging Job Definition Scripts 423
6.1 About the debugger 424

6.1.1 Debugging with the GUI (Windows only) 424

6.1.2 Debugging with the CUI (UNIX only) 426

6.1.3 List of functions of the GUI debugger (Windows only) 428

6.1.4 List of debugger commands (UNIX only) 428

6.1.5 Whether execution can be stopped at the elements of a job definition script 430

6.2 CUI debugger (UNIX only) 433

6.2.1 Terminating the debugger (quit command) 433

6.2.2 Running the job definition script (run command) 434

6.2.3 Terminating the job definition script (kill command) 434

6.2.4 Setting a breakpoint (break command) 435

6.2.5 Setting a watchpoint (watch command) 437

6.2.6 Deleting breakpoints and watchpoints (delete command) 439

6.2.7 Commands for restarting execution of the job definition script 440

6.2.8 Performing sequential execution (step and next commands) 441

6.2.9 Performing continuous execution (continue command) 444

6.2.10 Executing a function (finish command) 444

6.2.11 Terminating a function (return command) 445

6.2.12 Sending a signal (signal command) 447

6.2.13 Displaying breakpoint and watchpoint information (info breakpoints command) 448

6.2.14 Displaying coverage information (info coverage command) 449

6.2.15 Displaying function information (info functions command) 449

6.2.16 Displaying job step information (info jobsteps command) 450

6.2.17 Displaying signal information (info signals command) 451

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 19

6.2.18 Displaying the status (info status command) 452

6.2.19 Displaying shell variable information (info variables command) 453

6.2.20 Enabling and disabling the fault injection mode (joberrmode command) 454

6.2.21 Setting a variable value (set command) 459

6.2.22 Displaying a variable's value (print command) 461

6.2.23 Displaying a backtrace (where command) 462

6.2.24 Displaying the source file (list command) 463

6.2.25 Changing the directory (cd command) 465

6.2.26 Starting the login shell (exec command) 466

6.2.27 Displaying Help (help command) 466

Part 4: Reference

7 Parameters Specified in the Environment Files 467
7.1 Specification format of environment files 468

7.1.1 Formats of parameters 468

7.1.2 Specification format of comments 469

7.2 Lists of parameters 471

7.2.1 List of environment setting parameters 471

7.2.2 export parameter 475

7.2.3 Conditional parameters 477

7.3 Environment setting parameters 483
ADSHCMD_RC_ERROR parameter (defines the return code to be used when an extended script
command fails) 483
ADSHCMD_RC_SUCCESS parameter (defines the return code to be used when an extended
script command is successful) 483
ASC_FILE parameter (defines a naming rule for accumulation files) 484
BATCH_CVR parameter (enables the coverage auto-acquisition functionality) 485
CHILDJOB_EXT parameter (defines an extension for job definition script files that are to be
executed as child jobs) 485
CHILDJOB_PGM parameter (defines a program path specification that is to be executed as
descendent jobs) 486
CHILDJOB_SHEBANG parameter (defines an executable program path for job definition script
files that are to be executed as child jobs) 489
CMDRC_THRESHOLD_DEFINE parameter (defines a return code threshold for a command) 490
CMDRC_THRESHOLD_USE_PRESET parameter (defines a threshold for the return code of a
UNIX-compatible command) 493
COMMAND_CONV_ARG parameter (defines a rule for converting an argument in job definition
scripts during command execution) 495
ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the action of the echo command when
the escape-character option is omitted) 498
ESCAPE_SEQ_ECHO_HEX parameter (specifies whether ASCII code characters in
hexadecimal notation are to be interpreted as escape characters) 499
EVENT_COLLECT parameter (specifies whether the operation information acquisition
functionality is to be enabled for job definition scripts) 500
export parameter (defines an environment variable) 501

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 20

HOSTNAME_JP1IM_MANAGER parameter (specifies the operation management server on
which JP1/IM - Manager is running that is to be the destination of JP1 events) 502
JOBEXECLOG_PRINT parameter (defines the job execution log contents to be output to the
standard error output when a job terminates) 503
JOBLOG_SUPPRESS_MSG parameter (defines a message that is not to be output to job
execution logs) 504
KSH_ENV_READ parameter (defines whether the ENV shell variable is to be read) 506
LOG_DIR parameter (defines the path name of the directory to which system execution logs are
to be output) 506
LOG_FILE_CNT parameter (defines the number of files to be used to back up system execution
logs) 507
LOG_FILE_SIZE parameter (defines the size of a file to which system execution logs are to be
output) 508
OUTPUT_MODE_CHILD parameter (defines the method for outputting the execution results of
a child job) 508
OUTPUT_MODE_ROOT parameter (specifies the method for outputting the execution results
of a root job) 509
OUTPUT_STDOUT parameter (defines the destination for the root job standard output) 511
PATH_CONV parameter (defines the details of path conversion) 512
PATH_CONV_ACCESS parameter (defines path conversion details when files are input and
output) 513
PATH_CONV_ENABLE parameter (enables the path conversion functionality) 515
PATH_CONV_RULE parameter (defines a rule for converting file paths) (Windows only) 515
PERMISSION_SPOOLJOB_DIR parameter (defines permission for the spool job directory)
(UNIX only) 521
PERMISSION_SPOOLJOB_FILE parameter (defines permission for the files under the spool
job directory) (UNIX only) 522
PIPE_CMD_LAST parameter (defines execution processing for the last command in a pipe)
(UNIX only) 523
SPOOL_DIR parameter (defines the spool root directory path name) 526
SPOOLJOB_CHILDJOB parameter (defines how a spool job of a child job is to be handled) 527
SPOOLJOB_CREATE parameter (selects whether a spool job is to be created) 528
TEMP_FILE_DIR parameter (defines the path name of the directory for storing temporary files) 529
TRACE_DIR parameter (defines the path name of the directory to which traces are to be output) 530
TRACE_FILE_CNT parameter (defines the number of files to which traces are to be output) 530
TRACE_FILE_SIZE parameter (defines the size of a file to which traces are output) 531
TRACE_LEVEL parameter (defines a trace output level) 532
TRAP_ACTION_SIGTERM parameter (defines the job controller's action when a forced
termination request is received) 532
UNSUPPORT_TEST parameter (defines the handling of an unsupported conditional expression)
(Windows only) 534
USERREPLY_DEBUG_DESTINATION parameter (specifies the input source and the
destination of event notification and reply-request messages during debug execution) 535
USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1
events are to be issued) 536
USERREPLY_WAIT_MAXCOUNT parameter (specifies the maximum number of concurrent
reply-request messages that can be output for a physical or logical host) 537
VAR_ENV_NAME_LOWERCASE parameter (specifies whether environment variable names in
lowercase letters are supported) (Windows only) 537
VAR_SHELL_FUNCINFO parameter (selects whether function information arrays are used) 539

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 21

VAR_SHELL_GETLENGTH parameter (defines the unit for the lengths of variable values that
are replaced in format ${#variable}) 542

7.4 Conditional parameters 543
lhost_start and lhost_end parameters (define a set of parameters applicable only to a specified
logical host) 543
phost_start and phost_end parameters (define a set of parameters applicable only to the physical
host) 544

8 Commands Used During Operations 545
8.1 Command description format 546

8.1.1 Command description format for shell operation commands and UNIX-compatible command
(script format) (Windows only) 546

8.1.2 Command description format for UNIX-compatible commands 546

8.1.3 File path names 548

8.2 List of commands 550

8.2.1 List of shell operation commands 550

8.2.2 List of UNIX-compatible commands 551

8.3 Shell operation commands 556
adshchmsg command (replies manually to a reply-request message when a failure occurs) 556
adshcvmerg command (merges coverage information) 557
adshcvshow command (displays coverage information) 559
adshevtout command (outputs job definition script operation information) 561
adshexec command (executes a batch job) 569
adshfile command (specifies the allocation and postprocessing of regular files) 574
adshhk command (deletes spool jobs) 576
adshlsmsg command (displays a list of reply-request messages when a failure occurs) 579
adshmdctl command (starts and stops the user-reply functionality management daemon) (UNIX
only) 580
adshmsvcd command (registers the user-reply functionality management service in a
development environment) (Windows only) 582
adshmsvce command (registers the user-reply functionality management service in an execution
environment) (Windows only) 583

8.4 UNIX-compatible commands 584
awk command (performs text processing and pattern matching) 585
basename command (extracts a file name from a path) 611
cat command (outputs files to the standard output) 613
cmp command (compares binary files) 616
cp command (copies a file or directories) 619
cut command (outputs selected parts of lines to the standard output) 621
date command (displays the system date and time) 624
diff command (compares two files) 633
dirname command (retrieves character strings for directory path names from path names) 645
egrep command (searches for characters in files) 648
expand command (replaces tab characters with spaces) 651
expr command (evaluates an expression) 655
find command (searches for files in directories) 658
getopt command (analyzes command line options) 669

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 22

grep command (searches for characters in files) 673
head command (displays the first part of files) 680
hostname command (displays the host name) 681
ls command (lists the contents of files or directories) 682
mkdir command (creates directories) 698
mv command (moves files or directories) 700
paste command (concatenates multiple files in lines) 701
rm command (removes files or directories) 711
rmdir command (removes empty directories) 712
sed command (replaces character strings in text) 713
sleep command (stops for a specified period of time) 727
sort command (sorts text files) 728
split command (splits a file) 738
stat command (outputs the statuses of files and directories to the standard output) 741
tail command (displays the last part of files) 748
touch command (changes a file's last access date and time or modification date and time) 752
uname command (displays information about the OS or hardware) 758
uniq command (removes duplicated lines from a sorted file) 762
wc command (counts the number of bytes, lines, characters, and words in files) 764
which command (obtains the paths of external commands) 766

8.5 UNIX-compatible commands (script format) (Windows only) 770
chmod command (disables the chmod commands specified in job definition scripts) 770
chmod command (changes the file read-only attribute setting (enable or disable)) 771
chmod command (specifies permissions as numeric values) 773
chmod command (specifies permissions as symbols or numeric values) 775
su command (disables the su commands specified in job definition scripts) 779
su command (executes programs with the permissions of the executing user) 780
who command (disables the who commands specified in job definition scripts) 781
who command (outputs login user information to logs) 782

9 Job Definition Script Commands and Control Statements 783
9.1 Command and control statement description formats 784

9.1.1 Standard shell command description format 785

9.1.2 Extended shell command description format 786

9.1.3 Extended script command description format 786

9.1.4 Script control statement description format 788

9.1.5 Reserved script command description format 788

9.2 Lists of commands and control statements 789

9.2.1 List of standard shell commands 789

9.2.2 List of extended shell commands 790

9.2.3 List of extended script commands 790

9.2.4 List of script control statements 791

9.2.5 List of reserved script commands 791

9.3 Standard shell commands 792
. command (executes a shell script) 792

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 23

: command (expands arguments) 793
alias command (defines aliases) 795
break command (exits from a loop) 796
builtin command (executes a built-in command) 797
cd command (changes the current directory) 798
command command (executes a command) 799
continue command (interrupts loop processing and returns to the beginning of the loop) 801
echo command (outputs what is specified in arguments to the standard output) 802
eval command (concatenates arguments into a command and executes it) 805
exec command (executes a command and exits) 806
exit command (exits the shell) 807
export command (exports shell variables) 808
false command (returns 1 as the return code) 810
getopts command (parses option arguments) 810
kill command (sends a signal) 812
let command (evaluates the values of arithmetic expressions) 813
print command (outputs to the standard output) 815
pwd command (outputs the path of the current directory) 816
read command (reads from the standard input and stores the input in variables) 817
readonly command (sets the read-only attribute for variables or displays all read-only variables) 819
return command (returns from a function or an external script) 820
set command (sets shell options, creates an array, or displays variable values) 821
shift command (shifts the run-time parameters) 823
test command (determines the value of a conditional expression) 824
times command (displays the amount of CPU time used by the shell) 825
trap command (specifies the action when signals and forced termination requests are received) 826
true command (returns 0 as the return code) 831
typeset command (declares explicitly the attributes and values of variables and functions) 832
ulimit command (sets limits on system resources) (UNIX only) 835
umask command (sets the access permissions for creating a new file) (UNIX only) 838
unalias command (removes alias definitions) 840
unset command (unsets variable values and attributes) 840
wait command (waits for child processes to complete) 841
whence command (displays how character strings would be interpreted if used as commands) 843

9.4 Extended shell commands 845
adshecho command (issues a specified event notification message as a JP1 event) 845
adshread command (issues a specified reply-request message as a reply-waiting event) 847
adshscripttool command (supports creation of job definition scripts) (Windows only) 850

9.5 Extended script commands 859
#-adsh_file command (specifies assignment and postprocessing of regular files) 859
#-adsh_file_temp command (assigns and postprocesses a temporary file) 860
#-adsh_job command (declares a name for a job) 862
#-adsh_job_stop command (defines termination conditions for a job) 862
#-adsh_path_var command (defines shell variables for handling path names) 863
#-adsh_rc_ignore command (defines commands to always terminate normally) 865
#-adsh_script command (calls an external job definition script file from the job definition script
that is running) 866

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 24

#-adsh_spoolfile command (assigns a program output data file) 868
#-adsh_step_start command, #-adsh_step_error command, #-adsh_step_end command
(defines a job step) 868

9.6 Script control statements 873
case statement (chooses from multiple processing paths) 873
for statement (repeats the same processing) 874
if statement (branches conditionally) 875
until statement (loops until a condition is true) 876
while statement (loops while a condition is true) 877

9.7 Reserved script commands 879
time command (displays the time used to execute a command) 879

Part 5: Troubleshooting

10 Troubleshooting 881
10.1 Response procedure 882

10.1.1 Corrective action when using the user-reply functionality 882

10.1.2 When the root job terminates before its child jobs terminate 883

10.2 Information needed when a problem occurs 884

10.2.1 Logs 884

10.2.2 Error information 884

10.2.3 Spool information 885

10.2.4 User-reply functionality's management daemon information (UNIX only) 885

10.3 How to collect information 886
adshcollect command (collects information) 886

11 Messages 893
11.1 Message format 894

11.1.1 Message output format 894

11.1.2 Format of message explanations 895

11.1.3 Assignment of message numbers 896

11.2 Message output destinations 897

11.2.1 Notes about the row numbers that are output in messages 905

11.3 List of messages 906

11.4 Details of errors 1095

11.4.1 Details of errors (Windows) 1095

11.4.2 Details of errors (UNIX) 1096

11.4.3 Details of errors (specific to JP1/Advanced Shell) 1097

11.4.4 Handling Error Information Displayed in the User-Reply Functionality 1098

Appendixes 1103
A Coverage Information That Is Acquired 1104

A.1 Commands for which coverage information is acquired 1104

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 25

A.2 Control statements for which coverage information is acquired 1107

A.3 Functions for which coverage information is acquired 1108

A.4 Metacharacters for which coverage information is acquired 1108

A.5 Shell variable operations for which coverage information is acquired 1109

B Reference Material for This Manual 1110

B.1 Related publications 1110

B.2 Conventions: abbreviations 1111

B.3 Conventions: directory names 1111

B.4 Conventions: KB, MB, GB, and TB 1112

C Glossary 1113

Index 1122

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 26

Part 1: Overview

1 Overview of JP1/Advanced Shell

JP1/Advanced Shell is a product for creating and executing job definition scripts for batch jobs. This
chapter describes the purposes of JP1/Advanced Shell, provides an example of its application to a
business operation, explains the overall system configuration and general procedures, and provides
an overview of the product's functions.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 27

1.1 Purposes of JP1/Advanced Shell

JP1/Advanced Shell is a product for improving development productivity and the operational efficiency of batch
applications. It enables you to efficiently create and execute job definition scripts (shell scripts) for batch jobs.

JP1/Advanced Shell has the features described below.

1.1.1 Inheriting assets between the OSs of batch applications
• Using existing assets

You can use shell scripts created in a UNIX environment to develop job definition scripts in a Windows environment.
Because the job definition scripts used in JP1/Advanced Shell employ language specifications that have standard
shell compatibility, it is easy to learn the language and migrate from existing shell scripts.

• Cross-platform support
Cross-platform means applicability to multiple OS bases. This feature enables you to use cross-platform functions.

• You can execute job definition scripts developed in a Windows environment in both Windows and UNIX
environments.

• You can use UNIX-compatible commands in both Windows and UNIX environments.

1.1.2 Expediting the configuration of batch applications
• Controlling job execution

JP1/Advanced Shell extends job definition scripts so that you can automate and concisely code processes that are
used repetitiously in batch applications.
You can reduce the volume of coding in job definition scripts and improve readability and maintainability of job
definition scripts by doing the following:

• Specifying job step execution conditions

• Using variables that are valid in job steps

• Outputting error messages and setting return codes when batch jobs terminate with errors

• In the event a batch job terminates with an error, automatically terminating child processes forcibly and deleting
temporary files used by the batch job

• Using an editor to develop job definition scripts (development environment)
In the development environment, you can use the JP1/Advanced Shell Editor (a dedicated editor with debugging
functions) of the Graphical User Interface (GUI) to develop and debug job definition scripts.

• You can execute job definition scripts in job steps, and set breakpoints.

• You can accumulate coverage information for job definition scripts.

The following figure shows the JP1/Advanced Shell Editor window.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 28

Figure 1‒1: JP1/Advanced Shell Editor window

• Efficient file allocation and postprocessing
You can automate and concisely code processes, such as checking for regular files, and allocating and deleting
temporary files.

• You can automatically allocate temporary files during batch job execution and delete them once the batch job
has terminated.

• You can check for regular files during batch job execution and perform appropriate postprocessing on files
depending on job step or job processing results.

1.1.3 Improving serviceability and maintainability by central management
of batch job execution results

Maintainability of batch applications can be improved by automatically outputting job execution logs in the event of an
error and managing such logs centrally.

In conventional open systems, management of batch job execution results is complicated because the results are not
stored at one central location. JP1/Advanced Shell enables you to collect batch job execution results on a spool as job
execution logs, and to manage them centrally. By using JP1/AJS - View, you can execute batch jobs on a periodic basis
and reference the results by automatically executing job definition scripts.

Each job's execution results are output to a spool job directory under the spool directory. The following figure illustrates
central management of batch job execution results.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 29

Figure 1‒2: Central management of batch job execution results

For details about the output contents of the job execution logs, see 3.4 Job execution log.

Lastly, troubleshooting support enables you to handle problems through collection of various types of data, including
job execution logs, system execution logs, and trace logs. For details, see 10. Troubleshooting.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 30

1.2 Example of application to a business operation

You can apply JP1/Advanced Shell to the following type of business operation.

In the case of an operation that involves many transactions in an online system during the daytime and totaling of the
transactions at night, you can develop and execute batch jobs that obtain totals, including sales figures, number of
products sold, and inventory updates. You can also develop and execute batch jobs for obtaining rolling totals, such as
daily, monthly, and term-end processing, as well as batch jobs that have specific purposes and that are used for special
occasions.

The following figure shows an example of JP1/Advanced Shell operation (for obtaining daily operation totals)

Figure 1‒3: Example of JP1/Advanced Shell operation (obtaining daily operation totals)

To run JP1/Advanced Shell:

1. Start daily operation and perform transactions involving products.

2. The open infrastructure product updates the various sales data.

3. Daily operation ends and JP1/AJS issues instructions to execute job definition scripts automatically at specified
times.

4. JP1/Advanced Shell executes job definition scripts to process the various sales data.

5. JP1/Advanced Shell outputs the execution results of the job definition scripts.

6. The manager can obtain information, including totals and changes in product sales, based on the execution results.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 31

1.3 General procedures

JP1/Advanced Shell consists of the execution environment (JP1/Advanced Shell) and the development environment
(JP1/Advanced Shell - Developer). Job definition scripts created in the development environment are executed in the
execution environment.

The users of JP1/Advanced Shell are classified as system administrators and general users, based on their system
permissions. The following table explains the roles of these two classes of users.

Table 1‒1: Classification of JP1/Advanced Shell users

JP1/Advanced Shell user Role

System administrator This user is responsible for system operations. The superuser permission
must have been assigned to this user beforehand.
The system administrator manages an environment that can run JP1/
Advanced Shell and registers the general users who will use JP1/Advanced
Shell.

General user Developer This user's responsibilities include creation and debugging of job definition
scripts.

Operator This user defines and runs JP1/Advanced Shell, checks the execution results,
and handles JP1/Advanced Shell execution errors, if any.
For details about the operator's tasks when JP1/AJS is used, see 3.1.1
Operator's tasks in JP1/AJS jobs.

The following figure shows the overall system configuration of JP1/Advanced Shell.

Figure 1‒4: Overall system configuration of JP1/Advanced Shell

To use a JP1/Advanced Shell system:

1. The developer uses JP1/Advanced Shell Editor to develop job definition scripts; this is always done in the Windows
development environment.

2. The job definition scripts from JP1/Advanced Shell Editor are saved.

3. The job definition scripts are transferred to the execution environment.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 32

4. In the execution environment, the operator uses the following methods to send instructions to execute the job
definition scripts:

• Automatic execution using JP1/AJS

• Manual execution from the command prompt and UNIX shell

5. The job definition script execution results output by JP1/Advanced Shell are checked.

1.3.1 Procedure for executing batch jobs automatically (working with JP1/
AJS)

When you use JP1/Advanced Shell to run batch jobs, you can call the execution environment from the job scheduler's
JP1/AJS so that the batch jobs can execute automatically. JP1/Advanced Shell provides job controller functions that
manage execution of a user's business applications. The following figure shows the positioning of JP1/Advanced Shell
for business applications.

Figure 1‒5: Positioning of JP1/Advanced Shell for business applications

When you link JP1/Advanced Shell to JP1/AJS, you can register batch job execution schedules for executing batch jobs.

A job definition script containing job definitions is analyzed by the job controller. The job controller controls execution
and termination of batch jobs by allocating and releasing input and output devices and various system resources. JP1/
Advanced Shell achieves central management by executing this job definition script and collecting the execution results
on the spool.

The figure below shows the JP1/Advanced Shell operation procedure. In the figure, the processing performed by
JP1/AJS is identified by the number 3, and the processing performed by JP1/Advanced Shell is identified by the numbers
4 through 6.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 33

Figure 1‒6: JP1/Advanced Shell operation procedure (working with JP1/AJS)

To run JP1/Advanced Shell:

1. Create job definition scripts.

2. Transfer the job definition scripts to JP1/Advanced Shell's execution environment.

3. The job controller starts according to a schedule registered in JP1/AJS.

4. The job controller executes batch jobs using the procedure shown below according to the contents of a job definition
script created in step 1.
Analyze the job definition script Allocate file resources Execute jobs and job steps Release file resources

5. Collect the batch job execution results on the spool for central management.

6. If necessary, use commands to display coverage information and to output information about the execution results
of the job definition scripts.

1.3.2 Procedure for using the user-reply functionality
The user-reply functionality enables the following operations to be performed from job definition scripts:

• Notifying the operator of batch job information

• Enabling the operator to reply to job definition scripts

Linked with JP1/IM, the user-reply functionality issues specified character strings as JP1 events. The following figure
shows the procedure for using the user-reply functionality.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 34

Figure 1‒7: Procedure for using the user-reply functionality

To use the user-reply functionality:

1. If a command in which a character string is specified is executed by means of a job definition script, the specified
character string is issued as a JP1 event.

2. The issued JP1 event is transferred by JP1/Base to a specified operation management server.

3. The specified character string is displayed in the JP1/IM - View window.

4. If it's a reply-waiting event, the operator can enter a reply.
The reply entered from the operator is stored in a shell variable specified in the job definition script.

For details, see 3.7 Using the user-reply functionality.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 35

1.4 Overview of operation in a cluster system

A cluster system consists of multiple server systems that are configured in such a manner that if a failure occurs on one
of the servers, applications can continue on another server. In a cluster system, hosts are classified as follows:

• Server running applications (active server)

• Server on standby that can inherit applications if the active server fails (standby server)

If a failure occurs on the active server that is running applications, the applications can be inherited to the standby server.
The function for inheriting applications in the event of a failure is called system switchover. A logical server that is the
unit of failover during system switchover is called a logical host.

In a cluster system, the applications must be run in a logical host environment so that they can continue their processing
even after system switchover. You can run applications that are to be run on a logical host on any server, regardless of
the physical server being used.

A logical host consists of the components explained below. The applications that are run as daemons or services store
data on the shared disk and use a logical IP address to communicate.

Table 1‒2: Components of a logical host

Component of logical host Description of component

Daemon or service Daemons and services are the applications that are run in a cluster system, such as JP1/AJS and
JP1/Advanced Shell. If a failure occurs on the active server's logical host, the daemons or
services with the same names are started on the standby server's logical host.

Shared disk This is a disk unit that is connected to both the active server and the standby server. If this disk
stores the information that is to be inherited during system switchover (such as definition
information and execution status), the standby server inherits the connection to the shared disk
in the event of a failure on the active server's logical host.

Logical IP address This is an IP address allocated while a logical host is running. If a failure occurs on the active
server, the standby server inherits the same logical IP address allocation. This enables the client
to use the same IP address as if the same server is always running.

Important note
In this manual, a logical server that is the unit of failover during system switchover is called a logical host.
However, some cluster software products and applications use different terms, such as group or package. Check
the appropriate terminology in your system by referencing your cluster software's documentation.

A logical server that is the unit of failover during system switchover is called a logical host, while the physical
server is called a physical host.

The following figure shows accesses during normal operation and after system switchover.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 36

Figure 1‒8: Accesses during normal operation and after system switchover

The following explains the figure.

• Accesses during normal operation
While the active server is running, the shared disk and logical IP address are allocated on the active server where
the daemons or services are running.

• Accesses after system switchover
If a failure occurs on the active server, the standby server inherits the shared disk and logical IP address and starts
the same daemons or services that were running on the active server. Even though the physical server has changed
as a result of system switchover, it looks to the client as if the server with the same IP address is running because
the standby server inherits the shared disk and logical IP address.

To run JP1/Advanced Shell in a logical host environment, you must have a shared disk to store the data that needs to
be inherited during system switchover and a logical IP address. If you will be using the user-reply functionality, you
must also set up the cluster software so that it can control the start, stop, and operation monitoring of the user-reply
functionality's management daemon or service.

A JP1/Advanced Shell that is running in a logical host environment can inherit the job execution environment from the
active server to the standby server during system switchover by using data stored on the shared disk. This means that
JP1/Advanced Shell must store the spool on the shared disk. Note that execution of a job that was executing at the time
system switchover occurred does not continue.

For details about the JP1/Advanced Shell settings required for cluster operations, see 2.9 Running in a cluster
configuration.

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 37

1.5 Overview of functionality

The following table describes the functionality supported by JP1/Advanced Shell.

Table 1‒3: Functionality of JP1/Advanced Shell

Functionality Related item Section

Defining a job execution environment Specifying the environment variables required for job execution 2.5

Specifying environment files. 2.6, 7.

Creating job definition scripts according
to the syntax for shell scripts

Basic components of job definition scripts 5.1

Conditional 5.2, 5.4, 9.6

Arithmetic operations 5.3, 5.4

Shell variables 5.1.2, 5.5

Shell options 5.6

Using files from job definition scripts Regular files 5.9.1, 9.5

Temporary files 5.9.2, 9.5

Program output data files 5.9.3, 9.5

Controlling job execution Declaring job names 5.8.1, 9.5

Defining job end conditions 5.8.2, 9.5

Starting or ending job steps 5.8.3, 9.5

Specifying a definition so that any command is always treated as
having terminated normally

5.8.4(2), 9.5

Defining return codes for extended script commands 2.6.9, 7.3

Calling external scripts 5.8.6, 9.5

Starting child jobs 2.6.5, 3.1.2(1), 3.2.3,
5.1.11, 7.3

Forcibly terminating jobs 2.6.21, 3.10, 7.3

Acquiring job information within shell
scripts

Using shell variables for which a job step return code has been
specified

5.5.1

Using environment variables for which job information has been
specified

2.5, 5.7

Using the editor to create job definition scripts#1 4., 5.

Executing commands Shell operation commands 8.3

UNIX-compatible commands 2.6.6, 8.4, 8.5

Standard shell commands 9.3

Extended shell commands 9.4

Extended script commands 9.5

Script control statements 9.6

Reserved script commands 9.7

Registering custom jobs#2 2.7.1

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 38

Functionality Related item Section

Using the user-reply functionality Issuing any character string as a JP1 event 9.4

Issuing any character string as a reply-waiting event 9.4

Starting the user-reply functionality's management daemon or service 8.3

Collecting the operation information of
job definition scripts#2

Accumulating the operation information of job definition scripts 7.3

Outputting the operation information of job definition scripts 8.3

Using the same job definition scripts on
different platforms

Converting job definition scripts so that they can be used in both
Windows and UNIX

2.6.2, 2.6.3, 2.6.4, 2.6.12,
7.3

Using the UNIX-compatible commands 2.6.6, 8.4, 8.5

Deleting spool jobs 3.8 , 8.3

Collecting coverage information Acquiring coverage information 3.9 , 8.3, Appendix A

Displaying coverage information 3.9 , 8.3

Merging coverage information 3.9 , 8.3

Always enabling acquisition of coverage information 3.9, 8.3

Debugging job definition scripts Using CUI for debugging#3 6.1.2, 6.1.4, 6.1.5, 6.2

Using GUI for debugging#1 4.2.2, 4.4.6, 6.1.1, 6.1.3,
6.1.5

Outputting job execution logs 1.1.3, 3.4

Troubleshooting Collecting data, such as job execution logs, system execution logs,
and trace logs

10.

Replying to reply-request messages when JP1/IM is not available 8.3, 10.

#1
Available only in the development environment

#2
Available only in the execution environment

#3
Available only in the UNIX edition

1. Overview of JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 39

Part 2: Setup

2 Preparations for Using JP1/Advanced Shell

This chapter discusses the conditions and requirements for using JP1/Advanced Shell, including
the program installation directory, the main programs, prerequisites, installation, environment
information settings, and custom job registration.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 40

2.1 Program installation directory

The program installation directory for JP1/Advanced Shell depends on the OS being used. In a Windows environment,
you can change the default installation directory. In a UNIX environment, the program is installed in a fixed directory.

This section explains the organization of JP1/Advanced Shell's program installation directory and the directories used
to store various files that are output and referenced by JP1/Advanced Shell.

2.1.1 Installation folder (Windows only)

(1) Installation folder
In Windows, you can install JP1/Advanced Shell in any folder. The following folders for the environments are created
under the specified installation folder.

Environment to be installed Installation target Remarks

Execution environment installation-folder\JP1ASE We recommend that you install this
environment on a server.

Development environment installation-folder\JP1ASD We recommend that you install this
environment on a client PC.

Custom job definition programs included in the
execution environment (JP1/Advanced Shell -
Custom Job)

installation-folder\JP1ASV Install these programs at the operation
management console on which
JP1/AJS - View is installed.

The organization of the installation folder is shown below. Only folders for the selected environments are created.

installation-folder#1
 |---JP1ASD : Development environment folder
 | |---bin : Program folder
 | |---cmd : Folder for UNIX-compatible commands
 | |---doc--en--help--INDEX.HTM : Help (manual)
 | |---maintenance : Folder used for handling errors
 | |---readme.txt : readme file
 | |---sample : Folder for sample data
 | |-Adapter_HITACHI_JP1_AS_ASD_USERREPLY.conf
 | | : Adapter command configuration file used for the user-reply
functionality
 | |-hitachi_jp1_as_C_attr_cn.conf
 | | : definition file for the extended event attributes (English)
 | |-hitachi_jp1_as_C_attr_en.conf
 | | : definition file for the extended event attributes (English)
 | |-hitachi_jp1_as_EUC_attr_ja.conf
 | | : definition file for the extended event attributes
(Japanese EUC)
 | |-hitachi_jp1_as_SJIS_attr_ja.conf
 | | : definition file for the extended event attributes
(Japanese Shift JIS)
 | |-hitachi_jp1_as_UTF8_attr_ja.conf
 | | : definition file for the extended event attributes
(Japanese UTF-8)
 | |-sample.ase : Templates for environment files

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 41

 | |-sample.ash : Sample job definition script file
 | |-script_0 : Common sample script that does nothing
 | |-script_chmod1 : Sample script file for chmod
 | |-script_chmod2 : Sample script file for chmod
 | |-script_chmod3 : Sample script file for chmod
 | |-script_su1 : Sample script file for su
 | |-script_who1 : Sample script file for who
 |---JP1ASE : Execution environment folder
 | |---bin : Program folder
 | |---cmd : Folder for UNIX-compatible commands
 | |---doc--en--help--INDEX.HTM : Help (manual)
 | |---maintenance : Folder used for handling errors
 | |---readme.txt : readme file
 | |---sample : Folder for sample data
 | | |-Adapter_HITACHI_JP1_AS_ASE_USERREPLY.conf
 | | | : Adapter command configuration file used for the user-reply
functionality
 | | |-hitachi_jp1_as_C_attr_cn.conf
 | | | : definition file for the extended event attributes (English)
 | | |-hitachi_jp1_as_C_attr_en.conf
 | | | : definition file for the extended event attributes (English)
 | | |-hitachi_jp1_as_EUC_attr_ja.conf
 | | | : definition file for the extended event attributes
(Japanese EUC)
 | | |-hitachi_jp1_as_SJIS_attr_ja.conf
 | | | : definition file for the extended event attributes
(Japanese Shift JIS)
 | | |-hitachi_jp1_as_UTF8_attr_ja.conf
 | | | : definition file for the extended event attributes
(Japanese UTF-8)
 | | |-sample.ase : Templates for environment files
 | | |-sample.ash : Sample job definition script
 | | |-script_0 : Common sample script that does nothing
 | | |-script_chmod1 : Sample script file for chmod
 | | |-script_chmod2 : Sample script file for chmod
 | | |-script_chmod3 : Sample script file for chmod
 | | |-script_su1 : Sample script file for su
 | | |-script_who1 : Sample script file for who
 | |---util--setup.exe : Installer for the custom job
definition program
 |
 |---JP1ASV : Custom job definition program folder
 |---bin : Program folder
 |---doc--en--help--INDEX.HTM : Help (manual)
 |---image--custom : Folder for custom job icons
 | |-CUSTOM_PC_ADSHPC.gif : Custom job icons for PC jobs#2
 | |-CUSTOM_PC_ADSHUX.gif : Custom job icons for UNIX jobs#2
 |---maintenance : Folder used for handling errors

#1
Do not use any of the following characters in the installation folder name: & [] { } ^ = ; ! ' + , ` ~ # %. The
product will not function normally if it is installed in a folder whose name contains any of these characters.

#2
If a version of JP1/AJS3 - View that is earlier than 09-50 is installed and the custom job definition program is to be
installed, the custom job icons must be copied to the following folder:

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 42

JP1/AJS-View-installation-folder\image\custom

(2) Trace output folder and folder for creating a system environment file
The trace output folder and the folder for creating the system environment files are created under the Common application
data folder.

Common-application-data-folder
 |---Hitachi--JP1AS--JP1ASD : Development environment folder
 | |---conf : System environment file storage folder
 | |---trace : Trace output folder
 | |---uxpl : Log folder
 |-----JP1ASE : Execution environment folder
 | |---conf : System environment file storage folder
 | |---trace : Trace output folder
 | |---uxpl : Log folder
 |-----JP1ASV : Custom job definition program folder
 | |---trace : Trace output folder
 |-----misc : Folder for libraries common to all
products
 |---trace : Trace output folder
 |---uxpl : Log folder

(3) System execution logs, spool, and temporary files
The folders for system execution logs, spool, and temporary files are created in the shared documents folder.

shared-documents-folder
 |---Hitachi--JP1AS--JP1ASD : Development environment folder
 | |---log : Folder for system execution logs
 | |---spool : Spool folder
 | |---temp : Folder for temporary files
 |-----JP1ASE : Execution environment folder
 | |---log : Folder for system execution logs
 | |---spool : Spool folder
 | |---temp : Folder for temporary files
 |-----misc : Folder for libraries common to all
products
 |---log : Log folder

(4) List of programs
The following table lists and describes the storage locations and file names of the main programs used in JP1/Advanced
Shell.

Table 2‒1: Main programs used in JP1/Advanced Shell (Windows only)

Storage folder File name Overview of program
(icon)

Description

installation-
folder\each-
environment's-
folder#1\bin

adshchmsg.exe Manual response to
reply-request
messages when an
error occurs

Command that is used to respond manually to reply-request
messages when an error occurs. This command must be used by
a user with Administrators permissions.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 43

Storage folder File name Overview of program
(icon)

Description

installation-
folder\each-
environment's-
folder#1\bin

adshctmj.exe JP1/Advanced Shell
execution definition
program ()

Program that defines the JP1/Advanced Shell execution
environment in a custom job definition program.

adshctmjpc.bat JP1/Advanced Shell
execution definition
program for PC jobs

Program that defines the JP1/Advanced Shell execution
environment for PC jobs in a custom job definition program.

adshctmjunix.bat JP1/Advanced Shell
execution definition
program for UNIX
jobs

Program that defines the JP1/Advanced Shell execution
environment for UNIX jobs in a custom job definition program.

adshcvmerg.exe Merging coverage
information

Command that merges coverage information. This program can
be used in both environments (execution and development).

adshcvshow.exe Displaying coverage
information from
commands

Command that displays coverage information. This program can
be used in both environments (execution and development).

adshcvview.exe Displaying coverage
information from the
editor

Program that displays coverage information. This program
enables coverage information to be displayed from the editor in
the development environment.

adshedit.exe JP1/Advanced Shell
Editor ()

Editor used to edit job definition scripts in the development
environment. Double-clicking the icon opens the JP1/Advanced
Shell Editor.

adshesub.exe Debugging in the
editor

Program that debugs job definition scripts in the development
environment. This program is started automatically from
adshedit.exe.

adshevtout.exe Outputting job
definition script
operation information

In an execution environment, the command that outputs job
definition script operation information to a CSV file.

adshexec.exe Executing batch jobs Command that starts the job controller that analyzes and controls
execution of job definition scripts.

adshexecsub.exe Command that executes batch jobs in the execution environment.
This command is started automatically from adshexec.exe.

adshfile.exe Registration of file
postprocessing

Command that defines how a specified file is to be processed when
a job step or job is terminated. This program can be used in both
environments (execution and development).

adshhk.exe Deleting spool jobs Command that deletes spool jobs. This command can be used in
both environments (execution and development).

adshlsmsg.exe Displaying a list of
reply-request
messages when an
error has occurred

Command that outputs job definition script operation information
to a CSV file in the execution environment.

adshmsvcd.exe User-reply
functionality's
management service

Command that registers the service that manages shared memory
for the user-reply functionality. This command is used in the
development environment. It must be used by a user with
Administrators permissions.

adshmsvce.exe User-reply
functionality's
management service

Command that registers the service that manages shared memory
for the user-reply functionality. This command is used in the
execution environment. It must be used by a user with
Administrators permissions.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 44

Storage folder File name Overview of program
(icon)

Description

installation-
folder\each-
environment's-
folder#1\cmd

awk.exe,
basename.exe,
cat.exe, cmp.exe,
cp.exe, cut.exe,
date.exe,
diff.exe,
dirname.exe,
egrep.exe,
expand.exe,
expr.exe,
find.exe,
getopt.exe,
grep.exe,
head.exe,
hostname.exe,
ls.exe, mkdir.exe,
mv.exe, paste.exe,
rm.exe, rmdir.exe,
sed.exe,
sleep.exe,
sort.exe,
split.exe,
stat.exe,
tail.exe,
touch.exe,
uname.exe,
uniq.exe, wc.exe,
which.exe

UNIX-compatible
commands#2

Commands that are used mainly in UNIX batch applications but
can also be used in a Windows environment. These commands
can be used in both environments (execution and development).

installation-
folder\each-
environment's-
folder#1\maint
enance

adshcollect.bat Collecting data Command that collects troubleshooting data. This program can be
used in both environments (execution and development).

#1
each-environment's-folder is JP1ASD for the development environment and JP1ASE for the execution environment and JP1ASV for the
custom job definition program.

#2
The UNIX-compatible commands also include chmod, su, and who. If you will be using any of these three commands, edit beforehand each
of the applicable sample script files provided by JP1/Advanced Shell using the procedure described in 2.6.6(2) Preparations for using the
script-format UNIX-compatible commands (Windows only).

2.1.2 Installation directory (UNIX only)

(1) Installation directory
The UNIX execution environment is installed in a fixed directory (/opt/jp1as). There is no development
environment for a UNIX environment.

The organization of the installation directory is as follows:

/opt/jp1as
 |---bin : Program directory

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 45

 |---cmd : Directory for UNIX-compatible commands
 |---conf : System environment file storage directory
 |---instlog : Installation log information directory
 |---lib : Library directory
 | |---nls : Message catalog directory
 |---log : Directory for system execution logs
 |---maintenance : Directory used for handling errors
 |---sample : Directory for sample data
 | |---Adapter_HITACHI_JP1_AS_USERREPLY.conf
 | | : Adapter command configuration file used for the user-reply
functionality
 | |---hitachi_jp1_as_C_attr_cn.conf
 | | : definition file for the extended event attributes (English)
 | |---hitachi_jp1_as_C_attr_en.conf
 | | : definition file for the extended event attributes (English)
 | |---hitachi_jp1_as_EUC_attr_ja.conf
 | | : definition file for the extended event attributes (Japanese EUC)
 | |---hitachi_jp1_as_SJIS_attr_ja.conf
 | | : definition file for the extended event attributes (Japanese
Shift JIS)
 | |---hitachi_jp1_as_UTF8_attr_ja.conf
 | | : definition file for the extended event attributes (Japanese
UTF-8)
 | |---jp1_as_md : Automatic start and stop script file
 | | for user-reply functionality management daemon#
 | |---sample.ase : Templates for environment files
 | |---sample.ash : Sample job definition script file
 |---sbin : Program directory for system administrator
 |---system
 | : Directory used by the user-reply functionality management daemon
 |---trace : Trace directory
 |---util--setup.exe : Installer for the custom job definition program

#
Installed for the Linux, HP-UX, and Solaris versions.

(2) Spool directory and directory for temporary files
The spool directory and the directory for temporary files are created in the following directories:

/var/opt/jp1as--spool : Spool directory
 |---temp : Directory for temporary files

(3) List of programs
The following table lists and describes the storage locations and file names of the main programs used in JP1/Advanced
Shell.

Table 2‒2: Main programs used in JP1/Advanced Shell (UNIX only)

Storage
directory

File name Overview of
program

Description

/opt/
jp1as/bin

adshcvmerg Merging coverage
information

Command that merges coverage information.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 46

Storage
directory

File name Overview of
program

Description

/opt/
jp1as/bin

adshcvshow Displaying
coverage
information

Command that displays coverage information.

adshevtout Outputting job
definition script
operation
information

Command that outputs job definition script operation information to
a CSV file.

adshexec Executing batch
jobs

Command that executes batch jobs.

adshfile Registration of file
postprocessing

Command that defines how a specified file is to be processed when a
job step or job is terminated.

adshhk Deleting spool
jobs

Command that deletes spool jobs.

/opt/
jp1as/cmd

awk, basename, cat,
cmp, cp, cut, date,
diff, dirname,
egrep, expand, expr,
find, getopt, grep,
head, hostname, ls,
mkdir, mv, paste, rm,
rmdir, sed, sleep,
sort, split, stat,
tail, touch, uname,
uniq, wc, which

UNIX-compatible
commands

UNIX-compatible commands that can be used from job definition
scripts.

/opt/jp1as/
maintenance

adshcollect Collecting data Command that collects troubleshooting data.

/opt/jp1as/
sbin

adshchmsg Manual response
to reply-request
messages when an
error occurs

Command that is used to respond manually to reply-request messages
when an error occurs. This command must be used by a user with the
superuser permissions.

adshlsmsg Displaying a list of
reply-request
messages when an
error has occurred

Command that displays a list of reply-request messages when an error
has occurred. This command must be used by a user with the superuser
permissions.

adshmdctl User-reply
functionality's
management
daemon

Command that starts and stops the daemon for managing shared
memory for the user-reply functionality. This command must be used
by a user with the superuser permissions.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 47

2.2 Evaluations prior to installation

This section explains the evaluations that need to be made prior to installation, including the system configuration,
prerequisite programs, related programs, and files to be used.

2.2.1 System configuration
This subsection explains the JP1/Advanced Shell system configuration for each execution mode.

(1) Executing batch jobs from JP1/AJS
The following shows the system configuration for executing batch jobs from JP1/AJS.

Figure 2‒1: System configuration for executing batch jobs from JP1/AJS

The following explains the role of each system component.

• Development PC: Enables use of JP1/Advanced Shell - Developer for creation of job definition scripts.

• Batch operation server: Enables manual or automatic execution of job definition scripts.

• Operation management server: Manages jobs that are executed.

• Operation management console: Enables use of JP1/AJS - View for displaying job execution results, and is used to
define the job definition scripts that are to be executed automatically. To perform job definition in JP1/Advanced
Shell, you must have JP1/Advanced Shell - Custom Job (custom job definition program).

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 48

(2) Executing batch jobs manually
The following shows the system configuration for executing batch jobs manually.

Figure 2‒2: System configuration for executing batch jobs manually

The following explains the role of each system component.

• Development PC: Enables use of JP1/Advanced Shell - Developer for creation of job definition scripts.

• Batch operation server: Enables manual execution of job definition scripts.

(3) Using the user-reply functionality
The following figure shows the system configuration for using the user-reply functionality.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 49

Figure 2‒3: System configuration for using the user-reply functionality

For details, see 3.7 Using the user-reply functionality.

2.2.2 Programs required in each environment
This subsection explains the prerequisite programs for JP1/Advanced Shell and the related programs.

(1) Prerequisite and related programs for the execution environment

(a) Prerequisite programs for the execution environment
The following table lists the prerequisite programs for the execution environment.

Table 2‒3: Prerequisite programs for the execution environment

Server type OS

Same batch operation server as for JP1/Advanced Shell (Windows only) Windows

Same batch operation server as for JP1/Advanced Shell (UNIX only) AIX,
HP-UX,
Linux, or
Solaris

(b) Related programs for the execution environment
The following tables list the related programs for each server in the execution environment.

Table 2‒4: Related programs in the execution environment (when executing batch jobs from JP1/
AJS)

Server type Processing to be performed Programs

Same batch operation server as for JP1/Advanced Shell Executes job definition scripts from
JP1/AJS

JP1/Base
JP1/AJS - Agent#

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 50

Server type Processing to be performed Programs

Operation management server Manages jobs JP1/Base
JP1/AJS - Manager#

Operation management console (Windows only) Displays job execution results JP1/AJS - View

#
JP1/AJS - Agent is not needed when JP1/AJS - Manager is installed on the same server as JP1/Advanced Shell, because JP1/AJS - Manager
provides the JP1/AJS - Agent functions.

Table 2‒5: Related programs in the execution environment (when using the user-reply functionality)

Server type Programs

Same batch operation server as for JP1/Advanced Shell JP1/Base

Operation management server JP1/IM - Manager
JP1/Base

Operation management console JP1/IM - View

Note:
These programs are not required if you debug and run your coding for the user-reply functionality with the standard output specified as the
output destination.

(2) Prerequisite and related programs for the execution environment
(Windows only)

(a) Prerequisite program for the development environment
The following table shows the prerequisite program for the development environment.

Table 2‒6: Prerequisite program for the development environment (Windows only)

Server type OS

Same development PC as for JP1/Advanced Shell - Developer Windows

(b) Related programs for the development environment
The following tables list the related programs for the servers in the development environment.

Table 2‒7: Related programs in the development environment (when using the user-reply
functionality)

Server type Programs

Same development PC as for JP1/Advanced Shell - Developer JP1/Base

Operation management server JP1/IM - Manager
JP1/Base

Operation management console JP1/IM - View

Note:
These programs are not required if you debug and run your coding for the user-reply functionality with the standard output specified as the
output destination.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 51

(3) Prerequisite and related programs for the custom job definition
program (Windows only)

(a) Prerequisite programs for the custom job definition program
The table below shows the prerequisite programs for the custom job definition program. Although the custom job
definition program is supported only in Windows, you can use it to create both Windows and UNIX job definitions.

Table 2‒8: Prerequisite programs for the custom job definition program (Windows only)

Server type OS and Program

Same operation management console as for JP1/Advanced Shell - Custom Job • OS
Windows

• Program
JP1/AJS - View

(b) Related programs for the custom job definition program
There are no related programs for the custom job definition program.

2.2.3 Files used in JP1/Advanced Shell

(1) List of files used in JP1/Advanced Shell
The table below lists and describes the files that are used in JP1/Advanced Shell. To determine whether a file size can
exceed 2 GB, see (2) Handling of files that are larger than 2 GB (large files).

Table 2‒9: Files used in JP1/Advanced Shell

File name (icon) Extension File location File contents

Job definition script file () .ash Any location A job definition script. The user can assign
any file name.

Environment file#1 .ase Any location JP1/Advanced Shell environment settings.

System environment file .ase See 2.6.1(1) Specifying the system
environment files.

System environment settings.

Coverage information file .asc Any location Coverage environment information for JP1/
Advanced Shell.

Debugging information file .asd Same directory as for the job definition
script files#2

Debugging information used by the editor
(development environment)

System execution log#1 .log Directory specified in the LOG_DIR
parameter in the environment file

Log information that provides overall batch
job execution logs for the system
administrator.

Trace information#1 .log • For the adshexec command, the
directory specified in the TRACE_DIR
parameter in the environment file

• In all other cases, the directory specified
by the program

JP1/Advanced Shell's internal trace logs.

Temporary file .tmp • For a temporary file specified in the #-
adsh_file_temp command, the

Temporary file used internally by the
system.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 52

File name (icon) Extension File location File contents

Temporary file .tmp directory specified in the
TEMP_FILE_DIR parameter in the
environment file

• In all other cases, the directory specified
by the program

Temporary file used internally by the
system.

Coverage display temporary file .txt Temporary file directory specified by the
system

Temporary file used in displaying coverage
information. The format of file name is as
follows:
adshexec_view_job-definition-script-
file-name_year-month-date_hour-minute-
second.txt

Start log (UNIX only) .log /opt/jp1as/system Log information that is collected when the
user-reply functionality's management
daemon is started and stopped.

pid file (UNIX only) .pid /opt/jp1as/system File used by the user-reply functionality
management daemon and adshmdctl.

#1
You can collect these files by using the adshcollect command. For details about how to collect the files, see adshcollect command (collects
information).

#2
Because a debugging information file cannot be saved, an error is displayed in the following cases:

 The job definition script file being edited is in a directory for which the user does not have write permissions.
 The job definition script file being edited is in a compressed folder.

Notes about specifying files and paths

• Do not use a file name that begins with a dot (.).

• The permitted maximum length for path names must comply with the specifications of the OS being used.

• The maximum file name length is 246 bytes (Windows only).

• Do not use reserved device names (such as CON, AUX, and NUL) for file names (Windows only).

• Do not use NTFS streams for file names (Windows only).

• Do not use hard links, symbolic links, or junctions (Windows only).

• You can use UNC names for file names and path names (example: \\computer-name\shared-name\file-
name); however, make sure that a path name specified in this format does not end with shared-name (or shared-
name\). The cd standard shell command does not support the UNC format. (Windows only)
Examples of valid specification:
\\server\share\dir
\\10.111.222.33\share\dir
Examples of invalid specification:
\\server\share
\\10.111.222.33\share

• Do not use UNC names for the folder path names for traces, system execution logs, spool, and temporary files
(Windows only).

(2) Handling of files that are larger than 2 GB (large files)
JP1/Advanced Shell supports some of the large files (that are larger than 2 GB). Of the files supported by JP1/Advanced
Shell, the files and commands that correspond to large files are as follows:

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 53

• Of the files created in the spool job directories, files STDOUT, STDERR, step-number_step-name_STDOUT, and
step-number_step-name_STDERR to which user data is output
Note that large files might adversely affect the overall system processing because the jobs executed from JP1/AJS3
transfer the contents of files STDERR and step-number_step-name_STDERR to JP1/AJS3's manager host. For
details, see the JP1/Automatic Job Management System 3 System Design (Configuration) Guide.
Note that when you use the spool job creation suppression functionality, no spool job is created when the job
definition script is run. For details about the spool job creation suppression functionality, see 2.6.8(1)(a) Determining
whether the spool job creation suppression functionality is to be used.

• In redirect specifications, the files specified in >file, < file, >>file, >|file, <>file, n>file, and
n<file

• Files specified in conditional expressions other than -t fd of the conditional expressions that are evaluated with
the test or let command

• Files that are allocated by the extended script commands #-adsh_file, #-adsh_file_temp, and #-
adsh_spoolfile

• Files handled by UNIX-compatible commands
However, a file cannot be exceed 2 GB if it is used for the following operations:

• Editing and displaying the number of bytes that exceeds 2 GB

• Editing and displaying the number of lines that exceed 2 GB

• Executing UNIX commands (such as diff and sort) that use a large amount of memory when large-sized
files are specified

Whether large files are supported depends on the types of file systems and OS settings (example: ulimit setting).
Before you design your operations, check if your environment supports large files.

2.2.4 Encoding used in JP1/Advanced Shell
You must code job definition script files and environment files used in JP1/Advanced Shell using the encoding that
matches the value of the LANG environment variable in the environment in which JP1/Advanced Shell is run. If a
different encoding is used, operation cannot be guaranteed. If you will execute the same job definition script file on
different OSs, use an encoding that is supported by all the OSs to be used.

In UNIX, the language and encoding in which messages are output by JP1/Advanced Shell are determined by the value
of the LANG environment variable.

The following table shows the values of the LANG environment variable and the encodings for job definition script files
and environment files that are specified when JP1/Advanced Shell is used.

Table 2‒10: Encodings corresponding to the LANG environment variable values

OS Value of LANG environment
variable

Encoding for job definition script files and environment files

Windows -- Shift-JIS

Linux ja_JP.UTF-8 UTF-8

AIX Ja_JP
ja_JP
JA_JP
JA_JP.UTF-8

Shift-JIS
EUC
UTF-8
UTF-8

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 54

OS Value of LANG environment
variable

Encoding for job definition script files and environment files

HP-UX ja_JP.SJIS
ja_JP.eucJP
ja_JP.utf8

Shift-JIS
EUC
UTF-8

Solaris ja_JP.PCK
ja
ja_JP.UTF-8

Shift-JIS
EUC
UTF-8

Legend:
--: Not applicable

2.2.5 Local time settings
JP1/Advanced Shell obtains and outputs local time information by referencing environment variables. You must specify
the local time settings in the environment variables beforehand.

The commands provided by JP1/Advanced Shell output information according to the OS's time zone setting (Windows)
or the TZ environment variable (UNIX). Use one of the methods listed below to specify the TZ environment variable.
Note that no environment variable can be defined for custom job definition programs.

• JP1/AJS's job definition or environment variable definition

• System profile (/etc/profile)

• User profile ($HOME/.profile)

2.2.6 Notes about standard input
When the commands provided by JP1/Advanced Shell are used to input data from a terminal to the standard input, the
permitted maximum length depends on the language specifications of the OS, terminal, shell, and programming
language.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 55

2.3 Installing and uninstalling (Windows only)

This section explains how to install and uninstall JP1/Advanced Shell in a Windows environment. You must first install
prerequisite and related programs by referencing each program's documentation.

To install the product and related programs:

1. Install and set up the required products on the operation management server.

• For running jobs in JP1/AJS
JP1/AJS - Manager

• For using the user-reply functionality
JP1/IM - Manager

2. Install and set up the required products on the operation management console.

• For running jobs in JP1/AJS
JP1/AJS - View

• For using the user-reply functionality
JP1/IM - View

3. Install JP1/Advanced Shell - Custom Job on the operation management console.
For details about installation of the custom job definition program, see 2.3.3 Installing JP1/Advanced Shell - Custom
Job.

4. Install and set up the required products on the batch operation server.

• For running jobs in JP1/AJS
JP1/AJS - Agent

• For using the user-reply functionality
JP1/Base

5. Install JP1/Advanced Shell on the batch operation server and specify settings such as environment information.
For details about installation of JP1/Advanced Shell in a Windows environment, see 2.3.1 Installing JP1/Advanced
Shell (Windows only).
For details about the setup procedure for using the user-reply functionality, see 2.8.2 Setting up the user-reply
functionality after JP1/Advanced Shell has been installed (Windows only).

2.3.1 Installing JP1/Advanced Shell (Windows only)
A user with an administrator role installs JP1/Advanced Shell. The two ways of installing JP1/Advanced Shell are remote
installation using JP1/Software Distribution and installation from a CD-ROM. You install JP1/Advanced Shell -
Developer in the same manner.

(1) Remote installation using JP1/Software Distribution
JP1/Advanced Shell supports use of JP1/Software Distribution for remote installation (software distribution).

For details about the remote installation method using JP1/Software Distribution, see the manuals Job Management
Partner 1/Software Distribution Description and Planning Guide (for Windows systems) and Job Management Partner
1/Software Distribution Administrator's Guide Volume 1 (for Windows systems).

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 56

(2) Installation from a CD-ROM
There are three types of installation of JP1/Advanced Shell from a CD-ROM:

• If you are newly deploying JP1/Advanced Shell, perform a new installation.

• If you are upgrading JP1/Advanced Shell, perform an overwrite installation.

• If you are re-installing the same version, perform a recovery installation.

The following subsections explain these three procedures.

(a) New installation
This subsection explains how to perform a new installation of JP1/Advanced Shell. Normally, the execution environment
is installed on a server and the development environment is installed on a client PC. It is also possible to install both
environments (execution and development) on the same PC.

To perform a new installation:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell is to be installed.

2. Terminate all programs.

3. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.

4. Install JP1/Advanced Shell by entering required information as instructed by the installer.
The following information will be requested during installation:

• Product to be installed (JP1/Advanced Shell or JP1/Advanced Shell - Developer)

• Customer Information

• Destination Folder

5. When the Finish dialog box is displayed, click Finish.
Installation is completed.

(b) Overwrite installation for upgrading
You perform an overwrite installation in the same manner as for a new installation.

You can upgrade JP1/Advanced Shell by performing an overwrite installation without having to uninstall the existing
JP1/Advanced Shell.

(c) Recovery installation using the same version
To perform a recovery installation to correct problems in an already installed JP1/Advanced Shell:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell is to be installed.

2. Terminate all programs.

3. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.

4. Enter required information as instructed by the installer, and then select Program Maintenance.

5. In Program Maintenance, select Repair.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 57

6. When the Finish dialog box is displayed, click Finish.
Recovery installation is completed.

2.3.2 Uninstalling JP1/Advanced Shell (Windows only)

(1) Uninstalling JP1/Advanced Shell manually
This subsection explains how to uninstall JP1/Advanced Shell. You uninstall JP1/Advanced Shell - Developer in the
same manner.

To uninstall JP1/Advanced Shell:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell has been installed.

2. Terminate all programs. If you are using the user-reply functionality, stop the services of JP1/Advanced Shell and
then unregister them.

3. Place in the CD-ROM drive the CD-ROM that contains JP1/Advanced Shell.

4. Enter required information as instructed by the installer, and then select Maintain Program.

5. In Program Maintenance, select Delete.

6. When the Finish dialog box is displayed, click Finish.
Uninstallation is completed.

7. If there are any unneeded files, such as spool, trace, and debugging information files, delete them.

If you were using the user-reply functionality, after JP1/Advanced Shell has been installed, delete the adapter command
configuration file used for the user-reply functionality that has been set up for JP1/Base. For details about the storage
folder for the adapter command configuration file used for the user-reply functionality, see 2.8.2(2) Setting up the adapter
command (for the execution environment) or 2.8.2(3) Setting up the adapter command (for the development
environment).

(2) Using JP1/Software Distribution to uninstall JP1/Advanced Shell
For details about how to use JP1/Software Distribution to uninstall JP1/Advanced Shell, see the manuals Job
Management Partner 1/Software Distribution Description and Planning Guide (for Windows systems) and Job
Management Partner 1/Software Distribution Administrator's Guide Volume 1 (for Windows systems).

2.3.3 Installing JP1/Advanced Shell - Custom Job
This subsection explains how to install the custom job definition program on the operation management console on
which JP1/AJS - View is already installed. You install the custom job definition program by transferring it from JP1/
Advanced Shell's installation directory to the operation management console.

Although the custom job definition program can be installed only in a Windows environment, it can be used to create
definitions for both Windows and UNIX jobs. This subsection explains the new, overwrite, and recovery installation
methods.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 58

(1) New installation
To perform a new installation of JP1/Advanced Shell - Custom Job:

1. Log on as a user with an administrator role to the operation management console on which JP1/Advanced Shell -
Custom Job is to be installed.

2. Obtain the installer for JP1/Advanced Shell - Custom Job.
The installer is stored at the following location:

• To use the Windows edition of JP1/Advanced Shell
JP1/Advanced-Shell-installation-folder\JP1ASE\util\setup.exe

• To use the UNIX edition of JP1/Advanced Shell
/opt/jp1as/util/setup.exe

3. Transfer the installer (setup.exe) for JP1/Advanced Shell - Custom Job to the operation management console.

4. Start the command prompt and locate the folder to which the installer has been transferred, and then execute the
following command:
setup.exe

5. Install JP1/Advanced Shell - Custom Job by entering required information as instructed by the installer.
Select the language of JP1/Advanced Shell - Custom Job to be installed, and then specify the following information:

• Customer Information: Specify requested information, including a user name.

• Destination Folder: Specify the folder in which JP1/Advanced Shell - Custom Job is to be installed.

6. When the Finish dialog box is displayed, click Finish.
Installation is completed.

7. If you are installing the custom job definition program while a JP1/AJS3 - View whose version is earlier than 09-50
is installed, copy the custom job icons to the following folder:
JP1/AJS-View-installation-folder\image\custom
For details about the folder and the file names of the custom job icons to be copied, see 2.1.1 Installation folder
(Windows only).

(2) Overwrite installation for upgrading
When you perform an overwrite installation of JP1/Advanced Shell - Custom Job for purposes of upgrading, there is
no need to uninstall the existing JP1/Advanced Shell - Custom Job.

You perform the overwrite installation in the same manner as for a new installation.

If you copied the previous version's custom job icons to the JP1/AJS - View installation folder, there is no need to copy
them again during upgrading.

(3) Recovery installation using the same version
To perform a recovery installation to correct problems in an already installed JP1/Advanced Shell - Custom Job:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell - Custom Job
is to be installed.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 59

2. Obtain the installer for JP1/Advanced Shell - Custom Job.
The installer is stored at the following location:

• In Windows: JP1/Advanced-Shell-installation-folder\JP1ASE\util\setup.exe
• In UNIX: /opt/jp1as/util/setup.exe

3. Transfer the installer (setup.exe) for JP1/Advanced Shell - Custom Job to the operation management console.

4. Start the command prompt and locate the folder to which the installer has been transferred, and then execute the
following command:
setup.exe

5. From Program Maintenance, select Repair.

6. When the Finish dialog box is displayed, click Finish.
Recovery installation is completed.

2.3.4 Uninstalling JP1/Advanced Shell - Custom Job
To uninstall JP1/Advanced Shell - Custom Job:

1. Log on as a user with an administrator role to the Windows machine on which JP1/Advanced Shell - Custom Job
has been installed.

2. Terminate all programs.

3. If a JP1/AJS - View whose version is earlier than 09-50 is installed, delete the custom job icons that were copied to
the following folder:
JP1/AJS-View-installation-folder\image\custom

4. On the Control Panel, select the product from Add or Remove Programs.
If you are uninstalling JP1/Advanced Shell - Custom Job in an environment where user account control (UAC) is
enabled, the User Account Control window is displayed. Select Yes in this window.

5. When the Finish dialog box is displayed, click Finish.
Uninstallation is completed.

6. If there are any unneeded trace files, delete them.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 60

2.4 Installing and uninstalling (UNIX only)

This section explains how to install and uninstall JP1/Advanced Shell in a UNIX environment. In a UNIX environment,
you can install only the execution environment on the batch operation server. You must first install prerequisite and
related programs by referencing each program's documentation.

To install the product and related programs:

1. Install and set up the required products on the operation management server.

• For running jobs in JP1/AJS
JP1/AJS - Manager

• For using the user-reply functionality
JP1/IM - Manager

2. Install and set up the required products on the operation management console in a Windows environment.

• For running jobs in JP1/AJS
JP1/AJS - View

• For using the user-reply functionality
JP1/IM - View

3. Install JP1/Advanced Shell - Custom Job on the operation management console.
For details about installation of the custom job definition program, see 2.3.3 Installing JP1/Advanced Shell - Custom
Job.

4. Install and set up the required products on the batch operation server.

• For running jobs in JP1/AJS
JP1/AJS - Agent

• For using the user-reply functionality
JP1/Base

5. Install JP1/Advanced Shell on the batch operation server and specify settings such as environment information.
For details about installation of JP1/Advanced Shell in a UNIX environment, see 2.4.1 Installing JP1/Advanced
Shell (UNIX only).
For details about the setup procedure for using the user-reply functionality, see 2.8.3 Setting up the user-reply
functionality after JP1/Advanced Shell has been installed (UNIX only).

2.4.1 Installing JP1/Advanced Shell (UNIX only)
A user with an administrator role installs JP1/Advanced Shell. The two ways of installing JP1/Advanced Shell are remote
installation using JP1/Software Distribution and installation from a CD-ROM.

(1) Remote installation using JP1/Software Distribution
JP1/Advanced Shell supports use of JP1/Software Distribution for remote installation (software distribution).

For details about the remote installation method using JP1/Software Distribution, see the manuals Job Management
Partner 1/Software Distribution Manager and Job Management Partner 1/Software Distribution SubManager (for
UNIX systems).

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 61

(2) Installation from a CD-ROM
This subsection explains how to install JP1/Advanced Shell from a CD-ROM.

Note that the directory and file names on the CD-ROM might be different from what is shown here, depending on the
hardware environment. Use the ls command to check the file names and specify file names exactly as displayed.

To install JP1/Advanced Shell:

1. Specify the user permissions.
Log on as a superuser to the server on which JP1/Advanced Shell is to be installed. Alternatively, use the su command
to change the user permissions to superuser.

2. Terminate all programs.
If any existing JP1-series programs and JP1/Advanced Shell program are running, terminate them.

3. Place the medium that contains JP1/Advanced Shell.

4. Mount the CD-ROM device by executing the following command:

/bin/mount -r -o mode=0544 /dev/cdrom /cdrom

/cdrom is the mount point of the CD-ROM device special file. If there is no mount point directory, create one. Note
that the device special file name and mount point might differ depending on the environment.

5. Start the Hitachi Program Product Installer by executing the following command:

In Linux
/cdrom/LINUX/setup /cdrom#

In AIX
/cdrom/AIX/setup /cdrom#

In HP-UX
/cdrom/IPFHPUX/setup /cdrom#

In Solaris
/cdrom/SOLARIS/setup /cdrom#

#: This example assumes /cdrom as the mount point.
The Hitachi Program Product Installer starts and the initial window is displayed.
The following is an example of the Hitachi Program Product Installer's initial window:

 Hitachi PP Installer 05-16

 L) List Installed Software.
 I) Install Software.
 D) Delete Software.
 Q) Quit.

 Select Procedure ===>

6. In the Hitachi Program Product Installer's initial window, enter I.
A list of programs that can be installed is displayed.

7. Select JP1/Advanced Shell, and then enter I.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 62

JP1/Advanced Shell is installed. To select a program, move the cursor to the desired program, and then press the
space bar to select it.
The following shows an example of the Hitachi Program Product Installer's installation window:

 PP-No. VR PP-NAME
<@>001 P-8112-B1AL 1010 Advanced Shell
:
:
F) Forward B) Backward J) Down K) Up Space) Select/Unselect I) Install Q)
Quit

<@> is displayed to the left of the selected program product. If you enter I following <@>, the following message
is displayed on the last line:

Install PP? (y: install, n: cancel)==>

If you enter y or Y, installation begins. If you enter n or N, installation is cancelled and the program product
installation window is displayed again.

8. When installation is completed successfully, enter Q.
The Hitachi Program Product Installer's initial window is displayed again.

Note that the following files are created during installation as installer's logs:

/opt/jp1as/instlog/ADSH_INST_LOG
/opt/jp1as/instlog/ADSH_INST_USERLOG

If the installer's log files are not created, possible causes are as follows:

• The installer's log files are not regular files.

• The user does not have write permission for the directory in which the installer's log files are to be created.

• A file with the same name already exists at the path of each log file of the installer.
A file with the same name exists in the following cases:

• "/opt" is not a directory.

• "/opt/jp1as" is not a directory.

• "/opt/jp1as/instlog" is not a directory.

When installation is completed, the default environment has been set up. To change the default settings, see the applicable
subsections in 2.6 Specifying environment information for JP1/Advanced Shell.

2.4.2 Uninstalling JP1/Advanced Shell (UNIX only)

(1) Uninstalling JP1/Advanced Shell manually
This subsection explains how to uninstall JP1/Advanced Shell. You uninstall JP1/Advanced Shell by following the
Hitachi Program Product Installer's instructions.

Before you uninstall JP1/Advanced Shell, terminate all programs provided by JP1/Advanced Shell. If you are using the
user-reply functionality, terminate the user-reply functionality's management daemon. The installer's log files and any

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 63

newly created files are not deleted during uninstallation. To completely delete the environment, the user must delete
these files.

To uninstall JP1/Advanced Shell:

1. Start the Hitachi Program Product Installer by executing the following command:

/etc/hitachi_setup

The Hitachi Program Product Installer starts and the initial window is displayed.
The following shows an example of the Hitachi Program Product Installer's initial window:

 Hitachi PP Installer 05-16

 L) List Installed Software.
 I) Install Software.
 D) Delete Software.
 Q) Quit.

 Select Procedure ===>

2. In the Hitachi Program Product Installer's initial window, enter D.
A list of the software programs that can be uninstalled is displayed.

3. Select JP1/Advanced Shell, and then enter D.
JP1/Advanced Shell is uninstalled. To select a program, move the cursor to the target program, and then press the
space bar to select it.
The following shows an example of the uninstallation window:

 PP-No. VR PP-NAME
 001 P-8112-B1AL 1010 Advanced Shell
:
:
F) Forward B) Backward J) Down K) Up Space) Select/Unselect D) Delete Q)
Quit

<@> is displayed to the left of the selected program product. If you enter D following <@>, the following message
is displayed on the last line:

Delete PP? (y: delete, n: cancel) ==>

If you enter y or Y, uninstallation begins. If you enter n or N, uninstallation is cancelled and the program product
uninstallation window is displayed again.

4. When uninstallation is completed successfully, enter Q.
The Hitachi Program Product Installer's initial window is displayed again.

5. If there are any unneeded files, such as execution log and trace files, delete them.

Note that the following files are created during uninstallation as installer's logs:

/opt/jp1as/instlog/ADSH_INST_LOG
/opt/jp1as/instlog/ADSH_INST_USERLOG

If the installer's log files are not created, possible causes are as follows:

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 64

• The installer's log files are not regular files.

• The user does not have write permission for the directory in which the installer's log files were created.

• A file with the same name already exists at the path of each log file of the installer.
A file with the same name exists in the following cases:

• "/opt" is not a directory.

• "/opt/jp1as" is not a directory.

• "/opt/jp1as/instlog" is not a directory.

Notes:
If the user-reply functionality's management daemon is running, the uninstallation process is cancelled and the
following message is output to /opt/jp1as/instlog/ADSH_INST_LOG:

One or more /opt/jp1as/sbin/adshmd processes are running.
Please stop them.

When this message has been output, execute the adshmdctl command to terminate the user-reply functionality's
management daemon, and then perform uninstallation again.
Uninstallation is also cancelled if the user-reply functionality's management daemon does not terminated normally.
In such a case, start the user-reply functionality's management daemon and then terminate it, then perform
uninstallation again.

(2) Using JP1/Software Distribution to uninstall JP1/Advanced Shell
For details about how to use JP1/Software Distribution to uninstall JP1/Advanced Shell, see the manuals Job
Management Partner 1/Software Distribution Manager and Job Management Partner 1/Software Distribution
SubManager (for UNIX systems).

(3) If you were using the user-reply functionality
If you were using the user-reply functionality, perform the following after uninstallation has been completed:

• Delete the adapter command configuration file used for the user-reply functionality that has been set up for JP1/
Base. For details about the storage directory for the adapter command configuration file used for the user-reply
functionality, see 2.8.3(2) Setting up JP1/Base.

• If the user-reply functionality's management daemon has been set to start and terminate automatically, disable the
automatic start and termination settings.
In AIX:

1. Disable the automatic start setting for the user-reply functionality's management daemon by executing the
following command:
rmitab adshmd

2. If the user-reply functionality's management daemon for the logical host is set to start automatically, execute the
rmitab command specifying the record of the user-reply functionality's management daemon for the logical
host.

3. To disable the automatic termination function at system shutdown, delete the following code from /etc/
rc.shutdown:
test -x /opt/jp1as/sbin/adshmdctl && /opt/jp1as/sbin/adshmdctl stop

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 65

4. If the user-reply functionality's management daemon for the logical host is set to terminate automatically, delete
the specification for automatically terminating the user-reply functionality's management daemon for the logical
host from /etc/rc.shutdown.

In Linux, HP-UX, and Solaris:

1. Delete from the target directory the jp1_as_md script file that was copied from the /opt/jp1as/sample
directory.

2. If you have created automatic start and termination script files for the logical host, delete them from the target
directory.

3. Delete the symbolic link that was created as a link to the jp1_as_md script file.

4. If you have created symbolic links to the automatic start and termination script files for the logical host, delete
them.

For details about the target directory to which the automatic start and termination script files are to be copied, see
2.8.3(1) Starting and terminating the user-reply functionality's management daemon automatically. For details about
the target directory to which the automatic start and termination script files for the logical host are to be created and
the target directory to which the symbolic links are to be created, see 2.9.5(2) Automatic startup and termination of
the user-reply functionality's management daemon for the logical host in a non-cluster environment (UNIX only).

2.4.3 Using Hitachi Program Product Installer to display version
information (UNIX only)

Because the Hitachi Program Product Installer installs the UNIX edition of JP1/Advanced Shell, you can display the
JP1/Advanced Shell version information from Hitachi Program Product Installer.

To display the version information:

1. Start the Hitachi Program Product Installer by executing the following command:

/etc/hitachi_setup

2. In the initial window, enter L.
A list of Hitachi products that have been installed is displayed. Check the displayed version information.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 66

2.5 Specifying environment variables

The table below lists and describes the environment variables supported by JP1/Advanced Shell.

Important note
JP1/Advanced Shell sets and references shell and environment variables whose names begin with ADSH.
Therefore, do not use a shell variable or an environment variable whose name begins with ADSH for any purpose
other than those described in this manual.

Table 2‒11: Environment variables supported by JP1/Advanced Shell

Environment variable name Information to be specified Timing of
specification
when the value is
set automatically

Whether a
value can be
specified

ADSH_AJS_ENVF Job environment file name for custom
jobs

When the job starts
as a custom job

Yes#1

ADSH_AJS_GCHE Check option for custom jobs When the job starts
as a custom job

Yes#1

ADSH_AJS_LHOST Logical host name for custom jobs When the job starts
as a custom job

Yes#1

ADSH_AJS_SCRF Job definition script file name for
custom jobs

When the job starts
as a custom job

Yes#1

ADSH_ENV Job environment file name When the job starts
as a custom job

Yes#2

ADSH_CMD_ARGORDER#3 Rule for determining the order of the
command arguments specified on the
command line. The only permitted
value is seq.
This environment variable has effect in
the cut, date, diff, expand, ls,
and stat commands. It also has effect
in the analysis of user-defined options
in the getopt command.

(Not specified
automatically.)

Yes

ADSH_CMDEXPR_LENGTH Character string length. This
environment variable is specified
when the length operator is used in
the expr command.
Specify b to acquire the character
string length in bytes, and specify c to
acquire the character string length in
characters.
If this environment variable is omitted
or a value other than b or c is specified,
length is not treated as an operator.

(Not specified
automatically.)

Yes

ADSH_JOB_NAME Job name When the job starts No

ADSH_JOBID Job ID (fixed 6-digit decimal number
with leading zeros added)

When the job starts No

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 67

Environment variable name Information to be specified Timing of
specification
when the value is
set automatically

Whether a
value can be
specified

ADSH_JOBRC_FATAL Job return code in the event of a fatal
error that interrupts job processing
such as syntax errors.
For details about how to specify the
environment variable, see 2.6.15(2)
ADSH_JOBRC_FATAL environment
variable (specifies the return code in
the event of an unresumable error in
jobs.

(Not specified
automatically.)

Yes#2

ADSH_LANG
(UNIX only)#4#6

The language and encoding in which
messages are output by JP1/Advanced
Shell.
Set this environment variable if you
want to temporarily change the
messages that the adshexec
command for a specific job outputs.
For details about the values that you
can specify, see 2.2.4 Encoding used in
JP1/Advanced Shell.
If this environment variable is set
within a job definition script or an
environment file, the value of such an
environment variable is valid only for
a child job, root job, or shell operation
command (other than the adshexec
command) that starts from a job
definition script.

(Not specified
automatically.)

Yes

ADSH_LANG_JP1EVENT
(UNIX only)#5

The language of messages output by
JP1 events that are generated by the
user-reply functionality.
Set this environment variable if you
want JP1 event messages to be output
in a different language, in accordance
with the settings of JP1/IM at the
output destination, from the language
in which messages are output by JP1/
Advanced Shell.
For details about the specifiable
values, see 2.2.4 Encoding used in JP1/
Advanced Shell.
If this environment variable is set
within a job definition script, the value
of such an environment variable is
valid only for a child job, root job, or
shell operation command (other than
the adshexec command) that starts
from a job definition script.
If this environment variable is set
within an environment file, JP1 event
messages from a job definition script
are output in the language that
conforms to the value.

(Not specified
automatically.)

Yes

ADSH_STEP_NAME Job step name. When a command
outside the job step is executed or

When the job step
starts

No

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 68

Environment variable name Information to be specified Timing of
specification
when the value is
set automatically

Whether a
value can be
specified

ADSH_STEP_NAME when a job step name is omitted, the
environment variable is not defined.

When the job step
starts

No

AJS_BJEX_STOP Interface used for forced termination
from JP1/AJS.
This environment variable must be
defined when JP1/Advanced Shell
batch jobs are defined in PC or UNIX
jobs. Define the environment variable
in PC or UNIX job definitions, not in
OS settings.

When the job starts
as a custom job

Yes (Only TERM
is permitted.)

BLOCKSIZE Number of bytes per block. This
environment variable is used in the ls
and stat commands.
The default is 512.

(Not specified
automatically.)

Yes

COLUMNS Output width per line of command
execution results. This environment
variable is used in the -C option of the
ls command and the l editing
command of the sed command (edit
command).
This environment variable cannot be
defined in job definition scripts.

(Not specified
automatically.)

Yes (Cannot be
specified in job

definition
scripts.)

GETOPT_COMPATIBLE Parameter analysis method. This
environment variable is used in the
getopt command.
There is no rule for the value to be set.
If a value is set, JP1/Advanced Shell
assumes that the getopt command is
specified in format 1 for all arguments
to be analyzed.

(Not specified
automatically.)

Yes

POSIXLY_CORRECT#3 Rule for determining the order of the
command arguments specified on the
command line.
There is no rule for the value to be set.
If a value is set, the handling is the
same as when seq is specified in the
ADSH_CMD_ARGORDER
environment variable.
This environment variable cannot be
defined in job definition scripts.

(Not specified
automatically.)

Yes (Cannot be
specified in job

definition
scripts.)

TMPDIR
(UNIX only)

Directory to which temporary files are
output. This environment variable is
used in the diff and sort
commands.

(Not specified
automatically.)

Yes

#1
These environment variables can be used only in the unit definitions in JP1/AJS's ajsdefine command and in the job definitions
in JP1/AJS - Definition Assistant. Do not use these environment variables in the JP1/Advanced Shell's job definition scripts or user
environments, such as user profiles and system profiles.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 69

#2
If an environment variable is set within a job definition script or an environment file, the value of such an environment variable is
valid only for a child job or root job that is started from a job definition script.

#3
The POSIXLY_CORRECT environment variable has effect in the standard Linux OS commands as well as in the commands in
which the ADSH_CMD_ARGORDER environment variable has effect, but the environment variable might have additional
functionality than the rule for determining the specification order of the command arguments. Therefore, if the only thing you want
to do is to set a rule for determining the specification order for command arguments for UNIX-compatible commands, use the
ADSH_CMD_ARGORDER environment variable.

#4
The ADSH_LANG environment variable is prioritized over the LANG environment variable. If the ADSH_LANG environment
variable is not specified, messages are output in the language and encoding specified in the LANG environment variable. If neither
the ADSH_LANG environment variable nor the LANG environment variable is specified, the value C is assumed.

#5
The ADSH_LANG_JP1EVENT environment variable takes priority over both the ADSH_LANG and the LANG environment variables.
If the ADSH_LANG_JP1EVENT environment variable is not specified, messages are output in the language specified in the
ADSH_LANG environment variable. If neither the ADSH_LANG_JP1EVENT nor the ADSH_LANG environment variable is
specified, messages are output in the language specified in the LANG environment variable.
If the ADSH_LANG environment variable is set to a value other than C, or if the ADSH_LANG environment variable is not specified
and the LANG environment variable is set to a value other than C, messages that are output by JP1 events are output in Japanese. In
such a case, if you want JP1 event messages to be output in English, set the ADSH_LANG_JP1EVENT environment variable to C.

#6
If you execute the adshmdctl command with this environment variable specified, messages to the syslog are also output in the
language and encoding specified in the ADSH_LANG environment variable.
Depending on the system, outputting the character codes of the language and encoding to the syslog might be impossible. In this
case, do not use the adshmdctl command with this environment variable specified.

From job definition scripts, you can reference the default environment variables that are set by the OS and the
environment variables that are specified in the export parameter in the environment files, in addition to the
environment variables listed in the above table. For details about the export parameter, see export parameter.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 70

2.6 Specifying environment information for JP1/Advanced Shell

Once you have installed JP1/Advanced Shell, you must specify environment information by performing the tasks listed
below. After you have specified the environment information, you will be able to execute batch jobs based on the
specified environment information.

• Specify the JP1/Advanced Shell environment files (environment information) and environment variables, as needed.
For details about the environment files and environment variable settings, see 2.6.1 Specifying the environment files
through 2.6.15 Defining the return code in the event of an unresumable error in a job.
Also, read the following subsections as needed:

• 2.6.16 Setting up the user-reply functionality

• 2.6.17 Checking the JP1 environment (UNIX only)

• 2.6.18 Setting up the shell (UNIX only)

• If you want to change the directories and files used for JP1/Advanced Shell from their default settings, you must
create new directories and files.
For details, see 2.6.19 Creating the directories required for JP1/Advanced Shell.

• Specify the definition files for collecting maintenance information.
For details about collecting maintenance information, see 10.3 How to collect information.

Important note
JP1/Advanced Shell sets and references shell and environment variables whose names begin with ADSH.
Therefore, do not use a shell variable or an environment variable whose name begins with ADSH (in
Windows, lower-case representations are included) for any purpose other than those described in this
manual.

2.6.1 Specifying the environment files
The two types of environment files are system environment files and job environment files. The supported parameters
are the same. The following table explains each type of file.

Table 2‒12: Types of environment files

Type of environment file Description

System environment file An environment file of this type is common to all systems and is specified by the system administrator. Services
and daemons use the settings in a system environment file. This environment file is used automatically when
it is stored in the predefined directory.

Job environment file This environment file is specified for each job by the developer. It includes the following:
• Environment file specified in the ADSH_ENV environment variable
• Job environment file specified in JP1/Advanced Shell Editor's Runtime Environment Settings dialog box
• Job environment file specified when JP1/Advanced Shell custom jobs are defined

JP1/Advanced Shell services and daemons use the information defined in system environment files. The information
defined in system environment files takes effect at the time a JP1/Advanced Shell service or daemon starts.

Job controllers use the information defined in system environment files and job environment files.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 71

For details about the parameters that can be specified in the environment files, see 7. Parameters Specified in the
Environment Files.

All directories specified in parameters in a system environment file must exist. If you wish to change the default
directories, you must create the new directories beforehand.

If you have edited a system environment file in a UNIX environment, check that there are no errors by executing the
adshmdctl command with the conftest option specified.

The following subsections explain how to specify each environment file.

(1) Specifying the system environment files
The system administrator creates and specifies the system environment files. The created system environment files take
effect when they are stored on the file paths specified in the following table.

Table 2‒13: File names of system environment files

Environment File name of system environment file

Windows
(development
environment)

common-application-data-folder\HITACHI\JP1AS\JP1ASD\conf\adshrc.ase

Windows
(execution
environment)

common-application-data-folder\HITACHI\JP1AS\JP1ASE\conf\adshrc.ase

UNIX /opt/jp1as/conf/adshrc.ase

(2) Specifying the job environment files
To use a job environment file to execute batch jobs, specify the file path in the ADSH_ENV environment variable. Use
the procedure described below to create and specify a job environment file.

In JP1/Advanced Shell Editor, you can specify the path for a job environment file in the Runtime Environment Settings
dialog box. When you define a JP1/Advanced Shell custom job, you can specify the path for the job environment file
that is to be used.

To create and specify a job environment file:

1. Copy the sample.ase environment file sample data from the following directory to a desired directory and file:#

• Windows execution environment
installation-folder\JP1ASE\sample\sample.ase

• Windows development environment
installation-folder\JP1ASD\sample\sample.ase

• UNIX execution environment
/opt/jp1as/sample/sample.ase

2. Specify the required parameters in the copy of the job environment file.
For details about the parameters that are required in a job environment file, see 7. Parameters Specified in the
Environment Files. Make sure that the encoding of the job environment file matches the value of the LANG
environment variable in the environment in which job definition scripts are to be run. For details about the encoding
of job environment files and the LANG environment variable, see 2.2.4 Encoding used in JP1/Advanced Shell.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 72

3. Specify the path of the created job environment file in the ADSH_ENV environment variable so that the job
environment file can be used during batch job execution.
Use one of the following methods to specify the ADSH_ENV environment variable:

• OS setting (Windows only)

• System profile /etc/profile (UNIX only)

• User profile ($HOME/.profile) (UNIX only)

#
Do not use any of the following characters in a job environment file directory or file name: & () [] { } ^
= ; ! ' + , ` ~ # %. If any of these characters is used, JP1/Advanced Shell will not function normally.

2.6.2 Converting path names
Define the path conversion settings as parameters so that the path names used in job definition scripts can be used in
both Windows and UNIX.

In JP1/Advanced Shell, you can specify paths in job definition scripts according to the platform as shown in the
following.

Table 2‒14: Rules for paths supported in Windows and UNIX environments

Item Windows environment UNIX environment

Directory separator \\#1 /

Path separator ; :

Capitalization of path name Case sensitive#2 Case sensitive

Absolute path A path name begins with drive-letter:\
\#1, #3

A path name begins with /

#1
In a Windows environment, use \\ because \ is treated as an escape character. Alternatively, enclose the entire path name in single quotation
marks.

#2
When path names are converted, they are case sensitive also in a Windows environment.

#3
UNC names are also supported. When you define path name conversion in job definition scripts, make sure that the path obtained after
conversion will not end with a shared name (including a name ending with \). If a path name ends with a shared name, operation is not
guaranteed.

To convert paths according to the above rules, the following definitions are required in the parameters:

• If you want to execute job definition scripts in a Windows environment:
Define / and : so that the separators used in the UNIX environment can be interpreted correctly.

• If you want to execute job definition scripts in a UNIX environment:
Define \\ and ; so that the separators used in the Windows environment can be interpreted correctly.

The following explains the parameters used to convert path names.

• PATH_CONV_ENABLE parameter

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 73

Enables the path conversion functionality. Specify the path separator and directory separator before conversion. In
a Windows environment, define / and :. In a UNIX environment, define \\ and ;.

• PATH_CONV_RULE parameter (Windows only)
As the path name conversion target, define one of the following:

• The range enclosed in double quotation marks is the conversion target (path conversion setting 1)

• All text excluding the range enclosed in single quotation marks is the conversion target (path conversion setting
2)

If the parameter is omitted or in UNIX, the path conversion setting 1 is applied, in which case only the range enclosed
in double quotation marks is converted.

• PATH_CONV parameter
Defines path name character strings before and after conversion. When job definition scripts are executed, path
names are converted according to the rules defined in the parameter. Only the range in a path name that is defined
by the PATH_CONV_RULE parameter is converted.
If a path name matches the conversion character string defined in the PATH_CONV parameter, path separators and
directory separators are also converted.

(1) Example of file path conversion (path conversion setting 1)
This example shows how job definition scripts before execution are converted according to the information in the
environment file.

• Information in the environment file
The following shows an example environment file for Windows:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 1
#-adsh_conf PATH_CONV /home/hitachi/bin "C:\\Program Files" <-1.
#-adsh_conf PATH_CONV /tmp "C:\\temp" <-2.

• Job definition script before execution

#-adsh_path_var DIR,DIR2
"/home/hitachi/bin/myprog1" "/tmp/file" <-1., 2.

DIR="/home/hitachi/bin" <-1.
"$DIR/myprog1" "/tmp/file" <-2.
DIR2=$DIR
"$DIR2/myprog2" "/tmp/file" <-2.

• Job definition script after execution
The following results when paths have been converted:

"C:\\Program Files\\myprog1" "C:\\temp\\file" <-1., 2.

DIR="C:\\Program Files" <-1.
"$DIR\\myprog1" "C:\\temp\\file" <-2.
DIR2=$DIR
"$DIR2\\myprog2" "C:\\temp\\file" <-2.

1. Path /home/hitachi/bin is converted to C:\\Program Files according to the PATH_CON parameter
definition.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 74

Also, the directory separator is converted from / to \\ according to the PATH_CONV_ENABLE parameter
definition.

2. Path /tmp is converted to C:\\temp according to the PATH_CONV parameter definition.
Also, the directory separator is converted from / to \\ according to the PATH_CONV_ENABLE parameter
definition.

(2) Example of file path conversion (path conversion setting 2)
This example shows how job definition scripts before execution are converted according to the information in the
environment file.

• Information in the environment file
The following shows an example environment file for Windows:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /home/user01 d:\\home\\user01
#-adsh_conf PATH_CONV BB/AA BB\\AA

• Job definition script before execution

#-adsh_job JOB001
#-adsh_path_var DIR01
echo -E "/home/user01/file"
cat /home/user01/file
DIR01=/home/user01
cat $DIR01/file02 <-1.
PATH=/home/user01/prog:$PATH <-2.
uap01
DIR02=/home/user01
PATH="$DIR02:/home/user01/prog:$PATH"
AA=10
BB=200
let ANS=BB/AA <-3.
echo $ANS
cat BB/AA

• Job definition script after execution
The following results when paths have been converted:

#-adsh_job JOB001
#-adsh_path_var DIR01
echo -E "d:\\home\\user01\\file"
cat "d:\\home\\user01"\\file
DIR01="d:\\home\\user01"
cat "$DIR01"\\file02 <-1.
PATH="d:\\home\\user01"\\prog";""$PATH" <-2.
uap01
DIR02="d:\\home\\user01"
PATH="$DIR02;d:\\home\\user01\\prog;$PATH"
AA=10
BB=200
let ANS="BB\\AA" <-3.
echo $ANS
cat "BB\\AA"

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 75

1. Because shell variable DIR01 that handles path names is defined in the job definition script before conversion, shell
variable DIR01 is enclosed in double quotation marks (") and then a directory separator is added after the shell
variable.

2. Because the top of the character string matches the conversion rule, it is enclosed in double quotation marks (").
The path separator is converted to ";". Furthermore, because the character string was converted to the path, variable
name PATH is also enclosed in double quotation marks.

3. Conversion takes place because the arithmetic expression matches the path conversion setting. To suppress this
conversion, the job definition script must be corrected with either of the following methods:

• Enclose the variable in single quotation marks such as let ANS='BB/AA'.

• Add $ at the beginning of the variable name to be referenced such as let ANS=$BB/$AA.

(3) Notes
• If this definition is used to convert path names to obtain Windows path names, the directory separator in path names

becomes \. Therefore, if a path name is displayed by the echo command unconditionally in a job definition script,
\ and the immediately following character are replaced with the escape character.
If you do not want to replace these characters with the escape character, execute the echo command with the -E
option specified. For details, see echo command (outputs what is specified in arguments to the standard output) in
9.3 Standard shell commands.

• The metacharacters ~, ~+, and ~- cannot be replaced if they are enclosed in quotation marks, or if they are specified
immediately before an escape character (\) or immediately before a character string enclosed in quotations marks.
For the metacharacters, use the corresponding shell variables by referencing 5.1.6 Metacharacters.

2.6.3 Converting file paths when files are input and output
The file paths specified in job definition scripts are converted to the file paths that are subject to input and output
operations according to the rules defined for file input and output operations. The specified file paths must correspond
exactly to the file paths to be input and output.

(1) File path conversion conditions during file input and output operations
When a file input or output operation occurs, the file path is converted by using the redirect characters (<, >, <>, >>).

Input operations also occur in job definition scripts that are run by using the . (dot) or #-adsh_script command.
However, in these job definition scripts, file paths are not converted during file input and output operations. If you want
to convert such file paths, define conversion rules in the COMMAND_CONV_ARG parameter that converts arguments
during command execution.

File path conversion for file input and output operations applies to job definition scripts that are subject to path
conversion, as described in 2.6.2 Converting path names.

You can perform file path conversion during file input and output operations between the different platforms (UNIX
 Windows or Windows UNIX) as well as between the same platforms (UNIX UNIX or Windows

Windows).

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 76

(2) Example of file path conversion during file input and output operations
The following subsections explain how job definition scripts are converted when files are input and output according
to the information (PATH_CONV_ACCESS parameter) in the environment file defined for file input and output
operations.

(a) Information in the environment file
The following shows an example environment file:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV /tmp "D:\\tmp"
#-adsh_conf PATH_CONV_ACCESS /dev/null nul

(b) Job definition script before execution
The following shows an example job definition script before execution:

while read LOG
do
 echo $LOG > /dev/null
done < "/tmp/input.txt"

(c) Job definition script during execution
The job definition script is interpreted during execution as follows:

while read LOG
do
 echo $LOG > nul
done < "D:\tmp\input.txt"

(3) Example of combining the PATH_CONV and PATH_CONV_ACCESS
parameters

This subsection presents an example in which the PATH_CONV and PATH_CONV_ACCESS parameters are combined
in the Windows edition. If both parameters are specified, the PATH_CONV parameter takes precedence. When the same
parameter is specified more than once, the parameters are processed sequentially in the order they are specified.

(a) Contents of environment file
The following example shows the contents of an environment file (with a number assigned to each line):

1. #-adsh_conf PATH_CONV_ENABLE / :
2. #-adsh_conf PATH_CONV /tmp "C:\\temp"
3. #-adsh_conf PATH_CONV_ACCESS /tmp/result.log "C:\\jp1as_tmp\
\result3.log"
4. #-adsh_conf PATH_CONV_ACCESS "C:\temp\result.log" "C:\\jp1as_tmp\
\result4.log"
5. #-adsh_conf PATH_CONV_RULE 1

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 77

(b) Contents of job definition script and the conversion method
If the following job definition scripts are executed on the environment file shown in (a), they produce different results.

cat data.txt > "/tmp/result.log"

In this example, the range enclosed in double quotation marks (") is converted by the PATH_CONV parameter because
1 is specified in the PATH_CONV_RULE parameter.

Because "/tmp/result.log" specified in the cat command is enclosed in double quotation marks ("), it is
converted to "C:\\temp\\result.log" by the rule on line 2 in the environment file. Therefore, the rule on line
3 does not apply. The rule on line 4 applies; as a result, this path is further converted to "C:\\jp1as_tmp\
\result4.log".

cat data2.txt > /tmp/result.log

Because /tmp/result.log specified in the cat command is not enclosed in double quotation marks ("), it is not
subject to conversion by the PATH_CONV parameter on line 2. The rule on line 3 applies and the path is converted to
"C:\\jp1as_tmp\\result3.log".

2.6.4 Converting arguments during command execution
JP1/Advanced Shell converts arguments when commands are executed; this applies to standard shell commands,
extended shell commands, extended script commands, reserved script commands, functions, external commands, and
user programs. You can perform this conversion between the following platforms:

• Between the same platforms: UNIX UNIX or Windows Windows

• Between different platforms: UNIX Windows or Windows UNIX

JP1/Advanced Shell analyzes each line of a job definition script according to the defined rules. If a character string in
a specified argument exactly matches the character string in an argument of a command to be executed, the character
string in the argument is converted to the specified character string. You use the COMMAND_CONV_ARG parameter to
specify conversion rules.

(1) Example of combining the PATH_CONV and COMMAND_CONV_ARG
parameters

This subsection presents an example in which the PATH_CONV and COMMAND_CONV_ARG parameters are combined
in the Windows edition. If both parameters are specified, the PATH_CONV parameter takes precedence. When the same
parameter is specified more than once, the parameters are processed sequentially in the order they are specified.

(a) Contents of environment file
The following example shows the contents of an environment file (with a number assigned to each line):

1. #-adsh_conf PATH_CONV_ENABLE / :
2. #-adsh_conf PATH_CONV /tmp "C:\\temp"
3. #-adsh_conf COMMAND_CONV_ARG /tmp/data.txt "C:\\jp1as_tmp\\data3.txt"
4. #-adsh_conf COMMAND_CONV_ARG "C:\temp\data.txt" "C:\\jp1as_tmp\

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 78

\data4.txt"
5. #-adsh_conf PATH_CONV_RULE 1

(b) Contents of job definition script and the conversion method
If the following job definition scripts are executed on the environment file shown in (a), they produce different results.

cat "/tmp/data.txt" > ./result.log

This example specifies 1 in the PATH_CONV_RULE parameter; therefore, the range enclosed in double quotation marks
(") is converted by the PATH_CONV parameter.

Because "/tmp/data.txt" specified in the cat command is enclosed in double quotation marks ("), it is converted
to "C:\\temp\\data.txt" by the rule on line 2 in the environment file. Therefore, the rule on line 3 does not
apply. The rule on line 4 applies; as a result, this path is further converted to "C:\\jp1as_tmp\\data4.txt".

cat /tmp/data.txt > ./result.log

Because /tmp/result.log specified in the cat command is not enclosed in double quotation marks ("), it is not
subject to conversion by the PATH_CONV parameter specified on line 2. The rule on line 3 applies and the path is
converted to "C:\\jp1as_tmp\\data3.txt".

2.6.5 Defining files to be started as child jobs
You can specify a job definition script as a command name in another job definition script. This enables you to run a
job definition script specified in the adshexec command as a JP1/Advanced Shell job. This feature is useful in the
following cases:

• Migrating a user's existing asset shell scripts from a UNIX environment to a Windows environment

• Executing an existing shell script that is run in the OS's shell in a UNIX environment as a JP1/Advanced Shell job
without rewriting its contents

Of the job definition scripts that are executed as descendant processes, those jobs that are executed by using specific
environment setting parameters are called child jobs. For details about root jobs and child jobs, see 3.1.2(1) Root jobs
and child jobs. For details about how to execute job definition scripts as child jobs, see 3.2.3 Executing job definition
scripts as child jobs.

If you will be starting job definition script files as child jobs, you must specify in an environment file the conditions for
the files to be used. The following provides an overview of the environment setting parameters.

• CHILDJOB_EXT parameter
Defines the extension for a job definition script file that is to be executed as a child job.

• CHILDJOB_PGM parameter
Defines the path to be replaced so that a job definition script file is executed as a child job.

• CHILDJOB_SHEBANG parameter
Defines the path of the executable program of the job definition script file that is to be executed as a child job.

A job definition script file that you create that satisfies the default definition for the CHILDJOB_SHEBANG parameter
is run as a child job.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 79

For details about the individual parameters, see 7. Parameters Specified in the Environment Files.

Important note
If you want to run both root and child jobs by using the same environment file parameters, do not change the
ADSH_ENV environment variable values or the contents of the environment files during job execution.

2.6.6 Specifying definitions for using UNIX-compatible commands

(1) Definitions for using executable UNIX-compatible commands in
existing job definition scripts

If you will be using executable UNIX-compatible commands in existing job definition scripts, set the path to the directory
in which the UNIX-compatible commands are installed in the PATH environment variable. This method eliminates the
need for correcting the existing job definition scripts. If there is a command having the same name as a UNIX-compatible
command, you can always run the UNIX-compatible command in JP1/Advanced Shell's job definition scripts by
specifying the path at the beginning of the PATH environment variable value by using the export parameter in the
environment file. For details about the export parameter, see export parameter (defines an environment variable) in
7. Parameters Specified in the Environment Files. Before you run your job definition scripts, make sure that the correct
paths have been set in each environment in which the job definition scripts are to be run.

(2) Preparations for using the script-format UNIX-compatible commands
(Windows only)

The script-format UNIX-compatible commands use sample script files provided by JP1/Advanced Shell.

Execute the script-format UNIX-compatible commands (such as chmod and su) according to the sample script file
provided by JP1/Advanced Shell.

To execute script-format UNIX-compatible commands:

1. Copy to a desired folder the files that you will be using of the sample script files stored at the following location:

• Windows execution environment
installation-folder\JP1ASE\sample

• Windows development environment
installation-folder\JP1ASD\sample

For the types of sample script files, see 8.5 UNIX-compatible commands (script format) (Windows only).

2. Rename the copied files to applicable command names.
For example, rename sample script files script_chmod1 and script_su1 as chmod and su, respectively. If
you want to define a command that does nothing, copy sample script file script_0 and then rename it.

3. To specify only the file name of the sample script, not its absolute or relative path, do either of the following:

• Store the sample script to be run in the folder defined in the PATH environment variable.

• Add to the PATH environment variable the path of the folder containing the sample script that is to be run.

4. If necessary, define KNAX6831-I message output suppression.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 80

If you do not want the KNAX6831-I message to be output after the sample script has run, specify the following
coding in the job environment file:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6831-I

If you want to suppress output of the KNAX6831-I message for all job definition scripts in the system, specify the
above coding in the system environment file.

5. Run the job definition scripts.
Run the job definition scripts by using the job environment file created in step 4. If you specified the definition in
the system environment file, the information specified in step 3 is imported automatically.

2.6.7 Defining the handling of unsupported conditional expressions
(Windows only)

The following parameter is used for defining the handling when unsupported conditional expressions are executed in
the test command.

• UNSUPPORT_TEST parameter

In a Windows environment, conditional expressions for evaluating the file attributes that are listed below are not
supported. If any of these conditional expressions is specified, an error will result. However, by specifying the
UNSUPPORT_TEST parameter, you can display a message and handle a specified conditional expression either as an
error or as a normal event. The unsupported conditional expressions are as follows:

• -h file: Uses a symbolic link for the file.

• -G file: Checks if the group to which the file belongs matches the group executing the calling process.

• -L file: Uses a symbolic link for the file (same as -h).

• -O file: Checks if the owner of the file has a valid user ID for the process.

• file1 -ef file2: Checks if file1 and file2 exist and if the entities of file1 and file2 are the same (symbolic link targets
or hard link targets are the same).

2.6.8 Defining job execution results and log output information
Job execution results are output to the spool directory. You can reference some of the output information as job execution
logs. In the event of a problem, you can collect logs and investigate the cause of the problem. In the environment file,
define the output destination and contents of these logs.

The following table lists the types of log information that are output while JP1/Advanced Shell is running, and where
each type is stored.

Table 2‒15: Log information output while running JP1/Advanced Shell and its storage locations

Log information Information that is output Storage location

Job execution log Log of batch jobs Under the spool root directory

System execution log Comprehensive JP1/Advanced Shell execution
log

Directory specified by the LOG_DIR
parameter#1 in the environment file.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 81

Log information Information that is output Storage location

Trace log JP1/Advanced Shell internal trace log Directory specified by the TRACE_DIR
parameter#1 in the environment file.

(UNIX only)
Start log#2

Start and end log of the user-reply functionality's
management daemon

Under /opt/jp1as/system

#1
If the parameter is omitted, the default value is used.

#2
This log information is collected when the user-reply functionality's management daemon is started and stopped.
This log information is stored under the /opt/jp1as/system directory with the following file names:

 User-reply functionality's management daemon on a physical host: adshmd.log
 User-reply functionality's management daemon on a logical host: adshmd_logical-host-name.log

The following subsections explain the spool output information and how to define output information for each log.

(1) Defining the spool output information
This subsection explains the spool-related parameters for each output information to be defined.

(a) Determining whether the spool job creation suppression functionality is to be
used

The spool job creation suppression functionality enables you to prevent the spool directory's disk space usage from
increasing continually. It also eliminates the need to delete unneeded directories and files from the spool directory.

Use the SPOOLJOB_CREATE parameter to enable the spool job creation suppression functionality. For details, see
SPOOLJOB_CREATE parameter.

JP1/Advanced Shell always runs with the following settings while the spool job creation suppression functionality is in
effect:

• #-adsh_conf EVENT_COLLECT NO
Disables the operation information acquisition functionality.

• #-adsh_conf OUTPUT_MODE_CHILD MINIMUM
Executes child jobs in the minimum output mode.

• #-adsh_conf OUTPUT_MODE_ROOT MINIMUM
Executes root jobs in the minimum output mode.

• #-adsh_conf SPOOLJOB_CHILDJOB DELETE
Deletes the spool jobs for child jobs when the child jobs are terminated.

• adshexec -m MINIMUM
Executes the specified job in the minimum output mode regardless of the specified -m option.

• adshscripttool -exec -m MINIMUM
Executes the specified child job in the minimum output mode regardless of the specified -m option.

Note that when the spool job creation suppression functionality is used, none of the following functions that use spool
job directories can be used:

• #-adsh_spoolfile command

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 82

If this command is used, the KNAX6385-E message is issued and the script is terminated.

• adshfile command
If this command is used, the KNAX1880-E message is issued and the command is terminated.

• Collection of job execution logs
Job execution logs are not collected.

• Operation results collection functionality
Operation results are not collected.

Even when the spool job creation suppression functionality is in effect, spool directories are still needed.

When the spool job creation suppression functionality is in effect, the following environment setting parameters are
ignored:

• EVENT_COLLECT
• JOBEXECLOG_PRINT
• JOBLOG_SUPPRESS_MSG
• OUTPUT_MODE_CHILD
• OUTPUT_MODE_ROOT
• OUTPUT_STDOUT
• PERMISSION_SPOOLJOB_DIR
• PERMISSION_SPOOLJOB_FILE
• SPOOLJOB_CHILDJOB

During CUI debugging, a DBG file with the name shown below is created. This file is deleted automatically when
debugging is finished. If deletion of this file fails, an error message is output to the standard error output and to the
system execution log.

temporary-file-directory/ADSH_DBG_process-ID_job-ID

• temporary-file-directory
Temporary file directory defined in the TEMP_FILE_DIR parameter

• process-ID
Process ID consisting of five or more digits

• job-ID
Job ID consisting of six digits

(b) Defining the path name of the spool root directory
The following parameter is used for defining the path name of the spool root directory:

• SPOOL_DIR parameter: Defines the path name of the spool root directory.

If you will be using the user-reply functionality, define the SPOOL_DIR parameter only in the system environment file.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 83

(c) Changing the spool job directory or file permissions (UNIX only)
When a job is terminated, its execution results are output to the spool job directory created for that job. You can use the
following parameters to change the permissions for the directory or the files under that directory:

• PERMISSION_SPOOLJOB_DIR parameter
Specify this parameter to change permissions for the spool job directory.
The default is 700.

• PERMISSION_SPOOLJOB_FILE parameter
Specify this parameter to change permissions for the files under the spool job directory.
The default is 600 (in .DBG files, 666).

(d) Defining the standard output and standard error for spool jobs
When a job is executed, JP1/Advanced Shell's information messages, warning messages, and job execution logs are
output in addition to the job execution results. The standard output and the standard error output are output to files under
the spool job directory.

You specify the simple output mode or the minimum output mode to suppress output of the standard output and the
standard error output to files under the spool job directory. You use the following parameters and command options for
this specification:

• OUTPUT_MODE_ROOT parameter
Specifies the expansion output mode, simple output mode, or minimum output mode for root jobs.

• OUTPUT_MODE_CHILD parameter
Specifies the expansion output mode, simple output mode, or minimum output mode for child jobs.

• -m option of the adshexec command
Specifies the expansion output mode, simple output mode, or minimum output mode for jobs.

• -m option of the adshscripttool command
Specifies the simple output mode or minimum output mode for child jobs.

If these parameters and option are omitted, expansion output mode is assumed, in which case the standard output and
the standard error are output to files under the spool job directory.

In the simple and minimum output modes, JP1/Advanced Shell's information and warning messages are not output to
the standard output or the standard error output. Also, when jobs are terminated, job execution logs are not output to
the standard error output. In addition, in the minimum output mode, messages whose output is suppressed are not output
to the job execution logs under spool job directories.

For details about the difference in output information among the simple output mode, expansion output mode, and
minimum output mode, see 3.3.4 Suppressing output of information and warning messages to job execution logs.

(2) Defining the information to be output to the job execution log
This subsection explains information related to the job execution log that is to be specified during the environment setup.
For details about the information that is output to the job execution log, see 3.4 Job execution log.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 84

(a) Defining the types of job execution logs to be output to the standard error
When a job is terminated, the information listed below is output as job execution logs to the standard error. The output
job execution logs are displayed on the terminal screen used when the adshexec command is executed, and in
JP1/AJS - View's Execution Results Details dialog box.

• JOBLOG file (Messages indicating the job's execution status, including command execution results and file
allocation results)

• Job definition script

• Contents of the standard error during job execution

To output only the contents of the standard error during job execution to the standard error, specify the parameter shown
in the following to limit the contents of job execution logs to be output:

• JOBEXECLOG_PRINT parameter

If a job is executed in JP1/Advanced Shell - Developer or the job controller is started in the debugger mode, JOBLOG,
standard output, and standard error are output to the console regardless of the specification of this parameter. When the
job is terminated, the contents of the job execution log are not output to the standard error.

When a job is executed in the simple output mode or the minimum output mode, job execution logs are not output to
the standard error output when the job is terminated regardless of the specification of the JOBEXECLOG_PRINT
parameter.

(b) Merging the job execution logs for a root job and child jobs
The following parameter enables you to choose whether child jobs' spool jobs are to be deleted when the child jobs are
terminated, or to be merged into the root job's spool jobs:

• SPOOLJOB_CHILDJOB parameter

If child jobs' spool jobs are merged into the root jobs spool jobs, the child jobs are output in the order they are terminated
in such a format that the root job can be identified from the child jobs.

(3) Defining the information to be output to the system execution log
The system execution log provides system administrators with a comprehensive execution history of batch jobs.

The log information is output to AdshLog.log under the directory specified by the LOG_DIR parameter in the
environment file. The files are swapped (AdshLog_1.log, AdshLog_2.log, ..., AdshLog_N.log) according
to conditions (such as maximum file size) specified in parameter settings. Because a new system execution log file is
created when log files are swapped, the owner of each file will be the user at the time swapping occurs.

(a) Flow of output to the system execution log
The system execution log is the destination for log information about the batch jobs running in each job controller
process. You can specify in the environment files the output destination for the system execution log, as well as
parameters that control log file swapping (such as maximum file size and number of files). The following figure shows
the flow of output to the system execution log.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 85

Figure 2‒4: Flow of output to the system execution log

The system execution log is created as follows.

• Messages to be output to the system execution log are collected and output in CSV format.
For details about the messages that are output, see 11.2 Message output destinations.

• In time, log file swapping is performed and a backup is created.

• Just before it exceeds the file size specified in the LOG_FILE_SIZE parameter in the environment file, the
current system execution log file is renamed so that it becomes a backup file, and a new system execution log
is created and message output continues to it.

• The file name of the backup will be AdshLog_N.log (where N is an integer). N is assigned a number in
ascending order from the newest backup, starting from 1.

• The maximum number of backups to be created is specified in the LOG_FILE_CNT parameter in the
environment file. When the number of backup files exceeds this value, the oldest backup file is deleted.

(b) Parameters required to output the system execution log
The following parameters are used for outputting system execution logs:

• LOG_DIR parameter: Defines the path name of the directory to which system execution logs are to be output.

• LOG_FILE_CNT parameter: Defines the number of files used for backing up system execution logs.

• LOG_FILE_SIZE parameter: Defines the file size for output of system execution logs.

If multiple users output system execution logs to the same file, the LOG_FILE_CNT and LOG_FILE_SIZE parameter
values specified by the last user who starts output of system execution logs take effect. Therefore, we recommend that
you use the same value for LOG_FILE_CNT and LOG_FILE_SIZE.

(c) Contents of the system execution log
The following shows an example of a message output to the system execution log:

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 86

seqnum=1, date=2013-12-06T10:41:19.242+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX0004-I, msg="Job ID=000006, JP1NBQSQueueName=,
scheduler job ID="
seqnum=2, date=2013-12-06T10:41:19.250+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX0091-I, msg="JOB1 The job started."
seqnum=3, date=2013-12-06T10:41:19.251+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX7901-I, msg="The adshexec command will wait for all
asynchronous processes at the end of the job."
seqnum=4, date=2013-12-06T10:41:19.251+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX7902-I, msg="The adshexec command will run in tty stdin
mode."
seqnum=5, date=2013-12-06T10:41:19.252+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX0092-I, msg="JOB1.STEP1 step started."
seqnum=6, date=2013-12-06T10:41:19.263+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX6116-I, msg="Execution of the command D:\bin\uap01.exe
(line=5) finished successfully. exit status=0 execution time=0.008s CPU
time=0.000s"
seqnum=7, date=2013-12-06T10:41:19.274+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX6597-I, msg="JOB1.STEP1 step succeeded. exit status=0
execution time=0.022s CPU time=0.015s"
seqnum=8, date=2013-12-06T10:41:19.274+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX0092-I, msg="JOB1.STEP2 step started."
seqnum=9, date=2013-12-06T10:41:19.289+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX6116-I, msg="Execution of the command D:\bin\uap02.exe
(line=10) finished successfully. exit status=0 execution time=0.008s CPU
time=0.015s"
seqnum=10, date=2013-12-06T10:41:19.290+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX6597-I, msg="JOB1.STEP2 step succeeded. exit status=0
execution time=0.016s CPU time=0.015s"
seqnum=11, date=2013-12-06T10:41:19.290+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX0092-I, msg="JOB1.STEP2 step started."
seqnum=12, date=2013-12-06T10:41:19.299+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX6116-I, msg="Execution of the command D:\bin\uap03.exe
(line=15) finished successfully. exit status=0 execution time=0.008s CPU
time=0.000s"
seqnum=13, date=2013-12-06T10:41:19.299+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX6597-I, msg="JOB1.STEP2 step succeeded. exit status=0
execution time=0.009s CPU time=0.000s"
seqnum=14, date=2013-12-06T10:41:19.300+09:00, pgmid=adshexec, jobid=6,
pid=2720, msgid=KNAX0098-I, msg="JOB1 The job ended. exit status=0
execution time=0.053s CPU time=0.030s"

The following table lists and explains the data items that are added in front of the message texts in the system execution
log:

Data items output to the system
execution log

Meaning

seqnum Message's serial number

date Output date and time (in the format yyyy-mm-ddThh:mm:ss.sssTZD)

pgmid Program ID
In a job controller, adshexec is output.

jobid Job ID

pid Process ID

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 87

Data items output to the system
execution log

Meaning

msgid Message ID of the output message

msg Message text of the output message

(4) Defining the information to be output to trace logs
Trace logs are JP1/Advanced Shell's internal trace logs. In the event of a problem in JP1/Advanced Shell, traces are
collected to resolve the problem.

The following table shows the types of trace logs.

Table 2‒16: Types of trace logs

No. Type of trace log Trace log output destination (default value) Log file
count

File size

1 JP1/Advanced Shell execution environment
trace log (Windows and UNIX)# and JP1/
Advanced Shell's job definition script operation
information output command (adshevtout
command) trace log#

• Windows
common-application-data-folder
\Hitachi\JP1AS\JP1ASE\trace

• UNIX
/opt/jp1as/trace

<<4>>
((1 to 64))

<<2>>
((1 to 16))

2 JP1/Advanced Shell - Developer's non-editor
trace log#

common-application-data-folder\Hitachi
\JP1AS\JP1ASD\trace

<<4>>
((1 to 64))

<<2>>
((1 to 16))

3 JP1/Advanced Shell custom job trace log common-application-data-folder\Hitachi
\JP1AS\JP1ASV\trace

1 1

4 JP1/Advanced Shell - Developer's editor trace
log

common-application-data-folder\Hitachi
\JP1AS\JP1ASD\adshedit\trace

1 1

5 JP1/Advanced Shell and JP1/Advanced Shell -
Developer's shared commands trace log

common-application-data-folder\Hitachi
\JP1AS\misc\trace

4 2

#
Environment setting parameters can be used to change the trace log output destination, number of log files, and file size.

The following parameters are used for defining trace files:

• TRACE_DIR parameter
Defines the path name of the directory to which traces are to be output. The trace log file names are
AdshTrace_n.log (n: number of files).

• TRACE_FILE_CNT parameter
Defines the number of files to which traces are to be output. The specified number of trace log files are used
sequentially and then overwritten in wraparound fashion once all of the files become full.

• TRACE_FILE_SIZE parameter
Defines the file size for output of traces.

• TRACE_LEVEL parameter
Defines the trace output level.

If multiple users output traces to the same file, the TRACE_FILE_CNT and TRACE_FILE_SIZE parameters are
handled as follows:

• The largest user values specified for the TRACE_FILE_CNT and TRACE_FILE_SIZE parameters take effect.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 88

• If the TRACE_FILE_CNT and TRACE_FILE_SIZE parameter values are changed, the new values are compared
with the existing number of trace files and file size, and the largest user values specified for these parameters take
effect.

To reduce the number of trace files or the file size, you must delete all the files in the trace folder. Before you delete all
files from the trace folder, make sure that no job is outputting traces to the corresponding trace files.

2.6.9 Defining the return codes of extended script commands
The following parameters are used to change the default values for the return codes that indicate whether extended script
commands failed or were successful:

• ADSHCMD_RC_ERROR parameter: Defines the return code to be used to indicate that an extended script command
failed.

• ADSHCMD_RC_SUCCESS parameter: Defines the return code to be used to indicate that an extended script command
was successful.

For details, see 5.8.7 Return codes of extended script commands and handling of errors.

2.6.10 Sharing among multiple environments
You can run multiple environments on the same host by using the following environment setting parameters to specify
different directories:

• LOG_DIR parameter

• SPOOL_DIR parameter

• TEMP_FILE_DIR parameter

• TRACE_DIR parameter

To inherit information to a standby server during cluster operation, any directory to be inherited must be shared among
the multiple hosts. In such a case, you must share among the multiple hosts at least the directory specified in the following
parameter:

• SPOOL_DIR parameter

2.6.11 Enabling coverage information collection without having to specify
the option during batch job execution

By specifying the environment setting parameters listed below for collecting coverage information, you eliminate the
need to specify the coverage information collection option (-t option) during batch job execution:

• BATCH_CVR parameter: Uses the coverage auto-acquisition functionality.

• ASC_FILE parameter: Defines the accumulation file naming rules to be used by the coverage auto-acquisition
functionality.

The following subsections show example settings in the environment file and the command to be executed.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 89

(1) Example settings in the environment file
This example specifies the following parameters in the environment file:

#-adsh_conf BATCH_CVR YES
#-adsh_conf ASC_FILE ./cvrg/ver001-*

The following explains each line of the settings:

1. BATCH_CVR: Uses the coverage auto-acquisition functionality.

2. ASC_FILE: Defines the accumulation file naming rules used by the coverage auto-acquisition functionality.

(2) Command to be executed
This example executes the following command using the above settings in the environment file:

adshexec sample.ash

This command produces the same results as if the adshexec command with adshexec -t -o ./cvrg/ver001-
sample sample.ash specified were executed. However, if the adshexec command with adshexec -t
sample.ash specified (the -t option specified) were executed, the return code would be 1, resulting in an error.

2.6.12 Migrating job definition scripts from UNIX to Windows
This subsection explains how to migrate UNIX job definition scripts to Windows job definition scripts. Before you
perform the procedure, make sure that the encoding of the job definition scripts and environment files matches the value
of the LANG environment variable that is used on the target platform.

To migrate from UNIX job definition scripts to Windows job definition scripts:

1. Enable the path conversion functionality.
To convert the separators used in UNIX job definition scripts to those supported by Windows platforms, specify the
following parameter in the environment file:

#-adsh_conf PATH_CONV_ENABLE / :

2. Specify the setting needed for converting the specified paths.
If program paths are specified explicitly in job definition scripts, specify the parameter shown below to convert the
paths to paths used in the Windows environment. This example converts the paths of UNIX-compatible commands.

#-adsh_conf PATH_CONV /opt/jp1as " "C:\\Program Files\\HITACHI\\JP1AS\
\JP1ASE"

3. Specify the setting needed for converting the separators around the shell variables that handle paths.
If program paths are specified by using shell variables in job definition scripts, add the following command for each
job definition script to convert the separators in the paths using shell variables:

#-adsh_path_var VAR

4. Select the path conversion setting. (Windows only)

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 90

Specify the path conversion setting by using the PATH_CONV_RULE parameter.
If you want to convert a part enclosed in double quotation marks ("), specify path conversion setting 1 as follows:

#-adsh_conf PATH_CONV_RULE 1

If you want to convert a part that is not enclosed in double quotation marks (") as well as a part enclosed in double
quotation marks, specify path conversion setting 2 as follows:

#-adsh_conf PATH_CONV_RULE 2

5. Verify that conversion is enabled.
In path conversion setting 1, verify that the paths to be converted are enclosed in double quotation marks (") as
shown in the following example:

"$VAR/cmd/ls" -l "/opt/jp1as/sample"

In path conversion setting 2, verify that the path that you do not wish to convert is enclosed in single quotation marks
(').

6. Check the path conversion results.
Perform a syntax check on the job definition script (adshexec -c command) and check the path conversion results
in the generated script image. If the conversion results are not correct, either change the path conversion setting or
edit the job definition script, and then perform a syntax check again.

The following shows examples of path conversion settings 1 and 2.

• Example of conversion using path conversion setting 1
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 1
#-adsh_conf PATH_CONV /opt/jp1as " "c:\\Program Files\\HITACHI\\JP1AS\
\JP1ASE"

Example of conversion:

D:\home\user001>"C:\Program Files\Hitachi\JP1AS\JP1ASE\bin\adshexec.exe" -
c sample1.ash

***** D:\home\user001\sample1.ash *****
0001 : #-adsh_job SAMPLE
0002 : #-adsh_path_var VAR
0003 :
0004 : VAR=/opt/jp1as
0005 : "$VAR/cmd/ls" -l "/opt/jp1as/sample"
0006 :

***** Converted lines in "C:\home\user001\sample1.ash" *****
0005 : "$VAR\\cmd\\ls" -l "c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE\
\sample"
KNAX7999-I Advanced Shell ended. exit status=0

D:\home\user001>

• Example of conversion using path conversion setting 2
Environment setting parameters:

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 91

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /opt/jp1as " "c:\\Program Files\\HITACHI\\JP1AS\
\JP1ASE"

Example of conversion:

D:\home\user001>"C:\Program Files\Hitachi\JP1AS\JP1ASE\bin\adshexec.exe" -
c sample1.ash

***** D:\home\user001\sample1.ash *****
0001 : #-adsh_job SAMPLE
0002 : #-adsh_path_var VAR
0003 :
0004 : VAR=/opt/jp1as
0005 : "$VAR/cmd/ls" -l "/opt/jp1as/sample"
0006 :

***** Converted lines in "D:\home\user001\sample1.ash" *****
0004 : VAR="c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE"
0005 : "$VAR\\cmd\\ls" -l "c:\\Program Files\\HITACHI\\JP1AS\\JP1ASE\
\sample"
KNAX7999-I Advanced Shell ended. exit status=0

D:\home\user001>

2.6.13 Loading the files specified in the ENV shell variable
You can use the KSH_ENV_READ environment setting parameter to specify whether the .env files specified in the
ENV environment variable are to be loaded when the job controller starts. If this parameter is omitted, the default value
depends on the OS, as shown in the following:

• Linux and Windows: YES (loads ENV files)

• AIX, HP-UX, and Solaris: NO (does not load ENV files)

2.6.14 Defining the process that will be executing the last command in a
pipe (UNIX only)

To define whether the last command in a pipe is to be executed by the current process or another process, specify the
PIPE_CMD_LAST environment setting parameter as follows:

• CURRENT: Executes in the current process.

• OTHER: Executes in another process.

If the PIPE_CMD_LAST parameter is omitted, CURRENT is assumed.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 92

2.6.15 Defining the return code in the event of an unresumable error in a
job

If a job is terminated due to an error, such as a memory shortage or a job definition script parsing error, the job controller's
return code is set to 1. You can change this return code to any value from 1 to 255 by setting a value in the
ADSH_JOBRC_FATAL environment variable.

For details about how to specify the ADSH_JOBRC_FATAL environment variable, see (2) ADSH_JOBRC_FATAL
environment variable (specifies the return code in the event of an unresumable error in jobs).

(1) Whether the ADSH_JOBRC_FATAL environment variable can be
applied

The following table lists the types of errors that might occur while the job controller is running and whether the return
code defined in the ADSH_JOBRC_FATAL environment variable can be applied.

Table 2‒17: Whether the ADSH_JOBRC_FATAL environment variable setting is applied by error
type

No. Timing of error Error type Applicability#1

1 When a job is started by the
adshexec command or a job
definition script is debugged
from the editor

Errors that prevent the OS from starting execution of the adshexec command.
For example, this type of error occurs when the load module that is used by the
adshexec command does not exist.

N

2 Before a job definition script
is run

Parsing errors in the ADSH_JOBRC_FATAL environment variable N#2

3 Event file initialization errors N

4 (UNIX only) Errors that occur during signal reception N#3

5 (Windows only) Errors that occur if any of the following processes is terminated
immediately by a function such as TerminateProcess:
• adshexec.exe
• adshexecsub.exe
• adshesub.exe
• adshedit.exe

N

6 All errors other than those listed in 2 to 5 above. The typical errors are as follows:
• Command line parsing errors in the adshexec command
• Invalid status errors in a job definition script file specified in the adshexec

command's argument
• Environment file parsing errors
• Job definition script parsing errors
• Initialization errors in the job execution log, system execution log, and trace

log
• Initialization errors in asc files
• (Windows only) License check errors
• (Windows only) Errors resulting from a reception of control signal (CTRL

+ C, CTRL + BREAK, CTRL_CLOSE_EVENT)

Y

7 While a job definition script is
running

Errors that do not stop job definition script processing#4 N

8 Errors caused when a job is terminated by using the debugger's command, menu,
or button listed below during debugging:
• (UNIX only) Executing of the kill or quit command or re-execution of

the run command

N

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 93

No. Timing of error Error type Applicability#1

8 While a job definition script is
running

• (Windows only) Selecting the Quit Debugging menu, clicking the Quit
Debugging button, or closing the editor window to cancel debugging

N

9 (UNIX only) Errors that occur during signal reception N#3

10 (Windows only) Errors that occur if any of the following processes is terminated
immediately by a function such as TerminateProcess:
• adshexec.exe
• adshexecsub.exe
• adshesub.exe
• adshedit.exe

N

11 This includes all errors other than those listed in 7 to 10 above. The typical errors
are as follows:
• Special built-in command errors (excluding the typeset errors and the

errors in the return command executed within a function or an external
script)

• Assignment operation errors#5

• Errors in variable substitution in a job termination format#6

• Errors caused by the specification of an out-of-range array element (outside
the range from 0 to 65535)

• Resource allocation errors caused by a shortage of memory and disk capacity
• Input/output errors
• Internal conflict errors
• (Windows only) Errors resulting from a reception of control signal (CTRL

+ C, CTRL + BREAK, CTRL_CLOSE_EVENT)
• (Windows only) Errors resulting from the execution of a conditional

expression containing the operator -h, -G, -L, -O, or -ef (except when a
value other than ERR is specified in the UNSUPPORT_TEST parameter)

Y

12 After execution of a job
definition script

(UNIX only) Errors that occur during signal reception N#3

13 The following errors related to files and directories:
• Parsing errors in the files allocated by an extended script command
• Postprocessing errors in spool job management files
• Postprocessing errors in the root job's spool job directory
• Post processing errors in event files

N

14 (Windows only) Errors that occur if any of the following processes is terminated
immediately by a function such as TerminateProcess:
• adshexec.exe
• adshexecsub.exe
• adshesub.exe
• adshedit.exe

N

15 All errors other than those listed in 12 to 14 above. The typical errors are as
follows:
• Postprocessing errors in the asc files
• Child jobs' spool job directory deletion errors
• (UNIX only) DBG file parsing errors
• Internal conflict errors
• (Windows only) Errors resulting from a reception of control signal (CTRL

+ C, CTRL + BREAK, CTRL_CLOSE_EVENT)

Y

Legend:
Y: The setting of the ADSH_JOBRC_FATAL environment variable takes effect.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 94

N: The setting of the ADSH_JOBRC_FATAL environment variable does not take effect.

#1
The options specified in the adshexec command do not affect whether the setting of the ADSH_JOBRC_FATAL
environment variable takes effect. For example, if the adshexec command with the -c option specified is executed
and a syntax error occurs, the ADSH_JOBRC_FATAL environment variable setting still takes effect.
This applicability depends on the OS as follows:

• In UNIX, the -d option is specified in the adshexec command
For the debugger and the jobs subject to debugging that are executed by the run command, the following items
in the table are checked to determine the applicability:
Debugger: Items 1 to 6 and 12 to 15
Jobs subject to debugging: Items 7 to 15

• In Windows, debugging is executed from the editor
For the jobs to be debugged, items 1 to 15 in the table are checked to determine the applicability.

#2
The return code is 255.

#3
If the job controller receives a signal and the job terminates with an error, the job's return code is 128 + the signal
number.

#4
If an extended script command results in an error while a job definition script is running, the subsequent job steps
and commands listed below are not executed; however, this is not treated as an unresumable error. Therefore, the
setting of the ADSH_JOBRC_FATAL environment variable does not take effect.

• Job steps whose run attribute is omitted or normal
• Instructions outside job steps

#5
This does not apply when an assignment operation is specified in the argument of a regular built-in command.
The table below shows the classification of assignment operation specifications and whether the setting of the
ADSH_JOBRC_FATAL environment variable is applied. The error indicated in this table occurs if an attempt is
made to assign a value to the NUM variable that has been defined as being read-only in readonly NUM.

Classification of assignment operation specification Example of error Applicability

An assignment operation is specified on its own. NUM=100 Y

An assignment operation is specified in the argument of a reserved script command. time NUM=100 Y

An assignment operation is specified in the argument of a special built-in command. export NUM=100 Y

An assignment operation is specified in the argument of a regular built-in command. let NUM=100 N

Legend:
Y: The setting of the ADSH_JOBRC_FATAL environment variable takes effect.
N: The setting of the ADSH_JOBRC_FATAL environment variable does not take effect.

#6
As a result of variable substitution, the job might become unresumable and be terminated with an error depending
on the status of variable. The following shows the status of variable that results in an error for each format:
${variable:?[word]}

If variable has been defined and its value is null (empty character string) or is undefined, an error results.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 95

${variable?[word]}
If variable is undefined, an error results.

(2) ADSH_JOBRC_FATAL environment variable (specifies the return code
in the event of an unresumable error in jobs)

The ADSH_JOBRC_FATAL environment variable is used to specify the job controller's return code in the event a job
becomes unresumable and is terminated with an error. The specified return code is applied to jobs that are executed by
using the adshexec command and to jobs that are executed from JP1/Advanced Shell - Developer's editor.

The following shows how to apply the value of this environment variable globally in the entire system:

• Windows
Define ADSH_JOBRC_FATAL as a system environment variable.

• UNIX
Specify the ADSH_JOBRC_FATAL environment variable setting in /etc/profile.

If this environment variable is not specified and a job terminates with an unresumable error, the controller's return code
is set to 1.

(a) Values permitted in the environment variable

termination-code ~<unsigned integer> ((1 to 255))
Specifies the return code to be set when a job cannot be resumed. If the value is padded with leading zeros such as
001, the leading zeros are deleted and the value is treated as being 1.

(b) Notes
• If the ADSH_JOBRC_FATAL environment variable is defined by using the export parameter in the environment

file or the ADSH_JOBRC_FATAL environment variable is defined or changed within a file or a job definition script
specified in the ENV shell variable, this functionality does not take effect within that job. The functionality takes
effect on another job that is started from that job.

• The ADSH_JOBRC_FATAL environment variable defines the final return codes for jobs. It does not affect the return
codes of individual commands and job steps.

• If any of the following values is set, the job terminates, without being executed, with an error with return code 255:
• Value consisting of four or more characters (example: 1234)

• Value outside the permitted range (example: 500)

• Non-numeric characters (example: 1A4, +8, 8.0)

• Value consisting of no character (null character string)

• Whether the ADSH_JOBRC_FATAL environment variable is applied in the event of an error depends on each job.
If an unresumable error occurs only within a root job or a child job, the ADSH_JOBRC_FATAL environment variable
will not be applied to any other root job or child job to change its return code.

(c) Examples
The following shows an example of a UNIX job that was started with 8 set in the ADSH_JOBRC_FATAL environment
variable and terminated with an unresumable error.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 96

The job could not be resumed because the directory specified in the SPOOL_DIR parameter in the environment
file was not found:

Contents of /etc/profile:

ADSH_JOBRC_FATAL=8
export ADSH_JOBRC_FATAL

Command specification at the job start:

$ /opt/jp1as/bin/adshexec test.sh

The following shows the execution results:

KNAX0441-E The directory specified for the parameter "SPOOL_DIR" does not
exist. line=1
KNAX0410-E An error occurred when parsing the environment file
"sample.ase". For details, see the message output before this one.
KNAX0240-I The setting specified for the environment variable
ADSH_JOBRC_FATAL was applied. value=8 ...1.
KNAX7999-I Advanced Shell ended. exit status=8 ...2.

The following explains execution results 1 and 2:

1. This is a message indicating that the ADSH_JOBRC_FATAL environment variable was applied.

2. The setting of the ADSH_JOBRC_FATAL environment variable was applied as the job controller's return code.

A child job was terminated due to an error in the special built-in command (unset command).

Contents of /etc/profile:

ADSH_JOBRC_FATAL=8
export ADSH_JOBRC_FATAL

Contents of the environment file:

#-adsh_conf CHILDJOB_SHEBANG /bin/sh

Contents of the root job's job definition script (prt.sh):

./cld.sh

./cmdA

Contents of the child job's job definition script (cld.sh):

#!/bin/sh
val=10
unset
./cmdX $val

Command specification at the job start:

$ /opt/jp1as/bin/adshexec prt.sh

The following shows the execution results:

******** JOB CONTROLLER MESSAGE ********
14:14:22 010467 KNAX0091-I ADSH010467 The job started.
14:14:22 010467 KNAX7901-I The adshexec command will wait for all
asynchronous processes at the end of the job.
14:14:22 010467 KNAX7902-I The adshexec command will run in tty stdin

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 97

mode.
14:14:22 010467 KNAX6831-I The command definition matched the rule
specified by the environment settings parameter CHILDJOB_SHEBANG.
script="./cld.sh" shebang="/bin/sh"
14:14:22 010467 KNAX6521-E The command ./cld.sh (line=1) failed. exit
status=8 execution time=0.008s CPU time=0.000s
14:14:22 010467 KNAX6116-I Execution of the command ./cmdA (line=2)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
14:14:22 010467 KNAX0101-E ADSH010467 An error occurred during execution
of the job.
14:14:22 010467 KNAX0098-I ADSH010467 The job ended. exit status=0
execution time=0.012s CPU time=0.000s

******** Script IMAGE ********

***** /home/usr/work/prt.sh *****
0001 : ./cld.sh
0002 : ./cmdA

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX7901-I The adshexec command will wait for all asynchronous processes
at the end of the job.
KNAX0724-I The job ID was assigned. job ID=010468
KNAX0101-E ADSH010468 An error occurred during execution of the job.
14:14:22 010468 KNAX6571-I The child job ADSH010468 started. parent
job=ADSH010467 parent job ID=010467
14:14:22 010468 KNAX7901-I The adshexec command will wait for all
asynchronous processes at the end of the job.
14:14:22 010468 KNAX7902-I The adshexec command will run in tty stdin
mode.
14:14:22 010468 KNAX6110-I Execution of the command val=10 (line=2)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:14:22 010468 KNAX6015-E No argument is specified. filename="/home/usr/
work/cld.sh" line=3
14:14:22 010468 KNAX6521-E The command unset (line=3) failed. exit
status=1 execution time=0.000s CPU time=0.000s
14:14:22 010468 KNAX6584-I A job stopped because a command that
terminates execution of the script was executed.
14:14:22 010468 KNAX0101-E ADSH010468 An error occurred during execution
of the job.
14:14:22 010468 KNAX6578-I The child job ADSH010468 ended. exit status=8
execution time=0.001s CPU time=0.000s
KNAX0240-I The setting specified for the environment variable
ADSH_JOBRC_FATAL was applied. value=8
KNAX0101-E ADSH010467 An error occurred during execution of the job.
KNAX0098-I ADSH010467 The job ended. exit status=0 execution time=0.012s
CPU time=0.000s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the
root job. spool job directory="/var/opt/jp1as/spool/010467-ADSH010467/"
KNAX7999-I Advanced Shell ended. exit status=0

The following explains execution results 1 and 2:

1. The setting of the ADSH_JOBRC_FATAL environment variable was applied as the child job's return code.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 98

2. This is a message indicating that the ADSH_JOBRC_FATAL environment variable was applied to the child job.

The following shows an example of a Windows job that was started with 16 set in the ADSH_JOBRC_FATAL system
environment variable and terminated with an unresumable error.

The job could not be resumed because the directory specified in the LOG_DIR parameter in the environment
file was not found.

This example specifies the following system environment variable and value:

• Variable: ADSH_JOBRC_FATAL
• Value: 16

Command specification at the job start:

adshexec test.ash

The following shows the execution results:

KNAX0441-E The directory specified for the parameter "LOG_DIR" does not
exist. line=1
KNAX0410-E An error occurred when parsing the environment file
"sample.ase". For details, see the message output before this one.
KNAX0240-I The setting specified for the environment variable
ADSH_JOBRC_FATAL was applied. value=16 ...1.
KNAX7999-I Advanced Shell ended. exit status=16 ...2.

The following explains execution results 1 and 2:

1. This is a message indicating that the ADSH_JOBRC_FATAL system environment variable was applied.

2. The setting of the ADSH_JOBRC_FATAL environment variable was applied as the job's return code.

A child job was terminated due to an error in the special built-in command (unset command)
This example specifies the following system environment variable and value:

• Variable: ADSH_JOBRC_FATAL
• Value: 16

Contents of the environment file:

#-adsh_conf CHILDJOB_SHEBANG /bin/sh

Contents of the root job's job definition script (prt.sh):

./cld.sh

./cmdA

Contents of the child job's job definition script (cld.sh):

#!/bin/sh
val=10
unset
./cmdX $val

Command specification at the job start:

adshexec prt.sh

The following shows the execution results:

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 99

******** JOB CONTROLLER MESSAGE ********
15:01:30 000004 KNAX0091-I ADSH000004 The job started.
15:01:30 000004 KNAX7901-I The adshexec command will wait for all
asynchronous processes at the end of the job.
15:01:30 000004 KNAX7902-I The adshexec command will run in tty stdin
mode.
15:01:30 000004 KNAX6831-I The command definition matched the rule
specified by the environment settings parameter CHILDJOB_SHEBANG.
script=".\cld.sh" shebang="/bin/sh"
15:01:30 000004 KNAX6521-E The command .\cld.sh (line=1) failed. exit
status=16 execution time=0.197s CPU time=0.077s
15:01:30 000004 KNAX6116-I Execution of the command .\cmdA.exe (line=2)
finished successfully. exit status=0 execution time=0.030s CPU time=0.016s
15:01:30 000004 KNAX0101-E ADSH000004 An error occurred during execution
of the job.
15:01:30 000004 KNAX0098-I ADSH000004 The job ended. exit status=0
execution time=0.233s CPU time=0.093s

******** Script IMAGE ********

***** D:\work\prt.sh *****
0001 : .\\cld.sh
0002 : .\\cmdA

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX7901-I The adshexec command will wait for all asynchronous processes
at the end of the job.
KNAX0724-I The job ID was assigned. job ID=000005
KNAX0101-E ADSH000005 An error occurred during execution of the job.
15:01:30 000005 KNAX6571-I The child job ADSH000005 started. parent
job=ADSH000004 parent job ID=000004
15:01:30 000005 KNAX7901-I The adshexec command will wait for all
asynchronous processes at the end of the job.
15:01:30 000005 KNAX7902-I The adshexec command will run in tty stdin
mode.
15:01:30 000005 KNAX6110-I Execution of the command val=10 (line=2)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:01:30 000005 KNAX6015-E No argument is specified. filename="D:\work
\cld.sh" line=3
15:01:30 000005 KNAX6521-E The command unset (line=3) failed. exit
status=1 execution time=0.000s CPU time=0.000s
15:01:30 000005 KNAX6584-I A job stopped because a command that
terminates execution of the script was executed.
15:01:30 000005 KNAX0101-E ADSH000005 An error occurred during execution
of the job.
15:01:30 000005 KNAX6578-I The child job ADSH000005 ended. exit status=16
execution time=0.012s CPU time=0.016s
KNAX0240-I The setting specified for the environment variable
ADSH_JOBRC_FATAL was applied. value=16
KNAX0101-E ADSH000004 An error occurred during execution of the job.
KNAX0098-I ADSH000004 The job ended. exit status=0 execution time=0.233s
CPU time=0.093s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 100

root job. spool job directory="C:\Documents and Settings\All Users
\Documents\Hitachi\JP1AS\JP1ASE\spool\003115-ADSH003115\"
KNAX7999-I Advanced Shell ended. exit status=0

The following explains execution results 1 and 2:

1. The setting of the ADSH_JOBRC_FATAL environment variable was applied as the child job's return code.

2. This is a message indicating that the ADSH_JOBRC_FATAL system environment variable was applied to the
child job.

2.6.16 Setting up the user-reply functionality
To use the user-reply functionality, you must set up an appropriate environment in both JP1/Advanced Shell and
JP1/IM. For details about this environment setup, see 2.8 Setting up the user-reply functionality.

2.6.17 Checking the JP1 environment (UNIX only)
The JP1 environment is determined by /etc/opt/jp1base/conf/jp1bs_param.conf. Specify the character
encoding according to the environment being used. For details, see the Job Management Partner 1/Base User's Guide.

2.6.18 Setting up the shell (UNIX only)
The table below shows the login shell used when jobs are started from JP1/AJS. Specify the settings so that the correct
login shell can be used.

OS type Login shell

Linux Bash

AIX Korn (ksh)

HP-UX

Solaris

Notes:
If the adshexec command is run as a child process of the login shell when a job is started from JP1/AJS and then
forced termination occurs, the login shell's processing might terminate before the adshexec command's job
execution results are passed to JP1/AJS. If this happens, the job execution results might not be applied to JP1/AJS
- View.
To avoid this, first (before starting) check the definitions in the login script file to verify that the login shell's process
is overwritten (such as by deleting the trap command specification).
For details about the definitions, see the manual Job Management Partner 1/Automatic Job Management System 3
Configuration Guide 1 or Job Management Partner 1/Automatic Job Management System 3 Troubleshooting.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 101

2.6.19 Creating the directories required for JP1/Advanced Shell
If you want to change the default settings for the directories required for execution after you have installed JP1/Advanced
Shell, you must create new directories, and then specify them in the environment files.

The directories required for JP1/Advanced Shell and the information to be specified are described below. The user who
will be running JP1/Advanced Shell must grant the required permissions to these directories.

• Directory for temporary files
Specify the directory in which the files to be used only within batch jobs are to be created temporarily.

• Directory for the spool
Specify the directory used to store job execution logs and program output data files.

• Directory for system execution logs
Specify the directory used to store batch job logs as system execution logs that are used by the system administrator
for monitoring execution of batch jobs.

• Directory for traces
Specify the directory used to store the statuses for troubleshooting purposes in the event of system failure.

The table below lists the directories required in JP1/Advanced Shell. For details about how to specify the environment
setting parameters, see 7. Parameters Specified in the Environment Files.

Table 2‒18: Directories required in JP1/Advanced Shell

Directory Environment setting
parameter

Default directory or path Default permissions

Directory
for
temporary
files

TEMP_FILE_DIR • Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE\temp

• Development environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASD\temp

• Execution environment (UNIX only)
/var/opt/jp1as/temp

CRWD (Windows)
1777 (UNIX)

Directory
for the
spool

SPOOL_DIR • Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE
\spool

• Development environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASD
\spool

• Execution environment (UNIX only)
/var/opt/jp1as/spool

CRWD (Windows)
1777 (UNIX)

Directory
for system
execution
logs

LOG_DIR
LOG_FILE_CNT
LOG_FILE_SIZE

• Execution environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASE\log

• Development environment (Windows only)
shared-documents-folder\Hitachi\JP1AS\JP1ASD\log

• Execution environment (UNIX only)
/opt/jp1as/log

CRWD (Windows)
0777 (UNIX)

Directory
for traces

TRACE_DIR
TRACE_FILE_CNT
TRACE_FILE_SIZE
TRACE_LEVEL

• Execution environment (Windows only)
common-application-data-folder\Hitachi\JP1AS\JP1ASE
\trace

• Development environment (Windows only)
common-application-data-folder\Hitachi\JP1AS\JP1ASD
\trace

CRWD (Windows)
1777 (UNIX)

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 102

Directory Environment setting
parameter

Default directory or path Default permissions

Directory
for traces

TRACE_DIR
TRACE_FILE_CNT
TRACE_FILE_SIZE
TRACE_LEVEL

• Custom job definition program (Windows only)
common-application-data-folder\Hitachi\JP1AS\JP1ASV
\trace

• Execution environment (UNIX only)
/opt/jp1as/trace

CRWD (Windows)
1777 (UNIX)

Legend:
The letters shown in the Default permissions column indicate the following Windows permissions:
C: Create, R: Read, W: Write, D: Delete

(1) Required permissions
This subsection describes the permissions required for the users who execute batch jobs.

(a) In Windows
Grant full control to the users who will be executing batch jobs.

(b) In UNIX
Grant to the users who will be executing batch jobs the file permissions shown below for each type of directory.

Table 2‒19: File permissions for directories

Directory type Read permission (r) Write permission (w) Execution permission
(x)

Sticky bit (t)

Directory for temporary
files

R R R S

Directory for the spool R R R S

Directory for system
execution logs

R R R N

Directory for traces R R R S

Legend:
R: Specification is required.
S: Specify according to system operation guidelines.
N: Do not specify.

Specify the sticky bit for directories according to the system operation guidelines.

If no sticky bit is specified for a directory for which a user has write permission, that user can delete any file directly
under that directory.

If a sticky bit is specified for a directory, only the owner of the directory or files can delete any file directly under that
directory. No other user can delete these files even if the user has write permission for the directory.

(2) File systems
Because the size of the spool might become large depending on the applications, we recommend that you create and
use a dedicated file system. Note that JP1/Advanced Shell does not support NFS or Hitachi Striping File System (HSFS).

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 103

2.6.20 Setting up a JP1/AJS environment
To run JP1/Advanced Shell from JP1/AJS, you must set up an execution environment beforehand. This subsection
discusses various aspects of the JP1/AJS environment setup.

(1) Estimating the capacity of JP1/AJS logs
When JP1/Advanced Shell is run from JP1/AJS, the amount of internal job execution log data increase by about 350
bytes per job.

In Windows Server 2008 and Windows Server 2012

%ALLUSERSPROFILE%\Hitachi\JP1\JP1_DEFAULT\JP1AJS2\log\jpqagent\jpqagt_{00|
01|02|03|04|05|06|07}.log

The default value of %ALLUSERSPROFILE% is system-drive\Program Data.

In Windows Server 2003

JP1/AJS3-installation-folder\log\jpqagent\jpqagt_{00|01|02|03|04|05|06|
07}.log

In UNIX

/var/opt/jp1ajs2/log/jpqagent/jpqagt_{00|01|02|03|04|05|06|07}.log

To estimate the total size of logs that are output when JP1/Advanced Shell is run from JP1/AJS, use the formula provided
in the applicable JP1/AJS manual.

2.6.21 Performing user-specific postprocessing when a job is terminated
forcibly

JP1/Advanced Shell enables you to perform user-specific postprocessing when a forced termination request is received
from JP1/AJS by means of the UNIX SIGTERM signal or the Windows taskkill command. This feature enables
the user to enhance operational flexibility by performing user-specific termination processing when a forced termination
request is received. You must define the TRAP_ACTION_SIGTERM environment setting parameter in order to perform
user-specific postprocessing when a forced termination request is received.

Note that the operand supported by the TRAP_ACTION_SIGTERM environment setting parameter is different between
the UNIX edition and the Windows edition. For details about the TRAP_ACTION_SIGTERM environment setting
parameter, see TRAP_ACTION_SIGTERM parameter (defines the job controller's action when a forced termination
request is received) in 7. Parameters Specified in the Environment Files.

The following shows an example:

Contents of the environment variable

#-adsh_conf TRAP_ACTION_SIGTERM TERM

Contents of the job definition script

#-adsh_job JOB01
trap "SIGTERM_received" TERM
UAP01

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 104

 If a forced termination request is received while UAP01 is running, the job controller executes
SIGTERM_received, performs postprocessing (such as deleting allocated files and forcibly terminating
descendant processes), and then terminates the job.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 105

2.7 Specifying environment information for JP1/AJS (applicable when
JP1/AJS is used)

This section explains the specification of environment information when JP1/AJS is used.

You automate job execution in JP1/AJS by registering jobs into JP1/AJS - View. In JP1/AJS - View, the commands and
batch files that are used for operations are defined as jobs, and system operations are automated by associating the
execution order of those jobs.

JP1/AJS - View supports definitions for the following types of jobs:

• Custom jobs

• PC jobs (for Windows)

• UNIX jobs (for UNIX)

For details about JP1/AJS - View, see the Job Management Partner 1/Automatic Job Management System 3 Operator's
Guide.

2.7.1 Registering custom jobs in JP1/AJS - View
Use of custom jobs makes job definition easier and more accurate compared with directly specifying commands and
batch files in jobs.

Custom jobs are templates for jobs that make job creation easy when jobs that link JP1/AJS - View and other programs
are defined.

With custom jobs, you can use GUI to define jobs for JP1/Advanced Shell.

To register custom jobs into JP1/AJS - View:

1. From the Windows Start menu, select All Programs, JP1_Automatic Job Management System 3 - View, and
then Register Custom Jobs.
The Register Custom Job dialog box is displayed.

2. Click the Add button.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 106

The Set Properties of Custom Job dialog box is displayed.

3. Register a custom job for JP1/Advanced Shell. You register a custom job for a Windows execution environment and
for a UNIX execution environment as shown in the following.

• In Windows

Name: Specify ADSHPC.
Comment: We recommend that you specify the fixed character string JP1/AS_PC job execution. You
can specify any character string up to 40 bytes in length or you can omit this field.
Defining program: installation-folder\JP1ASV\bin\adshctmjpc.bat. This is the folder on the PC on
which the custom job is installed.
Executing program: installation-folder\JP1ASE\bin\adshexec.exe. This is the folder on the PC on
which the execution environment is installed.
Version: 0600. This is the interface version of JP1/AJS - View.
Class: Specify ADSHPC.
Job Type: For a job for JP1/Advanced Shell, always select PC.

• In UNIX

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 107

Name: Specify ADSHUX.
Comment: We recommend that you specify the fixed character string JP1/AS_UNIX job execution. You
can specify any character string up to 40 bytes in length or you can omit this field.
Defining program: installation-directory\JP1ASV\bin\adshctmjunix.bat. This is the folder on the
PC on which the custom job is installed.
Executing program: /opt/jp1as/bin/adshexec
Version: 0600. This is the interface version of JP1/AJS - View.
Class: Specify ADSHUX.
Job Type: For a job for JP1/Advanced Shell, always select PC.

4. Click the OK button.
The custom job is registered into JP1/AJS - View.

If you are installing the custom job definition program while a JP1/AJS3 - View whose version is earlier than 09-50 is
installed, copy the custom job icons to the following folder:

JP1/AJS-View-installation-folder\image\custom

The following table explains the icons used in JP1/AJS.

Table 2‒20: Explanation of icons used in JP1/AJS

Icon name File name Description

Job icon for execution in
Windows

CUSTOM_PC_ADSHPC.
gif

This is the Windows custom job icon used in JP1/AJS - View's jobnet
editor. It is displayed on the Custom Jobs page in the Jobnet Editor
window.

Job icon for execution in
UNIX

CUSTOM_PC_ADSHUX.
gif

This is the UNIX custom job icon used in JP1/AJS - View's jobnet
editor. It is displayed on the Custom Jobs page in the Jobnet Editor
window.

JP1/Advanced Shell
(execution definition)
icon

adshctmj.exe This is the definition program that links JP1/AJS in custom jobs.

Notes:
If JP1/Advanced Shell is installed on multiple machines and their paths differ from one machine to another, specify
the JP1/Advanced Shell installation path in a variable and then specify the variable's name, instead of the full path,
in Executing program during custom job registration. For details about the specification method, see Defining the
work path used during job execution as a variable in the Job Management Partner 1/Automatic Job Management
System 3 Configuration Guide 1.
The following shows an example specification:

jajs_config -k "[JP1_DEFAULT\JP1NBQAGENT\Variable]" "jp1asebin"="C:
\Program Files\Hitachi\JP1AS\JP1ASE\bin"

You can share multiple paths in JP1/AJS - View by specifying the path of JP1/Advanced Shell as a variable in JP1/
AJS on each machine on which JP1/Advanced Shell is installed and then specifying $jp1asebin$
\adshexec.exe in Executing program during custom job registration in JP1/AJS - View.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 108

2.7.2 Defining and executing a jobnet
To automate job execution in JP1/AJS, you can define registered custom jobs, PC jobs (for Windows), or UNIX jobs
(for UNIX) into a jobnet in JP1/AJS - View and then execute the jobnet. For details about JP1/AJS - View, see the
description of job definition in the Job Management Partner 1/Automatic Job Management System 3 Operator's Guide.

To define and execute a jobnet in JP1/AJS3 - View:

1. From the Windows Start menu, select All Programs, JP1_Automatic Job Management System 3 - View, and
then Job Management System.
The JP1/AJS3 - View - Login window is displayed.

2. To log in, specify your user name, password, and the host to connect.
The JP1/AJS3 - View window is displayed.

3. Select Edit, New, then Jobnet.
The Define Details - [Jobnet] dialog box is displayed.

4. Specify information including attributes of the jobnet, and then click the OK button.
Specify the appropriate information in Exec-agent according to the operating environment. This information can
be omitted. For details about the JP1/AJS items, see the applicable JP1/AJS manual.
The jobnet is created and displayed in the list area.

5. Double-click the created jobnet.
The Jobnet Editor window is displayed.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 109

6. Select Exclusive edit so that no other user can access the job while you are defining and associating it.

7. Drag the required custom job, PC job, or UNIX job icon from the icon list to the map area.

The Define Details - [Custom Job], Define Details - [PC Job], or Define Details - [UNIX Job] dialog box is displayed.
The steps below explain the definition method for custom jobs. For details about the settings required to use PC or
UNIX jobs in JP1/Advanced Shell, see 2.7.3 Defining jobs as PC or UNIX jobs.

8. In the Define Details - [Custom Job] dialog box, define information including job attributes.
Specify the appropriate information on the Definition and Attributes pages as described in the applicable JP1/AJS
manual. Also specify the appropriate information in Exec-agent according to the operating environment. This
information can be omitted.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 110

If you specify Standard output on the Definition page while one of the following is specified, an empty file is
output:

• The -s option is specified in the adshexec command or SPOOL is specified in the OUTPUT_STDOUT
parameter in the environment file (the standard output is redirected to spool files).

• EXTENDED is specified in the OUTPUT_MODE_ROOT parameter (the expansion output mode is selected).

This is because the contents of the standard output are output to a separate file by JP1/Advanced Shell's job controller
and nothing is output to the standard output that is returned to JP1/AJS.

9. Select the Definition tab, and then click the Details button.
The Define Script Execution dialog box for the current type of custom job is displayed. The following shows the
dialog box for Windows and for UNIX.

• In Windows

• In UNIX

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 111

For more information about steps 9 and 10, also see (2) Supplementary information about the jobnet definition
procedure for custom jobs.

10. In the Define Script Execution dialog box, specify the information required for JP1/Advanced Shell execution, and
then click the OK button.

• Job definition script file ~<path name> Windows: ((1 to 247 bytes)), UNIX: ((1 to 1,023 bytes))
Specifies the name of the job definition script file. This item cannot be omitted.

• Runtime parameters ~<ASCII character string>((0 to 1,022 bytes))
Defines the parameters that are to be passed when the job definition script file is executed. If you specify multiple
parameters, use the space as the delimiter.

• Job environment file ~<path name> Windows: ((0 to 247 bytes)), UNIX: ((0 to 1,023 bytes))
Specifies the name of the job environment file. When this item is specified, the system uses the specified job
environment file, even if the ADSH_ENV environment variable is specified in JP1/Advanced Shell's job controller
environment. If this item is omitted but the ADSH_ENV environment variable is defined in JP1/Advanced Shell's
job controller environment, the system uses the specified ADSH_ENV environment variable value during
execution. If this item is omitted and the ADSH_ENV environment variable is not defined in JP1/Advanced
Shell's job controller environment, the system assumes that no job environment file is specified. JP1/Advanced
Shell's job controller that was started by JP1/AJS sets the path of the job environment file that it used in the
ADSH_ENV environment variable and then starts job execution. If another job controller is started as a descendant
process, that job controller uses the value of the ADSH_ENV environment variable. Therefore, if the value of
the ADSH_ENV environment variable is not set during job execution, the job controller uses the same job
environment file that was used by JP1/Advanced Shell's job controller that was started by JP1/AJS. If the value
of the ADSH_ENV environment variable is set during job execution, the job controller uses the job environment
file containing the new value.

• Logical host
Specifies whether the job is to be executed on a logical host. If the Run on a logical host check box is selected,
the job is executed on the logical host specified in JP1/AJS (value of the JP1_HOSTNAME environment variable).

• Check syntax
Specifies whether the job's contents are to be checked. When the Check job definition script syntax check box
is selected, the contents of the job definition script file are checked but the job definition script file is not executed.

11. Display the Define Details - [Custom Job] dialog box again, and then click the OK button.
The job is defined in the jobnet. If necessary, define another job in the same manner.

12. Associate the jobs according to their execution order.
The jobnet is defined. The following shows an example job definition in JP1/AJS - View.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 112

13. Execute the jobnet by using JP1/AJS.
JP1/Advanced Shell's job controller returns its return code as the job return code to JP1/AJS.

(1) Notes about jobnet definitions
• Specification of coverage

If you want to enable coverage from custom jobs, specify the coverage auto-acquisition functionality in the
environment file.

• Run-time directory to be used when JP1/Advanced Shell's job controller is started from JP1/AJS
When JP1/Advanced Shell's job controller is started from JP1/AJS, the run-time directory is set to the one that is
used when JP1/AJS - Agent (or JP1/AJS - Manager) starts JP1/Advanced Shell's job controller. For details about
the run-time directory that is used when JP1/AJS - Agent (or JP1/AJS - Manager) starts JP1/Advanced Shell's job
controller, see the manual Job Management Partner 1/Automatic Job Management System 3 Configuration Guide
1. In the JP1/AJS manuals, the run-time directory is referred to as a work path (work directory).

• Environment variables to be used when JP1/Advanced Shell's job controller is started from JP1/AJS
Normally, when JP1/Advanced Shell's job controller for Windows is started from JP1/AJS, the system environment
variable settings are enabled when the JP1/AJS services are started and no user environment variables are loaded.
For details, see the applicable JP1/AJS manual.

• Connecting to an overseas version of JP1/AJS - Manager whose language is set to English
When connecting to an overseas version of JP1/AJS - Manager whose language is set to English, in the Define Script
Execution dialog box, in the definition information, use only ASCII alphanumeric characters.

(2) Supplementary information about the jobnet definition procedure for
custom jobs

With respect to the job execution settings in steps 9 and 10 in 2.7.2 Defining and executing a jobnet, you can also specify
the unit definition in the ajsdefine command in JP1/AJS and the job definition in JP1/AJS - Definition Assistant.

For details about the unit definition, see the manual Job Management Partner 1/Automatic Job Management System 3
Command Reference 2.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 113

For details about JP1/AJS - Definition Assistant, see the manual JP1/Automatic Job Management System 3 - Definition
Assistant.

The following provides the details of the environment variables and parameters that are specified in the unit definition
and JP1/AJS - Definition Assistant when custom jobs are used.

• Environment variables specified in JP1/Advanced Shell's Define Script Execution dialog box:
ADSH_AJS_SCRF: Job definition script file name
ADSH_AJS_ENVF: Job environment file name
ADSH_AJS_LHOST: Logical host
ADSH_AJS_GCHE: Check syntax

• Environment variables passed to JP1/Advanced Shell's job controller
Define the environment variables as env parameters in the unit definition file.
The following table describes the environment variable items that are passed to JP1/Advanced Shell's job controller.

Table 2‒21: Environment variable items that are passed to JP1/Advanced Shell's job controller

Item name Description

Input range Length (in bytes) of a character string that can be specified as an environment variable value (character string
following =) (Shift-JIS)

Setting Type of characters that can be defined
• Character string: Characters other than control characters (0x00 through 0x1f, 0x7f)
• Symbolic name: Single-byte alphanumeric characters and @, #, _
• Numeric characters

Initial value Value to be loaded when the custom job is started as a new job

Omission If a required value is omitted, an error occurs in JP1/Advanced Shell's job controller.

The following table shows the input range and settings of environment variable items that are passed to JP1/Advanced
Shell's job controller.

Table 2‒22: Input range and settings of environment variable items that are passed to JP1/
Advanced Shell's job controller

Environment variable Input range Setting Initial value Omission

ADSH_AJS_SCRF PC job: 1 to 247 bytes
UNIX job: 1 to 1,023 bytes

Character string Null character
string

Not permitted

ADSH_AJS_ENVF PC job: 0 to 247 bytes
UNIX job: 0 to 1,023 bytes

Character string Null character
string

Permitted

ADSH_AJS_LHOST 0 to 2 bytes • If syntax is
checked:
-h

• If syntax is not
checked:
Null character
string

Null character
string

Permitted

ADSH_AJS_GCHE 0 to 2 bytes • If syntax is
checked:
-c

• If syntax is not
checked:

Null character
string

Permitted

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 114

Environment variable Input range Setting Initial value Omission

ADSH_AJS_GCHE 0 to 2 bytes Null character
string

Null character
string

Permitted

AJS_BJEX_STOP 4 bytes "TERM" "TERM" Not permitted

• Details of the parameters that are passed to JP1/Advanced Shell's job controller
The field Runtime parameters is defined as the prm parameter in the unit definition file and passed as a parameter
for JP1/Advanced Shell's job controller. The permitted values are as follows:

 Input range: 1 to 1,023 bytes#

 Setting: Character string
 Initial value: Null character string
 Omission: Permitted

To define for run-time parameters in the Define Script Execution dialog box a value equivalent to the null character
string, specify a one-byte space in the prm parameter in the unit definition file.

#
The maximum length of 1,023 bytes applies only when a character string consisting only of spaces is specified
in the prm parameter. If any non-space characters are specified, the permitted maximum length is 1,022 bytes.
If a character string consisting only of spaces is specified in the prm parameter, the specified character string
minus a one-byte space is displayed in the Runtime parameters text box in the Define Script Execution dialog
box.

Important note
Note the following about deleting definition information from the unit definition file:

• For env parameters, delete the environment variable value (character string following =) or delete
the entire env parameter.

• For prm parameters, specify a one-byte space as the value of prm or delete the prm parameter
specification.

The following shows an example unit definition:

unit=unit-name,,executing-user,;
{
 ty=cpj;
 cty="ADSHUX";
 sc="/opt/jp1as/bin/adshexec";
 env="AJS_BJEX_STOP=TERM"; -->1.
 env="ADSH_AJS_SCRF=/tmp/JP1AS/scr/samplescrfile.ash"; -->2.
 prm="param1 param2"; -->3.
 env="ADSH_AJS_ENVF=/tmp/JP1AS/env/sampleenvfile"; -->4.
 env="ADSH_AJS_LHOST=-h"; -->5.
 env="ADSH_AJS_GCHE=-c"; -->6.
 tho=0;
}

The following explains the lines of code based on the numbers shown in the right margin:

1. AJS_BJEX_STOP: Because the AJS_BJEX_STOP environment variable is used by the system, make sure that
you define this environment variable and specify TERM as its value.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 115

2. ADSH_AJS_SCRF: Specifies the name of the job definition script file.
Make sure that you define the ADSH_AJS_SCRF environment variable.

3. Specifies the prm parameter in the unit definition file.

4. ADSH_AJS_ENVF: Specifies the name of the job environment file.

5. ADSH_AJS_LHOST: If the job is to be executed on a logical host, specify -h; if not, specify nothing.

6. ADSH_AJS_GCHE: If only syntax checking is to be performed, specify -c; otherwise, specify nothing.

After you have created a unit definition file, you can define the job by using JP1/AJS's ajsdefine command and JP1/
AJS3 - Definition Assistant.

2.7.3 Defining jobs as PC or UNIX jobs

(1) Defining jobs as PC jobs
This subsection explains the items required to define JP1/Advanced Shell batch jobs as PC jobs.

• File name
Specify the path of the adshexec command in File name on the Definition tab in the Define Details - [PC Job]
dialog box or in sc="script-file-name" in the unit definition file:

"installation-folder\JP1ASE\bin\adshexec.exe"

• Parameters
Specify the options, job definition script file name, and runtime parameters for the adshexec command in
Parameters on the Definition tab in the Define Details - [PC Job] dialog box or in prm="parameter" in the unit
definition file.

• Environment variables
Specify the following value in Environment variables on the Definition tab in the Define Details - [PC Job] dialog
box or in env="environment-variable" in the unit definition file:

AJS_BJEX_STOP=TERM

The following figure shows a specification example of a JP1/Advanced Shell batch job.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 116

Figure 2‒5: Specification example of the Definition tab in the Define Details - [PC Job] dialog box

(2) Defining jobs as UNIX jobs
This subsection explains the items required to define JP1/Advanced Shell batch jobs as UNIX jobs.

• Script file name
Specify the path of the adshexec command in Script file name on the Definition tab in the Define Details -
[UNIX Job] dialog box or in sc="script-file-name" in the unit definition file:

/opt/jp1as/bin/adshexec

Alternatively, you can specify the path of the adshexec command following #! on the first line (example:
#!/opt/jp1as/bin/adshexec), and then specify the path of the job definition script file with execution
permissions granted:

path-of-job-definition-script-file

Do not specify this information in Command statement on the Definition tab in the Define Details - [UNIX Job]
dialog box or in te="command-text" in the unit definition file.

• Parameters

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 117

Specify the options, job definition script file name, and runtime parameters for the adshexec command in
Parameters on the Definition tab in the Define Details - [UNIX Job] dialog box or in prm="parameter" in the
unit definition file.
If you specified a job definition script file name for the script file name, specify only the runtime parameters.

• Environment variables
Specify the following value in Environment variables on the Definition tab in the Define Details - [UNIX Job]
dialog box or in env="environment-variable" in the unit definition file:

AJS_BJEX_STOP=TERM

The following figure shows a specification example of a JP1/Advanced Shell batch job.

Figure 2‒6: Specification example of the Definition tab in the Define Details - [UNIX Job] dialog box
(when specifying the adshexec command)

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 118

Figure 2‒7: Specification example of the Definition tab in the Define Details - [UNIX Job] dialog box
(when specifying a job definition script file path)

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 119

2.8 Setting up the user-reply functionality

2.8.1 Specifying the environment files to use the user-reply functionality
In JP1/Advanced Shell, you can specify the operating environment by using two types of environment files, the system
environment file for applying the same operating environment to multiple jobs, and a job environment file for applying
a different operating environment to each job. If you will be using the user-reply functionality, you must edit the system
environment file as appropriate for the system's environment.

Once you have edited the system environment file, you must restart the daemon or service.

(1) Specifying the spool root directory
Use the SPOOL_DIR parameter to specify the spool root directory to which job execution results are to be output. When
you will be using the user-reply functionality, you must define the SPOOL_DIR parameter only in the system
environment file. Path names cannot contain multibyte characters.

For details about the SPOOL_DIR parameter, see SPOOL_DIR parameter (defines the spool root directory path name)
in 7. Parameters Specified in the Environment Files.

(2) Specifying the JP1 event destination host
You must use the HOSTNAME_JP1IM_MANAGER parameter in the system environment file to specify the operation
management server on which the JP1/IM - Manager that is the destination of JP1 events is running. If this parameter is
omitted, the host name displayed when the hostname command is executed on the server on which JP1/Advanced
Shell is running is assumed as the destination of JP1 events. Define the HOSTNAME_JP1IM_MANAGER parameter only
in the system environment file. Also, verify that the name of the host on which JP1/Advanced Shell is run can be resolved
on the host specified in this parameter.

For details about the HOSTNAME_JP1IM_MANAGER parameter, see HOSTNAME_JP1IM_MANAGER parameter
(specifies the operation management server on which JP1/IM - Manager is running that is to be the destination of JP1
events) in 7. Parameters Specified in the Environment Files.

(3) Specifying JP1 event flow control
When you use the user-reply functionality, the conditions shown in the table below concerning output of JP1 events
must be satisfied. These conditions apply to all JP1 events that are received by the same JP1/IM.

No. Description Output condition

1 JP1 events The number of JP1 events output per second must be less than 2.

2 Reply-waiting events The number of reply-waiting events output per minute must be less than 1.

In JP1/Advanced Shell, you use the USERREPLY_JP1EVENT_INTERVAL parameter to specify the minimum interval
at which JP1 events are to be issued by the adshecho or adshread command. If multiple jobs issue events, specify
the parameter in such a manner that the frequency of JP1 event issuance by the adshecho and adshread commands
from all jobs satisfies the above conditions.

For details about the USERREPLY_JP1EVENT_INTERVAL parameter, see USERREPLY_JP1EVENT_INTERVAL
parameter (specifies the minimum interval at which JP1 events are to be issued) in 7. Parameters Specified in the
Environment Files.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 120

(4) Specifying the maximum number of concurrent reply-request
messages that can be output

You use the USERREPLY_WAIT_MAXCOUNT parameter to specify the maximum number of concurrent reply-request
messages that can be output by the user-reply functionality for each physical or logical host. Specify in this parameter
a value that is at least equal to the number of jobs that will execute the adshread command concurrently.

For details about the USERREPLY_WAIT_MAXCOUNT parameter, see USERREPLY_WAIT_MAXCOUNT parameter
(specifies the maximum number of concurrent reply-request messages that can be output for a physical or logical host)
in 7. Parameters Specified in the Environment Files.

2.8.2 Setting up the user-reply functionality after JP1/Advanced Shell has
been installed (Windows only)

This subsection explains the settings to be specified after JP1/Advanced Shell has been installed to use the user-reply
functionality. These settings must be specified by a user with an administrator role.

(1) Setting up the service

(a) Specifying how to start the JP1/Advanced Shell service
To have the JP1/Advanced Shell service start automatically:

1. From the Windows Control Panel, select Administrative Tools, and then Services.

2. From the displayed list of service names, display the properties of the following service:

• To use the user-reply functionality from the execution environment, service name beginning with AdshmSvcE

• To use the user-reply functionality from the development environment, service name beginning with
AdshmSvcD

3. On the General page, change Startup Type as follows:
Immediately after JP1/Advanced Shell has been installed, the initial setting is Manual. If you want to have the
service start automatically whenever Windows starts, change this setting to Automatic.

(b) Starting the JP1/Advanced Shell service
This subsection explains how to start the JP1/Advanced Shell service manually. You can skip this procedure if you set
Startup Type to Automatic in (a) Specifying how to start the JP1/Advanced Shell service, and then started Windows.

To start the JP1/Advanced Shell service

1. From the Windows Control Panel, select Administrative Tools, and then Services.

2. From the displayed list of service names, display the properties of the following service:

• To use the user-reply functionality from the execution environment, service name beginning with AdshmSvcE

• To use the user-reply functionality from the development environment, service name beginning with AdshmSvc

3. On the General page, click the Start button.

If the service does not start, check the error information output to the event logs.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 121

If the KNAX7552-E message is issued as error information, check and, if necessary, revise the system environment
file, and then restart the service.

(c) Registering a service
If a service (AdshmSvcD or AdshmSvcE) to be registered automatically during installation is deleted, you must re-
register the service to use the user-reply functionality. You can use the adshmsvcd and adshmsvce commands to
register services.

The following explains how to register a service.

• How to re-register a service
If AdshmSvcD or AdshmSvcE are not displayed in Services in Administrative Tools, registration of the service
might have been deleted. You can re-register the service by executing the following command:

• To register the AdshmSvcD service
adshmsvcd -install

• To register the AdshmSvcE service
adshmsvce -install

If the command terminates normally, the registered service is displayed in Services in Administrative Tools.

For details about how to start a registered services, see (b) Starting the JP1/Advanced Shell service.

(2) Setting up the adapter command (for the execution environment)
To use the user-reply functionality in the execution environment, you must specify the adapter command shown below
in JP1/Base. Specify this setting only once after you have installed JP1/Advanced Shell. However, if you have re-installed
JP1/Base, you must perform this setup again.

To set up the adapter command:

1. Check the path specified in cmdpath in the adapter command configuration file used for the user-reply functionality.
If it differs from the JP1/Advanced Shell installation folder, correct it to the installation folder.
The adapter command configuration file used for the user-reply functionality is stored at the following location:

Installation-folder\JP1ASE\sample
\Adapter_HITACHI_JP1_AS_ASE_USERREPLY.conf

When JP1/Advanced Shell is installed, the adapter command configuration file used for the user-reply functionality
contains the following information:

• In a 64-bit edition of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1_AS_ASE_USERREPLY
cmdpath C:\Program Files (x86)\Hitachi\JP1AS\JP1ASE\bin\adshuserreply.exe

• In non-64-bit editions of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1_AS_ASE_USERREPLY
cmdpath C:\Program Files\Hitachi\JP1AS\JP1ASE\bin\adshuserreply.exe

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 122

2. Copy the adapter command configuration file used for the user-reply functionality shown in step 1 to the JP1/Base
installation target.
The target folder is as follows:

JP1/Base-installation-folder\plugin\conf

Responses can now be entered for reply-waiting events that are displayed in JP1/IM - View.

(3) Setting up the adapter command (for the development environment)
To use the user-reply functionality in the development environment of JP1/Advanced Shell, you must specify the settings
described here. However, if you specify the standard output as the output destination of the user-reply functionality,
there is no need to perform this setup.

Specify this setting only once after you have installed JP1/Advanced Shell. However, if you have re-installed JP1/Base,
you must perform this setup again.

To set up the adapter command:

1. Check the path specified in cmdpath in the adapter command configuration file used for the user-reply functionality.
If it differs from the JP1/Advanced Shell installation folder, correct it to the installation folder.
The adapter command configuration file used for the user-reply functionality is stored at the following location:

JP1/Advanced-Shell-installation-folder\JP1ASD\sample
\Adapter_HITACHI_JP1_AS_ASD_USERREPLY.conf

When JP1/Advanced Shell is installed, the adapter command configuration file used for the user-reply functionality
contains the following information:

• In a 64-bit edition of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1_AS_ASD_USERREPLY
cmdpath C:\Program Files (x86)\Hitachi\JP1AS\JP1ASD\bin\adshuserreply.exe

• In non-64-bit editions of Windows
fileversion 07000000
upperpp /HITACHI/JP1/IM/CC
componenttype JP1_AS_ASD_USERREPLY
cmdpath C:\Program Files\Hitachi\JP1AS\JP1ASD\bin\adshuserreply.exe

2. Copy the file shown in step 1 to the JP1/Base installation target.
The target folder in JP1/Base is as follows:

JP1/Base-installation-folder\plugin\conf

Responses can now be entered for reply-waiting events that are displayed in JP1/IM - View.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 123

2.8.3 Setting up the user-reply functionality after JP1/Advanced Shell has
been installed (UNIX only)

This subsection explains the settings to be specified after JP1/Advanced Shell has been installed to use the user-reply
functionality.

After you have set up JP1/Advanced Shell, you must enable the function for reply-waiting events in JP1/IM - Manager.
For details, see 2.8.4 Specifying environment information in JP1/IM - Manager.

(1) Starting and terminating the user-reply functionality's management
daemon automatically

This subsection explains how to have the user-reply functionality's management daemon start and terminate
automatically when the system starts up and shuts down.

(a) In AIX
• Setting up the automatic start function at system startup

You use the mkitab command to have the user-reply functionality's management daemon start automatically at
the time of system startup. The specified setting takes effect the next time the system starts.
The following shows an example of the mkitab command:

mkitab "adshmd:2:wait:/opt/jp1as/sbin/adshmdctl start"

Set the user-reply functionality's management daemon to start after the services of linked JP1-series products have
started. For example, to have JP1/Base, JP1/IM - Manager, and JP1/Advanced Shell start automatically in this order,
execute the mkitab commands as follows:

mkitab -i hntr2mon "jp1base:2:wait:/etc/opt/jp1base/jbs_start"
mkitab -i jp1base "jp1cons:2:wait:/etc/opt/jp1cons/jco_start"
mkitab -i jp1cons "adshmd:2:wait:/opt/jp1as/sbin/adshmdctl start"

After you have specified the settings, execute the following lsitab command to check the settings:

lsitab -a

The following shows an example of the output after command execution:

init:2:initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of
system boot
 :
hntr2mon:2:once:/opt/hitachi/HNTRLib2/etc/D002start
jp1base:2:wait:/etc/opt/jp1base/jbs_start
jp1cons:2:wait:/etc/opt/jp1cons/jco_start
adshmd:2:wait:/opt/jp1as/sbin/adshmdctl start

• Setting up the automatic termination function at system shutdown
To have the user-reply functionality's management daemon terminate automatically at the time of system shutdown,
you must edit /etc/rc.shutdown to add the following code so that the user-reply functionality's management
daemon is terminated before the services of linked JP1-series products are stopped:

test -x /opt/jp1as/sbin/adshmdctl && /opt/jp1as/sbin/adshmdctl stop
 :

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 124

termination processing for services of linked JP1-series products
 :

(b) In Linux
In JP1/Advanced Shell, the script file jp1_as_md for automatically starting and terminating the user-reply
functionality's management daemon is stored in the /opt/jp1as/sample directory. The procedure for using this
script file to set the user-reply functionality's management daemon to start and terminate automatically is described
below.

• Adding to the /etc/rc.d/init.d directory
Add jp1_as_md stored in the /opt/jp1as/sample directory to /etc/rc.d/init.d. To add
jp1_as_md, specify as follows:

cp /opt/jp1as/sample/jp1_as_md /etc/rc.d/init.d
chmod u=rwx,go=rx /etc/rc.d/init.d/jp1_as_md
chown root:root /etc/rc.d/init.d/jp1_as_md

• Creating a symbolic link for automatic startup
Create a symbolic link to /etc/rc.d/init.d/jp1_as_md in the /etc/rc.d/rcN.d directory (N indicates
the execution level at startup). You must name the symbolic link in such a manner that the user-reply functionality's
management daemon is started after the services of linked JP1-series products have been started.
For example, if the name of the symbolic link for JP1/Base's automatic start script provided in the /etc/rc.d/
rc3.d and /etc/rc.d/rc5.d directories is S99_JP1_10_BASE and the name of the symbolic link for JP1/
IM - Manager's automatic start script is S99_JP1_20_CONS, the user-reply functionality's management daemon
will be started after JP1/Base and JP1/IM - Manager if you specify as follows, using S99_JP1_70_AS as the name
of the symbolic link so that it falls after S99_JP1_20_CONS:

ln -s /etc/rc.d/init.d/jp1_as_md /etc/rc.d/rc3.d/S99_JP1_70_AS
ln -s /etc/rc.d/init.d/jp1_as_md /etc/rc.d/rc5.d/S99_JP1_70_AS
chown -h root:root /etc/rc.d/rc3.d/S99_JP1_70_AS
chown -h root:root /etc/rc.d/rc5.d/S99_JP1_70_AS

• Creating a symbolic link for automatic termination
Create a symbolic link to /etc/rc.d/init.d/jp1_as_md in the /etc/rc.d/rcN.d directory (N indicates
the execution level at termination). You must name the symbolic link in such a manner that the user-reply
functionality's management daemon is terminated before the services of the linked JP1-series products are stopped.
For example, if the name of the symbolic link for JP1/Base's automatic termination script provided in the /etc/
rc.d/rc0.d and /etc/rc.d/rc6.d directories is K01_JP1_90_BASE and the name of the symbolic link
for JP1/IM - Manager's automatic termination script is K01_JP1_80_CONS, the user-reply functionality's
management daemon will be terminated before JP1/Base and JP1/IM - Manager if you specify as follows, using
K01_JP1_30_AS as the name of symbolic link so that it falls before K01_JP1_80_CONS:

ln -s /etc/rc.d/init.d/jp1_as_md /etc/rc.d/rc0.d/K01_JP1_30_AS
ln -s /etc/rc.d/init.d/jp1_as_md /etc/rc.d/rc6.d/K01_JP1_30_AS
chown -h root:root /etc/rc.d/rc0.d/K01_JP1_30_AS
chown -h root:root /etc/rc.d/rc6.d/K01_JP1_30_AS

If you change the _JP1_30_AS part in the name of symbolic link K01_JP1_30_AS, you must also change
_JP1_30_AS on the following lines in the jp1_as_md script file:

touch /var/lock/subsys/_JP1_30_AS
rm -f /var/lock/subsys/_JP1_30_AS

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 125

(c) In HP-UX
In JP1/Advanced Shell, the script file jp1_as_md for automatically starting and terminating the user-reply
functionality's management daemon is stored in the /opt/jp1as/sample directory. The procedure for using this
script file to set the user-reply functionality's management daemon to start and terminate automatically is described
below.

• Adding to the /sbin/init.d directory
Add jp1_as_md stored in the /opt/jp1as/sample directory to /sbin/init.d. To add jp1_as_md,
specify as follows:

cp /opt/jp1as/sample/jp1_as_md /sbin/init.d
chmod u=rx,go=r /sbin/init.d/jp1_as_md
chown root:sys /sbin/init.d/jp1_as_md

• Creating a symbolic link for automatic startup
Create a symbolic link to /sbin/init.d/jp1_as_md in the /sbin/rc2.d directory. You must name the
symbolic link in such a manner that the user-reply functionality's management daemon is started after the services
of the linked JP1-series products have been started.
For example, if the name of the symbolic link for JP1/Base's automatic start script provided in the /sbin/rc2.d
directory is S900jp1_base and the name of the symbolic link for JP1/IM - Manager's automatic start script is
S901jp1_cons, the user-reply functionality's management daemon will be started after JP1/Base and JP1/IM -
Manager if you specify as follows, using S905jp1_as_md as the name of the symbolic link so that 905 falls after
901:

ln -s /sbin/init.d/jp1_as_md /sbin/rc2.d/S905jp1_as_md
chown -h root:sys /sbin/rc2.d/S905jp1_as_md

• Creating a symbolic link for automatic termination
Create a symbolic link to /sbin/init.d/jp1_as_md in the /sbin/rc1.d directory. You must name the
symbolic link in such a manner that the user-reply functionality's management daemon is terminated before the
services of linked JP1-series products are stopped.
For example, if the name of the symbolic link for JP1/Base's automatic termination script provided in the /sbin/
rc1.d directory is K100jp1_base and the name of the symbolic link for JP1/IM - Manager's automatic
termination script is K099jp1_cons, the user-reply functionality's management daemon will be terminated before
JP1/Base and JP1/IM - Manager if you specify as follows, using K095jp1_as_md as the name of symbolic link
so that 095 falls before 099:

ln -s /sbin/init.d/jp1_as_md /sbin/rc1.d/K095jp1_as_md
chown -h root:sys /sbin/rc1.d/K095jp1_as_md

(d) In Solaris
In JP1/Advanced Shell, the script file jp1_as_md for automatically starting and terminating the user-reply
functionality's management daemon is stored in the /opt/jp1as/sample directory. The procedure for using this
script file to set the user-reply functionality's management daemon to start and terminate automatically is described
below.

• Adding to the /etc/init.d directory
Add jp1_as_md stored in the /opt/jp1as/sample directory to /etc/init.d. To add jp1_as_md,
specify as follows:

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 126

cp /opt/jp1as/sample/jp1_as_md /etc/init.d
chmod u=rwx,go=r /etc/init.d/jp1_as_md
chown root:sys /etc/init.d/jp1_as_md

• Creating a symbolic link for automatic startup
Create a symbolic link to /etc/init.d/jp1_as_md in the /etc/rc2.d directory (N indicates the execution
level at startup). You must name the symbolic link in such a manner that the user-reply functionality's management
daemon is started after the services of the linked JP1-series products have been started.
For example, if the name of the symbolic link for JP1/Base's automatic start script provided in the /etc/rc2.d
directory is S99_JP1_10_BASE and the name of the symbolic link for JP1/IM - Manager's automatic start script
is S99_JP1_20_CONS, the user-reply functionality's management daemon will be started after JP1/Base and JP1/
IM - Manager if you specify as follows, using S99_JP1_70_AS as the name of the symbolic link so that it falls
after S99_JP1_20_CONS:

ln -s /etc/init.d/jp1_as_md /etc/rc2.d/S99_JP1_70_AS
chown -h root:sys /etc/rc2.d/S99_JP1_70_AS

• Creating a symbolic link for automatic termination
Create a symbolic link to /etc/init.d/jp1_as_md in the /etc/rc0.d directory. You must name the
symbolic link in such a manner that the user-reply functionality's management daemon is terminated before the
services of linked JP1-series products are stopped.
For example, if the name of the symbolic link for JP1/Base's automatic termination script provided in the /etc/
rc0.d directory is K01_JP1_90_BASE and the name of the symbolic link for JP1/IM - Manager's automatic
termination script is K01_JP1_80_CONS, the user-reply functionality's management daemon will be terminated
before JP1/Base and JP1/IM - Manager if you specify as follows, using K01_JP1_30_AS as the name of symbolic
link so that it falls before K01_JP1_80_CONS:

ln -s /etc/init.d/jp1_as_md /etc/rc0.d/K01_JP1_30_AS
chown -h root:sys /etc/rc0.d/K01_JP1_30_AS

(2) Setting up JP1/Base
To use the user-reply functionality, you must have first copied the adapter command configuration file that is provided
by JP1/Advanced Shell and used for the user-reply functionality to the corresponding directory in JP1/Base. Copy the
following adapter command configuration file used for the user-reply functionality to the corresponding directory in
JP1/Base:

• Source directory (directory containing the adapter command configuration file that is provided by JP1/Advanced
Shell and used for the user-reply functionality)

/opt/jp1as/sample

Name of the adapter command configuration file that is provided by JP1/Advanced Shell and used for the user-reply
functionality

Adapter_HITACHI_JP1_AS_USERREPLY.conf
• Target directory (corresponding directory in JP1/Base)

/opt/jp1base/plugin/conf

Perform this setup only once after you have installed JP1/Advanced Shell. However, if you have re-installed JP1/Base,
you must perform this setup again.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 127

2.8.4  Specifying environment information in JP1/IM - Manager
This subsection explains how to set up JP1/IM - Manager to use the user-reply functionality. You perform this setup in
JP1/IM - Manager on the host that was specified in the HOSTNAME_JP1IM_MANAGER parameter in 2.8.1(2) Specifying
the JP1 event destination host.

(1) Copying the definition file for extended event attributes to JP1/IM -
Manager

Copy the definition file for extended event attributes from the sample directory under the JP1/Advanced Shell
installation directory to JP1/IM - Manager. Perform the following procedure as a user with superuser permissions.

To copy the definition file for extended event attributes and enable it:

1. Copy the definition file for extended event attributes to the machine on which JP1/IM - Manager is installed.

• Source definition file for extended event attributes
The definition file for extended event attributes that is to be copied depends on the character encoding used in
the target OS, as shown in the following:

Target OS Definition file for extended event attributes to be copied

Windows hitachi_jp1_as_SJIS_attr_ja.conf
hitachi_jp1_as_C_attr_cn.conf
hitachi_jp1_as_C_attr_en.conf

AIX hitachi_jp1_as_SJIS_attr_ja.conf
hitachi_jp1_as_EUC_attr_ja.conf
hitachi_jp1_as_UTF8_attr_ja.conf
hitachi_jp1_as_C_attr_cn.conf
hitachi_jp1_as_C_attr_en.conf

Linux hitachi_jp1_as_UTF8_attr_ja.conf
hitachi_jp1_as_C_attr_cn.conf
hitachi_jp1_as_C_attr_en.conf

HP-UX hitachi_jp1_as_SJIS_attr_ja.conf
hitachi_jp1_as_EUC_attr_ja.conf
hitachi_jp1_as_UTF8_attr_ja.conf
hitachi_jp1_as_C_attr_cn.conf
hitachi_jp1_as_C_attr_en.conf

Solaris hitachi_jp1_as_SJIS_attr_ja.conf
hitachi_jp1_as_EUC_attr_ja.conf
hitachi_jp1_as_UTF8_attr_ja.conf
hitachi_jp1_as_C_attr_cn.conf
hitachi_jp1_as_C_attr_en.conf

• Target directory
The following table shows the target directory to which the definition file for extended event attributes is to be
copied on the machine on which JP1/IM - Manager is installed:

Target OS Target directory

Windows JP1/IM-Manager-console-path\conf\console\attribute\
Or the following if JP1/IM - Manager is operating in a cluster configuration:
shared-folder\jp1cons\conf\console\attribute\

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 128

Target OS Target directory

UNIX /etc/opt/jp1cons/conf/console/attribute/
Or the following if JP1/IM - Manager is operating in a cluster configuration:
shared-directory/jp1cons/conf/console/attribute/

For details about JP1/IM - Manager's console path, see the Job Management Partner 1/Integrated Management
- Manager Configuration Guide.
For details about the shared folder and directory, see the description of cluster systems in the Job Management
Partner 1/Integrated Management - Manager Configuration Guide.

2. Restart JP1/IM - Manager.

(2) Setting up JP1/IM - Manager and JP1/IM - View
The function related to reply-waiting events must be enabled in JP1/IM - Manager and JP1/IM - View. If this function
is not enabled, replies cannot be entered in JP1/IM - View.

For details about how to set up JP1/IM - Manager and JP1/IM - View and the settings for communication between JP1/
Advanced Shell and JP1/IM - Manager, see the description related to linking with JP1/Advanced Shell in the Job
Management Partner 1/Integrated Management - Manager Configuration Guide.

2.8.5 Specifying environment information in JP1/Base
If you will be using the user-reply functionality, the character encoding of JP1/Base that is run on the same host as JP1/
Advanced Shell must match the character encoding used for event notification messages and reply-request messages
that are specified in the adshecho and adshread commands.

For details about the character encoding settings in JP1/Base, see the sections on installation and setup in the Job
Management Partner 1/Base User's Guide.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 129

2.9 Running in a cluster configuration

2.9.1 Prerequisites and scope of support for cluster operations
In a cluster system, JP1/Advanced Shell is run in a logical host environment and can inherit the job execution
environment in the event of system switchover. However, execution of a job that was underway at the time system
switchover occurred cannot continue. If necessary, you must re-execute such a job manually after system switchover is
completed.

When JP1/Advanced Shell is run on a logical host, the cluster software program must manage the logical IP address as
well as allocation, deletion, and operation monitoring of the shared disk. In addition, you must configure the system
and set up the environment so that the following prerequisites are satisfied.

(1) Prerequisites for a logical host environment
When JP1/Advanced Shell is run in a logical host environment, the following prerequisites apply to the logical IP address
and the shared disk.

Table 2‒23: Prerequisites for logical host environment

Logical host component Prerequisites

Shared disk • A shared disk that can be inherited from the active server to the standby
server is available.

• The shared disk is allocated before the JP1/Advanced Shell program
starts.

• The shared disk allocation is not released while the user-reply
functionality's management daemon or service are running.

• The shared disk allocation is released after the user-reply functionality's
management daemon or service have stopped.

• The shared disk is locked to prevent illegal access from multiple nodes.
• Files are protected from unexpected events, such as system shutdown, by

using file systems with journal functions.
• When a planned termination is performed on a running program during

system switchover, the file contents are guaranteed and inherited.
• Forced system switchover is available even if a process is using the shared

disk during system switchover.
• In the event of a failure of the shared disk, the cluster software controls

the recovery processing. If it is necessary to start and stop the user-reply
functionality's management daemon or service as an extension of the
recovery processing, the cluster software will issue requests to start and
stop the user-reply functionality's management daemon or service.

Logical IP address • A logical IP address that can be inherited is available for communication.
• A unique logical IP address can be obtained from the logical host name.
• The logical IP address is allocated before the user-reply functionality's

management daemon or service start.
• The logical IP address is not deleted while the user-reply functionality's

management daemon or service is running.
• The correspondence between logical host name and logical IP address

remains unchanged while the user-reply functionality's management
daemon or service is running.

• The logical IP address is deleted after the user-reply functionality's
management daemon or service has stopped.

• In the event of a network failure, the cluster software controls the recovery
processing without having to involve the user-reply functionality's

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 130

Logical host component Prerequisites

Logical IP address management daemon or service in the recovery processing. If it is
necessary to start and stop the user-reply functionality's management
daemon or service as an extension of the recovery processing, the cluster
software is to issue requests to start and stop the user-reply functionality's
management daemon or service.

• If multiple logical hosts are started on the same physical host, one IP
address is allocated to each logical host.

(2) Prerequisites for a physical host environment
In a cluster system that runs JP1/Advanced Shell on a logical host, each server's physical host environment must satisfy
the following prerequisites.

Table 2‒24: Prerequisites for physical host environment

Physical host component Prerequisites

Server machine • The cluster configuration consists of at least two server machines.
• Sufficient CPU performance is available for the processing to be performed

(for example, if multiple logical hosts will run concurrently, there will be
sufficient CPU performance).

• There is enough real memory for the processing to be performed (for example,
if multiple logical hosts will run concurrently, there will be enough real memory
capacity).

Disk • Files are protected from unexpected events, such as system shutdown, by using
file systems with journal functions.

Network • If the user-reply functionality's management daemon or service are used in a
physical host environment, the IP address corresponding to the physical host
name (obtained by the hostname command) is supported for
communications (communications will not be disabled by a program such as
the cluster software).#

• The correspondence between host name and IP address remains unchanged
while the user-reply functionality's management daemon or service is running
(the correspondence will not be changed by a program such as the cluster
software or a name server).

• In Windows, a LAN board corresponding to the host name is given priority by
the network binding settings (no other LAN board, such as a heartbeat LAN,
is granted priority).

OS and cluster software • The environment settings of the individual servers are identical so that the same
processing can be performed after system switchover.

• The cluster software and its version are supported by JP1/Advanced Shell.
• Patches and service packs required by JP1/Advanced Shell and cluster software

have been applied.

#
Depending on the cluster software, the IP address corresponding to the physical host name (host name displayed by the hostname command)
might not be supported for communications. In such a case, the user-reply functionality's management daemon or service cannot run in the
physical host environment. Use the user-reply functionality's management daemon or service in the logical host environment only.

(3) Scope of support by JP1/Advanced Shell
When JP1/Advanced Shell is run in a cluster system, it supports only its own operation. The logical host environment
(shared disk and logical IP address) is controlled by the cluster software.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 131

If the prerequisites for the logical and physical host environments are not satisfied or there is a problem in the control
of the logical host environment, JP1/Advanced Shell might not function normally. In such a case, check the physical
and logical host environments or the cluster software settings and revise the prerequisites as necessary.

(4) Conditions for logical host names
The following conditions apply to logical host names:

• Permitted number of characters
Windows: 1 to 196 bytes (a maximum of 63 bytes is recommended)
UNIX: 1 to 255 bytes (a maximum of 63 bytes is recommended)
If the cluster software or JP1 products being used impose limitations, you must observe those limitations in naming
the logical hosts.

• Permitted characters
Alphanumeric characters and the hyphen (-)

2.9.2 Specifying environment information for cluster operation
This subsection explains the environment settings for JP1/Advanced Shell to support cluster operation.

(1) Installing and setting up the JP1-series products to be linked
Install and set up on the active and standby servers the JP1-series products to be linked. For details about the installation
and setup of the JP1-series products to be linked, see the applicable manuals.

(2) Installing JP1/Advanced Shell
Install JP1/Advanced Shell on the local disk of both the active and standby servers.

Do not install JP1/Advanced Shell on the shared disk.

(3) Specifying environment information for JP1/Advanced Shell
To use JP1/Advanced Shell in a cluster system, perform the tasks described below.

(a) Evaluating the configuration of directories and files
Evaluate according to the system operation guidelines the directory and file configuration items shown in the following
table.

Table 2‒25: Directory and file configuration evaluation items

Type of directory or file Creation criterion

Directory for temporary files S or L

Directory for the spool S

Directory for system execution logs S or L

Directory for traces L

System environment file L

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 132

Type of directory or file Creation criterion

Job environment file S or L

Job definition script S or L

File referenced from job definition scripts S or L

Other S or L

Legend:
S: Create on the shared disk.
S or L: Create on the shared disk or logical disk according to the system operation guidelines.
L: Create on the local disk.

(b) Specifying environment information on the physical hosts
Specify the environment information for JP1/Advanced Shell on the physical hosts of the active and standby servers.
For details about the specification of environment information, see 2.6 Specifying environment information for JP1/
Advanced Shell.

(c) Specifying environment information on the logical host
Specify the environment information for JP1/Advanced Shell on the logical host of the active server.

To specify the environment information on the logical host:

1. Create the directories needed for execution.
According to the directory configuration evaluated in (a) Evaluating the configuration of directories and files, create
the following directories required for running JP1/Advanced Shell on the shared disk or logical disk:

• Directory for temporary files

• Directory for the spool

• Directory for system execution logs

• Directory for traces

The following explains how to create directories:

• When creating the directories on the shared disk
Create the directories on the shared disk in such a manner that the active server can access the shared disk.

• When creating the directories on the local disk
Create the directories on the local disks of both the active and standby servers.

2. Specify the environment file.
You must specify the settings required for each logical host in the system environment file of JP1/Advanced Shell.
To do this, specify the environment setting parameters for each logical host between the lhost_start and
lhost_end conditional parameters. For details about the lhost_start and lhost_end conditional
parameters, see lhost_start and lhost_end parameters (define a set of parameters applicable only to a specified
logical host) in 7.4 Conditional parameters.
To run JP1/Advanced Shell in a logical host environment, specify at least the following parameters in the system
environment file:

• Parameters for the directories required for running JP1/Advanced Shell
According to the directory configuration evaluated in (a) Evaluating the configuration of directories and files,
specify in the system environment file the directories created in step 1. Specify these directories in the system
environment file only, so that they are swapped when system switchover occurs. Do not specify them in job

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 133

environment files. For details about the parameters for directories required for running JP1/Advanced Shell, see
2.6.19 Creating the directories required for JP1/Advanced Shell.

• Parameters for the user-reply functionality
If you will be using the user-reply functionality in a logical host environment, specify in the system environment
file the appropriate parameters for the user-reply functionality for the logical host.
For details about the parameters for the user-reply functionality, see 2.8.1 Specifying the environment files to use
the user-reply functionality.

An example of the settings in the system environment file with physical and logical hosts specified are shown below.
In this example, /shdsk1/lhost001 and /shdsk2/lhost002 are directories on the shared disk, and /
lhost001, /lhost002, and /phost are directories on the local host.

###
Settings common to both physical and logical hosts
###

#-adsh_conf USERREPLY_JP1EVENT_INTERVAL 500

###
Settings for each of the physical and logical hosts
###

specify parameter for only logical host (lhost001).
#-adsh_conf lhost_start lhost001
#-adsh_conf LOG_DIR "/shdsk1/lhost001/log"
#-adsh_conf SPOOL_DIR "/shdsk1/lhost001/spool"
#-adsh_conf TEMP_FILE_DIR "/shdsk1/lhost001/temp"
#-adsh_conf TRACE_DIR "/lhost001/trace"
#-adsh_conf HOSTNAME_JP1IM_MANAGER IMlhost001
#-adsh_conf USERREPLY_WAIT_MAXCOUNT 5
#-adsh_conf lhost_end

specify parameter for only logical host (lhost002).
#-adsh_conf lhost_start lhost002
#-adsh_conf LOG_DIR "/shdsk2/lhost002/log"
#-adsh_conf SPOOL_DIR "/shdsk2/lhost002/spool"
#-adsh_conf TEMP_FILE_DIR "/shdsk2/lhost002/temp"
#-adsh_conf TRACE_DIR "/lhost002/trace"
#-adsh_conf HOSTNAME_JP1IM_MANAGER IMlhost002
#-adsh_conf USERREPLY_WAIT_MAXCOUNT 5
#-adsh_conf lhost_end

specify parameter for physical host.
#-adsh_conf phost_start
#-adsh_conf LOG_DIR "/phost/log"
#-adsh_conf SPOOL_DIR "/phost/spool"
#-adsh_conf TEMP_FILE_DIR "/phost/temp"
#-adsh_conf TRACE_DIR "/phost/trace"
#-adsh_conf HOSTNAME_JP1IM_MANAGER IMphost001
#-adsh_conf USERREPLY_WAIT_MAXCOUNT 10
#-adsh_conf phost_end

3. Register the user-reply functionality's management service for the logical hosts (Windows only).
To use the user-reply functionality in a logical host environment, you must register the user-reply functionality's
management service for the logical hosts on both the active and standby servers. You can use the adshmsvcd and

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 134

adshmsvce commands to register the user-reply functionality's management service. To register the service for a
logical host, execute the command with the -install and -lhostname options specified.
When the command terminates normally, the registered service is displayed in the Services administrative tool.
For example, to use lhost001 as a logical host in the execution environment of the active server, execute the
following command:

adshmsvce -install -lhostname lhost001

If the command terminates normally, AdshmSvcE_ lhost001 is displayed in the Services administrative tool.

4. Check the file configuration on the active and standby servers.
According to the file configuration evaluated in (a) Evaluating the configuration of directories and files, perform
the following tasks:

• For the files to be created on the local disk
The configuration of the files to be referenced and the file contents must be identical between the active and
standby servers. Copy the files created on the local disk of the active server, such as the system environment file
created in step 2. Specify the environment file, to the same path on the standby server.

• For the files to be created on the shared disk
Create the files so that the active server can access them on the shared disk.

Important note
For the created files, set the permissions so that they can be accessed from both the active and standby
servers. If access permissions are granted to a specific user or group, you must specify the same user
name and user ID (UID) or the same group name and group ID (GID) on both the active and standby
servers.

(4) Registering into the cluster software (Windows)
Register the user-reply functionality's management service on the logical host into the cluster software so that it can be
started and stopped from the cluster software. If you do not use the user-reply functionality in a logical host environment,
skip this task.

(a) Registering into the cluster software
In Windows, register into the cluster software the service with the name shown in the following that has been registered
as a service for the logical host:

Name Service name

AdshmSvcE_logical-host-name User-reply functionality's management service

For details about how to register the service, see the applicable cluster software's documentation. After you have
registered the user-reply functionality's management service into the cluster software, use the cluster software to start
and stop the service.

(b) Specifying the start and stop sequence
To run the user-reply functionality's management service on the logical host, the shared disk and logical IP address must
be available. The start and stop sequence depends on the linked JP1-series products.

• When the logical host is started

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 135

1. Allocate the shared disk and logical IP address and enable them.

2. Start the services of the linked JP1-series products (except JP1/AJS).#

3. Start the user-reply functionality's management service.

4. Start the services of JP1/AJS.

• When the logical host is terminated

1. Stop the services of JP1/AJS.

2. Stop the user-reply functionality's management service.

3. Stop the services of the linked JP1-series products (except JP1/AJS).#

4. Release the allocation of the shared disk and the logical IP address.

#
For details about the start and stop sequence among the services of the linked JP1-series products, see the individual
product manuals.

(5) Registering into the cluster software (UNIX)
Register into the cluster software the user-reply functionality's management daemon on the logical host so that it can
be started and stopped from the cluster software. If you do not use the user-reply functionality in a logical host
environment, skip this task.

(a) Registering into the cluster software
The following table provides the information needed for registering the user-reply functionality's management daemon
into the cluster software.

Table 2‒26: Functions to be registered in to the cluster software and the commands used by each
function

Function to be registered Description

Start Starts the user-reply functionality's management daemon.

Command to be used
adshmdctl

Example
adshmdctl -h logical-host-name start

Checking the result of starting the daemon
Use the operation monitoring described below to check the result of starting the user-reply
functionality's management daemon; do not use the return code.

Stop Stops the user-reply functionality's management daemon.

Command to be used
adshmdctl

Example
adshmdctl -h logical-host-name stop

Checking the result of stopping the daemon
Use the operation monitoring described below to check the result of stopping the user-reply
functionality's management daemon; do not use the return code.

Operation monitoring Monitors the user-reply functionality's management daemon to check if it is running normally.

Command to be used
adshmdctl

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 136

Function to be registered Description

Operation monitoring Example
adshmdctl -h logical-host-name status

Checking the result of operation monitoring
The following explains the return code:
Return code = 0 (running)
The user-reply functionality's management daemon is running normally.
Return code = 1 (stopped)
The user-reply functionality's management daemon is stopped for some reason. Treat this status
as an error.

For details about the adshmdctl command, see adshmdctl command (starts and stops the user-reply functionality
management daemon) (UNIX only) in 8. Commands Used During Operations.

Important note
If the user-reply functionality's management daemon is terminated without releasing the shared memory due
to some error, the next startup will fail. If this occurs, take appropriate action according to the information
provided in Function in adshmdctl command (starts and stops the user-reply functionality management daemon)
(UNIX only) in 8. Commands Used During Operations.

(b) Specifying the start and stop sequence
To run the user-reply functionality's management daemon on the logical host, the shared disk and logical IP address
must be available. The start and stop sequence depends on the linked JP1-series products.

• When the logical host is started

1. Allocate the shared disk and logical IP address and enable them.

2. Start the daemons and services of the linked JP1-series products (except JP1/AJS).#

3. Start the user-reply functionality's management daemon.

4. Start the services of JP1/AJS.

• When the logical host is terminated

1. Stop the services of JP1/AJS.

2. Stop the user-reply functionality's management daemon.

3. Stop the daemons and services of the linked JP1-series products (except JP1/AJS).#

4. Release the allocation of the shared disk and the logical IP address.

#
For details about the start and stop sequence among the services of the linked JP1-series products, see the individual
product manuals.

2.9.3 How to specify commands during cluster operation
To execute a command on a logical host, you must specify the logical host name in the command. A command in which
no logical host name is specified is executed on the physical host. Specify the logical host in commands as shown in
the following.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 137

(1) adshexec command (executes a batch job)

(a) Executing from a JP1/AJS custom job
To execute the command from a custom job, select the Logical host check box in Define detailed info in the Define
Details - [Custom Job] dialog box to execute the command on the logical host.

Note that the JP1/AJS Exec-agent that executes the custom job must be running on the logical host. If the JP1/AJS Exec-
agent is running on the physical host, the command will not function normally.

For details about custom jobs, see 2.7 Specifying environment information for JP1/AJS (applicable when JP1/AJS is
used).

(b) Executing from a program other than a JP1/AJS custom job
To execute the command from a program other than a custom job, specify the command as follows:

adshexec -h "" path-name-of-job-definition-script-file

If the command is executed from JP1/AJS - Agent running on the logical host, the logical host name is set in the
JP1_HOSTNAME environment variable. If the null character string (which is two double-quotation marks, "") is
specified in the -h option, the adshexec command acquires the logical host name from the JP1_HOSTNAME
environment variable. For details about the JP1_HOSTNAME environment variable, see the Job Management Partner
1/Base User's Guide.

Note that the executing JP1/AJS Exec-agent must be running on the logical host. If the JP1/AJS Exec-agent is running
on the physical host, see Executing from a program other than JP1/AJS below.

