
Hitachi Navigation Platform Development Guide

3021-3-025-30(E)

Notices

■ Relevant program products
P-2943-4PA4 Hitachi Navigation Platform 10-50 (For Windows Server 2008 R2, Windows Server 2012, Windows
Server 2012 R2, Windows Server 2016)
P-2943-4VA4 Hitachi Navigation Platform for Developers 10-50 (For Windows 7 x64, Windows 8 x64, Windows 8.1
x64, Windows 10 x64)
P-292C-4PBL JP1/Navigation Platform 11-50 (For Windows Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, Windows Server 2016)
P-292C-4VBL JP1/Navigation Platform for Developers 11-50 (For Windows 7 x64, Windows 8 x64, Windows 8.1
x64, Windows 10 x64)

■ Trademarks
HITACHI, Cosminexus, HiRDB, JP1, uCosminexus are either trademarks or registered trademarks of Hitachi, Ltd. in
Japan and other countries.
Internet Explorer is either a registered trademark or trademark of Microsoft Corporation in the United States and/or
other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Microsoft Office and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
RSA and BSAFE are either registered trademarks or trademarks of EMC Corporation in the United States and/or other
countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
Other company and product names mentioned in this document may be the trademarks of their respective owners.
Portions of this software were developed at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign.
Regular expression support is provided by the PCRE library package, which is open source software, written by Philip
Hazel, and copyright by the University of Cambridge, England. The original software is available from ftp://
ftp.csx.cam.ac.uk/pub/software/programming/pcre/
This product includes software developed by Andy Clark.
This product includes software developed by Ben Laurie for use in the Apache-SSL HTTP server project.
This product includes software developed by Daisuke Okajima and Kohsuke Kawaguchi (http://relaxngcc.sf.net/).
This product includes software developed by IAIK of Graz University of Technology.
This product includes software developed by Ralf S. Engelschall <rse@engelschall.com> for use in the mod_ssl project
(http://www.modssl.org/).
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
This product includes software developed by the Java Apache Project for use in the Apache JServ servlet engine project
(http://java.apache.org/).

Hitachi Navigation Platform Development Guide 2

This product includes software developed by the University of California, Berkeley and its contributors.
This software contains code derived from the RSA Data Security Inc. MD5 Message-Digest Algorithm, including
various modifications by Spyglass Inc., Carnegie Mellon University, and Bell Communications Research, Inc
(Bellcore).
Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source
community for development tool providers.

This product includes RSA BSAFE(R) Cryptographic software of EMC Corporation.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning

Excel Microsoft(R) Office Excel

Internet Explorer Internet Explorer 8 Windows(R) Internet Explorer(R) 8

Internet Explorer 9 Windows(R) Internet Explorer(R) 9

Internet Explorer 10 Windows(R) Internet Explorer(R) 10

Internet Explorer 11 Windows(R) Internet Explorer(R) 11

Windows Windows 7 Windows 7
x64

Microsoft(R) Windows(R) 7 Enterprise (64-
bit Edition)

Microsoft(R) Windows(R) 7 Professional
(64-bit Edition)

Microsoft(R) Windows(R) 7 Ultimate (64-bit
Edition)

Windows 8 Windows 8
x64

Windows(R) 8 Enterprise (64-bit Edition)

Windows(R) 8 Pro (64-bit Edition)

Windows 8.1 Windows 8.1
x64

Windows(R) 8.1 Enterprise (64-bit Edition)

Windows(R) 8.1 Pro (64-bit Edition)

Windows 10 Windows 10
x64

Windows(R) 10 Enterprise (64-bit Edition)

Hitachi Navigation Platform Development Guide 3

Abbreviation Full name or meaning

Windows Windows 10 Windows 10
x64

Windows(R) 10 Pro (64-bit Edition)

Windows Server 2008 R2 Microsoft(R) Windows Server(R) 2008 R2
Datacenter

Microsoft(R) Windows Server(R) 2008 R2
Enterprise

Microsoft(R) Windows Server(R) 2008 R2
Standard

Windows Server 2012 Microsoft(R) Windows Server(R) 2012
Datacenter

Microsoft(R) Windows Server(R) 2012
Standard

Windows Server 2012 R2 Microsoft(R) Windows Server(R) 2012 R2
Datacenter

Microsoft(R) Windows Server(R) 2012 R2
Standard

Windows Server 2016 Microsoft(R) Windows Server(R) 2016
Datacenter

Microsoft(R) Windows Server(R) 2016
Standard

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your
country.
No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

■ Issued
Nov. 2017: 3021-3-025-30(E)

■ Copyright
All Rights Reserved. Copyright (C) 2016, 2017, Hitachi, Ltd.

Hitachi Navigation Platform Development Guide 4

Summary of amendments

The following table lists changes in this manual (3021-3-025-30(E)) and product changes related
to this manual.

Changes Location

The version of JDK, which is a prerequisite for setting up Eclipse, was changed to 8. 3.1

The value to be entered in the VM arguments field by clicking the JRE tab when an
attempt to build plugins has failed was changed to -
XX:MaxMetaspaceSize=256m.

4.6.2

In addition to the above changes, minor editorial corrections were made.

Hitachi Navigation Platform Development Guide 5

Preface

This manual describes how to develop plugins and custom windows that are used in the following products, and
describes about API references:

• Hitachi Navigation Platform

• Hitachi Navigation Platform for Developers

• JP1/Navigation Platform

• JP1/Navigation Platform for Developers

■ Abbreviations for product names
This manual uses the following abbreviations for the above product names:

Abbreviation Full name

Navigation Platform Navigation Platform Hitachi Navigation Platform

JP1/Navigation Platform

Navigation Platform
for Developers

Hitachi Navigation Platform for
Developers

JP1/Navigation Platform for
Developers

■ Intended readers
This manual is intended for users who develop plugins and custom windows by using APIs provided by Navigation
Platform

Note that readers of this manual must have:

• Basic knowledge of Windows operations

• Basic knowledge of Java program development

• Basic knowledge of Eclipse

• Basic knowledge of XML

■ Conventions: Fonts and symbols
The following table explains the text formatting conventions used in this manual:

Text formatting Convention

Bold Bold characters indicate text in a window, other than the window title. Such text includes menus, menu
options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Hitachi Navigation Platform Development Guide 6

Text formatting Convention

Italic Italic characters indicate a placeholder for some actual text to be provided by the user or system. For example:
• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italic characters are also used for emphasis. For example:
• Do not delete the configuration file.

Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output by
the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:
The password is incorrect.

The following table explains the symbols used in this manual:

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the meaning of OR. For
example:
A|B|C means A, or B, or C.

{ } In syntax explanations, curly brackets indicate that only one of the enclosed items is to be selected.
For example:
{A|B|C} means only one of A, or B, or C.

[] In syntax explanations, square brackets indicate that the enclosed item or items are optional. For
example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

... In coding, an ellipsis (...) indicates that one or more lines of coding have been omitted.
In syntax explanations, an ellipsis indicates that the immediately preceding item can be repeated as
many times as necessary. For example:
A, B, B, ... means that, after you specify A, B, you can specify B as many times as necessary.

Hitachi Navigation Platform Development Guide 7

Contents

Notices 2

Summary of amendments 5

Preface 6

1 Overview of Development 12
1.1 Range of development 13

1.2 Flow of plugin development 14

2 Plugin Overview 16
2.1 Overview of Navigation Platform plugins 17

2.1.1 About initialization and termination processing of plugins 17

2.1.2 About plugin sessions 18

2.2 Types of plugins 19

2.3 Overview of I/O Plugins 20

2.3.1 I/O Plugin execution timing 20

2.3.2 Execution order of I/O Plugins 20

2.3.3 Data that can be passed by I/O Plugins 20

2.3.4 Lifecycle of I/O Plugin instances 21

2.4 Overview of Suspend/Resume Plugins 23

2.4.1 Suspend/Resume Plugin execution timing 23

2.4.2 Lifecycle of Suspend/Resume Plugins 23

2.5 Overview of Custom Window Plugins 24

2.5.1 Custom Window Plugin execution timing 24

2.5.2 Data that can be received by Custom Window Plugins 24

2.5.3 Processing if an error occurs in a Custom Window Plugin 24

3 Preparation of Development 25
3.1 Setting up Eclipse 26

3.2 Importing a pluginSDK project 27

3.3 Adding libraries 28

3.3.1 Location to place libraries 28

3.3.2 Creating and configuring libraries 28

3.3.3 Notes on adding libraries 29

4 Developing Plugins 30
4.1 Creating template plugins 31

4.1.1 Editing the plugin information property file 31

Hitachi Navigation Platform Development Guide 8

4.1.2 Executing the template plugin creation command 35

4.2 Importing a template plugin project 39

4.3 Customizing template plugins 40

4.3.1 Customizing I/O Plugins 40

4.3.2 Customizing Suspend/Resume Plugins 49

4.3.3 Customizing Custom Window Plugins 49

4.3.4 Creating the JSP file used in custom windows 50

4.4 Adding database connection processing 51

4.4.1 Adding a resource adapter 51

4.4.2 Changing resource adapter settings 52

4.4.3 Deleting resource adapters 53

4.4.4 Setting a plugin for database connection processing 53

4.4.5 Implementing database connection processing 54

4.5 Implementing processing to be performed during plugin initialization or termination 57

4.6 Building plugins 58

4.6.1 Procedure for building plugins 58

4.6.2 Actions to be taken if an attempt to build plugins fails 59

4.7 Deploying plugins 60

4.8 Associating I/O Plugins with Operational Content 62

4.8.1 Drawing mapping lines (connecting Guide Parts and Plugin Parts) 62

4.8.2 Details about values input to or output from plugins 64

4.8.3 Updating Plugin Parts 65

4.8.4 Checking configuration information for Operational Content that uses plugins 66

4.9 Configuring the user property file 67

4.10 Debugging plugins 68

4.10.1 Conditions for debugging plugins 68

4.10.2 How to debug plugins 68

4.11 Deleting plugins 69

4.11.1 How to delete plugins 69

4.12 Calculating memory usage for plugins 70

4.12.1 Procedure for creating Operational Content for measurement 70

4.12.2 Procedure for measuring the memory usage for plugins 70

4.13 Changing J2EE server settings 73

4.13.1 J2EE server setting items that can be changed during plugin development 73

4.13.2 Storage location of the files used for changing J2EE server setting items 73

4.13.3 Procedure for changing the user property file for J2EE servers (usrconf.properties) 73

4.13.4 Procedure for changing the option definition file for J2EE servers (usrconf.cfg) 76

4.14 Notes on developing plugins used with Operational Content for iPad 79

4.15 About use of plugins developed in old versions 80

4.16 Setting up access permissions to Java packages to be used by User Plugins 81

Hitachi Navigation Platform Development Guide 9

5 API Reference (for I/O Plugin Development) 82
5.1 List of APIs (for I/O Plugin development) 83

5.2 IIoPluginController (server processing implementation interface) 84

5.2.1 inputFromNode method 84

5.2.2 outputToNode method 93

5.2.3 Plugin processing during preview 97

5.3 IPluginInitializer (User Plugin startup (initialization) and termination processing implementation
interface) 99

5.3.1 init method 99

5.3.2 destroy method 100

5.4 UCNPPluginUserException (User Plugin exception class) 101

5.5 ParamConvertUtil (I/O parameter conversion utility class) 102

5.5.1 decodeHtmlPartParam method 102

5.6 UCNPPluginException (I/O Plugin exception class) 107

5.6.1 getMessage method 107

5.6.2 getMessageId method 107

5.7 IUCNPSession (session information use interface) 109

5.7.1 getLoginId method 109

6 API Reference (for Suspend/Resume Plugin Development) 110
6.1 List of APIs (for Suspend/Resume Plugin development) 111

6.2 ISuspendActionController (suspend/resume action controller interface) 112

6.2.1 save method 112

6.2.2 load method 114

6.2.3 contains method 115

6.2.4 delete method 117

6.2.5 deleteAll method 118

6.3 ISuspendInfo (suspend information interface) 121

6.3.1 getContentSuspendedId method 121

6.3.2 getWorkId method 122

6.3.3 getContentName method 122

6.3.4 getGroupName method 123

6.3.5 getCurrentNodeName method 123

6.4 SupendInfoSerializeUtil (utility class for suspend information serialization) 124

6.4.1 serialize method 124

6.4.2 deserialize method 125

6.5 UCNPPluginException (Suspend/Resume Plugin exception class) 127

6.5.1 UCNPPluginException(String message) constructor 127

6.5.2 UCNPPluginException(String message, Throwable cause) constructor 128

7 API Reference (for Custom Window Plugin Development) 129
7.1 List of APIs (for Custom Window Plugin development) 130

Hitachi Navigation Platform Development Guide 10

7.2 CustomWindowUrlUtil (utility class for custom window URL acquisition) 131

7.2.1 getCustomWindowUrl method 131

7.3 LogoutActionUtil (logout processing class) 133

7.3.1 logout method 133

Appendixes 135
A How to Use Sample Plugins 136

A.1 How to use I/O Plugins (sample) 136

A.2 How to use Suspend/Resume Plugins (sample) 137

A.3 Notes on using sample plugins 137

B Important Point for I/O Plugin Development 139

B.1 Suppressing execution of I/O Plugins depending on the presence of mapping lines 139

C Migration from Old Versions 141

C.1 Procedure for migrating plugins developed in old versions 141

C.2 Migration of the menu area developed in old versions 143

C.3 Migration of custom windows (new windows) developed in old versions 143

C.4 J2EE server settings in old versions 143

D Reference Material for This Manual 144

D.1 Related publications 144

D.2 Conventions: Abbreviations for product names 145

D.3 Conventions: Acronyms 145

D.4 Conventions: KB, MB, GB, and TB 145

E Glossary 146

Index 150

Hitachi Navigation Platform Development Guide 11

1 Overview of Development

This chapter describes the range of plugins that can be used in Navigation Platform and the overview
of development operation.