(c) Executing from a program other than JP1/AJS
Execute the command with the logical host name specified in the -h option, as shown in the following:

adshexec -h logical-host-name path-name-of-job-definition-script-file

(2) Commands other than adshexec
Execute the command with the logical host name specified in the -h option, as shown in the following:

command -h logical-host-name

This example executes adshlsmsg as a logical host:

adshlsmsg -h logical-host-name

If the user-reply functionality is used, the logical host name specified in the user-reply functionality's management
daemon or service must the same as the logical host name specified in the adshexec command. For details about the
individual commands that can be executed as a logical host, see 8.3 Shell operation commands.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 138

2.9.4 Notes about cluster operation
This subsection provides additional information about use of JP1/Advanced Shell in a cluster operation.

• (Windows only) UNC names can be used as file and path names. However, the path names ending with a shared
name (including names ending with \) are not supported.

• JP1/Advanced Shell does not support some file systems. For details, see 2.6.19(2) File systems.

• When multiple logical hosts are configured and multiple copies of JP1/Advanced Shell are run, the user-reply
functionality is still executed for each logical host. Information cannot be referenced from the user-reply functionality
running on one logical host by the user-reply functionality running on another logical host.

• If system switchover occurs while a job using reply-request messages of the user-reply functionality is running,
reply-request events might remain in JP1/IM - View. If this occurs, use JP1/IM - View to release the reply-request
events manually.

• (UNIX only) If the shared disk is disconnected by the cluster software while a JP1/Advanced Shell job is running,
the job terminates with an error by signal.

• (Windows only) If the shared disk is disconnected by the cluster software while a JP1/Advanced Shell job is running,
the job terminates with an error when it attempts to access a file on the shared disk.

• If you run JP1/Advanced Shell in a cluster environment, do not collect coverage information.

2.9.5 Settings for running a logical host in a non-cluster environment
This subsection provides an overview of the configuration and operations of logical hosts in a non-cluster environment.
In the case of logical hosts that run in a non-cluster environment, you specify the same environment information as for
logical hosts that run in a normal cluster system.

(1) Specifying environment information to run logical hosts in a non-
cluster system

This subsection explains how to run JP1/Advanced Shell on a logical host in a non-cluster environment without linking
JP1/Advanced Shell to cluster software.

(a) Preparing the logical host environment
Provide a disk area and IP address for the logical host to create a logical host environment.

• Disk area for the logical host
Create storage directories on the local disk for the files that will be used by JP1/Advanced Shell separately from the
directories used by the physical host and the JP1-series products on other logical hosts.

• IP address for the logical host
Allocate in the OS the IP address that will be used by JP1/Advanced Shell for the logical host. It can be a real IP
address or an alias IP address. Make sure that the IP address can be uniquely identified from the logical host.
The prerequisites for these tasks are the same as for operation in a cluster system. However, the conditions related
to cluster software do not apply because JP1/Advanced Shell is not run in a cluster environment.

In 2.9 Running in a cluster configuration, replace the information about shared disk and logical IP address with the disk
area and IP address allocated above for the logical host.

• Estimating performance

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 139

When you estimate performance, determine whether JP1/Advanced Shell can be run as a system in terms of the
following:

• Determine whether there are enough resources to run multiple JP1-series products in the system. If there are not
enough resources, the system might not function correctly or adequate performance might not be realized.

(b) Specifying environment information for the logical host
Specify environment information for the logical host using the same procedure as for the active server in a cluster system.
For details about the specification of environment information for cluster operation, see 2.9.2 Specifying environment
information for cluster operation. Note that in a cluster system, the environment information must be specified on both
servers involved in system switchover, but for a logical host that is run in a non-cluster environment, specify the
environment information only on the server on which JP1/Advanced Shell will be run.

(2) Automatic startup and termination of the user-reply functionality's
management daemon for the logical host in a non-cluster environment
(UNIX only)

This subsection explains how to have the user-reply functionality's management daemon start and terminate
automatically when the system starts and shuts down.

(a) In AIX
• Setting up the automatic start function at system startup

You use the following mkitab command to have the user-reply functionality's management daemon start
automatically at the time of system startup:

mkitab "record-of-user-reply-functionality-management-daemon-for-logical
host:2:wait:/opt/jp1as/sbin/adshmdctl -h logical-host-name start"

Set the user-reply functionality's management daemon for the logical host to start after the logical host services of
linked JP1-series products have started. For example, to have JP1/Base and JP1/IM - Manager on the logical host
start automatically in this order, execute mkitab commands as follows:

mkitab -i record-of-JP1-Base-for-logical-host "record-of-JP1/IM-Manager-
for-logical-host:2:wait:/etc/opt/jp1cons/jco_start.cluster logical-host-
name"
mkitab -i record-of-JP1/IM-Manager-for-logical-host "record-of-user-reply-
functionality-management-daemon-for-logical host:2:wait:/opt/jp1as/sbin/
adshmdctl -h logical-host-name start"

• Setting up the automatic termination function at system shutdown
To have the user-reply functionality's management daemon terminate automatically at the time of system shutdown,
you must edit /etc/rc.shutdown to add the following code so that the user-reply functionality's management
daemon for the logical host stops before any of the logical host services of linked JP1-series products are stopped:

test -x /opt/jp1as/sbin/adshmdctl && /opt/jp1as/sbin/adshmdctl -h logical-
host-name stop
 :
termination processing for services of linked JP1-series products
 :

(b) In Linux
• Creating automatic start and stop scripts

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 140

Create automatic start and stop scripts for the logical host in the /etc/rc.d/init.d directory. The following
shows an example:

#!/bin/sh

JP1_HOSTNAME=logical-host-name

case $1 in
'start')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME start
 touch /var/lock/subsys/lock-file-name
 fi
 ;;
'stop')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME stop
 rm -f /var/lock/subsys/lock-file-name
 fi
 ;;
esac

exit 0

Specify for the lock file name the symbolic link name created for automatic stop without the leading numeric part
(KXX part). For example, if the symbolic link name for automatic stop is K01_JP1_AS_CLUSTER, specify
_JP1_AS_CLUSTER.

• Creating a symbolic link for automatic startup
Create a symbolic link to the created automatic start and stop scripts in the /etc/rc.d/rcN.d directory (N
indicates the execution level at startup). You must name the symbolic link in such a manner that the user-reply
functionality's management daemon is started after the logical host services of the linked JP1-series products have
been started. For details about how to create symbolic links, see 2.8.3(1) Starting and terminating the user-reply
functionality's management daemon automatically.

• Creating a symbolic link for automatic termination
Create a symbolic link to the created automatic start and stop scripts in the /etc/rc.d/rcN.d directory (N
indicates the execution level at termination). You must name the symbolic link in such a manner that the user-reply
functionality's management daemon is terminated before the logical host services of the linked JP1-series products
are stopped. For details about how to create symbolic links, see 2.8.3(1) Starting and terminating the user-reply
functionality's management daemon automatically.

Note that the user is responsible for creating the automatic start and stop scripts for the logical host services of the linked
JP1-series products and the symbolic links to the created automatic start and stop scripts. For details about the names
of automatic start and stop scripts for the logical host services of linked JP1-series products and the names of symbolic
links, see the manuals for the linked JP1-series products.

(c) In HP-UX
• Creating automatic start and stop scripts

Create the automatic start and stop scripts for the logical host in the /sbin/init.d directory. The following
shows an example:

#!/bin/sh

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 141

Set Environment-variables
PATH=/sbin:/bin:/usr/bin:/opt/jp1as/sbin
export PATH
JP1_HOSTNAME=logical-host-name

case $1 in
start_msg)
 echo "Start Advanced Shell - adshmd $JP1_HOSTNAME"
 ;;
stop_msg)
 echo "Stop Advanced Shell - adshmd $JP1_HOSTNAME"
 ;;
'start')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME start
 fi
 ;;
'stop')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME stop
 fi
 ;;
esac

exit 0

• Creating a symbolic link for automatic startup
Create a symbolic link to the created automatic start and stop scripts in the /sbin/rc2.d directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is started after the
logical host services of the linked JP1-series products have been started. For details about how to create symbolic
links, see 2.8.3(1) Starting and terminating the user-reply functionality's management daemon automatically.

• Creating a symbolic link for automatic termination
Create a symbolic link to the created automatic start and stop scripts in the /sbin/rc1.d directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is terminated before
the logical host services of the linked JP1-series products are stopped. For details about how to create symbolic
links, see 2.8.3(1) Starting and terminating the user-reply functionality's management daemon automatically.

Note that the user is responsible for creating the automatic start and stop scripts for the logical host services of the linked
JP1-series products and the symbolic links to the created automatic start and stop scripts. For details about the names
of automatic start and stop scripts for the logical host services of linked JP1-series products and the names of symbolic
links, see the manuals for the linked JP1-series products.

(d) In Solaris
• Creating automatic start and stop scripts

Create the automatic start and stop scripts for the logical host in the /etc/init.d directory. The following shows
an example:

#!/bin/sh

JP1_HOSTNAME=logical-host-name

case $1 in
'start')

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 142

 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME start
 fi
 ;;
'stop')
 if [-x /opt/jp1as/sbin/adshmdctl]
 then
 /opt/jp1as/sbin/adshmdctl -h $JP1_HOSTNAME stop
 fi
 ;;
esac

exit 0

• Creating a symbolic link for automatic startup
Create a symbolic link to the created automatic start and stop scripts in the /etc/rc2.d/ directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is started after the
services of the linked JP1-series products have been started. For details about how to create symbolic links, see
2.8.3(1) Starting and terminating the user-reply functionality's management daemon automatically.

• Creating a symbolic link for automatic termination
Create a symbolic link to the created automatic start and stop scripts in the /etc/rc0.d/ directory. You must
name the symbolic link in such a manner that the user-reply functionality's management daemon is started after the
services of the linked JP1-series products have been started. For details about how to create symbolic links, see
2.8.3(1) Starting and terminating the user-reply functionality's management daemon automatically.

Note that the user is responsible for creating the automatic start and stop scripts for the logical host services of linked
JP1-series products and the symbolic links to the created automatic start and stop scripts. For details about the names
of automatic start and stop scripts for the logical host services of linked JP1-series products and the names of symbolic
links, see the manuals for the linked JP1-series products.

(3) How to specify logical hosts
You specify commands that are to execute on a logical host in the same manner as for commands that are used on the
logical host in a cluster system. For details about how to specify commands for the logical host in a cluster system, see
2.9.3 How to specify commands during cluster operation.

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 143

2.10 Installing the HTML manual

You can use the HTML manual for JP1/Advanced Shell's custom job programs and JP1/Advanced Shell Editor by
copying the HTML manual to a specified folder.

To install the HTML manual:

1. Locate the manual CD-ROM supplied as a standard with the program product.

2. From the manual CD-ROM, copy all of the JP1/Advanced Shell HTML and CSS files and the GRAPHICS folder
to the following folders:

• To view Help from JP1/Advanced Shell:
installation-directory\JP1ASE\doc\en\help

• To view Help from JP1/Advanced Shell Editor:
installation-directory\JP1ASD\doc\en\help

• To view Help from JP1/Advanced Shell's custom job definition programs:
installation-directory\JP1ASV\doc\en\help

2. Preparations for Using JP1/Advanced Shell

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 144

Part 3: Operation

3 Executing Batch Jobs

This chapter explains how to execute batch jobs and the batch job processing in JP1/Advanced
Shell (execution environment).

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 145

3.1 Structure of jobs

This section explains the structure of jobs.

3.1.1 Operator's tasks in JP1/AJS jobs
This subsection explains the general procedure for the operator's tasks when JP1/AJS is used to execute jobs.

(1) Defining jobs
To use JP1/AJS to execute jobs, you must define the jobs according to the procedure explained in 2.7.2 Defining and
executing a jobnet.

(2) Executing jobs
The three methods for using JP1/AJS to execute jobs are planned execution, fixed execution, and immediate execution.
For details about these three execution methods, see the Job Management Partner 1/Automatic Job Management System
3 Operator's Guide.

If you do not use JP1/AJS, you can execute jobs (job definition scripts) by entering commands from the command
prompt or shell.

(3) Monitoring a jobnet
In JP1/AJS, you start the jobnet monitor to check job execution status.

(4) Re-executing jobs
If you need to re-execute jobs, re-execute them from the JP1/AJS - View window.

3.1.2 Jobs
Any request to start the job controller from a JP1/AJS or Windows command prompt or a UNIX shell is accepted as a
job. A general user who will be using the job passes the job definition script containing a collection of instructions to
the job controller.

The job controller analyzes the instructions to determine what is being requested by the user and executes the job in a
manner that makes efficient use of system resources.

(1) Root jobs and child jobs
In general, a job is the unit in which the system is requested to perform a single integrated task prepared by a general
user. Individual tasks that are requested are treated as being mutually independent.

A job consists of a series of processing programs. To execute these processing programs, you must define their execution
order, execution conditions, and the files that will be required for them to execute.

Jobs are classified into root jobs and child jobs.

• Root job

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 146

Of the jobs to be executed from programs, such as JP1/AJS and login shell, all jobs other than child jobs are root
jobs.

• Child job
In job definition scripts that are run as descendant processes of root jobs, the jobs that are executed by using one of
the parameters listed below or its default definition are child jobs:

• CHILDJOB_EXT parameter

• CHILDJOB_PGM parameter

• CHILDJOB_SHEBANG parameter

The following figure shows an example procedure for starting root jobs and child jobs.

(2) Job input modes
Jobs are executed in one of the following modes according to the status of the standard input:

• Terminal input mode
If the standard input is associated with the terminal when a job starts, the job is executed in this mode. The following
is an example of starting a job in this mode:

• In the login shell, executing the adshexec command with the standard input associated with the terminal

• Non-terminal input mode
If the standard input is not associated with the terminal when a job starts, the job is executed in this mode.
The following are examples of starting a job in this mode:

• Starting a job from JP1/AJS

• In the login shell, executing the adshexec command by redirecting the standard input from a file

• In the login shell, executing the adshexec command in a middle of or at the end of a pipe

When a job starts, the KNAX7902-I message indicating the mode used to execute the job is displayed.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 147

In UNIX, how a job is forcibly terminated depends on the job input mode. For details, see 3.10 Forcibly terminating jobs.

In Windows, the job input mode has no effect on the job processing.

(3) Relationship between jobs
Root jobs are mutually independent. This means that jobs processed concurrently do not influence each other, nor can
an executed root job influence root jobs that are executed later. Also, information cannot be inherited from one root job
to another (except for the information in files).

However, there might be relationships between jobs, such as the following:

• Depending on the scheduling by JP1/AJS, root jobs are associated with each other in terms of their execution order.

• If multiple jobs use the same regular file concurrently, those jobs are associated with each other. A schedule must
be designed in JP1/AJS so that the jobs are executed in the appropriate order.

• There might be a relationship between a root job and child jobs and between child jobs.

(4) Relationship between jobs and environment files
Both root and child jobs load the system environment file and a job environment file when the jobs start. Therefore, a
root job and its child jobs use parameters in different environment files in the following cases:

• After a root job loaded the environment files at the start, the value of the ADSH_ENV environment variable is changed
to a different job environment file path before a child job loads the environment files when it starts.

• After a root job loaded the environment files at the start, the contents of the system environment file or job
environment file is changed before a child job loads the environment files when it starts.

If you want to run a root job and its child jobs using the same environment file parameters, do not change the value of
the ADSH_ENV environment variable or the contents of the environment files while the jobs are executing.

If the export parameter is defined in the environment files, its value takes precedence over the value of the environment
variable that the job inherits from its parent process. The following shows an example.

• Root job root.ash
export ENV1=SCRIPTFILE
childjob.ash #start the child job

• Child job childjob.ash
echo $ENV1

• Contents of environment file adshrc.ase that are loaded by root job root.ash and child job childjob.ash
export ENV1=ENVFILE

• echo output results of child job childjob.ash
export ENV1=ENVFILE

In this example, the jobs are run in the following procedure:

1. Root job root.ash starts and ENVFILE is set in ENV1 by the export parameter in environment file
adshrc.ase.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 148

2. Root job root.ash sets SCRIPTFILE in environment variable ENV1 before its child job childjob.ash starts.

3. Child job childjob.ash starts and inherits environment variable ENV1 from root job root.ash. Immediately
after the process of child job childjob.ash started, the value of ENV1 was SCRIPTFILE.

4. Child job childjob.ash loads environment file adshrc.ase at the start. ENVFILE is set in ENV1 by the
export parameter.

5. The result of echo by child job childjob.ash is ENVFILE, which was set in step 4.

(5) Temporary files and regular files
Batch jobs perform processing by referencing data, such as the information provided by open base products, as temporary
files or regular files.

(a) Temporary files
Temporary files are used temporarily during job execution. They are created automatically by jobs and job steps and
deleted automatically when the jobs terminate. Temporary files are created in a directory defined in the environment
files.

We recommend that you manage the temporary files for batch jobs separately from the temporary files for applications.
The directory for storing temporary files in JP1/Advanced Shell is specified in the TEMP_FILE_DIR parameter.
Normally, the temporary files are deleted, but they might remain if a failure occurs. For this reason, make sure that you
delete temporary files periodically.

(b) Regular files
Regular files are used to input and output job definition scripts and can be placed in any directory. These files are retained
as job results after jobs have terminated, but you can delete them during job execution.

(6) Asynchronously executed processes
In JP1/Advanced Shell, a job is not terminated until all the related root jobs, child jobs, and commands have terminated.

(a) Asynchronous execution by using & and |& (UNIX only)
A job is not terminated until all the processes executed with & and |& specified are completed.

Note that if an asynchronously executed process is terminated due to receipt of a signal such as SIGSTOP at the time
the job terminates, the job might be terminated without waiting for that process to terminate. If you want to terminate
a job without waiting for termination of asynchronously executed processes, create the job definition script in such a
manner that the OS shell is used only for the parts that you want to execute asynchronously.

The following shows an example.

Example of job definition script that waits for termination of asynchronously executed processes

#!/opt/jp1as/bin/adshexec
mycommand A &

If this job definition script is executed in JP1/Advanced Shell, the job is terminated after mycommand has completed.
If you want to terminate this job without waiting for completion of mycommand, create the job definition script as
shown below. This example uses /bin/ksh as the OS shell.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 149

Example of job definition script that does not wait for termination of asynchronously executed processes

#!/opt/jp1as/bin/adshexec
/bin/ksh exec_cmdA.sh

Contents of exec_cmdA.sh

mycommand A &

(b) Using the exec command to execute external commands
If an external command is specified in the argument of the exec command, the adshexec command executes the
external command as a child process and waits for its completion. When the external command is completed, no
commands following the exec command will be executed. In such a case, the return code of the completed external
command becomes the return code of the job definition script.

(c) Message notifying that the command is to wait for completion of asynchronously
executed process

When the adshexec command starts, it outputs the KNAX7901-I message notifying that the command is to wait for
completion of asynchronously executed process when the job terminates. This message is normally output to the job
execution logs, system execution logs, and standard error. During debugging, this message is output to the standard
error output.

(d) Job processing when an asynchronously executed process is stopped (UNIX
only)

If an asynchronously executed process is stopped due to receipt of a signal such as SIGSTOP, JP1/Advanced Shell
sends SIGHUP and SIGCONT to child processes or descendant processes when the job terminates. When this
transmission is completed, JP1/Advanced Shell waits for one second and then performs job postprocessing.

How SIGHUP and SIGCONT are transmitted depends on the job input mode, as described in the following:

• Terminal input mode
SIGHUP and SIGCONT are sent only to the child processes of the adshexec command. SIGHUP and SIGCONT
are not sent to any of the descendant processes of the adshexec command, including grandchild processes. If
grandchild processes remain, use the ps command to obtain the process IDs of the remaining processes, and then
manually terminate them with the kill command.

• Non-terminal input mode
SIGHUP and SIGCONT are sent to the descendant processes of the adshexec command.

3.1.3 Job steps
The job step is a unit of job execution and is a part of a job definition script consisting of a group of commands. When
you allocate regular files and temporary files, you can define the files that are valid only within one job step. Such files
are postprocessed when the job step in which the files were allocated terminates.

Several job steps are mutually related. If one job step is not processed correctly, execution of the next job step might be
meaningless. In such a case, you can specify job step execution conditions so that subsequent processing is skipped.

Jobs steps are used for the following purposes:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 150

• Automating command and program error processing

• Controlling shell script execution in units of job steps

(1) Automating termination processing and log output in the event of a
command error

Conventional scripts require the return code to be checked, error messages output, temporary files deleted, and other
error handling procedures to be performed for each command that is executed.

A job step enables you to monitor the return code of a command executed within the job step, output an error message,
delete temporary files, and perform predefined processing (such as an error handling procedure).

The following shows an example script that uses job steps to automate termination processing and output a log in the
event of an error.

Comparison based on whether job steps are used

When job steps are not used

01 progA
02 ret=$?
03 if [[$ret != 0]]; then --- (1)
04 echo "progA error" --- (1)
05 exit $ret --- (1)
06 fi --- (1)
07
08 TEMP="/tmp/tempfile"
09
10 progB ${INFILE_B} ${TEMP}
11 ret=$?
12 if [[$ret != 0]]; then
13 echo "progB error"
14 rm ${TEMP} --- (2)
15 exit $ret
16 fi
17
18 progC ${TEMP} ${OUTFILE_C}
19 ret=$?
20 if [[$ret != 0]]; then
21 echo "progC error"
22 fi
23
24 rm ${TEMP} --- (2)
25 exit $ret

When job steps are used

01 #-adsh_job J01
02
03 #-adsh_step_start S01 --- (1)
04 progA
05 #-adsh_step_end
06
07 #-adsh_step_start S02
08 #-adsh_file_temp TEMP --- (2)
09 progB ${INFILE_B} ${TEMP}

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 151

10 progC ${TEMP} ${OUTFILE_C}
11 #-adsh_step_end

The following explains (1) and (2) in the example script.

About (1)
If you do not use job steps, you must check for an error each time a command is executed, and then code error
message output processing and script cancellation processing.
On the other hand, if you define a group of commands as a job step, you can output an error message automatically
in the event of an error, and then terminate the job step without executing the subsequent commands.

About (2)
If no job step is used, the user must code each and every process for deleting the created temporary files.
If a job step is used, the temporary files allocated for the job step by JP1/Advanced Shell's temporary file function
are deleted automatically when the job step terminates.

When you use job steps, processes such as in (1) and (2) above can be automated. The following shows the log output
results in the case where progB results in an error.

Job execution logs (excerpt)

******** JOB CONTROLLER MESSAGE ********
17:05:25 000515 KNAX0091-I J01 The job started.
17:05:25 000515 KNAX7901-I The adshexec command will wait for all
asynchronous processes at the end of the job.
17:05:25 000515 KNAX7902-I The adshexec command will run in tty stdin
mode.
17:05:25 000515 KNAX0092-I J01.S01 step started.
17:05:25 000515 KNAX6116-I Execution of the command ./progA (line=4)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
17:05:25 000515 KNAX6597-I J01.S01 step succeeded. exit status=0
execution time=0.001s CPU time=0.000s
17:05:25 000515 KNAX0092-I J01.S02 step started.
17:05:25 000515 KNAX1601-I J01.S02 Allocation of file(s) for a step
started.
17:05:25 000515 KNAX6409-I The file TEMP was allocated as "create".
path=/var/opt/jp1as/temp/TEMP_000515_J01_CGNCtb
17:05:25 000515 KNAX6521-E The command ./progB (line=9) failed. exit
status=1 execution time=0.000s CPU time=0.000s ... (1)
17:05:25 000515 KNAX6410-I The file TEMP was deallocated as "del".
path=/var/opt/jp1as/temp/TEMP_000515_J01_CGNCtb
17:05:25 000515 KNAX1604-I The file /var/opt/jp1as/temp/
TEMP_000515_J01_CGNCtb was deleted. ... (2)
17:05:25 000515 KNAX6596-E J01.S02 step failed. exit status=1 execution
time=0.002s CPU time=0.000s
17:05:25 000515 KNAX0101-E J01 An error occurred during execution of the
job.
17:05:25 000515 KNAX0098-I J01 The job ended. exit status=1 execution
time=0.006s CPU time=0.000s ... (3)

The following explains job execution logs (1) through (3):

About (1)
The command resulted in an error, so the subsequent commands were not executed.

About (2)
A temporary file allocated by JP1/Advanced Shell's temporary file function was deleted automatically.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 152

About (3)
The job terminated with the return code specified in the error handling procedure.

(2) Controlling execution in units of job steps
You can define a group of related commands as a job step and control job execution according to the results of the job
step's processing. JP1/Advanced Shell provides various functions for controlling execution in units of job steps.

The following shows an example script that controls execution in units of job steps.

Comparison based on whether job steps are used

When job steps are not used

01 retmax=0
02 VAR=`progA`
03 export VAR
04 progB
05
06 tempVAR=$VAR --- (1)
07 VAR=`progC`
08 progD
09 retD=$? --- (2)
10 if [[$retmax -lt $retD]]; then
11 retmax=$retD --- (3)
12 fi
13 VAR=$tempVAR --- (1)
14
15 if [[$retD -ge 16]]; then --- (4)
16 exit $retD
17 fi
18
19 if [[$retD -ne 0]]; then --- (5)
20 if [[$retD -eq 4]]; then --- (2)
21 result="progD: warning"
22 else
23 result="progD: error"
24 fi
25 progE $result
26 retE=$?
27 if [[$retmax -lt $retE]]; then
28 retmax=$retE --- (3)
29 fi
30 if [[$retE -ge 16]]; then --- (4)
31 exit $retE
32 fi
33 fi
34
35 progF --- (6)
36 exit $retmax --- (3)

When job steps are used

01 #-adsh_job_stop 16: --- (4)
02 VAR=`progA`
03 export VAR
04 progB
05

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 153

06 #-adsh_step_start S01 -stepVar VAR --- (1)
07 VAR=`progC`
08 export VAR
09 progD
10 #-adsh_step_end
11
12 #-adsh_step_start S02 -run abnormal --- (5)
13 if [[$ADSH_STEPRC_S01 -eq 4]]; then --- (2)
14 result="STEP01: warning"
15 else
16 result="STEP01: error"
17 fi
18 progE $result
19 #-adsh_step_end
20
21 #-adsh_step_start S03 -run always --- (6)
22 progF
23 exit $ADSH_RC_STEPMAX --- (3)
24 #-adsh_step_end

The following explains (1) through (6) in the example script.

About (1)
If you do not use job steps, using a shell variable with a duplicated name for another purpose requires a separate
process (such as saving its value temporarily in another variable).
If you use a job step, you can use shell variables that are valid only within the job step by using the stepVar
attribute of the #-adsh_step_start extended script command to declare the variable names.

About (2)
If you do not use job steps, to branch processing based on the return code of a specific command, you must store
the command's return code in a separate shell variable.
If you use job steps, you can reference each job step's return code, which is set automatically by JP1/Advanced
Shell.

About (3)
If you do not use job steps, to reference the maximum value of a command's return code, you must update the
maximum value each time the command is executed.
If you use job steps, you can reference the maximum value of each job step's return code, which is set
automatically by JP1/Advanced Shell.

About (4)
If you do not use job steps, to terminate a script when a command's return code exceeds a threshold value, you
must check the threshold value each time a command is executed.
If you use job steps, you can monitor each job step's return code automatically by using the #-adsh_job_stop
extended script command to declare the threshold value.

About (5)
If you do not use job steps, you must control execution by determining whether the subsequent processing is to
be executed based on a command's return code.
If you use job steps, you can define that a job step is to be executed only when the preceding process results in
an error. You do this by specifying abnormal in the run attribute of the #-adsh_step_start extended
script command.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 154

About (6)
If you use job steps, you can define a job step to always execute, regardless of whether the preceding process
was successful. You do this by specifying always in the run attribute of the #-adsh_step_start extended
script command.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 155

3.2 Starting batch jobs

This section explains for each execution method how to start batch jobs. It also explains the job controller processing
after batch jobs have started.

3.2.1 Starting jobs by using JP1/AJS from the execution environment
This subsection explains how to start JP1/Advanced Shell's batch job applications by using JP1/AJS from the execution
environment.

For details about using JP1/AJS for automation of batch job applications, see the applicable JP1/AJS manual. For details
about how to define and execute JP1/Advanced Shell jobs in jobnets, see 2.7.2 Defining and executing a jobnet.

When you automate batch job applications, you can reduce costs as well as run your system more securely with a smaller
staff. JP1/AJS is a product for automating standard batch job applications. JP1/AJS can also automate a combination
of complex batch job applications. Using JP1/Advanced Shell together with JP1/AJS operations provides the following
advantages:

• You can use the temporary file function to allocate files that are used temporarily and delete them when the job or
job step terminates.

• You can share job definitions among multiple applications by calling external scripts.

• You can achieve flexible job definitions by changing, adding, and deleting coding in job definition scripts.

To use JP1/AJS to execute batch job applications automatically, you must define the following:

• Content and processing order of the batch job applications

• Schedule for executing the batch job applications or registration of events that trigger execution of the batch job
applications

The following figure provides an overview of using JP1/AJS to automate batch job applications. The numbers in the
figure correspond to the numbers in the explanation that follows.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 156

Figure 3‒1: Overview of using JP1/AJS to automate batch job applications

1. Registers the batch job application content and execution order, and the application schedule.

2. The batch application is executed automatically according to the registered schedule.

(1) Defining batch job applications and their execution order
Many applications are executed at a specified time in a specified order.

For example, totaling of sales slips is executed in the following order:

1. Extract data from the database.

2. Sort data.

3. Output to printer.

Steps 1 through 3 can be automated as a job controller's job step by defining these steps in a job definition script file,
but the task of extracting data from the database at 12:00 cannot be automated. To define batch job applications and
their execution order in JP1/Advanced Shell and JP1/AJS, define in the job controller the series of steps that make up
the applications and then define the relationships among the definitions of the individual batch job applications and their
execution order as the JP1/AJS execution order or execution time.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 157

If batch job applications are broken up into task units, such as commands, application programs, or job definition scripts,
JP1/AJS alone can achieve jobs equivalent to those that can be achieved by JP1/Advanced Shell. They are also called
jobs in JP1/AJS.

When batch job applications and execution orders are defined in JP1/Advanced Shell and JP1/AJS, the batch job
execution orders are defined by using jobnets in JP1/AJS.

The following figure shows a jobnet used when batch job applications and their execution order are defined in JP1/
Advanced Shell and JP1/AJS.

Figure 3‒2: Jobnet used to define batch job applications and their execution order in JP1/Advanced
Shell and JP1/AJS

Explanation
The following explains the execution order of the batch jobs that are defined by using JP1/AJS jobnet.

• When batch job A terminates, batch job E is executed.

• When batch jobs A and B terminate, batch job C is executed.

• When batch job C terminates, batch jobs D and G are executed.

• When batch job B terminates, batch job F is executed.

(2) Defining the definition schedule of batch job applications and their
execution order

To automatically define a definition schedule for multiple batch job applications and their execution order, you need a
schedule definition that determines when this definition is to be executed.

JP1/AJS's schedule definition contains such information as a calendar that specifies the company's business days and
holidays, the date and time execution is to begin, and an execution interval. Based on this definition, JP1/AJS determines
the execution schedule and automatically starts JP1/Advanced Shell's job execution on the specified date and time.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 158

(3) Registering the timing of starting batch job applications
You can register an event, such as when a file is created or when some specific event occurs, as the timing for starting
a batch job application. If you have registered the required information, you can start a batch job application at a specified
time as well as whenever some specified event (such as creation of a file) occurs.

3.2.2 Starting batch jobs by using commands from the execution
environment

(1) Specifying job definition scripts in the argument of the adshexec
command

To start batch jobs by using commands from the execution environment, you use the adshexec command shown
below. In Windows, enter the command from the command prompt; in UNIX, enter the command from the shell.

adshexec batchjob1.ash

You can also use the -r option of the adshexec command to directly specify the contents of a job definition script.
To specify multiple commands, use the adshexec command as follows:

adshexec -r "export DATA=file01 ; pgm001"

In UNIX, you can also debug batch jobs by specifying the -d option in the adshexec command. For details about
the adshexec command, see adshexec command (executes a batch job) in 8.3 Shell operation commands.

(2) Specifying job definition scripts as commands
In UNIX, you can start a batch job by simply entering the name of the job definition script (assuming that execution
permissions have been granted to that job definition script) by specifying the path of the adshexec command beginning
with #! on the first line (example: #! /opt/jp1as/bin/adshexec).

Job definition script file (file name: /home/user1/scripts/batchjob2.ash):

#! /opt/jp1as/bin/adshexec
#-adsh_job SAMPLE
(followed by the body of the job definition script)

Execution example of batch job start:

/home/user1/scripts/batchjob2.ash

Notes
In Windows, a batch job cannot be started by a method such as specifying from the command prompt the path of
the adshexec command beginning with #! on the first line, and then entering the file name of the job definition
script.
However, if you provide a job definition script in which #! followed by /opt/jp1as/bin/adshexec
or /opt/jp1as/bin/adshexec -m MINIMUM is specified on the first line, and then enter its file name from
another job definition script, you can start child jobs in Window as well as in UNIX. Therefore, we recommend that
you specify #! followed by /opt/jp1as/bin/adshexec or /opt/jp1as/bin/adshexec -m MINIMUM
on the first line of new job definition scripts even in Windows.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 159

If the first line already contains #!/bin/sh, such as when existing shell scripts have been migrated, you can also
run the shell scripts as child jobs without editing the scripts.
For details about child jobs, see 3.2.3 Running job definition scripts as child jobs.

3.2.3 Running job definition scripts as child jobs
This subsection explains how to run job definition scripts as child jobs and the operation of child jobs. For details about
priority, see 5.1.11(3) Priority of command execution methods and 5.1.11(4) Priority of child jobs or external commands
that have the same name as the function.

(1) How to execute child jobs

(a) Executing child jobs by specifying parameters in environment files
In job definition scripts that are run as descendant processes of root jobs, the jobs that are executed by using one of the
parameters listed below or its default definition are called child jobs:

• CHILDJOB_EXT parameter

• CHILDJOB_PGM parameter

• CHILDJOB_SHEBANG parameter

The following figure shows an example operation for starting a child job by specifying the CHILDJOB_SHEBANG
parameter.

Figure 3‒3: Example operation for starting a child job

This example specifies job definition script childjob.ash in the root job's job definition script. Because
childjob.ash satisfies the CHILDJOB_SHEBANG parameter definition, JP1/Advanced Shell starts JP1/Advanced
Shell's job as a child process and executes childjob.ash as a child job.

If the root job that starts the child job is executed on a logical host, the child job is also executed on the logical host.

(b) Executing child jobs by using a default definition for the parameter
By using a default definition for the CHILDJOB_SHEBANG parameter, you can start child jobs without having to specify
the parameter in environment files.

The following two values have been defined as defaults for the CHILDJOB_SHEBANG parameter:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 160

Default definition Output mode when the child job is started

/opt/jp1as/bin/adshexec Operation is performed according to the specified OUTPUT_MODE_CHILD
parameter.

/opt/jp1as/bin/adshexec -mMINIMUM Operation is performed in the minimum output mode.

If you specify a job definition script whose first line is #! /opt/jp1as/bin/adshexec in another job definition
script, the former can be run as a child job. If you want to execute only a specific child job in the minimum output mode,
specify #! /opt/jp1as/bin/adshexec -mMINIMUM on the first line of that job definition script.

The operation of a child job executed by a default definition is the same as for a child job started by the method described
in (a) Executing child jobs by specifying parameters in environment files.

Note that the CHILDJOB_SHEBANG parameter specified in the environment file takes precedence over the
CHILDJOB_SHEBANG parameter's default definitions. If a value that is the same as a default definition is specified in
the CHILDJOB_SHEBANG parameter in the environment file, the following takes effect:

• Contents of the environment variable

#-adsh_conf CHILDJOB_SHEBANG "/opt/jp1as/bin/adshexec -mMINIMUM"

• Job definition script that is started by the child job

#! /opt/jp1as/bin/adshexec -mMINIMUM
 :

In this example, /opt/jp1as/bin/adshexec -mMINIMUM specified in the job definition script satisfies the
definition of the CHILDJOB_SHEBANG parameter in the environment file. Therefore, the output mode for the child
job depends on the specified OUTPUT_MODE_CHILD parameter.

(2) Functional comparison with root jobs and external scripts
The following table compares the functions of root jobs, child jobs, and external scripts:

Function Type of job External script

Root job Child job External script of . (dot)
command

External script of #-
adsh_script

Relationship of processes
with the calling job

Runs in the child process
of the calling job.

Runs in the child process
of the calling job.

Runs in the same process
as the calling job.

Runs in the same process
as the calling job.

Job controller to be
started

• In UNIX
adshexec
command

• In Windows
adshexec.exe
command +
adshexecsub.ex
e command

• In UNIX
adshexec
command

• In Windows
adshexecsub.ex
e command

None None

Spool job directory Created Created in the root job's
spool job directory and
deleted when the job
terminates.
The user selects one of the
following about the job
execution log:

Not created.
(outputs command
execution results to the
calling job's JOBLOG and
does not output script
images).

Not created.
(outputs command
execution results to the
calling job's JOBLOG and
outputs script images to

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 161

Function Type of job External script

Root job Child job External script of . (dot)
command

External script of #-
adsh_script

Spool job directory Created • Output only JOBLOG
to stderr.

• Merge into the root
job's job execution
log.

Not created.
(outputs command
execution results to the
calling job's JOBLOG and
does not output script
images).

the calling job's
SCRIPT).

Job start and termination
messages

Provided
(KNAX0091-I and
KNAX0098-I)

Provided
(KNAX6571-I and
KNAX6578-I)

None None

Loading of environment
files

Loaded Loaded Not loaded.
(depends on the calling
job's processing).

Not loaded.
(depends on the calling
job's processing).

Whether standard input
can be used

Can be used. Can be used. Can be used. Can be used.

Destination of standard
output

Depends on the
specification of the -s
option, the -m option, the
OUTPUT_STDOUT
parameter, and the
OUTPUT_MODE_ROOT
parameter.

Output destination
inherited from its parent
process.

Depends on the calling
job's processing.

Depends on the calling
job's processing.

(3) Behavior of child jobs when signals are received
This subsection explains the behavior of descendant jobs when signals are received.

The following example jobs are used to explain the behavior of descendant jobs when termination request signals are
sent to the root job, descendant jobs, and an external command:

adshexec(1)-adshexec(2)-adshexec(3)-sleep

The following table describes the behaviors when forced termination is performed from JP1/AJS (by sending SIGTERM
from JP1/AJS to adshexec(1)) and SIGTERM is sent from the login shell to adshexec(1), adshexec(2),
adshexec(3), and sleep.

Timing adshexec(1) adshexec(2) adshexec(3) sleep

Forced termination from
JP1/AJS

Terminates with error
rc=143.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Sending SIGTERM from
the login shell to
adshexec(1)

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Sending SIGTERM from
the login shell to
adshexec(2)

• If a job step is
specified
The job step
terminates with error
rc=143 and
executes a step error
block and the step

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 162

Timing adshexec(1) adshexec(2) adshexec(3) sleep

Sending SIGTERM from
the login shell to
adshexec(2)

following run
abnormal/
always.

• If a job step is not
specified
Performs the next
processing.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Sending SIGTERM from
the login shell to
adshexec(3)

Depends on the result of
adshexec(2)

• If a job step is
specified
The job step
terminates with error
rc=143 and
executes a step error
block and the step
following run
abnormal/
always.

• If a job step is not
specified
Performs the next
processing.

Terminates with error
rc=143 due to signal.

Terminates with error
rc=143 due to signal.

Sending SIGTERM from
the login shell to sleep

Depends on the result of
adshexec(2)

Depends on the result of
adshexec(3)

• If a job step is
specified
The job step
terminates with error
rc=143 and
executes a step error
block and the step
following run
abnormal/
always.

• If a job step is not
specified
Performs the next
processing.

Terminates with error
rc=143 due to signal.

(4) Notes about child jobs that are executed from another child job
If a descendant job that was executed from another descendant job is terminated abruptly through the intermediate job
by a means such as SIGKILL in UNIX or TerminateProcess in Windows, the root job might terminate without
waiting for all its descendant jobs to finish. To prevent such an outcome, do not execute an abrupt termination of this
type. However, should such occur, check the execution results of the relevant root job and its descendant jobs.

For the descendant jobs other than the abruptly terminated job, the spool job directory might have been deleted or it
might remain after a failed attempt to delete it. Even if it has been deleted, the logs will still be preserved, because the
contents of JOBLOG will have been output to the standard error output.

Example:
This example illustrates the case where a descendant job is executed from another descendant job (the chain of one
job calling the next is indicated by):

[root job] [descendant job (child)] [descendant job (grandchild)]

In this case, if [descendant job (child)] terminates abruptly, [root job] might terminate earlier than [descendant job
(grandchild)]. In such a case, the behavior of each job and the status of the spool job directory are as follows:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 163

Item Type of job

Root job Descendant job
(child)

Descendant job (grandchild)

Behavior of the
job

The job behaves as though the descendant job
(child) had terminated with an error.
The behavior is the same as when a user program
terminates abruptly due to an error.

The job is
terminated
abruptly.

The job terminates normally.
However, in Windows, it might behave as if it
was forcibly terminated, depending on the status
of other, related jobs.

Status of the spool
job directory

In Windows, if the descendant job (grandchild)
has already opened the job execution log, the
renaming of the spool job directory will fail.
Otherwise, or in the case of UNIX, the spool job
directory will be renamed as per normal.

Directory remains
without being
deleted.

If the root job has successfully renamed its spool
job directory, the renaming of this spool job
directory will fail.
Otherwise, the contents of JOBLOG will be
output to stderr and will be deleted as per
normal.

3.2.4 Specifying what is to be executed by a job from the command line
If you use the -r option of the adshexec command to specify on the command line any commands that can be
described in a job definition script file, such as standard shell commands and UNIX-compatible commands, you can
execute the commands without having to create a job definition script file. To specify the pwd command, which is a
standard shell command, on the command line, execute the following adshexec command:

adshexec -r pwd

You can specify on the command line any contents that can be described in a job definition script file, such as multiple
commands delimited by the command separator. The following adshexec command specifies multiple commands on
the command line:

adshexec -r "export DATA=file01 ; pgm001"

If you specify any spaces on the command line, you must enclose the command line specification in single or double
quotation marks (' or "). Because metacharacters, such as $, *, and the semicolon (;), are expanded, depending on the
shell used to execute the adshexec command, you must enclose them in single or double quotation marks (' or ") or
use an escape character (\). To specify metacharacters, execute the adshexec command as follows:

In UNIX:
 When an escape character is specified

 Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo \${A[@]}"

 Output results:

1 2 3

 When no escape character is specified

 Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo ${A[@]}"

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 164

 Output results:
Nothing is output.

 Output of positional parameter $0 (when an escape character is specified)

 Entered command:

adshexec -m SIMPLE -r "echo \$0"

 Output results:

adshexec

 Output of positional parameter $0 (when no escape character is specified)

 Entered command:

adshexec -m SIMPLE -r "echo $0"

 Output results:

-bash

adshexec receives the contents obtained by converting positional parameter $0 by the login shell. If the login
shell is bash, -bash is output.

In Windows:
 When an escape character is specified

 Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo \${A[@]}"

 Output results:

${A[@]}

 When no escape character is specified

 Entered command:

adshexec -m MINIMUM -r "A=(1 2 3); echo ${A[@]}"

 Output results:

1 2 3

 Output of positional parameter $0 (when an escape character is specified)

 Entered command:

adshexec -m SIMPLE -r "echo \$0"

 Output results:

$0

 Output of positional parameter $0 (when no escape character is specified)

 Entered command:

adshexec -m SIMPLE -r "echo $0"

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 165

 Output results:

adshexec

Note the following about executing the adshexec command with the -r option specified:

• If you want to use the execution results of the command line in other programs or output the execution results of
the command line to the console or files, also specify -m SIMPLE or -m MINIMUM at the same time.

• Collection of coverage information by the -t or BATCH_CVR parameter is not supported.

• -r CMDLINE is output for the following part of a path that indicates the path name of the job definition script file:

• Path name of the job definition script file that is output to the script image file

• Path name of the job definition script file that is output to the operation information for the job definition script

• Path name of the job definition script file that is displayed in message texts output by JP1/Advanced Shell

• The $0 positional parameter stores executable program name adshexec.

• Spool directories are created when a command is executed with the -r option specified. Spool job directories are
created only when the -r option is specified as the root job. Note that frequent execution of a command with the
-r option specified increases the number of spool jobs in the spool.

3.2.5 Job controller processing after batch jobs have started
Batch jobs are executed as job controller processes. The job controller is started in the following manner:

• In the execution environment, the job controller is started from JP1/AJS - Agent according to JP1/AJS's schedule.

• In the execution environment, the user enters a command to start a process called a job controller.

• On the development PC, the user runs a text while editing the development environment.

To process a job after starting it:

1. The job controller analyzes the options for starting a batch job and JP1/Advanced Shell's environment files.

2. The job controller analyzes the entered job definition script file at the initial stage. During this analysis process, the
job controller analyzes syntax and creates a table for storing job information without executing commands.

3. The job controller's job execution control analyzes and executes the job definition script file.

4. The file management function used in extended script commands allocates and releases regular files, temporary
files, and program output data files.

5. The shell variables and environment variables in extended script commands store job step return codes in shell
variables and set job information in environment variables so that this information can be referenced by user
programs.

In both the Windows and the UNIX execution environment, the job controller analyzes and executes job definition
scripts. For details about creating job definition scripts, see 4. Using JP1/Advanced Shell - Developer (Windows Only)
and 5. Creating Job Definition Scripts.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 166

3.3 Outputting job execution results

Job execution results are output as spool job directories under the spool root directory. The contents of some directories
in the spool job directory are output as job execution logs that can be used to check messages during job execution.

You can suppress output to the job execution log of some types of messages.

3.3.1 Specifying the destinations of the standard output and the standard
error output

The destinations of the standard output and the standard error output for jobs executed in JP1/Advanced Shell depend
on specified options and the job execution mode, as described in the following table:

Item Standard error output Standard output

Root job Child job Root job Child job

SPOOL specified
in the OUTPUT_
STDOUT
parameter#1

PARENT
specified in the
OUTPUT_
STDOUT
parameter#1

Normal
execution

Expansion
output
mode#2

Spool files Output destination
at the time the
process starts

Spool files Output destination
at the time the
process starts

Output destination
at the time the
process starts

Simple
output
mode or
minimum
output
mode#2

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Debug execution Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

Output destination
at the time the
process starts

#1
In addition to the OUTPUT_STDOUT parameter, the adshexec command's -s option can be used to specify the
value.

#2
Use the following commands or parameters to specify the expansion, simple, or minimum output mode:

• -m option in the adshexec command

• -m option in the adshscripttool command

• OUTPUT_MODE_ROOT parameter (for root jobs)

• OUTPUT_MODE_CHILD parameter (for child jobs)

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 167

3.3.2 Outputting job execution results to spool
In the spool root directory specified in the environment file, create a directory for each job and output job execution
results to that directory. Job execution logs and the files output by programs in job steps are output to the directory for
each job.

The following shows the structure of the spool directory:

spool-root-directory
|-lock-file
+-spool-job-directory
 +-.adshallocfile or adshallocfile#1
 +-.joborder or adsh.joborder#1
 +-.sysout or sysout.ini#1
 +-EVENTFILE_ROOT_INF_000000_000000_000001
 +-EVENTFILE_execution-start-date-and-time_job-ID
 :
 +-EVENTFILE_execution-start-date-and-time_job-ID
 +-JOBLOG#2
 +-JOBLOG_job-ID_sequence-number
 +-JOBLOG_number-giving-the-order-in-which-a-child-job-starts#1
 +-SCRIPT#2
 +-SCRIPT_number-giving-the-order-in-which-a-child-job-starts#1
 +-STDERR#2
 +-STDOUT#2
 +-step-number_step-name_STDOUT#2
 +-step-number_step-name_STDERR#2
 +-0000_job-name_sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name#3
 +-Cnumber-giving-the-order-in-which-a-child-job-starts_0000_job-
name_sequence-number-of-file-environment-variable-definition-name_file-
environment-variable-definition-name#3
 +-step-number_step-name_sequence-number-of-file-environment-variable-
definition-name_file-environment-variable-definition-name#3
 :
 +-step-number_step-name_sequence-number-of-file-environment-variable-
definition-name_file-environment-variable-definition-name
 |-Cnumber-giving-the-order-in-which-a-child-job-starts_step-number_step-
name_sequence-number-of-file-environment-variable-definition-name_file-
environment-variable-definition-name#3

#1
This is a temporary file created during job execution. The following explains the contents of such temporary files:

File name Description

.adshallocfile or adshallocfile Allocation management file

.joborder or adsh.joborder File that manages the start order of child
jobs

.sysout or sysout.ini Spool job management file

JOBLOG_number-giving-the-order-in-which-a-child-job-starts Job execution log for a child job for
merging that is output when MERGE
(merging the child job's spool job intoSCRIPT_number-giving-the-order-in-which-a-child-job-starts

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 168

File name Description

SCRIPT_number-giving-the-order-in-which-a-child-job-starts the root job's spool job) is specified in
the SPOOLJOB_CHILDJOB parameter
in the environment file

If a job is terminated immediately by SIGKILL in UNIX or TerminateProcess in Windows, these files might
remain in the spool job directory. When you delete spool directories, also delete these files.

#2
The contents of this file are also output to the job execution log. For details about what is output to the job execution
log, see 3.4 Job execution log.

#3
This is a program output data file that is allocated by the #-adsh_spoolfile command. For details about
program output data files, see 5.9.3 Allocating program output data files and performing postprocessing.

Important note
• In Windows, all output files except EVENTFILE are appended with the extension .sysout.

• Do not place under the spool directory any user-specific file that is not a file or directory created by JP1/
Advanced Shell.

The following subsections explain the files and directories that are not temporary files.

(1) spool-root-directory
The directory name is specified in the SPOOL_DIR parameter in the environment file.

(2) lock-file
This file is used to lock each spool directory so that the same event file is not used by multiple commands at the same
time. This file is created when the adshevtout and adshhk commands are executed.

The name of the lock file is as shown below. Do not delete a created lock file.

• In UNIX: .spool.lck
• In Windows: spool.lck

(3) spool-job-directory
This directory has the job sequence number as its name and is created for each job. When the job terminates, the directory
is renamed to job-ID-job-name.

You can use the adshhk command to delete accumulated spool jobs. For details about the adshhk command, see 3.8
Deleting spool jobs.

(4) EVENTFILE_ROOT_INF_000000_000000_000001
This is a root job search event file. It contains the information used to determine whether the condition specified in the
adshevtout command (output job definition script operation information) is satisfied. This file is created for each
root job. This file is not created in the following cases:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 169

• JP1/Advanced Shell - Developer is used

• The job is executed in the debugger mode.

• The adshexec command terminated before the KNAX0091-I message was issued.

(5) EVENTFILE_execution-start-date-and-time_job-ID
This is an event file. While the event file is being created, _making is appended to the file name. This file is created
for each root job and each child job.

Example of event file name:
EVENTFILE_20120422_193502_123456

This file is not created in the following cases:

• JP1/Advanced Shell - Developer is used

• The job is executed in the debugger mode.

• The adshexec command terminated before the KNAX0091-I message was issued.

execution-start-date-and-time
The root or child job's execution start date and time (UTC) are output in the following format:

YYYYMMDD_hhmmss_dddddd

YYYY: Four-digit decimal number indicating the calendar year (1970 through 2038)
MM: Two-digit decimal number indicating the month (01 through 12)
DD: Two-digit decimal number indicating the date (01 through 31)
hh: Two-digit decimal number indicating the hour (00 through 23)
mm: Two-digit decimal number indicating the minute (00 through 59)
ss: Two-digit decimal number indicating the second (00 through 59)
dddddd: Six-digit decimal number indicating the microsecond (000000 through 999999)

job-ID
A six-digit decimal number is assigned to each root job or child job.

(6) JOBLOG
This is for job execution messages. Messages indicating the job's execution status, including command execution results
and file allocation results, are output to this directory.

(7) JOBLOG_job-ID_sequence-number
This is the job execution log for a child job.

This file is created when the child job starts, but only if one of the following methods was used to specify that the child
job is to be run in the simple output mode or the minimum output mode:

• Specifying SIMPLE or MINIMUM in the -m option of the adshexec command

• Specifying SIMPLE or MINIMUM in the -m option of the adshscripttool command

• Specifying SIMPLE or MINIMUM in the OUTPUT_MODE_CHILD parameter

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 170

This file is not created when MERGE (merging the child job's spool job into the root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter.

(8) SCRIPT
This is for script image files. The contents of the first job definition script started and the contents of external job
definition script files specified in the #-adsh_script command are output to this directory. External job definition
script files specified using other methods, such as the . (dot) command, are not output to this directory. When you want
to output the contents of job definition scripts as logs, you must use the #-adsh_script command.

If MERGE is specified in the SPOOLJOB_CHILDJOB parameter when the root job is run in the expansion output mode
and the child job is run in the minimum output mode, the child job's SCRIPT is not merged into the root job's
SCRIPT. For details, see 3.4.1(3)(c) When the output mode of the root job differs from that of the child job.

(9) STDERR
This is the standard error output for the job. This file is not created when either of the following methods was used when
the root job started to specify that the root job is to be run in the simple output mode or the minimum output mode:

• Specifying SIMPLE or MINIMUM in the -m option of the adshexec command

• Specifying SIMPLE or MINIMUM in the OUTPUT_MODE_ROOT parameter

The following header is output at the beginning of the file:

******** JOB SCOPE STDERR ********

(10) STDOUT
This is the standard output for the job. It is created when the -s option is specified in the adshexec command or
SPOOL is specified in the OUTPUT_STDOUT parameter in the environment file. This file is not created when either of
the following methods was used when the root job started to specify that the root job is to be run in the simple output
mode or the minimum output mode:

• Specifying SIMPLE or MINIMUM in the -m option of the adshexec command

• Specifying SIMPLE or MINIMUM in the OUTPUT_MODE_ROOT parameter

The following header is output at the beginning of the file:

******** JOB SCOPE STDOUT ********

(11) step-number_step-name_STDOUT
If job steps are defined, this is the standard output within the corresponding job step. If the job step name consists of
more than eight bytes, only the first eight bytes of the job step name are used for step-name.

This standard output is created when the -s option is specified in the adshexec command or SPOOL is specified in
the OUTPUT_STDOUT parameter in the environment file. This file is not created when either of the following methods
was used when the root job started to specify that the root job is to be run in the simple output mode or the minimum
output mode:

• Specifying SIMPLE or MINIMUM in the -m option of the adshexec command

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 171

• Specifying SIMPLE or MINIMUM in the OUTPUT_MODE_ROOT parameter

(12) step-number_step-name_STDERR
If job steps are defined, this is the standard error output within the corresponding job step. If the job step name consists
of more than eight bytes, only the first eight bytes of the job step name are used for step-name.

This file is not created when either of the following methods was used when the root job started to specify that the root
job is to be run in the simple output mode or the minimum output mode:

• Specifying SIMPLE in the -m option of the adshexec command

• Specifying SIMPLE in the OUTPUT_MODE_ROOT parameter

(13) 0000_job-name_sequence-number-of-file-environment-variable-
definition-name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh_spoolfile command outside the job step.

(14) Cnumber-giving-the-order-in-which-a-child-job-starts_0000_job-
name_sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh_spoolfile command outside the child job's job step.

This file is created only when MERGE (merging a child job's spool job into the root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter in the environment file.

(15) step-number_step-name_sequence-number-of-file-environment-
variable-definition-name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh_spoolfile command inside the job step.

(16) Cnumber-giving-the-order-in-which-a-child-job-starts_step-
number_step-name_sequence-number-of-file-environment-variable-
definition-name_file-environment-variable-definition-name

This is a program output data file allocated by the #-adsh_spoolfile command inside the child job's job step.

This file is created only when MERGE (merging a child job's spool job to the root job's spool job) is specified in the
SPOOLJOB_CHILDJOB parameter in the environment file.

3.3.3 Suppressing output of specific information messages to job
execution logs

You can limit the size of the job execution log file by suppressing output to the job execution log file of specific
information messages. You specify the JOBLOG_SUPPRESS_MSG parameter in the environment file to use this
function.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 172

For the messages whose output can be suppressed and the details of the JOBLOG_SUPPRESS_MSG parameter, see
JOBLOG_SUPPRESS_MSG parameter (defines a message that is not to be output to job execution logs) in 7. Parameters
Specified in the Environment Files.

3.3.4 Suppressing output of information and warning messages to job
execution logs

If you intend to use job execution results with other programs, you might want to suppress the following types of output:

• Output of files under the spool job directory to the standard output and the standard error output

• Output of information and warning messages (excluding some exception messages) to the standard output and the
standard error output

• Output to the standard error output of job execution logs at the time of job termination

To suppress these outputs, use one the following methods to specify the simple output mode or the minimum output
mode:

• Specifying the OUTPUT_MODE_ROOT parameter (for a root job) or the OUTPUT_MODE_CHILD parameter (for a
child job) when you specify environment settings
For details about the OUTPUT_MODE_ROOT parameter, see OUTPUT_MODE_ROOT parameter (specifies the
method for outputting the execution results of a root job). For details about the OUTPUT_MODE_CHILD parameter,
see OUTPUT_MODE_CHILD parameter (defines the method for outputting the execution results of a child job).

• Specifying the -m option in the adshexec command during job execution
For details about the adshexec command, see adshexec command (executes a batch job).

• Specifying the -m option in the adshscripttool command
For details about the adshscripttool command, see adshscripttool command (supports creation of job
definition scripts) (Windows only).

If both are specified, the adshexec command specification takes effect. If neither is specified, the expansion output
mode is assumed.

(1) Differences in output contents among the expansion output mode, the
simple output mode, and the minimum output mode

The following table describes the differences in the output contents among the expansion output mode, the simple output
mode, and the minimum output mode.

Table 3‒1: Differences in output contents among the expansion, the simple, and the minimum
output modes

Output timing Expansion output mode Simple output mode Minimum output
mode

Job execution The contents of the standard
output and the standard error
output depend on the type of
job:
• Root jobs

The contents of the
standard output and the

The contents of the standard output
and the standard error output are
output to their output destinations
at the time the process started.
Of the JP1/Advanced Shell
messages that are to be output to
the standard output and the

Same as at the left

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 173

Output timing Expansion output mode Simple output mode Minimum output
mode

Job execution standard error output are
output to the spool job
directory.

• Child jobs
Output to their output
destinations at the time
the process started.

standard error output, only error
messages are output.#1

Same as at the left

Job termination Job execution logs are output
to the standard error output
(for child jobs, the output is
to the root-job's standard
error output#2).

Job execution logs are not output
to the standard error output.
However, error messages to be
output only to JOBLOG are also
output to the standard error output
during job execution in order to
report errors.
A child job's JOBLOG is created
under the root job's spool job
directory and is retained even after
the job has terminated.#2

This handling is in effect
regardless of the specification of
the JOBEXECLOG_PRINT
parameter.

Same as at the left

Debug execution JOBLOG is output to the
standard error output at
suitable times.
JP1/Advanced Shell
messages that are to be
output to the standard output
and the standard error output
are output to the standard
output and the standard error
output in effect at the time
debug execution started.

JOBLOG is not output to the
standard error output.
JP1/Advanced Shell messages that
are to be output to the standard
output and the standard error
output are output to the standard
output and the standard error
output in effect at the time debug
execution started.
When debugging is terminated,
only error messages are output.
However, a child job that is not
subject to debugging is run in the
same manner as in normal
execution.

JOBLOG is not output
to the standard error
output.
JP1/Advanced Shell
messages that are to be
output to the standard
output and the standard
error output are output
to the standard output
and the standard error
output in effect at the
time debug execution
started.
When debugging
terminates, only
messages that are not
subject to output
suppression are output.
However, a child job
that is not subject to
debugging is run in the
same manner as in
normal execution.

#1
In addition to error messages, some messages are output as exceptions. For details about such exception messages and the destinations by
message type, see 11.2 Message output destinations.

#2
Not output when a child job's job execution log is merged into the root job's job execution log (MERGE is specified in the
SPOOLJOB_CHILDJOB parameter).

If you start a job definition script from another job definition script in the simple output mode or the minimum output
mode, use child jobs. If a root job is started in the simple output mode or the minimum output mode, error messages
are displayed in the standard error output.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 174

(2) How to locate the spool job directory of a job that was executed in the
simple output mode or the minimum output mode

When the simple output mode or the minimum output mode is selected, messages that display job IDs and spool job
directory names are no longer output. The following describes how to locate the spool job directory of a job that was
executed in the simple output mode or the minimum output mode:

• Specify unique job names with the #-adsh_job command (declares a name for a job).

• When the job starts, output the values of the following environment variables to the standard error output or to a
specific file so that they can be referenced later:

• ADSH_JOBID environment variable (stores a job ID)

• ADSH_JOB_NAME (stores a job name)

• Locate the spool job directory based on the job execution date and time.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 175

3.4 Job execution log

The purpose of a job execution log is to notify users of the results of executing batch jobs. This log information, excluding
the contents for the standard output for user programs, is output to the files under the spool job directory and to the
standard error output when a job terminates. You can use JP1/AJS - View, among other methods, to view job execution
logs.

The following information is output to the job execution log:

• Start and end messages for batch jobs

• Start and end messages for job steps

• Contents of job definition scripts

• Results of executing commands

• Status and postprocessing results of files that have been prepared

• Standard output from user programs (stdout)#1

• Standard error output from user programs (stderr)#2

• Messages related to acquiring coverage information

#1
Output while the job is running to the standard output in effect at the time the job started if either of the conditions
listed below is satisfied. This means that after the job has terminated, the execution results are lost and cannot be
verified with JP1/AJS - View.

• The -s option is specified in the adshexec command or PARENT is specified in the OUTPUT_STDOUT
parameter in the environment file.

• The root job is in the simple output mode or the minimum output mode.

#2
Not output to the files under the spool job directory if the root job is in the simple output mode or the minimum
output mode. However, while the job is running, the user program's standard error output is output to the standard
error output in effect at the time the job started.

If you are not using JP1/AJS, refer to the JOBLOG file in the batch job's directory under the spool root directory specified
in the SPOOL_DIR parameter in the environment file.

The JOBLOG_SUPPRESS_MSG parameter can be set to suppress output to the JOBLOG file of some information
messages. For details, such as the messages whose output can be suppressed, see JOBLOG_SUPPRESS_MSG parameter
(defines a message that is not to be output to job execution logs) in 7. Parameters Specified in the Environment Files.

3.4.1 Outputting the contents of the job execution log by job type
What is output to the job execution log depends on the type of job that is executed, as described in the following
subsections.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 176

(1) Destination and output contents of the job execution log when root
jobs are executed

This subsection explains the destination and output contents of the job execution log when root jobs are executed in the
expansion output mode, the simple output mode, or the minimum output mode (as specified in the
OUTPUT_MODE_ROOT parameter).

(a) When the expansion output mode is selected
The following table describes the output contents of the job execution log when the expansion output mode is selected:

Message output destination Description

JOBLOG Output to spool files.
During debug execution, JOBLOG is also output to the standard error output during job execution.

Script image Output to spool files.

Destination of the standard output Output to the destination specified by either of the following methods:
• -s option in the adshexec command
• OUTPUT_STDOUT parameter in the environment file

During debug execution, this information is also output to the standard error output in effect at the time
debug execution started.

Destination of the standard error
output

Output to spool files.
During debug execution, this information is output to the standard error output in effect at the time
debug execution started.

A spool job directory is created for each job.

After job execution, the contents of the job execution log, excluding the contents for the standard output, are output to
the standard error output.

During debug execution, the contents of the job execution log after job execution are not output to the standard error
output.

(b) When the simple output mode is selected
The following table describes the output contents of the job execution log when the simple output mode is selected:

Message output destination Description

JOBLOG Output to spool files.

Script image

Destination of the standard output Not output to spool files. This information is output to the destination in effect when the process started.
Error messages for the standard error output and the standard output are output (during debug execution,
messages other than error messages are also output).
Also, error messages for JOBLOG are output to the standard error output.
During normal execution, output of any message whose type is W or I (excluding signal reception and
event reception messages) is suppressed.

Destination of the standard error
output

Note that the job execution log is not output to the standard error output when the job terminates.

(c) When the minimum output mode is selected
The following table describes the output contents of the job execution log when the minimum output mode is selected:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 177

Message output destination Description

JOBLOG Messages that are not subject to output suppression are output to spool files.

Script image

Destination of the standard output Not output to spool files. This information is output to the destination in effect when the process started.
Messages for the standard error output and the standard output that are not subject to output suppression
are output (during debug execution, messages that are not subject to output suppression are also output).
Also, messages for JOBLOG that are not subject to output suppression are output to the standard error
output.

Destination of the standard error
output

Note that the job execution log is not output to the standard error output when the job terminates.

Output of the following messages is suppressed:

Timing Message whose output is suppressed

During normal
execution

• Messages whose type is W or I (excluding signal reception and event reception messages)
• The following messages whose type is E:
KNAX0101-E, KNAX2201-E, KNAX6521-E, KNAX6522-E, KNAX6541-E, KNAX6542-E, KNAX6551-E,
KNAX6552-E, KNAX6561-E, KNAX6562-E, KNAX6586-E, KNAX6591-E, KNAX6592-E, KNAX6593-E,
KNAX6594-E, KNAX6596-E

• The following messages whose type is I:
KNAX7893-I, KNAX7896-I

During debug
execution

• Messages whose type is W or I (excluding signal reception and event reception messages)
• The following messages whose type is E:
KNAX0101-E, KNAX2201-E, KNAX6521-E, KNAX6522-E, KNAX6541-E, KNAX6542-E, KNAX6551-E,
KNAX6552-E, KNAX6561-E, KNAX6562-E, KNAX6586-E, KNAX6591-E, KNAX6592-E, KNAX6593-E,
KNAX6594-E, KNAX6596-E

(2) Destination and output contents of the job execution log when child
jobs are executed

This subsection explains the destination and output contents of the job execution log when child jobs are executed in
the expansion output mode, the simple output mode, or the minimum output mode (as specified in the
OUTPUT_MODE_CHILD parameter). For the output contents when a child job's spool job is to be merged into the root
job's spool job, see (3) Merging a child job's spool job into the root job's spool job.

(a) When the expansion output mode is selected
The following table describes the output contents of the job execution log when the expansion output mode is selected:

Message output destination Description

JOBLOG Temporarily output to spool files.
When the child job terminates, this file is deleted from the spool after JOBLOG has been output to the
standard error output in effect when the process started.

Script image Temporarily output to spool files, but is deleted when the child job terminates.

Destination of the standard output Output to the destination in effect when the process started.

Destination of the standard error
output

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 178

A spool job directory is created during job execution, but this directory is deleted after the job has executed. Because
the program output data file allocated in the spool job directory is also deleted, the KNAX6380-I message indicating
successful renaming of the spool job directory is not output.

After job execution, the contents of JOBLOG are output to the standard error output. However, the following header
lines are not output:

 Advanced Shell version-number

 [Information]
 Job ID : job-ID
 Spool directory : spool-job-directory-path
 Date : execution-date
 EnvFile(system) : environment-file-path (System environment file)
 EnvFile(job) : environment-file-path (Job environment file)
 Host name : host-name
 [Environment variable from Automatic Job Management System]
 environment-variables-passed-from-JP1/AJS

******** JOB CONTROLLER MESSAGE ********

Because no job execution log other than JOBLOG is output, the job execution log cannot be referenced from other
programs, such as JP1/AJS or the login shell.

Because the job return code is output to JOBLOG for the parent process's job, the KNAX7999-I message indicating
termination of adshexec command execution is not output to the standard error output.

(b) When the simple output mode is selected
The following table describes the output contents of the job execution log when the simple output mode is selected:

Message output destination Description

JOBLOG Output to spool files for each child job in the root job's spool.

Script image Temporarily output to spool files, but is deleted when the child job terminates.

Destination of the standard output Output to the destination in effect when the process started.
Error messages for the standard error output and the standard output are output. Error messages for
JOBLOG are also output to the standard error output.
Only error messages are output.
Output of messages whose type is W or I (excluding signal reception and event reception messages) is
suppressed.

Destination of the standard error
output

Messages are output to JOBLOG during job execution. Error messages among these messages are also output to the
standard error output.

The job execution log is output to spool files for each child job under the root job's spool job directory. The job execution
log is not output to the standard error output even after the job has executed.

(c) When the minimum output mode is selected
The following table describes the output destination of the job execution log when the minimum output mode is selected:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 179

Message output destination Description

JOBLOG Messages that are not subject to output suppression are output to files for each child job in the root
job's spool.

Script image Temporarily output to spool files, but is deleted when the child job terminates.

Destination of the standard output Output to the destination in effect when the process started.
Messages for the standard error output and the standard output that are not subject to output suppression
are output. Also, messages for JOBLOG that are not subject to output suppression are output to the
standard error output.
Messages whose output is suppressed are not output.

Destination of the standard error
output

Output of the following messages is suppressed:

• Messages whose type is W or I (excluding signal reception and event reception messages)

• The following messages whose type is E:
KNAX0101-E, KNAX2201-E, KNAX6521-E, KNAX6522-E, KNAX6541-E, KNAX6542-E, KNAX6551-E,
KNAX6552-E, KNAX6561-E, KNAX6562-E, KNAX6586-E, KNAX6591-E, KNAX6592-E, KNAX6593-E,
KNAX6594-E, KNAX6596-E

• The following messages whose type is I:
KNAX7893-I, KNAX7896-I

(3) Merging a child job's spool job into the root job's spool job
If MERGE is specified in the SPOOLJOB_CHILDJOB parameter, the child job's spool job is merged into the root job's
spool job. An overview of the job execution log contents is provided below. For an example of job execution log output,
see 3.4.3 Example of job execution log output (when a child job's spool job is merged into the root job's spool job).

(a) During normal operation
• JOBLOG
JOBLOG for a child job is output between a message indicating that the rule for replacing the child job's execution
was satisfied and a message indicating that the command used to execute the child job has terminated.
The symbols indicating the start and end of the child job's JOBLOG are displayed before and after JOBLOG, as
shown in the following figure:

• SCRIPT
A child job's SCRIPT is displayed before its root job's SCRIPT. The header (******** Script IMAGE
********) is not displayed in the child job output section.

• STDERR
The symbols indicating the start and end of the child job's STDERR are displayed before and after the child job's
standard error output as shown below.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 180

These symbols are not displayed when the child job is in the simple output mode or the minimum output mode.

• STDOUT
STDOUT is not merged.

(b) During debug execution
• JOBLOG
JOBLOG is merged in the same format as during normal execution. For the standard error output, the same contents
are also displayed immediately after termination of the child job.

• SCRIPT
SCRIPT is merged in the same format as during normal execution. The contents of SCRIPT are not output to the
standard error output.

• STDERR, STDOUT
The symbols indicating the start and end of a set of a child job's STDERR and STDOUT are displayed before and
after the child job's standard error output, as shown below. The text [STDERR,STDOUT] is displayed in the standard
error output even when the child job's standard error output and standard output are redirected.
These symbols are not displayed when the child job is in the simple output mode or the minimum output mode.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 181

(c) When the output mode of the root job differs from that of the child job
When MERGE is specified in the SPOOLJOB_CHILDJOB environment setting parameter and the root job is run in the
expansion output mode and the child job is run in the minimum output mode, the results of merging JOBLOG and
SCRIPT are as follows:

• JOBLOG
• If no message has been output to JOBLOG of the child job running in the minimum output mode

This child job's JOBLOG is not merged into the root job's JOBLOG. Therefore, the strings indicating the beginning
and end of output of the child job's JOBLOG are also not output.

• If messages have been output to JOBLOG of the child job running in the minimum output mode
This child job's JOBLOG is merged into the root job's JOBLOG. The strings indicating the beginning and end of
output of the child job's JOBLOG are also output.

During both normal execution and debug execution, the strings that indicate the beginning and end of output of the
child job's JOBLOG are >>>>>> [JOBLOG] path-name and <<<<<< [JOBLOG] path-name, respectively.

• SCRIPT
The child job's SCRIPT is not merged into the root job's SCRIPT.
When the child job is run in the minimum output mode and its grandchild job is run in the expansion output mode
or the simple output mode, the child job's SCRIPT is not merged either. Therefore, the grandchild job's SCRIPT
merged into the child job's SCRIPT is not output.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 182

The same applies when the root job is run in the simple output mode or the minimum output mode. However, in this
case, SCRIPT is not output to the standard error output.

3.4.2 Examples of job execution log output
The following examples illustrate the job execution log information that is output when a root job and child jobs are
executed.

(1) Example 1 (defining ch1.sh and ch2.sh)
As shown below, this example defines child job ch1.sh that is started from the root job and child job ch2.sh that is
started from within the root job's job step.

The following subsections explain the configuration and output examples of the root job's job execution log that is output
to the standard error output.

(a) Configuration of job execution log
The figure below shows the configuration of the job execution log and the locations where the execution results of child
jobs ch1.sh and ch2.sh are output. The execution results of ch1.sh are output within the job scope, and the
execution results of ch2.sh are output within the step scope.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 183

(b) Example of job execution log output
The following shows an example of job execution log output:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 184

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 185

(2) Example 2 (defining child1.sh, child2.sh, and grandchild.sh)
As shown below, this example defines child job child1.sh, child job child2.sh, and grandchild.sh that is
started from child job child2.sh.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 186

The following subsections explain the configuration and output examples of the root job's job execution log that is output
to the standard error output.

(a) Configuration of job execution log
The figure below shows the configuration of the job execution log and the locations where the execution results of child
job child1.sh, child job child2.sh, and grandchild.sh are output. The execution results of
grandchild.sh are output within the execution results of child job child2.sh.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 187

(b) Example of job execution log output
The following shows an example of job execution log output:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 188

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 189

3.4.3 Example of job execution log output (when a child job's spool job is
merged into the root job's spool job)

This subsection presents examples of job execution log output when MERGE is selected with the
SPOOLJOB_CHILDJOB environment setting parameter (to merge a child job's spool job into the root job's spool job).

(1) Example 1 (defining ch1.sh and ch2.sh)
As shown below, this example defines child job ch1.sh that is started from the root job and child job ch2.sh that is
started from within the root job's job step.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 190

The following subsections explain the configuration and output examples of the root job's job execution log that is output
to the standard error.

(a) Configuration of job execution log
The figure below shows the configuration of the job execution log and the locations where the execution results of child
jobs ch1.sh and ch2.sh are output. The child jobs' execution results are also output to JOBLOG and SCRIPT.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 191

(b) Example of job execution log output
The following shows an example of job execution log output:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 192

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 193

(2) Example 2 (defining child1.sh, child2.sh, and grandchild.sh)
As shown below, this example defines child job child1.sh, child job child2.sh, and grandchild.sh that is
started from child job child2.sh.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 194

The following subsections explain the configuration and output examples of the root job's job execution log that is output
to the standard error output.

(a) Configuration of job execution log
The figure below shows the configuration of the job execution log and the locations where the execution results of child
job child1.sh, child job child2.sh, and grandchild.sh are output. The child jobs' execution results are also
output to JOBLOG and SCRIPT.

• Job execution log that can be referenced from other programs (such as JP1/AJS)

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 195

• Job execution log during debug execution

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 196

(b) Example of job execution log output
The following are examples of job execution log output.

• Job execution log that can be referenced from other programs (such as JP1/AJS)

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 197

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 198

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 199

• Job execution log during debug execution

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 200

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 201

3.4.4 Examples of job execution log output (when the simple output mode
or the minimum output mode is selected)

This subsection presents examples of the job execution log when the simple output mode or the minimum output mode
is selected with the OUTPUT_MODE_ROOT or OUTPUT_MODE_CHILD environment setting parameter. Note that the
error messages output in the simple output mode differ from those output in the minimum output mode.

(1) Configuration of job execution log
The following shows the configuration of the job execution logs.

• Job execution log that can be referenced from other programs (such as JP1/AJS)

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 202

• Job execution log during debug execution

(2) Examples of job execution log output
The following are examples of job execution log output:

• Job execution log that can be referenced from other programs (such as JP1/AJS)
 Environment setting parameters

#-adsh_conf OUTPUT_MODE_ROOT SIMPLE
#-adsh_conf OUTPUT_MODE_CHILD SIMPLE
#-adsh_conf CHILDJOB_EXT ash

 Job definition script: logroot.ash
#-adsh_job SampleJobRoot
#-adsh_file_temp WORK01
#-adsh_file_temp WORK02
./logsub.ash data tokyo 2>$WORK01
./logsub.ash data fukuoka 2>$WORK02
echo -E "***WORK01*****" >&2
cat $WORK01 >&2
echo -E "***WORK02*****" >&2
cat $WORK02 >&2

 Job definition script: logsub.ash
#-adsh_job SampleSub
cat $1 | grep $2 >&2

 Input data: data
aichi nagoya 052
fukuoka kurume 0942
fukushima iwaki 0246
tokyo machida 042
tokyo tachikawa 042

 Execution example

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 203

• Job execution log during debug execution

3.4.5 Examples of job execution log output (when only the standard error
output is output)

This subsection presents an example of the job execution log when STDERR (output only the standard error output to
the job execution log) is selected with the JOBEXECLOG_PRINT environment setting parameter.

This example assumes that job definition scripts sample.ash, samplesub1.ash, and samplesub2.ash have
been defined as shown in the following.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 204

• Job definition script sample.ash
#-adsh_job SAMPLEJOB
echo JOB_STDERR_001 >&2
cd /home/user001/dir
cd xxx
cd /home/user001
#-adsh_step_start S1 -run always -onError cont
echo STEP_STDERR_001 >&2
cd /home/user001/dir
cd xxx
cd /home/user001
#-adsh_step_end
echo JOB_STDERR_002 >&2
#-adsh_step_start S2 -run always -onError cont
echo STEP_STDERR_002 >&2
./samplesub1.ash
#-adsh_step_end
cd /home/user001/dir
cd xxx
cd /home/user001
echo JOB_STDERR_003 >&2
./samplesub2.ash

• Job definition script samplesub1.ash
#-adsh_job SAMPLE_SUB1
echo SUB1_JOB_STDERR_001 >&2
cd /home/user001/dir
cd xxxSUB1
cd /home/user001
#-adsh_step_start SUB1_S1 -run always -onError cont
echo SUB1_STEP_STDERR_001 >&2
cd /home/user001/dir
cd xxxSUB1
cd /home/user001
#-adsh_step_end
echo SUB1_JOB_STDERR_002 >&2
#-adsh_step_start SUB1_S2 -run always -onError cont
echo SUB1_STEP_STDERR_002 >&2
#-adsh_step_end
cd /home/user001/dir
cd xxxSUB1
cd /home/user001
echo SUB1_JOB_STDERR_003 >&2

• Job definition script samplesub2.ash
#-adsh_job SAMPLE_SUB2
echo SUB2_JOB_STDERR_001 >&2
cd /home/user001/dir
cd xxxSUB2
cd /home/user001
#-adsh_step_start SUB2_S1 -run always -onError cont
echo SUB2_STEP_STDERR_001 >&2
cd /home/user001/dir
cd xxxSUB2
cd /home/user001

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 205

#-adsh_step_end
echo SUB2_JOB_STDERR_002 >&2
#-adsh_step_start SUB2_S2 -run always -onError cont
echo SUB2_STEP_STDERR_002 >&2
#-adsh_step_end
cd /home/user001/dir
cd xxxSUB2
cd /home/user001
echo SUB2_JOB_STDERR_003 >&2

The following shows an example of the job execution log output:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 206

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 207

3.5 Outputting the executed commands and their arguments

When the xtrace shell option is enabled, the executed commands and their arguments are output to the standard error
output as trace information.

There are three ways to enable the xtrace shell option:

• Executing the set command with the -x or -o xtrace option specified in job definition scripts

• Executing the adshexec command with the -x option specified during job execution

• Selecting Enable xtrace in JP1/Advanced Shell Editor's Runtime Environment Settings dialog box

The trace information is output in the following format:

• The value of the PS4 shell variable is added at the beginning of the trace information.

• If the values of variables are referenced, the variable substitution results are output.

• If command arguments contain wildcard characters, the results of the wildcard replacement are output.

Example of trace information output
This example shows an executed job definition script and the trace information that is output.

Contents of the job definition script

0001 : set -o xtrace
0002 : typeset -i cnt=1
0003 : if [$cnt -eq 1]
0004 : then
0005 : echo "--- JOB START ---"
0006 : fi
0007 : date

Standard error output results

+ typeset -i cnt=1
+ [1 -eq 1]
+ echo --- JOB START ---
+ date

Notes about trace information
Even when the xtrace shell option is enabled, the following commands and their arguments are not output:

• Commands in the [[]] format that is the abbreviated form of the test command

• Extended script commands

Commands in the (()) format that is the abbreviated form of the let command are replaced with the let
command in the trace information. The following shows an example of a command in the (()) format and the
output information:

Contents of the job definition script

0001 : set -o xtrace
0002 : typeset -i a=0
0003 : ((a=(2+3)*9))
0004 : echo $a

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 208

Standard error output results

+ typeset -i a=0
+ let a=(2+3)*9
+ echo 45

Trace information for functions themselves are output, but trace information for commands within the functions is
not output. To output trace information for commands within a function, execute the typeset command to enable
the function's trace mode. The following shows an example of the typeset command's specification and the output
information:

Contents of the job definition script

0001 : set -o xtrace
0002 : fn1(){
0003 : echo "call $1 $2"
0004 : echo $LINENO
0005 : }
0006 : echo "in main"
0007 : fn1 "function" "1"
0008 : typeset -ft fn1
0009 : fn1 "function" "2"

Standard error output results

+ echo in main
+ fn1 function 1
+ typeset -ft fn1
+ fn1 function 2
+ echo call function 2
+ echo 4

When the xtrace shell option is enabled, trace information for the job definition script executed by the child job
is output, but trace information for the commands within the child job is not output. To output trace information for
a job definition script that is executed by a child job, also enable the xtrace shell option within the child job's job
definition script.
The input contents of here documents are not output as trace information even when the xtrace shell option is
enabled.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 209

3.6 Outputting job definition script operation information

Job definition script operation information includes the execution time of each command executed by the job, the CPU
time, any output messages, and job step execution results. You can use this information to obtain the job execution status
and investigate the causes of delays in job execution.

The following figure shows the general procedure for collecting and outputting job definition script operation
information.

Figure 3‒4: Collection and output of job definition script operation information

1. When the user uses the adshexec command to execute a job, the adshexec command collects the job definition
script operation information for the job and then outputs it to the event file on the spool.

2. The adshevtout command outputs the job definition script operation information that is contained in the event
file to a CSV file.
You can use a program such as a spreadsheet to analyze a CSV file that contains job definition script operation
information.

3.6.1 Collecting job definition script operation information
The following table shows when job definition script operation information can be collected:

Environment Execution status Collection of job definition script operation information

Execution
environment

Normal Y

Debugger mode N

Development
environment

(Not applicable) N

Legend:
Y: Can be collected
N: Cannot be collected

In the normal status, when the adshexec command is used to execute a job, the adshexec command collects the
job definition script operation information for the job and outputs it to the event file on the spool.

However, if the following specification is made in the environment file, the adshexec command does not output job
definition script operation information to the event file:

 #-adsh_conf EVENT_COLLECT NO

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 210

3.6.2 Outputting job definition script operation information
You use the adshevtout command to output job definition script operation information from the event file on the
spool to a CSV file.

For details about how to specify the adshevtout command and an example output of job definition script operation
information, see adshevtout command (outputs job definition script operation information) in 8. Commands Used During
Operations.

(1) Specifying a job whose job definition script operation information is
to be output

You use the adshevtout command to specify a job whose job definition script operation information is to be output.

The following job information can be specified to select the job definition script operation information that is to be
output:

• Range of job's execution start date and time

• JP1/AJS job name, job execution ID, and job number

• JP1/Advanced Shell job name, job ID, and path name of the job definition script file

If multiple conditions are specified, the information that satisfies all the specified conditions is output.

If no conditions are specified, the job definition script operation information for all jobs on the spool is output (except
that job definition script operation information located in inaccessible event files will not be output).

(2) Controlling the job definition script operation information that is to be
output

You can use the adshevtout command to control which information will be output, such as the following:

• Suppress output of header information

• Output only the header information (do not output the job definition script operation information itself)

• Output only the messages contained in the job definition script operation information

• Do not output information about environment variables in the job definition script operation information

(3) Spool to be referenced
The adshevtout command references the event files on the spool to output job definition script operation information.

The spool to be referenced by the adshevtout command is determined by the specified environment file in the same
manner as for the adshexec command.

If a logical host is specified in the adshevtout command, the command uses the spool corresponding to the specified
logical host in the same manner as for the adshexec command.

(4) Output destination of the job definition script operation information
The job definition script operation information is output to the adshevtout command's standard output (stdout).

If you use the redirect function, you can also output the operation information to a file.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 211

3.6.3 Relationship between dates and times and time zones in the
operation information

The adshevtout command interprets and outputs the date and the time in the formats year-month-date and hour-
minute-second for the time zone in effect when the command is executed. Use the TZ environment variable to specify
the time zone.

As shown in the three sets of examples in the following table, a given date and time (in the year-month-date and hour-
minute-second formats) will be represented differently depending on the time zone:

Time zone Date and time example 1 Date and time example 2 Date and time example 3

UTC-2 2012-06-10 08:00:00 2012-06-10 23:00:00 2012-06-11 15:00:00

UTC 2012-06-10 10:00:00 2012-06-11 01:00:00 2012-06-11 17:00:00

UTC+3 2012-06-10 13:00:00 2012-06-11 04:00:00 2012-06-11 20:00:00

UTC+9 2012-06-10 19:00:00 2012-06-11 10:00:00 2012-06-12 02:00:00

Remarks:
UTC+9 indicates the time zone that is nine hours ahead of coordinated universal time (UTC). The sign differs from when the value is set in
the TZ environment variable.

3.6.4 Using multiple OR conditions for output of job definition script
operation information

The adshevtout command outputs the job definition script operation information for the job that satisfies all the
conditions specified in the arguments.

If you want to output the information that satisfies any one of multiple conditions, execute as many adshevtout
commands as there are OR conditions, and then output the concatenated job definition script operation information to
a single CSV file.

The following example outputs concatenated job definition script operation information to the outfile file.

adshevtout -d > outfile
adshevtout -t option-specifying-condition-1 >> outfile
adshevtout -t option-specifying-condition-2 >> outfile
 :
adshevtout -t option-specifying-condition-n >> outfile

• The first adshevtout command outputs only the header line (-d suppresses output of job definition script
operation information).

• The second adshevtout command outputs the operation information for the job that satisfies condition-1 without
a header line (by specifying -t).

• The third adshevtout command outputs the operation information for the job that satisfies condition-2 without
a header line (by specifying -t).

• The adshevtout command n + 1 outputs the operation information for the job that satisfies condition-n without
a header line (by specifying -t).

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 212

You output operation information that satisfies multiple OR conditions by executing the adshevtout command in
this manner.

3.6.5 Outputting job definition script operation information from different
spools

The job definition script operation information that can be output by executing the adshevtout command typically
is for the job located on the spool that was specified in the environment file when the adshevtout command was
executed. To output the job definition script operation information for a job located on another spool, you must use the
corresponding environment file.

An example is shown below. In this example, a different spool root directory is specified in each environment file.

Example:
Environment file envfile1: Specifies spool root directory spooldir1.
Environment file envfile2: Specifies spool root directory spooldir2.
Environment file envfile3: Specifies spool root directory spooldir3.

To output the job definition script operation information for a job in each of these spool root directories, execute the
adshevtout command with the correct environment file specified as follows:

export ADSH_ENV=envfile1
adshevtout

export ADSH_ENV=envfile2
adshevtout

export ADSH_ENV=envfile3
adshevtout

3.6.6 Format of operation information
The adshevtout command outputs operation information to a CSV file.

(1) Types of operation information
The operation information that is output by the adshevtout command consists mainly of the items listed below. Each
item forms one record.

• When the adshexec command's execution began

• Environment variables

• Commands

• Messages

• Start of job step execution

• End of job step execution

• Skipped job step execution

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 213

• End of job execution

(2) Configuration of operation information
The operation information items are output in the following order for each job:

Order Output item Remarks

1 Header information --

2 Start of the adshexec command's execution --

3 Environment variables Output if there are any environment variables

4 Commands
Messages
Start of job step execution
End of job step execution
Skipped job step execution
End of job execution

Output according to the execution of the job definition script

Legend:
--: Not applicable

The order in which messages and the following records are output might differ:

• Commands

• Start of job step execution

• End of job step execution

• Skipped job step execution

• End of job execution

The order in which the following operation information items are output is not predefined:

• Output order among spool jobs

• Output order of the root and child jobs in a spool job

(3) Configuration of operation information records
The operation information records consist of multiple items.

Each item value is enclosed in double quotation marks ("). If an item value contains a double quotation mark, that
double quotation mark is represented as two consecutive double quotation marks.

The items are delimited by the comma (,).

3.6.7 Operation information records in CSV format and output items
The following table shows the relationship between the operation information records in CSV format and the output
items.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 214

Table 3‒2: Operation information records and output items

No. Item name Job
start

Env
var

Cmd Extd
Cmd

Msg Job
step
start

Job
step
end

Job
step
skipd

Job
end

1 EvtName Y Y Y Y Y Y Y Y Y

2 RecTZ Y Y Y Y Y Y Y Y Y

3 RecTime Y Y Y Y Y Y Y Y Y

4 PhysicalHostName Y Y Y Y Y Y Y Y Y

5 LogicalHostName YN YN YN YN YN YN YN YN YN

6 OsName Y Y Y Y Y Y Y Y Y

7 Jp1ajsService YN YN YN YN YN YN YN YN YN

8 Jp1ajsRootJobnet YN YN YN YN YN YN YN YN YN

9 Jp1ajsJobName YN YN YN YN YN YN YN YN YN

10 Jp1ajsExecId YN YN YN YN YN YN YN YN YN

11 Jp1ajsJobId YN YN YN YN YN YN YN YN YN

12 Jp1asJobName Y Y Y Y Y Y Y Y Y

13 Jp1asJobId Y Y Y Y Y Y Y Y Y

14 Jp1asJobTime Y Y Y Y Y Y Y Y Y

15 Jp1asJobPid Y Y Y Y Y Y Y Y Y

16 Jp1asUid Y Y Y Y Y Y Y Y Y

17 Jp1asGid Y Y Y Y Y Y Y Y Y

18 Jp1asUserName Y Y Y Y Y Y Y Y Y

19 Jp1asGroupName Y Y Y Y Y Y Y Y Y

20 Jp1asScriptPath Y Y Y Y Y Y Y Y Y

21 Jp1asEnvPath Y Y Y Y Y Y Y Y Y

22 Jp1asSpoolPath Y Y Y Y Y Y Y Y Y

23 Jp1asJobLang Y Y Y Y Y Y Y Y Y

24 Jp1asJobEncode Y Y Y Y Y Y Y Y Y

25 RecTZExec Y Y Y Y Y Y Y Y Y

26 Jp1asJobParentJobName YN YN YN YN YN YN YN YN YN

27 Jp1asJobParentJobId YN YN YN YN YN YN YN YN YN

28 Jp1asJobParentJobTime YN YN YN YN YN YN YN YN YN

29 Jp1asJobParentJobPid YN YN YN YN YN YN YN YN YN

30 Jp1asJobRc N N N N N N N N Y

31 Jp1asJobSig N N N N N N N N Y

32 EnvVar N Y N N N N N N N

33 Jp1asScriptLineNo N N Y Y N Y Y Y N

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 215

No. Item name Job
start

Env
var

Cmd Extd
Cmd

Msg Job
step
start

Job
step
end

Job
step
skipd

Job
end

34 Jp1asStepSeq N N Y N N Y Y Y N

35 Jp1asStepName N N YN N N YN YN YN N

36 Jp1asStepSkip N N N N N N N Y N

37 Jp1asStepRc N N N N N N Y N Y

38 Jp1asStepSig N N N N N N Y N Y

39 Jp1asCmdExec N N Y Y N N N N N

40 Jp1asCmdType N N Y Y N N N N N

41 Jp1asCmdPath N N YN Y N N N N N

42 Jp1asCmdArg N N YN YN N N N N N

43 Jp1asLang N N Y Y N N N N N

44 Jp1asCharEncode N N Y Y N N N N N

45 Jp1asCmdStart N N Y N N N N N N

46 Jp1asCmdEnd N N Y N N N N N N

47 Jp1asCmdElaps N N Y N N N N N N

48 Jp1asCmdRc N N Y N N N N N N

49 Jp1asCmdSig N N Y N N N N N N

50 Jp1asCmdPid N N YN N N N N N N

51 Jp1asCmdCpuUser N N YN N N N N N N

52 Jp1asCmdCpuSys N N YN N N N N N N

53 Reserved1 N N N N N N N N N

54 Reserved2 N N N N N N N N N

55 Jp1asMsgId N N N N Y N N N N

56 Jp1asMsgText N N N N Y N N N N

57 Jp1asMsgLang N N N N Y N N N N

58 Jp1asMsgEncode N N N N Y N N N N

Legend:
Job start: Start of adshexec command execution
Env var: Environment variables
Cmd: Commands
Extd cmd: Commands (extended script commands)
Msg: Messages
Job step start: Start of job step execution
Job step end: End of job step execution
Job step skipd: Skipped job step execution
Job end: End of job execution
Y: Information is output.
YN: Information is output, but if there is no information to be output, the null character string is set.
N: There is no information to be output (the null character string is set).

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 216

3.6.8 Output items for operation information in CSV format
The following table lists and describes the output items (columns) for operation information in CSV format.

Table 3‒3: Output items (columns) for operation information

No. Item name Description

1 EvtName Name indicating the type of operation information (record):
• adshStart: Start of adshexec command execution
• envVar: Environment variable
• command: Command
• message: Message
• stepStart: Start of job step execution
• stepEnd: End of job step execution
• stepSkip: Skipped job step execution
• jobEnd: End of job execution

2 RecTZ Time zone in effect when the adshevtout command was executed.#

This is the time zone that is used to represent the date and time information in the operation
information.

3 RecTime Date and time the operation information was recorded#

4 PhysicalHostName Physical host name

5 LogicalHostName Logical host name.
If a logical host is not used, the null character string is set.

6 OsName OS name.
One of the following character strings:
• Windows
• Linux
• AIX
• HP-UX
• Solaris

7 Jp1ajsService JP1/AJS scheduler service name.
This is the value set in the AJS_AJSCONF environment variable by JP1/AJS.
This information is output when the job was started from JP1/AJS.

8 Jp1ajsRootJobnet JP1/AJS's root jobnet name.
This is the value set in the AJSNETNAME environment variable by JP1/AJS.
This information is output if the job was started from JP1/AJS.

9 Jp1ajsJobName JP1/AJS's job name.
This is the value set in the AJSJOBNAME environment variable by JP1/AJS.
This information is output when the job was started from JP1/AJS.

10 Jp1ajsExecId JP1/AJS's job execution ID.
This is the value set in the AJSEXECID environment variable by JP1/AJS.
This information is output when the job was started from JP1/AJS.

11 Jp1ajsJobId JP1/AJS's job number.
This is the value set in the JP1JobID environment variable by JP1/AJS.
This information is output when the job was started from JP1/AJS.

12 Jp1asJobName JP1/Advanced Shell's job name

13 Jp1asJobId JP1/Advanced Shell's job ID

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 217

No. Item name Description

14 Jp1asJobTime adshexec command execution start date and time#

15 Jp1asJobPid Process ID of the adshexec command

16 Jp1asUid User ID of the adshexec command's process.
In Windows, the null character string is set.

17 Jp1asGid Group ID of the adshexec command's process.
In Windows, the null character string is set.

18 Jp1asUserName User name of the adshexec command's process.

19 Jp1asGroupName Group name of the adshexec command's process.
In Windows, the null character string is set.

20 Jp1asScriptPath Path name of the job definition script#

21 Jp1asEnvPath Path name of the environment file#

22 Jp1asSpoolPath Path name of spool directory.#

A spool job's directory name is job-ID_job-name once the job has terminated, but this item
outputs only job-ID.

23 Jp1asJobLang Value of the LANG environment variable when the adshexec command's execution started.

24 Jp1asJobEncode Character encoding when the adshexec command's execution started.#

25 RecTZExec Time zone in effect when the adshexec command was executing.#

This time zone is not used to represent the date and time information in the operation
information.

26 Jp1asJobParentJobName Name of the parent job.
For a root job, the null character string is set.

27 Jp1asJobParentJobId Job ID of the parent job.
For a root job, the null character string is set.

28 Jp1asJobParentJobTime Parent job execution start date and time.#

For a root job, the null character string is set.

29 Jp1asJobParentJobPid Process ID of the parent job.
For a root job, the null character string is placed.

30 Jp1asJobRc adshexec command's return code

31 Jp1asJobSig Signal number if the adshexec command terminated with a signal.
If the command did not terminate with a signal, 0 is set.
In Windows, the null character string is set.

32 EnvVar Environment variables used when the adshexec command started.
The format is environment-variable-name=value.
For details, see (1) Environment variables in the EnvVar item below.

33 Jp1asScriptLineNo Line number in the job definition script.
For details, see (2) Line number in the Jp1asScriptLineNo item below.

34 Jp1asStepSeq Job step number.
If this is not a step, the null character string is set.

35 Jp1asStepName Job step name.
If the job step name is omitted or this is not a step, the null character string is set.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 218

No. Item name Description

36 Jp1asStepSkip The preceding command or job step's status when the job step was skipped:
• normal: Skipped because the status was normal.
• abnormal: Skipped because an error resulting in termination occurred.

37 Jp1asStepRc Job step's return code.

38 Jp1asStepSig Signal number if the job step terminated with a signal.
If the job step did not terminate with a signal, 0 is set.
In Windows, the null character string is set.

39 Jp1asCmdExec Command execution mode:
• null-character-string: Foreground execution.
• back: Background execution.

For details, see (3) Command execution mode in the Jp1asCmdExec item below.

40 Jp1asCmdType Command type:
• assign: Standard shell command that updates a shell variable.
• embStd: Standard shell command or extended shell command.
• embAdsh: Extended script command.
• extCmd: External command.

41 Jp1asCmdPath Command name.
For an external command, the command's path name.#

For details, see (4) Command name and command's path name in the Jp1asCmdPath item
below.

42 Jp1asCmdArg Command arguments.
The arguments are delimited by the space.
These are not the arguments as specified on the command line or in the job definition script,
rather they are the character strings obtained by evaluating (expanding) the arguments specified
on the command line or in the job definition script and that are passed to the command.

43 Jp1asLang Value of the LANG environment variable during command execution

44 Jp1asCharEncode Character encoding during command execution#

45 Jp1asCmdStart Command execution start date and time#

46 Jp1asCmdEnd Command execution termination date and time#

47 Jp1asCmdElaps Duration of command execution.
This is the difference between the command's execution start date and time and its termination
date and time (microseconds).

48 Jp1asCmdRc Command's return code

49 Jp1asCmdSig Signal number if the command terminated with a signal.
If the command did not terminate with a signal, 0 is set.
In Windows, the null character string is set.

50 Jp1asCmdPid Process ID of an external command

51 Jp1asCmdCpuUser Command's user CPU time# (microseconds)

52 Jp1asCmdCpuSys Command's system CPU time# (microseconds)

53 Reserved1 Reserved item (null character string)

54 Reserved2 Reserved item (null character string)

55 Jp1asMsgId Message ID

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 219

No. Item name Description

56 Jp1asMsgText Message text

57 Jp1asMsgLang Value of the LANG environment variable when the message was output

58 Jp1asMsgEncode Character encoding when the message was output#

#
The following table explains the output items.

Item Output contents

End-of-line code An end-of-line code contained in the value of an item is replaced with a space.
Specifically, each of the character codes LF(0x0A) and CR(0x0D) is replaced with a space
(0x20).
For a new line in Windows, a pair of CR(0x0D) and LF(0x0A) is replaced with two bytes
of spaces (0x20).

Date and time The date and time are represented in the following format
YYYY-MM-DD hh:mm:ss.nnn

 YYYY: Calendar year
 MM: Month
 DD: Date
 hh: Hour
 mm: Minute
 ss: Second
 nnn: Millisecond

The date and time when the adshevtout command is executed are represented based on
the time zone specified in the TZ environment variable.
If acquisition of date and time information failed due to an error in the time acquisition function
at the time the operation information was collected by the adshexec command, the date and
time are represented as follows:

EEEE-EE-EE ee:ee:ee.eee

Time zone The difference from UTC is indicated in one of the formats shown below. The sign differs
from the setting of the TZ environment variable.

+hh:mm:ss
-hh:mm:ss

 hh: Hour
 mm: Minute
 ss: Second

If the time difference is 0, the value is +00:00:00.

Example:
The time zone that is nine hours ahead of coordinated universal time (UTC) is
+09:00:00.

If the time zone cannot be converted to the format shown above, the value in this item is
+EE:EE:EE.

Character encoding • In Windows
This is always SJIS regardless of the actual character string encoding used.

• In Linux, AIX, HP-UX, and Solaris
In Japanese, the character encoding determined from the value of the LANG environment
variable is set as follows:

 SJIS: Shift JIS code
 EUC: Extended Unix Code

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 220

Item Output contents

Character encoding UTF8: UTF-8
In all other cases, the following value is set:

 OTHER(LANG-environment-variable-value)

Path name Any number of consecutive directory separators in path names are output as is.
Consecutive directory separators are not replaced with a single directory separator.
For example, if the specified path name is "C:\\dir", "C:\\dir" is output.

CPU time For external commands:
CPU time of the process that executed the external command

For other commands:
The CPU time of the process of adshexec that executed the command.
This is not the CPU time when each command was executed.

(1) Environment variables in the EnvVar item
The following environment variables are output

• The environment variables that were specified at the time the job started are output.

• If environment variables are specified in the environment file, the environment variables to which the settings in
the environment file have been applied are output.

• The environment variables set by the adshexec command are output.

• The environment variables deleted by the adshexec command are not output.

• Value of the ADSH_JOB_NAME environment variable is the standard job name ADSHxxxxxx (xxxxxx: job ID). This
is not the job name specified in #-adsh_job.

• The above also apply to child jobs.

(2) Line number in the Jp1asScriptLineNo item
The value of this item is the null character string in the following cases:

• A command whose action was specified in the trap command was executed.

• The #-adsh_script command was executed.

• A command specified by command substitution was executed.

If a function is executed, the line number assigned to the command that is defined in the body of the function is output.

(3) Command execution mode in the Jp1asCmdExec item
If cmd1 | cmd2 | cmd3 is executed, the item value is back because cmd1 and cmd2 are executed in separate
processes.

(4) Command name and command's path name in the Jp1asCmdPath item

(a) If the command is executed in another process
If the command is executed in another process, the item value is Another process script as shown in the following
example:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 221

Example:

(echo1 a ; echo2 b)
(echo1 a) &
(echo1 a ; echo2 b) &
{ echo1 a ; echo2 b ; } &
{ echo1 a ; echo2 b ; } |&

In the following example, the value of the part { echo1 a ; echo2 b ; } becomes Another process script.

{ echo1 a ; echo2 b ; } | echo3 c

(b) If the command is executed by using a pipe
If cmd1 | cmd2 | cmd3 is executed and cmd1, cmd2, and cmd3 are all external commands, the item values become
as follows:

• cmd1: command-name(file-name)
• cmd2: command-name(file-name)
• cmd3: path-name

3.6.9 Job definition script operation information that is output
An example of job definition script operation information that is output is shown below. In this example, the header line
is output on the first line.

"EvtName","RecTZ","RecTime","PhysicalHostName","LogicalHostName", ---
"adshStart","+09:00:00","2012-07-12 12:23:15.381","HOST01","", ---
"envVar","+09:00:00","2012-07-12 12:23:15.382","HOST01","", ---
 : (job definition script operation information that is output)

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 222

3.7 Using the user-reply functionality

The user-reply functionality notifies JP1/IM of batch job information by issuing JP1 events and enables replies to be
sent. By using this functionality, you can notify the operator by issuing character strings even in an environment where
a window used as the standard input and output is not available, such as when batch jobs are started from JP1/AJS.

The operator can monitor the JP1 events issued during command execution from a JP1/IM - View that is connected to
JP1/IM - Manager. Because JP1/IM - View's integrated console can display multiple servers' JP1 events, the operator
can monitor several servers from a single location.

3.7.1 Prerequisites
For details about the required programs, including JP1/IM, see 2.2.2 Programs required in each environment. You must
also perform the environment setup described in 2.8 Setting up the user-reply functionality.

3.7.2 Execution method
You use the commands shown below to specify character strings that are to be issued as JP1 events by the user-reply
functionality. You specify these commands in job definition scripts.

Command name Usage Section describing how to specify the command

adshecho Issues an event notification
message as a JP1 event.

adshecho command (issues a specified event notification message as a JP1
event) in 9.4 Extended shell commands

adshread Issues a reply-request message as
a reply-waiting event.

adshread command (issues a specified reply-request message as a reply-
waiting event) in 9.4 Extended shell commands

An issued JP1 event is displayed in the JP1/IM - View window. The operator can enter a reply to a reply-request event
from JP1/IM - View.

3.7.3 Relationship with JP1/IM - View
When the user-reply functionality is used, the event notification messages and reply-request messages specified in job
definition scripts are output as JP1 events. You use JP1/IM - View to view event notification messages and reply-request
messages output as JP1 events.

A reply-request message specified in the adshread command is treated as a reply-request event by JP1/IM - Manager.
The reply-request events are accumulated and displayed in JP1/IM - View and the operator can enter replies to them
from JP1/IM - View.

For details about how to enter replies, see the applicable JP1/IM manual. The following table lists and describes the
statuses that are displayed in the Enter Replies window when replies are entered from JP1/IM - View.

Table 3‒4: Statuses displayed in JP1/IM - View's Enter Replies window

Status Meaning Whether a reply can be
entered from JP1/IM - View

READY TO RESPOND A reply can be entered. Y

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 223

Status Meaning Whether a reply can be
entered from JP1/IM - View

NO LONGER MANAGED BY JP1/AS A reply cannot be entered because the reply-request message is
not managed by JP1/Advanced Shell.

N

RESPONDED SUCCESSFULLY A reply entered to the reply-request message was successful. N

ALREADY RESPONDED A reply to the reply-request message has already been entered. N

INTERNAL ERROR A reply cannot be entered because an internal error has occurred
in JP1/Advanced Shell.

N

Legend:
Y: A reply can be entered.
N: A reply cannot be entered.

3.7.4 How to specify the standard input and output as the input source
and output destination of the user-reply functionality

Because the adshecho and adshread commands issue JP1 events, these commands terminate with an error if they
are used in an environment that does not have JP1/Base or JP1/IM, such as when job definition scripts are debugged.
To enable the user to debug job definition scripts in such cases, the user-reply functionality provides the following
functions:

• Function to output character strings to the standard output, rather than to JP1/IM - View

• Function to enable replies to be entered from the standard input, rather than from JP1/IM - View

You use the USERREPLY_DEBUG_DESTINATION parameter to specify whether JP1 events are to be issued or the
standard input and output are to be used when the adshecho and adshread commands are used. Specify the
USERREPLY_DEBUG_DESTINATION parameter in the system environment file or the job environment file. You can
also set the input source and output destination of character strings to the standard input and output by specifying the
-d option in the adshecho and adshread commands.

The function for setting the input source and output destination for the user-reply functionality to the standard input and
output is enabled only during debugging (performed by using adshexec -d in UNIX and in the development
environment in Windows). When you use this function, the JP1/Base, JP1/Integrated Management - Manager, and JP1/
Integrated Management - View programs that are related to the user-reply functionality are not needed. There is also no
need to start the user-reply functionality's management daemon or service.

Note that the following parameters are ignored:

• HOSTNAME_JP1IM_MANAGER parameter

• USERREPLY_JP1EVENT_INTERVAL parameter

• USERREPLY_WAIT_MAXCOUNT parameter

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 224

3.7.5 How to handle adshecho and adshread commands that terminate
with an error

If the adshecho or adshread command terminates with an error, its re-execution might result in successful command
processing. To re-execute the adshecho or adshread command, create a job definition script for re-executing the
command by referencing the following example:

#! /opt/jp1as/bin/adshexec

###
#Function executing the adshread command
#Argument: Reply-request message
#Return code: 0 (normal termination)
1 (terminated with a retryable error)
2 (terminated with a non-retryable error)
###

func_adshread()
{
 adshread ans "$1"

 case "$?" in
 # Normal termination
 0) return 0 ;;
 # When terminated with a retryable error
 3 | 4 | 6 | 8) return 1 ;;
 # When terminated with any other error
 *) return 2 ;;
 esac
}

###
Body of script
###

#
Specify a process that is to be executed as a job
#

###
Wait for the operator's reply before resuming processing
###

 while :
 do

 #Call the function that executes the adshread command
 func_adshread "Do you want to resume processing?(Y/N) [host name:
$HOSTNAME, script name: $0]"

 if [$? = 0]; then #The adshread command terminated normally
 break #Exit the loop
 elif [$? = 1] ; then #The adshread command terminated with a
retryable error
 continue #Re-execute the adshread command
 else #The adshread command terminated with a non-
retryable error

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 225

 echo "The adshread command terminated with an error."
 exit 1 #Terminate the script
 fi
 done

###
Perform processing according to the reply received by adshread
###

 if ["$ans" = "Y"] ; then
 adshecho "Y was entered. The processing will be resumed."
 elif ["$ans" = "N"] ; then
 adshecho "N was entered. The processing will be terminated."
 exit 1 #Terminate the script
 else
 adshecho "An invalid reply was entered. The processing will be
terminated."
 exit 1 #Terminate the script
 fi

3.7.6 Notes
• You can enter replies only from a JP1/IM - View that is connected to the JP1/IM - Manager specified in the
HOSTNAME_JP1IM_MANAGER parameter.

• Because there is a limit to the number of reply-waiting events that can be accumulated by JP1/IM - Manager, design
your operations in such a manner that this limitation is observed.

• The character codes that can be entered from JP1/IM - View are those within the range of the ASCII character codes
(excluding the control characters). If a character code outside this range is entered, an error message will be displayed.
In such a case, re-enter a character code within the permitted range.

• When the adshecho and adshread commands are executed, JP1/Base closes a TCP/IP connection with the host
specified in the HOSTNAME_JP1IM_MANAGER parameter and then establishes connection using a new port.
The port that was being used becomes unavailable for a period equal to the OS's maximum segment lifetime (MSL)

 2 (seconds). If the value of MSL is large or there are only a few ports, a shortage of ports might occur.
For this reason, set MSL, the number of JP1 events to be output during a period of MSL 2 (seconds), and the
number of ports to satisfy the following condition:
n MSL 2 3 < number-of-ports
n: Number of JP1 events that can be output by the user-reply functionality during a period of MSL 2 (seconds)

• In UNIX, when the user-reply functionality's management daemon starts, a file with the following name is created
in the spool directory to manage reply-request messages in the shared memory:

• .adsh_mqueue
• .adsh_mqueue_logical-host-name (applicable when the user-reply functionality's management daemon is

started on a logical host)

Do not delete this file while the user-reply functionality's management daemon is running. When the user-reply
functionality's management daemon terminates, this file remains and can be reused the next time the user-reply
functionality's management daemon starts.
In HP-UX, in addition to the above file, a file with the following name is also created in the spool directory:

• .adsh_mqueueS

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 226

• .adsh_mqueue_logical-host-nameS (applicable when the user-reply functionality's management daemon is
started on a logical host)

Do not delete this file while the user-reply functionality's management daemon is running. The file is deleted when
the user-reply functionality's management daemon terminates.

• Before you shut down the OS, terminate the user-reply functionality's management daemon or service. If there are
reply-request messages still waiting for replies when the user-reply functionality's management daemon or service
stops, the daemon or service will cancel these reply-request messages and then stop. If OS shutdown processing is
performed, the OS might be shut down before the reply-request messages are cancelled. If this happens, the
accumulated reply-waiting events will remain in JP1/IM - View.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 227

3.8 Deleting spool jobs

Spool jobs stored on a spool increase in size while they are stored in a spool directory. Therefore, make sure that you
periodically delete old spool jobs to free up disk space.

• How to delete spool jobs
To delete spool jobs, enter the adshhk command below. For details about how to specify the adshhk command,
see adshhk command (deletes spool jobs).

adshhk target-list-file-name report-file-name log-file-name [number-of-
days]

Before you execute the adshhk command, specify in the file indicated as target-list-file-name the necessary
information, including the name of the spool directory that contains the spool jobs to be deleted.
The adshhk command's execution results are output to the file whose name is specified in report-file-name. The
execution results are also output to trace logs.
Error messages are output to the file whose name is specified in log-file-name.
Spool jobs that have existed for more than the number of days specified in number-of-days are deleted. For example,
if you specify 2, spool jobs that have existed for 2 or more days are deleted.

• Report file created by the adshhk command
When the adshhk command has executed, the execution results are output to a report file. In the following example
report file, the header information is output on the first line:

"jobid","jobname","rc","start date","end
date","act","info","spool","target days","execute date"
"000056","JOB001","1","2011/06/13 09:03:31","2011/06/13
09:03:31","delete","","C:\Documents and Settings\All Users\Documents
\Hitachi\jp1as\jp1ase\spool","15","2011/06/30 18:19:58"
 :

Legend:
The first line of the execution results contains the headers listed below. The subsequent lines display the values
corresponding to the header items.

Header Meaning

jobid Job ID

jobname Job name

rc Job's return code

start date Job's execution start date and time (in the format yyyy/mm/dd hh:mm:ss).
The spool allocated to the debugger itself when the job was started in the debugger mode is used to output
the debugger's logs, not the job execution results. Therefore, the debugging start date and time are output.

end date Job's termination date and time (in the format yyyy/mm/dd hh:mm:ss).
The spool allocated to the debugger itself when the job was started in the debugger mode is used to output
the debugger's logs, not the job execution results. Therefore, the job termination date and time are not output.

act Applied action (keep: save, delete: delete, error: an error occurred during deletion processing)

info Detailed error information

spool Spool directory

target days Target days

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 228

Header Meaning

execute date Command execution start date and time (in the format yyyy/mm/dd hh:mm:ss)

Important note
If the spool directory contains any user-specified file or directory that was not created by JP1/Advanced
Shell, the adshhk command outputs a message such as KNAX4419-E, and then terminates.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 229

3.9 Acquiring coverage information

If the user specifies during job execution that coverage information is to be acquired, JP1/Advanced Shell records in a
coverage information file (asc file) such information as whether commands in the job definition script were executed.

You can use the coverage information manipulation commands to merge and display coverage information.

3.9.1 Overview of coverage information
Coverage information consists of indicators used to determine the coverage of tests of programs. The two types of
coverage information indicators are the C0 information and the C1 information.

(1) C0 information and C1 information
The following explains the C0 and C1 information.

• C0 (statement coverage information): Command coverage
This indicator determines the percentage of the commands in the tested job definition script that were executed. It
is calculated as follows:
C0 = number of executed commands total number of commands 100 (%)

• C1 (branch coverage information): Branch coverage
This indicator determines the percentage of the branches in the tested job definition script that were executed. It is
calculated as follows:
C1 = number of executed branches total number of branches that could be executed 100 (%)

(2) Usage of coverage information
You can use the coverage information as reference data when you test your job definition scripts. You can also
accumulate, display, and merge coverage information. For details about the coverage information that is acquired, see
A. Coverage Information That Is Acquired.

The differences between Windows and UNIX in how coverage information is collected, displayed, and merged, are
described in the following table.

Table 3‒5: Differences between Windows and UNIX in how coverage information is collected,
displayed, and merged

Environment Collecting coverage information Displaying coverage
information

Merging coverage
information

Windows development
environment

Use JP1/Advanced Shell Editor's debugging function to
collect coverage information. The collected coverage
information is accumulated in a coverage information
file.
Coverage information is not collected unless
Accumulate coverage information is selected during
execution environment setup.
The coverage auto-acquisition functionality is not
available.

Either of the following
methods can be used:
• adshcvshow

command
• JP1/Advanced Shell

Editor

The adshcvmerg
command# is used to
merge coverage
information.
An editor cannot be used
to merge coverage
information.

Windows execution
environment

When a job definition script is run, use the adshexec
command with the coverage accumulation option (-t)
specified to collect coverage information. The collected

The adshcvshow
command is used to

The adshcvmerg
command# is used to

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 230

Environment Collecting coverage information Displaying coverage
information

Merging coverage
information

Windows execution
environment

coverage information is accumulated in a coverage
information file.
The debugging function is not available.

display coverage
information.

merge coverage
information.

UNIX execution
environment

Specify in the adshexec command one or both of the
following options:
• Coverage accumulation option (-t) to collect

coverage information in a coverage information file.
• Debugging option (-d) to collect coverage

information in memory.

• If the coverage
information was
collected in a
coverage information
file, the
adshcvshow
command is used to
display it.

• If the coverage
information was
collected in memory,
the info
coverage
command is used to
display it.

The adshcvmerg
command# is used to
merge coverage
information.

Note
The following notes apply to sharing coverage information between different platforms:
- Do not transfer coverage information between different platforms.
- A coverage information file created in one OS cannot be processed with the commands of a different OS.

#
You can use the adshcvmerg command to merge coverage information from two coverage information files at a time. To merge coverage
information from three or more coverage information files, execute this command multiple times.

3.9.2 Managing coverage information
The coverage information files (asc files) are used to manage coverage information.

(1) File name and storage directory for coverage information files

(a) File name
Coverage information is collected for each job definition script and each user. Therefore, the default asc file name
consists of a job definition script name and a user name.

In the execution environment, you can specify any asc file name by using a command option.

In the editor, the default asc file names are used. Non-default asc file names cannot be specified.

The following shows the default asc file name:

job-definition-script-name(without-the-extension)_user-name.asc

If the length of an asc file name exceeds the maximum length supported by the OS being used, collection of coverage
information will fail. For this reason, you must pay attention to the number of characters in the file name of each job
definition script that is to be executed.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 231

(b) Storage directory
In the execution environment, the default asc files are created in the current directory during command execution.

In the development environment, if coverage information is accumulated from a Windows's editor, the asc files are
created in the directory that contains the job definition script file.

(2) Updating asc files
The asc files are updated whenever coverage information is accumulated or merged.

An asc file cannot be shared among multiple users at the same time. If an attempt is made to use an asc file that is in
use by another user, the command issues the KNAX6211-E message and results in an error.

(3) asc file output processing
If a coverage information write operation on an asc file fails for a reason such as insufficient disk capacity, that coverage
information is lost.

To prevent loss of collected coverage information, if a specified asc file (including a file with the default asc file
name when specification is omitted) already exists, JP1/Advanced Shell updates the asc file as described below. JP1/
Advanced Shell does not directly update the specified asc file (including a file with the default asc file name when
specification is omitted).

• Outputs new coverage information to a temporary asc file.

• Renames the existing asc file to be the backup asc file.

• Renames the temporary asc file to be the specified asc file (including a file with the default asc file name when
specification is omitted).

• Deletes the backup asc file.

Therefore, if a process to output coverage information to an asc file terminates prematurely and the command is re-
executed, JP1/Advanced Shell recovers the coverage information and then resumes command processing.

When command processing terminates successfully, there will be no temporary asc file or backup asc file. If a process
to output coverage information to an asc file terminates prematurely, the temporary and backup asc files might remain.
These files will be deleted if the command is re-executed or when the command is processed and terminates normally.

You can delete temporary asc files manually. Do not delete any backup asc file. If a backup asc file is deleted, the
coverage information accumulated up to the point of a command's error termination will be lost.

Normally, when you use the coverage functionality, you need not know the above details.

You can determine whether a specified asc file (including a file with the default asc file name when specification is
omitted) has been updated by new coverage information because the KNAX6242-I message will have been output
during the previous command execution.

If the KNAX6242-I has been output, the contents of the specified asc file (including a file with the default asc file
name when specification is omitted) have been updated by new coverage information.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 232

(4) File names associated with asc files
When coverage information is collected in an asc file, a temporary file is created. This file is called a temporary
coverage information file (temporary asc file). The file name, which always begins with a fixed character string, is as
shown in the following:

Name of a temporary asc file
The file name always begins with a fixed character string as follows:

• For the adshexec command: adshexec_temp_any-character-string

Name of a backup asc file

When an asc file is renamed temporarily (backup asc file), the following file name is used:

• For the adshexec command: adshexec_backup_any-character-string

When you specify an asc file name (including the default asc file name) in an argument of a command, you must
make sure that the specified file name does not exceed the maximum length (in bytes) permitted for a path name by the
OS being used.

If processing is cancelled during command execution, temporary and backup asc files might remain. The remaining
files are handled as follows:

• You can re-execute the command with the temporary asc file remaining in the system. Alternatively, you can
manually delete the temporary asc file and then re-execute the command.

• If a backup asc file remains in the system, do not delete it. The adshexec command automatically restores the
original asc file name from the remaining backup asc file name and then collects coverage information.
Alternatively, you can manually restore the original asc file name and then re-execute the command.

Do not create a user file that has the same name as a temporary asc file or backup asc file. If a file with the same
name as a temporary asc file for an asc file exists in the same directory, that user file will be deleted. If a file with the
same name as a backup asc file for an asc file exists in the same directory, that user file might be treated as an asc
file and deleted.

(5) Using temporary and backup asc files
In the execution environment, whether temporary and backup asc files are used depends on the specification of the -
t and -d options in the adshexec command. The following table shows whether temporary and backup asc files
are used in the execution environment.

Table 3‒6: Whether temporary and backup asc files are used in the execution environment

adshexec command's option Windows UNIX

-t -d Temporary asc file Backup asc file Temporary asc file Backup asc file

Omitted Omitted N N N N

Omitted Specified -- -- Y N

Specified Omitted Y Y Y Y

Specified Specified -- -- Y Y

Legend:
Y: File is used.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 233

N: File is not used.
--: The debugging option is not supported in Windows.

In the Windows development environment, whether temporary and backup asc files are used depends on the
specification of Coverage information in the Runtime Environment Settings dialog box. The following table shows
whether temporary and backup asc files are used in the development environment.

Table 3‒7: Whether temporary and backup asc files are used in the development environment

Specification of Coverage information Windows development environment (editor)

Temporary asc file Backup asc file

Do not accumulate N N

Accumulate Y Y

Accumulate (and overwrite on update) Y Y

Legend:
Y: File is used.
N: File is not used.

(6) Commands and temporary asc files
Temporary asc files are used as work files during command execution. If a file with the same name as a temporary
asc file exists before command execution, that file will be deleted.

(7) Processing of asc files during execution of the adshexec command
The following table explains how asc files are processed during execution of the adshexec command.

Table 3‒8: Processing of asc files during execution of the adshexec command

Status when the command starts Command processing

job.asc adshexec_back
up_job.asc

job.asc adshexec_back
up_job.asc

Status of asc file and how it is processed

N N Created None There is neither a new nor an old asc file.
An asc file is created.

N Y None Renamed to
job.asc

The old asc file job.asc has been renamed as
backup file adshexec_backup_job.asc.
The asc file job.asc is restored from backup asc
file adshexec_backup_job.asc.

Y N Used None job.asc is either the old or the new asc file.
If job.asc is the new asc file, the KNAX6242-I
message was issued during the previous execution.

Y Y Used Deleted job.asc is the new asc file and
adshexec_backup_job.asc is the old asc file.
The old asc file adshexec_backup_job.asc is
deleted.
The new asc file job.asc is used.

Legend:
Y: The file exists.
N: The file does not exist.
job.asc: Name of asc file

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 234

adshexec_backup_job.asc: Name of backup asc file

3.9.3 Accumulating coverage information

(1) How to accumulate coverage information and the format of coverage
information

When you execute a job definition script, you use an option of the execution command to specify that coverage
information is to be accumulated. When this specification is made, coverage information will be accumulated in an asc
file.

The option for accumulating coverage information is the -t option. You can also use the -o option to rename the asc
file to a name of your choosing. The format of the execution command with the option for accumulating coverage
information specified is shown below. If there is conflicting information in the job definition script that is to be executed,
an error will result. However, if the -f option is specified, the coverage information will be overwritten without resulting
in an error.

adshexec [other-options...] [-t [-f][-o path-name-of-asc-file]]
path-name-of-job-definition-script-file [run-time-parameters]

In UNIX, if the adshexec command is executed with the -d option specified (and not the -t option), coverage
information is collected only in memory. In this case, you can use the debugger's info coverage command to display
the coverage information. If you exit the debugger by entering the debugger's quit command, the collected coverage
information will be discarded and the memory released.

(2) Accumulation methods
The two coverage information accumulation methods are initial accumulation, which is the first accumulation, and
continued accumulation, which is any subsequent accumulation. The accumulation method that is used (initial or
continued) is determined by whether there is already an asc file.

If a change is made to a job definition script, the changed information will no longer have the same line numbers.
Therefore, a backup of the job definition script is stored in the asc file. If there is a difference between the job definition
script file and the backup asc file, the command terminates with an error without executing the job definition script.

In the initial accumulation, the command creates an asc file and writes the coverage information into it during execution.
In a continued accumulation, the command reads the contents of the asc file and updates it by adding coverage
information for the current execution.

(a) Examples of initial accumulation
The following are examples of initial accumulation.

Example 1:
This example collects coverage information when there is no coverage information file (asc file).

Example 2:
If all the following conditions are satisfied, the command performs initial accumulation:

• There is a coverage information file (asc file).

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 235

• The job definition script file differs from that used when coverage information was collected in the existing
coverage information file.

• A different job definition script file is used and the option for initializing the coverage information file (-f option
in the adshexec command) is specified.

(b) Examples of continued accumulation
If all the following conditions are all satisfied, the command performs a continued accumulation:

• A coverage information file (asc file) already exists.

• The job definition script file is the same as the one used when coverage information was collected in the existing
coverage information file.

One of the conditions for performing continued accumulation is that the job definition script is the same as the previous
one used to collect coverage information. The command determines that job definition scripts are identical in the
following manner:

• A binary comparison that is performed on the job definition scripts shows that their sizes and contents are the same.

When these conditions are satisfied, the command treats the job definition scripts as being identical even if their file
names and paths differ.

(3) File names of job definition scripts that are registered in coverage
information files

In a continued accumulation, the file name of the job definition script that was used the first time coverage information
was collected takes effect.

Example:
The following files are treated as being the same job definition scripts although their file names differ:

• /dir1/file1
• /dir2/file2

If a continued accumulation is performed by using an output asc file named out.asc and the above job definition
scripts, the scrip file name in the out.asc will be as follows:

1. If adshexec -t -o out.asc /dir1/file1 is executed, the script file name in out.asc is /dir1/
file1.

2. If adshexec -t -o out.asc /dir2/file2 is executed, the script file name in out.asc is /dir2/
file2.

3. If adshexec -t -o out.asc /dir1/file1 is re-executed, the script file name in out.asc is /dir1/
file1.

(4) Extension of coverage information files
The default extension for coverage information files (asc files) is .asc. The extension for coverage information files
does not have to be .asc. When coverage information is collected, the command treats a file with any extension that
was specified as coverage information as an asc file.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 236

(5) Size of a job definition script
The size of a job definition script file must not exceed 2 gigabytes.

(6) Initializing accumulated coverage information
To initialize accumulated coverage information, delete the corresponding asc file with a command such as rm, and
then collect coverage information using the initial accumulation method.

3.9.4 Displaying coverage information
The following figure shows the general procedure from executing a job definition script to displaying the coverage
information.

Figure 3‒5: General procedure for displaying coverage information

You can also use an editor to display coverage information in the development environment. For details about how to
use an editor to display coverage information, see 4.4.7 Displaying coverage information.

(1) How to display and command format
The adshcvshow coverage information display command is used to display coverage information. This command
displays the contents of a specified asc file. If you wish to display only a desired range of a job definition script's
coverage information, you can do so by specifying the range in the -l option.

If the -s option is specified, the command displays only the contents of a job definition script that has been backed up.
You use the -s option to check the contents of a job definition script that has been backed up and to determine if there
is any differential information between job definition scripts.

The following shows the format of the coverage information display command:

adshcvshow {[-l n1[-[n2]][,n3[-[n4]]]...]|-s} path-name-of-asc-file

To specify lines, use the comma (,) to separate individual line numbers and the hyphen (-) to specify a range of lines
numbers. For example, to specify lines 1 through 10, line 15, and lines 21 through 30, specify the command as follows:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 237

adshcvshow -l 1-10,15,21-30 path-name-of-asc-file

If no number follows a hyphen, the command assumes a range from the specified line number through the last line. For
example, to specify lines 21 through the last line, specify the command as follows:

adshcvshow -l 21- path-name-of-asc-file

(2) Coverage information display format
The following table explains the coverage information display format.

Table 3‒9: Explanation of the coverage information display format

Item Description

Title line (Advanced Shell Coverage
Information)

Main title line indicating that this is coverage information acquired by JP1/Advanced
Shell.

Date and time (top right) Displays the date and time the adshcvshow command was executed, in the format
yyyy-mm-dd hh:mm:ss. If the month, day, hour, minute, or second value consists
of one digit, a leading zero is added.

Header section (Header Information) Section title line indicating display of header information.

Job definition script name (Shellscript Name) Displays the absolute path name of the job definition script.

Version of asc file (Asc version) Displays the asc file's version number.

Coverage information collection start time
(Coverage Start Time)

Displays the time collection of coverage information started. The format is the same
as for the date and time.

Coverage information collection end time (Coverage
End Time)

Displays the time collection of coverage information ended. The format is the same
as for the date and time.

Number of times coverage information was collected
(Test Count)

Displays the number of times coverage information was collected.
If the coverage information collection count exceeds 9,999, 9999+ is displayed.
How the collection count is obtained depends on an option specified in the batch job
execution command (adshexec).
adshexec command with -t and -d specified
• For coverage information in memory

 Initial value
If there is an asc file, the coverage information collection count for the asc file
is used.
If there is no asc file, the collection count is 0.

 Updating
The coverage information collection count is incremented by one each time the
debugger's run command is executed.

• For an asc file
When the adshexec command terminates, the coverage information collection
count is increased by the number of times the debugger's run command
executed.

adshexec command with -t only specified
When the adshexec command terminates, the coverage information collection
count is increased by one.
adshexec command with -d only specified
• Coverage information in memory

 Initial value

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 238

Item Description

Number of times coverage information was collected
(Test Count)

The initial value for the coverage information collection count is 0.
 Updating

The coverage information collection count is incremented by one each time the
debugger's run command is executed.

• For an asc file
asc files are not updated.

Main information section (Main Information) Section title line indicating display of coverage information (C0 and C1 information).

Line number (Line) The line numbers begin with 1.
A line number exceeding 9999 is displayed as 9999+

Additional information (Info) This is the header for C0 and C1 information. The coverage information is displayed
in units of lines. If a command spans multiple lines, the C0 and C1 information is
displayed on the lines containing the command name.
If the numbers of C0 and C1 information items are both 32 or fewer, the coverage
information can be recorded and this item is blank. The character strings that are
displayed when the coverage information cannot be recorded are explained below:
overC0: The number of C0 information items exceeds 32.
overC1: The number of C1 information items exceeds 32.
over: The numbers of C0 and C1 information items both exceed 32.

C0 information (C0) Displays the C0 information:
@: Command was executed.
-: Command was not executed.
If a line contains multiple commands, the C0 information for a maximum of the first
four commands is displayed as four characters.

C1 information (C1) Displays the C1 information:
@: Execution path was executed.
-: Execution path was not executed.
If a line contains multiple execution paths, the C1 information for a maximum of the
first four execution paths is displayed as four characters.

Job definition script (<Shellscript Image>) Displays the contents of the job definition script in units of lines. If a range is
specified, only the lines in the specified range are displayed.

Totals section (Total Information) Section title line indicating display of totals of the C0 and C1 information. If a range
is specified, the Total Information line and lines subsequent to it are not
displayed. If the count exceeds 99,999,999, 99999999+ is displayed.

Totals subject to C0 and C1 targets (Target Total) <C0> displays the total number of target commands, and <C1> displays the total
number of execution paths.

<C0> Includes the total number of commands subject to C0 in the job definition script. All
target commands are counted even if there is a line that contains more than 32
commands subject to C0.

<C1> Includes the total number of execution paths subject to C1 in the job definition script.
All execution paths are counted even if there is a line that contains more than 32
execution paths subject to C1.

Totals subject to C0 and C1 that were executed
(Executed Total)

<C0> displays the total number of commands executed, and <C1> displays the total
number of execution paths executed.

<C0> Execution is recorded as coverage information for a maximum of the first 32
commands subject to C0 in each line. Of these 32 commands, the commands that
were executed are counted.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 239

Item Description

<C1> Execution is recorded as coverage information for a maximum of the first 32
execution paths subject to C1 in each line. Of these 32 execution paths, the execution
paths that were executed are counted.

Totals subject to C0 and C1 that were not executed
(Unexecuted Total)

<C0> displays the total number commands that were not executed, and <C1>
displays the total number of execution paths that were not executed.

<C0> This is the total number subject to C0 (Target Total) - total number subject to
C0 that were executed (Executed Total).

<C1> This is the total number subject to C1 (Target Total) - total number subject to
C1 that were executed (Executed Total).

Execution percentage rate (Coverage Rate) Displays the execution percentages of C0 and C1 (%). The values are rounded off to
the first decimal place.

<C0> This is the total subject to C0 that were executed (Executed Total)/total subject
to C0 (Target Total).
If there was a line containing more than 32 commands subject to C0, this value would
be less than 100%, even if all commands were executed.

<C1> This is the total subject to C1 that were executed (Executed Total)/total subject
to C1 (Target Total).
If there was a line containing more than 32 execution paths subject to C1, this value
would be less than 100%, even if all execution paths were executed.

The following subsections presents example coverage information displays. One is for when a maximum of one C0 and
one C1 information item is displayed per line. The second display is for when a maximum of four information items
are displayed per line.

(a) Example display of commands for which coverage information is displayed
(maximum of one C0 and one C1 information item displayed per line)

In this example, a single @ and a single - in Main Information indicate that C0 and C1 were acquired.

 * Advanced Shell Coverage Information *

 2013-12-06
12:22:50
**** Header Information
**
Shellscript Name : /home/testuser/sample
Asc version : 1.0
Coverage Start Time : 2013-12-06 12:21:38
Coverage End Time : 2013-12-06 12:21:39
Test Count : 1

**** Main Information
**
Line Info C0 C1 <Shellscript Image>
 1
 2 @ echo 1
 3
 4 @ @ if true
 5 then
 6 @ echo 2
 7 - fi
 8

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 240

 9 @ echo 3
 10
 11 @ - if false
 12 then
 13 - echo 4
 14 @ fi
 15
 16 @ echo 5
 17
 18 @ @ if true
 19 then
 20 @ echo 6
 21 - else
 22 - echo 7
 23 fi
 24
 25 @ echo 8
 26
 27 @ - if false
 28 then
 29 - echo 9
 30 @ else
 31 @ echo 10
 32 fi
 33
 34 @ echo 11
 35
 36

**** Total Information
**
 <C0> <C1>
 Target Total 15 8
 Executed Total 12 4
 Unexecuted Total 3 4
--

 <C0> <C1>
 Coverage Rate 80.0 % 50.0 %

(b) Example display of commands for which coverage information is displayed
(maximum of four C0 and C1 information items displayed per line)

In this example, lines 13 and 37 in Main Information indicate that multiple C0 and C1 information items were
acquired.

• Line 13 displays the contents of lines 3 through 7.
@@@@ in the C0 column indicates that the commands echo 1, echo 2, echo 3, and echo 4 were executed in this
order.
@@@@ in the C0 column does not indicate whether command echo 5 was executed.

• Line 37 displays the contents of lines 20 through 31.

• Each character in @@-- in the C0 column corresponds to a command from the top.
The first character @ indicates that the command true was executed.
The second character @ indicates that the command echo 1 was executed.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 241

The third character - indicates that the command true that follows the first elif was not executed.
The fourth character - indicates that the command echo 2 was not executed.
The characters @@-- in the C0 column show only whether the first four commands above were executed; whether
the commands starting with true that follows the second elif were executed is not indicated.

• Each character in @--- in the C1 column corresponds to each command from the beginning.
The first character @ indicates that the execution path of the first then of if was executed.
The second character - indicates that the execution path of then for the first elif was not executed.
The third character - indicates that the execution path of then for the second elif was not executed.
The fourth character - indicates that the execution path of else was not executed.

• Line 73 displays the contents of lines 43 through 67.
The meaning of each character in @@-- in the C0 column and in @--- in the C1 column is the same as for line 37.
@--- in the C1 column does not indicate whether the execution paths that follow the execution path of then for
if (the fifth execution path from the top) were executed.

 * Advanced Shell Coverage Information *

 2013-12-06
12:24:27
**** Header Information
**
Shellscript Name : /home/testuser/sample1.ash
Asc version : 1.0
Coverage Start Time : 2013-12-06 12:21:49
Coverage End Time : 2013-12-06 12:21:50
Test Count : 1

**** Main Information
**
Line Info C0 C1 <Shellscript Image>
 1
 2
 3 @ echo 1
 4 @ echo 2
 5 @ echo 3
 6 @ echo 4
 7 @ echo 5
 8
 9
 10
 11
 12
 13 @@@@ echo 1;echo 2;echo 3;echo 4;echo 5
 14
 15
 16
 17
 18
 19
 20 @ @ if true
 21 then
 22 @ echo 1
 23 - - elif true
 24 then

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 242

 25 - echo 2
 26 - - elif true
 27 then
 28 - echo 3
 29 - else
 30 - echo 4
 31 fi
 32
 33
 34
 35
 36
 37 @@-- @--- if true ;then echo 1 ;elif true ;then echo 2 ;elif
true ;then echo 3 ;else echo 4 ;fi
 38
 39
 40
 41
 42
 43 @ @ if true
 44 then
 45 @ echo 1
 46 - - elif true
 47 then
 48 - echo 2
 49 - - elif true
 50 then
 51 - echo 3
 52 - else
 53 - echo 4
 54 fi
 55
 56 @ @ if true
 57 then
 58 @ echo 5
 59 - - elif true
 60 then
 61 - echo 6
 62 - - elif true
 63 then
 64 - echo 7
 65 - else
 66 - echo 8
 67 fi
 68
 69
 70
 71
 72
 73 @@-- @--- if true ;then echo 1 ;elif true ;then echo 2 ;elif
true ;then echo 3 ;else echo 4 ;fi; if true ;then echo 5 ;elif true ;then
echo 6 ;elif true ;then echo 7 ;else echo 8 ;fi
 74

**** Total Information
**
 <C0> <C1>
 Target Total 52 24

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 243

 Executed Total 22 6
 Unexecuted Total 30 18
--

 <C0> <C1>
 Coverage Rate 42.3 % 25.0 %

(3) How to display C0 and C1 information
The target subject to collection of coverage information varies depending on how script control statements are executed
in a job definition script. When coverage information is displayed, an at mark (@) is displayed for a target that was
executed, and a hyphen (-) is displayed for a target that was not executed.

(a) if statements
• When there is no else

• If a path of then was executed, the following information is displayed:

C0 C1 Job definition script
 @ if <-- C1 is acquired
@ true <-- C0 is acquired
 then
@ cmd2 <-- C0 is acquired
@ cmd3 <-- C0 is acquired
 - fi <-- C1 is not acquired

• If a path of then was not executed, the following information is displayed:

C0 C1 Job definition script
 - if <-- C1 is not acquired
@ false <-- C0 is acquired
 then
- cmd2 <-- C0 is not acquired
- cmd3 <-- C0 is not acquired
 @ fi <-- C1 is acquired

• If a path of then and a path that is not then were both executed, the following information is displayed:

C0 C1 Job definition script
 @ if <-- C1 is acquired
@ false <- C0 is acquired
 then
@ cmd2 <-- C0 is acquired
@ cmd3 <-- C0 is acquired
 @ fi <-- C1 is acquired

• When there is else
• If then was executed, the following information is displayed:

C0 C1 Job definition script
 @ if <-- C1 is acquired
@ true <-- C0 is acquired
 then
@ cmd2 <-- C0 is acquired
 - else <-- C1 is not acquired

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 244

- cmd3 <-- C0 is not acquired
 fi <-- None

• If else was executed, the following information is displayed:

C0 C1 Job definition script
 - if <-- C1 is not acquired
@ false <-- C0 is acquired
 then
- cmd2 <-- C0 is not acquired
 @ else <-- C1 is acquired
@ cmd3 <-- C0 is acquired
 fi <-- None

• If then and else were both executed, the following information is displayed:

C0 C1 Job definition script
 @ if <-- C1 is acquired
@ false <-- C0 is acquired
 then
@ cmd2 <-- C0 is acquired
 @ else <-- C1 is acquired
@ cmd3 <-- C0 is acquired
 fi <-- None

(b) for statements
• If a loop was executed, the following information is displayed:

C0 C1 Job definition script
 @ for <-- C1 is acquired
 do
@ cmd1 <-- C0 is acquired
 - done <-- C1 is not acquired

• If a loop was not executed, the following information is displayed:

C0 C1 Job definition script
 - for <-- C1 is not acquired
 do
- cmd1 <-- C0 is not acquired
 @ done <-- C1 is acquired

• If execution involved executing a loop and then skipping a loop, the following information is displayed:

C0 C1 Job definition script
 @ for <-- C1 is acquired
 do
@ cmd1 <-- C0 is acquired
 @ done <-- C1 is acquired

(c) while and until statements
This subsection describes how while statements are displayed. until statements are displayed in the same manner.

• If a loop was executed, the following information is displayed:

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 245

C0 C1 Job definition script
 @ while <-- C1 is acquired
 do
@ cmd1 <-- C0 is acquired
 - done <-- C1 is not acquired

• If a loop was not executed, the following information is displayed:

C0 C1 Job definition script
 - while <-- C1 is not acquired
 do
- cmd1 <-- C0 is not acquired
 @ done <-- C1 is acquired

• If execution involved executing a loop and then skipping a loop, the following information is displayed:

C0 C1 Job definition script
 @ while <-- C1 is acquired
 do
@ cmd1 <-- C0 is acquired
 @ done <-- C1 is acquired

(d) case statements
Whether an * pattern is used determines how the C1 information is displayed. An * pattern means that none of the
patterns was a match in the case statement.

• If there is an * pattern
The C1 information is displayed for esac.

• If there is no * pattern
The C1 information is displayed for esac.

• Display method when there is an * pattern

• If case 1 was executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 @ 1) <-- C1 is acquired
@ echo "abc" <-- C0 is acquired
 ;;
 - *) <-- C1 is not acquired
- echo "efg" <-- C0 is not acquired
 ;;
 esac <-- None

• If an * pattern was executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 - 1) <-- C1 is not acquired
 echo "abc"
 ;;
 @ *) <-- C1 is acquired
@ echo "efg" <-- C0 is acquired

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 246

 ;;
 esac <-- None

• If case 1 and an * pattern were both executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 @ 1) <-- C1 is acquired
@ echo "abc" <-- C0 is acquired
 ;;
 - *) <-- C1 is not acquired
- echo "efg" <-- C0 is not acquired
 ;;
 esac <-- None

• Display method when there is no * pattern

• If case 1 was executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 @ 1) <-- C1 is acquired
@ echo "abc" <-- C0 is acquired
 ;;
 - 2) <-- C1 is not acquired
- echo "efg" <-- C0 is not acquired
 ;;
 - esac <-- C1 is not acquired

• If case 2 was executed, the following information is displayed:

C0 C1 Job definition script
 case $A in
 - 1) <-- C1 is not acquired
- echo "abc" <-- C0 is not acquired
 ;;
 @ 2) <-- C1 is acquired
@ echo "efg" <-- C0 is acquired
 ;;
 - esac <-- C1 is not acquired

• If an * pattern was executed, the following information is displayed:

C0 C1 Job definition script
@ case $A in <-- C0 is acquired
 - 1) <-- C1 is not acquired
- echo "abc" <-- C0 is not acquired
 ;;
 - 2) <-- C1 is not acquired
- echo "efg" <-- C0 is not acquired
 ;;
 @ esac <-- C1 is acquired

(e) #-adsh_step_start command
Specification of the argument shown below in the #-adsh_step_start command sets whether a job step's execution
is to be determined by the preceding job step and the status of the extended script command in the job definition script.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 247

[-run {normal | abnormal | always}]

The following information is displayed in the C1 information to indicate whether a job step was executed:

• --: Execution did not reach the #-adsh_step_start command.

• N-: The preceding job step or job definition script is normal.

• -A: The preceding job step or job definition script is erroneous.

• NA: Cases N- and -A were both executed.

(f) #-adsh_step_error command
If an error occurs in a job step, the job definition script following the #-adsh_step_error command is executed.
To indicate whether the error was handled, the following information is displayed in the C1 information.

• --: Execution did not reach the step containing the #-adsh_step_error command.

• N-: No error handling procedure executed because no error occurred in a job step.

• -E: An error handling procedure was executed because an error occurred in a job step.

• NE: Cases N- and -E were both executed.

(g) Functions
The following shows an example of function execution:

C0 C1 Job definition script
 funcAAA(){ --> 1.
@ echo "start funcAAA" --> 2.
 @ if true --> 2.
 then --> 2.
@ echo true --> 2.
 - else --> 2.
- echo false --> 2.
 fi --> 2.
 }
 :
@ funcAAA --> 3.

1. When a function is executed, neither C0 nor C1 information is displayed at the location where the function is defined.

2. In the body of the function, C0 and C1 information is displayed for the commands and execution paths that executed

3. When a function has executed, the C0 information is displayed at the location where the function was called.

(h) (cmd1; cmd 2)
Commands enclosed in parentheses are executed as a separate process. In this case, coverage information is not collected
either for the entire command group or for the individual commands in the command group.

(i) {cmd1; cmd2}
Commands enclosed in curly brackets are executed in the same process as the adshexec command. In this case,
coverage information is collected for each command in the command group.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 248

(j) cmd1 &
A separate process is generated, and the command is executed in the background in parallel with execution of the job
definition script by the adshexec command. No coverage information is collected for job definition scripts that are
executed in the background.

(k) trap actions
No coverage information is collected for trap actions.

• Example

trap "date; echo xxx" INT

(l) Command substitution
No coverage information is collected for a command or a script control statement that is executed by command
substitution.

• Example

ls `which adshexec`

(m) Arguments of the time command
No coverage information is collected for a command that is executed as an argument of the time command.

• Example

time adshexec script1

(n) Arguments of the eval command
No coverage information is collected for a command that is executed as an argument of the eval command.

• Example

eval ls dir1

(o) Pipe function
No coverage information is collected for a command that is executed by using the pipe function.

• Example

ls | cat

(p) External scripts
Coverage information is not collected for called external scripts. Coverage information is collected for a process that
calls an external script. An external script call is subject to collection of C0 information, but is not subject to collection
of C1 information.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 249

(4) Displaying coverage information collected in memory (UNIX only)
If you have used the info coverage command for debugging, you can display coverage information collected in
memory.

The coverage information to be displayed depends on the accumulation type (initial or continued accumulation). For
the initial accumulation, the coverage information up to the breakpoint is displayed. For a continued accumulation, the
accumulated coverage information plus the coverage information up to the breakpoint is displayed. If accumulation is
not specified, the coverage information up to the breakpoint is displayed in the same manner as for initial accumulation.

The types and format of the information that is displayed are the same as when the adshcvshow command is used to
display coverage information.

(5) Case where the C1 execution percentage rate is not 100%
If the #-adsh_step_start command is used and no job step or command precedes the job step of #-
adsh_step_start, the C1 execution percentage rate will never be 100%, even if all the execution paths are executed.
#-adsh_step_start collects C1 information in the cases described below. However, if no job step or command
precedes the job step of #-adsh_step_start, C1 information cannot be collected for case 2 below:

1. All the preceding job steps and commands terminated normally.

2. At least one of the preceding job steps or commands did not terminate normally.

In this case, you can enable the fault injection mode during debugging to simulate errors at the corresponding locations.
This method enables you to collect CI information and improve the CI execution percentage rate to 100%. The following
explains how to simulate errors.

• Debugging in GUI (Windows only)
You can simulate errors by using JP1/Advanced Shell Editor's Fault Injection Mode menu. For details about the
procedure, see 4.4.6(4) Simulating errors.

• Debugging in CUI (started with the -d option of the adshexec command) (UNIX only)
You can simulate errors by using the joberrmode command. For details about the joberrmode command, see
6.2.20 Enabling and disabling the fault injection mode (joberrmode command).
You can use the info status command to check whether the fault injection mode is enabled. For details about
the info status command, see 6.2.18 Displaying the status (info status command).

3.9.5 Merging coverage information
The purpose of merging coverage information is to combine the results obtained from testing by multiple users of the
same job definition script. If different test cases were performed on a specific job definition script by different users,
you can merge the separate pieces of coverage information into a single entity.

(1) How to merge
You use the adshcvmerg command to merge coverage information. This command merges two specified asc files.
The following shows the command's format:

adshcvmerg -o output-file asc-file-1 asc-file-2

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 250

The command merges the information in asc-file-1 and asc-file-2 and outputs the results to the specified output file in
asc file format.

(2) Types of information to be merged
The information to be merged includes the test counts and coverage information. For example, if the command
adshcvmerg -o out c1 c2 is entered to perform merge processing, the information is changed as follows:

• Full path name of job definition script: Full path name of c1
• Test count: Test count for c1 + test count for c2
• Coverage information collection start date and time: The start date and time for c1 or c2, whichever was earlier

• Coverage information collection end date and time: The end date and time for c1 or c2, whichever was later

3.9.6 Coverage auto-acquisition functionality
The coverage auto-acquisition functionality enables you to collect coverage information without having to change
parameters in the adshexec command.

If you use the environment setting parameters listed below to set the coverage information to be collected, there is no
need to specify the -t option for collecting coverage information when you execute batch jobs with the adshexec
command.

• BATCH_CVR parameter: Specifies that the coverage auto-acquisition functionality is to be used.

• ASC_FILE parameter: Defines the naming rules for accumulation files used by the coverage auto-acquisition
functionality.

The following shows an example of specifying the adshexec command:

adshexec job-definition-script-name.ash

This command executes the specified job definition script without having to specify the options (-t and -o) for
collecting coverage information.

When the coverage auto-acquisition functionality is used, the -t option cannot be specified in the adshexec command.
If the adshexec command is executed with the -t option specified in such a case (such as adshexec -t
sample.ash), it will terminate with an error and set return code 1.

You collect the coverage information by specifying #-adsh_conf BATCH_CVR YES in the environment file.

When the coverage function is enabled by the coverage auto-acquisition functionality, the asc files (coverage
information files) are output to the current directory in which each command was executed.

If #-adsh_conf ASC_FILE cvr/ver001-* is specified in the environment file, the above command produces
the same results as when adshexec -t -o cvr/ver001-job-definition-script-name job-definition-script-
name.ash is executed.

If the current directory differs for each command, the asc files are created in various directories. By specifying #-
adsh_conf ASC_FILE, you can designate a specific directory to which the asc files are to be output. You can also
standardize the asc file names.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 251

For details about the settings in the environment files, see 2.6.11 Enabling coverage information collection without
having to specify the option during batch job execution.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 252

3.10 Forcibly terminating jobs

This section explains forced termination of jobs.

3.10.1 How to forcibly terminate jobs

(1) How to forcibly terminate a job
There are two ways to forcibly terminate a job:

• If the job was started from JP1/AJS, use JP1/AJS's forced termination procedure.
To be able to forcibly terminate from JP1/AJS a job for a job icon that was executed in Windows or UNIX, you must
have specified the AJS_BJEX_STOP=TERM environment variable beforehand. For details about jobs for job icons
that are run in Windows or UNIX, see 2.7.2 Defining and executing a jobnet.

• Send a termination request signal to the adshexec command's process. In Windows, you can use a command such
as taskkill to terminate the adshexec process.

When a job is forcibly terminated, the job controller forcibly terminates its child or descendant process that are executing.
For details, see (2) Forcibly terminating child or descendant processes.

After forcibly terminating the child or descendant process, the job controller performs postprocessing on the allocated
files, and then terminates the job without executing any subsequent job steps or commands. The job controller does not
execute a subsequent job step even if abnormal or always is specified in its run attribute. In UNIX, when a job is
forcibly terminated, the adshexec command terminates with an error by signal. For details about the job processing
in UNIX when SIGTERM is received, see 3.10.2 Processing when signals are received (UNIX only). For details about
the job processing in Windows when jobs are forcibly terminated, see 3.10.3 Job processing during forced termination
(Windows only).

Important note
In Windows, when the adshexec command is started, the adshexecsub command is also started, and when
the adshexec command is forcibly terminated, the adshexecsub command is also terminated. Therefore,
do not forcibly terminate the adshexecsub command. If an attempt is made to forcibly terminate the
adshexecsub command, the following events might occur:

• A descendant process that is executing might not terminate.

• Temporary files might remain in the system.

If these events occur, use the taskkill command or the task manager to forcibly terminate the descendant
process and delete the temporary files manually.

Important note
Because JP1/Advanced Shell in a Windows environment uses job objects to forcibly terminate descendant
processes, note the following;

• A descendant process generated from JP1/Advanced Shell cannot be associated with a job object.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 253

• If a process of JP1/Advanced Shell has already been associated with a job object, forced termination of the
job will not terminate the process generated by the child process of JP1/Advanced Shell.

Important note
In Windows, if a job that executes an external command and generates a child process is terminated forcibly
and more than 255 processes that are at its grandchild or lower levels exist concurrently, the KNAX6381-E
message might be issued and renaming of the spool job directory might fail. Note the following three points
about this:

• To reference a spool job directory that has failed, use the directory name displayed in the immediately
following KNAX6382-I message that is issued.

• A spool job directory whose renaming has failed cannot be deleted by the adshhk command. If necessary,
delete it manually.

• In the case of a job that has failed in renaming a spool job directory in the execution environment, job
definition script operation information is not output by the adshevtout command.

(2) Forcibly terminating child or descendant processes
If a job is forcibly terminated, the job controller forcibly terminates its child or descendant processes, and then terminates
the job.

(a) In UNIX
How child or descendant processes are forcibly terminated depends on the job input mode, as described in the following:

• Terminal input mode
SIGTERM is sent only to the child processes of the adshexec command. SIGTERM is not sent to any of the
descendant processes of the adshexec command, including grandchild processes. If you want to perform
postprocessing on these processes, use one of the following methods to create and execute a job:

• If the user creates external commands, design the external commands to perform postprocessing on the
descendant processes, for example, by automatically sending SIGTERM also to the descendant processes after
SIGTERM is received.

• When a job is forcibly terminated in the terminal input mode, not only the adshexec command but all the
descendant processes, including grandchild processes, are subject to operations such as Ctrl + C and Ctrl + \.

If grandchild processes remain after forced termination, use the ps command to obtain the process IDs of the
remaining processes, and then manually terminate them with the kill command.

• Non-terminal input mode
SIGTERM is sent to the descendant processes of the adshexec command.

(b) In Windows
The TerminateProcess and TerminateJobObject functions are used to forcibly terminate the descendant
processes of the adshexec command. The forced termination method is the same regardless of the job input mode.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 254

(3) Notes about operations including Ctrl+C (UNIX only)
If a job is executed in the non-terminal input mode, operation such as Ctrl + C and Ctrl + \ might not be able to terminate
simultaneously the root job, child jobs, and other external commands that were started.# If you wish to forcibly terminate
these jobs and commands all at once, use the kill command to send a termination request signal such as SIGTERM
to the root job immediately under the login shell.

#
If a job is executed in the non-terminal input mode, the adshexec command's process and its child processes
belong to separate process groups. Therefore, if an operation such as Ctrl + C or Ctrl + \ is performed from the
login shell while the job is executing, SIGINT or SIGQUIT is sent only to the process group currently running in
the foreground.
The jobs and external commands running as descendant processes of the job that received the signal are forcibly
terminated, but those jobs and external commands running as higher processes, including the parent process, are not
forcibly terminated.

3.10.2 Processing when signals are received (UNIX only)
This subsection explains the processing that occurs when the job controller has received signals during normal execution
and during debug execution.

(1) During normal execution
This subsection explains for the SIGTERM signal and for other signals the processing that occurs when the job controller
has received signals during normal execution.

(a) SIGTERM
The processing that occurs when SIGTERM has been received depends on the specified TRAP_ACTION_SIGTERM
environment setting parameter.

Table 3‒10: When DISABLE is specified in the TRAP_ACTION_SIGTERM environment setting
parameter#1

When an operation is not defined with the trap command When an operation is
defined with the trap
command

• If the root job received SIGTERM
First time: Outputs a message, performs postprocessing, and then terminates without performing any
subsequent processing. If the root job was not started from JP1/AJS, the root job sends SIGTERM to
itself and then terminates with the signal.
Second time: Terminates immediately.

• If a child job received SIGTERM
The child job that received SIGTERM outputs a message, performs postprocessing, and then terminates
itself without performing any subsequent processing. In this case, the child job sends SIGTERM to itself
and then terminates with the signal.#2

Operation cannot be defined
with the trap command.#3

#1
This includes when the TRAP_ACTION_SIGTERM environment setting parameter is not specified.

#2
For details about the behavior of child jobs when signals are received, see 3.2.3(3) Behavior of child jobs when signals are received.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 255

#3
When the action for SIGTERM is specified by the trap command, the job terminates with a trap command error.

Table 3‒11: When TERM is specified in the TRAP_ACTION_SIGTERM environment setting
parameter

When an operation is not defined with the trap command When an operation is defined the trap command

• If the root job received SIGTERM
First time: Outputs a message, performs postprocessing, and then terminates
without performing any subsequent processing. If the root job was not started from
JP1/AJS, the root job sends SIGTERM to itself and then terminates with the signal.
Second time: Terminates immediately.

• If a child job received SIGTERM
The child job that received SIGTERM outputs a message, performs postprocessing,
and then terminates itself without performing any subsequent processing. In this
case, the child job sends SIGTERM to itself and then terminates with the signal.
The parent job of the child job performs subsequent processing according to the
results of the child process that terminated with termination code 128 + signal
number of SIGTERM.#

• If the root job received SIGTERM
Outputs a message and then executes the action
defined for SIGTERM with the trap command.
After executing the action, the root job terminates
without performing any subsequent processing. If
the root job was not started from JP1/AJS, the root
job sends SIGTERM to itself and then terminates
with the signal.

• If a child job received SIGTERM
Outputs a message and then executes the action
defined for SIGTERM with the trap command.
After executing the action, the child job
terminates without performing any subsequent
processing.
The parent job of the child job performs
subsequent processing according to the results of
the child process that received SIGTERM.#

#
For details about the behavior of child jobs when signals are received, see 3.2.3(3) Behavior of child jobs when signals are received.

Table 3‒12: When CONT is specified in the TRAP_ACTION_SIGTERM environment setting
parameter

Job start method When an operation is not defined
with the trap command

When an operation is defined with the
trap command

Started from JP1/AJS
(Started from a custom job or with TERM set in the
AJS_BJEX_STOP environment variable)

The job definition script is not run and the job terminates with an error (error during
environment file analysis).

Started using a method that does not involve
JP1/AJS
(Started with a method other than the above)

• If the root job received SIGTERM
First time: Outputs a message,
performs postprocessing, and then
terminates without performing any
subsequent processing. The root
job sends SIGTERM to itself and
then terminates with the signal.
Second time: Terminates
immediately.

• If a child job received SIGTERM
The behavior of a child job that has
received SIGTERM is the same as
that of the root job.
The parent job of the child job
performs subsequent processing
according to the results of the child
process that terminated with
termination code 128 + signal
number of SIGTERM.#

• If the root job received SIGTERM
Outputs a message and then executes the
action defined for SIGTERM with the
trap command. After executing the
action, the root job performs any
subsequent processing in the job
definition script.

• If a child job received SIGTERM
The behavior of a child job that has
received SIGTERM is the same as that of
the root job.
The parent job of the child job performs
subsequent processing according to the
results of the child process that received
SIGTERM.#

#
For details about the behavior of child jobs when signals are received, see 3.2.3(3) Behavior of child jobs when signals are received..

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 256

Table 3‒13: When AUTO is specified in the TRAP_ACTION_SIGTERM environment setting
parameter

Job start method When an operation is not defined
with the trap command

When an operation is defined with the
trap command

Started from JP1/AJS
(Started from a custom job or with TERM set in the
AJS_BJEX_STOP environment variable)

Same processing as when TERM is specified

Started using a method that does not involve
JP1/AJS
(Started with a method other than the above)

Same processing as when CONT is specified

(b) Other than SIGTERM
Table 3‒14: Processing when signals are received

Type of signal When an operation is not defined with
the trap command

When an operation is defined the trap
command

Termination
request signal

SIGHUP, SIGINT,
SIGXCPU, SIGXFSZ,
SIGQUIT, SIGUSR1,
SIGUSR2, SIGPIPE,
SIGALRM, SIGVTALRM,
SIGPROF

• If the root job received the signal
Performs postprocessing, such as
termination of descendant processes and
deletion of temporary files, and then
terminates with an error by signal
without executing any subsequent
instruction.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
terminated child job.#1

• If the root job received the signal
The processing depends on the operation
defined by the trap command.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
child job.

SIGMSG, SIGDANGER,
SIGMIGRATE, SIGPRE,
SIGVIRT, SIGALRM1,
SIGRECONFIG,
SIGCPUFAIL, SIGGRANT,
SIGRETRACT, SIGSOUND

Same as above.
(AIX only)

Same as above.
(AIX only)

SIGLOST Same as above.
(HP-UX and Solaris only)

Same as above.
(HP-UX and Solaris only)

Error
notification
signal

SIGILL, SIGTRAP,
SIGABRT, SIGFPE,
SIGBUS, SIGSEGV,
SIGSYS

• If the root job received the signal
Terminates the program according to the
default OS processing for the
corresponding signal.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
terminated child job.#1

• If the root job received the signal
The processing depends on the operation
defined by the trap command.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
child job.

SIGIOT, SIGEMT Same as above.
(AIX, HP-UX, and Solaris only)

Same as above.
(AIX, HP-UX, and Solaris only)

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 257

Type of signal When an operation is not defined with
the trap command

When an operation is defined the trap
command

Error
notification
signal

SIGLOST Same as above.
(AIX only)

Same as above.
(AIX only)

Other • If the root job received the signal
Depends on the default OS processing
for the corresponding signal.

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
child job.#1

• If the root job received the signal
The processing depends on the operation
defined by the trap command.#2

• If a child job received the signal
The processing of the child job that
received the signal is the same as when
the signal was received by the root job.
The parent job of the child job that
received the signal performs subsequent
processing according to the results of the
child job.

#1

• For details about the behavior of child jobs when signals are received, see 3.2.3(3) Behavior of child jobs when signals are received.

#2

• For SIGKILL and SIGSTOP, the trap command cannot be used to define an operation.

• For SIGWAITING, the trap command cannot be used to define an operation (AIX only).

Important note
If you set - for the operation when you are using the trap command, the operation to be performed when
signals are received is reset to the default.

With some signals, the operation during debug execution differs from that described in the tables. For details
about the differences in signal processing depending on whether an operation is defined with the trap
command, see (2) During debug execution.

(2) During debug execution
Table 3‒15: Processing when signals are received during debug execution

Type of signal When an operation is not defined
with the trap command

When an operation is defined with the
trap command

SIGINT The debugger terminates execution of
the job definition script and then waits
for entry of a command.#

The debugger terminates execution of the job
definition script and then waits for entry of a
command.#

The processing depends on the operation
defined by the trap command.

SIGCHLD, SIGTSTP, SIGTTOU, SIGURG,
SIGWINCH, SIGIO, SIGPWR

Performs the next processing. The processing depends on the operation
defined by the trap command.

SIGSTKFLT
(Linux only)

SIGWAITING, SIGLWP, SIGFREEZE,
SIGTHAW, SIGCANCEL, SIGXRES, SIGJVM1,
SIGJVM2
(Solaris only)

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 258

Type of signal When an operation is not defined
with the trap command

When an operation is defined with the
trap command

Real-time signal
(HP-UX, Linux, and Solaris only)

Performs the next processing. The processing depends on the operation
defined by the trap command.

#
For details about terminating a job definition script, see 6.2 CUI debugger (UNIX only).

3.10.3 Job processing during forced termination (Windows only)
The following table describes job processing in Windows during forced termination.

If you use the trap command to define processing for immediate termination of a process by using a function such as
TerminateProcess, specify TERM in the TRAP_ACTION_SIGTERM parameter.

Table 3‒16: Job processing during forced termination

Forced termination method When an operation is not
defined with the trap
command

When an operation is
defined with the trap
command

Control signal CTRL + C
CTRL + BREAK
CTRL_CLOSE_EVENT

The control signal is sent to all
process groups that are running
as the root job, child jobs, and
commands.
• Processing of the root job

(adshexec.exe) that
received the control signal
Child process
adshexecsub.exe
performs postprocessing,
and then terminates
without executing
subsequent scripts.
adshexec.exe that
received the control signal
waits for termination of the
child process, and then
terminates itself.

• Processing of the root job
(adshexecsub.exe)
that received the control
signal and its child jobs
adshexecsub.exe that
received the control signal
outputs the KNAX7896-I
message, performs
postprocessing, and then
terminates without
executing subsequent
scripts.

Operation cannot be defined
with the trap command.

CTRL_LOGOFF_EVENT Terminates immediately
without performing
postprocessing because OS
logoff and shutdown
processing take precedence.

Operation cannot be defined
with the trap command.

CTRL_SHUTDOWN_EVENT

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 259

Forced termination method When an operation is not
defined with the trap
command

When an operation is
defined with the trap
command

Immediate termination of process by a means such as
TerminateProcess

• If the root job
(adshexec.exe) is
subject to immediate
termination
The target
adshexec.exe is
terminated immediately,
but adshexecsub.exe
of its child processes and
the child jobs perform
postprocessing, and then
terminate without
executing subsequent
scripts.

• If the root job
(adshexecsub.exe) is
subject to immediate
termination
The target
adshexecsub.exe is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process).

• If a child job is subject to
immediate termination
The target child job is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process). The parent job of
the terminated child job
performs postprocessing
according to the processing
that occurs when a child
process is terminated with
an error and return code 1.

• If the root job
(adshexec.exe) is
subject to immediate
termination
The target
adshexec.exe is
terminated immediately,
but adshexecsub.exe
of its child processes and
the child jobs perform the
operation defined with the
trap command, perform
postprocessing, and then
terminate.

• If the root job
(adshexecsub.exe) is
subject to immediate
termination
The target
adshexecsub.exe is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process).

• If a child job is subject to
immediate termination
The target child job is
terminated immediately
without performing
postprocessing (do not
perform immediate
termination on this
process). The parent job of
the terminated child job
performs postprocessing
according to the processing
that occurs when a child
process is terminated with
an error and return code 1.

Note
When the trap command is used and - is set for the operation, the command resets the previously specified action
setting for the specified method so that the method is not associated with any action setting.

3. Executing Batch Jobs

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 260

4 Using JP1/Advanced Shell - Developer (Windows
Only)

This chapter explains how to employ JP1/Advanced Shell - Developer so that you can use JP1/
Advanced Shell Editor to develop job definition scripts in a Windows environment. The chapter also
explains how to use the editor to debug job definition script files.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 261

4.1 Starting and terminating JP1/Advanced Shell - Developer (Windows
only)

You can create and debug job definition script files in JP1/Advanced Shell's development environment. This section
explains how to start and terminate JP1/Advanced Shell's development environment.

4.1.1 Starting JP1/Advanced Shell - Developer
This subsection explains how to start JP1/Advanced Shell - Developer. You start the editor to create and edit job definition
scripts files. There are two ways to start the editor.

(1) Starting from the Start menu
1. From the Start menu, select All Programs, and then Advanced Shell - Developer.

2. From the Advanced Shell - Developer group, select the Editor icon.

(2) Starting from the right-click menu
1. From Explorer, right-click the job definition script file.

2. Select Edit.

4.1.2 Terminating JP1/Advanced Shell - Developer
To terminate JP1/Advanced Shell - Developer, do one of the following:

• Select File, and then Exit.

• Click the Exit button on the toolbar.

The editor function terminates.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 262

4.2 JP1/Advanced Shell Editor modes (Windows only)

The editor has two modes, the edit mode and the debug mode.

4.2.1 Edit mode
The edit mode is used to create and edit job definition script files. The editor is in this mode when it starts.

4.2.2 Debug mode
The debug mode is used to debug created job definition script files. In this mode, the editor's edit window is grayed-out
and the job definition script cannot be edited. The debug mode supports two functions:

• Syntax checking
Selecting the Check Syntax menu from the Debug menu or clicking the Check Syntax button on the toolbar starts
syntax checking.

• Debug execution
Making the following menu item selection or clicking the following button executes debugging:

• Selecting the Run to Breakpoint item from the Debug menu or clicking the Run to Breakpoint button on the
toolbar

• Selecting the Step In, Step Over, or Step Out item from the Debug menu, or clicking the Step In, Step
Over, or Step Out button on the toolbar

For details about syntax checking, see 4.4.4 Checking syntax. For details about debugging, see 4.4.6 Debugging.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 263

4.3 JP1/Advanced Shell Editor operation (Windows only)

The editor is a program you use to create job definition scripts and to edit existing job definition scripts. This section
explains the JP1/Advanced Shell Editor window that is displayed when the editor starts. The section also explains the
editor's functions by menu item.

The following lists the operations available in the JP1/Advanced Shell Editor window (the applicable section or
subsection number is enclosed in parentheses):

• Creating job definition scripts (4.4.1)

• Setting up an operating environment for the editor (4.4.2)

• Setting up an execution environment for job definition scripts (4.4.3)

• Checking syntax (4.4.4)

• Searching for and replacing character strings (4.4.5)

• Setting and releasing breakpoints during debugging (4.4.6(1))

• Performing and canceling debugging (4.4.6(2))

• Adding variables to the watch list (4.4.6(3))

• Displaying coverage information (4.4.7)

• Editing existing job definition scripts (4.5)

• Saving job definition scripts (4.6)

• Printing the contents of job definition script files#

• Undoing the previous operation#

• Redoing the previous operation#

• Cutting a selected character string and saving it on the clipboard#

• Copying a selected character string onto the clipboard#

• Pasting the character string from the clipboard to a specified location#

• Selecting all character strings#

• Jumping to the execution-point line#

• Changing toolbar view/hide settings#

• Changing the status bar view/hide setting#

• Aligning toolbars#

• Changing the ruler view/hide setting#

• Changing the vertical scroll bar view/hide setting#

• Changing the horizontal scroll bar view/hide setting#

• Changing the line numbers view/hide setting#

• Displaying the beginning of the file#

• Displaying the end of the file#

• Changing the Watch List window view/hide setting#

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 264

• Changing the error window view/hide setting#

• Displaying Help#

#
These operations are not explained in this manual (they are implemented by the standard Windows operating
procedures or by selecting the corresponding items from the applicable menu lists).

4.3.1 JP1/Advanced Shell Editor window
The following figure shows the JP1/Advanced Shell Editor window and the names of the window's components.

Figure 4‒1: JP1/Advanced Shell Editor window

(1) Toolbars
The toolbars display buttons for the most frequently used of the commands that can be selected from the menu bar. You
can execute a command by clicking its button on a toolbar. You can also use the View menu to hide the toolbars. Hovering
the mouse cursor over a button displays a description of the button's function.

In the JP1/Advanced Shell Editor window, the toolbars that can be displayed are the Standard Toolbar, Edit Toolbar,
Debug Toolbar, and Search Toolbar.

• Standard Toolbar
The following table lists the buttons on the Standard Toolbar and describes their functions.

Button Description

New button Creates a job definition script file.

Open button Enables an existing job definition script file to be opened.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 265

Button Description

Save button Saves the job definition script file being edited.

Print button Prints the job definition script file being edited.

Exit button Terminates JP1/Advanced Shell Editor and enables you to select whether the file is to be saved.

Help button Displays Help for JP1/Advanced Shell.

• Edit Toolbar
The following table lists the buttons on the Edit Toolbar and describes their functions.

Button Description

Undo button Undoes the previous operation.

Redo button Re-executes the previous operation.

Cut button Cuts a selection and saves it on the clipboard.

Copy button Copies a selection to the clipboard.

Paste button Pastes the contents of the clipboard to the selected location.

Select All button Selects the entire file.

Options button Enables an operating environment for the editor to be set up.

• Debug Toolbar
The following table lists the buttons on the Debug Toolbar and describes their functions.

Button Description

Check Syntax button Checks the syntax of the job definition script.

Run to Breakpoint button Starts and restarts execution up to a breakpoint.

Stop Script button Stops the job definition script. Completes the command whose execution is underway
when the Stop Script button is clicked is completed and stops the job definition script
before the next command executes.

Quit Debugging button Completes the command whose execution is underway when the Quit Debugging button
is clicked, stops execution before the next command is executed, then stops the job
definition script and cancels debugging.

Step In button Executes the next command or statement. If a function is called, this button also executes
one line in the function and then stops execution.

Step Over button Executes the next command or statement. If a function is called, this button does not stop
after executing one line in the function, but stops only when a breakpoint is reached.

Step Out button Executes through the end of a function call and stops on the line immediately following
the function call or at a breakpoint.

Set/Remove Breakpoint button Sets a breakpoint or releases a selected breakpoint.

Remove All Breakpoints button Releases all breakpoints that have been set.

Runtime Environment Settings button Sets up a script file execution environment.

View/Hide Watch List Window button Changes the view/hide setting for the Watch List window.

Add Variable to Watch List button Adds a specified variable to the Watch List window.

View Coverage Information button Displays coverage information during debugging.

• Search Toolbar

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 266

The following table lists the buttons on the Search Toolbar and describes their functions.

Button Description

Search button Enables entry of a character string to be searched for and (optionally) a character string that is replace
the search character string.

Find Previous button Searches for the search character string in the up direction.

Find Next button Searches for the search character string in the down direction.

(2) Ruler
This is a tick-marked bar that displays the horizontally-arranged columns.

(3) Line number area
This area displays the line numbers in a job definition script.

(4) Breakpoint area
This area displays the following symbols: a symbol at the line where a breakpoint is set (), a symbol that indicates

the line that is to execute next (), and a symbol that indicates the line where the debugger process ends ().

(5) Status bar
The status bar displays messages related to the current processing being executed by JP1/Advanced Shell Editor and
messages related to the status after processing has terminated. The following table describes the status bar functions in
the JP1/Advanced Shell Editor window.

Table 4‒1: Functions of the status bar in the JP1/Advanced Shell Editor window

Status bar Description

Job ID Displays the job ID of the job that is being debugged.

Position Displays the location of the cursor.

Total lines Displays the total number of lines in the job definition script file being edited.

INS or OVR Displays the overwrite mode that can be switched by toggling the Insert key. The two modes
are the following (where the Insert mode is the default):
• OVR:Overwrite mode
• INS:Insert mode

(6) Client area
The client area displays the job definition script file you are working on.

4.3.2 Menus in the JP1/Advanced Shell Editor window
This subsection explains the menus displayed on the menu bar and the pop-up menus that are displayed in the JP1/
Advanced Shell Editor window.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 267

(1) Menus on the menu bars
This subsection explains the menus that are displayed in the editor window. The following table lists the menus in the
JP1/Advanced Shell Editor window and describes the functions of the items you can select on these menus.

Table 4‒2: Menus in the JP1/Advanced Shell Editor window and their functions

Menu Description

File New Creates a job definition script file.

Open Enables an existing job definition script file to be opened.

Save Saves the job definition script file being edited.

Save As Saves the job definition script file being edited as a new job definition script file
under a specified name.

Print Prints the job definition script file being edited.

Exit Exits the editor and enables you to select whether the file is to be saved.

(file-name) Opens the file whose name is displayed.
The names of the most recent job definition script files that were saved are
displayed (maximum of nine).

Edit Undo Undoes the previous operation.

Redo Re-executes the previous operation.

Cut Cuts a selection and saves it on the clipboard.

Copy Copies a selection to the clipboard.

Paste Pastes the contents of the clipboard to the selected location.

Select All Selects the entire file.

Options Enables an operating environment for the editor to be set up.

Debug Check Syntax Checks the syntax of the job definition script.

Run to Breakpoint Starts and restarts execution up to a breakpoint in the debug mode.

Stop Script Stops execution of the job definition script at the next line. Completes the
command whose execution is underway when Stop Script is selected and stops
the job definition script before the next command executes.

Quit Debugging Completes the command whose execution is underway when Quit Debugging is
selected, stops execution before the next command executes, then stops the job
definition script and cancels debugging.

Step In Executes the next command or statement in the debug mode. If a function is called,
this menu item also executes one line in the function and then stops execution.

Step Over Executes the next command or statement in the debug mode. If a function is called,
this menu item does not stop after executing one line in the function, but stops
only when a breakpoint is reached.

Step Out Executes through the end of a function call and stops on the line immediately
following the function call or at a breakpoint.

Set or Remove Breakpoint Sets a breakpoint or releases the selected breakpoint.

Remove All Breakpoints Releases all breakpoints that have been set.

Runtime Environment
Settings

Sets up a script file execution environment.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 268

Menu Description

Debug Add Variable to Watch List Adds a specified variable to the Watch List window.

Fault Injection Mode Enables or disables the fault injection mode while execution of the job definition
script is stopped.

Execute a trap action Executes the trap command's action and continues processing up to a breakpoint.

Jump to the currently
executing line

Jumps to the line that is executing currently.

View Toolbar > Standard Toolbar Changes the view/hide setting for the standard toolbar.

Toolbar > Edit Toolbar Changes the view/hide setting for the edit toolbar.

Toolbar > Debug Toolbar Changes the view/hide setting for the debug toolbar.

Toolbar > Search Toolbar Changes the view/hide setting for the search toolbar.

Status Bar Changes the view/hide setting for the status bar.

Align Toolbars Aligns the toolbars.

Ruler Changes the view/hide setting for the ruler.

Vertical Scrollbar Changes the view/hide setting for the vertical scrollbar.

Horizontal Scrollbar Changes the view/hide setting for the horizontal scrollbar.

Show Line Numbers Changes the view/hide settings for the line number.

Show First Line Displays the first line of the job definition script file.

Show Last Line Displays the last line of the job definition script file.

Show Watch List Changes the view/hide setting for the Watch List window.

Show Error List Changes the view/hide setting for the Error List window.

View Coverage Information Displays coverage information during debugging.

Search Search for Enables entry of a character string to be searched for.

Replace with Enables entry of a character string that is to be searched for and a character string
that is to replace the retrieved character string.

Find Previous Searches for the search character string in the up direction.

Find Next Searches for the search character string in the down direction.

Help Open Help Displays Help for JP1/Advanced Shell.

About Displays program information, version, and copyright information.

(2) Pop-up menus
Clicking the mouse's right button while the cursor is in the client area of the JP1/Advanced Shell Editor window displays
a pop-up menu. The pop-up menu's contents depend on whether the mode is the edit mode or the debug mode.

• Pop-up menu in the edit mode
The following table lists and describes the pop-up menu items that are displayed in the edit mode.

Pop-up menu item Description

New Creates a job definition script file.

Open Enables an existing job definition script file to be opened.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 269

Pop-up menu item Description

Save Saves the job definition script file being edited.

Undo Undoes the previous operation.

Redo Re-executes the previous operation.

Cut Cuts a selection and saves it on the clipboard.

Copy Copies a selection to the clipboard.

Paste Pastes the contents of the clipboard to the selected location.

Select All Selects the entire file.

• Pop-up menu in the debug mode
The following table lists and describes the pop-up menu items that are displayed in the debug mode.

Pop-up menu item Description

Copy Copies a selection to the clipboard.

Set/Remove Breakpoint Sets a breakpoint or releases the selected breakpoint.

Add Variable to Watch List Adds a selected variable to the Watch List window.

4.3.3 Mouse and key operations in the JP1/Advanced Shell Editor window
This subsection explains the mouse and key operations in the JP1/Advanced Shell Editor window.

(1) Mouse operations
The following table describes the mouse operations in the client area of the JP1/Advanced Shell Editor window.

Table 4‒3: Mouse operations in the JP1/Advanced Shell Editor window

Operation Description

Click Selects a target for an operation or releases an existing selection.

Double-click Selects a character string.

Right-click Displays a pop-up menu.

(2) Key operations
The following table describes the key operations while the cursor is positioned in the client area of the JP1/Advanced
Shell Editor window and indicates the modes in which each operation is applicable.

Table 4‒4: Key operations in the JP1/Advanced Shell Editor window

Operation Edit mode Debug mode Description

Ctrl+A Y Y Selects the entire file.

Ctrl+C Y Y Copies a selection.

Ctrl+E Y N Sets up a script file execution environment.

Ctrl+F Y P Enables entry of a character string to be searched for.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 270

Operation Edit mode Debug mode Description

Ctrl+H Y N Enables entry of a character string to be searched for and a
character string that is to replace the retrieved character string.

Ctrl+N Y N Creates a job definition script file.

Ctrl+O Y N Enables an existing job definition script file to be opened.

Ctrl+P Y N Prints the job definition script file being edited.

Ctrl+S Y N Saves the job definition script file being edited.

Ctrl+V Y N Pastes the contents of the clipboard to the selected location.

Ctrl+X Y N Cuts a selection.

Ctrl+Z Y N Undoes the previous operation.

Ctrl+Home Y Y Displays the first line of the job definition script file.

Ctrl+End Y Y Displays the last line of the job definition script file.

F1 Y Y Displays Help for JP1/Advanced Shell.

F3 Y P Searches for a character string in the down direction.

F5 Y N Starts and restarts execution up to a breakpoint.

F7 Y N Checks the syntax of the job definition script.

F9 Y Y Sets a breakpoint or releases the selected breakpoint.

F11 Y Y Executes the next command or statement. If a function is called,
this key also executes one line in the function and then stops
execution.

Alt+0 N Y Adds a specified variable to the Watch List window.

Alt+1 N Y Changes the view/hide setting for the Watch List window.

Alt+2 N Y Changes the view/hide setting for the Error List window.

Alt+F4 Y Y Exits JP1/Advanced Shell Editor and enables whether the file is to
be saved to be specified.

Shift+F3 Y P Searches for a character string in the up direction.

Shift+F5 N Y Terminates the job definition script and cancels debugging.

Shift+F9 Y Y Releases all breakpoints that have been set.

Shift+F11 Y Y Executes through the end of a function call and stops on the line
immediately following the function call or at a breakpoint.

Shift+Ctrl+F11 Y Y Executes the next command or statement. If a function is called,
this key does not stop after executing one line in the function, but
stops only when a breakpoint is reached.

Shift+Ctrl+Z Y N Re-executes the previous operation.

Enter Y N Creates a new line by copying the spaces and tabs from the
beginning of the selected line. If an end-of-line code is entered after
{, this key adds a tab to the next line and } on the following line.

Legend:
Y: Applicable
P: Partially applicable
N: Not applicable

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 271

4.4 Creating job definition scripts (Windows only)

This section explains how to create job definition scripts in JP1/Advanced Shell Editor.

4.4.1 Creating job definition scripts
To create a job definition script:

1. From the File menu, select New.
A new JP1/Advanced Shell Editor window is displayed.

4.4.2 Setting up an operating environment for the editor
To set up an operating environment for the editor:

1. From the Edit menu, select Options.
The Options (Format) dialog box is displayed.

For details about how to specify settings in this dialog box, see 4.7.1 Options (Format) dialog box.

2. Specify the format-related settings.

3. Click the Colors tab.
The Options (Colors) dialog box is displayed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 272

4. Specify the display color information.
To reset the display colors to the defaults, click the Reset to Default button.
For details about how to specify settings in this dialog box, see 4.7.2 Options (Colors) dialog box.

5. Click the OK button.
An operating environment is now set up for the editor, and the dialog box closes.

4.4.3 Setting up an execution environment for job definition scripts
You can specify for each job definition script file run-time parameters, a run-time directory, a job environment file, and
a logical host. The specified information is stored in the debugging information file.

To set up an execution environment for a job definition script:

1. From the Debug menu, select Runtime Environment Settings.
The Runtime Environment Settings dialog box is displayed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 273

For details about how to specify settings in this dialog box, see 4.7.3 Runtime Environment Settings dialog box.

2. Click the OK button.
An execution environment is now set up, and the dialog box closes.
If Do not accumulate is selected in Coverage information, coverage information will not be collected.

4.4.4 Checking syntax
You can check the syntax of a job definition script file. The editor checks for any syntax errors, but does not execute
the script. Coverage information is not collected even if the option for accumulating coverage information is specified
(this corresponds to the -c option in the adshexec command).

The console is not displayed. Errors are displayed in the Error List window.

To check syntax:

1. From the Debug menu, select Check Syntax.
The editor is placed in the debug mode and starts syntax checking.
The window will be grayed out while syntax checking is underway.

• Display during syntax checking

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 274

• Display when syntax checking has been completed
If any syntax errors are detected, information about the errors is displayed in the Error List window.

2. Check the information displayed in the Error List window.

For details about the Error List window, see 4.7.4 Error List window.

Notes:

• In the debug mode, the menus are grayed out and Check Syntax cannot be selected from the Debug menu.

• If you attempt to perform a syntax check on a job definition script file that does not yet have a name, the Save
As dialog box for specifying a name for the file and saving it will be displayed. A syntax check cannot be
performed for such a file until it is saved with a new job definition script file name (.ash).

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 275

• If the contents of the job definition script file have changed, a message asking whether the file is to be updated
is displayed. To update the file, save it, and then perform the syntax check.

4.4.5 Searching for and replacing character strings
This subsection explains how to search for and replace character strings in job definition script files.

(1) Searching for character strings
To search a job definition script file for a character string:

1. From the Search menu, select Search.
The Search dialog box is displayed.

For details about how to specify settings in this dialog box, see 4.7.5 Search dialog box.

2. Make sure that the Replace check box is not selected.
If the Replace check box is selected, clear it.

3. In Search for, enter the character string to be searched for. If necessary, select the Match case and Find whole
words only check boxes.

4. Click the Find Previous or Find Next button.
The specified character string is searched for. If there is no matching character string, the editor sounds a beep tone.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 276

5. To end the search, click the Cancel button.
The Search dialog box closes.

(2) Replacing character strings
To replace a character string in a job definition script file:

1. From the Search menu, select Replace.
The Search dialog box is displayed.

For details about how to specify settings in this dialog box, see 4.7.5 Search dialog box.

2. Make sure that the Replace check box is selected.
If the Replace check box is not selected, select it.

3. In Search for, enter the character string to be searched for and replaced. If necessary, select the Match case and
Find whole words only check boxes.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 277

4. In Replace with, enter the character string that is to replace the specified Search for character string.

5. Click the Find Previous or Find Next button.
The editor starts searching for the specified Search for character string and replacing it with the specified Replace
with character string. If there is no character string to be replaced, the editor sounds a beep tone.

6. To end the replace operation, click the Cancel button.
The Search dialog box closes.

4.4.6 Debugging
Checking the behavior of a job definition script file is called debugging.

This is equivalent to the adshexec command with the -d option specified. The console is displayed while debugging
is being performed. Error messages are displayed in the Error List window.

There are two ways to perform debugging:

Method Operation Overview

Execution From the Debug menu, select Run to Breakpoint. Starts and restarts execution up to a
breakpoint.

Step-by-step execution From the Debug menu, select Step In. Executes one line of the job definition script,
and then stops execution. If a function is

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 278

Method Operation Overview

Step-by-step execution From the Debug menu, select Step In. called, the editor also executes one line in the
function and stops execution.

From the Debug menu, select Step Over. Executes one line of the job definition script
and then stops execution. If a function is
called, the editor does not stop after executing
a single line in the function, but stops only
when a breakpoint is reached.

From the Debug menu, select Step Out. Stops on the line immediately following a
function call or at a breakpoint.

Notes:

• If you attempt to debug a job definition script file that does not yet have a name, the Save As dialog box for
specifying a name for the file and saving it will be displayed. A file cannot be debugged until it is saved with a
new job definition script file name (.ash).

• If the contents of the job definition script file have changed, a message asking whether the file is to be updated
is displayed. If you update the file, you can then debug it.

• If the editor is forcibly terminated during debugging (because, for example, End now is selected in the Exit the
Program dialog box), the debugger's adshesub.exe process might keep running and the console might remain
displayed. If this happens, terminate the adshesub.exe process with the taskkill command or from the
task manager.

(1) Setting and releasing breakpoints during debugging
You set breakpoints at locations where you want execution to stop temporarily during debugging. You can also release
breakpoints that have been set.

Because JP1/Advanced Shell Editor sets a breakpoint at the line where the cursor is located, breakpoints cannot be set
in external scripts. Even if breakpoints have already been set in an external script, execution will not stop at such
breakpoints. You can set a maximum of 999 breakpoints.

(a) Setting breakpoints
To set a breakpoint:

1. Move the cursor to the line where you want to set a breakpoint.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 279

2. From the Debug menu, select Set Breakpoint.

A breakpoint is set at the line where the cursor is located. The symbol is displayed on the left end of the line
to indicate that a breakpoint has been set. The job definition script executes up to, but not including, the line where
the breakpoint is set and then stops.

(b) Removing a breakpoint
To remove a breakpoint:

1. Move the cursor to the line where a breakpoint is to be removed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 280

2. From the Debug menu, select Remove Breakpoint.
The breakpoint is removed from the line where the cursor is located.

(c) Removing all breakpoints
To remove all breakpoints:

1. Display a job definition script in which breakpoints are set.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 281

2. From the Debug menu, select Remove All Breakpoints.
All breakpoints are removed from the displayed job definition script file.

Notes:

• You can set a breakpoint at any line while you are in the edit mode. In the debug mode, a breakpoint can be set
only on a line for a command or a statement that is to be executed.

• If a breakpoint is set on a non-execution line, the editor searches downwards in the script file for an appropriate
location for a breakpoint and sets a breakpoint on that line when the debug mode begins.

• You can set a maximum of 999 breakpoints.

(2) Performing and canceling debugging

(a) Debugging up to a breakpoint
To debug up to a breakpoint:

1. From the Debug menu, select Run to Breakpoint, or on the toolbar, click the Run to Breakpoint button.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 282

JP1/Advanced Shell Editor is placed in the debug mode and begins debugging. A symbol () indicating the next
location to be executed is displayed to the left of the corresponding line. Comment lines and lines containing only
spaces are ignored.
Execution stops temporarily when the script has executed through the line preceding a line on which a breakpoint
() is set.

For details about how to set breakpoints, see (1) Setting and releasing breakpoints during debugging.

2. To cancel debugging, from the Debug menu, select Quit Debugging, or on the toolbar, click the Quit Debugging
button.
The editor stops debugging when this selection is made, displays a message, performs postprocessing, and then
terminates debugging. The editor terminates debugging without stopping even if the end of the process has not been
reached, and returns to the edit mode.

(b) Executing one line at a time (performing step-by-step execution in functions)
To execute one line at time and perform step-by-step execution in functions:

1. From the Debug menu, select Step In, or on the toolbar, click the Step In button.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 283

The editor is placed in the debug mode and begins debugging. A symbol () indicating the next location to be
executed is displayed to the left of the corresponding line. Comment lines and lines containing only spaces are
ignored. The editor also executes only one line at a time inside functions. When the job definition script has been
executed through the last line, a symbol () indicating the end of the debugger process is displayed.

Unlike CUI, when an external script is executed, execution does not stop within the external script. Execution stops
when it reaches the next command in the job definition script being displayed by the editor.

2. To cancel debugging, from the Debug menu, select Quit Debugging, or on the toolbar, click the Quit Debugging
button.
The editor stops debugging when this selection is made, displays a message, performs postprocessing, and then
terminates debugging. The editor terminates debugging without stopping even if the end of the process has not been
reached, and returns to the edit mode.

(c) Executing one line at a time (not performing step-by-step execution in functions)
To execute one line at a time and not perform step-by-step execution in functions:

1. From the Debug menu, select Step Over, or on the toolbar, click the Step Over button.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 284

The editor is placed in the debug mode and begins debugging. A symbol () indicating the next location to be
executed is displayed to the left of the corresponding line. Comment lines and lines containing only spaces are
ignored. When the job definition script has been executed through the last line, a symbol () indicating the end
of the debugger process is displayed.
Unlike CUI, when an external script is executed, execution does not stop within the external script. Execution stops
when it reaches the next command in the job definition script being displayed by the editor.

2. To cancel debugging, from the Debug menu, select Quit Debugging, or on the toolbar, click the Quit Debugging
button.
The editor stops debugging when this selection is made, displays a message, performs postprocessing, and then
terminates debugging. The editor terminates debugging without stopping even if the end of the process has not been
reached, and returns to the edit mode.

(d) Executing through the end of a function
To execute through the end of a function:

1. From the Debug menu, select Step Out, or on the toolbar, click the Step Out button.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 285

The editor is placed in the debug mode and begins debugging. A symbol () indicating the next location to be
executed is displayed to the left of the corresponding line. Comment lines and lines containing only spaces are
ignored. When the job definition script has been executed through the last line, a symbol () indicating the end
of the debugger process is displayed.
Unlike CUI, execution continues through the end of the job definition script even when control is not inside a
function. However, if there is a breakpoint before control is returned from the function, execution stops.

2. To stop executing the job definition script, from the Debug menu, select Stop Script, or on the toolbar, click the
Stop Script button.
The command whose execution is underway when the Stop Script button is clicked is completed, and the job
definition script stops before the next command is executed.

3. To cancel debugging, from the Debug menu, select Quit Debugging, or on the toolbar, click the Quit Debugging
button.
The editor stops debugging when this selection is made, displays a message, performs postprocessing, and then
terminates debugging. The editor terminates debugging without stopping even if the end of the process has not been
reached, and returns to the edit mode.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 286

(e) Error List window, Watch List window, and console during debugging
• Error List window

Analysis and execution errors detected during debugging are displayed in the Error List window. The values of
variables added to the Watch List window are updated and displayed when execution stops.
For details about the Error List window, see 4.7.4 Error List window.

• Watch List window
The values of the variables displayed in the Watch List window are updated and displayed when execution of the
job definition script stops. To display the Watch List window, while the job definition script is not running, select
Show Watch List from the View menu or click the Show Watch List button on the toolbar. You can select this
menu item only while the job definition script is not running. Double-clicking a variable name in the Watch List
window displays the Edit Value dialog box, where you can update the variable's value.
For details about the Watch List window, see 4.7.6 Watch List window. For details about how to specify settings in
the Edit Value dialog box, see 4.7.8 Edit Value dialog box.

• Console
During debugging, information equivalent to the standard output, standard error output, and job execution logs is
output to the console. The console is displayed while a process executing a job definition script is running and closes
when the process terminates. While a job definition script is executing, the console is active; while a job definition
script is stopped, the editor is active.

(3) Adding variables to the watch list
To add a variable to the Watch List window:

1. In the debug mode, from the Debug menu, select Add Variable to Watch List.
The Add to Watch List dialog box is displayed.

For details about how to specify a setting in this dialog box, see 4.7.7 Add to Watch List dialog box.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 287

2. Enter a name for the variable that you want to add.
You can enter a maximum of 99 bytes. A variable name longer than 99 bytes cannot be entered.

3. Click the Add button.
The entered variable name is added to the Watch List window.

4. Click the Cancel button.
The Add to Watch List dialog closes.

• In the debug mode, selecting a character string in the client area of the JP1/Advanced Shell Editor window, and then
selecting Debug and then Add Variable to Watch List, sets the selected character string in Variable name.

• To delete an added variable from the Watch List window, right-click the variable name and select the Delete from
List menu item.

(4) Simulating errors
The C1 execution percentage rate might not be 100%, even when all execution paths have executed. This situation
occurs when no job step or command that results in an error precedes the job step of the #-adsh_step_start
command.

In such a case, if you simulate an error at a location preceding the #-adsh_step_start command, the C1
information indicating errors in the preceding job steps or job definition scripts can be acquired, thus achieving a 100%
C1 execution percentage rate. For details about the behavior of a job definition script when the fault injection mode is
enabled, see 6.2.20 Enabling and disabling the fault injection mode (joberrmode command).

To simulate an error:

1. Move the cursor to a row in which you want to simulate an error and set a breakpoint.
For details about how to set breakpoints, see (1) Setting and releasing breakpoints during debugging.

2. Perform debugging up to the line in which you intend to simulate an error.
Perform debugging up to the breakpoint set in step 1. Debugging stops temporarily at the breakpoint. For details
about how to perform debugging up to a breakpoint, see (2) Performing and canceling debugging.

3. From the Debug menu, select Fault Injection Mode.
The Fault Injection Mode menu item can be selected only when the job definition script is stopped for a reason
such as a breakpoint.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 288

The fault injection mode is enabled and a check mark is displayed to the left of the Fault Injection Mode menu
item, as shown below.
If you restart debugging in this status, an error is simulated and C1 information is acquired.

To release the fault injection mode, select the Fault Injection Mode item again before you restart debugging.

4. Restart debugging.
By stepping in, stepping over, stepping out, or executing up to the breakpoint, the editor is placed in the debug mode
and debugging resumes.
When debugging is completed through the last line of the job definition script, the fault injection mode is released.

(5) Executing the trap command's action
You use the trap command's action to define an operation that is to be performed when the job controller has received
a forced termination request.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 289

To execute the trap command's action during debug execution:

1. Start debug execution, and then stop the job definition script at any line after the trap action is defined.
For details about how to perform debug execution, see (2) Performing and canceling debugging.

2. Stop the job definition script at a desired line by using a method such as breakpoints.
For details about how to set breakpoints, see (1) Setting and releasing breakpoints during debugging.

3. From the Debug menu, select Execute a trap action.
The Execute a trap action menu item can be selected only when the job definition script is stopped by a means
such as breakpoints.

Once the menu item is selected, the job definition script is run up to the breakpoint. In this case, the commands are
executed in the following order:
1) Current command located on the line where execution is stopped
2) Commands in the action part
3) Commands following the command in step 1
If DISABLE is specified in the TRAP_ACTION_SIGTERM environment setting parameter or no action by the trap
command has been defined and this menu is selected, JP1/Advanced Shell runs the job definition script up to the
next breakpoint without executing the trap command's action.

Notes

• The job definition script cannot be stopped while the trap command's action is executing.

• If the job is terminated while the action by this function is underway, the termination code of the last command
executed is applied as the job's termination code, unlike when the job is terminated forcibly. For example, if
action exit 2 is executed by using this function, the job is terminated with termination code 2. On the other
hand, if the job is terminated forcibly and then action exit 2 is executed, the job is terminated with error and
termination code 1.

• After this menu is selected, if execution of the command that immediately follows is skipped, the action will
not be executed.#1

#1
For example, execution of a command is skipped in the following cases:

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 290

• The fault injection mode is enabled.

• A command inside a job step for which stop was specified for the onError attribute terminates with an
error.

4.4.7 Displaying coverage information
If coverage information has been collected, it can be displayed for the job definition script that is currently open in the
editor or that is being debugged. Coverage information being collected is displayed during debugging. After debugging
is completed, the last coverage information collected is displayed. The coverage information is output to a temporary
file and can be displayed using Notepad (notepad.exe).

The View Coverage Information menu item used to display coverage information is enabled if coverage information
is set to Accumulate in Runtime Environment Settings. If Accumulate is not selected, the View Coverage
Information menu item is grayed out and cannot be selected.

Notepad remains displayed when the editor and debugger have terminated. Coverage information that is being displayed
is not refreshed even when the coverage information is changed during debugging.

To display the coverage information and then cancel display of coverage information:

1. From the View menu, select View Coverage Information, or on the toolbar, click the View Coverage Information
button.
Notepad opens and the coverage information is displayed. You can save the displayed coverage information under
a desired file name.

2. To close the display of coverage information, exit Notepad.
The display of coverage information is closed.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 291

4.5 Editing existing job definition scripts (Windows only)

This section explains how to edit an existing job definition script in JP1/Advanced Shell Editor. There are three ways
to start editing a job definition script file, as described in the following.

Starting from the right-click menu

1. From Explorer, find and right-click the desired job definition script file.

2. Select Edit.

Starting by using a drag-and-drop operation

1. From Explorer, drag the desired job definition script file.

2. Drop the dragged job definition script file onto the Editor icon or in an active editor window.

For details about the editor window, see 4.3 JP1/Advanced Shell Editor operation (Windows only).

Starting from the editor's menu

1. From the File menu, select Open, or from the File menu, select an edit history to start editing.

2. Select the existing job definition script file that is to be edited.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 292

4.6 Saving job definition scripts (Windows only)

To save the job definition script in JP1/Advanced Shell Editor:

1. To save (overwrite) the job definition script file, from the File menu, select Save.
The job definition script file is saved (overwritten).

2. To save the job definition script file under a new name, from the File menu, select Save As.
The job definition script file is saved under the new name that you specify.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 293

4.7 Details of the JP1/Advanced Shell Editor window (Windows only)

While you use the JP1/Advanced Shell Editor window, the following dialog boxes and windows are displayed:

• Options (Format) dialog box

• Options (Colors) dialog box

• Runtime Environment Settings dialog box

• Error List window

• Search dialog box

• Watch List window

• Add to Watch List dialog

• Edit Value dialog box

• Console

4.7.1 Options (Format) dialog box
In the JP1/Advanced Shell Editor window, from the Edit menu, selecting Options displays the Options dialog box.

The Options dialog box contains the Format tab and the Colors tab.

Selecting the Format tab displays the Options (Format) dialog box.

(1) Items in the dialog box
Font

Displays the name of the font currently being used. To change the font, click the Select Font button.
By default, FixedSys is selected.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 294

Font size
Specifies the current font size for characters. To change the font size, click the Select Font button.
By default, 14 is selected.

Word wrap
Selects the word wrap method.
By default, Wrap at window border is selected.

Wrap at window border
Select this item to wrap text at the window border.

Wrap by No. of characters
Select this item to wrap text at a specified number of characters.

No. of characters
Specifies the number of characters for wrapping text.
This item is enabled only when Wrap by No. of characters is selected.
Specify a value in the range from 20 through 512 (bytes).
By default, this is set to 100.

Spaces per tab
Selects the number of spaces (bytes) for setting tabs.
By default, 4 is selected.

Show tabs
Specifies the view/hide setting for tabs.
By default, this item is selected.

Show line breaks
Specifies the view/hide setting for line breaks.
By default, this item is selected.

Show multibyte spaces
Specifies the view/hide setting for the symbol that indicates double-byte spaces.
By default, this item is selected.

Max undo count
Specifies the maximum permitted number of undo operations (for when Undo is selected from the Edit menu).
Specify a value in the range from 10 through 999. By default, 100 is set.

(2) Operations in the dialog box
• Clicking the OK button applies the specified format settings and then closes the dialog box.

• Clicking the Cancel button closes the dialog box without changing any format settings.

4.7.2 Options (Colors) dialog box
In the JP1/Advanced Shell Editor window, from the Edit menu, selecting Options displays the Options dialog box.

The Options dialog box contains the Format tab and the Colors tab.

Selecting the Colors tab displays the Options (Colors) dialog box.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 295

(1) Items in the dialog box
Text

Specifies a color for text.
The default is the system color.

Edit background
Specifies the background color in the edit mode.
The default is the system color.

Debug background
Specifies the background color in the debug mode.
The default is gray.

Comments
Specifies a color for comment lines.
The default is green.

Line breaks
Specifies a color for line breaks.
The default is red

Built-in commands
Specifies a color for built-in commands.
The default is blue.

Reserved words
Specifies a color for reserved words and]].
The default is blue.

Extended commands
Specifies a color for extended commands.
The default is blue.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 296

Strings
Specifies a color for character strings.
The default is dark purple.

Updated line No.
Specifies a color for updated line numbers.
The default is yellow.

Cursors
Specifies a color for the cursor that indicates the current location.
The default is blue.

Reset to Default
Resets the color settings for all items to the defaults.

(2) Operations in the dialog box
• Selecting any button other than Reset to Default opens the Set Colors dialog box where you can select a desired

color. In the Set Colors dialog box, clicking the Create Colors button displays the Create Colors dialog box in which
you can create a desired color.

• Clicking the OK button applies the specified color settings and then closes the dialog box.

• Clicking the Cancel button closes the dialog box without changing any color settings.

4.7.3 Runtime Environment Settings dialog box
In the JP1/Advanced Shell Editor window, from the Debug menu, selecting Runtime Environment Settings displays
the Runtime Environment Settings dialog box.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 297

(1) Items in the dialog box
Runtime parameters

Specifies run-time parameter to be passed to the job definition script.

Example:
If the name of the job definition script to be used is a.ash and ABC is specified for a run-time parameter, ABC
is used as the first argument for a.ash.

Runtime directory
Specifies the current drive or folder in which the job definition script is to be executed.
If this information is omitted, the editor's current folder is assumed.
The editor's current folder is one of the following:

• Folder containing the job definition script file

• Program folder

• Program's current folder

• Shortcut work folder

Example:
In this example, job definition script pwd is specified in the job definition script named a.ash. Specifying C:
\ for the run-time directory produces the same results as when the following specification is made in a Windows
directory:

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 298

 C:\> a.ash
 C:\
 C:\>

Job environment file
Specifies the job environment file to be used during debugging. The specified file is used by the job to be debugged.
If this information is omitted, the file specified in the ADSH_ENV environment variable is used. If no file is specified
in the ADSH_ENV environment variable, the default value is assumed.

Logical host
Specifies the logical host to be used by the user-reply functionality. The user-reply functionality used by the job
subject to debugging is run on the specified logical host.
If this information is omitted, the user-reply functionality is run on the physical host.

Coverage information
Specifies whether coverage information is to be accumulated:

• Do not accumulate
Does not accumulate coverage information. This is equivalent to omitting the -t option in the adshexec
command. The function for displaying coverage information during debugging is disabled.

• Accumulate
Accumulates coverage information. If the job definition script file has been modified, the job is terminated
without executing the job definition script. This is equivalent to specifying the -t option in the adshexec
command. The coverage information can be displayed from the editor.

• Accumulate (and overwrite on update)
Accumulates coverage information. If the job definition script file has been modified, the editor discards the
accumulated coverage information and then starts accumulating the new coverage information. This is equivalent
to specifying both the -t and -f options in the adshexec command. The coverage information can be
displayed from the editor.

By default, Do not accumulate is selected.
Coverage information is saved in a coverage information file (asc file). The asc file is created in the directory
where the job definition script file is located. If there is already an asc file in the directory where the job definition
script file is located, the editor uses that asc file.
To display the coverage information accumulated in the coverage information file, select View Coverage
Information from the editor's View menu or use the adshcvshow command. To merge coverage information
contained in two separate coverage information files, use the adshcvmerg command. For details about coverage
information, see 3.9 Acquiring coverage information.

Shell option
Specifies whether the xtrace shell option is to be set.

• Disable xtrace
Does not set the xtrace shell option when debugging starts. This is the same as the adshexec command
with the -x option omitted.

• Enable xtrace
Sets the xtrace shell option when debugging starts. This is the same as the adshexec command with the -
x option specified.
When this item is selected, executed commands and their arguments are output to the standard error output as
trace information. For details, see 3.5 Outputting the executed commands and their arguments.

The default is that Disable xtrace is selected.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 299

The shell options also include the option for limiting available functions and the option for switching the execution
mode. For details about the shell options, see 5.6 Shell options.

(2) Operations in the dialog box
• Clicking the OK button creates an execution environment file containing the information specified in the dialog

box.

• Clicking the Cancel button closes the dialog box without creating an execution environment file.

4.7.4 Error List window
The Error List window displays the errors that have occurred during debugging. This window is displayed while the
job definition script is not running.

(1) Client area
Type

Displays the type of error. One of the following error types is displayed:

• Analysis: A parsing error occurred.

• Runtime: A run-time error occurred.

Script File Name
Displays the name of the job definition script file in which the error occurred. For a file being edited by the editor,
this field is blank.

Line
Displays the line number where the error occurred.

Message
Displays the nature of the error.

(2) Operations in the Error List window
• If the name of the job definition script file is blank, double-clicking the contents of the Type column moves the

cursor to the beginning of the corresponding line where the error occurred.

• If the name of the job definition script file is blank, right-clicking the contents of the Type column displays the
Jump to Error pop-up menu to move the cursor to the location of the corresponding error.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 300

4.7.5 Search dialog box
In the JP1/Advanced Shell Editor window, from the Search menu, selecting Search displays the Search dialog box.

This Search dialog box is also displayed when Find Previous or Find Next is selected from the Search menu.

(1) Items in the dialog box
Replace

Select this check box to replace the character string that is to be searched for.
By default, this check box is cleared.

Search for
Specifies the character string to be searched for.