Hitachi Navigation Platform Development Guide 12

1.1 Range of development

By developing plugins in accordance with the contents of operation, use of Navigation Platform becomes more
convenient. The following shows an example of customizing a Navigation Platform window by using developed plugins

Figure 1‒1: Example of customizing a Navigation Platform window

To customize the window shown in this figure, you must first develop the following plugins:

1. Suspend/Resume Plugin

2. Custom Window Plugin

3. I/O Plugin

This manual describes how to customize Navigation Platform by using these plugins.

For details about how to customize Navigation Platform without developing plugins, see the description of customization
and user property file (ucnp_user.properties) in the Hitachi Navigation Platform Setup and Operations Guide.

1. Overview of Development

Hitachi Navigation Platform Development Guide 13

1.2 Flow of plugin development

The following figure shows an overview and flow of plugin development.

Figure 1‒2: Overview of plugin development

The numbers in the figure correspond to the following numbers:

1. A developer develops a plugin in a development environment.
Eclipse, which is provided by Navigation Platform, is used for plugin development.
To use Eclipse, setup is required in advance.

2. The developer sends the developed plugin to the editing environment and execution environment.
The system administrator applies the plugin to the editing environment and execution environment.

3. After plugins are applied, the Content Manager or Content Editor creates Operational Content in the editing
environment.

4. For I/O Plugins, the Content Manager or Content Editor associates the plugins with Operational Content by drawing
mapping lines between Plugin Parts and Guide Parts.
For Suspend/Resume Plugins and Custom Window Plugins, association is not necessary.

Reference note

If the system configuration does not use an editing environment, a developer might also perform the tasks
in 3 and 4 in a development environment. For details about system configurations, see the Hitachi
Navigation Platform Setup and Operations Guide. For details about how to create Operational Content, see
the Hitachi Navigation Platform Content Editing Guide.

1. Overview of Development

Hitachi Navigation Platform Development Guide 14

The following provides details about plugin development tasks and includes references.

Before starting development
You must construct a development environment before starting the tasks described here. Note that you must have
Windows administrator roles to perform any task described here.

Upon completion of the development
After you have completed development of plugins, send J2EE applications (plugin-name.ear) to an editing
environment and execution environment. In the case of developed I/O Plugins, export Operational Content associated
with the plugins, and then import them to the editing environment and execution environment.

For details about each task, see the Hitachi Navigation Platform Setup and Operations Guide.

Table 1‒1: Plugin development tasks

Order Task I/O Plugin Suspend/Resume Plugin Custom
Window
Plugin

See:

1 Preparing a development environment
(by setting up Eclipse and adding
libraries)

R R R Chapter 3

2 Creating template plugins R R R 4.1

3 Importing a template plugin project to
Eclipse

R R R 4.2

4 Customizing (editing) the template
plugin by using Eclipse

R R R 4.3.1, 4.4

5 Adding (and implementing) necessary
processing to the plugin

S S S 4.4, 4.5

6 Building a customized template plugin
project by using Ant

R R R 4.6

7 Deploying the plugin J2EE application
(plugin-name.ear) by using Ant

R R R 4.7

8 Placing Plugin Parts in the Guide area
and then associating plugins with
Operational Content by drawing
mapping lines to connect Plugin Parts
and Guide Parts

R N N 4.8

9 Checking the user property file R R S 4.9

10 Debugging plugins by using the Eclipse
debugger function

R R R 4.10

Legend:
R: The task is required.
N: The task is not required
S: Perform the task if necessary.

Note:
You can change J2EE server setting items if necessary. For details, see 4.13 Changing J2EE server settings.

1. Overview of Development

Hitachi Navigation Platform Development Guide 15

2 Plugin Overview

This chapter describes the types of plugins that can be developed in Navigation Platform, and
provides an overview of each type.

Hitachi Navigation Platform Development Guide 16

2.1 Overview of Navigation Platform plugins

Navigation Platform provides two types of plugins: System Plugins that do not need to be developed and User Plugins
that need to be developed. This manual describes User Plugins (referred to as plugins hereafter).

The entity of a plugin is an EAR file. Developers use Eclipse in a development environment to create plugin EAR files
of Navigation Platform. By deploying EAR files created in the development environment into Navigation Platform
(J2EE server) in an editing environment or execution environment, Content Editors and Content users are able to use
plugins.

Plugins deployed in Navigation Platform (J2EE server) might be called J2EE applications. The following indicates the
relationship between plugin EAR files and the Navigation Platform EAR file.

Figure 2‒1: Image of plugins incorporated in Navigation Platform

Plugins developed by using uCosminexus Navigation Developer 09-00 or earlier are incorporated in Navigation Platform
in a different way, and are therefore not available. Plugins developed by using uCosminexus Navigation Developer
09-50 or later are available, although tasks such as copying definition information to a new format template plugin must
be performed.

2.1.1 About initialization and termination processing of plugins
You must use the IPluginInitializer interface to implement initialization and termination processing in plugins
in the following cases:

• A connection is established from the plugin to a database.

• Preprocessing is required for executing a plugin.

• Postprocessing is required when a plugin stops.

When Navigation Platform starts, plugins also start

2. Plugin Overview

Hitachi Navigation Platform Development Guide 17

(1) Creating instances of initialization and termination processing classes
Instances are created when a plugin starts.

(2) Discarding instances of initialization and termination processing
classes

Instances are discarded when a servlet stops.

2.1.2 About plugin sessions
When you execute the setAttribute method for the HttpSession object acquired in a plugin, do not specify a
name beginning with any of the character strings listed below for the name parameter of the setAttribute method.

Character strings prohibited at the beginning of the name parameter:
ucnp
java.
javax.
javax.portlet.
hptl
com.cosminexus
jp.co.hitachi.soft.portal

2. Plugin Overview

Hitachi Navigation Platform Development Guide 18

2.2 Types of plugins

Plugins that can be developed in Navigation Platform are classified by function as follows:

• I/O Plugin

• Suspend/Resume Plugin

• Custom Window Plugin

Operation of I/O Plugins and Suspend/Resume Plugins uses the values (cache) entered or selected in windows by users.
Custom Window Plugins are used to display separate windows independent of Navigation Platform.