Replace with
Specifies the character string that is to replace the character string specified in Search for. This field is enabled only
when the Replace check box is selected.

Match case
Select this check box to conduct a case-sensitive search (when a character string to be retrieved must exactly match
the character string specified in Search for in terms of case).
By default, this check box is cleared.

Find whole words only
Select this check box if only whole words are to be retrieved.
By default, this check box is cleared.

(2) Operations in the dialog box
• Clicking the Find Previous button searches for the specified character string upwards.

• Clicking the Find Next button searches for the specified character string downwards.

• Clicking the Replace All button replaces all occurrences of the character string in the job definition script file with
the character string specified in Replace with.

• Clicking the Cancel button closes the dialog box.

(3) Notes
• The character strings specified most recently in Replace with and in Search for are stored in drop-down lists (up

to 10 such character strings in each drop-down list).

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 301

• If the specified character string is not found, the editor sounds a beep tone.

4.7.6 Watch List window
The Watch List window displays the names and values of variables during debugging.

For details about how to add variables to the Watch List window, see 4.4.6(3) Adding variables to the watch list.

(1) Client area
Variable Name

Displays the names of the variables.

Value
Displays the values of the variables. If a specified variable is invalid, one of the following character strings is
displayed:

• Error:Non-numeric Value
A non-numeric value was specified for a numeric-type variable.

• Error:Internal Error
An internal error occurred.

• Error:Invalid Variable
The variable name is not valid. This text is also displayed if an index number with only an array variable name
specified falls beyond the valid range, or a dimension of a specified array variable is invalid because values
cannot be referenced.

• Error:Insufficient Memory
A memory shortage occurred.

• Error:Read-Only Variable
A value was specified for a read-only variable.

• No Value
The specified variable has no value.

This error is displayed when an attempt is made to change a read-only variable or to specify a character string for
a numeric-type variable. If debugging is restarted, the previous value before the change is set.

(2) Operations in the Watch List window
• Clicking a variable name displays a pop-up menu for selecting one of the following two items:

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 302

• Edit Value
Enables the specified variable's value to be updated.

• Delete from List
Deletes the specified variable.

• Double-clicking a variable name displays the Edit Value dialog box.

4.7.7 Add to Watch List dialog box
In the debug mode, from the Debug menu, selecting Add Variable to Watch List displays the Add to Watch List dialog
box.

(1) Items in the dialog box
Variable name

Specifies a name for a variable that is to be added.

(2) Operations in the dialog box
• Clicking the Add button adds the specified variable name to the Watch List window and then closes the Add to

Watch List dialog box.

• Clicking the Cancel button closes the dialog box without adding a variable.

(3) Notes
• Add Variable to Watch List can be selected from the Debug menu only in the debug mode.

• No error results if the same variable is specified more than once or nonexistent variables are specified.

• A maximum of 99 bytes can be specified for a variable name. If a specified variable name exceeds 99 bytes, the
excess part of the name is discarded.

• You can specify a maximum of 99 variable names.

4.7.8 Edit Value dialog box
In the Watch List window, double-clicking a variable name displays the Edit Value dialog box.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 303

(1) Items in the dialog box
Variable name

Displays the name of the variable that is to be updated.

Value
Enter a desired value. The maximum length for a value is 1,024 bytes. If no name has been defined for the variable
that is to be updated, the value will not be changed.
By default, the current value is set.

(2) Operations in the dialog box
• Clicking the OK button updates the specified variable's value and then closes the Edit Value dialog box.

• Clicking the Cancel button closes the dialog box without updating the variable's value.

4.7.9 Console
During debugging, the console displays information equivalent to the standard output, standard error output, and job
execution logs.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 304

(1) Console operation
• The console is closed when the job being debugged terminates. If an environment file or the job definition script

contains any errors, including syntax errors, check the execution results output to the spool on the basis of the job
ID and the information displayed in the Error List window, and then take appropriate action.

• The method for specifying properties is the same as when the command prompt is used.

4. Using JP1/Advanced Shell - Developer (Windows Only)

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 305

5 Creating Job Definition Scripts

This chapter explains the syntax for job definition scripts.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 306

5.1 Basic elements of job definition scripts

This section explains the basic elements of job definition scripts.

Important note
Note the following about coding job definition scripts:

• A line of a job definition script cannot exceed 8,191 bytes. If a line's length exceeds 8,191 bytes, the job
definition script terminates with an error. A continuation line is treated as a separate line for purposes of
line length. For details about continuation lines, see 5.1.6(3) Line continuation.

• For a line using an extended script command, the maximum length including the continuation lines is 8,191
bytes according to the limitations for extended script commands. For details about the limitations of
extended script commands, see 9.1.3(1) Limitations.

• If a file path is converted during a file input or output operation, the number of bytes changes depending
on the timing of the file input or output operation. In such a case, even if the maximum length of a line is
exceeded due to conversion, processing continues and no error occurs.

5.1.1 Reserved words
In JP1/Advanced Shell, special words and phrases that are used in control statements in job definition scripts are
registered as reserved words. A reserved word has a special meaning when it is used as the first word of a command
and is always recognized as a reserved word (unless it is not enclosed in quotation marks). A reserved word used as the
second or any subsequent word is treated as a normal variable. Therefore, special attention is important when you use
the reserved words.

To use reserved words, use the standard shell commands command -V and whence -v. For details about the command
and whence commands, see command command (executes a command) and whence command (displays how character
strings would be interpreted if used as commands) in 9.3 Standard shell commands.

The following are the reserved words:

! [[{ } case do done elif else esac fi for function if in select then time
until while

5.1.2 Variables
Variables are placeholders that are replaced by values in job definition scripts. You can create variables and reference
their values. Variables can be inherited as environment variables to child processes by exporting them. The variables
are also referred to as shell variables.

(1) Naming conventions for variables
You can assign to a created variable any name that observes the naming conventions. Alphabetic characters are always
case sensitive. Therefore, two variables with the same name but with differences in case will be treated as different
variables.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 307

In a Windows environment, if you attempt to export a variable that name includes lowercase letters and use it as an
environment variable, an error might result depending on the specification of the VAR_ENV_NAME_LOWERCASE
parameter.

The naming conventions for variables are described below. For details about the naming conventions for environment
variables, see (a) Naming conventions for environment variables (Windows only).

• The only permitted characters are alphanumeric characters and the underscore (_).

• A variable must being with a non-numeric character.

• There is no limit to the length of a variable name. However, there is a limit to the length of an input line, and the
CUI debugger imposes a limit to the length of a command (number of characters). We recommend that you observe
these limitations for variables that are used in job definition scripts.
For details about the maximum length of an input line, see 5.1 Basic elements of job definition scripts. For details
about the maximum length of a command entry in the CUI debugger, see 6.1.4 List of debugger commands (UNIX
only).

(a) Naming conventions for environment variables (Windows only)
The supported environment variable names depend on the specification of the VAR_ENV_NAME_LOWERCASE
parameter, as described in the following:

• When DISABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
Environment variable names that include lowercase letters are not supported.
An attempt to export a variable name that includes lowercase letters results in an error.

• When ENABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
Environment variable names that include lowercase letters are supported, except that you must not use lowercase
letters in an environment variable name that begins with ADSH.
Following are notes about specification:

• If a shell variable name consisting of lowercase letters is exported by a job definition script, the environment
variable name that includes lowercase letters is passed as is to an external command that is called subsequently.
Because environment variable names are not case-sensitive in Windows, environment variable names with the
same spelling are treated as the same name and the last value exported is passed as the environment variable.
However, shell variables are case-sensitive and they represent different values.
For example, in the following specification, lowercase is set first as the environment variable value and
uppercase is set last as the environment variable value because environment variable names ABC and abc
are not distinguished:
export abc=lowercase
export ABC=uppercase

• If a shell variable is exported, the export attribute of shell variables with the same spelling within the scope
of that shell variable becomes invalid. For arrays also, the export attribute of all elements becomes invalid.
For a local shell variable, the export attribute of shell variables with the same spelling outside the scope of
that shell variable is valid, but outside the function processing, the environment variable value is recovered.

The setting of the VAR_ENV_NAME_LOWERCASE parameter determines whether lowercase letters are supported by
commands and parameters, as described in the following:

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 308

Command or parameter VAR_ENV_NAME_LOWERCASE parameter setting

DISABLE ENABLE

export parameter (environment setting parameter) Uppercase and lowercase letters are
permitted, but they are not
distinguished.

Same as at the left

export command,
typeset -x command

Shell variable names in lowercase
letters are not supported.

Shell variable names in lowercase
letters are supported, but
environment variable names are
not case sensitive.
Shell variables are case sensitive
and treated as different shell
variables.

set command
(-a option)

All shell variables following the set
command are exported, but an
attempt to set values in shell variables
consisting of lowercase letters results
in an error.

All shell variables following the
set command are exported. If
values are set in shell variables
consisting of lowercase letters,
those shell variables are also
exported.
However, environment variable
names are not case sensitive.

unset command,
readonly command,
read command

Lowercase letters are supported
because they specify shell variable
names.

Same as at the left

#-adsh_file command,
#-adsh_file_temp command,
#-adsh_spoolfile command

Lowercase letters are not supported in
file environment variable definition
names.

Lowercase letters are supported in
file environment variable
definition names.
However, environment variable
names are not case sensitive.

#-adsh_step_start command Job step names are used as shell
variable names for storing step return
values, but lowercase letters are
supported.
Lowercase letters are not supported in
shell variable names that are specified
in -stepVar.

Same as at the left

#-adsh_path_var command Lowercase letters are supported in
variable names.

Same as at the left

Substitution by {environment-variable-name} of extended
script commands

Lowercase letters are supported in
environment variable names.

Same as at the left

Shell variables watched by the GUI debugger Lowercase letters are supported in
shell variable names.

Same as at the left

adshread command Lowercase letters are supported in
shell variable names.

Same as at the left

for shell-variable Lowercase letters are supported in
shell variable names.

Same as at the left

ENVIRON built-in variable in the awk command Environment variable names can be
specified for subscripts, but
lowercase letters are also supported.

Same as at the left

Arguments passed to the adshjava command's batch
applications

Environment variable names can be
specified in system properties, but the
adshjava command does not check
character types.

Same as at the left

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 309

Command or parameter VAR_ENV_NAME_LOWERCASE parameter setting

DISABLE ENABLE

Environment variables collected by the operation information
acquisition functionality

Environment variable names and
values are collected, but the
environment variable names are not
checked for character types.

Same as at the left

(2) Creating variables and assigning values to them
The following shows the format used to create a variable and to assign a value to it:

variable-name=value

You create a variable by specifying a variable name followed by an equal sign (=). You can use your created variables
to write and to read values. To assign a value to the variable, specify the value to the right of the equal sign (=). Note
the following about creating variables:

• If a variable has the read-only attribute, an attempt to assign a value to the variable will result in an error and the
job will terminate. You use the readonly standard shell command to change a variable's attribute to read-only
(for details about the readonly command, see readonly command (sets the read-only attribute for variables or
displays all read-only variables) in 9.3 Standard shell commands).

• If you specify the name of a variable that has not been created, the variable will be created and the specified value
will be assigned to it. When the value to be assigned is a character string, its length can consist of any number of
characters.
When numeric values are assigned to variables defined by the typeset command as the integer type, or numeric
values are assigned to variables used in arithmetic operations, the variable values and the results of the arithmetic
operations must be within the range of -2147483648 to 2147483647. If a value outside this range is specified,
correct results cannot be obtained.

• Do not enter any spaces before or after the equal sign. If there is such a space, the variable will not be created.

• To assign to a variable a character string that contains spaces or metacharacters, you must enclose the character
string in quotation marks (' or "), which will disable the metacharacters or cause space characters to be recognized
correctly as spaces. For details about metacharacters and disabling metacharacters, see 5.1.6 Metacharacters.

(3) Referencing the values of variables

(a) Referencing method
The following shows the formats used to reference the value of a variable:

$variable-name
or
${variable-name}

You reference the value assigned to a variable by specifying a dollar sign ($) before the variable name. The variable
with the matching variable name is referenced. If the variable name you specify contains an invalid character, only the
characters up to that invalid character will be recognized as a variable name.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 310

Example in which an invalid character is specified in the name of a variable to be referenced

abc=xxx
echo $abc@zzz
-->xxx@zzz is output to the standard output.

To explicitly specify a variable to be referenced, enclose the variable name in curly brackets ({}). When a variable
name is enclosed in curly brackets and characters that are not permitted for a variable name are used, those characters
are processed as part of the variable name.

Example for explicitly specifying variable abc and referencing its value

abc=xxx
abcdef=yyy
echo ${abc}def
-->xxxdef is output to the standard output.

(b) Referencing method using offset (start point for referencing) and length (length
to be referenced)

The following shows the formats used to reference a variable value by specifying offset (start point for referencing) and
length (length to be referenced):

${variable-name:offset}

or

${variable-name:offset:length}

or

${variable-name::length}

To reference a specific part of the value assigned to the variable to be referenced, specify :offset or :offset:length
following variable-name.

Only those characters and numeric values permitted by the variable naming rules can be specified for offset and
length. You must observe the following rules in specifying variable names and numeric values for offset and length:

Specification value Specification rules

Numeric value (unsigned) Space and tab cannot be specified before or after the value.

Numeric value (signed) There must be a space immediately before a sign. Space and tab cannot be specified before or after any
other value.

Variable Space and tab cannot be specified before or after the value.

Default for offset Spaces are permitted, but tabs are not permitted.

If the specification spans multiple lines, enter a slash (\) at the end of each line that is to be continued.

The following table describes the value ranges permitted for offset and length:

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 311

Type Value range (in
characters)#

Specification example

offset -65535 to 65535 If 0 is specified, the character string is output from the beginning.
If a positive value is specified, the start point at which the character string is output
is determined by counting the specified number of characters from the beginning of
the character string + 1.
If a negative value is specified, the start point is determined by counting the specified
number of characters from the end of the character string.

Example:
The following shows the reference target when 0, 3, or -1 is specified for offset
for data consisting of 10 characters:

length 0 to 65536 Example:
The portion of the character string enclosed in the highlighted box indicates the
range of characters to be output when offset=3 and length=3 are specified for
data consisting of 10 characters:

#
You can use either of the following methods to specify a numeric value:

• As an octal, decimal, or hexadecimal value
The specified numeric value is identified automatically as follows:

 Any character string beginning with 0x is assumed to be a hexadecimal number (for example, 0xa).
 Any character string beginning with 0 is assumed to be an octal number (for example, 012.
 Any numeric value that is neither octal nor hexadecimal is assumed to be a decimal number.
 -0 is treated as being the same as 0.
 If a numeric value has a sign (- or +), you must specify at least one space between the colon (:) and the sign.

• As a variable names to which a numeric value is assigned
If no variable with the specified variable name exists or no value has been assigned to the specified variable, 0
is assumed as the variable value.
An error results if the specified variable references multiple variables recursively and the recursion count for
offset exceeds 1,024 or the recursion count for length exceeds 1,025.

The notes below apply to specifying offset and length.

• The following specifications result in a syntax error:

• The character string specified for offset or length is not a numeric value or a variable name.
echo ${ABC:123D}

 An error results because 123D is not a numeric value or a variable name.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 312

• A character string that is not a numeric value or a variable name is specified as a value to set to an offset or length
variable name.
CNT=123D
echo ${ABC:CNT}

 An error results because the specified variable value 123D is not a numeric value or a variable name.

• offset is omitted illegally.
echo ${ABC:}

 An error results because offset is not specified.

• An arithmetic expression is specified for offset or length.
echo ${ABC:10-2}

 An error results because an arithmetic expression is specified.

• The variable specified for offset or length contains $ or ${}.
ABC=abcdefghijklmn
AA=1
echo ${ABC:$AA}

 An error results because the variable specified for offset or length contains $ or ${}.

• A tab is specified immediately before offset or length.
(The following example specifies a tab immediately before offset, where indicates a tab:)
ABC=abcdefghijklmn
AA=1
BB=1
echo ${ABC: AA:BB}

 An error results because a tab is specified immediately before offset.

• If the value specified for offset or for variable exceeds the length of the character string set in variable, the character
string set in variable is not retrieved.

ABC=abcdefghijklmn
echo ${ABC:20}

 The character string set in variable ABC cannot be retrieved because the length of that character string is only 14
characters.

• If the variable name specified for offset or length is undefined or the variable value is null, 0 is assumed as the value
of offset or length.

• If the attribute of the variable value that is specified for offset or length is changed by executing the typeset
command, the number base might change depending on the method used (if zeros padding is specified with the -Z
option, the value is treated as being in octal), resulting in a change to the reference range. Furthermore, the specified
value might become invalid due to the change to the number base.
The example below uses the typeset command to change the attribute and specify zeros padding. As a result, the
value 12 specified for variable L1 is interpreted as being an octal value.

ABC=abcdefghijklmnopqrstuvwxyz
typeset -Z3 D1=4
typeset -Z3 L1=12
echo ${ABC:D1:L1}

 012 (octal) is interpreted as 10 (decimal) and efghijklmn (10 characters) is output to STDOUT.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 313

The example below uses the typeset command to change the attribute and specify zeros padding. As a result, 8
specified for variable D1 becomes 008 and is interpreted as an octal value. However, an error results because octal
numbers must be in the range from 0 to 7.

ABC=abcdefghijklmnopqrstuvwxyz
typeset -Z3 D1=8
typeset -Z3 L1=12
echo ${ABC:D1:L1}

 An error results because 8 is specified as an octal number.
If the variable specified for offset or length is a recursive reference specification or circular reference specification,
an error results. Examples are shown in the following:

• Example of recursive reference specification
ABC=abcdefghijklmnopqrstuvwxyz
D1=D1
echo ${ABC:D1}

• Example of circular reference specification
ABC=abcdefghijklmnopqrstuvwxyz
D1=D2
D2=D1
echo ${ABC:D1}

The following are examples of specifying offset and length.

• Specifying offset(5)
ABC=abcdefghijklmn
echo ${ABC:5}

-->fghijklmn is output to the standard output.

• Specifying offset(5) and length(4)
ABC=abcdefghijklmn
echo ${ABC:5:4}

-->fghi is output to the standard output.

• Specifying offset(-1)
ABC=abcdefghijklmn
echo ${ABC: -1}

-->n is output to the standard output.

• Specifying the name of a variable that defines offset

DEF=abcdefghijklmn
CNT=5
echo ${DEF:CNT}

-->fghijklmn is output to the standard output.

• Specifying the names of variables that define offset and length

DEF=abcdefghijklmn
CNT=5

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 314

LEN=4
echo ${DEF:CNT:LEN}

--> fghi is output to the standard output.

• Specifying the name of a variable that defines offset

DEF=abcdefghijklmn
CNT=-1
echo ${DEF:CNT}

-->n is output to the standard output.

• Specifying variable xyz explicitly and referencing three characters of the value specified for the variable beginning
with character 5, where variable xyz contains multibyte characters and the values of offset and length are assigned
to variables CNT and LEN.

xyz= abcdefgh
CNT=4
LEN=3
echo ${xyz: CNT: LEN}

--> is output to the standard output.

• Specifying variable xyz explicitly and referencing 14 characters of the value specified for the variable beginning
with character -17, where variable xyz contains multibyte characters and the values of offset and length are assigned
to variables CNT and LEN.

xyz= abcdefgh
CNT=-17
LEN=14
echo ${xyz: CNT: LEN}

-->f abcdefgh is output to the standard output.

(4) Formats and attributes permitted for variables
In JP1/Advanced Shell, you can specify formats and attributes for variables. The following tables describe the formats
and attributes that can be specified for variables.

Table 5‒1: Formats that can be specified for variables

Format Description

Left-justified Left-justifies the value assigned to the variable.

Right-justified Right-justifies the value assigned to the variable.

Zero-padded Right-justifies the value assigned to the variable; if the value is a numeric value, pads any leading spaces with zeros.

Lowercase
conversion

Converts all uppercase letters in the value assigned to the variable to lowercase letters.

Uppercase conversion Converts all lowercase letters in the value assigned to the variable to uppercase letters.

Table 5‒2: Attributes that can be specified for variables

Attribute Description

Integer-type attribute Treats the value assigned to the variable as an integer.
This attribute enables a base number used during output to be defined.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 315

Attribute Description

Read-only attribute Sets the variable as being read-only.

Export attribute Exports the variable.

You use the typeset command to specify formats and attributes. For details about the typeset command, see
typeset command (declares explicitly the attributes and values of variables and functions).

Examples of specifying formats for variables are shown below. These examples assume that each of the variables shown
has been defined (indicates a space). Each line of code is followed by an explanation of the coding.

 STRn=" AbCdeFgHiJk "
 NUMn="12345"

• Contents of job definition script

typeset -L STR1 # Change STR1 to left-justified format
echo $STR1 # Outputs STR1
typeset -L5 STR2 # Change STR2 to left-justified format
 # with an area length of 5 bytes
echo $STR2 # Outputs STR2
typeset -R STR3 # Change STR3 to right-justified format
echo $STR3 # Outputs STR3
typeset -R4 NUM1 # Change NUM1 to right-justified format
 # with an area length of 4 bytes
echo $NUM1 # Outputs NUM1
typeset -Z9 STR4 # Change STR4 to zero-padded format with
 # an area length of 9 bytes
echo $STR4 # Outputs STR4
typeset -Z9 NUM2 # Change NUM2 to zero-padded format with
 # an area length of 9 bytes
echo $NUM2 # Outputs NUM2
typeset -l STR5 # Change STR5 to lowercase conversion
 # format
echo $STR5 # Outputs STR5
typeset -u STR6 # Change STR6 to uppercase conversion
 # format
echo $STR6 # Outputs STR6
typeset -i16 NUM3 # Change NUM3 to integer-type attribute
 # with hexadecimal representation
echo $NUM3 # Outputs NUM3

• STDOUT file contents of the executed job

******** JOB SCOPE STDOUT ********
AbCdeFgHiJk <-- Output result of STR1
AbCde <-- Output result of STR2
AbCdeFgHiJk <-- Output result of STR3
2345 <-- Output result of NUM1
CdeFgHiJk <-- Output result of STR4
000012345 <-- Output result of NUM2
abcdefghijk <-- Output result of STR5
ABCDEFGHIJK <-- Output result of STR6
16#3039 <-- Output result of NUM3

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 316

5.1.3 Arrays
In JP1/Advanced Shell, you can create and reference an array as a type of variable.

You can create a one-dimensional array that can hold a maximum of 65,536 elements with element numbers from 0 to
65,535. If no element is specified, no array is set.

(1) Creating arrays
The following explains how to create an array.

• Creating multiple elements at one time (using the set command)

set -A array-name value value ...
set +A array-name value value ...

Example:

set -A abc 1 2 3
echo ${abc[1]}
-->2 is output to the standard output.

This method can create multiple elements at the same time. For details about the set -A command, see set command
(sets shell options, creates an array, or displays variable values) in 9.3 Standard shell commands.

• Creating a single element

array-name[element-number]=value

Example:

abc[0]=1
abc[1]=2
abc[2]=3
echo ${abc[1]}

-->2 is output to the standard output.
This method creates one element at a time. To create multiple elements, perform the step as many times as there are
elements to be created. An array with element number 0 is treated in the same manner as variables.

• Creating multiple elements at the same time (without using the set command)

array-name=(value value ...)

Example:

abc=(1 2 3)
echo ${abc[1]}

-->2 is output to the standard output.
This method can create multiple elements at the same time. For details about the creation method, see (2) Creating
arrays by using array-name=(value value ...).

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 317

(2) Creating arrays by using array-name=(value value ...)
An array defined in the format array-name=(value value ...) is registered in the format set -A array-name value
value In JOBLOG, array creation is output as if the set command had been executed, not in the format array-
name=(value value ...).

Even when arrays are created in the format array-name=(value value ...), array elements are managed in the same
manner as for other arrays. For example, an array created with the following definition is the same as the array created
by set -A ARRAY x1 x2 x3 x4 x5:

Array elements for an array defined as ARRAY=(x1 x2 x3 x4 x5)

ARRAY[0]=x1
ARRAY[1]=x2
ARRAY[2]=x3
ARRAY[3]=x4
ARRAY[4]=x5

Therefore, output to JOBLOG, coverage collection, and output of the xtrace shell option all have the same result as
when the set command is used to define arrays.

If array-name=() is defined, a shell variable whose name is array-name and value is the null string is created. This is
the same as when array-name= is defined.

(a) Examples of array creation
The table below shows examples of creating array elements that contain shell variables by using the following variables:

A=a
B=b
C=c
MA=' a b c' #
MB=d

#
The single quotation mark (') is used to indicate a space. It is not part of the actual variable value.

Table 5‒3: Example of array element creation

Array definition Array elements that are created Number of array elements created

(a b c) [0]=a [1]=b [2]=c 3

($A $B $C) [0]=a [1]=b [2]=c 3

(${A}${B}${C}) [0]=a [1]=b [2]=c 3

($A $B `echo 1`) [0]=a [1]=b [2]=1 3

(AB $C) [0]=ab [1]=c 2

(${A}xyz ${B}stu) [0]=axyx [1]=bstu 2

($MA $MB) [0]=a [1]=b [2]=c [3]=d 4

(MAMB) [0]=a [1]=b [1]=cd 3

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 318

(b) Example of JOBLOG output when arrays are used
Examples of array definition and the resulting JOBLOG output are shown in the following:

• Specifying 3 as the number of arrays SEQ1 and (x1 x2 x3) as the number of elements

SEQ1=(x1 x2 x3)
echo ${SEQ1[@]}

-->x1 x2 x3 is output to the standard output.
The following shows an example of the JOBLOG output when array SEQ1 is used:

KNAX7901-I The job controller will wait for all asynchronous processes at
the end of the job.
KNAX0724-I The job ID was assigned. job ID=000053

 Advanced Shell 10-50

 [Information]
 Job ID : 000053
 Spool directory : /var/opt/jp1as/spool/000053/
 Date : 2014/02/05
 EnvFile(system) :
 EnvFile(job) : /opt/jp1as/conf/adsh.conf
 Host name : vm002149
 [Environment variable from Automatic Job Management System]

******** JOB CONTROLLER MESSAGE ********
22:17:21 000053 KNAX0091-I ADSH000053 The job started.
22:17:21 000053 KNAX7901-I The job controller will wait for all
asynchronous processes at the end of the job.
22:17:21 000053 KNAX7902-I The job controller will run in tty stdin mode.
22:17:21 000053 KNAX6110-I Execution of the command SEQ1[0]=x1 (line=1)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:17:21 000053 KNAX6110-I Execution of the command SEQ1[1]=x2 (line=1)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:17:21 000053 KNAX6110-I Execution of the command SEQ1[2]=x3 (line=1)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:17:21 000053 KNAX6112-I Execution of the command echo (line=2)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:17:21 000053 KNAX0098-I ADSH000053 The job ended. exit status=0
execution time=0.001s CPU time=0.000s

******** Script IMAGE ********

***** /home/jp1asuser1/shell/A.sh *****
0001 : SEQ1=(x1 x2 x3)
0002 : echo ${SEQ1[@]}

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX0098-I ADSH000053 The job ended. exit status=0 execution time=0.001s
CPU time=0.000s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the
root job. spool job directory="/var/opt/jp1as/spool/000053-ADSH000053/"

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 319

KNAX7999-I Advanced Shell ended. exit status=0

******** JOB SCOPE STDOUT ********
x1 x2 x3

• Defining variable names to which array elements are assigned as shown below, and specifying 3 as the number of
arrays SEQ1
ARR1=x1
ARR2=x2
ARR3=x3
SEQ1=($ARR1 $ARR2 $ARR3)
echo ${SEQ1[@]}

-->x1 x2 x3 is output to the standard output.
The following shows an example of the JOBLOG output when array SEQ1 is used:

KNAX7901-I The job controller will wait for all asynchronous processes at
the end of the job.
KNAX0724-I The job ID was assigned. job ID=000051

 Advanced Shell 10-50

 [Information]
 Job ID : 000051
 Spool directory : /var/opt/jp1as/spool/000051/
 Date : 2014/02/05
 EnvFile(system) :
 EnvFile(job) : /opt/jp1as/conf/adsh.conf
 Host name : vm002149
 [Environment variable from Automatic Job Management System]

******** JOB CONTROLLER MESSAGE ********
22:10:35 000051 KNAX0091-I ADSH000051 The job started.
22:10:35 000051 KNAX7901-I The job controller will wait for all
asynchronous processes at the end of the job.
22:10:35 000051 KNAX7902-I The job controller will run in tty stdin mode.
22:10:35 000051 KNAX6110-I Execution of the command ARR1=x1 (line=1)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:10:35 000051 KNAX6110-I Execution of the command ARR2=x2 (line=2)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:10:35 000051 KNAX6110-I Execution of the command ARR3=x3 (line=3)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:10:35 000051 KNAX6110-I Execution of the command SEQ1[0]=x1 (line=4)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:10:35 000051 KNAX6110-I Execution of the command SEQ1[1]=x2 (line=4)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:10:35 000051 KNAX6110-I Execution of the command SEQ1[2]=x3 (line=4)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:10:35 000051 KNAX6112-I Execution of the command echo (line=5)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
22:10:35 000051 KNAX0098-I ADSH000051 The job ended. exit status=0
execution time=0.001s CPU time=0.000s

******** Script IMAGE ********

***** /home/jp1asuser1/shell/B.sh *****
0001 : ARR1=x1

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 320

0002 : ARR2=x2
0003 : ARR3=x3
0004 : SEQ1=(${ARR1} ${ARR2} ${ARR3})
0005 : echo ${SEQ1[@]}

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX0098-I ADSH000051 The job ended. exit status=0 execution time=0.001s
CPU time=0.000s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the
root job. spool job directory="/var/opt/jp1as/spool/000051/000051-
ADSH000051/"
KNAX7999-I Advanced Shell ended. exit status=0

******** JOB SCOPE STDOUT ********
x1 x2 x3

(c) Notes
A maximum of 8,192 bytes can be specified per line. If an array whose array element numbers have been extended is
defined and the maximum number of arrays are specified all on one command line, an error will result. If the specification
exceeds 8,192 bytes, use the continuation line specification (\) to continue specification onto the next line so that no
line exceeds 8,192 bytes.

Definition examples that use the continuation line specification (\) are shown in the following.

Example of definition using the set command

set -A ARRAY x0\
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 ... x1000 \
x1001 x1002 x1003 x1004 x1005 x1006 x1007 x1008 x1009 x1010 x1011 ...
x2000 \
 :
x65001 x65002 x65003 x65004 x65005 x65006 x65007 x65008 x65009 ... x65535

Example of definition using an assignment expression

ARRAY=(x0\
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 ... x1000 \
x1001 x1002 x1003 x1004 x1005 x1006 x1007 x1008 x1009 x1010 x1011 ...
x2000 \
 :
x65001 x65002 x65003 x65004 x65005 x65006 x65007 x65008 x65009 ... x65535)

(3) Referencing the values of arrays
The following explains how to reference the values in an array.

• Referencing the value of element 1 of an array

${array-name[element-number]}

Example:
set -A abc 1 2 3

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 321

echo ${abc[1]}
--> 2 is output to the standard output.

• Referencing the values of all elements of an array
There are four ways to reference the values of all elements of an array:

Referencing method 1:
${array-name[*]}

Example:
set -A abc 1 2 3
echo ${abc[*]}
--> 1 2 3 is output to the standard output.

Referencing method 2:
${array-name[@]}

Example:
set -A abc 1 2 3
echo ${abc[@]}
--> 1 2 3 is output to the standard output.

Referencing method 3:
"${array-name[*]}"
Note: When this method is used, each value is separated by the value of the IFS shell variable.

Example:
set -A abc 1 2 3
IFS=:
echo "${abc[*]}"
--> 1:2:3 is output to the standard output.

Referencing method 4:
"${array-name[@]}"

Example:
set -A abc 1 2 3
echo "${abc[@]}"
--> 1 2 3 is output to the standard output.

The following shows an example of referencing the values of an array:

Contents of job definition script

set -A myArray a01 a02 a03 # Define myArray as an array
for myElement in ${myArray[*]} # Expand all elements of myArray to
wordlists in the for statement
do
 echo $myElement
done

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 322

Results output to the standard output

a01
a02
a03

5.1.4 Functions
You can use functions by defining them in the same job definition script files and external files. The following shows
the formats used to define functions.

Format 1

function-name() {
 command
 :
 (omitted)
}

Format 2

function function-name {
 command
 :
 (omitted)
}

The naming conventions for functions are the same as for variables. A function cannot have the same name as any
standard shell command or extended shell command. For details about the naming conventions for variables, see 5.1.2(1)
Naming conventions for variables.

If you define a function in a job definition script that is not the job definition script in which the function is to be executed,
you must use the . (dot) command or the #-adsh_script command to call the job definition script in which the
function is defined before the function executes.

The formats are shown below. For details about the . (dot) command, see . command (executes a shell script) in 9.3
Standard shell commands. For details about the #-adsh_script command, see #-adsh_script command (calls an
external job definition script file from the job definition script that is running) in 9.5 Extended script commands.

. name-of-file-defining-the-function

or

#-adsh_script name-of-file-defining-the-function

If a function defined in a job definition script has the same name as another function in the same job definition script,
in a job definition script called by the . (dot) command, or in a job definition script called by the #-adsh_script
command, the function defined immediately before the execution location of the identically named function is executed.

The format used to execute a function is shown below. You can specify arguments in a function. The specified arguments
are stored after the positional parameter $1 within the function.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 323

function-name [args]

In the positional parameter $0 in the function, the following information is stored according to the format used:

• For a function defined in format 1, its shell script name is stored.

• For a function defined in format 2, its function name is specified.

The following table explains the relationship between positional parameters and whether function arguments are
specified.

Table 5‒4: Relationship between positional parameters and whether function arguments are
specified

Positional parameter in the
program calling the function

Function
argument

Positional parameter when
the function begins

Positional parameter when control returns
from the function

Specified Specified Value specified in the
argument

Value of the positional parameter in the
program calling the function

Specified Omitted No value Value of the positional parameter in the
program calling the function

Omitted Specified Value specified in the
argument

No value (value of the positional parameter in
the program calling the function)

Omitted Omitted No value No value (value of the positional parameter in
the program calling the function)

(1) Local variables in functions
In JP1/Advanced Shell, you can use the typeset command in a function to define local variables that are valid within
the function. When the function is completed, the defined variables are restored to their status before the function was
executed. The following shows an execution example of local variables in a function.

Contents of job definition script:

0001 : myfunc(){ # Define the myfunc function
0002 : typeset -r var=abc # Define the var local variable with the
read-only attribute in the function
0003 : echo $var # Output the value of the var variable
0004 : readonly -p # Output the variable with the read-only
attribute
0005 : return 0
0006 : }
0007 : typeset -i var=123 # Define the var variable with the integer-
type attribute
0008 : typeset | grep var # Output the attribute of the var variable
0009 : myfunc # Execute the myfunc function
0010 : echo $var # Output the value of the var variable after
function execution
0011 : readonly -p # Output the variable with the read-only
attribute
0012 : typeset | grep var # Output the attribute of the var variable
0013 : exit 0
0014 :

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 324

Contents of the STDOUT file of execution job:

******** JOB SCOPE STDOUT ********
typeset -i var <-- Result of line 8. The var variable has been
defined as having the integer type.
abc <-- Result of line 3. The var variable has
been updated to abc.
readonly var=abc <-- Result of line 4. The var variable has the
read-only attribute.
readonly ADSH_DIR_BIN=/opt/jp1as/bin/
readonly ADSH_DIR_CMD=/opt/jp1as/cmd/
123 <-- Result of line 10. The value of the var
variable has been restored after function execution.
readonly ADSH_DIR_BIN=/opt/jp1as/bin/
readonly ADSH_DIR_CMD=/opt/jp1as/cmd/
typeset -i var <-- Result of line 12. Same output results as
in line 8.

(2) Trace mode
By enabling the trace mode for a function, you can execute the commands specified in the function at the same time
that the contents of the commands are output to the standard error output.

You use the typeset standard shell command to place a function in the trace mode. For details about the typeset
command, see typeset command (declares explicitly the attributes and values of variables and functions) in 9.3 Standard
shell commands.

The following shows an example of a typeset command specification and its standard error output results:

Contents of job definition script

0001 : fn(){
0002 : echo "--- `date`"
0003 : }
0004 : typeset -ft fn
0005 : fn

Standard error output results of the function in the trace mode

+ date
+ echo --- Thu Mar 28 16:00:00 JST 2013

(3) Function preload functionality
The function preload functionality enables you to define only the code functions used in the shell script to be defined
during execution. When the function preload functionality is used, batch job execution performance improves compared
with when this functionality is not used because you can avoid executing common code functions regardless of the
execution.

The following explains how to use the function preload functionality.

1. Create a file containing function definitions (function definition file) and save it using the function name as the file
name.
If you define multiple functions in the function definition file, all the specified functions are defined. Note that if a
function name defined in the function definition file already exists, that function definition is overwritten.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 325

If information other than function definitions, such as commands, is specified in the function definition file, that
information functions in the same manner as external scripts.

2. In the job definition script, specify the following command to enable the function preload functionality:

typeset -fu function-name [function-name-2...]

For function-name, specify the name of the function with the same name as the function definition file name.
JP1/Advanced Shell provides autoload as an alias of the typeset -fu command. The format of autoload
is as follows:

autoload function-name [function-name-2...]

For details about the typeset command, see typeset command (declares explicitly the attributes and values of
variables and functions) in 9.3 Standard shell commands.
For details about autoload, see 5.1.5 Command alias definitions.

3. In the FPATH shell variable, specify the directory that contains the function definition file.
If a function with the preload functionality enabled is not defined in the specified function definition file, the contents
of the function definition file with the specified function name are loaded from the directory specified in the FPATH
shell variable and then all the functions specified in the file are defined. You can specify the FPATH shell variable
in job definition scripts and environment files.

(a) Example of using the preload functionality (using the typeset -fu and autoload
commands)

This example uses the preload functionality with the typeset -fu and autoload commands. This example applies
the function preload functionality to the functions auto1, auto2, and auto3.

Contents of the function definition file (/home/jp1as/autoload/auto1):

0001 : function auto1 { # Defines the auto1 function
0002 : echo "start auto1 in FPATH file"
0003 : return 11
0004 : }

Contents of the function definition file (/home/jp1as/autoload/auto2):

0001 : autoxx() { # Defines the autoxx function (auto2 is not
defined)
0002 : echo "start autoxx in FPATH file"
0003 : return 255
0004 : }

Function definition files in the /home/jp1as/autoload directory:
auto1
auto2
(Function definition file auto3 does not exist)

Contents of the job definition script (/home/jp1as/test.ash):

0001 : export FPATH="/home/jp1as/autoload" # Specify FPATH
0002 :
0003 : typeset -fu auto1 auto2 # Apply the preload functionality to the
auto1 and auto2 functions
0004 : autoload auto3 # Apply the preload functionality to the
auto3 function

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 326

0005 :
0006 : auto1 # Execute the auto1 function
0007 : auto2 # Execute the auto2 function
0008 : auto3 # Execute the auto3 function

Execution results:

******** JOB CONTROLLER MESSAGE ********
14:40:37 152263 KNAX0091-I ADSH152263 The job started.
14:40:37 152263 KNAX7901-I The adshexec command will wait for all
asynchronous processes at the end of the job.
14:40:37 152263 KNAX7902-I The adshexec command will run in tty stdin
mode.
14:40:37 152263 KNAX6112-I Execution of the command export (line=1)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:40:37 152263 KNAX6112-I Execution of the command typeset (line=3)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:40:37 152263 KNAX6112-I Execution of the command typeset (line=4)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:40:37 152263 KNAX6112-I Execution of the command echo (line=2)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
14:40:37 152263 KNAX6112-I Execution of the command return (line=3)
finished successfully. exit status=11 execution time=0.000s CPU
time=0.000s#1
14:40:37 152263 KNAX6046-E The function "auto2" is not defined in the
function definition file "/home/jp1as/autoload/auto2". filename="/home/
jp1as/test.ash" line=7#2
14:40:37 152263 KNAX6044-E The function definition file "auto3" was not
found in the FPATH directory. filename="/home/jp1as/test.ash" line=8#3
14:40:37 152263 KNAX0101-E ADSH152263 An error occurred during execution
of the job.
14:40:37 152263 KNAX0098-I ADSH152263 The job ended. exit status=127
execution time=0.004s CPU time=0.000s

#1
Indicates that the execution result of the auto1 function is normal termination.

#2
The auto2 function already exists in the function definition file with the same name in the directory specified
in FPATH. Because that function definition file does not contain a definition of the auto2 function, the
KNAX6046-E message is issued and the function terminates with an error.

#3
For the auto3 function, the directory specified in FPATH does not contain a function definition file with the
function name. Therefore, the KNAX6044-E message is issued and the function terminates with an error.

(b) Notes
• Once a function is defined by loading its function definition file by using the preload functionality, no function

definition file with the same file name will be loaded again. However, if the function is invalidated by the unset
command and then is re-executed, the function definition file with the same name will be loaded again.

• If the function preload functionality is enabled for a function but the function has already been defined in the same
shell script, in a shell script called by the . (dot) command, or in a shell script called by the #-adsh_script
extended script command, the function definition file is not loaded.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 327

• If the same function is defined in multiple function definition files, the last function defined takes effect. If you
define multiple functions in a single function definition file, make sure that there is no duplication of function names.
The following shows an example definition of the fn1 function in multiple function definition files and the output
results.

Contents of the function definition file /home/jp1as/autoload/fn1:
0001 : fn1(){ # fn1 function definition 1
0002 : echo "start fn1"
0003 : return 1
0004 : }

Contents of the function definition file /home/jp1as/autoload/fn2:
0001 : fn2(){ # fn2 function definition
0002 : echo "start fn2"
0003 : return 2
0004 : }
0005 : fn1(){ # fn1 function definition 2
0006 : echo "start fn1 in fn2"
0007 : return 21
0008 : }

Contents of the job definition script /home/jp1as/test.ash:
0001 : export FPATH="/home/jp1as/autoload" # Specify FPATH
0002 : typeset -fu fn1 fn2 # Enable the preload functionality for the fn1
and fn2 functions
0003 : fn1 # Execute the fn1 function
0004 : fn2 # Execute the fn2 function
0005 : fn1 # Re-execute the fn1 function

Results output to the standard output
start fn1 fn1 of definition 1 is executed.
start fn2
start fn1 in fn2 fn1 of definition 2 is executed.

• If the function preload functionality is enabled for an undefined function, the job definition script is placed in
undefined status until a function definition file is loaded. Therefore, nothing is displayed by using the CUI debugger's
info functions command.

5.1.5 Command alias definitions
In JP1/Advanced Shell, you can define an alias for a command. You use the alias command for the alias definition.
The following shows the format:

Format:

alias alias-name=value

If you specify for value a character string that contains a space, you must enclose the entire value in quotation marks.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 328

You can specify for alias-name a built-in command to redefine the command, but no reserved word can be redefined
as an alias. The following shows an example.

Redefining a built-in command:

alias read="read STR" # Define "read STR" for the alias name read
uname | read # read is executed as "read STR"
echo $STR # The result of uname set in the STR variable is
output

Specifying a reserved word as an alias:

alias while="echo JP1/AS" # Define an alias for the reserved word while
while # while is interpreted as a reserved word and
 # the while statement is terminated with a
format error

You use the alias command to define aliases or to output a list of aliases. To invalidate a defined alias definition, you
use the unalias command. For details about these commands, see alias command (defines aliases) and unalias
command (removes alias definitions) in 9. Job Definition Script Commands and Control Statements.

In JP1/Advanced Shell, the following aliases are defined:

Alias Definition

autoload typeset -fu

functions typeset -f

integer typeset -i

local typeset

type whence -v

5.1.6 Metacharacters
Metacharacters are characters that have special meaning in job definition scripts. The following are the JP1/Advanced
Shell metacharacters:

|, &, ;, <, >, (,), $, `, ', \, ", ~, #, *, [,], ?

If you want to use a metacharacter as a normal character, you must invalidate its metacharacter usage. The following
table explains how to invalidate metacharacters.

Table 5‒5: How to invalidate metacharacters

Invalidation method Description

'str' The character string str processes all characters other than the single quotation mark (') as normal characters.

"str" The character string str processes all characters other than the dollar sign ($), backslash (\), and grave accent
mark (`) as normal characters.
However, if \ is immediately followed by $, \, `, or ", then \ is treated as a metacharacter. To include \ as a
normal character in the character string str, specify \\.

\char Invalidates (escapes) the special meaning of the characters char.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 329

When invalidated metacharacters are output, the output processing depends on the specifications of the built-in command
used, such as the echo and print commands.

Contents of job definition script:

echo 'JP1/AS\n' # 1.
echo "JP1/AS\n" # 2.
echo JP1/AS\\n # 3.
echo 'JP1/AS\\n' # 4.

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
JP1/AS As a result of 1, the echo command outputs \n as a line
break.

JP1/AS Result of 2

JP1/AS Result of 3

JP1/AS\n As a result of 4, \ is treated as an escape character
and \n is output as distinct characters.

The following subsections explain functions using metacharacters.

(1) Positional parameters
When you execute a job definition script, you can pass parameters to the job definition script as arguments by specifying
run-time parameters following the job definition script file name. JP1/Advanced Shell assigns these arguments to special
variables called positional parameters. There are 10 positional parameters, $0 through $9. The file name of the executed
job definition script is assigned to $0, and arguments are assigned to $1 through $9 in the order specified. The following
table lists and describes the positional parameters of JP1/Advanced Shell and the related special characters.

Table 5‒6: Positional parameters of JP1/Advanced Shell and the related special characters

Positional parameter or
special character

Description

Positional
parameters

$0 File name of the job definition script.

$n Value of argument n specified in the job definition script (n: 1 through 9)

Related special
characters

$# Number of arguments specified in the job definition script

$* All arguments specified in the job definition script

$@ All arguments specified in the job definition script

"$*" Handles all arguments specified in the job definition script as a group.
Example: "$1 $2 $3 ... "
If the value of the IFS shell variable has been changed, the values are delimited by the new value of the
IFS shell variable.

"$@" Handles the arguments specified in the job definition script individually.
Example: "$1" "$2" ... "
If the IFS shell variable has been changed, the values are delimited by the space.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 330

You use the set standard shell command to change the positional parameters in a job definition script. For details about
the set command, see set command (sets shell options, creates an array, or displays variable values) in 9.3 Standard
shell commands.

(2) String separators
In JP1/Advanced Shell, the characters specified in the IFS shell variable are treated as string separators. The space and
tab characters are treated as string separators because the initial values of the IFS shell variable are the space, tab, and
end-of-line characters. Any number of consecutive spaces and tab characters are treated as a single separator. For details
about the IFS shell variable, see 5.5 Shell variables.

To use space or tab characters in character strings, you must enclose the character string containing the space or tab
character in quotation marks (' or ").

(3) Line continuation
The following explains how to specify a command over multiple lines:

1. Specify a backslash (\) at the end of a line that is to continue onto the next line.

2. Enclose the entire multi-line specification in a single set of quotation marks (but do not specify a quotation mark at
the end of each line that is continued onto the next line).

JP1/Advanced Shell treats such a set of lines as continued lines and processes them as a single line.

(4) Comments
You can specify comments in job definition scripts. When a hash mark (#) is specified in a line, the rest of the line from
the hash mark through the end of the line is treated as a comment. However, if a hash mark is followed by -adsh, the
line is processed as follows:

• Line that begins with #-adsh
This line is treated as an extended script command.

• Specification of #-adsh continues onto the next line
The continuation line is treated as a comment line. The following shows an example:

echo ABC \
#-adsh

However, anytime #-adsh is not continued from the previous line or is not at the beginning of a line, an error
results.

• Coding other than #-adsh is specified
The line is treated as a comment line.

Note that a comment cannot be specified on a line that contains an extended script command.

(5) Wildcards
You can use wildcard characters to obtain file names and directory names that satisfy specified conditions and to compare
such names with desired character strings.

The following table describes the wildcard characters supported in JP1/Advanced Shell.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 331

Table 5‒7: Wildcard characters supported in JP1/Advanced Shell

Wildcard character Description

? Matches any single character, except the dot (.) in dot files.

* Matches a character string consisting of any number of characters, except the dot (.) in dot files.

[...] Match is based on the character string enclosed in the square brackets ([]). When ! is specified at the beginning
of the character string enclosed in the square brackets, the wildcard matches any character string other than the
character string that is enclosed in the square brackets. To specify] as a character, specify it at the beginning
of the character string.
If two characters are separated by a hyphen (-), the wildcard matches any character that falls between those
two characters, inclusive. To specify the hyphen (-) as a character, specify it at the beginning or end of the
character string. For example specifications, see Table 5-8 Specification examples using the square brackets
wildcard.

{str,...} Expands the str strings delimited by the comma by using brace expansion. This expansion is not performed in
the following cases:
• The braceexpand shell option is invalid.
• The noglob shell option is valid.

The following table shows example specifications of the square brackets wildcard ([]).

Table 5‒8: Specification examples using the square brackets wildcard

Specification example Description

[]a] Matches the character string]a.

[!abc] Matches any character string other than abc.

[0-9] Matches one of the numbers from 0 through 9.

[a-z] Matches any lowercase letter.

[A-Z] Matches any uppercase letter.

[0-9a-zA-Z] Matches any alphanumeric character.

[-abc] Matches the character string -abc.

[!-abc] Matches any character string other than -abc.

(6) Substitution
The following three substitution functions are available:

• Variable substitution
Replaces a variable's status, the length (in bytes) of a character string constituting the value of a variable, the number
of elements in an array variable, or the value of a variable expanded by matching the variable value and a specified
pattern.

• Command substitution
Treats a command's standard output as a variable value.

• File name substitution
Expands a file name that matches a specified condition by using wildcard characters, such as * and ?. Note that if
the noglob shell option is enabled, file names are not replaced. For details about the noglob shell option, see
5.6.1 Shell options that can be specified with the set command.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 332

(a) Variable substitution
Variable substitution includes substitution of a variable based on the status of the variable, substitution of a variable for
the length of a character string constituting the value of a variable or for the number of elements in an array, substitution
of a variable based on the result of pattern matching, and substring expansion.

• Variable substitution depending on the status of the variable
The table below lists and describes the formats used to perform variable substitution depending on the status of the
variable. In these formats, variable represents a variable name and word represents the variable that is expanded
according to the status of variable. In the examples and results, a indicates an undefined variable, b=NULL, and c=1.

Table 5‒9: Formats used to perform variable substitution depending on the status of the variable

Format Description Examples Results

${variable:-word} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned. If
variable is defined but its value is NULL or undefined,
the expansion result of word is returned. The value of
variable remains unchanged.

cnt=${a:-7} 7 is assigned to cnt.

cnt=${b:-8} 8 is assigned to cnt.

cnt=${c:-9} Value of c is assigned to
cnt.

${variable-word} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned. If
variable is defined and its value is NULL, the value of
variable (NULL) is returned. If variable is undefined,
the expansion result of word is returned. The value of
variable remains unchanged.

cnt=${a-7} 7 is assigned to cnt.

cnt=${b-8} NULL is assigned to cnt.

cnt=${c-9} Value of c is assigned to
cnt.

${variable:=word} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned. If
variable is defined and its value is NULL or undefined,
the expansion result of word is assigned to variable, and
then the value of variable is returned. Note that this
format is applicable only to variables, not to positional
parameters.

cnt=${a:=7} 7 is assigned to a and the
value of a is assigned to
cnt.

cnt=${b:=8} 8 is assigned to b and the
value of b is assigned to
cnt.

cnt=${c:=9} Value of c is assigned to
cnt.

${variable=word} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned. If
variable is defined and its value is NULL, the value of
variable (NULL) is returned. If variable is undefined,
the expansion result of word is assigned to variable, and
then the value of variable is returned. Note that this
format is applicable only to variables, not to positional
parameters.

cnt=${a=7} 7 is assigned to cnt.

cnt=${b=8} NULL is assigned to cnt.

cnt=${c=9} Value of c is assigned to
cnt.

${variable:?[word]} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned.
If word is specified and variable is defined and its value
is NULL or undefined, the expansion result of word is
output to the standard error output, and then the job
definition script is terminated.
If word is omitted and variable is defined and its value
is NULL or undefined, the KNAX6050-E message
indicating that variable is undefined is issued, and then
the job definition script is terminated.
The value of variable remains unchanged.

cnt=${a:?7} The expansion result is
output to the standard
error output, and then the
shell is terminated.

cnt=${a:?} A message is output, and
then the shell is
terminated.

cnt=${b:?8} The expansion result is
output to the standard
error output, and then the
shell is terminated.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 333

Format Description Examples Results

${variable:?[word]} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned.
If word is specified and variable is defined and its value
is NULL or undefined, the expansion result of word is
output to the standard error output, and then the job
definition script is terminated.
If word is omitted and variable is defined and its value
is NULL or undefined, the KNAX6050-E message
indicating that variable is undefined is issued, and then
the job definition script is terminated.
The value of variable remains unchanged.

cnt=${c:?9} Value of c is assigned to
cnt.

${variable?[word]} If variable is defined as a variable and a value is
assigned to it, the value of variable is returned.
If word is specified and variable is undefined, the
expansion result of word is output to the standard error
output, and then the job definition script is terminated.
If word is omitted and variable is undefined, the
KNAX6050-E message indicating that variable is
undefined is issued, and then the job definition script is
terminated.
The value of variable remains unchanged.

cnt=${a?7} The expansion result is
output to the standard
error output, and then the
shell is terminated.

cnt=${a?} A message is output, and
then the shell is
terminated.

cnt=${b?8} NULL is assigned to cnt

cnt=${c?9} Value of c is assigned to
cnt. Value of c is
assigned to cnt.

${variable:+word} If variable is defined as a variable and a value is
assigned to it, the expansion result of word is returned.
Otherwise, NULL is returned. The value of variable
remains unchanged.

cnt=${a:+7} NULL is assigned to cnt.

cnt=${b:+8} NULL is assigned to cnt.

cnt=${c:+9} 9 is assigned to cnt.

${variable+word} If variable is defined as a variable and a value is
assigned to it or the value is NULL, the expansion result
of word is returned. Otherwise, NULL is returned. The
value of variable remains unchanged.

cnt=${a+7} NULL is assigned to cnt.

cnt=${b+8} 8 is assigned to cnt.

cnt=${c+9} 9 is assigned to cnt.

• Variable substitution to the length of the character string constituting the value of the variable or to the number of
array elements
The table below lists and describes the formats used to perform variable substitution to the length of the character
string constituting the value of the variable or to the number of array elements. In these formats, variable represents
a variable name and array represents an array name.

Table 5‒10: Formats used to perform variable substitution to the length of the character string
constituting the value of the variable or to the number of array elements

Format Description

${#variable} If variable is * or @, the variable is replaced with the number of positional parameters. Otherwise, the
variable is replaced according to the setting specified for the VAR_SHELL_GETLENGTH environment
setting parameter:
• BYTE

Replaces the length of the value stored in variable with the number of bytes.
• CHARACTER

Replaces the length of the value stored in variable with the number of characters.

If the VAR_SHELL_GETLENGTH environment setting parameter is not specified, the operation is the
same as when BYTE is specified in the VAR_SHELL_GETLENGTH environment setting parameter.

${#array[*]} The value is replaced with the number of elements of the array specified by array.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 334

Format Description

${#array[@]} The value is replaced with the number of elements of the array specified by array.

• Variable substitution based on the result of pattern matching
The table below lists and describes the formats used to perform variable substitution based on the result of pattern
matching. In these formats, variable represents a variable name and pattern represents a character string used to
perform pattern matching with variable. Wildcard characters can be used in pattern.

Table 5‒11: Formats used to perform variable substitution based on the result of pattern
matching

Classification Format Description

Leading match ${variable#pattern } If pattern matches the leading part of the variable value, the value in
variable is replaced with its value less the shortest matching part (the
shortest-matching part is deleted). Otherwise, the variable is replaced with
the value of variable.

${variable##pattern } If pattern matches the leading part of the variable value, the variable is
replaced with its value less the longest matching part (the longest-
matching part is deleted). Otherwise, the variable is replaced with the
value of variable.

Trailing match ${variable%pattern } If pattern matches the trailing part of the variable value, the variable is
replaced with its value less the shortest matching part (the shortest-
matching part is deleted). Otherwise, the variable is replaced with the
value of variable.

${variable%%pattern } If pattern matches the trailing part of the variable value, the variable is
replaced with its value less the longest matching part (the longest-
matching part is deleted). Otherwise, the variable is replaced with the
value of variable.

The following shows an example of outputting a variable value with deletion of a specified character string (leading
match).
Contents of the job definition script:

abc=abcd1234xyz987abcd1234efg
echo ${abc#abcd} # 1.
echo ${abc#a*2} # 2.
echo ${abc##a*2} # 3.
echo ${abc#*1234} # 4.
echo ${abc##*1234} # 5.
echo ${abc#1234} # 6.

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
1234xyz987abcd1234efg Result of 1: The leading character string
abcd is deleted.
34xyz987abcd1234efg Result of 2: The string of characters from
a through 2 is deleted (shortest match).
34efg Result of 3: The string of characters from
a through 2 is deleted (longest match).
xyz987abcd1234efg Result of 4: The string of characters from
the beginning through 1234 is deleted (shortest match).
efg Result of 5: The string of characters from
the beginning through 1234 is deleted (longest match).
abcd1234xyz987abcd1234efg Result of 6:The value of abc is output
because there is no leading match.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 335

The following shows an example of outputting a variable value with deletion of a specified character string (trailing
match).
Contents of the job definition script:

abc=abcd1234xyz987abcd1234
echo ${abc%1234} # 1.
echo ${abc%d*4} # 2.
echo ${abc%%d*4} # 3.
echo ${abc%34*} # 4.
echo ${abc%%34*} # 5.
echo ${abc%abcd} # 6.

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
abcd1234xyz987abcd Result of 1: The trailing character string 1234
is deleted.
abcd1234xyz987abc Result of 2: The trailing character string from
d through 4 is deleted (shortest match).
abc Result of 3: The trailing character string from
d through 4 is deleted (longest match).
abcd1234xyz987abcd12 Result of 4: The character string beginning
with 34 is deleted (shortest match).
abcd12 Result of 5: The character string beginning
with 34 is deleted (longest match).
abcd1234xyz987abcd1234 Result of 6: The value of abc is output because
there is no trailing match.

• Substring expansion
The following table lists and describes the formats for variable substitution that is performed based on the result of
substring expansion.

Table 5‒12: Formats for substring expansion

Format Description

${variable:offset} Retrieves characters from the expansion result of variable. offset specifies the start
position of the characters to be retrieved.

${variable:offset:length} Retrieves as many characters as there are in maximum length from the expansion result
of variable. offset specifies the start position of the characters to be retrieved.

${array[*]:offset} Retrieves elements that begin with ${array[offset]} of the array.

${array[*]:offset:length} Retrieves as many elements as there are in length that begin with ${array[offset]} of
the array.

${array[@]:offset} Retrieves elements that begin with ${array[offset]} of the array.

${array[@]:offset:length} Retrieves as many elements as there are in length that begin with ${array[offset]} of
the array.

Legend:
variable: Specifies a variable name.
array: Specifies an array name.
offset: Specifies the start position in the character string or array element subject to partial expansion.
length: Specifies the number of characters or array elements to be expanded.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 336

(b) Command substitution
The table below lists and describes the formats used to perform command substitution. In these formats, command
represents the name of the command and the arguments to be executed.

In Windows, command substitution is performed in the current process except for external commands.

Table 5‒13: Formats used to perform command substitution

Format name Format Description

$() format $(command) If the character string of command contains a backslash (\), \ has no special
meaning.

Grave character format `command` If the character string of command contains \, \ has a special meaning.
To specify one command substitution within another, specify \ immediately
before the inner grave accent mark character string such as `command
\`command\``.

In the grave character format, a backslash (\) in the character string of command is treated as a metacharacter. Therefore,
if the character string of command contains \, the execution results differ between the $() and the grave character
formats. We recommend that you use the $() format.

The following shows example specifications and execution results.

• $() format
Specification example:

echo $(echo '\$x')

Execution result:

\$x

• Grave character format
Specification example:

echo `echo '\$x'`

Execution result:

$x

(c) File name substitution
The table below lists and describes the formats used to perform file name substitution. In these formats, pattern represents
a character string used for pattern matching. Wildcard characters can be used in pattern.

Table 5‒14: Formats used to perform file name substitution with multiple patterns

Format Description Example Matching character string

?(pattern|pattern ...) Matches one of the character strings specified
as pattern.

?(h) Null character string, h

*(pattern|pattern ...) Matches none or any number of the character
strings specified as pattern.

*(h) Null character string, h, h,
hh, hhh, ...

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 337

Format Description Example Matching character string

+(pattern|pattern ...) Matches at least one of the character strings
specified as pattern.

+(h) h, hh, hhh, ...

@(pattern|pattern ..) Matches only one of the character strings
specified as pattern.

@(h) h

!(pattern|pattern ...) Matches all but one of the character strings
specified as pattern.

!(h) Any character string without
h

You can replace file names by specifying multiple patterns delimited by the vertical bar (|). Do not specify any spaces
before or after the vertical bar delimiter. If there is such a space, it will be regarded as part of the pattern.

The following shows examples.

Example of file name substitution

Contents of job definition script:

ls -C # 1. Display the file in the current directory
ls -C ?(*.sh|*.exe|*.dot) # 2. Display the file names whose extension is
sh,exec, or dot
ls -C *(*.sh|*.exe) # 3. Display the file names whose extension is
either sh or exe
ls -C +(*.jhs|*h) # 4. Display the file names whose extension is
jhs or that end with h
ls -C @(*.c|*.jhs) # 5. Display the file names whose extension is c
or jhs
ls -C !(*.c|*.jhs) # 6. Display the file names whose extension is
neither c nor jhs

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
a.jhs a.sh a.txt func.c Execution result of 1
a.sh Execution result of 2
a.sh Execution result of 3
a.jhs a.sh Execution result of 4
a.jhs func.c Execution result of 5
a.sh a.txt Execution result of 6

File names beginning with a dot (.) are excluded as targets of pattern matching. To include file names beginning with
a dot as targets of pattern matching, you must specify the dot explicitly.

(7) Arithmetic expansion
Arithmetic expansion involves performing an arithmetic operation and then assigning the result to a variable. The
following shows the format and an example of arithmetic expansion.

$((arithmetic-expression))

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 338

Example of arithmetic expansion:

Contents of job definition script:

x=100 # 1. Value 100 is assigned to variable x
x=$((x-1)) # 2. Perform the arithmetic operation and then assign
the result to x
echo $x # 3. Output the value of x to the standard output

STDOUT file contents of the executed job:

******** JOB SCOPE STDOUT ********
99 Value 99 is assigned to x.

(8) Input and output redirection
In job definition scripts, you can change the output destination of command execution results and the input source of
information needed for command execution before commands are executed. These capabilities are called input and
output redirection. This subsection explains input and output redirection as supported by JP1/Advanced Shell.

(a) Redirection
The table below describes the redirection methods supported by JP1/Advanced Shell. A redirection is interpreted from
left to right.

Table 5‒15: Redirection available in JP1/Advanced Shell

Redirection Description

> file Uses file as the standard output. If file does not exist, the file is created. If file already exists, the existing file is
overwritten.

< file Uses file as the standard input.

command_1 |
command_2

This is a pipe. It uses the standard output of command_1 as the standard input for command_2.

>>file Uses file as the standard output. If file does not exist, the file is created. If file already exists, new data is added
to the existing file.

>|file Uses file as the standard output. If file does not exist, the file is created. If file already exists, the existing file is
overwritten.

<>file Opens file as the standard input for read and write operations.

<<label This is a here document.

n>file Redirects the output destination of file descriptor n to file.

n<file Inputs file descriptor n from file.

>&n Copies the standard output to file descriptor n.

<&n Copies the standard input from file descriptor n.

>&- Closes the standard output.

<&- Closes the standard input.

| In UNIX, this direction starts a background process that involves input and output from the parent process.

>&p#2 Redirects the output destination of the background process to the standard output.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 339

Redirection Description

<&p#2 Redirects the input of the background process to the standard input.

#1
If |& is used to start multiple background processes that involve input and output operations from parent processes, the KNAX6029-E message
might be issued and the job definition script might terminate with an error. Therefore, when you use |&, use a command such as wait to
prevent multiple background processes from being started concurrently.
This is not supported in the Windows edition.

#2
This redirection method is not available in a Windows execution environment because background processes cannot be generated.

(b) File descriptors
The following table lists and describes the file descriptors in JP1/Advanced Shell by type of input and output.

Table 5‒16: File descriptors in JP1/Advanced Shell by type of input and output

Input or output type File descriptor Remarks

Standard input 0 --

Standard output 1 If SPOOL is specified in the -s option of the adshexec command and the
OUTPUT_STDOUT parameter in the environment file, the terminal is not opened by this
file descriptor because JP1/Advanced Shell uses the standard output for output from the
shell to the spool's STDOUT (stdout).

Standard error 2 The terminal is not opened by this file descriptor because JP1/Advanced Shell uses the
standard error output for output from the shell to the spool's STDERR (stderr).

Other 3 through 9 The user can use these file descriptors in job definition scripts.

Legend:
--: None

(c) Here document
A here document refers to creation of the standard input within the job definition script. The following table lists and
describes the formats related to here documents.

Table 5‒17: Formats related to here documents

Format Description

<< label
document
label

The document part enclosed by label and label is passed to the standard input. A variable specified for document is
replaced and spaces and tab characters are passed as is to the standard input.

<<- label
document
label

The document part enclosed by label and label is passed to the standard input. A variable specified for document is
replaced and spaces are passed as is to the standard input. The tab character at the beginning of each line is deleted.

<< \label
document
label

The document part enclosed by label and label is passed to the standard input. A variable specified for document is
not replaced.

<< 'label'
document
label

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 340

(d) Pipes
When you want to connect multiple commands and use the standard output from one command as the standard input
to another, you can use pipes to connect the commands. A set of commands connected by a pipe is called a pipeline.

• In Windows
A pipeline is processed from left to right, and the commands in a pipeline are executed sequentially. Among built-
in commands, functions, and external commands, only the external commands are executed as separate processes.
Temporary files are used to transfer data between commands.

• In UNIX
A pipeline is processed from left to right, and the commands in a pipeline are executed as separate processes.
You can use the PIPE_CMD_LAST parameter to define whether the last command is to be executed in the current
process or in a separate process. The default is the current process.#

For details about the PIPE_CMD_LAST parameter, see PIPE_CMD_LAST parameter (defines execution processing
for the last command in a pipe) (UNIX only) in 7. Parameters Specified in the Environment Files.

#
This is not applicable to commands executed in separate processes (such as external commands, child jobs,
UNIX-compatible commands, shell operation commands, subshells, commands with a background specified,
and commands with a background process specified).

Also in UNIX, if multiple commands are connected by a pipe and then the output command outputs data to the pipe
after the input command has terminated and while there is no process, the output command might receive SIGPIPE.
In JP1/Advanced Shell, the command issues the KNAX6522-E message and terminates with an error unless the
command handles SIGPIPE.

(9) Command separators
Command separators enable you to specify multiple commands on a single line of a job definition script. The following
table lists and describes the formats for command separators.

Table 5‒18: Formats for command separators

Format Description

command; The specification up to the semicolon (;) is interpreted as a command and its
arguments.

command_1 0&& 0command_2 This is the AND control operator. If the left-hand command terminates with return
code 0, the right-hand command is executed.

command_1 0|| 0command_2 This is the OR control operator. If the left-hand command terminates with any non-
zero return code, the right-hand command is executed.

The command separators can be used to handle and execute a group of commands as a single command group.

(10) Grouping commands
You can execute multiple commands in a batch by grouping them. You can also group multiple command groups. The
following table lists and describes the formats for grouping commands.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 341

Table 5‒19: Formats for grouping commands

Format Description

(command _1; 0command _2; ...) Executes the grouped commands in a subshell (child process).# If the environment
is changed during command execution, the change is not inherited by the current
shell. Delimit the commands in the group with the semicolon or end-of-line
character.

(command_1 (end-of-line)
command_2 (end-of-line)
...)

{ 1command_1; 0command _2; ...;} Executes the grouped commands in the current shell. If the environment is changed
during command execution, the change is inherited after the commands have
terminated. Delimit the commands in the group with the semicolon or end-of-line
character.
In this format, you must insert at least one space after the {, and you must insert
a semicolon (;) or end-of-line character after the last command.

{ 1command_1 (end-of-line)
command_2 (end-of-line)
...(end-of-line)
}

#
Execution of grouped commands in a subshell (child process) is not supported in a Windows execution environment.

(11) Other metacharacters
The following table lists and describes the other metacharacters that are supported.

Table 5‒20: Supported metacharacters

Metacharacter Description

~#1 Replaced with the HOME shell variable.#2

~any-character-string (UNIX only)
Checks whether the user name matching the character string up to / or an argument delimiter is registered
in the /etc/passwd file.
If the user name is registered, this metacharacter is replaced with the corresponding user's login directory.
If the user name is not registered, the specified character string is interpreted as a character string as is.

~+#1 Replaced with the PWD shell variable.

~-#1 Replaced with the OLDPWD shell variable.

 Executes the job definition script or function in the background.

#1
The characters ~, ~+, and ~- are not replaced with the corresponding shell variables if they are enclosed in quotation marks or specified
immediately before an escape character (\) or a character string enclosed in quotation marks. If such a case, you must use the shell variables
themselves.

#2
The HOME shell variable is not specified automatically. You must define it as an environment variable.

#3
& is not supported in a Windows execution environment.

5.1.7 Execution in a separate process (UNIX only)
If the following formats appear in a job definition script, execution takes place in a different process from the current
process. A change made by another process is not inherited to the current process. An example of execution in another
process is shown in the following.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 342

Executing a separate process by using a pipe (|):
The handling of execution in a separate process using a pipe (|) depends on the PIPE_CMD_LAST parameter
specification.

Example:

hostname | read STR

• When CURRENT is specified in the PIPE_CMD_LAST parameter
The hostname command is executed in a separate process, but the read command is executed in the
current process.

• When OTHER is specified in the PIPE_CMD_LAST parameter
The hostname and read commands are both executed in a separate process. Therefore, the result of the
hostname command is not assigned to the STR variable.

Executing a separate process by using command substitution ($(), ``):

Example:

$(date '+%Y%m%d') # Execute a command whose name is the output result
of the date command
`date '+%Y%m%d'` # Execute a command whose name is the output result
of the date command

Executing a background process by using |&:

Example:

echo abc |& # Output the character string abc by a background
process
sleep 1
read -p STR # Read the data that was output by the background
process
echo $STR

Executing grouped commands in a subshell:

Example:

(TZ=GMT; export TZ; date) # Convert the TZ environment variable
temporarily
 # to GMT and then output the time

Background execution by using &:

Example:

sleep 10 &

Replacement of character strings is performed in a separate process. Therefore, if the character string assigned to a
variable by using one of the above formats is executed as a command, the variable name before substitution is output
to the command execution results in the job execution log file. However, for aliases, the command name obtained after
the alias was resolved is output because the alias is resolved in the current process before it is executed.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 343

Contents of the job definition script:

ls="ls -lt" # Assign "ls -lt" to variable ls
alias gt="grep test" # Define "grep test" for alias gt
$ls | gt # Execute ls -lt | grep test

Contents of the job execution log file for the executed job

******** JOB CONTROLLER MESSAGE ********
16:01:11 152286 KNAX0091-I ADSH152286 The job started.
16:01:11 152286 KNAX7901-I The adshexec command will wait for all
asynchronous processes at the end of the job.
16:01:11 152286 KNAX7902-I The adshexec command will run in tty stdin
mode.
16:01:11 152286 KNAX6110-I Execution of the command ls=ls -lt (line=1)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
16:01:11 152286 KNAX6112-I Execution of the command alias (line=2)
finished successfully. exit status=0 execution time=0.000s CPU time=0.000s
16:01:11 152286 KNAX6116-I Execution of the command $ls (line=3) finished
successfully. exit status=0 execution time=0.002s CPU time=0.000s
16:01:11 152286 KNAX6116-I Execution of the command /opt/jp1as/cmd/grep
(line=3) finished successfully. exit status=0 execution time=0.001s CPU
time=0.000s
16:01:11 152286 KNAX0098-I ADSH152286 The job ended. exit status=0
execution time=0.007s CPU time=0.000s

To enable specification of the #-adsh_rc_ignore command for a command specified in the above format, you
must specify the base name of the character string before replacement as the command name in the argument of the #-
adsh_rc_ignore command.

Important note
When the following standard shell commands are executed in a separate process, whether execution of the
command results in normal termination or error termination differs from when these commands are executed
in the current process, as described in the following:

• let command
If this command is executed in a separate process without an arithmetic expression specified, it terminates
normally with return code 1.

• exit and return commands
If either of these commands is executed in a separate process with a non-numeric value specified in its
argument, it terminates normally with return code 1.

• getopts command
If this command is executed in a separate process and the end of options is detected, the command terminates
with an error with return code 1. Use the successRC attribute of the #-adsh_step_start command
or the #-adsh_rc_ignore command to make sure that the getopts command will not terminated
with an error.

• read command
If this command is executed in a separate process and detects an end-of-file (EOF), it terminates with an
error with return code 1. You can prevent such a termination with an error by using the successRC attribute
of the #-adsh_step_start or #-adsh_rc_ignore command.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 344

If this command is executed in a separate process and that process receives a termination request signal, the
command's execution might continue in the separate process depending on the type of signal. To forcibly
terminate the command's processing in a separate process, send SIGTERM to that process.

5.1.8 Pattern matching
In JP1/Advanced Shell, you can compare patterns in some of the standard commands and script control statements. For
example, if the format ${variable#pattern} is used, the shortest part of the variable value that matches the pattern
pattern is deleted and then the remainder of the value is set in variable. The following shows an example.

Example:

$ var=abcd
$ echo ${var#a[b]}
cd

Whether a variable value can be compared with a specified pattern depends on the function. If the format of the pattern
is invalid, the pattern is treated as a normal character string during comparison. For example, [a*(b] treats all [,
*(, and], which normally have a special meaning as a pattern, as normal characters. The following shows an example.

Example:

$ var='[a*(b])cd'
$ echo ${var#[a*(b])}
cd

5.1.9 Escape characters

(1) List of escape characters
The echo and print commands interpret the characters listed in the following table as escape characters:

Escape
character

Meaning echo
command

print command

\a Alert character (bell) Y Y

\b Backspace character Y Y

\c Suppresses the linefeed character at the end of a line (characters following \c
are not output)

Y Y

\f Formfeed character (page break) Y Y

\n Linefeed character Y Y

\r Carriage return character Y Y

\t Tab character Y Y

\v Vertical tab character Y Y

\0nnn#1 ASCII character represented by one, two, or three octal digits (0 to 7) Y Y

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 345

Escape
character

Meaning echo
command

print command

\xnn#2 ASCII character represented by one or two hexadecimal digits (0 to 9, a to f, A
to F)

Y N

\\ A single backslash character Y Y

Legend:
Y: Can be specified.
N: Cannot be specified.

#1
If a specified ASCII character consists of one or two digits and two or one leading zeros, respectively, are added to make it three digits, the
ASCII character will still be treated as consisting of only one or two digits. For example, the following three specifications are all interpreted
as being the same, in which case the alert character (bell) is output three times:
echo -e "\07"
echo -e "\007"
echo -e "\0007"

#2
Enabled only when YES is specified in the ESCAPE_SEQ_ECHO_HEX environment setting parameter. For details about the
ESCAPE_SEQ_ECHO_HEX parameter, see ESCAPE_SEQ_ECHO_HEX parameter (specifies whether ASCII code characters in hexadecimal
notation are to be interpreted as escape characters) in 7. Parameters Specified in the Environment Files.
If a specified ASCII character consists of one digit and a leading zero is added to make it two digits, the ASCII character will still be treated
as consisting of only one digit. For example, the following two specifications are interpreted as being the same, in which case the linefeed
character is output twice:
echo -e "\xA"
echo -e "\x0A"

(2) Handling of the echo command with neither -e nor -E option specified
If neither the -e option (interprets escape characters) nor the -E option (does not interpret escape characters) is specified
in the echo command, the handling of escape characters depends on the setting in the ESCAPE_SEQ_ECHO_DEFAULT
environment parameter. For details about the ESCAPE_SEQ_ECHO_DEFAULT environment parameter, see
ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the action of the echo command when the escape-character
option is omitted) in 7. Parameters Specified in the Environment Files.

5.1.10 Specifying extended script commands
In job definition scripts, a line beginning with #-adsh is treated as a request to an extended script command and the
corresponding extended script command is executed.

For details about extended script commands, see 9.5 Extended script commands.

5.1.11 Specifying external commands
Programs that are not built-in commands in job definition scripts are referred to collectively as external commands.
External commands include UNIX-compatible commands, OS-provided commands, and user-created programs. You
can execute external commands by specifying their command names in the job definition scripts.

The following show how to specify an external command:

$ path-of-external-command

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 346

(1) Executing external commands in Windows

(a) Defining the extensions of external commands
In Windows, you can execute executable files with the extensions .com, .exe, .cmd, and .bat from job definition
scripts. If you register these extensions in the PATHEXT shell variable, you can execute such executable files from job
definition scripts without having to specify their extensions.

External commands are executed from a job definition script in the order that the extensions are registered in the
PATHEXT environment variable. For example, if the value of the PATHEXT environment variable is .COM;.EXE;,
and ls.com and ls.exe are stored at the locations indicated by the PATH shell variable, ls.com is executed first.

An example search for an external command is shown below. In this example, the value of the PATHEXT environment
variable is .COM;.EXE;.

ls <-- Because no extension is specified, the extensions .com and .exe
are added in this order to locate and execute the corresponding external
command.
ls.exe <-- ls.exe is executed because the extension is specified.

(b) Skipping processes before executing external commands
Before JP1/Advanced Shell executes an external command, it performs the processing explained below on the path and
arguments of the external command. If this processing is not needed, execute the external command with the -w option
specified in the command command.

• Converts a backslash (\) preceding a double quotation mark (") to \\.

• Adds a backslash \ in front of a double quotation mark (").

• Encloses in double quotation marks (").

For details about the -w option of the command command, see command command (executes a command) in 9.3
Standard shell commands.

Example:

command -w ."\\prog.exe" "ABC"

(c) Limitations on batch file execution
The following limitations apply to batch file execution:

• When there is no argument
If a batch file path contains any of the special characters &, (,), [,], {, }, ^, =, ;,!, ', +, ,, `, and ~, specify it
in the format <cmd.exe-path> /c <batch-file-path> and then escape the special character in the batch file path by
using "'\.

• When there are arguments
All the following limitations apply;

• Specify a batch file in the format <cmd.exe-path> /c <batch-file-path> <argument-1> <argument-2> ...
<argument-n>.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 347

• If a batch file path contains any of the special characters &, (,), [,], {, }, ^, =, ;,!, ', +, ,, `, and ~, use "'\
to escape the special character in the batch file path.

• If an argument contains a space or any of the special characters &, (,), [,], {, }, ^, =, ;,!, ', +, ,, `, and ~,
use "'\ to escape the space or special character.

• Arguments enclosed in double quotation marks (") are passed to the batch file. The last argument has a double
quotation mark (") only at the beginning. To reference arguments from a batch file, use the formats %~1, %~2, ...
%~n to automatically remove the double quotation mark (").

(2) Executing external commands in UNIX
You can execute an executable binary file with execution permissions granted from a job definition script.

You can also execute a text file with execution permissions granted from a job definition script by specifying #!
executable-program-path at the beginning of the file. In this case, the executable program is executed according to the
specification of #!.

(3) Priority of command execution methods
When the job controller executes a file specified in a job definition script, it checks the conditions listed below in the
order shown here.

Windows only

1. If the file satisfies the CHILDJOB_PGM parameter condition, the job controller executes the file as a child job.

2. If the file satisfies the CHILDJOB_SHEBANG parameter, the job controller executes the file as a child job.

3. If the file satisfies the default definition for the CHILDJOB_SHEBANG parameter, the job controller executes
the file as a child job.

4. If the file satisfies the CHILDJOB_EXT parameter, the job controller executes the file as a child job.

5. If the file has the extension exe, bat, cmd, or com, the job controller executes the file as a command.

6. If none of the above conditions is satisfied, startup of the command fails. However, job execution continues.

UNIX only

1. If the file satisfies the CHILDJOB_PGM parameter condition, the job controller executes the file as a child job.

2. If file execution permissions have been granted, the job controller performs the checks beginning with 3. If
execution permissions have not been granted, startup of the command fails and the command terminates with
an error. However, job execution continues.

3. If the file satisfies the CHILDJOB_SHEBANG parameter condition, the job controller executes the file as a child
job.

4. If the file satisfies the default definition for the CHILDJOB_SHEBANG parameter, the job controller executes
the file as a child job.

5. If the file satisfies the CHILDJOB_EXT parameter condition, the job controller executes the file as a child job.

6. If the file is a binary file, the job controller executes the file as a command.

7. If the file is a text file, the job controller executes the file as a script. If #! is specified, the job controller executes
the executable program specified in #!. If #! is not specified, the job controller executes the file with /bin/sh.

The following examples use parameters related to child jobs (test.sh exists and execution permissions have been
granted).

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 348

Example 1:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

 Contents of the job definition script

/bin/sh ./test.sh

 The CHILDJOB_PGM parameter is applied and test.sh is executed as a child job.

Example 2:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

Contents of the job definition script

./test.sh

 The CHILDJOB_SHEBANG parameter is applied and test.sh is executed as a child job.

Example 3:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/sh
echo JP1AS

 Contents of the job definition script

./test.sh

 The CHILDJOB_EXT parameter is applied and test.sh is executed as a child job.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 349

Example 4:

 Contents of the environment variable

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#! /opt/jp1as/bin/adshexec
echo JP1AS

 Contents of the job definition script

./test.sh

 test.sh is executed as a child job because it satisfies the default definition for the CHILDJOB_SHEBANG
parameter.

Example 5:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

 Contents of the job definition script

/bin/ksh ./test.sh

 Because none of the CHILDJOB_EXT, CHILDJOB_PGM, CHILDJOB_SHEBANG, and
CHILDJOB_SHEBANG parameters' default definitions apply, test.sh is executed with /bin/ksh, not as a
child job.

Example 6:

 Contents of the environment variable

#-adsh_conf CHILDJOB_PGM /opt/jp1as/bin/adshexec
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

 Contents of the job definition script

/opt/jp1as/bin/adshexec ./test.sh

 The CHILDJOB_PGM parameter is applied and test.sh is executed as a child job.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 350

Example 7:

 Contents of the environment file

#-adsh_conf CHILDJOB_PGM ./test.sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh
#-adsh_conf CHILDJOB_EXT sh

 Contents of test.sh
#!/bin/ksh
echo JP1AS

 Contents of the job definition script

./test.sh

 According to the order or condition check, the CHILDJOB_PGM parameter is checked. Because the
CHILDJOB_PGM parameter definition is satisfied, the corresponding replacement is performed. However,
because the file to be executed as a child job is not specified, an execution error results.

(4) Priority of child jobs or external commands that have the same name
as the function

The following is the priority of child jobs or external commands that have the same name as the function:

• If the function has already been defined in the main script or the function definition file has been loaded by #-
adsh_script or a . (dot) command, the function always takes effect.

• If the function has the automatic loading attribute and the directory specified in the FPATH shell variable contains
a function definition file with the same name as the function, the function takes effect.

• If the function does not have the automatic loading attribute but the directory specified in the FPATH shell variable
contains a function definition file with the same name as the function, the following conditions are checked in this
order:

1. If the directory specified in the FPATH shell variable contains a job definition script with the same name as the
function or an external command, the child job or the external command is executed.

2. If the directory specified in the FPATH shell variable does not contain a corresponding job definition script or
external command, the function is executed.

• If neither the directory specified in the PATH environment variable nor the directory specified in the FPATH shell
variable contains a corresponding file, the processing terminates with an error because there is no command to be
executed.

5.1.12 Specifying UNIX-compatible commands
You can enter UNIX-compatible commands from the Window's command prompt or a UNIX shell. You can also use
UNIX-compatible commands in a job definition script and then execute the script in Windows or UNIX. The UNIX-
compatible commands enable you to use functions such as displaying, creating, and searching files and directories.

You can share in Windows and in UNIX job definition scripts that use executable UNIX-compatible commands if you
use the ADSH_DIR_CMD shell variable to define the UNIX-compatible commands. For details about the
ADSH_DIR_CMD shell variable, see 5.5.1 Shell variables set by JP1/Advanced.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 351

The following is an example of the ADSH_DIR_CMD shell variable that defines a UNIX-compatible command (date
command) in a job definition script:

"${ADSH_DIR_CMD}date"

5.1.13 Specifying a shell for running job definition scripts and checking
formats

(1) Specifying a shell
In UNIX, you can specify a shell to be used to execute a job definition script on the first line of the job definition script
file. The following shows how to specify a shell:

#!executable-file-path

The command shown below executes a job definition script by using the shell with the executable file path specified
on the first line of the job definition script (if the executable file path is omitted, /bin/sh is used):

$ job-definition-script-file-path

The command shown below that specifies the path of the adshexec command at the beginning executes a job definition
script on the path of the adshexec command, regardless of the information specified on the first line of the job
definition script:

$ path-of-adshexec-command job-definition-script-file-path

(2) Checking the lexical format
When the adshexec command is used to execute a job definition script file, the command checks the lexical format
used in the job definition script file and then executes the file. Note that the command does not check the format of an
external file that is read by a . (dot) command within the job definition script file.

If you want to only check the lexical format without executing the job definition script, execute the adshexec command
with the -c option specified.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 352

5.2 Conditionals

In job definition scripts, the processing to be executed is controlled based on the results of conditional expressions
specified in control statements. This section explains control statements and conditional expressions as conditionals.

5.2.1 Control statements
JP1/Advanced Shell supports the control statements listed below. For details, see 9.6 Script control statements.

• case
Executes one of the processes depending on the contents of character strings.

• for
Executes the same processing repeatedly by changing the value sequentially.

• if
Executes the processing that satisfies each condition by branching out the processing depending on conditions.

• until
Executes the same processing repeatedly until the condition is satisfied.

• while
Executes the same processing repeatedly while the condition is satisfied.

You can specify command substitution and any commands other than extended script commands at the following
locations in the control statements.

Locations where command substitution can be specified

• Expressions and patterns in case statements

• wordlist in for statements

Locations where command substitution and any commands other than extended script commands can be specified:

• Condition 1 (condition that follows if) and condition 2 (condition that follows elif) in if statements

• Conditions in until statements

• Conditions in while statements

The return code of a specified command is not applied as the return code of the job and job step. When execution of
control statements is completed, the return code of the last command executed within the block of control statements
becomes the return code of the job and job step.

However, if any of the conditions listed below is satisfied, the return code of a specified command is applied as the
return code of the job and job step. When a job step is completed, the return code of the specified command becomes
the return code for the job and job step.

1. The specified command is the exit or return command, not a command substitution.

2. The specified command is a special built-in command, not a command substitution, and it resulted in an error.

3. The specified command, which is neither 1 nor 2 above, resulted in an error and the control statement was in a job
step for which stop was specified for the onError attribute.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 353

If you want to apply the return code of a command resulting in an error as the job's return code, such as when a job is
to result in an error in JP1/AJS, specify the control statement in a job step for which stop is specified for the onError
attribute.

The following shows examples of the if statement:

Example 1:

if `cmdA true` <-- cmdA is a nonexistent command name.
then
 echo "true"
else
 echo "false" <-- The else clause is executed.
fi
At this point, the return code of the job is 0.

In example 1, if cmdA for command substitution specified in condition 1 of the if statement is a nonexistent command
name, the condition is determined to be false, in which case echo "false" in the else clause is executed. At the
point where the if statement is completed, the return code of the job is 0.

Example 2:

#-adsh_step_start S1 -onError stop
if `cmdA true` <-- cmdA is a nonexistent command name.
then
 echo "true"
else
 echo "false"
fi
#-adsh_step_end <-- The job step is cancelled without executing the then
or else clauses.
The return code of job step S1 and the job at this point is 127.

In example 2, if cmdA for command substitution specified in condition 1 of the if statement is a nonexistent command
name, the job step is cancelled without executing either the then or the else clause of the if statement. When the
job step is completed, the return code of the job is 127, which indicates that the specified command does not exist. For
details about the definitions of job steps and the onError attribute, see #-adsh_step_start command, #-adsh_step_error
command, #-adsh_step_end command (defines a job step) in 9.5 Extended script commands.

5.2.2 Conditional expressions
Numeric value comparisons, character string comparisons, file attributes, logical operators, and ternary operators are
used in conditional expressions. The following explains the specifications common to all conditional expressions.

• The test or let command is used to evaluate conditions.
The test command includes the [[]] substitution format. The let command includes the (()) substitution
format.

• When you use the test command to evaluate conditions, insert a space between a variable and an operator. When
you use [[]] instead of the test command, insert a space immediately after [[and immediately before]].
The following shows an example of a conditional using [[]].

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 354

if [[$arg1 -eq $args]]; then
 echo TRUE
fi

• If an argument of the test command (such as -eq) is specified as an argument of the let command, the let
command interprets that argument of the test command as a variable.

(1) Numeric value comparison
The following table lists and describes the operators used for comparing numeric values.

Table 5‒21: Operators used for comparing numeric values

Conditional expression
using an operator

Evaluation Usage in test
command or [[]]

Usage in let
command or (())

numeric-value-1 -eq numeric-
value-2

True if numeric-value-1 is equal to numeric-value-2 Y N

numeric-value-1 -ne numeric-
value-2

True if numeric-value-1 is not equal to numeric-value-2 Y N

numeric-value-1 -ge numeric-
value-2

True if numeric-value-1 is equal to or greater than numeric-
value-2

Y N

numeric-value-1 -gt numeric-
value-2

True if numeric-value-1 is greater than numeric-value-2 Y N

numeric-value-1 -le numeric-
value-2

True if numeric-value-1 is equal to or less than numeric-value-2 Y N

numeric-value-1 -lt numeric-
value-2

True if numeric-value-1 is less than numeric-value-2 Y N

numeric-value-1 == numeric-
value-2

True if numeric-value-1 is equal to numeric-value-2 Y#1 Y

numeric-value-1 != numeric-
value-2

True if numeric-value-1 is not equal to numeric-value-2 Y#1 Y

numeric-value-1 >= numeric-
value-2

True if numeric-value-1 is equal to or greater than numeric-
value-2

N Y

numeric-value-1 > numeric-
value-2

True if numeric-value-1 is greater than numeric-value-2 Y#1, #2 Y

numeric-value-1 < numeric-
value-2

True if numeric-value-1 is less than numeric-value-2 Y#1, #2 Y

numeric-value-1 <= numeric-
value-2

True if numeric-value-1 is equal to or less than numeric-value-2 N Y

Legend:
Y: Permitted
N: Not permitted

#1
Compared as character strings, not numeric values. For details about character string comparison, see 5.2.2(2) Character string comparison.

#2
Can be used only in [[]]; cannot be used in any other format.

The following shows an example of numeric value comparison.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 355

a=1
b=2
if [[$a -lt $b]]; then
 echo TRUE
else
 echo FALSE
fi

while (($a != $b)); do
 echo LOOP
 ((a+=1))
done

(2) Character string comparison
The following table lists and describes the operators used for comparing character strings.

Table 5‒22: Operators used for comparing character strings

Conditional expression using
an operator

Evaluation Usage in test
command or [[]]

Usage in let
command or (())

character-string True if the length of character-string is one or more
characters. This operator cannot be used in [[]]
commands.

Y N

-n character-string True if the length of character-string is one or more
characters.
If the length of character-string is 0, the command outputs
the KNAX6041-E message and terminates with an error
with return code 2. If no character-string is specified in the
[[]] command, a format error results, in which case the
command outputs the KNAX6041-E message and
terminates with an error with return code 1.

Y N

-z character-string True if the length of character-string is zero Y N

-o character-string True if character-string matches the character string of the
shell option that is currently valid.
For details about the character string of the shell option, see
Name in Table 5-34 Shell options that can be specified with
the set command in 5.6.1 Shell options that can be specified
with the set command.

Y N

character-string = pattern True if character-string matches pattern. Y N

character-string == pattern True if character-string matches pattern. Y N

character-string != pattern True if character-string does not match pattern. Y N

character-string-1 < character-
string-2

character-string-1 and character-string-2 are compared in
the order of ASCII codes. If character-string-1 is less than
character-string-2, the result is true.

Y# N

character-string-1 > character-
string-2

character-string-1 and character-string-2 are compared in
the order of ASCII codes. If character-string-1 is greater
than character-string-2, the result is true.

Y# N

Legend:
Y: Permitted.
N: Not permitted.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 356

#
Can be used only in [[]]; cannot be used in any other format.

Because any character string to be compared might contain one or more spaces, we recommend that you always enclose
the entire character string in double quotation marks ("). The following shows examples.

str1="aaa"
str2="bbb"
test "$str1" == "$str2"
[["$str1" == "$str2"]]

You can specify the *, ?, and [...] wildcard characters in character strings to be compared. Note that wildcards can
be specified only in [[]], not in any other format. Note that when a character string containing a wildcard character
is enclosed in double quotation marks ("), the use of the wildcard character as a wildcard character becomes invalid.
The following shows an example.

str1="adsh"
str2="ads?"
str3="ad*"
[["$str1" == "$str2"]] The wildcard character is invalid. The
character string "ads?" is compared.
[[$str1 != $str3]] The wildcard character is valid.

The following shows an example of character string comparison using [[]]. The *, ?, and [...]wildcard characters
can be used.

if [[abc == ab*]]; then
 echo TRUE
fi

For details about wildcard characters, see 5.1.6(5) Wildcards.

(3) File attributes
The following table lists and describes the operators used for evaluating file attributes, such as file formats and
permissions.

Table 5‒23: Operators used for evaluating file attributes, such as file formats and permissions

Conditional
expression using an
operator

Evaluation Usage in test
command or [[]]

Usage in let
command or (())

-a file True if file exists. Y N

-b file True if file exists and it is a block type device.#1 Y N

-c file True if file exists and it is a character type device.#1 Y N

-d file True if file exists and it is a directory. Y N

-e file True if file exists. Y N

-f file True if file exists and it is a regular file. Y N

-g file True if file exists and the setgid bit is set.#1 Y N

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 357

Conditional
expression using an
operator

Evaluation Usage in test
command or [[]]

Usage in let
command or (())

-h file True if file exists and it is a symbolic link.#2 Y N

-k file True if file exists and a sticky bit is set.#1 Y N

-p file True if file exists and it is a pipe file.#1 Y N

-r file In Windows, the result is true if file exists; in UNIX, the result is true if
file exists and it can be read from the current process.

Y N

-s file True if the following conditions are all satisfied:
In Windows:
• file exists.
• file is not a folder.
• The file size is at least 1 byte.

In UNIX:
• file exists.
• The file size is at least 1 byte or file is a directory.

With -s, because the conditions for true differ between UNIX and
Windows, use -d to check if file is a directory or folder.

Y N

-t fd True if this is fd whose terminal is open.#3 Y N

-u file True if file exists and the setuid bit is set.#1 Y N

-w file In Windows, the result is true if the read-only attribute is not set or this
is a directory; in UNIX, the result is true if file exists and it can be written
from the current process.

Y N

-x file In Windows, the result is true if one of the following is true:
• The extension is .com, .exe, .cmd, or .bat.
• This is a directory.
• The file satisfies the condition specified in the CHILDJOB_EXT or
CHILDJOB_SHEBANG parameter (including a default definition)
in the environment file.#4

In UNIX, the result is true if file exists and it can be executed from the
current process.

Y N

-G file True if file exists and the group to which file belongs matches the ID of
the group executing the calling process.#2

Y N

-L file True if file exists and it is a symbolic link.#2 Y N

-O file True if file exists and its owner has a valid user ID for the process.#2 Y N

-S file True if file exists and it is a socket.#1 Y N

file1 -ef file2 True if file1 and file2 exist and the entities of file1 and file2 are the same
(if either their symbolic link or hard link targets are the same).#2

Y N

file1 -nt file2 True if file1 and file2 exist and the most recent modification date and
time of file1 is more recent than the most recent modification date and
time of file2; also true if file1 exists and file2 does not exist.

Y N

file1 -ot file2 True if file1 and file2 exist and the most recent modification date and
time of file1 is earlier than the most recent modification date and time
of file2; also true if file2 exists and file1 does not exist.

Y N

-H file Always false Y N

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 358

Legend:
Y: Permitted
N: Not permitted

#1
In a Windows environment, the result is always false because this check occurs on nonexistent file types and flags.

#2
If the test command is executed in a Windows environment, it always results in an error because the processing is not supported during
evaluation. However, you can set it to issue a message and result in an error or to treat it as normal by specifying the UNSUPPORT_TEST
parameter. For details about the parameter, see UNSUPPORT_TEST parameter (defines the handling of an unsupported conditional expression)
(Windows only) in 7.3 Environment setting parameters.

#3
Do not specify a value greater than 9 in fd. If you do, the value cannot be guaranteed.

#4
For details about the CHILDJOB_SHEBANG parameter, see CHILDJOB_SHEBANG parameter (defines an executable program path for job
definition script files that are to be executed as child jobs) in 7.3 Environment setting parameters.
For details about the CHILDJOB_EXT parameter, see CHILDJOB_EXT parameter (defines an extension for job definition script files that are
to be executed as child jobs) in 7.3 Environment setting parameters.

The following shows an example of evaluating a file attribute.

FILE="$HOME/script/test.ash"
if [[-a $FILE]];
then
 echo "$FILE exists."
else
 echo "$FILE does not exist."
fi

(4) Logical operations
The following table lists and describes the operators used for evaluation in logical operations.

Table 5‒24: Operators used for evaluation in logical operations

Conditional expression using
an operator

Evaluation Usage in test
command or [[]]

Usage in let
command or (())

expr1 -a expr2 True if the results of expr1 and expr2 are both true Y# N

expr1 -o expr2 True if the result of either expr1 or expr2 is true Y# N

expr1 && expr2 True if the results of expr1 and expr2 are both true Y Y

expr1 || expr2 True if the result of either expr1 or expr2 is true Y Y

! expr True if the result of expr is false Y Y

Legend:
Y: Permitted
N: Not permitted

#
Cannot be used in [[]].

The following shows an example of a logical operation.

DIR="/tmp"
FILE="/tmp/test.ash"

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 359

a=2
b=4
if test -d $DIR -a -a $FILE
then
 echo "$DIR is directory and $FILE exists."
else
 echo "$DIR is not directory or $FILE does not exist."
fi

while ((a*0 || b-3)); do
 echo LOOP
 let b-=1
done

If you use && and || in the test command, specify them as follows:

a=1
b=2
c=3
if test "$a" == 1 && test "$b" == 2; then
 echo "True"
else
 echo "False"
fi
if test "$a" != "$b" || test "$a" != "$c"; then
 echo "True"
else
 echo "False"
fi

(5) Ternary operator
You can use the ternary operator, which is an abbreviated notation of if-else. The following table explains the ternary
operator supported by JP1/Advanced Shell.

Table 5‒25: Ternary operator supported by JP1/Advanced Shell

Conditional expression using
an operator

Evaluation Usage in test
command or [[]]

Usage in let
command or (())

expr1?expr2: expr3 If the result of expr1 is true, the result of expr2 is returned.
If the result of expr1 is false, the result of expr3 is returned.

N Y

Legend:
Y: Permitted
N: Not permitted

The following shows an example of the ternary operator.

VAR1=3
VAR2=2
ANSWER=0

((ANSWER=VAR1>VAR2?8+VAR1:8*VAR2))
echo $ANSWER

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 360

5.3 Arithmetic operations

In job definition scripts, a variable value is treated as characters unless it is declared explicitly in the -i option of the
typeset command as the integer type. However, if you specify an operator used for an arithmetic operation in the
let command or in (()), the values assigned to variables are treated as numeric values during the arithmetic operation.

JP1/Advanced Shell supports arithmetic operators, increment and decrement operators, bitwise logical operators, and
assignment operators. The following describes the specifications common to all operators:

• When you use the let command to perform arithmetic operations, do not place any spaces between a variable and
an operator. If there is a space between a variable and an operator, the operation terminates with an error because
of invalid format. If you need to place a space between a variable and an operator, either use (()) (abbreviation
of the let command) or enclose the entire arithmetic expression in quotation marks.
Examples

let NUM = 100 - 99 # Terminates with an error because the
arithmetic expression is not enclosed in quotation marks
let " NUM = 100 - 99 " # Arithmetic expression is executed because it
is enclosed in quotations marks
((NUM = 100 - 99)) # Arithmetic expression is executed because the
abbreviation (()) is used

• In arithmetic expressions, you can specify variables to which numeric values or numbers are assigned. A base number
notation (base-number#value) can be used to specify numeric values.
If the base number notation is omitted, the value is interpreted as a decimal number during operation.

• If a non-numeric character is assigned to a specified variable, the operation terminates with an error.

5.3.1 Arithmetic operators
Arithmetic operators are used in job definition scripts to perform arithmetic operations on the values of variables. The
following table lists and describes the arithmetic operators supported by JP1/Advanced Shell.

Table 5‒26: Arithmetic operators supported by JP1/Advanced Shell

Arithmetic operator Description

-num This is a unary minus operator. It changes num to a negative value.

num1*num2 Returns the results obtained by multiplying num1 by num2.

num1/num2 Returns the results obtained by dividing num1 by num2.

num1%num2 Returns the remainder obtained when num1 is divided by num2.

num1+num2 Returns the results obtained by adding num1 and num2.

num1-num2 Returns the results obtained by subtracting num2 from num1.

num1**num2 Returns the results obtained by exponentiating the value num1 to the power num2.
If a value smaller than 0 is specified for num2, the command outputs the KNAX6068-E message and terminates
with an error with return code 2.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 361

5.3.2 Increment and decrement operators
The increment and decrement operators are used to represent succinctly incremental and decremental processing on the
same variable. The following table lists and describes the increment and decrement operators supported by JP1/
Advanced Shell.

Table 5‒27: Increment and decrement operators supported by JP1/Advanced Shell

Increment or
decrement operator

Description

num++ References num, and then adds 1 to num.

num-- References num, and then subtracts 1 from num.

++num Adds 1 to num, and then references the value of num.

--num Subtracts 1 from num, and then references the value of num.

5.3.3 Bitwise logical operators
The bitwise logical operators are used to perform logical operations on variable values in bits. The following table lists
and describes the bitwise logical operators supported by JP1/Advanced Shell.

Table 5‒28: Bitwise logical operators supported by JP1/Advanced Shell.

Bitwise logical operator Description

num1&num2 Returns the result of bitwise AND operation on num1 and num2.

num1|num2 Returns the result of bitwise OR operation on num1 and num2.

num1^num2 Returns the result of bitwise EXCLUSIVE-OR operation on num1 and num2.

num1<<num2 Returns the result obtained by shifting num1 by num2 bits to the left.

num1>>num2 Returns the result obtained by shifting num1 by num2 bits to the right.

~num This is the result of bitwise negation of num. It returns a complement of 1.

5.3.4 Assignment operators
The assignment operators are used to assign values to variables. They can assign the results of arithmetic operations
and bitwise logical operations on variables. The following table lists and describes the assignment operators supported
by JP1/Advanced Shell.

Table 5‒29: Assignment operators supported by JP1/Advanced Shell

Assignment operator Description

num1=num2 Assigns num2 to num1.

num1*=num2 Assigns to num1 the result obtained by multiplying num1 by num2.

num1/=num2 Assigns to num1 the result obtained by dividing num1 by num2.

num1%=num2 Assigns to num1 the remainder obtained by dividing num1 by num2.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 362

Assignment operator Description

num1+=num2 Assigns to num1 the result obtained by adding num1 and num2.

num1-=num2 Assigns to num1 the result obtained by subtracting num2 from num1.

num1<<=num2 Assigns to num1 the result obtained by shifting num1 to the left by num2 bits.

num1>>=num2 Assigns to num1 the result obtained by shifting num1 to the right by num2 bits.

num1&=num2 Assigns to num1 the result obtained by performing bitwise AND operation on num1 and num2.

num1|=num2 Assigns to num1 the result obtained by performing bitwise OR operation on num1 and num2.

num1^=num2 Assigns to num1 the result obtained by performing bitwise EXCLUSIVE-OR operation on num1 and num2.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 363

5.4 Priority of conditional and arithmetic operations

Priority applies to the following operators that can be used in the let command:

• Numeric value comparisons

• Logical operators

• Ternary operator

• Arithmetic operations

The table below shows the priority of conditional expressions and arithmetic operations in descending order of priority
level, where 1 is the highest priority. Operations are performed in descending order of the priority, starting from the
highest.

Table 5‒30: Priority of operators

Priority Operator

1 - (unary minus operator), !, ++, --, ~

2 **

3 *, /, %

4 +, -

5 <<, >>

6 <, <=, >, >=

7 ==, !=

8 &

9 ^

10 |

11 &&

12 ||

13 ?: (ternary operator)

14 =, +=, -=, *=, /=, %=, &=, ^=, |=, <<=, >>=

In the example shown below, 3**3 is calculated first because ** has a higher priority than *. As a result, the value 54
is assigned to a and 54 is output to the standard output.

let a=2*3**3 <-- 3 to the power of 3 is multiplied by 2
echo $a <-- 54 is output as the value of a to the standard output

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 364

5.5 Shell variables

Shell variables are variables whose values are inheritable once they are defined until a job definition script terminates.
JP1/Advanced Shell enables you to specify and use shell variables. You can customize an environment for executing
job definition scripts by referencing and changing the values of shell variables.

In Windows, the names of environment variables set when the job controller starts, such as environment variables
specified as system properties, are converted to uppercase, and then the environment variables are imported as shell
variables if the VAR_ENV_NAME_LOWERCASE parameter is specified as described in the following:

VAR_ENV_NAME_LOWERCASE parameter value Conversion of environment variable names set when the job controller
starts

ENABLE Only environment variable names HOME, PATH, and SHELL are converted to
uppercase; all other environment variable names are imported as is as shell
variables.

DISABLE All environment variable names are converted to uppercase and then imported
as shell variables.

If the name of an environment variable set when the job controller starts is not consistent with the naming conventions
for variables supported by JP1/Advanced Shell, that environment variable is imported but cannot be used. For details
about the naming conventions for variables, see 5.1.2(1) Naming conventions for variables.

In JP1/Advanced Shell, some shell variables cannot be used as variable names. If these shell variables are used, an error
message is displayed. The following are the shell variables that are not supported:

COLUMNS, EDITOR, EXECSHELL, FCEDIT, HISTFILE, HISTSIZE, KSH_VERSION, MAIL, MAILCHECK,
MAILPATH, POSIXLY_CORRECT, SH_VERSION, TMOUT, VISUAL

You must also not use the shell variables shown below, because they are used internally by JP1/Advanced Shell (however,
no error message will be displayed if these shell variables are used):

PS1, PS2, PS3

5.5.1 Shell variables set by JP1/Advanced Shell
The table below lists and describes the shell variables set by JP1/Advanced Shell. Do not set values for, change attributes
of, or release settings of these shell variables.

Table 5‒31: Shell variables that are set by JP1/Advanced Shell

Shell variable name Value that is set

Number of arguments passed to the current job definition script or function.

- An abbreviated character string of a shell option set in the shell.
A shell option that does not have an abbreviation is not set in this variable.

? Return code of the immediately preceding command that was executed.

$ The process ID of the following program is set as the shell's process ID:

(Windows only)
Process ID of adshexecsub.exe or adshesub.exe

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 365

Shell variable name Value that is set

$ (UNIX only)
Process ID of adshexec

_ Value at the time the adshexec command starts. If no value exists, the contents of argv[0]
at the time the adshexec command starts are set.
When an external command or child job is started as a child process, the contents of argv[0]
are set.

! Process ID of the last command that executed in the background.

ADSH_DIR_BIN#1 Path name of the JP1/Advanced Shell program folder (bin).#2

ADSH_DIR_CMD#1 Path name of the folder for JP1/Advanced Shell's UNIX-compatible commands (cmd).#3

ADSH_RC_STEPLAST#1 Return code of the most recent job step to have executed.
If no job steps have executed, the shell variable is undefined.

ADSH_RC_STEPMAX#1 Maximum value among the return codes of all job steps that have executed in the past.
If no job steps have executed, the shell variable is undefined.

ADSH_RC_STEPMIN#1 Minimum value among the return codes of all job steps that have executed in the past.
If no job steps have executed, the shell variable is undefined.

ADSH_STEPRC_job-step-name#1 Return code of the job step whose name is indicated. If the job step with the indicated job step
name has not executed, the shell variable is undefined.
If there are duplicate job step names, the return code of the last job step executed is stored.

LINENO Line number in the job definition script of the line that is executing currently.

OLDPWD Immediately preceding work directory that was set by the cd command.

OPTARG Value of the last option argument that was processed by the getopts command.

OPTIND Index of the last option argument that was processed by the getopts command.

PPID In Windows, the value is always 0.
In UNIX, the number of the shell's parent process is set.

PWD Current work directory.

RANDOM A random integer in the range from 0 through 32767 (= 0x7FFF).

REPLY The data read by the read command with no arguments specified.

SECONDS Number of seconds that have elapsed since the shell started.

Function information arrays#1 One-dimensional arrays of information about the function being executed by the adshexec
command. The following arrays are supported:
• Called function name array
• Function call line number array
• Function definition script file name array

For details about the function information arrays, see 5.5.3 Arrays of function information.

#1
These shells that have a special meaning are referred to collectively as the extended shell variables.

#2
The following is a definition example that uses the adshfile command in job definition scripts:

"${ADSH_DIR_BIN}adshfile" -s job -n keep -a del ${VAL01}

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 366

#3
The following is a definition example that uses the expr command in job definition scripts:

num=`"${ADSH_DIR_CMD}expr" $NUM - 1`

The following shows usage examples of these shell variables.

This example checks conditions by using the if script control statement and controls the execution of a job step based
on the execution results of the preceding job step:

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001
#-adsh_step_start STEP01
 uap01
#-adsh_step_end
if [[$ADSH_STEPRC_STEP01 -eq 0]]; then <-- Execute STEP02 only if the
return code of STEP01 is 0.
 #-adsh_step_start STEP02
 uap02
 #-adsh_step_end
fi

This example terminates the job definition script with the maximum job step return code value when the exit command
is used to terminate the job definition script:

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001

#-adsh_step_start STEP01
 uap01
#-adsh_step_end

#-adsh_step_start STEP02 -run always
 uap02
#-adsh_step_end

#-adsh_step_start STEP03 -run always
 exit $ADSH_RC_STEPMAX <-- Use the maximum job step return code
value as the job's return code.
#-adsh_step_end

5.5.2 Shell variables whose values are set by the user
The following table lists and describes the shell variables whose values can be set by the user in JP1/Advanced Shell.

Table 5‒32: Shell variables that can be used in JP1/Advanced Shell

Shell variable name Value set by the user

CDPATH Specifies a candidate path for a search when the target directory specified in the cd command does not exist under
the work directory.

ENV • Windows and Linux only
If YES is specified in the KSH_ENV_READ parameter or the parameter is omitted, this variable specifies the
name of the .env file to be loaded when the shell starts.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 367

Shell variable name Value set by the user

ENV • AIX, HP-UX, and Solaris only
If YES is specified in the KSH_ENV_READ parameter, this variable specifies the name of the .env file to be
loaded when the shell starts.

FPATH Specifies the directory that stores the function definition file. The specified directory is searched when the preload
functionality is enabled for a referenced function or the function to be executed is undefined. The variable reads the
contents of the file with the same name as the function name, defines the function in the current environment, and
then executes it.

HOME Specifies the home directory.

IFS Abbreviation of Internal Field Separator. The specified characters are used as string separators. The first characters
in IFS, $*, are used to separate arguments for substitution. The initial values are the space, tab, and end-of-line
characters.

PATH Specifies a command search path.

PS4 Specifies the prompt character string placed at the beginning of each line when the xtrace shell option is enabled.
The initial value is +.

SHELL Specifies the path name of a shell that is retained during shell execution.

TMPDIR Changing this shell variable has no effect on temporary files because all temporary files are created in the directory
specified in the TEMP_FILE_DIR environment setting parameter.

You can use the #-adsh_path_var command to define and use shell variables for converting directory paths between
Windows and UNIX. For details about defining shell variables, see 5.8.5 Defining shell variables that handle path names.

5.5.3 Function information arrays
Information about the functions that are executed by the adshexec command is stored in single-dimensional function
information arrays.

Whether function information arrays are used is defined with the VAR_SHELL_FUNCINFO environment setting
parameter. The array names are also determined by the specification of the VAR_SHELL_FUNCINFO environment
setting parameter. For details about the VAR_SHELL_FUNCINFO environment setting parameter, see
VAR_SHELL_FUNCINFO parameter (selects whether function information arrays are used).

Following are the characteristics of function information arrays:

• Arrays of function information exist from the time a job definition script is executed to the time the job definition
script is terminated. However, if functions are executed within a .ENV file, there are no function information arrays.

• The range of the number of elements is from 0 to 65,535.

• Attributes can be changed to the character string format attribute. Attributes cannot be changed to local variables in
a function.

• Because function information arrays have the read-only attribute, the values in arrays can be referenced only; values
cannot be set nor can the arrays be disabled.

(1) Types of function information arrays
The following table lists and describes the types of function information arrays.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 368

Table 5‒33: Types and names of function information arrays

Type of array Description Array name

When TYPE_A is
specified in
VAR_SHELL_FUNCIN
FO

When TYPE_B is
specified in
VAR_SHELL_FUNCIN
FO

Called function name
array

This array stores the names of all functions that are in
the call stack.
Element number 0 stores the name of the currently
executing function. The lowest element stores main.
If an external script was called with the . (dot)
command (standard shell command) or the #-
adsh_script extended script command, the array
stores source.

ADSH_FUNCNAME FUNCNAME

Function call line number
array#1

This array stores the line numbers of the script files for
which all functions in the call stack were called.
Element number 0 stores the line number that called the
currently executing function. The lowest element stores
0.
For an external script, the array stores the line number
that executed the . (dot) command (standard shell
command) and the #-adsh_script extended script
command.
The attribute can be changed to the integer type.

ADSH_LINENO BASH_LINENO

Function definition script
file name array#2

This array stores the names of the script files in which
the functions in the call stack have been defined.
Element number 0 stores the name of the script file that
defines the currently executing function. The lowest
element stores the absolute path of the job definition
script name.
For an external script, this array stores the absolute path
of the external script file.

ADSH_SOURCE BASH_SOURCE

#1
If a function is called within a trap action after a signal or a forced termination request has been received, the
function call line number array stores the line number of the processing that called the trap action, not the processing
within the trap action.
For example, in the definition below, function fn1 is called on line number 4. Because line number 4 is within the
trap action, line number 6 is stored in the array.

1 fn1(){
2 echo ${ADSH_LINENO[*]}
3 }
4 trap fn1 INT
5
6 kill -INT $$
7 pwd

#2
If the adshexec command is executed with the -r option specified, -r CMDLINE is stored as the script file name
in the function definition script file name array. The following shows an example:

C:\tmp>adshexec -m SIMPLE -r "echo ${ADSH_SOURCE[*]}"
-r CMDLINE

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 369

C:\tmp>

(2) Structures of function information arrays
This subsection explains the transitions among the arrays based on the example of the following job definition script
(file name: func.ash):

1 fn3(){
2 echo "JP1/AS"
3 }
4 fn2(){
5 fn3
6 }
7 fn1(){
8 fn2
9 }
10 fn1

When this job definition script is run, the array status changes as shown in the following by the execution of function fn3:

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 370

(3) Notes about function information arrays
• Because function information arrays cannot be changed within job definition scripts, during debugging using CUI

or GUI, the user can reference values (by using the watch, print, and info variables commands), but cannot
update the values (with the set command).

• Arrays of function information are exported as follows:

• The contents of element 0 are inherited as variables, not as an array. However, for child jobs, function information
arrays are overwritten because they are reset when a job starts.

• For the operation information for a child job, the exported values before being overwritten are output.

• The name of afunction information array cannot be specified for the stepVar attribute in the #-
adsh_step_start command. If the name of a function information array is specified, the command issues the
KNAX6312-E message and terminates with an error.

• (Windows only) The absolute path of the script file (including \ characters) is stored in the function definition script
file name array. The echo and print commands handle this character (\) whenever it is encountered after shell
variable expansion as an escape character. For this reason, if you output values from a function definition script file
name array by using the echo and print commands, you must execute the commands as follows:

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 371

• If you use the echo command to output values, either specify the -E option or specify NO in the
ESCAPE_SEQ_ECHO_DEFAULT environment setting parameter.

• If you use the print command to output values, specify the -r option.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 372

5.6 Shell options

Shell options can be used to place limitations on the available functions and to switch execution modes. There are two
ways to specify these shell options:

• Execute the set command in a job definition script.

• Specify the shell options as options of the adshexec command.

5.6.1 Shell options that can be specified with the set command
The following table lists and describes the shell options that can be specified with the set command. For details about
the set command, see set command (sets shell options, creates an array, or displays variable values) in 9.3 Standard
shell commands.

Table 5‒34: Shell options that can be specified with the set command

Name Specification method Meaning when the shell option is specified Default value

allexport#1 -a
-o allexport

Automatically exports all variables. Disabled

braceexpand -o braceexpand Enables brace expansion. Brace expansion means expanding to
multiple words the portion enclosed in curly brackets ({}).
Each of the comma-separated words enclosed in curly brackets
is expanded as a single variable by adding to it the characters
that precede and follow the curly brackets. For example,
a{1,2,3} is expanded to a1, a2, and a3.

Enabled

bgnice#2 -o bgnice Lowers the priority for background jobs. Disabled

noglob -f
-o noglob

Prohibits file name substitution. For details about file name
substitution, see 5.1.6(6) Substitution.
This shell option also prohibits brace expansion. To enable
brace expansion, disable the noglob shell option. For details
about how to disable the shell options, see set command (sets
shell options, creates an array, or displays variable values) in
9.3 Standard shell commands.

Disabled

nounset -u
-o nounset

If no value is set in a variable subject to substitution, the job
terminates with an error and the shell terminates.

Disabled

verbose#3 -v
-o verbose

Reads the shell input lines and outputs them to the standard error
output. The input lines are output before they are analyzed or
executed.

Disabled

xtrace -x
-o xtrace

Sets the value of shell variable PS4 at the beginning of the line
and then outputs the executed command and its arguments to
the standard error output. Note that this shell option does not
output the [[]] command, extended script commands, or their
arguments. An arithmetic operation using (()) is replaced
with the let command and then is output.

Disabled

#1
If the VAR_ENV_NAME_LOWERCASE DISABLE environment setting parameter is specified in the Windows
edition, any variable whose name contains lowercase letters cannot be exported. If shell variables containing
lowercase letters are defined or their values are updated after the allexport shell option has been enabled, an
error message is output and the batch job terminates.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 373

#2
Not supported in a Windows execution environment.

#3
When you specify the verbose option in the set command, the output destination for the input lines of a job step
definition command is changed.

• #-adsh_step_start command
When the #-adsh_step_start command is executed, the input lines for #-adsh_step_start itself are
output to STDERR for the job because STDERR is switched from job to job step.

• #-adsh_step_end command
When the #-adsh_step_end command is executed, the input lines for #-adsh_step_end itself are output
to STDERR for the job step because STDERR is switched from job step to job.

The following shows an example.

Job definition script

 set -o verbose <-- Or set -v.

 #-adsh_step_start S1
 cmdA
 #-adsh_step_error
 cmdB
 #-adsh_step_end
 cmdC

STDERR for job

 #-adsh_step_start S1
 cmdC
 :

STDERR for job step S1
 cmdA
 #-adsh_step_error
 cmdB
 #-adsh_step_end

Notes:
When run-time parameters and JP1/Advanced Shell Editor are used to debug job definition scripts, the command
execution results are output to the standard error output. If the set command with the verbose option specified
is used, a message containing the command execution results is output after the contents of the next line have been
output. The following shows an example.

Job definition script

 001: set -o verbose
 002: echo "Line 002"
 003: echo "Line 003"

The following shows an output example during debugging:

KNAX7018-I Breakpoint "1": filename="test.ash" line=1
KNAX7032-I The script "test.ash" stopped running.
1: set -o verbose
Current: set

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 374

(adshdb) step <-- Execute the set command on line 001 of the job
definition script.
echo "Line 002" <-- Output the contents of line 002 of the job
definition script.
KNAX6112-I Execution of the command set (line=1) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s <--
Output the results of the set command on line 001 of the job
definition script.
KNAX7032-I The script "test.ash" stopped running.
2: echo "Line 002"
Current: echo
(adshdb) step
Line 002
 :

5.6.2 Shell options that can be specified with the adshexec command
The following table shows the shell option that is specified with the adshexec command. For details about the
adshexec command, see adshexec command (executes a batch job) in 8.3 Shell operation commands.

Table 5‒35: Shell option that is specified with the adshexec command

Name Specification method Meaning when the shell option is specified

noexec -c Reads commands and checks for syntax errors, but does not execute the commands.

xtrace -x Same processing as when the xtrace shell option is enabled. For details, see 3.5
Outputting the executed commands and their arguments.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 375

5.7 Environment variables for job information

When you start a job or job step, you can specify the job name, job ID, and job step name in environment variables so
that this information can be referenced by the job definition script files and user programs.

• ADSH_JOB_NAME (job name is specified when the job starts)

• ADSH_JOBID (job ID is specified when the job starts)

• ADSH_STEP_NAME (job step name is specified when the job step starts)

For details about these environment variables, see 2.5 Specifying environment variables.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 376

5.8 Defining jobs, job steps, and commands

You can use extended script commands to declare job names and define jobs, job steps, and commands. For details about
the extended script commands, see 9.5 Extended script commands.

5.8.1 Declaring job names
You use the #-adsh_job command to declare the job name of a job definition script.

The specification methods are shown below. Use either method 1 or method 2.

Specification method 1:

Line 1: #!any-character-string
Line 2: 0#-adsh_job job-name

Specification method 2:

Line 1: 0#-adsh_job job-name

If the #-adsh_job command is omitted, the default attribute value shown in the following table is used.

Attribute Default value when omitted or undeclared Example

Job name ADSHjob-ID If the job ID is 000010: ADSH000010

5.8.2 Defining the job end condition
You use the #-adsh_job_stop command to define the condition to be used to determine whether the job is to be
cancelled when a job step terminates.

(1) Timing of evaluation
Each time a job step terminates, JP1/Advanced Shell checks if the return code for this attribute is defined. If such a
return code is defined, JP1/Advanced Shell terminates the job without executing the subsequent job definition scripts.

(2) Scope
The end condition applies to execution of job definition scripts starting at the location immediately following where it
is specified. If this command is specified in the preceding job definition script, that specification is reset and only the
new condition specified takes effect.

The following shows an example.

01: #!/opt/jp1as/bin/adshexec
02: #-adsh_job JOB0001
03:
04: #-adsh_step_start STEP1
05: #-adsh_step_end
06:
07: #-adsh_job_stop 4: The scope of this definition is from line 09

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 377

through 13.
08:
09: #-adsh_step_start STEP2
10: #-adsh_step_end
11:
12: #-adsh_step_start STEP3
13: #-adsh_step_end
14:
15: #-adsh_job_stop 8:16,24:32 The scope of this definition is from line
17 through 18.
16:
17: #-adsh_step_start STEP4
18: #-adsh_step_end

(3) Example of job end condition definition
If the #-adsh_job_stop command is used to define a job end condition, the following occurs:

• Even if a job step terminates with the return code specified in the #-adsh_job_stop command, commands
outside the job step do not cancel the job.

• If a job step terminates with the return code specified in the #-adsh_job_stop command, the job step cancels
the job.

• If a job is cancelled by executing the #-adsh_job_stop command, any subsequent commands outside the job
step are not executed. The subsequent job steps are not executed either, regardless of the specification of the run
attribute.

The following shows an execution example.

#-adsh_job JOB_STOP
#-adsh_rc_ignore CBLRTN
#-adsh_job_stop 4 Specifies that the job is to be cancelled at rc=4.

echo "Job start."
CBLRTN 004 # Command that succeeds at rc=4 The job is not canceled.
 although a command outside the job step results in
rc=4.

#-adsh_step_start STEP01
echo "Step start."
CBLRTN 004 # Command that succeeds at rc=4
#-adsh_step_end The job step terminates with rc=4 and the job is
cancelled.

#-adsh_step_start STEP03 -run always Does not execute any subsequent job
steps regardless of the run attribute.
 echo "command in step"
#-adsh_step_end

echo "Job end." Does not execute any subsequent commands.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 378

5.8.3 Defining job steps
The job step definition commands whose names begin with #-adsh_step are used to group a portion of a job
definition script as a job step. A job step consists of a group of commands.

(1) How to group commands
A group of commands normally executed as a job step is specified in a block from the #-adsh_step_start
command to the #-adsh_step_error or #-adsh_step_end command. This block is called a job step normal
block.

A group of commands that is executed only if the last command in the job step normal block terminates with an error
is specified in a block from the #-adsh_step_error command to the #-adsh_step_end command. This block
is called a job step error block.

(2) Flow of job step execution
The following describes the flow of job step execution.

1. Whether the job step is to be skipped is determined based on the preceding job step having terminated with an error,
based on whether any commands terminated with an error, or based on the run attribute's specification. For details
about the run attribute, see #-adsh_step_start command, #-adsh_step_error command, #-adsh_step_end command
(defines a job step) in 9.5 Extended script commands.

2. The commands in the job step normal block are executed sequentially. If any of the commands terminates with an
error and the onError attribute is stop, JP1/Advanced Shell exits the job step normal block without executing
the subsequent commands. If the onError attribute is cont, JP1/Advanced Shell executes the subsequent
commands and then exits the job step normal block.

3. If #-adsh_step_error is defined and the last command in the job step normal block terminates with an error,
the commands in the job step error block are executed sequentially by JP1/Advanced Shell.

(3) Declaring shell variables that are valid only within a job step
You can declare shell variables that are to be valid only within the current job step by specifying the stepVar attribute.
When the declared shell variables are exported, they are placed in exported status only within the job step.

When the job step begins, JP1/Advanced Shell automatically places the shell variables in undefined status. However,
if the PATH shell variable is defined to be valid only within the job step, the values before the job step started are
inherited.

When the job step terminates, JP1/Advanced Shell automatically resets the shell variables to their status when the job
step started.

You can declare shell variables with the same names as shell variables outside the job step. The following notes apply
when you declare such shell variables:

• A declared shell variable is treated as different from other shell variable with the same name outside the job step.

• When the job step starts, a declared shell variable is placed in undefined status. The value of a shell variable with
the same name outside the job step is not inherited because it is treated as a separate shell variable.

• A shell variable with the same name outside the job step cannot be referenced or updated within the current job step.

• After the job step has terminated, a shell variable with the same name outside the job step can be referenced and
updated again.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 379

The following shows a usage example.

Usage example of a job definition script file:

01: VAL1=AAA
02: echo "Before starting the step (outside the step)"
03: echo "beforeStepVar1="$VAL1
04: echo "beforeStepVar2="$VAL2
05:
06: #-adsh_step_start S1 -stepVar VAL1,VAL2
07: echo "The step has started"
08: echo "startStepVar1="$VAL1
09: echo "startStepVar2="$VAL2
10: VAL1=XXX
11: VAL2=YYY
12: echo "endStepVar1="$VAL1
13: echo "endStepVar2="$VAL2
14: #-adsh_step_end
15:
16: echo "The step was terminated"
17: echo "afterStepVar1="$VAL1
18: echo "afterStepVar2="$VAL2

This example declares VAL1 that has a shell variable with the same name outside the job step and VAL2 that does not
have a shell variable with the same name outside the job step.

The following shows the execution results:

Before starting the step (outside the step)
beforeStepVar1=AAA <-- References VAL1 outside the job step. This is a
different variable from VAL1 inside the job step.
beforeStepVar2= <-- References VAL2 outside the job step, but a nonexistent
step was started.
startStepVar1= <-- References VAL1 inside the job step. This is a different
variable from VAL1 outside the job step.
startStepVar2=
endStepVar1=XXX
endStepVar2=YYY
The step was terminated
afterStepVar1=AAA <-- References VAL1 outside the job step. This is a
different variable from VAL1 inside the job step.
afterStepVar2= <-- References VAL2 outside the job step, but it does not
exist.

If you specify PATH in a shell variable that is valid only within the job step, you can add a path to the PATH shell
variable that is valid only in the current job step. For the initial value of PATH, the value in effect before the job step
starts is inherited.

The example shown below adds paths to the PATH shell variable that is valid only in the job step. This example assumes
that the value of the PATH shell variable is a:b when execution of the job definition script begins.

#-adsh_job J1 --> 1.
cmdA
PATH=x:$PATH --> 2.
cmdB
#-adsh_step_start S1 -stepVar PATH --> 3.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 380

 cmdC
 PATH=y:$PATH --> 4.
 cmdD
#-adsh_step_end --> 5.

The numbers in the example of adding paths to a PATH shell variable that is valid only in the current job step correspond
to the numbers in the following explanation:

1. The initial value of PATH is a:b.

2. Valid inside the job step. The value of PATH becomes x:a:b.

3. Specifies PATH for stepVar. The shell variable remains undeleted and the value remains as x:a:b.

4. Valid inside the job step. The value of PATH becomes y:x:a:b.

5. Resets PATH to the value in effect when the job step started. The value of PATH becomes x:a:b.

When you use the #-adsh_path_var command, you can define and use the shell variables for converting directory
paths between Windows and UNIX. For details about this function, see 5.8.5 Defining shell variables that handle path
names.

(4) Specifying the job step return code in the event of a job step error
You can set a desired return code for a job step in the event of a job step error. To do this, execute the exit command
with the desired return code specified in its argument inside the job step error block. In this case, the value specified in
the argument of the exit command is also set as the job's return code because the job is terminated by the exit
command.

The value specified in the argument of the exit command also becomes the return code of job step when a . (dot)
command or #-adsh_script command is used within the job step error block to call an external script and then the
exit command with the argument specified is executed inside the called external script.

The following example executes the exit command with the argument specified inside the job step error block:

#-adsh_step_start STEP1
 cmdA
 cmdB <-- Terminated in an error with return code 1.
 cmdC
#-adsh_step_error
 exit 4 <-- The job step terminates with an error and the exit command's
argument 4 becomes the return code of the job step.
#-adsh_step_end

If the exit command with no argument specified is executed inside the job step error block, the return code of the last
command executed within the job step normal block becomes the job step's return code.

The following example executes the exit command with no argument specified inside the job step error block:

#-adsh_step_start STEP1
 cmdA
 cmdB <-- Error termination with return code 1.
 cmdC
#-adsh_step_error
 exit <-- The job step terminates with an error. Because the
exit command has no arguments, the return code of cmdB becomes the return

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 381

code of the job step.
#-adsh_step_end

(5) Job step execution examples
The following shows example job definition script file executions in which all commands terminate normally and in
which an intermediate command terminates with an error.

• Example execution in which all commands terminate normally

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001
#-adsh_step_start STEP001
 command1 <-- Executed.
 command2 <-- Executed.
 command3 <-- Executed.
#-adsh_step_error
 command4 <-- Not executed.
 command5 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP002
 command6 <-- Executed.
#-adsh_step_end
#-adsh_step_start STEP003 -run abnormal
 command7 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP004 -run always
 command8 <-- Executed.
#-adsh_step_end

• Example execution in which command2 terminates with an error (onError attribute is stop)

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001
#-adsh_step_start STEP001 -onError stop
 command1 <-- Executed.
 command2 <-- Executed (error termination).
 command3 <-- Not executed.
#-adsh_step_error
 command4 <-- Executed.
 command5 <-- Executed.
#-adsh_step_end
#-adsh_step_start STEP002
 command6 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP003 -run abnormal
 command7 <-- Executed.
#-adsh_step_end
#-adsh_step_start STEP004 -run always
 command8 <-- Executed.
#-adsh_step_end

• Example execution in which command2 terminates with an error (onError attribute is cont)

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001
#-adsh_step_start STEP001 -onError cont
 command1 <-- Executed.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 382

 command2 <-- Executed (error termination).
 command3 <-- Executed.
#-adsh_step_error
 command4 <-- Not executed.
 command5 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP002
 command6 <-- Executed.
#-adsh_step_end
#-adsh_step_start STEP003 -run abnormal
 command7 <-- Not executed.
#-adsh_step_end
#-adsh_step_start STEP004 -run always
 command8 <-- Executed.
#-adsh_step_end

If a command outside the job step results in an error, the subsequent job definition script is handled as follows:

• The subsequent commands outside the job step are executed.

• The subsequent commands whose run attribute is normal are not executed.

• The subsequent job steps whose run attribute is abnormal or always are executed.

The following shows an execution example:

#-adsh_job CMD_ERROR

echo "Job start."
cd -x #Command that results in an error <--This command results in an
error.
echo "Job end." <--Commands outside the job step
execute.

#-adsh_step_start STEP01 -run normal <--Does not execute a job step for
which run normal is specified.
 echo "command in step"
#-adsh_step_end

#-adsh_step_start STEP02 -run abnormal <--Executes a job step for which
run abnormal is specified.
 echo "command in step"
#-adsh_step_end

#-adsh_step_start STEP03 -run always <--Executes a job step for which run
always is specified.
 echo "command in step"
#-adsh_step_end

If a job step results in an error, whether the subsequent job step is to be executed is determined by the run attribute of
the subsequent job step. Commands outside the subsequent job step will not be executed. The following shows an
execution example:

#-adsh_job STEP_ERROR

#-adsh_step_start STEP01
 echo "Step start."

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 383

 cd -x #Command that results in an error
 echo "Step end."
#-adsh_step_end <--The job step terminates with an error.

echo "Job end." <--If the preceding job step resulted in an error,
commands outside the subsequent job step do not execute.

The return code of a command executed inside the job step error block has no effect on the return code of the job step.
The return code of the last command executed inside the job step normal block becomes the return code of the job step.
The following shows an execution example:

#-adsh_job STEP_ERRBLK_RC

#-adsh_step_start STEP01
 echo "Step start."
 cd -x #Command that results in an error with rc=1 <--The result of
this command becomes the return code of the job step.
 echo "Step end."
#-adsh_step_error
 echo "step error block" #Command that results in rc=0 <--No effect on
the job step's rc.
#-adsh_step_end <--The error result of the cd command is applied and the
job step terminates with rc=1.

(6) The relationship of shell functions and the trap command
Regardless of where a shell function or action of a trap command was defined, whether the shell function or action is
executed inside or outside of a job step is determined by where the shell function or action was executed.

5.8.4 Defining commands that terminate normally

(1) Defining commands that terminate normally, even when the return
code is not 0

You can specify a return code threshold for normal termination so that nonzero values as a command's return code will
be treated as a normal termination. Any return code that does not exceed the specified threshold will cause the command
to be treated as having terminated normally.

You can use the following environment setting parameters to specify a return code threshold.

• CMDRC_THRESHOLD_USE_PRESET parameter
This parameter specifies a return code threshold for all UNIX-compatible commands. The permitted threshold
specifications are 0 and 1.

• cmp command

• diff command

• egrep command

• expr command

• grep command

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 384

• sort command

For details, see CMDRC_THRESHOLD_USE_PRESET parameter (defines a threshold for the return code of a
UNIX-compatible command).

• CMDRC_THRESHOLD_DEFINE parameter
This parameter specifies target commands and a return code threshold. You can specify the following commands:

• External commands

• UNIX-compatible commands

• Shell scripts

• Shell operation command

• child jobs

For details, see CMDRC_THRESHOLD_DEFINE parameter (defines a return code threshold for a command).

(2) Defining commands that always terminate normally
When the #-adsh_rc_ignore command is used, a command whose name is defined always terminates normally
regardless of its return code. In such a case, the return code of the target command has no effect on the evaluation of
the result of the job step (success or fail).

However, if the command is terminated by signal, the command always terminates with an error regardless of this
specification.

The commands shown below will not result in an error even if their return code is not zero, which means that the return
code is ignored regardless of the specification of this command:

• true and false commands

The #-adsh_rc_ignore command definition takes effect on the execution of a job definition script starting at the
location immediately following where this definition is specified. If this definition is specified outside a job step, it takes
effect on the entire job definition script. If the definition is specified inside a job step, it takes effect only inside that job
step. When the definition is specified inside a job step, it takes effect from the location immediately following the
location of its specification through the end of the job step, and any value specified outside the job step becomes invalid
temporarily. Until a value is specified inside the job step, a value specified outside the job step becomes valid.

The following shows an example specification:

01: #!/opt/jp1as/bin/adshexec
02: #-adsh_job JOB0001
03:
04: uap01
05: uap02
06: #-adsh_rc_ignore uap03,uap04 <--1. Specified outside the job step.
07: uap03 <--Scope of 1 is from line 07 through
14.
08:
09: #-adsh_step_start STEP1
10: uap04
11: #-adsh_step_end
12:
13: #-adsh_step_start STEP2
14: uap05
15: #-adsh_rc_ignore uap06,uap07 <--2. Specified inside the job step.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 385

16: uap06 <--Scope of 2 is from line 16 through
17.
17: uap07
18: #-adsh_step_end
19:
20: #-adsh_step_start STEP4 <--Scope of 1 is from line 20 through
22.
21: uap08
22: #-adsh_step_end

5.8.5 Defining shell variables that handle path names
The #-adsh_path_var command enables you to define shell variables that handle path names. When you use shell
variables that handle path names, you can convert the path and directory separators in character strings containing path
names according to the environment being used, such as between Windows and UNIX.

JP1/Advanced Shell converts the path and directory separators in character strings that satisfy all the conditions listed
below. For details about path conversion settings 1 and 2, see PATH_CONV_RULE parameter (defines a rule for
converting file paths) (Windows only).

• Character string enclosed in double quotation marks (") (applicable to path conversion setting 1)

• Character string not enclosed in single quotation marks (') (applicable to path conversion setting 2)

• Character string separated by the path separator defined in the PATH_CONV_ENABLE parameter in the environment
file, whose leading part matches the character string $name-of-shell-variable-that-handles-paths or ${name-of-
shell-variable-that-handles-paths}

You can use the #-adsh_path_var command only in either of the following cases:

• Line following #!any-character-string on the first line

• Line following a line containing the #-adsh_job command

You can specify a continuation line as shown below. Note that no shell variable name can be specified after the #-
adsh_path_var command on the first line.

 Line 1: #-adsh_path_var
 Line 2: #-adsh var001,var002,var003,var004

(1) Examples
This example defines shell variables PATH, DIR, and DIR3 that handle path names in the #-adsh_path_var
command.

(a) In Windows
• Specification of the environment file

#-adsh_conf PATH_CONV_ENABLE / : <--Enable path conversion.
#-adsh_conf PATH_CONV_RULE 1 <--Select path
conversion setting 1.
#-adsh_conf PATH_CONV /home/hitachi "C:\\hitachi" <--Path string
substitution 1.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 386

#-adsh_conf PATH_CONV /tmp/jp1as "D:\\jp1as_tmp" <--Path string
substitution 2.
#-adsh_conf PATH_CONV /tmp "C:\\temp" <--Path string
substitution 3.
#-adsh_conf PATH_CONV_ACCESS /dev/null nul <--Convert file paths
during file input and output.

• Specification of the job definition script

#-adsh_path_var PATH,DIR,DIR3 <--Shell variable definition 1.

DIR="/home/hitachi/bin" <--Convert to DIR="C:\\hitachi\\bin" by path
string substitution 1.

"$DIR/myprog" <--Convert to "$DIR\\myprog" by shell variable
definition 1.

"${DIR}/myprog" <--Convert to "${DIR}\\myprog" by shell variable
definition 1.

DIR2=$DIR
"$DIR2/myprog" <--$DIR2 is not converted because it is not in shell
variable definition 1.

$DIR/myprog <--Not converted because this is not enclosed in double
quotation marks (").

FILE1="/tmp/jp1as/file" <--Convert to "D:\\jp1as_tmp\\file" by path
string substitution 2.

DIR3=""
ls "$DIR3../bin" <--Convert to "..\\bin" by shell variable definition
1. Relative paths are also converted.

DIR4="/home/hitachi/sbin:$DIR2" <--Convert to C:\\hitachi\\sbin;$DIR2
by path string substitution 1. Path separators are also converted.

PATH="../bin/:$DIR" <--Convert to ..\\bin\\;$DIR by shell variable
definition 1. Path separators are also converted.

"$DIR2/myprog" > /dev/null <--Convert to nul by file path conversion
during file input and output.

(b) In UNIX
• Specification of the environment file

#-adsh_conf PATH_CONV_ENABLE \\ ; <--Enable path conversion.
#-adsh_conf PATH_CONV "C:\\hitachi" /home/hitachi <--Path string
substitution 1.
#-adsh_conf PATH_CONV "D:\\jp1as_tmp" /tmp/jp1as <--Path string
substitution 2.
#-adsh_conf PATH_CONV "C:\\temp" /tmp <--Path string substitution 3.
#-adsh_conf PATH_CONV_ACCESS nul /dev/null <--Convert file paths
during file input and output.

• Specification of the job definition script

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 387

#-adsh_path_var PATH,DIR,DIR3 <--Shell variable definition 1.

DIR="C:\\hitachi\\bin" <--Convert to DIR="/home/hitachi/bin" by path
string substitution 1.
"$DIR\\myprog" <--Convert to "$DIR/myprog" by shell variable
definition 1.

"${DIR}\\myprog" <--Convert to "${DIR}/myprog" by shell variable
definition 1.

DIR2=$DIR
"$DIR2\\myprog" <--$DIR2 is not converted because it is not in shell
variable definition 1.

$DIR\\myprog <--Not converted because this is not enclosed in double
quotation marks (").

FILE1="D:\\jp1as_tmp\\file" <--Convert to "/tmp/jp1as/file" by path
string substitution 2.

DIR3=""
ls "$DIR3..\\bin" <--Convert to "../bin" by shell variable definition
1. Relative paths are also converted.

DIR4="C:\\hitachi\\sbin;$DIR2" <--Convert to /home/hitachi/sbin:$DIR2
by path string substitution 1. Path separators are also converted.

PATH="..\\bin\\;$DIR" <--Convert to ../bin/:$DIR by shell variable
definition 1. Path separators are also converted.

"$DIR2\\myprog" > nul <--Convert to /dev/null by file path conversion
during file input and output.

(2) Example output to job definition script images
JP1/Advanced Shell outputs a job definition script before path conversion and the lines after conversion to job execution
logs. JP1/Advanced Shell also outputs as messages the conversion rules that were satisfied in the job definition script,
job definition script name, and line numbers.

******** JOB CONTROLLER MESSAGE ********
(omitted)
10:48:48 000007 KNAX6803-I The access path matched the conversion rule.
filename="D:\home\user001\path_conv.ash" line=4 path converted="./
local.log":".\\mylog"
(omitted)

******** Script IMAGE ********

***** D:\home\user001\path_conv.ash *****
0001 : #-adsh_job JOB001
0002 : #-adsh_path_var DIR
0003 : DIR="/home/hitachi/bin"; DIR2="/tmp/tmpfile"
0004 : "$DIR/myprog" > ./local.log
0005 : exit

***** Converted lines in "D:\home\user001\path_conv.ash" *****

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 388

0003 : DIR="c:\\Program Files"; DIR2="c:\\temp\\tmpfile"
0004 : "$DIR\\myprog" > ./local.log

***** CONVERSION INFORMATION *****
KNAX6800-I The path matched the conversion rule. filename="D:\home
\user001\path_conv.ash" line=3 path converted="/home/hitachi/bin":"c:\
\Program Files"
KNAX6800-I The path matched the conversion rule. filename="D:\home
\user001\path_conv.ash" line=3 path converted="/tmp":"c:\\temp"
KNAX6801-I The path matched the conversion rule. filename="D:\home
\user001\path_conv.ash" line=4 shell variable handling path="DIR"

5.8.6 Calling an external job definition script file from an executing job
definition script

You use the #-adsh_script command to insert into the currently executing job definition script file the contents of
an external job definition script file that is in existence at the start of JP1/Advanced Shell.

Unlike with the . (dot) command, this standard shell command expands into the calling job definition script the contents
of a specified external script that exists at the time JP1/Advanced Shell starts. JP1/Advanced Shell treats the calling job
definition script containing the expanded job definition script as a single job definition script and performs syntax
analyses on it.

The following shows an example of an external script definition and a calling job definition script.

• /scripts/exScript.ash (contents when the job starts)

#-adsh_step_start exS1
 exUap01
#-adsh_step_end

#-adsh_step_start exS2
 exUap01
#-adsh_step_end

• script.ash
#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001

uap01

#-adsh_script /scripts/exScript.ash

uap2

The contents of script.ash are equivalent to the following job definition script:

#!/opt/jp1as/bin/adshexec
#-adsh_job JOB001

uap01

#-adsh_step_start exS1 <--The six lines starting with this line

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 389

constitute the expanded exScript.ash.
 exUap01
#-adsh_step_end

#-adsh_step_start exS2
 exUap01
#-adsh_step_end

uap2

The following table describes the differences between the . (dot) command and the #-adsh_script command.

Table 5‒36: Differences between the . (dot) command and the #-adsh_script command

No. Comparison item . (dot) command #-adsh_script command

1 Handling of extended script commands
inside the external job definition script

Handled as comments. Handled as extended script commands.

2 Output to script images Not output. Output

3 Operation when relative paths are
specified

Allows specification of relative
paths.
However, this command resolves
the paths by referencing the value of
the PATH environment variable.

Allows specification of relative paths.
However, this command interprets the specified
paths as being relative to the current directory
used when adshexec started; it does not
reference the value of the PATH environment
variable.

4 Maximum number of commands
permitted in a job

No limit Maximum of 4,095

5 Command execution from within the
external job definition script

Executable Executable.
However, the command cannot be executed by
calling the same external job definition script
recursively.

6 Specification of arguments for the
external job definition script

Permitted Not permitted

7 CUI
debugger

Setting breakpoints in the
external job definition
script by using the
break command

Cannot set breakpoints. Can set breakpoints.

8 Displaying information
about the functions
defined in the external job
definition script by using
the info function
command

Cannot display information.
However, the information can be
displayed once the function
definition is completed within the
external job definition script.

Can display information.

9 Displaying the contents
of the external job
definition script by using
the list command

Cannot display the contents. Can display the contents.

10 Information displayed
when execution of the job
definition script is
stopped

Line numbers: Can be displayed.
Lines in the source file: Cannot be
displayed.
Command strings: Can be
displayed.

Line numbers: Can be displayed.
Lines in the source file: Can be displayed.
Command strings: Can be displayed.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 390

(1) Specifying relative paths
If the relative path of an external script is specified, JP1/Advanced Shell assumes the current directory used when
adshexec started, regardless of the processing of the previous job definition script.

A path relative to any other directory cannot be specified. To use such a path, you must specify its absolute path.

The following show a specification example:

Current directory when the adshexec command starts: /scripts
#/opt/jp1as/bin/adshexec
cd /work
#-adsh_script ex_script.ash <-- /scripts/ex_script.ash is executed.

This example uses the #-adsh_script command to execute the external script file /scripts/
ex_script.ash. The current directory was changed by the cd command on the immediately preceding line, but this
change has no effect on the path of the external script file that is called.

(2) Specifying absolute paths
If you want to execute /work/ex_script.ash, specify an absolute path as shown in the following.

Current directory when the adshexec command starts: /scripts
#/opt/jp1as/bin/adshexec
cd /work
#-adsh_script /work/ex_script.ash <-- /work/ex_script.ash is
executed.

5.8.7 Return codes of extended script commands and handling of errors
The table below lists and describes the return codes for the extended script commands. You can define these return codes
by using the environment setting parameters.

Table 5‒37: Return codes of the extended script commands

Extended script commands Execution result Default value for
return code

Environment setting parameter for
specifying return codes

#-adsh_file
#-adsh_file_temp
#-adsh_job
#-adsh_job_stop
#-adsh_path_var
#-adsh_rc_ignore
#-adsh_spoolfile
#-adsh_step_start
#-adsh_step_error

Normal termination 0 ADSHCMD_RC_SUCCESS

Error termination 1 ADSHCMD_RC_ERROR

#-adsh_step_end Job step normal termination Return code of the
last command
executed in the
job step normal
block

--

Job step error termination

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 391

Extended script commands Execution result Default value for
return code

Environment setting parameter for
specifying return codes

#-adsh_step_end The job step was terminated by
executing the exit command
with arguments specified inside
the job step error block.

Argument of the
exit command

--

Error termination of #-
adsh_step_end

1 ADSHCMD_RC_ERROR

#-adsh_script Normal termination Return code of the
last command
executed in the
called external
script

--

Error termination 1 ADSHCMD_RC_ERROR

Legend:
--: Not applicable

If execution of an extended script command results in error termination or job step error termination, the following
occurs:

• If abnormal or always is specified in the run attribute, the job step is executed.

• If the run attribute is omitted or normal is specified in the run attribute, the job step is not executed.

• None of the commands outside the job step is executed.

The following shows an execution example:

#-adsh_job EXCMD_ERROR

echo "Job start."

#-adsh_file ERRFILE file01 -chk exist <-- This extended script command
results in an error.

#-adsh_step_start STEP01 -run normal <-- Do not execute a job step for
which normal is specified in the run attribute.
 echo "command in step"
#-adsh_step_end

#-adsh_step_start STEP02 -run abnormal <-- Execute a job step for which
abnormal is specified in the run attribute.
 echo "command in step"
#-adsh_step_end

#-adsh_step_start STEP03 -run always <-- Execute a job step for which
always is specified in the run attribute.
 echo "command in step"
#-adsh_step_end

echo "Job end." <-- Do not execute any command
outside the job step.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 392

5.8.8 Return codes of jobs, job steps, and commands
This subsection explains the return codes and the normal and abnormal execution results.

(1) Return codes of jobs
The return code of a job is the return code of the last job definition script that executed.

JP1/Advanced Shell does not identify whether job execution results are normal or abnormal. It returns the return codes
to other programs such as JP1/AJS as is.

If a job is executed from JP1/AJS, the JP1/AJS job's return code that can be checked by using a program such as
JP1/AJS - View might be the JP1/AJS-defined return code, not the adshexec command's return code. In such a case,
the JP1/AJS job's return code might differ from the JP1/Advanced Shell job's return code that is output to job execution
logs.

Example:
If the adshexec command of a UNIX edition started from JP1/AJS receives SIGINT, JP1/Advanced Shell job's
return code is 130, but JP1/AJS job's return code is -1.

If an error occurs in a job, an error message is output.

(2) Return codes of job steps
The return code of a job step is the return code of the last command executed in the job step normal block. If you execute
the exit command with the argument specified in the job step error block, you can set the argument of the exit
command as the job step's return code. The return codes of other commands executed in the job step error block have
no effect on the job step's return code. The following explains normal termination and error termination of job steps:

• Job step normal termination
The last command that executed in the job step normal block terminated normally.

• Job step error termination
The last command that executed in the job step normal block terminated with an error.

(3) Return codes of external commands
The return codes are predefined for each external command.

Although the range of values that the external commands can return depends on the platform and the programming
language specifications used for the external commands, we recommend that you use a range from 0 through 255. If
the value is outside this range, JP1/Advanced Shell uses the following value as the external command's return code:

UNIX
The trailing eight bits of the value returned by the external command

Windows

• If the value returned by the external command is 0 or greater: the trailing eight bits of the value

• If the value returned by the external command is less than 0: 255
• If the external command terminated due to an exception:# the trailing eight bits of the exception code

#
The following table explains the exception codes that are treated as exceptions.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 393

Table 5‒38: Exception codes treated as exceptions and their meaning

No. Exception code Meaning

1 0xC0000005 The thread attempted to access a virtual address for which access permissions are not granted.

2 0x80000003 A breakpoint has been reached.

3 0x80000002 An attempt was made to access misaligned data on hardware with memory access-related alignment
rules (for example, a 16-bit value spanning a two-byte boundary and a 32-bit value spanning a four-byte
boundary are not permitted).

4 0x80000004 This indicates execution of a single instruction at a time by using a trace or single-step method.

5 0xC000008C Hardware detected an attempt made by the thread to access data outside the range of an array.

6 0xC000008D In a floating-point operation, at least one of the operands is an unnormalized number (the value is too
small to express in the normal floating-point format).

7 0xC000008E The thread attempted to perform division by zero during a floating-point operation.

8 0xC000008F The accurate value could not be obtained from a floating-point operation.

9 0xC0000030 An exception of to a floating-point operation other than an exception listed in this table occurred.

10 0xC0000091 As a result of a floating-point operation, the value of the exponent part was above the permitted range.

11 0xC0000032 As a result of a floating-point operation, a stack resulted in overflow or underflow.

12 0xC0000033 As a result of a floating-point operation, the value of the exponent part was below the permitted range.

13 0xC0000094 The thread attempted to perform division by zero during an integer arithmetic operation.

14 0xC0000035 An integer arithmetic operation resulted in overflow.

15 0xC0000096 An attempt was made to execute an instruction (privileged instruction) that cannot be executed in the
current machine mode.

16 0xC0000025 An attempt was made to re-execute a command that resulted in an unresumable exception.

If the external command execution result is any of the ones listed in the following table, JP1/Advanced Shell assumes
that the corresponding external command terminated with an error.

External command execution result Return code

The external command's return code is not 0 (this value can be changed with the successRC
attribute and with the CMDRC_THRESHOLD_USE_PRESET and
CMDRC_THRESHOLD_DEFINE parameters)

External command's return code

The external command was terminated by signal. Return code for signal termination that is
predefined by the external command

The specified external command could not be executed due to a lack of execution permissions. 126

The specified external command could not be executed because it did not exist. 127

The external commands specified in the #-adsh_rc_ignore command will not result in an error regardless of the
return code.

(4) Termination codes of built-in commands
The termination codes of built-in commands depend on the command. Whether a built-in command terminated normally
or resulted in an error is determined based on any error event that occurred during command execution, not on the value
of the termination code. Note that a built-in command specified in the #-adsh_rc_ignore command always
terminates normally regardless of the command's execution results.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 394

For details about the conditions that determine whether each command has terminated normally or resulted in an error,
see the termination codes for each command described in 9. Job Definition Script Commands and Control Statements.

(5) Notes
The return code of UNIX-compatible commands and user-created commands might not be 0 even if they terminate
normally. For example, the diff command terminates with code 1 when the compared files differ.

To correctly determine whether such commands terminated normally or with an error, use the methods described below
to code your job definition scripts. For details about the return codes of UNIX-compatible commands, see 8.4 UNIX-
compatible commands.

(a) Specifying in the environment setting parameters
• To correctly determine whether UNIX-compatible commands terminated normally or with an error, specify ENABLE

in the CMDRC_THRESHOLD_USE_PRESET parameter.

• To correctly determine whether OS-provided commands or user-created commands terminated normally or with an
error, specify the CMDRC_THRESHOLD_DEFINE parameter.

(b) Specifying in job definition scripts
• To set a command to always terminate normally, specify the name of that command in the argument of the #-
adsh_rc_ignore command.

• To determine whether a command terminated normally or with an error according to the command specifications,
define the corresponding command in a job step and specify the return code for normal termination with the
successRC attribute. The specified successRC attribute takes effect on all commands that are executed within
the corresponding job step.

5.8.9 Job cancellation by the standard shell commands
When a standard shell command is executed, job execution might be canceled depending on the type of standard shell
command and the execution result of the standard shell command. If this happens, the KNAX6584-I message is issued
and the subsequent job steps and job definition scripts are not executed. Also, the job steps whose run attribute is
bnormal or always are not executed.

In this case, the specification of the #-adsh_rc_ignore command and the successRC attribute of the #-
adsh_step_start command do not take effect on the executed commands.

(1) Executing a command that immediately terminates a job definition
script

If a standard shell command that immediately terminates a job definition script is executed, job execution is canceled.
The following commands immediately terminate a job definition script:

• exit command

• return command#

• exec command with an executable command specified in its argument

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 395

#
A job definition script is not terminated in the following cases:

• The command was executed within a function.

• The command was executed within an external script.

(2) Unresumable errors
If a standard shell command is executed, an error (such as a syntax error) that disables operation of the job definition
script itself might occur. If this happens, job execution is canceled. Syntax errors occur in the following cases:

• Executing the unset command with no argument specified

• Specifying a character string in the argument of the return command that is specified outside the function as well
as outside an external script#

• In the Windows edition, executing an unsupported conditional expression while ERR is set in the
UNSUPPORT_TEST parameter

#
Job execution is not cancelled in the following cases:

• The command was executed within a function.

• The command was executed within an external script.

5.8.10 Processing in the event of an error during job execution
This subsection explains how commands and control statements are handled when an error occurs during job execution.
The following types of errors can occur:

• Errors in extended script commands
This type of error occurs when file allocation by the #-adsh_file command fails.

• Errors in standard shell commands

• If the processing is resumable
This type of error occurs when a specified command name cannot be found or a regular built-in command results
in an error.

• If the processing is not resumable
This type of error occurs when a special built-in command results in an error.

(1) Errors outside job steps
The following table explains the processing in the event of an error outside the job step.

Table 5‒39: Processing in the event of an error outside the job step

Type of error Processing of subsequent commands and control statements

Error in an extended script command • Executes a job step if its run attribute is abnormal or always.
• Does not execute any commands or control statements other than the above.

Error in a standard shell command
(resumable)

• Does not execute a job step if its run attribute is normal.
• Executes all commands and control statements other than the above.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 396

Type of error Processing of subsequent commands and control statements

Error in a standard shell command (not
resumable)

Terminates execution of the job definition script.

The following table provides examples of errors outside job steps.

Table 5‒40: Examples of errors outside job steps

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Not resumable

#-adsh_file JOBFILE jobfile E -- --

cmdA N E --

shift $n N Y E

cmdB N Y N

-- -- --

#-adsh_step_start NO -run normal N N N

 echo "run normal step" N N N

 cmdNormal N N N

#-adsh_step_end N N N

-- -- --

#-adsh_step_start AB -run abnormal Y Y N

 echo "run abnormal step" Y Y N

 cmdAbnormal Y Y N

#-adsh_step_end Y Y N

-- -- --

#-adsh_step_start AL -run always Y Y N

 echo "run always step" Y Y N

 cmdAlways Y Y N

#-adsh_step_end Y Y N

Legend:
Y: Executed.
N: Not executed.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 397

E: Results in an error.
--: Not applicable.

Note:
A row that is blank in the Example of coding in the job definition script column means that nothing is specified.

(2) Errors inside the job step normal block
The following table explains the processing in the event of an error inside the job step normal block.

Table 5‒41: Processing in the event of an error inside the job step normal block

Type of error Processing of subsequent commands and control statements

Error in an extended script command
Error in a standard shell command
(resumable)#

• Does not execute any commands or control statement inside the job step normal block.
• Executes the job step error block, if defined.
• The job step terminates with an error. The processing of subsequent commands and control

statements is the same as when an error occurs in an extended script command outside the job
step.

Error in a standard shell command (not
resumable)

Terminates execution of the job definition script.

#
If the onError attribute is cont and the error (resumable) resulted from the last standard shell command inside the job step, JP1/Advanced
Shell assumes that an error occurred inside the job step normal block.

The following table provides examples of errors inside the job step normal block.

Table 5‒42: Examples of errors inside the job step normal block

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Resumable (onError
attribute is cont)

Not
resumable

#-adsh_step_start S1 -onError stop -- -- -- --

 #-adsh_file JOBFILE jobfile E -- -- --

 cmdA N E E --

 shift $n N N Y E

 cmdB N N Y N

#-adsh_step_error Y Y N N

 echo "step error block" Y Y N N

#-adsh_step_end Y Y Y N

-- -- -- --

#-adsh_step_start NO -run normal N N Y N

 echo "run normal step" N N Y N

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 398

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Resumable (onError
attribute is cont)

Not
resumable

 cmdNormal N N Y N

#-adsh_step_end N N Y N

-- -- -- --

#-adsh_step_start AB -run abnormal Y Y N N

 echo "run abnormal step" Y Y N N

 cmdAbnormal Y Y N N

#-adsh_step_end Y Y N N

-- -- -- --

#-adsh_step_start AL -run always Y Y Y N

 echo "run always step" Y Y Y N

 cmdAlways Y Y Y N

#-adsh_step_end Y Y Y N

Legend:
Y: Executed.
N: Not executed.
E: Results in an error.
--: Not applicable.

Note:
A row that is blank in the Example of coding in the job definition script column means that nothing is specified.

(3) Errors inside the job step error block
The following table explains the processing of subsequent commands and control statements in the event of an error in
the job step error block.

Table 5‒43: Processing in the event of an error inside the job step error block

Type of error Processing of subsequent commands and control statements

Error in an extended script command • Does not execute any command or control statement inside the job step error block.
• The job step terminates with an error. The processing of subsequent commands and control

statements is the same as when an error occurs in an extended script command outside the job
step.

Error in a standard shell command
(resumable)

• Executes all commands and control statements inside the job step error block.
• The job step terminates with an error. The processing of subsequent commands and control

statements is the same as when an error occurs in an extended script command outside the job
step.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 399

Type of error Processing of subsequent commands and control statements

Error in a standard shell command (not
resumable)

Terminates execution of the job definition script.

The following table shows examples of errors inside the job step error block.

Table 5‒44: Examples of errors inside the job step error block

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Not resumable

#-adsh_step_start S1 -onError stop -- -- --

 echo "step normal block" -- -- --

#-adsh_step_error -- -- --

 #-adsh_file JOBFILE jobfile E -- --

 cmdA N E --

 shift $n N Y E

 cmdB N Y N

#-adsh_step_end Y Y N

-- -- --

#-adsh_step_start NO -run normal N N N

 echo "run normal step" N N N

 cmdNormal N N N

#-adsh_step_end N N N

-- -- --

#-adsh_step_start AB -run abnormal Y Y N

 echo "run abnormal step" Y Y N

 cmdAbnormal Y Y N

#-adsh_step_end Y Y N

-- -- --

#-adsh_step_start AL -run always Y Y N

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 400

Example of coding in the job definition script Error in extended
script command

Error in standard shell command

Resumable Not resumable

 echo "run always step" Y Y N

 cmdAlways Y Y N

#-adsh_step_end Y Y N

Legend:
Y: Executed.
N: Not executed.
E: Results in an error.
--: Not applicable.

Note:
A row that is blank in the Example of coding in the job definition script column means that nothing is specified.

(4) Notes
If a resumable error occurs in a standard shell command outside the job step, all subsequent commands and control
statements are executed except for a job step whose run attribute is normal. In this case, the job's return code is
overwritten by the return codes of the subsequent commands and control statements. If you want to apply as the job's
return code the return code that caused the error (to treat the job as having resulted in an error in JP1/AJS), specify the
commands and control statements in the job step with stop as the onError attribute.

5.8.11 Notes about output of command execution results
The following notes apply to checking command execution results that are output to a job execution log file.

(1) Output of command execution results when commands are grouped
by a separate program

A group of commands enclosed in parentheses ((and)) is executed as a single job definition script in a separate process.
For the command execution results, one of the following messages is output as the execution result of a single job
definition script:

KNAX6540-I, KNAX6541-E, KNAX6542-E, KNAX6560-I, KNAX6561-E, KNAX6562-E

(2) Notes about background execution
The following notes apply to output of the termination message for a command that is executed in the background by
specifying & or |&:

• A termination message is always output because the job terminates after all the commands executed in the
background have terminated.

• A command started within a job step might not terminate until after the job step has terminated. In such a case, the
termination message for the command is output after the termination message for the job step that started the
command. The return code of a command executed in the background by specifying & or |& has no effect on the
return code of the job step and job.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 401

• The order in which information about commands executed in the background is output to the job execution logs is
undefined regardless of the actual order in which the processes started and terminated. The same applies to a group
of commands linked with the vertical bar (|).

(3) Notes about the builtin, command, eval, time, . (dot), and exec
commands

The following notes apply to the execution results of the builtin, command, eval, time, . (dot), and exec
commands.

• Built-in builtin, command, eval, time, and exec commands
JP1/Advanced Shell outputs only the execution results of commands executed as arguments. The execution results
of the builtin, command, eval, time, and exec commands are not actually output. The execution results of
these commands are not used to evaluate whether the job or job step resulted in normal termination or error
termination.
If an option that is not supported by the platform being used is specified for the command command, JP1/Advanced
Shell outputs the execution results of the command command and then evaluates whether the job and job step
resulted in normal termination or error termination.

• Built-in . (dot) command
JP1/Advanced Shell outputs only the execution results of each command in a specified external script.
The . (dot) command itself terminates normally, but its execution results are not output. The termination results of
the . (dot) command are not used to evaluate whether the job or job step resulted in normal termination or error
termination.
If the specified external script did not exist and the . (dot) command terminated with an error, JP1/Advanced Shell
outputs the execution results of the . (dot) command and then evaluates whether the job or job step resulted in
normal termination or error termination.

(4) Differences in the output of command execution results depending on
the command format

If you execute commands using the following formats, the command names before conversion are output to the command
execution results:

• Execution of separate processes by using pipes (|)

• Execution of separate processes by using command substitution ($(), ``)

• Execution of background processes by using |&
• Subshell execution by using command grouping

• Background execution by using &

The following shows examples.

• If a variable is executed as a command, the character string before the variable is expanded is output as the command
name.

Definition in the job definition script:
01: $CMD &

Output execution results:
KNAX6116-I Execution of the command $CMD (line=1) finished successfully.
exit status=0 execution time=0.001s CPU time=0.000s

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 402

• If a character string that satisfies the rule defined in the CHILDJOB_PGM parameter in the environment file is
executed as a command, the character string before it was replaced by the CHILDJOB_PGM parameter is output as
the command name.

Definition in the environment file:
#-adsh_conf CHILDJOB_PGM /bin/sh

Definition in the job definition script:
01: /bin/sh ./test.ash &

Output execution results:
KNAX6116-I Execution of the command /bin/sh (line=1) finished
successfully. exit status=0 execution time=0.008s CPU time=0.000s

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 403

5.9 Allocating files and performing postprocessing

You can use extended script commands or the adshfile command to allocate regular files, temporary files, and
program output data files and to perform postprocessing.

File allocation is an operation that occurs each time a command executes. It includes registering the handling of each
file when job steps and jobs terminate and creating file names and file entities.

Postprocessing is an operation that occurs when job steps and jobs terminate. It includes deleting and retaining each file
according to the definition specified during file allocation.

For details about the extended script commands, see 9.5 Extended script commands. For details about the adshfile
command, see adshfile command (specifies the allocation and postprocessing of regular files).

5.9.1 Allocating regular files and performing postprocessing
Use the #-adsh_file command (extended script command) or the adshfile command (shell operation command)
to do the following:

• Performing postprocessing on the allocated files according to the results of the corresponding job step or job.

• If the #-adsh_file command is used, assigning to shell variables and environment variables the file paths of
regular files that will be used in the job or job step and the commands that will be started.

The table below describes the functional differences between the #-adsh_file and adshfile commands. For
details about the #-adsh_file command, see #-adsh_file command (specifies assignment and postprocessing of
regular files). For details about the adshfile command, see adshfile command (specifies the allocation and
postprocessing of regular files).

Item #-adsh_file command adshfile command

Specifying file paths in environment
variables

Y N

Timing of file postprocessing • Outside the step
When the job terminates

• Inside the step
When the step terminates

Specifies either job termination or step
termination.

Whether specification is permitted in
external scripts specified in . (dot)
commands

N Y

Whether specification is permitted within
iteration processing

N Y

Whether specification is permitted within
functions

N Y

Postprocessing of allocated regular files in
the event of a file allocation error

Assumes keep and does not delete files.
For details, see 5.9.1(2)(a) #-adsh_file command.

Depends on the specification of the -a
argument.
For details, see 5.9.1(2)(b) adshfile
command.

Legend:
Y: Supported.
N: Not supported.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 404

Important note
Regular files allocated with the adshfile command are managed separately from regular files allocated with
the #-adsh_file command. Postprocessing is performed on regular files allocated by the adshfile
command before it is performed on regular files allocated by the #-adsh_file command. If the same file is
allocated with both commands, it will be postprocessed twice, which might result in an error.

(1) Allocating regular files
The #-adsh_file command assigns the file path of a regular file to a shell variable and an environment variable that
have the same name as the file environment variable definition name.

The #-adsh_file and adshfile commands do not create the entities of the specified regular files.

To check whether a file exists when the file is to be allocated, specify exist for -chk in the #-adsh_file command
and for -c in the adshfile command. When exist is specified and the specified file does not exist at the time of
allocation, an error results.

To allocate a file regardless of whether the file exists, specify no for -chk in the #-adsh_file command and for
-c in the adshfile command. When no is specified, the command allocates the specified file, even if the file does
not exist without treating it as an error.

The following examples allocate regular file test1 to FILE by using the #-adsh_file command:

• Windows

#-adsh_file FILE 'C:\home\test\test1' -chk exist -normal keep -abnormal
keep

• UNIX

#-adsh_file FILE /home/test/test1 -chk exist -normal keep -abnormal keep

The following shows a usage example of the chk attribute in UNIX:

#-adsh_job FILE_CHK
#-adsh_step_start STEP01
 #-adsh_file FILE01 /home/test/test1 -chk no -normal keep -abnormal keep
 #-adsh_file FILE02 /home/test/test2 -chk exist -normal keep -abnormal keep
 cmdA ${FILE01} ${FILE02}
#-adsh_step_end

When it allocates FILE01, the command does not check whether the file exists. Therefore, the file is always allocated
even if /home/test/test1 does not exist.

When it allocates FILE02, the command checks whether the file exists. Therefore, if /home/test/test2 does not
exist, the file allocation processing results in an error.

(2) Postprocessing regular files
Regular files are postprocessed when the job step or job that allocated the files terminates. Postprocessing by the #-
adsh_file command includes resetting the shell and environment variables in which the file paths are set to their

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 405

previous values before the file paths were set. The processing described below is also performed according to the
termination status of the job step or job and values specified in the command.

If the job step and job terminated normally, the #-adsh_file command performs postprocessing according to the
value specified for -normal, and the adshfile command performs postprocessing according to the value specified
for -n. The following explains the postprocessing of regular files, depending on the specified value:

• If del is specified, a regular file is deleted when the job step or job terminates.

• If keep is specified, a regular file is not deleted when the job step or job terminates.

If the job step or job terminates with an error, postprocessing is performed according to the value specified for -
abnormal in the #-adsh_file command, or the value specified for -a in the -adshfile command. The
following explains the postprocessing of regular files, depending on the specified value.

• If del is specified, a regular file is deleted when the job step or job terminates.

• If keep is specified, a regular file is not deleted when the job step or job terminates.

The following table explains postprocessing when -abnormal is specified in the #-adsh_file command or the -
a option is specified in the adshfile command:

Cause of an error in the job step or job Postprocessing of regular files
allocated with the #-adsh_file
command

Postprocessing of regular files
allocated with the adshfile command

An error occurred while a regular file was being
allocated by the subsequent #-adsh_file
command

keep is assumed unconditionally. Depends on the -a option of the
adshfile command.#

(keep is not assumed.)

An error occurred while a regular file was being
allocated by the subsequent adshfile command

Depends on the -abnormal option of
each #-adsh_file command.

Depends on the -a option of the
adshfile command.

An error occurred while a temporary file was being
allocated by the subsequent #-adsh_temp
command

keep is assumed unconditionally. Depends on the -a option of the
adshfile command.#

(keep is not assumed.)

An error occurred while a program output data file
was being allocated by the subsequent #-
adsh_spoolfile command

keep is assumed unconditionally. Depends on the -a option of the
adshfile command.#

(keep is not assumed.)

Error in a subsequent command or program other
than the above

Depends on the -abnormal option of
each #-adsh_file command.

Depends on the -a option of the
adshfile command.

#
If you want to retain files unconditionally in the event of an allocation error, use the #-adsh_file command.

Because the actual file is not created when a regular file is allocated, any file that does not exist when postprocessing
is performed remains nonexistent.

(a) #-adsh_file command
The following shows an example of postprocessing in Windows:

#-adsh_job JOB
#-adsh_file FILE01 'C:\user\file01' -chk exist -normal keep -abnormal del

#-adsh_step_start STEP
 #-adsh_file FILE02 'C:\user\file02' -chk exist -normal del -abnormal del

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 406

 #-adsh_file FILE03 'C:\user\file03' -chk exist -normal keep -abnormal
del
 uap
#-adsh_step_end

#-adsh_file FILE04 'C:\user\file04' -chk exist -normal del -abnormal del

Example 1:
Allocation of FILE03 resulted in an error.

• The regular file allocated to FILE01 is postprocessed when the job terminates. The regular file is deleted
according to the specified abnormal attribute.

• The regular file allocated to FILE02 is postprocessed when the job step terminates. The command assumes
keep regardless of the specified normal and abnormal attributes and does not delete the regular file.

• The regular file whose allocation to FILE03 was attempted is not postprocessed because allocation is not
completed.

• Allocation of FILE04 is not performed.

Example 2:
Allocation of FILE04 resulted in an error.

• The regular file allocated to FILE01 is postprocessed when the job terminates. The command assumes keep
regardless of the specified normal and abnormal attributes and does not delete the regular file.

• The regular file allocated to FILE02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified normal attribute.

• The regular file allocated to FILE03 is postprocessed when the job step terminates. The command does not
delete the regular file according to the specified normal attribute.

• The regular file whose allocation to FILE04 was attempted is not postprocessed because allocation is not
completed.

Example 3:
UAP resulted in an error.

• The regular file allocated to FILE01 is postprocessed when the job terminates. The regular file is deleted
according to the specified abnormal attribute.

• The regular file allocated to FILE02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified abnormal attribute.

• The regular file allocated to FILE03 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified abnormal attribute.

• Allocation of FILE04 is not performed.

Example 4:
File allocation terminated normally.

• The regular file allocated to FILE01 is postprocessed when the job terminates. The command does not delete
the regular file according to the specified normal attribute.

• The regular file allocated to FILE02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified normal attribute.

• The regular file allocated to FILE03 is postprocessed when the job step terminates. The command does not
delete the regular file according to the specified normal attribute.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 407

• The regular file allocated to FILE04 is postprocessed when the job terminates. The command deletes the regular
file according to the specified normal attribute.

(b) adshfile command
The following shows an example of postprocessing. In this example, the names of the regular files are
file01_execution-date and file02_execution-date, where execution-date is replaced with the execution time of
the job.

#-adsh_job JOB

VAL01=file01_`date +%y%m%d`
VAL02=file02_`date +%y%m%d`
VAL03=file03_`date +%y%m%d`
VAL04=file04_`date +%y%m%d`
VAL05=file05_`date +%y%m%d`

adshfile -s job -n keep -a del ${VAL01}

#-adsh_step_start STEP
 adshfile -s step -n del -a del ${VAL02}
 adshfile -s step -n keep -a keep ${VAL03}
 adshfile -s step -n keep -a del ${VAL04}
 uap
#-adsh_step_end

adshfile -s job -n del -a del ${VAL05}

Example 1:
Allocation of VAL04 resulted in an error.

• The regular file allocated to VAL01 is postprocessed when the job terminates. The regular file is deleted
according to the specified -a option.

• The regular file allocated to VAL02 is postprocessed when the job step terminates. The regular file is deleted
according to the specified -a option (unlike the #-adsh_file command, postprocessing is performed
according to the specified -a option; keep is not assumed).

• The regular file allocated to VAL03 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -a option.

• VAL04 results in a command error, and the regular file whose allocation to VAL04 was attempted is not
postprocessed because allocation was not completed.

• Allocation of VAL05 is not performed.

Example 2:
Allocation of VAL05 resulted in an error.

• The regular file allocated to VAL01 is postprocessed when the job terminates. The regular file is deleted
according to the specified -a option (unlike the #-adsh_file command, postprocessing is performed
according to the specified -a option; keep is not assumed).

• The regular file allocated to VAL02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified -n option.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 408

• The regular file allocated to VAL03 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -n option.

• The regular file allocated to VAL04 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -n option.

• VAL05 results in a command error, and the regular file whose allocation to VAL05 was attempted is not
postprocessed because allocation was not completed.

Example 3:
uap resulted in an error.

• The regular file allocated to VAL01 is postprocessed when the job terminates. The regular file is deleted
according to the specified -a option.

• The regular file allocated to VAL02 is postprocessed when the job step terminates. The regular file is deleted
according to the specified -a option.

• The regular file allocated to VAL03 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -a option.

• The regular file allocated to VAL04 is postprocessed when the job step terminates. The regular file is deleted
according to the specified -a option.

• Allocation of VAL05 is not performed.

Example 4:
File allocation terminated normally.

• The regular file allocated to VAL01 is postprocessed when the job terminates. The command does not delete
the regular file according to the specified -n option.

• The regular file allocated to VAL02 is postprocessed when the job step terminates. The command deletes the
regular file according to the specified -n option.

• The regular file allocated to VAL03 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -n option.

• The regular file allocated to VAL04 is postprocessed when the job step terminates. The command does not delete
the regular file according to the specified -n option.

• The regular file allocated to VAL05 is postprocessed when the job terminates. The command deletes the regular
file according to the specified -n option.

(3) Example of adshfile command specification (within iteration
processing)

The following example specifies the adshfile command within iteration processing in UNIX:

[user001@hosta user001]$ /opt/jp1as/bin/adshexec Tloop.ash
KNAX7901-I The adshexec command will wait for all asynchronous processes at
the end of the job.
KNAX0724-I The job ID was assigned. job ID=000500

 Advanced Shell 10-10

 [Information]
 Job ID : 000500
 Spool directory : /var/opt/jp1as/spool/000500/

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 409

 Date : 2013/12/06
 EnvFile(system) :
 EnvFile(job) :
 Host name : hosta
 [Environment variable from Automatic Job Management System]

******** JOB CONTROLLER MESSAGE ********
15:23:22 000500 KNAX0091-I LOOP The job started.
15:23:22 000500 KNAX7901-I The adshexec command will wait for all
asynchronous processes at the end of the job.
15:23:22 000500 KNAX7902-I The adshexec command will run in tty stdin mode.
15:23:22 000500 KNAX6112-I Execution of the command echo (line=3) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /bin/ls (line=4)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=8) finished successfully. exit status=0 execution time=0.011s CPU
time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=9) finished successfully. exit status=0 execution time=0.009s CPU
time=0.010s
15:23:22 000500 KNAX6112-I Execution of the command echo (line=10) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:23:22 000500 KNAX6112-I Execution of the command echo (line=11) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /bin/cat (line=12)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=8) finished successfully. exit status=0 execution time=0.006s CPU
time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=9) finished successfully. exit status=0 execution time=0.009s CPU
time=0.010s
15:23:22 000500 KNAX6112-I Execution of the command echo (line=10) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:23:22 000500 KNAX6112-I Execution of the command echo (line=11) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /bin/cat (line=12)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=8) finished successfully. exit status=0 execution time=0.006s CPU
time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=9) finished successfully. exit status=0 execution time=0.009s CPU
time=0.010s
15:23:22 000500 KNAX6112-I Execution of the command echo (line=10) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:23:22 000500 KNAX6112-I Execution of the command echo (line=11) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:23:22 000500 KNAX6116-I Execution of the command /bin/cat (line=12)
finished successfully. exit status=0 execution time=0.001s CPU time=0.000s
15:23:22 000500 KNAX1890-I The file was deallocated as "keep". path=/home/
user001/test.txt
15:23:22 000500 KNAX1890-I The file was deallocated as "del". path=/home/
user001/output_test.txt
15:23:22 000500 KNAX1604-I The file /home/user001/output_test.txt was
deleted.
15:23:22 000500 KNAX1890-I The file was deallocated as "keep". path=/home/

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 410

user001/test01.txt
15:23:22 000500 KNAX1890-I The file was deallocated as "del". path=/home/
user001/output_test01.txt
15:23:22 000500 KNAX1604-I The file /home/user001/output_test01.txt was
deleted.
15:23:22 000500 KNAX1890-I The file was deallocated as "keep". path=/home/
user001/test02.txt
15:23:22 000500 KNAX1890-I The file was deallocated as "del". path=/home/
user001/output_test02.txt
15:23:22 000500 KNAX1604-I The file /home/user001/output_test02.txt was
deleted.
15:23:22 000500 KNAX0098-I LOOP The job ended. exit status=0 execution
time=0.126s CPU time=0.050s

******** Script IMAGE ********

***** /home/user001/Tloop.ash *****
0001 : #-adsh_job LOOP
0002 :
0003 : echo -E "<<< list >>>" >&2
0004 : ls test* >&2
0005 :
0006 : for MEMBER in test*
0007 : do
0008 : ${ADSH_DIR_BIN}adshfile -s job -n keep -a keep $MEMBER
0009 : ${ADSH_DIR_BIN}adshfile -s job -n del -a del output_$MEMBER
0010 : echo -E "MEMBER=$MEMBER" >output_$MEMBER
0011 : echo -E "<<< output_$MEMBER >>>" >&2
0012 : cat output_$MEMBER >&2
0013 : done
0014 :

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
<<< list >>>
test.txt
test01.txt
test02.txt
<<< output_test.txt >>>
MEMBER=test.txt
<<< output_test01.txt >>>
MEMBER=test01.txt
<<< output_test02.txt >>>
MEMBER=test02.txt
KNAX0098-I LOOP The job ended. exit status=0 execution time=0.126s CPU
time=0.050s

******** JOBSTEP OUTPUT ********
KNAX6380-I A job name will be added to the spool job directory of the root
job. spool job directory="/var/opt/jp1as/spool/000500-LOOP/"
KNAX7999-I Advanced Shell ended. exit status=0
[user001@hosta user001]$

(4) Example of adshfile command specification (within a function)
The following example specifies the adshfile command within a function in UNIX:

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 411

[user001@hosta user001]$ /opt/jp1as/bin/adshexec Tfunction.ash
KNAX7901-I The adshexec command will wait for all asynchronous processes at
the end of the job.
KNAX0724-I The job ID was assigned. job ID=000503

 Advanced Shell 10-10

 [Information]
 Job ID : 000503
 Spool directory : /var/opt/jp1as/spool/000503/
 Date : 2013/12/06
 EnvFile(system) :
 EnvFile(job) :
 Host name : hosta
 [Environment variable from Automatic Job Management System]

******** JOB CONTROLLER MESSAGE ********
15:42:00 000503 KNAX0091-I FUNCTION The job started.
15:42:00 000503 KNAX7901-I The adshexec command will wait for all
asynchronous processes at the end of the job.
15:42:00 000503 KNAX7902-I The adshexec command will run in tty stdin mode.
15:42:00 000503 KNAX0092-I FUNCTION.STEP001 step started.
15:42:00 000503 KNAX6112-I Execution of the command echo (line=15) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=4) finished successfully. exit status=0 execution time=0.014s CPU
time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=5) finished successfully. exit status=0 execution time=0.009s CPU
time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/cmd/cp
(line=6) finished successfully. exit status=0 execution time=0.001s CPU
time=0.000s
15:42:00 000503 KNAX6112-I Execution of the command echo (line=7) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/cmd/cat
(line=8) finished successfully. exit status=0 execution time=0.001s CPU
time=0.000s
15:42:00 000503 KNAX6112-I Execution of the command echo (line=15) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=4) finished successfully. exit status=0 execution time=0.013s CPU
time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=5) finished successfully. exit status=0 execution time=0.009s CPU
time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/cmd/cp
(line=6) finished successfully. exit status=0 execution time=0.001s CPU
time=0.000s
15:42:00 000503 KNAX6112-I Execution of the command echo (line=7) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/cmd/cat
(line=8) finished successfully. exit status=0 execution time=0.001s CPU
time=0.000s
15:42:00 000503 KNAX6112-I Execution of the command echo (line=15) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 412

(line=4) finished successfully. exit status=0 execution time=0.014s CPU
time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=5) finished successfully. exit status=0 execution time=0.009s CPU
time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/cmd/cp
(line=6) finished successfully. exit status=0 execution time=0.001s CPU
time=0.000s
15:42:00 000503 KNAX6112-I Execution of the command echo (line=7) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/cmd/cat
(line=8) finished successfully. exit status=0 execution time=0.001s CPU
time=0.000s
15:42:00 000503 KNAX6112-I Execution of the command echo (line=15) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=4) finished successfully. exit status=0 execution time=0.014s CPU
time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/bin/adshfile
(line=5) finished successfully. exit status=0 execution time=0.009s CPU
time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/cmd/cp
(line=6) finished successfully. exit status=0 execution time=0.001s CPU
time=0.000s
15:42:00 000503 KNAX6112-I Execution of the command echo (line=7) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:42:00 000503 KNAX6116-I Execution of the command /opt/jp1as/cmd/cat
(line=8) finished successfully. exit status=0 execution time=0.001s CPU
time=0.000s
15:42:00 000503 KNAX1890-I The file was deallocated as "del". path=/home/
user001/infile1
15:42:00 000503 KNAX1604-I The file /home/user001/infile1 was deleted.
15:42:00 000503 KNAX1890-I The file was deallocated as "del". path=/home/
user001/outfile1
15:42:00 000503 KNAX1604-I The file /home/user001/outfile1 was deleted.
15:42:00 000503 KNAX1890-I The file was deallocated as "del". path=/home/
user001/infile2
15:42:00 000503 KNAX1604-I The file /home/user001/infile2 was deleted.
15:42:00 000503 KNAX1890-I The file was deallocated as "del". path=/home/
user001/outfile2
15:42:00 000503 KNAX1604-I The file /home/user001/outfile2 was deleted.
15:42:00 000503 KNAX1890-I The file was deallocated as "del". path=/home/
user001/infile3
15:42:00 000503 KNAX1604-I The file /home/user001/infile3 was deleted.
15:42:00 000503 KNAX1890-I The file was deallocated as "del". path=/home/
user001/outfile3
15:42:00 000503 KNAX1604-I The file /home/user001/outfile3 was deleted.
15:42:00 000503 KNAX1890-I The file was deallocated as "del". path=/home/
user001/infile4
15:42:00 000503 KNAX1604-I The file /home/user001/infile4 was deleted.
15:42:00 000503 KNAX1890-I The file was deallocated as "del". path=/home/
user001/outfile4
15:42:00 000503 KNAX1604-I The file /home/user001/outfile4 was deleted.
15:42:00 000503 KNAX6597-I FUNCTION.STEP001 step succeeded. exit status=0
execution time=0.204s CPU time=0.000s
15:42:00 000503 KNAX6112-I Execution of the command echo (line=21) finished
successfully. exit status=0 execution time=0.000s CPU time=0.000s
15:42:00 000503 KNAX0098-I FUNCTION The job ended. exit status=0 execution

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 413

time=0.207s CPU time=0.000s

******** Script IMAGE ********

***** /home/user001/Tfunction.ash *****
0001 : #-adsh_job FUNCTION
0002 :
0003 : myfunc(){
0004 : ${ADSH_DIR_BIN}adshfile -s step -n del -a del -c exist $1
0005 : ${ADSH_DIR_BIN}adshfile -s step -n del -a del $2
0006 : ${ADSH_DIR_CMD}cp $1 $2
0007 : echo -E "<<< $2 >>>" >&2
0008 : ${ADSH_DIR_CMD}cat $2 >&2
0009 : }
0010 :
0011 : #-adsh_step_start STEP001
0012 :
0013 : for CNT in 1 2 3 4
0014 : do
0015 : echo -E "dddd$CNT" >infile$CNT
0016 : myfunc infile$CNT outfile$CNT
0017 : done
0018 :
0019 : #-adsh_step_end
0020 :
0021 : echo -E "JOB_FUNCTION_END" >&2

***** CONVERSION INFORMATION *****

******** JOB SCOPE STDERR ********
KNAX6597-I FUNCTION.STEP001 step succeeded. exit status=0 execution
time=0.204s CPU time=0.000s
JOB_FUNCTION_END
KNAX0098-I FUNCTION The job ended. exit status=0 execution time=0.207s CPU
time=0.000s

******** JOBSTEP OUTPUT ********
KNAX0719-I STEP. step number=0001 step name=STEP001 output
destination=STDERR
<<< outfile1 >>>
dddd1
<<< outfile2 >>>
dddd2
<<< outfile3 >>>
dddd3
<<< outfile4 >>>
dddd4

KNAX6380-I A job name will be added to the spool job directory of the root
job. spool job directory="/var/opt/jp1as/spool/000503-FUNCTION/"
KNAX7999-I Advanced Shell ended. exit status=0
[user001@hosta user001]$

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 414

5.9.2 Allocating temporary files and performing postprocessing
You use the #-adsh_file_temp command to create a file that will be used temporarily within the job definition
script and then assign its file path to a shell variable or environment variable. The allocated temporary file is deleted
when the job terminates.

(1) Allocating temporary files
Create a file that will be used temporarily within the job definition script and then allocate its file path to a shell variable
or environment variable that has the same name as the specified file environment variable definition name.

There are two ways to allocate temporary files:

• Creating and allocating temporary files

• Allocating existing temporary files

(a) Creating and allocating temporary files
Specify create for the chk attribute. The size of the file to be created is zero bytes. In UNIX, the permission for a
created temporary file depends on the umask value for the file owner (creator) part and is always 0 for the group and
other users' access permission part. In Windows, no file permission is specified.

To use a temporary file allocated within a job step also in subsequent job steps, specify a temporary file identifier and
keep for the normal attribute.

If a temporary file allocated within a job step is not to be used in subsequent job steps or is to be specified outside the
job step, specify del for the normal attribute.

To allocate a temporary file outside the job step, neither a temporary file identifier nor normal keep can be specified.

(b) Allocating existing temporary files
Specify exist in the chk attribute and the temporary file identifier specified in the earlier job step.

It is not permissible to specify the name of a temporary file that was not created in a preceding job step or a temporary
file that was deleted during postprocessing of the preceding job step.

To use an allocated temporary file in a subsequent job step, specify keep for the normal attribute.

To not use an allocated temporary file in subsequent job steps, specify del for the normal attribute.

(2) Postprocessing of temporary files
Temporary files are postprocessed when the job step or job that allocated the files terminates. Postprocessing involves
resetting the shell and environment variables in which the file path is set to their previous values before the file path
was set. Also, the processing described below is performed according to the termination status of the job step or job and
the normal attribute value.

If the job step and job terminated normally:

• If keep is specified for the normal attribute, the temporary files are not deleted when the job step terminates.
If keep is specified for the normal attribute, but the temporary files were not used in subsequent job steps,
the temporary files are deleted when the job terminates.

• If del is specified for the normal attribute, the temporary files are deleted when the job step or job terminates.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 415

If the job step and job terminated with an error:

• If keep is specified for the normal attribute, the temporary files are deleted when the job terminates, not when
the job step terminates.

• If del is specified for the normal attribute, the temporary files are deleted when the job step or job terminates.

(3) Names of temporary files
The names of temporary files are different in Windows and in UNIX. The following shows the file names used in these
OSs.

In Windows
The name of a temporary file consists of the system-specific character string ASH and a name unique in the directory.

ASHunique-name.tmp

In UNIX
The name of a temporary file consists of the character string TEMP indicating a temporary file, the job name, a
temporary file identifier, and a name unique in the directory.

• Temporary file name with a temporary file identifier specified
TEMP_job-sequence-number_job-name_temporary-file-identifier_unique-name

• Temporary file name with a temporary file identifier omitted
TEMP_job-sequence-number_job-name_unique-name

(4) Storage directory
You use the TEMP_FILE_DIR environment setting parameter to specify the directory in which temporary files are to
be created. If the environment setting parameter is omitted, the default value for the TEMP_FILE_DIR parameter is
used. For details about the TEMP_FILE_DIR parameter, see TEMP_FILE_DIR parameter (defines the path name of
the directory for storing temporary files) in 7. Parameters Specified in the Environment Files.

(5) Examples of usage of temporary files
The following presents examples of the usage of temporary files when temporary files are allocated.

• This example does not use a temporary file allocated within a job step in subsequent job steps, nor does it allocate
a temporary file outside the job step

#-adsh_file_temp TEMP1 -chk create -normal del
 echo "test" > ${TEMP1}

• These examples use temporary files created in a preceding job step also in subsequent job steps

#-adsh_step_start STEP1
#-adsh_file_temp TEMP1 -id TEST1 -chk create -normal keep -->1.
echo "test1" > ${TEMP1}
#-adsh_step_end

#-adsh_step_start STEP2
#-adsh_file_temp TEMP2 -id TEST1 -chk exist -normal keep -->2.
echo "test2" >> ${TEMP2}
#-adsh_step_end

#-adsh_step_start STEP3

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 416

#-adsh_file_temp TEMP3 -id TEST2 -chk create -normal keep -->3.
echo "test3" >> ${TEMP3}
#-adsh_step_end

#-adsh_step_start STEP4
#-adsh_file_temp TEMP4 -id TEST1 -chk exist -normal del -->4.
echo "test4" >> ${TEMP4}
#-adsh_step_end

#-adsh_step_start STEP5
#-adsh_file_temp TEMP5 -id TEST2 -chk exist -normal del -->5.
echo "test5" >> ${TEMP5}
#-adsh_step_end

1. Creates and allocates a temporary file that can be used in subsequent job steps. This example specifies TEST1
as the temporary file identifier.

2. Allocates the temporary file created in step 1 (identifier: TEST1). This example sets the allocated temporary
file to be available to subsequent job steps.

3. Creates and allocates a temporary file that can be used in subsequent job steps. This example specifies TEST2
as the temporary file identifier.

4. Allocates the temporary file used in step 2 (identifier: TEST2). This example deletes the allocated temporary
file when the job step (job step name: STEP4) terminates.

5. Allocates the temporary file created in step 3 (identifier: TEST2). This example deletes the allocated temporary
file when the job step (job step name: STEP5) terminates.

(6) Using temporary files to code input files for a program in a job
definition script

If you specify a user program's parameters in a temporary file and use the temporary file as the standard input, you can
directly specify the parameters in the job definition script and automatically create and delete the temporary file. The
following shows an example:

#-adsh_step_start
#-adsh_file_temp SYSIN -id parmfile -chk create -normal keep
cat << @@@ > ${SYSIN}
-in /files/indata
-out /files/outdata
-work /tmp
@@@
uap ${SYSIN}
#-adsh_step_end

This example creates a temporary file and loads multiple lines of character strings specified in the job definition script
by using a here document. The user program uses the temporary file as the standard input during execution and deletes
the temporary file once execution is completed.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 417

5.9.3 Allocating program output data files and performing postprocessing
JP1/Advanced Shell automatically creates execution results output files for the purpose of providing centralized
management of the output results from user programs as well as of the system execution logs. These files are called
program output data files.

The #-adsh_spoolfile command automatically generates the file paths of the program output data files that acquire
the execution results output by user programs, and assigns the required shell variables and environment variables.

(1) Allocating program output data files
Automatically create the file path of a program output data file and then allocate it to the shell variable or environment
variable that has the same name as the specified file environment variable definition name. These variables are reset to
their initial values when the job step or job terminates. No file entity is created.

(2) Names of program output data files
The name of a program output data file consists of such elements as the job name or job step name, a number, and a file
environment variable definition name specified in the #-adsh_spoolfile command. Such a name is unique for
each file definition in the job definition script.

An allocated program output data file is stored in the directory for the corresponding job in the spool root directory
specified in the SPOOL_DIR environment setting parameter. If no spool root directory is specified in the environment
setting parameter, the default value of the SPOOL_DIR parameter is used as the spool root directory. For details about
the SPOOL_DIR parameter, see 7. Parameters Specified in the Environment Files.

The format of program output data file names is shown below. In Windows, the file name is appended with the
extension .sysout.

• Name of a program output data file that is allocated outside the job step

0000_job-name_sequence-number-of-file-environment-variable-definition-
name_file-environment-variable-definition-name

• Name of a program output data file that is allocated inside the job step

step-number_step-name_sequence-number-of-file-environment-variable-
definition-name_file-environment-variable-definition-name

If the child job was executed with MERGE (merging a child job's spool job into the root job's spool job) specified in the
SPOOLJOB_CHILDJOB parameter in the root job's environment file, the following file name is used:

• When allocated outside the job step

Cnumber-giving-the-order-in-which-a-child-job-starts_0000_job-
name_sequence-number-of-file-environment-variable-definition-name_file-
environment-variable-definition-name

• When allocated within the job step

Cnumber-giving-the-order-in-which-a-child-job-starts_step-number_step-
name_sequence-number-of-file-environment-variable-definition-name_file-
environment-variable-definition-name

The variable parts of the program output data file name are replaced with the following information:

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 418

step-number
Four-digit decimal number assigned sequentially to each job step. The step number of the first job step is 1.
Examples: 0001, 0034, 4095

job-name
Job name specified with the #-adsh_job command. The length of a job name is variable with a maximum length
of eight bytes. If a specified character string exceeds eight bytes, the first eight bytes are used as the job name.

step-name
Job step name specified with the #-adsh_step_start command. The length of a job step name is variable with
a maximum length of eight bytes. If a specified character string exceeds eight bytes, the first eight bytes are used
as the job step name.

sequence-number-of-file-environment-variable-definition-name
Sequential number of a program output data file that was allocated outside the job step or that was allocated inside
each job step. The sequence number of a file environment variable definition name is a three-digit decimal number.
The value range is from 1 through 255 outside the job step and inside each job step.
Examples: 001, 034, 255

file-environment-variable-definition-name
File environment variable definition name specified with the #-adsh_spoolfile command.

number-giving-the-order-in-which-a-child-job-starts
Sequential number indicating the order in which a child job started within the root job. It consists of seven decimal
digits in the range of 0000001 to 9999999.

(3) Example of usage of program output data files
This subsection explains the results of program output data file creation when the following job definition script is
executed.

#-adsh_job JOBSAMPLE001

#-adsh_spoolfile SYS001 -->1.
#-adsh_spoolfile SYS002 -->2.
echo "----- job01 --------" 1>&2
echo "SYS001" > $SYS001
echo "SYS002" > $SYS002

#-adsh_step_start STEP01
 #-adsh_spoolfile SYS001 -->3.
 #-adsh_spoolfile SYS002 -->4.
 echo "----- Step001 --------" 1>&2
 echo "SYS001" > $SYS001
 echo "SYS002" > $SYS002
#-adsh_step_end

#-adsh_spoolfile SYS001 -->5.
#-adsh_spoolfile SYS002 -->6.
echo "----- job02 --------" 1>&2
echo "SYS001" > $SYS001
echo "SYS002" > $SYS002

#-adsh_step_start STEP02
 #-adsh_spoolfile SYS001 -->7.
 #-adsh_spoolfile SYS002 -->8.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 419

 echo "----- Step002 --------" 1>&2
 echo "SYS001" > $SYS001
 echo "SYS002" > $SYS002
#-adsh_step_end

#-adsh_spoolfile SYS001 -->9.
#-adsh_spoolfile SYS002 -->10.
echo "----- job03 --------" 1>&2
echo "SYS001" > $SYS001
echo "SYS002" > $SYS002

When this job definition script is executed, the program output data files with the file names shown below are created.
The numbers at the right end of the job definition script lines correspond to the numbers assigned to the program output
data files that are created.

In Windows

1. 0000_JOBSAMPL_001_SYS001.sysout
2. 0000_JOBSAMPL_002_SYS002.sysout
3. 0001_STEP01_001_SYS001.sysout
4. 0001_STEP01_002_SYS002.sysout
5. 0000_JOBSAMPL_003_SYS001.sysout
6. 0000_JOBSAMPL_004_SYS002.sysout
7. 0002_STEP02_001_SYS001.sysout
8. 0002_STEP02_002_SYS002.sysout
9. 0000_JOBSAMPL_005_SYS001.sysout
10. 0000_JOBSAMPL_006_SYS002.sysout

In UNIX

1. 0000_JOBSAMPL_001_SYS001
2. 0000_JOBSAMPL_002_SYS002
3. 0001_STEP01_001_SYS001
4. 0001_STEP01_002_SYS002
5. 0000_JOBSAMPL_003_SYS001
6. 0000_JOBSAMPL_004_SYS002
7. 0002_STEP02_001_SYS001
8. 0002_STEP02_002_SYS002
9. 0000_JOBSAMPL_005_SYS001
10. 0000_JOBSAMPL_006_SYS002

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 420

5.10 Example coding of a job definition script file

The following shows an example coding of a job definition script file.

#!/opt/jp1as/bin/adshexec # Control of the entire job # -->1.
#-adsh_job SAMPLE_JOB
####################
If the job step return code is 8 or greater, cancel the job
#-adsh_job_stop 8:
Temporary file used inside the job
#-adsh_file_temp JOBTEMP
###################
Job step 1 # -->2.
###################
#-adsh_step_start S1
Definition of input and output files
#-adsh_file INFILE /files/infile -chk exist
#-adsh_file OUTFILE /files/outfile
#-adsh -chk no -normal keep -abnormal del
Definition of parameter files
#-adsh_file_temp PARMFILE -id param
cat<<@@@>${PARMFILE}
-in ${INFILE}
-out ${OUTFILE}
-work /tmp
@@@
User program execution
s1uap ${PARMFILE}
#-adsh_step_error
Program error handling procedure
recovery_uap ${JTMP}
#-adsh_step_end
###################
Job step 2 # -->3.
###################
if [[$ADSH_STEPRC_S1= -eq 0]]; then
Execute only if the preceding job step terminates normally
#-adsh_step_start S2 -onError cont -stepVar PATH
PATH=/s2bin:$PATH
#-adsh_rc_ignore s2uap
echo "s2uap1"
echo "s2uap2 parm1"
#-adsh_step_end
fi

The numbers shown at the right in the above example correspond to the numbers in the following explanation:

1. Control of the entire job
Performs processing such as passing control to job steps and terminating the job.

2. Processing of job step 1

• Definition of input and output files

• Definition of parameter files

• Execution of user program

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 421

• Error handling procedure

3. Processing of job step 2
Performed only if job step 1 terminates normally.

5. Creating Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 422

6 Debugging Job Definition Scripts

This chapter explains the debugger functions of JP1/Advanced Shell.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 423

6.1 About the debugger

A debugger is a tool that supports debugging of programs. JP1/Advanced Shell provides a debugger for job definition
script files. A GUI is provided for running the debugger in a Windows development environment, and a CUI is provided
for running the debugger in a UNIX execution environment. You can debug your job definition script files interactively
by using the buttons, menus, and shortcut keys provided by JP1/Advanced Shell Editor with the GUI and by obtaining
replies from the debugger by using the debugger's commands with the CUI.

The debugger enables the following:

• Starting the debugger

• Terminating the debugger

• Running job definition scripts

• Terminating job definition scripts

• Stopping execution of job definition scripts

• Restarting execution of job definition scripts

• Displaying information about job definition scripts#

• Specifying and displaying variables

• Displaying back traces#

• Displaying source files

• Moving directories#

• Starting the login shell#

• Injecting errors

• Displaying Help

#
Available in the CUI debugger.

6.1.1 Debugging with the GUI (Windows only)
You can use GUI operations from the JP1/Advanced Shell Editor to debug job definition script files.

The following figure provides an overview of debugging.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 424

Figure 6‒1: Overview of debugging (GUI)

1. Debugging of a job definition script from the editor is started.

2. A breakpoint is set.

3. When the job definition script is run, it stops at the breakpoint.

4. Debugging stops.

(1) Output
To run job definition scripts interactively, JP1/Advanced Shell displays the standard output and standard error output
on the console at suitable times during debugging execution, unlike during normal execution where the standard output
and standard error output are output after execution has completed. However, error messages are also displayed in the
Error List window. For details about the Error List window, see 4.7.4 Error List window. The files for the standard
output and the standard error output are not created in the spool job directory.

During normal execution, job execution logs are output to the standard error output after job definition scripts have been
completed. During debugging, information equivalent to the job execution logs is output to the standard error output.

(2) Initialization of information
When a job definition script is run after already having been run once, information about the shell variables and
environment variables that were specified during the previous execution is initialized.

(3) Spool
Each time debug execution is performed on a job definition script, JP1/Advanced Shell creates a spool job folder and
stores the following files:

• Script image: Contents of the script that was run

• Job execution logs: JP1/Advanced Shell messages

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 425

• Output files: Files created by executing the #-adsh_spoolfile command

• sysout management file (.sysout)

(4) Notes
If [[conditional-expression]] is used for conditional, the E-Time entry in an execution result message might be the
debugger's processing time.

6.1.2 Debugging with the CUI (UNIX only)
If you execute the adshexec command with the -d option specified, the job controller starts in the debugger mode,
enabling you to use CUI operations to debug job definition scripts. To use commands in the execution environment to
debug batch jobs, you enter the adshexec command as shown below. Enter the command from the UNIX shell.

adshexec -d /script/batchjob2.ash

For details about the adshexec command, see adshexec command (executes a batch job) in 8.3 Shell operation
commands.

The following figure provides an overview of debugging.

Figure 6‒2: Overview of debugging (CUI)

1. The adshexec command with the -d option specified is entered to start the debugger.

2. The break command is entered to set a breakpoint.

3. The run command is entered to run the job definition script, which stops at the breakpoint.

4. The continue command is entered to continue execution from the breakpoint.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 426

5. The kill command is entered to terminate the job definition script.

6. The quit command is entered to terminate the debugger.

(1) Output
To run job definition scripts interactively, JP1/Advanced Shell displays the standard output and standard error output
on the console at suitable times during debugging execution, unlike during normal execution where the standard output
and standard error output are output after execution has completed. The files for the standard output and the standard
error output are not created in the spool job directory.

During normal execution, job execution logs are output to the standard error output after job definition scripts have been
completed. During debugging, information equivalent to the job execution logs is output to the standard error output.

(2) Initialization of information
When a job definition script is run by entering the run command after already having been run once from execution
of the run command, the following information that was specified during the previous execution is initialized:

• Shell variables

• Environment variables

• Fault injection mode

The following information is inherited until the debugger terminates:

• Information about breakpoints and watchpoints

• Debugger's work directory path

• Files#

#
Files created by using extended script commands are postprocessed appropriately.

(3) Spool
During CUI debugging, JP1/Advanced Shell creates two types of spool job directories, one type for the debugger and
one type for the job definition scripts executed as a result of entering the run command. In each debugging execution,
JP1/Advanced Shell creates one spool job directory for the debugger and one spool job directory each time the run
command is executed. This subsection explains the spool job directories for the debugger and for job definition scripts.

(a) Debugger
Job definition scripts are not executed in the spool job directory for the debugger. JP1/Advanced Shell creates a spool
job directory that stores in a management file the number of job definition scripts executed during a single debug
execution and that stores files containing the debugger's internal data.

The following are the files that JP1/Advanced Shell stores in the spool job directory for the debugger:

• Script images: Contents of the scripts that were run

• Job execution logs: JP1/Advanced Shell messages (including the pids of created processes)

• Breakpoint information (.DBG): Debugger internal data

• sysout management file (.sysout)

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 427

(b) Job definition scripts
JP1/Advanced Shell creates a spool job directory each time the run command is executed in which it stores the following
files:

• Script image: Contents of the script image that was run

• Job execution logs: JP1/Advanced Shell messages

• Output files: Files created by executing the #-adsh_spoolfile command

• sysout management file (.sysout)

(4) Notes
If [[conditional-expression]] is used for conditional or if multiple commands are joined by a pipe, the E-Time entry
in an execution result message might be the debugger's processing time.

6.1.3 List of functions of the GUI debugger (Windows only)
The following table lists the functions of the GUI debugger and the subsections in this manual to be referenced for
details.

Table 6‒1: Functions of the GUI debugger

Function Subsection

Executing job definition scripts 4.4.6

Canceling debugging 4.4.6(2)

Stopping a job definition script 4.4.6(2)(d)

Setting breakpoints 4.4.6(1)

Releasing breakpoints 4.4.6(1)

Performing sequential execution 4.4.6(2)(b), 4.4.6(2)(c)

Performing continuous execution 4.4.6(2)(a)

Executing functions 4.4.6(2)(d)

Specifying and displaying the values of variables 4.4.6(3), 4.7.6

Displaying the status 4.3.1(1)

Changing the fault injection mode 4.3.1(1)

6.1.4 List of debugger commands (UNIX only)
The table below lists and describes the debugger commands in alphabetical order. The table also shows the abbreviated
form for each command the subsection in this manual to be referenced for details.