2. Plugin Overview

Hitachi Navigation Platform Development Guide 19

2.3 Overview of I/O Plugins

I/O Plugins are executed during node transition in Operational Content. To use, in the next node, the values input by
users in Operational Content windows or to pass such values to external programs, you need to develop I/O Plugins.

2.3.1 I/O Plugin execution timing
The following table describes the order in which I/O Plugins are executed during node transition in Operational Content.

Table 2‒1: I/O Plugins and methods executed during node transition

Execution
order

I/O Plugin I/O Plugin method

1 I/O Plugin associated with the transfer source node inputFromNode method (IIoPluginController
(server processing implementation interface))

2 I/O Plugin associated with the transfer destination node# outputToNode method (IIoPluginController
(server processing implementation interface))

#
Including an I/O Plugin associated with the start process node that is not connected to the Terminal Node (start)

Note that I/O Plugins are also executed when node transition occurs in the Operational Content Execution Window
(preview). If you do not want to execute I/O Plugins in a preview window, you need to implement accordingly. For
details about the implementation, see 5.2.3 Plugin processing during preview.

The following operations are possible by specifying error information for return values of the methods of I/O Plugins
shown in this table:

• Display an alert when a user executes the I/O Plugin

• Highlight the item for which an invalid value is entered, and then suppress node transition

For details about the information you can specify for return values of methods, see the return values of inputFromNode
method or outputToNode method in 5.2 IIoPluginController (server processing implementation interface).

2.3.2 Execution order of I/O Plugins
When you develop multiple I/O Plugins, we recommend you make sure that they are independent of any other plugin
processing.

However, in case multiple I/O Plugins are placed in the same node, you can specify the execution order in an I/O Plugin
XML file so that they are executed in the specified ascending order. You can specify the execution order for each plugin,
but cannot specify the execution order of methods within a plugin.

2.3.3 Data that can be passed by I/O Plugins
Data that can be received by plugins

When executing an I/O Plugin, you can receive data such as information about the transfer source or transfer
destination node and the cache of Guide Parts mapped in the Plugin Part parameters. The data is passed as a parameter

2. Plugin Overview

Hitachi Navigation Platform Development Guide 20

of the inputFromNode method or outputToNode method of IIoPluginController (server processing
implementation interface).

Data returned by plugins
The following operations are possible by specifying the updated cache of Guide Parts mapped in the Plugin Part
parameters and error information for the data to be returned by plugins:

• Display alerts for users

• Highlight the item for which an invalid value is entered, and then suppress node transition

Make sure that the data is returned as a return value of the inputFromNode method or outputToNode method
of IIoPluginController (server processing implementation interface).

For details about data that can be passed with I/O Plugins and, see the following in 5.2 IIoPluginController (server
processing implementation interface):

• Descriptions of param and return values in inputFromNode method

• Descriptions of param and return values in outputToNode method

2.3.4 Lifecycle of I/O Plugin instances
The following describes the lifecycle of plugin instances.

(1) Creating and retaining I/O Plugin instances
For I/O Plugins having the same plugin ID, one instance is retained in one window. The instances are retained in HTTP
sessions based on window IDs as keys. The following figure shows instances of I/O Plugins.

Figure 2‒2: I/O Plugin instances

When you execute I/O Plugins, instances of the I/O Plugins to be executed are acquired from HTTP sessions by using
window IDs and plugin IDs as keys. If an instance cannot be acquired from HTTP sessions, new instances are created
and then added to the HTTP sessions. At this time, only the instances to be executed are created. The figure below shows
an example of Operational Content containing branch nodes. If transition occurs from node 1 to node 2, and to node 4
during execution of this Operational Content, plugins A, B, and D are executed but plugin C is not. Therefore, if operation
of Operational Content containing this transition is executed, an instance of plugin C is not created.

2. Plugin Overview

Hitachi Navigation Platform Development Guide 21

Figure 2‒3: Operational Content containing branches

(2) Discarding I/O Plugin instances
The table below indicates when I/O Plugin instances are discarded. This applies regardless of whether the operation is
performed in the Operational Content Execution Window or Operational Content Execution Window (preview).

Table 2‒2: When I/O Plugin instance are discarded

No. Discarded when: Plugin instance to be discarded

1 Operational Content is displayed in the
Operational Content Execution Window or
Operational Content Execution Window
(preview)#1

Instances retained by the HTTP session (when the operation is performed)
based on the window ID of the window in which the operation is performed

2 The Editing Window View menu is clicked

3 The Close button is clicked#2

4 The Done button is clicked#3

5 The Logout button is clicked All instances retained by the HTTP session to be discarded

6 A session times out

#1
Instances are discarded when you select Operational Content in the menu area. If you specify a parameter for the basic URL, and then open a
specific Operational Content, instances are not discarded.

#2
If logout_close is specified for the ucnp.base.server.close.button.setting property in the user property file
(ucnp_user.properties), clicking the Close button discards the same instance as those when the Logout button is clicked in No. 5.
For details about the property, see the description about the ucnp.base.server.close.button.setting property (whether to
display the Close button in the header area) in the Hitachi Navigation Platform Setup and Operations Guide.

#3
Instances are discarded only when true is specified for the ucnp.base.client.complete.button.window.close property in
the user property file (ucnp_user.properties). For details about the property, see the description of the
ucnp.base.client.complete.button.window.close property (Web browser operation when the Done button is clicked in the
Operational Content Execution Window) in the Hitachi Navigation Platform Setup and Operations Guide.

2. Plugin Overview

Hitachi Navigation Platform Development Guide 22

2.4 Overview of Suspend/Resume Plugins

Suspend/Resume Plugins are plugins that temporarily save information entered by users in the Operational Content
Execution Window, and restore the saved information when operations are resumed. If you want to perform operation
that requires several days to complete, develop Suspend/Resume Plugins. The entered values are saved as suspend
information. Even if you reference information about other operations or log out in the middle of operation, you can
resume the operation from the temporarily saved status.

2.4.1 Suspend/Resume Plugin execution timing
Suspend/Resume Plugins are executed at the timing shown below.

For suspending operation:
When a user clicks the Suspend button

For resuming operation:

• When a user selects Operational Content in the Operational Content Execution Window

• When a user opens a specific Operational Content by specifying a parameter for the basic URL

2.4.2 Lifecycle of Suspend/Resume Plugins
A Suspend/Resume Plugin terminates by deleting Suspend information when:

• A user clicks the Done button in the Operational Content Execution Window.