Table 6‒2: List of debugger commands

Command name Command execution Abbreviation Subsection

break Sets a breakpoint. b 6.2.4

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 428

Command name Command execution Abbreviation Subsection

cd Changes the directory. cd 6.2.25

continue Performs continuous execution. c 6.2.9

delete Deletes breakpoints and watchpoints. d 6.2.6

exec Starts the login shell. ex 6.2.26

finish Executes a function. f 6.2.10

help Displays Help. h 6.2.27

info
breakpoints

Displays information about breakpoints and watchpoints. i b 6.2.13

info coverage Displays coverage information during debugging. i c 6.2.14

info functions Displays information about functions. i f 6.2.15

info jobsteps Displays information about job steps. i j 6.2.16

info signals Displays information about signals. i si 6.2.17

info status Displays the status. i st 6.2.18

info variables Displays information about variables. i v 6.2.19

joberrmode Enables or disables the fault injection mode. jem 6.2.20

kill Terminates the job definition script. k 6.2.3

list Displays the source file. l 6.2.24

next Performs sequential execution without stopping within a function. n 6.2.8

print Displays the value of a variable. p 6.2.22

quit Terminates the debugger. q 6.2.1

return Terminates a function. ret 6.2.11

run Executes the job definition script. r 6.2.2

set Specifies a value for a variable. set 6.2.21

signal Sends a signal. si 6.2.12

step Performs sequential execution, including sequential execution within a
function.

s 6.2.8

watch Sets a watchpoint. wa 6.2.5

where Displays a backtrace. whe 6.2.23

The following notes apply to using debugger commands:

• Do not enter for a command any command name or command abbreviation that is not listed in the table above.

• In the case of a command that allows argument values to be specified, check that the number of argument values
specified does not exceed the permitted maximum.

• Do not specify an argument in a command that does not allow arguments.

• The maximum number of characters that can be entered to the debugger's standard input is 4,094 bytes. Make sure
that the number characters entered does not exceed this limit.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 429

6.1.5 Whether execution can be stopped at the elements of a job definition
script

The table below shows whether execution can be stopped at each element of a job definition script. For the elements
listed below at which execution can be stopped, you use a breakpoint or sequential execution to stop execution.

Table 6‒3: Whether execution can be stopped at each element of a job definition script

Element of a job definition script Description Whether stoppable

for statement Indicates a for statement. Y

case statement Indicates a case statement. Y

if statement Indicates an if statement. Y

while statement Indicates a while statement. Y

until statement Indicates an until statement. Y

elif statement Indicates an elif statement. Y

else statement Indicates an else statement. N

case pattern statement Indicates a pattern statement specified in a case statement. This does
not apply to the internal processing of the pattern statement.

N

Termination of a conditional statement Indicates the termination of a conditional statement, such as then for
the if and elif statements or do for the for, while, and until
statements.

N

Termination of a block Indicates the termination of a block, such as done for the for,
while, and until statements, esac for the case statement, or fi
for the if statement.

N

Start of function definition Indicates the start of a function definition. N

End of function definition Indicates the end of a function definition. N

Start of function execution Indicates that a function begins. Y

End of function execution Indicates that a function ends. N

Extended script command Indicates an extended script command beginning with #-adsh. Y

Standard shell command Indicates a command provided by the shell. Y

Extended shell command Indicates an extended shell command. Y

External command Indicates an executable external command. Y

Assignment and arithmetic operations Indicates an assignment or arithmetic operation. Y

End of job definition script (EOF) Indicates the end of the main job definition script. Y

Comment and space Indicates a comment or space. N

Legend:
Y: Execution can be stopped.
N: Execution cannot be stopped.

Notes:

• Execution is not stopped at a command that is executed by another process.
Example:

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 430

 1: funcA(){
 2: a=100
 3: echo $a
 4: }
 5: funcA &
 6: pwd

In this example job definition script, if the step command is executed while execution is stopped before funcA
& at line 5, execution stops before pwd at line 6. Execution does not stop within the funcA function because its
internal commands are executed by another process according to the specification of &.

• Execution is not stopped at a command specified in an argument of a shell command.

• In Windows, if you specify a command substitution in the argument of a shell command, you can stop execution
once before the argument part is executed and again before the actual command is executed. You can also stop
execution twice in this manner when you execute a command substitution as a command, rather than as an argument.
In UNIX, if you specify a command substitution in the argument of a shell command, you can stop execution once
before the entire command is executed. The following shows examples.
Examples:
In Windows:

 echo `pwd` Execution can be stopped once before `pwd` is executed
and once before echo executed.
 `echo pwd` Execution can be stopped twice before `echo pwd` is
executed.

In UNIX:

 echo `pwd` Execution can be stopped once before echo `pwd` is
executed.
 `echo pwd` Execution can be stopped once before `echo pwd` is
executed.

• If you specify an extended script command onto a continuation line, you can stop execution on each line. Note that
the extended script command itself executes when the last continuation line is executed.

• If you specify a command after an assignment operator delimited by a space, use the debugger's set command to
set values in variables when execution is stopped at the first assignment operator. When execution is stopped at each
command, the character string obtained after variables have been expanded is displayed as the command name.

• A breakpoint cannot be set at the end of a job definition script (EOF). Note that execution can be stopped at the EOF
by using a watchpoint or in sequential execution, as well as by receiving a stop signal.

• Execution will not stop at a breakpoint while action of the trap shell command is running. In UNIX, note that
execution can be stopped in such a case by using a watchpoint or in sequential execution, as well as by receiving a
stop signal.

• If the time command is executed with a function call specified in its argument and the stop evaluation condition
is satisfied by a watchpoint or by receipt of a stop signal, execution stops before the first command following the
time command that allows execution to be stopped.

• If commands are grouped (executed in child processes), execution can be stopped at the location of the right
parenthesis ()). The command group will not execute while execution is stopped at the right parenthesis. You set
the breakpoint at the lines that contains the right parenthesis. If you attempt to set a breakpoint at a line that does
not contain the right parenthesis, the breakpoint is set automatically at the line where the right parenthesis is located.
The following shows an example.
Example:

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 431

 1: (Cannot be stopped.
 2: pwd Cannot be stopped.
 3: date Cannot be stopped.
 4:) Can be stopped.

• If you group multiple commands by enclosing them in curly brackets ({}) and you specify their execution in separate
processes by means such as adding an ampersand (&), specify the grouping on a single line in order to set a breakpoint.
If the grouping is specified over multiple lines, execution cannot be stopped at breakpoints that might be set. The
following shows an example.
Example:
Specifying on a single line

 1: { pwd; date;} &

Execution cannot be stopped at the set breakpoints

 1: echo "test"
 2: { Cannot be set or execution cannot be stopped.
 3: pwd Can be set, but execution cannot be stopped.
 4: date Can be set, but execution cannot be stopped.
 5: } & Cannot be set, but execution can be stopped.

In the above example, breakpoints can be set on lines 3 and 4, but execution cannot be stopped at those locations.
Execution can actually be stopped on line 5. For example, if sequential execution is performed from the command
immediately preceding the group of commands (in this example, echo on line 1), execution can be stopped on line
5. When execution is stopped at the location of the right curly bracket, the group of commands will not have executed
yet.

• If only a command substitution is specified as a command, execution can be stopped at the line containing the
termination symbol for the command substitution. When execution is stopped at the location of the termination
symbol, the command substitution will not have executed yet. You set a breakpoint at the lines that contains the
termination symbol. If you attempt to set a breakpoint at a line that does not contain the termination symbol, the
breakpoint is set automatically at the line where the termination symbol is located. The following shows examples.
Example 1:

 1: $(Cannot be stopped.
 2: echo pwd Cannot be stopped.
 3:) Can be stopped.

Example 2:

 1: `echo pwd` Can be stopped.

• If you specify only a command substitution as a command or in the argument of the builtin, command, or time
command and you want to stop execution before execution of the command immediately following the command
substitution, make sure that the result of the command substitution is not NULL, spaces, or a comment.

• If a group of commands connected by pipes is stopped while executing or a command running in the background
is stopped, multiple consecutive prompt character strings (adshdb) might be displayed.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 432

6.2 CUI debugger (UNIX only)

In a UNIX execution environment, you use commands to run the debugger. The following shows the command
specification format for the CUI debugger:

0-command-name[1-option]...[1-option][1-operand]

• First specify options, and then specify operands. Operands includes option names, option values, and any arguments
that can be specified in the command. If an operand is specified before an option, the command assumes that all
items specified are operands.

• Specify an option in the format -option-name[1-value]. Multiple options can be specified in any order.

• Options with no value can be specified consecutively (example: -a -b -c and -abc are treated as being the same).
If you specify options consecutively, you can specify a value for the last option (example: in -abc xyz, xyz is
the value of the -c option).

• If an invalid option is specified or a specified value is outside the permitted range of values, an error results.

Starting the debugger
You start the debugger by specifying the -d option and the path name of a job definition script file in the command
for executing batch jobs (adshexec command).
The started debugger outputs a prompt character string (adshdb) and then goes onto input wait status. When the
debugger accepts a command entered by the user, it executes that command's processing. When the command's
processing terminates, the debugger outputs the prompt character string and again goes onto input wait status. The
debugger repeats this process until the debugger is terminated.
The debugger also outputs a prompt character string (adshdb) when it goes back into input wait status after
receiving a signal while in input wait status.
The format used to start the debugger is shown below. For details about the command for executing batch jobs, see
adshexec command (executes a batch job) in 8.3 Shell operation commands.

adshexec -d path-name-of-job-definition-script-file

Pausing a job definition script
You can pause a job definition script by entering the Ctrl + C keys. This method of stopping a job definition script
is useful when the job definition script has entered an infinite loop.

Notes:

• If the Ctrl + C keys are used during execution of an extended script command, extended shell command,
standard shell command, or reserved script command, execution stops before the next stoppable instruction
after execution of the current command has been completed.

• If the Ctrl + C keys are used while an external command is executing in the foreground, execution depends
on the external command's processing.

6.2.1 Terminating the debugger (quit command)
The quit command terminates the debugger. The abbreviation for the quit command is q. The following shows the
format of the quit command:

quit

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 433

The following describes the quit command's processing.

When no argument is specified in the quit command
When the quit command is executed while the job definition script is running, a confirmation message is output
asking whether the debugger is to be terminated. To terminate the debugger, enter y or Y.
If no job definition script is running, the command terminates the debugger.

When an argument is specified in the quit command
Executing the command results in an error.

Notes:
A job definition script terminated by the quit command results in termination with an error. The return code for
the job and job step is 128.

6.2.2 Running the job definition script (run command)
The run command executes the job definition script to be debugged. The run command imports environment variables
when the adshexec command starts, and then starts running the job definition script. The abbreviation for the run
command is r. The following shows the format of the run command:

run[arguments]

When the run command is executed while the job definition script is running, a confirmation message is output asking
whether the job definition script is to be re-executed.

When the run command argument is omitted
Enter y or Y to re-execute the executing job definition script.
If the job definition script is not running, the command outputs an execution start message and then executes the
job definition script.

When the run command argument is specified
Enter y or Y to define the specified arguments as run-time parameters and re-execute the executing job definition
script.
If job definition script is not running, the command outputs an execution start message, defines the specified
arguments as run-time parameters, and then executes the job definition script.

Notes:

• When the job definition script is re-executed by the run command, the instance of the job definition script that
was already running terminates with an error. The return code for the job and job step is 128.

6.2.3 Terminating the job definition script (kill command)
The kill command terminates the job definition script that is being debugged. The debugger itself does not terminate
when the job definition script is terminated. The abbreviation for the kill command is k. The following shows the
format of the kill command:

kill

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 434

When the kill command is executed while the job definition script is running, a confirmation message is output asking
whether the job definition script is to be terminated. Enter y or Y to terminate the job definition script.

If the job definition script is not running or if an argument is specified in the kill command, an error message is output.

Notes:
The job definition script terminated by the kill command results in termination with an error. The return code for
the job and job step is 128.

6.2.4 Setting a breakpoint (break command)
The break command sets a breakpoint. The abbreviation for the break command is b.

Numbers are assigned sequentially to the breakpoints as they are set, beginning with 1. Watchpoints that are set are
numbered in the same sequence (that is, point number n could be a breakpoint or a watchpoint). When a running job
definition script reaches a breakpoint, the command displays information about the breakpoint at the stop location. The
following shows the format of the break command:

Specifying a line number

break[[job-definition-script-file-name:]line-number]

When a line number is specified in the argument, the break command sets a breakpoint at the specified line.

Specifying a function name

break function-name

When a function name is specified in the argument, the break command sets a breakpoint at the specified function.

Specifying a job step name

break -s [job-definition-script-file-name:]job-step-name

When a job step name is specified in the -s option, the command sets a breakpoint at the line on which the specified
job step name is defined.

By using a colon (:) in the argument, you can specify a job definition script file name for setting a breakpoint. If you
specify a function name, there is no need to specify a file name because only one function that is enabled at that point
becomes the target.

The following describes the break command's processing.

When the break command argument is omitted
The command sets a breakpoint at the line at which execution is currently stopped. If the job definition script is not
running, the command sets a breakpoint at the first line after line 1 at which execution can stop. The command
displays information about the set breakpoint.

When the break command argument is specified
The command processing depends on the specification of the argument. The following provides the details.

• line-number

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 435

The command sets a breakpoint at the line specified in the argument. The command displays information about
the set breakpoint. If the specified line does not exist, an error results.

• function-name
The command sets a breakpoint at the function specified in the argument. The command displays information
about the set breakpoint. The location of the breakpoint is the first line in the function definition at which
execution can stop. If the specified function does not exist, an error results.

• -s job-step-name
The command sets a breakpoint at the job step specified in the argument. The command displays information
about the set breakpoint. If the specified job step does not exist, an error results.

• job-definition-script-file-name
The file name you specify must be the name of a file specified in the command used to execute the batch job or
of a file specified in the #-adsh_script extended script command. The command treats the specified file
as the target for setting a breakpoint. If no file name is specified, the command assumes that the current file is
the target for setting a breakpoint.

Notes:

• The character string up to the last colon (:) is treated as a job definition script file name.

• A line number must be specified as 0 or a greater integer. Do not specify a plus sign (+) at the beginning.

• If the specified line number is outside the permitted range for the int type, the command rounds it to the
maximum value for the int type.

• If there are multiple job steps with the same name, the command sets a breakpoint at all those job steps.

• The total number of breakpoints and watchpoints combined cannot exceed 999. If this limit has been reached
and you want to set a new breakpoint or watchpoint, terminate and restart the debugger. Once the maximum
value has been reached, no new breakpoint or watchpoint can be set even if you use the delete command to
delete existing breakpoints or watchpoints.

• You can set a breakpoint at any line that contains at least one command at which execution can stop. If a line
contains multiple commands at which execution can stop, execution stops for each command (before each
command is executed).

• If the line specified by its line number contains only commands at which execution cannot be stopped, the break
command outputs a warning message and sets a breakpoint at the next line that contains a command at which
execution can stop.
If there is no such line at which execution can stop, the command outputs an error message.

• If a function name is specified but the specified function contains no command at which execution can stop, the
command sets a breakpoint at the first line following the end of the function definition at which execution can
stop. If the line containing the function definition also contains a command at which execution can stop, the
break command sets a breakpoint at the line containing the function definition, regardless of whether that
command is inside the function.

• If an extended script command defining a job step consists of multiple lines and the job step name is specified
for setting a breakpoint, the break command sets a breakpoint at the line number where the first extended script
command is specified.

• You can set a breakpoint in an external script only if the external script is specified in the #-adsh_script
extended script command in the job definition script that calls the external script. Execution cannot be stopped
within an external script that is not specified in #-adsh_script.

• Only one breakpoint can be set on any one line. Once a breakpoint is set, no more breakpoints can be set on the
same line.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 436

• If the job definition script that is under debug execution is in one of the following statuses, do not execute the
break command without an argument specified:

 Execution is stopped at the end of the job definition script (EOF)
 Execution is stopped while action of the trap command is executing

Example
This example sets a breakpoint on line 8 in the job definition script and then executes the job definition script.
Execution stops before funcA on line 8 is executed.

1: funcA(){
2: echo "funcA"
3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

KNAX7018-I Breakpoint "1": filename="test.ash" line=8
(adshdb) run
KNAX7007-I Execution of the following script will now start: /home/test/
test.ash
...
KNAX7018-I Breakpoint "1": filename="test.ash" line=8
KNAX7032-I The script "test.ash" stopped running.
8: funcA
Current: funcA
(adshdb)

6.2.5 Setting a watchpoint (watch command)
The watch command sets a watchpoint. The abbreviation for the watch command is wa.

Numbers are assigned sequentially to the watchpoints as they are set, beginning with 1. Breakpoints that are set are
numbered in the same sequence (that is, point number n could be a watchpoint or a breakpoint). The following shows
the format of the watch command:

watch variable-name

You specify a variable name as the argument of the watch command. Whenever the value of the specified variable is
updated, execution of the job definition script stops at the next command where execution can be stopped and watchpoint
information is displayed.

The following describes the watch command's processing.

When the watch command argument is specified
The command sets a watchpoint at the specified variable. The command also displays information about the set
watchpoint.

When the watch command argument is omitted
The command outputs an error message.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 437

When execution of a job definition script is stopped by a watchpoint, the watch command displays as the watchpoint
information the pre-update value, the post-update value, and the line number of the line that updated the variable. The
following shows the display format:

Old value = pre-update-value
New value = post-update-value
Line = line-number

• pre-update-value: This is the watched variable's value before updating. If there is no value, <No value> is
displayed.

• post-update-value: This is the watched variable's value after updating. If there is no value, <No value> is displayed.

• line-number: This is the line number of the line that updated the variable. If the trap command's action is
running, <Trap action> is displayed. If the line is the end of the job definition script, <EOF> is displayed.

Notes:

• To specify an array for the variable name, you must specify an array element.
Examples:
Normal variable specification: aaa
Array specification: aaa[1]

• A variable and its array 0 (example: aaa and aaa[0]) are the same. However, you can set a watchpoint for
each of them.

• A variable name with a dollar sign ($) attached is not recognized as a variable name.

• The command does not check at the time the watch command is entered whether the specified variable actually
exists.

• If the variable name specification violates a naming convention, the command outputs an error message.

• Execution stops at the watchpoint even if the new value assigned to the variable is the same as its pre-update
value.

• When the typeset standard shell command is used to change the value of the variable from character string
type to integer type, or vice versa, execution stops at the location as a watchpoint.

• Because the same naming conventions apply to both functions and variables, you can set a watchpoint by
specifying a function name as the argument. However, execution of the job definition script will not stop unless
the value of the variable whose name is the same as the specified function name is updated.

• If one line contains multiple commands and the value of a watched variable is updated, execution stops before
the next command at which execution can be stopped even on the same line.

• The total number of breakpoints and watchpoints combined cannot exceed 999. If this limit has been reached
and you want to set a new breakpoint or watchpoint, terminate and restart the debugger. Once the maximum
value has been reached, no new breakpoint or watchpoint can be set even if you use the delete command to
delete existing breakpoints or watchpoints.

• If the set command is used to change the value of a watched variable while the job definition script is stopped
and then execution of the job definition script is restarted, execution will stop before the next command at which
execution can be stopped.

• Only one watchpoint can be set for the same variable. Once a watchpoint is set for a variable, no more watchpoints
can be set for that variable.

• Execution of a job definition script does not stop when the value of a watched variable is changed by any of the
following commands:

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 438

 Commands executed in the background (& or |&)
 Commands joined by a pipe
 Group of commands enclosed in parentheses (())
 Commands that are executed as separate processes, such as external commands

Example:
1: a=1 &
2: b=2
3: c=3
In the above example, if a watchpoint is set for variable a and then the job definition script is executed, execution
of the job definition script does not stop because the assignment expression a=1 is executed in the background.

Example
In the following job definition script, specifying watch b will set a watchpoint for variable b:

1: echo "start"
2: a=1
3: b=5
4: c=10
5: echo "end"

When the job definition script is executed and then the assignment expression b=5 is executed, the watchpoint
information will be displayed and execution will stop before execution of c=10 on line 4:

KNAX7023-I Watchpoint "1": variable="b"
Old value = <No value>
New value = 5
Line = 3
KNAX7032-I The script "test.ash" stopped running.
4: c=10
Current: c=10
(adshdb)

6.2.6 Deleting breakpoints and watchpoints (delete command)
The delete command deletes breakpoints and watchpoints. The abbreviation for the delete command is d. The
following shows the format of the delete command:

delete[breakpoint-or-watchpoint-number[-breakpoint-or-watchpoint-number]]

You can delete any desired breakpoint or watchpoint by specifying its number in the argument of the delete command.
You can use the hyphen (-) to specify a range of numbers. For example, to delete point numbers 1 through 5, specify
1-5. If the argument is omitted, the command deletes all breakpoints and watchpoints.

The following describes the delete command processing.

When the delete command argument is omitted
If at least one breakpoint or watchpoint has been set, the command displays a confirmation message asking whether
all breakpoints and watchpoints are to be deleted. To delete all breakpoints and watchpoints, enter y or Y.
If no breakpoint or watchpoint has been set, the command outputs an error message.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 439

When the delete command argument is specified

• breakpoint-or-watchpoint-number
The command deletes the breakpoint or watchpoint with the specified number. If the specified number does not
exist, the command outputs an error message.

• number-number
The command deletes the breakpoints and watchpoints whose numbers are in the range from the value specified
to the left of the hyphen (-) to the value specified to the right of the hyphen. If the specified range contains no
breakpoints or watchpoints, the command outputs an error message.

• Other
The command outputs an error message.

Notes:

• A number must be specified in the argument as 0 or a greater integer. Do not specify a plus sign (+) at the
beginning.

• When a range of numbers is specified and the beginning number is the same as the ending number, the command
deletes only the breakpoint or watchpoint with the specified number.

• When a range of numbers is specified and the ending number is smaller than the beginning number, the command
outputs an error message.

• If a specified number is outside the permitted value range for the int type, the command rounds it to the
maximum value for the int type.

6.2.7 Commands for restarting execution of the job definition script
There are three different ways to restart execution of the job definition script:

• Sequential execution
This method executes one command from the location at which the job definition script is stopped. The step and
next commands are used to perform sequential execution.

• Continuous execution
This method resumes execution of a job definition script that is stopped. The continue command is used to
perform continuous execution.

• Executing a function
When execution of a job definition script is stopped within a function, this method executes the job definition script
until the function returns control. The finish command is used to execute a function.

The return command is used to terminate a function. The signal command is used to send a signal to the job
definition script.

When execution of the job definition script stops after execution of a command, a message, the line number of the next
line that is scheduled to be executed, and the line in the source file are displayed in one of the formats shown in the
following.

For a job definition script that is specified in the command for executing a batch job or a job definition script
that is specified in the #-adsh_script extended script command

line-number: line-contents-in-source-file
Current: command-string

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 440

• line-number: Line number of the next command to be executed

• line-contents-in-source-file: Contents of the line in the source file that correspond to the line number

• command-string: Next command string to be executed

For an external script that is not specified in the #-adsh_script extended script command

Line: line-number
Current: command-string

• line-number: Line number of the next command to be executed

• command-string: Command string of the next command to be executed

Notes:

• In the case of a job definition script that is executed in another process, <Another process script> is
displayed as the command string.

• If the job definition script being debugged is executing the trap command's action, the following is
displayed:

 Line: <Trap action>
 Current: command-string

• If the end-of-job definition script (EOF) has been reached, the following is displayed:

 Current: <EOF>

Example of output
This example displays the next line number to be executed and the contents of the line in the source file.

• For a job definition script that is specified in the command for executing a batch job or a job definition
script that is specified in the #-adsh_script extended script command
100: echo "aaa" The next process to be performed is echo "aaa" on line 100.
Current: echo The command to be executed then is echo.

• For an external script that is not specified in the #-adsh_script extended script command
Line: 50 The next process to be performed is line 50 in the external script.
Current: num=1 The process to be performed then is num=1.

6.2.8 Performing sequential execution (step and next commands)
The step and next commands are used to execute the first command from the location at which execution of the job
definition script is stopped. If a function is called by the command where execution has stopped, the step command
enters the function (performs sequential execution within the function), while the next command executes the
processing without stopping inside the function. The abbreviations for the step and next commands are s and n,
respectively.

(1) step command
The following shows the format of the step command:

step

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 441

The following describes the step command's processing.

When no argument is specified in the step command
When the step command is executed while execution of the job definition script is stopped, the step command
executes the first command from the location where execution of the job definition script has stopped. If a function
is called, the step command enters the function (and performs sequential execution within the function).
If the job definition script is not running, the command outputs an error message.

When an argument is specified in the step command
Executing the command results in an error.

Notes:
If a function call is specified in the argument of the eval standard shell command and sequential execution is
performed on the eval command, the stop location after execution of the function call depends on the step
command's processing.

Example
If the step command is executed while execution is stopped before val=1 on line 6, execution stops before num=2
on line 7.

1: funcA(){
2: echo "funcA"
3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

6: val=1
Current: val=1
(adshdb) step
...
KNAX7032-I The script "test.ash" stopped running.
7: num=2
Current: num=2
(adshdb)

If the step command is executed while execution is stopped before funcA on line 8, execution stops before echo
on line 2.

8: funcA
Current: funcA
(adshdb) step
KNAX7032-I The script "test.ash" stopped running.
2: echo "funcA"
Current: echo
(adshdb)

(2) next command
The following shows the format of the next command:

next

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 442

The following describes the next command's processing.

When no argument is specified in the next command
When the next command is executed while execution of the job definition script is stopped, the next command
executes the first command from the location where execution of the job definition script has stopped. If a function
is called, the next command does not stop execution inside the function.
If the job definition script is not running, the command outputs an error message.

When an argument is specified in the next command
Executing the command results in an error.

Notes:

• When the next command is executed and a function is called by the subsequent command, execution of the
job definition script is stopped if a stop evaluation condition is satisfied by a breakpoint, a watchpoint, or a signal
within that function.

• If a function call is specified in the argument of the eval standard shell command and sequential execution is
performed on the eval command, the stop location after execution of the function call depends on the next
command's processing.

Example
If the next command is executed while execution is stopped before val=1 on line 6, execution stops before num=2
on line 7.

1: funcA(){
2: echo "funcA"
3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

6: val=1
Current: val=1
(adshdb) next
...
KNAX7032-I The script "test.ash" stopped running.
7: num=2
Current: num=2
(adshdb)

If the next command is executed while execution is stopped before funcA on line 8, execution stops before echo
on line 9.

8: funcA
Current: funcA
(adshdb) next
funcA
...
KNAX7032-I The script "test.ash" stopped running.
9: echo $num
Current: echo
(adshdb)

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 443

6.2.9 Performing continuous execution (continue command)
The continue command continues (resumes) execution of the job definition script from where it is stopped. The
abbreviation for the continue command is c. The following shows the format of the continue command:

continue

The following describes the continue command's processing.

When no argument is specified in the continue command
When the continue command is executed while execution of the job definition script is stopped, the command
outputs a message indicating resumption of execution and restarts execution of the job definition script.
If the job definition script is not running, the command outputs an error message.

When an argument is specified in the continue command
Executing the command results in an error.

6.2.10 Executing a function (finish command)
The finish command executes the job definition script until control is returned from a function. The abbreviation for
the finish command is f. The following shows the format of the finish command:

finish

The following describes the finish command's processing.

When no argument is specified in the finish command
When execution is stopped within a function, this command outputs a message indicating that execution will resume
through the end of the current function, and then resumes execution of the job definition script through the end of
the function. When execution of the job definition script stops, the command displays the frame information for the
stop location, and then displays the next line number scheduled to be executed and the line in the source file. The
following shows the display format for the frame information at the stop location.

Frame information at the stop location

Num Function File:Line
frame-number function-name file-name:line-number

• frame-number: Indicates the frame number (0 is always displayed).

• function-name: Indicates the name of the function corresponding to the frame information to which the name
of the job definition script calling the function is attached. If no function has been called, <main> is displayed
as the function name. A maximum of 63 bytes can be displayed.

• file-name: Indicates the name of the file in which execution is currently stopped.

• line-number: Indicates the line number at which execution is currently stopped.
If execution is stopped at the end of the job definition script, <EOF> is displayed. If execution is stopped
while the trap command's action is executing, <Trap action> is displayed.

If execution is stopped without having entered a function or if the job definition script is not running, the command
outputs an error message.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 444

When an argument is specified in the finish command
Executing the command results in an error.

Notes:
If a stop evaluation condition is satisfied by a breakpoint, a watchpoint, or a signal at a subsequent line in the function,
the command stops execution of the job definition script.

Example
If the finish command is executed while execution is stopped before echo on line 2, the command stops execution
before echo on line 9 and displays the frame information.

1: funcA(){
2: echo "funcA"
3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

2: echo "funcA"
Current: echo
(adshdb) finish
KNAX7036-I Execution will continue until the end of the current function.
...
Num Function File:Line
0 <main> test.ash:9
KNAX7032-I The script "test.ash" stopped running.
9: echo $num
Current: echo
(adshdb)

6.2.11 Terminating a function (return command)
The return command terminates commands. The return command returns control to the source of a function call
without executing the lines following the current location in the function. The abbreviation for the return command
is ret. The following shows the format of the return command:

return

The following describes the return command's processing.

When no argument is specified in the return command
When execution is stopped within a function, the command outputs a confirmation message asking whether the
current function is to be terminated. To terminate the current function and return to the source of the function call,
enter y or Y. The command displays the frame information for the source of the function call, the next line number
scheduled to be executed, and the line in the source file. The following shows the display format for the frame
information for the source of the function call.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 445

Frame information for the source of the function call

Num Function File:Line
frame-number function-name file-name:line-number

• frame-number: Indicates the frame number (0 is always displayed).

• function-name: Indicates the name of the function corresponding to the frame information to which the name
of the job definition script calling the function is attached. If no function has been called, <main> is displayed
as the function name. A maximum of 6 bytes can be displayed.

• file-name: Indicates the name of the file in which execution is currently stopped.

• line-number: Indicates the line number at which execution is currently stopped.
If execution is stopped at the end of the job definition script, <EOF> is displayed. If execution is stopped
while the trap command's action is executing, <Trap action> is displayed.

If execution is stopped without having entered a function or if the job definition script is not running, the command
outputs an error message.

When an argument is specified in the return command
Executing the command results in an error.

Notes:
The command terminates the function without stopping execution of the job definition script even if a stop evaluation
condition is satisfied by a breakpoint, a watchpoint, or a signal on a subsequent line in the function.

Example
If the return command is executed while execution is stopped before echo on line 2, the command stops execution
before echo on line 9 and displays the frame information. The command skips num=10 on line 3.

1: funcA(){
2: echo "funcA"
3: num=10
4: }
5:
6: val=1
7: num=2
8: funcA
9: echo $num

2: echo "funcA"
Current: echo
(adshdb) return
KNAX7037-I Are you sure you want to exit the current function? (y or n)
y
KNAX7068-I Commands will be skipped until the end of the function.
...
Num Function File:Line
0 <main> test.ash:9
KNAX7032-I The script "test.ash" stopped running.
9: echo $num
Current: echo
(adshdb)

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 446

6.2.12 Sending a signal (signal command)
The signal command sends a signal to the job definition script. The abbreviation for the signal command is si.
The following shows the format of the signal command:

signal {signal-name|signal-number}

When a signal name or a signal number is specified in the argument, the signal command sends the corresponding
signal and then executes the job definition script continuously. You use the info signals command to display
information about the signals that can be specified in the argument. For details about the processing when a signal is
received, see 3.10.2 Processing when signals are received (UNIX only).

The following describes the signal command's processing.

When the signal command argument is specified
When the signal command is executed while the job definition script is running, the following occurs:

Signal number or signal name
The command outputs a message indicating that the specified signal will be sent, sends the specified signal to
the job definition script, and then executes the job definition script continuously.

If the specified signal does not exist or the job definition script is not running, the command outputs an error message.

When the signal command argument is omitted
When the signal command is executed while the running job definition script is stopped, an error message is
output.
The command also outputs an error message if the job definition script is not running.

Notes:

• A signal number that is specified in the argument must be 0 or a greater integer. Do not specify a plus sign (+)
at the beginning.

• If the specified number is outside the permitted value range for the int type, the command rounds it up to the
maximum value for the int type.

• To send any of the following signals in AIX, specify the signal number or another signal name with the same
signal number:
To send SIGLOST or SIGIOT: Specify signal number 6 or SIGABRT.
To send SIGPOLL: Specify signal number 23 or SIGIO.

• To send any of the following signals in HP-UX, specify the signal number or another signal name with the same
signal number:
To send SIGIOT: Specify signal number 6 or SIGABRT.
To send SIGPOLL: Specify signal number 22 or SIGIO.

• To send any of the following signals in Solaris, specify the signal number or another signal name with the same
signal number:
To send SIGIOT: Specify signal number 6 or SIGABRT.
To send SIGPOLL: Specify signal number 22 or SIGIO.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 447

6.2.13 Displaying breakpoint and watchpoint information (info
breakpoints command)

The info breakpoints command displays information about the breakpoints and watchpoints that have been set.
The abbreviation for the info breakpoints command is i b. The following shows the format of the info
breakpoints command:

info breakpoints[breakpoint-or-watchpoint-number]

The info breakpoints command with a breakpoint or watchpoint number specified in the argument displays
information about the specified breakpoint or watchpoint. If the argument is omitted, the command displays information
about all breakpoints and watchpoints. The following shows the display format:

Num Type What
number breakpoint/watchpoint file-name:line-number/variable-name
...

• number: Sequence number of the breakpoint or watchpoint. The command displays a maximum of three digits left-
justified.

• file-name: File name of the job definition script.

• line-number: For a breakpoint, the line number at which the breakpoint is set.

• variable-name: For a watchpoint, the variable name specified in the watch command.

The following describes the info breakpoints command's processing.

When the info breakpoints command argument is omitted
If at least one breakpoint or watchpoint has been set, the command displays information about all breakpoints and
watchpoints.
If no breakpoint or watchpoint has been set, the command outputs a message.

When the info breakpoints command argument is specified

• breakpoint-or-watchpoint-number
If the specified number exists, the command displays information about the breakpoint or watchpoint
corresponding to the specified number.
If the specified number does not exist, the command outputs an error message.

• Other
The command outputs an error message.

Notes:

• A number that is specified in the argument must be 0 or a greater integer. Do not specify a plus sign (+) at the
beginning.

• If the specified number is outside the permitted value range for the int type, the command rounds it to the
maximum value for the int type.

Example of output
This example displays a breakpoint and a watchpoint.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 448

Num Type What
1 breakpoint sample.ash:100
2 watchpoint rc

6.2.14 Displaying coverage information (info coverage command)
The info coverage command displays coverage information during debugging. The abbreviation for the info
coverage command is i c. The following shows the format of the info coverage command:

info coverage[n1[-[n2]]
 [,n3[-[n4]]]...]

Specify line numbers in the arguments n1, n2, n3, n4, and so on. The command displays coverage information for the
range of lines specified in the arguments. If the argument is not specified, the command displays all coverage information.

Example
This example displays coverage information for lines 1 through 10, 15, and 21 through the end.

info coverage 1-10,15,21-

For details about the display of coverage information, see 3.9 Acquiring coverage information.

6.2.15 Displaying function information (info functions command)
The info functions command displays information about functions. The abbreviation for the info functions
command is i f. The following shows the format of the info functions command:

info functions[function-name]

When a function name is specified in the argument, the command displays that function name and the corresponding
file name and line number. If the argument is not specified, the command displays all function names and their file
names and line numbers. The following shows the display format:

Function File:Line
function-name file-name:line-number
...

• function-name: Name of a defined function. When all functions are displayed, this information is displayed in ASCII
code order of the function names. A maximum of 31 bytes can be displayed for each function name. If a function
name consists of more than 31 byes, only the first 31 bytes are displayed. The command adjusts the column based
on the length of the function names.

• file-name: Name of the job definition script file in which the function is defined.

• line-number: Line number at which the function is displayed.

The following describes the info functions command's processing.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 449

When the info functions command argument is omitted
The command displays all function names and the corresponding file names and line numbers.

When the info functions command argument is specified

• Name of an existing function
The command displays the specified function's name and the corresponding file name and line number.

• Other
The command outputs an error message.

Notes:
Information about functions specified in the job definition script or in an external script specified in the #-
adsh_script extended script command can be referenced even before the job definition script executes because
this information is loaded automatically when the adshexec command starts. However, information about
functions that are not specified in the #-adsh_script extended script command is not displayed while the job
definition script is being run by the run command and until the processing defining that function is completed.

Example of output
This example displays function names and the corresponding file names and line numbers:

Function File:Line
funcA script1.ash:100
funcB script2.ash:10
funcXXX script1.ash:50

6.2.16 Displaying job step information (info jobsteps command)
The info jobsteps command displays job step information. The abbreviation for the info jobsteps command
is i j. The following shows the format of the info jobsteps command:

info jobsteps[job-step-name]

When a job step name is specified in the argument, the command displays that job step name and the corresponding file
name and line number. If the argument is not specified, the command displays all job step names and the corresponding
file names and line numbers. The following shows the display format:

Jobstep File:Line
job-step-name file-name:line-number
...

• job-step-name: Name of a defined job step. When all job steps are displayed, the command displays this information
in ASCII code order of the job step names. A maximum of 31 bytes can be displayed for each job step name. The
command adjusts the column based on the length of the job step names. If a job step name was omitted, the command
displays <No name> for that job step.

• file-name: Name of the job definition script file in which the job step is defined.

• line-number: Line number at which the job step is displayed.

The following describes the info jobsteps command's processing.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 450

When the info jobsteps command argument is omitted
The command displays all job step names and the corresponding file names and line numbers.

When the info jobsteps command argument is specified
If the specified job step name exists, the command displays the specified job step name and the corresponding file
name and line number.
If a nonexistent job step name is specified, the command outputs an error message.

Notes:
You can display job step information regardless of whether run has been executed because this information is loaded
when the adshexec command starts.

Example of output
This example displays job step names and the corresponding file names and line numbers:

Jobstep File:Line
step1 script1.ash:10
step2 script1.ash:30
step3 script2.ash:10

6.2.17 Displaying signal information (info signals command)
The info signals command displays signal information. The abbreviation for the info signals command is I
si. The following shows the format of the info signals command:

info signals[signal-name| signal-number]

When a signal name or signal number is specified in the argument, the command displays information about the
corresponding signal. If the argument is not specified, the command displays information about all signals. The following
shows the display format:

Num Signal Stop Print
signal-number signal-name Yes/No Yes/No
...

• signal-number: Number of a signal. The command displays the signal numbers in ascending order. A maximum of
two digits can be displayed left-justified.

• signal-name: The signal's name. A maximum of 11 bytes can be displayed left-justified.

The following describes the info signals command's processing.

When the info signals command argument is omitted
The command displays information about all signals.

When the info signals command argument is specified

• signal-number
If the specified signal number exists, the command displays information about the signal with the specified signal
number.
If a nonexistent signal number is specified, the command outputs an error message.

• signal-name

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 451

If the specified signal name exists, the command displays information about the specified signal.
If a nonexistent signal name is specified, the command outputs an error message.

• Stop
Yes: Indicates that when the signal indicated by Signal is received, the command stops the job definition
script that is running.
No: Indicates that the command does not stop the job definition script that is running when the signal indicated
by Signal is received.
For details about the processing when signals are received, see 3.10.2 Processing when signals are received
(UNIX only).

• Print
Yes: Indicates that when the signal indicated by Signal is received, the command displays a signal received
message.
No: Indicates that the command does not display a signal received message when the signal shown indicated by
Signal is received.

Notes:

• A number that is specified in the argument must be 0 or a greater integer. Do not specify a plus sign (+) at the
beginning. If any other value is entered, the command outputs an error message.

• If the specified number is outside the permitted value range for the int type, the command rounds it to the
maximum value for the int type.

Example of output
This example displays signal information:

Num Signal Stop Print
1 SIGHUP No No
2 SIGINT Yes Yes

6.2.18 Displaying the status (info status command)
The info status command displays the status of the job definition script that is being debugged. The abbreviation
of the info status command is i st. The following shows the format of the info status command:

info status[joberrmode]

If joberrmode or nothing is specified as the argument, the command displays the job definition script's fault injection
mode. The abbreviation of joberrmode is jem.

Example of output
This example displays the status of the job definition script (when the fault injection mode is enabled):

joberrmode:on

This example displays the status of the job definition script (when the fault injection mode is disabled):

joberrmode:off

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 452

6.2.19 Displaying shell variable information (info variables command)
The info variables command displays information about all types of shell variables. The abbreviation for the
info variables command is i v. The following shows the format of the info variables command:

info variables[variable-name]

When a variable name is specified in the argument, the command displays information about the specified shell variable.
If the argument is not specified, the command displays information about all shell variables. The following shows the
display format:

variable-name = variable-value [(Step local)]
...

• variable-name: Name of a shell variable. When all shell variables are displayed, the command displays the
information in ASCII code order of the shell variable names.

• variable-value: Value of the shell variable. For a shell variable that is valid only within a job step, the command
adds the supplementary information Step local. A shell variable that is valid only within a job step is one that
is specified in the stepVar attribute of the #-adsh_step_start extended script command.

For a variable that has no value, the command displays neither the equal sign (=) nor a variable value. The following
shows the display format:

variable-name[(Step local)]

The following describes the info variables command's processing.

When the info variables command argument is omitted
The command displays information about all shell variables.

When the info variables command argument is specified
If the specified variable name exists, the command displays information about the specified shell variable.
If a nonexistent variable name is specified, the command outputs an error message.

Notes:

• If the job definition script is not being run by the run command, variables cannot be displayed because the
variables are not defined.

• If you specify an array for the variable name, specify an array element.

• A variable and its array 0 (example: aaa and aaa[0]) are the same. If a variable is an array within the job
definition script, the variable is represented with a subscript; if a variable is not an array, it is represented without
a subscript.

• When an array is created in the shell, array element zero is created automatically. Therefore, when information
about all shell variables is displayed, information about element zero is also included.

Example of output
This example displays information about all shell variables:

SHELL = /bin/sh
TEMPFILE = /tmp/file01
num = 1 (Step local variable)
val = 100

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 453

6.2.20 Enabling and disabling the fault injection mode (joberrmode
command)

You execute the joberrmode command to enable and disable the fault injection mode for the job definition script
being debugged. The abbreviation of joberrmode is jem. The following shows the format of the joberrmode
command:

joberrmode{on|off}

When on is selected:
The fault injection mode is enabled, which enables you to test cases where errors have occurred in the job. This
mode is used to simulate errors when the C1 execution percentage rate is not 100% even though all execution paths
have executed. For details about the case where the C1 execution percentage rate is not 100%, see 3.9.4(5) Case
where the C1 execution percentage rate is not 100%.
When the fault injection mode is enabled, the debugger behaves as described in the following (the return code is
not changed):

• When abnormal or always is specified in the run attribute, the debugger executes the job step.

• When the run attribute is omitted or normal is specified, the debugger does not execute the job step.

• The debugger does not execute a command outside the job step.

• If an error is injected within a step normal block, the debugger executes the commands within that step's step
error block. The debugger executes the step error block without executing any subsequent command in that step
even if cont is specified in the onError attribute.

When the run command is executed while the fault injection mode is on, the fault injection mode is reset to off.

When off is selected:
The fault injection mode is disabled.

Execution example 1
This example executes the job definition script shown in the following (the line numbers on the left correspond to
the line numbers displayed in the execution results):

001 #!/bin/sh
002
003 #-adsh_step_start STEP001 <--Start of STEP001
004
005 ./cmd1 <--Step normal block
006
007 #-adsh_step_error <--Step error block
008
009 ./cmd2
010
011 #-adsh_step_end
012
013 ./cmd3
014
015 #-adsh_step_start STEP002 -run abnormal <--Start of STEP002
(executed in the event of an error)
016
017 ./cmd4 <--Step normal block
018
019 #-adsh_step_error <--Step error block
020

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 454

021 ./cmd5
022
023 #-adsh_step_end
024
025 ./cmd6
026
027 echo JOB01-ended

Execution results 1
This example stops execution outside the step and uses the joberrmode command to enable the fault injection
mode (the numbers at the right correspond to the numbers in the explanation provided below):

[jobuser1@HOST01 joberrmode]$ adshexec -d joberrmode.ash <- 1.
KNAX7901-I The adshexec command will wait for all asynchronous
processes at the end of the job.
KNAX0724-I The job ID was assigned. job ID=000037
(adshdb) b 2 <- 2.
KNAX7015-W The breakpoint cannot be set at line "2". The breakpoint
will be set at the next available line.
KNAX7018-I Breakpoint "1": filename="joberrmode.ash" line=3
(adshdb) b 17 <- 3.
KNAX7018-I Breakpoint "2": filename="joberrmode.ash" line=17
(adshdb) run <- 4.
KNAX7007-I Execution of the following script will now start: /home/
jobuser1/joberrmode/joberrmode.ash

KNAX0724-I The job ID was assigned. job ID=000038
KNAX0091-I ADSH000038 The job started.
KNAX7902-I The adshexec command will run in tty stdin mode.

KNAX7018-I Breakpoint "1": filename="joberrmode.ash" line=3 <- 5.
KNAX7032-I The script "joberrmode.ash" stopped running.
3: #-adsh_step_start STEP001
Current: #-adsh_step_start STEP001
(adshdb) info status <- 6.
joberrmode:off <- 7.
(adshdb) joberrmode on <- 8.
KNAX7126-I Fault injection mode is set to "on".
(adshdb) info status <- 9.
joberrmode:on <- 10.
(adshdb) c <- 11.
KNAX7034-I The script will continue.
KNAX6508-I ADSH000038.STEP001 step was skipped because a previous step
or command ended abnormally.
KNAX0092-I ADSH000038.STEP002 step started.

KNAX7018-I Breakpoint "2": filename="joberrmode.ash" line=17 <- 12.
KNAX7032-I The script "joberrmode.ash" stopped running.
17: ./cmd4
Current: ./cmd4
(adshdb) joberrmode off
KNAX7127-E Fault injection mode could not be modified. <- 13.
(adshdb) c <- 14.
KNAX7034-I The script will continue.
cmd4 start
cmd4 end
KNAX6116-I Execution of the command ./cmd4 (line=17) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 455

KNAX6597-I ADSH000038.STEP002 step succeeded. exit status=0 execution
time=3.081s CPU time=0.000s
KNAX0101-E ADSH000038 An error occurred during execution of the job.
KNAX0098-I ADSH000038 The job ended. exit status=0 execution
time=12.162s CPU time=0.000s
KNAX6380-I A job name will be added to the spool job directory of the
root job. spool job directory="/home/jobuser1/test6/spool/000038-
ADSH000038/"

(adshdb) quit
KNAX6380-I A job name will be added to the spool job directory of the
root job. spool job directory="/home/jobuser1/test6/spool/000037-
ADSH000037/"
KNAX7999-I Advanced Shell ended. exit status=0

The numbers below correspond to the numbers added at the right in the execution results above:

1. Starts debugging.

2. Stops execution inside the script.

3. Stops execution inside the step that is executed in the event of an error.

4. Executes the script.

5. Stops at the first breakpoint.

6. Displays the status.

7. The fault injection mode is disabled.

8. Enables the fault injection mode.

9. Displays the status.

10. The fault injection mode is enabled.

11. Restarts debugging.

12. Stops execution inside the step that is executed in the event of an error.

13. The fault injection mode could not be changed.

14. Restarts debugging.

Execution results 2
This example stops execution inside the step and uses the joberrmode command to enable the fault injection
mode (the numbers added at the right correspond to the numbers in the explanation provided below):

[jobuser1@HOST01 joberrmode]$ adshexec -d joberrmode.ash <- 1.
KNAX7901-I The adshexec command will wait for all asynchronous
processes at the end of the job.
KNAX0724-I The job ID was assigned. job ID=000043
(adshdb) b 5 <- 2.
KNAX7018-I Breakpoint "1": filename="joberrmode.ash" line=5
(adshdb) b 17 <- 3.
KNAX7018-I Breakpoint "2": filename="joberrmode.ash" line=17
(adshdb) run <- 4.
KNAX7007-I Execution of the following script will now start: /home/
jobuser1/joberrmode/joberrmode.ash

KNAX0724-I The job ID was assigned. job ID=000044
KNAX0091-I ADSH000044 The job started.
KNAX7902-I The adshexec command will run in tty stdin mode.
KNAX0092-I ADSH000044.STEP001 step started.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 456

KNAX7018-I Breakpoint "1": filename="joberrmode.ash" line=5 <- 5.
KNAX7032-I The script "joberrmode.ash" stopped running.
5: ./cmd1
Current: ./cmd1
(adshdb) info status <- 6.
joberrmode:off <- 7.
(adshdb) joberrmode on <- 8.
KNAX7126-I Fault injection mode is set to "on".
(adshdb) info status <- 9.
joberrmode:on <- 10.
(adshdb) c <- 11.
KNAX7034-I The script will continue.
cmd2 start
cmd2 end
KNAX6116-I Execution of the command ./cmd2 (line=9) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s
KNAX6596-E ADSH000044.STEP001 step failed. exit status=0 execution
time=62.384s CPU time=0.000s
KNAX0092-I ADSH000044.STEP002 step started.

KNAX7018-I Breakpoint "2": filename="joberrmode.ash" line=17 <- 12.
KNAX7032-I The script "joberrmode.ash" stopped running.
17: ./cmd4
Current: ./cmd4
(adshdb) joberrmode off
KNAX7127-E Fault injection mode could not be modified. <- 13.
(adshdb) c <- 14.
KNAX7034-I The script will continue.
cmd4 start
cmd4 end
KNAX6116-I Execution of the command ./cmd4 (line=17) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s
KNAX6597-I ADSH000044.STEP002 step succeeded. exit status=0 execution
time=11.865s CPU time=0.000s
KNAX0101-E ADSH000044 An error occurred during execution of the job.
KNAX0098-I ADSH000044 The job ended. exit status=0 execution
time=74.272s CPU time=0.000s
KNAX6380-I A job name will be added to the spool job directory of the
root job. spool job directory="/home/jobuser1/test6/spool/000044-
ADSH000044/"

The numbers below correspond to the numbers added at the right in the execution results above:

1. Starts debugging.

2. Stops execution inside the script within the step.

3. Stops execution inside the step that is executed in the event of an error.

4. Executes the script.

5. Stops at the first breakpoint.

6. Displays the status.

7. The fault injection mode is disabled.

8. Enables the fault injection mode.

9. Displays the status.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 457

10. The fault injection mode is enabled.

11. Restarts debugging.

12. Stops execution inside the step that is executed in the event of an error.

13. The fault injection mode could not be changed.

14. Restarts debugging.

Execution example 2
This example executes the job definition script shown in the following (the line numbers on the left correspond to
the line numbers displayed in the execution results):

001 #-adsh_job JOB001
002 #-adsh_step_start STEP001 -onError cont <--Start of STEP001 with -
onError cont specified
003 ./cmd1 <--Step normal block
004 ./cmd2
005 ./cmd3
006 #-adsh_step_error
007 ./cmd4 <--Step error block
008 ./cmd5
009 #-adsh_step_end
010 ./cmd6 <--Command outside the step

Execution results
This example stops execution within the step (line 4) and then enters the joberrmode command (the numbers
added at the right correspond to the numbers in the explanation provided below):

[jobuser1@HOST01 joberrmode]$ adshexec -d test_cont.ash <- 1.
KNAX7901-I The adshexec command will wait for all asynchronous
processes at the end of the job.
KNAX0724-I The job ID was assigned. job ID=000045
(adshdb) b 4 <- 2.
KNAX7018-I Breakpoint "1": filename="test_cont.ash" line=4
(adshdb) r <- 3.
KNAX7007-I Execution of the following script will now start: /home/
jobuser1/joberrmode/test_cont.ash

KNAX0724-I The job ID was assigned. job ID=000046
KNAX0091-I JOB001 The job started.
KNAX7902-I The adshexec command will run in tty stdin mode.
KNAX0092-I JOB001.STEP001 step started.
cmd1 start
cmd1 end
KNAX6116-I Execution of the command ./cmd1 (line=3) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s

KNAX7018-I Breakpoint "1": filename="test_cont.ash" line=4 <- 4.
KNAX7032-I The script "test_cont.ash" stopped running.
4: ./cmd2
Current: ./cmd2
(adshdb) info status <- 5.
joberrmode:off <- 6.
(adshdb) jem on <- 7.
KNAX7126-I Fault injection mode is set to "on".
(adshdb) info status <- 8.
joberrmode:on <- 9.
(adshdb) c <- 10.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 458

KNAX7034-I The script will continue.
cmd4 start <- 11.
cmd4 end
KNAX6116-I Execution of the command ./cmd4 (line=7) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s
cmd5 start
cmd5 end
KNAX6116-I Execution of the command ./cmd5 (line=8) finished
successfully. exit status=0 execution time=0.001s CPU time=0.000s
KNAX6596-E JOB001.STEP001 step failed. exit status=0 execution
time=42.531s CPU time=0.000s
KNAX0101-E JOB001 An error occurred during execution of the job.
KNAX0098-I JOB001 The job ended. exit status=0 execution time=42.533s
CPU time=0.000s
KNAX6380-I A job name will be added to the spool job directory of the
root job. spool job directory="/home/jobuser1/test6/spool/000046-
JOB001/"

The numbers below correspond to the numbers added at the right in the execution results above:

1. Starts debugging.

2. Stops execution inside the script within the step.

3. Executes the script.

4. Stops at the first breakpoint.

5. Displays the status.

6. The fault injection mode is disabled.

7. Enables the fault injection mode.

8. Displays the status.

9. The fault injection mode is enabled.

10. Restarts debugging.

11. Executes the command in the step error block.

6.2.21 Setting a variable value (set command)
The set command sets a value for a shell variable. By specifying an assignment expression in the argument, you can
evaluate the expression and then set a value in the variable. There is no abbreviation for the set command. The following
shows the format of the set command:

set assignment-expression

The following shows the format of assignment expression:

variable-name={variable-name|numeric-value|"character-string"}

• variable-name (left-hand term): Specifies the name of a shell variable. The value of the right-hand term is assigned
to the specified variable.

• variable-name (right-hand term): Specifies the name of a shell variable. The value of this specified variable is
assigned to the variable of the left-hand term.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 459

• numeric-value: Specifies an integer value. The specified integer value is assigned to the variable of the left-hand
term.

• character-string: Specifies a character string. The specified character string is assigned to the variable of the left-
hand term.

The following describes the set command's processing.

When the set command argument is specified

• Assignment expression
The command sets a variable value according to the specified assignment expression.

• Assignment expression containing a variable name that has not been created
The command outputs an error message.

• Other than an assignment expression
The command outputs an error message.

When the set command argument is omitted
The command outputs an error message.

Notes:

• If the job definition script is not being run by the run command, an error results because variable information has
not been specified.

• If you specify a character string, you must enclose it in double quotation marks ("). To use a double quotation mark
as part of the character string, specify it as a backslash followed by a double quotation mark (\"). To specify \",
specify \\\".

• The command processes the argument following the first equal sign (=) in the assignment expression as a variable
name and a numeric value or a character string.

• If you specify an array for the variable name, specify an array element.

• Do not attach a dollar sign ($) to a variable name.

• If a specified numeric value is outside the permitted value range for the signed long type, it is rounded to the
maximum or minimum value permitted for the signed long type.

• If execution is stopped before a for script control statement, a variable specified in wordlists in the for
statement has a fixed value. If you want to change the value of the variable that is assigned by the for statement,
use the set command at the first stop location following do in the for statement to change the variable value, or
use the set command before execution reaches the for statement to change the value of the variable in
wordlists. The following shows examples.
Example 1:

 1: a=1
 2: b=2
 3: date
 4: for num in $a $b
 5: do
 6: echo $num <--To change the value of num, execute the set command
before line 6 executes.
 7: pwd
 8: done

Example 2:

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 460

 1: a=1
 2: b=2
 3: date <--To apply the values of $a and $b to the variable that
is assigned by the for statement, execute the set command before line 3
executes.
 4: for num in $a $b
 5: do
 6: echo $num
 7: pwd
 8: done

• The command assigns to the left-hand term a numeric value stored in the variable specified in the right-hand term
of an assignment expression as is (without rounding).

Examples
To assign a numeric value, you must use the -i attribute of the typeset command to declare the variable's type
as integer.

Assign numeric value 10 to variable a

(adshdb) set a=10

Assign character string test to variable b

(adshdb) set b="test"

Assign the value of variable a to variable c

(adshdb) set c=a

Assign numeric value 1 to variable d[5](array)

(adshdb) set d[5]=1

6.2.22 Displaying a variable's value (print command)
The print command displays the value of a variable in the job definition script. You display a variable's value by
specifying its variable name in the argument. The abbreviation for the print command is p. The following shows the
format of the print command:

print variable-name

The following describes the print command's processing.

When the print command argument is specified
If the specified variable is defined, the command displays its value. The following shows the display format:

variable-value

• variable-value: Value of the specified variable. If there is no value, <No value> is displayed.

If the variable is undefined, the command outputs an error message.

When the print command argument is omitted
The command outputs an error message.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 461

Notes:

• If the job definition script is not being run by the run command, an error results because variable information
has not been specified.

• If you specify an array for the variable name, specify an array element.

• Do not attach a dollar sign ($) to a variable name.

Examples

Display the value of variable a

(adshdb) print a

Display the value of variable b[1] (array)

(adshdb) print b[1]

6.2.23 Displaying a backtrace (where command)
A backtrace consists of information that shows how the executing job definition script reached the current location
where execution has stopped. A backtrace is represented by frames. A frame is data related to a single call to a function.
When a function is called, one frame is added. When a function terminates, its frame is deleted. A sequential number,
beginning with zero, is assigned to each frame starting from the innermost frame. The innermost frame indicates the
currently executing function. The where command displays a backtrace. The abbreviation for the where command
is whe. The following shows the format of the where command:

where[frame-number]

When a frame number is specified in the argument, the where command displays information about the innermost
frame through the frame with the specified number. If the argument is omitted, the command displays information about
all frames in order starting from the innermost frame. The following shows the display format:

Num Function File:Line
frame-number function-name file-name:line-number
...

• frame-number: Number assigned to a frame. The frame numbers are displayed in ascending order starting with 0.
Up to three left-justified digits can be displayed.

• function-name: Name of the function corresponding to the frame to which the name of the job definition script that
called the function is attached. If no function has been called, <main> is displayed as the function name. A maximum
of 63 bytes can be displayed.

• file-name: Name of the job definition script file corresponding to the frame. If the frame number is zero, this is the
name of the current file whose execution is stopped. If the frame number is 1 or greater, this is the file name used
when a new function was called.

• line-number: Line number corresponding to the frame. If the frame number is zero, this is the current line number
at which execution has stopped. If the frame number is 1 or greater, this is the line number used to call a new function.
If execution has stopped at the end of the job definition script, <EOF> is displayed. If execution has stopped while
the trap command's action is executing, <Trap action> is displayed.

The following describes the where command's processing.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 462

When the where command argument is omitted
If the where command is executed while execution of the job definition script is stopped, the command displays
information about all frames in order starting from the innermost frame.
If the job definition script is not running, the command outputs an error message.

When the where command argument is specified
If the where command is executed while the job definition script is running and a valid frame number is specified,
the command displays information about the innermost frame through the frame with the specified frame number.
If a non-numeric value is specified or the job definition script is not running, the command outputs an error message.

Notes:

• Specify 0 or a greater integer for a frame number. Do not specify a plus sign (+) at the beginning.

• If the specified frame number is outside the permitted value range for the int type, it is rounded to the maximum
value permitted for the int type.

• A maximum of 255 frames can be displayed (frame numbers 0 through 254). Specifying 255 or a greater value
in the argument does not display a frame with the specified number. If there are more than 255 frames, a message
is displayed following the frame information.

Example
This example executes the where command when funcA was called on line 12 of sample.ash, funcB was
called on line 9, and then execution stopped on line 12 of test.ash.
sample.ash
5: #-adsh_script test.ash
6:
7: funcA(){
8: num=10
9: funcB
10: }
11:
12: funcA

test.ash
10: funcB(){
11: val=5
12: num=20
13: }

Num Function File:Line
0 funcB (in sample.ash) test.ash:12
1 funcA (in sample.ash) sample.ash:9
2 <main> sample.ash:12

6.2.24 Displaying the source file (list command)
The list command displays the source file. The abbreviation for the list command is l. The following shows the
format of the list command:

When no file name is specified

list[line-number]

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 463

When this is the first list command executed since execution stopped on the current line and no argument is
specified in the command, the command displays a total of 11 numbered lines starting with the fifth line preceding
the current line where execution has stopped. If this is the second or a subsequent list command entered since
execution stopped, the command displays a total of 11 numbered lines starting from the line immediately following
the last line displayed by the previous list command.

When a file name is specified

list job-definition-script-file-name:line-number

You can specify a job definition script file name by using a colon (:) in the argument.
If a line number is specified, the command displays 11 numbered lines starting with the fifth line preceding the
specified line. The following shows the display format:

line-number: line-contents-in-source-file
...

• line-number: Line number in the source file.

• Line-contents-in-source-file: Contents of the indicated line in the source file.

The following describes the list command's processing.

When the list command argument is omitted
When this is the first list command executed since execution stopped on the current line, the command displays
a total of 11 numbered lines in the source file starting with the fifth line preceding the current line where execution
has stopped.
When this is the second or subsequent list command entered since execution stopped, the command displays a
total of 11 numbered lines starting with the line immediately following the last line displayed by the previous list
command.

When the list command argument is specified
If an existing line number is specified, the command displays 11 numbered lines starting with the fifth line preceding
the specified line.
If a nonexistent line number or any other type of value is specified, the command outputs an error message.

Notes:

• If you specify a file name, make sure that you specify a file that was specified in the command for executing
batch jobs or in the #-adsh_script extended script command.

• The command treats the entire character string up to the colon (:) as a file name.

• If the source file display range would include a line with a line number less than 1, the command displays lines
1 through 11, regardless of whether the argument was specified.

• If the source file display range would include a line beyond the last line, the command displays the last 11 lines
starting with the tenth line preceding the last line, regardless of whether the argument was specified.

• Specify 0 or a greater integer for a line number. Do not specify a plus sign (+) at the beginning.

• If the specified line number is outside the permitted value range for int type, it is rounded to the maximum
value permitted for the int type.

• If the job definition script under debug execution is in either of the statuses listed below and the list command
is executed with the argument omitted, an error results. However, once you execute the list command with
the argument specified, you can display the remaining lines.

 Execution has stopped at the end of the job definition script (EOF).
 Execution has stopped while the trap command's action is executing.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 464

Example of output
This example executes the list command with the argument omitted while execution is stopped on line 20.

15: echo "start"
16:
17: a=1
18: while [[$a -ne 10]]
19: do
20: echo $a
21: let a+=1
22: done
23:
24: pwd
25: echo "end"

6.2.25 Changing the directory (cd command)
The cd command changes the debugger's work directory. There is no abbreviation for the cd command. The following
shows the format of the cd command:

cd directory-path-name

You change the work directory by specifying a directory path name in the argument.

The following describes the cd command's processing.

When the cd command argument is specified
The command changes the debugger's work directory to the specified directory. The command displays the absolute
path of the new directory.
If the job definition script is executing, the cd command changes only the debugger's work directory; it does not
change the current directory of the executing job definition script.
If the cd command is not able to change the debugger's work directory because a directory path name without
execution permissions or a nonexistent directory path name is specified, the command outputs an error message.

When the cd command argument is omitted
The command outputs an error message.

Example
This example uses the cd command to change the work directory. The example then uses the exec command to
execute an external command and outputs the contents of a file located at the destination directory.

(adshdb) cd work
KNAX7048-I Working directory: /home/xxx/work
(adshdb) exec cat test.txt
aaa bbb ccc
(adshdb)

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 465

6.2.26 Starting the login shell (exec command)
The exec command starts the login shell during debugging. The login shell is the shell specified in the SHELL shell
variable. The abbreviation for the exec command is ex. The following shows the format of the exec command:

exec[arguments-to-be-passed-to-login-shell]...

If arguments to be passed to the login shell are specified in the argument, the exec command passes the specified
arguments to the login shell and then starts the login shell. If the argument is omitted, the exec command starts the
login shell.

Notes:

• If the argument contains an ampersand (&), the command outputs an error message.

• To use an ampersand (&) for other purposes than background execution, specify \&.

• There is no limit to the number of arguments.

Example
This example uses the exec command to execute the ls shell command.

(adshdb) exec ls
aaa.txt bbb.log bin

6.2.27 Displaying Help (help command)
The help command displays the debugger's commands Help. The abbreviation for the help command is h. The
following shows the format of the help command:

help[command-name]

When a command name is specified in the argument, the help command displays a description of that command. If
the argument is omitted, the help command displays the names of all commands. You can specify in the argument a
command's full name or its abbreviation.

The following describes the help command's processing.

When the help command argument is omitted
The command displays the names of all commands. The following shows the display format:

Available commands:
break cd continue delete exec
finish help info joberrmode kill
list next print quit return
run set signal step watch
where

When the help command argument is specified
When a command name is specified, the help command displays the usage of the specified command.
If a nonexistent command name is specified, the help command outputs an error message.

6. Debugging Job Definition Scripts

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 466

Part 4: Reference

7 Parameters Specified in the Environment Files

You define in environment files various information such as return codes, coverage, system
execution logs, directory paths, and environment variables. You use parameters to specify this
information.

This chapter explains the formats of the parameters and provides the details of the parameters.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 467

7.1 Specification format of environment files

This section explains the specification formats of parameters that are specified in the environment files.

There are three types of parameters:

Parameter type Definition contents

Environment setting parameters Define items such as return codes, coverage, system execution logs, and directory paths.

export parameter Defines environment variables.

Conditional parameters Specify environment setting parameters that are effective only at physical hosts or specific logical hosts
or the export parameter.

The maximum length of one line in an environment file is 4,092 bytes including comments and separators. If a line
exceeds 4,092 bytes, a parsing error will occur. You must not specify the ampersand (&) in an environment file, including
within a comment.

The following notes apply to the parameters that are specified in the environment files:

• If a line contains NULL (0x00, or \0 in C language), the job controller treats everything on the line from the
beginning of the line up to that NULL character as the line, and ignores all characters following that NULL character.
To prevent invalid execution results and run-time errors, do not specify NULL.

• Make sure that the encoding used for environment files is consistent with the value of the LANG environment variable
in the environment in which job definition scripts are to be run.

• Text to the right of a hash mark (#) not followed by -adsh_conf 1 is treated as a comment.

7.1.1 Formats of parameters

(1) Format of environment setting parameters
The following shows the format of environment setting parameters:

0#-adsh_conf 1parameter 1value

• Specify a parameter following #-adsh_conf on one line.

• Specify nothing after the parameter value.

• If a parameter value contains a space, enclose the entire value in double quotation marks ("). No other escape
character is permitted.

(2) Format of the export parameter
The following shows the format of the export parameter:

0export 1environment-variable-name=environment-variable-value

• In the export parameter, specify one environment variable per line.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 468

• The only environment variable that can be referenced is PATH.
For example, the following specification sets in the NEWHOME environment variable the character string ${HOME}
as is, not the contents of the HOME environment variable,:

 export NEWHOME=${HOME}

• To specify a value containing a space, enclose the value in double quotation marks (") or single quotation marks (').

• A backslash (\) is treated as an escape character (a backslash enclosed in single quotation marks (') is treated as a
normal character).

(3) Format of conditional parameters
The following shows the format of the conditional parameters:

0#-adsh_conf 1 [phost_start | lhost_start 1 host-name]
environment-setting-parameter-or-export-parameter
 :
0#-adsh_conf 1 [phost_end | lhost_end]

• You can specify multiple environment setting parameters or export parameters.

• To specify export and environment setting parameters that are to be valid only on the physical host or only on a
specified logical host, you must enclose them within conditional parameters specified on the preceding and following
lines.

• Specify nothing after a parameter value.

• You can specify multiple conditional parameters. However, nesting conditional parameters is not permitted (see
example 2).

Example 1: Specifying multiple conditional parameters

#-adsh_conf phost_start
export HOME=/home/phost
#-adsh_conf phost_end

#-adsh_conf phost_start
export TEMP=/tmp
#-adsh_conf phost_end

Example 2: Nesting conditional parameters (results in an error)

#-adsh_conf phost_start
export HOME=/home/phost
#-adsh_conf phost_start
export TEMP=/tmp
#-adsh_conf phost_end
#-adsh_conf phost_end

7.1.2 Specification format of comments
The following shows the specification format of a comment:

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 469

0#any-character-string-not-beginning-with--adsh_conf

• Any character string that does not begin with -adsh_conf 1 that is specified following a hash mark (#) is treated
as a comment (through the end of the line).

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 470

7.2 Lists of parameters

7.2.1 List of environment setting parameters

(1) Defining the environment setting parameters
You define the environment setting parameters in system environment files and job environment files. For details about
these files, see 2.6.1 Specifying the environment files.

The parameters that can be specified in a system environment files and a job environment file are the same. The following
table shows the specification values that take effect depending on whether the system environment file and job
environment file are specified:

System environment
file

Job environment file

Omitted Specified

Omitted Each parameter's default value Values specified in the job environment file

Specified Values specified in the system environment file Depends on the parameter specifications#

#
If the same parameter is specified in both, it is handled as described in the following:

• Environment setting parameters that can be specified only once in a file
The specification in the job environment file takes effect.

• Environment setting parameters that can be specified more than once in a file
JP1/Advanced Shell merges all the specifications of the parameter beginning with the specifications in the job
environment file.

Example:
Specifications in the system environment file
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\abc
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\def

Specifications in the job environment file
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\ghi
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\def
#-adsh_conf PATH_CONV /jp1as/kkk c:\\jp1as\\kkk

The analysis results are equivalent to the following:
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\ghi <--1.
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\def <--1.
#-adsh_conf PATH_CONV /jp1as/kkk c:\\jp1as\\kkk <--1.
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\abc <--2.
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\def <--2.

Notes:
1. Specified in the job environment file
2. Specified in the system environment file

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 471

(2) List of environment setting parameters
The following table lists and describes the environment setting parameters that are specified in the environment files of
JP1/Advanced Shell. Specification of these parameters is optional.

Table 7‒1: Environment setting parameters specified in the environment files of JP1/Advanced
Shell

Parameter name Definition Maximum
number of times
parameter can
be specified#1

Changeability at the
start of child jobs

ADSHCMD_RC_ERROR Defines the return code to be used when an
extended script command fails.

1 Y

ADSHCMD_RC_SUCCESS Defines the return code to be used when an
extended script command is successful.

1 Y

ASC_FILE Defines a naming rule for accumulation files
used in the coverage auto-acquisition
functionality.

1 --

BATCH_CVR Enables the coverage auto-acquisition
functionality.

1 --

CHILDJOB_EXT Defines an extension for job definition script
files that are to be executed as child jobs.

255 Y

CHILDJOB_PGM Defines a program path specification that is to
be executed as child jobs.

255 Y

CHILDJOB_SHEBANG Defines an executable program path for job
definition script files that are to be executed as
child jobs.

255 Y

CMDRC_THRESHOLD_DEFINE Defines a return code threshold for a command.
This parameter can also be defined for return
codes of shell scripts and child jobs.

No limit#3 Y

CMDRC_THRESHOLD_USE_PRESET Defines a return code threshold for UNIX-
compatible commands.

1 Y

COMMAND_CONV_ARG Defines a rule for converting an argument in job
definition scripts during command execution.

255 Y

ESCAPE_SEQ_ECHO_DEFAULT Defines the action of the echo command when
the escape-character option is omitted.

1 Y

ESCAPE_SEQ_ECHO_HEX Specifies whether ASCII code characters in
hexadecimal notation are to be interpreted as
escape characters.

1 Y

EVENT_COLLECT Specifies whether the operation information
acquisition functionality is to be enabled for job
definition scripts.

1 Y

HOSTNAME_JP1IM_MANAGER#2 Specifies for the user-reply functionality the
operation management server on which JP1/IM
- Manager is running that is to be the destination
of JP1 events.

1 DN

JOBEXECLOG_PRINT Defines the job execution log contents to be
output to the standard error output when a job
terminates.

1 --

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 472

Parameter name Definition Maximum
number of times
parameter can
be specified#1

Changeability at the
start of child jobs

JOBLOG_SUPPRESS_MSG Defines a message whose output to job
execution logs is to be suppressed.

No limit#3 Y

KSH_ENV_READ Defines whether the ENV shell variable is to be
read.

1 Y

LOG_DIR#4 Defines the path name of the directory to which
system execution logs are to be output.

1 Y

LOG_FILE_CNT#5 Defines the number of files to be used to back
up system execution logs.

1 Y

LOG_FILE_SIZE#5 Defines the size of a file to which system
execution logs are to be output.

1 Y

OUTPUT_MODE_CHILD Specifies whether a job execution log is to be
output to the standard error output when a child
job terminates.

1 Y

OUTPUT_MODE_ROOT Specifies whether a job execution log is to be
output to the standard error output when a root
job terminates.

1 --

OUTPUT_STDOUT Defines the destination for the root job standard
output.

1 --

PATH_CONV Defines a rule for converting absolute path
names.

255 Y

PATH_CONV_ACCESS Defines a rule for converting file path names in
job definition scripts when files are input and
output.

255 Y

PATH_CONV_ENABLE Enables the path conversion functionality. 1 Y

PATH_CONV_RULE
(Windows only)

Defines a rule for converting file paths. 1 Y

PERMISSION_SPOOLJOB_DIR
(UNIX only)

Defines permission for the spool job directory. 1 --

PERMISSION_SPOOLJOB_FILE
(UNIX only)

Defines permission for the files under the spool
job directory.

1 --

PIPE_CMD_LAST
(UNIX only)

Defines execution processing for the last
command in a pipe.

1 Y

SPOOL_DIR#2, #4, #6 Defines the spool root directory path name. 1 DN

SPOOLJOB_CHILDJOB Specifies whether a child job's spool job is to be
deleted or is to be merged into the spool job of
the root job when the child job terminates.

1 N

SPOOLJOB_CREATE Defines whether a spool job is to be created
when a job definition script is run.

1 N

TEMP_FILE_DIR#4 Defines the path name of the directory for
storing temporary files.

1 Y

TRACE_DIR#4 Defines the path name of the directory to which
traces are to be output.

1 Y

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 473

Parameter name Definition Maximum
number of times
parameter can
be specified#1

Changeability at the
start of child jobs

TRACE_FILE_CNT#7 Defines the number of files to which traces are
to be output.

1 Y

TRACE_FILE_SIZE#7 Defines the size of a file to which traces are to
be output.

1 Y

TRACE_LEVEL Defines a trace output level. 1 Y

TRAP_ACTION_SIGTERM Defines the job controller's action when a forced
termination request is received.

1 Y

UNSUPPORT_TEST
(Windows only)

Defines the handling of an unsupported
conditional expression.

1 for each
condition

Y

USERREPLY_DEBUG_DESTINATIO
N

Defines the input source and the destination of
event notification and reply-request messages
during debug execution when the user-reply
functionality is used.

1 DN

USERREPLY_JP1EVENT_INTERVA
L#2

Defines the minimum interval at which JP1
events are to be issued by the adshecho and
adshread command in the user-reply
functionality.

1 DN

USERREPLY_WAIT_MAXCOUNT#2 Defines the maximum number of concurrent
reply-request messages that can be output by the
user-reply functionality per physical or logical
host.

1 DN

VAR_ENV_NAME_LOWERCASE
(Windows only)

Defines whether environment variable names in
lowercase letters are supported.

1 Y

VAR_SHELL_FUNCINFO Defines arrays for managing information about
shell functions.

1 Y

VAR_SHELL_GETLENGTH Defines the unit for lengths when the lengths of
variable values are referenced.

1 Y

Legend:
Y: If a change is made when a child job starts to the setting in effect when its root job started, that change will be
effective (but making such a change is not recommended).
N: If a change is made when a child job starts to the setting in effect when its root job started, that change will be
ignored.
DN: When a child job starts, do not make any change to the setting in effect when its root job started. If a change
is made, JP1/Advanced Shell might not operate correctly.
--: Not applicable to child jobs.

#1
For a parameter that can be specified in both the system environment file and the job environment file, make sure
that the total number of specifications of the parameter in both files combined does not exceed the maximum value
shown in this column.
To determine whether a parameter can be specified in both the system environment file and the job environment
file, see the explanations for the individual parameters.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 474

#2
To use the user-reply functionality, you must specify these parameters in the system environment file. When you
make a change to these parameters in the system environment file, you must restart the user-reply functionality's
management daemon or service.
Also note the following regarding the specification of these parameters:

• Do not specify these parameters in a job environment file. If they are specified in a job environment file, the
following problems might occur:
HOSTNAME_JP1IM_MANAGER: When a reply is entered or canceled with the adshchmsg command, the
reply-waiting events accumulated in JP1/IM - View are not released while the user-reply functionality
management's daemon or service is stopped.
USERREPLY_WAIT_MAXCOUNT: The information specified in the job environment file is ignored.
USERREPLY_JP1EVENT_INTERVAL: JP1/IM - View's processing load increases.

• If different values are specified in the system environment file and the job environment file for the parameter
shown below, the problem described below might occur. If you use the user-reply functionality, do not specify
the following parameter in the job environment file:
SPOOL_DIR: Output of reply-request messages fails.

#3
Limited by the available memory size.

#4
You can use multiple environments on the same host by specifying different directories in these parameters.

#5
If multiple users output system execution logs to the same file, the values of LOG_FILE_CNT and
LOG_FILE_SIZE specified by the last user that started output of system execution logs become effective.

#6
To inherit information to a host in a standby system during cluster operation, you must share the directory to be
inherited among the multiple hosts. In this case, share at least the directory specified in this parameter among the
hosts.

#7
If multiple users output trace logs to the same file, the largest values specified for TRACE_FILE_CNT and
TRACE_FILE_SIZE by the users become effective.
If the values of TRACE_FILE_CNT and TRACE_FILE_SIZE are changed in the environment file, the specified
values are compared with the existing values for the number of trace files and file size, and whichever are larger
become effective.
To reduce the number of trace files and the file size, you must delete all files from the trace folder (do not delete
files from the trace folder while a job is outputting traces to those trace files).

7.2.2 export parameter

(1) Defining the export parameter
You can define export parameters in both the system environment file and the job environment file. For details about
these files, see 2.6.1 Specifying the environment files.

If export parameters are specified in both the system environment file and the job environment file, they are handled
as follows:

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 475

• Because the environment files are also analyzed whenever a child job starts, the values specified in export
parameters at the start of the child job are set in the environment variables again.

• Both the system environment file specifications and the job environment file specifications are effective and these
files are executed in this order.

Example:

System environment file

export A=s1
export B=s2
export A=s3

Job environment file

export C=j1
export B=j2

Order of execution

export A=s1
export B=s2
export A=s3
export C=j1
export B=j2

• The following are examples of adding paths to the PATH environment variable:

export PATH='d:\user\prg;${PATH}'
export PATH='/user/prg:${PATH}'

When a root job starts, paths are added to the PATH environment variable, and paths are also added to the PATH
environment variable when a child job of such a root job starts. In this manner, the length of the value of the PATH
environment variable increases. As a result, the maximum size of the PATH environment variable might be exceeded.
When you use child jobs, make sure that the maximum size of the PATH environment variable will not be exceeded.
If the maximum size will be exceeded, separate the environment file for the root job from the environment file for
the applicable child job and add paths to the PATH environment variable only in the environment file for the root
job.

(2) List of export parameter
The following describes the export parameter definition conditions. Specification of this parameter is optional. Only
the job controller uses this parameter.

Parameter name Definition Maximum number of times parameter
can be specified

export Defines an environment variable that is to take effect when the job
controller that uses the environment file is started.

No limit

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 476

7.2.3 Conditional parameters

(1) Defining the conditional parameters
You use conditional parameters to enclose the definitions of environment setting parameters and export parameters
that are to apply only to a logical host or to the physical host.

Parameters specified outside the conditional parameters apply to all hosts. Specifications of the same parameter inside
and outside conditional parameters are treated as duplicates, and if the total number of such parameters causes the
permitted maximum number of specifications to be exceeded, an error results.

An example definition of conditional parameter is explained below.

(parameter group A)
#-adsh_conf lhost_start HOST01
(parameter group B)
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
(parameter group C)
#-adsh_conf lhost_end
#-adsh_conf phost_start
(parameter group D)
#-adsh_conf phost_end
#-adsh_conf lhost_start HOST01
(parameter group E)
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
(parameter group F)
#-adsh_conf lhost_end
#-adsh_conf phost_start
(parameter group G)
#-adsh_conf phost_end
(parameter group H)

Based on this definition, the following parameter groups are executed on the specified hosts:

Parameter groups executed on logical host HOST01:

(parameter group A)
(parameter group B)
(parameter group E)
(parameter group H)

Parameter groups executed on logical host HOST02:

(parameter group A)
(parameter group C)
(parameter group F)
(parameter group H)

Parameter groups executed on the physical host:

(parameter group A)
(parameter group D)
(parameter group G)
(parameter group H)

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 477

You can define conditional parameters in both the system environment file and the job environment file. For details
about these files, see 2.6.1 Specifying the environment files.

The same parameters can be specified in the system environment file and the job environment file. Parameters specified
in both the system environment file and the job environment file are handled as follows:

• The parameter specifications in both the system environment file and the job environment file take effect.

• The rules for individual parameters apply to those parameters that are determined to be valid because they satisfied
the conditions.

Example:

System environment file

#-adsh_conf lhost_start host01
#-adsh_conf TEMP_FILE_DIR /jp1as/temp
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\sys1
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\sys2
#-adsh_conf lhost_end

Job environment file

#-adsh_conf lhost_start host01
#-adsh_conf TEMP_FILE_DIR /home/temp
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\job1
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\job2
#-adsh_conf PATH_CONV /jp1as/kkk c:\\jp1as\\job3
#-adsh_conf lhost_end

The results of executing the job on logical host host01 are equivalent to the following:

#-adsh_conf TEMP_FILE_DIR /home/temp
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\job1
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\job2
#-adsh_conf PATH_CONV /jp1as/kkk c:\\jp1as\\job3
#-adsh_conf PATH_CONV /jp1as/abc c:\\jp1as\\sys1
#-adsh_conf PATH_CONV /jp1as/def c:\\jp1as\\sys2

(2) List of conditional parameters
The following table lists and describes the conditional parameters. Specification of these parameters is optional.

Table 7‒2: Conditional parameters specified in the environment files of JP1/Advanced Shell

Parameter name Definition Maximum number of times
parameter can be specified

lhost_start Starts a set of environment setting parameters or export parameters that
are to take effect only on a specified logical host.
This parameter also specifies the target logical host.

No limit

lhost_end Ends the definition of a set of environment setting parameters or export
parameters started by lhost_start. This parameter must always be
paired with an lhost_start parameter.

phost_start Starts a set of environment setting parameters or export parameters that
are to take effect only on the physical host.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 478

Parameter name Definition Maximum number of times
parameter can be specified

phost_end Ends the definition of a set of environment setting parameters or export
parameters started by phost_start. This parameter must always be
paired with a phost_start parameter.

No limit

(3) Examples of definitions of conditional parameters
This subsection presents definition examples of parameters that are specified in the environment files.

(a) Example definitions of a system environment file and a job environment file
This subsection explains the relationship between the system environment file and the job environment file by way of
examples.

• Running a single host
This example defines a system environment file as the system default. The example defines the following
information:

• The name of the host to which JP1 events are issued is HostJp1IM.

• Output of the KNAX6110-I and KNAX6111-I messages is suppressed.

The following is an example of definitions in the system environment file:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6110-I
#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6111-I
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM

This example uses job environment files to define changes to the settings for each job.
You can convert the arguments in a job definition script to different values for each logical host, and you can define
for each job the return code to be used in the event of an error in an extended script command.
The following is an example of definitions in the job environment file:

#-adsh_conf ADSHCMD_RC_ERROR 8
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp

• Running logical hosts HOST01 and HOST02 at the same time
This example defines a system environment file as the system default. The example defines the following
information:

• Output of the KNAX6110-I and KNAX6111-I messages is suppressed.

• So that the logical hosts can use different execution environments, the SPOOL_DIR, LOG_DIR, TRACE_DIR,
TEMP_FILE_DIR, and HOSTNAME_JP1IM_MANAGER parameters are defined separately for each host.

• The value of the ABC environment variable is specified for each logical host.

The following is an example of definitions in the system environment file:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6110-I
#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6111-I
#-adsh_conf lhost_start HOST01
#-adsh_conf SPOOL_DIR /jp1as/host01/spool
#-adsh_conf LOG_DIR /jp1as/host01/log
#-adsh_conf TRACE_DIR /jp1as/host01/trace
#-adsh_conf TEMP_FILE_DIR /jp1as/host01/temp
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM01

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 479

#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
#-adsh_conf SPOOL_DIR /jp1as/host02/spool
#-adsh_conf LOG_DIR /jp1as/host02/log
#-adsh_conf TRACE_DIR /jp1as/host02/trace
#-adsh_conf TEMP_FILE_DIR /jp1as/host02/temp
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM02
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST01
export ABC=/jp1as/host01/abc
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
export ABC=/jp1as/host02/abc
#-adsh_conf lhost_end

This example uses job environment files to define changes to the settings for each job.
You can convert the arguments in a job definition script to different values for each logical host, and you can define
for each job the return code to be used in the event of an error in an extended script command.
The following is an example of definitions in a job environment file:

#-adsh_conf ADSHCMD_RC_ERROR 8
#-adsh_conf lhost_start HOST01
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp01
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp02
#-adsh_conf lhost_end

• Running logical host HOST01 during normal operation and temporarily running the physical host
This example defines a system environment file as the system default. The example defines the following
information:

• Output of the KNAX6110-I and KNAX6111-I messages is suppressed.

• The SPOOL_DIR, LOG_DIR, TRACE_DIR, TEMP_FILE_DIR, and HOSTNAME_JP1IM_MANAGER
parameters are defined separately for the logical host and for the physical host so that they can use different
execution environments.

• The default directory is used for the SPOOL_DIR, LOG_DIR, TRACE_DIR, and TEMP_FILE_DIR parameters
for the physical host.

• Different values are used for the ABC environment variable in the logical host and the physical host.

The following is an example of definitions in the system environment file:

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6110-I
#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6111-I
#-adsh_conf lhost_start HOST01
#-adsh_conf SPOOL_DIR /jp1as/host01/spool
#-adsh_conf LOG_DIR /jp1as/host01/log
#-adsh_conf TRACE_DIR /jp1as/host01/trace
#-adsh_conf TEMP_FILE_DIR /jp1as/host01/temp
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM01
#-adsh_conf lhost_end
#-adsh_conf phost_start
#-adsh_conf HOSTNAME_JP1IM_MANAGER HostJp1IM01
#-adsh_conf phost_end
#-adsh_conf lhost_start HOST01
export ABC=/jp1as/host01/abc

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 480

#-adsh_conf lhost_end
#-adsh_conf phost_start
export ABC=/jp1as/abc
#-adsh_conf phost_end

This example uses job environment files to define changes to the settings for each job.
You can convert the arguments in a job definition script to different values for the logical host and the physical host,
and you can define for each the return code to be used in the event of an error in an extended script command.
The following is an example of definitions in a job environment file:

#-adsh_conf ADSHCMD_RC_ERROR 8
#-adsh_conf lhost_start HOST01
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp01
#-adsh_conf lhost_end
#-adsh_conf phost_start
#-adsh_conf COMMAND_CONV_ARG /var/tmp /home/user01/tmp00
#-adsh_conf phost_end

(b) Example definitions of conditional parameters
This subsection explains by way of an example the definition of conditional parameters and parameters that are applied
to different hosts.

This example defines the conditional parameters as follows:

(parameter group A)
#-adsh_conf lhost_start HOST01
(parameter group B)
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
(parameter group C)
#-adsh_conf lhost_end
#-adsh_conf phost_start
(parameter group D)
#-adsh_conf phost_end
#-adsh_conf lhost_start HOST01
(parameter group E)
#-adsh_conf lhost_end
#-adsh_conf lhost_start HOST02
(parameter group F)
#-adsh_conf lhost_end
#-adsh_conf phost_start
(parameter group G)
#-adsh_conf phost_end
(parameter group H)

Based on these definitions, the following parameter groups are executed on each host:

Parameter groups executed on logical host HOST01:

(parameter group A)
(parameter group B)
(parameter group E)
(parameter group H)

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 481

Parameter groups executed on logical host HOST02:

(parameter group A)
(parameter group C)
(parameter group F)
(parameter group H)

Parameter groups executed on the physical host:

(parameter group A)
(parameter group D)
(parameter group G)
(parameter group H)

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 482

7.3 Environment setting parameters

This section explains the parameters that are specified in JP1/Advanced Shell's environment files.

ADSHCMD_RC_ERROR parameter (defines the return code to be used
when an extended script command fails)

Format

#-adsh_conf ADSHCMD_RC_ERROR return-code

Description
This parameter defines the return code to be used when an extended script command fails.

Operands

return-code ~<unsigned integer>((0 to 255))<<1>>
Specifies the return code to be used when an extended script command fails.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

ADSHCMD_RC_SUCCESS parameter (defines the return code to be used
when an extended script command is successful)

Format

#-adsh_conf ADSHCMD_RC_SUCCESS return-code

Description
This parameter defines the return code to be used when an extended script command is successful.

Operands

return-code ~<unsigned integer>((0 to 255))<<0>>
Specifies the return code to be used when an extended script command is successful.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 483

ASC_FILE parameter (defines a naming rule for accumulation files)

Format

#-adsh_conf ASC_FILE file-naming-rule

Description
This parameter defines a naming rule for accumulation files used in the coverage auto-acquisition functionality.

Operands

file-naming-rule
Windows: ~<any character string>((1 to 247 bytes))
UNIX: ~<any character string>((1 to 1,023 bytes))
Specifies a path name with a substitution position.
The asterisk (*) specifies the substitution position. The location where the asterisk is specified is replaced with the
job definition script name (without the file extension). The search begins at the beginning and substitution occurs
at the location of the first asterisk that is detected. Any subsequent asterisks that are specified are not subject to
substitution.
If no substitution position is specified, the specified name is used as is as the file name, and no substitution occurs.
If the resulting value is invalid as a path name regardless of whether substitution occurred, an error results. If this
parameter is omitted, the file name is determined according to the rules used when the -o option is omitted in the
adshexec command.
You must specify the file naming rule in such a manner that the file name obtained after conversion does not exceed
the maximum length permitted for the path name of an asc file in the adshexec command. If this maximum
length is exceeded, an error will occur during execution of the adshexec command.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• This parameter is ignored when the BATCH_CVR parameter's operand value is not YES.

• Do not use a file name that begins with a dot (.).

• Do not use reserved device names (such as CON, AUX, and NUL) as file names. (Windows only)

• Do not use NTFS streams for file names. (Windows only)

Example
• This example enables the coverage auto-acquisition functionality and defines a naming rule for accumulation files.

#-adsh_conf BATCH_CVR YES
#-adsh_conf ASC_FILE ./cvrg/ver001-*

In this example, execution of adshexec sample.ash will be the same as execution of adshexec -t -o ./
cvrg/ver001-sample sample.ash.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 484

BATCH_CVR parameter (enables the coverage auto-acquisition
functionality)

Format

#-adsh_conf BATCH_CVR YES

Description
This parameter enables the coverage auto-acquisition functionality.

Operands

YES
Enables the coverage auto-acquisition functionality. Enabling this functionality results in the same effects as when
the -t option is specified in the adshexec command.
As is the case when the -f option is omitted in the adshexec command, if there is any difference between the job
definition script file and backup information, JP1/Advanced Shell does not collect coverage information.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• The coverage auto-acquisition functionality is disabled in the following cases:

• The -v or -c option is specified in the adshexec command

• JP1/Advanced Shell - Developer is used

• For the ASC_FILE parameter to take effect, this parameter must be specified.

• If the -t option is specified in the adshexec command, the command outputs an error message and terminates
with RC=1.

• If the job definition script file is changed while there is already a coverage information file, coverage information
can no longer be collected. In such a case, take one of the following actions:

• Delete the asc file used to change the job definition script.

• Use the environment variable to change the directory in which the asc files are created.

CHILDJOB_EXT parameter (defines an extension for job definition script
files that are to be executed as child jobs)

Format

#-adsh_conf CHILDJOB_EXT extension

Description
This parameter defines an extension for job definition script files that are to be executed as child jobs. When a job
definition script file with the extension specified in this parameter is specified as a command name in another job
definition script, the command outputs the KNAX6832-I message to the job execution logs, interprets the file as a job

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 485

definition script for JP1/Advanced Shell, and then executes the file as a child job. You can use the
JOBLOG_SUPPRESS_MSG parameter to suppress output of the KNAX6832-I message to the job execution logs.

Operands

extension ~<path name>((1 to 245 bytes))
Specifies an extension for job definition script files that are to be executed as child jobs. Specifying as the value
only the null character enclosed in double quotation marks (") is not permitted.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is specified in the system environment file and the job
environment file combined exceeds 255, an error occurs.

• Do not include a dot (.) in the extension specified in the operand.

• If only a forward slash (/) is specified as the extension in the operand, the command will terminate with an error
during parameter analysis.

• Do not specify exe, bat, cmd, or com, which are executable extensions in Windows, as an extension in this operand.
If these extensions are specified, the corresponding files will be executed as child jobs in the same manner as when
other extensions are specified. (Windows only)

• The command name output to the job execution logs is the path of the script file that was executed as a child job.

• If a file that can be executed by using this parameter is evaluated by using the operator -x for evaluating file attributes,
the result will be true. (Windows only)

• Specifying the same extension more than once does not result in an error.

• Execution of a file specified in the argument of the exec, command, or eval standard shell command or the time
reserved script command is also subject to this parameter.

• This parameter is not case sensitive in the Windows edition, but it is case sensitive in the UNIX edition.

• To execute a file with no extension as a child job, use the CHILDJOB_PGM or CHILDJOB_SHEBANG parameter.

• This parameter is applied to a command name following variable substitution or alias resolution.

Example
In this example, any file with the extension ash or sh specified as a command name is executed as a child job.

#-adsh_conf CHILDJOB_EXT ash
#-adsh_conf CHILDJOB_EXT sh

CHILDJOB_PGM parameter (defines a program path specification that is
to be executed as descendent jobs)

Format

#-adsh_conf CHILDJOB_PGM program-path-name [arguments-of-executable-program]

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 486

Description
This parameter specifies that when the file specification program-path-name [arguments-of-executable-program]
appears in a job definition script, the KNAX6830-I message is to be output to the job execution logs, the file is to be
interpreted as a job definition script, and then the file is to be executed as a child job. You can use the
JOBLOG_SUPPRESS_MSG parameter to suppress output of the KNAX6830-I message to the job execution logs.

The following shows an example:

Example specification of parameter:

#-adsh_conf CHILDJOB_PGM sh -x

Contents of job definition script:

sh -x $HOME/script/test.ash

This example interprets $HOME/script/test.ash as a job definition script and executes it as a child job.

The total number of program-path-name and arguments-of-executable-program operands combined that can be
specified is 64. If more than 64 operands are specified, the command will terminate with an error during parameter
analysis.

In the Windows edition, even if the CHILDJOB_PGM parameter is omitted from the environment file, a
CHILDJOB_PGM parameter with adshscripttool -exec specified for the program path is defined. For details
about the adshscripttool command, see adshscripttool command (supports creation of job definition scripts)
(Windows only).

Operands

program-path-name ~<path name>((1 to 1,023 bytes))
Defines a program path that is to be converted to a program to be executed as a child job. Specifying as a value only
the null character enclosed in double quotation marks (") is not permitted. The backslash (\) is not handled as an
escape character.

arguments-of-executable-program ~<any character string>((1 to 1,023 bytes))
Defines arguments of the program path that is to be converted to a program to be executed as a child job. You can
specify multiple arguments by delimiting them with the space or tab character. The backslash (\) is not handled as
an escape character.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is specified in the system environment file and the job
environment file combined exceeds 255, an error occurs.

• If the same operand is defined in this parameter and the PATH_CONV parameter, conversion by the PATH_CONV
parameter is performed first. An example follows:
Contents of environment file

#-adsh_conf PATH_CONV_ENABLE / : <- 1.
#-adsh_conf PATH_CONV /usr/bin C:\\usr\\bin <- 2.
#-adsh_conf CHILDJOB_PGM /usr/bin/ksh <- 3.

Contents of job definition script

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 487

"/usr/bin/ksh" C:\\script\\test.ash

In this example, steps 1 and 2 are executed first to convert /usr/bin/ksh into C:\\usr\\bin\\ksh. In step
3, /usr/bin/ksh is interpreted to be the program path for executing a child job. However, because no matching
character string is found in the job definition script whose path has been converted, C:\\script\\test.ash
is not executed as a child job.

• If the same operand is specified in this parameter and the COMMAND_CONV_ARG parameter, conversion by the
COMMAND_CONV_ARG parameter is performed first.

• This parameter is applied to a character string following variable substitution or alias resolution. An example of
variable substitution follows:
Contents of environment file

#-adsh_conf CHILDJOB_PGM /usr/bin/ksh

Contents of job definition script (the value of the variable SHELL is assumed to be /usr/bin/ksh)

$SHELL /home/usr/test.ash

In this example, because $SHELL is first resolved as /usr/bin/ksh and is then loaded according to the parameter
definition, /home/usr/test.ash is executed as a child job.

• If this parameter is used to execute a child job, the command name output to the job execution logs is the JP1/
Advanced Shell command (adshexec or adshexecsub).
However, if the command is executed in any of the manners listed below, the program path name existing before
this parameter is applied is output as the command name to the job execution logs:

• Execution of a separate process by using a pipe (|)

• Execution of a separate process by using a command substitution ($(), ``)

• Execution of a background process by using |&
• Execution of a subshell by grouping a single command

• Background execution by using &
• A program path specified in the argument of the exec, command, or eval standard shell command or the time

reserved script command is also subject to this parameter.

• This parameter is applied to the standard shell commands, extended shell commands, functions, and external
commands in job definition scripts.

• Specify a path name and the arguments for the executable program within the permitted maximum line length for
the environment file.

Example
These examples execute $HOME/script/test.ash in the job definition script as a child job. The contents of the
job definition script and environment file are shown below. The information specified in the CHILDJOB_PGM parameter
is underlined.

• Example 1

Contents of environment file:
#-adsh_conf CHILDJOB_PGM /bin/sh

Contents of job definition script:
/bin/sh $HOME/script/test.ash

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 488

• Example 2

Contents of environment file:
#-adsh_conf CHILDJOB_PGM /opt/jp1as/bin/adshexec

Contents of job definition script:
/opt/jp1as/bin/adshexec $HOME/script/test.ash

• Example 3

Contents of environment file:
#-adsh_conf CHILDJOB_PGM sh -x

Contents of job definition script:
sh -x $HOME/script/test.ash

• Example 4

Contents of environment file:
#-adsh_conf CHILDJOB_PGM /usr/bin/env ksh

Contents of job definition script:
/usr/bin/env ksh $HOME/script/test.ash

CHILDJOB_SHEBANG parameter (defines an executable program path for
job definition script files that are to be executed as child jobs)

Format

#-adsh_conf CHILDJOB_SHEBANG path-name

Description
This parameter defines an executable program path that is specified, following #!, as a job definition script file to be
run as a child job. The character string immediately following #! through the end of the line is treated as the comparison
path name.

When a job definition script file is specified as a command name in another job definition script and the path name
specified in this parameter appears on the first line of the job definition script file in the format #!path-name, the
command outputs the KNAX6831-I message to the job execution logs and executes the job definition script file as a
child job. You can use the JOBLOG_SUPPRESS_MSG parameter to suppress output of the KNAX6831-I message to
the job execution logs.

The CHILDJOB_SHEBANG parameter has the following two default definitions:

Default definition Output mode when the child job starts

/opt/jp1as/bin/adshexec Operation is performed according to the specification of the
OUTPUT_MODE_CHILD parameter.

/opt/jp1as/bin/adshexec -mMINIMUM Operation is performed in the minimum output mode.

For details about the default definitions for the CHILDJOB_SHEBANG parameter, see 3.2.3(1)(b) Executing child jobs
by using a default definition for the parameter.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 489

Operands

path-name ~<any character string>((1 to 1,023 bytes))
Defines an executable program path that, when specified beginning with #! in a job definition script file, is to be
executed as a child job.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is specified in the system environment file and job
environment file combined exceeds 255, an error occurs.

• Do not include the leading characters #! in the path name specification in this operand.

• If only a forward slash (/) is specified in this operand as the path name, the command will terminate with an error
during parameter analysis.

• The command name output to the job execution logs becomes the path of the directly specified script file.

• If a file that can be executed by using this parameter is evaluated by using the operator -x for evaluating file attributes,
the result will be true. (Windows only)

• Specifying the same executable program path more than once does not result in an error.

• A file that is specified in the argument of the exec, command, or eval standard shell commands or the time
reserved script command is also subject to this parameter.

Example
The following examples execute a job definition script file that contains a specific code at the beginning as a child job:

• Executing a file that begins with #!/bin/sh or #!/bin/ksh as a child job

#-adsh_conf CHILDJOB_SHEBANG /bin/sh
#-adsh_conf CHILDJOB_SHEBANG /bin/ksh

• Executing a file that begins with #!/bin/ksh -x as a child job

#-adsh_conf CHILDJOB_SHEBANG "/bin/ksh -x"

• Executing a file that begins with #!/usr/bin/env ksh as a child job

#-adsh_conf CHILDJOB_SHEBANG "/usr/bin/env ksh"

CMDRC_THRESHOLD_DEFINE parameter (defines a return code
threshold for a command)

Format

#-adsh_conf CMDRC_THRESHOLD_DEFINE command-name threshold

Description
This parameter defines a threshold value for the return code for a command executed from a job definition script. Normal
termination will be considered to have occurred whenever the command's return code is equal to or smaller than the

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 490

specified threshold value. You use this parameter when you want normal termination to be considered to have occurred
even though the actual return code of the command was not 0.

If the command terminates by receiving a signal, an error termination will be considered to have occurred regardless of
the specification of this parameter.

The CMDRC_THRESHOLD_DEFINE parameter can also be used to change the threshold for a UNIX-compatible
command for which a threshold has been defined by specification of ENABLE in the
CMDRC_THRESHOLD_USE_PRESET parameter.

Operands

command-name ~<command name>((1 to 255 bytes))
Specifies the name of the command for which the threshold of the return code is to be defined. In Windows, a
command name with an extension can also be specified. A command path cannot be specified.
The command types that can be specified are listed below. Other commands are also affected by this parameter if
they are executed in a separate process (using a pipe, command substitution, |& or &).

• External command

• UNIX-compatible command

• Shell operation command

• Shell script

• Child job

If specification of a command extension is omitted in Windows, commands and batch files having the same name
as the specified name become the targets for threshold control regardless of their extension.
To specify a command name containing a space in Windows, enclose the entire command name in double quotation
marks (").

threshold ~<integer>((-1 to 255))
Specifies the threshold to be used for determining that the return code represents a normal termination. If the return
code is greater than the value specified here, it will be assumed that an error termination has occurred.
If -1 is specified, execution of the command will always result in an error termination.
If 255 is specified, the execution result will always be regarded as a normal termination.

Notes
• This parameter applies to the specified command following variable substitution or alias resolution.

• The setting for the successRC attribute of the #-adsh_rc_ignore and #-adsh_step_start commands
of the job definition script takes precedence for the command action based on the command threshold specified by
this parameter and the return code of the executed command.

• If this parameter is defined in both the system environment file and the job environment file, both definitions take
effect. However, if different thresholds are defined for the same command, the last one defined in the job environment
file takes effect.

• Although there is no limit to the number of times this parameter can be specified, do not define it for unnecessary
commands because specifying it too many times will affect adversely the execution performance of job definition
scripts.

• To define a return code threshold for a job definition script to be executed as a child job, use the CHILDJOB_EXT
or CHILDJOB_SHEBANG parameter for the child job definition.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 491

If you use the CHILDJOB_PGM parameter to define a child job, the specified return code threshold will not be
applied to the child job.

• In Windows, you can specify the command name with or without an extension.
However, if you specify a command name with an extension and the same command name without an extension,
they will be not considered to be the same command.

• If you use this parameter to specify a threshold for a command name with an extension and another threshold
for the same command name without an extension, the first one specified takes effect.

• The command names that are assumed when ENABLE is specified in the CMDRC_THRESHOLD_USE_PRESET
parameter are the names with an extension. Therefore, to use this parameter to change a threshold, you must
specify an extension. If the extension is omitted, the command will be registered as a different command.

• Regardless of their specification order, the CMDRC_THRESHOLD_USE_PRESET parameter is always processed
first when both it and the CMDRC_THRESHOLD_DEFINE parameter are specified.

Example
• In this example, 10 is defined as the return code threshold for the CHILD_EXEC1.sh child job (normal termination

whenever the return code is 10 or smaller):

#-adsh_conf CHILDJOB_EXT sh
#-adsh_conf CMDRC_THRESHOLD_DEFINE CHILD_EXEC1.sh 10

• In this example, 1 is generally defined as the return code threshold for UNIX-compatible commands; for certain
other UNIX-compatible commands (acmd, bcmd, ccmd), 20 is defined as the threshold:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE
#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd 20
#-adsh_conf CMDRC_THRESHOLD_DEFINE bcmd 20
#-adsh_conf CMDRC_THRESHOLD_DEFINE ccmd 20

• (Windows only) In this example, 10 is defined as the return code threshold for the acmd.exe command, and 20
is defined as the threshold for the generic command name acmd:

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 10
#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd 20

In this definition sequence, 10 is applied as the threshold for the acmd.exe command, and 20 is applied as the
threshold for acmd commands whose extension is not .exe (such as acmd.bat).

• (Windows only) In this example, 20 is defined as the threshold for the generic command name acmd, and 10 is
defined as the return code threshold for the acmd.exe command.
20 is applied as the return code threshold for commands whose name is acmd (such as acmd.exe and acmd.bat):

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd 20
#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 10

In this definition sequence, the definition for the acmd generic command name, which is described first, is also
preferentially applied to the acmd.exe command. Therefore, the threshold for the acmd.exe command also
becomes 20.

• In this example, the acmd.exe command is specified twice in the same parameter, with 30 and 20 defined as the
thresholds:

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 30
#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 20

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 492

In this case, the threshold for the last parameter specified, which is 20, is applied.

• In this example, the acmd.exe command is specified with a threshold of 10 in the system environment file and
with a threshold of 20 in the job environment file:
System environment file specification:

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 10

Job environment file specification:

#-adsh_conf CMDRC_THRESHOLD_DEFINE acmd.exe 20

In this case, the threshold of 20 specified in the job environment file is applied.

• (Windows only) In this example, 1 is generally defined as the return code threshold for UNIX-compatible commands
and then the threshold for the cmp.exe command only is changed to 2:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE
#-adsh_conf CMDRC_THRESHOLD_DEFINE cmp.exe 2

• (Windows only) In this example, cmp 2 is specified by the CMDRC_THRESHOLD_DEFINE parameter for the
cmp.exe command for which a threshold of 1 is defined by the CMDRC_THRESHOLD_USE_PRESET parameter.
In this case, however, the threshold cannot be changed from 1 to 2:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE
#-adsh_conf CMDRC_THRESHOLD_DEFINE cmp 2

In this case, cmp.exe and cmp are managed as separate commands for which different thresholds are effective.

• If the CMDRC_THRESHOLD_USE_PRESET and CMDRC_THRESHOLD_DEFINE parameters are specified in
different environment files, as shown below, the threshold of 2 specified by the CMDRC_THRESHOLD_DEFINE
parameter is applied to the cmp.exe command.
System environment file specification:

#-adsh_conf CMDRC_THRESHOLD_DEFINE cmp.exe 2

Job environment file specification:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE

CMDRC_THRESHOLD_USE_PRESET parameter (defines a threshold for
the return code of a UNIX-compatible command)

Format

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET {ENABLE|DISABLE}

Description
This parameter defines a return code threshold for assuming normal termination of all the UNIX-compatible commands
listed below. You can specify only 0 or 1 for the value.

• cmp command

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 493

• diff command

• egrep command

• expr command

• grep command

• sort command

You must use the CMDRC_THRESHOLD_DEFINE parameter to define a different threshold for a specific command.

Command names defined in this parameter are registered with an extension in Windows. For example, the cmp command
is registered by the OS as follows:

• In Windows edition: cmp.exe
• In UNIX edition: cmp

If you intend to use the CMDRC_THRESHOLD_DEFINE parameter to change a threshold, you must define the command
name with an extension.

Operands

ENABLE
Specifies 1 as the return code threshold. As a result, commands that terminate with a return code of 1 are also
considered to have terminated normally.
A threshold of 1 is also set for commands with the same name as the targeted UNIX-compatible commands.

DISABLE
Specifies 0 as the return code threshold.

Notes
• This parameter is applied to a command name following variable substitution or alias resolution.

• If this parameter is defined in both the system environment file and the job environment file, the definition in the
job environment file takes effect.

• The setting for the successRC attribute of the #-adsh_rc_ignore and #-adsh_step_start commands
of the job definition script takes precedence for the command action based on the command threshold specified by
the ENABLE specification and the return code of the executed command.

• Regardless of their specification order, the CMDRC_THRESHOLD_USE_PRESET parameter is always processed
first when both it and the CMDRC_THRESHOLD_DEFINE parameter are specified.

Example
• In this example, normal termination is assumed even when the return code of the targeted UNIX-compatible

commands is 1:

#-adsh_conf CMDRC_THRESHOLD_USE_PRESET ENABLE

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 494

COMMAND_CONV_ARG parameter (defines a rule for converting an
argument in job definition scripts during command execution)

Format

#-adsh_conf COMMAND_CONV_ARG command-argument-1 command-argument-2

Description
This parameter defines a rule for converting an argument in standard shell commands, extended shell commands,
functions, extended script commands, reserved script commands, external commands, and user programs used in job
definition scripts.

When a job definition script is run, a command argument that matches exactly command-argument-1 is converted to
command-argument-2. Both command-argument-1 and command-argument-2 must be specified.

If different rules are defined for the same command argument, the first rule defined takes effect.

External scripts specified in . (dot) commands and #-adsh_script commands are also subject to this argument's
conversion if they satisfy the specified rule during execution.

The KNAX6804-I or KNAX6806-I message is output to the job execution logs as the conversion result.

Operands

command-argument-1 ~<any character string>((1 to 247 bytes))
Specifies the command argument before conversion. To specify a command argument containing a space, enclose
the entire command argument in double quotation marks ("). A value enclosed in double quotation marks cannot
consist of only a space, tab character, or null character. None of the following characters is permitted:
* ? < > | ` (grave accent mark) $
If command-argument-1 is omitted or the value specified in command-argument-1 is invalid, the command will
terminate with an error during parameter analysis.

command-argument-2 ~<any character string>((1 to 247 bytes))
Specifies the command argument after conversion. To specify a command argument containing a space, enclose the
entire command argument in double quotation marks ("). A value enclosed in double quotation marks cannot consist
of only a space, tab character, or null character. None of the following characters is permitted:
* ? < > | ` (grave accent mark) $
If command-argument-2 is omitted or the value specified in command-argument-2 is invalid, the command will
terminate with an error during the parameter analysis.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is defined in the system environment file and the job
environment file combined exceeds 255, an error occurs.

• If the command argument obtained after conversion is the same as the command argument before conversion in a
subsequent parameter and the eval command containing the argument that satisfies the rule is executed, conversion
is performed twice, once during execution of the eval command and once during execution of the command of
that argument, as shown in an example below.
Example:

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 495

Contents of environment file

#-adsh_conf COMMAND_CONV_ARG /tmp /var/tmp <--1.
#-adsh_conf COMMAND_CONV_ARG /var/tmp /jp1as/tmp <--2.

Contents of job definition script

eval cd /tmp

In this example, the following conversions occur on the corresponding lines in the environment file:

1. The eval command is executed and /tmp is converted to /var/tmp.

2. The cd command is executed and /var/tmp is converted to /jp1as/tmp.

• The argument obtained after conversion by this parameter is interpreted as a single character-string argument even
if it contains characters that match the IFS shell variable, which is the string separator. Therefore, if the character
string obtained as a result of parameter conversion contains a metacharacter and the command to be executed is not
eval, that character is treated as a normal character, not a metacharacter.
Contents of environment file (IFS shell variable is the space)

#-adsh_conf COMMAND_CONV_ARG "D:\JP1AS" "C:\\Documents and Settings" <--
Argument conversion rule 1
#-adsh_conf COMMAND_CONV_ARG "A=1" "A=1 &" <-- Argument conversion rule 2

Contents of job definition script

cd "D:\JP1AS" <--1.
readonly A=1 <--2.
eval cd "D:\JP1AS" <--3.
eval readonly A=1 <--4.

1. The argument is converted as follows according to conversion rule 1:
cd "C:\\Documents and Settings"

2. The character string is separated as follows according to conversion rule 2:
readonly A=1 &

3. When the eval command is executed, the argument is converted as follows according to conversion rule 1:
eval cd "C:\\Documents and Settings"
However, when the cd command is executed, the argument is separated and interpreted as follows:
cd C:\Documents and Settings

4. When the eval command is executed, the argument is converted as follows according to conversion rule 2:
eval readonly A=1 &
However, when the readonly command is executed, the argument is separated and interpreted as follows:
readonly A=1 &

• This parameter performs conversion in such a manner that variable substitution and file name substitution are
resolved. Therefore, if a character string containing a wildcard is specified as the argument, the character string
obtained after substitution by the wildcard is recognized as the command's argument.

• If this parameter is applied to the test command, the interpretation of the character string in the argument during
command execution depends on the format used. In the [[]] format, if a variable substitution is specified for
array elements, conversion by this parameter is not applied. To use this parameter to convert a command's argument
by using the test command, we recommend that you use the test or [] format.
Example:

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 496

Contents of environment file

#-adsh_conf PATH_CONV_ENABLE \\ :
#-adsh_conf COMMAND_CONV_ARG "/tmp2" "/tmp" <-- Argument conversion rule
1
#-adsh_conf COMMAND_CONV_ARG "ARY[1]" "/tmp" <-- Argument conversion
rule 1

Contents of job definition script

ARY[0]="/var" Stores "/var", "/tmp2", and "/home" in the array ARY.
ARY[1]="/tmp2"
ARY[2]="/home"
id1=1
[[-d ${ARY[$id1]}]] <-- Replaces ${ARY[$id1]} through "/tmp2".
Converted to "/tmp" according to argument conversion rule 1.
[[-d ARY[$id1]]] <-- "ARY[$id1]" becomes the argument because
substitution is not performed.
Not subject to conversion because "$" cannot be specified.
[-d ${ARY[$id1]}] <-- Replaces ${ARY[$id1]} through "/tmp2".
The result of substitution is converted to "/tmp" according to argument
conversion rule 1.
[-d ARY[$id1]] <-- Replaces ${ARY[$id1]} through "ARY[1]"
Converted to "/tmp" according to argument conversion rule 1.

• If any of the commands listed below is executed, the command specified in the argument is actually executed, but
this parameter performs comparison and conversion also on the command specified in the argument:

• builtin command

• command command

• eval command

• exec command

• time reserved command

Example:
In this example, pwd specified in the argument of the builtin command is actually executed, but the readonly
command is executed according to the definition in the environment file.
Contents of environment file

#-adsh_conf COMMAND_CONV_ARG pwd readonly

Contents of job definition script

builtin pwd

• The conversion rules are searched in the order they are defined and the first conversion rule that matches the
conversion condition is applied.

• If conversions are defined for the same path name by using this parameter and the PATH_CONV parameter, the
conversion defined by the PATH_CONV parameter is performed first. To convert the path name obtained after
conversion by the PATH_CONV parameter further by the COMMAND_CONV_ARG parameter, specify the path name
converted by the PATH_CONV parameter.

• Use this parameter carefully, because each time a command is executed, all arguments specified in
COMMAND_CONV_ARG parameters are scanned. Therefore, if you specify this parameter many times, the job
definition script's execution time might be affected adversely.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 497

• To specify a character string containing a backslash (\), not a metacharacter, in command-argument-2, specify \\
instead of \.

Example
• This example converts "/tmp" to "C:\temp" to run in Windows a job definition script created for UNIX:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf COMMAND_CONV_ARG /tmp "C:\\temp"

• This example converts "C:\temp" to "/tmp" to run in UNIX a job definition script created for Windows:

#-adsh_conf PATH_CONV_ENABLE \\ ;
#-adsh_conf COMMAND_CONV_ARG "C:\temp" /tmp

ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the action of the echo
command when the escape-character option is omitted)

Format

#-adsh_conf ESCAPE_SEQ_ECHO_DEFAULT {YES|NO}

Description
This parameter defines the action the echo command is to take for escape characters when the escape-character option
(-E or -e) is omitted in the echo command.

When YES is specified in this parameter, escape characters are interpreted, even if the -e option is not specified in the
echo command. When NO is specified, escape characters are handled as directed by the echo command specification.

The specification in this parameter is ignored when the -E or -e option is specified in the echo command.

Operands

YES
Specifies that the echo command is to be used to interpret escape characters, even if the -e option is not specified
in the echo command.

NO
Specifies that the echo command is not to be used to interpret escape characters, unless the -e option is specified
in the echo command.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• A parameter error occurs if this parameter is defined multiple times in the same environment file on the same host.

• If you want to interpret ASCII code characters expressed in 1- or 2-digit hexadecimal notation as escape characters,
you must also specify YES in the ESCAPE_SEQ_ECHO_HEX parameter.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 498

Example
• In this example, escape characters are interpreted, even though the -e option is not specified in the echo command:

#-adsh_conf ESCAPE_SEQ_ECHO_DEFAULT YES

ESCAPE_SEQ_ECHO_HEX parameter (specifies whether ASCII code
characters in hexadecimal notation are to be interpreted as escape
characters)

Format

#-adsh_conf ESCAPE_SEQ_ECHO_HEX {YES|NO}

Description
This parameter specifies whether ASCII code characters in hexadecimal notation are to be interpreted as escape
characters by the echo command. This parameter is valid when either of the following conditions is satisfied:

• The -e option is specified in the echo command.

• Neither the -e nor the -E option is specified in the echo command but YES is specified in the
ESCAPE_SEQ_ECHO_DEFAULT parameter.

Operands

YES
Specifies that ASCII code characters expressed in 1- or 2-digit hexadecimal notation are to be interpreted as escape
characters.

NO
Specifies that ASCII code characters expressed in 1- or 2-digit hexadecimal notation are not to be interpreted as
escape characters.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• A parameter error occurs if this parameter is defined multiple times in the same environment file on the same host.

• If a value that is outside the ASCII code range is specified as an argument in the echo command, the content output
will be consistent with the character encoding specified for the terminal. Consequently, unprintable characters might
produce an incorrect output.

Example
• In this example, ASCII code characters expressed in 1- or 2-digit hexadecimal notation are interpreted as escape

characters by the echo command.
Contents of environment file:

#-adsh_conf ESCAPE_SEQ_ECHO_HEX YES

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 499

Contents of job definition script:

STR="\x48\x49\x54\x41\x43\x48\x49"
echo -e $STR

Contents to be output to the standard output:

HITACHI

• In this example, ASCII code characters expressed in 1- or 2-digit hexadecimal notation are not to be interpreted as
escape characters by the echo command.
Contents of environment file:

#-adsh_conf ESCAPE_SEQ_ECHO_DEFAULT YES
#-adsh_conf ESCAPE_SEQ_ECHO_HEX NO

Contents of job definition script:

STR="\t\x48\x49\x54\x41\x43\x48\x49"
echo $STR

Contents to be output to the standard output:

tab-character\x48\x49\x54\x41\x43\x48\x49

EVENT_COLLECT parameter (specifies whether the operation information
acquisition functionality is to be enabled for job definition scripts)

Format

#-adsh_conf EVENT_COLLECT {YES|NO}

Description
This parameter specifies whether the operation information acquisition functionality is to be enabled for job definition
scripts. When the operation information acquisition functionality is disabled for job definition scripts, event files are
not created in the spool directory.

This parameter is ignored in JP1/Advanced Shell - Developer, and event files are not created.

This parameter is also ignored when a CUI debugger is used, and event files are not created.

Operands

YES
Enables the operation information acquisition functionality for job definition scripts.
Job definition script operation information is collected and output to event files.

NO
Disables the operation information acquisition functionality for job definition scripts.
No event files are created.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 500

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• If this parameter is defined more than once for the same host in the same environment file, a parameter error results.

Example
• This example disables the operation information acquisition functionality for job definition scripts.

#-adsh_conf EVENT_COLLECT NO

export parameter (defines an environment variable)

Format

export environment-variable-name=environment-variable-value

Description
This parameter defines an environment variable that is to take effect when job definition scripts are executed.

Arguments

environment-variable-name ~<environment variable name>((1 to 255 bytes))
Specifies a name for the environment variable being defined.

environment-variable-value ~<any character string>((0 through 1,023 bytes))
Specifies the value to be set in the environment variable.
You can specify an environment variable value containing a space by enclosing it in double-quotation marks (") or
single quotation marks (') or by specifying an escape character (\) before the space. If a character string enclosed
in double quotation marks (") contains the escape character (\), all the characters following \ are treated as escaped
characters. Therefore, to specify \ as a part of a character string enclosed in double quotation marks, specify \\
instead of \.
You can insert the current value of the PATH environment variable by specifying ${PATH} in a desired character
string. Specify ${PATH} at the target location in the following format:

export environment-variable-name=[any-character-string]${PATH}[any-
character-string]

${PATH} is replaced with the value of the PATH environment variable regardless of the specification of double-
quotation marks ("), single quotation marks ('), and escape characters (\). The specified double-quotation marks
("), single quotation marks ('), or escape characters (\) take effect on the entire character string inserted as the
value of the PATH environment variable, and then the value is set in the environment variable.
If you define the PATH environment variable in Windows, enclose the value of the PATH environment variable in
single quotation marks (') so that the resulting value containing a space or \ is interpreted correctly.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the environment variable

is set in the following order:

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 501

• Environment variable specified in the system environment file

• Environment variable specified in the job environment file

• Even when a value for the LANG environment variable is specified by the export parameter, the locale of the
process of the adshexec command that loaded this environment-setting parameter is not changed. (UNIX only)

Example
• This example sets the value of environment variable BBB in environment variable AAA:

export AAA=BBB

• This is an example of incorrectly setting the value of environment variable BBB in environment variable AAA:

AAA=BBB
export AAA

• This example adds /opt/jp1as/bin to the existing PATH environment variable:

export PATH=/opt/jp1as/bin:${PATH}

The colon (:) is used as the path separator.

• This example adds C:\Program Files\HITACHI\JP1AS\JP1ASE\bin to the existing PATH environment
variable:

export PATH='C:\Program Files\HITACHI\JP1AS\JP1ASE\bin;${PATH}'

The semicolon (;) is used as the path separator.

HOSTNAME_JP1IM_MANAGER parameter (specifies the operation
management server on which JP1/IM - Manager is running that is to be the
destination of JP1 events)

Format

#-adsh_conf HOSTNAME_JP1IM_MANAGER host-name-of-operation-management-server-
on-which-JP1/IM-Manager-is-running

Description
When the user-reply functionality is used, this parameter specifies the host name of the operation management server
on which JP1/IM - Manager is running that is to be the destination of JP1 events.

Operands

host-name-of-operation-management-server-on-which-JP1/IM-Manager-is-running ~<symbolic name>((1 to 255
characters))<<physical host name of the batch operation server on which JP1/Advanced Shell is running>>

Specifies the host name of an operation management server on which JP1/IM - Manager is running. The user will
be able to perform on the specified host the following tasks related to the user-reply functionality:

• Checking JP1 events from the JP1/IM - View that is connected to JP1/IM - Manager.

• Replying to reply-waiting events.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 502

Note the following about specifying a host name:

• If JP1/IM - Manager is not running on the specified host, JP1 events output by JP1/Integrated Management will
not be displayed on JP1/IM - View, and the adshread command will remain in reply-waiting status. If this
happens, either start JP1/IM - Manager on the host specified in this parameter or execute the adshchmsg
command to enter replies manually.

• You specify the operation management server on which JP1/IM - Manager is running by specifying its host
name. If its IP address is specified, JP1 events will be issued to JP1/IM, but they will not be treated as reply-
waiting events. Also make sure that the specified host name is resolved.

If this parameter is omitted, JP1/Advanced Shell assumes the host name that is displayed when the hostname
command is executed on the batch operation server on which JP1/Advanced Shell is running.

Notes
• Do not specify this parameter in the job environment file.

• When you specify this parameter, determine the maximum number of concurrent reply-request messages that can
be output to each physical host or logical host and then specify that value in the USERREPLY_WAIT_MAXCOUNT
parameter.

• Make sure that the host name of the batch operation server on which JP1/Advanced Shell is run can be resolved on
the operation management server on which this parameter is specified.

• This parameter is ignored when debug execution is performed with the standard input and output specified as the
input source and output destination, respectively, for the user-reply functionality.

JOBEXECLOG_PRINT parameter (defines the job execution log contents
to be output to the standard error output when a job terminates)

Format

#-adsh_conf JOBEXECLOG_PRINT {JOBLOG SCRIPT STDERR|STDERR}

Description
This parameter defines the contents of the job execution log that are to be output to the standard error output when a
job terminates. The contents defined by this parameter are displayed, for example, on the screen of the terminal from
which the adshexec command was executed and in the Execution Result Details dialog box of JP1/AJS - View.

When JP1/Advanced Shell - Developer or the adshexec -d command executes debugging, the contents of the job
execution log are not output to the standard error output when the job terminates, regardless of the specification of this
parameter.

Operands

JOBLOG SCRIPT STDERR
Specifies that the following contents are to be output to the standard error output when the job terminates:

• JOBLOG contents (messages indicating the job execution status, such as command execution results and file
allocation results)
Also includes the JOBLOG contents of child jobs to be output to the standard error output of the root job.

• Job definition script

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 503

• Contents of the standard error output during job execution

STDERR
Specifies that the only contents to be output to the standard error output when the job terminates are the standard
error output during job execution.
In addition to the standard information messages, messages other than those whose message type is I (information
messages that are normally output to the JOBLOG file) are also output to the standard error output.
The JOBLOG contents of child jobs to be output to the standard error output of the root job are not output.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect.

• If any of the following occurs with respect to this parameter in the same environment file, the job controller of JP1/
Advanced Shell terminates with an error without executing the job:

• This parameter is specified more than once.

• No operand is specified.

• More than three operands are specified.

• An operand other than JOBLOG SCRIPT STDERR or STDERR is specified.

• The specification order of the JOBLOG SCRIPT STDERR operand is invalid.

• If a job is operating in the simple output mode or the minimum output mode, no job execution log is output to the
standard error output regardless of the specification of this parameter.

Example
• In this example, only the contents of the standard error output during job execution are output to the standard error

output:

#-adsh_conf JOBEXECLOG_PRINT STDERR

JOBLOG_SUPPRESS_MSG parameter (defines a message that is not to
be output to job execution logs)

Format

#-adsh_conf JOBLOG_SUPPRESS_MSG message-ID

Description
This parameter specifies the message ID of a message that is not to be output to the job execution logs.

To specify multiple messages, specify this parameter for each applicable message ID. The parameters can be specified
in any order.

Specifying the same message ID in more than one parameter will not result in an error. JP1/Advanced Shell assumes
that each message ID is specified only once.

The following table shows the relationship between this parameter and message output.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 504

No. Message output destination Specification of the ID of a message to be suppressed

Specified Omitted

1 Job execution log files on spool N Y

2 Debugger's console N Y

3 Editor's console N Y

4 System execution logs N Y

5 Other output destination (such as the standard output) N N

Legend:
Y: Message is output.
N: Message is not output.

Operands

message-ID ~<message ID>((10 bytes))
Specifies the message ID of a message whose output to job execution logs is to be suppressed. The specifiable
message IDs are as follows:

Suppressible message content Specifiable message IDs

Built-in commands Updating of shell variable KNAX6110-I
KNAX6111-I
KNAX6120-I
KNAX6121-I

Standard shell command KNAX6112-I
KNAX6113-I
KNAX6122-I
KNAX6123-I

External commands Executable file KNAX6116-I
KNAX6117-I
KNAX6126-I
KNAX6127-I

Script file

Extended shell commands KNAX6114-I
KNAX6115-I
KNAX6124-I
KNAX6125-I

Parameters related to execution of
child jobs

CHILDJOB_PGM parameter KNAX6830-I

CHILDJOB_SHEBANG parameter KNAX6831-I

CHILDJOB_EXT parameter KNAX6832-I

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect.

Example
• This example suppresses output of the KNAX6110-I and KNAX6111-I messages to the job execution logs:

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 505

#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6110-I
#-adsh_conf JOBLOG_SUPPRESS_MSG KNAX6111-I

KSH_ENV_READ parameter (defines whether the ENV shell variable is to
be read)

Format

In Windows and Linux

#-adsh_conf KSH_ENV_READ {YES | NO}

In AIX, HP-UX, and Solaris

#-adsh_conf KSH_ENV_READ {YES | NO}

Description
This parameter specifies whether the ENV shell variable is to be read when the job controller starts and the script file
indicated by the variable's value is to be executed.

Operands

YES
Read the ENV shell variable when the job controller starts.

NO
Do not read the ENV shell variable when the job controller starts.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

LOG_DIR parameter (defines the path name of the directory to which
system execution logs are to be output)

Format

#-adsh_conf LOG_DIR path-name

Description
Messages about the concurrently executing jobs are collected as system execution logs in a single file. This parameter
defines the path name of the directory to which these system execution logs are to be output.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 506

Operands

path-name
Windows execution environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi
\JP1AS\JP1ASE\log>>
Windows development environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi
\JP1AS\JP1ASD\log>>
UNIX: ~<path name>((1 to 512 bytes))<</opt/jp1as/log>>
Specifies the path name of the directory to which system execution logs are to be output.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• Do not specify in this parameter a directory in a file system that is not supported by JP1/Advanced Shell. For details
about the file systems that are not supported by JP1/Advanced Shell, see 2.6.19(2) File systems.

• Do not include any of the following characters in the path name: & () [] { } ^ = ; ! ' + , ` ~ #
%. If any of these characters is included, JP1/Advanced Shell will not function correctly.

Supplementary information
• You can use multiple environments on the same host by specifying separate directories in the corresponding

parameters.

LOG_FILE_CNT parameter (defines the number of files to be used to back
up system execution logs)

Format

#-adsh_conf LOG_FILE_CNT number-of-files

Description
This parameter defines the number of files to be used to back up system execution logs.

Operands

number-of-files ~<unsigned integer>((1 to 64))<<4>>
Specifies the number of files to be used to back up system execution logs.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect. If the value of the LOG_DIR parameter and the value specified in the system
environment file are the same, specifying a different value in this parameter results in an error (even when the system
environment file's default value is assumed).

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 507

Supplementary information
• If multiple users output system execution logs to the same file, the LOG_FILE_CNT and LOG_FILE_SIZE

parameter values specified by the last user that started output of system execution logs take effect. We recommend
that all users who output system execution logs to the same file use the same parameter values.

LOG_FILE_SIZE parameter (defines the size of a file to which system
execution logs are to be output)

Format

#-adsh_conf LOG_FILE_SIZE file-size

Description
This parameter defines the size of a file to which system execution logs are to be output.

Operands

file-size ~<unsigned integer>((1 to 16))<<2>>
Specifies in megabytes the size of a file to which system execution logs are to be output.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect. If the value of the LOG_DIR parameter and the value specified in the system
environment file are the same, specifying a different value in this parameter results in an error (even when the system
environment file's default value is assumed).

Supplementary information
• If multiple users output system execution logs to the same file, the LOG_FILE_CNT and LOG_FILE_SIZE

parameter values specified by the last user that started output of system execution logs take effect. We recommend
that all users who output system execution logs to the same file use the same parameter values.

OUTPUT_MODE_CHILD parameter (defines the method for outputting the
execution results of a child job)

Format

#-adsh_conf OUTPUT_MODE_CHILD {EXTENDED|SIMPLE|MINIMUM}

Description
This parameter specifies one of the following modes for output of the execution results of a child job:

• Expansion output mode (default)

• Simple output mode

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 508

• Minimum output mode

By selecting the simple output mode, you can suppress information messages and output only the command execution
results, making it easier for other programs to use the job execution results. By selecting the minimum output mode,
you suppress output of more messages than when you use the simple output mode.

Standard output and standard error output are output to the destinations that were set when the child job was started.

When a child job is executed with the -m option specified in the adshexec command for starting the child job, the -
m option takes precedence over the specification of this parameter.

Operands

EXTENDED
Specifies the extended output mode. Information is output after execution of the child job as follows:

• The job execution log is output to the standard error output when the child job terminates.

• All messages to be output to the standard error output and the standard output of JP1/Advanced Shell are output.

SIMPLE
Specifies the simple output mode. Information is output after execution of the child job as follows:

• The job execution log is not output to the standard error output when the child job terminates.

• Only error messages are output to the standard error output and the standard output of JP1/Advanced Shell. Error
messages that are output to JOBLOG are output to the standard error output.

MINIMUM
Specifies the minimum output mode. Information is output after execution of the child job as follows:

• No job execution log is output to the standard error output when the child job terminates.

• Only error messages, excluding notifications of command, job step, and job termination codes, are output to the
standard error output and the standard output of JP1/Advanced Shell. Messages notifying receipt of signals and
events are also suppressed. Unlike the simple output mode, the suppressed messages are not output to JOBLOG
under the spool job directory.
Error messages that are output to JOBLOG are output to the standard error output.

JP1/Advanced Shell inherits the parent process's output mode until the analysis of environment setting parameters
is finished.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

OUTPUT_MODE_ROOT parameter (specifies the method for outputting
the execution results of a root job)

Format

#-adsh_conf OUTPUT_MODE_ROOT {EXTENDED|SIMPLE|MINIMUM}

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 509

Description
This parameter specifies one of the following modes for output of the execution results of a root job:

• Expansion output mode (default)

• Simple output mode

• Minimum output mode

By selecting the simple output mode, you can suppress information messages and output only the command execution
results, making it easier for other programs to use the job execution results. By selecting the minimum output mode,
you suppress output of more messages than when you use the simple output mode.

When a root job is executed with the -m option specified in the adshexec command for starting the root job, the -m
option takes precedence over the specification of this parameter.

Operands

EXTENDED
Specifies the extended output mode. Information is output after execution of the root job as follows:

• Standard output and standard error output are redirected to a file on the spool.

• The job execution log is output to the standard error output when the job terminates.

• All messages to be output to the standard error output and the standard output of JP1/Advanced Shell are output.

• During debugging, JOBLOG is output to the standard error output at suitable times.

SIMPLE
Specifies the simple output mode. Information is output after execution of the root job as follows:

• The job execution log is not output to the standard error output when the job terminates.

• Standard output and standard error output are output to the destinations that were set when the job was started.

• Only error messages are output to the standard error output and the standard output of JP1/Advanced Shell. Error
messages that are output to JOBLOG are output to the standard error output.

• During debugging, JOBLOG is not output to the standard error output, except for error messages. All messages
to be output to the standard error output and the standard output of JP1/Advanced Shell are output. Messages
other than the error messages at the time of debugging termination are output.

MINIMUM
Specifies the minimum output mode. Information is output after execution of the root job as follows:

• No job execution log is output to the standard error output when the job terminates.

• The standard output and standard error output are output to the destinations that were set when the job was
started.

• Only error messages, excluding notifications of command, job step, and job termination codes, are output to the
standard error output and the standard output of JP1/Advanced Shell. Messages notifying receipt of signals and
events are also suppressed. Unlike the simple output mode, the suppressed messages are not output to JOBLOG
under the spool job directory.
Error messages that are output to JOBLOG are output to the standard error output.

• During debugging, JOBLOG is not output to the standard error output, except for error messages. All messages
to be output to the standard error output and the standard output of JP1/Advanced Shell are output. Messages
are not output except for the error messages at the time of debugging termination.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 510

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• When SIMPLE or MINIMUM is specified, the standard output is not redirected to a file on the spool, even if a
command is executed with SPOOL specified in the OUTPUT_STDOUT parameter or with adshexec -s SPOOL
specified.

OUTPUT_STDOUT parameter (defines the destination for the root job
standard output)

Format

#-adsh_conf OUTPUT_STDOUT {SPOOL | PARENT}

Description
This parameter defines the destination for the root job's standard output. Child jobs assume that PARENT is specified
in this option. If this option is omitted, the root job assumes that SPOOL is specified in this option.

If the adshexec command is executed with the -s option specified, the -s option takes precedence over this parameter.

If the root job is running in the simple output mode or the minimum output mode (specified by the
OUTPUT_MODE_ROOT parameter or the -m option of the adshexec command), the standard output that was set when
the process started is inherited regardless of the specification of the OUTPUT_STDOUT parameter or the -s option of
the adshexec command.

Operands

{ SPOOL | PARENT }
Specifies one of the following values as the output destination for the root job's standard output:

• SPOOL
Sets the root job's standard output to a file on the spool.

• PARENT
Sets the root job's standard output to the destination inherited from the parent process when the process started.
If the parent process does not redirect the output destination, the output destination of the parent process is used.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 511

PATH_CONV parameter (defines the details of path conversion)

Format

#-adsh_conf PATH_CONV path-name-1 path-name-2

Description
This parameter defines path names before and after conversion in job definition scripts.

In character strings separated by the path separator defined in the PATH_CONV_ENABLE parameter, a character string's
leading part that matches path-name-1 is converted to path-name-2 when the job definition script is executed. This
conversion is also performed on the path separator and directory separator defined in the PATH_CONV_ENABLE
parameter.

In Windows, the conversion result varies depending on the path conversion rule selected by the PATH_CONV_RULE
parameter. For details, see PATH_CONV_RULE parameter (defines a rule for converting file paths) (Windows only).

This parameter is not valid when the PATH_CONV_ENABLE parameter is not defined. If this parameter is defined
multiple times, the parameters are searched in the order they are defined in the environment file and the first definition
satisfying the conversion condition is applied.

Operands

path-name-1 ~<path name>((1 to 247 bytes))
Specifies the path before conversion. To specify a value containing a space, enclose the value in double quotation
marks (").
In Windows, you can specify a path in UNIX for path-name-1. In UNIX, you can specify a path in Windows for
path-name-1. If you intend to use \, specify \\ because JP1/Advanced Shell handles \ as an escape character. Note
that none of the following characters is permitted:
* ? < > | ` (grave accent mark) $
A path name must contain a directory separator. Use the following for the directory separator:

• In Windows, specify a forward slash (/).

• In UNIX, use two consecutive backslashes (\\).

path-name-2 ~<path name>((1 to 247 bytes))
Specifies the path after conversion. To specify a value containing a space, enclose the value in double quotation
marks ("). If you intend to use \, specify \\ because JP1/Advanced Shell handles \ as an escape character. Note
that none of the following characters is permitted:
* ? < > | ` (grave accent mark) $
A path name must contain a directory separator. Use the following for the directory separator:

• For execution in Windows, specify two consecutive backslashes (\\).

• For execution in UNIX, use a forward slash (/).

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameter is specified in the system environment file and the job
environment file combined exceeds 255, an error occurs.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 512

• Conversion by this parameter is performed one line at a time. Therefore, if the part of a job definition script that
corresponds to a path name contains an end-of-line character, the correct conversion cannot be performed.

• Character strings in comments are also converted.

• The conversion rules are searched in the order they are defined and only the first rule satisfying the conversion
condition is applied.

• If DELETE is specified in the SPOOLJOB_CHILDJOB parameter, no script image is output for a job definition
script that is executed as a child job. Therefore, if this parameter is used to convert the path name of a job definition
script that is executed as a child job, the conversion results will not be output.

• According to path conversion rule 2, you cannot nest single quotation marks (') inside a range enclosed in double
quotation marks ("). If they are specified, they will be subject to path conversion.

Example
• This example uses the PATH_CONV parameter to execute in Windows job definition scripts created for UNIX:

#-adsh_conf PATH_CONV /home/hitachi "C:\\hitachi"
#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV /tmp/jp1as "D:\\jp1as_tmp"
#-adsh_conf PATH_CONV /tmp "C:\\temp"

• This example uses the PATH_CONV parameter to execute in UNIX job definition scripts created for Windows:

#-adsh_conf PATH_CONV "C:\\hitachi" /home/hitachi
#-adsh_conf PATH_CONV_ENABLE \\ ;
#-adsh_conf PATH_CONV "D:\\jp1as_tmp" /tmp/jp1as
#-adsh_conf PATH_CONV "C:\\temp" /tmp

PATH_CONV_ACCESS parameter (defines path conversion details when
files are input and output)

Format

#-adsh_conf PATH_CONV_ACCESS path-name-1 path-name-2

Description
This parameter defines the path names before and after conversion for converting file path names in job definition scripts
when files are input and output.

If an input or output operation occurs while a job definition script is running and the path name of the file subject to the
input or output operation matches the specified path-name-1, this parameter converts it to path-name-2. Both path-
name-1 and path-name-2 must be specified.

If different rules are defined for the same file path name, the first rule defined takes effect.

External scripts specified in . (dot) commands and #-adsh_script commands are not subject to conversion by the
COMMAND_CONV_ARG parameter. For details about the COMMAND_CONV_ARG parameter, see
COMMAND_CONV_ARG parameter (defines a rule for converting an argument in job definition scripts during
command execution).

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 513

The conversion results are output to the job execution logs as the KNAX6803-I or KNAX6805-I message.

If the PATH_CONV_ENABLE parameter is not defined in the environment file, the PATH_CONV_ACCESS parameter
is ignored.

Operands

path-name-1 ~<path name>((1 to 247 bytes))
Specifies the file path before conversion. To specify a file path containing a space, enclose the entire file path in
double quotation marks ("). A value enclosed in double quotation marks cannot consist of only a space, tab character,
or null character. None of the following characters is permitted:
* ? < > | ` (grave accent mark) $
If path-name-1 is omitted or the value specified in path-name-1 is invalid, the command will terminate with an error
during parameter analysis.

path-name-2 ~<path name>((1 to 247 bytes))
Specifies the file path after conversion. To specify a file path containing a space, enclose the entire file path in double
quotation marks ("). A value enclosed in double quotation marks cannot consist of only a space, tab character, or
null character. None of the following characters is permitted:
* ? < > | ` (grave accent mark) $
If path-name-2 is omitted or the value specified in path-name-2 is invalid, the command will terminate with an error
during parameter analysis.

Notes
• If this parameter is defined in both the system environment file and the job environment file, both definitions take

effect. However, if the total number of times this parameters is specified in the system environment file and the job
environment file combined exceeds 255, an error occurs.

• This parameter performs conversion in such a manner that a variable substitution and a file name substitution have
been resolved.

• The conversion rules are searched in the order they are defined and only the first rule satisfying the conversion
condition is applied.

• If conversions are defined for the same path name by applying both this parameter and the PATH_CONV parameter,
the conversion defined by the PATH_CONV parameter is performed first. To convert the path name obtained after
conversion by the PATH_CONV parameter further by the PATH_CONV_ACCESS parameter, specify the path name
converted by the PATH_CONV parameter.

• To specify a character string containing a backslash (\), not a metacharacter, in path-name-2, specify \\ instead of
\.

Example
• This example converts"/dev/null" to "nul" to run in UNIX a job definition script created for Windows:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_ACCESS /dev/null nul

• This example converts "nul" to "/dev/null" to run in Windows a job definition script created for UNIX:

#-adsh_conf PATH_CONV_ENABLE \\ ;
#-adsh_conf PATH_CONV_ACCESS nul /dev/null

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 514

PATH_CONV_ENABLE parameter (enables the path conversion
functionality)

Format

#-adsh_conf PATH_CONV_ENABLE directory-separator path-separator

Description
This parameter enables the path conversion functionality. If the path conversion functionality has already been enabled,
the parameter outputs a message and terminates.

Operands

directory-separator ~((1 or 2 bytes))
Specifies the directory separator in path names before it is converted by the path conversion functionality. The
specified value must be a forward slash (/) or two consecutive backslashes (\\).

path-separator ~((1 byte))
Specifies the path separator in path names before it is converted by the path conversion functionality. The specified
value must be a colon (:) or a semicolon (;).

Notes
• If this parameter is defined in the both system environment file and the job environment file, the definition in the

job environment file takes effect.

Example
• This example specifies a PATH_CONV_ENABLE parameter to run in Windows:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV /tmp "C:\\temp"

• This example specifies a PATH_CONV_ENABLE parameter to run in UNIX:

#-adsh_conf PATH_CONV_ENABLE \\ ;
#-adsh_conf PATH_CONV "C:\\temp" /tmp

PATH_CONV_RULE parameter (defines a rule for converting file paths)
(Windows only)

Format

#-adsh_conf PATH_CONV_RULE {1|2}

Description
This parameter defines (selects) a rule for converting file paths. It is effective when file path conversion is defined in
the PATH_CONV parameter or the #-adsh_path_var command. If this parameter is omitted, path conversion rule
1 goes into effect.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 515

If a path separator is defined in the PATH_CONV_ENABLE parameter, the separated ranges are converted. The separator
defined in the PATH_CONV_ENABLE parameter is converted into a separator to be used by the OS that executes the
job definition script.

Operands

1
Specifies selection of path conversion rule 1.
Only a range enclosed in double quotation marks (") is converted.

2
Specifies selection of path conversion rule 2.
Character strings separated by the separators shown below under Separators used in path conversion rule 2 are
converted. Character strings that are separated here are further separated by a path separator (defined in the
PATH_CONV_ENABLE parameter) and are then converted. Note, however, that characters enclosed in double
quotation marks (") and ${ } are not converted.
If the location to be converted is not enclosed in double quotation marks ("), the conversion results will be enclosed
in double quotation marks ("). Additionally, the ranges listed below will also be enclosed in double quotation marks
(").

• Path separator
Converted to ";".

• $shell-variable-name
Also includes shell variables that are not specified by the #-adsh_path_var command.
The range that begins following the dollar sign ($) and ends with the first character that is not an alphanumeric
character (a letter if the leading character is a letter) or an underscore (_) is treated as a shell variable name. If
there is no shell variable name, the dollar sign ($) alone is not enclosed in double quotation marks (").

• Range from ${ to }
Also includes shell variables that are not specified by the #-adsh_path_var command.

Separators used in path conversion rule 2
The following table lists the separators used in path conversion rule 2 and the positions at which these separators are
valid or invalid:

Separator Separator position

Within ' ' Within
" "#1

Within `
`#1

Single character
following \

Within $
()#1

Within $
{ }#1

Other

| N N Y N Y #2 Y

& N N Y N Y #2 Y

; N N Y N Y #2 Y

< N N Y N Y #2 Y

> N N Y N Y #2 Y

(N #3 Y N Y #2 Y

) N N Y N Y #2 Y

` N Y Y N Y #2 Y

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 516

Separator Separator position

Within ' ' Within
" "#1

Within `
`#1

Single character
following \

Within $
()#1

Within $
{ }#1

Other

' Y N Y N Y #2 Y

" N Y Y N Y #2 Y

N N Y N Y #2 Y

= N N Y N Y #2 Y

Space (including the tab symbol) N N Y N Y #2 Y

Linefeed code N N Y N Y #2 Y

Legend:
Y: The separator is valid.
N: The separator is not valid.

#1
Another range can be nested inside the enclosed range. The following table lists the combinations that can be nested:

Range Ranges to be nested

' ' " " ` ` Single character following
\

$() ${ }

Within " " N N Y Y Y Y

Within ' ' Y Y N Y Y Y

Within $() Y Y Y Y Y Y

Within ${ } Y Y Y Y Y Y

Legend:
Y: Can be nested.
N: Cannot be nested.
If a character indicating the end of a range is encountered within a range to be nested, it is not treated as the end of a range. For example, if
"\"" is specified, the second double quotation mark (") is included in the range following the backslash (\) and is therefore not treated as
the end of the double-quotation mark enclosed range that begins with the first double quotation mark (").
If no character indicating the end of a range is found before the end of the line, the entire line including its end is treated as being within the
range.

#2
Same as the range in which ${ } is nested.
For example, the vertical bar (|) is valid within a pair of grave accent marks (` `) but is not valid within a pair of double quotation marks ("
").

#3
Only a left parenthesis (() that follows a dollar sign ($() is valid. Other left parentheses are not valid.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• Because path conversion rule 2 has a wider conversion range than path conversion rule 1, selecting path conversion
rule 2 might not produce the expected conversion results. Before executing a job definition script, use the syntax
check function to check the path conversion results in the generated script image. If there are conversion results that
are not appropriate, switch the path conversion rule or modify and re-execute the job definition script.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 517

• When path conversion rule 2 is selected, variables to be substituted and patterns are not subject to conversion. An
example follows.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /tmp d:\\temp

Job definition script before conversion:

#-adsh_path_var DIR
AA=${DIR:-/tmp}

Job definition script after conversion:

#-adsh_path_var DIR
AA="${DIR:-/tmp}"

In this example, because a variable is defined by the #-adsh_path_var command, the part ${variable-name}
is enclosed in double quotation marks (") but /tmp is not converted. To avoid this problem, modify the job definition
script by, for example, specifying /tmp as a variable, as follows:

#-adsh_path_var DIR
BB=/tmp
AA=${DIR:-$BB}

• Path conversion rule 2 uses character string substitution to convert path names. Consequently, the same conversion
result might not be obtained even when the same path is specified if the specified character string is different.

• Because path conversion rule 2 also converts the document portion of a here document, make sure that programs
are not converted into unprocessable data. You can take the following steps:

• Modify the conversion rule.

• Make sure paths are not converted using variable substitution.

If these methods do not work, switch to path conversion rule 1 or consider making the here document an external
file.
The following shows an example of here document conversion.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /home/user001 d:\\home\\user001

Job definition script before conversion:

uap << EOF
IN=/home/user001/infile
FTP=/home/user001/ftp/outfile
EOF

Job definition script after conversion:

uap << EOF
IN="d:\\home\\user001"\\infile
FTP="d:\\home\\user001"\\ftp\\outfile
EOF

As a result, the data in the here document is converted as follows:

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 518

IN="d:\\home\\user001"\\infile
FTP="d:\\home\\user001"\\ftp\\outfile

Because the post-conversion path is enclosed in double quotation marks ("), the user program will not run correctly
if it cannot properly process double quotation marks ("). In some cases, it might be desirable not to convert the path
name, such as when the ftp command is used to specify a path at a remote site. In this case, make a change, such
as substituting a variable for the path name portion and moving it outside the here document.
For example, if you want to convert the path IN=/home/user001/infile but do not want to convert the path
FTP=/home/user001/ftp/outfile, you can make the following changes:

VARIN=/home/user001/infile
VARFTP='/home/user001/ftp/outfile'
uap << EOF
IN=$VARIN
FTP=$VARFTP
EOF

• Note that the following characters will be converted if they satisfy the path conversion rule:

• Operators

• Command option characters that begin with a forward slash (/)

• Data containing a directory separator that is not a path name, specified for a command argument

• Ternary operator

In the following example, a ternary operator is converted.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV A2/A1 A2\\A1

Job definition script before conversion:

#-adsh_job JOB001
A1=10
A2=5
((BB=A1>A2?A1/A2:A2/A1))

Job definition script after conversion:

#-adsh_job JOB001
A1=10
A2=5
((BB=A1>A2?A1\\A2";""A2\\A1"))

In this example, the last A2/A1 in ((BB=A1>A2?A1/A2:A2/A1)) satisfies the conversion rule and is converted.
To prevent this, modify the job definition script by using one of the following methods.

 Specify the variable in $shell-variable-name format:

 ((BB=$A1>$A2?$A1/$A2:$A2/$A1))

 Rewrite the script using an if statement:

 if((A1>A2)) then
 ((BB=$A1/$A2))
 else

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 519

 ((BB=$A2/$A1))
 fi

• According to path conversion rule 2, if a character string satisfying the conversion rule contains a column name in
${column-name[*]} format, it is enclosed in double quotation marks ("). Note also that "${column-name[*]}",
which is the conversion result, might appear differently after conversion because its individual elements are separated
by the value of the IFS shell variable.

• According to path conversion rule 2, a path not containing a directory separator, such as cd work, cannot be
converted. In this case, modify the description of the job definition script or do not specify conversion that changes
the directory name.

• According to path conversion rule 2, when specifying a path name as an option value, as in command -p path-
name, use a space to separate the option character from the path name.

• According to path conversion rule 2, even if you convert a path contained in a command by using command
substitution in the grave accent (`) format, the expected action will not occur. An example follows.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /home/user001 d:\\home\\user001

Job definition script before conversion:

cat file | grep `cat /home/user001/text`

Job definition script after conversion:

cat file | grep `cat "d:\\home\\user001"\\text`

In this example, because \ used in the command for command substitution is processed as a meta character, \\ is
erased in the end, and as a result the expected action does not occur.
In this case, change to command substitution in the $() format, as shown in the following:

cat file | grep $(cat /home/user001/text)

• According to path conversion rule 2, if you want to change /dev/null to Windows NUL device, use the
COMMAND_CONV_ARG and PATH_CONV_ACCESS parameters.

• According to path conversion rule 2, if you describe a path as shown below, it cannot be converted correctly.
Environment setting parameters:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2

Example of a script before conversion:

#-adsh_path_var homedir

INPUT1=${homedir}"/test/data"
INPUT2="${homedir}"/test/data

A path is converted in units of character strings separated by separators. Therefore, even if ${homedir}/test/
data is a path name, ${homedir} and /test/data are converted separately as two character strings because
of the double quotation marks ("), and the following expected conversion result is not obtained.
Expected conversion result:

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 520

#-adsh_path_var homedir

INPUT1="${homedir}""\\test\\data"
INPUT2="${homedir}"\\test\\data

Actual conversion result:

#-adsh_path_var homedir

INPUT1="${homedir}""/test/data"
INPUT2="${homedir}"/test/data

In this case, modify the description as follows:

#-adsh_path_var homedir

INPUT1="${homedir}/test/data"
INPUT2="${homedir}/test/data"

Example
Parameter-setting examples are described below. For a job definition script conversion example, see 2.6.2 Converting
path names.

• Path conversion rule 1 is used to convert paths:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 1
#-adsh_conf PATH_CONV /home/user001 d:\\home\\user001

• Path conversion rule 2 is used to convert paths:

#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV_RULE 2
#-adsh_conf PATH_CONV /home/user01 d:\\home\\user01
#-adsh_conf PATH_CONV BB/AA BB\\AA

PERMISSION_SPOOLJOB_DIR parameter (defines permission for the
spool job directory) (UNIX only)

Format

#-adsh_conf PERMISSION_SPOOLJOB_DIR permission

Description
This parameter defines the new permission when the permission for the spool job directory is to be changed when the
job terminates.

If this parameter is not specified, the permission for the spool job directory is 0700.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 521

Operands

permission ~<4-digit octal number>((0000 to 1777))
Specifies the new permission. The spool job directory permission specified by this operand is set when the job
terminates.

Notes
• If any of the following is specified for this parameter in an environment file, the job will terminate in an error without

being executed:

• This parameter is specified more than once.

• No operand is specified.

• More than two operands are specified.

• A non-octal number or a value exceeding the value that can be specified for a permission is specified.

• A value that is not four digits in length is specified.

• If this parameter is defined in both the system environment file and the job environment file, the definition in the
job environment file takes effect.

Example
• This example sets the spool job directory permission to 0750:

#-adsh_conf PERMISSION_SPOOLJOB_DIR 0750

PERMISSION_SPOOLJOB_FILE parameter (defines permission for the
files under the spool job directory) (UNIX only)

Format

#-adsh_conf PERMISSION_SPOOLJOB_FILE permission

Description
This parameter defines the new permission when the permission for the files under the spool job directory is to be
changed when the job terminates.

Specifying this parameter also changes the permission for the directories located under the spool job directory. However,
the permission for the files and directories in the directories located under the spool job directory does not change.

If this parameter is not specified, the permission for the files to be created under the spool job directory is as follows:

• .DBG files: The permission is 666.

• Files allocated by the #adsh_spoolfile command: The permission specified by the command or program that
creates the files takes effect.

• Files other than the above: The permission is 600.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 522

Operands

permission ~<3-digit octal number>((000 to 777))
Specifies the new permission. The permission for the files located under the spool job directory is set to the value
specified by this operand when the job terminates.

Notes
• If any of the following is specified for this parameter in an environment file, the job will terminate in an error without

being executed:

• This parameter is specified more than once.

• No operand is specified.

• More than two operands are specified.

• A non-octal number or a value exceeding the value that can be specified for a permission is specified.

• A value that is not three digits in length is specified.

• The adshhk and adshevtout commands operate on the spool job directory and the files located under the spool
job directory. When changing the permission, take into consideration the permission of the users who execute these
commands.

• If this parameter is defined in both the system environment file and the job environment file, the definition in the
job environment file takes effect.

• Specifying this parameter deletes the setuid and setgid bits of the files located under the spool job directory.

Example
• This example sets the permission for the files located under the spool job directory to 744:

#-adsh_conf PERMISSION_SPOOLJOB_FILE 744

PIPE_CMD_LAST parameter (defines execution processing for the last
command in a pipe) (UNIX only)

Format

#-adsh_conf PIPE_CMD_LAST {CURRENT|OTHER}

Description
This parameter specifies whether the last command in the pipeline in the current process is to be executed.

You specify CURRENT to update the contents of variables by using the last command in the pipeline and you want to
use the updated contents in commands that follow the pipeline, as described in the following.

Contents of job definition script:

typeset -i CNT=0
cat INFILE | while read STR
do
 echo "$STR"

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 523

 let CNT=CNT+1
done
echo "Line count is $CNT."

As a result, when the while statement terminates, the shell variable CNT stores the number of lines loaded by the
read command (INFILE line count).

On the other hand, if you want use the last command in the pipeline to update the contents of variables but you want to
revert to using the contents of the pre-update variables after the pipeline has terminated, specify OTHER (CBL_SYSUT1
and CBL_SYSUT2 are assumed to be common interface variables of CBLUAPx).

Contents of job definition script:

CBL_SYSUT1=/file1
CBL_SYSUT2=/file2
CBLUAP1
cat INFILE | while read DIR
do
CBL_SYSUT1=`cmd1 y`
CBL_SYSUT2=`cmd2 y`
CBLUAP2
done
CBLUAP3

In this case, when the while statement terminates, the shell variable CBL_SYSUT1 stores "/file1" and the shell
variable CBL_SYSUT2 stores "/file2".

This parameter cannot be specified more than once in the same environment file. If it is specified more than once, an
error message is output and the job terminates.

Operands

CURRENT
Specifies that when the last command in the pipeline is one of the following, the command is to run in the current
process:

• Shell standard command

• Substitution expression

• Script control statement

OTHER
Specifies that the last command in the pipeline is to run in another process.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

Example
The examples below show the difference in the execution result when the input file and job definition script shown in
the following are used to specify the PIPE_CMD_LAST parameter.

• Example 1
Contents of job definition script:

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 524

STR="abcdefg"
echo "ABCDEFG" | read STR
echo $STR

Result output to the standard output (when CURRENT is specified in the PIPE_CMD_LAST parameter):

ABCDEFG

Result output to the standard output (when OTHER is specified in the PIPE_CMD_LAST parameter):

abcdefg

• Example 2
Contents of job definition script:

A=1
echo "Hello World" | A=10
echo $A

Result output to the standard output (when CURRENT is specified in the PIPE_CMD_LAST parameter):

10

Result output to the standard output (when OTHER is specified in the PIPE_CMD_LAST parameter):

1

• Example 3
Contents of the INFILE input file:

user1,500,Tomato
user2,1000,Tomato
user3,300,Lettuce
user1,450,Cabbage
user1,250,Orange

Contents of the job definition script:

typeset -i cnt=1
cat INFILE | grep user1 | while read NAME
do
 if [$cnt -ge 3]; then
 break
 fi
 echo "$cnt = $NAME"
 let cnt=cnt+1
done
echo $cnt

The character strings from while to done are treated as the last command in the pipe.
Result output to the standard output (when CURRENT is specified in the PIPE_CMD_LAST parameter):

1 = user1,500,Tomato
2 = user1,450,Cabbage
3

Result output to the standard output (when OTHER is specified in the PIPE_CMD_LAST parameter):

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 525

1 = user1,500,Tomato
2 = user1,450,Cabbage
1

SPOOL_DIR parameter (defines the spool root directory path name)

Format

#-adsh_conf SPOOL_DIR path-name

Description
This parameter defines the path name of the spool root directory that is to be created for each job for output of batch
job execution results (job execution logs and the data files output by job step programs).

Operands

path-name
Windows execution environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi\JP1AS
\JP1ASE\spool>>
Windows development environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi
\JP1AS\JP1ASD\spool>>
UNIX: ~<path name>((1 to 128 bytes))<</var/opt/jp1as/spool>>
Specifies the path name of the spool root directory.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• The user-reply functionality might not operate correctly in either of the following cases:

• This parameter is specified in the job environment file.

• Multibyte characters are specified in path names.

• Do not specify in this parameter a directory in a file system that is not supported by JP1/Advanced Shell. For details
about file systems that are not supported by JP1/Advanced Shell, see 2.6.19(2) File systems.

• Do not include any of the following characters in the path name: & () [] { } ^ = ; ! ' + , ` ~ #
%. If any of these characters is included, JP1/Advanced Shell will not function correctly.

Supplementary information
• You can use multiple environments on the same host by specifying separate directories in the corresponding

parameters.

• To inherit information to a standby host during cluster operation, the directories to be inherited are shared among
the hosts. Share at least the directory specified in this parameter among the hosts.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 526

SPOOLJOB_CHILDJOB parameter (defines how a spool job of a child job
is to be handled)

Format

#-adsh_conf SPOOLJOB_CHILDJOB {DELETE|MERGE}

Description
This parameter specifies whether the spool job of a child job is to be deleted or is to be merged into the spool job of the
root job when the child job terminates.

Operands

DELETE
Specifies that the spool job of a child job is to be deleted when the child job terminates.
Of the child job's job execution logs, only the contents of JOBLOG are output to the standard error output.
For an example of the job execution log output when DELETE is specified, see 3.4.2 Examples of job execution log
output.

MERGE
Specifies that the spool job of a child job is to be merged into the spool job of the root job when the child job
terminates. As a result, the following processing occurs:

• The job execution logs of child jobs are merged into the job execution logs of the root job and are output in the
order in which the child jobs terminated.

• JOBLOG and SCRIPT of the root job are created with contents into which JOBLOGs and SCRIPTs of the child
jobs have been merged.

• Job execution logs are output to the following location in a format that clearly shows whether the output contents
are for the root job or child jobs:
During normal execution: Standard error output (STDERR, step-number_step_name_STDERR)
During debugging: Standard output and standard error output on the terminal screen

• The program output data files assigned by the #-adsh_spoolfile command during child job execution are
created under the spool job directory of the root job with the following names:

#-adsh_spoolfile command's
execution location

File name to be assigned (in Windows, the extension .sysout is added.)

Outside the job step of a child job Cnumber-giving-the-order-in-which-a-child-job-starts_0000_job-name_sequence-number-of-
file-environment-variable-definition-name_file-environment-variable-definition-name

Inside the job step of a child job Cnumber-giving-the-order-in-which-a-child-job-starts_step-number_step-name_sequence-
number-of-file-environment-variable-definition-name_file-environment-variable-definition-name

If the same job definition script is executed multiple times as child jobs, SCRIPT is output the number of times the
script is executed.
For details about how to create a spool job directory, see 3.3.2 Outputting job execution results to spool. For details
about the format for outputting job execution logs, see 3.4.1(3) Merging a child job's spool job into the root job's
spool job.
When MERGE is specified, the maximum number of child jobs that can be started from a single root job, including
child jobs started from child jobs, is 9,999,999. Child jobs that exceed this limit terminate in an error. However, if
the OS-specified process count or file count limit is reached first, the OS's error processing takes precedence.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 527

For an example of the job execution log output when MERGE is specified, see 3.4.3 Example of job execution log
output (when a child job's spool job is merged into the root job's spool job).

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• When MERGE is specified and child jobs are executed asynchronously, the JOBLOG merging order might not match
the SCRIPT merging order.
For example, if child job A and child job B are executed asynchronously in a root job, JOBLOG might be merged
for child job B first and then for child job A, while SCRIPT might be merged for child job A first and then for child
job B.

• When MERGE is specified and commands in a job definition script are executed asynchronously, the standard output
and standard error output of the asynchronously executed commands might be mixed among the ranges of job
execution logs for the standard output and the standard error output of child jobs.

• When MERGE is specified and an initialization error occurs in the started child job before the job definition script
has been parsed, merging will not be executed.

• Child jobs run under the assumption that a SPOOLJOB_CHILDJOB parameter value has been specified in the
environment file loaded when the root job was started. Even if the value of the SPOOLJOB_CHILDJOB parameter
differs between the root job's job environment file and the child job's job environment file, the child jobs run by
ignoring the difference.

• If a job is executed in the syntax check mode, merging will not be executed.

Example
• In this example, the spool job of a child job is merged into the spool job of the root job when the child job terminates:

#-adsh_conf SPOOLJOB_CHILDJOB MERGE
#-adsh_conf CHILDJOB_SHEBANG /bin/sh

SPOOLJOB_CREATE parameter (selects whether a spool job is to be
created)

Format

SPOOLJOB_CREATE {YES|NO}

Description
This parameter specifies whether a spool job is to be created when a job definition script is run.

This parameter is ignored for child jobs, because the specification for the root job is inherited.

Operands

YES
Specifies that a spool job directory is to be created.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 528

NO
Specifies that a spool job directory is not to be created. For details about the operation, see 2.6.8(1)(a) Determining
whether the spool job creation suppression functionality is to be used.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• When the adshexec -r or adshscripttool -r command is executing, temporary files are not created for
the job definition script file regardless of this parameter's setting. In such a case, -r CMDLINE is displayed in the
output part of the job definition script file in messages.

• When the CUI debugger is used, the DBG file temporary-file-directory/ADSH_DBG_process-ID_job-ID is created
temporarily and deleted when the debugger terminates.

TEMP_FILE_DIR parameter (defines the path name of the directory for
storing temporary files)

Format

#-adsh_conf TEMP_FILE_DIR path-name

Description
This parameter defines the path name of the directory for storing temporary files.

Temporary files are created in a batch job and are deleted when the batch job terminates.

Operands

path-name
Windows execution environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi\JP1AS
\JP1ASE\temp>>
Windows development environment: ~<path name>((1 to 128 bytes))<<shared-documents-folder\Hitachi
\JP1AS\JP1ASD\temp>>
UNIX: ~<path name>((1 to 512 bytes))<</var/opt/jp1as/temp>>
Specifies the path name of the directory for storing temporary files.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• Do not specify in this parameter a directory in a file system that is not supported by JP1/Advanced Shell. For details
about file systems that are not supported by JP1/Advanced Shell, see 2.6.19(2) File systems.

Supplementary information
• You can use multiple environments on the same host by specifying separate directories in the corresponding

parameters.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 529

TRACE_DIR parameter (defines the path name of the directory to which
traces are to be output)

Format

#-adsh_conf TRACE_DIR path-name

Description
This parameter defines the path name of the directory to which traces are to be output.

Operands

path-name
Windows execution environment: ~<path name>((1 to 128 bytes))<<common-application-data-folder\Hitachi
\JP1AS\JP1ASE\trace>>
Windows development environment: ~<path name>((1 to 128 bytes))<<common-application-data-folder
\Hitachi\JP1AS\JP1ASD\trace>>
UNIX: ~<path name>((1 to 512 bytes))<</opt/jp1as/trace>>
Specifies the path name of the directory to which traces are to be output.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• Do not specify in this parameter a directory in a file system that is not supported by JP1/Advanced Shell. For details
about the file systems that are not supported by JP1/Advanced Shell, see 2.6.19(2) File systems.

• Do not include any of the following characters in the path name: & () [] { } ^ = ; ! ' + , ` ~ #
%. If any of these characters is included, JP1/Advanced Shell will not function correctly.

Supplementary information
• You can use multiple environments on the same host by specifying separate directories in the corresponding

parameters.

TRACE_FILE_CNT parameter (defines the number of files to which traces
are to be output)

Format

#-adsh_conf TRACE_FILE_CNT number-of-files

Description
This parameter defines the number of files to which traces are to be output.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 530

Operands

number-of-files ~<unsigned integer>((1 to 64))<<4>>
Specifies the number of files to which traces are to be output. The normal specification value is 4.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect. If the value of the TRACE_DIR parameter and the value specified in the system
environment file are the same, specifying a different value in this parameter will result in an error (even when the
system environment file's default value is assumed).

Supplementary information
• If multiple users output trace logs to the same file, the largest TRACE_FILE_CNT parameter value specified by

any of the users takes effect.
If the TRACE_FILE_CNT parameter value is changed in the environment file, the new value is compared with the
existing value for the number of trace files and whichever is larger is used.
To reduce the number of trace files, you must delete all files from the trace folder (make sure that no job is outputting
traces to the trace files when you delete files from the trace folder).
We recommend that all users who output traces to the same file use the same parameter values.

TRACE_FILE_SIZE parameter (defines the size of a file to which traces are
output)

Format

#-adsh_conf TRACE_FILE_SIZE file-size

Description
This parameter defines the size of a file to which traces are output.

Operands

file-size ~<unsigned integer>((1 to 16))<<2>>
Specifies in megabytes the size of a file to which traces are to be output. The normal specification value is 2.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect. If the TRACE_DIR parameter value is the same as the value specified in the system
environment file, specifying a different value in this parameter results in an error (even when the system environment
file's default value is assumed).

Supplementary information
• If multiple users output trace logs to the same file, the largest TRACE_FILE_SIZE parameter value specified by

any of the users takes effect.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 531

If the TRACE_FILE_SIZE parameter value is changed in the environment file, the new value is compared with
the existing value for the number of trace files and whichever is larger is used.
To reduce the file size, delete all files from the trace folder (make sure that no job is outputting traces to the trace
files when you delete files from the trace folder).
We recommend that all users who output traces to the same file use the same parameter values.

TRACE_LEVEL parameter (defines a trace output level)

Format

#-adsh_conf TRACE_LEVEL trace-level

Description
This parameter defines a trace output level.

Operands

trace-level ~<unsigned integer>((0, 10, 20, 30))<<0>>
Specifies a trace output level. As the specified value increases, the traces that are output become more detailed. The
normal specification value is 0.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

TRAP_ACTION_SIGTERM parameter (defines the job controller's action
when a forced termination request is received)

Format

In UNIX edition

#-adsh_conf TRAP_ACTION_SIGTERM {DISABLE|TERM|CONT|AUTO}

In Windows edition

#-adsh_conf TRAP_ACTION_SIGTERM {DISABLE|TERM}

Description
This parameter specifies whether the trap command can be used to define an operation to be performed when the job
controller receives a forced termination request. It also specifies an action for the job controller after the operation
defined by the trap command has been executed. Forced termination requests include forced termination operations
from JP1/AJS - View, transmission of a SIGTERM signal by the kill command in UNIX, and forced termination by
the taskkill command in Windows (immediate process termination by a means such as TerminateProcess).

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 532

When a forced termination request is received while a job definition script is running, the job controller operates
according to the operand specified here.

If this parameter is omitted, the job controller assumes that DISABLE is specified.

For details about the trap command, see trap command (specifies the action when signals and forced termination
requests are received) (UNIX only) in 9.3 Standard shell commands.

Operands

DISABLE
Specifies that an operation to be performed when a forced termination request is received cannot be defined by the
trap command. If a forced termination request is received, the job controller will terminate with an error without
executing the subsequent commands.

TERM
Specifies that an operation to be performed when a forced termination request is received can be defined by the
trap command.
If a forced termination request is received, the job controller will perform the operation defined by the trap
command, and then will terminate with an error without executing the subsequent commands.
In the UNIX edition, when a second forced termination request is received, the job terminates immediately without
performing the job controller's postprocessing.

CONT (UNIX only)
Specifies that an operation to be performed when a forced termination request is received can be defined by the
trap command.
If a forced termination request is received, the job controller will perform the operation defined by the trap
command and is to continue processing even when subsequent forced termination requests are received.
Note that this operand is not applicable to jobs started from JP1/AJS. If this operand is specified for such a job, the
job controller will issue the KNAX0474-E message during environment file analysis and then terminate with an
error.

AUTO (UNIX only)
Specifies that the job controller is to assume that either TERM or CONT is specified, depending on the job start
method. You specify this operand when you want to share the same environment file regardless of the job start
method.

Target job Operation

Job started from JP1/AJS The job controller assumes that TERM is specified and operates accordingly.

Job started from a program other than
JP1/AJS

The job controller assumes that CONT is specified and operates accordingly.

If the job is any of the following, the job controller assumes that the job was started from JP1/AJS:

1. Job started from JP1/Advanced Shell's custom job

2. Job started while TERM was set in the AJS_BJEX_STOP environment variable

3. Child job started from 1 or 2

For details about the operation that is performed when a forced termination request is performed for each operand,
see 3.10 Forcibly terminating jobs.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 533

Notes

(Common to both UNIX and Windows)

• When an operation to be performed when a forced termination request is received is defined by the trap
command for a job and that job receives a forced termination request, the job is not terminated until the defined
operation is completed. Keep this in mind when you define a command that takes a long time to execute or for
an operation that is not terminated.

• Even if an operation is defined by using the trap command within a job definition script, the defined operation
does not take effect while normal postprocessing is underway during normal job termination. If a forced
termination request is received during that time, the job controller assumes that no operation is defined by means
of a trap command.

• If the operation defined by the trap command terminates with an error or the job is cancelled by execution of
the exit command, the job is terminated with the termination code of the last command that was executed
within the operation defined by the trap command. However, if TERM is specified for this parameter, the
operation defined by the trap command is terminated with the termination code when the forced termination
request was received. The termination code of the operation defined by the trap command is not applied to
the termination code of the job or job steps.

• If this parameter is defined in both the system environment file and the job environment file, the definition in
the job environment file takes effect.

(UNIX only)

• If any of the conditions listed below is satisfied and a second forced termination request is received while the
first termination request is still engaged in processing, such as terminating a descendant process, performing the
operation defined by the trap command, or deleting temporary files, the postprocessing (including deletion of
created temporary files) might not be completed. In such a case, take appropriate action, such as by deleting the
temporary files manually.

 DISABLE is specified in the operand.
 TERM is specified in the operand.
 CONT is specified in the operand and no operation is defined by the trap command.

UNSUPPORT_TEST parameter (defines the handling of an unsupported
conditional expression) (Windows only)

Format

#-adsh_conf UNSUPPORT_TEST {h|G|L|O|ef} {ERR|TRUE|FALSE}

Description
This parameter specifies the handling of a conditional expression that is not supported by JP1/Advanced Shell in a
Windows environment. The following are the conditional expressions that are not supported by JP1/Advanced Shell in
a Windows environment:

• Conditional expression using the operator -h
• Conditional expression using the operator -G
• Conditional expression using the operator -L

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 534

• Conditional expression using the operator -O
• Conditional expression using the operator -ef

If a conditional expression that is not supported by JP1/Advanced Shell is to be evaluated but its handling is not specified
in this parameter, the conditional expression will be handled in the same manner as when ERR is specified.

For details about the conditional expressions, see 5.2.2 Conditional expressions.

Operands

{ h | G | L | O | ef }
Specifies a conditional expression that is not supported by JP1/Advanced Shell in a Windows environment.

• h
Indicates a conditional expression that uses the operator -h.

• G
Indicates a conditional expression that uses the operator -G.

• L
Indicates a conditional expression that uses the operator -L.

• O
Indicates a conditional expression that uses the operator -O.

• ef
Indicates a conditional expression that uses the operator -ef.

{ ERR | TRUE | FALSE }
Specifies the handling of the unsupported conditional expression in a Windows environment.

• ERR
Output an error message and terminate the job.

• TRUE
Output an information message and assume that the conditional expression is correct.

• FALSE
Output an information message and assume that the conditional expression is not correct.

Notes
• If this parameter is defined for a given conditional expression in both the system environment file and the job

environment file, the definition in the job environment file takes effect.

USERREPLY_DEBUG_DESTINATION parameter (specifies the input
source and the destination of event notification and reply-request
messages during debug execution)

Format

#-adsh_conf USERREPLY_DEBUG_DESTINATION [JP1EVENT | CONSOLE]

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 535

Description
This parameter specifies the input source and the destination of event notification and reply-request messages when a
job definition script that uses the adshecho and adshread commands is debugged using the user-reply functionality.

Operands

JP1EVENT
Specifies that event notification messages and reply-request messages are to be issued as JP1 events.

CONSOLE
Specifies that the input source and the destination of event notification messages and reply-request messages are to
be set to the standard input and output, respectively.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• If CONSOLE is specified in this parameter during an execution other than a debug execution, the specification is
ignored. In such a case, event notification messages and reply-request messages are issued as JP1 events.

USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum
interval at which JP1 events are to be issued)

Format

#-adsh_conf USERREPLY_JP1EVENT_INTERVAL minimum-event-issuance-interval

Description
This parameter specifies the minimum interval at which JP1 events are to be issued by the user-reply functionality.

The purpose of this parameter is to manage the flow of JP1 events by not issuing a JP1 event until the amount of time
defined here has elapsed since the previous JP1 event was issued.

Operands

minimum-event-issuance-interval ~<unsigned integer>((100 to 100000))<<500>>
Specifies in milliseconds the amount of time to wait since the previous JP1 event was issued. To prevent excessive
workload on JP1/IM - Manager, the normal specification value is 500 or greater.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• This parameter is ignored when debug execution is performed with the standard input and output specified as the
input source and output destination for the user-reply functionality.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 536

USERREPLY_WAIT_MAXCOUNT parameter (specifies the maximum
number of concurrent reply-request messages that can be output for a
physical or logical host)

Format

#-adsh_conf USERREPLY_WAIT_MAXCOUNT maximum-number-of-concurrent-reply-
request-messages-to-be-output

Description
This parameter specifies the maximum number of concurrent reply-request messages to be output for each physical or
logical host when the user-reply functionality is used.

Operands

maximum-number-of-concurrent-reply-request-messages-to-be-output ~<unsigned integer>((1 to 100))<<5>>
Specifies the maximum number of concurrent reply-request messages to be output for each physical host or logical
host. This specification limits the number of reply-request messages that can exist for each physical host and logical
host.
Because a maximum of 2,000 reply-waiting events can be accumulated in JP1/IM - View, specify a value (to be
applied to each host that sends reply-waiting events) that ensures that the following condition is satisfied:
Maximum number of concurrent reply-request messages that can be output by each host times the number of hosts
that send reply-waiting events to the same JP1 event destination (HOSTNAME_JP1IM_MANAGER parameter value)
+ total number of other products' reply-waiting events that can be accumulated
< 2,000

Notes
• Do not specify this parameter in the job environment file. If this parameter is specified in both the system environment

file and the job environment file, the specification in the job environment file will be ignored.

• If output of more reply-waiting events than is specified in this parameter is attempted, the processing will be placed
on wait status until enough space becomes available in the shared memory. Available space in the shared memory
is checked every three minutes for up to three times. If there is still not enough space after three attempts, an error
will result. Therefore, if multiple jobs output reply-request messages concurrently, specify an appropriate value so
that the number of reply-waiting events will not exceed that value.

• This parameter is ignored when debug execution is performed with the standard input and output specified as the
input source and output destination, respectively, of the user-reply functionality.

VAR_ENV_NAME_LOWERCASE parameter (specifies whether
environment variable names in lowercase letters are supported) (Windows
only)

Format

VAR_ENV_NAME_LOWERCASE {ENABLE|DISABLE}

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 537

Description
This parameter specifies whether environment variable names in lowercase letters are supported.

Operands

ENABLE
Specifies that environment variable names in lowercase letters are supported.
Environment variable names with the same spelling but different capitalization are not identified as different
environment variables in Windows, but they are recognized as separate shell variables. To avoid confusion, we
recommend that you use the same capitalization for shell variables that have the same spelling.

DISABLE
Specifies that environment variable names in lowercase letters are not supported.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

Examples
This example defines shell variable names SAMPLE01 and sample01 in the job definition script and a batch file, as
shown in the following.

Contents of job definition script envsample.ash

export SAMPLE01=large
export sample01=small
.\\envsample.bat | "${ADSH_DIR_CMD}grep" -i "SAMPLE01" 1>&2
echo "*** Shell variables ***" >&2
echo "SAMPLE01=$SAMPLE01" >&2
echo "sample01=$sample01" >&2

Contents of batch file envsample.bat

set

• Specifying DISABLE (environment variable names in lowercase letters are not supported)
Contents of the environment variable:

#-adsh_conf VAR_ENV_NAME_LOWERCASE DISABLE
#-adsh_conf OUTPUT_MODE_ROOT SIMPLE
#-adsh_conf OUTPUT_MODE_CHILD SIMPLE

Execution results

D:\home>"C:\Program Files\HITACHI\JP1AS\JP1ASE\bin\adshexec" envsample.ash
KNAX6712-E Specified variable "sample01" cannot be exported because the
name is not in all capital letters on the current platform. filename="D:
\home\envsample.ash" line=2
KNAX6521-E Command export(line=2) failed. rc=1 E-Time=0.005s C-Time=0.000s
KNAX0101-E ADSH001002 An error occurred during execution of job.

D:\home>

In this example, the export operation for sample01 that was executed after SAMPLE01 has failed.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 538

• Specifying ENABLE (environment variable names in lowercase letters are supported)
Contents of the environment variable:

#-adsh_conf VAR_ENV_NAME_LOWERCASE ENABLE
#-adsh_conf OUTPUT_MODE_ROOT SIMPLE
#-adsh_conf OUTPUT_MODE_CHILD SIMPLE

Execution results

D:\home>"C:\Program Files\HITACHI\JP1AS\JP1ASE\bin\adshexec" envsample.ash
sample01=small
*** Shell variables ***
SAMPLE01=large
sample01=small

D:\home>

In this example, shell variables whose names are in lowercase letters can be exported. As a result, sample01, the
last shell variable exported, is exported to the environment variable. Shell variables SAMPLE01 and sample01
have different values.

VAR_SHELL_FUNCINFO parameter (selects whether function information
arrays are used)

Format

#-adsh_conf VAR_SHELL_FUNCINFO {TYPE_A|TYPE_B|NONE}

Description
This parameter defines whether function information arrays are used. Arrays of function information are single-
dimensional arrays for storing information about the function being executed by the adshexec command.

There are three types of function information arrays, as listed below. For details about the function information arrays,
see 5.5.3 Arrays of function information.

• Called function name array

• Function call line number array

• Function definition script file name array

Operands

TYPE_A
Specifies that function information arrays whose names begin with ADSH_ are to be used, as shown in the following:

Array type Array name

Called function name array ADSH_FUNCNAME

Function call line number array ADSH_LINENO

Function definition script file name array ADSH_SOURCE

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 539

TYPE_B
Specifies that function information arrays whose names are the same as the following are to be used:

Array type Array name

Called function name array FUNCNAME

Function call line number array BASH_LINENO

Function definition script file name array BASH_SOURCE

NONE
Specifies that function information arrays are not to be created.
This operand enables you to use the arrays that are created when TYPE_A or TYPE_B is specified as normal arrays.

Notes
• If this parameter is defined in both the system environment file and the job environment file, the definition in the

job environment file takes effect.

• A parameter error occurs if this parameter is defined more than once in the same environment file on the same host.

• Arrays of function information are read-only. This read-only attribute cannot be released, the values cannot be
updated, and the arrays cannot be disabled by using unset.

• Arrays of function information cannot be defined as local variables in a function. Do not change their attributes in
a function or define them as local functions in a function.

• Arrays of function information cannot be specified for the stepVar attribute in the #-adsh_step_start
command.

• If the parameter value differs between a root job and its child job, the parameter value that is in effect when the job
starts applies to the arrays that are created.

Examples
This example runs the following job definition script in an environment where TYPE_A is specified in the
VAR_SHELL_FUNCINFO parameter:

/home/user/script/adsh_func.ash

0001 : func1(){ # Define function func1
0002 : function func1_2 { # Define function func1_2
0003 : echo "in func1_2"
0004 : func2 # Call function func2 from function func1_2
0005 : }
0006 : echo "in func1"
0007 : . ./func2.ash # Load the external script that defines function
func2 by using the . (dot) command
0008 : func1_2 # Call function func1_2 from function func1
0009 : }
0010 :
0011 : echo "main_script start"
0012 : export FPATH=`pwd` # Store the current work directory in shell
variable FPATH
0013 : #-adsh_script ./func3.ash # Load the external script that defines
function func3 by using #-adsh_script
0014 : autoload func4 # Enable the function preload functionality
for function func4
0015 :

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 540

0016 : func1 # Call function func1
0017 : echo "main_script end"

/home/user/script/func2.ash

0001 : func2(){
0002 : echo "in func2"
0003 : func3
0004 : }

/home/user/script/func3.ash

0001 : func3(){
0002 : echo "in func3"
0003 : func4
0004 : }

/home/user/script/func4

0001 : func4(){
0002 : echo "in func4"
0003 : cnt=0
0004 : for cnt in 0 1 2 3 4 5
0005 : do
0006 : echo "ADSH_FUNCNAME[$cnt] = ${ADSH_FUNCNAME[$cnt]}"
0007 : echo "ADSH_LINENO[$cnt] = ${ADSH_LINENO[$cnt]}"
0008 : echo "ADSH_SOURCE[$cnt] = ${ADSH_SOURCE[$cnt]}"
0009 : done
0010 : }

Stack information for one function is output on each echo command line.
The following table lists the values in the function information arrays when function func4() is executing:

Element
no.

Array name

ADSH_FUNCNAME ADSH_LINENO ADSH_SOURCE

0 func4 3 /home/user/script/func4

1 func3 3 /home/user/script/func3.ash

2 func2 4 /home/user/script/func2.ash

3 func1_2 8 /home/user/script/adsh_func.ash

4 func1 16 /home/user/script/adsh_func.ash

5 main 0 /home/user/script/adsh_func.ash

If you use an environment where TYPE_B is specified in the VAR_SHELL_FUNCINFO parameter, change the contents
of job definition script /home/user/script/func4 as follows:

0001 : func4(){
0002 : echo "in func4"
0003 : cnt=0
0004 : for cnt in 0 1 2 3 4 5
0005 : do
0006 : echo "FUNCNAME[$cnt] = ${FUNCNAME[$cnt]}"
0007 : echo "BASH_LINENO[$cnt] = ${BASH_LINENO[$cnt]}"
0008 : echo "BASH_SOURCE[$cnt] = ${BASH_SOURCE[$cnt]}"

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 541

0009 : done
0010 : }

VAR_SHELL_GETLENGTH parameter (defines the unit for the lengths of
variable values that are replaced in format ${#variable})

Format

VAR_SHELL_GETLENGTH {BYTE|CHARACTER}

Description
This parameter defines the unit for the lengths of variable values that are replaced in the format ${#variable}.

Operands

BYTE
Specifies that the length of a value stored in variable in the format ${#variable} is to be replaced by the
length in bytes.

CHARACTER
Specified that the length of a value stored in variable in the format ${#variable} is to be replaced by the
lengths in characters.

Examples
This example executes echo ${#CVAL} to obtain the length of the value of variable CVAL in which character string
abcdef is set.

• Specifying BYTE (replace by the length in bytes) in the VAR_SHELL_GETLENGTH parameter or omitting the
VAR_SHELL_GETLENGTH parameter
The lengths of multibyte characters vary according to the execution environment. The following example assumes
that a Linux UTF-8 environment is used:

CVAL=abcdef
echo ${#CVAL}

Because abcdef is interpreted as being 12 bytes, 12 is output to the standard output.

• Specifying CHARACTER (replace by the length in characters) in the VAR_SHELL_GETLENGTH parameter

CVAL=abcdef
echo ${#CVAL}

Because abcdef consists of eight characters, 8 is output to the standard output.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 542

7.4 Conditional parameters

To specify environment setting parameters or export parameters that are to apply only on a logical or physical host,
enclose the specifications between conditional parameters that are specified on the immediately preceding and following
lines. This section explains the conditional parameters.

lhost_start and lhost_end parameters (define a set of parameters
applicable only to a specified logical host)

Format

#-adsh_conf lhost_start logical-host-name
environment-setting-parameter-or-export-parameter-to-be-applicable-only-on-
the-specified-logical-host
 :
#-adsh_conf lhost_end

Description
If there are environment setting parameters or export parameters that are to take effect only on a specific logical host,
define those parameters enclosed between an lhost_start parameter and an lhost_end parameter. Make sure
that each lhost_end parameter is paired with an lhost_start parameter.

• lhost_start parameter
Begins the specification of environment setting parameters or export parameters that are to take effect only on
the specified logical host. This parameter also specifies the name of the target logical host.

• lhost_end parameter
Ends the specification of environment setting parameters or export parameters that are to take effect only on the
specified logical host.

Specifying multiple conditional parameters for the same logical host does not result in an error. All sets of parameters
that are specified are effective.

Operands

logical-host-name ~<any character string>((1 to 255 bytes))
Specifies the name of the applicable logical host. Specifying multiple definitions for the same logical host does not
result in an error. All sets of parameters specified are effective.
In Windows, you cannot specify a logical host name exceeding 196 bytes. Because the parameter might not work
in some cases when the logical host name exceeds 63 bytes, we recommend that you always specify logical host
names that do not exceed 63 bytes.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 543

phost_start and phost_end parameters (define a set of parameters
applicable only to the physical host)

Format

#-adsh_conf phost_start
environment-setting-parameter-or-export-parameter-to-be-applicable-only-on-
the-physical-host
 :
#-adsh_conf phost_end

Description
If there are environment setting parameters or export parameters that are to take effect only on the physical host,
define those parameters by enclosing them between a phost_start parameter and a phost_end parameter. Make
sure that each phost_end parameter is paired with a phost_start parameter.

• phost_start parameter
Specify this parameter on the line that immediately precedes the line on which begins the specification of a set of
environment setting parameters or export parameters that are to take effect only on the physical host.

• phost_end parameter
Specify this parameter on the line that immediately follows the line on which ends the specification of a set of
environment setting parameters or export parameters that are to take effect only on the physical host.

Specifying multiple definitions for the physical host does not result in an error. All sets of parameters specified are
effective.

7. Parameters Specified in the Environment Files

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 544

8 Commands Used During Operations

This chapter describes the shell operation commands and UNIX-compatible commands in JP1/
Advanced Shell.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 545

8.1 Command description format

The following shows the command description format for shell operation commands and UNIX-compatible commands:

0command-name[1option]... [1option][1operand]

Following the command name, you specify options and then operands. Operands includes option names, option values,
and other arguments that can be specified in commands. If an operand is specified before an option, all specified items
are treated as operands.

• When there is more than one option, they can be specified in any order.

• An error results if you specify an invalid option or an option's value is outside the permissible range of values.

• Multibyte characters are not permitted in option-name.

For details about the specification of file path names in commands, see 8.1.3 File path names.

The following explains how to execute a command that you enter to the standard input from the terminal keyboard.

For input terminated by an EOF

• In Windows, press Enter followed by Ctrl+Z, and then press Enter again.

• In UNIX, press Ctrl+D.

For a single line of input

• Press Enter.

8.1.1 Command description format for shell operation commands and
UNIX-compatible command (script format) (Windows only)

The following specification rule applies to shell operation commands and UNIX-compatible commands (script format)
(Windows only):

• Options specified without a value can be grouped together as a block (for example, -a -b -c can also be specified
as -abc). In this case, a value can be specified for the last option (for example, xyz in the specification -abc
xyz, is the value of option -c).

8.1.2 Command description format for UNIX-compatible commands
The following specification rules apply to UNIX-compatible commands except for those in the script format:

• Options are classified as either short options or long options.

• Two consecutive hyphens (--) indicates the end of the specification of options. All character strings (including
options) that follow double hyphens are processed as operands.

The following subsections explain the description formats for short options and long options.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 546

(1) Specification format for short options
A short option consists of one hyphen (-) followed by one predefined character.

The specification format for short options is shown below. Whether the option value can be omitted depends on the
option.

-short-option-name[0option-value]

The rules for specifying short options are as follows:

• Option names specified without a value can be grouped together as a block (for example, -a -b -c can be specified
as -abc). In this case, a value can be specified for the last option (for example, in the specification -abc xyz,
xyz is the value of option -c).

• Some options do not allow a space before the option value. If a space is specified before the option value for such
an option, the option value will be treated as an operand.
In the Format section in the descriptions of the individual commands in this chapter, an option that is shown without
any space before its option value is an option in which a space cannot be specified.

(2) Specification format for long options
A long option consists of two consecutive hyphens (--) followed by a predefined character string.

The specification format for long options is shown below. Whether the option value can be omitted depends on the
option.

--long-option-name[=option-value]

An option with an option value can also be specified in the format shown below. Note that in the case of an option whose
option value can be omitted, the long option name must be separated from the option value by the equal sign (=). If a
space is specified instead of an equal sign, the option value will be treated as an operand.

--long-option-name 1option-value

Long option names and their option values cannot be abbreviated. For example, an error results if you specify --char
list for the --characters option of the cut command or --format=l for the --format option of the ls
command.

Important note
For the options that have both short and long option formats, only the short option is explained in this manual
(although both are shown in the Arguments section of the command descriptions). For the options that do not
have a short options, the long option is explained. In the Format section in the command descriptions, the long
option names are provided after the short option names for the long options that have no relationship with other
options.

For example, the --side-by-side long option of the -y option of the diff command is not provided in
the Format section of the command description. On the other hand, the --suppress-common-lines long
option is provided in the Format section because it does not have a corresponding short option.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 547

(3) Notes about commands
• For the cut, date, diff, ls, expand, and stat commands, you can specify options and operands in any order.

Options specified after operands will still be processed as options.
If you specify one of the environment variables listed below, you must specify operands after all the options have
been specified on the command line. Options specified after the operands will be treated as operands. For details
about these environment variables, see 2.5 Specifying environment variables.

• POSIXLY_CORRECT environment variable

• ADSH_CMD_ARGORDER=seq environment variable

Note that the POSIXLY_CORRECT environment variable cannot be defined in JP1/Advanced Shell job definition
scripts.

• If you specify options and operands in the awk, find, or getopt command, first specify all options and then
specify operands.

• If you specify options and operands in the following commands, you can specify options and operands in any order
in Linux, but you must specify options first and then specify operands in AIX, HP-UX, Solaris, and Windows:
cat, cmp, cp, egrep, grep, head, mkdir, mv, paste, rm, sed, sort, split, tail, touch, uniq, wc,
which
If you specify the POSIXLY_CORRECT environment variable in Linux, the same operation as the AIX, HP-UX,
Solaris, or Windows operation can be performed.
Note that the POSIXLY_CORRECT environment variable cannot be specified in JP1/Advanced Shell job definition
scripts. For details about the POSIXLY_CORRECT environment variable, see 2.5 Specifying environment variables.

8.1.3 File path names
Files can be specified using absolute path names or relative path names.

Some commands require relative path names to be converted to absolute path names, which means that the length of
the path name for a file specified in a command must sometimes be evaluated in terms of the equivalent absolute path
name.

The following examples illustrate use of the absolute path name for a file specified in a command.

(1) When the file name specification is an absolute path name
The file name is specified using the absolute path name.

Example

/dir1/test1.asc

(2) When the file name specification is a relative path name
The absolute path name is the concatenation of the current directory at the time the command is executed with the path
name of the specified file.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 548

Example

Current directory when command is executed: /home/user1
Path name of file: dir2/test2.asc
Absolute path name of file: /home/user1/dir2/test2.asc

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 549

8.2 List of commands

8.2.1 List of shell operation commands
The shell operation commands can be executed from shells and from the command prompt and include the adshexec
command (that executes a batch job).

The following table lists and describes the shell operation commands in JP1/Advanced Shell.

Table 8‒1: Shell operation commands

Command name Description Location of command

adshchmsg Replies manually to a reply-request message when a failure occurs. Windows execution environment:
installation-folder\JP1ASE\bin
Windows development environment:
installation-folder\JP1ASD\bin
UNIX:
/opt/jp1as/sbin

adshcvmerg Merges coverage information from two asc files as the input and sends
the output to the file at a specified path.

Windows execution environment:
installation-folder\JP1ASE\bin
Windows development environment:
installation-folder\JP1ASD\bin
UNIX:
/opt/jp1as/bin

adshcvshow Inputs and displays coverage information.

adshevtout# Outputs job definition script operation information.

adshexec# Starts a job controller process that reads a job definition script file as
the input and runs a batch job in accordance with the job definition
script.

adshfile Allocates a file that is to be postprocessed at the end of a job step or
job.

adshhk Deletes a spool job as specified by a spool root directory name and the
number of days until deletion.

adshlsmsg Displays a list of reply-request messages when a failure occurs. Windows execution environment:
installation-folder\JP1ASE\bin
Windows development environment:
installation-folder\JP1ASD\bin
UNIX:
/opt/jp1as/sbin

adshmdctl (UNIX
only)

Starts and stops the daemon that manages shared memory for the user-
reply functionality.

/opt/jp1as/sbin

adshmsvcd
(Windows
development
environment only)

Service program that manages shared memory for the user-reply
functionality. Used in a development environment.

installation-folder\JP1ASD\bin

adshmsvce
(Windows execution
environment only)

Service program that manages shared memory for the user-reply
functionality. Used in an execution environment.

installation-folder\JP1ASE\bin

#
Can be used only in a Windows execution environment and in UNIX.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 550

8.2.2 List of UNIX-compatible commands
Some of the UNIX-compatible commands are provided in the executable file format and some in the script format.

• Commands provided in the executable file format
The same JP1/Advanced Shell commands can be used in both Windows and UNIX.
For details about how to specify these commands, see 8.4 UNIX-compatible commands.

• Commands provided in the script format (Windows only)
Commands that depend on UNIX functionality are supported in Windows by being provided in the script format,
thus enabling you to achieve some of the standard UNIX OS functionality while using the Windows functionality.
For details about how to specify these commands, see 8.5 UNIX-compatible commands (script format) (Windows
only).

(1) Commands provided in the executable file format
Of the UNIX-compatible commands, those provided in the executable file format can be executed within job definition
scripts. You can also execute them from the Windows command prompt and UNIX shell.

The UNIX-compatible commands provided in the executable file format are stored at the following locations:

• Windows execution environment:
installation-folder\JP1ASE\cmd

• Windows development environment:
installation-folder\JP1ASD\cmd

• UNIX:
/opt/jp1as/cmd

Some UNIX-compatible commands have limitations that reflect significant differences in OS control over resources
such as the file system. In addition, there are Windows-specific limitations concerning owners and groups, access
permissions, and symbolic links.

The following table describes the limitations on the supported UNIX-compatible commands provided in the executable
file format.

Table 8‒2: UNIX-compatible commands (executable file format)

Command name Overview Location of command

awk Performs text processing and pattern matching. • In Windows, if you specify a
file or directory name that
contains wildcards in an
argument to a command that
executes the system
function, the wildcards are
not expanded.

• In Windows, if you specify a
file or directory name that
contains wildcards in an
argument to a command
connected by a pipe to the
getline, print, or
printf function, the
wildcards are not expanded.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 551

Command name Overview Location of command

basename Obtains a file name from a path name, and then
outputs it to the standard output.

No limitations

cat Outputs files to the standard output. No limitations

cmp Compares binary files. No limitations

cp Copies files or directories. • In Windows, if you specify
the -H, -L, or -P option and
set a symbolic link in an
argument, or if there is a
symbolic link in a directory,
the link cannot be followed
because symbolic links are
not supported. Note also that
the -r and -R options
function identically.

• In Windows, the -p option
preserves only the
modification date and file
access time of the source
file; directory information is
not preserved.

cut Displays selected parts of lines to the standard output. No limitations

date Displays the system date and time (cannot be used to
set the date and time).

The -a option (set time) cannot
be used.

diff Compares two files. No limitations

dirname Retrieves a directory path name excluding any file
name from a character string that satisfies the file path
naming conventions, and then outputs the result to the
standard output.

No limitations

egrep Searches for characters in files. A specified pattern is
treated as an extended regular expression.
This is the same processing as when the -E option is
specified in the grep command.

In Windows, symbolic links are
not supported.

expand Replaces the tab character with spaces in a line in
which tab stops are set and then outputs the result to
the standard output.

No limitations

expr Evaluates an expression. No limitations

find Searches for files in directories. No limitations

getopt Analyzes command line options for easy syntax
analysis of shell scripts.

No limitations

grep Searches for characters in files. In Windows, symbolic links are
not supported.

head Shows the first part of files. No limitations

hostname Displays the host name (cannot be used to set the host
name).

No limitations

ls Lists the contents of files or directories. • In Windows, symbolic links
are not supported.

• In Windows, the -l option
does not display the group,
link count, or access

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 552

Command name Overview Location of command

ls Lists the contents of files or directories. permissions for users other
than the owner of the file.

• In Windows, the TZ
environment variable does
not apply to output. The time
zone set in the Date and
Time control panel is used.

mkdir Creates directories. In Windows, the -m option for
setting the mode is ignored.

mv Moves files or directories; changes the name of a file
or directory.

• In Windows, only the access
permissions of the owner are
visible when overwriting.

• In Windows, symbolic link
are not supported.

• In Windows, changing the
owner is not supported in the
same cases as for the cp
command. Owner, group,
setuid bit, and mode are
not preserved.

paste Concatenates multiple files in lines, and then outputs
them to the standard output.

No limitations

rm Removes files or directories. • In Windows, symbolic links
are not supported.

• In Windows, only the access
permissions of the owner are
visible when overwriting.

rmdir Removes empty directories. No limitations

sed Replaces character strings in text. No limitations

sleep Stops for a specified period of time. No limitations

sort Sorts text files No limitations

split Splits a file. No limitations

stat Outputs the statuses of files and directories to the
standard output.

• In Windows, the statuses of
the destinations of symbolic
link files cannot be
displayed.

• In Windows, permissions
cannot be displayed other
than for file owners.

• In Windows, 0 is always
displayed as the information
about the number of file
blocks and the block size.

• In Windows, drive numbers
are displayed as device
numbers.

• In Windows, 0 is always
displayed for an owner's
user ID and for a group ID.

• In Windows, ... is always
displayed for an owner's
group name.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 553

Command name Overview Location of command

stat Outputs the statuses of files and directories to the
standard output.

• In Windows, 0 is always
displayed as the number of
hard links.

• In Windows, 0 is always
displayed for the inode
number.

• In Windows, the
destinations of symbolic
link files cannot be
displayed.

• In Windows, 0 is always
displayed for the total size of
directories.

• In Windows, 0 is always
displayed for the major and
minor device numbers.

• In Windows, a file's most
recent modification date and
time is displayed for the
file's most recent access date
and time and for the file's
most recent change date and
time information.

• In Windows, file types other
than regular files or
directories cannot be
displayed.

tail Outputs the last part of files. No limitations

touch Changes the most recent access date and time or the
most recent modification date and time for a file.

• In Windows, the most recent
access date and time cannot
be changed.

• In Windows, the most recent
modification date and time
cannot be changed for a
directory.

• In Windows, the time zone
set in the TZ environment
variable must match the time
zone set in the Date and
Time control panel.

• In Windows, the precision of
the modification time set in
actual files depends on file
system specifications.

uname Displays information about the OS or hardware. No limitations

uniq Removes duplicated lines from a sorted file. No limitations

wc Counts the number of bytes, lines, characters, or
words in a file.

No limitations

which Obtains the paths of external commands to be
executed from the command search path set in the
PATH environment variable.

In Windows, this command
supports only those external
commands that satisfy the path
search rules provided in the
description of the which
command.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 554

#
The following limitations apply to all UNIX-compatible commands that are provided in the executable file format:

• In Windows, wildcards are not expanded when UNIX-compatible commands are executed from the command
prompt. However, they are expanded when used in a job definition script file.

• The messages that are output can vary depending on the platform on which the command is executed.

• In Windows, you must use double quotation marks when executing commands from the command prompt.

• There are limitations to the supported files. For details, see 2.2.3 Files used in JP1/Advanced Shell.

• The path conversion functionality is not applicable to the path names generated by commands or to the file names
specified in job definition script files.

• If you use functionality that executes a program (such as the system function in the awk command or the -exec
or -ok primaries in the find command) to execute an application with a GUI interface, the application might
terminate when a batch job is executed. Note also that new jobs are generated when the adshexec command is
executed.

(2) Commands provided in the script format (Windows only)
The UNIX-compatible commands provided in the script format can be executed only within job definition scripts.

Sample script files for the UNIX-compatible commands provided in the script format are stored at the following
locations:

• Windows execution environment:
installation-folder\JP1ASE\sample

• Windows development environment:
installation-folder\JP1ASD\sample

Before using the UNIX-compatible commands provided in the script format, you must complete the preparations
described in 2.6.6(2) Preparations for using the script-format UNIX-compatible commands (Windows only) on the
sample script files provided by JP1/Advanced Shell.

The table below lists and describes the supported UNIX-compatible commands in the script format. The provided sample
script file is for Windows only. To use these commands in UNIX, use the OS-provided commands.

Table 8‒3: UNIX-compatible commands (script format)

Command name Overview

chmod Changes the access permissions of files and folders.

su Executes programs specified in the su command.

who Displays information about the users who are currently logged in.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 555

8.3 Shell operation commands

adshchmsg command (replies manually to a reply-request message when
a failure occurs)

Format

adshchmsg [-h logical-host-name] -n reply-request-message-number {-r reply|-
d}

Description
This command enters a reply to a reply-request message in shared memory when a failure occurs. It can also be used
to cancel the reply-waiting status of a reply-request message.

You specify the reply-request message number of the reply-request message in the -n option and the reply in the -r
option. To cancel the reply-waiting status of a reply-request message, you specify the reply-request message number of
the reply-request message in the -n option and you specify the -d option (which requests cancellation).

In an execution environment, this command can be executed by the root or an Administrator with an administrator role
on the machine where JP1/Advanced Shell is installed. In a development environment, a general user can run this
command.

Arguments

-h logical-host-name ~<logical host name>((1 to 255 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
will be executed.
In Windows, the length of the logical host name must not exceed 196 bytes, and it is recommended that it not exceed
63 bytes. If you specify a name that exceeds 63 bytes, the command might not work.

-n reply-request-message-number ~<unsigned integer>((1 to 2147483647))
Specifies the reply-request message number of the reply-request message that you want to reply to or whose reply-
waiting status you want to cancel. Specify the reply-request message's number as displayed by the adshlsmsg
command.
Either the -r option or the -d option must also be specified or an error will result.
If no reply request message number is specified, the option that is specified next will be treated as the argument,
resulting in an error.

-r reply ~<ASCII character string>((0 to 512 bytes))
Specifies the reply to be read by the issuer of the reply-waiting event. If the reply contains a space, enclose the reply
string in double quotation marks (").
An error results if the -n option is not specified.
If you specify a character string that exceeds 512 bytes, only the first 512 bytes are treated as the reply. If a character
string that contains an end-of-line code is specified, the portion of the character string following the end-of-line code
will be ignored.

-d
Specifies that the reply-waiting status of the reply-request message specified in the -n option is to be canceled. An
error results if the -n option is not also specified.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 556

Return codes

Return
code

Meaning

0 Normal termination

Other than
0

Error termination

Notes
• In the following cases, the item that is specified last will be the one that takes effect:

• The -r and the -d option are both specified.

• The -r option is specified more than once.

• The -n option is specified more than once.

adshcvmerg command (merges coverage information)

Format

adshcvmerg -o output-asc-file-path-name base-asc-file-path-name merge-asc-
file-path-name

Description
This command merges coverage information from a base asc file and a merge asc file, and then outputs the merged
contents to an output asc file.

A command error results if the input files to be merged are the same file. Whether the input files are the same is
determined by whether they have the same file name, including the absolute path name. It is not based on whether the
contents of the input files are the same.

Arguments
In Windows, arguments are not case sensitive; in UNIX, arguments are case sensitive.

-o output-asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name of the output file to which the merge results are to be output.

base-asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name of the base asc file.

merge-asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name of the asc file to be merged with the base asc file.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 557

Return codes

Return
code

Meaning

0 Normal termination

1 The end of the file was detected in the middle of reading an asc file. The asc file is corrupted.

2 An error occurred during unlocking of a file.

3 There is an error in a command line specification.

4 There is an error in an environment variable setting.
• The character encoding set in the LANG environment variable is not supported.