• An error occurs during suspend information check when the user resumes operation in the Operational Content
Execution Window.

• The contents of Operational Content displayed in the Operational Content Execution Window are changed.

• A Content Manager deletes Operational Content in the Operational Content Editing Window.

2. Plugin Overview

Hitachi Navigation Platform Development Guide 23

2.5 Overview of Custom Window Plugins

Custom Window Plugins are plugins that develop new windows. If you want to display your original windows besides
the windows of Navigation Platform after you logged in, develop Custom Window Plugins.

2.5.1 Custom Window Plugin execution timing
Custom Window Plugins are executed when:

• You access and log in to Navigation Platform by the URL with the ucnpUserPageId parameter specified.

• When you access and log in to Navigation Platform by the URL for which the value acquired by using the
getCustomWindowUrl method of CustomWindowUrlUtil is specified for the ucnpUserPageId
parameter.

2.5.2 Data that can be received by Custom Window Plugins
To send data to a custom window, you must use the ucnpUserData parameter. If you want to receive multiple pieces
of data in a new window, combine them, and then specify this combination for the ucnpUserData parameter.

You can use the GET or POST method to send the ucnpUserData parameter. You must note the following if you use
the GET method to send data as part of the URL:

• Specify a URL encoded value in UTF-8.

• Specify a value within the maximum number of characters that can be used for the URL of the Web browser you
want to use.

If these conditions are not satisfied, operation is unpredictable.

Note that the ucnpUserData parameter takes effect only on the custom window that first appears when you log in
to Navigation Platform. This parameter is disabled if you switch to another window from the custom window after the
login.

2.5.3 Processing if an error occurs in a Custom Window Plugin
If a Custom Window Plugin is not found or is not running when you log in, a KDCZ10375-E message is displayed in
the error window.

2. Plugin Overview

Hitachi Navigation Platform Development Guide 24

3 Preparation of Development

This chapter describes operation, such as setup and specifying environment variable settings,
required for developing plugins and custom windows.

Before starting preparation of development, you must set up a development environment, and then
create Operational Content (or import it from an editing environment). For details about these tasks,
see the Hitachi Navigation Platform Setup and Operations Guide.

Hitachi Navigation Platform Development Guide 25

3.1 Setting up Eclipse

The following shows the procedure for setting up Eclipse.

Important note

Use JDK version 8. However, you can use JDK version 5, 6, or 7 to create libraries that are to be referenced
from plugins and custom windows.

By setting up Eclipse according to the following procedure, you can use JDK version 8, which is included in
Hitachi Navigation Platform for Developers.

1. Copy the archive of Eclipse to any folder from the CD-ROM of Hitachi Navigation Platform for Developers or JP1/
Navigation Platform for Developers.

2. Extract the copied archive to a folder other than the Navigation Platform for Developers installation directory.
This folder is referred to as the Eclipse installation directory hereafter.

3. Add the following directory to the Path system environment variable:
Eclipse-installation-directory\plugins\directory-beginning-with-org.apache.ant_\bin;

4. Edit the eclipse.ini file directly under the Eclipse installation directory.

Information to add 1
Add the following setting on a line before -vmargs:
-vm
Navigation-Platform-for-Developers-installation-directory\PP\uCPSB\jdk\bin\javaw.exe

Information to add 2
Add the following setting on a line after -vmargs:
-XX:MaxMetaspaceSize=128-MB-or-greater-value
-Djava.endorsed.dirs=Navigation-Platform-for-Developers-installation-directory\PP\uCPSB
\jaxp\lib

Example:
-vm
C:\Program Files\Hitachi\HNP\PP\uCPSB\jdk\bin\javaw.exe
-vmargs
-XX:MaxMetaspaceSize=128m
-Djava.endorsed.dirs=C:\Program Files\Hitachi\HNP\PP\uCPSB\jaxp\lib

5. Execute eclipse.exe and then make sure that Eclipse starts.
At this time, make sure that a path under the Navigation Platform for Developers installation directory is not specified
for the workspace.

3. Preparation of Development

Hitachi Navigation Platform Development Guide 26

3.2 Importing a pluginSDK project

You can use a pluginSDK project provided by Navigation Platform to prepare the environment required for developing
plugins.

To import a pluginSDK project to Eclipse:

1. Start Eclipse.

2. In Eclipse, select File and then Import.
The Import window appears.

3. Select General, and then Existing Projects into Workspace.

4. Click the Next button.

5. In the Select root directory text box, specify Navigation-Platform-for-Developers-installation-directory
\pluginSDK.

6. Click the Finish button.
The pluginSDK project is added to Eclipse.

Note:
Make sure that the Copy projects into workspace check box is cleared.

3. Preparation of Development

Hitachi Navigation Platform Development Guide 27

3.3 Adding libraries

This section describes how to add Java libraries (JAR files) for use with plugins.

Important note

A user who adds a library must have Windows administrator roles. If a user without Windows administrator
roles adds a library to a directory such as the OS-installation-drive:\Program Files directory (by adding
or copying a file), the file might be redirected to a user folder.

3.3.1 Location to place libraries
The following describes the directory that stores a library for use with plugins. The directory that stores a library varies
depending on whether the library is shared by the whole J2EE server.

To use the library with plugins only
The library must be placed in the Application Class Loader layer. Store the library in the following directory:
Navigation-Platform-installation-directory\pluginSDK\plugin\plugin-ID\WEB-INF\lib

To share the library on the whole J2EE server
The library must be placed in the System Class Loader layer. Store the library in the directory shown below. In this
case, you must place the library in both the development environment and execution environment.
Navigation-Platform-installation-directory\usrlib\sys

3.3.2 Creating and configuring libraries
The following describes a note on creating libraries, and how to configure a library you created. Also described is how
to use Eclipse to perform reference resolution of the configured library.

(1) Note on creating libraries
To create a library that references APIs provided by Navigation Platform, specify the following library in the class path,
and then build the library.

Navigation-Platform-installation-directory\syslib\ucnpsys.jar

(2) Configuring a library
To configure a library:

1. Store the created library in the location indicated in 3.3.1 Location to place libraries.
You do not need to perform the following steps if you want to use the library only with plugins.
To share the library in the whole J2EE server, proceed with the next step.

2. Add the absolute path of the library to the class path specification for the J2EE server.

3. Restart Navigation Platform.

3. Preparation of Development

Hitachi Navigation Platform Development Guide 28

To share the library in the whole J2EE server, perform steps 1 to 3 on the J2EE server in an execution environment, in
addition to the J2EE server in a development environment.

(3) Project reference resolution
To perform reference resolution for an Eclipse project, use the following procedure to specify the added library JAR
file:

1. In the Eclipse Project Explorer view, right-click the project.
A menu opens.

2. Click Properties.

3. In the left pane, click Java Build Path.

4. In the right pane, click the Libraries tab.

5. Click the Add JARs button, and then specify the JAR file you want to add.

3.3.3 Notes on adding libraries
The following are notes on adding libraries:

• When you configure a library in the Application Class Loader layer, do not specify a file name beginning with ucnp
for the JAR file name of the library.
Because file names are not case sensitive, you cannot use a file name beginning with UCNP or uCNP

• Make sure that only the libraries required for development are stored in the location to place libraries. Storing
unnecessary files or directories might cause an error during a build process.

• A user who adds a library must have Windows administrator roles. If a user without Windows administrator roles
adds a library, the library file is redirected to a user folder and does not work properly.

3. Preparation of Development

Hitachi Navigation Platform Development Guide 29

4 Developing Plugins

This chapter describes how to develop plugins.

Hitachi Navigation Platform Development Guide 30

4.1 Creating template plugins

To create a template plugin:

1. Edit the plugin information property file.

2. Execute the template plugin creation command.

This section describes details about each step.

Reference note

Perform the tasks described here only once for a plugin. If you modify a created plugin, there is no need to
perform these tasks again.

4.1.1 Editing the plugin information property file
A plugin information property file is a property file that defines the information required for creating template plugins.
When you execute the template plugin creation command, files and folders are created based on the information defined
in the plugin information property file.

Create a plugin information property file by editing the following sample file:

Navigation-Platform-for-Developers-installation-directory\pluginSDK
\plugin.properties.sam

The file name after editing must be any-character-string.properties.

(1) Notes on creating a property file
The following describes the notes on creating a plugin information property file by editing the sample file:

• Characters in a property file are encoded in ISO 8859-1 (Latin1). Characters other than those of ISO 8859-1 cannot
be used.

• You cannot use Windows reserved device names (CON, AUX, COMn (n: 1-9), LPTn (n: 1-9), PRN, NUL, and CLOCK
$).

• A line that begins with a hash mark (#) or exclamation mark (!) is assumed to be a comment.

• Empty characters (single-byte spaces, tabs, or line feeds) at the beginning of a line are ignored.

(2) Property file description format
The following shows an example of property file description format. In the description below, empty character indicates
a single-byte space, tab, or line feed.

 property-key=value

• Enter a colon (:) or equal sign (=) between the property key and the value. Empty characters entered between the
property key, colon (or equal sign), and value are ignored.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 31

• If the property key is followed by : or = (excluding empty characters), the string from the character (excluding
empty characters) just after : or = to the end of the line is assumed to be the value.

• If the property key is followed by a character (excluding empty characters) other than: or =, the string from that
character to the end of the line is assumed to be the value.

• Empty characters added to the end of the value are assumed to be part of the value.

• Colons (:), equal signs (=), hash marks (#), and exclamation marks (!) contained in the value are assumed to be
part of the value.

(3) Details about the property keys used with all plugins
The following describes details about the property keys (specified in the plugin information property file) that are
required for all plugins.

userplugin.id
Specify a plugin ID. Make sure that the plugin ID is unique within the system. For a Suspend/Resume Plugin, you
must always specify the fixed value ucnp.plugin.suspend.

Characters that can be used
Single-byte alphanumeric characters
Single-byte periods (.)
Single-byte underscores (_)

Important note

The following describes the restrictions on the combination of characters that can be used:

• Only one Suspend/Resume Plugin can be specified within the system. Therefore, you must always
specify the fixed value ucnp.plugin.suspend.

• For I/O Plugins and Custom Window Plugins, you cannot specify a value ending with a period or
beginning with ucnp. In addition, because plugin IDs are not case sensitive, you cannot specify
UCNP or uCnp.

String length that can be specified
1 to 64 bytes

Specification example
userplugin

userplugin.name
Specify a plugin name. Make sure that the plugin name is unique within the system.

Characters that can be used
Single-byte alphanumeric characters

Prohibited plugin names
Plugin names beginning with ucnp (not case sensitive)
env
AppName

String length that can be specified
1 to 31 bytes

4. Developing Plugins

Hitachi Navigation Platform Development Guide 32

Specification example
userplugin

userplugin.type
Specify the plugin type.

Characters that can be used
For I/O Plugins: TYPE_IO
For Suspend/Resume Plugin: TYPE_SUSPEND
For Custom Window Plugins: TYPE_WINDOW

userplugin.version
Specify the plugin version.

Characters that can be used
Single-byte alphanumeric characters
Single-byte periods (.)
Single-byte underscores (_)
Single-byte hyphens (-)

String length that can be specified
1 to 32 bytes

Specification example
00.01

userplugin.java.package
Specify a Java package name.

Characters that can be used
Single-byte alphanumeric characters
Single-byte periods (.)
Character strings that are valid as Java package names
Character string not used for creating a directory that has the same name as a Windows reserved device name

Prohibited package names
Package names beginning with jp.co.hitachi.soft.ucnp

String length that can be specified
1 or more bytes
However, make sure that the sum of the values specified for Java-package-name, plugin-ID, and I/O-action-
controller-class-name, or Java-package-name, plugin-ID, and suspend/resume-action-controller-class-name is
no more than 128 bytes.

Specification example
sample.userplugin

(4) Details about the property keys used with I/O Plugins
The following describes the property keys that must be set if you specify TYPE_IO for the userplugin.type
property key.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 33

userplugin.server.controller.ioaction
Specify the I/O action controller class name. In 4.1.2 Executing the template plugin creation command, a controller
class is created based on this class name.

Characters that can be used
Single-byte alphanumeric characters
Single-byte underscores (_)
Character strings that are valid as Java class names
Character strings that do not contain Windows reserved device names
Character strings that contain a unique value combined with a Java package name

String length that can be specified
1 or more bytes
However, make sure that the sum of the values specified for Java-package-name, plugin-ID, and I/O-action-
controller-class-name is no more than 128 bytes.

Specification example
IoPluginController

userplugin.server.controller.ioaction.type
Specify the character string that identifies the I/O action controller class. Specify a unique value within the system.
In 4.1.2 Executing the template plugin creation command, the I/O plugin XML file (ioaction.xml) is created
based on this character string. Note that the I/O plugin XML file defines the information displayed in the Plugins
palette and Plugin Parts in the Operational Content Editing Window. Generally, specify the same value as the ID of
the template plugin to be created. However, you can specify a different value.