5 Different job definition scripts were used for the following:
• Storing coverage information in the base asc file
• Storing coverage information in the merge asc file

6 An error occurred during opening of a file.
• This error also occurs if the file is the wrong type.

7 An error occurred during locking of a file.

8 An error occurred while the name of a file was being changed.

9 An error occurred during file input or output.

10 A memory shortage occurred.

11 An error occurred during message output processing.

12 An error occurred during processing of output to the standard error output.

13 An inconsistency in internal processing was detected.

14 An error was detected in the data format of an asc file. The asc file is invalid.

15 An error occurred during acquisition of the date and time.

16 An error occurred during acquisition of the job definition script file information.

17 An asc file cannot be processed by the command.
An asc file was created by a different version.

19 An error occurred during interaction with the OS while command processing was ongoing.

Notes
• Merging is possible only when the same job definition script was used to collect the coverage information for the

base asc file and the merge asc file. If different job definition scripts were used, a command error results.

• A command error results if you specify the base asc file or the merge asc file for the output asc file. The output
asc file must be different from the base asc file and the merge asc file.

• A command error results if you specify the same file as the base asc file and the merge asc file.

• Whether the files specified as the base asc file and the merge asc file are the same is determined by the absolute
path names of the specified files. They are considered the same file if their absolute path names are identical.

Usage example
• Merge the coverage information in JOB_user1.asc and JOB_user2.asc and send the output to
JOB_user3.asc.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 558

adshcvmerg -o JOB_user3.asc JOB_user1.asc JOB_user2.asc

adshcvshow command (displays coverage information)

Format

adshcvshow { [-l n1 [- [n2]] [, n3 [- [n4]]]]...]|-s} asc-file-path-name

Description
This command displays coverage information for the asc file specified in the argument.

Arguments

-l n1 [- [n2]] [, n3 [- [n4]]]...
Specifies the range of coverage information to be displayed in terms of the line numbers of the job definition script.
Specify a range of line numbers in the format n1 [- [n2]]. n1- denotes the range beginning with line number
n1 through the last line. You can specify multiple ranges separated by the comma (,).

• n1: Line number of the starting line of the range to be displayed.

• n2: Line number of the final line of the range to be displayed.

If this option is not specified, all lines in the job definition script are displayed.
In the specification format for lines, a range is specified with a hyphen (-), and multiple ranges are separated by the
comma. If you do not specify a number after the hyphen, the range will extend from the line whose line number is
specified before the hyphen through the final line.

-s
Specifies that the display is to be based on the contents of a job definition script file that is being backed up.
This option is used to determine whether the asc file corresponds to the job definition script file or if there are
differences.

asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name of the asc file containing the coverage information to be displayed.

Return codes

Return
code

Meaning

0 Normal termination

1 The end of the file was detected in the middle of reading an asc file. The asc file is corrupted.

2 An error occurred during unlocking of a file.

3 There is an error in a command line specification.

4 There is an error in an environment variable setting.
• The character encoding set in the LANG environment variable is not supported.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 559

Return
code

Meaning

6 An error occurred during opening of a file.
• This error also occurs if the file is the wrong type.

7 An error occurred during locking of a file.

8 An error occurred while the name of a file was being changed.

9 An error occurred during file input or output.

10 A memory shortage occurred.

11 An error occurred during message output processing.

12 An error occurred while output was being sent to the standard error output.

13 An inconsistency in internal processing was detected.

14 An error was detected in the data format of an asc file. The asc file is invalid.

15 An error occurred during acquisition of the date and time.

16 An error occurred during acquisition of the job definition script file information.

17 The asc file cannot be processed by the command.
The asc file was created by a different version.

19 An error occurred during interaction with the OS while command processing was ongoing.

Notes
• An error results if the -s option and -l option are both specified at the same time.

• An error results if the line number of the final line is less than the line number of the starting line in a specified range
of lines.

• If the line number of the starting line is equal to the line number of the final line, the range will consist of only that
line.

• If the line number of the starting line is greater than the number of lines in the job definition script file, the
specification is ignored.

• If the line number of the final line is greater than the number of lines in the job definition script file, the final line
will be the last line.

• Overlapping ranges are interpreted as the sum of the ranges. For example, -l 1-10,5-20 is equivalent to -l
1-20.

• An error results if the format of a range is incorrect (example: 1-10-20).

• An error results if 0 is specified as a line number.

• When the -l option is specified, the lines from Total information and after are not output.

Usage examples
• Display coverage information for lines 1 through 10, line 15, and lines 21 through the final line.

adshcvshow -l 1-10,15,21- JOB_user1.asc

• Display coverage information for lines 2 through 8.

adshcvshow -l 2-6,4-8 JOB_user1.asc

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 560

• If the job definition script file has 9 lines, nothing is displayed.

adshcvshow -l 10-15 JOB_user1.asc

• If the job definition script file has 9 lines, coverage information for lines 2 through 4 is displayed.

adshcvshow -l 10-15,2-4 JOB_user1.asc

adshevtout command (outputs job definition script operation information)

Format

adshevtout [-s job-execution-start-time-lower-bound]
 [-e job-execution-start-time-upper-bound]
 [-c JP1/AJS-schedule-service-name]
 [-r JP1/AJS-root-jobnet-name]
 [-k JP1/AJS-job-execution-ID]
 [-n JP1/AJS-job-number]
 [-g JP1/AJS-job-name]
 [-u JP1/Advanced-Shell-execution-user-name]
 [-p job-definition-script-file-path-name]
 [-i JP1/Advanced-Shell-job-ID]
 [-j JP1/Advanced-Shell-job-name]
 [-t]
 [-d]
 [-m]
 [-z]
 [-h logical-host-name]

Description
This command searches the event file for job definition script operation information for jobs meeting specified
conditions, and output the results in CSV format. The output destination is the standard output (stdout).

This command cannot be used in JP1/Advanced Shell - Developer.

Specification of output conditions
You use the following arguments to specify the jobs whose job definition script operation information is to be output:

 [-s job-execution-start-time-lower-bound]
 [-e job-execution-start-time-upper-bound]
 [-c JP1/AJS-schedule-service-name]
 [-r JP1/AJS-root-jobnet-name]
 [-k JP1/AJS-job-execution-ID]
 [-n JP1/AJS-job-number]
 [-g JP1/AJS-job-name]
 [-u JP1/Advanced-Shell-execution-user-name]
 [-p job-definition-script-file-path-name]
 [-i JP1/Advanced-Shell-job-ID]
 [-j JP1/Advanced-Shell-job-name]

If multiple output conditions are specified, the command outputs job definition script operation information only for
jobs that satisfy all the specified conditions.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 561

If no output conditions are specified, the command outputs job definition script operation information for all jobs on
the physical host or the specified logical host.

If you specify job attributes (such as start date, job ID, and job name) as output conditions for the jobs whose information
is to be output, the job attributes are determined by the attribute values of the root job.

The command outputs the job definition script operation information for the root job that satisfies all the output
conditions and for all its child jobs. You cannot output job definition script operation information that is limited only to
the root job or only to specific child jobs.

What job definition script operation information is output
Normally, job definition script header information is output on the first line, and operation information and messages
are output on the second and subsequent lines.

You select the output information by specifying the following arguments to the adshevtout command:

[-t]
[-d]
[-m]
[-z]

For examples of the output of operation information, see 3.6.9 Job definition script operation information that is output.

When the following argument is specified, the command outputs operation information for jobs executed on the specified
logical host:

 [-h logical-host-name]

When this argument is not specified, the command outputs operation information for jobs executed on the physical host.

Arguments

-s job-execution-start-time-lower-bound
Specifies a lower boundary for the job execution start date and time as a condition for determining the jobs whose
job definition script operation information is to be output.
For details about the specification format of the date and time, see Job execution start date and time below.
If this argument is omitted, there is no limitation on the lower boundary for the execution start date of the jobs to
be output.

-e job-execution-start-time-upper-bound
Specifies an upper boundary for the job execution start date and time as a condition for determining the jobs whose
job definition script operation information is to be output.
For details about the specification format of the date and time, see Job execution start date and time below.
If this argument is omitted, there is no limitation on the upper boundary for the execution start date of the jobs to
be output.

-c JP1/AJS-schedule-service-name
Specifies a JP1/AJS schedule service name as a condition for the jobs whose job definition script operation
information is to be output.
You can output jobs that match either of the following as character strings:

• The scheduler service name specified in this argument

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 562

• The name of the JP1/AJS scheduler service that started the job (the value of the AJS_AJSCONF environment
variable that was specified when JP1/AJS started the job)

-r JP1/AJS-root-jobnet-name
Specifies a JP1/AJS root jobnet name as a condition for the jobs whose job definition script operation information
is to be output.
You can output jobs that match either of the following as character strings:

• The root jobnet name specified in this argument

• The JP1/AJS root jobnet name at the time the job was started (the value of the AJSNETNAME environment
variable that was specified when JP1/AJS started the job)

-k JP1/AJS-job-execution-ID
Specifies a JP1/AJS job execution ID as a condition for the jobs whose job definition script operation information
is to be output.
You can output jobs that match either of the following as character strings:

• The job execution ID specified in this argument

• The JP1/AJS job execution ID at the time the job was started (the value of the AJSEXECID environment variable
that was specified when JP1/AJS started the job)

-n JP1/AJS-job-number
Specifies a JP1/AJS job number as a condition for the jobs whose job definition script operation information is to
be output.
You can output jobs that match either of the following as character strings:

• The job number specified in this argument

• The JP1/AJS job number at the time the job was started (the value of the JP1JobID environment variable that
was specified when JP1/AJS started the job)

For example, to specify the job with job number 0000012345, you must specify -n 0000012345, with the leading
zeros. If you specify -n 12345, it is not considered a match to the job number.
Note that job number formats might differ between platforms.
For details about job numbers, see the applicable JP1/AJS manual.

-g JP1/AJS-job-name
Specifies a JP1/AJS job name as a condition for the jobs whose job definition script operation information is to be
output.
You can output jobs that match either of the following as character strings:

• The job name specified in this argument

• The JP1/AJS job name at the time the job was started (the value of the AJSJOBNAME environment variable that
was specified when JP1/AJS started the job)

-u JP1/Advanced-Shell-execution-user-name
Specifies the execution user name of the process running the adshexec command that executed the job as a
condition for the jobs whose job definition script operation information is to be output.
You can output jobs that match either of the following as character strings:

• The user name specified in this argument

• The user name for the process running the adshexec command that executed the job

-p job-definition-script-file-path-name
Specifies the path name of the job definition script file specified in the adshexec command when the job was
executed as a condition for the jobs whose job definition script operation information is to be output.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 563

You can output jobs that match either of the following as character strings:

• The path name specified in this argument

• The path name of the job definition script file specified in the adshexec command

Even if the path name can be interpreted as being for a job's job definition script file, if there is no match as a character
string, the job will not be considered as a job whose job definition script operation information is to be output. The
following is an example:

Example of when there is not a path name match:
Current directory when the adshexec command is executed: /home/user1
Path name specified in the adshexec command: ./test1.ash
Path name specified in the adshevtout command: /home/user1/test1.ash

-i JP1/Advanced-Shell-job-ID
Specifies a JP1/Advanced Shell job ID as a condition for the jobs whose job definition script operation information
is to be output.
You can output jobs that match either of the following as character strings:

• The job ID specified in this argument

• The JP1/Advanced Shell job ID of the job (the value of the ADSH_JOBID environment variable)

For example, to specify the job whose job ID is 000001, you must specify -i 000001. The leading zeros cannot
be omitted.

-j JP1/Advanced-Shell-job-name
Specifies a JP1/Advanced Shell job name as a condition for the jobs whose job definition script operation information
is to be output.
You can output jobs that match either of the following as character strings:

• The job name specified in this argument

• The JP1/Advanced Shell job name (the value of the ADSH_JOB_NAME environment variable)

-t
Specifies that output of the header information is to be suppressed when the job definition script operation
information is output.

-d
Specifies that output of the job definition script operation information is to be suppressed.
You use this argument when you want to output the header information only.

-m
Specifies that only the messages are to be output as the job definition script operation information.

-z
Specify that output of information about environment variables is to be suppressed when the job definition script
operation information is output.

-h logical-host-name
Specifies the name of a logical host that is executing jobs whose job definition script operation information is to be
output.
The adshevtout command outputs job definition script operation information from the event files in the spool
corresponding to the specified logical host.
In Windows, the length of the logical host name must not exceed 196 bytes, and it is recommended that it not exceed
63 bytes. If you specify a name that exceeds 63 bytes, the command might not function correctly.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 564

This argument is for specifying an execution environment. It is not for specifying a condition for the jobs whose job
definition script operation information is to be output.
The -h specification is ignored if the logical host name specified in this argument is not defined in an environment
file.

Return codes

Return
code

Meaning

0 Normal termination

1 There is an error in a command line specification.

2 There is an error in an environment variable setting.

3 The character encoding set in the LANG environment variable is not supported.

4 There is an event file for which processing was skipped.
Check the messages output by the command to determine the cause.

5 An I/O error occurred in referencing the spool, and the spool could not be referenced.

6 The spool could not be referenced because it is being accessed by another command.

7 An error occurred during message output processing.

8 An error occurred during processing of output to the standard output.

10 An error occurred during acquisition of the date and time.

11 A memory shortage occurred.

12 An inconsistency in internal processing was detected.

13 An error occurred during initialization processing.

The return code will generally be the maximum value among the return codes for all events that occurred during
command execution, except for return code 4, which is output only when no other events occurred.

Specifying the same argument more than once
If the same argument is specified multiple times, the last specification takes effect.

Example:
The following case is treated as specifying -s 19900401:

adshevtout -s 20120411 -s 19900401

Combinations of different arguments
When multiple arguments for determining the information to be output are specified, the arguments are interpreted
according to the priority order shown in the following table:

Argument priority# Argument Description

1 -d The operation information is not output.

2 -m Only messages are output.

3 -z Information about environment variables is not output.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 565

#
The smallest number is the highest priority.
When a higher-priority argument is specified, any specified lower-priority arguments will be ignored.
If the format of a specified argument is invalid, a command error results, regardless of the argument's priority.

Job execution start date and time
The lower and upper boundaries for the job execution start date and time can be specified in any of the three formats
listed and described in the table below.

The range of years that can be specified in YYYY is 1970 through 2038.

Table 8‒4: Specification and interpretation of the lower and upper boundaries for job execution start
date and time

Specification format of the date and
time

Interpretation of the specification

YYYYMMDD,hhmmss Specifies the year, month, date, hour, minute, and second.
An upper bound is interpreted as the specified time plus 1 second. If the time is specified as
235959, it is interpreted as 00:00:00 on the date following the specified date.

YYYYMMDD Specifies the year, month, and date only.
The hour, minute, and second are interpreted as follows.

Lower bound:
Interpreted as 00:00:00 on the specified date.

Upper bound:
Interpreted as 00:00:00 on the date following the specified date.

, hhmmss Specifies the hour, minute, and second only.
The year, month, and date are interpreted as the execution date of the command.
An upper bound is interpreted as the specified time plus 1 second. If the time is specified as
235959, it is interpreted as 00:00:00 on the date following the specified date.

Examples of interpreting the date and time are shown in the table below. For Nos. 5 through 7 in the table, it is assumed
that the adshevtout command was executed on October 23, 2012.

No. Specification in the command Date and time interpreted by the command

Lower bound for the execution start date
and time

Upper bound for the execution start date
and time

1 20120501,000000 May 1, 2012, 00:00:00 May 1, 2012, 00:00:01

2 20120501,100000 May 1, 2012, 10:00:00 May 1, 2012, 10:00:01

3 20120501,235959 May 1, 2012, 23:59:59 May 2, 2012, 00:00:00

4 20120501 May 1, 2012, 00:00:00 May 2, 2012, 00:00:00

5 ,000000 October 23, 2012, 00:00:00 October 23, 2012, 00:00:01

6 ,100000 October 23, 2012, 10:00:00 October 23, 2012, 10:00:01

7 ,235959 October 23, 2012, 23:59:59 October 24, 2012, 00:00:00

The date and time specified in the command are interpreted on the basis of the time zone set in the TZ environment
variable at the time the command executes.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 566

It is important to note that even if the same date and time character string is specified in two different commands, if
those commands are executed in different time zones (according to the values set in the respective TZ environment
variables), the dates and times will be interpreted differently.

The dates and times that can be specified are as follows:

• Expressed in Coordinated Universal Time (UTC):
January 1, 1970, 00:00:00 through January 19, 2038, 03:14:07

• Expressed in Japan Standard Time (UTC+9):
January 1, 1970, 09:00:00 through January 19, 2038, 12:14:07

For time zones not listed above, the representation of the specifiable range of dates and times depends on the time zone
being used.

Note that there are time-related implementation differences among OSs, so errors might result even for dates that fall
within the ranges listed above. The following circumstances will generate an error:

• An invalid date or time is specified.

• The lower bound for the execution start date and time is later than the upper bound.

TZ Environment variable
The time zone specified in the TZ environment variable is referred to for the following purposes:

• Interpretation of the date and time specified in an argument of a command when the command executes

• Representation of a date and time in job definition script operation information

For details about the relationship between time zones and the representation of dates and times, see 3.6.3 Relationship
between dates and times and time zones in the operation information.

The TZ environment variable is specified in POSIX format as illustrated below. Note the use of the sign.

Example:

export TZ=JST-9

The TZ environment variable cannot be specified in Time Zone Database format, as illustrated below.

Examples of incorrect usage:

export TZ=Asia/Tokyo
export TZ=Japan

Do not execute the adshevtout command with the TZ environment variable set to daylight saving time. The
adshevtout command does not support daylight saving time.

For details about setting the TZ environment variable, see the specifications for the OS being used.

Lower bound of the job execution start date and time
If you specify a lower bound for the job execution start date and time with -s, the jobs whose job definition script
operation information will be output must satisfy the following constraint:

ts tj

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 567

tj: Job execution start date and time

ts: Lower bound for the job execution start date and time interpreted by the adshevtout command

Upper bound of the job execution start date and time
If you specify an upper bound for the job execution start date and time with -e, the jobs whose job definition script
operation information will be output must satisfy the following constraint:

tj < te

tj: Job execution start date and time

te: Upper bound for the job execution start date and time interpreted by the adshevtout command

Job definition script operation information that can be output
• The job definition script operation information that can be output is what is stored in the event files that are accessible

to the user who executed the command. If an applicable event file is not accessible to the user who executed the
command, a message is output and job definition script operation information in the inaccessible event file is not
output.

• Job definition script operation information is not output for jobs that are executing or for jobs for which the
adshexec command terminated with an error. This means that job definition script operation information is not
output for a job whose name in the spool job directory name is in one of the following forms:

• job-ID

• job-ID-
• Job definition script operation information is not output for deleted jobs.

A job is considered to have been deleted if the spool job management file indicated below does not exist immediately
below the spool job directory:

• UNIX: .sysout
• Windows: sysout.ini

Concurrent execution with the adshhk command
• The adshevtout command and the adshhk command (for deleting spool jobs) apply exclusive control to spool

directories.

• The adshevtout command and the adshhk command cannot run at the same time on the same spool directory.

• More than one adshevtout command can be executed on the same spool directory at the same time.

• If the adshevtout command cannot be executed because the spool directory is under exclusive control, an error
message is output and processing terminates.

Notes
• If there is a large quantity of job definition script operation information to be output, you can split it up by executing

separate commands with output conditions that divide the information on the basis of dates or other criteria.

Usage example
• Output to the out.csv file the job definition script operation information for JP1/Advanced Shell job ID 000100.

adshevtout -i 000100 > out.csv

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 568

adshexec command (executes a batch job)

Format

To run normally

adshexec [-v] [-c] [-m {EXTENDED|SIMPLE|MINIMUM}]
[-t [-f] [-o asc-file-path-name]] [-h logical-host-name]
[-s {SPOOL|PARENT}] [-x]
{-r command-line|job-definition-script-file-path-name}
[run-time-parameters]

To start in the debugger mode (UNIX only)

adshexec -d [-v] [-c] [-m {EXTENDED|SIMPLE|MINIMUM}]
[-t [-f] [-o asc-file-path-name]] [-h logical-host-name]
[-x] job-definition-script-file-path-name

Description
This command launches the job controller to execute the batch job in the job definition script file specified in an
argument. You can also execute commands that would be specified in a job definition script file by directly specifying
those commands in the -r option.

The command's arguments are specified before the values to be passed to the job definition script's positional parameters.

Arguments

-d (UNIX only)
Specifies that the job controller is to be started in the debugger mode. This option can be used in a UNIX environment.
In the debugger mode, coverage information is collected in memory and continues to be collected each time the
run command is executed. The coverage information stored in memory can be displayed by the info coverage
command.
If the -t option is not specified, the coverage information collected in memory is discarded when you terminate the
debugger with the quit command.
Job definition script operation information is not collected when the -d option is specified.

-v
Specifies that version information is to be displayed; no batch job is executed.

-c
Specifies that the job definition script file's syntax is to be checked.
Only syntax checking is performed; no batch job is executed.

-m {EXTENDED|SIMPLE|MINIMUM}
Specifies how to output the standard output and the standard error output of the job that is to be started. For details
about the output modes, see 3.3.4 Suppressing output of information and warning messages to job execution logs.

• EXTENDED
Use the expansion output mode.

• SIMPLE
Use the simple output mode.

• MINIMUM

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 569

Use the minimum output mode.

If this option is omitted, the specifications of the OUTPUT_MODE_ROOT and OUTPUT_MODE_CHILD parameters
take effect.
This option applies only to the job that is started with the adshexec command and is not inherited by jobs that are
started from that job. For a job that is started separately, specify the -m option again in the adshexec command
that you use to start the job.
If the root job is run in the simple output mode or the minimum output mode, the standard output is not redirected
to a spool file even when the -s option is specified or SPOOL is specified in the OUTPUT_STDOUT environment
setting parameter.
If you use the -r option, also specify -m SIMPLE or -m MINIMUM to avoid job execution logs from being mixed
together with the output results.

-t
Specifies that coverage information is to be collected while the batch job executes and the collected coverage
information is to be output to an asc file when the command terminates.
If the -t option is not specified when the debugger mode is started in UNIX, the coverage information is collected
in memory only (however, it can be displayed with the debugger's info coverage command). When you
terminate the debugger with the quit command, the collected coverage information is discarded.

-f
Specifies that if coverage information has already been collected, the existing asc file is to be overwritten when
differences are detected between the job definition script file to be executed and the backup information. The -f
option can be specified only when the -t option is also specified.

When this option is specified
If coverage information has already been collected and differences are detected between the job definition script
file to be executed and the backup information, the backup information is discarded and new coverage
information is collected.
If no coverage information has been collected, the newly collected coverage information is output to an asc
file.

When this option is not specified
If coverage information has already been collected and differences are detected between the job definition script
file to be executed and the backup information, a command error occurs and the job definition script file is not
executed. The asc file is not updated.

-o asc-file-path-name
Windows: ~<path name>((1 to 229 bytes))
UNIX: ~<path name>((1 to 1,005 bytes))
Specifies the path name for the asc file to be used for collection of coverage information, when you want to use a
different file from the existing asc file. The -o option can be specified only when the -t option is also specified.
Omitting this option is equivalent to specifying the asc file in the current directory when the adshexec command
is executed. The following shows the format of an asc file name:
name-of-job-definition-script-without-extension_user-name.asc
In the example below, the adshexec command is executed under the following conditions:

• Current directory when the adshexec command is executed: /home/user1/test
• User name: user1
• Name of job definition script: script1.ash

The name of the asc file when the -o option is omitted is as follows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 570

/home/user1/test/script1_user1.asc
-h logical-host-name ~<logical host name>((1 to 255 bytes))

Specifies the name of the logical host to be used for execution on a logical host. In Windows, the length of the logical
host name must not exceed 196 bytes, and it is recommended that it not exceed 63 bytes. If you specify a name that
exceeds 63 bytes, the command might not function correctly.
If an empty string is specified for logical-host-name, the value specified in the JP1_HOSTNAME environment
variable is assumed. If the JP1_HOSTNAME environment variable is not set, the KNAX0220-E message is output
and the command terminates. For details about the JP1_HOSTNAME environment variable, see the Job Management
Partner 1/Base User's Guide.
Do not specify this option when running on the physical host.

-s {SPOOL|PARENT}
Specifies the destination for the standard output from the root job. child jobs assume that PARENT was specified in
this option.
If this option is omitted, the root job assumes the value specified in the OUTPUT_STDOUT parameter. If the root
job is run in the simple output mode or the minimum output mode, the standard output is not redirected to a spool
file, regardless of this option.

• SPOOL
Output the standard output from the root job to a file on the spool.

• PARENT
Output the standard output from the root job to the destination inherited from the parent process when the process
starts. Assuming the destination is not later redirected in the parent process, output goes to the same destination
as for the parent process.

-x
Enables the xtrace shell option.
You can disable the xtrace shell option by executing set +x or set +o xtrace in the job definition script.

-r command-line
Specifies what is to be executed from the command line. In command-line, you can specify any commands that can
be specified in a job definition script, such as standard shell commands and UNIX-compatible commands. Make
sure that the command-line specification does not exceed the maximum length permitted for a line of a job definition
script (8,191 bytes).
If this option is specified together with the -v option, the -v option takes effect.

In UNIX:
This argument cannot be specified together with the -c, -d, or -t option. An error results if this argument is
specified together with any of these options.

In Windows:
This argument cannot be specified together with the -c or -t option. An error results if this argument is specified
together with either of these options.

For details, see 3.2.4 Specifying what is to be executed by a job from the command line.

job-definition-script-file-path-name
Windows: ~<path name>((1 to 247 bytes))
UNIX: ~<path name>((1 to 1,023 bytes))
Specifies the path name of the job definition script file that is to be run.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 571

run-time-parameters ~<any character string>((1 to 1,022 bytes))
Specifies values to be stored in the positional parameters of the job definition script. If a run-time parameter includes
a space, you must enclose that string in double quotation marks (").

Return codes

Trigger Return code

-c option specified -c option not specified

Normal execution of the exit command or of the return
command from an outside function

Return code specified in the command --

Normal execution of an external command by specifying it
in the argument to the exec command

Return code of the external command
specified in the argument

--

Normal execution of the job definition script through the end
of the job definition script file

Return code of the most recently
executed standard shell command or
extended script command

--

No errors in the job controller in the debugger mode 0 --

No syntax errors in the job definition script file The job definition script is executed,
with the following return code:
• Return code specified in a

command
• Return code of the most recently

executed standard shell command
or extended script command

0

Syntax error in the job definition script file 1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

An error in the job controller, except for an error in executing
the job definition script, such as an error in reading an
environment file

1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

1 or the value set in the
ADSH_JOBRC_FATAL environment
variable

The job controller process receives a signal and terminates
(UNIX only).

128 + signal number 128 + signal number

The job controller process is forcibly terminated from
outside, for example from JP1/AJS or the Windows Task
Manager (Windows only).

Return code specified by the program
that forcibly terminated the job
controller

Return code specified by the program
that forcibly terminated the job
controller

Failure to start the job controller for a reason attributable to
the OS (Windows only)

1 to 3 1 to 3

A parsing error occurred in the ADSH_JOBRC_FATAL
environment variable.

255 255

Legend:
--: Does not apply because the job definition script is not executed.

Notes
• If the same option is specified more than once, the last specification takes effect.

• When -v and -c are specified together with any other options, they are handled in descending order of priority.
The priority order is -v, then -c, and then the other options. Lower priority options are ignored.
Example
The -d option is ignored, only -v takes effect.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 572

 $ adshexec -v -d MyShell.ash

• Collecting coverage information without specifying the -o option can result in duplication of asc file names. This
duplication occurs in the situations listed below. To avoid duplicate asc file names, change the name of the job
definition script file or the name of the asc file.

• You collect coverage information from multiple job definition scripts whose file names differ only in their
extensions
Example: sc.1 and sc.2

• You collect coverage information from multiple job definition scripts with the same name but in different
directories
Example: /dir1/sc1 and /dir2/sc1

• Do not specify file names that begin with . (dot).

• Do not use a reserved device name (such as CON, AUX, and NUL) as a file name. (Windows only)

• Do not use an NTFS stream as a file name. (Windows only)

• You cannot specify run-time parameters when the -d option is specified. Specify the run-time parameters in an
argument of the run command.

• Access permissions for asc files are set as follows:

• The owner (creator) of a file is granted r (read) and w (write) access permissions regardless of the umask settings.
Group and general access permissions are set according to the umask settings at the time the command is invoked.
(UNIX only)

• In principle, execution users are granted Full Control access permissions over their own asc files. However,
actual file access permissions are affected by permission inheritance in Windows (inheritance of permissions
from higher-level directories). Similarly, access permissions for other users obey Windows permissions
inheritance (inheritance of permissions from higher-level directories). (Windows only)

• File descriptors are closed without being inherited by adshexec commands that are generated as child processes.
For example, an error results if the job definition script of a child process attempts to perform I/O using a file
descriptor opened by a parent process without first reopening it. Standard output and standard error output do not
need to be reopened. (Windows only)

Usage examples
• Start the job controller in the syntax checking mode.

adshexec -c /home/user/shell/JOB.ash

• Start the job controller in the debugger mode.

adshexec -d /home/user/shell/JOB.ash

• Display version information for the job controller without executing a batch job.

adshexec -v

• Specify run-time parameters to be passed to the positional parameters of the job definition script and start the job
controller.

adshexec /home/user/shell/JOB.ash parm1 parm2

• Collect coverage information.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 573

adshexec -t /home/user/shell/JOB.ash

• If the contents of the job definition script file have been modified, discard the coverage information collected so far
and collect new coverage information.

adshexec -t -f /home/user/shell/JOB.ash

• Collect coverage information and store it in /home/user/JOB.asc.

adshexec -t -o /home/user/JOB.asc /home/user/shell/JOB.ash

• Enable the xtrace shell option and start the job controller.

adshexec -x /home/user/shell/JOB.ash

• Start the job controller with a command specified in command-line in the -r option that is to be executed in the job.

adshexec -r "ls *"

• Start the job controller with a positional parameter that is referenced in command-line in the -r option specified in
the runtime parameters.
This example specifies a command in the job definition script file. command-line must be enclosed in single quotation
marks (') because it specifies a positional parameter.

adshexec -r 'cat $1 | grep $2' file.txt abc

• Start the job controller with a command that handles file paths specified in command-line in the -r option.
This example specifies a command in the job definition script file.

adshexec -r 'cat "C:\\Documents and Settings\\user001\\file.txt"'

adshfile command (specifies the allocation and postprocessing of regular
files)

Format

adshfile [-s {step|job}] [-n {del|keep}] [-a {del|keep}]
 [-c {exist|no}] file-path-name

Description
This shell operation command allocates a regular file, checks whether the regular file already exists, and specifies
postprocessing. The command takes effect when it is specified in a job definition script executed by JP1/Advanced
Shell's job controller. You can specify a maximum of 64 regular files to be allocated.

For details about the allocation and postprocessing of regular files and the difference from the #-adsh_file
command, see 5.9.1 Allocating regular files and performing postprocessing.

Regular files allocated with this command are managed separately from regular files allocated with the #-adsh_file
command. Postprocessing is performed on the regular files allocated by the adshfile command first and then on the
regular files allocated by the #-adsh_file command. If the same file is allocated with both commands, the file will
be postprocessed twice and an error might result.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 574

Note the following about executing this command:

• Do not execute this command asynchronously.

• In UNIX, do not execute this command as a separate process.

• This command cannot be executed if the spool job creation suppression functionality is being used.

If the same option is specified more than once, the last specification takes effect.

Arguments

-s {step|job}
Specifies the timing for performing postprocessing on the file.

• step
Perform postprocessing on the file when the job step terminates.

• job
Perform postprocessing on the file when the job terminates.

You can issue this command within the job or job step regardless of the specified option, but the registered file is
postprocessed when the next job step or job terminates. If no job step terminates after the file is registered with
step specified, postprocessing is performed when the job terminates.
If this option is specified in a child job, this processing is performed within that child job.

-n {del|keep}
Specifies the postprocessing to be performed when the corresponding job step or job terminates normally.

• del
Delete the allocated regular file after the corresponding job step or job has terminated.

• keep
Do not delete the allocated regular file after the corresponding job step or job has terminated.

-a {del|keep}
Specifies the postprocessing to be performed when the corresponding job step or job terminates with an error.

• del
Delete the allocated regular file after the corresponding job step or job has terminated.

• keep
Do not delete the allocated regular file after the corresponding job step or job has terminated.

If file allocation processing by the adshfile command results in an error, the following takes place:

• Postprocessing on the regular file specified in the corresponding adshfile command is not performed.

• Of the regular files allocated with the adshfile command beforehand, postprocessing is performed according
to the -a options specified in the adshfile commands.

-c {exist|no}
Specifies whether the file path is to be checked for its existence.

• exist
Check whether the file path exists.
Postprocessing is registered only if the file path exists.
If the file path does not exist, the command terminates with an error.

• no

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 575

Do not check whether the file path exists.

file-path
Windows: ~<path name>((1 to 247 bytes))
UNIX: ~<path name> ((1 to 1,023 bytes)
Specifies the path of the regular file that is to be allocated.
You can specify either a relative path or an absolute path. If a relative path is specified and its file path name exceeds
the maximum permissible length after it has been converted to an absolute path name, an error results.

Return code

Return code Meaning

0 Normal termination

99 Error termination

Notes
Unlike the #-adsh_file command, this command does not output to the job execution logs a message indicating
the allocation results. To check the file path name specified in an argument of the adshfile command for purposes
such as troubleshooting, do the following:

1. Collect operation information by specifying YES in the EVENT_COLLECT parameter in the environment file.

2. Execute the adshfile command in the job definition script.
Operation information will be collected.

3. Execute the adshevtout command to output the operation information.

4. In the displayed operation information, check the lines in which command, indicating command information, is set
in the EvtName column (the first column, which shows the type of operation information record).

Note that operation information for job definition scripts can be collected only in the normal mode in the execution
environment. This information cannot be collected in the debugger mode in the execution environment or in the
development environment.

adshhk command (deletes spool jobs)

Format

adshhk target-list-file-name report-file-name log-file-name [number-of-days]

Description
This command deletes spool jobs from the spool directories identified in the list file specified in target-list-file-name.
The execution results are output in CSV format to the file specified in report-file-name. Messages output during
execution, such as error messages, are output to the file specified in log-file-name.

This command and the adshevtout command apply exclusive control over spool directories. If the adshhk
command is unable to obtain a lock on a spool directory, it skips processing of that spool directory and outputs the
KNAX4425-E message.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 576

Arguments

target-list-file-name
Specifies the file name of the file that specifies the spool directories that contain spool jobs that are to be targets for
deletion. You specify in advance in the target list file the names of the spool root directories containing the spool
directories to be deleted and for each a number-of-days value. Spool jobs that were executed more than the specified
number of days prior (the count begins from the day before the adshhk command was executed) are deleted from
the specified spool directory.
The target list file can contain multiple lines in text file format. A line cannot exceed 4,095 bytes, counting from the
beginning of the line through the end-of-line code at the end. The values must be enclosed in double quotation marks
(").
The format of the target list file is:

"spool-root-directory-name"[,"number-of-days"]

The following explains each item.

spool-root-directory-name ~<path name>((1 to 128 bytes))
Specifies the name of a spool root directory whose spool jobs are candidates for deletion. Specifying the full
path is recommended.

number-of-days ~<unsigned integer>((1 to 999))
Specifies a days-count value to be used to determine the spool jobs to be deleted from the spool directory. The
spool job directory of batch jobs that were executed more than the specified number of days prior (the count
begins from the day before the adshhk command was executed) are deleted. If this value is omitted in the list
file for a spool directory, the value specified in the number-of-days argument in the adshhk command is used.
If no number-of-days value is specified in the file or in the command argument, the line generates an error, but
subsequent lines are processed.
Specifying "" is same as omitting the number-of-days specification.

report-file-name
Specifies the name of the output file for the execution results. The report file is output in CSV format. If the specified
file does not exist, it is created. If it already exists, its existing contents are overwritten.
The report file access permissions are set as follows:

• Windows: According to the settings for the output folder.

• UNIX: 600
For an example of a report file's output, see 3.8 Deleting spool jobs.

log-file-name
Specifies the name of the output file for error messages and other messages. If the specified file does not exist, it is
created. If it already exists, its existing contents are overwritten.
The log file access permissions are set as follows:

• Windows: According to the settings for the output folder.

• UNIX: 600
number-of-days ~<unsigned integer>((1 to 999))

Specifies a days-count value to be used to determine the spool jobs to be deleted from the spool directories. The
spool job directory of batch jobs that were executed more than the specified number of days prior (the count begins
from the day before the adshhk command was executed) are deleted. This argument takes precedence over the
number-of-days values specified in the target list file. When this argument is omitted, the number-of-days values
specified in target list file are used. If you omit this argument, you must specify number-of-days values in the target
list file.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 577

Return codes

Return code Meaning

0 Normal termination

1 Error termination

2 Deletion failed because a spool directory is being used by another program (the return code might be other than 2 if other
errors occurred).

253 Error in standard error output

Notes
• The only spool jobs subject to deletion are those for which the user who executes the command has deletion

permissions. A failure to delete will be reported for spool jobs for which deletion permissions are lacking. If you
want to delete the spool jobs of all users, you must execute the deletion as a user who has deletion permissions for
all spool jobs.

• Files created under a spool job directory for which the user has deletion permissions are deleted regardless of whether
they were created as batch jobs.

• Subdirectories created under a spool job directory might not be deletable.

• If a job's execution start date is unknown, deletion will not be performed (this will be treated as an error).

• The only spool jobs that are deleted are those whose spool job directories are in the format job-ID-job-name or job-
ID-. When a spool job directory is missing the hyphen (-) following the job ID, it indicates that the batch job is
still running, it was terminated improperly by means other than one described in 3.10.1 How to forcibly terminate
jobs, or some similar situation. Such directories are never deleted, regardless of the actual state of affairs.

• If an error occurs during deletion, deletion processing on the affected spool job might be in a partially completed
state.

• Results are not output to the report file in number order. If necessary, a sort program can be used to sort them.

• No deletions will be performed in a specified spool directory that is being processed by the adshevtout command
(which outputs job definition script operation information).

• Because spool jobs to be deleted are deleted from the spool job management file, if deletion processing is interrupted,
they might not be deleted even if you re-run the adshhk command. In such a case, you must delete manually any
spool jobs that failed to be deleted.

• To manually delete a spool job that the adshhk command failed to delete, use a command such as rm -r to delete
both the spool job directory and all the files within the directory. When you do so, use the creation date of the spool
job directory and of the files contained in the directory to check whether the job has completely finished. We
recommend that you stop operations such as batch jobs before deleting the directory and files.

Usage example
• Delete the following batch jobs:

 Batch jobs in the /home/user001/jp1as/spool directory that ran more than seven days ago
 Batch jobs in the /home/user999/jp1as/spool directory that ran more than 30 days ago

Specify the following information in advance in target list file /home/kanrisya/hk/target:

"/home/user001/jp1as/spool","7"
"/home/user999/jp1as/spool","30"

In this case, execute the command shown below. The report is stored in the /home/kanrisya/hk/
result.csv file.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 578

adshhk /home/kanrisya/hk/target /home/kanrisya/hk/result.csv /home/
kanrisya/hk/result.log

For an example of a report that is created, see 3.8 Deleting spool jobs.

adshlsmsg command (displays a list of reply-request messages when a
failure occurs)

Format

adshlsmsg [-h logical-host-name] [-n reply-request-message-number]

Description
This command displays a list of the reply-request messages in shared memory that are in reply-waiting status, as well
as the reply-request messages in receive-waiting status and the replies to them.

In an execution environment, this command is executed by Administrators or root users with an administrator role on
the machine where JP1/Advanced Shell is installed. In a development environment, general users can run this command.

Arguments

-h logical-host-name ~<logical host name>((1 to 255 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
will be executed.
In Windows, the length of the logical host name must not exceed 196 bytes, and it is recommended that it not exceed
63 bytes. If you specify a name that exceeds 63 bytes, the command might not function correctly.

-n reply-request-message-number ~<unsigned integer>((1 to 2147483647))
Specifies the reply-request message number of a reply-request message in reply-waiting status that you want to
display, or of a reply-request message in receive-waiting status that you want to display together with the reply to
it.
If only -n is specified and no reply-request message number is specified, any option that is specified next will be
treated as the argument.
When this specification is omitted, the display is of all reply-request messages in shared memory on reply-waiting
status, as well as of all reply-request messages in receive-waiting status and the replies to them.
If the -n option is specified more than once, the last specification takes effect.

Output items
The following describes the headers and contents that are output as a result of executing the adshlsmsg command.

• MESSAGE-NO
The 10-digit decimal reply-request message number. This is the value that is specified in the -n option of this
command or in the -n option of the adshchmsg command.

• STATUS
The status of the reply-request message is output as follows.

• Wait: The reply-request message is in reply-waiting status

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 579

• Set: The reply-request message is in receive-waiting status

• JOBID
The six-digit integer value representing the job ID issued by the adshread command for the job definition script.

• LINENO
The line number in the job definition script executed by the adshread command.

• DATE/TIME
The time the reply-request message was output (local time).

• MESSAGE or RESPONSE
The following items are output:

• msg=: Reply-request message body

• res=: Reply contents (displayed only if in receive-waiting status)

Return codes

Return
code

Meaning

0 Normal termination

Other than
0

Error termination

Usage example
The following example shows the output when you view a list of reply-request messages in reply-waiting status, as well
as reply-request messages in receive-waiting status and the replies to them.

$ adshlsmsg
 MESSAGE-NO STATUS JOBID LINENO DATE/TIME MESSAGE or RESPONSE
[0000017622] [Wait] 000228 20 12/05/24 18:28:00 msg=STOP
[0000017626] [Set] 000229 136 12/05/24 18:28:10 msg=Continue (Y/N)?
[0000017626] [Set] 000229 136 12/05/24 18:28:10 res=Y

adshmdctl command (starts and stops the user-reply functionality
management daemon) (UNIX only)

Format

adshmdctl [-h logical-host-name] {start [reuse]|stop|status|conftest
[environment-file-name]|help}

Description
This command starts and stops the user-reply functionality's management daemon. The user-reply functionality's
management daemon manages the shared memory for the user-reply functionality.

When the user-reply functionality is used, reply-request messages are stored in shared memory. Normally, they are
released when the user-reply functionality management daemon is stopped. If the user-reply functionality management

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 580

daemon terminates because of a failure without releasing the shared memory, you must use this command to release the
shared memory. The following is the procedure for doing this:

1. Execute this command with the start reuse option specified

2. Execute this command with the stop option specified, and then stop the user-reply functionality's management
daemon

Arguments

-h logical-host-name ~<logical host name>((1 to 255 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
will be executed.
It is recommended that the length of the logical host name not exceed 63 bytes. If you specify a name that exceeds
63 bytes, the command might not function correctly.
If the logical host name specification is omitted, any option that is specified next will be treated as the argument.

start [reuse]
Specifies that the user-reply functionality's management daemon is to be started.
If reuse is specified, the information in the reply-request messages will be used as is by the user-reply functionality.
When the user-reply functionality is used, reply-request messages are stored in shared memory, and normally they
are released when the user-reply functionality's management daemon is stopped. If the user-reply functionality's
management daemon terminates because of a failure without releasing the shared memory, the user must release the
shared memory by first starting the management daemon with the reuse option specified in the adshmdctl
command, and then terminating the management daemon by specifying the adshmdctl command with the stop
option specified.

stop
Specifies that the user-reply functionality's management daemon is to be stopped.
If there are reply-request messages that have not yet been replied to, the waits for replies will be cancelled.

status
Specifies that the operating status of the user-reply functionality's management daemon is to be returned, using one
of the following return codes:

• 0: The user-reply functionality's management daemon is running

• 1: The user-reply functionality's management daemon is not running

conftest [environment-file-name]
Specifies an environment file whose parameters are to be checked. The results are output to the standard output.
If environment-file-name is omitted, the system environment file is checked.

help
Specifies that a help for the adshmdctl command is to be displayed.

Return codes

Return
code

Meaning

0 Normal termination

Other than
0

Error termination

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 581

Notes
• Start the user-reply functionality's management daemon as a root job.

• Do not change the file system environment while the user-reply functionality's management daemon is running.

• The adshmdctl command sets the LANG environment variable to C and launches the management daemon of the
user-reply functionality. For this reason, subsequent messages and JP1 events are output in English.

adshmsvcd command (registers the user-reply functionality management
service in a development environment) (Windows only)

Format

adshmsvcd [-install [-lhostname logical-host-name]]

Description
This command registers the user-reply functionality management service (adshmsvcd). The user-reply functionality
management service manages shared memory for the user-reply functionality. This command can be executed only in
a Windows development environment.

Arguments

-install
Specifies that the user-reply functionality management service is to be registered.
The user-reply functionality management service is registered automatically when you set up JP1/Advanced Shell.
However, if the registry information is later deleted, you will need to use this option to re-register it manually.

-lhostname logical-host-name ~<logical host name>((1 to 196 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
is to be executed.
It is recommended that the length of the logical host name not exceed 63 bytes. If you specify a name that exceeds
63 bytes, the command might not function correctly.

Return codes

Return
code

Meaning

0 Normal termination

Other than
0

Error termination

Notes
• This command terminates without an error even when it is executed with invalid options or with no options specified.

In such a case, the registry information is not updated.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 582

adshmsvce command (registers the user-reply functionality management
service in an execution environment) (Windows only)

Format

adshmsvce [-install [-lhostname logical-host-name]]

Description
This command registers the user-reply functionality management service (adshmsvce). The user-reply functionality
management service manages shared memory for the user-reply functionality. This command can be executed only in
a Windows execution environment.

Arguments

-install
Specifies that the user-reply functionality management service is to be registered.
The user-reply functionality management service is registered automatically when you set up JP1/Advanced Shell.
However, if the registry information is later deleted, you will need to use this option to re-register it manually.

-lhostname logical-host-name ~<logical host name>((1 to 196 bytes))
When you are operating in a logical host environment, specifies the host name of the logical host where the command
is to be executed.
It is recommended that the length of the logical host name not exceed 63 bytes. If you specify a name that exceeds
63 bytes, the command might not function correctly.

Return codes

Return
code

Meaning

0 Normal termination

Other than
0

Error termination

Notes
• This command terminates without an error even when it is executed with invalid options or with no options specified.

In such a case, the registry information is not updated.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 583

8.4 UNIX-compatible commands

This section explains how to use each of the UNIX-compatible commands. The following are general notes.

Regular expressions supported in UNIX-compatible commands
Basic regular expressions and extended regular expressions are both supported. Basic regular expressions can be
used in the following commands:

• expr
• grep (when the -G option is specified)

• sed (when the -E option is not specified)

Extended regular expressions can be used in the following commands:

• awk
• egrep
• grep (when the -E option is specified)

• sed (when the -E option is specified)

Both types of regular expression support the use of metacharacters. The following table describes the metacharacters
that can be used.

Table 8‒5: Differences in the metacharacters that can be used in regular expressions

Metacharacter Meaning Basic regular expressions Extended regular
expressions

* Zero or more repetitions Y Y

\+ One or more repetitions Y N

+ One or more repetitions N Y

. One character Y Y

\? The preceding regular expression Y N

? The preceding regular expression N Y

^ Beginning of the line Y Y

$ End of the line Y Y

\| Or Y N

| Or N Y

[char-list] Range specification Y Y

\(regexp\) Grouping Y N

(regexp) Grouping N Y

\{n, m\} Repeats at least n times but no more than
m times

Y N

{n, m} Repeats at least n times but no more than
m times

N Y

\{n\} n times Y N

{n} n times N Y

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 584

Metacharacter Meaning Basic regular expressions Extended regular
expressions

\{n, \} n or more times Y N

{n, } n or more times N Y

Legend:
Y: Can be used.
N: Cannot be used.

About the command usage examples

• In the usage examples provided in the remainder of this chapter, the UNIX-compatible commands are executed
on Windows, with a few exceptions.

• The path to the directory where the commands are installed is assumed to have been set in the
ADSH_OSCMD_DIR environment variable.

awk command (performs text processing and pattern matching)

Format

awk [-F input-field-separator] [-v variable-name=variable-value]... [-f
script-file-path-name|script]
 [[target-path-name...]|[built-in-variable-name=variable-value...]]...

Description
This command retrieves lines (referred to hereafter as records) in a text file that match a particular pattern and performs
specified processing on the retrieved lines.

Arguments

-F input-field-separator
Specifies the value to be used as the input field separator. The specified value becomes the value of the awk
command's FS built-in variable.

-v variable-name=variable-value
Specifies a variable name and its value. The variable name and its value are passed to the script that is specified in
a script file or in the argument specified in the -f option. Multiple variables can be specified. If you specify the
same variable name more than once, the last specification takes effect.

-f script-file-path-name
Specifies the path name of a file (script file) that contains the patterns to be matched in the input files and the
processing instructions for the records that match the patterns.

• If - is specified as the path name, the standard input is assumed for the input.

• Up to 19 -f options can be specified.

script
Specifies a pattern to be matched in the input files and the processing instructions for the records that match the
pattern.

target-path-name
Specifies the path name of a file to be processed. Multiple path names can be specified.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 585

If no path name is specified or - is specified as the path name, input is read from the standard input. Note that if
only the BEGIN pattern is executed, no records are retrieved from the specified file or from the standard input.

built-in-variable-name=variable-value
Specifies the name of a built-in variable and its value. The variable name and its value are passed to the scripts that
are specified in the script file or in the script argument specified in the -f option.

• If you specify a name that is not for a listed built-in variable, it is treated the same as the -v option.

• A built-in variable that is specified before all the target path names is enabled for all file processing, except for
BEGIN pattern processing, and is also enabled for END pattern processing.

• A built-in variable that is specified after all the target path names is enabled for END pattern processing only.

• A built-in variable that is specified between target path names is enabled for processing of the path names
specified after the variable specification and for END pattern processing.

Scripts (patterns and actions)
The following is the descriptive format of a script executed by the awk command:

[pattern] [{[action]}]

A pattern to be searched for in the input files is defined in pattern. For details about the pattern specification, see Types
of patterns below. Processing instructions for records that match the pattern are defined in action.

Each successive record from the input file is compared to each specified pattern, and the action specified for a pattern
is executed when a match is found for that pattern. A specified action can be performed on all records by not specifying
a pattern (omitting pattern and specifying action only).

You specify for the action control statements and functions that perform desired processing on the records that match
the specified pattern. The action operation can include control statements, built-in functions, user-defined functions,
variables, and operators. Multiple statements, separated by an end-of-line code or semicolon, are permitted. When the
entire {action} portion is omitted, including the braces, the matching records are output to the standard output. If you
specify the empty braces without action ({ }), no processing is performed.

To include a comment, specify a hash mark (#) and then the comment string. Everything from the hash mark to the end
of the line is treated as a comment.

Records and fields
A record is a unit that is obtained by using the input record separator to split up the input. In awk, an end-of-line code
serves as the input record separator. In Windows, an end-of-line code is denoted by [CR] + [LF] or by [LF]. In
UNIX, an end-of-line code is denoted by [LF]. Note that in UNIX, if [CR] + [LF] is used for the end-of-line code,
the [CR] part will be included in the resulting record.

The input record separator can be changed by setting in the RS built-in variable any single-byte character to serve as
the new record separator. If a character string is specified, only the first character in the character string becomes the
input record separator.

Records are divided by field separators into units called fields. The default field separator is the space. The field separator
can be changed by specifying in the -F option or by setting in the FS built-in variable any character string to serve as
the new field separator.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 586

The input passed to the specified action consists of the contents of the record currently being read from the input file
and the value of each field in the record. The entire contents of the record are stored in field variable $0. The first field
of the record is stored in field variable $1, the second field is stored in field variable $2, and so on.

Types of patterns
The following types of patterns can be specified.

• Character strings
To search for a character string in a field or record, enclose it in slashes (/). Character strings can be specified using
regular expressions. To search for a forward slash (/) by itself, you must use the escape character (\), so the
specification becomes /\//.
In the following example, hitachi is specified as the search string:

/hitachi/{
(action)
}

• Relational expressions
Relational operators (>, >=, <, <=, ==, and !=) can be used to perform comparisons on fields. In the following
example, the specified action is performed if the second field of a record is hitachi:

$2 == "hitachi"{
(action)
}

• Combinations of patterns
Multiple patterns can be combined to express conditions for executing an action. The following table shows the
combinations that can be used:

Format Description

pattern1 && pattern2 Using the logical AND operator, execute the action on records that are a match for both
pattern1 and pattern2.

pattern1 || pattern2 Using the logical OR operator, execute the action on records that are a match for either
pattern1 or pattern2.

pattern1 ? pattern2 : pattern3 Using the ternary operator, execute the action on records that are a match for both pattern1
and pattern2 or are a match for pattern3.

! pattern Using the NOT operator, execute the action on records that are not a match for pattern.

(pattern) Group multiple conditions into pattern.

pattern1, pattern2 Execute the action on the range of input records beginning with the record that is a match
for pattern1 and concluding with the record that is a match for pattern2. Note that if the
search reaches the end of the input file without finding a record that matches pattern2, the
last record in the input file will be the end of the range. However, if multiple input files
are specified, the successive input files are searched for a record that matches pattern2.
This format can be specified up to 50 times.

• BEGIN
This pattern is for an action that is to be performed before processing of the input file begins. For this pattern, action
cannot be omitted. This pattern cannot be combined with other patterns. If multiple input files are specified, the
specified action is executed before input starts from the first input file.

• END

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 587

This pattern is for an action that is to be performed after the last record in the file has been processed or when the
exit control statement is entered. For this pattern, action cannot be omitted. This pattern cannot be combined with
other patterns. If multiple input files are specified, the specified action is not executed until the last record in the
last file has been processed.

Control statements
The control statements that can be used are described in the table below. The if, while, for, do, break,
continue, and return statements are subject to the C language syntax rules. An exception is the for statement,
which is limited to a single initialization expression and a single increment expression.

Control statement Syntax Description

if statement if (conditional-expression) processing [else
processing]

Branch conditionally.

if (variable in array) processing [else processing] Branch based on whether the index specified in variable
exists in array.

while statement while (conditional-expression) processing Repeat as long as the condition is true.

for statement for (initialization-expression; continuation-conditional-
expression; increment-expression) processing

Execute repeatedly.

for (variable in array) processing Perform processing while setting variable to successive
indexes of the array. Note that the indexes are retrieved
in no particular order.

do statement do processing while (continuation-conditional-
expression)

Repeat as long as the condition at the end remains true.

break statement break Exit immediately from a loop.

continue
statement

continue Interrupt loop processing and return to the beginning of
the next cycle of the loop.

next statement next Stop processing the current input record after this
control statement, and start processing the next input
record.

nextfile
statement

nextfile Stop processing the current input file after this control
statement, and start processing the next input file.

return statement return [expr] Exit a user-defined function. The value specified in the
expression expr is returned to the caller. If no value is
specified for the expr expression, the return value of the
user-defined function will be 0.

delete statement delete array Delete an array.

delete array[element] Delete an element of the array.

exit statement exit [expr] Stop execution of a script during processing. The value
specified in the expr expression is returned as the return
code of the command. If no value is specified for the
expr expression, the return code of the command will
be 0.
The value specified in the expr expression is treated as
a signed four-byte numeric value. In Windows, the
value specified in the expression expr will be the return
code of the command. In UNIX, when the value
specified in the expr expression is outside the range 0
to 255, the low-order 8 bits of the value will be the
return code of the command. If you are executing a job

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 588

Control statement Syntax Description

exit statement exit [expr] definition script in JP1/Advanced Shell, specify a value
in the range 0 to 255.
If you are executing a job definition script in JP1/
Advanced Shell in Windows and the value specified in
the expr expression is outside the range 0 to 255, the
return code that is returned to the caller of the command
will be different from the value specified in the expr
expression. For details about how the return codes of
commands are handled in JP1/Advanced Shell, see
5.8.8 Return codes of jobs, job steps, and commands.

Built-in functions
The following built-in functions can be used.

• Mathematical functions
The mathematical functions that can be used are described in the following table:

Function name Description

atan2(y,x) Returns the arctangent of y/x. The unit is radians. If an argument is missing, 1 is returned and a warning
message is output.

cos(x) Returns the cosine of x. The unit is radians.

exp(x) Returns the exponential function of x. If the result produces an overflow or underflow, 1 is returned and a
warning message is output.

int(x) Returns an integer by truncating at the decimal point of x.

log(x) Returns the natural logarithm of x. If x is zero or negative, 1 is returned and a warning message is output.

rand() Returns random number n (in the range 0 n < 1). If you do not use the srand function to set a seed value,
the same series of values will be generated each time awk is run.

sin(x) Returns the sine of x. The unit is radians.

sqrt(x) Returns the square root of x. If x is negative, 1 is returned and a warning message is output.

srand([expr]) Sets the expr expression as the seed value for the rand function and then returns the seed value that has been
set. If expr is omitted, the seed value is set based on the time.

• Character string functions
The character string functions that can be used are described in the table below. Multibyte characters are treated as
single characters.

Function name Description

gsub(r,t[,s]) Replaces all matches for regular expression r in character string s with t. If s is omitted, the assumed
replacement target is $0 (the field variable that stores the entire record). If & is specified in t, & is
replaced by the matched character string. The number of replacements is returned as the return value.

index(s,t) Returns the position of character string t in character string s. If character string t is not found, 0 is
returned.

length[([s])] Returns the number of characters in character string s. If s is not specified, the number of characters in
$0 (the field variable that contains the entire record) is returned.

match(s,r) Returns the position at which regular expression r occurs in character string s. If regular expression r
is not found, 0 is returned. In addition, the RSTART built-in variable is set to the position at which
regular expression r matches the character string, or is set to 0 if there is no match. The RLENGTH built-

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 589

Function name Description

match(s,r) in variable is set to the length of the character string that matches regular expression r, or to -1 if there
is no match.

sprintf(format,
expression[, ...])

Returns the character string in which expression is formatted according to format. For details about
format, see the description under Output format.

split(s, array[,fs]) Splits character string s into fields using field separator fs and stores the fields in array array. The
number of elements in the array is returned as the return code. The values of the fields that were split
are stored in array array in the order array[1], array[2], ..., array[return-value]. If field separator fs
is not specified, the value of the FS built-in variable is used as the field separator.
The fs field separator can be specified as a character string or regular expression. If you specify "" for
the fs field separator to indicate no characters, s is split into single characters.

sub(r, t[,s]) Replaces the first match for regular expression r in character string s with t. If s is omitted, the assumed
replacement target is $0 (the field variable that contains the entire record). If & is specified in t, & is
replaced by the matched character string. The return code is 1 if regular expression r is found and 0 if
regular expression r is not found.

substr(s,m[,n]) Returns a substring of up to n characters, beginning with the mth character of character string s. If n is
omitted, the entire character string beginning with position m is returned.

tolower(str) Returns a character string in which all uppercase characters in character string str have been changed
to lowercase.

toupper(str) Returns a character string in which all lowercase characters in character string str have been changed
to uppercase.

• Bit manipulation functions
The bit manipulation functions that can be used are described in the table below. Both x and y are treated as signed
four-byte numeric values.

Function name Description

compl(x) Returns the one's complement of integer x.

and(x,y) Returns the bitwise logical AND of integer x and integer y.

or(x,y) Returns the bitwise logical OR of integer x and integer y.

xor(x,y) Returns the bitwise logical XOR of integer x and integer y.

lshift(x,n) Returns the value of integer x shifted n bits to the left. Because an arithmetic bit shift is performed, the sign bit is
also shifted.

rshift(x,n) Returns the value of integer x shifted n bits to the right. Because an arithmetic bit shift is performed, the sign bit
is reintroduced after the right shift, preserving the sign.

• Input/output functions
The following input/output functions can be used.

getline [variable-name]
Reads the next record from the current input file. If variable-name is specified, the record is read into the variable
specified in variable-name and is set as the value of the NR and FNR built-in variables. If variable-name is
omitted, the record is read into field variable $0 and set as the value of the NF, NR, and FNR built-in variables.
The function returns 1 if the record is successfully read, 0 if the end of the file was reached, or -1 if an error
occurred.

getline [variable-name] < path-name
Reads the next record from the file specified in path-name. The path name must be enclosed in double quotation
marks ("). You can also specify in place of the path name the name of a variable assigned to the path name. If
- is specified for path-name, input is read from the standard input.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 590

The following is an example:
getline line < "file001.txt"
If variable-name is specified, the record is read into the variable specified in variable-name. If variable-name
is omitted, the record is read into field variable $0 and set as the value of the NF built-in variable.
The specified file is opened when the first record is read by the getline function and remains open until the
awk command terminates. For this reason, you must execute the close function if you want to restart input
from first record of the same file.

command-name | getline [variable-name]
Reads a record being output to a pipe by the program specified in command-name. The command name must
be expressed in command line format, with the name of the program to be executed and the values of its arguments
enclosed in double quotation marks ("). You can also specify in place of the command name the name of a
variable that has been assigned to the command name.
If variable-name is specified, the record is read into the variable specified in variable-name. If variable-name
is omitted, the record is read into field variable $0 and set as the value of the NF built-in variable. The following
are examples.
Using the output from command-name to the pipe as the input, read one record and assign it to field variable $0:
"cat -n file01.txt" | getline
Assign command-name to a variable, and then execute the program by connecting the variable to the getline
function:
rtxt = "cat -n file01.txt"
rtxt | getline
Creation of a pipe to receive the output from the specified program and execution of the program are performed
when you execute command-name | getline [variable-name]. If you execute the same command-name
multiple times, pipe creation and program execution are performed only the first time the specified command-
name is executed. The pipe that is created exists only until the awk command terminates. For this reason, if you
want to re-run the program specified in command-name, you must execute the close function. This is illustrated
in the following example:
"cat -n file01.txt" | getline rec -->1.
"cat -n file01.txt" | getline rec -->2.
close("cat -n file01.txt") -->3.
"cat -n file01.txt" | getline rec -->4.
1. The pipe is created and the cat command is executed. The contents of the first record that is output from the
cat command to the pipe are set in variable rec.
2. The contents of the second record that is output from the cat command to the pipe are set in variable rec.
3. The pipe is closed.
4. The pipe is created and the cat command is executed. The contents of the first record that is output from the
cat command to the pipe are set in variable rec.
Note that even if this command-name is identical to the command-name specified in a print or printf
function, they are considered to be different commands.

print [expression[, ...]]
Prints expression to the standard output. If expression is omitted, the current input record is printed to the standard
output. If you specify multiple expressions delimited by the comma (,), the expressions will be separated by
the value of the OFS built-in variable. The value of the ORS built-in variable is output at the end of the output
record.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 591

print [expression[, ...]] > path-name
Outputs expression to the file specified in path-name. path-name must be enclosed in double quotation marks
("). You can also specify in place of the path name the name of a variable assigned to the path name. If expression
is omitted, the current input record is output to the file specified in path-name. If you specify multiple expressions
delimited by the comma (,), the expressions will be separated by the value of the OFS built-in variable. The
value of the ORS built-in variable is output at the end of the output record. To append the output to an existing
file, specify >>path-name.
The specified file will be opened when you first produce output using the print function and will remain open
until the awk command terminates. For this reason, if you want to output from the beginning of the same file,
you must execute the close function.

print [expression[, ...]] | command-name
Outputs expression to a pipe and passes it to the program specified in command-name.
The command name must be expressed in command line format, with the name of the program to be executed
and the values of its arguments enclosed in double quotation marks ("). You can also specify in place of the
command name the name of a variable assigned to the command name.
If expression is omitted, the current input record is output to the pipe. If you specify multiple expressions
delimited by the comma (,), the expressions will be separated by the value of the OFS built-in variable. The
value of the ORS built-in variable is output at the end of the output record.
The creation of a pipe to receive the output from the specified program and execution of the program are
performed when you execute print [expression[, ...]] | command-name. If you execute the same
command multiple times, pipe creation and program execution are performed only the first time the specified
command-name is executed. The pipe that is created exists only until the awk command terminates. For this
reason, if you want to re-run the program specified in command-name, you must execute the close function.
Note that even if this command-name is identical to the command-name specified in a getline function, they
are considered to be different commands.

printf format[, expression[, ...]]
Prints to the standard output according to the format in format. For details about format, see the description
under Output format. For details about the other parts of the command, see print [expression[, ...]].
In Windows, when you use \n to represent a new line, it is output as [CR] + [LF].

printf format[, expression[, ...]] >path-name
Prints to a file according to the format in format. For details about format, see the description under Output
format. For details about the other parts of the command, see print [expression[, ...]] >path-name.

printf format[, expression[, ...]] | command-name
Outputs to a pipe according to the format in format. For details about format, see the description under Output
format. For details about the other parts of the command, see print [expression[, ...]] | command-
name. If this command-name is identical to the command-name specified in a print function, their output is
considered to be from the same program.

close(path-name|command-name)
Closes a file that was used by the getline, print, or printf function, or a pipe that was created when the
getline, print, or printf function was executed.
When the close function is successful, 0 is returned. When the close function fails, the return value of the
OS's close function is returned in the case of a file, or the return value of the pclose function is returned in
the case of a pipe.
The argument specifies a path name or command that was specified in a getline, print, or printf function.
path-name must be enclosed in double quotation marks ("). command-name must be expressed in command
line format, with the name of the program to be executed and the values of its arguments enclosed in double

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 592

quotation marks ("). Alternatively, you can specify a variable that contains the path name or command that was
specified in the getline, print, or printf function. Note that the path-name or command-name argument
to the close function must be identical, including the number of characters, to the path name or command used
in the getline, print, or printf function. If command-name or path-name specifies a different character
string, it will be considered a different path name or command. Note that in addition to closing command-
name, the close function also closes any pipes to command-name from the getline, print, or printf
functions. The following is an example:
print "hitachi" | "cat -n"
close("cat -n")

fflush([path-name|command-name])
Flushes a file used by the getline, print, or printf function, or a pipe created when a getline,
print, or printf function is executed. When the flush is successful, 0 is returned. When the flush fails, the
return value of the OS's fflush function is returned.
The argument specifies a path name or command that was specified in a getline, print, or printf function.
path-name must be enclosed in double quotation marks ("). command-name must be expressed in command
line format, with the name of the program to be executed and the values of its arguments enclosed in double
quotation marks ("). Alternatively, you can specify a variable that contains the path name or command that was
specified in the getline, print, or printf function. Note that the path-name or command-name argument
to the fflush function must be identical, including the number of characters, to the path name or command
used in the getline, print, or printf function. If command-name or path-name specifies a different
character string, it will be considered a different path name or command.
If no argument is specified, all files and pipes are flushed.

• General functions
The general function that can be used is described in the following table:

Function name Description

system(command-name) Executes the program specified in command-name and returns the status of the executed program.
command-name must be expressed in command line format, with the name of the program to be
executed and the values of its arguments enclosed in double quotation marks ("). You can also
specify in place of the command name the name of a variable assigned to the command name.
In UNIX, the status of the executed program will be the value of the low-order 8 bits of the return
code that is returned by the program.

User-defined functions
In addition to the built-in functions, you can also define your own functions. The syntax of a user-defined function is
as follows:

function | func name([param[, ...]]) { statements }

The function name name must be specified in alphanumeric characters and the underscore (_), and the first character
must be non-numeric.

You can specify in param arguments to the function using the names of user-defined variables or arrays. An argument
is passed to the function by its value in the case of a user-defined variable or as a reference in the case of an array.

A parsing error does not occur if the number of arguments specified in the function definition differs from the number
of arguments specified when the function is called. However, if the number of arguments specified when the function
is called is greater than the number of arguments specified in the function definition, a warning message is output. The
arguments specified in the function definition are considered local variables, but if the number of arguments specified

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 593

when the function is called is greater than the number of arguments specified in the function definition, the extra
arguments at the time of the function call are considered global variables.

A maximum of 50 arguments can be specified in a function definition. Similarly, a maximum of 50 arguments can be
specified when the function is called. A check is performed at the time the function is called to confirm that the number
of arguments does not exceed 50.

Variables
The types of variables used in scripts include user-defined variables, field variables, built-in variables, and arrays. User-
defined variables and arrays are generated the first time they are used in a script. Note that the initial value stored in an
uninitialized variable (one that has not been used in an arithmetic or assignment expression) is 0 in the case of a numeric
value and NULL in the case of a character string.

The type of the value of a variable changes to numeric or character string depending on the situation in which it is used.
However, non-numeric character strings have a numeric value of 0. For example, in the following example, the two
print functions both produce 7 as the output:

x = "3" + "4"
y = 3 + 4
print x
print y

The following describes each type of variable.

• User-defined variable
A variable name must consist of only alphanumeric characters and the underscore (_). The first character must be
non-numeric.

• Array
An array name is represented with an index enclosed in square brackets ([]) after the variable name. An index can
be a character string enclosed in double quotation marks (") instead of a number. Indexes written as a comma-
separated list represent a multidimensional array.
Multidimensional arrays are implemented in awk by connecting the index values at each dimension with the value
of the SUBSEP built-in variable, in order to treat them as a single character string index. In other words, a
multidimensional array is handled internally as a one-dimensional array. In the example below, the value of the
SUBSEP built-in variable is set to #, and then an array is created as shown. The two print functions both output the
same value, which in this case is Hitachi.

SUBSEP = "#"
arry["a", "b", "c"] = "Hitachi"
print arry["a", "b", "c"]
print arry["a#b#c"]

• Field variables
The field variables for referring to the contents of input records are described in the following table:

Variable Description

$0 Set to the entire contents of the record currently being read from the input file.

$1,$2,... Set sequentially to the field contents of the record that has just been read.
The record is split into fields by the value of the FS built-in variable, and then variable $1 is set to the record's
first field, variable $2 is set to the record's second field, and so on.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 594

Variable Description

$variable-name By assigning field numbers to variables, you can refer to fields in the same way as if you had written the field
numbers directly as $0, $1, and so on.#

When you do this in a function or control statement, the variable must be set to the field number before it is used.

$(expression) By setting expression to an expression that evaluates to a field number (such as variable-name+1), you can refer
to fields in the same way as if you had written the field numbers directly as $0, $1, and so on.

#
For example, in the following case, print $a and print $1 produce the same output:

 a = 1
 print $a
 print $1

• Built-in variables
The built-in variables are described in the following table:

Variable Description

ARGC Stores the number of command line arguments. This number does not include option values and script specification
values. The value of ARGC can be changed by a script or by the -v option. If you set ARGC to 0 with the -v option,
target path names specified in arguments will be ignored.

ARGV Stores an array of command line arguments. The array elements can be modified by a script. For example, if you
set to NULL an element storing one of the target path names specified in the arguments, that input file will be
ignored and no records will be read from it. This will overwrite values specified with the -v option.

CONVFMT# Stores the conversion format to use when converting numeric values. The default is %.6g. If the numeric value
has a fractional part, it is also included.

ENVIRON Stores an array of run-time environment variables. The indexes are the names of environment variables. The name
of an environment variable must be enclosed in double quotation marks ("). You can also specify in place of the
name of an environment variable the name of a variable that has been assigned the name of the environment
variable.

FILENAME Stores the name of the current input file. The file name is set to - when the input is from the standard input.

FNR Stores the number of input records that have been read from the current input file. This value is updated each time
a record is read from the file specified in the target path name. It is also updated when a record is read by getline
[variable-name].
When more than one target path name is specified, it is initialized to 0 when input starts to be read from the next
input file.

FS Stores the field separator. The default is a one-byte space. FS can be set to a regular expression. If you wish to
change the field separator, specify a character string of no more than 99 bytes. If the value of the field separator is
a one-byte space, it will split fields at both spaces and tabs (\t). If no value is set for the field separator, each
individual character will become a field.
If you specify more than one character, the backslash (\) will be regarded as the regular expression escape character.
If the -F option is also specified, this variable takes precedence.

NF Stores the number of fields in the current input record. NF is set each time an input record is read from the file
specified in the target path name. It is also set when an input record is read into the $0 field variable by the
getline function.
You can reference the value of the last field of the current input record by specifying $NF.

NR Stores the number of input records detected so far. The value is updated each time a record is read from a file
specified by the target path name. The value is also updated when a record is read by getline [variable-name].
If more than one target path name is specified, the number of records includes the records from all files from which
input has been performed.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 595

Variable Description

OFMT# Stores the output format for numeric values. The default is %.6g. If the numeric value has a fractional part, it is
also included.

OFS Stores the output field separator. The default is a one-byte space.

ORS Stores the output record separator. The default is the newline character (\n). In Windows, the newline character
(\n) is output as [CR] + [LF].

RLENGTH Stores the length of a substring matched by the match function. The value is set to -1 if no match was found.

RS Stores the input record separator. The default is the end-of-line character. If you change its value, use single-byte
characters only. If you specify a character string or a multibyte character, the initial byte only will be used. When
RS is set to the newline character (\n), this will match either [CR] + [LF] or [LF] in an input file in Windows,
and it will match [LF] in an input file in UNIX. If the value of RS is set to something other than the newline
character, the end-of-line character included in the input records will be [LF] in the case of Windows. On a UNIX
system, if the input file uses [CR] + [LF] as the end-of-line code, the [CR] part only will be included with the
input records.

RSTART Stores the starting position of a substring matched by the match function. The value is set to 0 if no match was
found.

SUBSEP Stores the separator used in multidimensional arrays. The default is 0x1C.

#
The conversion specifiers f, e, g, E, and G are supported. Do not use any other conversion specifiers.

Operators
The operators that can be used are listed and described in the table below, in order of lowest to highest priority. For an
expression with operators at the same priority level, the operators are listed from left to right in order of highest to lowest
priority.

Operator Description

=, +=, -=, *=, /=, %=, ^=, **= Assignment operators

?: Ternary operator

|| Logical OR

&& Logical AND

~, !~ Operators for match (~) or fail to match (!~) a regular expression

<, <=, >, >=, !=, == Relational operators

space Concatenation of character strings

+, - Addition and subtraction

*, /, % Multiplication, division, and modulus

+, -, ! Unary and logical negation

^, ** Exponentiation

++, -- Increment and decrement operators

Output format
The following table lists and describes the conversion specifiers that follow % to indicate conversion specifications in
the printf and sprintf functions:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 596

Character Description

c Output as a single-byte character.

s Output as a character string.

d Output as a signed decimal integer.

i

o Output as an unsigned octal integer.

x Output as an unsigned hexadecimal integer. The values 10 through 15 use abcdef.

X Output as an unsigned hexadecimal integer. The values 10 through 15 use ABCDEF.

u Output as an unsigned decimal integer.

f Output as a floating point number. It is converted to the format [-]dddd.dddd.

e Output as a floating point number. It is converted to the format [-]d.dddde[+-]dd[d].

g Output in the signed format of conversion specifier e or f, depending on which is able to represent the specified value
and precision in the shortest way. Trailing zeros are not output.

E Output as a floating point number. It is converted to the format [-]d.ddddE[+-]dd[d].

G Output in the signed format of conversion specifier E or f, depending on which is able to represent the specified value
and precision in the shortest way. Trailing zeros are not output.

% Output as the % character.

Escape characters
You can use escape characters as follows:

• In the input field separator in the -F option

• As a variable value in the -v option

• As a built-in variable value specified in an argument

• Within character strings that are enclosed in double quotation marks (") in an assignment to a pattern or variable

The following table shows the escape characters that can be used:

Escape character Meaning

\a Alert character (bell)

\b Backspace character

\f Formfeed character (page break)

\n Linefeed character

\r Carriage return character

\t Tab character

\v Vertical tab character

\d, \dd, \ddd Character represented by one, two, or three octal digits.#1 You cannot specify a numeric value that denotes 0.

\xhex Character represented by a hexadecimal value (0 to 9, a to f, A to F).#1, #2 You cannot specify a numeric
value that denotes 0.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 597

Escape character Meaning

\c Any literal character (for example, \" for ")

\\ A single backslash character

#1
If you specify a pattern or regular expression enclosed in forward slashes (/), there are values that cannot be specified depending on the
character encoding at the time of execution. The hexadecimal representations of the permissible values for each character encoding are shown
below. If you specify a value that is outside these values, termination with an error will occur.

Character encoding Permitted values (in hexadecimal)

Shift JIS 0x01 to 0x80, 0xA0 to 0xDF, 0xFD to 0xFF

UTF-8 0x01 to 0xBF, 0xFE to 0xFF

EUC 0x01 to 0x8D, 0x90 to 0xA0, 0xFF

C 0x01 to 0xFF

#2
If \xhex is specified in a character string enclosed in double quotation marks ("), the hexadecimal digits are assumed to extend from \x to
the first non-hexadecimal character. If the hexadecimal representation exceeds 98 characters, only the first 98 characters will be used. When
the hexadecimal representation exceeds two characters, the results of converting the hexadecimal values from their hexadecimal representation
are not guaranteed.

A backslash (\) specified in variable values in the -v option and in built-in variable values in arguments is treated as
an escape character (except when it is enclosed in single quotation marks (')). Specify path names carefully. The
following shows examples.

Example 1: The correct path name, c:\a\b\c, cannot be passed to the awk command's scripts.
In this example, \ is deleted because it is processed as an escape character. As a result, c:\a\b\c is set in VAR001.
After that, \ is processed as an escape character again when the value is set in the variable in the awk command.
As a result, c:abc is set in VAR001:

CCC01="c:\\a\\b\\c"
awk -v VAR001="${CCC01}" -f prog01.awk

Similarly, the following two examples also cannot pass the correct path name:

awk -v VAR001=c:\\a\\b\\c -f prog01.awk
awk -v VAR001='c:\a\b\c' -f prog01.awk

Example 2: The correct path name, c:\a\b\c, is passed to the awk command's scripts.
In this example, c:\\a\\b\\c is stored in both CCC01 and CCC02.
After that, when the value is stored in VAR001 in the awk command, it becomes c:\a\b\c, thereby processing
correctly:

CCC01='c:\\a\\b\\c'
CCC02="c:\\\\a\\\\b\\\\c"
awk -v VAR001="${CCC01}" -f prog01.awk
awk -v VAR001="${CCC02}" -f prog01.awk

Similarly, the following two examples can also pass the correct path name:

awk -v VAR001=c:\\\\a\\\\b\\\\c -f prog01.awk
awk -v VAR001='c:\\a\\b\\c' -f prog01.awk

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 598

Special file names
Special file names can be used to represent the input source and output destination when you use the getline function
to read from the standard input or the print or printf function to output to the standard output or standard error
output. The table below lists the special file names that are available. Note that attempting to apply the close function
to a special file name will have no effect.

Special file name Meaning

/dev/stdin Standard input

/dev/stdout Standard output

/dev/stderr Standard error output

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Value specified in the exit statement Command return code specified in the exit control statement

Notes
• The awk command treats numeric values as double-precision floating point numbers (8 bytes). When you output

or convert a numeric value by specifying the conversion specifier d, i, o, x, X, or u in the output format of the
printf or sprintf function, it is rounded to a four-byte signed integer. For this reason, an error occurs when
you output or convert a numeric value that is outside the range of a four-byte signed integer by specifying the
conversion specifier d, i, o, x, X, or u. The particular error depends on the OS.

• The maximum number of files that can be opened at the same time by the getline, print, or printf function
is 256. Note that the number of files that can be open at the same time includes pipes generated by the commands
that invoke these functions. In UNIX, the maximum number will be less than 256, depending on OS settings, such
as the maximum number of files that can be open at the same time on the system as a whole, or restrictions imposed
by ulimit on the number of open file descriptors for those processes.

• Input from binary files and output of binary data are not guaranteed to work.

• Execution of external programs, for example by the system function, is implemented in terms of arguments to
other programs, as described below. For this reason, the execution specifications for the external program, such as
the maximum length of path names, depend on the specifications of those executing programs.

• Windows
External programs are executed as arguments to the command processor specified in the COMSPEC environment
variable, the default value for which is cmd.exe. The command processor that is used is determined by the
COMSPEC and PATH environment variables.

• UNIX
External programs are executed as arguments to the shell. Different executing programs might be launched
depending on OS specifications.

• In Windows, at the start of input or output from a command that is specified in a getline, print, or printf
function, an application error might occur in the execution of the specified command due to insufficient desktop
heap space. For this reason, either use the close function close the command when command input/output is no
longer required or adjust the value of the desktop heap.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 599

• In Windows, if you specify a file or directory name that contains wildcards in an argument to a command that
executes the system function, the wildcards are not expanded.

• In Windows, if you specify file and directory names that contain wildcards as arguments to a command that is
connected by a pipe to a getline, print, or printf function, the wildcards are not expanded.

• In Windows, if you specify the path name of a linked file in a place where you specify an external function, such as
in the system function, the program that it has been linked to will launch. Take note of this when executing batch
jobs.

• In Windows, when you specify a path name in an input/output function or a general function, observe the following
constraints concerning the backslash (\) character:

• The directory separator character \ must be specified as \\.

• If you specify a path name that includes spaces in the place where you specify an external function, such as in
the system function, the entire path must be enclosed in \".

• The \ character is treated as representing the escape character when it is specified as the value of a built-in
variable specified in the input field separator in the -F option, or as a variable value specified in an argument
or in the -v option.

• In Windows, file descriptors are closed without being inherited by processes that were generated by the system
function or similar means. For example, an error results if you attempt to perform input or output on a file descriptor
opened by the parent process without reopening it. This does not apply to the standard input, standard output, and
standard error output, which do not need to be reopened.

• In Windows, if the command name specified in the system function contains no path, the command found in the
path search order of a command processor such as the command prompt is executed.

• When you use the exit statement to return a return code for a command, depending on the value specified in the
exit statement, the return code might sometimes be different from the return code that is returned to the caller of
the command. See the description of the exit statement for details about specifying a command return code in the
exit statement. Note that in the awk command, the value specified in the exit statement is rounded to a four-
byte signed integer. For this reason, an error occurs if you specify a numeric value that is outside the range of a four-
byte signed integer. The specific error is OS-dependent.

Usage examples
• In an argument to the command, specify that the action is to convert from lowercase to uppercase the records that

match the search pattern. The input file is file01.txt.
Contents of file01.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk "/hitachi/{print toupper($0)}" file01.txt
HITACHI GROUP01 TOKYO
HITACHI GROUP03 FUKUOKA

• Output the records where the second field matches the pattern in a regular expression. The input file is
file01a.txt.
Contents of file01a.txt:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 600

hitachi group01 Tokyo
hitachi group02 Yokohama
hitachi grp0000 Fukuoka
hitachi group04 Hokkaido

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk "$2 ~ /group/" file01a.txt
hitachi group01 Tokyo
hitachi group02 Yokohama
hitachi group04 Hokkaido

• Output the contents of the third field, using the -F option to specify # as the input field separator. The input file is
file02.txt.
Contents of file02.txt:

hitachi#group01#Nagoya
HITACHI#group02#Hiroshima
hitachi#group03#Ooita

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -F"#" "{print $3}" file02.txt
Nagoya
Hiroshima
Ooita

• Specify the variable padstr and its value in an argument, in order to pass them to the action, which is specified
in the prog01.awk script file. The input file is file03.txt.
Contents of prog01.awk:

program name : prog01
{
count++
print padstr " " $0#
}
END{
 print "total record : " count
}

#
Outputs the value of the variable specified in the -v option, a space, and the contents of the input record.

Contents of file03.txt:

group01 Tokyo
group02 Yokohama
group03 Fukuoka

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -v padstr="hitachi" -f prog01.awk file03.txt
hitachi group01 Tokyo
hitachi group02 Yokohama
hitachi group03 Fukuoka
total record : 3

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 601

• In a command argument, specify # as the value of the FS built-in variable for input file file02.txt. The input
files are file01.txt and file02.txt.
Contents of file01.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

Contents of file02.txt:

hitachi#group01#Nagoya
HITACHI#group02#Hiroshima
hitachi#group03#Ooita

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk "{print $3}" file01.txt FS="#" file02.txt
Tokyo
Yokohama
Fukuoka
Hokkaido
Nagoya
Hiroshima
Ooita

• Retrieve records beginning with the record that contains group03 through the record that contains group06, and
output them to the file file06.txt. The script file is prog02.awk. The input files are file04.txt and
file05.txt.
Contents of prog02.awk:

BEGIN{
 print "Extract record : group03 - group06" > "file06.txt"
}
/group03/, /group06/{#
 count++;
 print >> "file06.txt";

}
END{
 printf "total record : %03d\n", count >> "file06.txt"
}

#
The processing target begins with the record that matches group03 and extends through the record that matches
group06.

Contents of file04.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

Contents of file05.txt:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 602

hitachi group05 Nagoya
HITACHI group06 Hiroshima
hitachi group07 Ooita

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog02.awk file04.txt file05.txt
C:\TEMP>%ADSH_OSCMD_DIR%\cat file06.txt
Extract record : group03 - group06
hitachi group03 Fukuoka
HITACHI group04 Hokkaido
hitachi group05 Nagoya
HITACHI group06 Hiroshima
total record : 004

• Output beginning with the first record in file file04.txt through the record that contains group02. In addition,
output all records from the file file05.txt. The script file is prog03.awk. The input files are the previous
file04.txt and file05.txt.
Contents of prog03.awk:

{
 count++; print
 if ($2 == "group02") {
 nextfile#
 }
}
END{
 printf("total record : %03d\n", count)
}

#
If the second field is group02, begin processing the next input file.

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog03.awk file04.txt file05.txt
hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group05 Nagoya
HITACHI group06 Hiroshima
hitachi group07 Ooita
total record : 005

• If the second field of the record is group02, terminate execution of the awk command. In addition, return as the
return code of the command the number of records that were read before the command terminated. The script file
is prog04.awk. The input files are file04.txt and file07.txt.
Contents of prog04.awk:

{
 print
if ($2 == "group02") {
 exit(NR)#
 }
}
END{

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 603

 printf("total record : %03d\n", NR)
}

#
Terminates the command and sets as the return code the value of the NR built-in variable, which contains the
number of records read so far.

Contents of file04.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

Contents of file07.txt:

hitachi group05 Nagoya
HITACHI group06 Hiroshima
hitachi group07 Ooita
hitachi group03 Okinawa

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog04.awk file04.txt file07.txt
hitachi group01 Tokyo
HITACHI group02 Yokohama
total record : 002

• Use the sub function to change the first occurrence of a specific character string in each record. The script file is
prog05.awk. The input file is file08.txt.
Contents of prog05.awk:

{
 if (sub(/Hitachi/, "& Corporation")#) {
 print
 } else {
 print "Unconverted record : " $0
 }
}

#
Replaces Hitachi with Hitachi Corporation in the records.

Contents of file08.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Tanaka Okinawa Office Tanaka Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog05.awk file08.txt
Hitachi Corporation Yokohama Office Hitachi Group
Hitachi Corporation Tokyo Office Hitachi Group
Unconverted record : Tanaka Okinawa Office Tanaka Group
Hitachi Corporation Fukuoka Office Hitachi Group

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 604

• Use the gsub function to change every occurrence of a specific character string in each record. The script file is
prog06.awk. The input file is file09.txt.
Contents of prog06.awk:

{
 if (gsub(/Hitachi/, "& Corporation")#) {
 print
 } else {
 print "Unconverted record : " $0
 }
}

#
Replaces every instance of Hitachi with Hitachi Corporation in the records.

Contents of file09.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Tanaka Okinawa Office Tanaka Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog06.awk file09.txt
Hitachi Corporation Yokohama Office Hitachi Corporation Group
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Unconverted record : Tanaka Okinawa Office Tanaka Group
Hitachi Corporation Fukuoka Office Hitachi Corporation Group

• Find the position of a specific character string using the index function. The script file is prog07.awk.
Contents of prog07.awk:

BEGIN{
 str = "HI:hitachi"
 print "Column = " index(str, "hitachi")
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog07.awk
Column = 4

• Find the length of a character string using the length function. The script file is prog08.awk.
Contents of prog08.awk:

BEGIN{
 str = "HI:hitachi"
 print "Length = " length(str)
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog08.awk
Length = 10

• Use the match function to find the position and length of a specific character string. The script file is prog09.awk.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 605

Contents of prog09.awk:

BEGIN{
 str = "hitachi:MOUSE"
 print "Column = " match(str, /U.E/)
 print "RSTART = " RSTART
 print "RLENGTH = " RLENGTH
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog09.awk
Column = 11
RSTART = 11
RLENGTH = 3

• Split a character string using a specific character as the delimiter, and store the results in an array. The script file is
prog10.awk.
Contents of prog10.awk:

BEGIN{
 str = "Hitachi#Yokohama Office#Hitachi Group"
 num = split(str, arry, "#")
 for (i = 1; i <= num; i++) {
 print arry[i]
 }
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog10.awk
Hitachi
Yokohama Office
Hitachi Group

• Find the substring at a specific position. The script file is prog11.awk.
Contents of prog11.awk:

BEGIN{
 str = "hitachi:MOUSE"
 rtnstr = substr(str, 11, 2)
 print "SUBSTR = " rtnstr
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog11.awk
SUBSTR = US

• Read records from an input file that is not specified as an argument. The script file is prog12.awk. The input file
is file10.txt.
Contents of prog12.awk:

BEGIN{
 while ((getline rec < "file10.txt"#) > 0) {
 print rec

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 606

 }
}

#
Reads a record from the specified input file file10.txt and stores the contents of the record in the rec
variable.

Contents of file10.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog12.awk
hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

• Pass output from the print function to a command through a pipe. The script file is prog13.awk. The input file
is file11.txt.
Contents of prog13.awk:

BEGIN{
 cmd = "sort "
}
{
 if (sub(/group01/, $2)) {
 count++
 print | cmd#1
 }
}
END{
 close(cmd)#2
 print "total record : " count
}

#1
Passes records to the sort command specified in the cmd variable.

#2
Closes the pipe and terminates execution of the sort command by executing the close function.

Contents of file11.txt:

hitachi group01 003 tokyo
hitachi group02 001 yokohama
hitachi group03 001 fukuoka
hitachi group01 004 hokkaido
hitachi group01 001 nagoya
hitachi group02 001 hiroshima
hitachi group01 002 ooita

The results of executing the command are as follows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 607

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog13.awk file11.txt
hitachi group01 001 nagoya
hitachi group01 002 ooita
hitachi group01 003 tokyo
hitachi group01 004 hokkaido
total record : 4

• Delete an element of an array. The script file is prog14.awk.
Contents of prog14.awk:

BEGIN{
 arry["Fukuoka"] = "Fukuoka"
 arry["Hokkaido"] = "Sapporo"
 arry["Kanagawa"] = "Yokohama"
 arry["Shimane"] = "Matsue"
 for (key in arry) {
 printf(" %*s : %s\n", 6, key, arry[key])
 }
 print "Deletes result of the array element"
 delete arry["Kanagawa"]
 for (key in arry) {
 printf(" %*s : %s\n", 6, key, arry[key])
 }
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog14.awk
 Fukuoka : Fukuoka
 Hokkaido : Sapporo
 Kanagawa : Yokohama
 Shimane : Matsue
Deletes result of the array element
 Fukuoka : Fukuoka
 Hokkaido : Sapporo
 Shimane : Matsue

• When the program starts, create a directory and output the contents of the records to a file in the directory that was
created. The script file is prog15.awk. The input file is file12.txt.
Contents of prog15.awk:

BEGIN{
 if ((rc = system("mkdir dir001")#1)) {
 printf("system func error rc = %x\n", rc) > "/dev/stderr"#2
 exit(1)
 }
}
{
 print >> "dir001\\outfile.txt"
}

#1
Creates a directory by executing the mkdir command from the system function.

#2
Outputs the return code of the system function to the standard error output.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 608

Contents of file12.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog15.awk file12.txt
C:\TEMP>%ADSH_OSCMD_DIR%\cat dir001\\outfile.txt
hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido

• Call a user-defined function and output its results. The script file is prog16.awk.
Contents of prog16.awk:

BEGIN{
a = 3
b = 4
result = func01(a, b, c)
print "func01 = " result
}
function func01(x, y){
x *= x
y *= y
return x + y
}

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -f prog16.awk
awk: warning: function func01 called with 3 args, uses only 2#
 source line number 4
func01 = 25

#
A warning message is output because the number of arguments in the call to the user-defined function exceeds
the number of arguments in the function definition.

• Display a message when a syntax error is detected in a control statement. The script file is prog17.awk.
Contents of prog17.awk:

BEGIN{
 while ((getline rec < "file10.txt") > 0)) {#
 print rec
 }
}

#
The number of opening and closing parentheses is mismatched in the while statement.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\awk -f prog17.awk
awk: extra) at source line 2 source file prog17.awk

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 609

 context is
 while ((getline rec < "file10.txt") > >>> 0)) <<<
awk: syntax error at source line 2 source file prog17.awk
awk: illegal statement at source line 2 source file prog17.awk
 extra)

• Display a message when the syntax of a built-in function is invalid. The script file is prog18.awk.
Contents of prog18.awk:

BEGIN{
 str = "Hitachi:hitachi"
 print "Column = " index(str)#
}

#
No character string is specified as an argument to the index function.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\awk -f prog18.awk
awk: syntax error at source line 3 source file prog18.awk
 context is
 print "Column = " >>> index(str) <<<
awk: illegal statement at source line 3 source file prog18.awk

• Use the temporary file functionality and path conversion functionality of JP1/Advanced Shell to perform input and
output on a file. The job definition script is adsh001.ash. The script file is prog19.awk. The input file is
file12.txt.
Specification of the temporary file functionality and path conversion functionality for the environment files:

#-adsh_conf TEMP_FILE_DIR "C:\\TEMP\\ADSH"
#-adsh_conf PATH_CONV_ENABLE / :
#-adsh_conf PATH_CONV "/var/hitachi/jp1as/perm" "C:\\hitachi\\JP1AS\\perm"

Contents of adsh001.ash:

#-adsh_file_temp TEMP
#-adsh_step_start adsh001 -onError stop
"$ADSH_OSCMD_DIR/awk" -f prog19.awk "/var/hitachi/jp1as/perm/file12.txt"
#-adsh_step_error
exit 100
#-adsh_step_end

Contents of prog19.awk:

{
 print FILENAME, ":", $0 > ENVIRON["TEMP"]
}
END{
while(getline var < ENVIRON["TEMP"])
 print var
}

Contents of file12.txt:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 610

001 abc
002 efgh
003 ijklmnop

Output of the awk command (sent to the standard output by the job):

C:\hitachi\JP1AS\perm\file12.txt : 001 abc
C:\hitachi\JP1AS\perm\file12.txt : 002 efgh
C:\hitachi\JP1AS\perm\file12.txt : 003 ijklmnop

• Display a message when no arguments are specified:

C:\DIR>%ADSH_OSCMD_DIR%\awk
usage: awk [-F fs] [-v var=value] [-f progfile | prog]
 [[file ...] | [built-in-var=value ...]] ...

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\awk -z
awk: illegal option -- z
usage: awk [-F fs] [-v var=value] [-f progfile | prog]
 [[file ...] | [built-in-var=value ...]] ...

basename command (extracts a file name from a path)

Format

basename character-string[suffix]

Description
This command extracts a file name character string from a character string that conforms to the path naming conventions
and then outputs it to the standard output.

If a suffix (a string of any characters) is specified, the command deletes the character string that matches the specified
suffix from the end of the extracted character string.

The rules for extracting a file name character string are as follows:

• Of the elements separated by directory separators in the specified character string, the command extracts the
rightmost element.

• In UNIX, a forward slash (/) is treated as a directory separator. In Windows, the / and the backslash (\) are both
treated as directory separators.

• In Windows, colons (:) following a drive letter are treated as element separators.

• Multiple consecutive directory separators are treated as a single directory separator.

• If the specified character string ends with a directory separator, the command extracts the file name character string
without the last directory separator.

• If the specified character string contains no directory separator, the command extracts the specified character string
as is.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 611

• If the specified character string consists of only directory separators, the command extracts the directory separators.

Arguments

character-string
Specifies the character string from which a file name is to be extracted.

suffix
Specifies the suffix to be deleted from the end of the extracted file name. If the he following conditions are satisfied,
the command outputs the extracted file name character string as is:

• The suffix does not match the end of the file name character string.

• The specified suffix is the same as the extracted file name character string.

Return code

Return code Meaning

0 Normal termination

1 Termination with an error

Notes
This command has no options. Any option that is specified in the argument is treated as part of the character string or
suffix that is to be subject to the extraction of a file name character string.

Usage examples
• Extract file name character strings from path names.

Example 1:

C:\TEMP>%ADSH_OSCMD_DIR%\basename E:\dir001\file01.txt
file01.txt

Example 2:

C:\TEMP>%ADSH_OSCMD_DIR%\basename /dir001
dir001

Example 3:

C:\TEMP>%ADSH_OSCMD_DIR%\basename .\file01.txt
file01.txt

Example 4:

C:\TEMP>%ADSH_OSCMD_DIR%\basename E:\dir001\dir002\
dir002

Example 5:

C:\TEMP>%ADSH_OSCMD_DIR%\basename E:\
E:

Example 6:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 612

C:\TEMP>%ADSH_OSCMD_DIR%\basename \\server01\
server01

Example 7:

C:\TEMP>%ADSH_OSCMD_DIR%\basename \\
\

Example 8:

C:\TEMP>%ADSH_OSCMD_DIR%\basename "C:\Documents and Settings\User01\My
Documents"
My Documents

Example 9:

C:\TEMP>%ADSH_OSCMD_DIR%\basename C:file01.txt
file01.txt

• Extract a file name from a path name without the extension:

C:\TEMP>%ADSH_OSCMD_DIR%\basename E:\dir001\file01.txt .txt
file01

cat command (outputs files to the standard output)

Format

cat [-b] [-n] [-s] [-u] [path-name ...]

Description
This command outputs one or more files to the standard output. If there are multiple files, they are concatenated and
output.

Arguments

-b
Specifies that all non-blank output lines are to be assigned line numbers.

-n
Specifies that all output lines are to be assigned line numbers beginning with 1. Each line number is displayed as
six digits. If the number of lines is such that line numbers cannot be accommodated in six digits, the number of
digits is increased as necessary. A tab is output after each line number.

-s
Specifies that multiple consecutive blank lines are to be compressed and output as a single blank line.

-u
In UNIX, specifies that output buffering is to be suppressed.
In Windows, this option is ignored.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 613

path-name
Specify the path name of a file to be output. Multiple path names can be specified, in which case the specified files
are concatenated and then output. If no path name is specified, or if - is specified as the path name, the input is read
from the standard input.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• A blank line is considered to be a line consisting of only a linefeed code [LF]. A line that includes [CR] + [LF]

is not considered a blank line for the purposes of the -b and -s options. For this reason, files in Windows are
normally not considered to include any blank lines.

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of linefeed codes is performed.

• If the standard output is a file and the specified path name indicates this file, the command outputs the following
message and results in an error:

cat: file-name: input file is output file

Usage examples
These usage examples illustrate the results of executing the cat command on files abc.txt and abcdex.txt,
whose contents are shown below. In the examples, represents a space and represents a tab character.

• abc.txt
aaaaaaaaaaa

bbbbbbbb

cccccccccccccccc

dddddddddddd

• abcdex.txt
aaaaaaaaaaa

bbbbbbbb

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 614

cccccccccccc

dddddddddddd

eeeeeeeeeeeeeeeee

The files listed above are used as input files in the following examples, which illustrate the results of executing the cat
command.

• Specify the -b option to number non-blank output lines.

$ cat -b abc.txt
 1 aaaaaaaaaaa

 2 bbbbbbbb

 3
 4 cccccccccccccccc

 5

 6
 7 dddddddddddd

• Specify the -n option to number all output lines.

$ cat -n abc.txt
 1 aaaaaaaaaaa
 2
 3 bbbbbbbb
 4
 5
 6 cccccccccccccccc
 7
 8
 9
 10
 11 dddddddddddd

• Specify the -s option to squeeze consecutive blank lines and output them as a single blank line.

$ cat -s abcdex.txt
aaaaaaaaaaa

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 615

bbbbbbbb

cccccccccccc

dddddddddddd

eeeeeeeeeeeeeeeee

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\cat -w
cat: illegal option -- w
usage: cat [-bnsu] [file ...]

• Display an error message because a file does not exist:

C:\TEMP>%ADSH_OSCMD_DIR%\cat file99
cat: file99: No such file or directory

cmp command (compares binary files)

Format

cmp [-l|-s] path-name-1 path-name-2 [skip-1 [skip-2]]

Description
This command compares binary files. Differences in byte values and the locations where the differences occur can be
displayed.

Arguments
If the -l and -s options are both omitted, the command displays only the location where the first difference is detected.
An error results if the -l and -s options are both specified.

-l
Specifies that each set of a difference in byte values (octal) and their offset in bytes (decimal) are to be displayed.

-s
Specifies that only a termination status indicating whether the files are different is to be returned.

path-name-1
Specifies the path name of the comparison source file. If you specify - for path-name-1, the contents for comparison
are read from the standard input.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 616

path-name-2
Specifies the path name of the comparison target file. If you specify - for path-name-2, the contents for comparison
are read from the standard input.

skip-1
Specifies the position (in bytes) in the file in path-name-1 that is to be the beginning point of the comparison
processing.

skip-2
Specifies the position (in bytes) in the file in path-name-2 that is to be the beginning point of the comparison
processing.

Return codes

Return code Meaning

0 Normal termination. The files are identical.

1 Normal termination. The files are different. Or, the end-of-file (EOF) was reached earlier in one
file than in the other, in which case a message (cmp: EOF on file-name) is output.

2 or greater Error termination

Notes
• The end-of-line code [CR] + [LF] is considered two bytes.

• In Windows, input from a file or from the standard input is performed in binary mode. No conversion of end-of-line
codes is performed.

Usage examples
These usage examples illustrate the results of executing the cmp command on the files abc.txt and abcd.txt,
whose contents are shown below. In the examples, represents a space and represents a tab character.

• abc.txt
aaaaaaaaaaa

bbbbbbbb

cccccccccccccccc

dddddddddddd

• abcd.txt
aaaaaaaaaaa

bbbbbbbb

cccccccccccccccc

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 617

dddddddddddd
eeeeeeeeeeeeeeeee

The files listed above are the input files in the following examples, which illustrate the results of executing the cmp
command.

• Specify the -l option to display the offset in bytes (decimal) and the values (octal) of each difference between
abc.txt and abcd.txt.

C:\TEMP>%ADSH_OSCMD_DIR%\cmp -l abc.txt abcd.txt
 49 12 40
 50 11 40
 51 11 40
 52 11 40
 53 12 40
 54 12 40
 65 40 12
 66 12 40
 67 144 40
 68 144 40
 69 144 40
 70 144 40
 71 144 40
 72 144 40
 73 144 40
 74 144 40
 75 144 40
 76 144 40
 77 144 40
 78 144 40
 79 12 40
cmp: EOF on abc.txt

• Specify the -s option to return the return code without displaying the results.

C:\TEMP>%ADSH_OSCMD_DIR%\cmp -s abc.txt abcd.txt

• Specify the optional skip arguments to set the starting bytes for comparison to 3 for each file. In the first example,
the skip arguments are omitted. In the second example, they are set to 3.

C:\TEMP>%ADSH_OSCMD_DIR%\cmp abc.txt abcd.txt
abc.txt abcd.txt differ: char 49, line 7

C:\TEMP>%ADSH_OSCMD_DIR%\cmp abc.txt abcd.txt 3 3
abc.txt abcd.txt differ: char 46, line 7

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\cmp -w
cmp: illegal option -- w
usage: cmp [-l | -s] file1 file2 [skip1 [skip2]]

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 618

• Display an error message if the file does not exist:

C:\TEMP>%ADSH_OSCMD_DIR%\cmp file99 file123
cmp: file99: No such file or directory

cp command (copies a file or directories)

Format

cp [-f|-i] [-p] [-R|-r [-H|-L|-P]] copy-source-file-name copy-target-file-
name
cp [-f|-i] [-p] [-R|-r [-H|-L|-P]] copy-source ... copy-target-directory-
name

Description
The command copies files or directories.

Arguments

-f
Specifies that no warning is to be issued if the target file will be overwritten. When the -f and -i options are both
specified, the one specified last takes effect.

-i
Specifies that if the target file will be overwritten, a warning is to be issued asking the user to confirm the copy
processing. Copying will be performed if the response from the standard input begins with the letter y or Y. If the
response begins with any other character, or if the standard input is not available, processing is interrupted and the
command terminates with a return code of 0.
When the -f and -i options are both specified, the one specified last takes effect.

-p
Specifies that the attributes of the copy source file are to be kept intact (preserved).
In Windows, the most recent modification date and time and the most recent access date and time of the source file
are preserved, but directory information is not preserved.
In UNIX, the owner, group, access permissions, last modification date and time, and last access date and time of
each source file are preserved.

-R|-r
Specifies that directories are to be copied recursively.

-H
In UNIX, when the -R or -r option is specified, specifies that symbolic links on the command line are to be followed.
Symbolic links encountered while traversing the tree are not followed.
This option is ignored if neither the -R nor the -r option is specified. If more than one of the -H, -L, and -P options
is specified, the one specified last takes effect.
In Windows, this option is ignored.

-L
In UNIX, when the -R or -r option is specified, specifies that all symbolic links that are encountered are to be
followed.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 619

This option is ignored if neither the -R nor the -r option is specified. If more than one of the -H, -L, and -P options
is specified, the one specified last takes effect.
In Windows, this option is ignored.

-P
In UNIX, when the -R or -r option is specified, specifies that symbolic links are not to be followed.
This option is ignored if neither the -R nor the -r option is specified. If more than one of the -H, -L, and -P options
is specified, the one specified last takes effect.
In Windows, this option is ignored.

copy-source-file-name
Specifies the name of the file to be copied.

copy-target-file-name
Specifies the name of the target file into which the source file's contents are to be copied.

copy-source
Specifies a file or directory to be copied.

copy-target-directory-name
Specifies the directory into which the copy source's contents are to be copied.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• In Windows, a target file is created with the file name specified for the copy source. However, uppercase letters in

file names are converted to lowercase when copied. For example, if the name of the target file is A.txt and you
execute cp a.txt tmpdir, the name of the file in tmpdir will be a.txt.

• In Windows, file input/output is performed in the binary mode. No conversion of end-of-line codes is performed.

• In UNIX, when a general user preserves the attributes of the copy source file by specifying the -p option but the
owner of the source file is not the user executing the cp command, the owner, group, and access permission
information (setuid bit, setgid bit, and sticky bit) of the source file will not be preserved.

Usage examples
• Specify the -i option to ask the user for confirmation before overwriting the target file.

C:\TEMP>%ADSH_OSCMD_DIR%\cp -i file1.txt file2.txt
overwrite file2.txt? y

C:\TEMP>%ADSH_OSCMD_DIR%\cp -i file1.txt file2.txt
overwrite file2.txt? n

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\cp -w
cp: illegal option -- w

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 620

usage: cp [-fip] [-Rr [-H | -L | -P]] source target
 cp [-fip] [-Rr [-H | -L | -P]] source ... directory

• Display an error message if the file does not exist.

C:\TEMP>%ADSH_OSCMD_DIR%\cp file99 file123
cp: file99: No such file or directory

cut command (outputs selected parts of lines to the standard output)

Format

cut -b list [-n] [--output-delimiter=character-string] [path-name ...]
cut -c list [--output-delimiter=character-string] [path-name ...]
cut -f list [-s] [-d delimiter] [--output-delimiter=character-string] [path-
name ...]

Description
This command outputs selected parts of lines to the standard output. For each line in the input files (or, by default, the
standard input), the command selects the portions specified in list and outputs them to the standard output.

Arguments
If the -b, -c, and -f options are all omitted, the command outputs command usage information and terminates.

-b list

--bytes=list
Specifies that what is to be cut and output is defined as a range of byte positions. The byte positions are specified
in list (where a file's first byte is position 1). If multiple byte position ranges are specified, they are concatenated.
If this option is specified together with the --output-delimiter option, the character string specified in the
--output-delimiter option is used to concatenate data.

-c list

--characters=list
Specifies that what is to be cut and output is defined as a range of character positions. The character positions are
specified in list (where a file's first character is position 1). If multiple character position ranges are specified, they
are concatenated.
If this option is specified together with the --output-delimiter option, the character string specified in the
--output-delimiter option is used to concatenate data.

-f list

--fields=list
Specifies that what is to be cut and output is defined as a range of field positions. The field positions are specified
in list (where a file's first field is position 1). If multiple field position ranges are specified, they are concatenated.
The selected fields are output separated by a delimiter. If the delimiter is not found in a line, the entire line is output,
unless the -s option is specified, in which case lines that do not contain the delimiter are not output.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 621

By specifying the --output-delimiter option, you can change the separator that is output together with the
selected fields.

list
Specifies either column positions or field positions as separated by the delimiter. Column positions start from 1.
You can specify multiple selection ranges by separating them with the comma, space, or tab. If you separate them
with the space or tab, each selection range must be enclosed in double quotation marks ("). A selection range can
be specified as n, x-, -y, or x-y, where n, x, and y are either field positions or column positions. No error results if a
nonexistent position is specified.

• n: Specifies a single position that is to be output.

• x-: Specifies that all positions beginning with position x through the end of the file are to be output.

• -y: Specifies that all positions from the beginning of the file through position y are to be output.

• x-y: Specifies that all positions beginning with position x through position y are to be output. In such a case, x
< y. If x > y, an error message (cut: [-bcf] list: illegal list value) is output.

-n
Specifies that multibyte characters are not to be split. If this option is not specified, the -b option results in multibyte
characters being split into separate bytes.

path-name
Specifies the path name of a file that is to be read as the input. If path-name is omitted or a hyphen (-) is specified,
the standard input is read.

-s

--only-delimited
Specifies that lines that do not contain a delimiter are not to be output. If this option is omitted when the -f option
is specified, the command will only display command usage information and terminate.

-d delimiter

--delimiter=delimiter
Specifies the field delimiter to be used (only the initial character of the specified value is used as the delimiter). If
this option is omitted, the field delimiter is set to the tab.
If this option is omitted when the -f option is specified, the command will only display command usage information
and terminate.

--output-delimiter=character-string
When this option is specified together with the -f option, specifies the replacement character string that is to be
used as the separator for the fields that are to be output.
When this option is specified together with the -b or -c option, specifies the replacement character string that is
to be used to concatenate fields.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 622

Notes
• The cut command expects text files. Input from binary files and output of binary data are not guaranteed to work.

Usage examples
These usage examples illustrate the results of executing the cut command on the file test.txt, whose contents are
shown in the following:

123:5678:abcdef:hijkl
field1:field2:field3:filed4
sssssssssssssssssssssss

This file is used as the input file in the following examples, which illustrate the results of executing the cut command.

• Output the first byte and the third through fifth bytes.

$ cut -b 1,3-5 test.txt
13:5
feld
ssss

• Output the first through fourth characters.

$ cut -c -4 test.txt
123:
fiel
ssss

• Output the first and fourth fields.

$ cut -f 1,4 -d : test.txt
123:hijkl
field1:filed4
sssssssssssssssssssssss

• Output the first byte and the third through fifth bytes with character string @:/ added between fields.

$ cut -b 1,3-5 --output-delimiter="@:/" test.txt
1@:/3:5
f@:/eld
s@:/sss

• Display the first and fourth fields and replace the separator with the character string @:/.

$ cut -f 1,4 -d : --output-delimiter="@:/" test.txt
123@:/hijkl
field1@:/field4
sssssssssssssssssssssss

• Output an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\cut -z
cut: illegal option -- z
usage: cut -b list [-n] [--output-delimiter=string] [file ...]

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 623

 cut -c list [--output-delimiter=string] [file ...]
 cut -f list [-s] [-d delim] [--output-delimiter=string] [file ...]

date command (displays the system date and time)

Format

date [-u] [-d date-information-string | -r elapsed-seconds] [+format]

Description
This command displays the system date and time.

Arguments
-u

--utc

--universal
Specifies that the date is to be displayed in UTC (Coordinated Universal Time).

-d date-information-string

--date=date-information-string
Specifies the date and time to be displayed as a date-information string. If more than one information string is
specified, the last string specified takes effect. For the supported date-information strings, see Date-information
strings that can be specified in the -d option.

-r elapsed-seconds
Specifies that the display is to be of the date and time after the amount of time specified by elapsed-seconds had
elapsed since the beginning of the UNIX epoch (UTC January 1, 1970, 00:00:00). The value specified in elapsed-
seconds can range from -1009875600 to 2147440447. The output result cannot be guaranteed if the specified
value is outside this range.

+format
Specifies a display format for the date and time using format specification codes. The format specification codes
for the strftime function (OS's API) can be used. For details about the supported format specification codes, see
Supported format specification codes, below.
If this argument is not specified, the display format for the date and time will be %Y/%m/%d %A %H:%M:%S %Z.

Supported format specification codes
In the argument that begins with a plus sign (+), you can specify the format specification codes for the strftime
function (OS's API). These format specification codes vary according to the OS. For the format specification codes
supported by your OS, see the information about the strftime function in the OS documentation.

The following table lists and describes the typical format specification codes that are supported by all OSs:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 624

Format specification
code

Meaning

%a Abbreviation for the day of the week

%A Full name for the day of the week

%b Abbreviation for the month

%B Full name for the month

%c Date and time display based on the locale

%d Day of the month as a decimal number (01 to 31)

%H Time in the 24-hour clock (00 to 23)

%I Time in the 12-hour clock (01 to 12)

%j Number of days since the beginning of the year as a decimal number (001 to 366)

%m Month as a decimal number (01 to 12)

%M Minute as a decimal number (00 to 59)

%p AM or PM based on the current locale

%S Second as a decimal number. The range of values displayed varies according to the OS depending on support
for leap seconds.

%U Week as a decimal number (00 to 53). The first Sunday of the year begins the weeks.

%w Day of the week as a decimal number (0 to 6, where 0 indicates Sunday)

%W Week as a decimal number (00 to 53). The first Monday of the year begins the weeks.

%x Date based on the current locale

%X Time based on the current locale

%y Last two digits of the year as a decimal number (00 to 99)

%Y Year as four decimal digits

%Z Time zone name. If the time zone is unknown, this information is not displayed.

%% Percent symbol (%)

Date-information strings that can be specified in the -d option
Specify as explained below the date-information string that you want the date command to display:

• Specifying an absolute date only
The specified date and time are displayed.

• Specifying a relative date only
The date and time shifted from the current date and time are displayed.

• Specifying an absolute date combined with a relative date
The date and time obtained by shifting the date and time specified as an absolute date by the date and time specified
as a relative date are displayed.

The elements of the date-information string can be specified as uppercase or lowercase letters. If a specified value is
earlier than 1970-01-01 00:00:00 or later than 2038-01-19 03:14:07 in UTC, the command issues the error message
date: Invalid date: specified-value and then terminates with an error. In AIX, if a specified value is later than

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 625

2038-01-19 03:14:07 in the local time zone, the command issues error message date: Invalid date: specified-
value and then terminates with an error. If the null character is specified as the date-information string, the command
displays 00:00:00 on the current date.

The following explains the permitted elements of a date-information string and the syntax.

• Specifying absolute dates
The following table lists and describes the elements of a date-information string that specifies an absolute date.

Table 8‒6: Elements of date-information strings (specifying an absolute date)

Type Specifiable
element#

Details

Year Four-digit
calendar year in
decimal (YYYY)

Permitted values are from 1970 to 2038.

Last two digits of
the calendar year
in decimal (YY)

Permitted values are from 00 to 99.
For 69 to 99, 1969 to 1999 are assumed; for 00 to 68, 2000 to 2068 are assumed.

Month Name of month
(MONTH)

The following values can be specified:
• January or Jan
• February or Feb
• March or Mar
• April or Apr
• May
• June or Jun
• July or Jul
• August or Aug
• September, Sept, or Sep
• October or Oct
• November or Nov
• December or Dec

Month in decimal
(MM)

Permitted values are from 01 to 12.

Day Day of the month
in decimal (DD)

Permitted values are from 01 to 31.

Hour Time in 24-hour
representation
(hh)

Permitted values are from 00 to 23.

Time in 12-hour
representation
(hh)

Permitted values are from 01 to 12.

Minute Minute in decimal
(mm)

Permitted values are from 00 to 59.

Second Second in decimal
(ss)

Permitted values are from 00 to 59.

am/pm am and pm (am |
a.m. | pm |
p.m.)

The following values can be specified after the time:
• am or a.m.
• pm or p.m.

Time zone Time zone name
(ST)

The following values can be specified:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 626

Type Specifiable
element#

Details

Time zone Time zone name
(ST)

• UTC or UT: Coordinated Universal Time
• GMT: Greenwich Mean Time (UTC + 0 hours)
• WET: Western European Time (UTC + 0 hours)
• AST: Atlantic Standard Time (UTC - 4 hours)
• EST: Eastern Standard Time (UTC - 5 hours)
• CST: Central Standard Time (UTC - 6 hours)
• MST: Mountain Standard Time (UTC - 7 hours)
• PST: Pacific Standard Time (UTC - 8 hours)
• HST: Hawaii Standard Time (UTC - 10 hours)
• WAT: West Africa Time (UTC + 1 hours)
• CET: Central European Time (UTC + 1 hours)
• MET: Middle European Time (UTC + 1 hours)
• CAT: Central Africa Time (UTC + 2 hours)
• EET: Eastern European Time (UTC + 2 hours)
• JST: Japan Standard Time (UTC + 9 hours)
• GST: Guam Standard Time (UTC + 10 hours)
• NZST: New Zealand Standard Time (UTC + 12 hours)

Military time zone
(ST)

The following values can be specified:
• A: UTC - 1 hour
• B: UTC - 2 hours
• C: UTC - 3 hours
• D: UTC - 4 hours
• E: UTC - 5 hours
• F: UTC - 6 hours
• G: UTC - 7 hours
• H: UTC - 8 hours
• I: UTC - 9 hours
• K: UTC - 10 hours
• L: UTC - 11 hours
• M: UTC - 12 hours
• N: UTC + 1 hour
• O: UTC + 2 hours
• P: UTC + 3 hours
• Q: UTC + 4 hours
• R: UTC + 5 hours
• S: UTC + 6 hours
• T: UTC + 7 hours
• U: UTC + 8 hours
• V: UTC + 9 hours
• W: UTC + 10 hours
• X: UTC + 11 hours
• Y: UTC + 12 hours
• Z: UTC

Specification of
time from UTC
(+hhmm | -
hhmm | +hh:mm
| -hh:mm)

The time from UTC can be specified in the format +hhmm, -hhmm, +hh:mm, or -hh:mm (mm
and :mm can be omitted).

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 627

Type Specifiable
element#

Details

Time zone
(summer time)

Time zone
(summer time)
(DT)

The following values can be specified:
• BST: British Summer Time (GMT + 1 hours)
• ADT: Atlantic Daylight Time (AST + 1 hours)
• EDT: Eastern Daylight Time (EST + 1 hours)
• CDT: Central Daylight Time (CST + 1 hours)
• MDT: Mountain Daylight Time (MST + 1 hours)
• PDT: Pacific Daylight Time (PST + 1 hours)
• MEST: Middle European Summer Time (MET + 1 hours)
• NZDT: New Zealand Daylight Time (NZST + 1 hours)

Daylight saving
time

Daylight saving
time (DST)

You can specify DST for daylight saving time. When DST is specified together with a time zone,
the specified time zone's standard time is advanced by one hour regardless of the specified date,
time, and time zone. DST cannot be specified alone without a time zone specification.

#
Letters in parentheses, such as YY and MONTH, correspond to the syntax explained in the table below.

The following table explains the syntax for date-information strings when an absolute date is specified.

Table 8‒7: Syntax for date-information strings (when specifying an absolute date)

Type# Syntax Details

Date specification [YY]YYMMDD Define year, month, and day in this order without spaces. The first two digits
of the year can be omitted.

[YYYY/]MM/DD Define year, month, and day in this order separated by /. If the year is omitted,
the current year is assumed.

MM/DD[/[YY]YY] Define month, day, and year in this order separated by /. If the year is omitted,
the current year is assumed. The first two digits of the year can be omitted.

[YY]YY-MM-DD Define year, month, and day in this order separated by -. The first two digits
of the year can be omitted.

DD MONTH [[YY]YY] Define day, the formal name for month (or abbreviation for month), and year
in this order separated by the space. If the year is omitted, the current year is
assumed. The first two digits of the year can be omitted.

MONTH DD [,[YY]YY] Define the formal name for month (or abbreviation for month), day, and year
in this order. Separate the formal name for month (or abbreviation for month)
and day with the space and separate day and year with the comma (,). If the
year is omitted, the current year is assumed. The first two digits of the year
can be omitted.

DD[-]MONTH[[-][YY]YY] Define day, the formal name for month (or abbreviation for month), and year
in this order without any spaces or separator or with the - as the separator. If
the year is omitted, the current year is assumed. The first two digits of the
year can be omitted.

MONTH-DD-[YY]YY Define the formal name for month (or abbreviation for month), day, and year
in this order separated by -. The first two digits of the year can be omitted.

MONTH DD [[YY]YY] Define the formal name for month (or abbreviation for month), day, and year
in this order separated by the space. If the year is omitted, the current year is
assumed. The first two digits of the year can be omitted.

Time
specification

hh[mm]
hh [am | a.m. | pm | p.m.]

Define the hour and minute in this order without any spaces.
The value for minute can be omitted.
If only a value for hour is defined, am (a.m.) or pm (p.m.) can be specified
following a space.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 628

Type# Syntax Details

Time
specification

hh[mm]
hh [am | a.m. | pm | p.m.]

If you are specifying am (a.m.) or pm (p.m.), use the 12-hour representation
for the time.

hh:mm[:ss] [am | a.m. | pm |
p.m.]

Define hour, minute, and second in this order separated by colons (:).
The value for second can be omitted.
You can specify am (a.m.) or pm (p.m.) following the definition of hour,
minute, and second and a space.
If you are specifying am (a.m.) or pm (p.m.), make sure that the definition
of hour, minute, and second does not exceed 12:59:59.

hh:mm[:ss] [+hh[mm] | -hh[mm]
| +hh[:mm] | -hh[:mm]]

Define hour, minute, and second in this order separated colons (:).
The value for second can be omitted.
You can specify +hhmm, -hhmm, +hh:mm, or -hh:mm following the
definition of the hour, minute, and second and a space.

Time zone ST [DST]
ST [+hh[mm] | -hh[mm] |
+hh[:mm] | -hh[:mm]]

Specify a time zone. You can specify DST, +hhmm, -hhmm, +hh:mm, or -
hh:mm following the time zone and a space.

DT Define a time zone (summer time). The time zone (summer time) cannot be
specified together with DST, +hhmm, -hhmm, +hh:mm, or -hh:mm.

#
The same type cannot be defined multiple times, but different types can be combined.
If only a date is specified, 00:00:00 is assumed for the time.
If only hour (hh) is specified, minute (mm) and second (ss) are set to 0 on the current date.
If only hour (hh) and minute (mm) are specified, second (ss) is set to 0 on the current date.

• Specifying relative dates
The following table lists and describes the elements of a date-information string that specifies a relative date.

Table 8‒8: Elements of date-information strings (specifying a relative date)

Specifiable element# Details

Number of years and months to
be shifted (DATE)

Specify the following values:
• year or years: Number of years to be shifted
• month or months: Number of months to be shifted

You can specify a numeric value (NUM) before this value. If the numeric value (NUM) is omitted, 1 is
assumed.

Number of days to be shifted
(DATE)

Specify the following values:
• fortnight or fortnights: Shift by two weeks (14 days)
• week or weeks: Shift by one week (7 days)
• day or days: Shift by day(s)
• tomorrow: Tomorrow (one day later)
• yesterday: Yesterday (one day ago)
• today: Today (0 day)
• now: Now (0 day)

You can specify a numeric value (NUM) before this value. If the numeric value (NUM) is omitted, 1 is
assumed.

Number of hours and minutes to
be shifted (DATE)

Specify the following values:
• hour or hours: Number of hours to be shifted
• minute, min, or minutes: Number of minutes to be shifted

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 629

Specifiable element# Details

Number of hours and minutes to
be shifted (DATE)

You can specify a numeric value (NUM) before this value. If the numeric value (NUM) is omitted, 1 is
assumed.

Number of seconds to be shifted
(DATE)

Specify the following value:
• second, sec, or seconds: Number of seconds to be shifted

You can specify a numeric value (NUM) before this value. If the numeric value (NUM) is omitted, 1 is
assumed.

Number of days of week to be
shifted (DAY)

Specify the following values:
• Monday or Mon
• Tuesday, Tue, or Tues
• Wednesday, Wed, or Wednes
• Thursday, Thu, Thur, or Thurs
• Friday or Fri
• Saturday or Sat
• Sunday or Sun

You can specify a numeric value (NUM) before this value to specify the NUM-th day of the week. If the
numeric value (NUM) is omitted, 1 is assumed. If neither 1 nor a numeric value (NUM) is specified, the
next day of the week is assumed. Neither signs (+|-) nor the before and after specification (ago) can be
specified.

Numeric value specification
(character string) (NUM)

Specify the following values:
• last: -1
• this: 0
• next: 1
• first: 1
• third: 3
• fourth: 4
• fifth: 5
• sixth: 6
• seventh: 7
• eighth: 8
• ninth: 9
• tenth: 10
• eleventh: 11
• twelfth: 12

A numeric value (NUM) cannot be specified before this value.

Numeric value specification
(number) (NUM)

Permitted values are from 0 to 2147483647.

Sign (+|-) You can specify the following values before the numeric value (NUM):
• +: Positive
• -: Negative

If the sign is not followed by a numeric value, the sign is ignored.

Before and after specification
(ago)

Specify the following value:
• ago: Ago -

The positive or negative sign for the date-information string specified immediately before ago is reversed
(positive becomes negative and negative becomes positive).

#
Letters in parentheses, such as NUM and DATE, correspond to the syntax explained in the table below.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 630

The table below explains the syntax for date-information strings when a relative date is specified. Shift in date and
time can be combined with shift in day of week.

Table 8‒9: Syntax for date-information strings (when specifying a relative date)

Type Syntax Details

Shift in date and
time

[[+ | -]NUM] DATE [ago] Specify the amount of time to be shifted from the current date and time or the
date and time specified as a date-information string.
Multiple elements can be specified by separating them with the space.
For the elements that can be combined, see Table 8-8 Elements of date-
information strings (specifying a relative date).

Shift in day of
week

[NUM] DAY
DAY[,]

Specify a day of the week. Only one value can be specified.
A day of the week immediately preceded by a numeric value (NUM) defines
the NUM-th day of the week. If the numeric value (NUM) is omitted, the next
day of the week is assumed.
The specified day of the week can be followed by a comma (,) or a space,
and then by another definition of shift in date and time.

• Other specification
The following table describes other elements of date-information strings.

Table 8‒10: Elements of date-information strings (other)

Specifiable element Details

Comment Specify any character string as a comment by enclosing it in parentheses (()) within a date-information string.
If () is nesting within another (), the character string specified in the inner () is ignored.
If only a left parenthesis (() is specified, all characters following the left parenthesis are ignored.

The specified absolute and relative date and time values are obtained in the order shown below. In steps 2 through 4, if
the value converted to seconds is outside the range from 0 to 2147483647, an error might result regardless of the
final results.

1. Obtains the current date and time or the date and time specified as an absolute date.

2. Adds the shift in day of week specified as a relative date to the value obtained in step 1. If date specification is
specified as an absolute date, the number of days of week to be shifted (DAY) is not added, if specified.

3. Adds or subtracts all results obtained based on the specified number of years and months to be shifted (DATE) as a
relative date to or from the value obtained in step 2.

4. Adds or subtracts all results obtained based on the specified number of days to be shifted (DATE), number of hours
and minutes to be shifted (DATE), and number of seconds to be shifted (DATE) specified as a relative date to or from
the value obtained in step 3.

Steps 2 through 4 obtain the amount to be shifted from the date and time subject to calculation.

For example, if the current date and time is 2014-04-30 at 10:10:10 and date -d "Fri, 1 year 1 month 1 day 1
hour 1 min 1 sec" is specified, the following calculation occurs:

1. Obtain the current date and time.
 The result is 2014-04-30 (Wednesday) at 10:10:10.

2. Add the number of days from 2014-04-30 (Wednesday) to the next Friday.
 The result is 2014-05-02 (Friday) at 10:10:10.

3. Add 365 days and the number of days in May 2014.
 The result is 2015-06-02 (Monday) at 10:10:10.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 631

4. Add one day, one hour, one minute, and one second.
 The result is 2015-06-03 (Tuesday) at 11:11:11.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If a format code specified in +format is outside the range of valid format codes of the strftime function, the

specified value is output as is.

• In Windows, if you specify a mixture of valid and invalid format codes, the specified values are output as is, without
any format code conversion.

• In UNIX, valid format codes are converted while the specified values are output as is for invalid format codes.

• In Windows, if you specify the TZ environment variable, you must ensure that the value of the TZ environment
variable matches the time zone set in the Date and Time control panel. If their values do not match, the correct date
and time might not be displayed.

• An unsupported argument that is specified in the command line is ignored.

• If either of the following environment variables is specified, any option following an argument that begins with a
plus sign (+) is ignored:

• POSIXLY_CORRECT environment variable

• ADSH_CMD_ARGORDER=seq environment variable

Usage examples
• Display the default with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\date
2011/05/09 Monday 02:03:05 JST

• Specify the -u option to display the date and time in UTC (Coordinated Universal Time).

C:\TEMP>%ADSH_OSCMD_DIR%\date -u
2011/05/08 Sunday 17:03:11 UTC

• Specify the -r option to display the date and time after a specified number of seconds had elapsed from the beginning
of the UNIX epoch.

C:\TEMP>%ADSH_OSCMD_DIR%\date -r 1234567890
2009/02/14 Saturday 08:31:30 JST

• Specify a display format for the date and time in the +operand argument.

C:\TEMP>%ADSH_OSCMD_DIR%\date "+%Y-%m-%d %H.%M.%S"
2011-05-09 02.10.02

• Display the date of December 12 this year.

C:\TEMP>%ADSH_OSCMD_DIR%\date -d "12/12"
2011/12/12 Sunday 00:00:00 JST

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 632

• Display the date that is three months and one day from the current date.

C:\TEMP>%ADSH_OSCMD_DIR%\date -d "3 months 1 day"
2011/08/10 Wednesday 00:00:00 JST

• Display the date that was two days ago.

C:\TEMP>%ADSH_OSCMD_DIR%\date -d "2 days ago"
2011/05/07 Saturday 00:00:00 JST

• Display the date that falls 100 days after 2011-05-01. This example uses the --date option to specify a date-
information string.

C:\TEMP>%ADSH_OSCMD_DIR%\date --date="1-May-2011 100 days"
2011/08/09 Tuesday 00:00:00 JST

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\date -a
date: illegal option -- a
usage: date [-u] [-d string | -r seconds] [+format]

diff command (compares two files)

Format

diff[-a][-b][-i][-s][-w]
 [-cnum-lines|-C num-lines|-q|-unum-lines|-U num-lines|
 -y[-W output-width] [--suppress-common-lines]]
 [-L label]
 path-name-1 path-name-2
diff[-a][-b][-i][-r][-s][-w]
 [-cnum-lines|-C num-lines|-q|-unum-lines|-U num-lines|
 -y[-W output-width] [--suppress-common-lines]]
 [-L label]
 directory-name-1 directory-name-2

Description
This command compares two files.

Arguments
-a

--text
Specifies that the files are to be handled as text files.

-b

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 633

--ignore-space-change
Specifies that multiple consecutive spaces or tabs in a line are to be compressed and handled as a single space or
tab. The -b and -w options cannot both be specified at the same time.

-i

--ignore-case
Specifies that differences in case are not to be considered (uppercase alphabetic letters are not to be distinguished
from lowercase alphabetic letters).

-s

--report-identical-files
Specifies that a message (Files path-name-1 and path-name-2 are identical) is to be output if the
contents of the files are identical.

-w

--ignore-all-space
Specifies that all spaces and tabs in a line are to be ignored. The -w and -b options cannot both be specified at the
same time.

-cnum-lines

-C num-lines

--context[=num-lines]
Specifies that the path names being compared are to be output to the standard output with additions, deletions, and
changes to lines indicated by the symbols +, -, and !, respectively.
The number of lines specified in num-lines are to be output for context before and after each difference. If num-lines
is not specified in the -c and --context options, the default is 3 lines.
Note that when num-lines is specified in the -c option, there must not be any spaces between -c and num-lines.

-q

--brief
Specifies that if there are differences between the files, only the message Files path-name-1 and path-name-2
differ is to be output.

-unum-lines

-U num-lines

--unified[=num-lines]
Specifies that the path names being compared are to be output to the standard output with additions and deletions
indicated by the symbols + and -, respectively. The old and new text are output together as a single section.
The number of lines specified in num-lines are to be output for context before and after each difference. If num-lines
is not specified in the -u and --unified options, the default is 3 lines.
Note that when num-lines is specified in the -c option, there must not be any spaces between -u and num-lines.

-L label

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 634

--label=label
When the -c, -u, -C, or -U option is specified, specifies that labels are to be output in place of the path names. If
one label is specified, it is output in place of path-name-1. If two labels are specified, they are output in place of
path-name-1 and path-name-2, respectively, in the order they are specified.

-y

--side-by-side
Specifies that the symbols >, <, |, \, and / are to be used to indicate the difference information.
The >, <, |, \, and / symbols are output only for lines in which there is a difference in terms of line addition,
deletion, or change or whether an end-of-line code is used; no symbol is output for lines in which there are no
differences. The path-name-1 and path-name-2 lines are combined on one line and output side by side.
If the length of one combined line exceeds 130 columns, the lengths of the path-name-1 and path-name-2 lines are
adjusted before the lines are output.
This option can be combined with the following options to change the output:

• -W option

• --suppress-common-lines option

-W output-width

--width=output-width
Specifies a change in the output width (number of columns) to be output per line. This option take effect when it is
specified together with the -y option.

--suppress-common-lines
Specifies that lines that have no differences are not to be output. This option takes effect when it is specified together
with the -y option.

path-name-1
Specifies the path name of the comparison source file.
Specify - to read the contents to be compared from the standard input. A temporary file will be created to store input
from the standard input. The temporary file is output to the following directory:

• UNIX
Directory specified in the TMPDIR environment variable, or /var/tmp if no value has been set for TMPDIR.

• Windows
common-application-data-folder\HITACHI\JP1AS\misc

path-name-2
Specifies the path name of the comparison target file.
Specify - to read the contents to be compared from the standard input. A temporary file will be created to store input
from the standard input. The temporary file is output to the following directory:

• UNIX
Directory specified in the TMPDIR environment variable, or /var/tmp if no value has been set for TMPDIR.

• Windows
common-application-data-folder\HITACHI\JP1AS\misc

-r

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 635

--recursive
If directories are being compared, specifies that subdirectories are to be traversed recursively.

directory-name-1
Specifies a directory as the comparison source. If you specify a file path name for either directory-name-1 or
directory-name-2, the command searches for a file with the same name in the other directory. If no file with the
same name is found, an error message (diff: path-name-to-compare: No such file or directory) is
output.

directory-name-2
Specifies a directory as the comparison target. If you specify a file path name for either directory-name-1 or directory-
name-2, the command searches for a file with the same name in the other directory. If no file with the same name
is found, an error message (diff: path-name-to-compare: No such file or directory) is output.

Display formats
The diff command provides the three display formats shown below for displaying the differences between files. The
output format that is used depends on the specification of options.

Format Meaning

Traditional display format This output format is used when none of the -c, -C, -q, -u, -U and -y options is specified.
This format displays the differences between the two files, as well as the start and end positions of the
differences. In between the start and end positions, it displays the following symbols, which represent the
differences:
• a: Added
• d: Deleted
• c: Changed

If a difference extends across multiple lines, the numbers of the start and end lines are shown separated by the
comma (,).
A difference from path-name-1 and a difference from path-name-2 are displayed in this order separated from
each other by ---. < at the beginning of a line indicates a deletion or change from the first input file, while
> indicates an addition or change from the second input file. One space is output after < and >.

Context format This output format is used when the -c or -C option is specified. In addition to displaying the differences
between the two files, it also displays unchanged lines before and after each difference. You can specify the
number of such context lines to be displayed. The default is three lines.
Headers display the following information about the two files:
• Boundaries between change blocks: a row of 15 asterisks (*)
• The starting and ending positions of the differences between the two files, followed by the differences

themselves

The differences are expressed as follows:
• Line starting with +: Added line
• Line starting with -: Deleted line
• Line starting with !: Changed line

A single space is output after +, -, and !. Two spaces are output at the beginning of a line on which there are
no differences.
Adjacent changed lines are treated as a single change block. However, when there is a gap between changed
lines, another 15 asterisks are displayed and then the differences are displayed.

Unified format This output format is used when the -u or -U option is specified. It displays the context format output as a
single section. You can specify the number of lines of context to be displayed. The default is three lines.
Headers display the following information for the two files:
• Lines that start with @@: The starting and ending positions of the differences between the two files, followed

by the differences themselves

The differences are displayed as follows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 636

Format Meaning

Unified format • Line starting with +: Added line
• Line starting with -: Deleted line

No space is output after + or -, unlike in the context format. One space is output at the beginning of an
unchanged line.
Only added and deleted lines represent differences.
Adjacent changed lines are treated as a single change block. However, when there is a gap between changed
lines, @@ are again used to identify lines that constitute the starting and ending positions of the differences
between the two files, followed by the differences themselves.

Side-by-side format This output format is used when the -y option is specified. The path-name-1 and path-name-2 lines are
combined on one line and output side by side. By default, all lines are output regardless of whether there are
any differences on lines. If the length of one combined line exceeds 130 columns, the lengths of the path-
name-1 and path-name-2 lines are adjusted so that they can be displayed side by side within 130 columns.
The following symbols are displayed before the lines to indicate the difference:
• >: Line was added
• <: Line was deleted
• |: Line was changed
• \ (escape character): path-name-1 line contains no end-of-line code
• /: path-name-2 line contains no end-of-line code

By combining the -y option with the -W and --suppress-common-lines options, you can change the
output width per line and suppress output of lines that have no difference.

Traditional display format example
The following example illustrates the traditional display format.

Output example

C:\USR\JP1\oscmd\bin>diff file1 file2
1c1,2 <--1.
< aaaaaaaaaaa <--2.
--- <--3.
> aaAAAAAaaaa <--4.
> bbBBBBBbbbb <--4.

Explanation

1. This shows the position of a difference between file1 and file2. To represent the difference between file1
and file 2, the symbol a means added, d means deleted, and c means changed. The line number from file1
is displayed before the symbol, and the line number from file2 is displayed after it. If there are differences that
span multiple lines, the start line and end line numbers are separated by the comma (,).

2. This shows the difference line in file1.

3. This shows the boundary between the difference lines in file1 and file2.

4. This shows the difference lines in file2.

Context format example

Output example

C:\USR\JP1\oscmd\bin>diff -c file1 file2
*** file1 Thu May 12 20:17:54 2011 <--1.
--- file2 Thu May 12 20:18:29 2011 <--2.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 637

*************** <--3.
*** 1,5 **** <--4.
 aaaaaaaaaaa <--5.
! bbbbbbbb <--5.
 cccccccccccc <--5.
- dddddddddddd <--5.
 eeeeeeeee <--5.
--- 1,5 ---- <--6.
 aaaaaaaaaaa <--7.
! bbbBBBbb <--7.
 cccccccccccc <--7.
 eeeeeeeee <--7.
+ ffffffffffffffffff <--7.

Explanation

1. This shows the file name and most recent modification date and time as the information about file1.

2. This shows the file name and most recent modification date and time as the information about file2.

3. This shows a row of 15 asterisks (*), which represents the border between change blocks. Whenever changed lines
are separated by three or more lines, this border is displayed again, and then the next change block showing
differences between file1 and file2 is output.

4. This shows the start and end positions of the file1 differences, separated by the comma (,).

5. This shows the file1 differences. + means added, - means deleted, and ! means changed.

6. This shows the start and end positions of the file2 differences, separated by the comma (,).

7. This shows the file2 differences. + means added, - means deleted, and ! means changed.

Unified format example

Output example

C:\USR\JP1\oscmd\bin>diff -u file1 file2
--- file1 Thu May 12 20:17:54 2011 <--1.
+++ file2 Thu May 12 20:18:29 2011 <--2.
@@ -1,5 +1,5 @@ <--3.
 aaaaaaaaaaa <--4.
-bbbbbbbb <--4.
+bbbBBBbb <--4.
 cccccccccccc <--4.
-dddddddddddd <--4.
 eeeeeeeee <--4.
+ffffffffffffffffff <--4.

Explanation

1. This shows the file name and most recent modification date and time as the information about file1.

2. This shows the file name and most recent modification date and time as the information about file2.

3. This shows the start and end positions of the file1 changes, separated by the comma (,), a space, and then the
start and end positions of the file2 changes, separated by the comma (,). The start and end positions of the file1
changes are prefixed with a -, and the start and end positions of the file2 changes are prefixed with a +.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 638

4. This displays as a single section the differences between file1 and file2. + indicates a line that was added in
file2 from file1, and - indicates a line that was deleted in file2 from file1. Deleted lines and added lines
constitute the changed portions.

Side-by-side format example

Output example

C:\USR\JP1\oscmd\bin>diff -y file1 file2
a a <--1.
b | b1 <--1.
c c <--1.
d < <--1.
e e <--1.
 > f <--1.
g \ g <--1.

Explanation

1. Each line of file1 and file2 is combined into one line and then output side by side.
> indicates a line that is not in file1 but was added in file2.
< indicates a line that is in file1 but was deleted from file2.
| indicates a line in file1 that has been changed in file2.
\ indicates a line in file1 that has no end-of-line code.
A line with no symbol has no differences.

Return codes

Return code Meaning

0 The files are identical.

1 The files are different.

2 or greater Error termination

Notes
• If more than one of the -c, -C, -q, -u, -U, and -y options is specified, the one specified last takes effect.

• A file is considered to be binary if the first 8,192 bytes of the file includes any characters other than printable single-
byte characters, spaces, tabs, backspaces, and multibyte characters.

• Files whose character encoding differs from the local character encoding are considered to be binary files.

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of end-of-line codes is performed.

• If - was specified for a path name and you interrupt execution of the diff command while the standard input is
being read from the terminal or while comparison processing is underway, a temporary file with the name shown
below might remain. Delete such a temporary file manually.

In Windows:
diff.XXXXXX (XXXXXX: any character string consisting of six characters)

In UNIX:
diffppppp.XXXXXXXX (ppppp: process ID consisting of five or more digits; XXXXXXXX: any character string
consisting of eight characters)

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 639

Usage examples
These usage examples illustrate the results of executing the diff command on files whose contents are shown below.

 represents a space and represents a tab character.

• abc.txt
aaaaaaaaaaa

bbbbbbbb

cccccccccccccccc

dddddddddddd
eeeeeeeeeeee

• abcd.txt
aaAAAAAaaaa

bbBBBbbb

cccccccccccccccc

dddddddddddd
eeeeeeeeeeee

• wxy.txt
aaaaaaaaaaa

bbbbbbbb
xxxxxxxxxxxxxx

cccccccccccccccc
dddddddddddd
eeeeeeeeeeee
fffffffffffffff
ggggggggg

• wxyz.txt
aaaaaaaaaaa

bbbBBBbb
xxxxxxxxxxxxxx

cccccccccccccccc
dddddddddddd
fffffffffffffff

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 640

ggggggggg
hhhhhhhhhhhhhhhhhh

The following examples illustrate the results of executing the command on the files shown above.

• Display the default with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\diff abc.txt abcd.txt
1c1
< aaaaaaaaaaa

> aaAAAAAaaaa
3c3
< bbbbbbbb

> bbBBBbbb
7,10c7,10
<
<
<
<

>
>
>
>
12c12
< eeeeeeeeeeee

> eeeeeeeeeeee

• Specify the -b option to ignore differences in the number of spaces or tabs.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -b abc.txt abcd.txt
1c1
< aaaaaaaaaaa

> aaAAAAAaaaa
3c3
< bbbbbbbb

> bbBBBbbb
12c12
< eeeeeeeeeeee

> eeeeeeeeeeee

• Specify the -i option to compare without distinguishing between uppercase and lowercase letters.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -i abc.txt abcd.txt
7,10c7,10
<
<
<
<

>
>

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 641

>
>
12c12
< eeeeeeeeeeee

> eeeeeeeeeeee

• Specify the -s option to report when the contents of the files are the same.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -s abc.txt abc.txt
Files abc.txt and abc.txt are identical

• Specify the -w option to ignore all spaces and tabs in a line.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -w abc.txt abcd.txt
1c1
< aaaaaaaaaaa

> aaAAAAAaaaa
3c3
< bbbbbbbb

> bbBBBbbb

• Specify the -q option to only report whether the files are different, without displaying the differences.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -q abc.txt abcd.txt
Files abc.txt and abcd.txt differ

• Specify the -c option to indicate added, deleted, and changed lines with the symbols +, -, and !.
C:\TEMP>%ADSH_OSCMD_DIR%\diff -c ..\dir1\wxy.txt ..\dir1\wxyz.txt
*** wxy.txt Thu May 12 20:17:54 2011
--- wxyz.txt Thu May 12 20:18:29 2011

*** 1,10 ****
 aaaaaaaaaaa

! bbbbbbbb
 xxxxxxxxxxxxxx

 cccccccccccccccc
 dddddddddddd
- eeeeeeeeeeee
 fffffffffffffff
 ggggggggg
--- 1,10 ----
 aaaaaaaaaaa

! bbbBBBbb
 xxxxxxxxxxxxxx

 cccccccccccccccc
 dddddddddddd
 fffffffffffffff
 ggggggggg
+ hhhhhhhhhhhhhhhhhh

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 642

• Specify the -u option to indicate added and deleted lines with the symbols + and -. The differences are displayed
as a single section.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -u ..\dir1\wxy.txt ..\dir1\wxyz.txt
--- wxy.txt Thu May 12 20:17:54 2011
+++ wxyz.txt Thu May 12 20:18:29 2011
@@ -1,10 +1,10 @@
 aaaaaaaaaaa

-bbbbbbbb
+bbbBBBbb
 xxxxxxxxxxxxxx

 cccccccccccccccc
 dddddddddddd
-eeeeeeeeeeee
 fffffffffffffff
 ggggggggg
+hhhhhhhhhhhhhhhhhh

• Specify the -C option to display a single line for context before and after a difference.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -C1 wxy.txt wxyz.txt
*** wxy.txt Thu May 12 20:17:54 2011
--- wxyz.txt Thu May 12 20:18:29 2011

*** 2,4 ****

! bbbbbbbb
 xxxxxxxxxxxxxx
--- 2,4 ----

! bbbBBBbb
 xxxxxxxxxxxxxx

*** 7,10 ****
 dddddddddddd
- eeeeeeeeeeee
 fffffffffffffff
 ggggggggg
--- 7,10 ----
 dddddddddddd
 fffffffffffffff
 ggggggggg
+ hhhhhhhhhhhhhhhhhh

• Specify the -U option to indicate added and deleted lines with the symbols + and -. The differences are displayed
as a single section, with a single line of context before and after a difference.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -U1 wxy.txt wxyz.txt
--- wxy.txt Thu May 12 20:17:54 2011
+++ wxyz.txt Thu May 12 20:18:29 2011
@@ -2,3 +2,3 @@

-bbbbbbbb
+bbbBBBbb
 xxxxxxxxxxxxxx
@@ -7,4 +7,4 @@

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 643

 dddddddddddd
-eeeeeeeeeeee
 fffffffffffffff
 ggggggggg
+hhhhhhhhhhhhhhhhhh

• Specify the -y option and display line additions, deletions, and changes with the >, <, and | symbols.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -y wxy.txt wxyz.txt
aaaaaaaaaaa aaaaaaaaaaa

bbbbbbbb | bbbBBBbb
xxxxxxxxxxxxxx xxxxxxxxxxxxxx

cccccccccccccccc cccccccccccccccc
dddddddddddd dddddddddddd
eeeeeeeeeeee <
fffffffffffffff fffffffffffffff
ggggggggg ggggggggg
 > hhhhhhhhhhhhhhhhhh

• Specify the -y option to display lines in side-by-side format and also specify the --suppress-common-lines
option to suppress output of lines that have no differences.

C:\TEMP>%ADSH_OSCMD_DIR%diff -y --suppress-common-lines wxy.txt wxyz.txt
bbbbbbbb | bbbBBBbb
eeeeeeeeeeee <
 > hhhhhhhhhhhhhhhhhh

• Display the comparison source file name as a label specified with the -L option.

C:\TEMP>%ADSH_OSCMD_DIR%\diff -L name1 -c abc.txt abcd.txt
*** name1
--- abcd.txt Thu May 12 20:36:44 2011

*** 1,12 ****
! aaaaaaaaaaa

! bbbbbbbb

 cccccccccccccccc
!
!
!
!
 dddddddddddd
! eeeeeeeeeeee
--- 1,12 ----
! aaAAAAAaaaa

! bbBBBbbb

 cccccccccccccccc
!
!
!

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 644

!
 dddddddddddd
! eeeeeeeeeeee

• Compare binary files without specifying the -a option.

C:\TEMP>%ADSH_OSCMD_DIR%\diff binaryfile1 binaryfile2
Binary files binaryfile1 and binaryfile2 differ

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\diff -z
diff: illegal option -- z
usage: diff [-abisw] [-c[number] | -C number | -q | -u[number] | -U
number] | -y [-W columns] [--suppress-common-lines]]
 [-L label] file1 file2
 diff [-abirsw] [-c[number] | -C number | -q | -u[number] | -U
number] | -y [-W columns] [--suppress-common-lines]]
 [-L label] dir1 dir2

• Display an error message if a file does not exist.

C:\TEMP>%ADSH_OSCMD_DIR%\diff file99 file123
diff: file99: No such file or directory

dirname command (retrieves character strings for directory path names
from path names)

Format

dirname[character-string]

Description
This command retrieves a directory path name excluding any file name from a character string that satisfies the file path
naming conventions, and then outputs the result to the standard output.

The rules for retrieving directory path names are as follows:

• The command retrieves all elements separated by the directory separator from the specified character string except
for the right-most element and the directory separator that immediately precedes that element. The command
retrieves a directory path name as is even if it contains multiple consecutive separators.
In UNIX, the forward slash (/) is treated as the directory separator. In Windows, both the forward slash (/) and the
backslash (\) are treated as directory separators.

• If the specified character string ends with a directory separator, the command retrieves all elements except that last
directory separator and the right-most element.

• If the specified character string contains no directory separator or no character string is specified, the command
outputs a period (.) meaning the current directory.

• If the specified character string consists of only directory separators, the command retrieves the directory separators.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 645

• In Windows, if the specified character string begins with an alphabetic character that is immediately followed by a
colon (:), that alphabetic character is treated as a drive letter. The colon following the drive letter is also treated as
a separator for elements.

• In Windows, the root directory path is retrieved as described in the following regardless of the above rules:

First character string of the path name Result retrieved by the dirname command

drive-letter:\ drive-letter:\

drive-letter: drive-letter:

\\server-name (UNC name specification) \\

\\? (service function disabling specification) \\

\\. (specification of 10th or subsequent device name) \\

The following table shows examples of dirname values and the retrieval results:

dirname command value Retrieval result

C:\ C:\

C: C:

\\server01\ \\

\\server01 \\

\\?\ \\

\\? \\

\\.\ \\

\\. \\

\\ \\

C:file001.txt C:

C:\file001.txt C:\

Arguments

character-string
Specifies a file path name.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• This command has no options. If an option is specified in the argument, the command assumes that the specified

option is the character string used to retrieve directory path names.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 646

Examples
• Retrieve directory path names from path names:

Example 1:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname E:\dir001\file01.txt
E:\dir001

Example 2:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname /dir001
/

Example 3:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname .\file01.txt
.

Example 4:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname E:\dir001\dir002\
E:\dir001

Example 5:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname E:\
E:\

Example 6:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname \\server01\
\\

Example 7:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname \\server01\com
\\server01

Example 8:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname \\
\\

Example 9:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname "C:\Documents and Settings\User01\My
Documents"
C:\Documents and Settings\User01

Example 10:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname C:file01.txt
C:

Example 11:

C:\TEMP>%ADSH_OSCMD_DIR%\dirname C:\file01.txt
C:\

Example 12:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 647

C:\TEMP>%ADSH_OSCMD_DIR%\dirname file01.txt
.

• Display option error messages:
This message might differ depending on the platform used to execute the command. This example is for Windows:

C:\> dirname /a/b /c/d
usage: dirname [string]

egrep command (searches for characters in files)

Format

egrep[-a][-b][-c][-E][-h][-I][-i][-L][-l][-n]
 [-q][-R][-r][-s][-U][-v][-w][-x]
 [-A number] [-B number] [-C[number]]
 [-e pattern] [-f pattern-file-path-name] [pattern] [path-name ...]

Description
This command searches files for specified patterns. The patterns to be retrieved are assumed to be extended regular
expressions. The behavior of the egrep command is the same as that of the grep command with the -E option
specified.

Arguments

-a
Specifies that all files are to be handled as ASCII text files.

-b
Specifies that the offset in bytes is to be displayed at the beginning of each matching line.

-c
Specifies that only the number of lines selected is to be output to the standard output.

-E
Specifies that the value specified in pattern is to be handled as an extended regular expression (default value).

-h
Specifies that no file name is to be displayed at the beginning of each output line when either of the following
conditions is satisfied:

• The -R or -r option is specified.

• Multiple path names are specified as being subject to search.

-I
Specifies that binary files are to be ignored.

-i
Specifies that uppercase letters are not to be distinguished from lowercase letters (and vice versa).

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 648

-L
Specifies that only the names of files that do not contain a match for the value specified in pattern are to be output
to the standard output. If the -L and -l options are both specified, the one specified last takes effect.

-l
Specifies that only the names of files that contain a match for the value specified in pattern are to be output to the
standard output. If the -L and -l options are both specified, the one specified last takes effect.

-n
Specifies that its relative line number in the file is to be output at the beginning of each output line. This specification
is ignored when any of the -c, -L, -l, and -q options is specified.

-q
Specifies that nothing is to be output to the standard output. The command returns only the return code.

-R|-r
Specifies that directories are to be searched recursively.
If the -L, -l, and -q options are all omitted, the file name is output at the beginning of each output line.

-s
Specifies that unreadable or nonexistent files are to be ignored, and output of error messages related to unreadable
or nonexistent files is to be suppressed.

-U
Specifies that binary files are to be searched but not output.

-v
Specifies that lines that do not contain a match for the value in pattern are to be output.

-w
Specifies that only lines that contain the specified character string as a whole word are to be output.
A word is a character string that consists of alphanumeric characters and the underscore (_). Words must be delimited
by the space, any other non-word character, or the beginning or end of the line.

-x
Specifies that the specified character string is to be compared to each line in the file, and a line is to be output only
if the entire line constitutes an exact match.

-A number
Specifies that as many lines as specified that follow a line matching pattern are to be output.

-B number
Specifies that as many lines as specified that precede a line matching pattern are to be output.

-C[number]
Specifies that as many lines as specified that precede and follow a line matching pattern are to be output. If no value
is specified (number is omitted), two lines preceding and following a line matching pattern are output. This would
be the equivalent of specifying -A 2 -B 2.
If you specify number in the -C option, do not specify any spaces between -C and number.

-e pattern
Used to specify a pattern that begins with a hyphen (-).

-f pattern-file-path-name
Specifies the path name for a file that contains patterns to be searched for. The specified file specifies one line per
pattern. If an empty file is specified (a file in which no patterns are specified), there will be nothing to search for
and no matches will be found.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 649

pattern
Specifies a pattern to be searched for.

path-name ...
Specifies a path name that is to be searched. Multiple path names can be specified. If no path name is specified, the
contents of the standard input are searched. If you specify a directory name, you must also specify the -R or -r
option.
If the -L, -l, and -q options are all omitted, the file name is output at the beginning of each output line.

Return code

Return code Meaning

0 Normal termination.
• A line was found that contains a pattern being searched for.
• Or, if the -v option is specified, a line was found that does not contain the pattern being searched for.

1 Normal termination.
• No lines contain the pattern being searched for.
• Or, if the -v option is specified, all lines contain the pattern being searched for.

2 or greater Error termination

Notes
• In Windows, symbolic links are not output.

• If the first 8,192 bytes of the file consist of data that is other than printable single-byte characters, spaces, tabs,
backspaces, and multibyte characters, the file is considered to be a binary file.

• To execute grep from the command prompt in Windows, you must enclose the pattern in double quotation marks
(").

• Files whose character encoding differs from the local character encoding are considered to be binary files.

• In Windows, input and output are performed in the binary mode for files and for the standard input and the standard
output. No conversion of end-of-line codes is performed.

• To search for any of the metacharacters listed below that are used in regular expressions, specify an escape character
(\) immediately before the metacharacter.
+, ?, |, (,), {, }

Usage examples
These usage examples show searches using extended regular expressions. For examples of the options, see the usage
examples for the grep command.

• Search for lines that contain character string AB or AD by using | that indicates an extended regular expression. The
input file is file01.txt.
Contents of file01.txt:

AA
AB
AC
AD
AB|AD

The results of executing the command are as follows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 650

C:\TEMP>%ADSH_OSCMD_DIR%\egrep "AB|AD" file01.txt
AB
AD
AB|AD

• Search for lines that contain character string AB|AD. Because | is treated as an extended regular expression, specify
an escape character (\) immediately before |. The input file is file01.txt.
Contents of file01.txt:

AA
AB
AC
AD
AB|AD

The results of executing the command are as follows:

C:\TEMP>%ADSH_OSCMD_DIR%\egrep "AB\|AD" file01.txt
AB|AD

expand command (replaces tab characters with spaces)

Format

expand[-tab-stop-list)][-t tab-stop-list][path-name ...]

Description
This command replaces the tab character with spaces in a line in which tab stops are set and then outputs the result to
the standard output. If the tab character is followed by the backspace character, the column width for tabs is reduced in
the output results.

One record delimited by an end-of-line code in the input file is treated as one line. In Windows, [CR]+[LF] or [LF]
is treated as the end-of-line code; in UNIX, [LF] is treated as the end-of-line code. In UNIX, if a record in the input
file is delimited by [CR]+[LF], the output result after conversion will contain [CR].

Arguments

-tab-stop-list
The function of this argument is the same as for -t tab-stop-list.
-tab-stop-list can be specified together with -t tab-stop-list, in which case all the specifications are effective.

-t tab-stop-list

--tabs=tab-stop-list
Specifies a list of the locations for tab stops, each as 1 or a greater integer. If this option is omitted, default tab stop
8 is used, which is the same as when one tab stop location is specified.
The following explains the command processing when one tab stop location is specified in the tab-stop list and when
multiple tab stop locations are specified in the tab-stop list:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 651

When one tab stop location is specified:
The command uses the specified value as the character spacing between equidistant tab stops.
When the tab character contained in one tab stop is replaced with spaces, the numbers of spaces between tab
stops are adjusted to obtain the specified character spacing.

When multiple tab stop locations are specified:
The command uses each specified value as the column location for a tab stop. The column locations begin from
0.
The following explains how to specify multiple tab stop locations.

• Specify multiple tab stop locations in the tab-stop list separating them with the comma or space.
To use the space as the separator, enclose it in double-quotation marks (").
When the tab characters contained in the tab stops are replaced with spaces, the numbers of spaces between
tab stops are adjusted to the specified column locations. If it is necessary to set more tab stops than specified
in the tab-stop list, the tab character is replaced by one space.

• Specify one tab stop location in the tab-stop list and specify the option multiple times.

• Combine both of the above specification methods.

Tab stops are set for each input line from the first value specified. Specify tab stop locations in ascending order
in the entire arguments.

path-name
Specifies the path name of the file in which tab characters are to be replaced with spaces. If no path name or - is
specified, the path name is loaded from the standard input.
If multiple files are specified and one of the files results in an open error, the command issues an error message and
continues processing.

Return codes

Return code Meaning

0 Normal termination

1 Error termination
• Path name contained a file that could not be opened.

2 Error termination (excluding the case resulting in termination code 1)

Notes
• The expand command expects text files. Input from binary files and output of binary data are not guaranteed to

work.

Examples

Specifying one tab stop location
If one tab stop is specified, the command uses the specified value as the character spacing between tab stops.
The following example specifies 6 for the tab stop for file file1:

Contents of file1
In the following file, indicates the tab character.

----+----+----+----+----+----+-----
a001 a002 a003

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 652

b001 b002 b003
c001 c2 c03

Command execution example
Specify 6 for the tab stop and file1 as the file:

$ expand -t 6 file1

Execution results

----+----+----+----+----+----+-----
a001 a002 a003
b001 b002 b003
c001 c2 c03

On the first line, tab stops are set at the specified interval of 6.
On the second line, two tab stops are set between b002 and b003 because there are two tab characters.
On the third line, c001, c2, and c03 that have different numbers of characters are set at a tab stop interval of 6.

Specifying multiple tab stop locations by using a tab-stop list
When multiple tab stops are specified, the tab stops are set in the order specified. If it is necessary to set more tab
stops than specified in the tab-stop list, the tab character is replaced by one space.

Contents of file1
In the following file, indicates the tab character.

----+----+----+----+----+----+-----
a001 a002 a003 a004

Command execution example 1
Specify 6,16 as the tab-stop list and file file1:

$ expand -t 6,16 file1

Execution results 1

----+----+----+----+----+----+-----
a001 a002 a003 a004

Character strings are output with the specified number of spaces placed.
Because the first value specified is 6, the command first outputs a001, places spaces through column 6, then
outputs a002.
Similarly, the command outputs a002, places spaces through column 16, then outputs a003.
Because there are no more values in the tab-stop list, the command places one space, and then outputs a004.

Command execution example 2
Specify 2,16 as the tab-stop list and file file1:

$ expand -t "2 16" file1

Execution result 2

----+----+----+----+----+----+-----
a001 a002 a003 a004

Because the first value specified is 2, the command outputs a001 and then attempts to place spaces through
column 2, but the current location is already beyond column 2 because a001 has been output. Therefore, the

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 653

command ignores value 2, places spaces through column 16, which is the next value specified, and then outputs
a002.
Because there are no more values in the tab-stop list, the command places one space before each of the subsequent
character strings.

Specifying multiple tab stops in options
There are several ways to specify multiple tab stops by combining [-t tab-stop list] and [-tab-stop list]. All the
following examples specify 2 and 16 as the tab stops and their results are the same:

$ expand -t 2 -t 16 file1
$ expand -t 2 -16 file1
$ expand -2 -t 16 file1
$ expand -2 -16 file1
$ expand -t 2,16 file1
$ expand -2,16 file1

Entering the backspace character
If the tab character is followed by the backspace character, the tab's column width is reduced.

Contents of file1
In the following file, indicates the tab character.
There is a backspace character (^H) immediately before a003:

----+----+----+----+----+----+-----
a001 a002 ^Ha003 a004
b001 b002 b003 b004

Command execution example
Execute the command using default tab stop 8:

$ expand file1

Execution results

----+----+----+----+----+----+-----
a001 a002 a003 a004
b001 b002 b003 b004

Because there is a backspace character (^H) immediately before a003, the command saves the results during
output processing. As a result, the output location of a003 is column 16, not column 17.

Input from the standard input
If no path name is specified or if - is specified, files are input from the standard input.

Contents of file1
In the following file, indicates the tab character.

----+----+----+----+----+----+-----
a001 a002 a003 a004

Command execution example
Input file1 from the standard input:

$ expand < file1

or

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 654

$ expand - < file1

Execution results

----+----+----+----+----+----+-----
a001 a002 a003 a004

• Display option error massages:
This message might vary depending on the platform used to execute the command. The following is an example for
Windows:

C:\> expand -z
expand: illegal option -- z
usage: expand [-tablist] [-t tablist] [file ...]

expr command (evaluates an expression)

Format

expr expression

Description
This command evaluates an expression and sends the results to the standard output. All elements of the expression are
specified as separate arguments.

An expression is specified as a combination of numeric values, character strings, variables, expressions, and their
operators. The evaluation of the expression is retained as a character string or integer.

Arguments

expression
Specifies the expression to be evaluated. The operators are shown below in increasing order of priority. Operators
shown enclosed in curly brackets ({}) and separated by the comma have the same priority. When an argument is
invalid, the expr command outputs an error message and returns 2 as the return code. Expressions are denoted by
expr1 and expr2.

expr1| expr2
If expr1 is not an empty character string or zero, the evaluation of expr1 is returned. If expr1 is an empty character
string or zero, the evaluation of expr2 is returned. If expr2 is also a null character string, the null character string
is returned.

expr1 & expr2
If neither expression evaluates to an empty character string or zero, the evaluation of expr1 is returned; otherwise,
0 is returned.

expr1 {=, >, >=, <, <=, !=} expr2
If both expressions evaluate to an integer, the result of comparing the integers is returned; otherwise, the result
of comparing the character strings in the collating sequence defined locally is returned. The result is 1 if the
specified relationship is true, and 0 if it is false.

• =: The values on the left and right are equal.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 655

• >: The value on the left is greater than the value on the right.

• >=: The value on the left is greater than or equal to the value on the right.

• <: The value on the left is less than the value on the right.

• <=: The value on the left is less than or equal to the value on the right.

• !=: The values on the left and right are not equal.

expr1 {+, -} expr2
If both expressions evaluate to integer values, the result of the addition or subtraction is returned.
If the value is not an integer, an error message (expr: non-numeric argument) is output.

• +: Add

• -: Subtract

expr1 {*, /, %} expr2
If both expressions evaluate to integer values, the result of the multiplication, division, or modulo operation is
returned. If the values are not integers, an error message (expr: non-numeric argument) is output. If
the divisor is zero, an error message (expr: division by zero) is output.

• *: Multiply

• /: Divide

• %: Modulo

expr1 : expr2
Evaluates whether expr2 matches expr1.
The expression expr2 is specified as a regular expression. The regular expression is treated as if ^ were added
at the beginning of the string.

• If a tagged regular expression is specified in expr2 (if expr2 matches expr1), the first character string that
matched the tagged regular expression is returned.

• If a tagged regular expression is not specified in expr2 (if expr2 matches expr1), the number of matched
characters is returned.

• If expr2 does not match expr1, and a regular expression is used in expr2, the null character is returned. If a
regular expression is not used in expr2, 0 is returned.

• If the specification of expr2 matches the null character, 0 is returned. To determine if expr1 is the null
character, you must evaluate it by assigning the same character to both expr1 and expr2. That is, instead of
expr '' : '$', you must use expr X'' : 'X$', or a similar variation.

length character-string
Returns the length of the specified character string. For details about the ADSH_CMDEXPR_LENGTH
environment variable, see 2.5 Specifying environment variables.

• If the ADSH_CMDEXPR_LENGTH=b environment variable is set, the command treats length as an
operator and returns the length (in bytes) of the character string that follows.

• If the ADSH_CMDEXPR_LENGTH=c environment variable is set, the command treats length as an
operator and returns the length (in characters) of the character string that follows.

• If the ADSH_CMDEXPR_LENGTH environment variable is not set or a value other than b or c is set in the
environment variable, the command does not treat length as an operator.

You can specify an expression in the length operator. If you specify an expression, enclose the entire expression
is parentheses (()).

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 656

Return codes

Return code Meaning

0 Normal termination. The expression is not an empty character string or 0.

1 Normal termination. The expression is an empty character string or 0.

2 Error termination. The expression is not valid.

3 or greater Error termination
• An error, such as a memory shortage, occurred.

Notes
• Integer values are stored in the range of -2147483648 to 2147483647. If you specify a value outside this range,

any overflow into the 32-bit binary digit position will be ignored.

• Characters specified in the operators and parentheses, because they include characters that are interpreted by the
shell, must be properly escaped. Because the entire expression is interpreted as a character string when it is enclosed
in double quotation marks ("), each individual operator must be enclosed in double quotation marks (").

• This command does not accept options. If you specify an option as an argument, the option is interpreted as an
expression.

Usage examples
• Perform a calculation using variable a and variable b.

$ a=2
$ b=3
$ x=`expr \($a + $b \) * 10`
$ echo $?
0
$ echo $x
50
$

• Evaluate variable a | variable b.

$ a=""
$ b="abcdef"
$ expr "$a" \| "$b"
abcdef
$

• Cut the file name from the path name, without the extension.

$ a='d:\jp1as\test.txt'
$ expr $a : '.*\\\(.*\)\.'
test
$

• Determine whether a variable includes numbers. The return will be 0 if there are no numbers.

$ a='abcde12345kl'
$ b='abcdefg'
$ expr $a : '.*[0-9].*'
12
$ expr $b : '.*[0-9].*'

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 657

0
$

• Return the length of character string in bytes.

$ export ADSH_CMDEXPR_LENGTH=b
$ echo $LANG
ja_JP.UTF-8
$ expr length " "
18

• Return the length of character string in characters.

$ export ADSH_CMDEXPR_LENGTH=c
$ echo $LANG
ja_JP.UTF-8
$ expr length " "
6

• Return a value that is obtained by adding 2 to the length of character string teststring (in bytes).

$ export ADSH_CMDEXPR_LENGTH=b
$ echo $LANG
ja_JP.UTF-8
$ expr length teststring + 2
12

find command (searches for files in directories)

Format

find [-d] [-H] [-h] [-L] path-name [...] [search-pattern]

Description
This command specifies paths where you want to conduct a search and then follows the directory hierarchies searching
for files. You can specify search conditions and how files that are found are to be handled.

Arguments
You specify options, path names where the search is to be conducted, and a search pattern. The path names where the
search is to be conducted are specified as arguments to the find command.

Each option is specified as a one-letter option name preceded by a hyphen (-).

-d
Specifies that files inside the deepest directory are searched for first, and processing proceeds from there up to the
directory specified in path-name.

-H
In UNIX, specifies that if a path name specified as an argument is a symbolic link, it is to be treated as if the link
target were specified. If the link target does not exist, the symbolic link itself is processed. Symbolic links
encountered during the search are not followed. If more than one of the -H, -h, and -L options is specified, the one
specified last takes effect.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 658

In Windows, the -H option is ignored.

-h
In UNIX, specifies that anytime a symbolic link is encountered, it is to be followed and processing is to continue.
If the link target does not exist, the symbolic link itself is processed. If more than one of the -H, -h, and -L options
is specified, the one specified last takes effect.
In Windows, the -h option is ignored.

-L
In UNIX, specifies that anytime a symbolic link is encountered, it is to be followed and processing is to continue.
If the link target does not exist, the symbolic link itself is processed. If more than one of the -H, -h, and -L options
is specified, the one specified last takes effect.
In Windows, the -L option is ignored.

path-name
Specifies a path name.

search-pattern
Specifies a search pattern (expression). A search pattern consists of primaries and operators.

• Primaries

-amin time-difference
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the number of minutes
specified in time-difference is valid as the difference between the date and time of the last access to the file or
directory and the date and time at which execution of the find command starts. A difference in date and time
that is less than one minute is rounded up to the nearest minute.
The specified time-difference is interpreted as follows depending on whether no sign is specified or a numeric
value with a + or - sign is specified:

• When a sign is not specified: Specified time difference

• + is specified before a numeric value: Greater than the specified value

• - is specified before a numeric value: Less than the specified value

The specified value must not exceed 2147483647 (0x7fffffff). If you specify a greater value,
2147483647 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.
In Windows, an error occurs if this primary is specified.

-anewer path-name
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the date and time of the
most recent access to the file or directory is more recent than the date and time of the most recent access to path-
name.
In Windows, an error occurs if this primary is specified.

-atime time-difference
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the number of days specified
in time-difference is valid as the difference between the date and time of the last access to the file or directory
and the date and time at which execution of the find command starts. A difference in date and time that is less
than one day is rounded up to the nearest day.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 659

The specified time-difference is interpreted as follows depending on whether no sign is specified or a numeric
value with a + or - sign is specified:

• When a sign is not specified: Specified time difference

• + is specified before a numeric value: Greater than the specified value

• - is specified before a numeric value: Less than the specified value

The specified value must not exceed 2147483647 (0x7fffffff). If you specify a greater value,
2147483647 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.
In Windows, an error occurs if this primary is specified.

-cmin time-difference
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the number of minutes
specified in time-difference is valid as the difference between the last date and time the file information was
changed (for example, the date and time the file was written to, or the date and time the owner, group, link count,
or mode was changed) and the date and time at which execution of the find command starts. A difference in
date and time that is less than one minute is rounded up to the nearest minute.
The specified time-difference is interpreted as follows depending on whether no sign is specified or a numeric
value with a + or - sign is specified:

• When a sign is not specified: Specified time difference

• + is specified before a numeric value: Greater than the specified value

• - is specified before a numeric value: Less than the specified value

The specified value must not exceed 2147483647 (0x7fffffff). If you specify a greater value,
2147483647 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.
In Windows, an error occurs if this primary is specified.

-cnewer path-name
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the last date and time the
file information was changed (for example, the date and time the file was written to, or the date and time the
owner, group, link count, or mode was changed) is more recent than the last time the file specified in path-name
was changed.
In Windows, an error occurs if this primary is specified.

-ctime time-difference
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the number of days specified
in time-difference is valid as the difference between the last date and time the file information was changed (for
example, the date and time the file was written to, or the date and time the owner, group, link count, or mode
was changed) and the date and time at which execution of the find command starts. A difference in date and
time that is less than one day is rounded up to the nearest day.
The specified time-difference is interpreted as follows depending on whether no sign is specified or a numeric
value with a + or - sign is specified:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 660

• When a sign is not specified: Specified time difference

• + is specified before a numeric value: Greater than the specified value

• - is specified before a numeric value: Less than the specified value

You can specify time-difference without a sign or with a leading + or - sign. When + is specified, the check
determines whether the actual time is greater than the specified time difference value. When - is specified, the
check determines whether the actual time is less than the specified time difference value. When no sign is
specified, the check determines whether they are the same. The specified value must not exceed 2147483647
(0x7fffffff). If you specify a greater value, 2147483647 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.
In Windows, an error occurs if this primary is specified.

-depth
Specifies that an evaluation is to be performed. The evaluation is true when the directories at the deepest level
are searched first, and the files within a directory are processed before the directory itself. This evaluation is
always true.

-empty
Specifies that an evaluation is to be performed. The evaluation is true when the file or directory is empty.

-exec command-line ;
Specifies a command line command for processing the files and directories being searched that is to be evaluated.

• Depending on the shell in which the find command is executed, characters such as the asterisk (*) and
semicolon (;) might be expanded by the shell, and so must be enclosed in double quotation marks (") or
single quotation marks ('), or must be prefixed with the escape character (\).

• The command-line specification must terminate with a semicolon (;).

• The program specified in command-line is launched with the directory from which find was launched set
as the current directory.

• If you specify curly brackets ({ }) in command-line, they are replaced by the path name of the file or
directory being searched. Their replacement is an absolute path name if you specified an absolute path name
as the path for conducting the search or a relative path name if you specified a relative path name as the path
for conducting the search.

• The evaluation is true if the program specified in command-line terminates with a return code of 0.

-follow
This evaluation is always true.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true if whenever a symbolic link is
encountered it is to be followed and processing is to continue. If the link target does not exist, the symbolic link
itself is processed.

-group group-name
In Windows, this evaluation is always false.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the file belongs to the
group whose name is specified. If you specify a number for the group name and no such group name exists, the
specified value is interpreted as a group ID.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 661

-iname pattern
See the description of the -name option. This option functions identically except that it does not distinguish
between uppercase and lowercase letters.

-inum number
In Windows, this evaluation is always false.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the relationship between
the inode number of the file and the specified value is valid.

• You can specify number without a sign or with a leading + or - sign. When + is specified, the check
determines whether the inode number is greater than the specified value. When - is specified, the check
determines whether the inode number is less than the specified value. When no sign is specified, the check
determines whether they are the same. The specified value must not exceed 2147483647 (0x7fffffff).
If you specify a greater value, 2147483647 is assumed.

• If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.

• If number is omitted, an error message (find: primary: requires additional arguments) is
output.

-links link-count
In Windows, this evaluation is always false.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the relationship between
the link count for the file and the specified value is valid.

• You can specify link-count without a sign or with a leading + or - sign. When + is specified, the check
determines whether the link count for the file is greater than the specified value. When - is specified, the
check determines whether the link count for the file is less than the specified value. When no sign is specified,
the check determines whether they are the same. The specified value must not exceed 2147483647
(0x7fffffff). If you specify a greater value, 2147483647 is assumed.

• If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.

• If link-count is omitted, an error message (find: primary: requires additional arguments)
is output.

-ls
In Windows, specifies that the file permissions, owner name, size (in bytes), most recent modification date and
time, and path name are to be output to the standard output. This evaluation is always true.
In UNIX, specifies that the inode number, size (in units of 512 bytes), file permissions, hard links count, owner
name, group, size (in bytes), most recent modification date and time, and path name are to be output to the
standard output.
This evaluation is always true. If the file is a special file, the major and minor numbers are output instead of the
size (in bytes). If the file is a symbolic link, -> is displayed followed by the path name of the link target.

-maxdepth depth
Specifies an evaluation that is to be performed. The evaluation is true when the depth of the directory currently
being searched is less than or equal to the specified value. The depth of a specified directory initially is 1.

• The specified value must be in the range of 0 through 32767. If 0 is specified, the search target becomes
the directory only (the files stored in the directory are not searched).

• If you specify a value greater than the maximum specifiable value, an error message (find: specified-
value: maxdepth value too large) is output.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 662

• If you specify a non-numeric value, an error message (find: specified-character-string: primary:
value invalid) is output.

• If depth is omitted, an error message (find: primary: requires additional arguments) is
output.

-mindepth depth
Specifies an evaluation that is to be performed. The evaluation is true when the depth of the directory currently
being searched is greater than or equal to the specified value.

• The specified value must be in the range of 0 through 32767.

• No error occurs is the specified value is greater than the maximum specifiable value.

• If you specify a non-numeric value for depth, 0 is assumed.

• If depth is omitted, an error message (find: primary: requires additional arguments) is
output.

-mmin time-difference
Specifies an evaluation that is to be performed. The evaluation is true when the number of minutes specified in
time-difference is valid as the difference between the last date and time the file or directory was modified and
the time at which execution of the find command starts. A difference in date and time that is less than one
minute is rounded up to the nearest minute.

• You can specify time-difference without a sign or with a leading + or - sign. When + is specified, the check
determines whether the actual time is greater than the specified time difference value. When - is specified,
the check determines whether the actual time is less than the specified time difference value. When no sign
is specified, the check determines whether they are the same. The specified value must not exceed
2147483647 (0x7fffffff). If you specify a greater value 2147483647 is assumed.

• If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.

• If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.

-mtime time-difference
Specifies an evaluation that is to be performed. The evaluation is true when the number of days specified in
time-difference is valid as the difference between the time of the last modification of the file or directory and
the time at which execution of the find command starts. A time difference that is less than one day is rounded
up to the nearest day.

• You can specify time-difference without a sign or with a leading + or - sign. When + is specified, the check
determines whether the actual time is greater than the specified time difference value. When - is specified,
the check determines whether the actual time is less than the specified time difference value. When no sign
is specified, the check determines whether they are the same. The specified value must not exceed
2147483647 (0x7fffffff). If you specify a greater value, 2147483647 is assumed.

• If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.

• If time-difference is omitted, an error message (find: primary: requires additional
arguments) is output.

-mount
This is always true. In UNIX, this argument specifies that a directory whose device number differs from that of
the directory in which the search began is not to be searched.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 663

-name pattern
Specifies an evaluation that is to be performed. The evaluation is true when the name of the file or directory to
be searched for matches the value specified in pattern.
The pattern is specified as a combination of characters and wildcards. You can use the escape character (\) to
specify as part of the pattern value a character that would otherwise be a wildcard. If the escape character (\) is
specified before a character that is not a wildcard characters, the \ is ignored.
The following table shows the characters that can be used as wildcards:

Wildcard Meaning

? Matches any single character.

* Matches a character string of zero or more characters.

[] Matches any single character in the character string enclosed in []. If there is an ! or a ̂ at the beginning
of the character string enclosed in [], there is a match if none of the characters in [] is found. If two
characters are separated by a hyphen (-), the match is of any character between those two characters
(including the two characters themselves).

The following examples illustrate the use of the [] wildcard:

Example Meaning

[!abc] Matches any character other than a, b, or c.

[0-9] Matches any character from 0 through 9.

[a-z] Matches any lowercase letter.

[A-Z] Matches any uppercase letter.

[0-9a-zA-Z] Matches any alphanumeric character.

-newer path-name
Specifies an evaluation that is to be performed. The evaluation is true when the current file or directory is newer
than the time at which path-name was last modified.

-nogroup
In Windows, this evaluation is always false.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the current file belongs to
a non-existent group.

-nouser
In Windows, this evaluation is always false.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the owner of the current
file is a non-existent user.

-ok command-line ;
Specifies a command line command for processing the files and directories being searched that is to be evaluated.

• Depending on the shell in which the find command is executed, characters such as the asterisk (*) and
semicolon (;) might be expanded by the shell, and so must be enclosed in double quotation marks (") or
single quotation marks ('), or must be prefixed with the escape character (\).

• The command-line specification must terminate with a semicolon (;).

• The program specified in command-line is launched with the directory from which find was launched set
as the current directory. Before the program is launched, a prompt is output asking for confirmation. If the
response from the standard input is not y, the specified command does not execute and false is returned.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 664

• If you specify curly brackets ({ }) in command-line, they are replaced by the path name of the file or
directory being searched. Their replacement is an absolute path name if you specified an absolute path name
as the path for conducting the search or a relative path name if you specified a relative path name as the path
for conducting the search.

• The evaluation is true if the program specified in command-line terminates with a return code of 0.

-path pattern
Specifies an evaluation that is to be performed. The evaluation is true when the name of the file or directory to
be searched for matches the value specified in pattern.

• The pattern is specified as a combination of characters and wildcards. You can use the escape character (\)
to specify as part of the pattern value a character that would otherwise be a wildcard. If the escape character
(\) is specified before a character that is not a wildcard characters, the \ is ignored.

• For details about specifying pattern, see the description under -name pattern.

-perm [-]permissions
In UNIX, specifies permissions as octal numbers or symbols. If this argument is specified in Windows, an error
(find: -perm: unknown option) results.
If the specified permissions follow a hyphen (-), the evaluation is true when the specified permissions are set
in the mode of the file or directory. If a hyphen (-) is not specified, the evaluation is true when the specified
permissions match the file mode exactly.
When you specify a numeric value for permissions, an error occurs if you specify a non-octal number or you
specify an octal value greater than 07777 (4095 decimal).
If you specify symbols for permissions, do so by setting, adding, and removing permissions, starting from the
state in which nothing is specified (0 in numeric representation). The result from specifying one or more symbols
is then used in the search.
A symbol consists of three parts. Specify one or more symbols, as explained below. If you specify more than
one, separate them with the comma (,).

Order within the symbol Permitted value

First Specifies the items for which you want to set access permissions. You can specify more than one at the
same time. The items below can be specified. If nothing is specified, a (all users) is assumed.
• u: Owner
• g: Group
• o: Other
• a: All users

Second Specifies an operation on the mode. The following processing is performed on the items specified in
the first part of a symbol:
• =: Set (overwrite) access permissions
• +: Add access permissions
• -: Remove access permissions

The value to be set, added, or removed is specified in the third part of the symbol.
You can specify the second and third parts of a symbol following the third part. The third part of a
symbol can be omitted.

Third Specifies the applicable access permissions. You can specify more than one at the same time. The
following values can be specified:
• r: Read
• w: Write
• x: Execute
• s: Set the user ID or group ID at run time
• t: Sticky bit

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 665

Order within the symbol Permitted value

Third • u: Owner access permissions currently set in the mode
• g: Group access permissions currently set in the mode
• o: Other access permissions currently set in the mode

When this part is omitted and = is specified in the second part of the symbol, the items for which access
permissions are set are cleared. When this part is omitted and + or - is specified in the second part of
the symbol, no processing occurs.
Specifying s or t in this part will be ignored if only o is specified in the first part.

The following table shows examples of specifying symbols:

Value specified in -perm Numeric equivalent Description

u=x,g=w 120 Set u to x, and set g to w.

u=x,g=u 110 Set u to x, and set the same values for g and u.

u=x,=u 111 Set u to x, and then set a (the default value) to the same values as u.

u=x,u=w 200 Set u to x, and then set (overwrite) u to w.

u=x,u+w 300 Set u to x, and then add w to u.

ug=x 110 Set u and g to x.

u=rw 600 Set u to r and w.

u=r+x 500 Set u to r, and then add x.

u=r=w 200 Set u to r, and then set (overwrite) it to w.

=x,u= 011 Set a (the default value) to x, and clear the settings for u.

= 000 Clear a (the default value).

This argument cannot be specified in Windows; if it is specified, an error occurs (find: -perm: unknown
option).

-print
Specifies an evaluation that is to be performed. The evaluation is true when the path name of the file or directory
being searched is output to the standard output followed by an end-of-line code. This evaluation is always true.

-print0
Specifies an evaluation that is to be performed. The evaluation is true when the path name of the file or directory
being searched is output to the standard output followed by NULL ('\0'). This evaluation is always true.

-prune
Specifies an evaluation that is to be performed. The evaluation is true when directories encountered during the
search are not to be followed. This evaluation is always true. This item is not valid when the -d option is specified.

-size size[c]
Specifies an evaluation that is to be performed. The evaluation is true when the relationship between the file's
size and the specified size value (in units of blocks, rounded up to an even increment of 512 bytes) is valid. When
c is specified after size, the unit for evaluation is bytes.
The specified size is interpreted as follows depending on whether no sign is specified or a numeric value with
a + or - sign is specified:

• When a sign is not specified: Specified time difference

• + is specified before the numeric value: Greater than the specified value

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 666

• - is specified before the numeric value: Less than the specified value

The specified value must not exceed 9223372036854775807 (0x7fffffffffffffff). If you specify
a greater value, 9223372036854775807 is assumed.
If you specify a non-numeric value, an error message (find: primary: specified-character-string:
illegal numeric value) is output.
If size is omitted, an error message (find: primary: requires additional arguments) is output.

-type type
Specifies an evaluation that is to be performed. The evaluation is true when the type of the current file is the
same as the specified type value. The types are listed below. If you specify a type other one than the following,
an error message (find: -type: specified-value: unknown type) is output.

• b: Block special file (cannot be specified in Windows)

• c: Character special file (cannot be specified in Windows)

• d: Directory

• f: Regular file

• l: Symbolic link (cannot be specified in Windows)

• p: FIFO (cannot be specified in Windows)

• s: Socket (cannot be specified in Windows)

-user user-name
In Windows, specifies an evaluation that is to be performed. The evaluation is true when the file owner's user
name is the same as the specified user-name value.
In UNIX, specifies an evaluation that is to be performed. The evaluation is true when the file owner's user name
is the same as the specified user-name value. If you specify a numeric value for the user name and no such owner
name exists, the specified value is interpreted as a user ID.

-xdev
Specifies an evaluation that is to be performed. This evaluation is always true. It is true in UNIX when directories
are never searched with a device number that differs from that of the directory where the search was started.

• Operators
The primaries can be used with the operators listed below. The operators are shown in descending order of
priority.

(search-pattern)
True is when the search pattern in the parentheses satisfies the conditions.

! search-pattern
False is when the search pattern that follows the ! operator satisfies the conditions.

search-pattern -and search-pattern | search-pattern -a search-pattern | search-pattern search-pattern
This is the logical AND of two search patterns connected by the -and or -a operator, or else two side-by-side
search patterns. True is when both search patterns are true. If the first search pattern is false, the second search
pattern is not evaluated.

search-pattern -or search-pattern | search-pattern -o search-pattern
This is the logical OR of two search patterns connected by the -or or -o operator. True is when either search
pattern is true.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 667

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• Depending on the shell used to execute find, characters such as the semicolon and parentheses might need to be

prefixed with the escape character (\) or enclosed in single quotation marks (') or double quotation marks (").

• The output order of the files and directories being searched depends on the OS and the file system. If consistency
across multiple platforms is desired, the output must be sorted.

• In Windows, file descriptors are closed without being inherited by processes that were generated by the -exec
primary or a similar means. For example, an error results if you attempt to perform input or output on a file descriptor
opened by the parent process without reopening it. This does not apply to the standard input, standard output, and
standard error output, which do not need to be reopened.

• In Windows, if the program name specified in the -exec option contains no path, the program found according to
the path search order of the target Windows API is executed.

Usage examples
• Display file and directory names ending in .c.

$ find . -name '*.c'
./test/a.c
./test/b.c
./test/c.c
./test/abc.c
$

• Display files and directories that are older than file ttt, or whose owner is not root.

$ ls -l
total 0
-rw-rw-r-- 1 user1 group1 0 Oct 7 10:12 a.c
-rw-rw-r-- 1 root group1 0 Oct 7 10:12 abc.c
-rw-rw-r-- 1 user1 group1 0 Oct 7 10:12 b.c
-rw-rw-r-- 1 user1 group1 0 Oct 7 10:10 c.c
-rw-rw-r-- 1 user1 group1 0 Oct 7 10:11 ttt
$ find . \! \(-newer ttt -user root \)
.
./ttt
./b.c
./a.c
./c.c
$

• Display file names under the current directory that end with a dot (.) followed by a single digit, skipping over the
directory command1.

$ ls command1 command2
command1:
a1.txt b1.txt command1 command1.1 command1.c command1.o extern.h
obj

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 668

command2:
a2.txt b2.txt command2 command2.1 command2.c command2.o extern.h
obj
$ find . ! -path './command1/*' -name '*.[0-9]'
./command2/command2.1
$

• Delete all .o files under the current directory.

$ ls command1 command2
command1:
a1.txt b1.txt command1 command1.1 command1.c command1.o extern.h
obj

command2:
a2.txt b2.txt command2 command2.1 command2.c command2.o extern.h
obj
$ find . -name '*.o' -exec rm {} \;
$ ls command1 command2
command1:
a1.txt b1.txt command1 command1.1 command1.c extern.h obj

command2:
a2.txt b2.txt command2 command2.1 command2.c extern.h obj
$

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\find -w
find: illegal option -- w
usage: find [-dHhL] path ... [expression]

getopt command (analyzes command line options)

Format 1

getopt analysis-options argument-to-be-analyzed

Format 2

getopt [option] [--] analysis-options argument-to-be-analyzed

Format 3

getopt [option] -o short-analysis-option-name [option] [--] argument-to-be-
analyzed

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 669

Description
This command analyzes the command line specified in argument-to-be-analyzed according to the specified analysis-
options and outputs the analysis results to the standard output. The command can analyze both short and long options.
This command simplifies syntax analysis of shell scripts.

If one of the following specifications is made, the command assumes that format 1 is being used:

• The first parameter of the argument does not begin with -.

• The GETOPT_COMPATIBLE environment variable is set.

For any other specifications, if the -o option is specified, format 3 is assumed; if the -o option is not specified, format
2 is assumed.

Arguments

analysis-options
Specifies a character string containing the analysis options.
When you specify short options, note the following:

• If a short option begins with -, an operand is output at the location where it appears. If a short option begins
with +, the option must be specified before an operand.
Note that in format 1, - and + at the beginning are ignored.

• If a short option begins with : (or if a short option begins with - or + and the next character is :), and the option
for the argument to be analyzed is not specified in the analysis options, no error message is issued, but the return
code will be an error. Analysis of the arguments to be analyzed will continue.

By specifying : or :: after an option character or an option name, you can define the following:

Specifying : after an option character or an option name
This indicates that the option requires a value.
In this case, specify an option name and an option value for the argument to be analyzed in the following format:

• Specify a short option name and an option value without a separator.
$ getopt "xy:z" -yarg
-y arg --

• Specify a short option name and an option value separated by a space.
$ getopt "xy:z" -y arg
-y arg --

• Specify a long option name and an option value separated by a space.
$ getopt -o "abc" -l xyz: -- --xyz nml
--xyz 'nml' --

• Specify in the format long-option-name=option-value.
$ getopt -o "abc" -l xyz: -- --xyz=nml
--xyz 'nml' --

Specifying :: after an option character or an option name
This indicates that specifying a value for the option is optional. If you specify an argument, specify ::
immediately after an option character or an option name.
In this case, specify an option name and an option value for the argument to be analyzed in the following format:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 670

• Short options
Specify an option name immediately followed by an option value.

• Long options
Specify in the format long-option-name=option-value.

argument-to-be-analyzed
Specifies an option name, an option value, and an operand as the argument to be analyzed. For details about
specifying options, see 8.1 Command description format.

How to specify options
Specify a short option following - and a long option following --. If no long option name follows --, the
command terminates option analysis at that location and treats all subsequent parameters as operands.
You can abbreviate long option names. In such a case, the complete long option names are displayed in the output
results. The following shows an example:

$ getopt -o "" -l "longZ" -- --lo
 --longZ --

If you abbreviate a long option name, make sure that the specified name can be distinguished from all other
options. If the specified long option name cannot be identified, the command treats it as any option name defined
earlier in analysis-options.

Specification order of options and operands
By default, there is no rule for the specification order of options and operands. The options specified after
operands are still analyzed. You can specify an option specification order by using the following environment
variables:

• Using the ADSH_CMD_ARGORDER environment variable to specify an option specification order
If the ADSH_CMD_ARGORDER environment variable is specified, the options specified as the argument to
be analyzed must appear before operands.

• Using the POSIXLY_CORRECT environment variable to specify an option specification order
If the POSIXLY_CORRECT environment variable is specified, the options specified as the argument to be
analyzed must appear before operands.
This definition applies to commands in the Linux version as well as to commands specified in the
ADSH_CMD_ARGORDER environment variable.

option
In formats 2 and 3, you can specify the following options:
-l long-option-name

-longoptions=long-option-name
Specifies the long analysis option.
To specify multiple options, separate them with the comma (,) or the space or specify this option multiple times.

-n program-name

--name=program-name
Specifies a command name that is to be displayed in error messages for option analysis instead of the getopt
command name.

-q

--quiet
Specifies that output of error messages resulting from option analysis of the argument being analyzed is to be
suppressed.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 671

-Q

--quiet-output
Specifies that output of the analysis results is to be suppressed.

-u

--unquoted
Specifies that option values and operands obtained as analysis results in formats 2 and 3 are not to be enclosed
in quotation marks.

-o short-analysis-option-name

--options=short-option-name
Specifies a short analysis option.
If this option is specified more than once, the last value specified takes effect.
If W; is specified for the short option and a long option name with -W for the argument to be analyzed is specified,
the specified value is treated as a long option name.

Output of analysis results
Analysis results are classified into option names, option values, and operands and output to the standard output.

If format 2 or 3 was used, option values and operands are enclosed in single quotation marks ('). If -u is specified,
they are not enclosed in single quotation marks (').

For short options, an option name with - is output as one option. For long options, the complete option name with --
is output as one option.

The separator -- is output between an option (option name and option value) and an operand. This does not apply if -
is specified at the beginning of short options.

The command continues processing all parameter options even if an error occurs during option analysis. The following
shows an example:

$ getopt "xyz" -w -x
getopt: invalid option -- w
 -x --

Return codes

Return code Meaning

0 Normal termination

1 Error termination
• The option specified for argument-to-be-analyzed is not defined in analysis-options.

2 Error termination
• A getopt command option is invalid.

3 Error termination
• An error other than return code 1 or 2 occurred.

Examples
• Execute the command using format 1:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 672

$ getopt "xy:z" -z -y arg1 arg2
 -z -y arg1 -- arg2

• Execute the command using format 2:

$ getopt -q "xy:z" -z -y arg1 arg2
 -z -y 'arg1' -- 'arg2'

• Execute the command using format 3:

$ getopt -o "xy:z" -- -z -y arg1 arg2
 -z -y 'arg1' -- 'arg2'

• Set analysis results in positional parameters.
Executable file

OPT=`getopt -o abc:d: -- -a -b`
eval set -- "$OPT"
echo $1
echo $2
echo $3

Execution results

-a
-b
--

• Display option error messages:
This message might vary depending on the platform used to execute the command. The following is an example for
Windows:

C:\> getopt -z
getopt: illegal option -- z
usage: getopt optstring parameters
 getopt [options] [--] optstring parameters
 getopt [options] -o optstring [options] [--] parameters

grep command (searches for characters in files)

Format

grep [-a] [-b] [-c] [-E] [-G] [-h] [-I] [-i] [-L] [-l] [-n]
 [-q] [-R] [-r] [-s] [-U] [-v] [-w] [-x]
 [-A number] [-B number] [-C[number]]
 [-e pattern] [-f pattern-file-path-name] [pattern] [path-name ...]

Description
This command searches files for characters (specified in pattern).

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 673

Arguments

-a
Specifies that all files are to be handled as ASCII text files.

-b
Specifies that the offset in bytes is to be displayed at the beginning of each matching line.

-c
Specifies that only the number of lines selected is to be output to the standard output.

-E
Specifies that the value specified in pattern is to be handled as an extended regular expression. When the -E and
-G options are both specified, the one specified last takes effect.

-G
Specifies that the value specified in pattern is to be handled as a regular expression. This is the default behavior.
When the -E and -G options are both specified, the one specified last takes effect.

-h
Specifies that no file name is to be displayed at the beginning of each output line when either of the following
conditions is satisfied:

• The -R or -r option is specified.

• Multiple path name are specified as being subject to search.

-I
Specifies that binary files are to be ignored.

-i
Specifies that uppercase letters are not to be distinguished from lowercase letters (and vice versa).

-L
Specifies that only the names of files that do not contain a match for the value specified in pattern are to be output
to the standard output. If the -L and -l options are both specified, the one specified last takes effect.

-l
Specifies that only the names of files that contain a match for the value specified in pattern are to be output to the
standard output. If the -L and -l options are both specified, the one specified last takes effect.

-n
Specifies that its relative line number in the file is to be output at the beginning of each output line. This specification
is ignored when any of the -c, -L, -l, and -q options is specified.

-q
Specifies that nothing is to be output to the standard output.

-R|-r
Specifies that directories are to be searched recursively.
If the -L, -l, and -q options are all omitted, the file name is output at the beginning of each output line.

-s
Specifies that output of error messages related to unreadable or nonexistent files is to be suppressed.

-U
Specifies that binary files are to be searched but not output.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 674

-v
Specifies that lines that do not contain a match for the value in pattern are to be output.

-w
Specifies that only lines that contain the specified character string as a whole word are to be output.
A word is a character string that consists of alphanumeric characters and the underscore (_). Words must be delimited
by the space, any other non-word character, or the beginning or end of the line.

-x
Specifies that the specified character string is to be compared to each line in the file, and a line is to be output only
if the entire line constitutes an exact match.

-A number
Specifies that as many lines as specified that follow a line matching pattern are to be output.

-B number
Specifies that as many lines as specified that precede a line matching pattern are to be output.

-C[number]
Specifies that as many lines as specified that precede and follow a line matching pattern are to be output. If no value
is specified (number is omitted), the default is 2 (which would be the equivalent of specifying -A 2 -B 2).
If you specify number in the -C option, do not specify any spaces between -C and number.

-e pattern
Used to specify a pattern that begins with a hyphen (-).

-f pattern-file-path-name
Specifies the path name for a file that contains patterns to be searched for. The specified file specifies one line per
pattern. If an empty file is specified (a file in which no patterns are specified), there will be nothing to search for
and no matches will be found.

pattern
Specifies a pattern to be searched for.

path-name ...
Specifies a path name that is to be searched. Multiple path names can be specified. If no path name is specified, the
contents of the standard input are searched. If you specify a directory name, you must also specify the -R or -r
option.
If the -L, -l, and -q options are all omitted, the file name is output at the beginning of each output line.

Return codes

Return code Meaning

0 Normal termination.
• A line was found that contains a pattern being searched for.
• Or, if the -v option is specified, a line was found that does not contain the pattern being searched for.

1 Normal termination.
• No lines contain the pattern being searched for.
• Or, if the -v option is specified, all lines contain the pattern being searched for.

2 or greater Error termination

Notes
• In Windows, symbolic links are not output.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 675

• If the first 8,192 bytes of the file include data that is other than printable single-byte characters, spaces, tabs,
backspaces, and multibyte characters, the file is considered to be a binary file.

• To execute grep from the command prompt in Windows, you must enclose the pattern in double quotation marks
(").

• Files whose character encoding differs from the local character encoding are considered to be binary files.

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of end-of-line codes is performed.

Usage examples
• Display the default output with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\grep ABCD test1.txt
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
555555555:ABCD:111111111
ABCD
ABCD_XYZ
0000<ABCD>0000
/* ABCD */

• Display the default output from multiple files with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\grep ABCD_ test1.txt test2.txt test3.txt
test4.txt
test1.txt:ABCD_XYZ
test2.txt:ABCD_XYZ
test3.txt:ABCD_XYZ
test4.txt:ABCD_XYZ

• Specify the -h option to display the matching lines without adding a file name when multiple files are searched:

C:\TEMP>%ADSH_OSCMD_DIR%\grep -h ABCD test1.txt test2.txt test3.txt
test4.txt
ABCD_XYZ
ABCD_XYZ
ABCD_XYZ
ABCD_XYZ

• Specify the -b option to show the offset in bytes at the beginning of matching lines.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -b ABCD test1.txt
77:ABCDEFGHIJKLMNOPQRSTUVWXYZ
104:77777777[ABCD]ccccccccc
133:555555555:ABCD:111111111
212:ABCD
256:ABCD_XYZ
301:0000<ABCD>0000
316:/* ABCD */

• Specify the -c option to display only a count of the number of matching lines.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -c ABCD test1.txt
7

• Specify the -i option to not distinguish between upper and lowercase.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 676

C:\TEMP>%ADSH_OSCMD_DIR%\grep -i AbCd test1.txt
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
555555555:ABCD:111111111
abcdefghijklmnopqrstuvwxyz
ABCD
abcd
ABCD_XYZ
0000<ABCD>0000
/* ABCD */

• Specify the -L option to display only the names of files that do not contain the pattern.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -L ABC_ test1.txt test2.txt test3.txt
test4.txt
test1.txt
test2.txt
test4.txt

• Specify the -l option to display only the names of files that contain the pattern.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -l ABC_ test1.txt test2.txt test3.txt
test4.txt
test3.txt

• Specify the -n option to display the relative line number in the file before each output line.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -n ABCD test1.txt
4:ABCDEFGHIJKLMNOPQRSTUVWXYZ
5:77777777[ABCD]ccccccccc
7:555555555:ABCD:111111111
10:ABCD
14:ABCD_XYZ
17:0000<ABCD>0000
18:/* ABCD */

• Specify the -q option to not write anything to the standard output. The first example below does not specify the -
q option, while the second example does.

C:\TEMP>%ADSH_OSCMD_DIR%\grep ABCD_XYZ test1.txt
ABCD_XYZ

C:\TEMP>%ADSH_OSCMD_DIR%\grep -q ABCD_XYZ test1.txt

• Specify the -R option to search directories recursively.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -R ABCD C:\USR\data
C:\USR\data\data_2\data_3\test3.txt:ABCDEFGHIJKLMNOPQRSTUVWXYZ
C:\USR\data\data_2\data_3\test3.txt:ABCD333
C:\USR\data\data_2\data_3\test3.txt:ABCD_AS
C:\USR\data\data_2\test2.txt:77777777[ABCD]ccccccccc
C:\USR\data\data_2\test2.txt:555555555:ABCD:111111111
C:\USR\data\data_2\test2.txt:ABCD222
C:\USR\data\data_2\test2.txt:ABCD_MM
C:\USR\data\test0.txt:ABCD_1118
C:\USR\data\test0.txt:ABCD_AS321
C:\USR\data\test0.txt:0000<ABCD>0000
C:\USR\data\test0.txt:/* ABCD */

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 677

• Specify the -s option to suppress output of error messages. The first example below does not specify the -s option,
while the second example does.

C:\TEMP>%ADSH_OSCMD_DIR%\grep ABCD test5.txt
grep: test5.txt: No such file or directory

C:\TEMP>%ADSH_OSCMD_DIR%\grep -s ABCD test5.txt

• Specify the -w option to display only whole-word matches for the pattern.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -w ABCD test1.txt
77777777[ABCD]ccccccccc
555555555:ABCD:111111111
ABCD
0000<ABCD>0000
/* ABCD */

• Specify the -x option to display only whole-line matches.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -x ABCD test1.txt
ABCD

• The example below also specifies the -x option, this time to search the file file.txt, whose contents are as
follows:
file.txt
 ABABAB
 ACACACAC
 ABABAB

• The command displays nothing because there are no whole-line matches:

grep -x ABA file.txt

• In the following example, two whole-line matches (lines 1 and 3) are found in file.txt:

grep -x ABABAB file.txt
ABABAB
ABABAB

• Specify 3 with the -A option to display three lines following each matching line as context.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -A 3 XYZ test1.txt
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
-XYZ
555555555:ABCD:111111111
ababababababababababababab
abcdefghijklmnopqrstuvwxyz
--
ABCD_XYZ
asasasasasasasasas01
ASASASASASASAS
0000<ABCD>0000

• Specify 3 with the -B option to display three lines preceding each matching line as context.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 678

C:\TEMP>%ADSH_OSCMD_DIR%\grep -B 3 XYZ test1.txt
/*-----------------------*/
ABABABABABABABABABABABABAB
012345678901234567890
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
-XYZ
--
JJJJJJJJJJJJJJJJ
KKKKKKKKKKKKKKKK
abcd
ABCD_XYZ

• Specify the -C option to display two lines preceding and following each matching line as context.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -C XYZ test1.txt
ABABABABABABABABABABABABAB
012345678901234567890
ABCDEFGHIJKLMNOPQRSTUVWXYZ
77777777[ABCD]ccccccccc
-XYZ
555555555:ABCD:111111111
ababababababababababababab
--
KKKKKKKKKKKKKKKK
abcd
ABCD_XYZ
asasasasasasasasas01
ASASASASASASAS

• Use the -e option to specify a pattern that begins with -.

C:\TEMP>%ADSH_OSCMD_DIR%\grep -e "-rw-" file01.txt
-rw------- user0001 12 May 12 17:19 a.txt
-rw------- user0001 79 May 12 20:36 abc.txt
-rw------- user0001 141 May 12 20:36 abcd.txt
-rw------- user0001 12 May 12 18:05 b.txt
-rw------- user0001 133 May 12 21:49 f01.txt
-rw------- user0001 0 May 12 19:42 ff
-rw------- user0001 0 May 12 20:54 ff.txt

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\grep -d
grep: illegal option -- d
usage: grep [-abcEGhIiLlnqRrsUvwx] [-A num] [-B num] [-C[num]]
 [-e pattern] [-f file] [pattern] [file ...]

• Display an error message if a file does not exist.

C:\TEMP>%ADSH_OSCMD_DIR%\grep CHECK file99
grep: file99: No such file or directory

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 679

head command (displays the first part of files)

Format

head [-num-lines|-n num-lines] [path-name ...]

Description
This command displays the first few lines from one or more files. The specified number of lines from the beginning of
the file are output to the standard output. If no file is specified, the standard input is read. If no value is specified for the
number of lines to be output, 10 lines is assumed.

Arguments

-num-lines | -n num-lines ~<decimal>((1 to 2147483647))
Specifies the number of lines from the beginning of the input file that are to be sent to the standard output. If you
specify a value that is less than or equal to 0 or that is greater than 2147483647, an error message (head: line
count too small: specified-value or head: line count too large: specified-value) is output.

path-name
Specifies the path name of an input file.

• The default is the standard input.

• Multiple files can be specified. If you specify more than one file, each file is identified at the beginning of the
output from that file by a blank line (linefeed) and its file name in a header string in the following format:
==> file-name <==

• When you execute the command with multiple files specified, all the files are processed. If any file fails to open,
the command terminates with a return code of 1.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Usage examples
The following shows the format of the files used in the examples below to illustrate the results of executing the head
command.

• test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 680

• test2.txt
0001:test2.txt
0002:test2.txt
0003:test2.txt
0004:test2.txt
0005:test2.txt
0006:test2.txt
0007:test2.txt
0008:test2.txt
0009:test2.txt
0010:test2.txt

The examples below illustrate the results of executing the command on the files shown above.

• Display the first two lines of the files test1.txt and test2.txt.

$ head -2 test1.txt test2.txt
==> test1.txt <==
0001:test1.txt
0002:test1.txt

==> test2.txt <==
0001:test2.txt
0002:test2.txt
$

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\head -d
head: illegal option -- d
usage: head [-count | -n count] [file ...]

hostname command (displays the host name)

Format

hostname

Description
This command displays the current host's host name.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 681

Notes
• This command takes no arguments. Any arguments that are specified are ignored during execution of the command.

Usage example
• Display the name of the current host system.