Characters that can be used
Single-byte alphanumeric characters
Single-byte periods (.)
Single-byte underscores (_)
Single-byte hyphens (-)

String length that can be specified
1 to 64 bytes

Specification example
userplugin

(5) Details about the property key used with Suspend/Resume Plugins
The following describes the property key that must be set if you specify TYPE_SUSPEND for the userplugin.type
property key.

userplugin.server.controller.suspend
Specify the suspend/resume action controller class name.

Characters that can be used
Single-byte alphanumeric characters
Single-byte underscores (_)
Character strings that are valid as Java class names
Character strings that do not contain Windows reserved device names
Character string containing a unique value combined with a Java package name

4. Developing Plugins

Hitachi Navigation Platform Development Guide 34

String length that can be specified
1 or more bytes
However, make sure that the sum of the values specified for Java-package-name, plugin-ID, and suspend/
resume-action-controller-class-name is no more than 128 bytes.

Specification example
SuspendActionController

(6) Property file coding example
The following shows examples of coding plugin information property files.

For an I/O Plugin

userplugin.id = example.inputdata
userplugin.name = InputData
userplugin.type = TYPE_IO
userplugin.version = 01.00
userplugin.java.package = com.example.inputdata
userplugin.server.controller.ioaction = InputDataController
userplugin.server.controller.ioaction.type = example.inputdata

For a Suspend/Resume Plugin

userplugin.id = ucnp.plugin.suspend
userplugin.name = Suspend
userplugin.type = TYPE_SUSPEND
userplugin.version = 01.00
userplugin.java.package = com.example.suspend
userplugin.server.controller.suspend = SuspendActionController

For a Custom Window Plugin

userplugin.id = example.contentslist
userplugin.name = ContentsList
userplugin.type = TYPE_WINDOW
userplugin.version = 01.00
userplugin.java.package = com.example.customwindow

4.1.2 Executing the template plugin creation command
You can execute the template plugin creation command to create template plugins. Template plugins are created in the
format of an Eclipse Java project.

(1) Format of the template plugin creation command
The following shows the format of the template plugin creation command:

Navigation-Platform-for-Developers-installation-directory\pluginSDK\bin
\npcreateplg.batΔpath-to-the-plugin-information-property-file

4. Developing Plugins

Hitachi Navigation Platform Development Guide 35

When you execute the template plugin creation command, a directory is created under Navigation-Platform-for-
Developers-installation-directory\pluginSDK\plugin according to the contents of the plugin information property
file.

To create multiple plugins, repeat the process of editing the plugin information property file and create a template plugin
for the number of plugins.

(2) Execution results of the template plugin creation command (for I/O
Plugins)

The following shows the directory structure for I/O Plugins. You need to edit only the underlined files. Bold text indicates
the values specified in the plugin information property file. For details about how to edit the plugin information property
file, see 4.1.1 Editing the plugin information property file.

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
 |- plugin-ID
 |-.project
 |-.classpath
 |-build.xml
 |-plugin.properties
 |-ucnpsdkversion.properties
 |--js
 |--dd
 | |--META-INF
 | |-application.xml
 | |-cosminexus.xml
 |--images
 | |-sample_icon.gif
 |--WEB-INF
 | |-plugin.xml
 | |-web.xml
 |--lib
 |--conf
 | |-ioaction.xml
 | |-ucnp_label_plugin-ID.properties
 | |-ucnp_message_plugin-ID.properties
 | |-ucnp_plugin-ID.properties
 |
 |--src
 |--Java-package-name
 |--controller
 |-I/O-action-controller-lass-name.java
 |-PluginInitializer.java

(3) Execution results of the template plugin creation command (for
Suspend/Resume Plugins)

The following shows the directory structure for Suspend/Resume Plugins. You need to edit only the underlined files.
Bold text indicates the values specified in the plugin information property file. For details about how to edit the plugin
information property file, see 4.1.1 Editing the plugin information property file.

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
|- ucnp.plugin.suspend
 |-.project

4. Developing Plugins

Hitachi Navigation Platform Development Guide 36

 |-.classpath
 |-build.xml
 |-plugin.properties
 |-ucnpsdkversion.properties
 |--js
 |--dd
 | |--META-INF
 | |-application.xml
 | |-cosminexus.xml
 |--WEB-INF
 | |-plugin.xml
 | |-web.xml
 |--lib
 |--conf
 | |-ucnp_label_ucnp.plugin.suspend.properties
 | |-ucnp_message_ucnp.plugin.suspend.properties
 | |-ucnp_ucnp.plugin.suspend.properties
 |--src
 |--Java-package-name
 |--controller
 |-suspend/resume-action-controller-class-name.java
 |-PluginInitializer.java

(4) Execution results of the template plugin creation command (for
Custom Window Plugins)

The following shows the directory structure for Custom Window Plugins. You need to edit only the underlined files.
Bold text indicates the values specified in the plugin information property file. For details about how to edit the plugin
information property file, see 4.1.1 Editing the plugin information property file.

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
|-plugin-ID
 |-.project
 |-.classpath
 |-build.xml
 |-plugin.properties
 |-ucnpsdkversion.properties
 |--js
 |--jsp
 | |--sys
 | | |-ucnpCustom.jsp
 | |-plugin-name.jsp
 |--dd
 | |--META-INF
 | |-application.xml
 | |-cosminexus.xml
 |--WEB-INF
 | |-plugin.xml
 | |-web.xml
 |--lib
 |--conf
 | |-ucnp_label_plugin-ID.properties
 | |-ucnp_message_plugin-ID.properties
 | |-ucnp_plugin-ID.properties
 |--lib
 |--src

4. Developing Plugins

Hitachi Navigation Platform Development Guide 37

 |--Java-package-name
 |--controller
 |-PluginInitializer.java

(5) Notes on executing the template plugin creation command
The following provides the notes on executing the command:

• If multiple commands are executed at the same time, operation is unpredictable.

• If a directory having the same name as the plugin ID specified in the plugin information property file exists under
Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin, an overwrite confirmation
message appears. Specify as follows in response to the confirmation message.

• To overwrite the existing directory:
Specify Y or y.

• Not to overwrite the existing directory:
Specify N or n. Processing is canceled.
In this case, change the plugin ID specified in the plugin information property file, and then re-execute the
command.

• To execute the template plugin creation command, you must first open the command prompt by selecting Run as
administrator. If this condition is not satisfied, operation is unpredictable.

• Encoding of Java source files created by the template plugin creation command differs depending on the version of
Navigation Platform for Developers. Navigation Platform for Developers 10-00 or earlier uses Shift_JIS, and 10-10
or later uses UTF-8. Therefore, if you use a Java source file created in 10-00 or earlier, you must be careful about
the difference in the encoding type.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 38

4.2 Importing a template plugin project

The following shows the procedure for importing a template plugin project to Eclipse.