C:\TEMP>%ADSH_OSCMD_DIR%\hostname
HOST01

ls command (lists the contents of files or directories)

Format

ls [-1] [-A] [-a] [-C] [-c] [-d] [-F] [-f] [-g] [-h] [-i] [-k]
 [-L] [-l] [-m] [-n] [-p] [-q] [-R] [-r] [-S] [-s] [-T] [-t]
 [-u] [-x]
 [--format=display-format][--full-time]
 [--indicator-style=file-type-style][--sort=sort-key]
 [--time=file-date-and-time-type]
 [path-name ...]

Description
The command lists directory contents. The contents are sent to the standard output.

In the output contents, permissions are displayed as described in the following:

• The first character indicates the type of target:
-: Regular file
b: Block special file
c: Character special file
d: Directory
l: Symbolic link
p: FIFO
s: Socket

• The subsequent nine characters are treated as three sets of three characters which indicate the owner permissions,
group permissions, and other user permissions. In Windows, only the owner permissions are displayed.

Order in
permissions

Displayed
character#

Permission

1 r Read by owner

2 w Write by owner

3 x Execute by owner

s Set user ID or set group ID by owner/execute

S Set user ID or set group ID by owner/no execute

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 682

Order in
permissions

Displayed
character#

Permission

4 r Read by group

5 w Write by group

6 x Execute by group

s Set user ID or set group ID by group/execute

S Set user ID or set group ID by group/no execute

7 r Read by other users

8 w Write by other users

9 x Execute by other users

t Sticky bits by other users/execute

T Sticky bits by other users/no execute

#
The following table explains the characters that are displayed:

Character Meaning

- The corresponding permission is not granted.

r In Windows, files or directories exist.
In UNIX, read permissions are granted.

w In Windows, the read-only attribute is not set.
In UNIX, write permissions are granted.

x In Windows, one of the following:
• The extension is .com, .exe, .cmd, or .bat.
• This is a directory.

In UNIX, execute permissions are granted.

s Set user ID or set group ID is granted and execute permissions are granted (UNIX only).

S Set user ID or set group ID is granted, but execute permissions are not granted (UNIX only).

t Sticky bits are granted and execute permissions are granted (UNIX only).

T Sticky bits are granted, but execute permissions are not granted (UNIX only).

If the -g, -l, -n, or --full-time option is specified, results are output in the long format.

The long format means that not only file and directory names but detailed information about files and directories are
output. You can change the output format for each item by combining the long format with the -h, -T, and -u options.

Arguments
-1

--format=single-column
Specifies that the list format is to be one entry per line (in a single column).

-A

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 683

--almost-all
Specifies that all entries are to be listed except for those from those from . (dot) and .. (dot dot) files.

-a

--all
Specifies that all files and directories, including those with names starting with . (dot), are to be listed.

-C

--format=vertical
Specifies that entries are to be listed in multiple columns, sorted vertically. This is the default for output to the
terminal.

-c

--time=ctime

--time=status
Specifies that the date and time of the last change in file information rather than the most recent modification date
and time is to be used for sorting (-t option) and for list output (-g, -l, -n, and --full-time options).

-d

--directory
Specifies that only the directory names are to be listed, without displaying the contents of the directories.

-F

--classify

--indicator-style=classify
Specifies that a forward slash (/) is to be output after a directory name, an asterisk (*) is to be output after an
executable file, an at mark (@) is to be output after a symbolic link, a vertical bar (|) is to be output after a FIFO
name, and an equal sign (=) is to be output after a socket.

-f

--sort=none
Specifies that the list is to be output without sorting.

-g
Specifies that the list is to be output in long format, but without listing the file owners.

-h

--human-readable
Specifies that when the long format is used, file sizes are to be divided by a power of 2 and rounded off to two
decimal places for display purposes. A size letter (M for 1048576 or K for 1024) is to be added to the file size.
The -h option is ignored for any special files in a directory.

-i

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 684

--inode
In UNIX, specifies that each file's inode number is to be output.
In Windows, 0 is always output.

-k
In UNIX, specifies that KB is to be output as the units for listing file sizes with the -s option and as the units for
listing the total number of blocks for directories with the -l, -g, -s, and --full-time options.
In Windows, specifies that KB is to be output as the units for listing file sizes with the -s option.

-L

--dereference
In UNIX, specifies that list information about a referenced file rather than the symbolic link itself is to be output.
In Windows, list information about a referenced file is always output.

-l

--format=long

--format=verbose
Specifies that the list is to be output in long format with the following items displayed. To output date and time in
the complete format, specify the --full-time option.

• UNIX
Access permissions, number of links, owner name, group name, size, most recent modification date and time,
name of file or directory. If the target is directories, the total number of directories including . and .. under
that directory are displayed.

• Windows
Access permissions for the owner of the file, owner name, size (except for directories), most recent modification
date and time, name of file or directory

-m

--format=commas
Specifies that file names are to be delimited by the comma (,).

-n

--numeric-uid-gid
In UNIX, specifies that user IDs and group IDs are to be listed instead of user names and group names.
In Windows, 0 is listed for a user ID, and group IDs are not output.

-p

--indicator-style=slash
Specifies that a forward slash (/) is to be output after a directory name.

-q

--hide-control-chars
Specifies that a question mark (?) is to be output for any unprintable character used in a file name. This is the default
for output to the terminal.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 685

-R

--recursive
Specifies that subdirectories are to be listed recursively.

-r

--reverse
Specifies that the output is to be sorted in reverse order.

-S

--sort=size
Specifies that the entries are to be sorted by size, from largest to smallest.

-s

--size
In UNIX, specifies that the number of blocks in each file, rounded up to full blocks, is to be output. A block is 512
bytes, unless you also specify the -k option or have defined the BLOCKSIZE environment variable.
In Windows, the number of blocks is always listed as 0.

-T
Specifies that date and time information is to be listed in the order month, date, hour, minute, second, and year. This
option is specified together with the -g, -l, or -n option.

-t

--sort=time
Specifies that the entries are to be sorted by most recent modification date and time, starting with the most recent.

-u

--time=atime

--time=access

--time=use
Specifies that the most recent access date and time instead of the most recent modification date and time is to be
used when sorting (-t option) or listing in the long format (-g, -l, -n, or --full-time option).

-x

--format=across

--format=horizontal
Specifies that entries are to be listed in multiple columns, as with -C, but sorted horizontally.

--format=display-format
Specifies the format for displaying file or directory contents.
The permitted values for display formats are listed below. If the --format option is specified more than once, the
last option specified takes effect.
across or horizontal
Specifies that entries are to be listed in multiple columns, sorted horizontally. This is the same as the -x option.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 686

commas
Displays file names separated by the comma (,). This is the same as the -m option.

long or verbose
Displays in the long format. This is the same as the -l option.

single-column
Displays one entry (one column) per line. This is the same as the -l option.

vertical
Displays multiple columns, sorted vertically. This is the same as the -C option.

--full-time
Specifies that the same items as when the -l option is specified are to be output. However, information about the
date and time is to be output in the complete format, not in the default abbreviated format.
The output format for the date and time information is as follows:

YYYY-MM-DD hh:mm:ss.nnnnnnnnn +/-hhmm
YYYY: Calendar year
MM: Month
DD: Date
hh: Hour
mm: Minute
ss: Second
nnnnnnnnn: Date and time less than one second. 000000000 is always output.
+/-hhmm: Time zone (the time differential from UTC).

--indicator-style=file-type-style
Specifies the style to be used to display information about the file type.
The following values are supported:
classify

Outputs the character indicating the file type immediately after the file name. For a directory name, a forward
slash (/) is displayed immediately after the directory name. This is the same as the -F option.
For details about the characters used to indicate file types, see the description of the -F option.

slash
Displays a forward slash (/) immediately after the directory name. This is the same as the -p option.

If --indicator-style=classify is specified together with --indicator-style=slash, the
classify specification takes effect.
In Windows, classify is ignored, if specified.

--sort=sort-key
Specifies that when multiple files are displayed, they are to be sorted by the file information indicated by the specified
sort key. If the --sort option is specified more than once, the last specification takes effect.
For the sort key, the following values are supported:
size

Sorts files by file size. This is the same as the -S option.

time
Sorts files by most recent modification date and time. This is the same as the -t option. You can also specify
the --time option to sort files by the date and time each was last accessed or changed.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 687

none
Outputs files without sorting them. This is the same as the -f option.

--time=file-date-and-time-type
Specifies a file date and time type that is to be applied to date and time information used for sorting (-t) and listing
(the -g, -l, -n, and --full-time options). If the --time option is specified more than once, the last
specification takes effect. If more than one option is specified, the last option takes effect. In Windows, --time is
ignored, if specified.
For the file date and time type, the following values are supported:

atime, access, or use
Uses the last date and time files were accessed. This is the same as the -u option.

ctime or status
Uses the last date and time file information was changed. This is the same as the -c option.

path-name
Specifies the name of a file or directory that is to be listed. More than one can be specified.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If more than one of the -1, -C, -l, -m, -x and --full-time options is specified, the one specified last takes

effect.
However, if the -l option is specified together with the --full-time option, the --full-time option takes
effect.

• All entries other than . (dot) or .. (dot dot), including entries that start with . (dot), are eligible to be listed,
regardless of whether the -A option is specified.

• The default block size is 512 bytes.

• If the date and time associated with a file is at least 182 days (about six months) distant from the time the command
is executed, the year is listed instead of the date and time.
However, this does not apply when the --full-time option is specified.

• In UNIX, if the user name or group name cannot be acquired, the user ID or group ID, respectively, is displayed.

• In Windows, the -F, -c, and -u options are ignored.

• In Windows, an ellipsis (...) is displayed when the user name cannot be obtained.

• In Windows, the total size of the files in the directory is displayed in bytes.

• In Windows, hidden file attributes can be displayed.

• This command is affected by the following environment variables:

• COLUMNS environment variable
Sets the output width per line when listing in multiple columns with the -C option. You cannot define this within
a job definition script in JP1/Advanced Shell.

• BLOCKSIZE environment variable

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 688

In UNIX, sets the size of a block for purposes of displaying the number of blocks with the -s option. The
permitted value range is from 512 to 1 GB (1,024 1,024 1,024). If the specified value is outside this range,
the command handles it as described below, outputs a warning message to the standard error output, and then
performs the subsequent processing:

 If a value smaller than 512 is specified in the BLOCKSIZE environment variable
 The block size is set to 512 bytes.
 If a value greater than 1 GB (1,024 1,024 1,024) is specified in the BLOCKSIZE environment variable

 The block size is set to 1 gigabyte (1,024 1,024 1,024).
If you use the BLOCKSIZE environment variable to change the block size, specify a multiple of 512. If the
specified value is not a multiple of 512, the remainder will be discarded. For example, if a size of 1,500 bytes
is defined, the block size will be treated as being 1,024 bytes. You can specify following the numeric value a
size character indicating a multiple, such as G (1,024 1,024 1,024), M (1,024 1,024), or K (1,024). If
any value other than a numeric value and size character is specified, the command will assume 512 bytes as the
block size, output a warning message to the standard error output, and then resume the subsequent processing.

• TZ environment variable
In UNIX, sets the time zone used to display the date and time.
In Windows, the time zone set in the Date and Time control panel is used to display the date and time. The
value of the TZ environment variable is ignored.
Note that the --full-time option uses the value of the TZ environment variable and the time zone set in the
Date and Time control panel. For this reason, you must ensure sure that the value of the TZ environment variable
and the time zone set in the Date and Time control panel are the same. If they differ, the correct time zone will
not be displayed by the --full-time option.

• In Windows, when you specify a drive letter as the directory, depending on how it is specified, it might reference
the current directory where the command is being executed.
Examples based on the following folder organization are explained below:

 Current drive Other drive
 D:\ E:\
 | |
 + X + R
 + Y + S
 + Z + T
 | |
 + file1 + fileA
 + file2 + fileB
 + file3 + fileC

When the current drive (D:) is specified, the entries under the directory where the command is executed are listed
(D:\Z):

 D:\Z>ls -l D:
 total 462
 -rw------- ouser001 154 Jun 02 15:23 file1
 -rw------- ouser001 154 Jun 02 15:23 file2
 -rw------- ouser001 154 Jun 02 15:23 file3

 D:\Z>

Specify the current drive (D:\) to list the entries directly under the specified drive letter (D:\):

D:\Z>ls -l D:\
total 0
drwx------ ouser001 Jun 02 15:22 X

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 689

drwx------ ouser001 Jun 02 15:23 Y
drwx------ ouser001 Jun 02 15:25 Z

D:\Z>

Specify another drive (E:) to list the entries directly under the specified drive letter (E:\):

D:\Z>ls -l E:
total 0
drwx------ ouser001 Jun 02 15:24 R
drwx------ ouser001 Jun 02 15:24 S
drwx------ ouser001 Jun 02 15:25 T

D:\Z>

Specify another drive (E:\) to list the entries directly under the specified drive letter (E:\):

D:\Z>ls -l E:\
total 0
drwx------ ouser001 Jun 02 15:24 R
drwx------ ouser001 Jun 02 15:24 S
drwx------ ouser001 Jun 02 15:25 T

D:\Z>

Usage examples
• Specify no option to display files in the current directory.

C:\TEMP>%ADSH_OSCMD_DIR%\ls
cmp.exe grep.exe mv.exe sleep.exe cp.exe
hostname.exe spool Adshuxpl.dll date.exe ls.exe
rm.exe tmp cat.exe mkdir.exe rmdir.exe uname.exe

• Specify the -1 option to list entries in a single column.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -1
Adshuxpl.dll
cat.exe
cmp.exe
cp.exe
date.exe
grep.exe
hostname.exe
ls.exe
mkdir.exe
mv.exe
rm.exe
rmdir.exe
sleep.exe
spool
tmp
uname.exe

• Specify the -A option to list all entries except . (dot) and .. (dot dot). In Windows, entries that begin with . (dot)
are always listed, regardless of whether the -A option is specified.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 690

C:\TEMP>%ADSH_OSCMD_DIR%\ls -A
abcde.txt date.exe hostname.exe rm.exe uname.exe
abcdex.txt ls.exe rmdir.exe Adshuxpl.dll cat.exe
file1.txt mkdir.exe sleep.exe abc.txt cmp.exe
mv.exe spool abcd.txt cp.exe grep.exe
tmp

• Specify the -a option to include directories that begin with . (dot).

C:\TEMP>%ADSH_OSCMD_DIR%\ls -a
. cat.exe mv.exe spool
.. cmp.exe grep.exe tmp
cp.exe hostname.exe rm.exe uname.exe
date.exe ls.exe rmdir.exe Adshuxpl.dll
mkdir.exe sleep.exe

• Specify the -C option to list entries in multiple columns sorted vertically.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -C
cmp.exe mkdir.exe rmdir.exe uname.exe cp.exe
grep.exe mv.exe sleep.exe Adshuxpl.dll date.exe
hostname.exe spool cat.exe ls.exe rm.exe
tmp

• Specify the -f option to list without sorting.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -f
Adshuxpl.dll cmp.exe mkdir.exe rmdir.exe uname.exe
cp.exe grep.exe mv.exe sleep.exe date.exe
hostname.exe spool cat.exe ls.exe rm.exe
tmp

• Specify the -g option to list entries in long format, but omitting the owner. In the case of Windows, the group name
is omitted.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -g
total 1069363
-rw------- 439808 May 09 11:31 Adshuxpl.dll
-rwx------ 10752 May 09 11:34 cat.exe
-rwx------ 10240 May 09 11:34 cmp.exe
-rwx------ 18432 May 09 11:34 cp.exe
-rwx------ 10240 May 09 11:34 date.exe
-rwx------ 43008 May 09 11:33 grep.exe
-rwx------ 7680 May 09 11:33 hostname.exe
-rwx------ 22528 May 09 16:27 ls.exe
-rwx------ 8192 May 09 11:33 mkdir.exe
-rwx------ 12288 May 09 11:33 mv.exe
-rwx------ 16384 May 09 11:33 rm.exe
-rwx------ 8192 May 09 11:32 rmdir.exe
-rwx------ 8192 May 09 11:32 sleep.exe
drwx------ May 10 08:50 spool
drwx------ May 10 08:50 tmp
-rwx------ 9216 May 09 11:32 uname.exe

• Specify the -h option together with the long format option to append a size letter to the file size.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lh
total 1069363

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 691

-rw------- 10379780 430K May 09 11:31 Adshuxpl.dll
-rwx------ 10379780 10.5K May 09 11:34 cat.exe
-rwx------ 10379780 10.0K May 09 11:34 cmp.exe
-rwx------ 10379780 18.0K May 09 11:34 cp.exe
-rwx------ 10379780 10.0K May 09 11:34 date.exe
-rwx------ 10379780 42.0K May 09 11:33 grep.exe
-rwx------ 10379780 7.5K May 09 11:33 hostname.exe
-rwx------ 10379780 22.0K May 09 16:27 ls.exe
-rwx------ 10379780 8.0K May 09 11:33 mkdir.exe
-rwx------ 10379780 12.0K May 09 11:33 mv.exe
-rwx------ 10379780 16.0K May 09 11:33 rm.exe
-rwx------ 10379780 8.0K May 09 11:32 rmdir.exe
-rwx------ 10379780 8.0K May 09 11:32 sleep.exe
drwx------ 10379780 May 10 08:50 spool
drwx------ 10379780 May 10 08:50 tmp
-rwx------ 10379780 9.0K May 09 11:32 uname.exe

• Specify the -i option to display the inode number for each file. In the case of Windows, 0 is displayed for the inode
number.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -i
0 cp.exe 0 hostname.exe 0 rm.exe 0 uname.exe
0 date.exe 0 ls.exe 0 rmdir.exe 0 Adshuxpl.dll
0 mkdir.exe 0 sleep.exe 0 cat.exe 0 mv.exe
0 spool 0 cmp.exe 0 grep.exe 0 tmp

C:\TEMP>%ADSH_OSCMD_DIR%\ls -il
total 1069363
0 -rw------- 10379780 439808 May 09 11:31 Adshuxpl.dll
0 -rwx------ 10379780 10752 May 09 11:34 cat.exe
0 -rwx------ 10379780 10240 May 09 11:34 cmp.exe
0 -rwx------ 10379780 18432 May 09 11:34 cp.exe
0 -rwx------ 10379780 10240 May 09 11:34 date.exe
0 -rwx------ 10379780 43008 May 09 11:33 grep.exe
0 -rwx------ 10379780 7680 May 09 11:33 hostname.exe
0 -rwx------ 10379780 22528 May 09 16:27 ls.exe
0 -rwx------ 10379780 8192 May 09 11:33 mkdir.exe
0 -rwx------ 10379780 12288 May 09 11:33 mv.exe
0 -rwx------ 10379780 16384 May 09 11:33 rm.exe
0 -rwx------ 10379780 8192 May 09 11:32 rmdir.exe
0 -rwx------ 10379780 8192 May 09 11:32 sleep.exe
0 drwx------ 10379780 May 10 08:50 spool
0 drwx------ 10379780 May 10 08:50 tmp
0 -rwx------ 10379780 9216 May 09 11:32 uname.exe

• Specify the -l option to list entries in long format. In Windows, only the access permissions of the owner are
displayed, and the group name, link count, and directory size are not displayed.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -l
total 1069359
-rw------- 10379780 439808 May 09 11:31 Adshuxpl.dll
-rwx------ 10379780 10752 May 09 11:34 cat.exe
-rwx------ 10379780 10240 May 09 11:34 cmp.exe
-rwx------ 10379780 18432 May 09 11:34 cp.exe
-rwx------ 10379780 10240 May 09 11:34 date.exe
-rwx------ 10379780 43008 May 09 11:33 grep.exe
-rwx------ 10379780 7680 May 09 11:33 hostname.exe
-rwx------ 10379780 22528 May 09 16:27 ls.exe

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 692

-rwx------ 10379780 8192 May 09 11:33 mkdir.exe
-rwx------ 10379780 12288 May 09 11:33 mv.exe
-rwx------ 10379780 16384 May 09 11:33 rm.exe
-rwx------ 10379780 8192 May 09 11:32 rmdir.exe
-rwx------ 10379780 8192 May 09 11:32 sleep.exe
drwx------ 10379780 May 10 08:50 spool
drwx------ 10379780 May 10 08:50 tmp
-rwx------ 10379780 9216 May 09 11:32 uname.exe

• Specify the -l option together with the -c option to display the date and time of the most recent change in file
information instead of the most recent modification date and time. Windows ignores the -c option and displays the
most recent modification date and time.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lc
total 1069363
-rw------- 10379780 439808 May 09 11:31 Adshuxpl.dll
-rwx------ 10379780 10752 May 09 11:34 cat.exe
-rwx------ 10379780 10240 May 09 11:34 cmp.exe
-rwx------ 10379780 18432 May 09 11:34 cp.exe
-rwx------ 10379780 10240 May 09 11:34 date.exe
-rwx------ 10379780 43008 May 09 11:33 grep.exe
-rwx------ 10379780 7680 May 09 11:33 hostname.exe
-rwx------ 10379780 22528 May 09 16:27 ls.exe
-rwx------ 10379780 8192 May 09 11:33 mkdir.exe
-rwx------ 10379780 12288 May 09 11:33 mv.exe
-rwx------ 10379780 16384 May 09 11:33 rm.exe
-rwx------ 10379780 8192 May 09 11:32 rmdir.exe
-rwx------ 10379780 8192 May 09 11:32 sleep.exe
drwx------ 10379780 May 10 08:50 spool
drwx------ 10379780 May 10 08:50 tmp
-rwx------ 10379780 9216 May 09 11:32 uname.exe

• Specify the -l option together with the -u option to display the most recent access date and time instead of the
most recent modification date and time. Windows ignores the -u option and displays the most recent modification
date and time.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lu
total 1069363
-rw------- 10379780 439808 May 09 11:31 Adshuxpl.dll
-rwx------ 10379780 10752 May 09 11:34 cat.exe
-rwx------ 10379780 10240 May 09 11:34 cmp.exe
-rwx------ 10379780 18432 May 09 11:34 cp.exe
-rwx------ 10379780 10240 May 09 11:34 date.exe
-rwx------ 10379780 43008 May 09 11:33 grep.exe
-rwx------ 10379780 7680 May 09 11:33 hostname.exe
-rwx------ 10379780 22528 May 09 16:27 ls.exe
-rwx------ 10379780 8192 May 09 11:33 mkdir.exe
-rwx------ 10379780 12288 May 09 11:33 mv.exe
-rwx------ 10379780 16384 May 09 11:33 rm.exe
-rwx------ 10379780 8192 May 09 11:32 rmdir.exe
-rwx------ 10379780 8192 May 09 11:32 sleep.exe
drwx------ 10379780 May 10 08:50 spool
drwx------ 10379780 May 10 08:50 tmp
-rwx------ 10379780 9216 May 09 11:32 uname.exe

• Specify the -m option to list entries in stream output format delimited by the comma.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 693

C:\TEMP>%ADSH_OSCMD_DIR%\ls -m
Adshuxpl.dll, cat.exe, cmp.exe, cp.exe, date.exe,
grep.exe, hostname.exe, ls.exe, mkdir.exe, mv.exe,
rm.exe, rmdir.exe, sleep.exe, spool, tmp, uname.exe

• Specify the -n option to display user ID and group ID instead of user name and group name. In Windows, 0 is
displayed for the user ID and group IDs are not output.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -n
total 1069363
-rw------- 0 439808 May 09 11:31 Adshuxpl.dll
-rwx------ 0 10752 May 09 11:34 cat.exe
-rwx------ 0 10240 May 09 11:34 cmp.exe
-rwx------ 0 18432 May 09 11:34 cp.exe
-rwx------ 0 10240 May 09 11:34 date.exe
-rwx------ 0 43008 May 09 11:33 grep.exe
-rwx------ 0 7680 May 09 11:33 hostname.exe
-rwx------ 0 22528 May 09 16:27 ls.exe
-rwx------ 0 8192 May 09 11:33 mkdir.exe
-rwx------ 0 12288 May 09 11:33 mv.exe
-rwx------ 0 16384 May 09 11:33 rm.exe
-rwx------ 0 8192 May 09 11:32 rmdir.exe
-rwx------ 0 8192 May 09 11:32 sleep.exe
drwx------ 0 May 10 08:50 spool
drwx------ 0 May 10 08:50 tmp
-rwx------ 0 9216 May 09 11:32 uname.exe

• Specify the -p option to display a forward slash (/) after a directory name.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -p
cp.exe hostname.exe rm.exe uname.exe
date.exe ls.exe rmdir.exe mkdir.exe
sleep.exe cat.exe mv.exe spool/
cmp.exe grep.exe tmp/

C:\TEMP>%ADSH_OSCMD_DIR%\ls -alp
total 1069363
drwx------ 10379780 May 10 09:45 ./
drwx------ 10379780 May 10 10:02 ../
-rw------- 10379780 439808 May 09 11:31 Adshuxpl.dll
-rwx------ 10379780 10752 May 09 11:34 cat.exe
-rwx------ 10379780 10240 May 09 11:34 cmp.exe
-rwx------ 10379780 18432 May 09 11:34 cp.exe
-rwx------ 10379780 10240 May 09 11:34 date.exe
-rwx------ 10379780 43008 May 09 11:33 grep.exe
-rwx------ 10379780 7680 May 09 11:33 hostname.exe
-rwx------ 10379780 22528 May 09 16:27 ls.exe
-rwx------ 10379780 8192 May 09 11:33 mkdir.exe
-rwx------ 10379780 12288 May 09 11:33 mv.exe
-rwx------ 10379780 16384 May 09 11:33 rm.exe
-rwx------ 10379780 8192 May 09 11:32 rmdir.exe
-rwx------ 10379780 8192 May 09 11:32 sleep.exe
drwx------ 10379780 May 10 08:50 spool/
drwx------ 10379780 May 10 08:50 tmp/
-rwx------ 10379780 9216 May 09 11:32 uname.exe

• Specify the -q option to show unprintable characters as a question mark (?).

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 694

C:\TEMP>%ADSH_OSCMD_DIR%\ls -q ..\dir1
.sub1 file2.txt sub4 wc2.c wc4.c
.sub2 sub3 wc1.c wc3.c ????.txt

• Specify the -R option to list subdirectories recursively.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -R ..\dir1
.sub1 file2.txt sub4 wc2.c wc4.c
.sub2 sub3 wc1.c wc3.c ????.txt

..\dir1\.sub1:

..\dir1\.sub2:

..\dir1\sub3:

..\dir1\sub4:

• Specify the -r option to list entries sorted in reverse order.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -r
spool hostname.exe date.exe Adshuxpl.dll
sleep.exe mv.exe grep.exe cp.exe
uname.exe rmdir.exe mkdir.exe cmp.exe
tmp rm.exe ls.exe cat.exe
C:\TEMP>%ADSH_OSCMD_DIR%\ls -rl
total 1069363
-rwx------ 10379780 9216 May 09 11:32 uname.exe
drwx------ 10379780 May 10 08:50 tmp
drwx------ 10379780 May 10 08:50 spool
-rwx------ 10379780 8192 May 09 11:32 sleep.exe
-rwx------ 10379780 8192 May 09 11:32 rmdir.exe
-rwx------ 10379780 16384 May 09 11:33 rm.exe
-rwx------ 10379780 12288 May 09 11:33 mv.exe
-rwx------ 10379780 8192 May 09 11:33 mkdir.exe
-rwx------ 10379780 22528 May 09 16:27 ls.exe
-rwx------ 10379780 7680 May 09 11:33 hostname.exe
-rwx------ 10379780 43008 May 09 11:33 grep.exe
-rwx------ 10379780 10240 May 09 11:34 date.exe
-rwx------ 10379780 18432 May 09 11:34 cp.exe
-rwx------ 10379780 10240 May 09 11:34 cmp.exe
-rwx------ 10379780 10752 May 09 11:34 cat.exe
-rw------- 10379780 439808 May 09 11:31 Adshuxpl.dll

• Specify the -S option to sort by size, from largest to smallest.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -S
Adshuxpl.dll rm.exe cmp.exe mkdir.exe
ls.exe mv.exe date.exe rmdir.exe spool
cat.exe sleep.exe tmp grep.exe cp.exe
uname.exe hostname.exe
C:\TEMP>%ADSH_OSCMD_DIR%\ls -lS
total 1069363
-rw------- 10379780 439808 May 09 11:31 Adshuxpl.dll
-rwx------ 10379780 43008 May 09 11:33 grep.exe
-rwx------ 10379780 22528 May 09 16:27 ls.exe
-rwx------ 10379780 18432 May 09 11:34 cp.exe
-rwx------ 10379780 16384 May 09 11:33 rm.exe

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 695

-rwx------ 10379780 12288 May 09 11:33 mv.exe
-rwx------ 10379780 10752 May 09 11:34 cat.exe
-rwx------ 10379780 10240 May 09 11:34 cmp.exe
-rwx------ 10379780 10240 May 09 11:34 date.exe
-rwx------ 10379780 9216 May 09 11:32 uname.exe
-rwx------ 10379780 8192 May 09 11:33 mkdir.exe
-rwx------ 10379780 8192 May 09 11:32 rmdir.exe
-rwx------ 10379780 8192 May 09 11:32 sleep.exe
-rwx------ 10379780 7680 May 09 11:33 hostname.exe
drwx------ 10379780 May 10 08:50 spool
drwx------ 10379780 May 10 08:50 tmp

• Specify the -s option to display the number of blocks for each file. In Windows, 0 is displayed.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -sl
total 1070036
0 -rw------- 10379780 439808 May 09 11:31 Adshuxpl.dll
0 -rw------- 10379780 90 May 10 10:46 abc.txt
0 -rw------- 10379780 152 May 10 15:25 abcd.txt
0 -rw------- 10379780 179 May 10 11:01 abcde.txt
0 -rw------- 10379780 146 May 10 15:22 abcdex.txt
0 -rwx------ 10379780 10752 May 09 11:34 cat.exe
0 -rwx------ 10379780 10240 May 09 11:34 cmp.exe
0 -rwx------ 10379780 18432 May 09 11:34 cp.exe
0 -rwx------ 10379780 10240 May 09 11:34 date.exe
0 -rw------- 10379780 106 May 10 13:58 file1.txt
0 -rwx------ 10379780 43008 May 09 11:33 grep.exe
0 -rwx------ 10379780 7680 May 09 11:33 hostname.exe
0 -rwx------ 10379780 22528 May 09 16:27 ls.exe
0 -rwx------ 10379780 8192 May 09 11:33 mkdir.exe
0 -rwx------ 10379780 12288 May 09 11:33 mv.exe
0 -rwx------ 10379780 16384 May 09 11:33 rm.exe
0 -rwx------ 10379780 8192 May 09 11:32 rmdir.exe
0 -rwx------ 10379780 8192 May 09 11:32 sleep.exe
0 drwx------ 10379780 May 10 08:50 spool
0 drwx------ 10379780 May 10 08:50 tmp
0 -rwx------ 10379780 9216 May 09 11:32 uname.exe

• Specify the -T option to display time information as the month, date, hour, minute, second, and year.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lT
total 1069363
-rw------- 10379780 439808 May 09 11:31:40 2011 Adshuxpl.dll
-rwx------ 10379780 10752 May 09 11:34:28 2011 cat.exe
-rwx------ 10379780 10240 May 09 11:34:20 2011 cmp.exe
-rwx------ 10379780 18432 May 09 11:34:35 2011 cp.exe
-rwx------ 10379780 10240 May 09 11:34:13 2011 date.exe
-rwx------ 10379780 43008 May 09 11:33:44 2011 grep.exe
-rwx------ 10379780 7680 May 09 11:33:34 2011 hostname.exe
-rwx------ 10379780 22528 May 09 16:27:40 2011 ls.exe
-rwx------ 10379780 8192 May 09 11:33:15 2011 mkdir.exe
-rwx------ 10379780 12288 May 09 11:33:53 2011 mv.exe
-rwx------ 10379780 16384 May 09 11:33:01 2011 rm.exe
-rwx------ 10379780 8192 May 09 11:32:54 2011 rmdir.exe
-rwx------ 10379780 8192 May 09 11:32:49 2011 sleep.exe
drwx------ 10379780 May 10 08:50:19 2011 spool
drwx------ 10379780 May 10 08:50:19 2011 tmp
-rwx------ 10379780 9216 May 09 11:32:44 2011 uname.exe

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 696

• Specify the -t option to sort files in the order of most recent modification date and time.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -t
date.exe hostname.exe rmdir.exe
spool cp.exe mkdir.exe sleep.exe
tmp cat.exe mv.exe uname.exe Adshuxpl.dll
ls.exe cmp.exe grep.exe rm.exe

C:\TEMP>%ADSH_OSCMD_DIR%\ls -lt
total 1069363
drwx------ 10379780 May 10 08:50 spool
drwx------ 10379780 May 10 08:50 tmp
-rwx------ 10379780 22528 May 09 16:27 ls.exe
-rwx------ 10379780 18432 May 09 11:34 cp.exe
-rwx------ 10379780 10752 May 09 11:34 cat.exe
-rwx------ 10379780 10240 May 09 11:34 cmp.exe
-rwx------ 10379780 10240 May 09 11:34 date.exe
-rwx------ 10379780 12288 May 09 11:33 mv.exe
-rwx------ 10379780 43008 May 09 11:33 grep.exe
-rwx------ 10379780 7680 May 09 11:33 hostname.exe
-rwx------ 10379780 8192 May 09 11:33 mkdir.exe
-rwx------ 10379780 16384 May 09 11:33 rm.exe
-rwx------ 10379780 8192 May 09 11:32 rmdir.exe
-rwx------ 10379780 8192 May 09 11:32 sleep.exe
-rwx------ 10379780 9216 May 09 11:32 uname.exe
-rw------- 10379780 439808 May 09 11:31 Adshuxpl.dll

• Specify the -x option to list entries in multiple columns sorted horizontally.

C:\TEMP>%ADSH_OSCMD_DIR%\ls -x
Adshuxpl.dll cat.exe cmp.exe cp.exe
date.exe grep.exe hostname.exe ls.exe mkdir.exe
mv.exe rm.exe rmdir.exe sleep.exe spool
tmp uname.exe

• Specify the --full-time option to display the date and time information in the complete long format.

C:\Program Files\HITACHI\JP1AS\JP1ASE\cmd>ls --full-time
total 2638901
-rwx------ SYSTEM 327168 2014-01-10 19:47:42.000000000 +0900 awk.exe
-rwx------ SYSTEM 10240 2014-01-10 19:45:32.000000000 +0900 basename.exe
-rwx------ SYSTEM 12800 2014-01-10 19:48:44.000000000 +0900 cat.exe
-rwx------ SYSTEM 11264 2014-01-10 19:48:44.000000000 +0900 cmp.exe
-rwx------ SYSTEM 19968 2014-01-10 19:48:40.000000000 +0900 cp.exe
-rwx------ SYSTEM 14848 2014-01-10 19:48:04.000000000 +0900 cut.exe
-rwx------ SYSTEM 10240 2014-01-10 19:48:36.000000000 +0900 date.exe
-rwx------ SYSTEM 237056 2014-01-10 19:48:14.000000000 +0900 diff.exe
-rwx------ SYSTEM 224256 2014-01-10 19:45:28.000000000 +0900 egrep.exe

• Display option error massages:
This message might vary depending on the platform used to execute the command. The following is an example for
Windows:

C:\>ls -z
ls: illegal option -- z
usage: ls [-1AaCcdFfghikLlmnpqRrSsTtux] [--format=word] [--full-time]
 [--indicator-style=word] [--sort=word] [--time=word] [file ...]

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 697

mkdir command (creates directories)

Format

mkdir [-p] [-m permissions] directory ...

Description
This command creates directories.

Arguments

-p
Specifies that missing intermediate directories are to be created as needed.

-m permissions
In UNIX, specifies permissions that are to be set for the created directories. The umask value is not applied.
You can specify the permissions either as an octal number or using symbols.
If you specify a number, an error occurs if you specify a non-octal number or an octal value greater than 07777
(4095 decimal).
If you specify symbols, do so by setting, adding, and removing permissions, starting from the state in which nothing
is specified (0 in numeric representation).
A symbol consists of three parts. Specify one or more of the symbols, as explained below. If you specify more than
one, separate them with the comma (,).

Order within the symbol Permitted value

First Specifies the items for which you want to set access permissions. You can specify more than one at the
same time. The items below can be specified. If nothing is specified, a (all users) is assumed.
• u: Owner
• g: Group
• o: Other
• a: All users

Second Specifies an operation on the mode. The following processing is performed on the items specified in
the first part of a symbol.
• =: Set (overwrite) access permissions.
• +: Add access permissions.
• -: Remove access permissions.

The value to be set, added, or removed is specified in the third part of the symbol.
You can specify the second and third parts of a symbol following the third part. The third part of a
symbol can be omitted.

Third Specifies the applicable access permissions. You can specify more than one at the same time. The
following values can be specified:
• r: Read.
• w: Write.
• x: Execute.
• s: Set the user ID or group ID at run time.
• t: Sticky bit
• u: Owner access permissions currently set in the mode.
• g: Group access permissions currently set in the mode.
• o: Other access permissions currently set in the mode.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 698

Order within the symbol Permitted value

Third When this part is omitted and = is specified in the second part of the symbol, the items for which access
permissions are set are cleared. When this part is omitted and + or - is specified in the second part of
the symbol, no processing occurs.
Specifying s or t in this part will be ignored if only o is specified in the first part.

The following table shows examples of specifying symbols:

Value specified in -m Numeric equivalent Description

u=x, g=w 120 Set u to x, and set g to w.

u=x, g=u 110 Set u to x, and set the same values for g and u.

u=x, =u 111 Set u to x, and then set a (the default value) to the same values as u.

u=x, u=w 200 Set u to x, and then set (overwrite) u to w.

u=x, u+w 300 Set u to x, and then add w to u.

ug=x 110 Set u and g to x.

u=rw 600 Set u to r and w.

u=r+x 500 Set u to r, and then add x.

u=r=w 200 Set u to r, and then set (overwrite) it to w.

=x, u= 011 Set a (the default value) to x, and clear the settings for u.

= 000 Clear a (the default value).

In Windows, this specification is ignored.

directory
Specifies a name for a directory to be created. Multiple directory names can be specified.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• In Windows, the -m option is ignored. The mode cannot be specified.

Usage examples
• Create directory Dir2 under C:\USR\JP1.

C:\TEMP>%ADSH_OSCMD_DIR%\mkdir C:\USR\JP1\Dir2

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 699

C:\TEMP>%ADSH_OSCMD_DIR%\mkdir -w
mkdir: illegal option -- w
usage: mkdir [-p] [-m mode] directory ...

mv command (moves files or directories)

Format

mv [-f] [-i] source destination
mv [-f] [-i] source ... destination-directory

Description
This command moves files or directories. It can also be used to change the name of a file or directory.

Arguments

-f
Specifies that path overwriting is to be performed without requesting confirmation. This option is ignored if it is
specified before the -i option.

-i
Specifies that confirmation is to be requested before overwriting is performed. Overwriting will be performed only
if the reply y or Y is read from the standard input. This option is ignored if it is specified before the -f option.

source
Specifies the path name to be moved. Multiple path names can be specified.

destination
Specifies the destination path name. You can also change the name of a file or directory by specifying a path name
for both source and destination.

destination-directory
Specifies the destination directory name. You can move more than one file or directory by specifying multiple path
names in source.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If the -i and -f options are both specified, the one specified last takes effect.

• In Windows, when a file or directory is overwritten, access permissions other than the owner's are not displayed.
For details about the permissions that are displayed, see ls command (lists the contents of files or directories).

• In Windows, symbolic links are not supported.

• In Windows, group and mode are not preserved.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 700

• In Windows, the destination file name will be created using the file name specified in the source. However, uppercase
letters in the file name will be replaced with lowercase letters. For example, if the name of the file to be moved is
A.txt and you execute mv a.txt tmpdir, the name of the file in tmpdir will be a.txt.

• In Windows, file input and output are performed in the binary mode. No conversion of end-of-line codes is performed.

• In UNIX, when the mv command is used to move a file or directory and all the following conditions are satisfied,
the user who executes the mv command becomes the owner of the file or directory:

• A general user executed the mv command.

• The user executing the mv command is different from the owner of the source file.

• The source and destination file systems are different.

In addition, the following information will not be inherited:

• The access permission information set in the setuid and setgid bits of the source file

• The access permission information set in the setuid, setgid, and sticky bits of the source directory

Usage examples
• Specify the -i option to require confirmation before the destination file is overwritten.

C:\TEMP>%ADSH_OSCMD_DIR%\mv -i ..\dir1\file1.txt ..\dir1\file2.txt
overwrite ..\dir1\file2.txt?

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\mv -w
mv: illegal option -- w
usage: mv [-fi] source target
 mv [-fi] source ... directory

• Display an error message if a file does not exist.

C:\TEMP>%ADSH_OSCMD_DIR%\mv file3.txt file4.txt
mv: file3.txt: No such file or directory

paste command (concatenates multiple files in lines)

Format

paste[-s][-d list][path-name ...]

Description
This command concatenates multiple files in units of lines and then outputs the results to the standard output. You can
also join all lines in a file into a single continuous line and then concatenate multiple files.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 701

Arguments

-s
Joins all lines in the files into a single line (with separators).
If the -s option is omitted, the command joins the lines in all files that have the same line number (with separators).

-d list
Specifies a list of the separators that will be inserted between the lines to be concatenated. If the -d option is omitted,
the tab character is assumed.
To specify a space or tab character, enclose the character in double quotation marks (").
You can also specify special characters as separators.

Permitted special
character

Meaning Remarks

\n End-of-line code In Windows, an end-of-line code is denoted by [CR] + [LF].
In UNIX, an end-of-line code is denoted by [LF].

\t Tab character --

\\ One backslash character --

\0 Null character string Character string with a length of zero (""). No separator is inserted between the
lines to be concatenated.

Legend:
--: Not applicable.

Depending on the shell used to execute the paste command, special characters are treated as escape characters.
Therefore, enclose special characters in double or single quotation marks (" or '). If a non-special character is
immediately preceded by a backslash (\), the command ignores \ and uses the character following \ as the separator.
If only \ is specified, the command terminates with an error.
You can specify multiple separators. When multiple separators are specified, the command handles them as follows:

• Each time the command concatenates lines, it fetches a separator and inserts it between the lines. The separators
are fetched in order from the beginning of the list.

• When the -s option is not specified, the command fetches separators in order from the beginning of the list
again after it has output concatenated lines.

• When the -s option is specified, the command fetches separators in order from the beginning of the list again
after it has joined all lines in a file and has output them.

• When the end of the list of separators specified in the -d option is reached, the command fetches separators
from the list again in order from the beginning of the list.

path-name
Specifies the path name of a file to be concatenated and output. If no path name is specified or a hyphen (-) is
specified as the path name, the command reads the path name from the standard input.
You can specify multiple path names and hyphens (-) or a mixture of path names and hyphens.
If multiple files are specified and an open error occurs on any of the files, the following occurs:

• When the -s option is omitted, the command outputs an error message and terminates with return code 1. In
this case, nothing is output to the standard output.

• When the -s option is specified, the command outputs an error message for the file resulting in the open error
and resumes processing. When the command has processed all files, it terminates with return code 1.

If only one path name is specified, the command runs as follows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 702

• When the -s option is omitted, the command only outputs the lines.

• When the -s option is specified, the command joins all lines in the file and then outputs them.

Input and output of lines
In input files, the command treats a record separated by an end-of-line code as one line.

• In Windows, [CR] + [LF] or by [LF] is treated as the end-of-line code.

• In UNIX, [LF] is treated as the end-of-line code.
If each record in the input file is separated by [CR] + [LF], the concatenated lines contain [CR].

An end-of-line code is output at the end of the concatenated lines. The following is output as the end-of-line code:

• In Windows: [CR]+[LF]
• In UNIX: [LF]

Concatenating files in units of lines (when the -s option is omitted)
The command joins the lines that have the same line number in all the files and then outputs the results as a single line
(with separators). Null lines are treated as null character strings when they are joined with other lines.

If the end-of-file is detected in any of the files while lines with the same line number are being read, any remaining lines
for that file are joined as null characters with the lines from the other files.

The following example concatenates file1, file2, file3, and file4 in units of lines.

Contents of file1:

a001
a002

Contents of file2:

b001
(null line)
b003

Contents of file3:

c001
c002
c003
c004

Contents of file4:

d001

Command that concatenates file1, file2, file3, and file4 in units of lines:

$ paste file1 file2 file3 file4

The command concatenates the files as follows (-> indicates a tab character used as a separator):

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 703

a001->b001->c001->d001 1.
a002->-> c002-> 2.
-> b003->c003-> 3.
-> -> c004-> 4.

1. The command joins the first lines of file1, file2, file3, and file4 and then outputs the results. The command
inserts a tab character between the lines.

2. The command joins the following values with tab characters and then outputs the results:

• Contents of the second line of file1
• Null character string because the second line of file2 is the null line

• Contents of the second line of file3
• Null character string because the end of file is reached in file4

A null character string is a character string with a length of 0. Therefore, the actual result that is output is the contents
of the second line of file1 + tab character + tab character + contents of the second line of file3 + tab character.

3. The command joins the following values with tab characters and then outputs the results:

• Null character string because the end-of-file is reached in file1
• Contents of the third line of file2
• Contents of the third line of file3
• Null character string because the end of file is reached in file4

The actual result that is output is a tab character + contents of the third line of file2 + tab character + contents of
the third line of file3 + tab character.

4. The command joins the following values with tab characters and then outputs the results:

• Null character string because the end-of-file is reached in file1
• Null character string because the end-of-file is reached in file2
• Contents of the fourth line of file3
• Null character string because the end-of-file is reached in file4

The actual result that is output is a tab character + tab character + contents of the fourth line of file3 + tab character.

If any of the specified files is empty, lines in that file are treated as null character strings and joined with other files'
lines. However, if all the files specified in the argument are empty, no line is output.

Joining lines in files (when the -s option is specified)
The command joins all lines in one file with separators into a single line and then concatenates it with other files. If a
file is empty, the command outputs only an end-of-line code. If all the files specified in the argument are empty, the
command outputs an end-of-line code for each file.

The following example concatenates file1, file2, file3, and file4.

Contents of file1:

a001
a002

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 704

Contents of file2:

Null file

Contents of file3:

c001
c002
c003
c004

Contents of file4:

d001

Command that concatenates file1, file2, file3, and file4:

$ paste -s file1 file2 file3 file4

The command concatenates the files as follows (-> indicates a tab character used as a separator):

a001->a002 1.
 2.
c001->c002->c003->c004 3.
d001 4.

1. Joins all lines in file1 with separators and then outputs the results.

2. Outputs only an end-of-line code because file2 is an empty file.

3. Joins all lines in file3 with separators and then outputs the results.

4. Outputs the contents of the line because file4 contains only one line.

Joining lines read from the standard input
This subsection explains joining lines that are read from the standard input.

Concatenating files in units of lines (when the -s option is omitted)
The command reads only one line from the standard input and joins that line with a line from another file. If multiple
hyphens (-) are specified, the command reads a line from the standard input for each - specified in order, and then
joins the lines.
When a file is to be concatenated with the contents of the standard input, the command keeps reading lines from the
standard input until the end-of-file is reached. Therefore, if EOF is read from the standard input, the command treats
it as the null character string and joins that null character string with a line from the file.
The following example reads file1 from the standard input and concatenates it with file2 in units of lines.

Contents of file1:

a001
a002
a003
a004
a005

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 705

Contents of file2:

b001
b002
b003
b004

Command that concatenates file1 and file2 in units of lines:

$ cat file1 | paste - file2 -

The lines are joined in the following order:

1. Line input from file1 (read from the standard input)

2. Line input from file2
3. Line input from file1 (read from the standard input)

The command concatenates the files as follows (-> indicates a tab character used as a separator):

a001->b001->a002 1.
a003->b002->a004 2.
a005->b003-> 3.
-> b004-> 4.

1. The command joins the following values with tab characters and then outputs the results:
 Contents of the line read from the standard input (contents of the first line in file1)
 Contents of the first line in file2
 Contents of the line read from the standard input (contents of the second line in file1)

2. The command joins the following values with tab characters and then outputs the results:
 Contents of the line read from the standard input (contents of the third line in file1)
 Contents of the second line in file2
 Contents of the line read from the standard input (contents of the fourth line in file1)

3. The command joins the following values with tab characters and then outputs the results:
 Contents of the line read from the standard input (contents of the fifth line in file1)
 Contents of the third line in file2
 Null character string because EOF was read from the standard input (the end of file was reached in the file

sent to the standard input)

4. The command joins the following values with tab characters and then outputs the results:
 Null character string because EOF was read from the standard input (the end of file was reached in the file

sent to the standard input)
 Contents of the fourth line in file2
 Null character string because EOF was read from the standard input (the end of file was reached in the file

sent to the standard input)

Joining lines in files (when the -s option is specified)
The command repeats reading one line at a time from the standard input and joins the lines with separators until
EOF is read. The command then concatenates the joined lines with another file. The following example reads file1
from the standard input and concatenates it with file2.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 706

Contents of file1:

a001
a002
a003

Contents of file2:

b001
b002

Command that concatenates file1 and file2 (file1 is read from the standard input):

$ cat file1 | paste -s - file2

The command concatenates the files as follows (-> indicates a tab character used as a separator):

a001->a002->a003 1.
b001->b002 2.

1. Joins all lines read from the standard input (all lines in file1) with separators, and then outputs them.

2. Joins all lines read from file2 with separators, and then outputs them.

Return code

Return code Meaning

0 Normal termination

1 Error termination
• At least one of the files specified in the argument failed to open.

If the -s option was omitted, the files are not concatenated.
If the -s option was specified, an error message is output when a file open error occurs, and then the next file
is processed.

2 Error termination
• An invalid option was specified.

3 Error termination
• An unresumable error occurred, such as a memory shortage.

Notes
• The paste command expects text files. Input from binary files and output of binary data are not guaranteed to

work.

• When the -s option is omitted, the command opens all the files specified in the argument simultaneously. In UNIX,
an error might occur when files are opened depending on OS settings, such as the maximum number of files that
can be open at the same time in the entire OS or the maximum number of file descriptors permitted for a process
(ulimit).

Usage examples
• Concatenate multiple files in units of lines. Use the tab character as the separator between the lines that are joined.

In the output results, -> indicates the tab character.
Contents of input file file01:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 707

a001
a002
a003

Contents of input file file02:

b001
b002
b003

Contents of input file file3:

c001
c002
c003

The following shows the specified command and the execution results:

$ paste file01 file02 file03
a001->b001->c001
a002->b002->c002
a003->b003->c003

• Concatenate multiple files in units of lines. Insert the separators = and % one at a time in this order between the lines
that are joined.
Contents of input file file01:

a001
a002
a003

Contents of input file file02:

b001
b002
b003

Contents of input file file03:

c001
c002
c003

Contents of input file file04:

d001
d002
d003

The following shows the specified command and the execution results:

$ paste -d "=%" file01 file02 file03 file04
a001=b001%c001=d001
a002=b002%c002=d002
a003=b003%c003=d003

• Concatenate multiple files in units of lines. Insert the separators =, %, and @ one at a time in this order between the
lines that are joined.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 708

Contents of input file file01:

a001
a002
a003

Contents of input file file02:

b001
b002
b003

Contents of input file file03:

c001
c002
c003

The following shows the specified command and the execution results:

$ paste -d "=%@" file01 file02 file03
a001=b001%c001#
a002=b002%c002
a003=b003%c003

#
The concatenation count for the lines with the same line number is 2 as shown in the following:

 Concatenate one line of file01 and one line of file02
 Concatenate one line of file03 and the results of concatenating file01 and file02

Note that the separator @ specified in the -d option is not used.

• Read the list of file names displayed with the ls command from the standard input and then output four columns.
Insert the comma (,) as the separator between file names.

$ ls
a001 a002 a003 a004 b001 b002 b003 b004 c001 c002
$ ls | paste -d "," - - - -
a001,a002,a003,a004
b001,b002,b003,b004
c001,c002,,

• Join all lines in each file into a single line and then concatenate all files. Insert the separators =, %, and @ one at a
time in this order between the lines that are joined.
Contents of input file file01:

a001
a002
a003

Contents of input file file02:

b001
b002
b003
b004

Contents of input file file03:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 709

c001
c002
c003
c004
c005

Contents of input file file04:

d001
d002

The following shows the specified command and the execution results:

$ paste -s -d "=%@" file01 file02 file03 file04
a001=a002%a003
b001=b002%b003@b004
c001=c002%c003@c004=c005
d001=d002

• When multiple files are concatenated in units of lines, the following message is displayed if a nonexistent file is
specified:

$ paste file01 file02 file03
paste: file02: No such file or directory

• Join all lines in each file and concatenate all files. Nonexistent files file01 and file03 are specified as input
files.
Contents of input file file02:

b001
b002
b003
b004

Contents of input file file04:

d001
d002

The following shows the specified command and the execution results:

$ paste -s -d "=%@" file01 file02 file03 file04
paste: file01: No such file or directory#
b001=b002%b003@b004
paste: file03: No such file or directory#
d001=d002

#
Contents output to the standard error output.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 710

rm command (removes files or directories)

Format

rm [-d] [-f] [-i] [-R] [-r] path-name ...

Description
This command removes files or directories.

Arguments

-d
Specifies that file or directory removal is to be performed. In the case of a directory, the entire directory is removed.

-f
Specifies that file removal is to be performed without requesting confirmation. Nonexistent files are ignored. This
option is ignored if it is specified before the -i option.

-i
Specifies that confirmation is to be requested before removal is performed. Removal will be performed only if the
reply y or Y is read from the standard input. This option is ignored if it is specified before the -f option.

-R|-r
Specifies that a directory tree is to be removed recursively.

path-name
Specifies a path name to be removed. Multiple path names can be specified.

Return codes

Return
code

Meaning

0 Normal termination
• The specified file or directory removal was successful.
• If the -f option was specified, the files that existed among the specified files were removed successfully.

1 or greater Error termination

Notes
• In Windows, when you confirm removal without write permissions, non-access permissions other than the owner's

are not displayed.
For details about the permissions that are displayed, see ls command (lists the contents of files or directories).

• If the options -f and -i are both specified, the one specified last takes effect.

Usage examples
• Specify the -i option to require confirmation before removing a file.

C:\TEMP>%ADSH_OSCMD_DIR%\rm -i file2.txt
remove file2.txt?

• Display an error message if the file does not exist.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 711

C:\TEMP>%ADSH_OSCMD_DIR%\rm c.txt
rm: c.txt: No such file or directory

• Display an error message when you attempt to remove a directory without using the -d option.

C:\TEMP>%ADSH_OSCMD_DIR%\rm dir8
rm: dir8: is a directory

• Display an error message when you attempt to remove a directory that contains files.

C:\TEMP>%ADSH_OSCMD_DIR%\rm -d dir8
rm: dir8: Directory not empty

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\rm -w
rm: illegal option -- w
usage: rm [-dfiRr] file ...

rmdir command (removes empty directories)

Format

rmdir directory-name ...

Description
This command removes empty directories.

Arguments

directory-name
Specifies a directory that is to be removed.

Return codes

Return code Meaning

0 Normal termination
• Directory removal was successful.

1 or greater Error termination

Notes
• This command does not accept options. If you specify an option as an argument, the option is interpreted as a directory

name.

Usage examples
• Remove the dir1 directory from D:\temp\dir1.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 712

C:\TEMP>%ADSH_OSCMD_DIR%\rmdir D:\temp\dir1

• Display an error message because you are trying to remove a directory that is not empty.

C:\TEMP>%ADSH_OSCMD_DIR%\rmdir dir8
rmdir: dir8: Directory not empty

• Display an error message when you do not specify a directory to be removed.

C:\TEMP>%ADSH_OSCMD_DIR%\rmdir
usage: rmdir directory ...

sed command (replaces character strings in text)

Format

sed [-a] [-E] [-n] [-r] [-u] command [input-file-path-name...]
sed [-a] [-E] [-n] [-r] [-u] [-e command]... [-f script-file-path-name]...
[input-file-path-name...]

Description
This command sends text from a file or the standard input to the standard output with specified character strings replaced.

Arguments

-a
Specifies that if a parsing error occurs in an editing command, no new file is to be created nor is any existing file to
be overwritten (which could otherwise occur unintentionally). This option is used to maintain control over when
the pattern space output file used by the w command or by the s command's w flag is created. The pattern space
output file is created when the w command or the s command's w flag is applied. If the -a option is not specified,
the pattern space output file is created during parsing of the w command or the s command's w flag.

-E|-r
Specifies that any patterns specified in the command are to be handled as extended regular expressions. The -E and
-r options function identically.

-n
Specifies that output of the pattern space to the standard output is to be suppressed. When this option is specified,
output of the pattern space to the standard output will not be performed unless the p or P command is executed.

-u
In Windows, specifies that output buffering of the execution results to the standard output is to be suppressed.
In UNIX, specifies that the execution results are to be buffered on a per-record basis when output to the standard
output.

command|-e command
Specifies a command for editing the input file. More than one -e option can be specified. If you specify more than
one -e option, the commands will be executed in the order they are specified. When the -f option is not used,
command can be specified without the preceding -e option.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 713

-f script-file-path-name
Specifies the path name of a script file. The script file contains edit commands for editing the records in the input
file. More than one -f option can be specified. If you specify more than one -f option, or if you specify a
combination of multiple -f and -e options, the execution order of the commands will be the order in which they
were specified.

input-file-path-name
Specifies the path name of an input file to be edited. More than one input file path name can be specified. If no path
name is specified, the standard input is read. If more than one file is specified, each file is opened when processing
of the previous file reaches the end of the file, and reading of input records from the newly opened file begins.

Editing command description format
The following is the description format for an editing command for editing an input file:

[address[,address]] command[arguments]

An address for identifying a record to be retrieved for editing can be specified in address. The address can be a record
line number or a search pattern character string to be used for matching

The editing command to be applied to the retrieved records is specified in command.

Arguments to be passed to the editing command can be specified in arguments.

As each record is read from the input file, it is compared to the line number or search pattern character string specified
in address. If there is a match, the editing specified in the command is performed. If address is omitted, all records will
be retrieved as targets for editing. The results of executing the editing command are output to the standard output.

Addresses
Addresses are used to identify the records from the input file that are to be edited.

• Line number
Specifies a line number, where 1 represents the first record of the input file. You can use the dollar sign ($) to indicate
the last record. If multiple input files are specified, the records are numbered continuously across the multiple files.
Note that if you specify 0 for the line number (or for the starting line number when specifying a range), the editing
command will not be applied to any records.

• Search pattern character string
Specifies a search pattern character string enclosed in forward slashes (/) for finding a matching character string in
the input records. You can specify a regular expression for the search pattern character string. The following is an
example for writing to a specified file the records that contain the character string abc:

/abc/w file

Instead of enclosing the search pattern character string in forward slashes (/), you can use any other single-byte
character (except for \ or an end-of-line character). To use a separator other than the forward slash, specify a \ in
front of the first separator.
The following is an example of changing the separator enclosing the search pattern character string from / to #.

\#abc#w file

• Address range specification

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 714

You can use address, address to specify a range of records to be edited. The execution range for the editing command
will begin with the record that matches the first address and conclude with the record that matches the second address.
A range can be specified as follows:

• A range defined by two line numbers

• A range defined by two search pattern character strings

• A range defined by a combination of a line number and a search pattern character string

The following is an example of a range defined by two line numbers (this example writes to outfile the records
in lines 5 through 20):

5,20w outfile

The execution range of the editing command begins with the record whose line number is specified in the first
address and concludes with the record whose line number is specified in the second address.
Note that if the line number specified in the first address is greater than the line number specified in the second
address (first address > second address), only the record corresponding to the line number specified in the first
address will be subject to the editing command.
The following is an example of a range of two search pattern character strings:

/abc/, /xyz/w file

The execution range of the editing command begins with the record that matches the search pattern character string
in the first address through and including the record that matches the search pattern character string in the second
address.
If the search reaches the end of an input file without finding a record that contains the search pattern character string
specified in the second address, the range concludes with the last line of the input file. However, if multiple input
files are specified, the search for a record that matches the search pattern character string specified in the second
address continues in the next input file.
If the first address is a search pattern character string and the second address is a line number and the line number
of the record that matches the search pattern character string is greater than the line number in the second address
(first address > second address), only the record matching the search pattern character string is subject to the editing
command.

Pattern space and hold space
The sed command maintains two workspaces for text editing, called the pattern space and the hold space.

The pattern space stores records that are read from the input file.

The flow of processing in the pattern space is as follows:

1. Reads one record, delimited by the end-of-line code, from the input file.
In Windows, the end-of-line code is [CR] + [LF] or [LF]. In UNIX, the end-of-line code is [LF]. In UNIX, if
the input file uses [CR] + [LF] for the end-of-line code, the [CR] is stored in the pattern space.

2. Copies the contents of the input record into the pattern space.

3. Executes the editing command if the pattern space includes a line number specified in the address or the search
pattern character string matches a character string in the pattern space.
If the command to be executed is the D command and part of the input record remains in the pattern space after the
D command has executed, steps 1 and 2 are skipped.

4. Outputs the contents of the pattern space to the standard output, unless the -n option has been specified.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 715

5. Clears the contents of the pattern space.

The hold space is used as a temporary work area for operations such as saving the contents of the pattern space in the
hold space and then returning the contents of the hold space to the pattern space.

Editing commands
The following editing commands can be used in sed:

[address[,address]]{ command-list}
Creates a group of multiple editing commands that are to be applied to the matched input records. The editing
commands are delimited by an end-of-line character or a semicolon (;). If a right curly bracket (}) is specified on
the same line as the last editing command, there must be a semicolon after the command name.

[address]a\(end-of-line)

text
Outputs the text set in text to the standard output before the next input record is read. To output multiple records,
you must specify \ immediately before each end-of-line character.
In the following example, two records are sent to the standard output before the next input record is read.

a\(end-of-line)
text1\(end-of-line)
text2

[address[,address]]b[label]
Branches to the :label command defined by the specified label label. If label is not specified, branching is to the
end of the script.

[address[,address]]c\(end-of-line)

text
Clears the contents of the pattern space. When no address or a single address is specified, the text expressed in text
is sent to the standard output. When two addresses are specified, the text expressed in text is sent to the standard
output after processing the last record in the selected range. If multiple records are output, you must specify \
immediately before each end-of-line character.
After the pattern space is cleared, the next input record is read and execution restarts from the beginning, without
executing any commands that appear after the c command.

[address[,address]]d
Clears the contents of the pattern space. The contents of the pattern space are sent to the standard output before the
pattern space is cleared. Then the next input record is read and execution restarts from the beginning, without
executing any commands that appear after the d command.

[address[,address]]D
When the pattern space holds multiple records, deletes everything up to the first end-of-line character. The contents
of the pattern space are not sent to the standard output. The next input record is then read and execution restarts
from the beginning, without executing any commands that appear after the D command.
If the pattern space is empty as a result of executing the D command, the next input record is read and execution
restarts from the beginning of the command.

[address[,address]]g
Copies the contents of the hold space into the pattern space. The previous contents of the pattern space are discarded.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 716

[address[,address]]G
Appends the contents of the hold space to the pattern space, separated from the records already stored in the pattern
space by the end-of-line character.

[address[,address]]h
Copies the contents of the pattern space into the hold space. The previous contents of the hold space are discarded.

[address[,address]]H
Appends the contents of the pattern space to the hold space, separated from the records already stored in the hold
space by the end-of-line character.

[address]i\(end-of-line)

text
Sends the text expressed in text to the standard output before storing the current input record in the pattern space.
To output multiple records, you must specify a backslash (\) immediately before each end-of-line character.

[address[,address]]l
Sends the contents of the pattern space to the standard output. For data other than single-byte characters (in the range
0x20 to 0x7e), the space, and multibyte characters, each byte is output as a three-digit octal number preceded by
a backslash (\). The backslash itself is output as \\, and the control codes shown in the following table are output
as escape characters.

Control code Escape character that is output

Alert character (bell) \a

Backspace character \b

Formfeed character (page break) \f

End-of-line character. Note that the end-of-line character at the end of a lone
line (or of the last line in the case of multiple lines) is not output.

\n

Carriage return character \r

Tab character \t

Vertical tab character \v

The value for the output width of a record is determined in the following priority order:

1. Value of the COLUMNS environment variable

2. For output to the console, width of the console screen

3. 60 single-byte characters

The dollar sign ($) is output at the end of each record. If a record exceeds the output width, it is split and a backslash
(\) is set at the split location.
Note that the COLUMNS environment variable cannot be defined in a job definition script in JP1/Advanced Shell.

[address[,address]]n
Sends the current contents of the pattern space to the standard output and then reads the next input record from the
input file and stores it in the pattern space. The current line number is incremented by 1. If the -n option was
specified, the current contents of the pattern space are not sent to the standard output.

[address[,address]]N
Reads the next input record from the input file and appends it to the pattern space, separated from the records already
stored in the pattern space by the end-of-line character. The current line number is incremented by 1.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 717

[address[,address]]p
Sends the contents of the pattern space to the standard output.

[address[,address]]P
If the pattern space contains multiple records, outputs the contents only up to the first end-of-line character. If the
pattern space contains only one record, this command is the same as the p command.

[address]q
Terminates processing of the script. No further execution of commands or reading of input records is performed
after this command. Unless the -n option was specified, the contents of the pattern space are sent to the standard
output at the time of termination. In addition, any records that had been added using the a or r command are output.

[address]r path-name
Before reading the next input record, reads the file specified in path-name and outputs its contents to the standard
output. Any errors that occur during input of the file specified in path-name are ignored.
In Windows, end-of-line codes in the file are output as [CR] + [LF].
In UNIX, end-of-line codes in the file are output as is.

[address[,address]]s/pattern/replacement/flags
Substitutes the replacement character string (replacement) for the first character string that matches the pattern
(pattern) in the pattern space. Instead of using a forward slash (/) to separate s, pattern, and replacement, you can
use any single-byte character except for a backslash (\) or the end-of-line character. To include the separator
character within pattern or replacement, it must be preceded by a backslash (\).
You can specify a regular expression for pattern.
The following characters can be used in the replacement character string for the indicated purposes:

• &: The ampersand (&) is replaced by the character string that matches pattern. To handle an & as a character to
be replaced, it must be preceded by a backslash (\).

• \N (where N is a digit from 1 through 9): The \N is replaced by the character string that matches a tagged
regular expression enclosed in parentheses (()) in pattern. The numeric digit (N) specifies the sequential order
of the tagged regular expression to be matched.

• \: To include an end-of-line code, specify backslash (\) immediately before the end-of-line code.

The flags that can be specified in flags include the values shown below. The flags are optional. More than one can
be specified.
N

Only replace the N-th matched pattern in the pattern space.
g

Globally replace all the character strings that match the pattern in the pattern space, not just the first one.
p

If any substitution was made, output the contents of the pattern space to the standard output.

w path-name
If any substitution was made, output the contents of the pattern space to the file specified in path-name. If an
existing file is specified in path-name, the following occurs:

• If the -a option was not specified
Regardless of whether a substitution was made, the prior contents before execution of the sed command
are discarded.

• If the -a option was specified
If a substitution was made, the prior contents before execution of the sed command are discarded.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 718

In Windows, the end-of-line code for the file is output as [CR] + [LF].

[address[,address]]t[label]
Branches to the : (colon) command defined by the specified label (label) if a substitution has been performed by
the s command since the last input record was read or since the previously-executed t command was executed. If
no label is specified, branching is to the end of the script.

[address[,address]] w path-name
Writes the contents of the pattern space to the file specified in path-name. If an existing file is specified in path-
name, the following occurs:

• If the -a option was not specified
Regardless of whether there is a match with the address (address), the prior contents before execution of the
sed command are discarded.

• If the -a option was specified
If there is a match with the address (address), the prior contents before execution of the sed command are
discarded.

In Windows, the end-of-line code for the file is output as [CR] + [LF].

[address[,address]]x
Exchanges the contents of the pattern space and the contents of the hold space.

[address[,address]]y/string1/string2/
Searches the contents of the pattern space and replaces each character string specified in string1 with the character
string specified in string2 (this is a character-by-character replacement, so each character position in string1 is
replaced with the character at the corresponding position in string2).
The number of characters in string1 and string2 must be the same.
To specify an end-of-line character in string1 or string2, specify \n. Instead of using a / to separate y, string1, and
string2, you can use any other single-byte character except for \ or the end-of-line character.

[address[,address]]!command or [address[,address]]!{command-list}
Applies the command, or list of grouped commands, to the records that are not selected by the address (address).

:label
Defines a label for the branch destinations specified in the b and t commands. The : (colon) command itself
performs no processing.

[address]=
Outputs the current line number to the standard output as a single record.

(blank line)
Blank lines are ignored.

#
Indicates a comment. The hash mark (#) and everything following it is treated as a comment. Note that if the first
column of the first record of the script file begins with #n, the -n option is assumed.

Escape characters
The escape characters listed below can be used within an address search pattern, the text portion of the a, c, and i
commands, pattern and replacement character strings of the s command, and the search characters and replacement
characters of the y command.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 719

Escape character Meaning

\a Alert character (bell)

\b Backspace character#1

\f Formfeed character (page break)

\n End-of-line character#2

\r Carriage return character

\t Tab character

\v Vertical tab character

\xhex Character represented by a one- or two-digit hexadecimal value (0 to 9, a to f, A to F)#3

\c Any literal character (for example, \" for ")

\\ A single backslash character

#1
If you specify this in an address search pattern or in the pattern in the s command, it is treated as the \b regular expression operator. However,
if you specify it in a character class enclosed in square brackets ([]), it is treated as the backspace character.

#2
In Windows, this is output as [CR] + [LF] when specified within the text portion of the a, c, and i commands.

#3
There are values that cannot be specified in a pattern depending on the character encoding at the time of execution. The values that can be
specified for each character encoding are listed below in hexadecimal. Execution terminates with an error if you specify any other value.

 Shift JIS
0x01-0x80, 0xA0-0xDF, 0xFD-0xFF

 UTF-8
0x01-0xBF, 0xFE-0xFF

 EUC
0x01-0x8D, 0x90-0xA0, 0xFF

 C
0x01-0xFF

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Usage examples
• Specify the d command to delete the first through third records of the file. The input file is file01.txt.

Contents of file01.txt:

hitachi group01 Tokyo
HITACHI group02 Yokohama
hitachi group03 Fukuoka
HITACHI group04 Hokkaido
HITACHI group05 Ooita
HITACHI group06 Hiroshima

The results of executing the command are as follows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 720

C:\DIR>%ADSH_OSCMD_DIR%\sed "1,3d" file01.txt
HITACHI group04 Hokkaido
HITACHI group05 Ooita
HITACHI group06 Hiroshima

• Search for a pattern and then use the i command to add two records before each matched record and the a command
to add one record before each matched record. In addition, use the c command to replace with another record each
record that does not match the search pattern. The script file is scpt01.sed, and the input file is file02.txt.
Contents of scpt01.sed:

/file/{
i\
<FILE-LINE>\
 [FILE-BEGIN]
a\
 [FILE-END]
}
/file/!{
c\
<DIR-LINE>
}

Contents of file02.txt:

The file path used by trace is invalid.
Don't know current directory.
Input asc file is the same as output asc file.
Cannot change directory.
Merging two asc files is started.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -f scpt01.sed file02.txt
<FILE-LINE>
 [FILE-BEGIN]
The file path used by trace is invalid.
 [FILE-END]
<DIR-LINE>
<FILE-LINE>
 [FILE-BEGIN]
Input asc file is the same as output asc file.
 [FILE-END]
<DIR-LINE>
<FILE-LINE>
 [FILE-BEGIN]
Merging two asc files is started.
 [FILE-END]

• Replace the first character string that matches a pattern. The input file is file03.txt.
Contents of file03.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 721

C:\DIR>%ADSH_OSCMD_DIR%\sed "s/Hitachi/& Corporation/" file03.txt
Hitachi Corporation Yokohama Office Hitachi Group
Hitachi Corporation Tokyo Office Hitachi Group
Hitachi Corporation Okinawa Office Hitachi Group
Hitachi Corporation Fukuoka Office Hitachi Group

• Format the output by replacing character strings that match a pattern. The input file is file04.txt.
Contents of file04.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Hokkaido Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "s/\(Hitachi \)\(.*\) \(Office\)/\1\3 name:
\2/" file04.txt
Hitachi Office name: Yokohama Hitachi Group
Hitachi Office name: Tokyo Hitachi Group
Hitachi Office name: Okinawa Hitachi Group
Hitachi Office name: Hokkaido Hitachi Group
Hitachi Office name: Fukuoka Hitachi Group

• Replace the second character string that matches a pattern. The input file is file05.txt.
Contents of file05.txt:

Hitachi Yokohama Office Hitachi Group Hitachi Corporation
Hitachi Tokyo Office Hitachi Group Hitachi Corporation
Hitachi Okinawa Office Hitachi Group Hitachi Corporation
Hitachi Fukuoka Office Hitachi Group Hitachi Corporation

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "s/Hitachi/& Corporation/2" file05.txt
Hitachi Yokohama Office Hitachi Corporation Group Hitachi Corporation
Hitachi Tokyo Office Hitachi Corporation Group Hitachi Corporation
Hitachi Okinawa Office Hitachi Corporation Group Hitachi Corporation
Hitachi Fukuoka Office Hitachi Corporation Group Hitachi Corporation

• Replace all character strings that match a pattern in the records in a specified range. The input file is file06.txt.
Contents of file06.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "/Tokyo/, /Okinawa/s/Hitachi/& Corporation/g"
file06.txt
Hitachi Yokohama Office Hitachi Group
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group
Hitachi Fukuoka Office Hitachi Group

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 722

• Specify the p flag to the s command to output to the standard output the records in which a substitution occurred.
The input file is file07.txt.
Contents of file07.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

Examples of executing the command are given below.
Example output with the -n option

C:\DIR>%ADSH_OSCMD_DIR%\sed -n "/Tokyo/, /Okinawa/s/Hitachi/& Corporation/
gp" file07.txt
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group

Example output without the -n option

C:\DIR>%ADSH_OSCMD_DIR%\sed "/Tokyo/, /Okinawa/s/Hitachi/& Corporation/
gp" file07.txt
Hitachi Yokohama Office Hitachi Group
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group
Hitachi Fukuoka Office Hitachi Group

• Specify the w flag to the s command to output to a file the records in which a substitution occurred. The input file
is file08.txt.
Contents of file08.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -n "/Tokyo/, /Okinawa/s/Hitachi/&
Corporation/gw dir\\out.txt" file08.txt
C:\DIR>%ADSH_OSCMD_DIR%\cat dir\out.txt
Hitachi Corporation Tokyo Office Hitachi Corporation Group
Hitachi Corporation Okinawa Office Hitachi Corporation Group

• Output to a file the records not found within a specified range. The input file is file09.txt.
Contents of file09.txt:

Hitachi Yokohama Office Hitachi Group
Hitachi Tokyo Office Hitachi Group
Hitachi Hokkaido Office Hitachi Group
Hitachi Okinawa Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

The results of executing the command are as follows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 723

C:\DIR>sed -n "/Tokyo/, /Okinawa/!w dir\\out.txt" file09.txt
C:\DIR>cat dir\out.txt
Hitachi Yokohama Office Hitachi Group
Hitachi Fukuoka Office Hitachi Group

• Use the y command to substitute characters. The input file is file10.txt.
Contents of file10.txt:

a b c d e a b c
e d c b a

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "y/abcde/12345/" file10.txt
1 2 3 4 5 1 2 3
5 4 3 2 1

• Output to the standard output the records that match a search pattern and their line numbers. Because the first record
of the script file begins with #n, records that do not match the search pattern are not output. The script file is
scpt02.sed, and the input file is prog01.awk.
Contents of scpt02.sed:

#n
/ print/{
=
p
}

Contents of prog01.awk:

BEGIN{
 print "Extract record : group03 - group06" > "file06.txt"
}
/group03/, /group06/{#
 count++;
 print >> "file06.txt";

}
END{
 printf "total record : %03d\n", count >> "file06.txt"
}

#
The processing target begins with the record that matches group03 and concludes with the record that matches
group06.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -f scpt02.sed prog01.awk
2
 print "Extract record : group03 - group06" > "file06.txt"
6
 print >> "file06.txt";
10
 printf "total record : %03d\n", count >> "file06.txt"

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 724

• Use the 1 command so that unprintable and escape characters will be visible in the output. The input file is
file11.txt.
Contents of file11.txt:

Hitachi(tab)Yokohama\Office(tab)HitachiGroup
Hitachi(tab)Tokyo\Office(tab)HitachiGroup
Hitachi(tab)Fukuoka\Office(tab)Hitachi(0x12)#Group

#
1 byte of data.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -n "l" file11.txt
Hitachi\tYokohama\\Office\tHitachiGroup$
Hitachi\tTokyo\\Office\tHitachiGroup$
Hitachi\tFukuoka\\Office\tHitachi\022Group$

• Read the contents of the file specified by the r command at the location of the record that matches the search pattern,
and then use the d command to delete the record that matches the search pattern. The script file is scpt03.sed,
and the input files are prog02.awk and header.txt.
Contents of scpt03.sed:

/^<Header>/{
r header.txt
d
}

Contents of prog02.awk:

###
<Header>
###
BEGIN{
 str = "Hitachi#YokohamaOffice#HitachiGroup"
 num = split(str, arry, "#")
 for (i = 1; i <= num; i++) {
 print arry[i]
 }
}

Contents of header.txt:

Sample program
Hitachi group list

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -f scpt03.sed prog02.awk
###
Sample program
Hitachi group list
###
BEGIN{
 str = "Hitachi#YokohamaOffice#HitachiGroup"
 num = split(str, arry,"#")
 for (i = 1; i <= num; i++) {
 print arry[i]

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 725

 }
}

• Extract blocks of records from a file. The script file is scpt04.sed, and the input file is file12.txt.
Contents of scpt04.sed:

/^Error01/{
:LOOP
 n#1
 /Error/{
 /^Error01/b LOOP#2
 /^Error01/!d
 }
 b LOOP#2
}
d

#1
This outputs the current contents of the pattern space to the standard output and then reads the next record.

#2
This branches to the LOOP label to execute the n command to read the next record.

Contents of file12.txt:

Error01001
The file path used by trace is invalid.
Error02001
Don't know current directory.
Error01002
Unable to get the date for the start of the job execution.
Spool job was not deleted.
Error01003
Cannot change directory.
Error02002
Asc file name size is exceeded limits
for batch coverage function.
Error01004
Failed to get the current time.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed -f scpt04.sed file12.txt
Error01001
The file path used by trace is invalid.
Error01002
Unable to get the date for the start of the job execution.
Spool job was not deleted.
Error01003
Cannot change directory.
Error01004
Failed to get the current time.

• Use the q command to terminate the script after reading a record that matches the pattern. The input file is
file13.txt.
Contents of file13.txt:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 726

Error01001
The file path used by trace is invalid.
Error02001
Don't know current directory.
Error01002
Unable to get the date for the start of the job execution.
Spool job was not deleted.
Error01003
Cannot change directory.

The results of executing the command are as follows:

C:\DIR>%ADSH_OSCMD_DIR%\sed "/Error01002/q" file13.txt
Error01001
The file path used by trace is invalid.
Error02001
Don't know current directory.
Error01002

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\sed -x
sed: illegal option -- x
usage: sed [-aEnru] command [file ...]
 sed [-aEnru] [-e command] ... [-f command_file] ... [file ...]

sleep command (stops for a specified period of time)

Format

sleep seconds

Description
This command suspends execution for a specified period of time.

Arguments

seconds
Specifies the amount of time in seconds that execution is to be suspended. If a non-numeric value is specified, the
command's usage is displayed.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 727

Usage examples
• Suspend execution for five seconds.

C:\TEMP>%ADSH_OSCMD_DIR%\sleep 5

• Show what happens if a non-numeric value is specified for seconds.

C:\TEMP>%ADSH_OSCMD_DIR%\sleep poipoi
usage: sleep seconds

sort command (sorts text files)

Format

sort [-c|-m] [-b] [-f] [-n] [-r] [-u] [-z]
 [-k start-position[, end-position]] [-o output-path-name]
 [-T temporary-file-directory] [-t field-delimiter]
 [input-path-name ...]

Description
This command reads input from files or from the standard input and performs one of the following operations, then
sends the results to the standard output:

• Sort

• Merge

• Check whether the input is already sorted

Arguments

Specifying the operation
If no operation is specified, the default is to sort. The -r option specifies whether items are to be sorted in ascending
or descending order.

-c
Specifies that a single specified file is to be checked to determine if it is already sorted. This check functionality
determines whether a specified file is already correctly sorted.
If the file is in sorted order, the command terminates with a return code of 0. If the file is not in sorted order, the
command outputs a message (sort: found disorder: field-contents) to the standard error output and
terminates with a return code of 1.
Specifying more than one file when this option is specified results in an error (sort: too many input
files for the -c option). This option takes precedence when it is specified at the same time as any
other option except for the -u option. Specifying this option more than once does not result in an error.
If this option is not specified, the default operation is to sort.

-m
Specifies that input files are to be merged (and assumes that they are already sorted). The -m option is ignored
if it is specified at the same time as the -c option. Specifying this option more than once does not result in an
error.
If this option is not specified, the default operation is to sort.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 728

Input and output specifications

-o output-path-name
Specifies a destination for the output when the output is not to be sent to the standard output.
The output file is created if it does not already exist. In UNIX, the permissions for a newly created file are set
according to the umask.
If the file already exists, the sort command first sends the output to a temporary file, then renames the temporary
file to the output file, which overwrites the original file. The temporary output file is created in the same directory
as the input files. In UNIX, the permissions for the file are reset according to the umask.
If this option is specified more than once, the last specification takes effect.
In UNIX, if you specify /dev/stdout (also written in lowercase /dev/stdout in Windows) for the output
path name, the standard output is used.
If you specify a symbolic link for the output path name, the link is deleted and a new file is created.

-T temporary-file-directory
Specifies the directory to be used internally by the sort command for creating temporary files.
A temporary file is a work file that is used for sort and merge operations that cannot be performed entirely in
memory.
If this option is specified more than once, the last specification takes effect.
If this option is omitted, the following directory is used:
Windows: common-application-data-folder\HITACHI\JP1AS\misc
UNIX: Directory specified in the TMPDIR environment variable (/var/tmp if the TMPDIR environment
variable is not defined)

input-path-name
Specifies an input file. If this option omitted or specified as -, the standard input is read as the input. The standard
input is also read when /dev/stdin (also written as lowercase /dev/stdin in Windows) is specified.

Sort key specifications

-b
Specifies that leading spaces are to be ignored in determining the start and end positions of a sort key specified
with the -k option. The -b option is valid when a sort key is specified with the -k option. The -b option cannot
be specified after the -k option.

-f
Specifies that lowercase letters are not to be distinguished from uppercase letters for purposes of sorting.
Specifying this option more than once does not result in an error.

-n
Specifies numeric sorting, with the initial numeric character string in each line handled as a number.
The -n option takes precedence over the -f option. This option can be specified multiple times.
Numeric values are handled as follows.

• A numeric value is a character string composed of the ASCII characters 0 (0x30) through 9 (0x39).

• Leading whitespaces (0x20 and 0x09) and zeros (0x30) are ignored.

• A minus sign (0x2d) is allowed to precede a numeric value.

• No more than one decimal point can be specified.

• A numeric value can include a digits grouping character in the integer portion.

• The decimal point and the digits grouping character in the integer portion depend on the locale. Typically,
the period (.) is used as the decimal point, and the comma (,) is used as the digits grouping character.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 729

• Anything other than a numeric character string is treated as 0.

• Do not specify for a sort key a numeric value that consists of more than 61 digits in the integer or more than
61 digits following the decimal point in a decimal value.

-r
Specifies sorting in descending order. If this option is not specified, the default is sorting in ascending order.
This option can be specified multiple times.

Specifying the field separator

-t field-delimiter
Specifies the field delimiter. The field delimiter is not considered part of the field in determining the offset for
the sort key. Consecutive field delimiters denote an empty field between them. You cannot specify the same
character for the record delimiter.
If the -t option is omitted, fields are delimited by one or more consecutive whitespaces (consecutive spaces do
not denote an empty field between them). Leading spaces are considered part of the field in determining the
offset for the sort key.
If you specify more than one character for the field delimiter or if you specify a multibyte character, only the
initial byte is used as the field delimiter (which cannot be the same byte value as the record delimiter).
If -t is specified but no field delimiter value is specified, the option or file name that follows immediately will
be interpreted as the field delimiter during processing. To prevent this from happening, you must make sure to
specify a delimiter. It is an error to specify this option multiple times (sort: multiple field-
delimiters).

Specifying a sort key

-k start-position[, end-position]
Specifies the start and end positions of the sort key. If you specify more than one sort key, then all lines with the
same value for the first sort key can be distinguished on the basis of the next sort key.
If start-position is greater than end-position, or if a specified field does not exist, the command assumes that no
sort key is specified and all comparisons against this sort key are considered to be the same.
Specify start-position and end-position in the following format:

field-position[.indent][bfnr]

• field-position
Specifies the position of the field in the record. It is an error to specify a non-numeric value (sort:
missing field number) or a negative value (sort: field numbers must be positive).
You cannot specify 0 for the start position.
If you specify 0 for the end position, the sort key is considered to extend to the end of the record.
The maximum value that can be specified for field-position is the maximum value for the int type (overflow
will occur if you specify a greater value).
If you specify 0 for the field position of an end position, you cannot specify the indent described below.

• indent
Specifies an offset within the field. It is an error to specify a non-numeric or a negative value (sort:
missing offset).
The unit for the offset indentation is bytes. If the middle of a multibyte character is specified, evaluation
occurs from that byte position.
You cannot specify 0 for the indent of the start position.
If you specify 0 for the indent of the end position, it is treated as though no indent were specified.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 730

The maximum value that can be specified for indent is the maximum value for the int type (overflow will
occur if you specify a greater value).
If you omit indent in start-position, the default is the first byte position of the field.
If you omit indent in end-position, the default is the last byte position of the field.

• Sort key options
Specifies the b, f, n, or r option for sorting.
The b option ignores leading spaces in determining the start or end position.
The f option does not distinguish between lowercase and uppercase letters in sorting.
The n option sorts numerically, treating the initial numeric character string in each line as a number.
The r option sorts in descending order.
The b option specified in start-position is valid only for start-position, and the b option specified in end-
position is valid only for end-position. If no indent is specified in end-position, specification of the b option
is disabled. For the options other than b, it does not matter whether they are specified for start-position or
end-position (they function the same regardless of where they are specified.

Other specifications

-u
Specifies that when multiple records have the same sort key value, only one of them is to be output. If the -u
option is specified at the same time as the -c option, a check is performed for whether there are records with
the same sort key value. Specifying this option more than once does not result in an error.

-z
Specifies that the record delimiter is to be changed to NULL (0x00). It is an error to specify this option more
than once (sort: multiple record delimiters).
In Windows, end-of-line codes are removed from the input data when the input is read and then are added back
during output. For this reason, binary files must not be used as the input.

Sort function
Sorting works by reading one or more input files and running comparisons against one or more sort keys. The -k option
is used to specify fields as sort keys. The -t option is used to specify a field delimiter for separating each record into
fields.

If no sort key is specified, the entire record is considered to constitute the sort key. Sort keys are compared on a byte-
by-byte basis.

If there are multiple sort keys, the first sort key specified is compared. If a match is found, the next sort key is compared,
and comparing of sort keys continues until no match is found.

If there is a match on all the sort keys, the entire record is then compared byte-by-byte. Output is produced in ascending
order with the -r option or in descending order without the -r option.

Sort key options
Two types of options apply to sort keys. When you specify one or more keys, for each global option that can be enabled,
there is a corresponding local option that can be specified within the -k option. The -fnrb options are specified for
the sort command globally. There are also corresponding local versions of the fnbr options that are specified within
the -k option to the sort command. The global options cannot be specified after the -k option.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 731

b
This option is enabled globally for both the start position and the end position specified in the -k option. However,
it is disabled for the end position if no indent is specified for the end position or if an indent of 0 is specified for the
end position.
The -b option is valid only when the -k option is specified.

f | n | r
When any of these options is specified locally, the local specification replaces the global specifications for the
applicable field.

The following example illustrates global options:

-bfnr -k 1,1 -k 2,2

In this case, the -bnfr options are enabled for both the first and second fields. They are applied to the first and second
fields as follows:

• -b option: Ignores leading blanks when determining the position of the sort key.

• -f option: Does not distinguish between lowercase and uppercase letters when sorting; this is disabled if the -n
option is specified.

• -n option: Sorts numerically, handling the initial numeric character string in each line as a number.

• -r option: Sorts in descending order.

The following examples illustrate the range of sort keys when the global -b option is not specified.

-k 1
The sort key extends from the first field through the end of the record.

-k 1,1
The sort key is the entire first field.

-k 1,5
The sort key extends from the initial byte of the first field through the final byte of the fifth field.

-k 1.2,5.11
The sort key extends from the second byte of the first field through the eleventh byte of the fifth field.

-k 2,1
No sort key applies, because the fields are specified in reverse order, from the second to the first.

-k 2.1b, 5.1b
The sort key extends from the first byte (excluding leading whitespaces) of the second field through the first byte
(excluding leading whitespaces) of the fifth field.

-k 2.1b, 5.0b
The sort key extends from the first byte (excluding leading whitespaces) of the second field through the final byte
of the fifth field.

Merge function
The merge function aligns and integrates the input data by comparing the records of each pre-sorted input file. Even if
the input files are not actually sorted, merging proceeds on the assumption that they are sorted. The example below
illustrates merging of file1 and file2, whose contents are as follows:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 732

file1
AAA
DDD

file2
BBB
AAA

The following command will merge file1 and file2:

sort -m file1 file2

The file will be as follows:

AAA (1st line of file1) <-- Result of comparing 1st line of file1 to
1st line of file2
BBB (1st line of file2) <-- Result of comparing 2nd line of file1 to
1st line of file2
AAA (2nd line of file2) <-- Result of comparing 2nd line of file1 to
2nd line of file2
DDD (2nd line of file1) <-- 2nd line of file1, because no 3rd line in
file2

Option to not distinguish between lowercase and uppercase (-f option)
In the examples below, the following input records are sorted:

file1
a:B
A:b

Sort with lowercase and uppercase letters distinguished:

$ sort -t : -k 2,2 file1

The sort key is set to the second field, which is delimited by :.

The following is the output of sorting with lowercase and uppercase letters distinguished:

a:B
A:b

Because B is smaller than b, a:B is output first.

Sort without distinguishing between lowercase and uppercase letters:

$ sort -f -t : -k 2,2 file1

In this case, the -f option is specified.

The following is the output of sorting without distinguishing between lowercase and uppercase letters:

A:b
a:B

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 733

In this case, the second fields are regarded to be the same value because they are compared without distinguishing
between lowercase and uppercase, as specified by the -f option. Because the sort key values are the same, the
records are compared byte-by-byte in their entirety. As a result, since A is smaller than a, A:b is output first.

Return codes

Return
code

Meaning

0 Normal termination

1 Normal termination
• The input data is not sorted (when the -c option is specified).
• Duplicated key values exist (when the -c and -u options are specified).

2 Error termination

Notes
• If processing cannot be carried out in memory, it is performed using a temporary file. If the system runs out of disk

space in the course of using the temporary file, the following error message is output:

sort: fwrite: No space left on device

If you receive this message, use the -T option to specify a disk with sufficient free space.

• If you interrupt execution of the sort command, the temporary file might remain in the directory containing the
output file that was specified with the -o option. In such a case, it must be deleted manually. Similarly, in cases
where the -o option is omitted, the temporary file might remain and will have to be deleted manually.

• References to whitespaces in the sort command include the tab character (\t) as well as the space character (0x20).
Also, when the -z option is specified, \n (end-of-line) is also considered to be a whitespace.

• When the record delimiter is missing from the last record of the input file, the result of the sort or merge operation
is output with the record delimiter appended.

• Processing can be carried out with the output end-of-line codes [CR] + [LF] or [LF], but in the case of UNIX,
the [CR] is treated as data. Regardless of the format of the end-of-line codes in the input file, the output results will
follow the end-of-line code conventions of the platform.

• If a record cannot be accommodated, memory expands so that is can be stored. An error results if sufficient memory
cannot be allocated.

• The size of the sort buffer is 16 megabytes. If this amount of space is not adequate, a temporary file is created.
Therefore, this command is not recommended for sorting large amounts of data.

• If the sort command is cancelled during processing because sort or merge processing cannot be performed only
in memory, a temporary file with the name shown below might remain. Delete such a temporary file manually.

In Windows:
sortuuuu.tmp (uuuu: any hexadecimal character string)

In UNIX:
sortppppp.XXXXXX (ppppp: process ID consisting of five or more digits; XXXXXX: any character string
consisting of six characters)

• If the -o option is specified and the sort command processing is cancelled, an intermediate file with the name
shown below might remain. Delete such a temporary file manually.

In Windows:
first-three-characters-of-the-output-destination-path-nameuuuu.tmp (uuuu: any hexadecimal character string)

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 734

In UNIX:
output-destination-file-namepppppXXXXXX (ppppp: process ID consisting of five or more digits; XXXXXX: any
character string consisting of six characters)

• If multiple sort commands with the same output destination path name specified in the -o option are executed
concurrently, they might terminate with an error. In such a case, the operation cannot be guaranteed.

Usage examples
The following shows the format of the files used in the examples below to illustrate the results of executing the sort
command.

• file1

yyyy:101
tttt:8
ppppppp:14

• file2

cccccc:101
ggggg:31
rrrrrrrr:5
mmmmmmm:14

The files listed above are used as input files in the following examples.

• Combine and sort the two text files.

$ sort file1 file2
cccccc:101
ggggg:31
mmmmmmm:14
ppppppp:14
rrrrrrrr:5
tttt:8
yyyy:101

• Sort the two combined text files in descending order based on the numeric portion.

$ sort -t: -n -r -k 2 file1 file2
yyyy:101
cccccc:101
ggggg:31
ppppppp:14
mmmmmmm:14
tttt:8
rrrrrrrr:5

• Merge three files, using the first field as the sort key.

$ cat s1.txt
AAA s1
DDD s1

$ cat s2.txt
BBB s2
AAA s2

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 735

$ cat s3.txt
CCC s3
111 s3

$ sort -m -k 1,1 s1.txt s2.txt s3.txt
AAA s1
BBB s2
AAA s2

CCC s3
111 s3

DDD s1

$

• Sort data for which the keys are the same.

$ cat zr1.txt
aaa:999
$ cat zr2.txt
bbb:999

$ sort -k 2,2 -t : zr2.txt zr1.txt

aaa:999
bbb:999
$

• Sort the first field numerically and the second field as a character string.

• Input command

sort -t : -k 1n, 1 -k 2,2

• Input data

0010:aaa
10:AAA
-1:aaa
-1.00:ZZZ
1:zzz

• Execution results

-1.00:ZZZ
-1:aaa
1:zzz
10:AAA
0010:aaa

• Sort from the beginning of the third field through the end of the line without distinguishing between lowercase and
uppercase, and secondarily with the second field in descending order. In this example, because the second field is
specified with a local option, it does not inherit the global options, so lowercase is distinguished from uppercase in
the second field.
Input command

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 736

sort -t : -f -k 3 -k 2,2r

Input data

aaa:aaa:cccc
aaa:AAA:cccc
aaa:aaa:AAAA
aaa:AAA:aaaa
aaa:aaa:BBBB
aaa:AAA:bbbb

Execution results

aaa:aaa:AAAA
aaa:AAA:aaaa
aaa:aaa:BBBB
aaa:AAA:bbbb
aaa:aaa:cccc
aaa:AAA:cccc

• Display an option error message.
Windows example

C:\TEMP>%ADSH_OSCMD_DIR%\sort -w
sort: illegal option -- w
usage: sort [-cm][-bfnruz] [-k field1[, field2]] [-o output]
 [-T dir] [-t char] [file ...]

Linux example

$ sort -w
sort: invalid option -- w
usage: sort [-cm][-bfnruz] [-k field1[, field2]] [-o output]
 [-T dir] [-t char] [file ...]

AIX example

$ sort -w
sort: illegal option -- w
usage: sort [-cm][-bfnruz] [-k field1[, field2]] [-o output]
 [-T dir] [-t char] [file ...]

• Display the message that is output when you specify a directory for the input file.

$./sort dir01
sort: dir01: Is a directory

• Display the message that is output when you specify a nonexistent file as an input file.

$./sort xxxx
sort: xxxx: No such file or directory

• Display the message that is output when you specify a temporary file directory that does not exist.
Windows example

C:\TEMP>%ADSH_OSCMD_DIR%\sort -mTxxx s0.txt s0.txt s0.txt s0.txt s0.txt
s0.t
xt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 737

s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
sort: xxx\sort: The directory name is invalid.

Linux example

$./sort -mT xxxx s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt s0.txt s0.txt s0.txt
sort: xxxx/sort.SDm1yr: No such file or directory

AIX example

$./sort -mT xxxx s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt s0.txt
s0.txt s0.txt s0.txt
sort: xxxx/sort.XXXXXX: No such file or directory

• Display the message that is output when you specify an invalid field position.

C:\TEMP>%ADSH_OSCMD_DIR%\sort -k xx
sort: missing field number

• Display the message that is output when you specify an invalid field position.

C:\TEMP>%ADSH_OSCMD_DIR%\sort -k 0 s0.txt
sort: field numbers must be positive

• Display the message that is output when you specify an invalid indent for the field position.

C:\TEMP>%ADSH_OSCMD_DIR%\sort -k 1.0 s0.txt
sort: illegal offset

split command (splits a file)

Format

split [-a suffix-length]
 [-b num-bytes [k|m]|-l num-lines] [input-path-name [prefix]]

Description
This command splits the contents of a file or of the standard input into segments and outputs the segments to separate
files.

Arguments

-a suffix-length
Specifies the length of the suffix that is to be appended to the resulting file names after the input file is split.
Specify a value in the range 1 to 254. An error results if you specify a value outside this range (split: specified-
value: too small or split: specified-value: too large) or you specify a non-numeric value (split:
specified-value: invalid). The default is 2. If this option is specified multiple times, the last specification takes
effect.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 738

-b num-bytes [k|m]
Specifies in bytes the data size for each output file. If you specify both this option and the -l option, the command
displays usage information and terminates.

• k: Specifies that the specified value is in kilobytes (1k = 1,024 bytes).

• m: Specifies that the specified value specified is in megabytes (1m = 1,048,576 bytes).

If this option is specified multiple times, the last specification takes effect.

-l num-lines
Specifies the number of lines for each output file. If you specify both this option and the -b option at the same time,
the command displays usage information and terminates. If the -b and -l options are both omitted, the default
value of 1000 (lines) is used.

input-path-name
Specifies the name of the input file. If this option is omitted, the standard input is read as the input.

prefix
Specifies a prefix for each file name after the split.
The file names of the output files after the split are constructed as follows:
prefix+suffix
If a prefix is specified, that character string is used. If no prefix is specified, x, y, and z are used in succession.
The suffix value is a character string consisting of lowercase alphabetic letters (a to z) of the length specified in
suffix-length. Suffixes are created automatically, incrementing in alphabetical order.
For example, if the suffix length is set at two bytes, the suffix for the first file will be aa, and the successive files'
suffixes will be ab, ac, ..., az, ba, bb,

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• The input file will be overwritten if an output file has the same name. You can prevent this by specifying a prefix

that will differentiate the output files from the input file, or else you can move the input file to a directory other than
the current directory.

• If not enough file names can be generated to accommodate the split files, the command will terminate with an error
(split: too many files). However, the files that were created are not deleted. In such a case, either increase
the suffix-length value or increase the value of num-bytes or num-lines.

• If the length of the file name obtained after split processing exceeds the system's maximum value, the command
outputs the following message and results in an error.
In Windows:

split : file-name : No such file or directory

In UNIX:

split : file-name : File name too long

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 739

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of end-of-line codes is performed.

Usage examples
• Split the file test1.txt into two-line segments.

$ ls
test1.txt
$ cat test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt
$ split -l2 test1.txt
$ ls
test1.txt xaa xab xac xad xae
$ cat xaa
0001:test1.txt
0002:test1.txt
$ cat xab
0003:test1.txt
0004:test1.txt
$ cat xac
0005:test1.txt
0006:test1.txt
$ cat xad
0007:test1.txt
0008:test1.txt
$ cat xae
0009:test1.txt
0010:test1.txt
$

• Split the file test1.txt into 40-byte segments.

$ ls
test1.txt
$ cat test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt
$ split -a 5 -b 40 test1.txt new
$ ls
newaaaaa newaaaab newaaaac newaaaad test1.txt

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 740

$ cat newaaaaa
0001:test1.txt
0002:test1.txt
0003:test1$

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\split -z
split: illegal option -- z
usage: split [-a suffix_length]
 [-b byte_count[k|m] | -l line_count] [file [name]]

stat command (outputs the statuses of files and directories to the standard
output)

Format

(Windows only) stat [-c format] [-t] path-name ...
(UNIX only) stat [-L] [-c format] [-t] path-name ...

Description
This command outputs file or directory statuses to the standard output. If a symbolic link file is specified for path-
name, the command displays the status of the symbolic link file without using the link.

Arguments
-L

--dereference
(UNIX only)
Specifies that if a symbolic link file is specified for path-name, the command is to display the status of the file or
directory at the link destination.

-c format

--format=format
Specifies the format in which the status of a file or directory is to be displayed . For format, you can specify a format
specification code and any character string. For details about the display formats and format specification codes
when this option is specified, see Unique display format in Display formats. If an unsupported format specification
code is specified, the command outputs a warning message to the standard error output and a question mark (?) to
the standard output, and then resumes the subsequent processing.
If this option is specified together with the -t option, this option takes effect.

-t

--terse
Specifies that the information is to be displayed in the concise format. For details about the concise display format,
see Concise display format in Display formats.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 741

path-name
Specifies the name of a file or a directory whose status is to be displayed.
If multiple path names are specified, file or directory statuses are displayed vertically. If the command is executed
with multiple path names specified and the status display fails even for one of the files or directories, the command
terminates with return code 1.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Display formats
The three file information display formats are the normal display format, the concise display format, and the unique
display format. The display format to be used depends on the options specification.

Normal display format
This is the display format used when no option is specified. The following file information is displayed with the indicated
labels:

Output information Label

Quoted file name
For a symbolic link, the reference target of the symbolic link is also displayed. (UNIX only)

File:

Total size Size:

Number of allocated blocks Blocks:

Optimum block size for file system I/O operations IO Block:

File type
For details about the information that is displayed, see Information displayed as file types in Display formats.

-

Device number
This information is displayed in the format device-number-in-hexadecimal-h/device-number-in-decimal-d.
Nothing is displayed for non-device files.

Device:

Inode number Inode:

Number of hard links Links:

Device file type
This information is displayed in the format major-device-number,minor-device-number. Nothing is displayed for
non-device files.

Device type:

Permissions
This information is displayed in the format permissions-in-octal/permissions-character-string.

Access:

Owner's user information
This information is displayed in the format owner's-user-ID/owner's-user-name.

Uid:

Owner's group information
This information is displayed in the format owner's-group-ID/owner's-group-name.

Gid:

File's most recent access date and time Access:

File's most recent modification date and time Modify:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 742

Output information Label

Most recent date and time file information was changed Change:

Legend:
-: Displayed without a label.

Concise display format
This is the display format used when the -t option is specified. The following information is displayed sequentially
separated by the space.

• File name

• Total size

• Number of allocated blocks

• raw mode in hexadecimal

• Owner's user ID

• Owner's group ID

• Device number in hexadecimal

• Inode number

• Number of hard links

• Major device number

• Minor device number

• File's most recent access date and time (number of seconds since the epoch)

• File's most recent modification date and time (number of seconds since the epoch)

• Most recent date and time file information was changed (number of seconds since the epoch)

• Optimum block size for file system I/O operations

Unique display format
This is the display format used when the -c option is specified. You can specify a unique display format by combining
format specification codes and any character strings. Also, format specification code % can be followed by a flag
character, field width, and precision.

• Format specification codes
The following table lists and describes the supported format specification codes:

Format
specification code

Meaning

%a Permissions in octal
In Windows, only the owner's permissions are displayed.

%A Permissions character string
In Windows, only the owner's permissions are displayed.

%b Number of allocated blocks
In Windows, 0 is always displayed.

%B Size of one block (bytes)
In Windows, 0 is always displayed.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 743

Format
specification code

Meaning

%d Device number in decimal
In Windows, a drive number is displayed, but the display varies in the following cases:
• For paths whose full path has no colon (:) after the drive letter

The command displays - as the device number and then resumes the subsequent processing.
• If the device number acquisition processing results in an error

The command outputs a warning message to the standard error output, displays a question mark (?) as the device
number, and then resumes the subsequent processing.

%D Device number in hexadecimal
In Windows, a drive number is displayed, but the display varies in the following cases:
• For paths whose full path has no colon (:) after the drive letter

The command displays - as the device number and then resumes the subsequent processing.
• If the device number acquisition processing results in an error

The command outputs a warning message to the standard error output, displays a question mark (?) as the device
number, and then resumes the subsequent processing.

%f raw mode in hexadecimal
In Windows, only the owner's permissions are displayed.

%F File type
For details about the information that is displayed, see Information displayed as file types in Display formats.

%g Owner's group ID
In Windows, 0 is always displayed.

%G Owner's group name
In Windows, an ellipsis (...) is always displayed.
In UNIX, if the owner's group name cannot be acquired, the command displays the owner's group ID and then resumes
the subsequent processing.

%h Number of hard links
In Windows, 0 is always displayed.

%i Inode number
In Windows, 0 is always displayed.

%n File name

%N File name enclosed in quotation marks
For a symbolic link, the name of the referenced file is also displayed.
In Windows, the name of the referenced file is not displayed even for a symbolic link.
In UNIX, if acquisition of the name of the referenced file fails, the command outputs a warning message to the standard
error output and then resumes the subsequent processing without displaying the name of the referenced file.

%o Optimum block size for file system I/O operations
In Windows, 0 is always displayed.

%s Total size (bytes)
In Windows, 0 is always displayed as the total size of directories.
In UNIX, 0 is always displayed as the total size of device files.

%t Major device number in hexadecimal
In Windows, 0 is always displayed.

%T Minor device number in hexadecimal
In Windows, 0 is always displayed.

%u Owner's user ID

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 744

Format
specification code

Meaning

%u In Windows, 0 is always displayed.

%U Owner's user name
In Windows, if the owner's user name cannot be acquired, the command displays an ellipsis (...), and then resumes
the subsequent processing.
In UNIX, if the owner's user name cannot be acquired, the command displays the owner's user ID, and then resumes
the subsequent processing.

%x File's most recent access date and time
In Windows, the file's most recent modification date and time is displayed.
If the command fails to display the file's most recent access date and time, the command outputs a warning message
to the standard error output, displays a question mark (?) as the file's most recent access date and time, and then resumes
the subsequent processing.

%X File's most recent access date and time
Number of seconds from the epoch (UTC January 1, 1970, 00:00:00) to the file's most recent access date and time.
In Windows, the file's most recent modification date and time is displayed.

%y File's most recent modification date and time#

If the command fails to display the file's most recent modification date and time, the command outputs a warning
message to the standard error output, displays a question mark (?) as the file's most recent modification date and time,
and then resumes the subsequent processing.

%Y Number of seconds from the epoch (UTC January 1, 1970, 00:00:00) to the file's most recent modification date and
time

%z Most recent date and time file information was changed#

In Windows, the file's most recent modification date and time is displayed.
If the command fails to display the most recent date and time file information was changed, the command outputs a
warning message to the standard error output, displays a question mark (?) as the most recent date and time file
information was changed, and then resumes the subsequent processing.

%Z Number of seconds from the epoch (UTC January 1, 1970, 00:00:00) to the most recent date and time the file was
changed.
In Windows, the file's most recent modification date and time is displayed.

%% Percent symbol (%)

#
The following format is used for display of file's most recent access date and time, file's most recent modification date and time, and most
recent date and time file information was changed:
YYYY-MM-DD hh:mm:ss.nnnnnnnnn +/-hhmm

 YYYY: Calendar year
 MM: Month
 DD: Date
 hh: Hour
 mm: Minute
 ss: Second
 nnnnnnnnn: Date and time less than one second. 000000000 is always output.
 +/-hhmm: Time zone (time differential from UTC)

• Flag characters
You can specify (or omit) the following flag characters following the % format specification code:

Flag character Description

Prefixes with 0 an octal number other than 0.
Prefixes with 0x a hexadecimal number other than 0.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 745

Flag character Description

- Left-aligns the output character strings in fields.

+ Always displays a symbol (+ or -) indicating a positive or negative numeric value.
This specification is ignored for file information that is defined as unsigned integers.

space Displays a space before a positive number for file information that is defined as signed integers.
If this flag character is specified together with +, + takes effect.

0 Pads the leading part of fields with zeros, not spaces.

• Field width
You can define a minimum field width by specifying a numeric value following the % format specification code or
flag character. The permitted range for field width is from 0 to 2147483647. The field width can be omitted.

• Precision
You can define a period (.) and one of the numeric values listed below following the % format specification code
or flag character. The precision range is from 0 to 2147483647 in UNIX and from 0 to 512 in Windows. The
precision can be omitted.

• If the file information is a character string
The maximum length to be displayed is defined.

• If the file information is a numeric value
The minimum number of digits is defined.

Information displayed as file types
The following table lists the file types that are displayed and their meanings:

File type Meaning

regular file Regular file

directory Directory

symbolic link Symbolic link (UNIX only)

fifo FIFO (UNIX only)

socket Socket (UNIX only)

block special file Block special file (UNIX only)

character special file Character special file (UNIX only)

unknown file Unknown file (other than the above) (UNIX only)

Notes
• In Windows, a file other than a normal file or directory is handled as a regular file or directory.

In UNIX, a file other than a regular file, directory, symbolic link, FIFO, socket, block special file, or character special
file is handled as an unknown file.

• In Windows, the time zone set in the Date and Time control panel is used to display the date and time. The value
of the TZ environment variable has no effect.
Note that the value of the TZ environment variable and the time zone set in the Date and Time control panel are
used to display the time zone. For this reason, you must ensure that the value of the TZ environment variable and
the time zone set in the Date and Time control panel are the same. If they differ, the correct time zone will not be

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 746

displayed for a file's most recent access date and time, a file's most recent modification date and time, and the most
recent date and time file information was updated.

• In UNIX, the default block size is 512 bytes. You can change the block size with the BLOCKSIZE environment
variable.
The permitted value range for the BLOCKSIZE environment variable is from 512 to 1G (1,024 1,024 1,024).
If the specified value is outside this range, the command handles it as described below, outputs a warning message
to the standard error output, and then performs the subsequent processing:

• If a value smaller than 512 is specified in the BLOCKSIZE environment variable
The block size is set to 512 bytes.

• If a value greater than 1G (1,024 1,024 1,024) is specified in the BLOCKSIZE environment variable
The block size is set to 1G (1,024 1,024 1,024).

If you use the BLOCKSIZE environment variable to change the block size, specify a multiple of 512. If the specified
value is not a multiple of 512, the remainder will be discarded. For example, if a size of 1,500 bytes is defined, the
block size will be treated as being 1,024 bytes.
You can specify following the numeric value a size character indicating a multiple, such as G (1,024 1,024
1,024), M (1,024 1,024), or K (1,024). If any value other than a numeric value and size character is specified, the
command will assume 512 bytes as the block size, output a warning message to the standard error output, and then
resume the subsequent processing.

• In Solaris, the total number of blocks including indirect blocks is displayed as the number of allocated blocks for
files in a directory. If there are hard-linked files, the number of allocated blocks will not display correctly.

Examples
• Display a file's status in the normal display format.

In Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\stat .\test.txt
 File: `.\test.txt'
 Size: 7 Blocks: 0 IO Block: 0 regular file
Device: 0003h/00003d Inode: 0 Links: 1
Access: (0600/-rw-------) Uid: (0/ user1) Gid: (0/ ...)
Access: 2014-02-20 10:31:28.000000000 +0900
Modify: 2014-02-20 10:31:33.000000000 +0900
Change: 2014-02-20 10:31:28.000000000 +0900

In UNIX:

$ stat ./test.txt
 File: `./test.txt'
 Size: 4 Blocks: 8 IO Block: 4096 regular file
Device: fd00h/64768d Inode: 688407 Links: 2
Access: (0644/-rw-r--r--) Uid: (501/ user1) Gid: (502/ group1)
Access: 2014-02-11 18:35:52.000000000 +0900
Modify: 2014-02-11 18:35:52.000000000 +0900
Change: 2014-02-18 16:08:39.000000000 +0900

• Display a file's size only.

C:\TEMP>%ADSH_OSCMD_DIR%\stat -c %s .\test.txt
7

• Display the statuses of multiple files.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 747

C:\TEMP>%ADSH_OSCMD_DIR%\stat .\test.txt .\test1.txt
 File: `.\test.txt'
 Size: 7 Blocks: 0 IO Block: 0 regular file
Device: 0003h/00003d Inode: 0 Links: 1
Access: (0600/-rw-------) Uid: (0/ user1) Gid: (0/ ...)
Access: 2014-02-20 10:31:28.000000000 +0900
Modify: 2014-02-20 10:31:33.000000000 +0900
Change: 2014-02-20 10:31:28.000000000 +0900
 File: '.\test1.txt'
 Size: 7 Blocks: 0 IO Block: 0 regular file
Device: 0003h/00003d Inode: 0 Links: 1
Access: (0600/-rw-------) Uid: (0/ user1) Gid: (0/ ...)
Access: 2014-02-20 14:34:01.000000000 +0900
Modify: 2014-02-20 14:34:01.000000000 +0900
Change: 2014-02-20 14:34:01.000000000 +0900

• Display a file's status in the unique display format.

C:\TEMP>%ADSH_OSCMD_DIR%\stat -c "Filename : %n" .\test.txt
Filename : .\test.txt

• Display option error messages:
This message might vary depending on the platform used to execute the command. The following is an example for
Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\stat -z
stat: illegal option -- z
usage: stat [-c format] [-t] file ...

tail command (displays the last part of files)

Format

tail [-r] [-b num-blocks|-c num-bytes|-n num-lines|-num-lines] [path-
name ...]

Description
This command outputs the last part of one or more files to the standard output. If no file is specified, the standard input
is read as the input. The displayed portion of a file begins at a position that is expressed in units of bytes, lines, or blocks.
All data found in the specified display range is displayed. No error occurs if there is no data within the specified range.

Arguments
A numeric value prefixed with the plus sign (+) indicates a position from the beginning of the input. For example, -c
+2 starts displaying from the second byte from the beginning of the input.

A numeric value prefixed with a minus sign (-) or without a sign indicates a position from the end. For example, -n
2 indicates the second line from the end of the input. The default is -n 10, or 10 lines from the end of the input.

-r
Specifies that the display is to be line-by-line in reverse order.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 748

When the -r option is specified together with the -b option, the display is line-by-line from the end of the file for
the number of blocks specified in the -b option. If display starts from a position that is in the middle of a multibyte
character, garbled characters might result.
When the -r option is specified together with the -c option, the display is line-by-line from the end of the file for
the number of bytes specified in the -c option. If display starts from a position that is in the middle of a multibyte
character, garbled characters might result.
When the -r option is specified together with the -n option or with num-lines specified, the display is line-by-line
from the end of the file for the number of lines specified in num-lines or in the -n option.
When the -r option is specified by itself, all input lines are output line-by-line in reverse order from the end of the
file. Specifying this option more than once does not result in an error.

-b num-blocks
Unless the -r option is specified, specifies the position from which to start displaying, in units of blocks (one block
is 512 bytes).
A numeric value prefixed with a minus sign (-) or a numeric value without a sign indicates a position counted from
the end of the input. A numeric value prefixed with the plus sign (+) indicates a position counted from the beginning
of the input.
If num-blocks is omitted, the command displays usage information and terminates with an error message (tail:
option requires an argument - option). If you specify a non-numeric value for num-blocks, an error
message (tail: illegal offset -- specified-character-string) is output.
If display starts from a position that is in the middle of a multibyte character, garbled characters might result. End-
of-line codes are included in the byte count. For example, in Windows, a linefeed [LF] counts as one byte, and
[CR] + [LF] counts as two bytes. If this option is specified more than once, usage information is displayed.

-c num-bytes
Unless the -r option is specified, specifies the position from which to start displaying, in units of bytes.
A numeric value prefixed with a minus sign (-) or a numeric value without a sign indicates a position counted from
the end of the input. A numeric value prefixed with a plus sign (+) indicates a position counted from the beginning
of the input.
If num-bytes is omitted, the command displays usage information and terminates with an error message (tail:
option requires an argument - option). If you specify a non-numeric value for num-bytes, an error
message (tail: illegal offset -- specified-character-string) is output.
If display starts from a position that is in the middle of a multibyte character, garbled characters might result. End-
of-line codes are included in the byte count. For example, in Windows, a linefeed [LF] counts as one byte, and
[CR] + [LF] counts as two bytes. If this option is specified more than once, usage information is displayed.

-n num-lines|-num-lines
Unless the -r option is specified, specifies the position from which to start displaying, in units of lines.
A numeric value prefixed with a minus sign (-) or a numeric value without a sign indicates a position counted from
the end of the input. A numeric value prefixed with a plus sign (+) indicates a position counted from the beginning
of the input.
If num-lines is omitted, the command displays usage information and terminates with an error message (tail:
option requires an argument - option). If you specify a non-numeric value for num-lines, an error
message (tail: illegal offset -- specified-character-string) is output. If this option is specified more
than once, usage information is displayed.

path-name
Specifies an input file. If no input file is specified, the standard input is read. Multiple input files can be specified.
If you specify more than one file, each file is identified at the beginning of the output from that file by a blank line
(linefeed) and its file name in a header string in the following format:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 749

==> file-name <==
When you execute the tail command with multiple files specified, all the files are processed. If any file fails to
open, the command terminates with a return code of 1.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• All data found in the specified display range is displayed. No error occurs if there is no data in the specified range.

• If no options are specified, -n 10 is assumed.

• In Windows, input and output are performed in the binary mode for files and for the standard input and standard
output. No conversion of end-of-line codes is performed.

Usage examples
• Display the last two lines of the files test1.txt and test2.txt.

$ cat test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt
$ cat test2.txt
0001:test2.txt
0002:test2.txt
0003:test2.txt
0004:test2.txt
0005:test2.txt
0006:test2.txt
0007:test2.txt
0008:test2.txt
0009:test2.txt
0010:test2.txt
$ tail -n2 test1.txt test2.txt
==> test1.txt <==
0009:test1.txt
0010:test1.txt

==> test2.txt <==
0009:test2.txt
0010:test2.txt
$

• Display the fifth and subsequent lines from the beginning of the file test1.txt.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 750

$ cat test1.txt
0001:test1.txt
0002:test1.txt
0003:test1.txt
0004:test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt
$ tail -n+5 test1.txt
0005:test1.txt
0006:test1.txt
0007:test1.txt
0008:test1.txt
0009:test1.txt
0010:test1.txt
$

• The following is an example of specifying the -r option.

$ cat zztt1.txt
1:0001:zzzz:
2:0001:aaaa:
3:0001:JJJJ:
4:0001:cccc:
5:0001:cccc:
6:0001:cccc:
7:0001:cccc:
8:0001:cccc:
9:0001:cccc:
10:0001:cccc:
11:0001:cccc:
12:0001:cccc:
$ tail -r -n 2 zztt1.txt
12:0001:cccc:
11:0001:cccc:
$ tail -r zztt1.txt (display all lines rather than just 10)
12:0001:cccc:
11:0001:cccc:
10:0001:cccc:
9:0001:cccc:
8:0001:cccc:
7:0001:cccc:
6:0001:cccc:
5:0001:cccc:
4:0001:cccc:
3:0001:JJJJ:
2:0001:aaaa:
1:0001:zzzz:
$

• Below are two more examples that illustrate the -r option.

$ cat block.txt ---> 101 lines of 100 bytes + end-of-line code (\n)
0000000000:1234567890123(omitted)78901234567890123456789012345678T
00001xxx00:1234567890123(omitted)78901234567890123456789012345678T

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 751

00002xxx00:1234567890123(omitted)78901234567890123456789012345678T
 (omitted)
00098xxx00:1234567890123(omitted)78901234567890123456789012345678T
00099xxx00:1234567890123(omitted)78901234567890123456789012345678T
00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
$ tail -b 1 block.txt
45678T
00096xxx00:1234567890123(omitted)78901234567890123456789012345678T
00097xxx00:1234567890123(omitted)78901234567890123456789012345678T
00098xxx00:1234567890123(omitted)78901234567890123456789012345678T
00099xxx00:1234567890123(omitted)78901234567890123456789012345678T
00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
$ tail -rb 1 block.txt
00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
00099xxx00:1234567890123(omitted)78901234567890123456789012345678T
00098xxx00:1234567890123(omitted)78901234567890123456789012345678T
00097xxx00:1234567890123(omitted)78901234567890123456789012345678T
00096xxx00:1234567890123(omitted)78901234567890123456789012345678T
45678T
$ tail -c 110 block.txt
2345678T
00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
$ tail -rc 110 block.txt
00100xxx00:1234567890123(omitted)78901234567890123456789012345678T
2345678T
$

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\tail -z
tail: illegal option -- z
usage: tail [-r] [-b number | -c number | -n number | -number] [file ...]

touch command (changes a file's last access date and time or modification
date and time)

Format

touch[-a][-c][-f][-m][-r path-name][-t date-and-time]path-name ...
touch[-a][-c][-f][-m]date-and-time path-name ...

Description
This command changes the most recent access date and time or the most recent modification date and time for specified
files. In Windows, the command can change only the most recent modification date and time.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 752

Arguments

Type of date and time to be changed
The -a and -m options specify the type of date and time to be changed. If both these options are omitted or both are
specified, the command changes both the most recent access date and time and the most recent modification date and
time. In Windows, the file's most recent access date and time is not changed.

-a
Changes the file's most recent access date and time.
When the -m option is omitted and the -a option is specified, the command changes only the file's most recent
access date and time and does not change the file's most recent modification date and time.
In Windows, if the -a option is specified, the command does not change the file's most recent access date and time,
but checks the format of the date and time specified in the argument and reads the file specified in the -r option.

-m
Changes the file's most recent modification date and time.
When the -a option is omitted and the -m option is specified, the command changes only the file's most recent
modification date and time and does not change the file's most recent access date and time.

Specifying the time to be set
The -r or -t option or date-and-time in MMDDhhmm[YY] format specifies the date and time to be set. If none of
these options is specified, the command sets the date and time this command executes.

The range of time values permitted in the -t option and in MMDDhhmm[YY] format is from 1970-01-01 at
00:00:00 to 2038-01-19 at 03:14:07 in UTC (Coordinated Universal Time). The specified date and time is
interpreted according to the time zone in effect when the command is executed.

If the time zone is Japan Standard Time (UTC + 9), the permitted range of time values is 1970-01-01 at 09:00:00
to 2038-01-19 at 12:14:07. Note that in AIX and Windows, the maximum time value permitted in Japan Standard
Time (UTC + 9) is 2038-01-19 at 03:14:07.

For the time zone, the command uses the value of the TZ environment variable. In Windows, if the TZ environment
variable is not set, the command uses the time zone set in the Date and Time control panel. In Windows, the time zone
set in the TZ environment variable must match the time zone set in Date and Time.

-r path-name
Specifies that the file's most recent access and modification dates and times to be set in the files are to be obtained
from the file path specified here. An obtained date and time is set as a file's most recent access date and time when
the -a option is specified and as a file's most recent modification date and time when the -m option is specified.
When a directory name is specified, the command obtains the most recent access and modification dates and times
from the specified directory.
If this option is specified more than once, the last option specified takes effect. If the -r and -t options are both
specified, the last option specified takes effect.

-t date-and-time
Specifies a date and time to be set as the most recent access or modification date and time in the files. The specified
date and time is set as the most recent access date and time when the -a option is specified and as the most recent
modification date and time when the -m option is specified.
If this option is specified more than once, the last option specified takes effect.
If the -r and -t options are both specified, the last option specified takes effect.
Specify the date and time in the following format:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 753

[[CC]YY]MMDDhhmm[.SS]

CC
First two digits of the year.

YY
Last two digits of the year
If CC is omitted, the following value is set as CC:
If YY is from 69 to 99: 19 is set as CC.
If YY is from 00 to 68, 20 is set as CC.
If CC and YY are both omitted, the year in which this command executes is set.

MM
Month, as a numeric value from 01 to 12. To specify a single-digit number, add a leading zero.

DD
Date, as a numeric value from 01 to 31. To specify a single-digit number, add a leading zero.

hh
Hour, as a numeric value from 00 to 23. To specify a single-digit number, add a leading zero.

mm
Minute, as a numeric value from 00 to 59. To specify a single-digit number, add a leading zero.

SS
Second, as a numeric value from 00 to 61. To specify a single-digit number, add a leading zero. If this specification
is omitted, 00 is set.
Note that if 60 or 61 is specified and the system does not support leap seconds, the date and time displayed by
the ls command is advanced by one second for 60 and two seconds for 61.

date-and-time
Specifies the date and time to be set as the file's most recent access or modification date and time. The specified
date and time is set as the most recent access date and time when the -a option is specified and as the most recent
modification date and time when the -m option is specified.
If the -r or -t option is specified, the specified value is treated as a file name.
If the specified date and time does not consist of eight or 10 digits, it is treated as a file name. If there is no such
file, a file with the specified name is created.
Specify the date and time in the following format:

MMDDhhmm[YY]

MM
Month, as a numeric value from 01 to 12. To specify a single-digit number, add a leading zero.

DD
Date, as a numeric value from 01 to 31. To specify a single-digit number, add a leading zero.

hh
Hour, as a numeric value from 00 to 23. To specify a single-digit number, add a leading zero.

mm
Minute, as a numeric value from 00 to 59. To specify a single-digit number, add a leading zero.

YY
Last two digits of the year. If the specification is omitted, the year in which this command executes is set.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 754

For the first two digits of the year, the following value is set:
If YY is from 69 to 99: 19
If YY is from 00 to 68: 20

Other options

path-name
Specifies the path name of a file whose most recent access or modification date and time is to be changed. You can
specify multiple path names.
If the specified path does not exist, the command creates a new file with a size of zero bytes.

In Windows:
A directory's most recent modification date and time cannot be changed. If a directory name is specified, an
error results. Read and write permissions are required to change the most recent modification date and time of
an existing file.

In UNIX:
Permissions for a newly created file are set according to umask. If a directory name is specified, the directory's
most recent access and modification dates and times are changed.
For a non-superuser to change the most recent access or modification date and time of an existing file, the
following permissions are required:

• When the -t option or a date-and-time value in MMDDhhmm[YY] format is specified
File owner permissions are required.

• When neither the -t option nor a date-and-time value in MMDDhhmm[YY] format is specified
Write permission for the file is required.

-c
Specifies that no file is to be created when there is no file whose most recent modification date and time is to be
changed. No error message is output (because this event is not handled as an error).

-f
This option is provided for compatibility with the touch OS command. This option is ignored, if specified.

Most recent access and modification dates and times that can be set in files
How the file's most recent access and modification dates and times are set depends on the -r or -t option or the date-
and-time value in MMDDhhmm[YY] format that specifies a date and time and the -a or -m option that specifies the
type of date and time to be changed, as described in the following.

When the -r option is specified
How the most recent access and modification dates and times obtained from the file specified in the -r option are
set depends on whether the file specified in path-name exists, as described in the following table.

Table 8‒11: Most recent access and modification dates and times that are set when the -r option
is specified

Specification of the -a and -m options Whether the file specified in
path-name exists

Most recent access date and
time that is set

Most recent
modification date
and time that is set

Windows UNIX

Only -a is specified Yes -- T --

No C T C

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 755

Specification of the -a and -m options Whether the file specified in
path-name exists

Most recent access date and
time that is set

Most recent
modification date
and time that is set

Windows UNIX

Only -m is specified Yes -- T

No C T

-a and -m are both specified or neither -a
nor -m is specified

Yes -- T T

No C T T

Legend:
T: The corresponding date and time in the file specified in the -r option is set.
C: This command's execution date and time is set.
--: The most recent access or modification date and time set in the file before this command executed is set.

When the -t option or a date-and-time value in MMDDhhmm[YY] format is specified
How the date and time specified in the -t option or the date-and-time value specified in MMDDhhmm[YY] format
is set depends on whether the file specified in path-name exists, as described in the following table.

Table 8‒12: Most recent access and modification dates and times that are set when a date-and-
time value is specified in the argument

Specification of the -a and -m options Whether the file specified in
path-name exists

File's most recent access date
and time that is set

File's most recent
modification date
and time that is set

Windows UNIX

Only -a is specified Yes -- T --

No C T C

Only -m is specified Yes -- T

No C T

-a and -m are both specified or neither -a
nor -m is specified

Yes -- T T

No C T T

Legend:
T: The date and time specified in the -t option or the date-and-time value specified in MMDDhhmm[YY] format is set.
C: This command's execution date and time is set.
--: The most recent access or modification date and time set in the file before this command executed is set.

When the -r option, the -t option, and a date-and-time value in MMDDhhmm[YY] format are all omitted
When the -r option, the -t option, and a date-and-time value in MMDDhhmm[YY] format are all omitted, how the
date and time is set depends on whether the file specified in path-name exists, as described in the following table.

Table 8‒13: File's most recent access and modification dates and times that are set when a date-
and-time value is not obtained or specified

Specification of the -a and -m options Whether the file specified in
path-name exists

File's most recent access date
and time that is set

File's most recent
modification date
and time that is set

Windows UNIX

Only the -a option is specified Yes -- C --

No C C

Only the -m option is specified Yes -- C

No C C

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 756

Specification of the -a and -m options Whether the file specified in
path-name exists

File's most recent access date
and time that is set

File's most recent
modification date
and time that is set

Windows UNIX

-a and -m are both specified or neither -a
nor -m is specified

Yes -- C C

No C C

Legend:
C: This command's execution date and time is set.
--: The most recent access or modification date and time set in the file before this command executed is set.

Return code

Return code Meaning

0 Normal termination

1 Error termination
• An invalid option was specified.
• The date and time specified in the -t option or the date-and-time value specified in MMDDhhmm[YY] format

is invalid.
• A read error occurred in the file specified in the -r option.

2 Error termination
• File creation processing failed.
• The command failed to change the file's most recent access date and time and/or most recent modification

date and time.
• A directory was specified as the path name of a file whose most recent modification date and time was to be

changed. (Windows only)

If multiple files are specified in the argument, the command processes the next file.

Notes
• In UNIX, if symbolic links are specified for the path name in the -r option or for a path name whose most recent

access or modification date and time is to be changed, the specified symbolic links are subject to command
processing.
In Windows, symbolic links are not supported.

• If the date and time in the file specified in the -r option is outside the range from 1970-01-01 at 00:00 to
2038-01-19 at 03:14 in UTC (Coordinated Universal Time), the most recent access or modification date and
time that is set in the file by the command is not guaranteed to be correct.

• In Windows, the precision of the most recent modification date and time that is actually set in the file depends on
specifications for the file system being used. For example, the most recent access and modification dates and times
are set in files in a FAT file system as follows:

• The range of times that can be specified is from 1980-01-01 at 00:00:00 to 2038-01-19 at
03:14:07, regardless of the time zone in effect when the command executes.

• The hour, minute, and second (hhmm.ss) values of a file's most recent access date and time are not set.

• The number of seconds specified in the most recent modification date and time is rounded up to the next multiple
of two seconds.

Usage examples
• Create a file:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 757

$ touch file001

The most recent access and modification dates and times of the created file are the date and time this command
executes. The file is created with a size of zero.

• Change the most recent access and modification dates and times of an existing file to the date and time specified in
the -t option (2012-05-12 at 03:49:05):

$ touch -t 1205120349.05 file001

This command changes the most recent access and modification dates and times of the file to the date and time
specified in the -t option.

• Change only the most recent access date and time of an existing file to the date and time specified in the -t option
(2013-11-01 at 15:08:00):

$ touch -a -t 201311011508 file001

This command changes the most recent access date and time of the file to the date and time specified in the -t
option. The file's most recent modification date and time remains the same as before the command executed.

• Change only the most recent modification date and time of an existing file to the date-and-time value specified in
MMDDhhmm[YY] format (2013-09-29 at 23:00:00):

$ touch -m 0929230013 file001

This command changes the most recent modification date and time of the file to the date-and-time value specified
in MMDDhhmm[YY] format. The file's most recent access date and time remains the same as before the command
executed.

• Change the most recent access and modification dates and times of multiple files to the date and time specified in
the -t option. Specify the -c option so that any file that does not already exist will not be created. In the following
example, file002 does not already exist:

$ touch -c -t 201311011508 file001 file002 file003
$ ls -lT *
-rw-r--r-- 1 usr1 grp1 5 Nov 1 15:08:00 2013 file001
-rw-r--r-- 1 usr1 rrp1 9 Nov 1 15:08:00 2013 file003

uname command (displays information about the OS or hardware)

Format

(Windows only) uname [-a] [-m] [-n] [-r] [-s] [-v] [-w]
(UNIX only) uname [-a] [-m] [-n] [-r] [-s] [-v]

Description
This command outputs information about the OS, the system host name, or hardware to the standard output.

Arguments
When this command is executed with no options specified, the processing is the same as when the -s option is specified.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 758

-a

(Windows only)
When the -a option is specified and the -w option is omitted, the command displays the following information
all on one line in the order shown in the following:

• OS name (always Windows)

• Node name

• Information about the OS

• Most recent service pack installed on the OS

• OS version

• Machine (hardware) type

When the -a option is specified and the -w option is also specified, the command displays the following
information one item per line in the order shown in the following:

• OS name, installation folder for that OS, and partition information for the disk on which the OS is installed

• Node name

• OS release (always unknown)

• OS version

• Machine (hardware) type

(UNIX only)
The command displays the following information all on one line in the order shown in the following:

• OS name

• Node name

• OS release

• OS version

• Machine (hardware) type

-m
Specifies that the type of machine (hardware) is to be displayed.

-n
Specifies that the node name is to be displayed.

-r
Specifies that the OS release is to be displayed. In Windows, unknown is always displayed.

-s
Specifies that the OS name is to be displayed.
In Windows, the command displays the following information as the OS name:

• When the -w option is omitted, the command always displays Windows.

• When the -w option is also specified, the command displays the OS name, installation folder for that OS, and
partition information for the disk on which the OS is installed.

-v
Specifies that the OS version is to be displayed.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 759

-w (Windows only)
Specifies that the information is to be displayed in the format used in JP1/Advanced Shell version 10-01 or earlier.
When the -w option is specified, the command displays the information as follows:

• The information about each option is displayed on a single line.

• The information that is displayed by the -a and -s options is variable. For details, see the description of each
option.

If only this option is specified, the command's processing is the same as when the -w and -s options are both
specified.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• In Windows, input and output are performed in the binary mode for files and for the standard input and standard

output. No conversion of end-of-line codes is performed.

• In Windows, if an option other than those listed below is specified, a user with Administrators permissions must
execute the command, because Administrators permissions are required to acquire the information. An error results
if a user without Administrators permissions attempts to execute a uname command in which any option other than
those listed below is specified.

• -r option

• -s option (when not specified together with the -w option)

• In Windows, in order for the uname command to use Windows OS functions for acquiring information about the
OS and hardware, the PATH environment variable must contain the Windows system folder paths at the time the
script executes. If you want to add another path to the PATH environment variable, be sure to append it to the PATH
environment variable as in the following example.

Example
PATH="${PATH};C:\\home\\bin"

Usage examples
• Display the default with no options specified.

Windows example:

C:\TEMP>%ADSH_OSCMD_DIR%\uname
Windows

UNIX example (when the command is run in Linux):

$ /opt/jp1as/cmd/uname
Linux

• Specify the -a option to display the detailed information about the OS environment.
Windows example (when the -w option is omitted):

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 760

Windows MyMachine Microsoft Windows Server 2008 R2 Enterprise Service
Pack 1 6.1.7601 x64-based PC

Windows example (when the -w option is also specified):

C:\TEMP>%ADSH_OSCMD_DIR%\uname -aw
Microsoft Windows Server 2008 R2 Enterprise|C:\Windows|\Device
\Harddisk0\Partition2
 MyMachine
 unknown
 6.1.7601
 x64-based PC

UNIX example (when the command is run in Linux):

$ /opt/jp1as/cmd/uname -a
Linux LINUX1 2.6.18-53.el5 #1 SMP Wed Oct 10 16:34:02 EDT 2007 i686

• Specify the -m option to display the name of the machine and hardware:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -m
x64-based PC

• Specify the -n option to display the node name:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -n
MyMachine

• Specify the -r option to display the OS release. The following shows a Windows example that always displays
unknown:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -r
unknown

• Specify the -s option to display the OS name.
Windows example:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -s
Windows

• Specify the -v option to display the OS version.
Windows example:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -v

• If multiple options are combined, the command displays the corresponding information according to the order
defined for the -a option. A Windows example is shown below. This example specifies the -v and -s options in
this order, but the information is displayed in the order of -s and -v:

6.1.7601
C:\TEMP>%ADSH_OSCMD_DIR%\uname -v -s
Windows 6.1.7601

• Display an option error message.
This message might vary depending on the platform on which the command is executed.
Windows example:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 761

C:\TEMP>%ADSH_OSCMD_DIR%\uname -p
uname: illegal option -- p
usage: uname [-amnrsvw]

• In Windows, if a user without Administrators permissions attempts to execute the uname command in which is
specified an option requiring Administrator permissions, an error message is displayed as shown below. This
example executes the command with the -m option specified:

C:\TEMP>%ADSH_OSCMD_DIR%\uname -m
Failed to register mof file(s).
Only the administrator group members can use WMIC.EXE.
Reason:Win32 Error: Access is denied.

unknown

uniq command (removes duplicated lines from a sorted file)

Format

uniq [-c] [-d] [-u] [input-path-name [output-path-name]]

Description
This command outputs the results of consolidating duplicated lines in a file into single lines. Note that lines with identical
content are considered to be duplicates only if they are consecutive.

Arguments
If no options are specified, the processing is the same as when the -d and -u options are both specified. That is, the
command outputs duplicate lines as a single line, and it also outputs all non-duplicate lines.

-c
Specifies that each output line is to be preceded by a count of the number of times the line occurred, followed by a
single space. A count is displayed as a four-digit number, but the number of digits will be increased if necessary to
accommodate values that exceed four digits. A single space is displayed after each count.

-d
Specifies that only duplicate lines are to be output.

-u
Specifies that only lines that had no duplicates are to be displayed.

input-path-name
Specifies the input file. If input-path-name is not specified or is specified as -, the standard input is read.

output-path-name
Specifies the output file for the results. If output-path-name is not specified or is specified as -, the standard output
is assumed.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 762

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If you specify the same file for input-path-name and output-path-name, the file will be empty.

• The maximum number of bytes that can be compared in a single line is 8,192.

• Input from binary files and output of binary data are not guaranteed to work.

Usage examples
The following shows the format of the file used in the examples below to illustrate the results of executing the uniq
command.

• file1.txt
aaaa
aaaaaaa duplicate
aaaaaaa duplicate
bbbbbbb
bbbbbbbbbbb duplicate
bbbbbbbbbbb duplicate
bbbbbbbbbbb duplicate
bbbbbbbbbbb duplicate
bcbcbcbcbcb
ddddddddddddddddddd
dddddddddddddddddddddd
dddddddddddddddddddddddd
ddddddddddddddddddddddddeee duplicate
ddddddddddddddddddddddddeee duplicate

The file listed above is used as the input file in the following examples.

• Display the default with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\uniq file1.txt
aaaa
aaaaaaa
bbbbbbb
bbbbbbbbbbb
bcbcbcbcbcb
ddddddddddddddddddd
dddddddddddddddddddddd
dddddddddddddddddddddddd
ddddddddddddddddddddddddeee

C:\TEMP>

• Specify the -c option to precede each output line with a count of the number of times the line occurred.

C:\TEMP>%ADSH_OSCMD_DIR%\uniq -c file1.txt
 1 aaaa

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 763

 2 aaaaaaa
 1 bbbbbbb
 4 bbbbbbbbbbb
 1 bcbcbcbcbcb
 1 ddddddddddddddddddd
 1 dddddddddddddddddddddd
 1 dddddddddddddddddddddddd
 2 ddddddddddddddddddddddddeee

C:\TEMP>

• Specify the -d option to display only the duplicate lines (one instance of each set of lines that were duplicated).

C:\TEMP>%ADSH_OSCMD_DIR%\uniq -d file1.txt
aaaaaaa
bbbbbbbbbbb
ddddddddddddddddddddddddeee

C:\TEMP>

• Specify the -u option to display only the lines that had no duplicates.

C:\TEMP>%ADSH_OSCMD_DIR%\uniq -u file1.txt
aaaa
bbbbbbb
bcbcbcbcbcb
ddddddddddddddddddd
dddddddddddddddddddddd
dddddddddddddddddddddddd

C:\TEMP>

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\uniq -w
uniq: illegal option -- w
usage: uniq [-cdu] [input_file [output_file]]

wc command (counts the number of bytes, lines, characters, and words
in files)

Format

wc [-c] [-l] [-m] [-w] [path-name ...]

Description
This command counts the number of bytes, lines, characters, and words in files. Depending on the options that are
specified, the counts of the numbers of lines, words, characters, and bytes are displayed in front of the name of each
input file.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 764

Arguments

-c
Specifies that the number of bytes in an input file is to be output to the standard output.

-l
Specifies that the number of lines in an input file is to be output to the standard output. The number of lines is
determined by the number of end-of-line codes.

-m
Specifies that the number of characters in an input file is to be output to the standard output. A multibyte character
is counted as a single character.

-w
Specifies that the number of words in an input file is to be output to the standard output. The number of words is
determined by the number of character strings delimited by a space, tab, or end-of-line code.

path-name
Specifies the name of an input file. If path-name is not specified or is specified as -, the standard input is read.

Return codes

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• Any character in a character encoding that is different from the local character encoding is considered an invalid or

incomplete character.

• Specifying no option is equivalent to specifying the -c, -l, and -w options.

• Regardless of the order in which the options are specified, output items are displayed in the order of lines-count,
words-count, multibyte-characters-count, bytes-count, and file-name. Numeric values are displayed as seven-digit
numbers separated by a single space. The number of digits is increased if necessary to accommodate values that
exceed seven digits.

• An error results if an input file contains invalid or incomplete multibyte or wide characters, binary data, or a character
encoding that is different from the local character encoding. In these cases, an error message (wc: binaryfile:
Invalid or incomplete multibyte or wide character) is output.

Usage examples
• Display the default with no options specified.

C:\TEMP>%ADSH_OSCMD_DIR%\wc a.txt b.txt
 5 5 55 a.txt
 4 4 44 b.txt
 9 9 99 total

• Specify the -c option to display the number of bytes in the input file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc -c a.txt
 55 a.txt

• Specify the -l option to display the number of lines in the input file.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 765

C:\TEMP>%ADSH_OSCMD_DIR%\wc -l a.txt
 5 a.txt

• Specify the -m option to display the number of characters in the input file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc -m a.txt
 50 a.txt

• Specify the -w option to display the number of words in the input file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc -w a.txt
 5 a.txt

• Specify all the options to display the number of lines, words, characters, and bytes in the input file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc -clmw a.txt
 5 5 50 55 a.txt

• Display an option error message.
This message might vary depending on the platform on which the command is executed. The following shows an
example in Windows:

C:\TEMP>%ADSH_OSCMD_DIR%\wc -z
wc: illegal option -- z
usage: wc [-clmw] [file ...]

• Display the error message that is output when there is an invalid or incomplete character in the file.

C:\TEMP>%ADSH_OSCMD_DIR%\wc binaryfile
wc: binaryfile: Invalid or incomplete multibyte or wide character

The following are considered invalid or incomplete characters:

• Invalid or incomplete multibyte or wide characters, or binary data

• Characters in a character encoding that is different from the local character encoding

which command (obtains the paths of external commands)

Format

which[-a]command-name ...

Description
This command obtains the paths of external commands to be executed from the command search path set in the PATH
environment variable. The command outputs the obtained command paths to the standard output.

Arguments

-a
Specifies that all executable command paths are to be obtained from the command search path set in the PATH
environment variable.
When the -a option is omitted, the command output only the first command path obtained.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 766

command-name
Specifies the name of an external command whose command path is to be obtained. You can specify multiple
command names.
If the command path of a specified external command is not found, the which command outputs a message to that
effect to the standard error output.

Command path search rules
The command searches for the command paths of external commands according to the rules described below.

In Windows:

Paths subject to external command search
The command searches the command search path set in the PATH environment variable for the external
commands. If multiple command paths are set in the PATH environment variable, the command searches the
command paths in order from the beginning. If the user executing the which command does not have
permissions to read the external command storage directory, that directory is not subject to command path search.

External commands whose command paths are to be output
If the user executing the which command has permissions to read the external command storage directory, the
which command outputs the corresponding command paths. The which command does not check whether
the user has permissions to execute the external command.
The which command can output the paths of external commands if they are executable files with the
extension .com, .exe, .cmd, or .bat.
If a specified external command contains no extension, the which command adds the extensions defined in the
PATHEXT environment variable in the order defined and then searches the external commands. The supported
extensions are .com, .exe, .cmd, and .bat. For details, see 5.1.11 Specifying external commands.

In UNIX:

Paths subject to external command search
The command searches the command search path set in the PATH environment variable for the external
commands. If multiple command paths are set in the PATH environment variable, the command searches the
command paths in order from the beginning. If the user executing the which command does not have
permissions to search the external command storage directory (including all directories in the path), that directory
is not subject to command path search.

External commands whose command paths are to be output
If the user executing the which command has permissions to execute a specified external command, the which
command determines that that external command is executable and outputs its command path. If the user does
not have permissions to execute a specified external command, that external command's path is not output.

When the command names specified in the argument contain paths

In Windows:
If the user executing the which command has permissions to read the external command storage directory, the
which command outputs the corresponding command paths. The which command does not check whether the
user has permissions to execute the external command.
If the user executing the which command does not have permissions to read the external command storage directory,
the which command outputs a message indicating that the external command's command path was not found.
The which command can output the paths of external commands if they are executable files with
extension .com, .exe, .cmd, or .bat.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 767

If the specified external commands contain no extension, the which command adds to the external command names
the extensions defined in the PATHEXT environment variable in the order defined. The supported extensions
are .com, .exe, .cmd, and .bat.

In UNIX:
If the user executing the which command has permissions to search the external command storage directory
(including all directories in the path) and the external command execution permissions, the which command outputs
the command names specified in the argument. If the user executing the which command does not have these
permissions, the which command outputs a message indicating that the external command's command path was
not found.

Return code

Return code Meaning

0 Normal termination

1 Error termination
The command path of the external command was not found; or, if multiple external commands were searched, at
least one external command's command path was not found.

2 Error termination
• An invalid option was specified.
• The PATH environment variable is undefined.
• In Windows, the PATHEXT environment variable is undefined.

Notes
• If the PATH environment variable is undefined, the command terminates with an error.

• In Windows, if the PATHEXT environment variable is undefined, the command terminates with an error.

• If the following names are specified as command names in the argument, the which command treats them as external
commands:

• Aliases defined by the alias command

• Reserved words, standard shell commands, extended shell commands, and functions

• If a command name specified in the argument contains a path and the path name is subject to conversion by either
of the environment setting parameters listed below, the which command outputs the path name obtained after
conversion:

• PATH_CONV parameter

• COMMAND_CONV_ARG parameter

• In Windows, only external commands that satisfy the command path search rules are subject to output of command
paths.
In the case of commands that are specified in the system function of the awk command and commands that are
executed from the command line specified in the -exec option of the find command, paths are searched as follows:

• Commands specified in the system function of the awk command:
The path search rules for command processor execution (such as the command prompt) are used as the path
search rules for command execution.

• Command line specified in the -exec option of the find command:
The path search rules for the Windows API that executes the program are used as the path search rules for
command line execution.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 768

Note that the command path that is output when a command name specified in the above command is specified in
the argument might differ from the path of the command that is executed.

Usage examples
• Obtain the command path of command pgm01.exe:

C:\TEMP>%ADSH_OSCMD_DIR%\which pgm01.exe
C:\Program Files\Hitachi\PP001\pgm01.exe

• Obtain the command path of command pgm01. This example omits the extension of the command name:

C:\TEMP>%ADSH_OSCMD_DIR%\which pgm01
C:\Program Files\Hitachi\PP001\pgm01.exe

• Specify the -a option to obtain all command paths of command pgm01.exe:

C:\TEMP>%ADSH_OSCMD_DIR%\which -a pgm01.exe
C:\Program Files\Hitachi\PP001\pgm01.exe
C:\Program Files\Hitachi\PP002\pgm01.exe
C:\Program Files\Hitachi\PP003\pgm01.exe

• Obtain the command path of command pgm02. In this example, the command search path does not contain pgm02:

C:\TEMP>%ADSH_OSCMD_DIR%\which pgm02
which: no pgm02 in (C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files
\Hitachi\PP001
;C:\Program Files\Hitachi\PP002;C:\Program Files\Hitachi\PP003)

• Obtain the command paths of the commands pgm01,pgm02, pgm03, and pgm04. In this example, the command
search path does not contain the commands pgm02 and pgm04:

C:\TEMP>%ADSH_OSCMD_DIR%\which pgm01 pgm02 pgm03 pgm04
C:\Program Files\Hitachi\PP001\pgm01.exe
which: no pgm02 in (C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files
\Hitachi\PP001
;C:\Program Files\Hitachi\PP002;C:\Program Files\Hitachi\PP003)
C:\Program Files\Hitachi\PP001\pgm03.exe
which: no pgm04 in (C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files
\Hitachi\PP001
;C:\Program Files\Hitachi\PP002;C:\Program Files\Hitachi\PP003)

• Execute the which command with a command name containing a path specified. In this example, the specified
program name exists:

C:\TEMP>%ADSH_OSCMD_DIR%\which "C:\Program Files\Hitachi\PP001\pgm01"
C:\Program Files\Hitachi\PP001\pgm01.exe

• Execute the which command with a command name containing a path specified. In this example, the specified
program name does not exist:

C:\TEMP>%ADSH_OSCMD_DIR%\which "C:\Program Files\Hitachi\PP001\pgm02"
which: no pgm02 in (C:\Program Files\Hitachi\PP001)

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 769

8.5 UNIX-compatible commands (script format) (Windows only)

You can execute the UNIX-compatible commands listed below by using the sample script files provided by JP1/
Advanced Shell. These sample script files are for Widows only. In UNIX, use the commands provided by the OS.

Table 8‒14: UNIX-compatible commands provided as sample script files

Command
name

Name of sample script file Overview of functionality

All commands script_0 Disables the commands specified in job definition scripts.

chmod script_chmod1 Changes the file read-only attribute setting (enable or disable).

script_chmod2 Specifies file or folder permissions as numeric values.

script_chmod3 Specifies file or folder permissions as symbols or numeric values.

su script_su1 Executes programs with the permissions of the executing user.

who script_who1 Outputs to logs information about the login user.

For details about the procedure for using the sample script files, see 2.6.6(2) Preparations for using the script-format
UNIX-compatible commands (Windows only).

chmod command (disables the chmod commands specified in job
definition scripts)

Format

chmod [option][mode][path-name]

You can create this command by using the script_0 sample script file as the base. For details about how to create
the command, see 2.6.6(2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command disables all the chmod commands and their arguments that are specified in job definition scripts. This
command always terminates normally with return code 0.

In Windows, if access control is performed for each login user, it might not be necessary to change access permissions
when job definition scripts are run. In such a case, you can use this command to disable all chmod commands specified
in job definition scripts, thereby eliminating the need to modify job definition scripts that have been migrated from a
UNIX system to a Windows system.

Arguments

option
Ignores the specification.

mode
Ignores the specification.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 770

path-name
Ignores the specification.

Return code

Return code Meaning

0 Normal termination

Notes
• In command substitution, the commands specified in arguments are still executed. If this affects the subsequent

processing, check and, if necessary, revise the specification.

Usage examples
The following shows an example definition of a job definition script. This example assumes that the chmod command
has been created by using the script_0 sample script file as the base.

• Ignore the chmod commands specified in job definition scripts. The options of the chmod commands specified in
this example are not executed:

chmod go-x test.txt
if [[$? -ge 1]]; then # Processing continues because the return
code of chmod is always 0.
 echo "chmod error." 1>&2
 exit 1
fi

chmod command (changes the file read-only attribute setting (enable or
disable))

Format

chmod [-fhR] mode path-name

You can create this command by using the script_chmod1 sample script file as the base. For details about how to
create the command, see 2.6.6(2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command changes the file read-only attribute setting (enable or disable).

Use this command when you want to suppress updating of files.

Arguments

-f
Ignores the specification.

-h
Ignores the specification.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 771

-R
Ignores the specification.

mode
Specifies the mode as a symbol or a numeric value and enables or disables the read-only attribute. The table below
explains how to specify this option. If any other mode is specified, the command outputs chmod: invalid file
mode: mode to the standard error output, in which case the access permissions remain unchanged.

Specification Symbol Numeric value

Disabling the read-only attribute and permitting write
operations
(equivalent to when the execution results of the
adshscripttool -fmode -s w command are AAA or
RRR)

+w specified Numeric value that turns on write permission mode bits u,
g, and o (such as 777, 666, 333, 222, and 733)

Enabling the read-only attribute and prohibiting write
operations
(equivalent to when the execution results of the
adshscripttool -fmode -s w command are DDD)

-w specified Numeric value that turns off write permission mode bits u,
g, and o (such as 555, 444, 111, 000, and 511)

path-name
Specifies the target file. You can specify multiple files. A folder cannot be specified.

Return code

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• If the executing user does not have permissions to change the file attribute, the attrib command outputs the

message Access denied - path-name to the standard error output and then results in an error, in which case the
permissions cannot be changed. Grant the executing user the permissions to change file attributes and then re-execute
the command.

• If a folder is specified for path-name, the message chmod: cannot access [path-name]: change for the
directory is not supported is output. In this case, the command does not change the folder read-only
attribute and terminates with return code 1.

Usage examples
The following shows example definitions of job definition scripts. These examples assume that the chmod command
has been created by using the script_chmod1 sample script file as the base.

• Use a symbol to prohibit write operations on files:

chmod -w test.txt

• Use a symbol to permit write operations on files:

chmod +w test.txt

• Use a numeric value to prohibit write operations on files:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 772

chmod 444 test.txt

• Specify a mode whose specification is not permitted:

chmod -r test.txt

In this example, the following message is output to the standard error output:

chmod: invalid file mode: -r

chmod command (specifies permissions as numeric values)

Format

chmod [-fhR] mode path-name

You can create this command by using thescript_chmod2 sample script file as the base. For details about how to
create the command, see 2.6.6(2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command deletes the existing access control list (ACL) and specifies a new ACL using numeric values for the
mode specification.

Use this command to set access permissions as numeric values for the following purposes:

• Suppressing write and read by users other than owner
• Permitting write and read by all users

• Suppressing write by all users including owner

Arguments

-f
Ignores the specification.

-h
Ignores the specification.

-R
Ignores the specification.

mode
The table below lists the mode values and the corresponding access permissions in access control entries (ACEs)
that are set. If any other mode is specified, the command outputs the message chmod: invalid file mode:
mode to the standard error output, in which case the access permissions are not changed.

Mode value Access permission that is set

777 Owner: F, Everyone: F

766 Owner: F, Everyone: C

755 Owner: F, Everyone: R

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 773

Mode value Access permission that is set

744 Owner: F, Everyone: R

733 Owner: F, Everyone: W

722 Owner: F, Everyone: W

700 Owner: F

666 Owner: C, Everyone: C

655 Owner: C, Everyone: R

644 Owner: C, Everyone: R

633 Owner: C, Everyone: W

622 Owner: C, Everyone: W

600 Owner: C

555 Owner: R, Everyone: R

544 Owner: R, Everyone: R

533 Owner: R, Everyone: W

522 Owner: R, Everyone: W

500 Owner: R

444 Owner: R, Everyone: R

433 Owner: R, Everyone: W

422 Owner: R, Everyone: W

400 Owner: R

333 Owner: W, Everyone: W

322 Owner: W, Everyone: W

300 Owner: W

222 Owner: W, Everyone: W

200 Owner: W

Legend:
In the table, F, C, R, and W correspond to the following access permissions of the cacls command:

 F: Full control
 C: Change permission
 R: Read permission
 W: Write permission

The mode read and write permissions combined (mode bit 6) are defined as the change permission. All permissions
combined (mode bit 7) are defined as full control.
A mode specification equivalent to execution permissions is ignored. Therefore, mode bit 5 is defined as being
equivalent to mode bit 4, and mode bit 3 is defined as being equivalent to mode bit 2.

path-name
Specifies the target file or folder. You can specify multiple files or folders.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 774

Return code

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• This command deletes the existing ACL and sets only those ACEs listed in the explanation of mode. If there are

ACEs for accounts that you want to keep, add them to the cacls command definition in the sample script.

• The Other users account is set to Everyone. Therefore, if Owner's access permissions are lower than Other users'
access permissions, Owner can use Everyone's access permissions.

• If the executing user does not have permissions to access files and folders, the cacls command outputs the message
Access denied to the standard error output and then results in an error, in which case the permissions cannot be
changed. Grant the executing user the permissions to change access permissions and then re-execute the command.

Usage examples
The following shows example definitions of job definition scripts. These examples assume that the chmod command
has been created by using the script_chmod2 sample script file as the base.

• Set a specified file to be readable by all users:

chmod 444 test.txt

• Specify a mode whose specification is not permitted:

chmod 611 test.txt

In this example, the following message is output to the standard error output:

chmod: invalid file mode: 611

chmod command (specifies permissions as symbols or numeric values)

Format

chmod [-fhR] mode path-name

You can create this command by using the script_chmod3 sample script file as the base. For details about how to
create the command, see 2.6.6(2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command deletes all ACEs except for those for Owner and Everyone and changes or sets access permissions
according to the mode specified as symbols or numeric values.

Use this command to set access permissions as symbols or numeric values for the following purposes:

• Migrating to a Windows system job definition scripts in which chmod command modes are specified as symbols

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 775

• Adding or suppressing Owner's or all users' access permissions

Arguments

-f
Ignores the specification.

-h
Ignores the specification.

-R
Ignores the specification.

mode
The table below lists the mode values and the corresponding access permissions in access control entries (ACEs)
that are set. If any other mode is specified, the command outputs the message chmod: invalid file mode:
mode to the standard error output, in which case the access permissions are not changed.

Mode value
(execution results of the adshscripttool -fmode command)

Access permission that is set

u+r (A00000000) Owner: R is added.

u+rw (AA0000000) Owner: C is added.

u+rwx (AAA000000) Owner: F is added.

u+w (0A0000000) Owner: W is added.

u-rwx (DDD000000) Owner's ACE is deleted.

u=r (RDD000000) Owner: Replaced with R.

u=rw (RRD000000) Owner: Replaced with C.

u=rwx (RRR000000) Owner: Replaced with F.

u=w (DRD000000) Owner: Replaced with W.

o+r (000000A00) Everyone: R is added.

o+rw (000000AA0) Everyone: C is added.

o+rwx (000000AAA) Everyone: F is added.

o+w (0000000A0) Everyone: W is added.

o-rwx (000000DDD) Everyone's ACE is deleted.

o=r (000000RDD) Everyone: Replaced with R.

o=rw (000000RRD) Everyone: Replaced with C.

o=rwx (000000RRR) Everyone: Replaced with F.

o=w (000000DRD) Everyone: Replaced with W.

+r / ugo+r (A00A00A00) Owner: R, Everyone: R is added.

+rw / ugo+rw (AA0AA0AA0) Owner: C, Everyone: C is added.

+rwx / ugo+rwx (AAAAAAAAA) Owner: F, Everyone: F is added.

+w / ugo+w (0A00A00A0) Owner: W, Everyone: W is added.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 776

Mode value
(execution results of the adshscripttool -fmode command)

Access permission that is set

-rwx / ugo-rwx (DDDDDDDDD) Owner's and Everyone's ACEs are deleted.

=r / ugo=r (RDDRDDRDD) Owner: R, Everyone: Replaced with R.

=rw / ugo=rw (RRDRRDRRD) Owner: C, Everyone: Replaced with C.

=rwx / ugo=rwx (RRRRRRRRR) Owner: F, Everyone: Replaced with F.

=w / ugo=w (DRDDRDDRD) Owner: W, Everyone: Replaced with W.

777 (RRRRRRRRR) Owner: F, Everyone: Replaced with F.

766 (RRRRRDRRD) Owner: F, Everyone: Replaced with C.

755 (RRRRDRRDR) Owner: F, Everyone: Replaced with R.

744 (RRRRDDRDD) Owner: F, Everyone: Replaced with R.

733 (RRRDRRDRR) Owner: F, Everyone: Replaced with W.

722 (RRRDRDDRD) Owner: F, Everyone: Replaced with W.

700 (RRRDDDDDD) Owner: Replaced with F.

666 (RRDRRDRRD) Owner: C, Everyone: Replaced with C.

655 (RRDRDRRDR) Owner: C, Everyone: Replaced with R.

644 (RRDRDDRDD) Owner: C, Everyone: Replaced with R.

633 (RRDDRRDRR) Owner: C, Everyone: Replaced with W.

622 (RRDDRDDRD) Owner: C, Everyone: Replaced with W.

600 (RRDDDDDDD) Owner: Replaced with C.

555 (RDRRDRRDR) Owner: R, Everyone: Replaced with R.

544 (RDRRDDRDD) Owner: R, Everyone: Replaced with R.

533 (RDRDRRDRR) Owner: R, Everyone: Replaced with W.

522 (RDRDRDDRD) Owner: R, Everyone: Replaced with W.

500 (RDRDDDDDD) Owner: Replaced with R.

444 (RDDRDDRDD) Owner: R, Everyone: Replaced with R.

433 (RDDDRRDRR) Owner: R, Everyone: Replaced with W.

422 (RDDDRDDRD) Owner: R, Everyone: Replaced with W.

400 (RDDDDDDDD) Owner: Replaced with R.

333 (DRRDRRDRR) Owner: W, Everyone: Replaced with W.

322 (DRRDRDDRD) Owner: W, Everyone: Replaced with W.

300 (DRRDDDDDD) Owner: Replaced with W.

222 (DRDDRDDRD) Owner: W, Everyone: Replaced with W.

200 (DRDDDDDDD) Owner: Replaced with W.

Legend:
In the table, F, C, R, and W correspond to the following access permissions of the cacls command:

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 777

 F: Full control
 C: Change permission
 R: Read permission
 W: Write permission

The mode read and write permissions combined (mode bit 6) are defined as the change permission. All permissions
combined (mode bit 7) are defined as full control.
A mode specification equivalent to execution permissions is ignored. Therefore, mode bit 5 is defined as being
equivalent to mode bit 4, and mode bit 3 is defined as being equivalent to mode bit 2.

path-name
Specifies the target file or folder. You can specify multiple files or folders.

Return code

Return code Meaning

0 Normal termination

1 or greater Error termination

Notes
• This command deletes all ACEs except for those for Owner and Everyone and sets only those ACEs listed in the

explanation of mode. If there are ACEs for accounts that you want to keep, add them to the cacls command
definition in the sample script.

• The Other users account is set to Everyone. Therefore, if Owner's access permissions are lower than Other users'
access permissions, Owner can use Everyone's access permissions.

• If the executing user does not have permissions to access files and folders, the cacls command outputs the message
Access denied to the standard error output and then results in an error, in which case the permissions cannot be
changed. Grant the executing user the permissions to change access permissions and then re-execute the command.

Usage examples
The following shows example definitions of job definition scripts. These examples assume that the chmod command
has been created by using the script_chmod3 sample script file as the base.

• Add write permission to Other users:

chmod o+w test.txt

• Specify a mode whose specification is not permitted:

chmod g-w test.txt

In this example, the following message is output to the standard error output:

chmod: invalid file mode: g-w

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 778

su command (disables the su commands specified in job definition
scripts)

Format

su [-] [user-name] [argument...]

You can create this command by using thescript_0 sample script file as the base. For details about how to create the
command, see 2.6.6(2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command disables all su commands and their arguments that are specified in job definition scripts. This command
always terminates normally with return code 0.

If job definition scripts that use the su command in a UNIX system to start and stop subsystems are migrated to a
Windows system that uses a different system to start and stop subsystems, the su command processing specified in the
job definition scripts might no longer be needed. In such a case, you can use this command to disable all su command
definitions in job definition scripts, thereby eliminating the need to modify job definition scripts that have been migrated
from a UNIX system to a Windows system.

Arguments

-
Ignores the specification.

user-name
Ignores the specification.

argument
Ignores the specification.

Return code

Return code Meaning

0 Normal termination

Notes
• In command substitution, the commands specified in arguments are still executed. If this affects the subsequent

processing, check and, if necessary, revise the specification.

Usage examples
The following shows example definitions of job definition scripts. These examples assume that the su command has
been created by using the script0 sample script file as the base.

• Ignore the su commands specified in job definition scripts. The options of the su commands specified in this
example are not executed:

su - ${DBADMIN} -c 'export PDDIR=/home/db/db1; start -q'
if [[$? -ge 1]]; then # Processing continues because the return
code of su is always 0.

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 779

 echo "su error." 1>&2
 exit 1
fi

su command (executes programs with the permissions of the executing
user)

Format

su [-] user-name {-c command-line|script-file-path-name}
 [run-time-parameters]

script_su1 sample script file as the base. For details about how to create the command, see 2.6.6(2) Preparations
for using the script-format UNIX-compatible commands (Windows only).

Description
This command executes the commands specified in the argument. The command ignores the specified user name and
executes the specified commands with the permissions of the executing user.

If existing job definition scripts contain su commands, this command enables you to migrate them to a Windows system
without having to rewrite the job definition scripts.

Arguments

-
Ignores the specification.

user-name
Ignores the specification.

-c command-line
Specifies the command line to be executed in the job.
You can specify for command-line any commands that can be specified in job definition scripts, such as shell
operation commands and UNIX-compatible commands.

script-file-path-name
Specifies the path name of the script file that is to be executed.

run-time-parameters
Specifies the values to be set in command-line or script-file-path-name positional parameters. To include a space in
a run-time parameter, you must enclose the corresponding character string in double quotation marks (").

Return code

Return code Meaning

0 Normal termination

1 or greater Error termination

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 780

Notes
• Before you execute this command, grant the necessary permissions to the executing user.

Usage examples
The following shows example definitions of job definition scripts. These examples assume that the su command has
been created by using the script_su1 sample script file as the base.

• Grant the necessary permissions to the executing user and then execute this command with multiple commands
specified in the -c argument:

Execute the command by a user that has the required permissions
su - ${DBADMIN} -c 'export PDDIR=C:\\db\\db1; start -q'

• Grant the necessary permissions to the executing user and then execute this command with a script file name specified
in the argument:

Run the job definition script by a user that has the required
permissions
su - ${DBADMIN} '.\\DBSTART.ash'

who command (disables the who commands specified in job definition
scripts)

Format

who [am i]

This command is created by using the sample script file script_0 as the base. For details about the creation procedure,
see 2.6.6(2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command disables all who commands and their arguments that are specified in job definition scripts. This command
always terminates normally with return code 0.

You might want to disable the who command processing specified in job definition scripts in a situation where the who
command was used in UNIX, but that information is no longer needed in Windows. By using this command, you
eliminate the need to modify job definition scripts that have been migrated from UNIX to Windows because this
command disables all who command definitions in job definition scripts.

Arguments

am i
Ignores the specification.

Return codes

Return code Meaning

0 Normal termination

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 781

Notes
• In the event of command substitution, the commands specified in arguments will still be executed. If this affects the

subsequent processing, check and revise the specifications as necessary.

who command (outputs login user information to logs)

Format

who [am i]

This command is created by using the sample script file script_who1 as the base. For details about the creation
procedure, see 2.6.6(2) Preparations for using the script-format UNIX-compatible commands (Windows only).

Description
This command starts the quser.exe or qwinsta.exe command.

Specify this command to output to logs a list of the users who are logged in to the system when job definition scripts
are run.

Arguments

am i
Ignores the specification.

Return codes

Return code Meaning

0 Normal termination

Other than 0 Error termination (return code of the quser.exe or qwinsta.exe command)

Examples
The following shows an example definition for job definition scripts. This example assumes that the who command has
been created by using the script_who1 sample script file as the base.

• Output to log file log.txt a list of the users who are logged in:

who >>log.txt

8. Commands Used During Operations

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 782

9 Job Definition Script Commands and Control
Statements

This chapter explains the description formats and other details related to commands and control
statements used in job definition script files, including the following:

 Standard shell commands

 Extended shell commands

 Extended script commands

 Script control statements

 Reserved script commands

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 783

9.1 Command and control statement description formats

The following types of commands and control statements can be used in job definition script files:

• Standard shell commands

• Extended shell commands

• Extended script commands

• Script control statements

• Reserved script commands

Note the following points about specifying job definition script files:

• If NULL (0x00, or \0 in C language) is specified in the middle of a line, the location in the line where that NULL
character occurs will be considered by the job controller to be the end of the line. Any character string (on the same
line) following that NULL character will be ignored. You can prevent invalid execution results and run-time errors
by avoiding use of NULL.

Example:

• Input line (0x00 is indicated by \0)
echo "test\0null";echo "test after"

• Output example
echo "test

• To make job definition scripts easier to read, and to ensure that coverage information is displayed properly, we
recommend that only one command be specified on a line. We recommend that you not specify multiple commands
on a single line using the semicolon (;) separator between them.

Note the following points about collecting coverage information on the commands specified in job definition script
files:

• Information about whether each command has executed can be displayed only if no more than four commands were
specified on a single line.

• You will be able to determine whether all the commands in an entire job definition script have executed only if no
more than 32 commands were specified on a single line.

• When the number of commands on one line exceeds 32, no coverage information will be acquired for the 33rd and
subsequent commands. Even if all the commands in the job definition script have executed, the C0 execution ratio
will not be shown as 100%.

• Rather than specifying an entire script control statement, such as an if statement, on a single line, we recommend
that you begin a new line at each keyword.

• Specify the keywords listed below by themselves on a single line, rather than in combinations such as fi;fi. If
these keywords are written on the same line, coverage information will not be displayed correctly.

• fi, which marks the end of an if statement

• done, which marks the end of a do block

• esac, which marks the end of a case statement

• Only the following coverage information is output:

• C0 information: Output for only the first four C0 target commands specified on a line

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 784

• C1 information: Output for only the first four execution paths on a line

• When multiple commands and execution paths are specified on a single line, some coverage information might not
be displayed.
Example 1:

 Multiple commands and execution paths are specified on a single line

 echo 1; echo 2; echo 3; echo 4; echo 5

 Each command and execution path is specified on a separate line

 echo 1
 echo 2
 echo 3
 echo 4
 echo 5

Example 2:
 Multiple commands and execution paths are specified on a single line

 if true ;then echo 1 ;elif true ;then echo 2 ;elif true ;then echo
3 ;else echo 4 ;fi

 Each command and execution path is specified on a separate line

 if true
 then
 echo 1
 elif true
 then
 echo 2
 elif true
 then
 echo 3
 else
 echo 4
 fi

• To execute a command for which you provide input to the standard input from the terminal keyboard, you must do
the following to complete the input:

• To read input terminated by EOF
In Windows, press Enter followed by Ctrl+Z, and then press Enter again.
In UNIX, type Ctrl+D.

• To read one line of input
Press Enter.

The following sections show the description formats of the commands and control statements used in job definition
script files.

9.1.1 Standard shell command description format
The description format for standard shell commands is as follows:

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 785

0command-name[1option]...[1option][1operands]

• First specify options, and then specify operands. Operands include option names, option values, and other arguments
that can be specified in commands. If an operand is specified before an option, all specified items are treated as
operands.

• Specify an option in the format -option-name[1value]. When there is more than one option, they can be specified
in any order.

• Options specified without a value can be grouped together in a block (for example, -a -b -c is equivalent to -
abc). In this case, a value can be specified for the last option (for example, xyz in the specification -abc xyz is
the value of option -c).

• An error results if you specify an invalid option or an option's value is outside the permissible range of values.

• Multibyte characters are not permitted in option-name.

9.1.2 Extended shell command description format
The description format for extended shell commands is as follows:

0command-name[1option][1operand]

9.1.3 Extended script command description format
The description format for extended script commands is as follows:

0command-name 1attribute-value [... 1attribute-value] [1-attribute-name
1attribute-value [... 1-attribute-name 1attribute-value]]

• The command name of an extended script command always begins with #-adsh_.

• The command name is followed first by a list of attribute values and then by a list of pairs of an attribute name and
an attribute value (-attribute-name attribute-value).

• The list of attribute values cannot be omitted, and they must be specified in a predetermined order. The list of -
attribute-name attribute-value pairs can be specified in any order and their specification is optional.

• If you specify for an attribute value a character string beginning with a hyphen (-), it will be interpreted as a
specification of an attribute name. To begin an attribute value with a hyphen (-), the hyphen must be escaped with
a \, ", or '.

• A hash mark (#) at the beginning of an extended script command does not indicate a comment. You must specify
two hash marks in succession (##) to set a comment in an extended script command.

• The double quotation ("), single quotation ('), and escape (\) characters can all be used.
However, in an extended script command, any \ within a character string enclosed in double quotation marks will
be interpreted as an escape character, regardless of what the following character is. To specify a \ within a character
string enclosed in double quotation marks, you must specify it as \\.

• Uppercase and lowercase characters are distinguished in command-name, attribute-name, and attribute-value (in
the case of reserved words).

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 786

• You can specify the name of an environment variable for attribute-value, and the environment variable's value will
be set for the attribute value before the script starts. The name of the environment variable must be enclosed in curly
brackets ({ }). The name of an environment variable must not exceed 255 bytes and must be specified in the
<environment variable name> format shown below in (2) Character set definitions.

• Start the specification of an extended script command at the beginning of the line. Between the command name and
the linefeed code, use the space as the delimiter between items. A parsing error will result if any non-space character
is used as a delimiter.

• A parsing error will result if you specify more than one extended script command on a line (you cannot use a
command delimiter to separate multiple commands on the same line).

• A parsing error will result if you specify an extended script command within a function.

• A pre-execution syntax error will result if you specify an extended script command within the block of a for,
while, or until statement or within a function definition.

• You cannot specify an extended script command within an external script called with a dot (.). If you do, the extended
script command will be treated as a comment.

When you specify an extended script command that spans multiple lines, the second and subsequent lines must be
specified in the following format:

#-adsh 1continuing-specification

• You can specify a continuation line only at the location of a delimiter following the command name or an attribute.
A continuation line cannot be specified in the middle of the command name, an attribute name, or an attribute value.

• If a syntax error is detected in a continuation line, the line number displayed in the error message will be for the first
line of the extended script command.

(1) Limitations
• An extended script command must not exceed 8,191 bytes per line, including continuation lines.

• To specify more than one attribute value, delimit them with the space or comma. A value cannot be omitted by
specifying two commas in the manner of omitting positional parameters.

(2) Character set definitions
The following table defines the character sets that can be used in attribute values.

Table 9‒1: Character sets that can be used in attribute values

Syntactic element Permissible characters Example target

<symbolic name> {<alphabetic character> | <numeric character> | @ | # | _ }+ Job name

<environment variable
name>

{<alphabetic character> | _}{<alphabetic character> | _ | numeric
character>}*

File environment variable
definition name

<path name> A character string that conforms to the path naming conventions of the OS.
Because \ is treated as metacharacter (escape character), path names in
Windows must be specified as in the examples below. For details about
metacharacters, see 5.1.6 Metacharacters.
Examples: 'C:\test' or C:\\test

Path name

<any character string> A string of any characters.
Using only the following characters is recommended:

Value of an environment
variable

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 787

Syntactic element Permissible characters Example target

<any character string> {<alphabetic character> | <numeric character> | @ | # | _ }+ Value of an environment
variable

9.1.4 Script control statement description format
The description format for script control statements is as follows:

0control-statement [1condition] [1reserved-word [1processing]]...
 [1condition] [1reserved-word [1processing]]
 [0control-statement-(end)-or-reserved-word]

condition, reserved-word, processing
Specify a condition, a reserved word, and processing, respectively.

9.1.5 Reserved script command description format
The description format for reserved script commands is as follows:

0command-name[1option]...[1option][1operands]

• First specify options, and then specify operands. Operands include option names, option values, and other arguments
that can be specified in commands. If an operand is specified before an option, all specified items are treated as
operands.

• Specify an option in the format -option-name[1value]. When there is more than one option, they can be specified
in any order.

• Options specified without a value can be grouped together in a block (for example: -a -b -c is equivalent to -
abc). In this case, a value can be specified for the last option (for example, xyz in the specification -abc xyz is
the value of option -c).

• An error results if you specify an invalid option or an option's value is outside the permissible range of values.

• Multibyte characters are not permitted in option-name.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 788

9.2 Lists of commands and control statements

This section provides overviews of the standard shell commands, extended shell commands, extended script commands,
script control statements, and reserved script commands.

9.2.1 List of standard shell commands
The standard shell commands include special built-in commands and regular built-in commands.

Table 9‒2: List of special built-in commands

Command name Overview

. Executes a shell script.

: Expands arguments and returns 0 as the return code.

break Exits from a loop.

continue Interrupts loop processing and returns to the beginning of the next cycle of the loop.

eval Concatenates arguments into a command that it executes.

exec Executes a specified command and then exits.

exit Exits the shell.

export Exports shell variables.

readonly Sets the read-only attribute for variables or displays all read-only variables.

return Returns from a function or an external script.

set Sets shell options, creates an array, or displays variable values.

shift Shifts the run-time parameters.

trap Specifies the action when signals and forced termination requests are received.

typeset Declares explicitly the attributes and values of variables and functions.

unset Unsets variable values and attributes.

Table 9‒3: List of regular built-in commands

Command name Overview

alias Defines aliases.

builtin Executes a built-in command.

cd Changes the current directory.

command Executes a built-in command or external command.

echo Outputs what is specified in arguments to the standard output.

false Returns 1 as the return code.

getopts Parses option arguments.

kill Sends a signal to processes.

let Evaluates the values of arithmetic expressions.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 789

Command name Overview

print Outputs what is specified in the arguments to the standard output.

pwd Outputs the path of the current directory.

read Reads from the standard input and stores the input in shell variables.

test Determines the value of a conditional expression.

times Displays the amount of CPU time used by the shell.

true Returns 0 as the return code.

ulimit (UNIX only) Sets or displays information about limits on system resources.

umask (UNIX only) Sets or displays the file mode creation mask.

unalias Removes alias definitions.

wait Waits for child processes to complete.

whence Displays how specified character strings would be interpreted if used as commands.

9.2.2 List of extended shell commands
The table below lists the extended shell commands. Both these commands are regular built-in commands.

Table 9‒4: List of extended shell commands

Command name Overview

adshecho In the user-reply functionality, issues a specified event notification message as a JP1 event.

adshread In the user-reply functionality, issue a specified reply-request message as a reply-waiting event.

adshscripttool
(Windows only)

Collects and outputs information in order to make it easier to create job definition scripts.

9.2.3 List of extended script commands
The table below lists the extended script commands and shows for each command the maximum number of times it can
be specified in a job.

Table 9‒5: List of extended script commands

Command name Overview Maximum number of
times specified#

#-adsh_file Assigns and postprocesses a regular file. 4,095

#-adsh_file_temp Assigns and postprocesses a temporary file. 4,095

#-adsh_job Declares a name for a job. 1

#-adsh_job_stop Defines termination conditions for a job. 1,023

#-adsh_path_var Defines shell variables for handling path names. 1

#-adsh_rc_ignore Defines commands to always terminate normally. 1,023

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 790

Command name Overview Maximum number of
times specified#

#-adsh_script Calls an external job definition script file from the job definition script that
is running.

4,095

#-adsh_spoolfile Assigns a program output data file. In a job: 4,095
In a job step: 255
Outside a job step: 255

#-adsh_step Defines a job step, using the following three commands: #-
adsh_step_start, #-adsh_step_end, and #-
adsh_step_error.

4,095

#
The maximum number of times a command can be specified in a job includes the sum of the number of times it is specified in the script defined
in the job definition script file specified in an argument of the adshexec command plus the number of times it is specified in external scripts
called from that script by the #-adsh_script command. External scripts include scripts in nested calls.

9.2.4 List of script control statements
The table below lists the script control statements.

Table 9‒6: List of script control statements

Control statement Overview

case Performs one among several processing steps, depending on a match with a character string.

for Repeats the same processing while incrementing a value.

if Controls processing by executing branching based on the result of evaluating a condition.

until Executes specified processing repeatedly until a specified condition becomes true.

while Executes specified processing repeatedly as long as a specified condition is true.

9.2.5 List of reserved script commands
The table below lists the reserved script commands.

Table 9‒7: List of reserved script commands

Command name Overview

time Displays the time used to execute a command.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 791

9.3 Standard shell commands

The standard shell commands are divided into special built-in commands and regular built-in commands, as shown
below. A built-in command is one that is included as part of the shell, and is executed by the shell itself.

• Special built-in commands
If a special built-in command's syntax is invalid, it exits the shell that is executing the command.

• Regular built-in commands
Even if a regular built-in command's syntax is invalid, it does not exit the shell that is executing the command.

. command (executes a shell script)

Format

. filename [args]

Description
This command executes a shell script in the current shell. The shell script specified in filename is executed in the shell
environment. The current directory of the shell script specified in filename will be the same as the current directory of
the current shell being used by the . (dot) command.

Variables and functions that are set and defined in the specified shell script can be used in the current shell environment
even after the specified shell script terminates. Also, variables and functions that were set or defined before the specified
shell script was started can be used in the specified shell script. However, extended script commands cannot be used in
the specified shell script. If an extended script command is encountered, it will be handled as a comment. For details
about the extended script commands, see 9.5 Extended script commands.

Arguments

filename
Specifies the file name of the shell script that is to be executed in the current shell.

args
Specifies positional parameters to be used in the specified shell script. How the value of a positional parameter is
set depends on whether args was specified and whether the positional parameter is changed in the specified shell
script file, as summarized in the following table:

args is specified Positional parameter is changed in the specified
shell script file

Positional parameter is not changed in the specified
shell script file

Yes • The value of the positional parameter in the file will
be the value specified in the args argument.

• The value of the positional parameter after the file has
terminated will be its value just before execution of
the . (dot) command.

Same as at the left.

No • The value of the positional parameter in the file will
be the value just before execution of the . (dot)
command.

• The value of the positional parameter after the file has
terminated will be the new value acquired in the file.

• The value of the positional parameter in the file will
be the value just before execution of the . (dot)
command.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 792

args is specified Positional parameter is changed in the specified
shell script file

Positional parameter is not changed in the specified
shell script file

No • The value of the positional parameter in the file will
be the value just before execution of the . (dot)
command.

• The value of the positional parameter after the file has
terminated will be the new value acquired in the file.

• The value of the positional parameter after the file has
terminated will be its value just before execution of
the . (dot) command.

Return codes

Return code Meaning

0 to 255 Normal termination
• The return code is set by the script that executed.

0 Normal termination
• The command executed but no file was specified in the filename argument.

1 Error termination
• A file other than a regular file was specified in the filename argument.
• The file specified in the filename argument could not be read.

Notes
• The shell script specified in this command does not send output to the script image file in the spool directory. To

output the execution history to the script image file, you must use the #-adsh_script command.

• When this command terminates normally, its execution results are not output to the job execution log. Note also that
this command does not identify whether the job or job step terminated normally or with an error. Refer instead to
the execution results of the external script that was called.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage example
• Execute a shell script in the current shell.

. ./test.sh

: command (expands arguments)

Format

: [arguments]

Description
This command expands arguments. It always returns 0 as the return code.

For example, you can omit the else or elif clause from an if statement, but not the then clause. In such a case,
specify the : command for the then clause as follows, to indicate that no action is to be taken when the condition is
satisfied:

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 793

if [conditional-expression]; then
 : # Takes no action if the result of the conditional
expression is true.
else
 cmd1 # Executes command if the result of the conditional
expression is false.
fi

Arguments

arguments
Specifies arguments that are to be expanded as explained below.

Job definition script specification example

set -x
NUMBER=1
: $NUMBER

Result that is output to the standard error output

+ NUMBER=1
+ : 1 # Outputs the expansion result of the variable
NUMBER.

Therefore, by specifying a variable substitution in the arguments argument, you can check whether a value is
stored in the variable and substitute a value if there is no value.

Job definition script specification example

STRING01=ABC
: ${STRING01:=DEF} # Because variable STRING01 stores ABC, no
action is taken.
: ${STRING02:=GHI} # Because variable STRING02 is undefined,
CHI is substituted.
echo $STRING01 $STRING02 # "ABC GHI" is output to the standard
output.

If variable substitution in the format ${variable:?word} or ${variable?word} is specified in the arguments
argument and no value is stored in variable, processing terminates with an error with 1 as the return code.

Note that this command accepts no options. If an option is specified, it is ignored and processing continues.

Return codes

Return code Meaning

0 Normal termination

1 Error termination
• A variable substitution in the format ${variable:?word} was specified in an argument, but variable was

not defined or no value was set in variable.
• A variable substitution in the format ${variable?word} was specified in an argument, but variable was not

defined.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 794

Notes
• If the value of n is 0 or smaller or exceeds 2,147,483,647, overflow will occur. The overflow digits are ignored and

processing continues. We recommend that you specify a value in the range from 1 to 2,147,483,647.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage example
• Only expand the arguments.

: $test

alias command (defines aliases)

Format

alias [-p|-x|+p|+x] [name [=value]...]

Description
This command defines aliases or outputs defined aliases to the standard output. If you do not specify at least one
argument, it outputs the names and values of the aliases that are currently defined.

Arguments

-p
Outputs the aliases that have been defined, in the form alias alias-name=value.

-x|+x
Defines or outputs exported aliases.

+p
Outputs the aliases that have been defined, in the form alias alias-name.

name
Specifies a name for an alias to be defined or output. To output an alias, specify in name the name of an alias that
has already been defined.

value
Specifies the command to set to the alias name specified in name. To define an alias, specify value in the form alias-
name=value.

Return codes

Return code Meaning

0 Normal termination

1 Error termination
• An attempt was made to output an alias that has not been defined.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 795

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

Usage example
• Output a defined alias (functions).

Contents of the job definition script:

alias functions='typeset -f'
alias functions

Contents of the STDOUT file of the execution job:

******** JOB SCOPE STDOUT ********
functions='typeset -f'

break command (exits from a loop)

Format

break [n]

Description
This command exits from a loop that occurs in a for statement, while statement, or other looping control structure.
If this command is executed while processing is not in a loop, it outputs a message and terminates normally.

Argument

n
Specifies the number of nested loops from which the command is to exit. Specify 1 or a greater integer.
When n is specified, the command exits out of n loops. When n is omitted, the command exits to the first enclosing
loop.
If the command is executed with a value for n that exceeds the current number of nested looping structures, it
continues exiting through the outermost loop, and then outputs a message and terminates normally.

Return codes

Return code Meaning

0 Normal termination

1 Error termination
• 0 was specified for n.
• A non-numeric value was specified for n.
• A negative value or an option character string (-alphanumeric-character) was specified for n.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 796

Notes
• If the value of n is 0 or smaller or exceeds 2,147,483,647, overflow will occur. The overflow digits are ignored and

processing continues. We recommend that you specify a value in the range from 1 to 2,147,483,647.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage example
• Exit to the second enclosing loop.

break 2

builtin command (executes a built-in command)

Format

builtin [command [args ...]]

Description
This command executes a specified built-in command with arguments that are specified.

Arguments

command
Specifies the name of the built-in command that is to be executed. If this argument is omitted, the command
terminates normally.

args
Specifies arguments for the built-in command.

Return codes

Return code Meaning

0 Normal termination
• The built-in command terminated normally.

1 Error termination
• The specified command in the argument was not a built-in command, or the command terminated with an

error.

Notes
• This command accepts no options. If an option is specified in the arguments, it will be interpreted as an argument

of command and the job will terminate with an error.

• The execution results of this command are not output to the job execution log. Note also that this command does
not identify whether the job or job step terminated normally or with an error. Refer instead to the execution results
of the command that was called.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 797

Usage example
• Use the builtin command to execute the pwd built-in command.

Contents of the job definition script

cd /tmp
builtin pwd

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/tmp

cd command (changes the current directory)

Format 1

cd [directory-path]

Format 2

cd old new

Description
This command changes the current directory. The destination can be specified in either of two formats.

The first format specifies the destination in directory-path. If the variable CDPATH is defined, this format specifies a
directory relative to the location defined in CDPATH. If the variable CDPATH is not defined, this format specifies a
directory relative to the current directory.

In the second format, the change is to the directory path in which the character string matching old is replaced with new
in the path name of the current directory.

Arguments

directory-path
Specifies the new directory path.
If this argument is omitted, the change is to the user's home directory (HOME variable). If a hyphen (-) is specified
for this argument, the change is to the previous working directory (OLDPWD variable).

old
Specifies a character string that is to be replaced in the path name of the current directory.

new
Specifies the character string that is to replace the specified character string in the path name of the current directory.

Return codes

Return code Meaning

0 Normal termination

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 798

Return code Meaning

1 Error termination

Notes
• Executing the cd command in Windows converts the directory delimiter from / to \.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

• If HOME is not defined, an error results if you execute the cd command with no argument specified.

• A name in UNC format cannot be specified for the directory path name.

• In Format 2, if a character string that occurs multiple times in the current directory path name is specified for
substitution, only the first instance of that character string will become subject to substitution. An example follows.
Example: The current directory path name is /home/user/test/test
cd test tmp.

In this case, the cd command attempts to change the path to /home/user/tmp/test instead of /home/user/
tmp/tmp.

Usage example
• Change from /var/log to /var/lib.

Contents of the job definition script

pwd
cd log lib
p2w2d1222

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/var/log
/var/lib
/var/lib

command command (executes a command)

Format
UNIX

command [-p] [command [args ...]]
command [-v|-V] [-p] [command [command ...]]

Windows

command [-w] [command [args ...]]
command [-v|-V] [command [command ...]]

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 799

Description
This command executes a command or a built-in command.

The command specified in command is executed with the arguments specified in args.

When the -v option is specified, the same command path name as for the whence command is output to the standard
output. When the -V option is specified, the same command interpretation as for the whence -v command is output
to the standard output. If the -v and -V options are both specified, the -V option takes precedence.

For details about the output format, see whence command (displays how character strings would be interpreted if used
as commands).

Arguments

-p (UNIX only)
Specifies that the specified command is to be found on the standard path.

-w (Windows only)
Specifies that when an external command is executed in Windows, the following processing is not to be performed:

• Converting \ to \\ preceding double quotation marks (") in arguments

• Prefixing \ to any double quotation mark (") in arguments

• Enclosing arguments in double quotation marks (")

However, even when this option is specified, the processing noted above is performed on the character string
specified in command.

-v
Specifies that the command path for the character string specified in command is to be output as if it were to be
treated as a command.

-V
Specifies that whether the character string specified in command is a command, reserved word, alias, standard shell
command, extended shell command, or function is to be output.

command
Specifies the name of the command that is to be executed or a character string that is to be treated as a command.
If this argument is omitted, the command terminates normally but without executing anything.

args
Specifies arguments to be passed to the specified command.

Return codes
Without the -v or -V option

Return code Meaning

0 Normal termination

127 Error termination
• The command could not be identified.

Other than the
above

Error termination
• The format of the command is invalid, or the command terminated with an error.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 800

With the -v or -V option

Return code Meaning

0 Normal termination

1 Error termination, or the value specified in command could not be found as a command.

Notes
• When this command terminates normally, its execution results are not output to the job execution log. Note also that

this command does not identify whether the job or job step terminated normally or with an error. Refer instead to
the standard output or to the execution results of the command that was called.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

Usage example
• Use the command command to execute the pwd command.

Contents of the job definition script

command -p pwd

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/tmp

continue command (interrupts loop processing and returns to the
beginning of the loop)

Format

continue [n]

Description
This command interrupts processing of a for statement, while statement, or other looping control structure and returns
to the beginning of the loop. The argument specifies that the current iteration of the nth enclosing loop is to be interrupted.
If this command is executed while processing is not in a loop, it outputs a message and terminates normally.

Argument

n
Specifies the number of nested loops for which the command is to skip processing. Specify 1 or a greater integer.
When n is specified, the command skips processing of n loops, and resumes processing from the beginning of the
nth enclosing loop. When n is omitted, the command skips processing in the current level loop, and resumes
processing from the beginning of the enclosing loop.
If the command is executed with a value for n that exceeds the current number of nested looping structures, it resumes
processing from the beginning of the outermost loop, and then outputs a message and terminates normally.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 801

Return codes

Return code Meaning

0 Normal termination

1 Error termination
• 0 was specified for n.
• A non-numeric value was specified for n.
• A negative value or an option character string (-alphanumeric-character) was specified for n.

Notes
• If the value of n is 0 or smaller or exceeds 2,147,483,647, overflow will occur. The overflow digits are ignored and

processing continues. We recommend that you specify a value in the range from 1 to 2,147,483,647.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage example
• Interrupt the current iteration of the second enclosing loop.

continue 2

echo command (outputs what is specified in arguments to the standard
output)

Format

echo [-n] [-e|-E] [args ...]

Description
This command outputs what is specified in arguments to the standard output.

During the output processing, escape characters that begin with a backslash (\) are replaced. The following table shows
the escape characters that are replaced:

Escape character Meaning

\a Alert character (bell)

\b Backspace character

\c Suppress trailing linefeed (characters after \c are not output)

\f Formfeed character (page break)

\n Linefeed character

\r Carriage return character

\t Tab character

\v Vertical tab character

\0nnn#1 ASCII character represented by one, two, or three octal digits (0 to 7)

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 802

Escape character Meaning

\xnn#2 ASCII character represented by one or two hexadecimal digits (0 to 9, a to f, A to F)

\\ A single backslash character

#1
If a specified ASCII character consists of one or two digits and two or one leading zeros, respectively, are added to make it three digits, the
ASCII character will still be treated as consisting of only one or two digits. For example, the following three specifications are all interpreted
as being the same, in which case the alert character (bell) is output three times:
echo -e "\07"
echo -e "\007"
echo -e "\0007"

#2
Enabled only when YES is specified in the ESCAPE_SEQ_ECHO_HEX environment setting parameter. For details about the
ESCAPE_SEQ_ECHO_HEX parameter, see ESCAPE_SEQ_ECHO_HEX parameter (specifies whether ASCII code characters in hexadecimal
notation are to be interpreted as escape characters) in 7. Parameters Specified in the Environment Files.
If a specified ASCII character consists of one digit and a leading zero is added to make it two digits, the ASCII character will still be treated
as consisting of only one digit. For example, the following two specifications are interpreted as being the same, in which case the linefeed
character is output twice:
echo -e "\xA"
echo -e "\x0A"

If you want to replace an escape character, enclose the -e option argument in single or double quotation marks (' or
"), as in Example 2 below. The following examples show how escape characters are interpreted depending on whether
quotation marks are used and whether the -e or -E option is specified.

1. In this example, ta is output to the standard output:

echo -e \ta

2. In this example, tab-charactera is output to the standard output:

echo -e "\ta"

3. In this example, ta is output to the standard output:

echo -E \ta

4. In this example, \ta is output to the standard output:

echo -E "\ta"

Options specified for commands and interpretation of arguments

If the characters specified as the arguments to the echo command are all valid option characters, they are interpreted
as options. For example, because the letters in eEn are all valid option characters, they are interpreted as options in the
following example:

echo -eEn

However, if even one character is not a valid option character, the characters are interpreted as an args value. In the next
example, because a is not a valid option character, -eEna is interpreted as an args value, which will be sent to the
standard output.

echo -eEna

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 803

Finally, when an argument is enclosed in quotation marks, the entire enclosed character string is interpreted as a single
argument. In the next example, because the space is not a valid option character, -e a is interpreted as an args value,
which will be sent to the standard output.

echo "-e a"

Interpretation of escape characters (-e and -E options)
Escape characters are interpreted as follows, depending on the specification of the -e and -E options:

• When the -e option is specified, escape characters are interpreted.

• When the -E option is specified, escape characters are not interpreted.

• When the -e and -E options are both specified, the option specified last takes effect.

• When neither the -e nor the -E option is specified, the processing depends on the specification of the
ESCAPE_SEQ_ECHO_DEFAULT environment setting parameter. For details about the
ESCAPE_SEQ_ECHO_DEFAULT parameter, see ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the
action of the echo command when the escape-character option is omitted) in 7. Parameters Specified in the
Environment Files.

Arguments

-n
Specifies that trailing linefeeds are to be omitted from the output to the standard output.

-e
Specifies that escape characters are to be interpreted. The escape characters to be interpreted are determined by the
specification of the ESCAPE_SEQ_ECHO_HEX environment setting parameter. If you want escape characters to
be interpreted, enclose them in single or double quotation marks (' or ").

-E
Specifies that escape characters are not to be interpreted.

args
Specifies the arguments (what it is that is to be output).

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• If an escape character is specified using an ASCII code in hexadecimal notation, the result is the same as when the
escape character is specified directly.
In both of the following specifications, atab-characterb is output:

echo -e "a\tb"
echo -e "a\x09b"

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 804

In both of the following specifications, alinefeed-characterb is output to out.txt, but the linefeed character will
be CR+LF (Windows only):

echo -e "a\nb" > out.txt
echo -e "a\x0ab" > out.txt

• If a value outside the ASCII code range is specified when escape characters are expressed as ASCII character strings,
the content to be output follows the character encoding specified for the terminal and unprintable characters might
produce an incorrect output.

• If you specify a path name for an argument, execute the echo command in an environment in which the -E option
is specified or NO is specified in the ESCAPE_SEQ_ECHO_DEFAULT parameter in order to prevent the backslash
(\) from being replaced as an escape character.
For example, the path name (d:\a\b\c) is not output correctly by any of the following commands:

FILE="d:\\a\\b\\c"
echo $FILE
echo "$FILE"
echo "d:\\a\\b\\c"
echo 'd:\a\b\c'

The path name (d:\a\b\c) is output correctly by all the following commands:

FILE="d:\\a\\b\\c"
echo -E $FILE
echo -E "$FILE"
echo -E "d:\\a\\b\\c"
echo -E 'd:\a\b\c'

FILE="d:\\\\a\\\\b\\\\c"
echo $FILE
echo 'd:\\a\\b\\c'
echo d:\\\\a\\\\b\\\\c

Usage example
• Output the variable LANG.

Contents of the job definition script

echo $LANG

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
ja_JP.eucJP

eval command (concatenates arguments into a command and executes it)

Format

eval [command [args ...]]

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 805

Description
This command concatenates arguments into a command that it executes. The character strings provided as the arguments
are interpreted as a single command that is executed.

Arguments

command
Specifies a name for the command that is to be executed. If this argument is omitted, the eval command terminates
normally but without executing anything.

args
Specifies the arguments that are to be concatenated into a command and executed.

Return codes

Return code Meaning

0 Normal termination

127 Error termination
• The command could not be identified.

Other than the above Error termination
• The format of the command is invalid, or the command terminated with an error.

Notes
• The execution results of this command are not output to the job execution log. Note also that this command does

not identify whether the job or job step terminated normally or with an error. Refer instead to the execution results
of the command that was called.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage example
• Change directories to /home/adsh/script.

eval cd /home/adsh/script

exec command (executes a command and exits)

Format

exec [command [args]...]

Description
This command executes a specified command and then exits.

If an external command is specified as the argument, it executes the command as a child process of the adshexec
command. After waiting for the external command to complete, it performs postprocessing for the job, such as deleting
temporary files.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 806

If you specify only the input/output redirection symbol and a redirection target, it switches the input and output targets
according to the input/output redirection symbol. For details about redirection, see 5.1.6(8) Input and output redirection.

Arguments

command
Specifies the command name of the command that is to be executed. If nothing is specified in this argument, the
exec command does nothing, and execution of the job definition script continues.

args
Specifies arguments for the command that is to be executed.

Return codes

Return code Meaning

0 Normal termination

127 Error termination
• The command could not be identified.

Other than the above Error termination
• The command terminated with an error.

Notes
• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage examples
• Execute the user program UAP01 and terminate the job:

exec UAP01

• Redirect the standard output destination to file01:

exec > file01

exit command (exits the shell)

Format

exit [n]

Description
This command exits the shell. Regardless of the value of the return code, this command terminates normally or with an
error on the basis of whether the command syntax is valid.

If no argument is specified, the command terminates normally with the return code of the command that executed last
as its return code. When executed with an appropriate numeric value specified for the argument, the command terminates
normally. When executed with an invalid value, such as non-numeric characters, specified as the argument, the command
terminates with an error. When the command terminates with an error, it returns 1 as the return code.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 807

When this command is executed within a job step error block, the results are as follows:

• If the argument is specified and the command terminates normally, the value specified in the argument is set as the
job step's return code.

• If the argument is not specified and the command terminates normally, or if it terminates with an error with the
argument specified, the return code of the job step will be the return code of the last command to execute within the
job step normal block.

Arguments

n ~<unsigned integer>((0 to 255))
Specifies the return code to be set upon exiting the shell. If this argument is omitted, the command exits the shell
with the return code of the last command that executed. If you specify 256 or a greater value for this argument, the
command terminates normally with a return code that is the remainder of dividing the specified value by 256. If you
specify a negative value for this argument, the command terminates normally with a return code that is the two's
complement of the specified value.

Return codes

Return code Meaning

0 to 255 Normal termination
• Returns either n or the return code of the last command that executed.

1 Error termination
• A non-numeric value was specified for n.

Notes
• You can specify for n a negative value or a value that is greater than 255, but we recommend that you specify in

JP1/Advanced Shell a value in the range of 0 to 255.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

• When executing the exit command in a separate process, such as by using the & operator or a command substitution,
also see the notes provided in 5.1.7 Execution in a separate process (UNIX only).

Usage example
• Exit the shell with a return code of 2.

exit 2

export command (exports shell variables)

Format

export [-p] [name[=value]...]

Description
This command exports specified shell variables. If the -p option and name argument are both specified, export of the
variables specified in name takes precedence.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 808

If the command is executed with no options specified, it outputs to the standard output the names of all the currently
exported variables.

Arguments

-p
Specifies that all currently exported variables are to be output to the standard output in the format export variable-
name=value.

name
Specifies the name of a variable that is to be exported.
When you export shell variables in Windows, the supported variable names vary as follows:

• When DISABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
All letters contained in variable names must be in uppercase because shell variables whose names contain
lowercase letters cannot be exported.
If you attempt to export a shell variable whose name includes lowercase letters, the command outputs an error
message and exits the batch job.

• When ENABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
Shell variables whose names contains lowercase letters can be exported.
Note that environment variables are not case sensitive. The last shell variable with the same spelling that was
exported becomes the final environment variable value. Shell variables with the same spelling but in a different
case are considered to be different values regardless of whether they are exported.

For name, you can specify multiple names of variables or arrays that are to be exported. If an array name is specified,
the command exports all the elements that constitute the array. Even if you specify a single element of an array, all
the elements of the array will be exported.
If you specify a variable that has not yet been created, the variable will be created and exported simultaneously.
However, if you do not specify a value for the variable in such a case, the linefeed character will be set as the value
and then the variable will be exported.
If the read-only attribute is set for a shell variable that is specified, and you attempt to specify a value for it, the
command will terminate with an error.

value
Specifies a value that is to be assigned to the paired specified variable.
When =value is specified, the specified value is assigned and the variable with the specified value is exported
simultaneously. When this argument is omitted, the specified variable is exported using the value that is already set
for it.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage example
• Export the shell variable HOME after assigning "/home/jp1as" to it.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 809

export HOME="/home/jp1as"

false command (returns 1 as the return code)

Format

false

Description
This command returns 1 as the return code.

Note that this command accepts no options. If an option is specified, it is ignored and processing continues.

Return code

Return code Meaning

1 Normal termination
• This command always returns 1.

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• The execution result of this command is output in the KNAX6113-I message.

Usage example
• Set return code 1.

Contents of the job definition script

false
echo $?

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
1

getopts command (parses option arguments)

Format

getopts optstr name [args ...]

Description
This command parses specified option arguments.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 810

Arguments

optstr
Specifies a string of valid option characters. When a character is followed by a colon (:), it indicates that the option
has an associated value.
You specify a string of option characters that are valid as arguments for specification on the command line or in
args. For example, specify ab for the options -a and -b. Multibyte characters cannot be used.
When a character specified in this argument is determined to be a valid option, the matching option is set in the
variable whose name is specified in name. When a specified character is not found to be a valid option, ? is set in
the variable whose name is specified in name.
If an option has a value, specify a colon (:) after the option character, in which case the value associated with the
matching option will be set in the OPTARG shell variable. The getopts command parses the options starting at
the argument index (which begins with 1) specified in the OPTIND shell variable. For example, if -a 10 is specified
in args, the position of -a will be index 1.

name
Specifies a variable in which the option characters matched by the getopts command are to be set.

args
Specifies arguments that are to be parsed. When this option is omitted, getopts parses only the command-line
options.

Return codes

Return code Meaning

0 Normal termination

1 • Normal termination (detects option termination)
• Error termination

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• When executing the getopts command in a separate process, such as the & operator and a command substitution,
also see the notes provided in 5.1.7 Execution in a separate process (UNIX only).

Usage example
• Parse -b as a valid option.

Contents of the job definition script

getopts b: name -b 10
echo $name

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
b

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 811

kill command (sends a signal)

Format

kill [-s {signame|signum}] {pid|-pid}...
kill [-signame|-signum] {pid|-pid}...

Description
This command sends a signal to one or more processes. The specified signal it is sent to one or more specified processes.
If no signal to be sent is specified, SIGTERM is sent. When you specify by name the signal that is to be sent, specify
its name without the leading characters SIG (for example, specify INT for SIGINT). For the specification for each
signal, see the documentation for the OS being used.

Arguments

-s
Specifies that a signal to be sent is being specified by its signal number or signal name.

signame|-signame
Specifies the signal name of the signal that is to be sent.

signum|-signum
Specifies the signal number of the signal that is to be sent.

pid
Specifies the process ID of a process that is to receive the signal.

-pid
Specifies the process ID of a process when the signal is to be sent to all processes that belong to the specified process's
process group. In Windows, you must specify a value greater than 0 to send the signal to multiple processes.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• In Windows, an error results if you specify any signal other than SIGKILL.

• In Windows, when SIGKILL is specified, TerminateProcess() is used to forcibly terminate the process.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

• To send the default signal (SIGTERM) in the -signame or -signum format to a process group (-pid), you must
specify -- as the signal. If you do not specify --, the process group (-pid) will be interpreted as -signum. An
example follows:
This example sends the default signal (SIGTERM) to process group 14588:

kill -- -14588

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 812

Usage examples
• In UNIX, send SIGINT to process ID 4725.

kill -INT 4725

• In Windows, forcibly terminate process ID 4725.

kill -KILL 4725

let command (evaluates the values of arithmetic expressions)

Format 1

let arithmetic-expression[,arithmetic-expression ...]

Format 2

((arithmetic-expression))

Description
This command performs numeric calculations in order to evaluate specified arithmetic expressions.

In addition to using the let command, you can also calculate the result of an arithmetic expression using the syntax
((arithmetic-expression)), and the results will be evaluated in the same way as for the let command.

The let command accepts multiple arithmetic expressions delimited by the comma (,). If you specify more than one
arithmetic expression, they are calculated in order from left to right. As a result, if you use a conditional expression to
evaluate a comma-separated list of arithmetic expressions, a conditional is evaluated taking into account the result of
the arithmetic expression that was executed last. Note that specifying any spaces before or after a delimiter comma
results in termination of the command with an arithmetic error. You can group calculations in parentheses in order to
change the priority of operations.

For details about arithmetic expressions, see 5.3 Arithmetic operations. For details about conditionals, see 5.2
Conditionals.

Return codes

Return code Meaning

0 Normal termination
• The value of the arithmetic expression is not 0.

1 Normal termination
• The value of the arithmetic expression is 0.
• The syntax (()) executed but no arithmetic expression was specified.

Error termination
• The let command executed but no arithmetic expression was specified.

2 Error termination
• An arithmetic error occurred (division by zero, invalid arithmetic expression).

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 813

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• The arithmetic operators *, &, <, <<, >, and >> have special meanings as metacharacters. To use these characters
in the let command, you must disable them as metacharacters.
Example: Set the variable RC to 1 shifted 2 bits to the left.

 Contents of the job definition script

 let "RC=1<<2"
 echo $RC

Contents of the STDOUT file of the execution job

 ******** JOB SCOPE STDOUT ********
 4

• The let command accepts no options. If you specify -alphabetic-character as an argument, it will be interpreted
as a variable name, not an option.
In the example shown below, -a is specified as the argument. It is interpreted as -3, with a return code of 0.

 Contents of the job definition script

 a=3
 let -a
 echo $?

 Contents of the STDOUT file of the execution job

 ******** JOB SCOPE STDOUT ********
 0

• When executing the let command in a separate process, such as the & operator and a command substitution, also
see the notes provided in 5.1.7 Execution in a separate process (UNIX only).

Usage examples
• Add 3+4 and multiply the result by 2.

Contents of the job definition script

let "VAR=2*(3+4)"
echo $VAR

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
14

• Set the variable RC to the result of 1+2.
Contents of the job definition script

((RC=1+2))
echo $RC

Contents of the STDOUT file of the execution job

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 814

******** JOB SCOPE STDOUT ********
3

print command (outputs to the standard output)

Format

print [-n|-p|-r] [-u [num]] [--] [args]

Description
This command outputs what is specified in the arguments to the standard output. Trailing linefeeds are appended to the
output.

Escape characters prefixed with \ are replaced in the output. The following table shows the escape characters that are
replaced:

Escape character Meaning

\a Alert character (bell)

\b Backspace character

\c Suppress the trailing linefeed (characters after the \c are not output)

\f Formfeed character (page break)

\n Linefeed character

\r Carriage return character

\t Tab character

\v Vertical tab character

\0nnn# ASCII character represented by one, two, or three octal digits (0 to 7)

\\ A single backslash character

#
If a specified ASCII character consists of one or two digits and two or one leading zeros, respectively, are added to make it three digits, the
ASCII character will still be treated as consisting of only one or two digits.

When the -r option is specified, escape characters are ignored.

Arguments

-n
Specifies that trailing linefeeds are to be omitted from the output to the standard output.

-p
Specifies that a pipe is to be used to send the output to the standard input of a background process, rather than to
the standard output.

-r
Specifies that escape characters are to be ignored.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 815

-u [num]
Specifies the file identifier to which the output is to be output. When no value is specified, 1 is assumed.
Specify either an output destination file identifier or p. Specifying p is equivalent to specifying the -p option.

--
Specifies the end of the option specifications. Any options specified after this option are interpreted as part of args.

args
Specifies the arguments (what is to be output).

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• If a value outside the ASCII code range is specified when escape characters are expressed as ASCII character strings,
the content to be output follows the character encoding specified for the terminal and unprintable characters might
produce an incorrect output.

Usage examples
• Output the character string abc with a trailing linefeed.

Contents of the job definition script

print "abc\n"

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
Abc

• Output the character string abc to the standard input of the coproc.sh background process.

coproc.sh |&
print -p abc

pwd command (outputs the path of the current directory)

Format

pwd [-L|-P]

Description
This command outputs the path of the current directory to the standard output.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 816

Arguments
Specifying no options is equivalent to specifying the -L option.

-L
Specifies that if the current directory path contains a symbolic link (a link using a file that contains the actual file
path), the symbolic link is to be output. If the -L and -P options are both specified, the option specified last takes
effect.

-P
Specifies that the path that does not contain a symbolic link is to be output. If the -L and -P options are both
specified, the option specified last takes effect.
In Windows, the -P option is ignored.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• In Windows, when you execute the pwd command, the directory delimiter / is displayed as \.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

Usage example
• Output the path of the current directory.

Contents of the job definition script

cd /tmp
pwd

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/tmp

read command (reads from the standard input and stores the input in
variables)

Format

read [-p] [-r] [-u [num]] [varname ...]

Description
This command reads one line at a time from the standard input and stores the input in specified shell variables.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 817

Arguments

-p
Specifies that the command is to read from the output of a background process through a pipe.

-r
Specifies that when there is a \ at the end of a line, the next line is not to be read as a continuation line.

-u [num]
Specifies the file identifier of the file from which the input is to be read. If no value is specified, the standard input
is read.
Specify either a file identifier or p. Specifying p is equivalent to specifying the -p option.

varname
Specifies the name of a variable in which input that is read is to be stored.
When multiple variable names are specified, the input line is split into the fields delimited by the delimiter set in
the IFS variable, and the fields are assigned to the variable names in sequential order (input line's first field is set
in the first variable, second field is set in the second variable, and so on).
If the number of fields exceeds the number of variable names, the values of all the remaining fields are stored in the
last variable that is specified.
If there are fewer fields than there are variables, a linefeed is set in each additional variable.

Return codes

Return code Meaning

0 Normal termination

1 Normal termination
• The end of file (EOF) was detected.

Error termination
• Other than the above.

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• When executing the read command in a separate process, such as the & operator and a command substitution, also
see the notes provided in 5.1.7 Execution in a separate process (UNIX only).

• In Windows, there are circumstances where keyboard input is accepted even before the read command starts. For
example, this can happen while the system is executing a previous command, or when you are reading input from
the console or command prompt while running the debugger within an editor and the debugger is stopped at a
breakpoint. To prevent the input from being read incorrectly, do not make entries from the keyboard before the read
command starts.
If there is input from the keyboard before the read command starts, that input will be displayed when the read
command starts. At that point, delete the keyboard input that is displayed and re-enter it for the read command.

Usage examples
• Read the file string.txt and send its contents to the standard output.

Contents of the job definition script

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 818

while read LINE
do
 echo "$LINE"
done < string.txt

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
HITACHI
JP1
Advanced Shell

• Read a character string output to the standard output by the coproc.sh background process and store it in the
variable NAME.

coproc.sh |&
read -p NAME

readonly command (sets the read-only attribute for variables or displays
all read-only variables)

Format

readonly [-p] [name [=value]...]

Description
This command sets the read-only attribute for specified variables or displays all read-only variables. When the command
is executed with no options, it outputs to the standard output the names of all the read-only variables.

To revert a variable's read-only attribute back to writable, specify the +r option to the typeset command.

Arguments

-p
Specifies that all read-only variables are to be output to the standard output in the format readonly variable-
name=value. However, if you specify the -p option and name at the same time, the read-only attribute is set for the
specified variable.

name
Specifies the name of a variable for which the read-only attribute is to be set.
More than one variable name or array name can be specified. However, if a function name is specified in name, the
read-only attribute is not set for the function, instead the read-only attribute is set for a variable with the same name
as the specified function.
If an array name is specified in name, the read-only attribute is set for all the elements that constitute the array. Even
if you specify one element of an array, the read-only attribute is set for all the elements of the array.
If there is no variable with the specified name, such a variable is created, and the read-only attribute is set for it. In
such case, if no value is specified for the attribute, the linefeed character is set as the new attribute's value and it has
the read-only attribute.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 819

If the read-only attribute is already set for the specified variable, the command terminates normally without doing
anything.

value
Specifies a value to be set for the specified variable.
The specified value is set for the variable when name is followed by =value. If no value is specified, the read-only
attribute is set for the specified variable without changing its value.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage example
• Set the read-only attribute for the test variable.

readonly test

return command (returns from a function or an external script)

Format

return [n]

Description
This command returns from a function or an external script, then continues processing in the calling function. Note that
this command exits the shell if it is executed at a location other than from within a function or an external script.

Regardless of the value of the return code, this command terminates normally or with an error on the basis of whether
the command syntax is valid.

If no argument is specified, the command terminates normally with the return code from the command that executed
last as the return code. If it executes with a valid numeric value specified as the argument, it terminates normally. If it
executes with an invalid value specified as the argument, such as non-numeric characters, it terminates with an error.
When this command terminates with an error, it returns 1 as the return code.

Arguments

n ~<unsigned integer>((0 to 255))
Specifies the return code. When this argument is omitted, the command returns with the return code from the
command that executed last. If you specify 256 or a greater value for this argument, the command terminates
normally with a return code that is the remainder from dividing the specified value by 256. If you specify a negative
value, the command terminates normally with a return code that is the two's complement of the specified value.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 820

Return codes

Return code Meaning

0 to 255 Normal termination
• Returns the value specified in n or the return code of the command that executed last.

1 Error termination
• A non-numeric value was specified.

Notes
• You can specify for n a negative value or a value that is greater than 255, but we recommend that you specify in

JP1/Advanced Shell a value in the range of 0 to 255.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

• When executing the return command in a separate process, such as the & operator and a command substitution,
also see the notes provided in 5.1.7 Execution in a separate process (UNIX only).

Usage example
• Return with return code 2 from a function or external script and continue processing in the calling function.

return 2

set command (sets shell options, creates an array, or displays variable
values)

Format

set [-a|+a] [-f|+f] [-u|+u] [-v|+v] [-x|+x]
 [{-o|+o} [opt]]...
 [{-A|+A} name] [--] [val ...]

Description
The command sets specified shell options, creates an array, or displays variable values.

This command can be used both to set shell options and to create an array. If you do both at the same time, you must
specify the shell options first, followed by array creation. If you specify the array creation first, everything after the -
A option will be interpreted as array name and element value specifications.

Arguments
You can specify more than one option at the same time. If the same option is specified more than once, the last
specification takes effect.

If no options are specified, all variables that have been assigned are output to the standard output in the format variable-
name=value.

-a|+a

• -a: Enables the allexport option.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 821

• +a: Disables the allexport option.

-f|+f

• -f: Enables the noglob option.

• +f: Disables the noglob option.

-u|+u

• -u: Enables the nounset option.

• +u: Disables the nounset option.

-v|+v

• -v: Enables the verbose option. When the verbose option is enabled, all lines that are read as input to the
shell are output to the standard output. All input lines are output, regardless of category, such as control statement
or command. The items that are output include even the following:

 Comments
 Nonexistent commands
 Commands that are not executed because they do not satisfy the conditions in an if, case, or similar statement
 Commands that are not executed because the loop in a while statement, for statement, or other looping

structure is never entered
 Job steps that are skipped by means of the run attribute

• +v: Disables the verbose option.

-x|+x

• -x: Enables the xtrace option.

• +x: Disables the xtrace option.

-o|+o

• -o: Enables the shell option specified in opt. In addition, displays a list of the shell options that are currently
set.

• +o: Disables the shell option specified in opt. In addition, displays the shell options that are currently set, in a
format that can be entered into the command line.

opt
Specifies the name of a shell option that is to be set. For details about the shell option names that can be specified,
see 5.6 Shell options.

-A|+A
Specifies that values are to be assigned to an array.
If you execute the command with the -A option specified and the array or variable specified in name already exists,
the command deletes the contents of name and then creates the array or variable by assigning to it the values specified
in val. The command creates as many array elements as there are arguments specified in val.
If you execute the command with the -A option specified and the array or variable specified in name already exists,
the command assigns the values specified in val to the array or variable specified in name without deleting the
contents of name. If the number of element values to be assigned is fewer than the number of elements existing in
the array, the values of the array elements to which no value is assigned remain unchanged. If the array or variable
specified in name does not exist, the command processing is the same as when the -A option is specified.
The number of array elements must be within the rage of 2 to 65,536. If only one value is specified, the command
creates a variable rather than an array. Multiple arrays cannot be created simultaneously.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 822

name
Specify the name to be assigned to the array that is being created. If you specify a read-only variable, the command
terminates with an error.

--
Specifies the end of the option specifications. Any options specified after this option are interpreted as part of val.

val
Specifies a value to be assigned as an element of the array that is being created. If the command is executed with
only one value specified, the specified value is assigned to a positional parameter. If multiple values are specified,
they are assigned to the array from left to right in the order $1, $2....

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

• If the braceexpand and noglob options are both specified, the noglob option takes effect and brace expansion
is disabled.

Usage example
• Create the array test and assign a01 to test[0], a02 to test[1], and a03 to test[2].

set -A test a01 a02 a03

shift command (shifts the run-time parameters)

Format

shift [n]

Description
This command shifts all the run-time parameters so that a specified subsequent parameter becomes set in the first
position.

Argument

n
Specifies the number of places by which the run-time parameters are to be shifted. When this argument is specified,
the run-time parameters are shifted by the specified number of places. When this argument is omitted, 1 is assumed
(the second parameter becomes the first parameter, and so on). If you specify 0, the run-time parameters are not
shifted. If you specify a negative or non-numeric value, the command terminates with an error. If you specify a value
greater than the number of run-time parameters, the command terminates with an error.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 823

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• If you specify 0 for the argument, the run-time parameters are not shifted. If you intend to use the shift command

to iterate through the run-time parameters in a for statement, while statement, or other looping control structure,
be sure not to specify 0 for the argument.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage example
• Shift the run-time parameters by 2 places.

shift 2

test command (determines the value of a conditional expression)

Format 1

test conditional-expression

Format 2

[conditional-expression]

Format 3

[[conditional-expression]]

Description
This command determines the value of a specified conditional expression. The command evaluates the value of a
conditional expression specified using conditional operators. It returns 0 if the result is true or 1 if the result is false. If
you execute the test command or [] with conditional-expression omitted, it returns 1.

For details about conditional expressions, see 5.2 Conditionals.

Return codes

Return code Meaning

0 Normal termination
• The result of evaluating the conditional expression was true.

1 Normal termination
• The result of evaluating the conditional expression was false.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 824

Return code Meaning

2 Error termination
• The command terminated with an error.

Notes
• Operators such as angle brackets (< and >) have special meanings as metacharacters. To use these characters in the
test command, you must disable them as metacharacters.

• When the square bracket format ([[]]) is used, neither a wildcard nor file name substitution is applied to a character
string entered between the square brackets.
An example is shown below. In this example, it is assumed that files test.ash and hhh are located in the current
directory.

[[-f *est.ash]] ... (1)
[-f *est.ash] ... (2)
test -f *est.ash ... (3)
[[-f ?(hhh)]] ... (4)
[-f ?(hhh)] ... (5)
test -f ?(hhh) ... (6)

In lines (1) and (4), the wildcard enclosed in the square brackets ([[]]) is not applied. Therefore, it is interpreted
that no applicable file exists, and the return code will be 1.
In lines (2), (3), (5), and (6), the wildcard is applied. Therefore, the determined result of the conditional expression
becomes true, and the return code will be 0.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

Usage example
• Determine whether the variables arg1 and arg2 have the same value.

test $arg1 -eq $arg2

times command (displays the amount of CPU time used by the shell)

Format

times

Description
This command outputs to the standard output the amount of CPU time used by the shell and by processes launched from
the shell. The following information is displayed:

• User CPU time (in seconds) used by the shell

• System CPU time (in seconds) used by the shell

• Total user CPU time (in seconds) used by processes launched from the shell

• Total system CPU time (in seconds) used by processes launched from the shell

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 825

The output format of the times command is shown in the following table:

Output format# Meaning

Shell: CPU-time user CPU-time system CPU time used by the shell is output in the order user CPU
time, system CPU time.

Kids: CPU-time user CPU-time system CPU time used by processes launched from the shell is
output in the order user CPU time, system CPU time.

#
CPU-time is displayed to two decimal places.

Note that if an option is specified, it is ignored and processing of the command continues unaffected.

Return code

Return code Meaning

0 Normal termination

Notes
• In Windows, the CPU time of child processes does not include the CPU time of grandchild processes.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

Usage example
• Display the CPU time of the shell and the process launched from the shell (ps command).

Contents of the job definition script

ps > /dev/null
times

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
Shell: 0.00s user 0.01s system
Kids: 0.01s user 0.10s system

trap command (specifies the action when signals and forced termination
requests are received)
The functionality of the trap command for the Windows edition differs from its functionality for the UNIX edition.
For details about the functionality for the UNIX edition, see (1) trap command (UNIX edition). For details about the
functionality for the Windows edition, see (2) trap command (Windows edition).

(1) trap command (UNIX edition)

Format

trap [action] [signal ...]

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 826

Description
This command specifies the action to be taken when one or more specified signals are received. When the shell receives
a specified signal, it executes the specified action.

When this command is executed with no arguments, it outputs to the standard output a list of the actions associated with
all signals in the following format:

Category of signal Output format

Signal whose name is defined trap -- action signal-name-without-SIG-prefix

Signal whose name is not defined trap -- action UNKNOWN SIGNAL

Actions can be set for signals for which multiple names are defined under a single signal number, as shown in the tables
below.

Linux

Signal name Alternate name Whether an action can be set by the trap command

SIGSYS SIGUNUSED SIGSYS Can be set.

SIGUNUSED Can be set.

Note:
Because extended functions use SIGSYS, not SIGUNUSED, as the main signal name, the trap command also treats SIGSYS as the
signal name.

AIX

Signal name Alternate name 1 Alternate name 2 Whether an action can be set by the trap command

SIGABRT SIGLOST SIGIOT SIGABRT Can be set.

SIGLOST Can be set.

SIGIOT Can be set.

SIGIO SIGPOLL None SIGIO Can be set.

SIGPOLL Can be set.

HP-UX or Solaris

Signal name Alternate name Whether an action can be set by the trap command

SIGABRT SIGIOT SIGABRT Can be set.

SIGIOT Can be set.

SIGIO SIGPOLL SIGIO Can be set.

SIGPOLL Can be set.

When an action is specified for a signal for which multiple names are defined under a single signal number, one of the
specified signal names is output.

The trap command does not display an action that is set for a signal when that action is registered in an extended
function.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 827

Arguments

action
Specifies the action to be taken when the specified signals are received. If this argument is omitted or a hyphen (-)
is specified, the previously-specified traps for the specified signals are reverted to their default settings. If action
is omitted and a signal number is specified for signal, the previously specified traps for the specified signals are
also reverted to their default settings.

signal
Specifies a signal that is to be trapped. You can specify a signal number or a signal name. When you specify a signal
name, you must specify it without the leading SIG (for example, specify INT for SIGINT). For the specifications
for each signal, see the documentation for the OS being used.
The operation that is performed when SIGTERM is specified depends on the specification of the
TRAP_ACTION_SIGTERM environment setting parameter. For details, see TRAP_ACTION_SIGTERM parameter
(defines the job controller's action when a forced termination request is received) in 7. Parameters Specified in the
Environment Files.
You can specify multiple signals delimited by the space. You can also specify 0, EXIT, or ERR for this argument.

When you execute the trap command with 0 or EXIT specified for signal
Executes the command specified in action when the shell terminates.

When you execute the trap command with ERR specified for signal
Executes the action specified in action when the any of the following commands executed after the trap
command terminates with a non-zero return code:

• Regular built-in command

• typeset command

• return command that results in an error in a function or external script because of an invalid format

In AIX, the SIGWAITING signal cannot be specified. If you execute this command in AIX with SIGWAITING
specified, the command terminates with an error.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• If you specify a value that is smaller than 0 for the signal argument, the trap command treats it as an invalid signal.

When you specify a numeric value for the signal argument, specify a value that is within the permissible range of
0 to signal.

• If the adshread extended shell command is specified in the operation defined by the trap command and a forced
termination request is received, the job waits for an entry and will not be terminated. If you specify TERM, or
AUTO(and the job starts from JP1/AJS) in the TRAP_ACTION_SIGTERM parameter, do not specify the adshread
extended shell command in the operation that is defined by the trap command.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

• If the action argument is omitted and only a signal number is specified in the signal argument, the trap command
resets the action specified for signal to the default setting. However, if only a signal name is specified without
SIG, the trap command terminates itself without resetting the action specified for signal.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 828

Example: trap 15
 The command resets the action for signal number 15 to the default setting.

Example: trap TERM
 The command does not reset the action.

Usage examples
• Output the message "trapped." by the echo command when the INT signal is received.

trap 'echo trapped.' INT

• Display the actions that are associated with signals.
Contents of the job definition script

trap -- 'echo Hangup.' HUP
trap -- 'echo trapped.' INT
trap

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
trap -- 'echo Hangup.' HUP
trap -- 'echo trapped.' INT

(2) trap command (Windows edition)

Format

trap [action][method]

Description
This command specifies the action to be taken when a forced termination request is received.

When TERM is specified in the TRAP_ACTION_SIGTERM parameter
The action to be taken upon receiving a forced termination request can be specified. When the forced termination
request specified in the method is received, the job controller performs the operation specified for action.
If the forced termination request specified in method is neither TERM nor 15, the command issues the KNAX6718-
I message and terminates with return code 0 without performing the specified action.
If the command is executed with no argument specified, it outputs the action set for forced termination requests to
the standard output in the following format:

Output format

trap -- action "character-string-indicating-the-forced-termination-method"

When DISABLE is specified in the TRAP_ACTION_SIGTERM parameter
The command issues the KNAX6710-I message and always terminates normally with return code 0. The command
does not perform processing for forced termination requests.

Arguments

action
Specifies the action to be taken when a forced termination request is received.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 829

If a hyphen (-) is specified for action,the command resets the previously specified action setting for the specified
method so that the method is not associated with any action setting. If action is omitted and 15 is specified in the
method argument, the command also resets the previously specified action setting for the specified method so
that the method is not associated with any action setting.
If you specify "" for the action, the trap command terminates normally without changing the current setting for
action.

method
Specifies the forced termination method that is to be subject to the trap.
You must specify either TERM or 15 for method.

TERM or 15
Specifies that immediate process termination is to be performed by a function such as TerminateProcess
(such as forced termination from JP1/AJS or the taskkill command).

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• When kill -KILL process-ID is executed to terminate adshexec.exe for a job, the action defined in the

terminated job's trap action TERM is executed.

• If TERM is specified in the TRAP_ACTION_SIGTERM parameter, the trap command with an option specified
results in an error. If a value other than TERM is specified in the TRAP_ACTION_SIGTERM parameter, the trap
command with an option specified will not result in an error.

• If the adshread extended shell command is specified in the operation defined by the trap command and a forced
termination request is received, the job waits for an entry and will not be terminated. If you specify TERM in the
TRAP_ACTION_SIGTERM parameter, do not specify the adshread extended shell command in the operation that
is defined by the trap command.

• If this special built-in command terminates with an error due to a syntax error, the shell running the command will
also terminate.

• If the action argument is omitted and 15 is specified in the method argument, the trap command resets the
action specified for immediate process termination by a function such as TerminateProcess so that the method
is not associated with any action setting. However, if only TERM is specified, the trap command terminates
itself without resetting the action specified for immediate process termination.

Example: trap 15
 The command resets the action specified for immediate process termination by a function such as

TerminateProcess so that the method is not associated with any action setting.

Example: trap TERM
 The command does not reset the action.

• If multiple values are specified for method and at least one of those values is TERM or 15, the command sets action
for TERM or 15 without issuing the KNAX6718-I message. For any other method, the command does not set action.
Example: If trap date 28 15 is executed, the trap command sets the date command as the action for 15
without issuing the KNAX6718-I message.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 830

Usage Examples
• "trapped." is output by the echo command when a forced termination request performed by a function such as

TerminateProcess is received.

trap 'echo trapped.' TERM

• Display the action that is set for forced termination requests. TERM is displayed as the forced termination method
even when 15 is set for method in the trap command that sets action.
Contents of the job definition script:

trap 'echo trapped.' 15
trap

Contents of the STDOUT file of the execution job:

******** JOB SCOPE STDOUT ********
trap -- 'echo trapped.' TERM

true command (returns 0 as the return code)

Format

true

Description
This command terminates successfully, returning 0 as the return code.

This command accepts no options. If an option is specified, it is ignored and processing continues.

Return code

Return code Meaning

0 Normal termination
• Always returns 0.

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

• The execution result of this command is output in the KNAX6113-I message.

Usage example
• Set the return code to 0.

Contents of the job definition script

true
echo $?

Contents of the STDOUT file of the execution job

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 831

******** JOB SCOPE STDOUT ********
0

typeset command (declares explicitly the attributes and values of
variables and functions)

Format

typeset [{-L|+L} [n]] [{-R|+R} [n]] [{-Z|+Z} [n]]
 [-l|+l|-u|+u] [{-i|+i} [n]] [-r|+r|-x|+x]
 [{-f|+f} [-t|+t] [-u]]
 [-p|+p]
 [--] [name [=value]...]

Description
This command declares explicitly the attributes and values of variables and functions. You can use this command to
define specified variables and functions (specified in name), as well as to declare explicitly attributes and values for
them.

When this command is executed within a function, it defines local variables that are valid within that function only.
Those values and attributes revert when the function terminates.

The options for this command are organized into the four categories of character string formatting options, attribute and
type options, function options, and display options.

Arguments
You prefix each option specification with a minus sign (-) to enable the option (attribute) or a plus sign (+) to disable
it.

[{-L|+L} [n]] [{-R|+R} [n]] [{-Z|+Z} [n]]

• -L|+L
These are character string formatting options. The -L option left-justifies the contents of the variables. The +L
option removes any left-justification that has been set.
When a value is set in a variable and the length of the area is greater that the length of the specified value, this
option pads the trailing remainder of the area with spaces. If the length of the specified value is greater than the
length of the area, the trailing portion of the value is truncated to fit in the region
If the -Z option is also specified, leading zeros are stripped. If the -R option is also specified, the one specified
last takes effect.
If the item whose name is specified in name is already defined with the -R option, its right-justification setting
is disabled.

• -R|+R
This is a character string formatting option. The -R option right-justifies the contents of the variables. The +R
option removes any right-justification that has been set.
When a value is set in a variable and the length of the area is greater than the length of the specified value, this
option pads the beginning of the area with spaces. If the length of the specified value is greater than the length

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 832

of the area, the beginning portion of the value is truncated to fit in the region. If -L and -R are both specified,
the one specified last takes effect.
If the item whose name is specified in name is already defined with the -L option, its left-justification setting
is disabled.

• -Z|+Z
This is a character string formatting option. The -Z option pads the contents of the variables with zeros. The +Z
option removes any zeros-padding that has been set.
Unless the -L option is set, the contents will be right-justified. If the first character of the value specified in
value is a numeric, the beginning of value is padded with zeros. If the first character of the value specified in
value is a non-numeric, the beginning of value is padded with spaces.

• n
Specifies the length of the area for value. If 0 is specified or n is omitted, the length of the area will be the length
of the value specified in value. An error results if you specify a value for n that exceeds 16,385.

[-l|+l|-u|+u]

• -l|+l
These are character string formatting options. The -l option converts the letters assigned to a variable specified
in name from uppercase to lowercase. If the character string assigned to the variable contains a mixture of
uppercase and lowercase, this option converts only the uppercase letters to lowercase letters. If the -u option is
also specified, the option specified last takes effect.
The +l option removes any uppercase-to-lowercase conversion that has been set.

• -u|+u
This is a character string formatting option. The -u option converts the letters assigned to a variable specified
in name from lowercase to uppercase. If the character string assigned to the variable contains a mixture of
uppercase and lowercase, it converts only the lowercase letters to uppercase letters. If the -l option is also
specified, the option specified last takes effect.
The +u option removes any lowercase-to-uppercase-conversion attribute that has been set.

[{-i|+i} [n]] [-r|+r|-x|+x]

• -i|+i
These are attribute and type options. The -i option declares that the type of a variable specified in name is
integer. When this option is specified, the value assigned to value must be in decimal. If you use -i to specify
a base other than 10, 'base#' will be prefixed at the beginning of the contents of the variable specified in
name. If you also specify the -Z option to set zero-padding, the area up to the beginning of 'base#' will be
padded with leading zeros.
The +i option removes any integer type attribute for a variable specified in name.

• n
Specifies the base in which name is to be displayed when it is output. If 0 is specified or n is omitted, and name
is an undefined variable, the name item will be treated as a decimal number. If 0 is specified or n is omitted, and
name is a defined variable, the name item will use the base that has already been defined for it. An error results
if you specify a base of 1 or a base greater than 16.

• -r|+r
These are attribute and type options. The -r option sets the read-only attribute for a variable specified in
name. Once the read-only attribute is set for a variable, neither the variable's value nor any of its attributes can
be changed.
The +r option removes any read-only attribute that has been set.

• -x|+x

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 833

These are attribute and type options. The -x option exports a variable specified in name. The +x option cancels
exporting of a variable specified in name.
When you export variables in Windows, the supported variable names are handled as follows:

When DISABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
All letters contained in variable names must be in uppercase because shell variables whose names contain
lowercase letters cannot be exported.
If a variable containing a lowercase letter is specified for name, an error message is output and the batch job
terminates.

When ENABLE is specified in the VAR_ENV_NAME_LOWERCASE parameter
Shell variables whose names contain lowercase letters can be exported.
Note that environment variables are not case sensitive. The last shell variable with the same spelling that was
exported becomes the final environment variable value.

{-f|+f} [-t|+t] [-u]

• -f|+f
These are function options. The -f option declares that the processing targets specified in name are to be treated
as functions, not variables. When the command is executed with the -f option specified, functions specified in
name are also output to the standard output. Functions are not displayed when the command is executed with
the +f option.
When the command is executed with only -f specified, and with no name specification, all currently defined
functions are output to the standard output.

• -t|+t
These are function options. When specified together with the -f option, the -t option enables the trace mode
for a function specified in name.
The +t option disables the trace mode for a function specified in name.

• -u
This is a function option. When specified together with the -f option, the -u option enables the auto-load
functionality for a function specified in name.

-p|+p
These are display options. The -p option outputs all defined variables to the standard output in the format typeset
variable-name=value. If you specify the -p option and name at the same time, the declaration of attributes for the
variable specified in name takes precedence.
The +p option outputs all defined variables to the standard output in the format typeset variable-name.

No options specified
This is a display option. When this command is executed with no options specified, all the defined variables are
output to the standard output. Each variable name is preceded by the values of the attribute and type options declared
in typeset. When no attribute and type options have been declared, the variable name is displayed left-justified.

Option only specified without a name specification
This is a display option. All the variables and functions with the specified property are output. If the option is prefixed
with a hyphen (-), what is output to the standard output is variable-name=value or the contents of each function. If
the option is prefixed with a plus sign (+), only the names of the variables or functions are output to the standard
output.

--
Specifies the end of the option specifications. Any options specified after this option are interpreted as part of a
variable name.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 834

name
Specifies a variable name, array name, or function name whose attributes and values are to be declared. You can
specify multiple variable names, array names, and function names.
When you specify an array name, the declaration applies to all the elements that constitute the array, even if you
specify only one element of the array.
You can specify = after name to assign a value to name and declare its attributes at the same time.
If the read-only attribute is set for the variable specified in name and you attempt to set a value for it, the command
will terminate with an error.

value
Specifies a value to be assign to the paired name. If value is omitted, the linefeed character is assigned, and then the
attribute changes are made.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• For the n argument, specify a value that is within the permissible range set for each of the arguments specified

concurrently.

• If a variable that contains multibyte characters is truncated during left- or right-justification, the multibyte character
data might be lost, leaving behind a character that is assigned to an incomplete byte sequence.

• You cannot use a single hyphen to specify multiple options and arguments at the same time. For example, to declare
an octal integer that is right-justified within 16 digits, specify -i8 -R16. If you specify -i8R16, the command
will terminate with an error.

• If the -f and -x options are both specified, the -x option is ignored and the processing is the same as when only
the -f option is specified.

Usage examples
• Set the attributes for the variable num so that it is declared as an integer and displayed left-justified with a length

of 10 digits.

typeset -L10 -i num

• Enable the trace mode for the function func.

typeset -ft func

ulimit command (sets limits on system resources) (UNIX only)

Format

ulimit [-H] [-S] [-a] [-c] [-d] [-f] [-l] [-m]
 [-n] [-p] [-s] [-t] [limit]

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 835

Description
This command sets limits on system resources or displays information about limits on system resources that have been
set. This command is used to set upper limits on system resources that are specified by option specifications, as well as
to output to the standard output limits that have been set.

The following table shows the output formats for displaying resource limits.

Output format Contents

time(cpu-seconds) upper-limit Maximum CPU time

file(blocks) upper-limit Maximum file size

coredump(blocks) upper-limit Maximum file size of core dump

data(kbytes) upper-limit Maximum data area size

stack(kbytes) upper-limit Maximum stack area size

lockedmem(kbytes) upper-limit Maximum size of physical memory that can be locked

memory(kbytes) upper-limit Maximum size of physical memory that can be used

nofiles(descriptors) upper-limit Maximum number of file descriptors

processes upper-limit Maximum number of processes

Arguments
If you indicate multiple resources by specifying more than one resource option, the option specified last takes effect.

-H
Specifies that the limit being set (or displayed) is a hard limit. If the -H and -S options are both specified, the one
specified last takes effect.

-S
Specifies that the limit being set (or displayed) is a soft limit. If the -H and -S options are both specified, the one
specified last takes effect.

-a
Specifies that the upper limits for all resources are to be output.

-c
Specifies that a maximum size for a core dump file (in blocks) is to be set or displayed.

-d
Specifies that a maximum data area size (in kilobytes) is to be set or displayed.

-f
Specifies that a maximum file size (in blocks) for files written by a shell or by processes launched from a shell is to
be set or displayed.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 836

-l (Linux only)
Specifies that a maximum size (in kilobytes) for the physical memory that can be locked is to be set or displayed.

-m (AIX, HP-UX, and Linux only)
Specifies that a maximum size (in kilobytes) for the physical memory that can be used is to be set or displayed.

-n
Specifies that a maximum number of file descriptors that can be open is to be set or displayed.

-p (Linux only)
Specifies that a maximum number of processes that one user can start is to be set or displayed.

-s
Specifies that a maximum size (in kilobytes) of the stack area is to be set or displayed.

-t
Specifies that a maximum CPU time (in seconds) is to be set or displayed.

limit
Specifies the resource limit value that is to be set. If you specify unlimited, no upper limit is set for the resource.
You can specify any numeric value as an upper limit, but for details about the upper limits that are valid in practice,
see the documentation for the OS being used.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• When either of the following conditions apply, the ulimit command outputs the KNAX6710-I message indicating

that the command is not supported, and then terminates normally with a return code of 0:

• A specified option is not supported by the OS.

• You are running in a Windows environment.

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

• If the maximum file size set with the ulimit command is too small to be able to generate the files required when
you run a job definition script with the adshexec command, you might receive the SIGXFSZ signal.

• To increase the hard limit, you need the administrator's permission.

• The upper limits on resources that can be specified depend on the execution environment and the OS.

• For some resources whose limits are to be changed, if you specify a value that is not permitted, the execution
environment or the OS might set a different value.

Usage example
• Output the upper limits for all resources.

Contents of the job definition script

ulimit -a

Contents of the STDOUT file of the execution job

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 837

******** JOB SCOPE STDOUT ********
time(cpu-seconds) unlimited
file(blocks) unlimited
coredump(blocks) 0
data(kbytes) unlimited
stack(kbytes) 10240
lockedmem(kbytes) 32
memory(kbytes) unlimited
nofiles(descriptors) 1024
processes 4096

umask command (sets the access permissions for creating a new file)
(UNIX only)

Format

umask [-S] [mask]

Description
This command sets the access permissions used when a new file is created. You specify in mask the file mode creation
mask that is to be set. If the command is executed with mask omitted, it outputs the current umask value to the standard
output.

Arguments

-S
Specifies that the value is to be set or output in symbolic format.
When the -S option is specified, the command sets or outputs the file mode in symbolic format. When the -S option
is not specified, the access permissions that are set or output are expressed in octal. This specification also indicates
when the specified access permissions are not granted at file creation time.

mask
Specifies a umask value to serve as the default file mode when a file is created. You can specify mask in numeric
or symbolic format. If you use symbolic format, the specification follows the format [who][op][perm]
[,...]. You can specify multiple sets of values delimited by the comma (you cannot use the space).

• who
Specifies the targets for which the mask is set. Specify none, one, or multiple of the following letters:
u: Permissions for the user (owner)
g: Permissions for the group
o: Permissions for others
a: Permissions for all (a=ugo)
(none): Permissions for all (a=ugo)

• op
Specifies the mask setting operation. Specify one of the following symbols:
+: Add perm to the current mask for each who entry
-: Remove perm from the current mask for each who entry

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 838

=: Change the current mask for each who entry to perm

• perm
Specifies the permissions to be granted at the time of file creation. Specify none, one, or multiple of the following
letters:
r: Read permission
w: Write permission
x: Execute permission
u: Same permissions as for the user
g: Same permissions as for the group
o: Same permissions as for others
X: If any of ugo has the execute permission, grant those execute permissions. If none of ugo have execute
permissions, no permissions are set. If no permissions are set, nothing changes when op is + or -, but the mask
for who is removed when op is =.
s: No permissions. Nothing changes when op is + or -, but the mask for who is removed when op is =.
(none): No permissions. Nothing changes when op is + or -, but the mask for who is removed when op is =.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• When you use this command in a Windows environment, the KNAX6710-I message is output indicating that the

command is not supported. The command then terminates normally with a return code of 0 (no file creation mask
is set).

• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing
the command.

• For the permissions for temporary files created by the #-adsh_file_temp command, the specification of the
umask value applies only to the file owner (creator) part and the group and other users' access permissions are
always 0.

Usage example
• Set the file creation mask so that only the user has all access permissions:

umask 077

• Set the file creation mask so that only the user has write permission:

umask u=rwx,go=rx

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 839

unalias command (removes alias definitions)

Format

unalias [-a]name [name...]

Description
This command removes specified alias definitions. To do so, specify in name the name of the alias you want to remove.
You can specify multiple names whose aliases are to be removed, using the space as the delimiter. If you specify in
name an alias name that is not defined, or if you execute the command without any options or arguments, the command
terminates with an error and returns 1 as the return code.

Arguments

-a
Specifies that all alias definitions are to be removed.

name
Specifies the name for an alias definition to be removed.

Return codes

Return code Meaning

0 Normal termination

1 Error termination (such as that a name specified in name does not have a defined alias)

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

Usage example
• Remove the alias defined for functions.

unalias functions

unset command (unsets variable values and attributes)

Format

unset [-f] name [name ...]

Description
This command unsets specified variables or functions. You can specify more than one variable or function name. When
you execute the command with the -f option specified, each name is assumed to be a function name, and the specified
function definitions are removed.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 840

Arguments

-f
Specifies that this command applies to removal of function definitions.

name
Specifies the name of a variable or function that is to be removed. You can also specify the name of an array.
If an array name is specified, all the elements that constitute the array are unset. To unset only one element, specify
array-name[element-number] in name.
If the read-only attribute is set for a variable whose name is specified, the command terminates with an error. When
you execute this command with an undefined variable name or function name specified in name, it terminates with
an error.

Return codes

Return code Meaning

0 Normal termination

1 Error termination (such as that a name specified in name is not defined as a variable or function)

Notes
• If you use this command to unset shell variables such as LINENO, OPTARG, OPTIND, RANDOM, and SECONDS,

the special meanings of the shell variables will be lost, even if you define them again later.

• If you use this command to unset array elements individually, they will still count as defined variables in the debugger,
and you will still be able to use the debug command to display or set them.
However, if you unset all the elements that constitute an array, they will be treated as undefined variables in the
debugger, and you will no longer be able to use the debug command to display or set them. For details about using
the debug command to display and set variable values, see 6. Debugging Job Definition Scripts.

• If the command syntax of this special built-in command is invalid, it exits the shell that is executing the command.

Usage examples
• Remove a variable.

unset val

• Remove a function.

unset -f func

wait command (waits for child processes to complete)

Format

wait [pid ...]

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 841

Description
This command waits for child processes to complete. Specify for pid one or more process IDs of child processes waiting
for completion. If pid is not specified, the command waits for all child processes being executed to complete. If an
invalid process ID that begins with a non-numeric value is specified for pid, processing terminates normally with return
code 127.

Note the following if a mixture of numeric values and non-numeric values is specified beginning with a numeric value,
as shown in the example below: The character string up to the last position preceding the non-numeric value is interpreted
as a process ID and the command waits for the child process to complete.

UAP & # Shell variable ! stores the process that started the UAP.
wait $!ABC # The wait command interprets the character string preceding
ABC and waits for the child process to complete.

When the pid argument is specified, the wait command terminates with the return code of the last process that waited
for completion. An example follows:

UAP1 & # UAP1 terminates with a return code of 2.
PID1=$! #
UAP2 & # UAP2 terminates with a return code of 16.
PID2=$! #
UAP3 & # UAP3 terminates with a return code of 0.
PID3=$! #
wait $PID1 $PID2 $PID3 # The wait command terminates with a return code
of 0.

Argument

pid
Specifies the process ID of a child process that is waiting to complete.

Return codes

Return code Meaning

0 Normal termination

127 Normal termination
• Could not identify a specified child process.
• A specified process ID was not for a currently executing child process.

Other than the above Error termination

Notes
• Even if the command syntax of this regular built-in command is invalid, it does not exit the shell that is executing

the command.

Usage example
• Wait for the child process with process ID 4848 to complete.

wait 4848

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 842

whence command (displays how character strings would be interpreted if
used as commands)

Format

whence [-p] [-v] name [name...]

Description
This command displays how specified character strings would be interpreted if used as commands. When neither option
is specified, the output is as follows.

• If a specified character string is a command, the path name of the command is output.

• If a specified character string is an alias, the value of the alias is output.

• If a specified character string is a reserved word, standard shell command, extended shell command, or function,
the specified character string is output.

• If none of the above applies, nothing is output and the command terminates with a return code of 1.

If the -p and -v options are both specified, the whence command assumes that a specified character string is a
command and produces output accordingly. If the name argument is omitted, the command terminates with an error and
returns 1 as the return code.

Arguments

-p
Specifies that the specified character strings are to be handled as commands whose paths are to be output.

-v
Specifies that whether each specified character string is a command, reserved-word, alias, standard shell command,
extended shell command, or function is to be output.
The following table shows the contents of the output:

No. Output contents Meaning

1 name is a reserved word name is a reserved word.

2 name is a function name is a function.

3 name is a traced function name is a function for which the trace mode is enabled.
If the function is undefined and the trace mode is enabled for it, the contents shown
in No. 4 are output.

4 name is an undefined function name is an undefined function.

5 name is an extended shell
command

name is an extended shell command.

6 name is a shell builtin name is a built-in command.

7 name is a special shell
builtin

name is a special built-in command.

8 name is a shell builtin not
supported

name is a command that is not provided in JP1/Advanced Shell.

9 name is path-name name is a command or executable file.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 843

No. Output contents Meaning

10 name is an alias for 'alias-value' name is an alias.

11 name is an exported alias for
'alias-value'

name is an exported alias.

12 name not found name is not a command, reserved-word, alias, standard shell command, extended
shell command, or function.

name
Specifies a character string to be interpreted as a command. If this argument is omitted, the command terminates
with an error and returns 1 as the return code.

Return codes

Return code Meaning

0 Normal termination

1 Error termination. Or, one of specified character strings could not be found as a command.

Notes
• Even if the command syntax of this regular built-in command is incorrect, it does not exit the shell that is executing

the command.

Usage example
• Assume that pwd is a command and output its path.

Contents of the job definition script

whence -p pwd

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
/bin/pwd

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 844

9.4 Extended shell commands

The extended shell commands are built into JP1/Advanced Shell itself. A built-in command is one that is included as
part of the shell, and is executed by the shell itself.

Even if the command syntax of an extended command is invalid, it does not exit the shell that is executing the command.

adshecho command (issues a specified event notification message as a
JP1 event)

Format

adshecho [-d] event-notification-message

Description
This command issues a specified event notification message as a JP1 event. The issued JP1 event is displayed in
JP1/IM - View. If you are running the debugger with the standard input and output redirected to the user-reply
functionality, the specified event notification message is output to the standard output.

The JP1 event is issued after waiting for a fixed amount of time (specified in the USERREPLY_JP1EVENT_INTERVAL
parameter) to elapse since the last JP1 event was issued. For details about the USERREPLY_JP1EVENT_INTERVAL
parameter, see USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1 events
are to be issued) in 7. Parameters Specified in the Environment Files.

Arguments

-d
Specifies that during debugging, the output destination for the specified event notification message is to be set to
the standard output. This option is ignored except during debugging.
When the specification is a character string that begins with a hyphen (-), it is treated as an option specification if
it consists entirely of valid options. If such a character string does not consist entirely of valid hyphens, or if the
character string does not begin with a hyphen (-), it is treated as an event notification message from that position.

event-notification-message ~<any character-string>((0 to 1,023 bytes))
Specifies the event notification message that is to be issued as a JP1 event.
The character encoding of the specified event notification message must be consistent with the character encoding
of the JP1/Base running on the same host. If the character encodings are different, characters might become garbled.
The specified event notification message is issued as a JP1 event after its contents are converted by the echo -E
event-notification-message command. If more than one event notification message is specified, an error results
(KNAX7403-E).

Return codes

Return code Meaning Response Whether to retry

0 Normal termination None --

1 A non-recoverable system
error occurred:
• Out of memory

Contact a system administrator. N

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 845

Return code Meaning Response Whether to retry

1 • Internal inconsistency
detected

Contact a system administrator. N

4 An error occurred in JP1 event
processing.

Take action based on the information in the error message. See 11.4.4
Handling Error Information Displayed in the User-Reply
Functionality.

Y

5 An error occurred in JP1 event
processing.

Take action based on the information in the error message. See 11.4.4
Handling Error Information Displayed in the User-Reply
Functionality.

N

6 The JP1 event failed to be
transmitted to the specified
host.

Check the following:
• JP1/Base is installed on the host where JP1/IM - Manager is

installed.
• The JP1/Base event service is running on the host where JP1/IM

- Manager is installed.
• A JP1/Base connection has been established between the host

where JP1/Advanced Shell is installed and the host where
JP1/IM - Manager is installed.

Y

7 The JP1/Base library cannot be
found.

Check if JP1/Base is installed on the host where JP1/Advanced Shell
is installed.
If JP1/Base is installed and this occurs anyway, re-install JP1/Base.

N

8 The connection to the JP1/
Base event service on the local
host failed.

Check that the JP1/Base event service is running on the host where
JP1/Advanced Shell is installed.

Y

10 The specified format is invalid. Check the format of the command. N

128+ signal
number (UNIX
only)

The adshecho command
received a signal and
terminated.

Confirm that the job received a signal and terminated. N

200 (Windows
only)

The adshecho command
was forcibly terminated.

Confirm that the job was forcibly terminated. N

Legend:
Y: Retry
N: Do not retry
--: Not applicable

Notes
• Do not run this command in the background. If you run it in the background, flow control (specified by the
USERREPLY_JP1EVENT_INTERVAL parameter) will not work.

• Do not execute this command in an environment without JP1/Base and JP1/IM, unless you are running the debugger
with standard input and output redirected to the user-reply functionality.
The following problems might occur during execution:

• If JP1/Base is not installed on the host running JP1/Advanced Shell, the command will terminate with an error.

• If the JP1/Base event service is not running on the host running JP1/Advanced Shell, the command will terminate
with an error.

• If JP1/Base or the JP1/Base event service is not running on the host specified in
HOSTNAME_JP1IM_MANAGER, the command will terminate with an error.

• Even if JP1/IM - Manager is not running on the host specified in HOSTNAME_JP1IM_MANAGER, the command
works and will successfully transmit a JP1 event once the event reaches the JP1/Base event service on the host
specified in HOSTNAME_JP1IM_MANAGER.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 846

• If the command terminates with an error from which it is possible to retry the command, the command might succeed
when it is re-executed. Before re-executing the command, see the example job definition scripts in 3.7.5 How to
handle adshecho and adshread commands that terminate with an error for help in preparing the job definition script.

• Do not execute this command in conjunction with the pipe symbol.

• Do not execute this command in conjunction with the redirection symbols.

adshread command (issues a specified reply-request message as a reply-
waiting event)

Format

adshread [-d] variable-name reply-request-message

Description
This command issues a specified reply-request message as a reply-waiting event. The reply-waiting event that is issued
is displayed in JP1/IM - View, from where the operator can enter a reply. The reply that is entered is stored in the specified
variable.

If you are running the debugger with the standard input and output redirected to the user-reply functionality, the specified
reply-request message is output to the standard output and the reply is received from the standard input.

The JP1 event is issued after waiting for a fixed amount of time (specified in the USERREPLY_JP1EVENT_INTERVAL
parameter) to elapse since the last JP1 event was issued. For details about the USERREPLY_JP1EVENT_INTERVAL
parameter, see USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1 events
are to be issued) in 7. Parameters Specified in the Environment Files.

Arguments

-d
Specifies that during debugging, the I/O is to be redirected so that the output destination for the specified reply-
request message is the standard output and the reply is received from the standard input. This option is ignored
except during debugging.
A character string that begins with a hyphen (-) is treated as an option specification until a character string that
begins with a character other than a hyphen (-) is encountered. If an invalid option is specified, an option error
results.

variable-name ~<environment variable name>
Specifies a shell variable for storing the reply from the operator. Only one shell variable can be specified. If you
specify more than one shell variable, everything that is specified following the first shell variable will be interpreted
as part of the reply-request message.
The shell variable can accept an ASCII character string of 0-512 bytes.
When you run the debugger with the standard input and output redirected to the user-reply functionality, the portion
in excess of 512 bytes in a character string consisting of more than 512 bytes that is specified in the reply from the
standard input will be ignored. In addition, if a character string that contains a linefeed is specified, everything
following the linefeed will be ignored.
To specify an array in this argument, you must specify each element. You can specify an array with 0 to 65,535
elements.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 847

Examples:
Regular variable specification: adshread ans "Continue (Y/N)?"
Array specification: adshread ans[1] "Continue (Y/N)?"

The following table shows the execution result for this command, depending on the attributes of the specified shell
variable:

Attribute of the specified shell variable Execution result of the command

Read-only Outputs KNAX6008-E and terminates.

Type is numeric. Outputs KNAX7404-E and terminates.

Type is character string or an array of character
strings.

Updates the value and terminates.

Non-existent variable Creates a new variable of the character type, sets its value, and terminates.

Variable name is invalid. Outputs KNAX6003-E and terminates.

Variable is outside the permitted range of array
elements

Outputs KNAX6007-E and terminates.

Shell variable that cannot be used in JP1/Advanced
Shell

Outputs KNAX6002-E and terminates the job forcibly.

reply-request-message ~<any character string>((0 to 1,023 bytes))
Specifies the reply-request message that is to be issued as a reply-waiting event.
The character encoding of the specified reply-request message must be consistent with the character encoding of
the JP1/Base running on the same host. If the character encodings are different, characters might become garbled.
The specified reply-request message is issued as a JP1 event after its contents are converted by the echo -E reply-
request-message command. If more than one reply request message is specified, an error results (KNAX7403-E).

Return codes

Return code Meaning Response Whether to retry

0 Normal termination None. --

1 One of the following non-
resumable errors occurred:

 Out of memory
 A variable that cannot be used

in variable-name was detected
 Internal inconsistency

detected

If you have specified a variable that cannot be used as variable-
name, change the specification of the variable.
If this does not resolve the problem, contact a system
administrator.

N

2 Semaphore (Mutex):
 An error occurred in shared

memory operations.

Take action based on the information in the error message. See
11.4.4 Handling Error Information Displayed in the User-Reply
Functionality.

N

3 There is no free space in shared
memory.

Check and revise if necessary the setting for the
USERREPLY_WAIT_MAXCOUNT parameter.

Y

4 An error occurred in JP1 event
processing.

Take action based on the information in the error message. See
11.4.4 Handling Error Information Displayed in the User-Reply
Functionality.

Y

5 An error occurred in JP1 event
processing.

Take action based on the information in the error message. See
11.4.4 Handling Error Information Displayed in the User-Reply
Functionality.

N

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 848

Return code Meaning Response Whether to retry

6 The JP1 event failed to be
transmitted to the specified host.

Check the following:
• JP1/Base is installed on the host where JP1/IM - Manager is

installed.
• The JP1/Base event service is running on the host where JP1/

IM - Manager is installed.
• A JP1/Base connection has been established between the

host where JP1/Advanced Shell is installed and the host
where JP1/IM - Manager is installed.

Y

7 The JP1/Base library cannot be
found.

Check if JP1/Base is installed on the host where JP1/Advanced
Shell is installed.
If JP1/Base is installed and this occurs anyway, re-install JP1/
Base.

N

8 The connection to the JP1/Base
event service on the local host
failed.

Check that the JP1/Base event service is running on the host
where JP1/Advanced Shell is installed.

Y

10 The specified format is invalid. Check the format of the command. N

128+ signal
number (UNIX
only)

The adshread command
received a signal and terminated.

Confirm that the job received a signal and terminated. N

200 (Windows
only)

The adshread command was
forcibly terminated.

Confirm that the job was forcibly terminated. N

Legend:
Y: Retry
N: Do not retry
--: Not applicable

Notes
• Do not run this command in the background. If you run it in the background, flow control (specified by the
USERREPLY_JP1EVENT_INTERVAL parameter) will not work. In addition, the reply from the operator will not
be stored in the variable specified for the job that is executing the adshread command.

• Do not execute this command with a pipe specified.

• Do not specify processing that accepts a value and redirects it to this command.

• Do not execute this command in an environment without JP1/Base and JP1/IM, unless you are running the debugger
with standard input and output redirected to the user-reply functionality.
The following problems might occur during execution:

• If JP1/Base is not installed on the host running JP1/Advanced Shell, the command will terminate with an error.

• If the JP1/Base event service is not running on the host running JP1/Advanced Shell, the command will terminate
with an error.

• If JP1/Base or the JP1/Base event service is not running on the host specified in
HOSTNAME_JP1IM_MANAGER, the command will terminate with an error.

• Even if JP1/IM - Manager is not running on the host specified in HOSTNAME_JP1IM_MANAGER, the command
works and will successfully transmit a JP1 event once the event reaches the JP1/Base event service on the host
specified in HOSTNAME_JP1IM_MANAGER.

• If the user-reply functionality's management daemon service is not running, the command will terminate with
an error.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 849

• If the command terminates with an error from which it is possible to retry the command, the command might succeed
when it is re-executed. Before re-executing the command, see the example job definition scripts in 3.7.5 How to
handle adshecho and adshread commands that terminate with an error for help in preparing the job definition script.

• If the adshread command is waiting for a reply-request message and you terminate the job suddenly in a manner
other than as described in 3.10.1 How to forcibly terminate jobs, the reply-request message will be left in shared
memory and the reply-waiting event might be retained in JP1/IM - View. In such a case, either use the adshchmsg
command's -d option to cancel the reply-waiting status for the reply-request message, or restart the user-reply
functionality's management daemon or service.

• Do not specify the adshread command to the action of the trap command if, in the TRAP_ACTION_SIGTERM
parameter, you specify TERM or, in the UNIX edition, you specify AUTO (and the job starts from JP1/AJS).

Usage example
• Output the reply-request message and determine the processing based on the reply from the operator.

adshread ans "Continue (Y/N)?"

if ["$ans" = "Y"] ; then
 echo "Continuing processing."
elif ["$ans" = "N"] ; then
 echo "Terminating processing."
 exit 1
else
 echo "Invalid reply entered. Terminating processing."
 exit 1

fi

adshscripttool command (supports creation of job definition scripts)
(Windows only)

Format

adshscripttool -fowner path-name
adshscripttool -fentry path-name
adshscripttool -fmode [-s {u|g|o|r|w|x}] mode
adshscripttool -exec {-m SIMPLE|MINIMUM}]
 {-r command-line|job-definition-script-file-path-name}
 [run-time-parameters]

Description
This command collects and outputs information in order to make it easy to create job definition scripts. The following
table describes the arguments that can be specified and their purposes:

Argument Execution content Purpose

-fowner Outputs the owner name of a file or folder. Use this argument when you want to acquire the owner name of a file
or folder in order to change the access privilege of the owner of the
file or folder.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 850

Argument Execution content Purpose

-fentry Outputs a list of account names registered in the
ACL of a file or folder.

Use this argument when you want to change the execution of the
cacls or attrib command in the job definition script according
to the account information in the acquired ACL.

-fmode Parses the symbol or numeric value specified as the
mode for the chmod command, and outputs the
changes made to the permissions for owners,
groups, and other users as 9-digit character strings
so that they can be used easily in a job definition
script.
When this argument is specified together with the
-s option, only the characters in the digits
corresponding to the ugorwx specification are
output out of the characters that would be output
when the -fmode option is specified.

Use this argument when you want to change the execution of the
cacls or attrib command in the job definition script according
to the symbol or numeric value specified.

-exec Executes the specified command line or job
definition script as a child job.

Use this argument when you want to execute the specified command
line or job definition script as a child job.

Arguments

-fowner
Specifies that the owner name of a file or folder is to be output to the standard output.
The owner name is output in the format domain-or-computer-name\user-name or user-name format.
Even if you use the cacls command to define Creator Owner, it might not be mapped to the file or folder owner.
Before using the cacls command to specify an owner name, determine the owner name by executing the
adshscripttool command with this option specified.

-fentry
Specifies that a list of account names registered in the ACL of a file or folder, separated by semicolons (;), is to be
output to the standard output.
An account name is output in the format domain-or-computer-name\user-name or user-name.

path-name
Specifies the targeted file or folder.

-fmode
Specifies that the symbol or numeric value specified as the mode for the chmod command is to be parsed and that
the changes made to the permissions for owners, groups, and other users are to be output as a 9-digit character string.
If a numeric value is specified, a value corresponding to mode bit ON is set to R and a value corresponding to mode
bit OFF is set to D. If an error occurs, only E is output and processing terminates.
The following table explains the meaning of the character string that is output as the execution result of the
adshscripttool command when the -fmode option is specified:

Digit number counted from the left
side

Meaning

1 Owner's read permission

2 Owner's write permission

3 Owner's execute permission

4 Group's read permission

5 Group's write permission

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 851

Digit number counted from the left
side

Meaning

6 Group's execute permission

7 Other users' read permission

8 Other users' write permission

9 Other users' execute permission

The following values are set in the individual digits:

Value Meaning

A Addition ((+) was set).

D Deletion ((-) was set).

R Substitution ((=) or numeric value was set).

0 Not specified.

E The adshscripttool -fmode command terminated with an error.

-s[u|g|o|r|w|x]
Specifies one of the values listed below to indicate which of the digits specified when the -fmode option was
specified are to be output. You can specify one of these values when you specify the -fmode option.

• u
Corresponds to digits 1 to 3 of the output when the -fmode option was specified.

• g
Corresponds to digits 4 to 6 of the output when the -fmode option was specified.

• o
Corresponds to digits 7 to 9 of the output when the -fmode option was specified.

• r
Corresponds to digits 1, 4, and 7 of the output when the -fmode option was specified.

• w
Corresponds to digits 2, 5, and 8 of the output when the -fmode option was specified.

• x
Corresponds to digits 3, 6, and 9 of the output when the -fmode option was specified.

mode
Specifies an 8-digit numeric value or symbol. You can specify mode when you specify the -fmode option.

• Specifying a numeric value
Specify an octal number. If a non-octal number or a value that is greater than the octal value 07777 (4095 in
decimal) is specified, an error occurs.

• Specifying a symbol
Specify setting, addition, or deletion when nothing is specified (0 in the numeric value expression). The
specification result of the symbol is output as the result.
The table below shows what can be specified in a symbol. When specifying multiple items, separate them with
a comma (,).

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 852

Order in the
symbol

Value that can be specified

First Specifies the item for which access permissions are being set. Multiple items can be specified concurrently.
The items listed below can be specified. If the specification is omitted, All users is assumed.
• u: Owner
• g: Group
• o: Other
• a: All users

Second Specifies the mode's operation. Executes one of the following processes for the item specified by the first symbol:
• =: Sets access permission (overwriting).
• +: Adds access permission.
• -: Deletes access permission.

You use the third symbol to specify the value to be set, added, or deleted.
You can specify the second and third symbols following the third symbol. The third symbol can be omitted.

Third Specifies the access permission to be set. Multiple values can be specified concurrently. The following values can be
specified:
• r: Read
• w: Write
• x: Execute

If this symbol is omitted, the item for which access permission is to be set is erased. The erased value is set, added, or
deleted according to the second symbol. Addition or deletion alone does not change the value.
If s, t, u, g, or o is specified, it will be ignored.

-exec
Specifies that the command line specified in the -r option or the specified job definition script file is to be executed
as a child job.

-m {SIMPLE|MINIMUM}
Specifies the mode to be used to output to the standard output or the standard error output. You can specify this
option when the -exec option is specified.
For details about the simple output mode and the minimum output mode, see 3.3.4 Suppressing output of information
and warning messages to job execution logs.

• SIMPLE
Runs the child job in the simple output mode.

• MINIMUM
Runs the child job in the minimum output mode.

A sample script in the child job format is run in the minimum output mode. Therefore, if you use this command
within a sample script in the child job format, we recommend that you specify MINIMUM in the -m option.

-r command line
Specifies what is to be executed by a job from the command line. You can specify this option when the -exec
option is specified.
The information specified in the -r option is not created as a job definition script file in the spool job directory.
Therefore, for the job definition script file name that is displayed, such as in messages, "-r CMDLINE" is displayed,
not the absolute path of the job definition script file.

Command line specification
You can specify on the command line any commands that can be described in a job definition script, such as
shell operation commands and UNIX-compatible commands. The following example specifies the pwd
command, which is a standard shell command:

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 853

adshscripttool -exec -m MINIMUM -r pwd

You can specify any contents that can be described in a job definition script file, such as multiple commands
separated by command separators. The following example specifies multiple commands on the command line:

adshscripttool -exec -m MINIMUM -r "export DATA=file01 ; pgm001"

If you specify a space on the command line, you must enclose the command line specification in single or double
quotation marks (' or "). Because metacharacters, such as $, *, and the semicolon (;), are expanded, depending
on the command-execution shell, you must enclose them in double quotation marks (") or use an escape character
(\).

Child job output information
If the -r option is specified, "-r CMDLINE" is displayed as the path name of the job definition script file in
message texts and in the job definition script operation information that is output by JP1/Advanced Shell; the
absolute path of the job definition script file is not displayed.

Positional parameter storage information
If positional parameter $0 is specified for command-line in the -r option, adshexec is stored in $0.

Relationship to the SPOOLJOB_CHILDJOB parameter
Note the following when the command is executed with the -r option specified and MERGE is specified for the
SPOOLJOB_CHILDJOB parameter: The values listed below, instead of the absolute path for the job definition
script file, are output for the symbols that indicate the start and end of a child job's job execution logs to be output
to the root job's job execution logs. For details about the output format when MERGE is specified for the
SPOOLJOB_CHILDJOB parameter, see 3.4.1(3) Merging a child job's spool job into the root job's spool job.

• Symbol indicating the start of a child job's JOBLOG
>>>>>> [JOBLOG] "-r CMDLINE"

• Symbol indicating the end of a child job's JOBLOG
<<<<<< [JOBLOG] "-r CMDLINE"

• Symbol indicating the start of a child job's standard error output (for normal execution)
>>>>>> [STDERR] "-r CMDLINE"

• Symbol indicating the end of a child job's standard error output (for normal execution)
<<<<<< [STDERR] "-r CMDLINE"

• Symbol indicating the start of a child job's standard error output and standard output (for debugging)
>>>>>> [STDERR,STDOUT] "-r CMDLINE"

• Symbol indicating the end of a child job's standard error output and standard output (for debugging)
<<<<<< [STDERR,STDOUT] "-r CMDLINE"

"-r CMDLINE" is also displayed as the job definition script file name in the script image file.

job-definition-script-file-path-name
~<path name>((1 to 247 bytes))
Specifies the path name of the job definition script file. You can specify a value when the -exec option is specified.

run-time parameters ~<character string>((1 to 1,022 bytes)))
Specifies the values to be stored in the positional parameters of the command line or job definition script file that
is specified in the -r option. You can specify values when the -exec option is specified.
To include a space in a run-time parameter, enclose the character string in double quotation marks (").

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 854

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Usage examples
• The following shows a specification example of the -fowner option and the result that is output to the standard

output.
Contents of job definition script:

adshscripttool -fowner test.txt

Result that is output to the standard output:

MYPC\user1

• The following shows a specification example of the -fentry option and the result that is output to the standard
output.
Contents of job definition script:

adshscripttool -fentry test.txt

Result that is output to the standard output:

BUILTIN\Administrators;NT AUTHORITY\SYSTEM;MYPC\user1;BUILTIN\Users

• The following shows an example in which +w is specified in the -fmode option and the result that is output to the
standard output.
Contents of job definition script:

adshscripttool -fmode +w

Result that is output to the standard output:

0A00A00A0

• The following shows an example in which ug-r is specified in the -fmode option and the result that is output to
the standard output.
Contents of job definition script:

adshscripttool -fmode ug-r

Result that is output to the standard output:

D00D00000

• The following shows an example in which ug-w,u+w is specified in the -fmode option and the result that is
output to the standard output.
Contents of job definition script:

adshscripttool -fmode ug-w,u+w

Result that is output to the standard output:

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 855

0A00D0000

• The following shows an example in which 655 is specified in the -fmode option and the result that is output to
the standard output.
Contents of job definition script:

adshscripttool -fmode 655

Result that is output to the standard output:

RRDRDRRDR

• The following shows a specification example of the -fmode option and the result that is output to the standard
output (in this example, +w is parsed with the -s w specification).
Contents of job definition script:

adshscripttool -fmode -s w +w

Result that is output to the standard output (the second, fifth, and eighth digits of the result 0A00A00A0 are output):

AAA

• The following shows a specification example of the -fmode option and the result that is output to the standard
output (in this example, 655 is parsed with the -s r specification).
Contents of job definition script:

adshscripttool -fmode -s r 655

Result that is output to the standard output (the first, fourth, and seventh digits of the result RRDRDRRDR are output):

RRR

• The following shows a specification example of the -fmode option and the result that is output to the standard
output (in this example, 655 is parsed with the -s uor specification).
Contents of job definition script:

adshscripttool -fmode -s uor 655

Result that is output to the standard output (the first and seventh digits of the result RRDRDRRDR are output):

RR

• The following shows an example in which a job definition script is specified to switch the execution of the cacls
command on the basis of the symbol parsing result:

username=`adshscripttool -fowner "$1"` # Acquires the owner name.
if [[$? -ge 1]] # Error processing of
adshscripttool -fowner
then
 echo "adshscripttool -fowner error."
 return 1
fi
modebit=`adshscripttool -fmode $mode` # Parses the mode. (mode=u+w)
case $modebit in # 0A0000000 is stored in
modebit.
 "AA0000000") cacls "$1" /E /G $username:C ;;
 "0A0000000") cacls "$1" /E /G $username:W ;; # This cacls is

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 856

executed.
 "E") echo "adshscripttool -fmode error." # Error processing of
adshscripttool -fmode
 return 1 ;;
esac

• The following shows an example in which a job definition script is specified to delete all ACEs, except for those of
the owner and Everyone:

IFS=\;
username=`adshscripttool -fowner "$1"` # Acquires the owner name.
if [[$? -ge 1]] # Error processing of
adshscripttool -fowner
then
 echo "adshscripttool -fowner error."
 return 1
fi
set -A entry `adshscripttool -fentry $1` # Acquires an account name
list.
for i in "${entry[@]}"
do
 if ! [[$i == "$username" || $i == "Everyone"]]
 then
 cacls "$1" /E /R "$i" # Deletes all ACEs, except for
those of the owner and Everyone.
 fi
done

• The following shows an example in which a job definition script is specified to switch the execution of the cacls
command according only to the definition content for the owner out of the numeric value parsing results:

username=`adshscripttool -fowner "$1"` # Acquires the owner name.
if [[$? -ge 1]] # Error processing of
adshscripttool -fowner
then
 echo "adshscripttool -fowner error."
 return 1
fi
modebit=`adshscripttool -fmode -s u $mode` # Parses the mode.(mode=644)
case $modebit in # RRD------ is stored in
modebit.
 "RRR") cacls "$1" /P $username:F ;;
 "RRD") cacls "$1" /P $username:C ;; # This cacls is executed.
 "RDD") cacls "$1" /P $username:R ;;
 "DRD") cacls "$1" /P $username:W ;;
 "E") echo "adshscripttool -fmode error." # Error processing of
adshscripttool -fmode
 return 1 ;;
esac

• The following shows an example of execution as a child job of the command line export DBPATH=C:\\HOME
\\DBUSER; start -q:

adshscripttool -exec -m MINIMUM -r 'export DBPATH=C:\\HOME\\DBUSER; start
-q'

• The following shows an example in which the job definition script file ppstart.ash is executed as a child job:

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 857

adshscripttool -exec -m MINIMUM ppstart.ash

Notes
• When the -fowner and -fentry options are specified, the command must be executed by the owner of the

targeted file or folder. If this is not the case, the command might output an error message and terminate with an
error.

• You cannot specify the -s option before the -fmode option. If the -s option is specified before the -fmode option,
a command parsing error occurs.

• If an internal conflict is detected, the shell being executed is terminated. When an error other than an internal conflict
is detected, processing of the shell being executed continues.

• If an error occurs while the security information of the ACEs is being viewed with the -fentry option specified,
only the account names of the ACEs that were viewed successfully are output and processing terminates with an
error.

• If a child job is executed with the -exec option specified, the command name that will be output to the job execution
log is a JP1/Advanced Shell command (adshexecsub command).

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 858

9.5 Extended script commands

The extended script commands begin with #-adsh_ and are used in job definition script files.

You use extended script commands to create files and assign them to environment variables, to perform postprocessing
of files after executing a job definition script or job step, and to declare the job name of a job definition script. In addition,
you can define job steps, control the execution of jobs, and call external scripts with extended script commands.

The return code of an extended script command can be changed with the ADSHCMD_RC_ERROR and
ADSHCMD_RC_SUCCESS environment setting parameters. However, the return code cannot be changed in the
following circumstances:

• Normal termination or error termination of a job step by the #-adsh_step_end command

• Normal termination by the #-adsh_script command

For details about the environment setting parameters, see 7. Parameters Specified in the Environment Files.

#-adsh_file command (specifies assignment and postprocessing of
regular files)

Format

#-adsh_file file-environment-variable file-path
 [-chk {exist|no}]
 [-normal {del|keep}] [-abnormal {del|keep}]

Description
This command assigns a regular file, checks for the existence of a regular file, or specifies the postprocessing of a regular
file. A maximum of 4,095 regular files can be assigned.

For details about assigning and postprocessing regular files, as well as the functional differences from the adshfile
command, see 5.9.1 Allocating regular files and performing postprocessing.

The regular files assigned by this command are managed separately from those assigned by the adshfile command.
However, postprocessing is executed first for the regular files assigned by the adshfile command and then for the
regular files assigned by the #-adsh_file command. If the same file is assigned by both commands, it will be
postprocessed twice and an error might result.

Arguments

file-environment-variable
~<environment variable name>((1 to 31 bytes))
Specifies the name of a file environment variable that is being defined. This will serve as the key for identifying the
regular file you are assigning to it.
In Windows, if ENABLE is specified in the VAR_ENV_NAME_LOWERCASE environment setting parameter,
lowercase letters can be specified. If DISABLE is specified, lowercase letters cannot be specified.

file-path
Windows: ~<path name>((1 to 247 bytes))

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 859

UNIX: ~<path name>((1 to 1,023 bytes))
Specifies the path of the regular file that is to be assigned.
If a relative path is specified, it is converted into an absolute path before the command is executed. Make sure that
the path length following conversion to an absolute path does not exceed the maximum permissible path length set
by the OS. If the maximum set by the OS is exceeded, an execution error will occur.

-chk{exist|no}
Specifies whether a check is to be conducted for the existence of the specified regular file. If this specification is
omitted, no is assumed.

• exist
Check for the existence of the file.

• no or not specified
Do not check for the existence of the file.

-normal{del|keep}
Specifies postprocessing that is to be performed when the applicable job or job step terminates normally. If this
specification is omitted, keep is assumed.

• del
After the applicable job or job step has completed, delete the assigned regular file.

• keep
After the applicable job or job step has completed, do not delete the assigned regular file.

-abnormal{del|keep}
Specifies postprocessing that is to be performed when the applicable job or job step terminates with an error. If this
specification is omitted, keep is assumed.

• del
After the applicable job or job step has completed, delete the assigned regular file.

• keep
After the applicable job or job step has completed, do not delete the assigned regular file.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

#-adsh_file_temp command (assigns and postprocesses a temporary file)

Format

#-adsh_file_temp file-environment-variable [-id temporary-file-identifier]
 [-chk {create|exist}]
 [-normal {del|keep}]

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 860

Description
This command assigns a file to be used temporarily in a job definition script and specifies its postprocessing. A maximum
of 4,095 temporary files can be assigned. For details about how to use the #-adsh_file_temp command to create
temporary files, see 5.9.2 Allocating temporary files and performing postprocessing.

Arguments

file-environment-variable
~<environment variable name>((1 to 31 bytes))
Specifies the name of a file environment variable that is being defined. This will serve as the key for identifying the
temporary file you are assigning to it
In Windows, if ENABLE is specified in the VAR_ENV_NAME_LOWERCASE environment setting parameter,
lowercase letters can be specified. If DISABLE is specified, lowercase letters cannot be specified.

-id temporary-file-identifier
~<symbolic name>((1 to 31 bytes))
Specifies an identifier for the temporary file, so that a temporary file created in a job step can be used in subsequent
job steps. This argument can be omitted if you will not be using the assigned temporary file in any subsequent job
step. This argument cannot be used to make assignments outside of the job's job steps.
The temporary file identifier must be unique among the temporary files that are created within the job. You cannot
specify an identifier that is already in use for a temporary file created in another job step. However, you can specify
the identifier of a file that was deleted during postprocessing in a previous job step.

-chk{create|exist}
Specifies whether to create a new temporary file or to assign an existing temporary file. If this specification is
omitted, create is assumed.

• create
Create a new temporary file. JP1/Advanced Shell will generate a file name and create a file whose size is zero
bytes.

• exist
Assign an existing temporary file that was created in a previous job step. You cannot use this specification to
assign a file that was not created in a job step of the current job. When this option is specified, the id option
and a temporary file identifier must also be specified.

-normal{del|keep}
Specifies the post-processing that is to be performed on the temporary file. If this specification is omitted, del is
assumed.

• del
After the applicable job or job step has completed, delete the assigned temporary file.

• keep
After the applicable job step has completed, do not delete the assigned temporary file. The temporary file can
be used again subsequently only in the current job's job steps. When this option is specified, the id option and
a temporary file identifier must also be specified.

Return codes

Return code Meaning

0 Normal termination

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 861

Return code Meaning

1 Error termination

#-adsh_job command (declares a name for a job)

Format

#-adsh_job job-name

Description
This command declares a name for the job in the job definition script. The declaration of the job name can be specified
on either the first or second line.

Argument

job-name
~<symbolic name>((1 to 31 bytes))
Specifies a name for the job, which will serve as one way to identify the job. The job name will be displayed in
messages, such as in the job execution log, and will also be used as part of file names created by JP1/Advanced
Shell.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

#-adsh_job_stop command (defines termination conditions for a job)

Format

#-adsh_job_stop return-code-definition[,return-code-definition ...]

Description
This command defines conditions to be used to determine whether to terminate the job at the end of a job step. A
maximum of 1,023 job termination conditions can be specified.

Arguments

return-code-definition[,return-code-definition]...
Specifies definitions for job step return codes that are to be used to determine whether to terminate the job.
Multiple return code definitions can be specified, delimited by the comma (,), in which case the job will be
terminated when any of the definitions is satisfied. You can specify a maximum of eight return code definitions.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 862

return-code-definition
~<unsigned integer>((0 to 255))

• return-code
Terminate the job when the specified return code is returned.

• return-code-1:return-code-2
Terminate the job when the return code that is returned is in the range of the specified return codes, inclusive.

• return-code:
Terminate the job when the return code that is returned is equal to or greater than the specified return code.

• :return-code
Terminate the job when the return code that is returned is less than the specified return code.

• :
Do not terminate the job on the basis of the return code that is returned. A syntax error results if you use this
format while specifying multiple return code definitions.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• A parsing error results if this command is used in a job step.

• Once the job has terminated, no subsequent job definition scripts will be executed, regardless of the value of the
run attribute for the subsequent job steps.

#-adsh_path_var command (defines shell variables for handling path
names)

Format

#-adsh_path_var shell-variable-name[, ... shell-variable-name]

Description
This command defines shell variables for handling path names. This command is enabled when the
PATH_CONV_ENABLE parameter is defined in the environment file.

The #-adsh_path_var command can be specified at the following locations only:

• The line after #!any-character-string on the first line

• The line after the #-adsh_job command

• The first line (continuation lines are allowed).

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 863

When a shell variable specified by this command is described at the beginning of a path name, the path and directory
separators in that path name as defined by the PATH_CONV_ENABLE parameter are converted to the path and directory
separators of the target OS.

A text whose leading part matches the shell variable specified in either of the following formats is treated as a path
name:

• $shell-variable-name

• ${shell-variable-name}

Variable names must match completely. If shell-variable-name has a suffix consisting of a letter or the underscore (_),
it will be evaluated as not to be a targeted shell variable and will not be converted.

After conversion, if the character string to be converted contains a path separator or directory separator defined by the
PATH_CONV_ENABLE parameter, that separator is converted according to the OS under which the job definition script
will be executed.

The conversion result depends on whether path conversion rule 1 or path conversion rule 2 was set by the
PATH_CONV_RULE parameter. For details about the path conversion rules, see PATH_CONV_RULE parameter
(defines a rule for converting file paths) (Windows only). For conversion examples of job definition scripts, see 2.6.2
Converting path names.

Arguments

shell-variable-name
~<environment variable name>((1 to 255 bytes))
Specifies the name of an environment variable that is to be used to define a shell variable for handling path names.
A maximum of 255 shell variables can be specified. To use the defined shell variable in a job definition script, is
must be specified as $shell-variable-name or ${shell-variable-name}.
For details about pre-defined shell variables and shell variable names that cannot be used, see 5.5 Shell variables.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• The conversions specified by this command are performed on a line-by-line basis. For this reason, if there is a

linefeed in a job definition script, the path name might not be converted correctly.
In the following example, $DIR1linefeed-code\\bar1\\... is specified in the job definition script, to be
converted based on path conversion rule 1 in Linux:

#-adsh_path_var DIR1,DIR2
echo foo > "$DIR1 Not converted because linefeed is entered
within "".
\\bar1\\"$DIR2\\bar2"bar3" $DIR2\\bar2 is converted to $DIR2/bar2.

In the following example, $DIR1linefeed-code/bar1/... is specified in the job definition script, to be converted
based on path conversion rule 2 in Windows:

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 864

#-adsh_path_var DIR1,DIR2
echo foo > '$DIR1
/bar1/"$DIR2/bar2"bar3' $DIR2/bar2 is converted to $DIR2\\bar2.

• Character strings with comments are also subject to conversion.

• If DELETE is specified for the SPOOLJOB_CHILDJOB parameter, no script images are output in the case of job
definition scripts executed as child jobs. For this reason, if a job definition script executed as a child job is converted
based on a conversion rule defined by this command, the conversion results will not be output.

• According to path conversion rule 2, you cannot nest single quotation marks (') within a range enclosed in double
quotation marks ("). Single quotation marks specified in such a case will be subject to path conversion.

#-adsh_rc_ignore command (defines commands to always terminate
normally)

Format

#-adsh_rc_ignore command-name[,command-name ...]

Description
This command specifies commands that are always to terminate normally, regardless of the return code. The return code
set by such a command will not be used to evaluate the success or failure of the job step. A maximum of 1,023 #-
adsh_rc_ignore commands can be used to define commands that are to always terminate normally.

Note that if a specified command receives a signal and terminates, its termination will still be an error termination,
regardless of this specification. For details about the definition method, see 5.8.4(2) Defining commands that always
terminate normally.

During execution of a job definition script, this command becomes applicable at the location where it is specified. If
this command is specified outside of a job step, its definitions are applicable throughout the entire job definition script.
If this command is specified within a job step, its definitions are applicable within that job step only, beginning at the
point where it is specified through termination of the job step, during which period definitions specified outside the job
step are disabled (however, before the point where it is specified within the job step, the definitions specified outside
the job step are in effect).

Arguments

command-name [,command-name ...]
Specifies the commands that are to be defined to always terminate normally.
You can specify a maximum of 255 command names delimited by the comma (,).

• command-name
Windows: ~<path name>((1 to 247 bytes))
UNIX: ~<path name>((1 to 256 bytes))
Specifies a command's base name.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 865

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• A command must be specified by its base name. Do not use aliases or links within an applicable job step, because

the names you use in the applicable job steps must match the base names you used to define the commands in the
#-adsh_rc_ignore command.

• A maximum of 1,023 #-adsh_rc_ignore commands can be specified in a job definition script file.

• This command cannot be applied to an extended script command. The return code from an extended script command
is always 0 for normal termination and 1 for error termination, and the job cannot continue when it terminates with
an error.

• This command cannot be specified in a job step error block.

• When a batch job is interrupted and the KNAX6584-I message is output, the specification of this command will
not have been applied to the command that executed last.

• If a command that is specified in the #-adsh_rc_ignore command will be executed in the format described in
5.1.7 Execution in a separate process (UNIX only), you must specify in the #-adsh_rc_ignore command the
base name of the applicable command before character string substitutions have been applied.

Usage example
• Ignore the grep command's return code.

#-adsh_step_start STEP1
 #-adsh_rc_ignore grep
 UAP data|grep "TOTAL:"
#-adsh_step_end

#-adsh_script command (calls an external job definition script file from the
job definition script that is running)

Format

#-adsh_script job-definition-script-file-name

Description
This command inserts the contents of an external job definition script file at the time the JP1/Advanced Shell was
launched into the currently-running job definition script file. You can call a maximum of 4,095 external job definition
script files from a job definition script that is running. An external script that is called is unpacked within the job definition
script that contains the calling function. That job definition script is then parsed and executed as a single job definition
script.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 866

Arguments

job-definition-script-file-name
Windows: ~<path name>((1 to 247 bytes))
UNIX: ~<path name>((1 to 4,096 bytes))
Specifies the path of the job definition script file that to be deployed. If you specify a relative path, it is interpreted
relative to the current directory at the time the job controller was launched.

Return codes

Return code Meaning

Return code of the last command to terminate in the external script that was called Normal termination

1 Error termination

Note:
You cannot use an environment setting parameter to change the return code when the #-adsh_script command terminates normally.

Notes
• This command differs from the standard shell . (dot) command in the following respects.

• The . (dot) command executes the external script when the job definition script is executed. The #-
adsh_script command executes the external script when the job definition script is parsed. You must not
change the external script between the time the job definition script is parsed and the time it is executed.

• The . (dot) command treats any extended script commands in the external script as comments. The #-
adsh_script command is able to execute extended script commands contained in the external script.

• If you execute the #-adsh_script command from an external script executed by another #-adsh_script
command, do not call the same external script more than once.

• The contents of an external script called by the . (dot) command are not output to the script image. The contents
of an external script called by the #-adsh_script command are output to the script image.

• If you specify an external script with a path that is relative to the . (dot) command, it resolves the path with
reference to the value of the PATH environment variable. If you specify an external script with a path that is
relative to the #-adsh_script command, it is interpreted as a path relative to the current directory when
adshexec is started, without reference to the value of the PATH environment variable.

• There is no limit to the number of times the . (dot) command can be used in a job. The #-adsh_script
command can be used no more than 4,095 times in a job.

• The . (dot) command allows you to specify arguments to the external script. The #-adsh_script command
does not allow you to specify arguments to the external script.

• Do not specify a file name that begins with . (dot).

• Do not use a reserved device name (such as CON, AUX, and NUL) as a file name. (Windows only)

• Do not use an NTFS stream as a file name. (Windows only)

• Normal termination of this command cannot be used to identify the termination status (normal or error) of the job
or job step. Refer instead to the execution results of the external script that was called.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 867

#-adsh_spoolfile command (assigns a program output data file)

Format

#-adsh_spoolfile file-environment-variable

Description
This command assigns a program output data file. A maximum of 4,095 output files can be assigned. A maximum of
255 output files can be specified in a single job step or outside a job step. For details about the assignment method, see
5.9.3 Allocating program output data files and performing postprocessing.

Arguments

file-environment-variable
~<environment variable name>((1 to 31 bytes))
Specifies the name of a file environment variable that is being defined. This will serve as the key for identifying the
program output data file you are assigning to it.
In Windows, if ENABLE is specified in the VAR_ENV_NAME_LOWERCASE environment setting parameter,
lowercase letters can be specified. If DISABLE is specified, lowercase letters cannot be specified.

Return codes

Return code Meaning

0 Normal termination

1 Error termination

Notes
• Do not create directories under the spool job directory by using the path name assigned by the #-
adsh_spoolfile command. If a directory is created under the spool job directory, an unexpected error might
occur, such as an error resulting from spool job deletion by the adshhk command.

• The #-adsh_spoolfile command cannot be used when the spool job creation suppression functionality is being
used. If the #-adsh_spoolfile command is used in such a case, the KNAX6385-E message is issued and the
command is terminated.

#-adsh_step_start command, #-adsh_step_error command, #-
adsh_step_end command (defines a job step)

Format

#-adsh_step_start
 [job-step-name]
 [-successRC return-code-definition[,return-code-definition ...]]
 [-stepVar shell-variable-name[,shell-variable-name ...]]
 [-run {normal|abnormal|always}]
 [-onError {cont|stop}]

... processing in the job step... (job step normal block)

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 868

 [#-adsh_step_error]

 [... processing at the time of a job step error... (job step error block)]

#-adsh_step_end

Description
This command groups a portion of the job definition script into a job step. A job step is a set of commands assembled
into a group. A maximum of 4,095 job step definitions can be specified.

For details about how to use job steps, see 5.8.3 Defining job steps.

For details about determining whether the commands executed within job steps terminate normally or result in an error,
see 5.8.8 Return codes of jobs, job steps, and commands.

For details about handling errors in job steps, see 5.8.10 Processing in the event of an error during job execution.

Arguments

job-step-name
~<environment variable name>((1 to 31 bytes))
Specifies a name for the job step, which will serve as one way of identifying the job step. The specified job step
name will be displayed in messages, such as in the job execution log, and will also be used as part of file names
created by JP1/Advanced Shell.
Job step names can be duplicated within a job.

-successRC return-code-definition[,return-code-definition]...
Specifies definitions for the return codes from commands that execute in the job step normal block that will be
considered to signify normal termination of the command. If you specify multiple return code definitions delimited
by the comma (,), normal termination will be assumed if any of the definitions is satisfied.
If a command to be executed in the step normal block receives a signal and terminates, its termination will still be
regarded as an error termination, regardless of this specification. A command executed within a step normal block
might have returned a return code that does not match the return code of the command defined with the successRC
attribute. Nevertheless, if the command matches the command name specified by the #-adsh_rc_ignore
command, the specification by the #-adsh_rc_ignore command takes precedence regardless of the value
specified for the successRC attribute.

return-code-definition
~<unsigned integer>((0 to 255))
You can specify a maximum of eight return code definitions.

• return-code
Terminate normally when the return code that is returned matches the specified return code.

• return-code-1:return-code-2
Terminate normally when the return code that is returned is in the range of the specified return codes,
inclusive.

• return-code:
Terminate normally when the return code that is returned is equal to or greater than the specified return code.

• :return-code
Terminate normally when the return code that is returned is less than the specified return code.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 869

-stepVar shell-variable-name[,shell-variable-name ...]
Specifies shell variables that are to be valid only within the job step. You can specify a maximum of 32 shell variable
names delimited by the comma (,).

• shell-variable-name
~<environment variable name>((1 to 255 bytes))
Specifies the name of a shell variable that is to be valid only within the job step. Names of function information
arrays cannot be specified.

-run{normal|abnormal|always}
Specifies whether execution of the job step is to depend on the status of preceding job steps and commands in the
job definition script. If this specification is omitted, normal is assumed.

• normal
Execute the job step only if no earlier job step terminated with an error and no command in the previous portion
of the job definition script terminated with an error.

• abnormal
Execute the job step even if an earlier job step terminated with an error or a command in the previous portion
of the job definition script terminated with an error.

• always
Always execute the job step, regardless of the results of earlier job steps or the preceding portion of the job
definition script.

-onError{cont|stop}
Specifies whether branching to the job step error block is to occur when a command in the job step normal block
terminates with an error. When stop is specified, processing branches to the job step error block, and the subsequent
portion of the job definition script in the job step normal block is not executed. When cont is specified, branching
does not occur, and the subsequent portion of the job definition script in the job step normal block is executed. If
this specification is omitted, stop is assumed.

• cont
Execute the subsequent portion of the job definition script in the job step normal block.

• stop
Execute the portion of the job definition script in the job step error block, without executing the subsequent
portion of the job definition script in the job step normal block.

Return codes

For #-adsh_step_start and #-adsh_step_error
Return code Meaning

0 Normal termination

1 Error termination

For #-adsh_step_end
Return code Meaning

Return code of the last command that executed in the job step
normal block

Job step terminated normally.

Job step terminated with an error.

Argument to the exit command Executed the exit command with an argument specified within the job step
error block and terminated.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 870

Return code Meaning

1 #-adsh_step_end itself terminated with an error.

Note:
You cannot use an environment setting parameter to change the return code when a job step that contains the #-adsh_step_end
command terminates normally or when a job step terminates with an error.

Notes
• If you specify a job step within the block of a control statement (if, for, while, until, or case), you must

specify #-adsh_step_start through #-adsh_step_end within the same block; if you violate this rule, a
syntax error will occur before execution.

• Do not define a job step within the block of a for, while, or until statement. If there is an external script
expansion in such a block, the external script cannot include a job step. If it does, a pre-execution syntax error will
result.

• You can define a job step within the block of an if or case statement. However, you cannot then specify abnormal
or always in the run attribute.

• A job step cannot be defined inside another job step.

• If the command that executed last in a block terminates normally with a non-zero return code because of the
specification of the #-adsh_rc_ignore command, the return code for the job step might be non-zero even
though the job step terminates normally.
Job definition script

 #-adsh_rc_ignore cmdA
 #-adsh_step_start S1 -onError cont
 cmdA #rc=4 command
 cmdA #rc=4 command
 #-adsh_step_end

Execution log

 KNAX6117-I Execution of the command /home/hitachi/bin/cmdA (line=3)
finished. exit status=4 execution time=0.001s CPU time=0.000s
 KNAX6117-I Execution of the command /home/hitachi/bin/cmdA (line=4)
finished. exit status=4 execution time=0.001s CPU time=0.000s
 KNAX6597-I ADSH152257.S1 step succeeded. exit status=4 execution
time=0.005s CPU time=0.000s

• When a batch job is interrupted and the KNAX6584-I message is output, the successRC attribute will not have
been applied to the command that executed last.

• When you define a function in a job step normal block or job step error block, you can use the defined function even
if the job step is skipped using the run attribute.

Usage examples
• An error results if #-adsh_step_start is specified within the block of an if control statement and the

corresponding #-adsh_step_end is specified outside the block.

if [[$a = $b]]; then
 #-adsh_step_start S1
fi
 #-adsh_step_end

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 871

• An error results if you define a job step in the block of a while control statement.

while [[$a = $b]] do
 #-adsh_step_start S1
 #-adsh_step_end
done

• Define a job step in the block of an if control statement.

if [[$a = $b]]; then
 #-adsh_step_start S1
 #-adsh_step_end
fi

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 872

9.6 Script control statements

Script control statements are used in job definition scripts.

A job definition script uses the results of conditional expressions in the control statements to determine the processing
that is to be executed. You can specify any number of spaces or tab characters (including none) before the reserved
words and processing instructions that constitute the control statements.

case statement (chooses from multiple processing paths)

Format

case expression in
 pattern-1)processing-a
 ;;
 pattern-2)processing-b
 ;;
 ...
 *)processing-x
 ;;
esac

Summary
This control statement determines the processing to be executed, based on finding a match with a specified character
string (expression).

Description
The in keyword indicates the beginning of the types of processing defined in the case statement, and esac indicates
the end of the case statement. When the specified expression matches a specified pattern, the processing described
between the right parenthesis ()) and the double semicolons (;;) is executed. Multiple patterns can be specified, with
the double semicolons (;;) serving as the delimiter between patterns. The pattern specified as an asterisk (*) is for the
default processing when no match is detected with any of the other patterns. The matching of expression to the patterns
is conducted in the order in which the patterns are specified. If expression matches multiple patterns, the processing
prescribed for the first match is executed.

You can specify a left curly bracket ({) instead of in, and you can specify a right curly bracket (}) instead of esac. If
you use in, you must also use esac; if you use {, you must also use }. If these specifications are not paired in this
way, the syntax will be invalid and the control statement will terminate with an error.

A regular expression with wildcards can be specified in pattern.

Usage examples
• The ;; indicating the end of a pattern can be specified on the same line as the processing.

case $cnt in
 0)
 echo "cnt is ZERO" ;;
 *)

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 873

 echo "cnt is not ZERO" ;;
esac

• If the last command in a pattern is an extended script command, add a linefeed to prevent ;; from being interpreted
as an argument of the extended script command.

case $cnt in
 0)
 #-adsh_step_start STEP01
 echo "cnt is ZERO"
 #-adsh_step_end ;; <--Error. Specify linefeed before ;;.
 *)
 #-adsh_step_start STEP01
 echo "cnt is not ZERO"
 #-adsh_step_end
 ;;
esac

for statement (repeats the same processing)

Format 1

for variable [in wordlists]
do
 processing
done

Format 2

for variable [in wordlists];do
 processing
done

Summary
This control statement repeats the same processing while incrementing a value.

Description
This statement begins with for, followed by do, and ends with done. The number of times the loop is executed is
determined by the number of elements in wordlists. The processing described between do and done is executed while
variable is successively assigned to each element of wordlists, starting from the left. After all the elements of wordlists
have been assigned, the for statement terminates.

The elements of wordlists are delimited by a whitespace and identified as element-1 element-2 ...element-n.

When a variable is specified in wordlists, even if the value of the specified variable changes between do and done, the
value assigned to the variable in the for statement remains unchanged.

If $@ is specified for wordlists, the arguments to the job definition script are used as the values of wordlists. Omitting
in wordlists is the same as specifying $@ for wordlists (in $@).

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 874

You can specify a left curly bracket ({) instead of do, and you can specify a right curly bracket (}) instead of done.
If you use do, you must also use done; if you use {, you must also use }. If these specifications are not paired in this
way, the syntax will be invalid and the control statement will terminate with an error.

If you specify a semicolon (;) immediately after wordlists, you can continue specifying the statement on the same line.

Usage example
• Iterate through three values, displaying each in turn.

for num in 1 2 3
do
 echo "num is $num"
done

if statement (branches conditionally)

Format 1

if condition-1
then
 processing-a
 [elif condition-2
then
 processing-b]
 [else
 processing-c]
fi

Format 2

if condition-1;then
 processing-a
 [elif condition-2; then
 processing-b]
 [else
 processing-c]
fi

Summary
This control statement controls branching based on whether the result of a specified condition is true (0) or false (non-
zero).

Description
This statement begins with if and ends with fi. A condition can be any command or a group of commands combined
by using operators such as &&, ||, (), and { }. If the return code from the command or the command group is 0,
execution proceeds to the then clause; if the return code is non-zero, execution proceeds to the else or elif clause.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 875

The elif and else clauses can be omitted, while then and fi must always be specified. Multiple elif clauses
can be specified. If the statement is missing any of if, then, or fi, the syntax is invalid and the statement will terminate
with an error.

If you specify a semicolon (;) immediately after condition, you can continue specifying the statement on the same line.

Usage example
• Display the result of comparing a value to 3.

if [[$num -eq 3]]
then
 echo "num = 3"
elif [[$num -lt 3]]
then
 echo "num < 3"
else
 echo "num > 3"
fi

until statement (loops until a condition is true)

Format 1

until condition
do
 processing
done

Format 2

until condition;do
 processing
done

Summary
This control statement executes specified processing repeatedly until a specified condition becomes true.

Description
This statement begins with until, followed by do, and ends with done. A condition can be any command or a group
of commands combined using operators such as &&, ||, (), and { }. The processing described between do and
done is performed repeatedly until the return code from executing the command or the command group specified as
the condition becomes 0. To exit from the until statement, there must be a change created by the processing described
between do and done such that the condition becomes satisfied. If the condition is already satisfied when the until
statement begins, the statement terminates without executing the specified processing.

do and done cannot be omitted. Without a matching pair of do and done, the syntax is invalid and the statement will
terminate with an error.

If you specify a semicolon (;) immediately after condition, you can continue specifying the statement on the same line.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 876

Usage example
• Display numbers in a loop from 0 until the value 10 is reached.

num=0
until [[$num -eq 10]]
do
 echo "num is $num"
 ((num+=1))
done

while statement (loops while a condition is true)

Format 1

while condition
do
 processing
done

Format 2

while condition;do
 processing
done

Summary
This control statement executes specified processing repeatedly as long as a specified condition is true.

Description
This statement begins with while, followed by do, and ends with done. A condition can be any command or a group
of commands combined using operators such as &&, ||, (), and { }. The processing described between do and
done is performed repeatedly as long as the return code from executing the command or the command group specified
as the condition is 0. To exit from the while statement, there must be a change created by the processing described
between do and done such that the condition ceases to be true.

do and done cannot be omitted. Without a matching pair of do and done, the syntax is invalid and the statement will
terminate with an error.

If you specify a semicolon (;) immediately after condition, you can continue specifying the statement on the same line.

Usage example
• Repeat display while the value of num is in the range of 0 to 9:

num=0
while [[$num -ne 10]]
do
 echo "num is $num"

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 877

 ((num+=1))
done

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 878

9.7 Reserved script commands

The reserved script commands can be used as reserved words in job definition scripts.

time command (displays the time used to execute a command)

Format

time [-p] [command]

Description
This command outputs to the standard error output the amount of time it took to execute a command.

Specifies the command whose execution time is to be output to the standard error output. If command is omitted, the
shell's execution time is output. The output formats are as follows.

• When command is specified

command-name command-execution-time command-name user-CPU-time command-
name system-CPU-time

In Windows, the CPU times of grandchild processes are not included in the command's user CPU time and system
CPU time.

• When command is omitted

user-CPU-time-of-shell# system-CPU-time-of-shell#

#: Includes CPU time of processes launched from the shell.
In Windows, the CPU times of grandchild processes are not included in the shell's user CPU time and system CPU
time.

Arguments

-p
Specifies that the amounts of execution time, user CPU time, and system CPU time are to be output, each on a
separate line.

command
Specifies the name of the command whose execution time and CPU time are to be output.

Return codes

Return code Meaning

Return code of the specified command:
0 when no command is specified.

Normal termination

Notes
• The results of the time command cannot be redirected to a file other than the standard error output.

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 879

• The execution results of this command are not output to the job execution log. Note also that this command does
not identify whether the job or job step terminated normally or with an error. Refer instead to the execution time
that was output to the standard error output and to the execution results of the command that was called.

Usage example
• Output a command's execution time and CPU time.

Contents of the job definition script

time date

Contents of the STDOUT file of the execution job

******** JOB SCOPE STDOUT ********
Thu Jul 7 11:06:38 JST 2011

Contents of the STDERR file of the execution job

******** JOB SCOPE STDERR ********
 0.01s real 0.00s user 0.00s system

9. Job Definition Script Commands and Control Statements

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 880

Part 5: Troubleshooting

10 Troubleshooting

This chapter describes troubleshooting, including how to respond when problems occur, the types
of log information, the troubleshooting information that needs to be collected, and how to collect it.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 881

10.1 Response procedure

If you encounter a problem while running a job definition script in JP1/Advanced Shell, such as the script terminating
with an error, attempt to determine what caused the problem.

If a message was output, check its contents. For details about the corrective actions to be taken for each message, see
11. Messages. Then, take the following actions according to the cause indicated in the output message:

• Problem with the job definition script
If a message is output indicating a problem with the job definition script, do the following:

• Investigate and handle problems
Based on your investigation of the problem, modify the job definition script in the development environment,
and then verify the results in the debugger.

• Repeat the operation
Attempt to perform the operation again in the execution environment.

• Problem that requires contacting a system administrator
If a message is output indicating that you need to contact a system administrator, do the following:

• Collect information
Collect information that will be needed to investigate the cause of the problem, as described in 10.2 Information
needed when a problem occurs.

• Investigate the problem
Investigate the cause of the problem based on the collected information, and then narrow the scope of the problem
by isolating the conditions under which it occurs.

• Problem entering a response to a request for a user reply

• Investigate the problem and take corrective action
See 10.1.1 Corrective action when using the user-reply functionality to investigate the problem and take the
necessary corrective action.

10.1.1 Corrective action when using the user-reply functionality
Replies to reply-request messages are sent from JP1/IM - View. However, in the following cases, you cannot enter a
reply from JP1/IM - View.

Table 10‒1: When you cannot enter a reply to a reply-waiting event

No. Circumstance Notification sent to the user

1 An error occurs in JP1/Advanced Shell when you enter a reply from JP1/IM,
and the reply's success or failure is unknown in JP1/IM.

Invalid data (or a similar message) is sent.

2 A backlog of reply-waiting events was cleared because the backlog exceeded
2,000 events.

JP1/IM - View displays the KAVB0551-E error
message.

3 JP1/IM has become unusable due to a communication failure or other
problem

None (JP1/IM - View is not available).

Because reply-request messages are managed in shared memory on the machine where JP1/Advanced Shell is installed,
a JP1/Advanced Shell administrator is able to use the following commands to check the status of reply-request messages
and to reply to reply-request messages.

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 882

• Displaying a list of reply-request messages in reply-waiting status
The administrator uses the adshlsmsg command to display a list of reply-request messages from operators that
are in reply-waiting status. For details, see adshlsmsg command (displays a list of reply-request messages when a
failure occurs) in 8.3 Shell operation commands.

• Replying to (manually) or canceling a reply-request message in reply-waiting status
The administrator uses the adshchmsg command to enter a reply to or cancel a reply-request message from an
operator that is in reply-waiting status. For details, see adshchmsg command (replies manually to a reply-request
message when a failure occurs) in 8.3 Shell operation commands.

10.1.2 When the root job terminates before its child jobs terminate
If a child job that was executed from another child job is terminated abruptly from an intermediate job by a means such
as SIGKILL in UNIX or TerminateProcess in Windows, the root job might terminate without waiting for all its
child jobs to terminate. For this reason, do not execute an abrupt termination of this type. For details, see 3.2.3(4) Notes
about child jobs that are executed from another child job.

If this occurs, check the execution results of the related root job and its child jobs. For the child jobs other than the
abruptly terminated job, the spool job directory might remain even after an attempt to delete it. Even if it was deleted,
the contents of JOBLOG will have been output to the standard error output, so the log is not lost.

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 883

10.2 Information needed when a problem occurs

The following table shows the information to be collected when a problem occurs.

Table 10‒2: Information to be collected when a problem occurs

Category Contents What to collect

Logs Logs output by JP1/Advanced Shell System execution log, trace log

Error information Error information collected by the
system

Dump file (Windows only)
Core file (UNIX only)

Spool information Information for managing the spool The specified environment file and job ID file (either .jobid or
adsh.jobid)

Environment information System status Basic system information, process information, memory usage
information, file information, network usage, JP1 event information,
error logs

User-reply functionality's
management daemon
information (UNIX only)

Information related to start and end of
the user-reply functionality's
management daemon

Start log and pid file of the user-reply functionality's management
daemon

You can use JP1/Advanced Shell's adshcollect command to batch-collect the needed information. For details about
the adshcollect command, see 10.3 How to collect information.

The following sections provide details about the information that is needed in each of the above categories, with the
exception of environment information, which is omitted because it is product-specific.

10.2.1 Logs
The following table shows the logs to be collected.

Table 10‒3: Logs to be collected

Type Contents Output destination

System execution log Entire execution log of JP1/Advanced
Shell

This is output as specified by the LOG_DIR parameter# in the
environment file.

Trace log JP1/Advanced Shell internal trace log This is output as specified by the TRACE_DIR parameter# in the
environment file.
Trace logs for custom jobs, the editor, and common commands are
output in accordance with system specifications.

#
For the parameter default values, see Table 10-8 Rules for keyword specifications in the environment file in adshcollect command (collects
information).

10.2.2 Error information
The following table shows the error information to be collected. Error information is collected only when DUMP or
CORE is specified in the definition file for collecting maintenance information.

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 884

Table 10‒4: Error information to be collected

Type Contents Output destination

Dump file (Windows
only)

Error information collected in the
Watson log and similar sources

This file is output when you run a debug tool such as Dr. Watson. In
the case of Dr. Watson, the default directory for output of the error
information is:
• common-application-data-folder\Microsoft\Dr Watson
\drwtsn32.log

Core file (UNIX only) Error information collected by the
system

When a process terminates with an error, this file is output by the
system to the directory specified in the system settings. If the directory
is not specified in the system settings, the file is output to the directory
that was current when adshexec started.

10.2.3 Spool information
The following table shows the spool information to be collected.

Table 10‒5: Spool information to be collected

Type Contents Output destination

Environment file JP1/Advanced Shell definition
information

Path of the environment file created in the ADSH_ENV environment
variable
Environment file specified with the -e option of the adshcollect
command (the job environment file defined for Job environment file
in the Define Script Execution dialog box of a custom job or the job
environment file defined in the Job environment file of the Runtime
Environment Settings dialog box of the editor)

Files under the spool
directory

Batch job information output to the
spool

Job ID file (either .jobid or adsh.jobid)

10.2.4 User-reply functionality's management daemon information (UNIX
only)

The following table shows the user-reply functionality's management daemon information to be collected.

Table 10‒6: User-reply functionality management daemon information to be collected

Type Contents Output destination

Start log User-reply functionality's management
daemon start log

The user-reply functionality's management daemon start log is output
to /opt/jp1as/system.
For details, see 2.6.8 Defining job execution results and log output
information.

pid file User-reply functionality's management
daemon pid file

The user-reply functionality's management daemon pid file is output
to /opt/jp1as/system.
The pid file corresponds to the following file name:
• User-reply functionality's management daemon on a physical host
adshmd.pid

• User-reply functionality's management daemon on a logical host
adshmd_logical-host-name.pid

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 885

10.3 How to collect information

If JP1/Advanced Shell terminates with an error or becomes unresponsive, the system administrator will require data
from core dumps (core files or dump files), logs, and other sources for purposes of investigating the cause of the failure.
You can use the adshcollect command to batch-collect this required information.

This section describes how to use the adshcollect command, how to set up a definition file for collecting
maintenance information, and how to set up an environment file. Note that the maintenance information (data) collected
by the adshcollect command might be different in Windows and UNIX.

adshcollect command (collects information)

Format

adshcollect maintenance-information-output-directory [-f definition-file-
name] [-e environment-file-name] [-h logical-host-name]

Description
The adshcollect command enables batch-collection of the information required to investigate a failure.

To execute the adshcollect command, you start it from the command prompt in the case of Windows or from the
shell in the case of UNIX.

In order to collect error information in the event of a failure, this command must be executed with the permissions of
the executing user. However, to collect user-reply functionality information, it must be executed with an administrator
role.

1. Collect the environment file that was being used when the failure occurred. If the environment file has been modified
since the error occurred, reconstruct the environment file to match the operational environment at the time the failure
occurred. If no environment file was being used when the failure occurred, there is no need to collect one.

Note:
In the Windows edition, the adshcollect command might result in an error if an ampersand (&) is specified
in an environment file.
If an ampersand (&) is specified in the job environment file, make a copy of the job environment file and delete
the ampersand (&) from the copied file. In step 3, specify the copied job definition file in the -e option.
If an ampersand (&) is specified in the system environment file, make a backup by copying the system
environment file to another directory and then delete the ampersand (&).

2. Create a definition file.
For collecting a core file or dump file, create a definition file at any location. There is no need to create a definition
file except when a core file or dump file is required.

3. Execute the adshcollect command.
Specify the arguments described below and execute the adshcollect command. For notes on executing the
adshcollect command, see Notes, below.

Maintenance information output directory
Note the following points about the directory specified for the maintenance information:

 The output directory for the maintenance information must be writable, and it must have sufficient space.

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 886

 It must also be a directory that is not being used in JP1/Advanced Shell.

Environment file name
Specify the path of the environment file collected in step 1 in the -e option or the ADSH_ENV environment
variable. This specification is required only if an environment file was collected in step 1.

Definition file name
Specify in the -f option the path of the definition file created in step 2. This specification is required only if a
definition file was created in step 2.

Logical host name
If the environment in which the failure occurred is a logical host, specify the logical host name in the -h option.
This specification is required only if the environment in which the failure occurred is a logical host.

Arguments

maintenance-information-output-directory

Windows only
The files containing maintenance information are output to a destination directory. The directory name is in the
following format:
ADSHyyyymmddhhmmss

 yyyymmdd: Date when the adshcollect command was started
 hhmmss: Time, in 24-hour local time, when the adshcollect command was started

Because Windows does not provide as a standard feature the equivalent of the UNIX tar command for handling
maintenance information, you must use a user compression tool to compress the files in a standard format (such
as ZIP or LZH).

UNIX only
Specifies a destination directory for the tar archive files of collected information. Any required temporary files
will also be created in this directory. The name of the archive file is in the following format:
ADSHyyyymmddhhmmss.tar

 yyyymmdd: Date when the adshcollect command was started
 hhmmss: Time, in 24-hour local time, when the adshcollect command was started

The disk space required for the compressed file containing maintenance information is as follows:
Size of system execution logs and trace logs + size of files specified in DUMP or CORE#

#
DUMP files in a Windows environment and CORE files in a UNIX environment.

-f definition-file-name
Specifies the name of the definition file that defines the maintenance information to be collected. You can specify
the definition file in terms of an absolute path or a path relative to the current directory. For the contents to be set
up, see Definition file and environment file settings, below.
Specification of a definition file name is optional. If definition-file-name is omitted, the DUMP or CORE maintenance
information will not be collected.

-e environment-file-name
Specifies an environment file when you want to specify a different file path from the one specified in the ADSH_ENV
environment variable. You can specify an absolute path or a path relative to the current directory.

• When this option is not specified
The file path specified in the ADSH_ENV environment variable is used for the environment file.

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 887

• When this option and the ADSH_ENV environment variable are both not specified
Information is collected on the basis of the applicable settings in the system environment file.

• When this option and the ADSH_ENV environment variable are both not specified and there is no system
environment file
The default values for SPOOL_DIR, LOG_DIR, and TRACE_DIR are used.

-h logical-host-name
Specifies the name of the logical host where the error information is to be collected. The environment file is parsed
based on the specified logical host name.
If the -h option is specified but no logical host name is specified, the logical host name is obtained from the
JP1_HOSTNAME environment variable. If the JP1_HOSTNAME environment variable is not defined, the command
outputs usage information and terminates with an error. For details about the JP1_HOSTNAME environment
variable, see the Job Management Partner 1/Base User's Guide.

Definition file and environment file settings
Define the information to be collected in a definition file and define the output destination for the collected information
in an environment file.

• Defining the definition file
The definition file contains #-adsh_conf 1, followed by keywords and their values delimited by the space.
Specify all file names in terms of their absolute paths.
The table below shows the rules for keyword specifications in the definition file. Although all keywords are optional,
nothing other than keywords, including comments, is permitted in the definition file. Note that no wildcard characters
can be specified in any keyword value.

Table 10‒7: Rules for keyword specifications in the definition file

Keyword Specification contents Specify more than once

DUMP (Windows only) Specifies a dump file you want to collect, such as a Watson log. For details about
Watson logs, see the Windows documentation.
If there are any spaces in the path, enclose the path in double quotation marks.

Y
(maximum of 16)

CORE (UNIX only) Specifies a directory where core files can be found that need to be collected as error
information. Files under the specified directory that have core as part of their
name will be batch-collected.

Y

Legend:
Y: Can be specified.

• Defining the environment file
The table below shows the rules for keyword specifications in the environment file. All keywords are optional. If
no keyword is specified, the information described under Default path name in the table will be collected. Note that
no wildcard characters can be specified in any keyword value.

Table 10‒8: Rules for keyword specifications in the environment file

Keyword
(environment
setting
parameter)

Specification contents Default path name Specify more
than once

SPOOL_DIR Path name of the spool root directory# • In the execution environment
(Windows only)
shared-documents-folder\Hitachi
\JP1AS\JP1ASE\spool

N

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 888

Keyword
(environment
setting
parameter)

Specification contents Default path name Specify more
than once

SPOOL_DIR Path name of the spool root directory# • In the development environment
(Windows only)
shared-documents-folder\Hitachi
\JP1AS\JP1ASD\spool

• In the execution environment (UNIX
only)
/var/opt/jp1as/spool

N

LOG_DIR Path name of the system execution log output directory# • In the execution environment
(Windows only)
shared-documents-folder\Hitachi
\JP1AS\JP1ASE\log

• In the development environment
(Windows only)
shared-documents-folder\Hitachi
\JP1AS\JP1ASD\log

• In the execution environment (UNIX
only)
/opt/jp1as/log

N

TRACE_DIR Path name of the trace log output directory# • In the execution environment
(Windows only)
common-application-data-folder
\Hitachi\JP1AS\JP1ASE
\trace

• In the development environment
(Windows only)
commmon-application-data-folder
\Hitachi\JP1AS\JP1ASD
\trace

• In the execution environment (UNIX
only)
/opt/jp1as/trace

N

Legend:
N: Cannot be specified.

#
In Windows, if there are spaces in the path, enclose the path in double quotation marks.

Example definition file and environment file specifications
• In Windows

The following is an example of specifying the definition file:

#-adsh_conf DUMP "C:\Program Files\Hitachi\JP1AS\JP1ASE\dump"

The following is an example of specifying the environment file:

#-adsh_conf SPOOL_DIR "C:\Documents and Settings\All Users\Documents
\Hitachi\JP1AS\JP1ASE\spool"
#-adsh_conf LOG_DIR "C:\Documents and Settings\All Users\Documents\Hitachi
\JP1AS\JP1ASE\log"
#-adsh_conf TRACE_DIR "C:\Documents and Settings\All Users\Application
Data\Hitachi\JP1AS\JP1ASE\trace"

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 889

• In UNIX
The following is an example of specifying the definition file:

#-adsh_conf CORE /home/user1/program1

The following is an example of specifying the environment file:

#-adsh_conf SPOOL_DIR /var/opt/jp1as/spool
#-adsh_conf LOG_DIR /opt/jp1as/log
#-adsh_conf TRACE_DIR /opt/jp1as/trace

List of files collected by the adshcollect command
The files collected by the adshcollect command and their maximum sizes are different in Windows and UNIX, as
shown in the following tables.

Table 10‒9: Files collected by the adshcollect command and their maximum sizes (Windows only)

File type File name Maximum
size

Collected

Spool
management file

[SPOOL_DIR in the environment file#]\adsh.jobid About 1 KB Y

System
execution log
(JP1/Advanced
Shell)

[LOG_DIR in the environment file#]\AdshLog.log
[LOG_DIR in the environment file#]\AdshLog_n.log (where n is the log file count)

[LOG_FILE
_SIZE in the
environment
file] (n + 1)
(MB)

Y

[LOG_DIR in the environment file#]\AdshLog.conf About 1 KB Y

Execution log for
JP1/Advanced
Shell internal
processing

commmon-application-data-folder\Hitachi\JP1AS\JP1ASE\uxpl\spool
\uxpllog[n].txt (where n is the log file count, maximum 2)

5 MB Y

commmon-application-data-folder\Hitachi\JP1AS\JP1ASD\uxpl\spool
\uxpllog[n].txt (where n is the log file count, maximum 2)

5 MB Y

commmon-application-data-folder\Hitachi\JP1AS\misc\uxpl\spool
\uxpllog[n].txt (where n is the log file count, maximum 2)

5 MB Y

Trace log (JP1/
Advanced Shell)

[TRACE_DIR in the environment file#]\AdshTrace_[n].log (where n is the log file
count: fixed at 4)
Can be changed in the environment file.

[TRACE_FI
LE_SIZE in
the
environment
file] n
(MB)

Y

Trace log
(custom job)

commmon-application-data-folder\Hitachi\JP1AS\JP1ASV\trace
\AdshTrace_1.log

1 MB Y

Trace log
(editor)

commmon-application-data-folder\Hitachi\JP1AS\JP1ASD\adshedit
\trace\AdshTrace_1.log

1 MB Y

Trace log
(JP1/Advanced
Shell, JP1/
Advanced Shell -
Developer
common
commands)

commmon-application-data-folder\Hitachi\JP1AS\misc\trace
\AdshTrace_[n].log (where n is the log file count)

8 MB Y

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 890

File type File name Maximum
size

Collected

Trace log (editor-
specific features)

commmon-application-data-folder\Hitachi\JP1AS\JP1ASD\adshedit
\trace\adshedit.txt

Depends on
user
environment
settings.

Y

Dump file Dump file in DUMP in the definition file Depends on
user
environment
settings.

O

Environment file File in the ADSH_ENV environment variable, or file specified in the -e option About 1 KB O

System
environment file

commmon-application-data-folder\Hitachi\JP1AS\product-name\conf
\adshrc.ase

About 1 KB O

Host name set in
the machine

system-root-folder\system32\drivers\etc\hosts Depends on
user
environment
settings.

Y

Service ports set
in the machine

system-root-folder\system32\drivers\etc\services Depends on
user
environment
settings.

Y

Environment
information file

ADSHTMPyyyymmddhhmmss.txt
 yyyymmdd: Date when the adshcollect command was started
 hhmmss: Time when the adshcollect command was started

Depends on
user
environment
settings.

Y

Legend:
Y: Always collected by the adshcollect command.
O: Collected when the applicable adshcollect command option is specified.

#
Can be changed in the environment file. For the default path names, see Table 10-8 Rules for keyword specifications in the environment file.

Table 10‒10: Files collected by the adshcollect command and their maximum sizes (UNIX only)

File type File name Maximum size Collected

Spool [SPOOL_DIR in the environment file#]/.jobid About 1 KB Y

System execution log [LOG_DIR in the environment file#]/AdshLog.log
[LOG_DIR in the environment file#]/
AdshLog_[n].log (where n is the log file count)

[LOG_FILE_SIZE in the
environment file] (n + 1) (MB)

Y

[LOG_DIR in the environment file#]/AdshLog.conf About 1KB Y

Trace log [TRACE_DIR in the environment file#]/
AdshTrace_[n].log (where n is the log file count)

[TRACE_FILE_SIZE in the
environment file] n (MB)

Y

Core file Core file in the CORE keyword that is collected in the
definition file

Depends on user environment settings O

User-reply functionality
management daemon
information

Start log and pid file under /opt/jp1as/system About 1 KB number of executing
user-reply functionality management
daemons

Y

Environment file File in the ADSH_ENV environment variable or file
specified in the -e option

About 1 KB O

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 891

File type File name Maximum size Collected

System environment
file

/opt/jp1as/conf/adshrc.ase About 1 KB Y

Installed Hitachi
products

/etc/.hitachi/pplistd/pplistd Depends on user environment settings. Y

Environment variables • AIX or Linux
/etc/environment

• HP-UX
/etc/profile

• Solaris
/etc/skel/.profile

Depends on user environment settings. Y

Environment
information file

ADSHTMPyyyymmddhhmmss.txt
 yyyymmdd: Date when the adshcollect command

was started
 hhmmss: Time when the adshcollect command

was started

Depends on user environment settings. Y

Tar logs ADSHTARyyyymmddhhmmss.txt
 yyyymmdd: Date when the adshcollect command

was started
 hhmmss: Time when the adshcollect command

was started

About 1 KB Y

Legend:
Y: Always collected by the adshcollect command.
O: Collected when the applicable adshcollect command option is specified.

#
Can be changed in the environment file. For the default path names, see Table 10-8 Rules for keyword specifications in the environment file.

Notes
• The maintenance information output directory must have adequate free space for the output files and temporary files

to be created there.

• The maintenance information output directory must be writable so that the output files and temporary files can be
created there.

• If the adshcollect command is forcibly terminated during execution, temporary files might still remain in the
maintenance information output directory. In such a case, you will have to delete the temporary files manually.

• (UNIX only) If you are using the user-reply functionality, execute the adshcollect command as a user with root
privileges. If you execute it as a user without root privileges, you will not be able to collect the user-reply functionality
information.

• (Windows only) If you are using the user-reply functionality, execute the adshcollect command as a user with
Administrators permissions. If you execute it as a user without Administrators permissions, you will not be able to
collect the user-reply functionality information.

• Do not specify any of the following special characters in the path of an output directory for maintenance information,
environment file path, definition file path, path specified in SPOOL_DIR, LOG_DIR, or TRACE_DIR, DUMP path,
CORE path, or the current directory path for executing the adshcollect command:
& () [] { } ^ = ; ! ' + , ` ~ # %

• If you specify an option for any of the adshcollect command arguments maintenance-information-output-
directory, environment-file-name, definition-file-name, or logical-host-name, the option will be interpreted as the
directory or file name or logical host name.

10. Troubleshooting

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 892

11 Messages

This chapter lists the messages output by JP1/Advanced Shell and provides detailed information
about errors that might occur.

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 893

11.1 Message format

This section explains the format of the messages that are issued by JP1/Advanced Shell.

11.1.1 Message output format
JP1/Advanced Shell issues messages in the following format:

KNAXnnnn-t message-text

• KNAX
Message prefix that identifies a message as having been issued by JP1/Advanced Shell.

• nnnn
Message number.

• t
Indicator of the type of message. The following table lists and explains the types.

Table 11‒1: Types of messages

Type identifier Type Meaning

E Error • A failure that disables a library, command, or server function has occurred.
• Operation has been disabled because of an invalid definition or command argument.

W Warning Processing continues once this message has been output.

I Information Information for the user.

(1) Format of messages output to job execution logs
When messages are output to job execution logs, the time and job ID are added to the messages as follows:

time job-ID KNAXnnnn-t message-text

• time
Time the message was output, in the format hh:mm:ss.

• job-ID
Six-digit identifier of the job that issued the message. If the job ID consists of fewer than six digits, it is padded with
leading zeros to make it six digits in length.

(2) Format of messages output in a message dialog box or error window
Some messages are output in a message dialog box or an error window, as shown in the following example.

• Message dialog box

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 894

Figure 11‒1: Message dialog box

A message dialog box contains an icon that indicates the type of message. The following table explains the icons that
are displayed in message dialog boxes.

Table 11‒2: Icons displayed in message dialog boxes

Type Icon Meaning User's action

Information An event that needs to be reported to the user occurred during
processing.

Click OK.

Query An event requiring an action by the user has occurred. The
message asks the user to select one of two choices.

Select Yes or No.

Warning A warning event that needs to be reported to the user occurred
during processing. The message asks the use to select one of two
choices.

Select OK or Cancel.

Error An error occurred during processing. Click OK.

• Error window

Messages might be displayed in the error window shown in the following while you are using JP1/Advanced Shell
Editor.

Figure 11‒2: Error window

11.1.2 Format of message explanations
The format of the message explanations in this chapter is shown in the following.

The italics font indicates a placeholder (variable) for the value that will actually be set in the message text. The notation
(Windows only) or (UNIX only) to the right of a message ID indicates that the message is displayed only in a Windows
or UNIX environment, respectively.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 895

For details about the meaning of error-details described in a message text and the action to be taken, see 11.4 Details
of errors.

The messages are listed in order of message ID. The following shows an example of the message explanations:

message-ID [(Windows only)|(UNIX only)]
message-text
Explanation of the message

(S)
Indicates the system processing.

(O)
Indicates the action to be taken by the developer or operator when the message is output.

11.1.3 Assignment of message numbers
Messages are grouped by ranges of message numbers into broad subject categories. The following table lists the subject
categories of the ranges of message numbers (these are the numbers that follow JP1/Advanced Shell's message prefix
KNAX).

Table 11‒3: Subject categories assigned to ranges of message numbers

Message numbers Subject category of messages

0001 through 0299 Basic job processing

0300 through 0399 Command arguments

0400 through 0699 Environment files

0700 through 0899 Job execution logs

1600 through 1899 Area allocation

1900 through 2199 Job step execution

2200 through 2499 Message processing

3000 through 3999 Daemons

4414 through 4429 Spool job manipulation

5300 through 5399 Adapter commands

5400 through 5499 User-reply commands

6000 through 6699 Batch job execution control

6700 through 6999 Cross-platform operability

7000 through 7399 Development environment

7400 through 7599 User-reply functionality

7600 through 7799 JP1 program linkage functions

7800 through 7999 Common functions

9000 through 9999 License-related

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 896

11.2 Message output destinations

The table below lists the output destinations of the messages issued by JP1/Advanced Shell. This table shows the output
destinations of messages in the expansion output mode. For details about the output destinations of messages in the
simple output mode and the minimum output mode, see the explanations that follow the table.

Table 11‒4:  Output destinations of messages issued by JP1/Advanced Shell (expansion output
mode)

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution log

GUI

KNAX0001-E N Y Y Y Y

KNAX0004-I N N N Y N

KNAX0030-E, KNAX0031-E N Y N N Y

KNAX0091-I, KNAX0092-I N N Y Y N

KNAX0098-I N Y Y Y N

KNAX0101-E N Y Y Y Y

KNAX0220-E N Y N Y N

KNAX0235-E to KNAX0239-E N Y N Y Y

KNAX0240-I N Y N Y#1 N

KNAX0299-E N Y Y Y Y

KNAX0300-I N Y N N N

KNAX0301-E to KNAX0307-E N Y N N Y

KNAX0308-E to KNAX0309-I N Y N N N

KNAX0310-E to KNAX0336-E N Y N N Y

KNAX0401-E to KNAX0702-E N Y N N Y

KNAX0703-E N Y N Y Y

KNAX0704-E to KNAX0708-E N Y N N Y

KNAX0719-I N Y N N N

KNAX0720-E to KNAX0723-E N Y N N Y

KNAX0724-I N Y N N N

KNAX0725-E N Y N N Y

KNAX0726-I N Y N N N

KNAX0727-E, KNAX0728-E N Y N N Y

KNAX0800-E N Y N N Y

KNAX0801-E N Y N N N

KNAX0802-E N Y N N Y

KNAX0803-E N Y Y Y Y

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 897

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution log

GUI

KNAX0804-E N Y N N Y

KNAX0805-E N Y Y Y Y

KNAX1600-I to KNAX1605-I N N Y N N

KNAX1632-E N N Y N Y

KNAX1871-E to KNAX1880-E N Y N N N

KNAX1890-I N N Y N N

KNAX1891-E to KNAX1892-E N N Y N G

KNAX1893-W N N Y N N

KNAX1910-E, KNAX1911-E N N Y Y Y

KNAX2201-E to KNAX2205-E N Y N Y Y

KNAX2206-E N Y N N Y

KNAX2207-E N Y N Y Y

KNAX2208-E to KNAX2213-E N Y N N Y

KNAX2214-E, KNAX2400-E N Y N Y Y

KNAX2499-E N Y N Y N

KNAX3000-I Y Y#2, #3 N Y N

KNAX3001-I N Y#2, #3 N Y N

KNAX3002-E Y Y#2, #3 N Y N

KNAX3003-E N Y#2, #3 N Y N

KNAX3006-I N Y#2 N Y N

KNAX3008-W, KNAX3009-E Y Y#2 N Y N

KNAX3020-E to KNAX3029-E N Y#2 N Y N

KNAX3261-I N N N Y N

KNAX3400-I to KNAX3542-W N Y#2 N Y N

KNAX3700-I to KNAX3799-I Y N N N N

KNAX3998-E, KNAX3999-E N Y N N N

KNAX4414-E to KNAX4429-E N Y#4 N N N

KNAX5300-I to KNAX5372-E N Y#5 N Y N

KNAX5380-I, KNAX5381-I N N N Y N

KNAX5396-I to KNAX5399-E N Y N N N

KNAX5407-E to KNAX5499-E N Y N N N

KNAX6000-E to KNAX6071-E N N Y N G

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 898

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution log

GUI

KNAX6072-E N N Y N N

KNAX6075-E to KNAX6099-E N N Y N G

KNAX6100-E N Y N N G

KNAX6110-I to KNAX6127-I N N Y Y N

KNAX6130-E N Y Y Y N

KNAX6200-I N Y Y Y Y

KNAX6201-E N Y N N N

KNAX6202-E to KNAX6208-E N Y N N Y

KNAX6209-W N Y N N N

KNAX6210-E to KNAX6215-E N Y N Y N

KNAX6219-E N Y N Y Y

KNAX6220-I to KNAX6222-I N Y N Y N

KNAX6223-E to KNAX6241-E N Y N Y Y

KNAX6242-I to KNAX6243-I N Y N Y N

KNAX6244-E N Y N Y Y

KNAX6290-E to KNAX6298-E N N N N Y

KNAX6301-E to KNAX6303-E N Y N N Y

KNAX6304-E N N Y N Y

KNAX6305-E N Y N N Y

KNAX6306-E N N Y N Y

KNAX6307-W N N Y N N

KNAX6308-E, KNAX6309-E N N Y N Y

KNAX6310-E to KNAX6319-E N N Y N G

KNAX6320-E N N Y N Y

KNAX6321-E N N Y N G

KNAX6323-E N Y N N Y

KNAX6324-E to KNAX6330-E N N Y N G

KNAX6332-E N N Y N Y

KNAX6333-E N N Y N G

KNAX6380-I N Y N N N

KNAX6381-E N Y N N Y

KNAX6382-I to KNAX6385-E N Y N N N

KNAX6399-E, KNAX6400-E N N Y N Y

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 899

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution log

GUI

KNAX6401-E N N Y N G

KNAX6403-E N N Y N G

KNAX6404-E N N Y N Y

KNAX6405-E to KNAX6407-E N N Y N G

KNAX6408-E N N Y N Y

KNAX6409-I, KNAX6410-I N N Y N N

KNAX6411-E to KNAX6413-E N N Y N Y

KNAX6414-E N N Y N G

KNAX6507-I to KNAX6511-I N N Y Y N

KNAX6512-I N Y N N N

KNAX6521-E, KNAX6522-E N N Y Y G

KNAX6530-E, KNAX6531-E N N Y N G

KNAX6540-I N N Y Y N

KNAX6541-E, KNAX6542-E N N Y Y Y

KNAX6551-E to KNAX6586-E N N Y Y N

KNAX6587-E N Y N Y N

KNAX6588-E N Y N N N

KNAX6589-W N N N Y N

KNAX6590-E N N Y Y Y

KNAX6591-E to KNAX6592-E N N Y Y N

KNAX6593-E N Y Y Y Y

KNAX6594-E N N Y Y N

KNAX6596-E N Y Y Y Y

KNAX6597-I N Y Y Y N

KNAX6598-E, KNAX6599-E N N Y Y Y

KNAX6600-E to KNAX6646-E N Y N Y N

KNAX6701-W N N Y Y N

KNAX6710-I N N Y N N

KNAX6711-E, KNAX6712-E N N Y N G

KNAX6713-E N N Y Y Y

KNAX6714-E, KNAX6715-E N N Y N G

KNAX6718-I N N Y N N

KNAX6750-E to KNAX6753-E N Y N Y N

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 900

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution log

GUI

KNAX6800-I#6, KNAX6801-I#6 N N N N N

KNAX6803-I to KNAX6806-I N N Y N N

KNAX6810-E to KNAX6812-E N N Y Y Y

KNAX6813-E N N Y N G

KNAX6814-E, KNAX6815-E N N Y Y Y

KNAX6830-I to KNAX6832-I N N Y Y N

KNAX6997-E N N Y Y Y

KNAX6998-E N N Y Y G

KNAX6999-E N N Y Y Y

KNAX7000-E to KNAX7004-E N Y N Y Y

KNAX7006-W to KNAX7009-I N Y N Y N

KNAX7010-E N Y N Y Y

KNAX7011-I, KNAX7012-W N Y N Y N

KNAX7013-E, KNAX7014-E N Y N Y Y

KNAX7015-W N Y N Y N

KNAX7016-E, KNAX7017-E N Y N Y Y

KNAX7018-I N Y N Y N

KNAX7019-E to KNAX7022-E N Y N Y Y

KNAX7023-I N Y N Y N

KNAX7024-E N Y N Y Y

KNAX7025-I N Y N Y N

KNAX7026-E to KNAX7029-E N Y N Y Y

KNAX7032-I to KNAX7034-I N Y N Y N

KNAX7035-E N Y N Y Y

KNAX7036-I, KNAX7037-I N Y N Y N

KNAX7038-I N Y Y Y N

KNAX7039-E, KNAX7040-E N Y N Y Y

KNAX7043-I N Y N Y N

KNAX7044-E to KNAX7046-E N Y N Y Y

KNAX7047-I, KNAX7048-I N Y N Y N

KNAX7049-E to KNAX7052-E N Y N Y Y

KNAX7053-I N Y N Y N

KNAX7054-E, KNAX7055-E N Y N Y Y

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 901

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution log

GUI

KNAX7056-I, KNAX7057-I N Y Y Y N

KNAX7058-I N Y N N N

KNAX7062-E N Y N Y Y

KNAX7063-I, KNAX7064-I N Y Y Y N

KNAX7065-I to KNAX7067-I N Y N Y N

KNAX7068-I N Y Y Y N

KNAX7070-E N Y N Y Y

KNAX7071-E, KNAX7072-E N Y N Y N

KNAX7073-I N Y Y Y N

KNAX7090-W N N N N Y

KNAX7099-E, KNAX7101-E N Y Y Y Y

KNAX7102-I, KNAX7103-I N N N Y N

KNAX7104-E to KNAX7106-E N Y Y Y Y

KNAX7107-I N N N Y N

KNAX7108-E N Y Y Y Y

KNAX7109-I N N N Y N

KNAX7110-E N Y Y Y Y

KNAX7111-I N N N Y N

KNAX7112-E to KNAX7116-E N Y Y Y Y

KNAX7117-I N N N Y N

KNAX7118-E N N N N Y

KNAX7119-E N Y Y Y Y

KNAX7120-W N N N Y N

KNAX7121-E to KNAX7125-E N Y Y Y Y

KNAX7126-I, KNAX7127-E N Y Y Y N

KNAX7128-E N Y N Y N

KNAX7400-E to KNAX7402-E N N Y Y Y

KNAX7403-E to KNAX7405-E N N Y Y G

KNAX7408-E N N Y Y Y

KNAX7420-E N Y N N N

KNAX7450-I#7 N N N N N

KNAX7451-I N N Y Y N

KNAX7460-E to KNAX7465-W N N Y Y#8 N

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 902

Message IDs Output destinations of messages

stdout stderr JOBLOG System
execution log

GUI

KNAX7470-I N N Y Y N

KNAX7500-I to KNAX7509-I#7 N N N N N

KNAX7550-I, KNAX7551-E#9 Y N N N N

KNAX7552-E to KNAX7556-E#9 N N N N N

KNAX7560-I, KNAX7561-E#9 Y N N N N

KNAX7600-E to KNAX7773-E N N N N Y

KNAX7800-I to KNAX7880-E Y N N N N

KNAX7892-I to KNAX7897-E N Y N N N

KNAX7900-I N N N N Y#10

KNAX7901-I N Y Y#11 Y#11 N

KNAX7902-I N N Y Y N

KNAX7999-I N Y N N N

KNAX9000-E to KNAX9002-E N Y N N N

Legend:
The following table describes the meaning of the columns under Output destinations of messages in the table above:

Column heading Output destination of messages Notes

stdout Standard output In the simple output mode and the minimum output
mode, output of messages for jobs during normal
execution and for child jobs during debugging are
handled as follows:
• Messages of message types I and W are not output.
• Messages of message type E are output to the

applicable output destinations and to JOBLOG.

Messages of message type E for root jobs during
debugging are also output to JOBLOG.

stderr Standard error output

JOBLOG Job execution log • In the expansion output mode
During debugging, the same messages are also
output to the standard error output during job
execution.
In the case of child jobs, these messages are not
output to JOBLOG, but are output to the standard
error output when job execution is completed.

• In the simple output mode or the minimum output
mode
Messages of message type E are also output to the
standard error output.

System execution log System execution log Depending on the job's status during message output,
messages might not be output to this output destination.

GUI Message dialog box or error window None

Note that the following messages are also output in the simple output mode and the minimum output mode:

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 903

• KNAX0240-I (message indicating that the value of ADSH_JOBRC_FATAL has been applied)

• KNAX0300-I (usage)

• KNAX0309-I (displays version information)

• Messages that are output when a signal is received (however, in the minimum output mode during normal execution,
part of the message that is output when a signal is received is suppressed)

• Messages other than those that are output to job execution logs during debugging (excluding KNAX0473-W)

G: GUI message that is output with a line number to a JP1/Advanced Shell Editor error window. If the line number is
omitted from the message, the message is not output.

Y: Output.

N: Not output.

#1
This message is output only during CUI debugging.

#2
Output to the start log.

#3
The following is output to syslog:

• Facility: LOG_USER
• Level: LOG_NOTICE

#4
While the log file specified in the argument of the adshhk command is open, the message is output to the specified
log file, not to the standard error output.

#5
The adapter command's output is displayed in the JP1/IM - View window.

#6
Output to the script image file.

#7
JP1 events are issued.

#8
Output while the adshecho or adshread command is executing.

#9
Output to the event log.

#10
Displayed in the web browser that is started when Help is selected in the GUI.

#11
Not output to this destination during CUI or GUI debug execution.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 904

11.2.1 Notes about the row numbers that are output in messages
The following notes apply to the row numbers that are output in messages KNAX6000-E through KNAX6100-E,
KNAX6710-I through KNAX6712-E, and KNAX6998-E.

• If a command error occurs in a command substitution spanning multiple lines, the last line number in the command
substitution is displayed in the message as the erroneous line number.
Example:
If an error occurs in unset command in the following code, the erroneous line is shown as line number 3:

1: `unset
2: echo pwd
3: `

• If an error occurs during syntax analysis of an external script, the name of the job definition script that called the
external script is output in the error message as the job definition script file name. The line whose number is displayed
is the line in the job definition script where the external script was called.

• If a syntax or command error occurs while the trap command's action is running, the line number of the trap
command is displayed in the message as the erroneous line number.
Example 1:
This example spans multiple lines. The erroneous line is shown as line number 1.

1: trap 'pwd
2: unset
3: date' INT

Example 2:
This example calls a function. The erroneous line is shown as line number 4.

1: func1() {
2: unset
3: }
4: trap func1 INT

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 905

11.3 List of messages

This section explains the messages that are issued by JP1/Advanced Shell and how to handle them.

KNAX0001-E
Memory is insufficient. details=maintenance-information

A memory shortage occurred.

maintenance-information, which is displayed as eight hexadecimal characters, indicates the system's internal status.
This message is output to the error notification destinations. The message is output to only some of the destinations,
depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must check and, if necessary, revise the memory
estimation.

KNAX0004-I
Job ID=Advanced Shell-job-ID, JP1NBQSQueueName=environment-variable-value, scheduler job ID=scheduler-
job-number

This message displays the JP1/AJS job information and the JP1/Advanced Shell job ID for the batch job that has been
started.

Advanced Shell-job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

environment-variable-value
Value of the JP1NBQSQueueName environment variable in the batch job

scheduler-job-number
JP1 job number assigned by JP1/Advanced Shell in the batch job

(S)
Resumes processing.

KNAX0030-E (Windows only)
An error occurred while starting adshexec. function="function-name",error code=error-code,reason="error-
details"

An error occurred during job controller start processing. The message displays function-name, error-code, and error-
details.

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must eliminate the cause of the error based on the
displayed function-name, error-code, and error-details, and then re-execute the batch job.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 906

KNAX0031-E (Windows only)
An error occurred while completing adshexec process. function="function-name",error code=error-
code,reason="error-details"

An error occurred during job controller termination processing. The message displays function-name, error-code, and
error-details.

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must eliminate the cause of the error based on the
displayed function-name, error-code, and error-details, and then re-execute the batch job.

KNAX0091-I
job-name The job started.

The batch job indicated by job-name has started.

(S)
Resumes processing.

KNAX0092-I
job-name.job-step-name step started.

The job step indicated by job-step-name that is defined in the batch job indicated by job-name has started.

(S)
Resumes processing.

KNAX0098-I
job-name The job ended. exit status=exit-status-code execution time=execution-time-in-seconds CPU time=CPU-
time-in-seconds

The batch job indicated by job-name has ended.

exit-status-code
Return code indicating the batch job execution results.
For details about the return code, see the description of the adshexec command's return codes.
If an error occurs during adshexec command postprocessing after this message was output, the return code
displayed in this message might not be the adshexec command's return code. The adshexec command's final
return code is output to KNAX7999-I.

execution-time-in-seconds
Total amount of time (in seconds) required for execution, from the beginning to the end of the batch job. This is a
reference value obtained by using the OS's API.

CPU-time-in-seconds
Total amount of CPU time (in seconds) used, from the beginning to the end of the batch job. This is a reference
value obtained by using the OS's API.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 907

(S)
Resumes processing.

KNAX0101-E
job-name An error occurred during execution of the job.

An error occurring while the batch job indicated by job-name was running.

(S)
Resumes processing.

(O)
See the other messages output together with this message, eliminate the cause of the error, and then re-execute the
batch job.

KNAX0220-E
The environment variable "environment-variable-name" is not specified.

The environment variable indicated by environment-variable-name was not specified.

If environment-variable-name is JP1_HOSTNAME and the logical host name for a logical host operation was not
specified explicitly, the job might have been started from a system other than JP1/AJS.

(S)
Terminates processing.

(O)
Contact the system administrator, and then re-evaluate the value set for the environment variable.

KNAX0235-E
The value specified for the environment variable "environment-variable-name" is invalid.

The value for the environment variable indicated by environment-variable-name is invalid.

environment-variable-name
Name of an environment variable

(S)
Terminates processing.

(O)
Check and, if necessary, revise the value of the environment variable. If the problem cannot be resolved, contact the
system administrator.

KNAX0236-E
The value specified for the environment variable "environment-variable-name" is too long.

The value set for the environment variable indicated by environment-variable-name is too long.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 908

(O)
Re-evaluate the value set for the environment variable. If the problem cannot be resolved, contact the system
administrator.

KNAX0237-E
The value specified for the environment variable "environment-variable-name" is an empty string.

The value specified for the environment variable environment-variable-name is an empty string.

(S)
Terminates processing.

(O)
Contact the system administrator, and then re-evaluate the value set for the environment variable.

KNAX0238-E
The value specified for the environment variable "environment-variable-name" contains an invalid character.

The value set for the environment variable indicated by environment-variable-name contains an invalid character.

(S)
Terminates processing.

(O)
Re-evaluate the value set for the environment variable. If the problem cannot be resolved, contact the system
administrator.

KNAX0239-E
The value specified for the environment variable "environment-variable-name" is out of range.

The value set for the environment variable indicated by environment-variable-name is outside the permitted range.

(S)
Terminates processing.

(O)
Contact the system administrator, and then re-evaluate the value set for the environment variable.

KNAX0240-I
The setting specified for the environment variable environment-variable-name was applied. value=environment-
variable-value

The setting of the environment variable indicated by environment-variable-name was applied.

environment-variable-value
Terminates processing.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 909

KNAX0299-E
An internal error occurred. details=maintenance-information

An internal conflict occurred during memory allocation.

This message is output to the error notification destinations. The message is output to only some of the destinations,
depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX0300-I
Usage: command-name command-argument

The command indicated by command-name and command-argument is invalid.

(S)
Terminates processing.

(O)
Specify the correct command and then execute it.

KNAX0301-E
No value is specified for the option "option-name".

The value specified for option-name is invalid.

(S)
Cancels processing.

(O)
Specify the correct option.

KNAX0302-E
The option "option-name" is not a valid option.

The specified option-name is invalid.

(S)
Cancels processing.

(O)
Specify the correct option name.

KNAX0303-E
No script file name is specified.

No job definition script file name was specified.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 910

(S)
Cancels processing.

(O)
Specify a job definition script file name, and then re-enter the command.

KNAX0305-E
The specified argument "argument" is invalid.

The command argument indicated by argument is invalid.

(S)
Cancels processing.

(O)
Specify the argument correctly, and then re-enter the command.

KNAX0306-E
The value specified for the option "option-name" is invalid.

The value of the option indicated by option-name is invalid.

(S)
Cancels processing.

(O)
Specify the correct option, and then re-enter the command.

KNAX0307-E
A required option is not specified.

A required option is missing.

(S)
Terminates processing.

(O)
Specify the required option, and then re-enter the command.

KNAX0308-E
The options "option-name-1" and "option-name-2" cannot be specified at the same time.

The options indicated by option-name-1 and option-name-2 are mutually exclusive.

(S)
Cancels processing.

(O)
Specify the correct option, and then re-enter the command.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 911

KNAX0309-I
The version of program-name is version.

The version of the command indicated by program-name is displayed in version.

(S)
Terminates processing.

KNAX0310-E
Too many operands are specified.

Too many operands are specified.

(S)
Cancels processing.

(O)
Specify the operand correctly.

KNAX0311-E
One or more options or parameters required for command-name are not specified.

One or more options or parameters required for processing of the command indicated by command-name are missing.

(S)
Terminates processing.

(O)
Specify the required options or parameters, and then re-enter the command.

KNAX0336-E
The length of the value specified for the option "option-name" is invalid.

The size of the specified option name is not valid. Possible causes are as follows:

• The specified option name is too long.

• The size of the specified option name is 0.

(S)
Cancels processing.

(O)
Specify the correct option, and then re-enter the command.

KNAX0401-E
Failed to open the environment file. reason="error-details"

An open error occurred on the environment file for the reason indicated by error-details.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 912

(S)
Terminates processing.

(O)
Based on the displayed error details, determine the cause of the error (such as permissions), and then correct the
error so that the environment file can be imported. If the problem cannot be resolved, contact the system
administrator.

KNAX0402-E
Failed to read the environment file. reason="error-details"

A read error occurred on the environment file for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Based on the displayed error details, determine the cause of the error (such as permissions), and then correct the
error so that the environment file can be imported. If the problem cannot be resolved, contact the system
administrator.

KNAX0403-E
The environment file name is too long.

The file name of the environment file is too long.

(S)
Terminates processing.

(O)
Check the specified environment file name for any error.

KNAX0406-E
An error occurred during collection of the host name. reason="error-details"

A host name acquisition error occurred for the reason indicated by error-details. In UNIX, this message might be
displayed when the length of the host name exceeds 255 characters.

(S)
Terminates processing.

(O)
Contact the system administrator to check the host name in the network.

KNAX0407-E
The file "file-name" is not a regular file.

The file indicated by file-name is not a regular file.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 913

(O)
Check the file.

KNAX0410-E
An error occurred when parsing the environment file "file-name". For details, see the message output before this
one.

A parsing error occurred in the environment file indicated by file-name. For details about the error, see the message
output before this message.

(S)
Terminates processing.

(O)
Correct the error in the environment file.

KNAX0411-E
Line size exceeds limits. line=line-number

The line indicated by line-number in the environment file is too long.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0431-E
A parameter name is invalid. line=line-number

An invalid parameter name was found on the line indicated by line-number in the environment file.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0432-E
The value specified for the parameter "parameter-name" is invalid. line=line-number

An invalid value was found in the parameter indicated by line-number in the environment file.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 914

KNAX0433-E
No value is specified for the parameter "parameter-name". line=line-number

No value was specified in the parameter indicated by line-number in the environment file.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0434-E
The parameter "parameter-name" is specified multiple times. line=line-number

The parameter indicated by line-number is duplicated in the environment file.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0435-E
The number of "parameter-name" parameters exceeds the limit. line=line-number

The number of times the indicated parameter on the line indicated by line-number was specified in the environment file
exceeds the maximum value.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0436-E
The value specified for the parameter "parameter-name" is too long. line=line-number

The value of the indicated parameter on the line indicated by line-number in the environment file is too long.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0437-E
The value specified for the parameter "parameter-name" is out of range. line=line-number

The value of the indicated parameter on the line indicated by line-number in the environment file is outside the permitted
range.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 915

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0438-E
The value specified for the parameter "parameter-name" contains an invalid character. line=line-number

The value of the indicated parameter on the line indicated by line-number in the environment file contains an invalid
character.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0439-E
The path specified for the parameter "parameter-name" is not an absolute path. line=line-number

The file path indicated by parameter-name on the indicated line-number in the environment file is not an absolute path.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0441-E
The directory specified for the parameter "parameter-name" does not exist. line=line-number

The directory specified in the indicated parameter on the line indicated by line-number in the environment file does not
exist.

In UNIX, this message might be issued due to receipt of a signal.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file, or check the operating environment.

KNAX0442-E
The value specified for the parameter "parameter-name" is not a directory. line=line-number

The value specified in the indicated parameter on the line indicated by line-number in the environment file is not a
directory.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 916

(O)
Check and, if necessary, revise the environment file.

KNAX0444-E
Too many operands are specified for the parameter "parameter-name". line=line-number

Too many operands were specified in the indicated parameter on the line indicated by line-number in the environment
file.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0445-E
The default directory specified for the parameter "parameter-name" does not exist. directory="default-directory-
name"

There is no default directory.

In UNIX, this message might be issued due to receipt of a signal.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the operating environment.

KNAX0446-E
The default directory specified for the parameter "parameter-name" is not a directory. directory="default-directory-
name"

The default directory name is not a directory.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the operating environment.

KNAX0449-E
The required directory "directory-name" does not exist.

The required directory indicated by directory-name is missing.

In UNIX, this message might be issued due to receipt of a signal.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 917

(O)
Check and, if necessary, revise the environment file or the operating environment.

KNAX0450-E
The required directory "directory-name" is not a directory.

The required directory indicated by directory-name is not a directory.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file or the operating environment.

KNAX0451-E (Windows only)
An error occurred during a request for the default directory. parameter name="parameter-name"

An error occurred while obtaining the default directory name.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the operating environment.

KNAX0456-E (Windows only)
A value is specified multiple times for the parameter "parameter-name". line=line-number

The value specified as parameter-name is duplicated.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0458-E
The combination of parameters is invalid. line=line-number

The combination of parameters is invalid. Possible causes are as follows:

• The combination of phost_start and phost_end parameters is invalid.

• The combination of lhost_start and lhost_end parameters is invalid.

• The parameter specification order is invalid.

• A start parameter is specified, but no end parameter is specified.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 918

(O)
Check and, if necessary, revise the environment file.

KNAX0459-E
The operands are specified in the wrong order, or the same operand is specified multiple times.
parameter="parameter-name" line=line-number

The order in which the operands are specified is not correct or the same operand is specified more than once.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0471-E
The value specified for the parameter parameter-name in "file-name" is different from that specified in the system
environment file.

The value specified for the parameter-name parameter in the file-name environment file differs from the value specified
in the system environment file.

If the default value is specified in the system environment file, specifying a different value in the job environment file
results in an error. The system execution log and trace settings specified in the system environment file cannot be
changed.

If the value is not specified explicitly in the job environment file, no error results.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the environment file.

KNAX0472-E
An unexpected error occurred. (function="function-name", error details="error-details", maintenance
information=maintenance-information)

An unexpected error occurred during environment file analysis processing.

function-name
Internal function name

error-details
Character string indicating the nature of the error

maintenance-information
Maintenance code

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 919

(O)
Correct the error, and then re-execute the command. If the error cannot be corrected, contact the system administrator.

KNAX0473-W
The parameter "parameter-name" is redundantly specified in environment-file-type.

A redundant parameter is specified in the file indicated by environment-file-type.

For details about the problems that might result, see the explanation for the particular parameter.

We recommend that you do not specify this parameter in the indicated type of environment file.

environment-file-type
Job environment file

(S)
Executes the processing.

(O)
If the problem needs to be eliminated, delete the corresponding parameter.

KNAX0474-E
The value "parameter-value" for the parameter "parameter-name" cannot be specified for the current execution
method of a batch job. filename="file-name"

The specified value is not permitted for the current job start method that is set in the environment file indicated by file-
name.

parameter-value
Parameter value that is not permitted

parameter-name
Name of the parameter resulting in the error

file-name
Environment file containing the parameter that resulted in the error

(S)
Terminates processing.

(O)
Check and, if necessary, revise the parameter specified in the environment file.

KNAX0700-E
A spool job directory could not be created. reason=error-details

A directory for the batch job cannot be created under the spool root directory.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 920

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool root
directory specified in the environment file or the spool directory itself.

KNAX0701-E
Failed to open the file "file-name". reason=error-details

An open error occurred on the file indicated by file-name in the spool job directory. Alternatively, an open error occurred
in the output console.

In the case of the output console, CONOUT$ is displayed for file-name.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0702-E
An I/O error occurred during an attempt to write to JOBLOG file. reason=error-details

A write error occurred in the job execution log file in the spool job directory.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0703-E
The file "file-name" does not exist.

The file indicated by file-name does not exist in the spool job directory.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the file name.

KNAX0704-E
Failed to get the date.

Acquisition of the date failed.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 921

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX0706-E
Failed to create the file path "file-path". reason=error-details

Creation of file-path has failed.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0708-E
The number of JOBLOG files exceeded the limit.

The number of JOBLOG files allocated exceeded the limit. Possible causes are as follows:

• A large number of spool jobs remain in the spool directory, leaving few available job IDs.

• A large number of child jobs have been started in a job.

(S)
Terminates processing.

(O)
Delete unneeded spool jobs, and then re-execute the job. Or, check the job definition script to make sure that an
unnecessarily large number of child jobs have not been started.

KNAX0719-I
STEP. step number=step-number step name=step-name output destination=output-destination

Following this message, information-about-output-destination for the job step is displayed.

(S)
Resumes processing.

KNAX0720-E
Failed to open the job ID file. reason=error-details

An open error occurred in the job ID file.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 922

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool directory
specified in the environment file, the spool directory itself, or files in the spool directory.

KNAX0721-E
An I/O error related to the job ID file occurred. reason=error-details

An input/output error occurred on the job ID file.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool directory
specified in the environment file, the spool directory itself, or files in the spool directory.

KNAX0722-E
Failed to allocate a job ID.

Assignment of a job ID failed. This message might be displayed because no more spool job directories can be created.

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must eliminate the cause of the error based on the
messages output before and after this message, and then re-execute the command. Alternatively, delete an unneeded
spool job directory, and then re-execute the command.

KNAX0723-E
Failed to lock the job ID file. reason=error-details

An attempt to lock the job ID file failed.

If an NFS directory is specified in the SPOOL_DIR parameter, this message might be displayed because an error resulted.
Do not specify an NFS directory in the SPOOL_DIR parameter.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool directory
specified in the environment file, the spool directory itself, or files in the spool directory.

KNAX0724-I
The job ID was assigned. job ID=job-ID

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 923

The indicated job-ID was assigned.

This message is not output for a child job that was started with MERGE specified as the operand in the
SPOOLJOB_CHILDJOB parameter of the root job's environment file.

(S)
Resumes processing.

KNAX0725-E
An API error occurred. (API="API-name", reason="cause", maintenance information="maintenance-
information")

An error occurred in the API.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator.

KNAX0726-I
The child job ID was assigned. job ID=job-ID

A job ID has been assigned for a child job.

(S)
Resumes processing.

KNAX0727-E
Failed to lock the file that manages the start order of child jobs. reason=error-details

An attempt to lock the file that manages the start order of child jobs failed.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0728-E
The format of the file that manages the start order of child jobs is invalid.

The format of the file that manages the start order of child jobs is not valid.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 924

(O)
Check whether the file that manages the start order of child jobs has been updated illegally. If the problem cannot
be resolved, contact the system administrator.
The system administrator must check whether there is a problem in the spool job directory or with the files in the
spool job directory.

KNAX0800-E
Failed to create the {.sysout|sysout.ini} file. reason=error-details

An attempt to create a spool job management file failed.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0801-E
Failed to lock the .sysout file. reason=error-details

An attempt to lock the spool job management file failed.

If an NFS directory is specified in the SPOOL_DIR parameter, this message might be displayed because an error resulted.
Do not specify an NFS directory in the SPOOL_DIR parameter.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0802-E
Failed to open the {.sysout|sysout.ini} file. reason=error-details

An attempt to open the spool job management file failed.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0803-E
An I/O error related to the {.sysout|sysout.ini} file occurred. reason=error-details

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 925

An input/output error occurred in the spool job management file.

This message is output to the error notification destinations. The message might be output to only some of the
destinations, depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Eliminate the cause indicated by error-details, and then re-execute the command. If the problem cannot be resolved,
contact the system administrator. The system administrator must check and, if necessary, revise the spool job
directory or files in the spool job directory.

KNAX0804-E
Failed to get the current time to use for STARTTIME in the {.sysout|sysout.ini} file.

Acquisition of the current time used for STARTTIME in the spool job management file failed.

(S)
Resumes processing.

(O)
Contact the system administrator.

KNAX0805-E
Failed to get the current time to use for ENDTIME in the {.sysout|sysout.ini} file.

Acquisition of the current time used for ENDTIME in the spool job management file failed.

(S)
Resumes processing.

(O)
Contact the system administrator.

KNAX1600-I
job-name Allocation of file(s) for a job started.

The file for the batch job indicated by job-name has been allocated.

(S)
Resumes processing.

KNAX1601-I
job-name.job-step-name Allocation of file(s) for a step started.

The file for the job step indicated by job-name and job-step-name has been allocated.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 926

KNAX1604-I
The file file-path was deleted.

The file indicated by file-path was deleted based on the value specified for postprocessing.

(S)
Resumes processing.

KNAX1605-I
Deletion of the file file-path failed. reason="error-details"

An attempt was made to delete file-path based on the value specified for postprocessing, but the error indicated by
error-details occurred.

error-details
Details of the error. This is an error information string representation for errno.

(S)
Resumes processing.

KNAX1632-E
The value specified for the environment variable environment-variable-name is too long.

An attempt was made to set the environment variable whose name is indicated by environment-variable-name, but the
specified value exceeded the maximum permissible length in JP1/Advanced Shell.

(S)
Terminates processing.

(O)
Correct the environment variable value specified in the environment file, and then re-execute the batch job.

KNAX1871-E
command-name: Failed to normalize the file name. (function="function-name", reason="cause", maintenance
information="maintenance-information")

An error occurred while the command specified by command-name was normalizing the specified file path by converting
it to an absolute path.

If function-name is _fullpath, this message might be issued when the path name specified by the command is too
long (in this case, Invalid argument might be indicated for cause).

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

The path contains one or
more invalid multibyte
characters

(UNIX only) The path name contains an invalid multibyte character. Correct the file path specified in
the command.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 927

Cause Meaning

The path contains too
many components

(UNIX only) The path name contains more than 4,096 components. Correct the file path specified in
the command.

File name too long (UNIX only) After being converted to an absolute path, the size of the file path name exceeded the
maximum permissible length. Correct the file path specification.

error cause determined
from errno

• A memory shortage occurred.
• An error occurred while an API was being executed by the OS (error in getcwd or _fullpath).
• (Windows only) If function-name is _fullpath and cause is Invalid argument, the size of

the file path name after conversion to an absolute path might have exceeded the maximum
permissible length. In this case, correct the file path specified in the command.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Eliminate the cause of the error based on function-name and cause, and then re-execute the command. If the cause
of the error cannot be eliminated, contact the system administrator.

KNAX1872-E
command-name: The file path is invalid. (file path="file-path", reason="cause", maintenance
information="maintenance-information")

An error occurred while the file path specified by file-path was being checked during the processing of the command
indicated by command-name. Make sure that the file path specified in the command is usable.

cause
Cause of the error reported by the system

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.
If the cause of the error cannot be eliminated, contact the system administrator.

KNAX1873-E
command-name: The specified file path is a directory. (file path="file-path", maintenance
information="maintenance-information")

The file path indicated by file-path specified by the command indicated by command-name is a directory. Specify a
normal file for the file path.

maintenance-information
Internal information

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 928

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX1875-E
command-name: An error occurred. (reason="cause", maintenance information="maintenance-information")

An unexpected error occurred while the command indicated by command-name was being processed.

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

The size of the buffer is
insufficient for storing the
path

(UNIX only) A shortage occurred in the buffer for storing path names.

An error occurred in the _time64
function

(Windows only) An error occurred in the process for determining the time.

An error occurred in the
clock_gettime function

(UNIX only) An error occurred in the process for determining the time.

An error occurred in the
nanosleep function

(UNIX only) An error occurred in the suspension process.

Invalid argument An invalid argument was specified.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX1877-E
command-name: An environment variable is invalid. (environment variable="environment-variable-name",
maintenance information="maintenance-information")

The environment variable indicated by environment-variable-name does not exist. Alternatively, the size of the character
string in the specified value is 0 bytes or less.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Check the job definition script to determine whether the applicable environment variable has been changed. Or,
check whether the command was started in a program other than JP1/Advanced Shell.
If the cause cannot be determined, contact the system administrator.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 929

KNAX1878-E
command-name: An I/O error occurred. (file path="file-path", reason="cause", maintenance
information="maintenance-information")

An I/O error occurred in the allocation management file.

file-path
File path name of the allocation management file

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

The file is not a regular file The file is not a regular file.

The file was replaced The file was replaced while it was being opened.

api-name error : error-details The error indicated by error-details occurred during the processing of the API indicated by
api-name.
error-details is the error information that is set by the API.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.
If the cause of the error cannot be determined, contact the system administrator.

KNAX1879-E
command-name: The number of files exceeded the limit. (maintenance information="maintenance-information")

The maximum permissible number of files that can be registered, which is 64, was exceeded.

maintenance-information
Internal information

(S)
Terminates processing.

(O)
Modify the job definition script so that the number of files to be registered does not exceed the maximum.

KNAX1880-E
command-name: The command cannot be executed with the current setting of the environment setting parameter.
parameter="environment-setting-parameter"

The indicated command cannot be used with the current setting of the indicated environment setting parameter.

command-name
Command name

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 930

environment-setting-parameter
Environment setting parameter and value that caused this error

(S)
Terminates processing.

(O)
Do not execute this command. If you want to execute this command, check and revise the specified environment
setting parameter as necessary.

KNAX1890-I
The file was deallocated as "processing-value". path=file-path

The file indicated by file-path was released in accordance with the processing indicated by processing-value.

processing-value
One of the following values is displayed as the specified postprocessing for files during normal times or abnormal
times:

• del: Delete.

• keep: Do not delete.

(S)
Resumes processing.

KNAX1891-E
An I/O error occurred during deallocation of the file. (file path="file-path", reason="cause", maintenance
information="maintenance-information")

An I/O error occurred in the allocation management file during postprocessing of the file.

file-path
File path name of the allocation management file

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

The file is not a regular file The file is not a regular file.

The file was replaced The file was replaced while it was being opened.

api-name error : error-details The error indicated by error-details occurred during the processing of the API indicated by
api-name.
error-details is the error information that is set by the API.

maintenance-information
Internal information

(S)
Terminates the job.

(O)
Contact the system administrator.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 931

KNAX1892-E
An error occurred during deallocation of the file. (reason="cause", maintenance information="maintenance-
information")

An unexpected error occurred.

cause
The following table explains the causes that can be displayed and their meanings:

Cause Meaning

An error occurred in the _time64
function

(Windows only) An error occurred in the process for determining the time.

An error occurred in the
clock_gettime function

(UNIX only) An error occurred in the process for determining the time.

An error occurred in the
nanosleep function

An error occurred in the suspension process.

maintenance-information
Internal information

(S)
Terminates the job.

(O)
Contact the system administrator.

KNAX1893-W
An invalid entry in the file was skipped. (file path="file-path", maintenance information="maintenance-
information")

The postprocessing of the adshfile command was skipped because an invalid entry existed in the allocation
management file. The postprocessing of the file specified by the adshfile command of the corresponding job might
not have been executed.

file-path
File path name of the allocation management file

maintenance-information
Internal information

(S)
Resumes processing.

(O)
If files specified to be deleted by the adshfile command remain, delete them manually if necessary.

KNAX1910-E
The CPU time is invalid.

The calculation result of C-Time is invalid.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 932

(S)
Resumes the batch job using 0 as the time value for output to job execution logs.

(O)
Contact the system administrator.

KNAX1911-E
The execution time is invalid.

The calculation result of E-Time is invalid.

(S)
Resumes the batch job using 0 as the time value for output to job execution logs.

(O)
Contact the system administrator.

KNAX2201-E
The message is too long. message number=message-number

Some of the text could not be output to the message indicated by message-number (number following KNAX) because
the text was too long.

(S)
Resumes processing.

(O)
Check the batch job processing for any problem. If necessary, correct the job definition script.

KNAX2202-E
Output to JOBLOG failed. message ID=message-ID

Output to the job execution log of the message indicated by message-ID failed.

(S)
Resumes processing.

(O)
Contact the system administrator. Check and, if necessary, correct the access permissions and disk status of the spool
job directory.

KNAX2204-E
Output to stdout failed. message ID=message-ID

Output to the standard output of the message indicated by message-ID failed.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 933

(O)
Contact the system administrator. Check and, if necessary, correct the access permissions and disk status of the
standard output.

KNAX2205-E
Output to stderr failed. message ID=message-ID

Output to the standard error output of the message indicated by message-ID failed.

(S)
Resumes processing.

(O)
Contact the system administrator. Check and, if necessary, correct the access permissions and disk status of the
standard error output.

KNAX2206-E
The system execution log output failed. message ID=message-ID

Output to the system execution log of the message indicated by message-ID failed.

(S)
Resumes processing.

(O)
Contact the system administrator. Check and, if necessary, correct the specification of system execution logs in the
environment file or the access permissions and disk status of the system execution log directory.

KNAX2207-E
Trace output failed. message ID=message-ID

Output to the trace log of the message indicated by message-ID failed.

(S)
Resumes processing.

(O)
Contact the system administrator. Check and, if necessary, correct the specification of traces in the environment file
or the access permissions and disk status of the trace directory.

KNAX2208-E
System execution log initialization failed. code=maintenance-information, reason=error-cause

Initialization of the system execution log failed.

If an NFS directory is specified in the LOG_DIR parameter, this message might be displayed because an error resulted.
Do not specify an NFS directory in the LOG_DIR parameter.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 934

(O)
Contact the system administrator. Check and, if necessary, correct the specification of system execution logs in the
environment file or the access permissions and disk status of the system execution log directory.

KNAX2209-E
Trace initialization failed. code=maintenance-information

Initialization of the trace log failed.

If an NFS directory is specified in the TRACE_DIR parameter, this message might be displayed because an error resulted.
Do not specify an NFS directory in the TRACE_DIR parameter.

(S)
Terminates processing.

(O)
Contact the system administrator. Check and, if necessary, correct the specification of traces in the environment file
or the access permissions and disk status of the trace directory.

KNAX2211-E
Trace settings for the file size or the number of files used are invalid.

The trace settings are invalid.

(S)
Terminates processing.

(O)
Contact the system administrator. Check and, if necessary, revise the specification of traces in the environment file.

KNAX2213-E
The location specified for trace output is invalid.

The specified trace output destination is invalid.

(S)
Terminates processing.

(O)
Contact the system administrator. Check and, if necessary, correct the specification of traces in the environment file
or the access permissions and disk status of the trace directory.

KNAX2214-E
Failed to get the current time.

Acquisition of the current time failed.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 935

(O)
Contact the system administrator.

KNAX2400-E
Output failed because initialization has not been completed. output location=output-location, message
ID=message-ID, destination=maintenance-information-1, set destination=maintenance-information-2

The message indicated by message-ID cannot be output because initialization has not been completed.

(S)
Resumes processing.

(O)
Contact the system administrator.

KNAX2499-E
Message number "message-number" is not defined.

The message indicated by message-number does not exist.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX3000-I
adshmd started.

The user-reply functionality's management daemon has started.

(S)
Resumes processing.

KNAX3001-I
adshmd stopped.

The user-reply functionality's management daemon has stopped.

(S)
Terminates processing.

KNAX3002-E
An attempt to start adshmd failed.[detailed-message]

An attempt to start the user-reply functionality's management daemon failed.

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence. In the case of output to syslog, the message text

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 936

for a message related to the user-reply functionality's management daemon (message number from 3000 through
3999) might be added to this message.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the user-reply functionality's management daemon.

KNAX3003-E
An error was detected with adshmd.[detailed-message]

The user-reply functionality's management daemon terminated with an error or an error occurred during its termination
processing. In the case of output to syslog, the message text for a message related to the user-reply functionality's
management daemon (message number from 3000 through 3999) might be added to this message.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the user-reply functionality's management daemon.

KNAX3006-I
adshmd will now start. (PID=process-ID, UID=user-ID, GID=group-ID, user name=user-name)

The user-reply functionality's management daemon has started.

(S)
Terminates processing.

KNAX3008-W
The old PID was process-ID.

This message displays the process ID (PID) used the last time the user-reply functionality's management daemon
terminated with an error.

(S)
Resumes processing.

KNAX3009-E
adshmd could not start because another instance is already running.

The user-reply functionality's management daemon is already running.

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 937

(O)
If necessary, terminate the running user-reply functionality's management daemon, and then restart it.

KNAX3020-E
A file error occurred. (function=function-name, target=target-name, details=error-details)

A file manipulation error occurred in the user-reply functionality's management daemon.

function-name, target-name, and error-details provide error information.

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3023-E
A signal error occurred. (function=function-name, target=target-name, details=error-details)

A signal error occurred in the user-reply functionality's management daemon.

function-name, target-name, and error-details provide error information.

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3024-E
A signal error occurred. (function=function-name, target=target-name)

A signal error occurred in the user-reply functionality's management daemon.

function-name and target-name indicate the error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 938

KNAX3025-E
A signal error occurred. (function=function-name, details=error-details)

A signal error occurred in the user-reply functionality's management daemon.

function-name and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3026-E
A signal error occurred. (function=function-name)

A signal error occurred in the user-reply functionality's management daemon.

function-name indicates the error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3027-E
A process error occurred. (function=function-name, target=target-name, details=error-details)

A processing error occurred in the user-reply functionality's management daemon.

function-name, target-name, and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.
function-name indicates the system's function name. Determine the cause of the error based on the system function's
error message.

KNAX3029-E
An error occurred in a system function. (function=function-name, details=error-details)

A system function error occurred in the user-reply functionality's management daemon.

function-name and error-details provide error information.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 939

This message is output to the applicable error notification destinations. The message might be output to only some of
the destinations, depending on the timing of the error occurrence.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.

KNAX3261-I
adshmd received the signal signal-name.

The user-reply functionality's management daemon received the termination request signal indicated by signal-name.

(S)
Resumes processing.

KNAX3400-I
The parameters specified in the environment file were correct.

Checking of the environment file was completed successfully.

(S)
Resumes processing.

KNAX3402-E
One or more parameters specified in the environment file were incorrect.

An error occurred while checking the environment file.

For details about the error, see the message that was output before this message.

(S)
Terminates processing.

(O)
Eliminate the cause of the error.

KNAX3508-I
A response request was canceled. (job ID=job-ID, line=line-number, host name=host-name)

The user-reply functionality's management daemon canceled the reply-request message that was initiated by the
adshread command.

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script where the adshread command was issued

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 940

host-name
Name of the host on which the user-reply functionality's management daemon is running

(S)
Resumes processing.

KNAX3522-E
A shared memory error occurred. (function=function-name, details=error-details)

A shared memory error occurred in the user-reply functionality's management daemon.

function-name and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause of the error, and then re-execute the user-reply functionality's
management daemon.
function-name indicates the system's function name. Determine the cause of the error based on the system function's
error message.

KNAX3542-W
The shared memory object or named semaphore already exists, and will be initialized for reuse. ({Named semaphore
| Shared memory object})

The existing shared memory or semaphore will be initialized and used because the -f option was specified for the user-
reply functionality's management daemon.

target-name indicates a shared memory object or a named semaphore.

(S)
Initializes the existing shared memory or semaphore, and then resumes processing.

KNAX3700-I
The adshmd will now start.

The user-reply functionality's management daemon will now start.

(S)
Resumes processing.

KNAX3701-I
The adshmd will now stop.

The user-reply functionality's management daemon will now stop.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 941

KNAX3703-E
The adshmd is not running.

The user-reply functionality's management daemon is not running.

(S)
Terminates processing.

(O)
Check if the user-reply functionality's management daemon is running.

KNAX3709-E
The adshmd could not start because another one is already running.

The user-reply functionality's management daemon is already running.

(S)
Terminates processing.

(O)
If necessary, terminate the running user-reply functionality management daemon, and then restart it.

KNAX3710-I
The adshmd is running.

The user-reply functionality's management daemon is running.

(S)
Terminates processing.

KNAX3711-I
The adshmd is not running.

The user-reply functionality's management daemon is not running.

(S)
Terminates processing.

KNAX3799-I
Usage command-name [-h LogicalHostName] {start [reuse]|stop|status|conftest [EnvironFile]|help}

This message displays the usage of the adshmdctl command.

(S)
Terminates processing.

KNAX3998-E
An error occurred during adshmd signal handler processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 942

The signal handler terminated with an error in the user-reply functionality's management daemon.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX3999-E
The adshmd ended abnormally because of an unexpected exception.

The user-reply functionality's management daemon terminated with an error.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX4414-E
The size of the specified spool directory path is invalid. filename="file-name" line=line-number

The length of the path name for a specified spool directory is invalid.

file-name
Name of the target list file

line-number
Line number in the target list file where the error occurred

(S)
Performs the specified processing in the next line.

(O)
Check that the spool directory name specified in the target list file is correct, and then re-execute the command.

KNAX4415-E
The data format is incorrect. filename="file-name" line=line-number

The format of the target list file is invalid. Or, a number of days is not specified in the command's argument or in the
target list file.

file-name
Name of the target list file

line-number
Line number in the target list file where the error occurred

(S)
Performs the specified processing in the next line.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 943

(O)
Check and, if necessary, revise the specification in the target list file, or specify a number of days in the command's
argument.

KNAX4416-E
A line exceeds the maximum line size. filename="file-name" line=line-number

A line in the target list file exceeds the permitted maximum length.

file-name
Name of the target list file

line-number
Line number in the target list file where the error occurred

(S)
Cancels processing.

(O)
Check and, if necessary, revise the specification in the target list file.

KNAX4417-E
A file was unexpectedly modified. filename="file-name"

The file entities differ before and after the file was opened.

file-name
File name

(S)
Cancels processing the corresponding file.

(O)
Check the file for any error.

KNAX4418-E
The file "file-name" is not a regular file.

The indicated file is not a regular file.

file-name
File name

(S)
Cancels processing the corresponding file.

(O)
Check the file for any error.

KNAX4419-E
An I/O error occurred. path="path-name" error="error-details"

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 944

An input or output error occurred in the file.

path-name:
Path name

One of the reasons why this message is output is that there is a file under the spool directory that cannot be recognized
by JP1/Advanced Shell, such as a user-created file or directory.

(S)
Cancels processing the corresponding path.

(O)
Check the corresponding path for any error.

KNAX4420-E
A fatal error occurred. error information="error-details, internal-information"

An unexpected error occurred (an open error in a log file or trace file, or an error during time processing).

(S)
Cancels spool job processing if the error occurred during spool job processing; otherwise, terminates the command.

(O)
Check the operating environment for any problem.

KNAX4422-E
A required operand is not specified. Correct syntax: {target-list-file | report-file | log-file}

A mandatory operand is missing in the command.

target-list-file
Target list file

report-file
Report file

log-file
Log file

(S)
Terminates the command.

(O)
Specify the mandatory operand, and then re-execute the command.

KNAX4423-E
The number of days is specified incorrectly.

The format of the number of days specification in the command is invalid.

(S)
Terminates the command.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 945

(O)
Specify the number of days in the correct format, and then re-execute the command.

KNAX4424-E
The spool job was not deleted because the start date for job execution could not be obtained. path="spool-job-
directory-name"

The spool job was not deleted because the date the batch job is to start cannot be determined. The file used to manage
the spool job might be corrupted.

spool-job-directory-name
Name of the erroneous spool job directory

(S)
Resumes processing without deleting the corresponding spool job.

(O)
If necessary, delete the corresponding spool job manually.

KNAX4425-E
The spool directory is being used by another program. path="spool-directory-name"

The spool directory indicated by spool-job-directory-name cannot be processed because it is being used by another
program.

(S)
Resumes processing without processing the corresponding spool job.

(O)
Wait a while, check that the corresponding spool directory is not being used by another program, and then re-execute
the command.

KNAX4427-W
An invalid spool job directory was skipped.

An invalid spool directory was found and that directory was skipped.

The name of the spool job directory for a completed job is not in one of the following formats:

• job-ID-job-name

• job-ID-

This message is displayed when the spool directory contains a directory or a file with an invalid name, such as one of
the following:

• The name consists of fewer than six bytes.

• Byte 7 in the name is not a hyphen (-).

• The job name part of the name consists of 32 bytes or more.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 946

These requirements do not apply to a file managed by JP1/Advanced Shell (jobid in UNIX and adsh.jobid in
Windows). They are also not applicable to a name consisting of a job ID only (name length is six bytes) because such
a job is currently executing.

(S)
Continues processing.

(O)
Delete any invalid directory or file manually.

KNAX4428-I
A spool job was removed. path="path-name"

The spool job was deleted.

path-name
Name of the spool job directory

(S)
Continues processing.

KNAX4429-E
An error occurred.

An error occurred during command execution.

(S)
Continues processing.

(O)
Determine the nature of the error by checking the message output to the log file, report file, or standard error output.
If necessary, correct the error, and then re-execute the command.

KNAX5300-I
Usage: command-name [-jbspglogicalhost LogicalHostName]

An argument in the adapter command is invalid.

(S)
Terminates processing.

KNAX5301-E
No value is specified for the option "option-name".

A specified option value in the adapter command is invalid.

option-name
Option name in the adapter command

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 947

KNAX5305-E
The specified argument "argument" is invalid.

An invalid argument was specified in the adapter command.

argument
Name of the adapter command's option.

(S)
Terminates processing.

KNAX5308-E
An API error occurred. (maintenance information=maintenance-information, details=error-details)

An API error occurred in the adapter command.

maintenance-information and error-details provide error information.

(S)
Terminates processing.

(O)
If maintenance-information is sem_open, one of the following environment errors might have occurred:

• The user-reply functionality's management daemon or service is not running.
Start the user-reply functionality's management daemon or service.
If the reason the user-reply functionality's management daemon or service is not running is known, resolve the
problem, and then restart the user-reply functionality's management daemon or service.
If the cause is not known, contact the system administrator.

• The user-reply functionality's management service has not been registered (in Windows).
Use the service registration procedure to register the user-reply functionality's management service, and then
start the service.
If the service cannot be registered or has been registered but will not start and the reason is known, resolve the
problem, and then register or start the service.
If the reason preventing the service from being registered or running is not known, contact the system
administrator.

If maintenance-information is not sem_open, contact the system administrator.

KNAX5309-E
An internal error occurred.

An internal error occurred.

(S)
Terminates processing.

(O)
Contact the system administrator.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 948

KNAX5323-E
A signal error occurred. (function=function-name, target=target-name, details=error-details)

A signal error occurred in the adapter command.

function-name, target-name, and error-details provide error information.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5340-E
You do not have permission to execute the command command-name.

The user does not have execution permissions for the adapter command.

This command must be executed by a user with Administrators permissions.

(S)
Terminates processing.

(O)
The adapter command is a program that is started from JP1/Base's plug-in service. If this message is displayed when
the adapter command was started as a plug-in service, check and, if necessary, revise the JP1/Base settings.

KNAX5350-E
The request header is invalid.

The request header that was passed to the adapter command is invalid.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5360-E
The request data is invalid.

The request data that was passed to the adapter command is invalid.

(S)
Terminates processing.

(O)
Contact the system administrator.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 949

KNAX5361-E
Failed to get the identifier.

Acquisition of the identifier in the request data that was passed to the adapter command failed.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5362-E
The response contains one or more non-ASCII characters.

The data entered as a reply from the Enter Replies window in JP1/IM - View contains non-ASCII characters.

(S)
Terminates processing.

(O)
Specify an ASCII character string as the reply, and then re-enter the reply.

KNAX5371-E
The userreply function is busy.

JP1/Advanced Shell processing is busy.

(S)
Terminates processing.

(O)
Wait a while, and then reply to the reply-request message again.

KNAX5372-E
The message is not found.

There is no reply-request message. Possible reasons are as follows:

• The user-reply functionality's management daemon or service is not running.

• The logical host settings in JP1/Base are not valid.

When a response to a message was entered by proxy with the adshchmsg command, this message might be displayed
depending on the timing. If this is the case, no action is needed.

(S)
Terminates processing.

(O)
Contact the system administrator.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 950

KNAX5380-I
The following data was received: received-data

The user-reply functionality received a message from JP1.

(S)
Resumes processing.

KNAX5381-I
The following information was sent: sent-data

The user-reply functionality sent a message to JP1.

(S)
Resumes processing.

KNAX5396-I
adshuserreply.adapter completed because signal is detected.

The adapter command received a termination signal and terminated.

(S)
Terminates processing.

KNAX5397-I
Signal handler processing completed.

The adapter command received a signal.

(S)
Terminates processing.

(O)
The core has been output. Contact the system administrator.

KNAX5398-E
An error occurred during adshuserreply.adapter signal handler processing.

The adapter command received a signal, but an error occurred in the signal handler processing.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5399-E
The adshuserreply.adapter ended abnormally because of an unexpected exception.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 951

The adapter command terminated with an error.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5407-E
Non-ASCII character is found in a response.

Non-ASCII characters are specified in the -r option (response) of the adshchmsg command.

(S)
Terminates processing.

(O)
Specify an ASCII character string in the -r option of the adshchmsg command, and then re-enter the response.

KNAX5409-E
No valid response request was found.

An attempt was made to cancel the reply-request message or to enter a reply to the reply-request message whose number
was specified in the -n option in the adshchmsg command, but the specified reply-request message was not found.

(S)
Terminates processing.

(O)
Check the following:

• Whether the correct reply-request message number was specified in the -n option.

• Whether the reply-request message number specified in the -n option is displayed by executing the adshlsmsg
command.

If the correct number was specified but it is not displayed by executing the adshlsmsg command, a reply might
have already been entered.

KNAX5410-E
An API error occurred. (maintenance information=maintenance-information, details=error-details)

An API error occurred in the adshchmsg or adshlsmsg command.

maintenance-information and error-details provide error information.

(S)
Terminates processing.

(O)
If maintenance-information is sem_open, one of the following environment errors might have occurred:

• The user-reply functionality's management daemon or service is not running.
Start the user-reply functionality's management daemon or service.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 952

If the reason the user-reply functionality's management daemon or service is not running is known, resolve the
problem, and then restart the user-reply functionality's management daemon or service.
If the cause is not known, contact the system administrator.

• The user-reply functionality's management service has not been registered (in Windows).
Use the service registration procedure to register the user-reply functionality's management service, and then
start the service.
If the service cannot be registered or has been registered but will not start and the reason is known, resolve the
problem, and then register or start the service.
If the reason preventing the service from being registered or running is not known, contact the system
administrator.

If maintenance-information is not sem_open, contact the system administrator.

KNAX5423-E
A signal error occurred. (function=function-name, target=target-name, details=error-details)

A signal error occurred in the adshchmsg or adshlsmsg command.

function-name, target-name, and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause, and then re-execute the command.

KNAX5424-E
A signal error occurred. (function=function-name, target=target-name)

A signal error occurred in the adshchmsg or adshlsmsg command.

function-name and target-name provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause, and then re-execute the command.

KNAX5425-E
A signal error occurred. (function=function-name, details=error-details)

A signal error occurred in the adshchmsg or adshlsmsg command.

function-name and error-details provide error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause, and then re-execute the command.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 953

KNAX5426-E
A signal error occurred. (function=function-name)

A signal error occurred in the adshchmsg or adshlsmsg command.

function-name provides error information.

(S)
Terminates processing.

(O)
Check the error information, eliminate the cause, and then re-execute the command.

KNAX5429-E
An internal error occurred. (maintenance-information)

An internal error occurred in the adshchmsg or adshlsmsg command.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5440-E
You do not have permission to execute the command command-name.

The user does not have execution permissions for the command indicated by command-name.

This command must be executed by a user with Administrators permissions.

(S)
Terminates processing.

(O)
Have a user with Administrators permissions execute the command.

KNAX5498-E
An error occurred during command-name signal handler processing.

An error occurred in the adshchmsg or adshlsmsg command during signal handler processing.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX5499-E
The command-name ended abnormally because of an unexpected exception.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 954

The adshchmsg or adshlsmsg command terminated with an error.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX6000-E
The built-in command "command-name" is not supported. [filename="file-name" line=line-number]

The specified built-in command is not supported in JP1/Advanced Shell.

command-name
Name of the built-in command that is not supported in JP1/Advanced Shell

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the erroneous line and correct the job definition script.

KNAX6001-E
The shell option "shell-option-name" is not supported. [filename="file-name" line=line-number]

The specified shell option is not supported in JP1/Advanced Shell.

shell-option-name
Name of the shell option that is not supported in JP1/Advanced Shell

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the erroneous line and correct the job definition script.

KNAX6002-E
The shell variable "shell-variable-name" cannot be specified. [filename="file-name" line=line-number]

The specified shell variable name is not supported in JP1/Advanced Shell.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 955

shell-variable-name
Name of the shell variable that is not supported in JP1/Advanced Shell

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the erroneous shell variable name.

KNAX6003-E
The variable "variable-name" is not an identifier. [filename="file-name" line=line-number]

The specified variable name contains invalid characters.

variable-name
Variable name determined to be invalid

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was an extended shell command, regular built-in command, or the typeset command
that resulted in the error; otherwise, terminates processing.

(O)
Correct the variable name resulting in the error.

KNAX6004-E
The specified value "invalid-value" is invalid. [filename="file-name" line=line-number]

The cause might be one of the following:

• An attempt was made to assign characters to an integer-type variable.

• An argument requires a numeric value, but characters were specified.

• The specified numeric value is invalid.

invalid-value
Value determined to be invalid or a non-numeric value

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 956

(S)
Continues processing if it was an extended shell command, regular built-in command, or the typeset command
that resulted in the error; otherwise, terminates processing.

(O)
If an assignment expression resulted in the error, check the value or the attributes of the variable to be assigned, and
then correct the job definition script as necessary. If a command resulted in the error, check the specified argument
values, and then correct the job definition script.

KNAX6005-E
Too many arguments are specified. [filename="file-name" line=line-number]

Too many arguments were specified in the command.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Check the command argument that resulted in the error, and then correct the job definition script.

KNAX6006-E
A substitution is specified incorrectly. [filename="file-name" line=line-number]

The specified substitution is invalid. Or, a character string that is not part of the current directory path name is specified
as an argument in the cd command.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was the cd command that resulted in the error; otherwise, terminates processing.

(O)
Check the variable or command substitution or argument specification that resulted in the error, and then correct the
job definition script.

KNAX6007-E
The subscript of the array "array-name" is out of range.[filename="file-name" line=line-number]

The number of array elements is out of range.

array-name
Specified array name

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 957

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was an extended shell command that resulted in the error; otherwise, terminates processing.

(O)
Correct the job definition script so that the array element number that is specified is in the range from 0 through
65535.
When TYPE_A or TYPE_B is specified in the VAR_SHELL_FUNCINFO environment setting parameter, the
function nesting level exceeds the maximum number of array elements. Either specify NONE in the
VAR_SHELL_FUNCINFO environment setting parameter or correct the job definition script.

KNAX6008-E
The variable "variable-name" is read-only. [filename="file-name" line=line-number]

An attempt was made to assign a value to a read-only variable.

variable-name
Specified variable name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Sets the command's return code and continues processing when any of the following commands has resulted in the
error:

• Extended shell command

• Regular built-in command

• typeset command
If your specification was attempting to assign a value to a variable that is defined as an array without specifying
an element number while the attribute of that variable has been set to read-only by the typeset command, the
assignment processing that resulted in this error is not performed. However, in the case of an assignment
expression, the system sets return code 0 and continues processing.

Otherwise, terminates processing.

(O)
Check the attribute or name of the variable that resulted in the error, and then correct the job definition script.

KNAX6009-E
The option "option" is invalid. [filename="file-name" line=line-number]

An invalid option was specified in the command.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 958

option
Option specified in the command

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was an extended shell command, regular built-in command, or the typeset command
that resulted in the error; otherwise, terminates processing.

(O)
Check the option specified in the command, and then correct the job definition script.

KNAX6010-E
The option "shell-option" is invalid. [filename="file-name" line=line-number]

An invalid shell option was specified in the set command.

option
Specified shell option

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the option specified in the set command, and then correct the job definition script.

KNAX6011-E
The signal number or signal name "signal-information" is invalid. [filename="file-name" line=line-number]

An invalid signal number or signal name was specified.

signal-number-or-name
Specified signal number or signal name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Check the signal number or signal name specified in the command, and then correct the job definition script.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 959

KNAX6012-E
The mask "mask" is invalid. [filename="file-name" line=line-number]

An invalid mask was specified.

mask
Specified mask

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Check the mask specified in the command, and then correct the job definition script.

KNAX6013-E
The value of an upper limit could not be changed. error details=error-details [filename="file-name" line=line-
number]

The maximum value could not be changed because the error indicated by error-details occurred.

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6014-E
No value is set for the specified variable "variable-name". [filename="file-name" line=line-number]

A variable for which no value has been set was specified while the nounset shell option was enabled.

variable-name
Specified variable name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 960

(S)
Terminates processing.

(O)
Evaluate whether the nounset shell option is required. If it is required, correct the job definition script so that a
value is assigned when the variable is used.

KNAX6015-E
No argument is specified. [filename="file-name" line=line-number]

A built-in command requires an argument, but the command was executed with no argument specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Check the command specification resulting in the error, and then correct the job definition script.

KNAX6016-E
The option "option" requires an argument. [filename="file-name" line=line-number]

The command was executed with no option value specified.

option
Specified option

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Check the command specification resulting in the error, and then correct the job definition script.

KNAX6017-E
A syntax error occurred in a statement item ("item-name"). [file name="file-name" line=line-number]

The specified control statement is not valid.

item-name
Word determined to constitute a syntax error

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 961

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Correct the job definition script.

KNAX6018-E
A required part ("item-name") of a statement is not present. [filename="file-name" line=line-number]

A correspondence between words is invalid in a control statement.

item-name
Word determined to constitute a syntax error

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6019-E
EOF was unexpectedly reached during syntax analysis. [filename="file-name" line=line-number]

A specified control statement is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6020-E
The specified directory path "directory-path" is invalid. [filename="file-name" line=line-number]

An invalid directory path was specified.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 962

directory-path
Specified directory path

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Correct the job definition script.

KNAX6021-E
Too many instances of "<<" are specified. [filename="file-name" line=line-number]

A redirect specification is invalid in a here document.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6022-E
Too many redirections are specified. [filename="file-name" line=line-number]

Too many redirections are specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6023-W
The {break|continue} command cannot be executed in this context. [filename="file-name" line=line-number]

The break or continue command was executed outside a loop.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 963

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6024-E
The name specified for the function "function-name" is invalid. [filename="file-name" line=line-number]

An invalid function name was specified in a function definition.

function-name
Specified function name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6025-E
"entity-name" was not found. [filename="file-name" line=line-number]

A specified file name, command name, or function name cannot be identified.

file-name, command-name, or function-name
Unidentifiable name that was specified for a file name, command name, or function name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates the processing if it was a . (dot) command that resulted in the error; otherwise, continues processing.

(O)
Check for an error in the specified file name, command name, or function name, and then correct the job definition
script.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 964

KNAX6026-E
The command "command-name" cannot be executed. reason=error-details [filename="file-name" line=line-
number]

The specified command could not be executed because the error indicated by error-details occurred.

command-name
Specified command name

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without executing the specified command.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6027-W
The value specified in the {break|continue} command is greater than the number of nested loops (nested-loop-
count). [filename="file-name" line=line-number]

The value specified in the argument of the break or continue command is greater than the number of nesting loops.

nested-loop-count
Number of nesting loops when control is to exit the looped processing (break command) or when the looped
processing is to be canceled and control returned to the beginning (continue command)

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Executes the break or continue command as many times as there are nesting loops, and then continues
processing.

(O)
Check the argument specified in the break or continue command, and then correct the job definition script.

KNAX6028-E
The command "command-name" is not a built-in command. [filename="file-name" line=line-number]

The command specified in the builtin command is not a built-in command.

command-name
Specified command name

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 965

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the argument specified in the builtin command, and then correct the job definition script.

KNAX6029-E
A coprocess is already being executed. [filename="file-name" line=line-number]

A background process is already running.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6030-E
The directory cannot be changed. directory=directory-path details=error-details [filename="file-name" line=line-
number]

The directory cannot be changed.

directory-path-name
Specified directory path name

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 966

KNAX6031-E
The shell variable HOME is not set. [filename="file-name" line=line-number]

The directory cannot be changed because the HOME shell variable has not been specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Specify the home directory in the HOME shell variable, and then re-execute the job definition script.

KNAX6032-E
The shell variable OLDPWD is not set. [filename="file-name" line=line-number]

The directory cannot be changed because the OLDPWD shell variable has not been specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Correct the job definition script.

KNAX6033-E
The current directory could not be identified. [filename="file-name" line=line-number]

The directory cannot be changed because the current directory cannot be identified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Re-execute the job definition script.

KNAX6034-E
No coprocess exists. [filename="file-name" line=line-number]

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 967

The job definition script was executed without a background process.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6035-E
The specified file descriptor "file-descriptor" is invalid. reason=error-details [filename="file-name" line=line-
number]

An invalid file descriptor was specified.

file-descriptor
Specified file descriptor

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6036-E
The value specified for the process ID ("process-ID") is invalid. [filename="file-name" line=line-number]

A specified process ID is invalid.

process-ID
Specified process ID

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing in the case of a regular built-in command; terminates the processing in the case of a special
built-in command.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 968

(O)
Correct the job definition script.

KNAX6037-E
The getopts command was executed without a required option. [filename="file-name" line=line-number]

The getopts command was executed with no option specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6038-E
The getopts command was executed without the required name argument. [filename="file-name" line=line-
number]

The getopts command was executed with name omitted.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6039-E
The shift command was executed with more arguments specified than were specified in the command line.
[filename="file-name" line=line-number]

The shift command was executed while the number of specified arguments was greater than the number of arguments
in the command line.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 969

(O)
Check the number of arguments specified in the shift command or the number of arguments in the command line,
and correct the job definition script if necessary.

KNAX6040-E
A "]" character is missing. [filename="file-name" line=line-number]

A right square bracket (]) is missing.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Correct the job definition script.

KNAX6041-E
The specified test command or conditional expression is invalid. [filename="file-name" line=line-number]

There is an error in the specified test command or in a conditional expression.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes the processing in the case of the test command; terminates the processing in the case of a conditional
expression.

(O)
Correct the job definition script.

KNAX6042-E
The expression contains a read-only variable. [filename="file-name" line=line-number]

A read-only variable is specified in an arithmetic expression.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without processing the arithmetic expression.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 970

(O)
Check the attribute of the variable specified in the arithmetic expression, and then correct the job definition script.

KNAX6043-W
The command to execute in another process is not specified. [filename="file-name" line=line-number]

A command to be executed in another process has not been specified.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6044-E
The function definition file "function-name" was not found in the FPATH directory. [filename="file-name"
line=line-number]

No directory is specified in the FPATH shell variable. Or, no function definition file for the directory specified in the
FPATH shell variable was found.

function-name
Function name

file-name
Script file name

line-number
Line number in the script file where the error occurred

(S)
Continues processing.

(O)
Check if the directory containing the function definition file is specified in the FPATH shell variable.
If the directory is specified, check if the name of the function whose execution was attempted is correct and whether
the directory specified in the FPATH shell variable contains the function definition file for the function that is to be
executed.

KNAX6045-E
The function definition file "function-name" cannot be opened. [filename="file-name" line=line-number]

A function definition file cannot be opened.

function-name
Function name

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 971

file-name
Script file name

line-number
Line number in the script file where the error occurred

(S)
Continues processing.

(O)
Check the directory specified in the FPATH shell variable and the permissions for the function definition file of the
function that is to be executed.

KNAX6046-E
The function "function-name" is not defined in the function definition file "function-definition-file".
[filename="file-name" line=line-number]

The indicated function is not defined in the function definition file.

function-name
Function name

function-definition-file-name
Name of the function definition file in which the function that is to be executed is defined

file-name
Script file name

line-number
Line number in the script file where the error occurred

(S)
Continues processing.

(O)
Check and, if necessary, correct the name of the function to be executed or the function name defined in the function
definition file.

KNAX6047-E
The value specified for the upper limit ("upper-limit-value") is invalid. [filename="file-name" line=line-number]

A specified maximum value is invalid.

maximum-value
Specified option

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the maximum value.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 972

(O)
Correct the job definition script.

KNAX6048-E
Failed to set or modify the upper limit of a system resource. [filename="file-name" line=line-number]

An error occurred before the hard limit for resources was changed by the ulimit command. This message is issued
in one of the following cases:

• The user has the permission needed to change the hard limit, but specified a value not permitted by the system.

• The user does not have the permission needed to change the hard limit, and specified a value that exceeded the set
hard limit.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the maximum value. Note, however, that depending on the resource to
be changed, the execution environment or OS might set a different value if a value not permitted by the system is
specified.

(O)
Take the corrective action required for the cause of the error as described below, and then re-execute the job definition
script:

• When the user has the permission needed to change the hard limit, but specified a value not permitted by the
system
Change the argument of the ulimit command to a value permitted by the system.

• When the user does not have the permission needed to change the hard limit, and specified a value that exceeded
the set hard limit
Grant to the executing user the administrator permission and change the argument of the ulimit command to
a value permitted by the system. Note that the administrator permission is not required to reduce the hard limit.

KNAX6049-E
You cannot modify the resource specified in the ulimit command. [filename="file-name" line=line-number]

The resource specified in the ulimit command cannot be changed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the maximum value.

(O)
Correct the job definition script.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 973

KNAX6050-E
The variable "variable-name" is null or has not been defined. [filename="file-name" line=line-number]

The variable specified for variable substitution has not been created or has no value set in it.

variable-name
Specified variable name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the variable name specified for variable substitution, and, if necessary, correct the job definition script.

KNAX6051-E
The specified redirection character "redirection-character" is invalid. [filename="file-name" line=line-number]

redirect-character specified in command substitution is invalid.

redirection-character
Specified redirect character

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6052-E
The input file "input-file-name" cannot be opened. [filename="file-name" line=line-number]

The input file specified in command substitution cannot be opened.

input-file-name
Specified input file name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 974

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6053-E
Pipe creation failed. [filename="file-name" line=line-number]

Pipe creation failed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the indicated line in the job definition script whose file name is displayed in the message for any specification
error. Also, check if too many files are open in the job definition script. If there is a specification error, correct it
and then re-execute the job definition script.
If the problem is still unresolved after re-execution, contact the system administrator.

KNAX6054-E
Process creation failed. [filename="file-name" line=line-number]

Process creation failed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the indicated line in the job definition script whose file name is displayed in the message for any specification
error. If there is a specification error, correct it and then re-execute the job definition script.
If the problem is still unresolved after re-execution, possible causes are as follows:

• The path of the executable file cannot be found.

• The executable file is not a regular file.

• The user does not have the permission to search the components of the executable file.

• The path name of the executable file is too long.

• There are too many arguments in the executable file, or a specified argument is invalid.

• The specified file is not executable.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 975

• Too many symbolic links were found while the path names of the executable files were being converted.

• The total number of processes that can be executed exceeds the system's maximum.

• There is inadequate swapping area or physical memory for creating a new process.

• There are too many files to be opened.

Correct the applicable cause listed above, and then re-execute the job definition script.
If the problem is still unresolved after re-execution, contact the system administrator.

KNAX6055-E
Failed to send the signal. PID=process-ID signal number=signal-number reason=error-details [filename="file-
name" line=line-number]

Transmission of a signal with the specified process-ID failed because the error indicated by error-details occurred.

process-ID
Specified process ID

signal-number
Signal number whose transmission failed

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6056-W
The specified process ID "process-ID" is invalid and will be ignored. [filename="file-name" line=line-number]

A specified process ID was ignored because it was not valid.

process-ID
Specified process ID

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 976

KNAX6057-E
Memory could not be allocated because of insufficient memory. [filename="file-name" line=line-number]

A memory shortage occurred.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Contact the system administrator. The system administrator must check and, if necessary, revise the memory
estimation.

KNAX6058-E
The maximum recursion count for the shell variable ("shell-variable-name") exceeds the limit. [filename="file-
name" line=line-number]

Processing was stopped because the permitted maximum recursive conversion count was exceeded for the following
shell variable:

• Permitted recursive conversion count for a variable specified in offset when shell variables are referenced: 1,024

• Permitted recursive conversion count for a variable specified in length when shell variables are referenced: 1,025

shell-variable-name
Name of the variable resulting in the circular or recursive reference

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Because a circular or recursive reference specification has been made for the specified variable, check and revise
the value of the variable as necessary.

KNAX6059-E
Too many files are open in the script. [filename="file-name" line=line-number]

Too many files are open in the job definition script.

file-name
Name of the job definition script file

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 977

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check the indicated line in the job definition script whose file name is displayed in the message for any specification
error. Also check if too many files are open in the job definition script. If there is a specification error, correct it and
then re-execute the job definition script.
If the problem is still unresolved after re-execution, contact the system administrator.

KNAX6061-E
Creation of the here document failed. [filename="file-name" line=line-number]

Creation of a here document failed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6062-E
The temporary file could not be {created|opened|deleted}. temporary filename=temporary-file-name reason=error-
details [filename="file-name" line=line-number]

A temporary file cannot be created, opened, or deleted because the error indicated by error-details occurred.

temporary-file-name
Name of temporary file to be created

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing. However, if it was the here document processing that resulted in the error, the system
continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 978

KNAX6063-E
Failed to write to the file write-file-name. reason=error-details [filename="file-name" line=line-number]

A write error occurred in the indicated file because the error indicated by error-details occurred.

target-file-name
Name of the file into which data was to be written

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6064-E
Failed to create the temporary variable "variable-or-expression-name" in the expression. [filename="file-name"
line=line-number]

Creation of a variable to be used temporarily in an arithmetic expression failed.

variable-name
Name of the variable contained in the arithmetic expression that resulted in the error

arithmetic-expression
Arithmetic expression resulting in the error

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation that resulted in the error.

(O)
Correct the job definition script.

KNAX6065-E
The expression contains an invalid variable or expression "variable-or-expression-name". [filename="file-name"
line=line-number]

An invalid variable was used in an arithmetic expression.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 979

variable-name
Name of the variable contained in the arithmetic expression that resulted in the error

arithmetic-expression
Arithmetic expression resulting in the error

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation resulting in an error.

(O)
Correct the job definition script.

KNAX6066-E
The expression syntax is invalid. [filename="file-name" line=line-number]

The format of an arithmetic expression is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation that resulted in the error.

(O)
Correct the job definition script.

KNAX6067-E
A divisor in the expression is zero. [filename="file-name" line=line-number]

A divide-by-zero error occurred.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation that resulted in the error.

(O)
Correct the job definition script.

KNAX6068-E
A negative value is specified for an exponent. [filename="file-name" line=line-number]

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 980

A negative value was specified as the exponent for the arithmetic operator (**).

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without performing the arithmetic operation that resulted in the error.

(O)
Correct the job definition script.

KNAX6070-E
No more jobs need to be waited on for completion.[filename="file-name" line=line-number]

There is no job to be executed.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Correct the job definition script.

KNAX6071-E
The current directory could not be identified. reason=error-details [filename="file-name" line=line-number]

The current directory cannot be identified because the error indicated by error-details occurred.

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues the processing without changing the directory.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6072-E
A required option is not specified.[filename="file-name" line=line-number]

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 981

A required option is missing.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if a regular built-in command resulted in the error; otherwise, terminates processing.

(O)
Check the command option that resulted in the error and correct the job definition script.

KNAX6075-E
Redirection by using redirection-character failed. reason=error-details [filename="file-name" line=line-number]

The file ID cannot be copied by using dup because the error indicated by error-details occurred.

redirection-character
Specified redirect character

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6076-E
Arguments for the getopts command were altered while the command was running.[filename="file-name"
line=line-number]

The contents of an argument were changed during execution of the getopts command.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing.

(O)
Check the indicated line in the job definition script where the error occurred for any specification error. If there is
a specification error, correct it and then re-execute the job definition script.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 982

KNAX6077-E
An invalid option is specified. [filename="file-name" line=line-number]

A specified option is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Correct the job definition script.

KNAX6078-E
Closing quotation marks are missing. [filename="file-name" line=line-number]

The correspondence of quotation marks is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6079-E
The label "label" specified in the here document was not found. [filename="file-name" line=line-number]

The label specified in the here document was not found.

label
Label specified in the here document

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Correct the job definition script.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 983

KNAX6080-E
The file descriptor for the file target-file-name could not be duplicated. reason=error-details [filename="file-
name" line=line-number]

A file ID cannot be copied because the error indicated by error-details occurred.

target-file-name
Name of the file resulting in the file ID duplication error

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6081-E
The file target-file-name could not be opened. reason=error-details [filename="file-name" line=line-number]

An open error occurred in a file because the error indicated by error-details occurred.

target-file-name
Name of the file resulting in the file open error

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6082-E
The file target-file-name could not be created. reason=error-details [filename="file-name" line=line-number]

File creation failed because the error indicated by error-details occurred.

target-file-name
Name of the file that resulted in the creation error

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 984

error-details
Details of the error. This is an error information string representation for errno.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Eliminate the cause of the error based on the error details. If necessary, correct the job definition script.

KNAX6085-E
The trap cannot be set to the specified signal "signal-number-or-name". [filename="file-name" line=line-number]

A trap cannot be set for a specified signal.

signal-number-or-name
Specified signal number or signal name

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Check and correct the signal number or signal name specified in the trap command.

KNAX6097-E
The attribute of the specified extended shell variable "variable-name" cannot be changed. [filename="file-name"
line=line-number]

An attempt was made to change the attribute of an extended shell variable that cannot be changed. Possible causes are
as follows:

• An attempt was made to release an extended shell variable's read-only attribute.

• An attempt was made to change an extended shell variable to a local variable.

variable-name
Name of the extended shell variable on which an attempt was made to change the attribute

file-name
Script file name

line-number
Line number in the script file where the error occurred

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 985

(S)
Terminates processing.

(O)
Take one of the following actions:

• Check the name of the variable resulting in the error or the affected attribute, and then correct the job definition
script.

• Change the VAR_SHELL_FUNCINFO environment setting parameter value to NONE and then re-execute the
command.

If the problem cannot be resolved when the job definition script is re-executed, contact the system administrator.

KNAX6098-E
An error occurred. reason=source-row-number, error-analysis-data [filename="file-name" line=line-number]

An error occurred.

source-row-number
Line number in the source where the error occurred

error-analysis-data
Error analysis information

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Continues processing if it was a regular built-in command that resulted in the error; otherwise, terminates processing.

(O)
Check the indicated line in the job definition script whose file name is displayed in the message for any specification
error. If there is a specification error, correct it and then re-execute the job definition script. If the problem is still
unresolved after re-execution, contact the system administrator.

KNAX6099-E
An internal error occurred. reason=source-row-number, error-analysis-data [filename="file-name" line=line-
number]

An internal error occurred.

source-row-number
Line number in the source where the error occurred

error-analysis-data
Error analysis information

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 986

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX6100-E
Execution of the command "command-name" failed. exit status=exit-status-code [file name="file-name" line=line-
number]

Execution of a command failed. When this message is displayed, the return code displayed in the KNAX7999-I message
is ignored and return-code displayed in this message is set as the job's return code.

command-name
Name of the command that failed to execute

exit-status-code
Job's return code

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Terminates processing.

(O)
Eliminate the cause of the error based on the KNAX6098-E message output immediately before this message, and
then re-execute the job definition script. If the problem is still unresolved after re-execution, contact the system
administrator.

KNAX6110-I
Execution of the command command-name (line=line-number) finished successfully. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 987

(S)
Resumes processing.

KNAX6111-I
Execution of the command command-name (line=line-number) finished. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command was terminated. This message is displayed when a command whose result (success or failure) cannot be
determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6112-I
Execution of the command command-name (line=line-number) finished successfully. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 988

KNAX6113-I
Execution of the command command-name (line=line-number) finished. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command was terminated. This message is displayed when a command whose result (success or failure) cannot be
determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6114-I
Execution of the command command-name (line=line-number) finished successfully. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6115-I
Execution of the command command-name (line=line-number) finished. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 989

The command was terminated. This message is displayed when a command whose result (success or failure) cannot be
determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6116-I
Execution of the command command-name (line=line-number) finished successfully. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6117-I
Execution of the command command-name (line=line-number) finished. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command was terminated. This message is displayed when a command whose result (success or failure) cannot be
determined from the return code was terminated.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 990

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6120-I
Execution of the command command-name for the function function-name finished successfully. exit status=exit-
status-code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6121-I
Execution of the command command-name for the function function-name finished. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name was terminated. This message is displayed when a
command whose result (success or failure) cannot be determined from the return code was terminated.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 991

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6122-I
Execution of the command command-name for the function function-name finished successfully. exit status=exit-
status-code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6123-I
Execution of the command command-name for the function function-name finished. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 992

The command executed by the function indicated by function-name was terminated. This message is displayed when a
command whose result (success or failure) cannot be determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6124-I
Execution of the command command-name for the function function-name finished successfully. exit status=exit-
status-code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 993

KNAX6125-I
Execution of the command command-name for the function function-name finished. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name was terminated. This message is displayed when a
command whose result (success or failure) cannot be determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6126-I
Execution of the command command-name for the function function-name finished successfully. exit status=exit-
status-code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name terminated normally.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 994

(S)
Resumes processing.

KNAX6127-I
Execution of the command command-name for the function function-name finished. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The command executed by the function indicated by function-name was terminated. This message is displayed when a
command whose result (success or failure) cannot be determined from the return code was terminated.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
One of the following is displayed as the name of the function that executed the command:

• command substitution: Command substitution function

• trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time (a reference value obtained by using the OS's API)

CPU-time-in-seconds
Command's CPU time (a reference value obtained by using the OS's API)

(S)
Resumes processing.

KNAX6130-E
An I/O error related to an event file occurred. filename="event-file-path"

An I/O error occurred when job definition script operation information was output to the event file.

event-file-path
Path name of the event file resulting in the I/O error

(S)
Resumes processing.

(O)
Determine the cause of the I/O error by referencing the messages output before and after this message, and then
correct the error.

KNAX6200-I
Usage: command-name command-argument

This message displays the syntax of the command arguments for the command indicated by command-name.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 995

(S)
Terminates processing.

KNAX6201-E
No value is specified for the option "option-name".

No value is specified for the option indicated by option-name.

(S)
Terminates processing.

(O)
Specify a value for the displayed option.

KNAX6202-E
The specified option "option-name" is invalid.

An unknown option name, indicated by option-name, was specified.

(S)
Terminates processing.

(O)
Specify the correct option.

KNAX6203-E
The specified option value "option-value" is invalid.

An option value that was specified is invalid. option-value indicates the specified option value.

(S)
Terminates processing.

(O)
Specify the correct value for the option.

KNAX6204-E
The option "option-name" is specified concurrently with an option that it cannot be specified with.

The option indicated by option-name cannot be specified together with some other mutually exclusive option.

(S)
Terminates processing.

(O)
Specify the correct combination of options.

KNAX6206-E
No asc file name is specified as a command argument.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 996

No asc file is specified in the command's argument.

(S)
Terminates processing.

(O)
Specify an asc file in the command's argument.

KNAX6207-E
Too many options are specified.

The command has too many arguments.

(S)
Terminates processing.

(O)
Specify the correct arguments in the command.

KNAX6208-E
One or more operands are missing.

There are not enough arguments in the command.

(S)
Terminates processing.

(O)
Specify the correct arguments in the command.

KNAX6209-W
The specified line number range falls outside of the actual range for script line numbers.

A specified range of line numbers is not within the range of line numbers constituting the job definition script.

(S)
Interprets the specified range of line numbers as described below and resumes processing:

• If the start line number is outside the range of line numbers in the job definition script, the system ignores the
invalid range specification.

• If the start line number is within the range of line numbers in the job definition script but the end line number
is outside the range of line numbers in the job definition script, the system assumes the largest line number in
the job definition script as the end line number.

If there are no valid ranges of lines as a result of ignoring the invalid range specification, the system outputs only
the header information at the top. Neither the job definition script nor the coverage information is output.

(O)
Specify the correct line numbers.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 997

KNAX6210-E
Failed to open the asc file "file-name". reason="error-details"

An open error occurred on the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file open error, correct the error, and then re-execute the command.
In Windows, No such file or directory is displayed for error-details if a directory containing the
directory separator (\) is specified at the end of the path name for the asc file in the adshexec command. In this
case, specify a file name, not the directory.

KNAX6211-E
Failed to lock the asc file "file-name". reason="error-details"

The asc file indicated by file-name cannot be locked.

error-details displays the nature of the file lock error.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file lock error, correct the error, and then re-execute the command. Most often, an
asc file lock error occurs because another program is using the asc file.

KNAX6212-E
Failed to read the asc file "file-name". reason="error-details"

A read error occurred in the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file read error, correct the error, and then re-execute the command.

KNAX6213-E
The format of the asc file "file-name" is invalid. details=maintenance-information

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 998

A format error was detected in the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Delete the asc file indicated by file-name and collect new coverage information. Check if the asc file was updated
illegally. If this is not the problem but the same event recurs, save the indicated asc file and contact the product
provider.

KNAX6214-E
Failed to update the asc file "file-name". reason="error-details"

An updating error occurred in the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file read error, correct the error, and then re-execute the command.

KNAX6215-E
Failed to unlock the asc file "file-name". reason="error-details"

An error occurred when an attempt was made to unlock the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file unlock error, correct the error, and then re-execute the command.

KNAX6219-E
The script "job-definition-script-name" and the asc file "asc-file-name" contain different script data.

The coverage information cannot be accumulated in the asc file indicated by asc-file-name because the following job
definition scripts are not the same:

• Job definition script indicated by job-definition-script-name

• Job definition script used to collect the coverage information in the asc file indicated by asc-file-name

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 999

(S)
Terminates processing.

(O)
Take one of the following actions:

1. When accumulating the coverage information in the asc file indicated by asc-file-name
Use the job definition script file used to collect the coverage information in the asc file indicated by asc-file-
name.

2. When not accumulating the coverage information in the asc file indicated by asc-file-name
If the coverage information in the asc file indicated by asc-file-name is not needed, specify the -f option in
the adshexec command. The existing coverage information will be discarded and new coverage information
will be stored (during the initial accumulation).
If you need the coverage information in the asc file indicated by asc-file-name, specify the output asc file with
the -o option in the adshexec command. Check that the specified asc file does not already exist at the output
destination.

KNAX6220-I
The two asc files will now be merged. output file="file-name"

Coverage information merge processing has started.

file-name indicates the name of the asc file that will store the merge results.

(S)
Resumes processing.

KNAX6221-I
Base file="file-name-1", file to be merged="file-name-2"

file-name-1 indicates the base asc file.

file-name-2 indicates the merge asc file.

(S)
Resumes processing.

KNAX6222-I
The two asc files have been merged. output file="asc-file-name"

Coverage information merge processing has finished.

asc-file-name indicates the name of the asc file containing the merged results.

(S)
Resumes processing.

KNAX6223-E
The two asc files "file-name-1" and "file-name-2" contain different script data.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1000

The job definition scripts used to collect coverage information differ between asc files file-name-1 and file-name-2.

file-name-1 indicates the base asc file.

file-name-2 indicates the merge asc file.

(S)
Terminates processing.

(O)
Specify in the adshcvmerg command as the base and merge asc files asc files obtained by using the same job
definition script.

KNAX6225-E
An internal error occurred. details=maintenance-information

An internal conflict was detected during processing.

(S)
Terminates processing.

(O)
Contact the product provider and provide the displayed maintenance-information.

KNAX6226-E
The number of nested control statements exceeded the limit.

There are too many nesting levels in control statements.

(S)
Terminates processing.

(O)
If you need to collect coverage information, edit the job definition script to avoid too many nesting levels in control
statements.

KNAX6227-E
The version "version-number" in the asc file is not supported by this command.

An asc file's version number is not supported by the command.

version indicates the version number.

(S)
Terminates processing.

(O)
Specify an asc file whose version is supported by the command.

KNAX6228-E
Failed to get time information. reason="error-details"

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1001

An error occurred while obtaining the date and time.

(S)
Terminates processing.

(O)
Determine the cause of the date and time acquisition error, and then take appropriate action. The time function is
used to obtain the date and time.

KNAX6229-E
Failed to get information about the file "file-name". reason="error-details"

An error occurred while obtaining information about the file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Check the cause of the file information acquisition error, and then correct the error. This error often occurs when
the user does not have the permission to access the file.

KNAX6231-E
The asc file to be merged is the same file as the base asc file.

The merge asc file is the same as the base asc file.

(S)
Terminates processing.

(O)
Specify different merge and base asc files whose coverage information is to be merged.

KNAX6232-E
Failed to get the user name.

The name of the user executing the command cannot be obtained.

(S)
Terminates processing.

(O)
Determine why the name of the user executing the command cannot be obtained, and then correct the error. In UNIX,
the name of the user executing the /etc/passwd command might not be registered.

KNAX6233-E
The file "file-name" already exists.

The file indicated by file-name already exists.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1002

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Rename or delete the file, inasmuch as the processing cannot be performed because the file indicated by file-name
already exists.

KNAX6236-E
The file "file-name" is not a regular file.

The file indicated by file-name is not a regular file.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Check the type of the file indicated by file-name.

KNAX6237-E
The path of the file-type is the same as that of the script file.

The path name of the job definition script file is the same as the path name of an asc file (including an asc file created
by the command).

file-type
asc file whose path name is the same as the path name of the job definition script file:

• "asc file": The path name of an omitted or specified asc file is the same as the path name of the job
definition script file.

• "temporary asc file": The path name of a temporary asc file is the same as the path name of the job
definition script file.

• "backup asc file": The path name of a backup asc file is the same as the path name of the job definition
script file.

(S)
Terminates processing.

(O)
Specify the path name of the asc file explicitly so that it differs from the path name of the job definition script file.
If the path name of the asc file was already specified explicitly, change the explicitly specified path name so that
it differs from the path name of the job definition script file.

KNAX6238-E
Failed to rename the asc file "file-name". reason="error-details"

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1003

An error occurred while renaming the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file renaming error, and then correct the error. The write-protect settings or access
permissions for the file indicated by file-name might have been changed during command execution.

KNAX6239-E
Failed to remove the asc file "file-name". reason="error-details"

An error occurred while deleting the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file deletion error, and then correct the error. The file indicated by file-name might
be write-protected or it might have been created during command execution file with no access permission.

KNAX6240-E
Failed to set the access position in the asc file "file-name". reason="error-details"

An error occurred while positioning the asc file indicated by file-name.

file-name might be the name of an asc file specified in the command, or it might be the name of an asc file created
temporarily by the command.

(S)
Terminates processing.

(O)
Determine the cause of the asc file positioning error, and then correct the error.

KNAX6241-E
The input asc file is the same as the output asc file.

The same files were specified in the adshcvmerg command for the output file and an input asc file (base or merge
asc file).

(S)
Terminates processing.

(O)
Specify for the output asc file a different file than that of either input asc file.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1004

KNAX6242-I
The asc file "file-name" was updated.

The coverage information in an asc file was updated by the adshexec command. file-name indicates the path name
of the updated asc file.

(S)
Resumes processing.

KNAX6243-I
The asc file "file-name" was restored from a backed-up asc file.

An asc file was restored from its backup asc file by the adshexec command. file-name indicates the path name of
the restored asc file.

(S)
Resumes processing.

KNAX6244-E
Failed to truncate the asc file "file-name". reason="error-details"

An error occurred while initializing the asc file indicated by file-name.

In Windows, the error occurred in the _chsize function.

In UNIX, the error occurred in the ftruncate function.

(S)
Terminates processing.

(O)
Determine the cause of the asc file initialization error, and then correct the error.

KNAX6290-E
The settings of the coverage view program are invalid. details code=maintenance-information

The settings for the program used to start the display program are invalid.

(S)
Terminates processing.

(O)
Contact the product provider and provide the maintenance-information.

KNAX6291-E
Startup of the coverage view program failed. error details=error-details

Startup of the coverage information display program failed. error-details provide the reason for the startup error.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1005

(S)
Terminates processing.

(O)
Determine the cause of the startup error, and then correct the error.

KNAX6292-E
The file "file-name" is not a regular file.

The file indicated by file-name is not a regular file.

(S)
Terminates processing.

(O)
Check the type of file indicated by file-name.

KNAX6293-E
Failed to get information about the file "file-name". reason="error-details"

An error occurred while obtaining information about the file indicated by file-name.

(S)
Terminates processing.

(O)
Determine the cause of the file information acquisition error, and then correct the error. The cause most often is that
the user does not have the permission to access the file.

KNAX6294-E
Failed to open the file "file-name" used by the coverage view program. reason="error-detail"

An open error occurred in a file used by the coverage information display program.

(S)
Terminates processing.

(O)
Determine the cause of the open error in the file used by the coverage information display program, correct the error,
and then display the coverage information.

KNAX6295-E
Failed to execute the coverage view program. (reason=error-details)

Execution of the coverage display program failed for the reason indicated by error-details.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1006

(O)
Eliminate the cause of the error, and then re-execute the command. If the problem cannot be resolved, contact the
system administrator.

KNAX6296-E
Failed to update the file "file-name" used by the coverage view program. reason="error-detail"

An error occurred while updating the file indicated by file-name that is used by the coverage information display program.

(S)
Terminates processing.

(O)
Determine the cause of the write error in the file that is used by the coverage information display program, correct
the error, and then re-execute the command.

KNAX6297-E
Failed to get the temporary directory. reason="error-details"

An error occurred while obtaining information about the temporary directory.

(S)
Terminates processing.

(O)
Determine the cause of the error in obtaining information about the temporary directory, and then correct the error.

KNAX6298-E
An error occurred during an attempt to view coverage. response code=error-details

An error occurred while displaying coverage information. For details about the information displayed as the return code,
see the description of the adshcvshow command's return value.

(S)
Terminates processing.

(O)
Determine the cause of the error in displaying coverage information, and then correct the error. The message issued
when the error occurred might be stored in the coverage information accumulation file.
If no job definition script has been executed, response code 6 is set. Display coverage information after you have
executed a job definition script.

KNAX6301-E
The coverage option is specified in batch coverage mode.

A batch job was executed with coverage information collected in the batch mode, but the adshexec command was
executed with the -t option specified.

(S)
Cancels execution.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1007

(O)
Re-execute the batch job with the -t option omitted.

KNAX6302-E
The length of the asc file name exceeds the limit for the batch coverage function.

Coverage information was to be collected in the batch mode, but the name of the asc file to be used exceeded the
maximum length.

If asc files are created in conformity with the asc file naming rules specified in the environment file, the created file
name exceeds the maximum length.

(S)
Cancels execution.

(O)
Check and, if necessary, revise the specification in the environment file and the name of the job definition script to
be executed.

KNAX6303-E
Failed to duplicate file descriptors. filename="file-name" error="error-details"

Duplication of the file ID of file-name failed.

file-name
File name of the job definition script

error-details
Details of the error

(S)
Cancels execution.

(O)
Eliminate the cause of the error, and then re-execute the batch job.

KNAX6304-E
Initialization failed.

The JP1/Advanced Shell initialization processing failed.

(S)
Terminates processing.

(O)
Check if the job definition script file is correct.

KNAX6305-E
The existence of the script file could not be verified. filename="file-name" error="error-details"

The existence of the job definition script file cannot be confirmed.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1008

file-name
File name of the job definition script

error-details
Details of the error

(S)
Terminates processing.

(O)
Check if the job definition script file is correct.

KNAX6306-E
Failed to read the script file. filename="file-name" function=function-name error="error-details"

A read error occurred in the job definition script file.

file-name
File name of the job definition script

function-name
Name of the function resulting in the error

error-details
Details of the error

(S)
Terminates processing.

(O)
Check if the job definition script file is correct.

KNAX6307-W
A line was truncated because the limit on line length was exceeded. filename="file-name" line=line-number

A line exceeds the maximum length of a line of a job definition script that can be displayed. The line is displayed with
the excess part discarded.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Displays the line with the excess part discarded, and then resumes processing.

(O)
Correct the job definition script file.

KNAX6308-E
The script file is empty. filename="file-name"

The job definition script file is empty.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1009

file-name
File name of the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script file.

KNAX6309-E
Failed to output SCRIPT file to the spool job directory. reason="error-details"

An output error occurred in the job definition script file in the spool.

error-details
Details of the error

(S)
Terminates processing.

(O)
Correct the job definition script file.

KNAX6310-E
The item "item-name" is incorrect. filename="file-name" line=line-number

The item indicated by item-name in an extended script command is invalid.

item-name
Name of an option or positional operand in the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6311-E
The item "item-name" is not specified. filename="file-name" line=line-number

The item indicated by item-name is missing in an extended script command.

item-name
Name of an option or positional operand in the extended script command

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1010

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6312-E
The value specified for the option "option-name" is invalid. filename="file-name" line=line-number

An invalid value was specified for option-name in an extended script command.

option-name
Option name in the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6313-E
The option "option-name" is specified multiple times. filename="file-name" line=line-number

The indicated option name is specified multiple times in an extended script command.

option-name
Option name in the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1011

(O)
Correct the job definition script.

KNAX6314-E
The expression "character-string" is incomplete. filename="file-name" line=line-number

The specification indicated by character-string is not complete in an extended script command. A paired double
quotation mark or single quotation mark might be missing, or there might be no escape character following a backslash
(\).

character-string
Specification in the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6315-E
The order for the command "command-name" is incorrect. filename="file-name" line=line-number

The cause might be one of the following:

• The location of an extended script command is invalid.

• The combination of an extended script command and another command is invalid.

• An extended script command is not specified at the beginning.

command-name
Name of the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.
If the error was detected during execution, rather than during syntax analysis, 0 might be displayed as the line
number. For example, this error might be detected during execution when an extended script command is used as a
command substitution format.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1012

(O)
Correct the job definition script.

KNAX6316-E
An instruction exceeds the length limit. filename="file-name" line=line-number

The length of an extended script command exceeded the maximum.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6317-E
A continuation line is incorrectly specified. filename="file-name" line=line-number

The specification of a continuation line is invalid.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6318-E
An invalid instruction is specified. command="command-name" filename="file-name" line=line-number

An invalid extended script command name was specified.

command-name
Name of the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1013

(O)
Correct the job definition script.

KNAX6319-E
The number of "item-name" specified exceeds the upper limit. filename="file-name" line=line-number

The maximum number of instances of the item indicated by item-name has already been reached.

item-name
Extended script command name, option name, or argument

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6320-E
An error occurred in the script file. filename="file-name" function=function-name error="error-details"

An error occurred in a job definition script file.

file-name
File name of the job definition script

function-name
Name of the function where the error occurred

error-details
Details of the error. This is an error information string representation for errno.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6321-E
The attribute "-run {abnormal|always}" cannot be specified in this location. file name="file-name" line=line-
number

A specified option is not permitted.

file-name
File name of the job definition script

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1014

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6323-E
The export parameter processing failed. line=line-number

A specified export parameter is invalid, or an environment variable cannot be specified.

line-number
Line number in the environment file

Following are the possible causes:

• The name or value of the environment variable exceeds the maximum length.
If you add paths to the PATH environment variable, make sure that the maximum length is not exceeded as a result
of paths being duplicated in child jobs.

• The name of the environment variable is invalid.

• A combination of \, ", or ' symbols is invalid.

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6324-E
A file name could not be converted into an absolute path. initial filename="file-name-before-conversion"
error="error-details" filename="file-name" line=line-number

The file indicated by file-name-before-conversion cannot be converted to an absolute path.

file-name-before-conversion
File name before conversion

error-details
Details of the error

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1015

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6325-E
A block or function definition ended without finishing an internal job step. filename="file-name" line=line-number

The block or function definition ended before a job step within the block or function definition ended.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6326-E
The beginning of a job step is not defined. filename="file-name" line=line-number

There is no job step start definition.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6327-E
Nested definitions are used to define a job step. filename="file-name" line=line-number

Job step definitions are nested.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1016

(O)
Correct the job definition script.

KNAX6328-E
Nested definitions are used to define the command "command-name". filename="file-name" line=line-number

command-name definitions are nested.

command-name
Name of the extended script command

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6329-E
An instruction might have been altered partway. filename="file-name" line=line-number

An extended script command might have been changed during execution.

file-name
File name of the job definition script

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Ensure that the job definition script will not change during execution, and then re-execute it.

KNAX6330-E
A script is called recursively. filename="file-name" line=line-number

A job definition script was called recursively.

file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1017

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6332-E
The script finished without closing a job step.

The job definition script ended, but there is a job step that has not been closed.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6333-E
The existence of the file "file-name" could not be verified. error="error-details" filename="job-definition-script-
file-name" line=line-number

The existence of file-name cannot be confirmed.

error-details
Details of the error

job-definition-script-file-name
File name of the job definition script

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6380-I
A job name will be added to the spool job directory of the root job. spool job directory="spool-job-directory"

A job name will be added to the root job's spool-job-directory.

spool-job-directory
Spool job directory name after the change

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1018

KNAX6381-E
Failed to change the name of the spool job directory. error="error-details" job ID="job-ID" jobname=job-name

Renaming of the spool job directory failed. The spool job directory still has the job ID. Possible causes are as follows:

• A spool job directory with the new name already exists.

• In Windows, if a job that executes an external command to create a child process is terminated forcibly, this message
might be output with Permission denied displayed in place of error-details. This occurs when more than 255
non-child processes exist at the same time.

error-details
Details of the error

job-ID
Job ID

job-name
Job name

(S)
Resumes processing.

(O)
If you reference the spool job directory, reference the spool job directory indicated in the KNAX6382-I message
that is output at the same time.
If you want to delete the spool job directory, delete it manually without using the adshhk command.

KNAX6382-I
The spool job directory "spool-job-directory" will be used for storage because an attempt to change its name failed.

The spool job directory was stored as is because renaming of spool-job-directory failed.

spool-job-directory
Name of the spool job directory before renaming

(S)
Resumes processing.

KNAX6383-E (UNIX only)
Failed to modify permissions for a spool job. (path="path-name" function="function-name" error details="error-
details")

An attempt to modify the permission for the directory or file of the spool job indicated by path-name failed.

function-name
OS's API name

error-details
This is an error information string representation for errno.

(S)
Continues processing if function-name is chmod; otherwise, terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1019

(O)
Investigate the cause of the error and take the necessary corrective action. To modify the permission for the directory
or file of this spool job change, execute the chmod command.

KNAX6385-E
This extended script command cannot be used with the current environment setting parameter. command
name="command-name" parameter="environment-setting-parameter" filename="file-name" line=line-number

The indicated extended script command cannot be used with the current setting of the indicated environment setting
parameter.

command-name
Name of the extended script command resulting in the error

environment-setting-parameter
Environment setting parameter and value that caused this error

file-name
Name of the job definition script file

line-number
Line number in the job definition script
If the error is on a continuation line, the message might display the number of the first line of the extended script
command, not the line number of the continuation line.

(S)
Terminates processing.

(O)
Do not execute this command. If you want to execute this command, check and revise the specified environment
setting parameter as necessary.

KNAX6399-E
A fatal error occurred. function=function-name, line=line-number

An unexpected error occurred.

function-name
Function name

line-number
Line number

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX6400-E
Failed to allocate the file "file-environment-variable-definition".

Allocation of the file indicated by file-environment-variable-definition failed.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1020

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6401-E
The file "file-environment-variable-definition" does not exist. file path=file-path

The file with the indicated file-path specified in file-environment-variable-definition does not exist.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6403-E
The temporary file ID "temporary-file-ID" is already defined.

A file has already been defined with the indicated temporary-file-identifier.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6404-E
Failed to create the environment variable "file-environment-variable-definition".

Creation of the environment variable indicated by file-environment-variable-definition failed.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6405-E
The file "file-environment-variable-definition" does not exist.

The file indicated by file-environment-variable-definition does not exist.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1021

KNAX6406-E
Failed to verify the file defined by "file-environment-variable-definition". reason="error-details"

The error indicated by error-details occurred when an attempt was made to use the stat function to check the file
indicated by file-environment-variable-definition.

error-details
Details of the error. This is an error information string representation for errno.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6407-E
The directory "file-environment-variable-definition" already exists.

The directory indicated by file-environment-variable-definition already exists.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6408-E
Failed to create the file "file-environment-variable-definition". reason="error-details"

The error indicated by error-details occurred when an attempt was made to create the file indicated by file-environment-
variable-definition.

error-details
Details of the error. This is an error information string representation for errno.

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script file.

KNAX6409-I
The file file-environment-variable-definition was allocated as "processing-value". path=file-path[(file-existence)]

The file indicated by file-path was allocated according to value-specified-for-processing in the file definition indicated
by file-environment-variable-definition-name.

processing-value
The following is displayed, depending on the command:

For the #-adsh_file or #-adsh_file_temp command
The value specified for -chk

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1022

For the #-adsh_spoolfile command
spoolfile

file-existence
This information is displayed only for a regular file. If the file exists, exist is displayed; if the file does not exist,
not exist is displayed.

(S)
Resumes processing.

KNAX6410-I
The file file-environment-variable-definition was deallocated as "processing-value". path=file-path

The file indicated by file-path was released according to processing-value in the file definition indicated by file-
environment-variable-definition.

processing-value
The following is displayed, depending on the command:

For the #-adsh_file or #-adsh_file_temp command
One of the following values is displayed as the specified postprocessing of files during normal times or abnormal
times:

• del: Delete.

• keep: Do not delete.

For the #-adsh_spoolfile command
spoolfile

(S)
Resumes processing.

KNAX6411-E
Failed to set the shell variable "file-environment-variable-definition". details=maintenance-information

Specification of the shell variable indicated by file-environment-variable-definition failed.

(S)
Terminates processing.

(O)
The shell variable indicated by file-environment-variable-definition-name might have the read-only attribute. Check
and, if necessary, revise the job definition script file. If there is no problem, contact the system administrator.

KNAX6412-E
Failed to get a shell variable. details=maintenance-information

Acquisition of a shell variable failed.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1023

(O)
Contact the system administrator.

KNAX6413-E
The shell variable "file-environment-variable-definition" cannot be restored to a previous value.
details=maintenance-information

The shell variable indicated by file-environment-variable-definition cannot be restored to its original value, or the current
definition cannot be deleted because its original value was undefined.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX6414-E
Failed to normalize the file name. API name=API-name reason="cause" details=maintenance-information
filename="script-file-name" line=line-number

An error occurred while the file path specified by the #adsh_file command, which is an extended script command,
was being normalized.

API-name
The name of the API in which the error occurred

cause
The following table explains the error details, the output contents, and their meanings:

No. Output content Meaning

1 Error information string representation for errno See the applicable UNIX or Windows documentation.

2 The path contains one or more invalid
multibyte characters

The path name contains an invalid multibyte character.

3 The path contains too many components The path name contains too many components (more than 4,096).

line-number
The line number in the script

script-file-name
The file name of the script file

(S)
Terminates processing.

(O)
Eliminate the cause of the error based on cause. If the problem cannot be resolved, contact the system administrator.

KNAX6507-I
job-name.job-step-name step was skipped because of a run attribute.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1024

The job step indicated by job-step-name that is defined in the batch job indicated by job-name was skipped because a
condition specified in the run attribute in a job step definition command beginning with #-adsh_step was satisfied.

(S)
Resumes processing.

KNAX6508-I
job-name.job-step-name step was skipped because a previous step or command ended abnormally.

The job step indicated by job-step-name that is defined in the batch job indicated by job-name was skipped because the
preceding job step or command terminated with an error.

(S)
Resumes processing.

KNAX6509-I
job-name.job-step-name step was not executed because of script context.

The job step indicated by job-step-name that is defined in the batch job indicated by job-name is not being executed
due to job definition script control (such as an if control statement).

(S)
Resumes processing.

KNAX6510-W
The job controller cannot set the shell variable shell-variable-name because it is read-only. filename="file-name"
line=line-number

An attempt was made by the job controller to set the shell variable indicated by shell-variable-name while the command
indicated by line-number in the file indicated by file-name was running, but the attempt failed because the variable has
the read-only attribute.

(S)
Resumes processing.

(O)
Check the job definition script and correct it if there is an error in the usage of the indicated shell variable.

KNAX6511-I
The value of the local shell variable PATH of the step will be passed in from outside the step. step=job-step-name

The PATH shell variable that is specified in the job step with the indicated job-step-name (and is in effect within the job
step) inherits a value from a PATH shell variable defined outside the job step.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1025

KNAX6512-I
The job controller was started by a custom job.

The job controller was started from a JP1/Advanced Shell custom job by JP1/AJS.

(S)
Resumes processing.

KNAX6521-E
The command command-name (line=line-number) failed. exit status=exit-status-code execution time=execution-
time-in-seconds CPU time=CPU-time-in-seconds

The command terminated with an error.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the job definition script on which the command is specified

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Command's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing. If the erroneous command is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

Note that if the job needs to be canceled on the basis of command execution results, the system issues the
KNAX6584-I message and then terminates the processing without taking the above action.

(O)
Check the command's execution results, and then eliminate the cause of the error.

KNAX6522-E
The command command-name (line=line-number) ended abnormally because it received a signal. exit status=exit-
status-code signal number=signal-number execution time=execution-time-in-seconds CPU time=CPU-time-in-
seconds

The command terminated with an error by signal.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1026

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

line-number
Number of lines in the job definition script on which the command is specified

exit-status-code
Command's return code

signal-number
Signal number received by the command

execution-time-in-seconds
Command execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Command's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing. If the command that terminated with an error is in a job step, the system performs the following
processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the command's execution results, and then eliminate the cause of the error.

KNAX6530-E
The specified combination of options is invalid. filename="file-name" line=line-number

There is an error in the combination of an option and the option's value.

file-name
Name of the job definition script file

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6531-E
The number of "item-name" exceeds the upper limit for the scope. filename="file-name" line=line-number

The number of instances of item-name exceeded the maximum.

item-name
Name of an extended script command

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1027

scope
job or step

file-name
Name of the job definition script file

line-number
Line number in the job definition script

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6540-I
A command group executed by another process (line=line-number) succeeded. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

A job definition script that executed in another process, such as a command group, terminated normally.

lines-count
Number of lines in the job definition script that contains the job definition script executed in another process

exit-status-code
Return code of the job definition script that executed

execution-time-in-seconds
Execution time of the executed job definition script. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
CPU time of the executed job definition script. This is a reference value obtained by using the OS's API.

(S)
Resumes processing.

KNAX6541-E
A command group executed by another process (line=line-number) failed. exit status=exit-status-code execution
time=execution-time-in-seconds CPU time=CPU-time-in-seconds

A job definition script that executed in another process, such as a command group, terminated with an error.

line-number
Number of lines in the script that contains the job definition script executed in another process

exit-status-code
Return code of the job definition script that executed in another process

execution-time-in-seconds
Execution time of the job definition script executed in another process. This is a reference value obtained by using
the OS's API.

CPU-time-in-seconds
CPU time of the job definition script executed in another process. This is a reference value obtained by using the
OS's API.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1028

(S)
Resumes processing. If the job definition script that was executed in another process and that terminated with an
error is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the execution results of the job definition script that was executed in another process and that terminated with
an error, and then eliminate the cause of the error.

KNAX6542-E
A command group executed by another process (line=line-number) ended abnormally because it received a signal.
exit status=exit-status-code signal number=signal-number execution time=execution-time-in-seconds CPU
time=CPU-time-in-seconds

A job definition script that executed in another process, such as a command group, terminated with an error by signal.

line-number
Number of lines in the job definition script that contains the job definition script executed in another process

exit-status-code
Return code of the job definition script that executed in another process

signal-number
Signal number received by the job definition script that executed in another process

execution-time-in-seconds
Execution time of the job definition script executed in another process. This is a reference value obtained by using
the OS's API.

CPU-time-in-seconds
CPU time of the job definition script executed in another process. This is a reference value obtained by using the
OS's API.

(S)
Resumes processing. If the job definition script that was executed in another process and that terminated with an
error is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the execution results of the job definition script that was executed in another process and that terminated with
an error, and then eliminate the cause of the error.

KNAX6551-E
Execution of the command command-name for the function function-name failed. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1029

A command executed by the function indicated by function-name terminated with an error.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function
trap action: Action of the trap command

exit-status-code
Command's return code

execution-time-in-seconds
Command execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Command's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing. If the erroneous command is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

Note that if the batch job needs to be canceled on the basis of command execution results, the system issues the
KNAX6584-I message and then terminates the processing without taking the above action.

(O)
Check the command's execution results, and then eliminate the cause of the error.

KNAX6552-E
The command command-name for the function function-name ended abnormally because it received a signal. exit
status=exit-status-code signal number=signal-number execution time=execution-time-in-seconds CPU
time=CPU-time-in-seconds

A command executed by the function indicated by function-name terminated with an error by signal.

command-name
Name of the command that executed. If the command name exceeds the maximum path length permitted by the OS,
it is truncated at the maximum length.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function
trap action: Action of the trap command

exit-status-code
Command's return code

signal-number
Signal number received by the command

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1030

execution-time-in-seconds
Command execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Command's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing. If the command that terminated with an error is in a job step, the system performs the following
processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the command's execution results, and then eliminate the cause of the error.

KNAX6560-I
A command group executed by another process for the function function-name succeeded. exit status=exit-status-
code execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The job definition script executed by the function indicated by function-name in another process, such as a command
group, terminated normally.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function
trap action: Action of the trap command

exit-status-code
Return code of the executed job definition script

execution-time-in-seconds
Execution time of the executed job definition script. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
CPU time of the executed job definition script. This is a reference value obtained by using the OS's API.

(S)
Resumes processing.

KNAX6561-E
A command group executed by another process for the function function-name failed. exit status=exit-status-code
execution time=execution-time-in-seconds CPU time=CPU-time-in-seconds

The job definition script executed by the function indicated by function-name in another process, such as a command
group, terminated with an error.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function
trap action: Action of the trap command

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1031

exit-status-code
Return code of the job definition script that executed in another process

execution-time-in-seconds
Execution time of the job definition script executed in another process. This is a reference value obtained by using
the OS's API.

CPU-time-in-seconds
CPU time of the job definition script executed in another process. This is a reference value obtained by using the
OS's API.

(S)
Resumes processing. If the job definition script that was executed in another process and that terminated with an
error is in a job step, the system performs the following processing:

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the execution results of the job definition script that was executed in another process and that terminated with
an error, and then eliminate the cause of the error.

KNAX6562-E
A command group executed by another process for the function function-name ended abnormally because it
received a signal. exit status=exit-status-code signal number=signal-number execution time=execution-time-in-
seconds CPU time=CPU-time-in-seconds

The job definition script executed by the function indicated by function-name in another process, such as a command
group, terminated with an error by signal reception.

function-name
Name of the function that executed the command. One of the following is displayed:
command substitution: Command substitution function
trap action: Action of the trap command

exit-status-code
Return code of the job definition script that executed in another process

signal-number
Signal number received by the job definition script that executed in another process

execution-time-in-seconds
Execution time of the job definition script executed in another process. This is a reference value obtained by using
the OS's API.

CPU-time-in-seconds
CPU time of the job definition script executed in another process. This is a reference value obtained by using the
OS's API.

(S)
Resumes processing. If the job definition script that was executed in another process and that terminated with an
error is in a job step, the system performs the following processing:

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1032

• If the job step's onError attribute is stop, the system executes the job step error block without executing the
processing that follows the job step normal block.

• If the job step's onError attribute is cont, the system executes the processing that follows the job step normal
block.

(O)
Check the execution results of the job definition script that was executed in another process and that terminated with
an error, and then eliminate the cause of the error.

KNAX6571-I
The child job child-job-name started. parent job=parent-process-job-name parent job ID=parent-process-job-ID

The child job indicated by child-job-name has been started from the job indicated by parent-process-job-name and
parent-process-job-ID.

(S)
Resumes processing.

KNAX6572-I
The child job child-job-name will use the job environment file "job-environment-file".

The child job indicated by child-job-name is using the job environment file indicated by job-environment-file.

(S)
Resumes processing.

KNAX6578-I
The child job child-job-name ended. exit status=exit-status-code execution time=execution-time-in-seconds CPU
time=CPU-time-in-seconds

The child job indicated by child-job-name has ended.

exit-status-code
Return code indicating the child job's execution results
For details about the return code, see the description of the return codes for the adshexec command.
If an error occurs during adshexec command postprocessing after this message was output, the return code
indicated in this message might differ from the adshexec command's return code. The adshexec command's
final return code is output to the parent job's JOBLOG.

execution-time-in-seconds
Total execution time from start to end of the child job (in seconds). This is a reference value obtained by using the
OS's API.

CPU-time-in-seconds
Total CPU time from start to end of the child job (in seconds). This is a reference value obtained by using the OS's
API.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1033

KNAX6584-I
A job stopped because a command that terminates execution of the script was executed.

The batch job was stopped because the command for stopping execution of a job definition script was executed. No
more job steps or job definition scripts will be executed. Even job steps whose run attribute is abnormal or always
will not be executed.

Note that the specification in the #-adsh_rc_ignore command and the successRC attribute in the #-
adsh_step_start command do not take effect on the executed command.

This message is displayed in the following cases:

• The job definition script was terminated immediately by execution of the exit command.

• The job definition script was terminated immediately by execution of the return command outside the function
or the external script.

• The script was terminated by execution of the exec command with an executable command specified in its
argument.

• An error occurred in a special built-in command, or a non-resumable error occurred in JP1/Advanced Shell
processing (this does not include an error that occurs in the typeset command or an error that occurs in the
return command executed in a function or external script).

(S)
Stops the batch job.

(O)
If the batch job was stopped due to an error, correct the error, and then re-execute the batch job.

KNAX6585-I
A job stopped because the exit status of a step met the conditions specified by the #-adsh_job_stop command.

The batch job was stopped because the return code of a job step satisfied a condition specified in the #-
adsh_job_stop command.

(S)
Terminates processing.

(O)
If a problem has occurred, check the execution results of the job step, eliminate the cause of the error, and then re-
execute the batch job.

KNAX6586-E
A job stopped because an error occurred that prevented the script from continuing.

The batch job was stopped due to a non-resumable error during execution of a job definition script. No more job steps
or job definition scripts will be executed. Even job steps whose run attribute is abnormal or always will not be
executed.

(S)
Cancels job execution.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1034

(O)
Eliminate the cause of the error, and then re-execute the job.

KNAX6587-E
The number of child jobs exceeded the limit.

The number of child jobs that were started has exceeded the maximum permissible number.

(S)
Terminates processing.

(O)
Modify the job definition script file so that the number of child jobs started in a root job (including child jobs started
from other child jobs) does not exceed 9,999,999.

KNAX6588-E
API error occurred. name=API-name, reason=error-details

The error indicated by error-details occurred in the API call indicated by API-name.

(S)
Terminates processing.

(O)
Eliminate the cause of the error by checking the indicated reason and other messages output together with this
message. If the problem cannot be resolved, contact the system administrator.

KNAX6589-W
An API error occurred. Processing for the job will continue. API name=API-name, reason=cause,
details=maintenance-information

The error indicated by cause occurred while the API indicated by API-name was being invoked, but the job will continue.
Possible causes are as follows:

• If API-name is CreateFile, the adshexec command might have been executed in an environment in which
the standard input, standard output, or standard error output cannot be used.

• If API-name is isatty, the adshexec command might have been executed in an environment in which the
standard input cannot be used.

(S)
Resumes processing.

(O)
If no problem has occurred in the job operation, no action is required. If a problem has occurred in the job operation,
eliminate the cause of the error, and then re-execute the batch job. If the problem cannot be resolved, contact the
system administrator.

KNAX6590-E
An error occurred in the function function-name. details=maintenance-information

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1035

The function indicated by function-name failed.

function-name
Name of the function resulting in the error. One of the following is displayed:
get variable: Function related to acquisition of shell variables
set variable: Function related to setting shell variables
unset variable: Function related to deletion of shell variable settings
run external script: Function related to external scripts
set rc: Function related to job definition script return codes
open file: Function related to opening files

(S)
Resumes or terminates the processing depending on the function resulting in the error.

(O)
Contact the system administrator.

KNAX6591-E
The job controller ended abnormally because it received a termination request signal. signal number=signal-number

The job controller was forcibly terminated because the termination request signal indicated by signal-number was
received during job execution.

(S)
The job controller forcibly terminates any descendant process being started, performs required postprocessing (such
as deleting files), and then terminates itself.

(O)
Check that the job was forcibly terminated.

KNAX6592-E
The job controller ended abnormally because it received a termination request control signal. control type = control-
type

The job controller was forcibly terminated because the control signal indicated by control-type was received during job
execution. One of the following character strings is displayed for control-type:

• CTRL + C: A CTRL + C signal was received

• CTRL + BREAK: A CTRL + BREAK signal was received

• CLOSE EVENT: The user closed the console (CTRL + C was received)

(S)
The job controller forcibly terminates any descendant process being started, performs required postprocessing (such
as deleting files), and then terminates itself.

(O)
Check that the job was forcibly terminated.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1036

KNAX6593-E
The job controller received a termination request.

The job controller received a forced termination request.

(S)
The job controller forcibly terminates any descendant process being started, performs required postprocessing (such
as deleting file), and then terminates itself.

(O)
Check that the batch job was forcibly terminated.

KNAX6594-E
The job controller ended abnormally because of the operation to terminate a process.

The job controller was forcibly terminated because of process termination processing (such as TerminateProcess).

(S)
The job controller forcibly terminates any descendant process being started, performs required postprocessing (such
as deleting files), and then terminates itself.

(O)
Check that the batch job was forcibly terminated.

KNAX6596-E
job-name.job-step-name step failed. exit status=exit-status-code execution time=execution-time-in-seconds CPU
time=CPU-time-in-seconds

The job step terminated with an error.

job-name
Job name

job-step-name
Job step name

exit-status-code
Job step's return code

execution-time-in-seconds
Job step's execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Job step's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes the processing and executes only those subsequent job steps whose run attribute is abnormal or
always. However, the system terminates the shell in the following cases:

• The KNAX6584-I message was issued because a command for terminating the job definition script was
executed.

• Anther error resulting in termination of the job definition script occurred.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1037

(O)
Check the execution results for each command in the job step, and then eliminate the cause of the error.

KNAX6597-I
job-name.job-step-name step succeeded. exit status=exit-status-code execution time=execution-time-in-seconds
CPU time=CPU-time-in-seconds

The job step terminated normally.

job-name
Job name

job-step-name
Job step name

exit-status-code
Job step's return code

execution-time-in-seconds
Job step's execution time. This is a reference value obtained by using the OS's API.

CPU-time-in-seconds
Job step's CPU time. This is a reference value obtained by using the OS's API.

(S)
Resumes processing.

KNAX6598-E
An API error occurred. API name=API-name, reason=cause, details=maintenance-information

The error indicated by causes occurred in the API call indicated by API-name.

(S)
Terminates processing.

(O)
Eliminate the cause of the error by checking the indicated reason and other messages output together with this
message. If the problem cannot be resolved, contact the system administrator.

KNAX6599-E
An internal error occurred. reason=cause, details=maintenance-information

An internal error occurred due to the indicated cause.

(S)
Terminates processing.

(O)
Contact the system administrator.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1038

KNAX6600-E
An error occurred in the function function-name([argument,...]). exit status=exit-status-code, error number=error-
number, internal information=maintenance-information

An error occurred in the function indicated by function-name.

function-name
Function resulting in the error (function provided by the platform)

argument
Function argument. This information might not be displayed.

exit-status-code
Function's return value

error-number
Value of the errno global variable that indicates the nature of the error. The value is a decimal number.

(S)
Whether the processing is resumed depends on the status. See the message that is output following this message.

(O)
Determine the cause of the error based on the information provided in the messages, and then correct the error.

KNAX6601-E
An internal error occurred. details=maintenance-information

An internal conflict was detected during processing.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX6602-E
An I/O error occurred during output to stdout.

An I/O error occurred during output to the stdout standard output.

(S)
Terminates processing.

(O)
Determine the cause of the I/O error at the standard output based on the messages output before and after this
message, and then resolve the problem.

KNAX6603-E
Failed to get the current date.

The current date could not be obtained.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1039

(S)
Terminates processing.

(O)
Determine the cause of the error based on the messages output before and after this message, and then resolve the
problem.

KNAX6604-E (Windows only)
An error occurred in the function function-name([argument,...]). exit status=exit-status-code, last error
code=system-error-code, internal information=maintenance-information

An error occurred in the function indicated by function-name.

function-name
Name of the function resulting in the error (function provided by the platform)

argument
Function argument and information needed for investigating the error
This information might not always be displayed. Some arguments might not be displayed.

exit-status-code
Function's return value

system-error-code
Return value of LastError() that indicates the nature of the error

(S)
The processing depends on the messages output before and after this message.

(O)
Determine the cause of the error based on the messages output before and after this message, and then resolve the
problem.

KNAX6605-E
Conversion of the date and time failed. date and time=date-and-time

An error occurred when the date and time were converted to internal representation.

date-and-time: Date and time that could not be converted to internal representation

(S)
Terminates processing.

(O)
Specify for interpretation by the command a date and time that falls within the following range (based on UTC):
1970-01-01 at 00:00:00 through 2038-01-19 at 03:14:07
Note that a date and time that is within this range might still result in an error depending on the platform being used.

KNAX6610-E
The specified option "option-name" is invalid.

An unknown option was specified.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1040

option-name
Unknown option name

(S)
Terminates processing.

(O)
Specify the correct option.

KNAX6611-E
No value is specified for the option "option-name".

No value was specified for the option indicated by option-name.

(S)
Terminates processing.

(O)
Specify a value for the displayed option.

KNAX6612-E
The value specified for the option "option-value" is invalid.

An option value is invalid.

option-value
Specified option value

(S)
Terminates processing.

(O)
Specify the correct value for the option.

KNAX6613-I
The start time is YYYY-MM-DD hh:mm:ss+hhmm.
OR
The start time is none.

YYYY-MM-DD hh:mm:ss+hhmm indicates the earliest job execution start date and time that was interpreted by the
command. +hhmm is the adjustment in hours and minutes between UTC and local time.

none means that the start date and time have not been specified.

(S)
Resumes processing.

KNAX6614-I
The end time is YYYY-MM-DD hh:mm:ss+hhmm.
OR

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1041

The end time is none.

YYYY-MM-DD hh:mm:ss+hhmm indicates the latest job execution start date and time that was interpreted by the
command. +hhmm is the adjustment in hours and minutes between UTC and local time.

none means that the end date and time have not been specified.

(S)
Resumes processing.

KNAX6615-E
The time range is invalid. The start time is later than the end time.

The earliest and latest job execution start dates/times are reversed.

(S)
Terminates processing.

(O)
Specify the latest job execution start date and time (in the -e option in the adshevtout command) and the earliest
job execution start date and time (in the -s option in the adshevtout command) in such a manner that the former
is after the latter.

KNAX6616-E
Too many operands are specified.

There are too many arguments in the command.

(S)
Terminates processing.

(O)
Specify the correct arguments in the command.

KNAX6632-E
The spool directory was not found. directory name="spool-directory-name"

The spool directory cannot be found.

spool-directory-name
Directory to be referenced

(S)
Terminates processing.

(O)
Check the spool directory specified in the environment file for any error.

KNAX6633-E
The spool directory could not be read. directory name="spool-directory-name"

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1042

The spool directory cannot be referenced.

spool-directory-name
Directory to be referenced

(S)
Terminates processing.

(O)
Check if the user executing the command has the permission to reference the spool directory.

KNAX6634-E
An error occurred during initialization of the adshevtout command.

An initialization error occurred in the adshevtout command.

(S)
Terminates processing.

(O)
Resolve the problem by referencing the message that was output before this message.

KNAX6635-E
Failed to lock the spool directory. directory name="spool-directory-name"

A lock error occurred on the spool directory.

spool-directory-name
Directory to be referenced

(S)
Terminates processing.

(O)
Check the following:

• The spool directory specified in the environment file is correct.

• The user has the access permission to reference or update the spool directory.

• A lock file can be created, referenced, or updated.

KNAX6636-E
The spool directory cannot be accessed because it is being accessed by another command. directory name="spool-
directory-name"

The spool could not be referenced because it was being accessed by another command.

spool-directory-name
Directory to be referenced

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1043

(O)
Re-execute the command when the adshhk command is not executing.

KNAX6640-I
An event file was skipped because you do not have permission to access it. file name="event-file-path-name"

Referencing of an event file was skipped because the user executing the command did not have the permission to
reference the event file.

event-file-path-name
Path name of the skipped event file

(S)
Resumes processing.

KNAX6644-E
An I/O error occurred during an attempt to read an event file. file name="event-file-path-name"

An I/O error occurred while reading an event file.

event-file-path-name
Path name of the event file resulting in the I/O error

(S)
Stops processing the event file resulting in the I/O error, and then processes another event file.

(O)
Determine the cause of the I/O error in the event file based on the messages output before and after this message,
and then resolve the problem.

KNAX6645-W
This command does not support the event file version. file name="event-file-path-name", event file
version=version-number

This command does not support the version of an event file.

event-file-path-name
Path name of the event file

version-number
Version number of the event file

(S)
Processes another event file without referencing the displayed event file.

(O)
Execute the command that supports the JP1/Advanced Shell version used to create the event file.

KNAX6646-E
The event file is corrupted. file name="event-file-path-name"

An event file is corrupted.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1044

event-file-path-name
Path name of the event file that has been determined to be corrupted

(S)
Stops processing the event file determined to be corrupted, and then processes another event file.

(O)
Make sure that the event file was not updated illegally. If the cause cannot be determined, contact the system
administrator.

KNAX6701-W
The job object is not available.

The job object cannot be used. The process created by a child process is not terminated by the TerminateProcess
function when the batch job is forcibly terminated.

(S)
Continues processing.

KNAX6710-I
The built-in command "command-name" [with the option "option-name"] is not supported on the current platform.
The command returned "return-value".[filename="file-name" line=line-number]

An attempt was made to execute a built-in command that is not supported by JP1/Advanced Shell on the current platform.
Another possibility is that an attempt was made to execute the trap command in an environment in which DISABLE
is specified in the TRAP_ACTION_SIGTERM environment setting parameter.

command-name
Name of the built-in command

option-name
Option name specified in the built-in command

return-value
Return value of the built-in command

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute the built-in command

(S)
Continues the processing using the indicated return code as the return code of the built-in command.

KNAX6711-E
The built-in command "command-name" [with the option "option-name"] is not supported on the current platform.
The job failed.[filename="file-name" line=line-number]

An attempt was made to execute a built-in command that is not supported by JP1/Advanced Shell on the current platform.
Or, an attempt was made to execute a built-in command that specified an option that is not supported by JP1/Advanced
Shell on the current platform.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1045

command-name
Name of the built-in command

option-name
Option name specified in the built-in command

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute the built-in command

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6712-E
The specified variable "shell-variable-name" cannot be exported because the current platform requires that its name
be composed entirely of capital letters.[filename="file-name" line=line-number]

A variable whose name is not in all uppercase letters cannot be exported on the current platform.

shell-variable-name
Name of the shell variable whose export was attempted

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute the export command

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6713-E
The required directory "directory-name" does not exist.

A directory required in JP1/Advanced Shell on the current platform is missing.

directory-name
Name of the missing directory

(S)
Terminates processing.

(O)
Check and, if necessary, revise the setup procedure.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1046

KNAX6714-E
Background execution is not supported.[filename="file-name" line=line-number]

Job definition scripts cannot be executed in the background on the current platform.

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute a job definition script in the background

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6715-E
Subshell execution is not supported.[filename="file-name" line=line-number]

Job definition scripts cannot be executed in a subshell on the current platform.

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute a job definition script in a subshell

(S)
Terminates processing.

(O)
Correct the job definition script.

KNAX6718-I
The trap action was not set because an unsupported termination method was specified in the trap command.
[filename="file-name" line="line-number"]

The action was not set because an unsupported forced termination method was specified in the trap command.

file-name
Name of the job definition script file

line-number
Line number at which the attempt was made to execute the built-in command

(S)
Continues processing.

KNAX6750-E
The file or directory "path-name" does not exist.

The file or directory indicated by path-name does not exist.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1047

(S)
Continues processing.

(O)
Make sure that the file or directory specified for path-name is correct.

KNAX6751-E
Failed to get ACL information. path="path-name", reason=cause, details=details

An attempt to acquire ACL information for the file or directory indicated by path-name failed.

(S)
Continues processing.

(O)
Make sure that the user who executes the adshscripttool command is the owner of the file or directory indicated
by path-name. If the user is not the owner, execute the command as the owner.

KNAX6752-E
The format of the mode is invalid.

The format of the mode specified in the -fmode option of the adshscripttool command was not valid.

(S)
Continues processing.

(O)
Correct the mode specification.

KNAX6753-E
adshscripttool: A command line error occurred. details="details"

The command line specification is not valid. The following table lists the details displayed in the message and their
meanings:

Details displayed Meaning

A required option is not specified A required option is not specified.

The path name is not specified No path name is specified.

The mode is not specified No mode is specified.

No value is specified for the -s option No value is specified for the -s option.

You cannot specify the -s option first The -s option was specified first (it cannot be specified first).

An invalid value is specified for the -s
option

The value specified for the -s option is invalid.

The path is specified more than once Multiple path names were specified (multiple path names cannot be
specified).

The mode is specified more than once Multiple modes were specified (multiple modes cannot be specified).

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1048

Details displayed Meaning

The specified path contains a null
character

An empty character string was specified for the path name.

The specified mode contains a null
character

An empty character string was specified for the mode.

The value specified for the -s option
contains a null character

An empty character string was specified as the value of the -s option.

(S)
Continues processing.

(O)
Correct the command specification, and then re-execute it.

KNAX6800-I
The path matched the conversion rule.[filename="file-name" line=line-number] path converted="path-
name-1":"path-name-2"

The rule for converting path-name-1 to path-name-2 was satisfied.

file-name
Name of the job definition script file

line-number
Line number of the line satisfying the path conversion rule

(S)
Continues processing.

KNAX6801-I
The path matched the conversion rule.[filename="file-name" line=line-number] shell variable handling
path="shell-variable-name"

The conversion rule using a shell variable that handles paths was satisfied.

shell-variable-name
Name of the shell variable that handles path names

file-name
Name of the job definition script file

line-number
Line number of the line satisfying the path conversion rule

(S)
Continues processing.

KNAX6803-I
The access path matched the conversion rule.[filename="file-name" line=line-number] path converted="path-
name-1":"path-name-2"

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1049

The rule for converting path-name-1 to path-name-2 was satisfied.

file-name
Name of the job definition script file

line-number
Line number of the line satisfying the PATH_CONV_ACCESS parameter conversion rule

(S)
Continues processing.

KNAX6804-I
The command argument matched the conversion rule.[filename="file-name" line=line-number] argument
converted="argument-1":"argument-2"

The rule for converting argument-1 to argument-2 was satisfied.

file-name
Name of the job definition script file

line-number
Line number of the line satisfying the COMMAND_CONV_ARG parameter conversion rule

(S)
Continues processing.

KNAX6805-I
The access path matched the conversion rule during execution of the function function-name. path
converted="path-name-1":"path-name-2"

When the function indicated by function-name was executing, the rule for converting path-name-1 to path-name-2 was
satisfied.

function-name
Name of the function satisfying the conversion rule. One of the following is displayed:

• command substitution: Command substitution function

• trap action: Action of the trap command

(S)
Continues processing.

KNAX6806-I
The command argument matched the conversion rule during execution of the function function-name. argument
converted="argument-1":"argument-2"

The rule for converting argument-1 to argument-2 was satisfied when the function indicated by function-name was
executed.

function-name
Name of the function satisfying the conversion rule. One of the following is displayed:

• command substitution: Command substitution function

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1050

• trap action: Action of the trap command

(S)
Continues processing.

KNAX6810-E
The character specified to delimit directories is invalid.

The directory separator specified in the PATH_CONV_ENABLE parameter is invalid.

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6811-E
The character specified to delimit paths is invalid.

The path separator specified in the PATH_CONV_ENABLE parameter is invalid.

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6812-E
An invalid path is specified. path="path-name"

The path specified in the PATH_CONV parameter is invalid.

path-name
Path name specified in the PATH_CONV parameter

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6813-E
A line exceeds the size limit.[filename="file-name" line=line-number]

The length of a line exceeded the maximum permitted for job definition scripts.

file-name
Name of the job definition script file

line-number
Line number of the line whose length exceeds the maximum

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1051

(S)
Terminates processing.

(O)
Check and, if necessary, revise the job definition script.

KNAX6814-E
An invalid argument is specified. argument="argument"

An argument specified in the COMMAND_CONV_ARG or PATH_CONV_ACCESS parameter is invalid.

argument
Argument specified in the COMMAND_CONV_ARG or PATH_CONV_ACCESS parameter that is invalid

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6815-E
No argument is specified.

An argument is missing in the COMMAND_CONV_ARG or PATH_CONV_ACCESS parameter.

(S)
Terminates processing.

(O)
Correct the environment file.

KNAX6830-I
The command definition matched the rule specified by the environment settings parameter CHILDJOB_PGM.
command line="command-line"

The rule for replacing a child job's execution specified in the CHILDJOB_PGM parameter was satisfied. Alternatively,
a child job was executed by executing the adshscripttool -exec command.

command-line
Command line of the command to be replaced

(S)
Continues processing.

KNAX6831-I
The command definition matched the rule specified by the environment settings parameter
CHILDJOB_SHEBANG. script="script-name" shebang="shebang"

The rule for replacing a child job's execution specified in the CHILDJOB_SHEBANG parameter was satisfied.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1052

script-name
File name of the script file that is to be executed as a child job

shebang
First line beginning with #! of the script file that is to be executed as a child job

(S)
Continues processing.

KNAX6832-I
The command definition matched the rule specified by the environment settings parameter CHILDJOB_EXT.
script="script-name"

The rule for replacing a child job's execution specified in the CHILDJOB_EXT parameter was satisfied.

script-name
File name of the script file that is to be executed as a child job

(S)
Continues processing.

KNAX6997-E
An API error occurred. API name=API-name reason=cause

The error indicated by causes occurred in the API call indicated by API-name.

If the API name is AssignProcessToJobObject and the cause is Access is denied., the job controller was
called from within the job definition script as a root job, not as a child job, or the job controller was called from a program
that uses job objects other than JP1/Advanced Shell.

(S)
Terminates processing. However, if the API name is AssignProcessToJobObject, the system continues
processing.

(O)

• When the job controller was called from within the job definition script as a root job, not as a child job
Call the job controller as a child job.

• When the job controller was called from a program that uses job objects other than JP1/Advanced Shell
When the job is terminated forcibly, the job controller terminates without forcibly terminating processes engaged
in grandchild processing. If there is no problem in the operation during forced termination processing including
the specifications of the program that calls the job controller, no action is needed. If there is a problem, contact
the system administrator.

• Other than the above
Eliminate the cause of the error by referencing the displayed cause. If the problem cannot be resolved, contact
the system administrator.

KNAX6998-E
Memory cannot be allocated.[filename="file-name" line=line-number]

A memory shortage occurred.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1053

file-name
Name of the job definition script file

line-number
Line number of the line where the error occurred

(S)
Terminates processing.

(O)
Contact the system administrator, who must check and, if necessary, revise the memory estimation.

KNAX6999-E
An internal error occurred. reason="cause" details="maintenance-information"

An internal error occurred.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7000-E
The input character string is too long.

The input character string is too long.

(S)
Resumes processing.

(O)
Check and, if necessary, revise the input character string, and then re-enter it.

KNAX7001-E
The specified command "command-name" does not exist.

The debugger command indicated by command-name does not exist.

(S)
Resumes processing.

(O)
Enter the correct command name.

KNAX7002-E
Too many arguments are specified.

Too many arguments are specified.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1054

(O)
Specify the correct arguments, and then re-execute the command.

KNAX7003-E
The command "command-name" does not take any arguments.

The debugger command indicated by command-name does not take arguments.

(S)
Resumes processing.

(O)
Specify the command correctly, and then re-execute it.

KNAX7004-E
The command "command-name" requires the argument (argument-details).

The debugger command indicated by command-name requires the argument indicated by argument-details.

(S)
Resumes processing.

(O)
Specify the command correctly, and then re-execute it.

KNAX7006-W
Are you sure you want to restart the script from the beginning? (y or n)

This message asks whether the job definition script is to be re-executed from the beginning.

(S)
Resumes processing.

(O)
To re-execute the job definition script, enter y; otherwise, enter n.

KNAX7007-I
Execution of the following script will now start: path-name-of-job-definition-script arguments

Execution of the job definition script is starting.

(S)
Resumes processing.

KNAX7008-I
The script was not restarted.

The job definition script was not re-executed.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1055

(S)
Resumes processing.

KNAX7009-I
Are you sure you want to stop the script being debugged? (y or n)

This message asks whether the job definition script being debugged is to be terminated.

(S)
Resumes processing.

(O)
To terminate the job definition script, enter y; otherwise, enter n.

KNAX7010-E
The script is not running.

The job definition script is not running.

(S)
Resumes processing.

(O)
Re-execute the command while the job definition script is running.

KNAX7011-I
The command "command-name" was not executed.

The debugger command indicated by command-name was not executed.

(S)
Resumes processing.

KNAX7012-W
The script is running. Are you sure you want to exit the debugger? (y or n)

This message asks whether the debugger is to be terminated while the job definition script is running.

(S)
Resumes processing.

(O)
To terminate the debugger, enter y; otherwise, enter n.

KNAX7013-E
The file "file-name" is not parsed.

The job definition script file indicated by file-name has not been parsed.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1056

(S)
Resumes processing.

(O)
Specify the correct file name, and then re-execute the command. Or, use the #-adsh_script command to call
an external script within the job definition script file.

KNAX7014-E
The number of breakpoints and watchpoints exceeds the limit.

The number of breakpoints and watchpoints exceeded the maximum.

(S)
Resumes processing.

(O)
Restart the debugger, and then re-execute the command.

KNAX7015-W
The breakpoint cannot be set at line "line-number". The breakpoint will be set at the next available line.

A breakpoint cannot be set on the line indicated by line-number. A breakpoint will be set at the next line at which a
breakpoint can be set.

(S)
Resumes processing.

KNAX7016-E
The breakpoint cannot be set at line "line-number". No next available line exists at which to set the breakpoint.

A breakpoint cannot be set on the line indicated by line-number. There are no more lines on which a breakpoint can be
set.

(S)
Resumes processing.

(O)
Specify the correct line number, and then re-execute the command.

KNAX7017-E
The file "file-name" does not exist.

The file indicated by file-name does not exist.

(S)
Resumes processing.

(O)
Specify the correct file name, and then re-execute the command.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1057

KNAX7018-I
Breakpoint "breakpoint-number": filename="file-name" line=line-number

This message displays information about a breakpoint. The displayed file-name is a base name.

(S)
Resumes processing.

KNAX7019-E
Line "line-number" does not exist.

The line indicated by line-number does not exist.

(S)
Resumes processing.

(O)
Specify the correct line number, and then re-execute the command. Or, move the line, and then re-execute the
command.

KNAX7020-E
The specified function "function-name" is not defined.

The function indicated by function-name is undefined.

(S)
Resumes processing.

(O)
Specify the correct function name, and then re-execute the command.

KNAX7021-E
The specified job step "job-step-name" is not defined.

The job step indicated by job-step-name is undefined.

(S)
Resumes processing.

(O)
Specify the correct job step name, and then re-execute the command.

KNAX7022-E
The specified variable "variable-name" is invalid.

The variable indicated by variable-name is invalid.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1058

(O)
Specify the correct variable name, and then re-execute the command.

KNAX7023-I
Watchpoint "watchpoint-number": variable="variable-name"

This message displays information about a watchpoint.

(S)
Resumes processing.

KNAX7024-E
The specified range "number-range" is invalid.

The range of breakpoint and watchpoint numbers indicated by number-range is invalid.

(S)
Resumes processing.

(O)
Specify a valid range of numbers, and then re-execute the command.

KNAX7025-I
Are you sure you want to delete all breakpoints and watchpoints? (y or n)

This message asks whether all breakpoints and watchpoints are to be deleted.

(S)
Resumes processing.

(O)
To delete all breakpoints and watchpoints, enter y; otherwise, enter n.

KNAX7026-E
No breakpoints or watchpoints are defined.

Breakpoints and watchpoints cannot be deleted because no breakpoints or watchpoints have been set.

(S)
Resumes processing.

(O)
If necessary, re-execute the command when breakpoints and watchpoints have been set.

KNAX7027-E
The breakpoint or watchpoint "number" is not defined.

The breakpoint or watchpoint indicated by number is not set.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1059

(S)
Resumes processing.

(O)
Specify the correct number, and then re-execute the command.

KNAX7028-E
No breakpoints or watchpoints exist in the range "number-range".

There are no breakpoints or watchpoints in the range indicated by number-range.

(S)
Resumes processing.

(O)
Specify the correct range of numbers, and then re-execute the command.

KNAX7029-E
The specified argument "argument" is invalid.

The command argument indicated by argument is invalid.

(S)
Resumes processing.

(O)
Check and, if necessary, revise the specified argument, and then re-execute the command.

KNAX7032-I
The script "job-definition-script-name" stopped running.

Execution stopped in the job definition script indicated by job-definition-script-name.

(S)
Resumes processing.

KNAX7033-I
The external script "job-definition-script-name" stopped running.

Execution stopped in the external script indicated by job-definition-script-name.

(S)
Resumes processing.

KNAX7034-I
The script will continue.

Execution of the job definition script is underway.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1060

(S)
Resumes processing.

KNAX7035-E
The debugger command "command-name" cannot be executed at the outermost level.

The debugger command indicated by command-name cannot be executed at the outermost location.

(S)
Resumes processing.

(O)
Re-execute the command while execution is stopped within the function.

KNAX7036-I
Execution will continue until the end of the current function.

Execution will continue until the end of the current function.

(S)
Resumes processing.

KNAX7037-I
Are you sure you want to exit the current function? (y or n)

This message asks whether the current function is to be terminated.

(S)
Resumes processing.

(O)
To terminate the current function, enter y; otherwise, enter n.

KNAX7038-I
The signal "signal-name" will be sent to the script.

The signal indicated by signal-name is being sent to the job definition script.

(S)
Resumes processing.

KNAX7039-E
The specified signal number "signal-number" does not exist.

The signal indicated by signal-number does not exist.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1061

(O)
Specify the correct signal number, and then re-execute the command.

KNAX7040-E
The specified signal "signal-name" does not exist.

The signal indicated by signal-name does not exist.

(S)
Resumes processing.

(O)
Specify the correct signal name, and then re-execute the command.

KNAX7043-I
The script stopped because the signal "signal-name" (Stop=Yes) was received.

The job definition script was stopped because the signal indicated by signal-name that stops a job definition script was
already received.

(S)
Resumes processing.

KNAX7044-E
The debugger command "command-name" requires a subcommand.

The debugger command indicated by command-name requires a subcommand.

(S)
Resumes processing.

(O)
Specify a subcommand, and then re-execute the command.

KNAX7045-E
"command-name": The subcommand "subcommand-name" is invalid.

The indicated subcommand-name of the debugger command indicated by command-name is invalid.

(S)
Resumes processing.

(O)
Specify the correct subcommand name, and then re-execute the command.

KNAX7046-E
The specified variable "variable-name" is not defined.

The variable indicated by variable-name is undefined.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1062

(S)
Resumes processing.

(O)
Specify the correct variable name, and then re-execute the command.

KNAX7047-I
No breakpoints or watchpoints are defined.

No breakpoints or watchpoints have been set.

(S)
Resumes processing.

(O)
If necessary, re-execute the command after breakpoints or watchpoints have been set.

KNAX7048-I
Working directory: directory-path

The work directory was changed to the directory path shown as directory-path.

(S)
Resumes processing.

KNAX7049-E
The working directory cannot be changed. (reason=error-details)

The work directory could not be changed for the reason indicated by error-details.

(S)
Resumes processing.

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX7050-E
An ampersand "&" cannot be specified in arguments for the command "command-name".

The ampersand (&) is not allowed in an argument of the debugger command indicated by command-name.

(S)
Resumes processing.

(O)
To use an ampersand (&) for a purpose other than background execution, specify \&.

KNAX7052-E
The type of the value to be assigned differs from that of the variable.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1063

The type of variable differs from the type of value to be assigned.

(S)
Resumes processing.

(O)
Check and, if necessary, revise the types of the variable and the value to be assigned, and then re-execute the
command.

KNAX7053-I
Usage: command-name argument

This message displays the usage of the debugger command indicated by command-name.

(S)
Resumes processing.

KNAX7054-E
The specified variable "variable-name" is read-only.

The variable indicated by variable-name is read-only.

(S)
Resumes processing.

(O)
Check and, if necessary, revise the attribute of the variable, and then re-execute the command.

KNAX7055-E
A breakpoint has already been set at line "line-number".

A breakpoint has already been set at the line indicated by line-number.

(S)
Resumes processing.

(O)
If necessary, delete the breakpoint, and then re-execute the command. Or, specify a different line number, and then
re-execute the command.

KNAX7056-I
The value of the variable "variable-name" was changed to numeric-value.

The value of the variable indicated by variable-name was changed to numeric-value.

numeric-value
Numeric value or variable value (numeric value) specified as the right-hand term of the assignment expression in
the set command

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1064

KNAX7057-I
The value of the variable "variable-name" was changed to "character-string".

The value of the variable indicated by variable-name was changed to character-string.

character-string
Character string or variable value (character string) specified as the right-hand term of the assignment expression
in the set command

(S)
Resumes processing.

KNAX7058-I
Debugger received signal "signal-name".

The debugger received the signal indicated by signal-name.

(S)
Resumes processing.

KNAX7062-E
No value is set for the specified variable "variable-name".

The variable indicated by variable-name has no value.

(S)
Resumes processing.

(O)
Specify a variable that has a value, and then re-execute the command.

KNAX7063-I
A request from the command "command-name" was received while the script was running.

The request of the command indicated by command-name was accepted while the job definition script was running.

(S)
Cancels the batch job.

(O)
If necessary, re-execute the command.

KNAX7064-I
A cancel request was received from the editor.

A cancellation request from the editor was accepted.

(S)
Cancels the batch job.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1065

(O)
If necessary, re-execute the command.

KNAX7065-I
Job steps are not defined.

No job steps have been defined.

(S)
Resumes processing.

(O)
If necessary, define a job step in the job definition script, and then re-execute the command.

KNAX7066-I
Functions are not defined.

Functions are not defined.

(S)
Resumes processing.

(O)
If necessary, define a function in the job definition script, and then re-execute the command. Or, re-execute the
command after function definitions have taken effect.

KNAX7067-I
Variables are not defined.

Variables are not defined.

(S)
Resumes processing.

(O)
If necessary, define a variable in the job definition script, and then re-execute the command. Or, re-execute the
command after variable definitions have taken effect.

KNAX7068-I
Commands will be skipped until the end of the function.

The commands will be skipped until the end of the function.

(S)
Resumes processing.

KNAX7070-E
A watchpoint has already been set for the variable "variable-name".

No new watchpoint can be set for the variable indicated by variable-name because a watchpoint has already been set.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1066

(S)
Resumes processing.

(O)
If necessary, delete the watchpoint, and then re-execute the command. Or, specify a different variable name, and
then re-execute the command.

KNAX7071-E
A breakpoint cannot be set. reason=error-cause

No breakpoint can be set because execution of the job definition script was stopped by the debugger for the reason
indicated by cause-of-error.

error-cause
One of the following is output:

• trap action: A trap action stop occurred during execution

• EOF: Execution stopped at the end of the file.

(S)
Resumes processing.

(O)
Eliminate the cause of the error, and then re-execute the command. Or, specify an appropriate argument, and then
re-execute the command.

KNAX7072-E
A line cannot be listed. reason=error-cause

The contents of lines in the source file cannot be displayed because execution of the job definition script was stopped
by the debugger for the reason indicated by cause-of-error.

error-cause
One of the following is output:

• trap action: A trap action stop occurred during execution

• EOF: Execution stopped at the end of the file.

(S)
Resumes processing.

(O)
Eliminate the cause of the error, and then re-execute the command. Or, specify an appropriate argument, and then
re-execute the command.

KNAX7073-I
A request to execute a trap action was received from the editor. parameter value="<parameter value>"

A request to execute a trap action was received from the editor.

parameter value
Value specified in the TRAP_ACTION_SIGTERM environment setting parameter.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1067

If DISABLE is specified in the TRAP_ACTION_SIGTERM environment setting parameter or no action by the trap
command is defined, the trap command's action is not executed even when this message is issued.

(S)
Resumes processing.

KNAX7090-W
Information about one or more errors exceeds the limit and cannot be displayed.

One or more error information items cannot be displayed because the maximum number of items has been reached.

(S)
Resumes processing.

(O)
Specify a variable name that has a value, and then re-execute the command.

KNAX7099-E
The debugger ended abnormally.

The debugger terminated with an error.

(S)
Terminates processing.

(O)
Eliminate the cause of the error by referencing the other messages output together with this message, and then re-
execute the command. If the problem cannot be resolved, contact the system administrator.

KNAX7101-E
Failed to create the debugger child process. (reason=error-details)

The creation of a debugger child process failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7102-I
The debugger child process was created. (PID=process-ID)

A debugger child process has been created.

(S)
Resumes processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1068

KNAX7103-I
The debugger child process ended. (PID=process-ID)

A debugger child process ended.

(S)
Resumes processing.

KNAX7104-E
Failed to open a log file in the debugger.

An open error occurred in the log file while the job definition script was being run by the debugger.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command. If the problem cannot be resolved, contact the
system administrator.

KNAX7105-E
Failed to move to the debugger working directory. (reason=error-details)

The directory could not be changed to the debugger's work directory for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX7106-E
Failed to move to the script working directory. (reason=error-details)

The directory could not be changed to the work directory for the job definition script for the reason indicated by error-
details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX7107-I
A signal was received during debugger command input.

A signal was received while a debugger command was being entered.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1069

(S)
Terminates the processing if a signal for terminating the processing was received; continues the processing if a signal
for continuing the processing was received.

(O)
If necessary, re-execute the command.

KNAX7108-E
Debugger command input failed.

An input error occurred in a debugger command.

(S)
Terminates processing.

(O)
Eliminate the cause of the error by referencing the other messages output together with this message, and then re-
execute the command.

KNAX7109-I
An EOF was input by the debugger command.

EOF was entered by the debugger command.

(S)
Terminates processing.

KNAX7110-E
Failed to open the DBG file "file-path". (reason=error-details)

An open error occurred in the file indicated by file-path for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then re-execute the command.

KNAX7111-I
Parsing will now start for the DBG file "file-path".

Parsing of the file indicated by file-path is beginning.

(S)
Continues processing.

KNAX7112-E
The format of the DBG file "file-path" is invalid. details=maintenance-information

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1070

The format of the file indicated by file-path is invalid. The maintenance information provides the location of invalid
internal data and the cause of the error.

(S)
Terminates processing.

(O)
Re-execute the command. If necessary, contact the system administrator.

KNAX7113-E
Processing for the "API-name" API failed. (reason=error-details)

The processing indicated by OS's-API-name failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7114-E
Failed to wait for the debugger child process. (reason=error-details)

Wait processing for a debugger child process failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7115-E
Failed to execute the exec command process. (reason=error-details)

Execution of the exec command process failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7116-E
Free disk space is low.

There is a shortage of free disk space.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1071

(S)
Terminates processing.

(O)
Increase the available disk capacity, and then re-execute the command.

KNAX7117-I
Parsing of the DBG file "file-path" ended normally.

Parsing of the DBG file indicated by file-path has been completed.

(S)
Resumes processing.

KNAX7118-E
Failed to create the console.

Console creation failed.

(S)
Terminates processing.

(O)
Re-execute the command. If the same error recurs, contact the system administrator.

KNAX7119-E
Failed to duplicate the file descriptor.

Duplication of a file descriptor failed.

(S)
Terminates processing.

(O)
Re-execute the command. If the same error recurs, contact the system administrator.

KNAX7120-W
A parent process received SIGCHLD, but the child process had no change.

The parent process received SIGCHLD, but its child process's status remains unchanged.

(S)
Resumes processing.

KNAX7121-E
Failed to create a process by using the exec command. (reason=error-details)

Creation of an exec command process failed for the reason indicated by error-details.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1072

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7122-E
Failed to wait for a process created by the exec command. (reason=error-details)

Wait processing for the exec command process failed for the reason indicated by error-details.

(S)
Terminates processing.

(O)
Eliminate the cause of the error indicated by error-details, and then re-execute the command. If the problem cannot
be resolved, contact the system administrator.

KNAX7123-E
Failed to get the value of the variable "variable-name". details=maintenance-information

Acquisition of the value of the variable indicated by variable-name failed. If the attempt was to acquire the values of
all variables, <All variables> is displayed for variable-name.

This message might be output because there is a shortage of system memory.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7124-E
Failed to set the value of the variable "variable-name". details=maintenance-information

An attempt to set a value in the variable indicated by variable-name failed.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7125-E
Failed to get information about the function "function-name". details=maintenance-information

Acquisition of information about the function indicated by function-name failed. If the attempt was to acquire
information about all functions, <All functions> is displayed for function-name.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1073

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7126-I
Fault injection mode is set to {"on"|"off"}.

The fault injection mode was set.

• on
The fault injection mode was enabled.

• off
The fault injection mode was disabled.

(S)
Terminates processing.

KNAX7127-E
Fault injection mode could not be modified.

The attempt to reset the fault injection mode failed because the job definition script was resumed with the fault injection
mode already enabled.

(S)
Resumes processing.

(O)
Execute the job definition script all the way to its end, or re-execute it.

KNAX7128-E
Failed to remove the DBG file. (filename=file-path, reason=error-details)

The debugger's DBG file cannot be deleted for the reason indicated by error-details.

file-path
File path of the DBG file.

error-details
Details of the error

(S)
Resumes processing.

(O)
Delete the unneeded file with a command such as rm.

KNAX7400-E
The number of response messages exceeds the limit.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1074

The number of reply-request messages output by the adshread command exceeded the maximum.

(S)
Repeats processing.

(O)
Check and, if necessary, revise the USERREPLY_WAIT_MAXCOUNT parameter value.

KNAX7402-E
An error occurred during shared memory processing. (error information=error-information,
function=maintenance-information)

An error occurred during shared memory manipulation while processing a reply-request message with the adshread
command.

error-information
Status code output by the API resulting in the error

maintenance-information
Name of the API resulting in the error

(S)
Resumes processing.

(O)
Take appropriate action by checking the indicated error-information. For details about error-information, see 11.4.4
Handling Error Information Displayed in the User-Reply Functionality.

KNAX7403-E
The number of parameters is invalid. filename="file-name" line=line-number

The number of arguments in the adshecho or adshread command is invalid.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes processing.

(O)
Correct the job definition script file.

KNAX7404-E
The type of the variable "variable-name" is invalid. filename="file-name" line=line-number

The variable specified in the adshread command is the numeric type.

file-name
Name of the job definition script file

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1075

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes processing.

(O)
Correct the job definition script file.

KNAX7405-E
The specified message is too long. filename="file-name" line=line-number

The event notification message specified in the adshecho command or the reply-request message specified in the
adshread command is too long.

file-name
Name of the job definition script file

line-number
Line number in the job definition script file where the error occurred

(S)
Resumes processing.

(O)
Correct the job definition script file.

KNAX7408-E
An internal error occurred. (details=maintenance-information)

An internal error occurred during adshecho or adshread command processing.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7420-E
The response contains a non-ASCII character. Re-enter the response.

A reply entered from the standard input contains non-ASCII characters.

(S)
Resumes processing.

(O)
Re-enter the reply using only ASCII characters.

KNAX7450-I
The job controller canceled the response request. (job ID=job-ID, line=line-number, host name=host-name)

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1076

The reply-request message handled by the adshread command was canceled because the job controller accepted a
forced termination request.

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script that issued the adshread command

host-name
Name of the host on which the service or daemon is running

(S)
Terminates processing.

KNAX7451-I
A response request was canceled. (job ID=job-ID, line=line-number, host name=host-name)

The reply-request message handled by the adshread command was canceled because the job controller accepted a
termination request.

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script where the adshread command was issued

host-name
Name of the host on which the service or daemon is running

(S)
Terminates processing.

KNAX7460-E
An error occurred during event processing. (error information=error-information, function=maintenance-
information)

Issuance of a JP1 event failed.

error-information
Status code output by the API resulting in the error

maintenance-information
Name of the API resulting in the error

(S)
Resumes processing.

(O)
Take appropriate action by checking the indicated error-information. For details about error-information, see 11.4.4
Handling Error Information Displayed in the User-Reply Functionality.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1077

KNAX7461-E
An error occurred during event processing. (error information=error-information, function=open_sender,
host=host-name)

Issuance of a JP1 event failed.

error-information
Status code output by the API resulting in the error

host-name
Host name of the batch operation server on which JP1/Advanced Shell is running

(S)
Resumes processing.

(O)
Take appropriate action by checking the indicated error-information. For details about error-information, see 11.4.4
Handling Error Information Displayed in the User-Reply Functionality.

KNAX7462-E
An error occurred during event processing. (error information=error-information, function=maintenance-
information, destination=destination-host-name, sequence no.=source-serial-number)

Issuance of a JP1 event failed.

error-information
Status code output by the API resulting in the error

maintenance-information
event_send (event transmission) or check_arrival (event arrival check)

destination-host-name,
Host name specified in the HOSTNAME_JP1IM_MANAGER parameter in the system environment file. If the
HOSTNAME_JP1IM_MANAGER parameter is omitted, this is the name of the physical host of the batch operation
server on which JP1/Advanced Shell is running.

source-serial-number
Sequence number in the source database in JP1/Base

(S)
Resumes processing.

(O)
Take appropriate action by checking the indicated error-information. For details about error-information, see 11.4.4
Handling Error Information Displayed in the User-Reply Functionality.
Note that even though this message is displayed, the event might have arrived in JP1/IM - View. If a reply-waiting
event has arrived, manually release the accumulation of reply-waiting events.

KNAX7464-E
Transmission of a event failed. (function=check_arrival, destination=destination-host-name, sequence no.=source-
serial-number)

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1078

Transmission of a JP1 event from JP1/Base on the local host to JP1/Base on the host where JP1/IM - Manager is running
failed.

destination-host-name
Host name specified in the HOSTNAME_JP1IM_MANAGER parameter in the system environment file

source-serial-number
Sequence number in the source event database in JP1/Base

(S)
Resumes processing.

(O)
Check the following:

• Whether JP1/Base is installed on the host where JP1/IM - Manager is running

• Whether JP1/Base's event server is running on the host on which JP1/IM - Manager is running

• Whether JP1/Base connection is established between the local host and the host where JP1/IM - Manager is
running

Note that even though this message is displayed, the event might have arrived in JP1/IM - View. If a reply-waiting
event has arrived, manually release the accumulation of reply-waiting events.

KNAX7465-W
The event is being transferred. (function=check_arrival, destination=destination-host-name, sequence no.=source-
serial-number)

JP1/Base is transferring a JP1 event to the host specified in HOSTNAME_JP1IM_MANAGER.

destination-host-name
Host name specified in the HOSTNAME_JP1IM_MANAGER parameter in the system environment file

source-serial-number
Sequence number in the source event database in JP1/Base

(S)
Resumes processing.

KNAX7470-I
Data flow control will now be performed. (wait time=wait-time)

Data flow control is being performed for issuance of JP1 events.

wait-time
Amount of time (in milliseconds) by which issuance of JP1 events is being delayed in order to control data flow

(S)
Resumes processing.

KNAX7500-I
adshmd started.

The user-reply functionality's management daemon has started.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1079

(S)
Resumes processing.

KNAX7501-I
adshmd stopped.

The user-reply functionality's management daemon has ended.

(S)
Resumes processing.

KNAX7502-E
An attempt to start adshmd failed.

Startup of the user-reply functionality's management daemon failed.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then restart the user-reply functionality's management daemon.

KNAX7503-E
An error occurred in adshmd.

An error occurred in the user-reply functionality's management daemon.

(S)
Terminates processing.

(O)
Eliminate the cause of the error, and then restart the user-reply functionality's management daemon.

KNAX7508-I
program-name canceled the response request. (job ID=job-ID, line=line-number, host name=host-name)

A reply-request message handled by the adshread com was canceled.

program-name
Name of the service or daemon that canceled the reply-request message

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script where the adshread command was issued

host-name
Name of the host on which the service or daemon is running

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1080

(S)
Resumes processing.

KNAX7509-I
The adshchmsg command canceled the response request. (job ID=job-ID, line=line-number, host name=host-
name)

The reply-request message with the reply-request message number specified in the -n option of the adshchmsg
command was canceled.

job-ID
Job ID assigned to the batch job by JP1/Advanced Shell

line-number
Line number in the job definition script where the adshread command was issued

host-name
Name of the host on which the service or daemon is running

(S)
Resumes processing.

KNAX7550-I
The service was installed successfully.

Registration of the AdshmSvcD or AdshmSvcE service was successful.

(S)
Resumes processing.

KNAX7551-E
Failed to install the service. (API=maintenance-information, error code=error-code)

Registration of the AdshmSvcD or AdshmSvcE service failed.

(S)
Cancels processing.

(O)
If the cause of this error is that the AdshmSvcD or AdshmSvcE service has already been registered, ignore this
message.
If this message was issued at the time the adshmsvcd or adshmsvce command was executed, check and, if
necessary, correct the options because an invalid option might have been specified.
If neither of the above applies, contact the system administrator.

KNAX7552-E
An error occurred during initialization of the [AdshmSvcD|AdshmSvcE] service. (API=maintenance-
information, error code=error-code)

An error occurred while initializing the AdshmSvcD or AdshmSvcE service.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1081

(S)
Cancels processing.

(O)
If the displayed maintenance information is jhs_env_conf_readConfig, check and, if necessary, revise the
system environment file because its contents might be invalid.
If the displayed maintenance information is not jhs_env_conf_readConfig or if the contents of the system
environment file are correct, contact the system administrator.

KNAX7553-E
The API "API-name" failed. (error code=error-code)

Creation or opening of Mutex failed during AdshmSvcD or AdshmSvcE service processing.

(S)
Cancels processing.

(O)
This error might occur because no user with an administrator role for the server is specified for the account used to
start the AdshmSvcD or AdshmSvcE service.
If this error was caused by a specification error, correct the error, and then re-execute the command; otherwise,
contact the system administrator.

KNAX7556-E
The logical host name is too long.

The logical host name specified for service registration is too long.

(S)
Cancels the service's registration processing.

(O)
Specify the appropriate logical host name, and then re-execute the command.

KNAX7560-I
The service was set up successfully.

Setup of the AdshmSvcD or dshmSvcE service was successful.

(S)
Resumes processing.

KNAX7561-E
Setup of the service failed. (API=maintenance-information, error code=error-code)

Setup of the AdshmSvcD or AdshmSvcE service failed. This message might be output because user-reply functionality
settings are invalid.

(S)
Cancels processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1082

(O)
Contact the system administrator, who must check and, if necessary, revise the settings of the user-reply functionality.

KNAX7600-E
Runtime environment for the custom job definition program is invalid.

The startup information for the custom job definition program started by JP1/AJS - View is invalid.

(S)
Terminates processing.

(O)
Take one of the following actions:

• Redefine the custom job because the custom job definition information might be invalid.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7601-E
The format of the startup data is invalid.

The startup information for the custom job definition program started by JP1/AJS - View is invalid.

(S)
Terminates processing.

(O)
Take one of the following actions:

• Redefine the custom job because the custom job definition information might be invalid.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7602-E
Ensure that the Advanced Shell custom job is registered correctly.

Information specified during custom job registration into JP1/AJS - View is invalid.

(S)
Terminates processing.

(O)
Take one of the following actions:

• Check the custom job registration information.

• Re-install JP1/Advanced Shell - Custom Job to use a new definition program.

KNAX7603-E
The definition program of Advanced Shell is invalid.

The definition program settings specified during custom job registration into JP1/AJS - View are invalid.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1083

(S)
Terminates processing.

(O)
Take one of the following actions:

• Check the definition program settings specified during custom job registration into JP1/AJS - View.

• Reinstall JP1/Advanced Shell - Custom Job to use a new definition program.

KNAX7604-E
An invalid character was entered in the definition-field-name field.

An invalid character was entered in the field indicated by definition-item-name in the job definition window.

(S)
Cancels the processing and returns to the input window.

(O)
Delete the invalid character entered in the field indicated by definition-item-name.

KNAX7605-E
Enter a value in the definition-field-name field.

The required input field indicated by definition-field-name was omitted in the job definition window.

(S)
Cancels the processing and returns to the input window.

(O)
Enter a value in the field indicated by definition-item-name.

KNAX7606-E
The registered definition data is invalid.

The registered definition information is invalid.

(S)
Cancels processing. The job definition is unchanged.

(O)
Take one of the following actions:

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• If you have used the ajsdefine command and JP1/AJS - Definition Assistant to define the job, check the
permitted types of characters and lengths of character strings, re-create the job, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7607-E
The definition data of Advanced Shell cannot be registered. (error code = error-code)

The job definition cannot be registered in JP1/AJS.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1084

(S)
Cancels processing. The job definition is unchanged.

(O)
Take one of the following actions:

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7608-E
The definition data of Advanced Shell cannot be registered. (error code = error-code, reason = error-details)

The job definition cannot be registered in JP1/AJS.

(S)
Cancels processing. The job definition is unchanged.

(O)
Take one of the following actions:

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7609-E
The previously registered Advanced Shell definition data could not be collected. (error code = error-code)

The previous JP1/Advanced Shell definition information that was registered cannot be obtained.

(S)
Cancels processing. The job definition is unchanged.

(O)
Take one of the following actions:

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

KNAX7610-E
Failed to discard the input data. (reason = error-details)

Failed to discard the input data.

(S)
Cancels processing. The job definition has not been discarded.

(O)
Take one of the following actions:

• Re-create the job that was created in JP1/AJS - View's Jobnet Editor, and then re-execute the command.

• Check that you are using the requisite version of JP1/AJS - View.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1085

KNAX7611-E
A logical error occurred. (function ID = function-ID)

An internal logical error occurred in JP1/Advanced Shell definitions.

(S)
Cancels processing.

(O)
Contact the system administrator.

KNAX7750-E
A logical error occurred. (function ID = function-ID, reason = error-details)

An internal logical error occurred in message output processing.

(S)
Cancels processing.

(O)
Contact the system administrator.

KNAX7770-E
Startup of the help file failed. (error code = error-code)

Startup of the Help file failed.

(S)
Returns to the initial screen.

(O)
Check the return code of the ShellExecute function indicated by error-code, and take appropriate action.

KNAX7771-E
The help file was not found. (file name = file-name)

The Help file cannot be found.

(S)
Returns to the initial screen.

(O)
Attempt to perform a recovery installation of the JP1/Advanced Shell - Custom Job.

KNAX7772-E
Startup of the help file failed. (reason = error-details)

Startup of the Help file failed.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1086

(S)
Returns to the initial screen.

(O)
Attempt to perform a recovery installation of JP1/Advanced Shell - Custom Job.

KNAX7773-E
Startup of the help file failed.

Startup of the Help file failed.

(S)
Returns to the initial screen.

(O)
Attempt to perform a recovery installation of JP1/Advanced Shell - Custom Job.

KNAX7800-I
adshcollect:RAS completed collection of file-name
collected-file-name
collected-file-name
...

A tar file (file-name) containing the indicated collected files was created.

(S)
Terminates processing.

(O)
Give the created file to the system administrator.

KNAX7801-I
adshcollect:RAS completed collection of file-name
collected-file-name
collected-file-name
...

The file indicated by file-name containing the indicated collected files was created.

(S)
Terminates processing.

(O)
Compress the created file with the user's compression tool, and then provide it to the system administrator.

KNAX7802-E
Usage: adshcollect Directory [-f FileName] [-e FileName] [-h LogicalHostName]
Directory : Specify output directory
-f FileName : Specify a config file

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1087

-e FileName : Specify an environment file
-h LogicalHostName : Specify a logical host

Option settings are invalid.

(S)
Terminates processing.

(O)
Specify the correct options, and then re-execute the command.

KNAX7803-E
adshcollect:RAS error:output-directory (Permission denied).

There is no access permission for output-directory.

(S)
Terminates processing.

(O)
Grant access permission for output-directory or specify another directory, and then re-execute the command.

KNAX7804-E
adshcollect:RAS error:output-directory (not found or not a directory).

output-directory does not exist or it is not a directory.

(S)
Terminates processing.

(O)
Specify the correct output destination, and then re-execute the command.

KNAX7805-E
adshcollect:RAS error:definition-file-name (not found or not a file).

definition-file-name does not exist or it is not a file.

(S)
Terminates processing.

(O)
Specify the correct definition file, and then re-execute the command.

KNAX7806-E
adshcollect:RAS error:definition-file-name (Permission denied).

There is no access permission for definition-file-name.

(S)
Terminates processing.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1088

(O)
Set the access permission for the definition file, and then re-execute the command.

KNAX7807-E
adshcollect:RAS error:environment-file-name (not found or not a file).

environment-file-name does not exist or it is not a file.

(S)
Terminates processing.

(O)
Specify the correct environment file, and then re-execute the command.

KNAX7808-E
adshcollect:RAS error:environment-file-name (Permission denied).

There is no access permission for environment-file-name.

(S)
Terminates processing.

(O)
Set the access permission for the environment file, and then re-execute the command.

KNAX7809-E
adshcollect:RAS error:definition-file-name ("keyword" Syntax Error).

An invalid keyword was specified in definition-file-name.

(S)
Terminates processing.

(O)
Specify the definition file correctly, and then re-execute the command.

KNAX7810-E
adshcollect:RAS error:specified-value (not found or not a file).

specified-value for keyword does not exist in the definition file, or it is not a file.

(S)
Terminates processing.

(O)
Specify the definition file correctly, and then re-execute the command.

KNAX7811-W
adshcollect:RAS error:specified-value (Permission denied).

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1089

There is no access permission for specified-value for keyword in the definition file.

(S)
Continues processing.

(O)
Grant the access permission for the specified value or specify another value, and then re-execute the command.

KNAX7812-E
adshcollect:RAS error:specified-value (not found or not a directory).

specified-value does not exist in the definition file, or it is not a directory.

(S)
Terminates processing.

(O)
Specify the definition file correctly, and then re-execute the command.

KNAX7813-E
adshcollect:RAS error:specified-value (not found or not a directory).

specified-value for the required keyword does not exist in the environment file, or it is not a directory.

(S)
Terminates processing.

(O)
Specify the environment file correctly, and then re-execute the command.

KNAX7814-E
adshcollect:RAS error:specified-value (Permission denied).

There is no access permission for specified-value for keyword in the environment file.

(S)
Terminates processing.

(O)
Grant access permission for the specified value or specify another value, and then re-execute the command.

KNAX7880-E
Failed to "API-name". (reason=error-details)

OS's API processing failed for the reason indicated by error-details.

(S)
Terminates the processing if OS's-API-name is not dladdr; resumes the processing if it is dladdr.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1090

(O)
If OS's-API-name is not dladdr, contact the system administrator. Eliminate the cause of the error, and then re-
execute the command.

KNAX7892-I
adshexec received abnormal signal.

A program error notification signal for the job controller was received.

(S)
Resumes processing.

KNAX7893-I
adshexec received signal "signal-name".

The signal indicated by signal-name for the job controller was received. This message is output when JP1/Advanced
Shell has received a signal required for execution control.

(S)
Resumes processing.

KNAX7894-E
adshexec is ended because of terminate request of second times.

The second SIGTERM signal for the job controller was received.

(S)
Terminates the job controller immediately. The system does not perform postprocessing, including deletion of
temporary files and postprocessing of files.

(O)
If necessary, perform postprocessing on the resources created by the batch job.

KNAX7895-E
adshexec ended abnormally.

The job controller terminated with an error.

(S)
Terminates the job controller immediately. The system does not perform postprocessing, including deletion of
temporary files and postprocessing of files.

(O)
If necessary, perform postprocessing on the resources created by the batch job.

KNAX7896-I
adshexec received terminate request.

A termination request for the job controller was received.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1091

(S)
Performs postprocessing and then terminates the job controller. If this message was output while debug execution
was stopped, the system re-executes the job definition script, performs postprocessing, and then terminates the job
controller.

KNAX7897-E
Fatal error occurred in maintenance-information.

A fatal error occurred in the adshexec command.

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX7900-I
The manual has not been installed.
Copy the HTML files and image files from the manual installation media.

The manual has not been copied from the manual installation medium to the installation directory.

(S)
Keeps the web browser open until the Close button is clicked.

(O)
Click the Close button to close the web browser, and then copy the manual from the manual installation medium to
the installation directory by following the procedure explained in the manual.

KNAX7901-I
The job controller will wait for all asynchronous processes at the end of the job.

The job controller places all asynchronous processes in wait status during job termination.

This message is not output for a child job that was started with MERGE specified for the SPOOLJOB_CHILDJOB
parameter of the root job's environment file.

(S)
Resumes processing.

KNAX7902-I
The job controller will run in input-mode.

The job controller will run in the mode indicated by input-mode.

input-mode
Input mode of the job controller. One of the modes shown below is displayed. For details about the input modes,
see 3.1.2(2) Job input modes.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1092

Displayed information Meaning

tty stdin mode Terminal input mode. The standard input is associated with the terminal.

non-tty stdin
mode

Non-terminal input mode. The standard input is not associated with the terminal.

(S)
Resumes processing.

KNAX7999-I
Advanced Shell ended. exit status=exit-status-code

The root job's job controller terminated the batch job with the return code indicated by exit-status-code.

(S)
Resumes processing.

KNAX9000-E
The validity period for a product expired. program=command-name

The license has expired.

command-name
The name of the command that caused the error

(S)
Terminates processing.

(O)
To continue using the program product, install a commercial version.

KNAX9001-E
Failed to authenticate the product. (command-name, internal-information)

License authentication failed.

command-name
The name of the command that caused the error

internal-information
Internal information that shows the error details

(S)
Terminates processing.

(O)
Contact the system administrator.

KNAX9002-E
An error occurred. detail=command-name, adshhlicauth error, rc=return-code

An unexpected error occurred during license authentication.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1093

command-name
The name of the command that caused the error

return-code
Internal information that shows the error details

(S)
Terminates processing.

(O)
Contact the system administrator.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1094

11.4 Details of errors

This section explains the information that is displayed by error-details in Windows and UNIX message texts and that
is specific to JP1/Advanced Shell.

11.4.1 Details of errors (Windows)
The messages issued by JP1/Advanced Shell might contain information about the C run-time function and Win32(R)

API errors.

The table below lists and describes the causes of typical C run-time function errors that are most likely to occur in a
JP1/Advanced Shell environment (Windows) and the actions to be taken. For information about other errors that are
not listed in the table and Win32 API errors, see the documentation for the Windows being used.

Table 11‒5: Causes of and actions in response to C run-time function errors (Windows)

Mnemonic Error details Cause Action

ENOENT No such file or
directory

A file or directory cannot be found. Check if the file exists.

EIO Input/Output error An input/output error occurred. Take appropriate action according to the
Windows or hardware information.

ENXIO No such device or
address

There is no access permission for the file. Check if there is such a device or that the
device is enabled. If the device is disabled,
enable it. For other causes, check the
documentation for the Windows being used.

E2BIG Arg list too long There is a shortage of area for the processing
program's arguments or environment
variables.

Check the processing program's arguments.
Check and, if necessary, revise the
environment variables specified in
parameters such as export and the usage of
extended script commands in the file
management function, and then delete any
unneeded environment variable settings.

EAGAIN Resource
temporarily
unavailable

There are too many processes, or a temporary
memory shortage has occurred.

If the error recurs when the command is re-
executed, terminate unneeded processes.

ENOMEM Not enough space Possible causes are as follows:
• A new process cannot be created due to a

shortage of swap area or virtual memory.
• There are too many processes, or some

processes are using too much memory.

Take the following actions:
• If there is a shortage of swap area or

virtual memory, expand it. If the swap
area or virtual memory cannot be
expanded, terminate unneeded processes.

• If some processes are using too much
memory, evaluate whether they can be
terminated.

EACCES Permission denied Possible causes are as follows:
• The access permission is invalid.
• A file must be specified in an argument of

a JP1/Advanced Shell command, but a
directory was specified.

Take the following actions:
• Check if the file access permission is

correct.
• Check the argument of the JP1/Advanced

Shell command to determine whether a
directory is specified instead of a file.

• If you specified the
CHILDJOB_SHEBANG parameter,
check the specified parameter value and

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1095

Mnemonic Error details Cause Action

EACCES Permission denied Possible causes are as follows:
• The access permission is invalid.
• A file must be specified in an argument of

a JP1/Advanced Shell command, but a
directory was specified.

#! executable-program-path at the
beginning of the file whose execution was
attempted.

EFAULT Bad address An attempt was made to write data into an
inaccessible area. The disk to which the data
is to be written might have been disconnected.

If disks are being switched during system
switchover, ignore this error message because
there is no problem.
If you disconnected the disk by mistake,
restore the corresponding file from its backup
or initialize the file first before using it.
If neither of the above applies, contact the
system administrator.

EEXIST File exists An attempt was made to create a file, but the
file already exists.

Rename the file and re-execute the command.
If the existing file is not needed, delete it and
re-execute the command.

EINVAL Invalid argument An error was detected in memory
management information.

Contact the system administrator.

ENFILE Too many open files
in system

The number of open files exceeded the
maximum.

Check the total number of files in use in the
system and close unneeded files.

EMFILE Too many open files Too many files are open in the corresponding
process.

Contact the system administrator.

EFBIG File too large The file size exceeded the system limit. Check and, if necessary, revise the size of a
file to be used.

ENOSPC No space left on
device

There is not enough free space in the file
system.

Allocate more free space.

11.4.2 Details of errors (UNIX)
The table below lists and describes the causes of typical errors that occur in a JP1/Advanced Shell environment and the
actions to take. For information about other errors that are not listed in the table, see the documentation for the UNIX
being used.

This subsection describes only the errors that are most likely to occur in a JP1/Advanced Shell environment. For details
about other errors that are not described here, check the UNIX errno definition file (errno.h), which uses the
mnemonic corresponding to the error number (errno) displayed in the messages.

Table 11‒6: Causes of and actions in response to the error details (UNIX)

Mnemonic Error details Cause Action

ENOENT No such file or
directory

A file or directory cannot be found. Check if the file exists.

EIO I/O error An input/output error occurred. Take appropriate action according to the
UNIX or hardware information.

ENXIO No such device or
address

There is no access permission for the file. Check if there is such a device or that the
device is enabled. If the device is disabled,
enable it. For other causes, check the
documentation of the UNIX being used.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1096

Mnemonic Error details Cause Action

E2BIG Arg list too long There is a shortage of area for the processing
program's arguments or environment
variables.

Check the processing program's arguments.
Check and, if necessary, revise the
environment variables specified in
parameters such as export and the usage of
extended script commands in the file
management function, and then delete
unneeded environment variable settings.

EAGAIN Resource
temporarily
unavailable

There are too many processes, or a temporary
memory shortage has occurred.

If the error recurs when the command is re-
executed, terminate unneeded processes.

ENOMEM Not enough space Possible causes are as follows:
• A new process cannot be created due to a

shortage of swap area or virtual memory.
• There are too many processes or some

processes are using too much memory.

Take the following actions:
• If there is a shortage of swap area or

virtual memory, expand it. If the swap
area or virtual memory cannot be
expanded, terminate unneeded processes.

• If some processes are using too much
memory, evaluate whether they can be
terminated.

EACCES Permission denied The access permission is invalid. Check if the file access permission is correct.

EFAULT Bad address An attempt was made to write data into an
inaccessible area. The disk to which data is to
be written might have been disconnected.

If disks are being switched during system
switchover, ignore this error message because
there is no problem.
If you disconnected the disk by mistake,
restore the corresponding file from its backup
or initialize the file first before using it.
If neither of the above applies, contact the
system administrator.

EEXIST File exists An attempt was made to create a file, but the
file already exists.

Rename the file, and then re-execute the
command. If the existing file is not needed,
delete it and re-execute the command.

EINVAL Invalid argument An error was detected in the memory
management information.

Contact the system administrator.

ENFILE File table overflow The number of open files exceeded the
maximum.

Increase in the UNIX kernel parameter the
maximum number of files that can be open in
the system (maxuproc nofiles).

EMFILE Too many open files Too many files are open in the corresponding
process.

Increase in the UNIX kernel parameter the
maximum number of files that can be open in
a process (nofiles).

EFBIG File too large The file size exceeded the system limit. Check and, if necessary, revise the size of a
file to be used.

ENOSPC No space left on
device

There is not enough free space in the file
system.

Allocate more free space.

ENAMETOO
LONG

File name too long A file name is too long. Check and, if necessary, revise the file name
length.

11.4.3 Details of errors (specific to JP1/Advanced Shell)
The table below lists and describes the causes of and actions to be taken for the error details that are displayed specifically
by JP1/Advanced Shell.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1097

Table 11‒7: Causes of and actions in response to the error details (specific to JP1/Advanced Shell)

Message ID Error details Cause Action

KNAX4419-E A line exceeds
the maximum line
size

The size of a line exceeds the maximum. Check the size of the line and specify it
to not exceed the maximum.

KNAX4420-E The common
application data
folder cannot be
found

A common application data folder
cannot be found.

Check the execution environment for
any problem.

The shared
documents folder
cannot be found

A shared document folder cannot be
found.

Check the execution environment for
any problem.

KNAX6035-E The file
descriptor is
incorrectly
specified

A specified file descriptor is not a one-
digit number.

Check and, if necessary, revise the
specified file descriptor.

The file
descriptor cannot
be used

A specified file descriptor is for a closed
file or a file whose manipulation is
prohibited by another process.

Check if the file descriptor is open. If it
is open, check if its manipulation is being
prohibited by a means such as locking by
another process.

The file
descriptor is not
open for writing

An attempt was made to write to the file
descriptor of a closed file.

Check and, if necessary, revise the
specified file descriptor.

The file
descriptor is not
open for reading

An attempt was made to read the file
descriptor of a closed file.

Check and, if necessary, revise the
specified file descriptor.

No background
process exists

A file descriptor for a background
process was specified, but the
background process did not exist.

Check if the background process is
running or has already been terminated.

KNAX6305-E The file is not a
regular file

A specified file is not a regular file. Check and, if necessary, revise the
specified file.

KNAX6333-E The file is not a
regular file

A specified file is not a regular file. Check and, if necessary, revise the
specified file.

KNAX6588-E Error in signal
handler

An error occurred during signal handler
processing.

Check the execution environment for
any error.

11.4.4 Handling Error Information Displayed in the User-Reply
Functionality

This section explains the information output by the error messages listed below when the user-reply functionality is
used and describes the appropriate actions to be taken in response to the messages. When the adshcollect command
is used to collect user-reply functionality information, you must execute the command with the administrator permission.

• KNAX7402-E
• KNAX7460-E
• KNAX7461-E
• KNAX7462-E

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1098

(1) Error information displayed in the KNAX7402-E message and how to
respond to it

Table 11‒8: Error information displayed in the KNAX7402-E message and how to respond to it

Error
number

Meaning Corrective action

1 An unimplemented API call
was made.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

2 An attempt to reference shared
memory failed.
The user-reply functionality's
management daemon or
service might not be running.

Operator
Check that the job environment file settings are correct. The SPOOL_DIR parameter cannot
be specified in a job environment file.
In addition, contact a user with an administrator role on the machine and confirm the
following:
• The user-reply functionality's management daemon or service is running
• The environment file settings are correct

User with an administrator role on the machine
Confirm the following:
• The user-reply functionality's management daemon or service is running
• The environment file settings are correct

The SPOOL_DIR parameter can be specified only in the system environment file; it
cannot be specified in a job environment file.

• The user-reply functionality's management daemon or service was restarted after changes
were made to the system environment file

If the problem persists, contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

3 The amount of unused
memory space is insufficient.

Contact a system administrator.
If you are a system administrator, re-estimate the amount of memory required.

4 An invalid argument was
passed.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

5 A data inconsistency was
detected.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

6 An unsupported character
encoding was specified.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

7 An underflow occurred. Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

8 An overflow occurred. Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

9 The order of API calls was not
valid.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

10 An inconsistency occurred in
the status of an internal object.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1099

Error
number

Meaning Corrective action

11 Access to a resource was
denied.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

12 A specified file does not exist. Check that you have write permission for the log directories specified in the environment
file and the log files under them.

13 A file could not be opened. Check that you have write permission for the log directories specified in the environment
file and the log files under them.

14 Memory mapping could not be
created for a file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

15 An error occurred in reading
from a file.

Check that you have read permission for the log directories specified in the environment file
and the log files under them.

16 An error occurred in writing to
a file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

17 An error occurred in seek
processing on a file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

18 An error occurred in flush
processing on a file.

Check that sure you have write permission for the log directories specified in the environment
file and the log files under them.

19 An error occurred in renaming
a file.

Check that sure you have write permission for the log directories specified in the environment
file and the log files under them.

20 An error occurred in copying a
file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

21 An error occurred in deleting a
file.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

22 An attempt to create a
directory failed.

Check that you have write permission for the log directories specified in the environment
file and the log files under them.

23 An interprocess lock failed. Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

24 An attempt was made to use a
function that was disabled by
the user program.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

25 An attempted overwrite was
prohibited by the user
program.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

400 A parameter was not valid. Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

404 A reply-request message was
deleted by the adshchmsg
command, or shared memory
could not be referenced.

If you are the operator, contact a user with an administrator role on the machine and check
the following:
• Whether the reply-request message was deleted by means of the -d option to the
adshchmsg command

• Whether the user-reply functionality's management daemon or service is running

If you are a user with an administrator role on the machine, check that the user-reply
functionality's management daemon or service is running. If the problem persists, contact a
system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1100

Error
number

Meaning Corrective action

409 Reply-request messages from
the same PID were output.

The reply-request message might have been output simultaneously in multiple threads.
Check and, if necessary, revise the application.

503 The number of reply-waiting
events exceeded the
maximum.

Check and, if necessary, revise the value of the USERREPLY_WAIT_MAXCOUNT parameter.

(2) Error information displayed in the KNAX7460-E, KNAX7461-E, and
KNAX7462-E messages and how to respond to it

Table 11‒9: Error information displayed in the KNAX7460-E, KNAX7461-E, and KNAX7462-E
messages and how to respond to it

Error
number

Meaning Corrective action

10 A parameter was not valid. Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

11 The order is which functions
were issued was not valid.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

30 A specified attribute was
already registered.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

32 The maximum number of
extended event attributes that
can be registered has been
exceeded.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

33 The total size of all extended
event attributes that can be
registered has been exceeded.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

40 A connection to the event
service could not be
established.

Check that the JP1/Base event service has started on the local host.

43 An input/output error
occurred.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

50 A JP1/Base library could not
be found.

Install JP1/Base and re-execute the job.

51 There is not enough memory. Contact a system administrator.
If you are a system administrator, re-estimate the amount of memory required.

52 The number of open files has
reached the maximum.

Contact a system administrator.
If you are a system administrator, re-estimate the number of FDs that can be opened.

60 A JP1 event has not been
initialized.

Contact a system administrator.
If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

70 A system error occurred. Contact a system administrator.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1101

Error
number

Meaning Corrective action

70 A system error occurred. If you are a system administrator, collect information in accordance with 10.
Troubleshooting, and then find a workaround or take corrective action.

11. Messages

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1102

Appendixes

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1103

A. Coverage Information That Is Acquired

Coverage information includes C0 information and C1 information. The items for which coverage information is
acquired are described in the sections below.

Note that coverage information is not acquired for the following items:

• Conditional expressions

• Arithmetic operations

• Variables

A.1 Commands for which coverage information is acquired
The tables in this section show for the following types of commands the individual commands for which coverage
information is acquired:

• Standard shell commands

• Extended shell commands

• Extended script commands

• Commands other than the above

(1) Standard shell commands

(a) Special built-in commands
Table A‒1: Special built-in commands for which coverage information is acquired

Item C0 C1

. (dot) command Y N

: (colon) command Y N

break command Y N

continue command Y N

eval command Y N

exec command Y N

exit command Y N

export command Y N

readonly command Y N

return command Y N

set command Y N

shift command Y N

trap command Y N

typeset command Y N

A. Coverage Information That Is Acquired

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1104

Item C0 C1

unset command Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

(b) Regular built-in commands
Table A‒2: Regular built-in commands for which coverage information is acquired

Item C0 C1

alias command Y N

builtin command Y N

cd command Y N

command Y N

echo command Y N

false command Y N

getopts command Y N

kill command Y N

let command Y N

print command Y N

pwd command Y N

read command Y N

test command Y N

times command Y N

true command Y N

ulimit command Y N

umask command Y N

unalias command Y N

wait command Y N

whence command Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

(2) Extended shell commands
Table A‒3: Extended shell commands for which coverage information is acquired

Item C0 C1

adshecho command Y N

A. Coverage Information That Is Acquired

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1105

Item C0 C1

adshread command Y N

adshscripttool command Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

(3) Extended script commands
Table A‒4: Extended script commands for which coverage information is acquired

Item C0 C1

#-adsh_file command Y N

#-adsh_file_temp command Y N

#-adsh_job command Y N

#-adsh_job_stop command Y N

#-adsh_path_var command Y N

#-adsh_rc_ignore command Y N

#-adsh_script command Y N

#-adsh_spoolfile command Y N

#-adsh_step_start command Y Y#1

#-adsh_step_error command Y Y#2

#-adsh_step_end command Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

#1
For details about the C1 information that is displayed, see 3.9.4(3)(e) #-adsh_step_start command.

#2
For details about the C1 information that is displayed, see 3.9.4(3)(f) #-adsh_step_error command.

(4) Commands other than the above
The following table indicates whether coverage information is acquired for commands outside of JP1/Advanced Shell
(including OS commands and user-created commands).

Table A‒5: Commands other than the above for which coverage information is acquired

Item C0 C1

Commands other than the above Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

A. Coverage Information That Is Acquired

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1106

A.2 Control statements for which coverage information is acquired
The following table indicates for each control statement whether coverage information is acquired.

Table A‒6: Control statements for which coverage information is acquired

Item C0 C1

if N Y

if condition Y N

then N N

elif N Y

elif condition Y N

else N Y

fi N C

for N Y

variable N N

in N N

wordlist N N

do N N

done N Y

while N Y

while condition Y N

until N Y

until condition Y N

case N N

expression N N

pattern) N Y

*) N Y

;; N N

esac N C

Legend:
Y: Coverage information is acquired and displayed.

C: Coverage information is acquired and displayed in the following cases:
fi: When the else clause is not specified
esac: When the * pattern is not specified. The * pattern is the default matching pattern for when none of the
other patterns in the case statement is matched.

N: No coverage information is acquired.

A. Coverage Information That Is Acquired

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1107

A.3 Functions for which coverage information is acquired
The following table indicates whether coverage information is acquired when a function is called. No coverage
information is acquired when a function is defined.

Table A‒7: Function calls for which coverage information is acquired

Item C0 C1

Call of the function name Y N

Execution of the function N N

Execution of the function name N N

Execution of the () portion N N

Execution of processing starting with { N N

Execution of commands and control statements Y C

Execution of processing ending with } N N

Legend:
Y: Coverage information is acquired and displayed.
C: Coverage information is acquired and displayed when there is C1 information in the control statements that are executed.
N: No coverage information is acquired.

A.4 Metacharacters for which coverage information is acquired
Coverage information is acquired only for command separators, not for other uses of metacharacters. The following
table indicates the command separators for which coverage information is acquired.

Table A‒8: Command separators for which coverage information is acquired

Item C0 C1

cmd_1;cmd_2 Y N

cmd_1&&cmd_2 Y N

cmd_1||cmd_2 Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

Note that no coverage information is acquired for metacharacters that are used for the following purposes:

• Comments

• Line continuations

• Variable substitutions

• Command substitutions

• File name substitutions

• Redirects

• Here documents

A. Coverage Information That Is Acquired

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1108

• Command groupings

• Other metacharacters

A.5 Shell variable operations for which coverage information is acquired
The following table shows the coverage information acquired when you assign a value to a shell variable.

Table A‒9: Shell variable operations for which coverage information is acquired

Item C0 C1

shell-variable=value Y N

Legend:
Y: Coverage information is acquired and displayed.
N: No coverage information is acquired.

A. Coverage Information That Is Acquired

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1109

B. Reference Material for This Manual

This appendix provides reference information for reading the manual.

B.1 Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):

JP1/AJS

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Overview (3021-3-318(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System
Design (Configuration) Guide (3021-3-319(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System
Design (Configuration) Guide (3021-3-319(E))

• Job Management Partner 1 Version 10Job Management Partner 1/Automatic Job Management System 3 System
Design (Work Tasks) Guide (3021-3-320(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Configuration Guide 1 (3021-3-321(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Configuration Guide 2 (3021-3-322(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Administration Guide (3021-3-323(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Troubleshooting (3021-3-324(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Operator's Guide (3021-3-325(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Command Reference 1 (3021-3-326(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Command Reference 2 (3021-3-327(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Linkage Guide (3021-3-328(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Messages 1 (3021-3-329(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3
Messages 2 (3021-3-330(E))

JP1/NETM/DM

• Job Management Partner 1 Version 9 Job Management Partner 1/Software Distribution Description and
Planning Guide (3020-3-S79(E)), for Windows systems

• Job Management Partner 1 Version 9 Job Management Partner 1/Software Distribution Administrator's Guide
Volume 1 (3020-3-S81(E)), for Windows systems

• Job Management Partner 1 Version 8 Job Management Partner 1/Software Distribution SubManager (3020-3-
L42(E)), for UNIX systems

B. Reference Material for This Manual

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1110

JP1/Base

• Job Management Partner 1 Version 10 Job Management Partner 1/Base User's Guide (3021-3-301(E))

• Job Management Partner 1 Version 9 Job Management Partner 1/Base User's Guide (3020-3-R71)

JP1/IM

• Job Management Partner 1 Version 10 Job Management Partner 1/Integrated Management - Manager
Configuration Guide (3021-3-306(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Integrated Management - Manager
Administration Guide (3021-3-307(E))

B.2 Conventions: abbreviations
This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

JP1/Advanced Shell Job Management Partner 1/Advanced Shell

Job Management Partner 1/Advanced Shell - Developer

JP1/AJS JP1/AJS3 Job Management Partner 1/Automatic Job Management System 3 - Agent
Job Management Partner 1/Automatic Job Management System 3 - Manager
Job Management Partner 1/Automatic Job Management System 3 - View

JP1/AJS - Agent JP1/AJS3 - Agent Job Management Partner 1/Automatic Job Management System 3 - Agent

JP1/AJS - Manager JP1/AJS3 - Manager Job Management Partner 1/Automatic Job Management System 3 - Manager

JP1/AJS - View JP1/AJS3 - View Job Management Partner 1/Automatic Job Management System 3 - View

JP1/IM JP1/IM - Manager Job Management Partner 1/Integrated Management - Manager

JP1/IM - View Job Management Partner 1/Integrated Management - View

UNIX Linux Red Hat Enterprise Linux 5(AMD/Intel 64)
Red Hat Enterprise Linux 5(x86)
Red Hat Enterprise Linux 5 Advanced Platform(AMD/Intel 64)
Red Hat Enterprise Linux 5 Advanced Platform(x86)
Red Hat Enterprise Linux Server 6 (64-bit x86_64)
Red Hat Enterprise Linux Server 6 (32-bit x86)

AIX AIX V6.1
AIX V7.1

HP-UX HP-UX 11i V3 (IPF)

Solaris Solaris 10 (SPARC)
Solaris 11 (SPARC)

B.3 Conventions: directory names
This manual uses the term directory wherever possible as a generic term for what Windows calls a folder and UNIX
calls a directory.

B. Reference Material for This Manual

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1111

In connection with this convention, this manual uses / as the directory delimiter. In Windows-specific cases, \ is used
as the folder delimiter.

B.4 Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

B. Reference Material for This Manual

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1112

C. Glossary

This glossary defines the terminology used in this manual.

.env file
A file in which are set the path names to the ENV environment variables and that is loaded when the shell
starts. You can use the KSH_ENV_READ environment setting parameter to specify whether this file is to
be loaded.

argument
A generic term for an item that is specified following a command name. Multiple arguments are separated
by a delimiter on the command line or in a job definition script.

arithmetic operation
Any of the calculations performed using arithmetic operators in a job definition script. In an arithmetic
operation, the values assigned to variables are handled as numeric values.

base name
The portion of a file name excluding the .extension portion. For example, the base name of
adshexec.exe, the program for executing batch jobs, is adshexec.

batch job
A job executed by batch processing.

batch operation server
A server on which JP1/Advanced Shell is installed that is used to execute batch jobs. JP1/AJS - Agent or
JP1/AJS - Manager must be installed when JP1/AJS is used.

batch processing
The process of gathering collected data and transactions and processing them in bulk on a regular schedule,
such as every day, week, or month.

breakpoint
Coding that forces execution to stop and that is inserted into a job definition script in order to pause the
processing during development in order to check the operational status of the job definition script. The
debugger interrupts the processing at a breakpoint so that the developer can check the values of variables
and registers at the time of the interruption.

built-in command
A command that is included as part of the shell, and thus requires only the shell itself to be executed. Built-
in commands can be used in job definition scripts, and they can be executed from the shell or from the
command prompt. JP1/Advanced Shell supports regular built-in commands and special built-in commands.

child job
A job whose job definition script is executed as a descendant process of the root job. Child jobs are executed
in accordance with one of the following parameter specifications or their default settings:

• CHILDJOB_EXT parameter

C. Glossary

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1113

• CHILDJOB_PGM parameter

• CHILDJOB_SHEBANG parameter

child job execution log output file
The output file for the job execution log of a child job, which is created by the child job and output in the
spool job directory of the root job.

command
Generic name for any instruction that can be used in JP1/Advanced Shell. Commands are executed from
the shell or the command prompt, as well as from job definition scripts.

command grouping
Facility for executing multiple commands as a unit in JP1/Advanced Shell.

command line
The line displayed to the user for entering commands. In the Windows command prompt, input is entered
after the > on the command line. In the UNIX shell, input is entered after the % on the command line.

command prompt
The window in a Windows environment that requests that a command be entered.

command separator
The functionality that allows developers to write more than one command on a single line of a job definition
script in JP1/Advanced Shell.

conditional
A test that controls the processing branch that is to execute based on the results of a conditional expression
in a control statement in a job definition script.

conditional expression
A formula used in a job definition script that expresses a calculation using numeric comparisons, string
comparisons, file attributes, logical operators, and the ternary operator.

conditional parameter
Any of the parameters that are set in an environment file and that are specified in order to configure the
environment setting parameters and export parameters that are valid only in the physical host or in a specific
logical host.

console
The terminal screen.

control statement
Same meaning as script control statement.

core dump
A source of maintenance information collected by a trace program and consisting of core files and dump
files. When a problem occurs, the contents of memory are saved to a file that can be used to assist with
troubleshooting.

C. Glossary

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1114

coverage information
Information that provides measurements in tests of the extent of coverage. The two types of coverage
information are C0, which is statement coverage information, and C1, which is branch coverage
information. C0 measures the ratio (%) of commands in a job definition script that execute, while C1
measures the ratio (%) of branches in a job definition script that execute.

custom job
A predefined job for executing a task with a specific purpose in JP1/AJS. The custom job component for
JP1/Advanced Shell is required in order to take advantage of JP1/AJS's custom job functionality in JP1/
Advanced Shell.

debug
The process of testing a job definition script created in the development environment or of investigating
errors in a script. To debug, you must launch the debugger.

debugger
A program for testing a job definition script created in the development environment and for investigating
errors in a script. In the Windows environment, the debugging functions of the JP1/Advanced Shell editor
are used. In the UNIX environment, the debugger is started by specifying the -d option in the adshexec
command.

definition file
A file that defines the directories into which data for troubleshooting is to be collected.

development environment
An environment provided by JP1/Advanced Shell - Developer that supports development of job definition
scripts for batch processing.

dialog box
A window that asks the user to enter a response.

editor
A program for creating job definition scripts efficiently by taking advantage of a variety of features provided
in the development environment.

environment file
A file that contains environment information.

environment information
Information, such as environment variables and environment file parameters, that must be set before JP1/
Advanced Shell starts.

environment setting parameter
Any of the parameters that are set in an environment file for the purpose of defining the JP1/Advanced
Shell execution environment. These parameters are specified in the format #-adsh_conf parameter-
value.

environment variable
Any of the variables that contain various system settings that can be set by the user.

C. Glossary

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1115

execution environment
The environment provided by JP1/Advanced Shell for execution of batch operations. JP1/Advanced Shell
refers to the execution environment in its narrow sense.

export parameter
A parameter that is set in the environment file and whose function is to set an environment variable when
a command starts.

extended script command
A command that is executed in a job definition script. Compared to normal shell script commands, these
commands offer the additional capability to control batch job execution. They are also referred to as job
execution control commands. In JP1/Advanced Shell, these commands start with #-adsh.

extended shell command
A built-in command that is internal to the shell and executed by the shell itself. Extended shell commands
can be used in job definition scripts.

extended shell variable
A shell variable with a special meaning that is provided by JP1/Advanced Shell.

external command
Any of the UNIX-compatible commands, OS-provided commands, user-created executable files, and other
programs that are not shell built-in commands.

fault injection mode
A mode used during debugging to simulate the occurrence of an error.

In UNIX, you enable or disable the fault injection mode with the joberrmode command. In Windows,
you choose the Fault Injection Mode menu item in the JP1/Advanced Shell editor.

file allocation
In JP1/Advanced Shell, such operations as registering postprocessing of files are referred to as file
allocation.

file descriptor
A numeric identifier for distinguishing the different types of input and output in JP1/Advanced Shell. In
JP1/Advanced Shell, the standard output is assigned 1, the standard error output is assigned 2, and 3 through
9 can be allocated and used for other purposes.

flow control
Functionality for controlling the event-issuance interval for JP1 events that are issued during execution of
the adshread and adshecho commands.

here document
A redirection functionality used in a job definition script by which standard input is generated with the job
definition script.

job controller
A program for controlling a job while the job is running. The adshexec command is the job controller.

C. Glossary

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1116

job definition script file
A program file that defines a job that has been prepared as a job definition script.

job execution log
A collection of messages output by a job, including the start and end messages for the job and job steps.
At the end of a job, the contents of the job execution log are sent to the standard error output by the job
controller.

job ID
An identification number (sequentially generated between 000001 and 999999) that is assigned to a job
by JP1/Advanced Shell at the time the job is executed. Each job is assigned a unique identifier, so that each
job can be identified individually on the basis of its job ID. Once job ID 999999 has been assigned, the
next job is assigned job ID 000001.

job information
Information associated with a job, such as the job name, job ID, and job step names.

jobnet
A set of jobs whose execution order is defined. Jobs within the jobnet execute automatically in the
predefined order. The jobnet is a functionality provided by JP1/AJS.

job scheduler
A product that performs job scheduling. It is part of a suite of products in JP1/Advanced Shell used to link
to JP1/AJS.

job step
A range of processing within a job defined in a job definition script that demarcates a unit of specific
processing. The job step is the smallest unit for performing a specific operation (task) in JP1/Advanced
Shell. A job is made up of a collection of job steps. Job steps are defined with the #-
adsh_step_start, #-adsh_step_error (optional), and #-adsh_step_end commands.

JP1/Advanced Shell
A product used to create and execute batch jobs from job definition scripts. JP1/Advanced Shell can be
divided into JP1/Advanced Shell and JP1/Advanced Shell - Developer. In this narrow sense, JP1/Advanced
Shell refers to the execution environment in which batch jobs are executed from job definition scripts.
Batch jobs in both Windows and UNIX can be run from the same job definition script.

JP1/Advanced Shell - Custom Job
A program for creating jobs that are custom-defined in the operation management console in JP1/Advanced
Shell.

JP1/Advanced Shell - Developer
A product used for developing job definition scripts for batch jobs. This term also refers to the development
environment in which job definition scripts are developed.

JP1/AJS3
Abbreviation for JP1/Automatic Job Management System 3, which is the successor product to JP1/AJS2.
By linking JP1/Advanced Shell to JP1/AJS3, you can achieve distributed processing among multiple PCs.

C. Glossary

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1117

log
Historical information that is output by the computer. Timestamps, messages, and similar items are output
as logs.

long option
A type of option specified in command arguments. A long option begins with two consecutive hyphens
(--) followed by a character string.

metacharacter
A character (or character string) that has a special meaning in a job definition script.

operand
A type of command argument specified on the command line. An operand is a default command argument
that is specified in addition to option names and option values. Parameter values are also called operands.

option
In general, a pre-selected capability that is added to the instructions provided by a computer input device.

In JP1/Advanced Shell, a command argument consisting of one hyphen (-) followed by one character is
called a short option, and a command argument consisting of two consecutive hyphens (--) followed by
a character string is called a long option.

An argument specified immediately following an option is the option's value.

pipe
A functionality for linking the standard output of a previous command to the standard input of a subsequent
command.

program output data file
A file to which a user program can output its execution results. JP1/Advanced Shell creates the file name
automatically in order to consolidate the user program's output results with the system execution log.

quotation
Either the single quotation mark (') or the double quotation mark (").

redirection
Capability before a command in a job definition script is executed to change the input source for the
information needed to execute the command or the output destination for the execution results. Typically,
the keyboard is assigned as the standard input and the screen is assigned as the standard output, but
redirection enables these assignments to be changed.

regular built-in command
Any of a set of the built-in commands among the standard shell commands. In the case of a regular built-
in command, even if its command syntax is invalid, it does not exit the shell that is executing the command
(see also special built-in command).

C. Glossary

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1118

regular file
A file used for input or output by a job definition script. Regular files might remain after the job finishes,
or regular files might be deleted during execution of the job. Regular files can be defined with the #-
adsh_file command or the adshfile command.

reply-request message
A message that asks the operator to enter a reply.

reply-waiting event
A JP1 event that provides notification of a reply-request message.

reserved script command
A command that can be used as a reserved word in a job definition script. An example is the time command.

return code
A code that is returned to report the execution result of a job definition script or a command.

root job
A job executed from JP1/AJS or a login shell that is not a child job.

script
A text file into which is assembled a series of commands that can be executed sequentially from the shell.
A script in JP1/Advanced Shell is called a job definition script, and they can be executed in both the
Windows and UNIX environments.

script control statement
A statement for managing commands in a job definition script. Examples include the if, for, while,
until, and case statements.

script file
A file in which a script that has been created is saved.

shell
A program that interprets instructions provided by a computer input device and passes them to the OS.

shell command
Generic name for any command used in JP1/Advanced Shell that is executed in the shell or from the
command prompt.

shell operation command
A command that is provided as an executable binary file or a shell script. The two types of shell operation
commands are those that can be used only in job definition scripts and those that can be used not only in
job definition scripts but from OS shells and the command prompt. The shell operation commands include
the adshexec command (executes batch jobs).

shell option
Any of the pre-selected capabilities that are added to the instructions provided by a computer input device
to the shell.

C. Glossary

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1119

shell script
A text file into which you assemble a series of commands so that you can then execute those commands
sequentially from the shell. A shell script in JP1/Advanced Shell is referred to as a job definition script,
and it can be executed in both the Windows and UNIX environments.

shell variable
An area of memory assigned as a value in a job definition script. You can reference the value of a created
variable.

short option
A type of option specified in command arguments. A short option begins with a hyphen (-) followed by
one character.

signal
A mechanism in UNIX by which processes report to each other the occurrence of asynchronous events.
For example, a signal is sent when a job is forcibly terminated in JP1/Advanced Shell.

special built-in command
Any of a set of the built-in commands among the standard shell commands. In the case of a special built-
in command, if its command syntax is invalid, it exits the shell that is executing the command (see also
regular built-in command).

spool
The location where JP1/Advanced Shell stores the execution results of jobs and job execution logs.

spool job
The execution results for each job created in the spool directory.

standard error output (stderr)
A stream to which a program outputs its error messages and other messages.

standard input (stdin)
A stream from which a program receives its input data.

standard output (stdout)
A stream to which a program outputs its data.

standard shell command
A built-in command that is internal to the shell and executed in a process in the shell itself. Standard shell
commands can be used in job definition scripts.

subshell
In a UNIX environment, a child process that has the same name as the job controller, is neither a root job
nor a child job, and is created temporarily automatically when an external command or a specific syntax
is executed in a job definition script.

symbolic link
A link that is implemented as a file that contains the actual file path.

C. Glossary

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1120

system execution log
A log output by a job controller in JP1/Advanced Shell in order to facilitate integrated management of job
execution status by the system administrators. Log information from multiple job controllers can be output
to a single log.

temporary file
A file whose use is transient during job execution. Temporary files are created by a job or job step, and
they are deleted automatically when the job terminates. Temporary files are defined with the #-
adsh_file_temp command.

trace log
Information collected to assist in investigating and resolving problems that occur in JP1/Advanced Shell.

trap action
An action that is defined in the trap command's action argument.

UNIX-compatible command
Any of the standard UNIX commands, such as the ls command, that can be used in JP1/Advanced Shell.
These commands can also be used in a Windows environment, which facilitates interoperability between
UNIX and Windows.

variable
A location or array in memory that is used to handle values in a job definition script. Examples of variables
include shell variables and environment variables.

watchpoint
A special breakpoint that stops a job definition script when the value of a variable or expression changes.
A watchpoint can be managed in the same way as any other type of breakpoint.

wildcard
A character, such as the asterisk (*) or the question mark (?), that can be specified as a stand-in for any
character or character string. The asterisk (*) represents any character string, and the question mark (?)
represents any single character.

In addition, you can use square brackets ([]) to obtain a match with any of the characters in the character
string enclosed in the square brackets. You can also use the hyphen (-) to separate values constituting a
range, or the exclamation mark (!) for a condition to be true when none of the characters enclosed in square
brackets results in a match. You can also use the comma (,) to assemble a comma-separated list of character
strings, any one of which can be selected.

C. Glossary

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1121

Index

Symbols
-

script_0 779
script_su1 780
shell variable 365

--
print command 816
set command 823
typeset command 834

_ (shell variable) 366
: command (expanding arguments) 793
! (shell variable) 366
? (shell variable) 365
. command (executing shell script) 792
.env file 367, 1113
$ (shell variable) 365
(shell variable) 365
#-adsh_file_temp command (assigning and
postprocessing temporary file) 860
#-adsh_file command (specifying assignment and
postprocessing of regular files) 859
#-adsh_job_stop command (defining termination
conditions for job) 862
#-adsh_job command (declaring name for job) 862
#-adsh_path_var command (defining shell variables
for handling path names) 863
#-adsh_rc_ignore command (defining commands to
always terminate normally) 865
#-adsh_script command (calling external job definition
script file from job definition script that is running) 866
#-adsh_spoolfile command (assigning program output
data file) 868
#-adsh_step_end command (defining job step (end))

868
#-adsh_step_error command (defining job step (error
processing)) 868
#-adsh_step_start command (defining job step) 868
+a (set command) 821
+A (set command) 822
+f

set command 822
typeset command 834

+format (date command) 624
+i (typeset command) 833
+l (typeset command) 833
+L (typeset command) 832

+o (set command) 822
+p

alias command 795
typeset command 834

+r (typeset command) 833
+R (typeset command) 832
+t (typeset command) 834
+u

set command 822
typeset command 833

+v (set command) 822
+x

alias command 795
set command 822
typeset command 833

+Z (typeset command) 833
-1 (ls command) 683
-a

adshfile command 575
diff command 633
egrep command 648
grep command 674
ls command 684
sed command 713
set command 821
touch command 753
ulimit command 836
unalias command 840
uname command 759
which command 766

-A
ls command 683
set command 822

-abnormal (#-adsh_file command) 860
--all (ls command) 684
--almost-all (ls command) 684
-A number

egrep command 649
grep command 675

-a suffix-length (split command) 738
-b

cat command 613
diff command 633
egrep command 648
grep command 674

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1122

sort command 729
-b list (cut command) 621
-B number

egrep command 649
grep command 675

-b num-blocks (tail command) 749
-b num-bytes (split command) 739
--brief (diff command) 634
--bytes=list (cut command) 621
-c

adshexec command 569
adshfile command 575
egrep command 648
grep command 674
ls command 684
sort command 728
touch command 755
ulimit command 836
uniq command 762
wc command 765

-C (ls command) 684
-C[number]

egrep command 649
grep command 675

-c command-line (script_su1) 780
-c format (stat command) 741
--characters=list (cut command) 621
-chk

#-adsh_file_temp command 861
#-adsh_file command 860

-c JP1/AJS-schedule-service-name (adshevtout
command) 562
--classify (ls command) 684
-c list (cut command) 621
-c num-bytes (tail command) 749
-cnum-lines (diff command) 634
-C num-lines (diff command) 634
--context[=num-lines] (diff command) 634
-d

adshchmsg command 556
adshecho command 845
adshevtout command 564
adshexec command 569
adshread command 847
find command 658
ls command 684
rm command 711

ulimit command 836
uniq command 762

--date=date-information-string (date option) 624
-d date-information-string (date command) 624
-d delimiter (cut command) 622
--delimiter=delimiter (cut command) 622
--dereference

ls command 685
stat command 741

--directory (ls command) 684
-d list (paste command) 702
-e

adshcollect command 887
echo command 804

-E
echo command 804
egrep command 648
grep command 674
sed command 713

-e command (sed command) 713
-e job-execution-start-time-upper-bound (adshevtout
command) 562
-e pattern

egrep command 649
grep command 675

-exec (adshscripttool command) 853
-f

adshcollect command 887
adshexec command 570
cp command 619
ls command 684
mv command 700
rm command 711
script_chmod1 771
script_chmod2 773
script_chmod3 776
set command 822
sort command 729
touch command 755
typeset command 834
ulimit command 836
unset command 841

-F (ls command) 684
-fentry (adshscripttool command) 851
--fields=list (cut command) 621
-F input-field-separator (awk command) 585
-f list (cut command) 621

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1123

-fmode (adshscripttool command) 851
--format=across (ls command) 686
--format=commas (ls command) 685
--format=display-format (ls command) 686
--format=format (stat command) 741
--format=horizontal (ls command) 686
--format=long (ls command) 685
--format=single-column (ls command) 683
--format=verbose (ls command) 685
--format=vertical (ls command) 684
-fowner (adshscripttool command) 851
-f pattern-file-path-name

egrep command 649
grep command 675

-f script-file-path-name
awk command 585
sed command 714

--full-time (ls command) 687
-G (grep command) 674
-g (ls command) 684
-g JP1/AJS-job-name (adshevtout command) 563
-h

adshcollect command 888
egrep command 648
find command 659
grep command 674
ls command 684
script_chmod1 771
script_chmod2 773
script_chmod3 776

-H
cp command 619
find command 658
ulimit command 836

--hide-control-chars (ls command) 685
-h logical-host-name

adshchmsg command 556
adshevtout command 564
adshexec command 571
adshlsmsg command 579
adshmdctl command 581

--human-readable (ls command) 684
-i

cp command 619
diff command 634
egrep command 648
grep command 674

ls command 684
mv command 700
rm command 711
typeset command 833

-I
egrep command 648
grep command 674

-id temporary-file-identifier (#-adsh_file_temp
command) 861
--ignore-all-space (diff command) 634
--ignore-case (diff command) 634
--ignore-space-change (diff command) 634
-i JP1/Advanced-Shell-job-ID (adshevtout command)

564
--indicator-style=classify (ls command) 684
--indicator-style=file-type-style (ls command) 687
--indicator-style=slash (ls command) 685
--inode (ls command) 685
-install

adshmsvcd command 582
adshmsvce command 583

-j JP1/Advanced-Shell-job-name (adshevtout
command) 564
-k (ls command) 685
-k JP1/AJS-job-execution-ID (adshevtout command)

563
-k start-position[, end-position] (sort command) 730
-l

cmp command 616
egrep command 649
grep command 674
ls command 685
typeset command 833
ulimit command 837
wc command 765

-L
cp command 619
egrep command 649
find command 659
grep command 674
ls command 685
pwd command 817
stat command 741
typeset command 832

--label=label (diff command) 635
-lhostname logical-host-name

adshmsvcd command 582
adshmsvce command 583

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1124

-L label (diff command) 634
-l long-option-name (getopt command) 671
-l n1 [- [n2]] [, n3 [- [n4]]]... (adshcvshow command) 559
-l num-lines (split command) 739
-longoptions=long-option-name (getopt command)671
-m

adshevtout command 564
adshexec command 569
adshscripttool command 853
ls command 685
sort command 728
touch command 753
ulimit command 837
uname command 759
wc command 765

-m permissions (mkdir command) 698
-n

adshfile command 575
cat command 613
cut command 622
echo command 804
egrep command 649
grep command 674
ls command 685
print command 815
sed command 713
sort command 729
ulimit command 837
uname command 759

--name=program-name 671
-n JP1/AJS-job-number (adshevtout command) 563
-n num-lines

head command 680
tail command 749

-normal
#-adsh_file_temp command 861
#-adsh_file command 860

-n program-name (getopt command) 671
-n reply-request-message-number

adshchmsg command 556
adshlsmsg command 579

--numeric-uid-gid (ls command) 685
-num-lines

head command 680
tail command 749

-o (set command) 822
-o asc-file-path-name (adshexec command) 570

-onError (#-adsh_step_start command, #-
adsh_step_error command, #-adsh_step_end
command) 870
--only-delimited (cut command) 622
-o output-asc-file-path-name (adshcvmerg command)

557
-o output-path-name (sort command) 729
--options=short-option-name (getopt command) 672
-o short-analysis-option-name (getopt command) 672
--output-delimiter (cut command) 622
-p

alias command 795
command command 800
cp command 619
export command 809
ls command 685
mkdir command 698
print command 815
read command 818
readonly command 819
time command 879
typeset command 834
ulimit command 837
whence command 843

-P
cp command 620
pwd command 817

-pid (kill command) 812
-p job-definition-script-file-path-name (adshevtout
command) 563
-q

diff command 634
egrep command 649
getopt command 671
grep command 674
ls command 685

-Q (getopt command) 672
--quiet (getopt command) 671
--quiet-output (getopt command) 672
-r

adshscripttool command 853
cp command 619
diff command 635
egrep command 649
grep command 674
ls command 686
print command 815
read command 818

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1125

rm command 711
sed command 713
sort command 730
tail command 748
typeset command 833
uname command 759

-R
cp command 619
egrep command 649
grep command 674
ls command 686
rm command 711
script_chmod1 772
script_chmod2 773
script_chmod3 776
typeset command 832

-r command-line (adshexec command) 571
--recursive

diff command 636
ls command 686

-r elapsed-seconds (date command) 624
--report-identical-files (diff command) 634
--reverse (ls command) 686
-r JP1/AJS-root-jobnet-name (adshevtout command)

563
-r path-name (touch command) 753
-r reply (adshchmsg command) 556
-run (#-adsh_step_start command, #-adsh_step_error
command, #-adsh_step_end command) 870
-s

adshcvshow command 559
adshexec command 571
adshfile command 575
adshscripttool command 852
cat command 613
cmp command 616
cut command 622
diff com 634
egrep command 649
grep command 674
kill command 812
ls command 686
paste command 702
ulimit command 837
uname command 759

-S
ls command 686

ulimit command 836
umask command 838

--side-by-side (diff command) 635
-signame (kill command) 812
-signum (kill command) 812
--size (ls command) 686
-s job-execution-start-time-lower-bound (adshevtout
command) 562
--sort=none (ls command) 684
--sort=sort-key (ls command) 687
--sort=size (ls command) 686
--sort=time (ls command) 686
-stepVar shell-variable-name (#-adsh_step_start
command, #-adsh_step_error command, #-
adsh_step_end command) 870
-successRC return-code-definition (#-adsh_step_start
command, #-adsh_step_error command, #-
adsh_step_end command) 869
--suppress-common-lines (diff command) 635
-t

adshevtout command 564
adshexec command 570
ls command 686
stat command 741
typeset command 834
ulimit command 837

-T (ls command) 686
--tabs=tab-stop-list (expand command) 651
-tab-stop-list (expand command) 651
--terse (stat command) 741
--text (diff command) 633
-t field-delimiter (sort command) 730
--time=access (ls command) 686
--time=atime (ls command) 686
--time=ctime (ls command) 684
--time=file-date-and-time-type (ls command) 688
--time=status (ls command) 684
--time=use (ls command) 686
-t tab-stop-list (expand command) 651
-T temporary-file-directory (sort command) 729
-t time (touch command) 753
-u

cat command 613
date command 624
getopt command 672
ls command 686
sed command 713
set command 822

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1126

sort command 731
typeset command 833, 834
uniq command 762

-U
egrep command 649
grep command 674

-u [num]
print command 816
read command 818

-u JP1/Advanced-Shell-execution-user-name
(adshevtout command) 563
--unified[=num-lines] (diff command) 634
--universal (date command) 624
--unquoted (getopt command) 672
-unum-lines (diff command) 634
-U num-lines (diff command) 634
--utc (date command) 624
-v

adshexec command 569
command command 800
egrep command 649
grep command 675
set command 822
uname command 759
whence command 843

-V (command command) 800
-v variable-name=variable-value (awk command) 585
-w

command command 800
diff command 634
egrep command 649
grep command 675
uname command 760
wc command 765

--width=output-width (diff command) 635
-W output-width (diff command) 635
-x

adshexec command 571
alias command 795
egrep command 649
grep command 675
ls command 686
set command 822
typeset command 833

-y (diff command) 635
-z

adshevtout command 564

sort command 731
-Z (typeset command) 833

A
acquired coverage information 1104
action (trap command) 828, 829
active server 36
Add to Watch List dialog box 303
Administrators permissions 10
ADSH_AJS_ENVF (environment variable) 67
ADSH_AJS_GCHE (environment variable) 67
ADSH_AJS_LHOST (environment variable) 67
ADSH_AJS_SCRF (environment variable) 67
ADSH_CMD_ARGORDER (environment variable) 67
ADSH_CMDEXPR_LENGTH (environment variable)

67
ADSH_DIR_BIN (shell variable) 366
ADSH_DIR_CMD (shell variable) 366
ADSH_ENV (environment variable) 67
ADSH_JOB_NAME (environment variable) 67
ADSH_JOBID (environment variable) 67
ADSH_JOBRC_FATAL (environment variable) 68, 96

specifying return code in event of unresumable error
in jobs 96

ADSH_LANG_JP1EVENT (environment variable) 68
ADSH_LANG (environment variable) 68
ADSH_RC_STEPLAST (shell variable) 366
ADSH_RC_STEPMAX (shell variable) 366
ADSH_RC_STEPMIN (shell variable) 366
ADSH_STEP_NAME (environment variable) 68
ADSH_STEPRC_job-step-name (shell variable) 366
adshchmsg command (replying manually to reply-
request message when failure occurs) 556
ADSHCMD_RC_ERROR parameter (defining return
code to be used when extended script command fails)

483
ADSHCMD_RC_SUCCESS parameter (defining
return code to be used when extended script command
is successful) 483
adshcollect command

collecting information 886
files collected by 890

adshcvmerg command (merging coverage
information) 557
adshcvshow command (displaying coverage
information) 559
adshecho command

handling termination with error 225

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1127

issuing specified event notification message as JP1
event 845

adshevtout command (outputting job definition script
operation information) 561
adshexec command

debugger 433
executing batch job 569

adshfile command (specifying allocation and
postprocessing of regular files) 574
adshhk command (deleting spool jobs) 576
adshlsmsg command (displaying list of reply-request
messages when failure occurs) 579
adshmdctl command (starting and stopping user-reply
functionality management daemon) (UNIX only) 580
adshmsvcd command (registering user-reply
functionality management service in development
environment) (Windows only) 582
adshmsvce command (registering user-reply
functionality management service in execution
environment) (Windows only) 583
adshread command

handling termination with error 225
issuing specified reply-request message as reply-
waiting event 847

adshscripttool command (supporting creation of job
definition scripts) (Windows only) 850
AJS_BJEX_STOP (environment variable) 69
alias command (defining aliases) 795
allocation management file 168
am i

script_0 781
script_who1 782

analysis-option (getopt command) 670
args

. command 792
builtin command 797
command command 800
echo command 804
eval command 806
exec command 807
getopts command 811
print command 816

argument 1113
: command 794
converting during command execution 78
script_0 779

arguments-of-executable-program (CHILDJOB_PGM
parameter) 487
argument-to-be-analyzed (getopt command) 671

arithmetic expansion 338
arithmetic operation 361, 1113

priority of 364
arithmetic operator 361
array 317

creating 317
referencing value of 321

ASC_FILE parameter (defining naming rule for
accumulation files) 484
asc-file-path-name (adshcvshow command) 559
assignment operator 362
AUTO (TRAP_ACTION_SIGTERM parameter) (UNIX
only) 533
awk command (performing text processing and pattern
matching) 585

B
backtrace, displaying (where command) 462
base-asc-file-path-name (adshcvmerg command) 557
base name 1113
basename command (extracting file name from path)

611
BATCH_CVR parameter (enabling coverage auto-
acquisition functionality) 485
batch application

expediting configuration of 28
inheriting asset between OSs of 28

batch job 1113
executing 145
executing, from JP1/AJS 48
executing manually 49
procedure for executing automatically (working with
JP1/AJS) 33
specifying job definition script as command 159
specifying job definition script in argument of
adshexec command 159
starting 156
starting, by using command from execution
environment 159

batch job application
defining 157
defining definition schedule of 158
defining definition schedule of execution order of 158
defining execution order of 157
overview of using JP1/AJS to automate 156
registering timing of starting 159
starting, by using JP1/AJS from execution
environment 156

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1128

batch job execution results
central management of 29
improving serviceability and maintainability by
central management of 29

batch operation server 48, 1113
batch processing 1113
bitwise logical operator 362
BLOCKSIZE (environment variable) 69
branch coverage 230
branch coverage information 230
break command

debugger 435
exiting from loop 796

breakpoint 1113
deleting (delete command) 439
displaying information about (info breakpoints
command) 448
removing (JP1/Advanced Shell Editor) 280
removing all (JP1/Advanced Shell Editor) 281
setting (break command) 435
setting (JP1/Advanced Shell Editor) 279
setting and releasing during debugging (JP1/
Advanced Shell Editor) 279

breakpoint area (JP1/Advanced Shell Editor) 267
built-in command 1113
builtin command (executing built-in command) 797
built-in-variable-name=variable-value (awk command)

586
BYTE (VAR_SHELL_GETLENGTH parameter) 542

C
C0 (statement coverage information) 230
C0 information 230
C1 (branch coverage information) 230
C1 information 230
called function name array 369
case statement (choosing from multiple processing
paths) 873
cat command (outputting files to standard output) 613
cd command

changing current directory 798
debugger 465
new 798
old 798

CDPATH (shell variable) 367
CHARACTER (VAR_SHELL_GETLENGTH
parameter) 542
character string

replacing (JP1/Advanced Shell Editor) 277
searching for (JP1/Advanced Shell Editor) 276

character-string
basename command 612
dirname command 646

character string comparison 356
child job 146, 147, 1113

defining file to be started as 79
how to execute 160
running job definition script as 160

CHILDJOB_EXT parameter (defining extension for job
definition script files that are to be executed as child
jobs) 485
CHILDJOB_PGM parameter (defining program path
specification that is to be executed as descendent jobs)

486
CHILDJOB_SHEBANG parameter (defining
executable program path for job definition script files
that are to be executed as child jobs) 489
child job execution log output file 1114
chmod command

changing file read-only attribute setting (enable or
disable) 771
disabling chmod commands specified in job
definition scripts 770
specifying permissions as numeric values 773
specifying permissions as symbols or numeric
values 775

client area (JP1/Advanced Shell Editor) 267
cluster configuration, running in 130
cluster operation

how to specify command during 137
notes about 139
prerequisite and scope of support for 130

cluster system, overview of operation in 36
CMDRC_THRESHOLD_DEFINE parameter (defining
return code threshold for command) 490
CMDRC_THRESHOLD_USE_PRESET parameter
(defining threshold for return code of UNIX-compatible
command) 493
cmp command (comparing binary files) 616
COLUMNS (environment variable) 69
command 1114

alias definition for 328
builtin command 797
command command 800
defining 377
description format 546, 784
eval command 806

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1129

exec command 807
for which coverage information is acquired 1104
grouping 341, 1114
sed command 713
that always terminates normally, defining 385
that terminates normally, defining 384
time command 879
used during operation 545

COMMAND_CONV_ARG parameter (defining rule for
converting argument in job definition scripts during
command execution) 495
command-argument-1 (COMMAND_CONV_ARG
parameter) 495
command-argument-2 (COMMAND_CONV_ARG
parameter) 495
command command (executing command) 799
command coverage 230
command execution result, notes about output of 401
command line 1114

specifying what is to be executed by job from 164
command-name

#-adsh_rc_ignore command 865
CMDRC_THRESHOLD_DEFINE parameter 491
which command 767

command prompt 1114
commands, list of 550, 789
command separator 341, 1114
comment 331
common application data folder 12
Common application data folder 43
conditional 353, 1114
conditional expression 354, 1114

defining handling of unsupported (Windows only) 81
priority of 364

conditional parameter 477, 543, 1114
conftest [environment-file-name] (adshmdctl
command) 581
console 304, 1114
CONSOLE (USERREPLY_DEBUG_DESTINATION
parameter) 536
CONT (TRAP_ACTION_SIGTERM parameter) (UNIX
only) 533
continue command

debugger 444
interrupting loop processing and returning to
beginning of loop 801

continuous execution, performing (continue command)
444

control statement 353, 1114

description format 784
for which coverage information is acquired 1107

control statements, list of 789
conventions

abbreviations 1111
directory names 1111
fonts and symbols 10, 12
KB, MB, GB, and TB 1112

copy-source (cp command) 620
copy-source-file-name (cp command) 620
copy-target-directory-name (cp command) 620
copy-target-file name (cp command) 620
CORE (UNIX only) 888
core dump 1114
coverage auto-acquisition functionality 89, 251
coverage information 1115

accumulating 235
accumulation methods 235
acquiring 230
collected in memory, displaying 250
displaying 237
displaying (info coverage command) 449
displaying (JP1/Advanced Shell Editor) 291
format of 235
how to accumulate 235
how to merge 250
initializing accumulated 237
managing 231
merging 250
overview of 230
that is acquired 1104
type of information to be merged 251
usage of 230

coverage information collection, enabling without
having to specify option during batch job execution 89
coverage information file (asc file) 230, 231
cp command (copying file or directories) 619
C run-time function, cause of error and action 1095
CUI debugger 433
CURRENT (PIPE_CMD_LAST parameter) 524
custom job 106, 1115

registering 106
cut command (outputting selected parts of lines to
standard output) 621

D
date-and-time (touch command) 754

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1130

date command (displaying system date and time) 624
debug 1115
debug execution (JP1/Advanced Shell Editor) 263
debugger 427, 1115

about 424
list of commands 428
starting 433
terminating (quit command) 433

debugging
adding variable to watch list (JP1/Advanced Shell
Editor) 287
Error List window, Watch List window, and console
during (JP1/Advanced Shell Editor) 287
executing one line at a time (not performing step-by-
step execution in function) (JP1/Advanced Shell
Editor) 284
executing one line at a time (performing step-by-step
execution in function) (JP1/Advanced Shell Editor)

283
executing through end of function (JP1/Advanced
Shell Editor) 285
JP1/Advanced Shell Editor 278
performing and canceling (JP1/Advanced Shell
Editor) 282
setting and releasing breakpoints during (JP1/
Advanced Shell Editor) 279
up to breakpoint (JP1/Advanced Shell Editor) 282
with CUI 426
with GUI 424

debug mode (JP1/Advanced Shell Editor) 263
Debug Toolbar (JP1/Advanced Shell Editor) 266
decrement operator 362
defining

action of echo command when escape-character
option is omitted 498
destination for root job standard output 511
details of path conversion 512
environment variable 501
executable program path for job definition script files
that are to be executed as child jobs 489
execution processing for last command in pipe
(UNIX only) 523
extension for job definition script files that are to be
executed as child jobs 485
handling of unsupported conditional expression
(Windows only) 534
how spool job of child job is to be handled 527
job controller's action when forced termination
request is received 532

job execution log contents to be output to standard
error output when job terminates 503
message that is not to be output to job execution logs

504
naming rule for accumulation files 484
number of files to be used to back up system
execution logs 507
number of files to which traces are to be output 530
path conversion details when files are input and
output 513
path name of directory for storing temporary files 529
path name of directory to which system execution
logs are to be output 506
path name of directory to which traces are to be
output 530
permission for files under spool job directory (UNIX
only) 522
permission for spool job directory (UNIX only) 521
program path specification that is to be executed as
descendent jobs 486
return code threshold for command 490
return code to be used when extended script
command fails 483
return code to be used when extended script
command is successful 483
rule for converting argument in job definition scripts
during command execution 495
rule for converting file paths 515
set of parameters applicable only to physical host544
set of parameters applicable only to specified logical
host 543
size of file to which system execution logs are to be
output 508
size of file to which traces are output 531
spool root directory path name 526
threshold for return code of UNIX-compatible
command 493
trace output level 532
unit for lengths of variable values that are replaced
in format ${#variable} 542
whether ENV shell variable is to be read 506

definition file 1115
definition-file-name (adshcollect command) 887
DELETE (SPOOLJOB_CHILDJOB parameter) 527
delete command (debugger) 439
destination (mv command) 700
destination-directory (mv command) 700
developer 32
development environment 1115

JP1/Advanced Shell - Developer 32

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1131

dialog box 1115
diff command (comparing two files) 633
directory

changing (cd command) 465
mkdir command 699
required for JP1/Advanced Shell, creating 102

directory-name (rmdir command) 712
directory-name-1 (diff command) 636
directory-name-2 (diff command) 636
directory-path (cd command) 798
directory-separator (PATH_CONV_ENABLE
parameter) 515
dirname command (retrieving character strings for
directory path names from path names) 645
DISABLE

CMDRC_THRESHOLD_USE_PRESET parameter
494

TRAP_ACTION_SIGTERM parameter 533
VAR_ENV_NAME_LOWERCASE parameter 538

DUMP (Windows only) 888

E
echo command (outputting what is specified in
arguments to standard output) 802
edit mode (JP1/Advanced Shell Editor) 263
editor 1115

setting up operating environment for (JP1/Advanced
Shell Editor) 272

Edit Toolbar (JP1/Advanced Shell Editor) 266
Edit Value dialog box 303
egrep command (searching for characters in files) 648
ENABLE

CMDRC_THRESHOLD_USE_PRESET parameter
494

VAR_ENV_NAME_LOWERCASE parameter 538
enabling

coverage auto-acquisition functionality 485
path conversion functionality 515

ENV (shell variable) 367
loading files specified in 92

environment file 1115
parameter specified in 467
specification format of 468
specifying 71

environment-file-name (adshcollect command) 887
environment information 884, 1115

specifying 71
specifying for cluster operation 132

specifying in JP1/Base 129
specifying in JP1/IM - Manager 128

environments, sharing among multiple 89
environment setting parameter 483, 1115
environment setting parameters, list of 471
environment variable 1115

for job information 376
specifying 67

ERR (UNSUPPORT_TEST parameter) 535
error 895

details of 1095
details of (specific to JP1/Advanced Shell) 1097
details of (UNIX) 1096
details of (Windows) 1095
during job execution 396
simulating (JP1/Advanced Shell Editor) 288

error information 884
Error List window 300
ESCAPE_SEQ_ECHO_DEFAULT parameter
(defining action of echo command when escape-
character option is omitted) 498
ESCAPE_SEQ_ECHO_HEX parameter (specifying
whether ASCII code characters in hexadecimal
notation are to be interpreted as escape characters)

499
escape character 345
eval command (concatenating arguments into
command and executing it) 805
EVENT_COLLECT parameter (specifying whether
operation information acquisition functionality is to be
enabled for job definition scripts) 500
event-notification-message (adshecho command) 845
exec command

debugger 466
executing command and exiting 806

executed command and argument, outputting 208
executing, batch job 146
executing user, executing programs with permissions
of 780
execution environment 1116

JP1/Advanced Shell 32
execution method 223
exit command (exiting shell) 807
expand command (replacing tab characters with
spaces) 651
expansion output mode 84
export command (exporting shell variables) 808
export parameter 475, 1116

defining environment variable 501

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1132

expr1 (expr command) 655
expr2 (expr command) 655
expr command (evaluating expression) 655
expression (expr command) 655
EXTENDED

OUTPUT_MODE_CHILD parameter 509
OUTPUT_MODE_ROOT parameter 510

extended script command 859, 1116
defining return code of 89
description format for 786
executing 346
handling of error 391
return code of 391

extended script commands, list of 790
extended shell command 845, 1116

description format for 786
extended shell commands, list of 790
extended shell variable 366, 1116
extension (CHILDJOB_EXT parameter) 486
external command 1116

executing 346
return code of 393

external job definition script file, calling from executing
job definition script 389
external script 249

F
FALSE (UNSUPPORT_TEST parameter) 535
false command (returning 1 as the return code) 810
fault injection mode 250, 1116

enabling and disabling (joberrmode command) 454
file

allocating and postprocessing 404
large 53
path name 548
used in JP1/Advanced Shell 52

file allocation 1116
file attribute 357
file descriptor 340, 1116
file-environment-variable

#-adsh_file_temp command 861
#-adsh_file command 859
#-adsh_spoolfile command 868

filename (. command) 792
file-naming-rule (ASC_FILE parameter) 484
file-path

#-adsh_file command 859

adshfile command 576
file path, converting when files are input and output 76
file read-only attribute setting, changing (enable or
disable) 771
file-size

LOG_FILE_SIZE parameter 508
TRACE_FILE_SIZE parameter 531

find command (searching for files in directories) 658
finish command (debugger) 444
flow control 1116
font conventions 10
forced termination, job processing during (Windows
only) 259
for statement (repeating same processing) 874
FPATH (shell variable) 368
function 323

executing (finish command) 444
for which coverage information is acquired 1108
terminating (return command) 445

function call line number array 369
function definition file 325
function definition script file name array 369
function information, displaying (info functions
command) 449
function information array 368

shell variable 366
function preload functionality 325

G
G (UNSUPPORT_TEST parameter) 535
GB meaning 1112
general procedure 32
general user 32
GETOPT_COMPATIBLE (environment variable) 69
getopt command (analyzing command line options)669
getopts command (parsing option arguments) 810
grep command (searching for characters in files) 673
GUI debugger, list of functions of 428

H
h (UNSUPPORT_TEST parameter) 535
head command (displaying first part of files) 680
Help, displaying (help command) 466
help (adshmdctl command) 581
help command (debugger) 466
here document 340, 1116
HOME (shell variable) 368

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1133

HOSTNAME_JP1IM_MANAGER parameter
(specifying operation management server on which
JP1/IM - Manager is running that is to be destination of
JP1 events) 502
hostname command (displaying host name) 681
host-name-of-operation-management-server-on-
which-JP1/IM-Manager-is-running
(HOSTNAME_JP1IM_MANAGER parameter) 502
HTML manual, installing 144

I
IFS (shell variable) 368
if statement (branching conditionally) 875
increment operator 362
info breakpoints command (debugger) 448
info functions command (debugger) 449
info jobsteps command (debugger) 450
information 895

collecting (troubleshooting) 882
how to collect 886

info signals command (debugger) 451
info status command (debugger) 452
info variables command (debugger) 453
input and output redirection 339
input-file-path-name (sed command) 714
input-path-name

sort command 729
split command 739
uniq command 762

installation directory (UNIX only) 45
installation folder (Windows only) 41
installing

evaluations prior to 48
CD-ROM (UNIX only) 62
from CD-ROM (Windows only) 57
remote installation using JP1/NETM/DM (UNIX only)

61
remote installation using JP1/Software Distribution
(Windows only) 56
UNIX only 61
Windows only 56

J
job 146

cancellation by standard shell command 395
defining 146, 377
executing 146
forcibly terminating 253

how to forcibly terminate 253
re-executing 146
return code of 393

job controller 33, 1116
processing after batch job started 166

job definition script 28, 428
basic element of 307
command for restarting execution of 440
commands 783
control statements 783
creating 306
creating (JP1/Advanced Shell Editor) 272
debugging 423
disabling chmod commands specified in 770
disabling su commands specified in 779
disabling who commands specified in 781
editing existing (Windows only) (JP1/Advanced Shell
Editor) 292
executing 352
pausing 433
running (run command) 434
running as child job 160
saving (Windows only) (JP1/Advanced Shell Editor)

293
setting up execution environment for (JP1/Advanced
Shell Editor) 273
specifying as command 159
specifying in argument of adshexec command 159
supporting creation of (Windows only) 850
terminating (kill command) 434
whether execution can be stopped at elements of430

job definition script file 1117
example code of 421

job-definition-script-file-name (#-adsh_script
command) 867
job-definition-script-file-path-name

adshexec command 571
adshscripttool command 854

job definition script operation information
collecting 210
outputting 210, 211, 561
outputting from different spool 213
that is output 222
using multiple OR conditions for output of 212

job end condition, defining 377
job environment file 71
joberrmode command (debugger) 454

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1134

JOBEXECLOG_PRINT parameter (defining job
execution log contents to be output to standard error
output when job terminates) 503
job execution log 176, 1117

outputting contents by job type 176
suppressing output of information and warning
messages 173
suppressing output of specific information message
to 172

job execution result, outputting 167
job ID 1117
job-ID 894
job information 1117
job input mode 147
JOBLOG_SUPPRESS_MSG parameter (defining
message that is not to be output to job execution logs)

504
JOBLOG SCRIPT STDERR (JOBEXECLOG_PRINT
parameter) 503
job name, declaring 377
job-name (#-adsh_job command) 862
jobnet 158, 1117

defining and executing 109
monitoring 146
used for defining batch job application and their
execution order in JP1/Advanced Shell and JP1/AJS

158
jobs, relationship between 148
job scheduler 1117
job step 150, 1117

defining 377, 379
return code of 393

job step information, displaying (info jobsteps
command) 450
job-step-name (#-adsh_step_start command, #-
adsh_step_error command, #-adsh_step_end
command) 869
JP1/Advanced Shell 1117

encoding used in 54
example of application to business operation 31
files used in 52
general procedure 32
installing (UNIX only) 61
installing (Windows only) 56
operation procedure 33
overall system configuration of 32
overview of 27
overview of functionality supported by 38
positioning for business application 33

preparation for using 40
purposes of 28
shell variables that are set by 365
shell variables that can be used in 367
specifying environment information for 71
uninstalling (UNIX only) 63
uninstalling (Windows only) 58

JP1/Advanced Shell - Custom Job 41, 1117
custom job definition program 48
installing 58
uninstalling 60

JP1/Advanced Shell - Developer 32, 1117
starting 262
terminating 262
using (Windows only) 261

JP1/Advanced Shell Editor
modes 263
operation 264

JP1/Advanced Shell Editor window 265
details of 294
menu in 267

JP1/AJS, specifying environment information for
(applicable when JP1/AJS is used) 106
JP1/AJS3 1117
JP1/AJS environment, setting up 104
JP1/AJS - View, registering custom jobs in 106
JP1/IM - View, relationship with user-reply functionality

223
JP1/Software Distribution

remote installation using (UNIX only) 61
remote installation using (Windows only) 56

JP1 environment, checking 101
JP1 event, issuing specified event notification
message as 845
JP1EVENT (USERREPLY_DEBUG_DESTINATION
parameter) 536

K
KB meaning 1112
key operation (JP1/Advanced Shell Editor) 270
kill command

debugger 434
sending signal 812

KSH_ENV_READ parameter (defining whether ENV
shell variable is to be read) 506

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1135

L
L (UNSUPPORT_TEST parameter) 535
let command (evaluating values of arithmetic
expressions) 813
lhost_end parameter (defining set of parameters
applicable only to specified logical host) 543
lhost_start parameter (defining set of parameters
applicable only to specified logical host) 543
limit (ulimit command) 837
line continuation 331
LINENO (shell variable) 366
line number area (JP1/Advanced Shell Editor) 267
list (cut command) 622
list command (debugger) 463
local time setting 55
local variable in function 324
log 884, 1118
LOG_DIR 889
LOG_DIR parameter (defining path name of directory
to which system execution logs are to be output) 506
LOG_FILE_CNT parameter (defining number of files to
be used to back up system execution logs) 507
LOG_FILE_SIZE parameter (defining size of file to
which system execution logs are to be output) 508
log-file-name (adshhk command) 577
logical host 36

in non-cluster environment, settings for running 139
logical-host-name

adshcollect command 888
lhost_start and lhost_end parameters 543

logical operation 359
login shell, starting (exec command) 466
login user information to logs, outputting 782
long option 1118

specification format for 547
ls command (listing contents of files or directories) 682

M
maintenance-information-output-directory (adshcollect
command) 887
mask (umask command) 838
maximum-number-of-concurrent-reply-request-
messges-to-be-output
(USERREPLY_WAIT_MAXCOUNT parameter) 537
MB meaning 1112
menu on menu bar (JP1/Advanced Shell Editor) 268
MERGE (SPOOLJOB_CHILDJOB parameter) 527

merge-asc-file-path-name (adshcvmerg command)
557
message 893

format of explanation 895
notes about row number that is output in 905
output destination of 897

message dialog box 894
icon displayed in 895

message format 894
message ID 896
message-ID (JOBLOG_SUPPRESS_MSG
parameter) 505
message number 894

assignment of 896
subject categories of ranges of 896

message output format 894
messages, list of 906
message text 895
message type 894
metacharacter 329, 1118

for which coverage information is acquired 1108
other 342

method (trap command) 830
MINIMUM

OUTPUT_MODE_CHILD parameter 509
OUTPUT_MODE_ROOT parameter 510

minimum-event-issuance-interval
(USERREPLY_JP1EVENT_INTERVAL parameter)
536
minimum output mode 84, 173
mkdir command (creating directories) 698
mode

adshscripttool command 852
script_0 770
script_chmod1 772
script_chmod2 773
script_chmod3 776

mouse operation (JP1/Advanced Shell Editor) 270
mv command (moves file or directory) 700

N
n

break command 796
continue command 801
exit command 808
return command 820
shift command 823

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1136

typeset command 833
name

alias command 795
export command 809
getopts command 811
readonly command 819
set command 823
typeset command 835
unalias command 840
unset command 841
whence command 844

new installation 57, 59
next command (debugger) 441
number-of-days (adshhk command) 577
number-of-files

LOG_FILE_CNT parameter 507
TRACE_FILE_CNT parameter 531

numeric value comparison 355

O
O (UNSUPPORT_TEST parameter) 535
OLDPWD (shell variable) 366
operand 1118
operation information

format of 213
record in CSV format and output item 214
relationship between dates and times and time
zones in 212

operation management console 48
operation management server 48
operator 32

tasks of 146
opt (set command) 822
OPTARG (shell variable) 366
OPTIND (shell variable) 366
option 1118

getopt command 671
script_0 770

Options (Colors) dialog box 295
Options (Format) dialog box 294
optstr (getopts command) 811
OTHER (PIPE_CMD_LAST parameter) 524
OUTPUT_MODE_CHILD parameter (specifying
method for outputting execution results of child job)508
OUTPUT_MODE_ROOT parameter (specifying
method for outputting execution results of root job) 509

OUTPUT_STDOUT parameter (defining destination
for root job standard output) 511
output-path-name (uniq command) 762
overview of JP1/Advanced Shell 27
overwrite installation for upgrading 57, 59

P
parameter, specified in environment file 467
parameters, list of 471
PARENT

adshexec command 571
OUTPUT_STDOUT parameter 511

paste command (concatenating multiple files in lines)
701

PATH_CONV_ACCESS parameter (defining path
conversion details when files are input and output) 513
PATH_CONV_ENABLE parameter (enabling path
conversion functionality) 515
PATH_CONV_RULE parameter (defining rule for
converting file paths) 515
PATH_CONV parameter (defining details of path
conversion) 512
PATH (shell variable) 368
path-name

adshscripttool command 851
cat command 614
CHILDJOB_SHEBANG parameter 490
cut command 622
expand command 652
find command 659
head command 680
LOG_DIR parameter 507
ls command 688
paste command 702
rm command 711
script_0 771
script_chmod1 772
script_chmod2 774
script_chmod3 778
SPOOL_DIR parameter 526
stat command 742
tail command 749
TEMP_FILE_DIR parameter 529
touch command 755
TRACE_DIR parameter 530
wc command 765

path name, converting 73
path-name ...

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1137

egrep command 650
grep command 675

path-name-1
cmp command 616
diff command 635
PATH_CONV_ACCESS parameter 514
PATH_CONV parameter 512

path-name-2
cmp command 617
diff command 635
PATH_CONV_ACCESS parameter 514
PATH_CONV parameter 512

path-separator (PATH_CONV_ENABLE parameter)
515

pattern
egrep command 650
grep command 675

pattern matching 345
PC job 106

defining jobs as 116
permission

PERMISSION_SPOOLJOB_DIR parameter 522
PERMISSION_SPOOLJOB_FILE parameter 523
specifying as numeric values 773
specifying as symbols or numeric values 775

PERMISSION_SPOOLJOB_DIR parameter (defining
permission for spool job directory) (UNIX only) 521
PERMISSION_SPOOLJOB_FILE parameter (defining
permission for files under spool job directory) (UNIX
only) 522
phost_end parameter (defining set of parameters
applicable only to physical host) 544
phost_start parameter (defining set of parameters
applicable only to physical host) 544
pid

kill command 812
wait command 842

pipe 341, 1118
defining process that will be executing last command
in (UNIX only) 92

PIPE_CMD_LAST parameter (defining execution
processing for last command in pipe) (UNIX only) 523
pipeline 341
pop-up menu

in debug mode (JP1/Advanced Shell Editor) 270
in edit mode (JP1/Advanced Shell Editor) 269
JP1/Advanced Shell Editor 269

positional parameter 330

POSIXLY_CORRECT (environment variable) 69
PPID (shell variable) 366
prefix (split command) 739
prerequisite 223
prerequisite program 50
print command

debugger 461
outputting to standard output 815

program
prerequisite and related program for custom job
definition program (Windows only) 52
prerequisite and related program for execution
environment 50
prerequisite and related program for execution
environment (Windows only) 51
required for each environment 50

program installation directory 41
program output data file 418, 1118

allocating and postprocessing 418
program-path-name (CHILDJOB_PGM parameter)
487
programs, list of 43, 46
PS4 (shell variable) 368
PWD (shell variable) 366
pwd command (outputting path of current directory)816

Q
query 895
quit command (debugger) 433
quotation 1118

R
RANDOM (shell variable) 366
read command (reading from standard input and
storing input in variables) 817
readonly command (setting read-only attribute for
variables or displaying all read-only variables) 819
recovery installation, using same version 57, 59
redirection 339, 1118
reference material 1110
regular built-in command 1118
regular file 149, 405, 1119

allocating and postprocessing 404
related program 50
related publications 1110
REPLY (shell variable) 366
reply-request message 1119

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1138

replying manually to, when failure occurs 556
reply-request-message (adshread command) 848
reply-request messages when failure occurs,
displaying list of 579
reply-waiting event 1119

issuing specified reply-request message as 847
report-file-name (adshhk command) 577
reserved script command 1119

description format for 788
reserved script commands, list of 791
reserved word 307
response procedure (troubleshooting) 882
return code 1119

in event of unresumable error in job, defining 93
in event of unresumable error in job, specifying 96
of job, job step, and command 393

return-code
ADSHCMD_RC_ERROR parameter 483
ADSHCMD_RC_SUCCESS parameter 483

return-code-definition (#-adsh_job_stop command)
862
return command

debugger 445
returning from function or external script 820

rm command (removing files or directories) 711
rmdir command (removing empty directories) 712
root job 146, 1119

terminating before its child jobs terminate 883
ruler (JP1/Advanced Shell Editor) 267
run command (debugger) 434
Runtime Environment Settings dialog box 297
run-time parameters

adshscripttool command 854
script_su1 780

run-time-parameters (adshexec command) 572

S
script 1119

awk command 585
script_0 770, 779, 781
script_chmod1 771
script_chmod2 773
script_chmod3 775
script_su1 780
script_who1 782
script control statement 873, 1119

description format for 788

script control statements, list of 791
script file 1119
script-file-path-name (script_su1) 780
Search dialog box 301
search pattern (find command) 659
Search Toolbar (JP1/Advanced Shell Editor) 266
SECONDS (shell variable) 366
seconds (sleep command) 727
sed command (replacing character strings in text) 713
selecting

whether function information arrays are used 539
whether spool job is to be created 528

separate process, execution in (UNIX only) 342
sequential execution

performing (next command) 441
performing (step command) 441

set command
debugger 459
setting shell options, creating array, or displaying
variable values 821

shared documents folder 12, 43
shell 1119

setting up 101
SHELL (shell variable) 368
shell command 1119
shell operation command 550, 1119
shell operation commands, list of 550
shell option 373, 1119

that can be specified with adshexec command 375
that can be specified with set command 373

shell script 28, 1120
shell variable 365, 1120

displaying information about (info variables
command) 453
set by JP1/Advanced Shell 365
that can be used in JP1/Advanced Shell 367
that handles path name, defining 386

shell-variable-name (#-adsh_path_var command) 864
shell variable operations for which coverage
information is acquired 1109
shift command (shifting run-time parameters) 823
short option 1120

specification format for 547
signal 1120

processing when signal is received (UNIX only) 255
sending (signal command) 447
trap command 828

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1139

signal command (debugger) 447
signal information, displaying (info signals command)

451
signame (kill command) 812
signum (kill command) 812
SIMPLE

OUTPUT_MODE_CHILD parameter 509
OUTPUT_MODE_ROOT parameter 510

simple output mode 84, 173
skip-1 (cmp command) 617
skip-2 (cmp command) 617
sleep command (stopping for specified period of time)

727
sort command (sorting text files) 728
source (mv command) 700
source file, displaying (list command) 463
special built-in command 1120
specifying

input source and destination of event notification and
reply-request messages during debug execution
(Windows only) 535
maximum number of concurrent reply-request
messages that can be output for physical or logical
host 537
method for outputting execution results of child job

508
method for outputting execution results of root job

509
minimum interval at which JP1 events are to be
issued 536
operation management server on which JP1/IM -
Manager is running that is to be destination of JP1
events 502
whether ASCII code characters in hexadecimal
notation are to be interpreted as escape characters

499
whether environment variable names in lowercase
letters are supported 537
whether operation information acquisition
functionality is to be enabled for job definition scripts

500
split command (splitting file) 738
spool 102, 427, 1120

defining output information 82
outputting job execution result to 168

SPOOL
adshexec command 571
OUTPUT_STDOUT parameter 511

SPOOL_DIR 888

SPOOL_DIR parameter (defining spool root directory
path name) 526
spool information 885
spool job 1120

deleting 228
SPOOLJOB_CHILDJOB parameter (defining how
spool job of child job is to be handled) 527
SPOOLJOB_CREATE parameter (selecting whether
spool job is to be created) 528
spool job directory 427
standard error output

specifying destination of 167
stderr 1120

standard input
notes about 55
stdin 1120

standard output
specifying destination of 167
stdout 1120

standard shell command 792, 1120
description format for 785
job cancellation by 395

standard shell commands, list of 789
Standard Toolbar (JP1/Advanced Shell Editor) 265
standby server 36
start [reuse] (adshmdctl command) 581
stat command (outputting statuses of files and
directories to standard output) 741
statement coverage information 230
status

adshmdctl command 581
displaying (info status command) 452

status bar (JP1/Advanced Shell Editor) 267
STDERR (JOBEXECLOG_PRINT parameter) 504
step command (debugger) 441
stop (adshmdctl command) 581
string separator 331
subshell 1120
substitution 332
su command

disabling su commands specified in job definition
scripts 779
executing programs with permissions of executing
user 780

suffix (basename command) 612
symbol conventions 10
symbolic link 1120
syntax, checking (JP1/Advanced Shell Editor) 263, 274

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1140

system administrator 32
system configuration 48

executing batch job from JP1/AJS 48
executing batch job manually 49

system environment file 71
system execution log 102, 1121
system switchover 36

T
tail command (displaying last part of files) 748
target-list-file-name (adshhk command) 577
target-path-name (awk command) 585
TB meaning 1112
TEMP_FILE_DIR parameter (defining path name of
directory for storing temporary files) 529
temporary coverage information file 233
temporary file 102, 149, 1121

allocating and postprocessing 415
TERM (TRAP_ACTION_SIGTERM parameter) 533
terminating, job forcibly 253
ternary operator 360
test command (determining value of conditional
expression) 824
threshold (CMDRC_THRESHOLD_DEFINE
parameter) 491
time (output message) 894
time command (displaying time used to execute
command) 879
times command (displaying amount of CPU time used
by shell) 825
TMPDIR

environment variable 69
shell variable 368

toolbar (JP1/Advanced Shell Editor) 265
touch command (changing file's last access date and
time or modification date and time) 752
trace 102

defining information to be output to 88
TRACE_DIR 889
TRACE_DIR parameter (defining path name of
directory to which traces are to be output) 530
TRACE_FILE_CNT parameter (defining number of
files to which traces are to be output) 530
TRACE_FILE_SIZE parameter (defining size of file to
which traces are output) 531
TRACE_LEVEL parameter (defining trace output level)

532
trace-level (TRACE_LEVEL parameter) 532
trace log 1121

trace mode 325
TRAP_ACTION_SIGTERM parameter (defining job
controller's action when forced termination request is
received) 532
trap action 1121
trap command (specifies the action when signals and
forced termination requests are received) 826
troubleshooting 881

information needed when problem occurs 884
TRUE (UNSUPPORT_TEST parameter) 535
true command (returning 0 as return code) 831
type code 894
typeset command (declaring explicitly attributes and
values of variables and functions) 832

U
ulimit command (setting limits on system resources)

835
umask command (setting access permissions for
creating new file) 838
unalias command (removing alias definitions) 840
uname command (displaying information about OS or
hardware) 758
uninstalling

UNIX only 61
Windows only 56

uniq command (removing duplicated lines from sorted
file) 762
UNIX-compatible command 584, 1121

preparing to use script-format (Windows only) 80
script format (Windows only) 770
specifying 351
specifying definitions for 80

UNIX-compatible commands, list of 551
UNIX job 106

defining jobs as 116
unset command (unsetting variable values and
attributes) 840
UNSUPPORT_TEST parameter (defining handling of
unsupported conditional expression) (Windows only)

534
until statement (looping until condition is true) 876
user-name

script_0 779
script_su1 780

USERREPLY_DEBUG_DESTINATION parameter
(specifying input source and destination of event
notification and reply-request messages during debug
execution) 535

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1141

USERREPLY_JP1EVENT_INTERVAL parameter
(specifying minimum interval at which JP1 events are
to be issued) 536
USERREPLY_WAIT_MAXCOUNT parameter
(specifying maximum number of concurrent reply-
request messages that can be output for physical or
logical host) 537
user-reply functionality

after JP1/Advanced Shell has been installed (UNIX
only), setting up 124
after JP1/Advanced Shell has been installed
(Windows only), setting up 121
corrective action when using 882
handling error information displayed in 1098
how to specify standard input and output as input
source and output destination of 224
notes 226
procedure for using 34
relationship with JP1/IM - View 223
setting up 101, 120
specifying environment file to use 120
using 223

user-reply functionality management daemon, starting
and stopping 580
user-reply functionality management daemon
information (UNIX only) 885
user-reply functionality management service

registering in development environment 582
registering in execution environment 583

V
val (set command) 823
value

alias command 795
export command 809
readonly command 820
typeset command 835

VAR_ENV_NAME_LOWERCASE parameter
(specifying whether environment variable names in
lowercase letters are supported) (Windows only) 537
VAR_SHELL_FUNCINFO parameter (selecting
whether function information arrays are used) 539
VAR_SHELL_GETLENGTH parameter (defining unit
for lengths of variable values that are replaced in format
${#variable}) 542
variable 307, 1121

naming conventions for 307
referencing value of 310

variable-name (adshread command) 847
variable value

displaying (print command) 461
setting (set command) 459

varname (read command) 818
version information, displaying (UNIX only) 66

W
wait command (waiting for child processes to
complete) 841
warning 895
watch command (debugger) 437
Watch List window 302
watchpoint 1121

deleting (delete command) 439
displaying information about (info breakpoints
command) 448
setting (watch command) 437

wc command (counting number of bytes, lines,
characters, and words in files) 764
whence command (displaying how character strings
would be interpreted if used as commands) 843
where command (debugger) 462
which command (obtaining paths of external
commands) 766
while statement (looping while condition is true) 877
who command

disabling who commands specified in job definition
scripts 781
outputting login user information to logs 782

wildcard 331, 1121

Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide 1142

	Job Management Partner 1/Advanced Shell Description, User's Guide, Reference, and Operator's Guide
	Notices
	Summary of amendments
	Preface
	Contents
	Part 1: Overview
	1. Overview of JP1/Advanced Shell
	1.1 Purposes of JP1/Advanced Shell
	1.1.1 Inheriting assets between the OSs of batch applications
	1.1.2 Expediting the configuration of batch applications
	1.1.3 Improving serviceability and maintainability by central management of batch job execution results

	1.2 Example of application to a business operation
	1.3 General procedures
	1.3.1 Procedure for executing batch jobs automatically (working with JP1/AJS)
	1.3.2 Procedure for using the user-reply functionality

	1.4 Overview of operation in a cluster system
	1.5 Overview of functionality

	Part 2: Setup
	2. Preparations for Using JP1/Advanced Shell
	2.1 Program installation directory
	2.1.1 Installation folder (Windows only)
	2.1.2 Installation directory (UNIX only)

	2.2 Evaluations prior to installation
	2.2.1 System configuration
	2.2.2 Programs required in each environment
	2.2.3 Files used in JP1/Advanced Shell
	2.2.4 Encoding used in JP1/Advanced Shell
	2.2.5 Local time settings
	2.2.6 Notes about standard input

	2.3 Installing and uninstalling (Windows only)
	2.3.1 Installing JP1/Advanced Shell (Windows only)
	2.3.2 Uninstalling JP1/Advanced Shell (Windows only)
	2.3.3 Installing JP1/Advanced Shell - Custom Job
	2.3.4 Uninstalling JP1/Advanced Shell - Custom Job

	2.4 Installing and uninstalling (UNIX only)
	2.4.1 Installing JP1/Advanced Shell (UNIX only)
	2.4.2 Uninstalling JP1/Advanced Shell (UNIX only)
	2.4.3 Using Hitachi Program Product Installer to display version information (UNIX only)

	2.5 Specifying environment variables
	2.6 Specifying environment information for JP1/Advanced Shell
	2.6.1 Specifying the environment files
	2.6.2 Converting path names
	2.6.3 Converting file paths when files are input and output
	2.6.4 Converting arguments during command execution
	2.6.5 Defining files to be started as child jobs
	2.6.6 Specifying definitions for using UNIX-compatible commands
	2.6.7 Defining the handling of unsupported conditional expressions (Windows only)
	2.6.8 Defining job execution results and log output information
	2.6.9 Defining the return codes of extended script commands
	2.6.10 Sharing among multiple environments
	2.6.11 Enabling coverage information collection without having to specify the option during batch job execution
	2.6.12 Migrating job definition scripts from UNIX to Windows
	2.6.13 Loading the files specified in the ENV shell variable
	2.6.14 Defining the process that will be executing the last command in a pipe (UNIX only)
	2.6.15 Defining the return code in the event of an unresumable error in a job
	2.6.16 Setting up the user-reply functionality
	2.6.17 Checking the JP1 environment (UNIX only)
	2.6.18 Setting up the shell (UNIX only)
	2.6.19 Creating the directories required for JP1/Advanced Shell
	2.6.20 Setting up a JP1/AJS environment
	2.6.21 Performing user-specific postprocessing when a job is terminated forcibly

	2.7 Specifying environment information for JP1/AJS (applicable when JP1/AJS is used)
	2.7.1 Registering custom jobs in JP1/AJS - View
	2.7.2 Defining and executing a jobnet
	2.7.3 Defining jobs as PC or UNIX jobs

	2.8 Setting up the user-reply functionality
	2.8.1 Specifying the environment files to use the user-reply functionality
	2.8.2 Setting up the user-reply functionality after JP1/Advanced Shell has been installed (Windows only)
	2.8.3 Setting up the user-reply functionality after JP1/Advanced Shell has been installed (UNIX only)
	2.8.4  Specifying environment information in JP1/IM - Manager
	2.8.5 Specifying environment information in JP1/Base

	2.9 Running in a cluster configuration
	2.9.1 Prerequisites and scope of support for cluster operations
	2.9.2 Specifying environment information for cluster operation
	2.9.3 How to specify commands during cluster operation
	2.9.4 Notes about cluster operation
	2.9.5 Settings for running a logical host in a non-cluster environment

	2.10 Installing the HTML manual

	Part 3: Operation
	3. Executing Batch Jobs
	3.1 Structure of jobs
	3.1.1 Operator's tasks in JP1/AJS jobs
	3.1.2 Jobs
	3.1.3 Job steps

	3.2 Starting batch jobs
	3.2.1 Starting jobs by using JP1/AJS from the execution environment
	3.2.2 Starting batch jobs by using commands from the execution environment
	3.2.3 Running job definition scripts as child jobs
	3.2.4 Specifying what is to be executed by a job from the command line
	3.2.5 Job controller processing after batch jobs have started

	3.3 Outputting job execution results
	3.3.1 Specifying the destinations of the standard output and the standard error output
	3.3.2 Outputting job execution results to spool
	3.3.3 Suppressing output of specific information messages to job execution logs
	3.3.4 Suppressing output of information and warning messages to job execution logs

	3.4 Job execution log
	3.4.1 Outputting the contents of the job execution log by job type
	3.4.2 Examples of job execution log output
	3.4.3 Example of job execution log output (when a child job's spool job is merged into the root job's spool job)
	3.4.4 Examples of job execution log output (when the simple output mode or the minimum output mode is selected)
	3.4.5 Examples of job execution log output (when only the standard error output is output)

	3.5 Outputting the executed commands and their arguments
	3.6 Outputting job definition script operation information
	3.6.1 Collecting job definition script operation information
	3.6.2 Outputting job definition script operation information
	3.6.3 Relationship between dates and times and time zones in the operation information
	3.6.4 Using multiple OR conditions for output of job definition script operation information
	3.6.5 Outputting job definition script operation information from different spools
	3.6.6 Format of operation information
	3.6.7 Operation information records in CSV format and output items
	3.6.8 Output items for operation information in CSV format
	3.6.9 Job definition script operation information that is output

	3.7 Using the user-reply functionality
	3.7.1 Prerequisites
	3.7.2 Execution method
	3.7.3 Relationship with JP1/IM - View
	3.7.4 How to specify the standard input and output as the input source and output destination of the user-reply functionality
	3.7.5 How to handle adshecho and adshread commands that terminate with an error
	3.7.6 Notes

	3.8 Deleting spool jobs
	3.9 Acquiring coverage information
	3.9.1 Overview of coverage information
	3.9.2 Managing coverage information
	3.9.3 Accumulating coverage information
	3.9.4 Displaying coverage information
	3.9.5 Merging coverage information
	3.9.6 Coverage auto-acquisition functionality

	3.10 Forcibly terminating jobs
	3.10.1 How to forcibly terminate jobs
	3.10.2 Processing when signals are received (UNIX only)
	3.10.3 Job processing during forced termination (Windows only)

	4. Using JP1/Advanced Shell - Developer (Windows Only)
	4.1 Starting and terminating JP1/Advanced Shell - Developer (Windows only)
	4.1.1 Starting JP1/Advanced Shell - Developer
	4.1.2 Terminating JP1/Advanced Shell - Developer

	4.2 JP1/Advanced Shell Editor modes (Windows only)
	4.2.1 Edit mode
	4.2.2 Debug mode

	4.3 JP1/Advanced Shell Editor operation (Windows only)
	4.3.1 JP1/Advanced Shell Editor window
	4.3.2 Menus in the JP1/Advanced Shell Editor window
	4.3.3 Mouse and key operations in the JP1/Advanced Shell Editor window

	4.4 Creating job definition scripts (Windows only)
	4.4.1 Creating job definition scripts
	4.4.2 Setting up an operating environment for the editor
	4.4.3 Setting up an execution environment for job definition scripts
	4.4.4 Checking syntax
	4.4.5 Searching for and replacing character strings
	4.4.6 Debugging
	4.4.7 Displaying coverage information

	4.5 Editing existing job definition scripts (Windows only)
	4.6 Saving job definition scripts (Windows only)
	4.7 Details of the JP1/Advanced Shell Editor window (Windows only)
	4.7.1 Options (Format) dialog box
	4.7.2 Options (Colors) dialog box
	4.7.3 Runtime Environment Settings dialog box
	4.7.4 Error List window
	4.7.5 Search dialog box
	4.7.6 Watch List window
	4.7.7 Add to Watch List dialog box
	4.7.8 Edit Value dialog box
	4.7.9 Console

	5. Creating Job Definition Scripts
	5.1 Basic elements of job definition scripts
	5.1.1 Reserved words
	5.1.2 Variables
	5.1.3 Arrays
	5.1.4 Functions
	5.1.5 Command alias definitions
	5.1.6 Metacharacters
	5.1.7 Execution in a separate process (UNIX only)
	5.1.8 Pattern matching
	5.1.9 Escape characters
	5.1.10 Specifying extended script commands
	5.1.11 Specifying external commands
	5.1.12 Specifying UNIX-compatible commands
	5.1.13 Specifying a shell for running job definition scripts and checking formats

	5.2 Conditionals
	5.2.1 Control statements
	5.2.2 Conditional expressions

	5.3 Arithmetic operations
	5.3.1 Arithmetic operators
	5.3.2 Increment and decrement operators
	5.3.3 Bitwise logical operators
	5.3.4 Assignment operators

	5.4 Priority of conditional and arithmetic operations
	5.5 Shell variables
	5.5.1 Shell variables set by JP1/Advanced Shell
	5.5.2 Shell variables whose values are set by the user
	5.5.3 Function information arrays

	5.6 Shell options
	5.6.1 Shell options that can be specified with the set command
	5.6.2 Shell options that can be specified with the adshexec command

	5.7 Environment variables for job information
	5.8 Defining jobs, job steps, and commands
	5.8.1 Declaring job names
	5.8.2 Defining the job end condition
	5.8.3 Defining job steps
	5.8.4 Defining commands that terminate normally
	5.8.5 Defining shell variables that handle path names
	5.8.6 Calling an external job definition script file from an executing job definition script
	5.8.7 Return codes of extended script commands and handling of errors
	5.8.8 Return codes of jobs, job steps, and commands
	5.8.9 Job cancellation by the standard shell commands
	5.8.10 Processing in the event of an error during job execution
	5.8.11 Notes about output of command execution results

	5.9 Allocating files and performing postprocessing
	5.9.1 Allocating regular files and performing postprocessing
	5.9.2 Allocating temporary files and performing postprocessing
	5.9.3 Allocating program output data files and performing postprocessing

	5.10 Example coding of a job definition script file

	6. Debugging Job Definition Scripts
	6.1 About the debugger
	6.1.1 Debugging with the GUI (Windows only)
	6.1.2 Debugging with the CUI (UNIX only)
	6.1.3 List of functions of the GUI debugger (Windows only)
	6.1.4 List of debugger commands (UNIX only)
	6.1.5 Whether execution can be stopped at the elements of a job definition script

	6.2 CUI debugger (UNIX only)
	6.2.1 Terminating the debugger (quit command)
	6.2.2 Running the job definition script (run command)
	6.2.3 Terminating the job definition script (kill command)
	6.2.4 Setting a breakpoint (break command)
	6.2.5 Setting a watchpoint (watch command)
	6.2.6 Deleting breakpoints and watchpoints (delete command)
	6.2.7 Commands for restarting execution of the job definition script
	6.2.8 Performing sequential execution (step and next commands)
	6.2.9 Performing continuous execution (continue command)
	6.2.10 Executing a function (finish command)
	6.2.11 Terminating a function (return command)
	6.2.12 Sending a signal (signal command)
	6.2.13 Displaying breakpoint and watchpoint information (info breakpoints command)
	6.2.14 Displaying coverage information (info coverage command)
	6.2.15 Displaying function information (info functions command)
	6.2.16 Displaying job step information (info jobsteps command)
	6.2.17 Displaying signal information (info signals command)
	6.2.18 Displaying the status (info status command)
	6.2.19 Displaying shell variable information (info variables command)
	6.2.20 Enabling and disabling the fault injection mode (joberrmode command)
	6.2.21 Setting a variable value (set command)
	6.2.22 Displaying a variable's value (print command)
	6.2.23 Displaying a backtrace (where command)
	6.2.24 Displaying the source file (list command)
	6.2.25 Changing the directory (cd command)
	6.2.26 Starting the login shell (exec command)
	6.2.27 Displaying Help (help command)

	Part 4: Reference
	7. Parameters Specified in the Environment Files
	7.1 Specification format of environment files
	7.1.1 Formats of parameters
	7.1.2 Specification format of comments

	7.2 Lists of parameters
	7.2.1 List of environment setting parameters
	7.2.2 export parameter
	7.2.3 Conditional parameters

	7.3 Environment setting parameters
	ADSHCMD_RC_ERROR parameter (defines the return code to be used when an extended script command fails)
	ADSHCMD_RC_SUCCESS parameter (defines the return code to be used when an extended script command is successful)
	ASC_FILE parameter (defines a naming rule for accumulation files)
	BATCH_CVR parameter (enables the coverage auto-acquisition functionality)
	CHILDJOB_EXT parameter (defines an extension for job definition script files that are to be executed as child jobs)
	CHILDJOB_PGM parameter (defines a program path specification that is to be executed as descendent jobs)
	CHILDJOB_SHEBANG parameter (defines an executable program path for job definition script files that are to be executed as child jobs)
	CMDRC_THRESHOLD_DEFINE parameter (defines a return code threshold for a command)
	CMDRC_THRESHOLD_USE_PRESET parameter (defines a threshold for the return code of a UNIX-compatible command)
	COMMAND_CONV_ARG parameter (defines a rule for converting an argument in job definition scripts during command execution)
	ESCAPE_SEQ_ECHO_DEFAULT parameter (defines the action of the echo command when the escape-character option is omitted)
	ESCAPE_SEQ_ECHO_HEX parameter (specifies whether ASCII code characters in hexadecimal notation are to be interpreted as escape characters)
	EVENT_COLLECT parameter (specifies whether the operation information acquisition functionality is to be enabled for job definition scripts)
	export parameter (defines an environment variable)
	HOSTNAME_JP1IM_MANAGER parameter (specifies the operation management server on which JP1/IM - Manager is running that is to be the destination of JP1 events)
	JOBEXECLOG_PRINT parameter (defines the job execution log contents to be output to the standard error output when a job terminates)
	JOBLOG_SUPPRESS_MSG parameter (defines a message that is not to be output to job execution logs)
	KSH_ENV_READ parameter (defines whether the ENV shell variable is to be read)
	LOG_DIR parameter (defines the path name of the directory to which system execution logs are to be output)
	LOG_FILE_CNT parameter (defines the number of files to be used to back up system execution logs)
	LOG_FILE_SIZE parameter (defines the size of a file to which system execution logs are to be output)
	OUTPUT_MODE_CHILD parameter (defines the method for outputting the execution results of a child job)
	OUTPUT_MODE_ROOT parameter (specifies the method for outputting the execution results of a root job)
	OUTPUT_STDOUT parameter (defines the destination for the root job standard output)
	PATH_CONV parameter (defines the details of path conversion)
	PATH_CONV_ACCESS parameter (defines path conversion details when files are input and output)
	PATH_CONV_ENABLE parameter (enables the path conversion functionality)
	PATH_CONV_RULE parameter (defines a rule for converting file paths) (Windows only)
	PERMISSION_SPOOLJOB_DIR parameter (defines permission for the spool job directory) (UNIX only)
	PERMISSION_SPOOLJOB_FILE parameter (defines permission for the files under the spool job directory) (UNIX only)
	PIPE_CMD_LAST parameter (defines execution processing for the last command in a pipe) (UNIX only)
	SPOOL_DIR parameter (defines the spool root directory path name)
	SPOOLJOB_CHILDJOB parameter (defines how a spool job of a child job is to be handled)
	SPOOLJOB_CREATE parameter (selects whether a spool job is to be created)
	TEMP_FILE_DIR parameter (defines the path name of the directory for storing temporary files)
	TRACE_DIR parameter (defines the path name of the directory to which traces are to be output)
	TRACE_FILE_CNT parameter (defines the number of files to which traces are to be output)
	TRACE_FILE_SIZE parameter (defines the size of a file to which traces are output)
	TRACE_LEVEL parameter (defines a trace output level)
	TRAP_ACTION_SIGTERM parameter (defines the job controller's action when a forced termination request is received)
	UNSUPPORT_TEST parameter (defines the handling of an unsupported conditional expression) (Windows only)
	USERREPLY_DEBUG_DESTINATION parameter (specifies the input source and the destination of event notification and reply-request messages during debug execution)
	USERREPLY_JP1EVENT_INTERVAL parameter (specifies the minimum interval at which JP1 events are to be issued)
	USERREPLY_WAIT_MAXCOUNT parameter (specifies the maximum number of concurrent reply-request messages that can be output for a physical or logical host)
	VAR_ENV_NAME_LOWERCASE parameter (specifies whether environment variable names in lowercase letters are supported) (Windows only)
	VAR_SHELL_FUNCINFO parameter (selects whether function information arrays are used)
	VAR_SHELL_GETLENGTH parameter (defines the unit for the lengths of variable values that are replaced in format ${#variable})

	7.4 Conditional parameters
	lhost_start and lhost_end parameters (define a set of parameters applicable only to a specified logical host)
	phost_start and phost_end parameters (define a set of parameters applicable only to the physical host)

	8. Commands Used During Operations
	8.1 Command description format
	8.1.1 Command description format for shell operation commands and UNIX-compatible command (script format) (Windows only)
	8.1.2 Command description format for UNIX-compatible commands
	8.1.3 File path names

	8.2 List of commands
	8.2.1 List of shell operation commands
	8.2.2 List of UNIX-compatible commands

	8.3 Shell operation commands
	adshchmsg command (replies manually to a reply-request message when a failure occurs)
	adshcvmerg command (merges coverage information)
	adshcvshow command (displays coverage information)
	adshevtout command (outputs job definition script operation information)
	adshexec command (executes a batch job)
	adshfile command (specifies the allocation and postprocessing of regular files)
	adshhk command (deletes spool jobs)
	adshlsmsg command (displays a list of reply-request messages when a failure occurs)
	adshmdctl command (starts and stops the user-reply functionality management daemon) (UNIX only)
	adshmsvcd command (registers the user-reply functionality management service in a development environment) (Windows only)
	adshmsvce command (registers the user-reply functionality management service in an execution environment) (Windows only)

	8.4 UNIX-compatible commands
	awk command (performs text processing and pattern matching)
	basename command (extracts a file name from a path)
	cat command (outputs files to the standard output)
	cmp command (compares binary files)
	cp command (copies a file or directories)
	cut command (outputs selected parts of lines to the standard output)
	date command (displays the system date and time)
	diff command (compares two files)
	dirname command (retrieves character strings for directory path names from path names)
	egrep command (searches for characters in files)
	expand command (replaces tab characters with spaces)
	expr command (evaluates an expression)
	find command (searches for files in directories)
	getopt command (analyzes command line options)
	grep command (searches for characters in files)
	head command (displays the first part of files)
	hostname command (displays the host name)
	ls command (lists the contents of files or directories)
	mkdir command (creates directories)
	mv command (moves files or directories)
	paste command (concatenates multiple files in lines)
	rm command (removes files or directories)
	rmdir command (removes empty directories)
	sed command (replaces character strings in text)
	sleep command (stops for a specified period of time)
	sort command (sorts text files)
	split command (splits a file)
	stat command (outputs the statuses of files and directories to the standard output)
	tail command (displays the last part of files)
	touch command (changes a file's last access date and time or modification date and time)
	uname command (displays information about the OS or hardware)
	uniq command (removes duplicated lines from a sorted file)
	wc command (counts the number of bytes, lines, characters, and words in files)
	which command (obtains the paths of external commands)

	8.5 UNIX-compatible commands (script format) (Windows only)
	chmod command (disables the chmod commands specified in job definition scripts)
	chmod command (changes the file read-only attribute setting (enable or disable))
	chmod command (specifies permissions as numeric values)
	chmod command (specifies permissions as symbols or numeric values)
	su command (disables the su commands specified in job definition scripts)
	su command (executes programs with the permissions of the executing user)
	who command (disables the who commands specified in job definition scripts)
	who command (outputs login user information to logs)

	9. Job Definition Script Commands and Control Statements
	9.1 Command and control statement description formats
	9.1.1 Standard shell command description format
	9.1.2 Extended shell command description format
	9.1.3 Extended script command description format
	9.1.4 Script control statement description format
	9.1.5 Reserved script command description format

	9.2 Lists of commands and control statements
	9.2.1 List of standard shell commands
	9.2.2 List of extended shell commands
	9.2.3 List of extended script commands
	9.2.4 List of script control statements
	9.2.5 List of reserved script commands

	9.3 Standard shell commands
	. command (executes a shell script)
	: command (expands arguments)
	alias command (defines aliases)
	break command (exits from a loop)
	builtin command (executes a built-in command)
	cd command (changes the current directory)
	command command (executes a command)
	continue command (interrupts loop processing and returns to the beginning of the loop)
	echo command (outputs what is specified in arguments to the standard output)
	eval command (concatenates arguments into a command and executes it)
	exec command (executes a command and exits)
	exit command (exits the shell)
	export command (exports shell variables)
	false command (returns 1 as the return code)
	getopts command (parses option arguments)
	kill command (sends a signal)
	let command (evaluates the values of arithmetic expressions)
	print command (outputs to the standard output)
	pwd command (outputs the path of the current directory)
	read command (reads from the standard input and stores the input in variables)
	readonly command (sets the read-only attribute for variables or displays all read-only variables)
	return command (returns from a function or an external script)
	set command (sets shell options, creates an array, or displays variable values)
	shift command (shifts the run-time parameters)
	test command (determines the value of a conditional expression)
	times command (displays the amount of CPU time used by the shell)
	trap command (specifies the action when signals and forced termination requests are received)
	true command (returns 0 as the return code)
	typeset command (declares explicitly the attributes and values of variables and functions)
	ulimit command (sets limits on system resources) (UNIX only)
	umask command (sets the access permissions for creating a new file) (UNIX only)
	unalias command (removes alias definitions)
	unset command (unsets variable values and attributes)
	wait command (waits for child processes to complete)
	whence command (displays how character strings would be interpreted if used as commands)

	9.4 Extended shell commands
	adshecho command (issues a specified event notification message as a JP1 event)
	adshread command (issues a specified reply-request message as a reply-waiting event)
	adshscripttool command (supports creation of job definition scripts) (Windows only)

	9.5 Extended script commands
	#-adsh_file command (specifies assignment and postprocessing of regular files)
	#-adsh_file_temp command (assigns and postprocesses a temporary file)
	#-adsh_job command (declares a name for a job)
	#-adsh_job_stop command (defines termination conditions for a job)
	#-adsh_path_var command (defines shell variables for handling path names)
	#-adsh_rc_ignore command (defines commands to always terminate normally)
	#-adsh_script command (calls an external job definition script file from the job definition script that is running)
	#-adsh_spoolfile command (assigns a program output data file)
	#-adsh_step_start command, #-adsh_step_error command, #-adsh_step_end command (defines a job step)

	9.6 Script control statements
	case statement (chooses from multiple processing paths)
	for statement (repeats the same processing)
	if statement (branches conditionally)
	until statement (loops until a condition is true)
	while statement (loops while a condition is true)

	9.7 Reserved script commands
	time command (displays the time used to execute a command)

	Part 5: Troubleshooting
	10. Troubleshooting
	10.1 Response procedure
	10.1.1 Corrective action when using the user-reply functionality
	10.1.2 When the root job terminates before its child jobs terminate

	10.2 Information needed when a problem occurs
	10.2.1 Logs
	10.2.2 Error information
	10.2.3 Spool information
	10.2.4 User-reply functionality's management daemon information (UNIX only)

	10.3 How to collect information
	adshcollect command (collects information)

	11. Messages
	11.1 Message format
	11.1.1 Message output format
	11.1.2 Format of message explanations
	11.1.3 Assignment of message numbers

	11.2 Message output destinations
	11.2.1 Notes about the row numbers that are output in messages

	11.3 List of messages
	11.4 Details of errors
	11.4.1 Details of errors (Windows)
	11.4.2 Details of errors (UNIX)
	11.4.3 Details of errors (specific to JP1/Advanced Shell)
	11.4.4 Handling Error Information Displayed in the User-Reply Functionality

	Appendixes
	A. Coverage Information That Is Acquired
	A.1 Commands for which coverage information is acquired
	A.2 Control statements for which coverage information is acquired
	A.3 Functions for which coverage information is acquired
	A.4 Metacharacters for which coverage information is acquired
	A.5 Shell variable operations for which coverage information is acquired

	B. Reference Material for This Manual
	B.1 Related publications
	B.2 Conventions: abbreviations
	B.3 Conventions: directory names
	B.4 Conventions: KB, MB, GB, and TB

	C. Glossary

	Index