Reference note

Perform this task only once for one plugin. This task is not needed when you modify a created plugin.

1. Start Eclipse.

2. In Eclipse, select File and then Import.
The Import window appears.

3. Select General, and then Existing Projects into Workspace.

4. Click the Next button.

5. In the Select root directory text box, specify the template plugin directory created in 4.1 Creating template plugins.

6. Click the Finish button.
The template plugin project is added to Eclipse.

Notes:

• Do not select the Copy projects into workspace check box.

• To start Eclipse, right-click the eclipse.exe file, and then select Run as administrator. If this condition is
not satisfied, operation is unpredictable.

• Depending on the Eclipse version, an error message indicating that the workspace is being refreshed might
appear during import. If this error message appears, delete the imported project, and then import it again.
To prevent such errors, you need to close or refresh the pluginSDK project before you start the import. Right-
click the pluginSDK project displayed in the Project Explorer view, and then select Close Project or Update.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 39

4.3 Customizing template plugins

You can customize template plugins by using Eclipse.

4.3.1 Customizing I/O Plugins
This subsection describes the procedure for customizing I/O Plugins.

To customize a template plugin created as an I/O Plugin:

1. Create the icon of the Plugins palette and Plugin Parts.

2. Edit the I/O plugin XML file.

3. Set tool tips for parameter descriptions.

4. Specify the plugin execution order.

5. Specify whether to display a confirmation dialog box.

6. Specify whether to execute plugins in the preview window.

7. Specify the button type for suppressing execution.

8. Implement processing to be performed by the plugin.

The following describes details about each step.

(1) Creating the icon of the [Plugins] palette and Plugin Parts
If necessary, change the icon of the Plugins palette and Plugin Parts displayed in the Operational Content Editing
Window. The following figure shows the location of the icon of the Plugins palette and Plugin Part.

Figure 4‒1: Location of the icon of the Plugins palette and Plugin Part

When you execute the template plugin creation command, the icons provided by Navigation Platform by default are
displayed in the Plugins palette and Plugin Parts.

To develop multiple plugins, you can create a different icon for each plugin to identify plugins by displayed icons. Store
the created icons in the following directory:

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
\plugin-ID\images

Create icons in the format shown in the following table.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 40

Table 4‒1: Format for creating icons

No. Item Description

1 File name See (2) Editing I/O plugin XML files, and then specify the file name.
Note that the file name of the default icon provided by Navigation Platform is sample_icon.gif.

2 File format You can use any format that can be displayed in the Web browser.
Note that the file format of the default icon provided by Navigation Platform is GIF format.

3 Size Create an icon in 24 x 24 pixels.

Note:
If a user without Windows administrator roles creates an icon in a directory such as the OS-installation-drive:
\Program Files directory (by adding or copying a file), the file might be redirected to a user folder. Therefore,
the user that adds the file must have Windows administrator roles.

(2) Editing I/O plugin XML files
The I/O plugin XML file (ioaction.xml) is created when a template plugin is created. Edit the I/O plugin XML file
to change the following information:

• I/O Plugin execution order

• I/O parameter definition

• Information displayed in the Plugins palette, for Plugin Parts, and for tool tips in the Operational Content Editing
Window

The following figure shows the correspondence between the information specified in the I/O plugin XML file and the
information displayed in the Operational Content Editing Window.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 41

Figure 4‒2: Correspondence between the I/O plugin XML file and the information displayed in the
Operational Content Editing Window

Tip

If you change the I/O plugin XML file (ioaction.xml) for a plugin associated with Operational Content,
you also need to perform tasks such as replacing the plugin by exporting Operational Content. When you design
I/O Plugins, make sure that item settings are suitable for operation of Operational Content, so that you do not
have to modify the I/O plugin XML file later.

The following describes how to edit the I/O plugin XML file (ioaction.xml). This file is stored in the following
directory.

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
\plugin-ID\WEB-INF\conf

To edit the I/O plugin XML file, start the editor by selecting Run as administrator.

The following shows an example of editing the I/O plugin XML file (ioaction.xml). Edit the bold text.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 42

<?xml version="1.0" encoding="UTF-8"?>
<ioaction xmlns="http://
model.xml.ioaction.navi.plugin.ucnp.soft.hitachi.co.jp"
id="sample.OutputGuideData" name="OutputGuideData" version="2.0">
 <iopart id="io_part_1">
 <iotype name="sample.OutputGuideData" />
 <iconURL url="/ucnpPlugins/OutputGuideData/images/ogdIcon.gif"/>
 <priority value="700" />
 <execConfirm value="false" />
 <execPreview value="true" />
 <disableButtonType legacy="false" value="show_next_page" />
 <parameters type="title">
 <param name="OutputGuideData" description="description-of-
OutputGuideData"/>
 </parameters>
 <parameters type="input">
 <param name="inputItemName1" description="description-of-
inputItemName1"/>
 <param name="inputItemName2" description="description-of-
inputItemName2"/>
 <param name="inputItemName3" description="description-of-
inputItemName3"/>
 </parameters>
 <parameters type="output">
 <param name="outputItemName1" description="description-of-
outputItemName1"/>
 <param name="outputItemName2" description="description-of-
outputItemName2"/>
 <param name="outputItemName3" description="description-of-
outputItemName3"/>
 </parameters>
 </iopart>
</ioaction>

The table below describes how to edit the I/O plugin XML file (ioaction.xml). You need to edit only the parts
shown in the table.

Table 4‒2: How to edit the I/O plugin XML file (ioaction.xml)

No. Information to be edited Description Character strings
specifiable for the attribute
value, and their meanings

String length specifiable
for the attribute value

1 url attribute of the
<iconURL> tag (file
name part)

Specify the file name of the icon
displayed in the Plugins palette and for
Plugin Parts in the Operational Content
Editing Window.
Change the file name in the url
attribute only when you want to change
the file name of the icon created in (1)
Creating the icon of the [Plugins]
palette and Plugin Parts from the
default.

• Single-byte alphanumeric
characters

• Single-byte underscores
(_)

• Single-byte periods (.)
• Single-byte hyphens (-)

Maximum of 1,024 bytes
(including /
ucnpPlugins/plugin-
name/images/)

2 value attribute of the
<priority> tag

Specify the execution order of the I/O
Plugin.
The default value is 700. 700 is the
intermediate value of the execution

The following single-byte
numeric values:
• 100-500
• 600-900

--

4. Developing Plugins

Hitachi Navigation Platform Development Guide 43

No. Information to be edited Description Character strings
specifiable for the attribute
value, and their meanings

String length specifiable
for the attribute value

2 value attribute of the
<priority> tag

order of System Plugins and User
Plugins.
If the priority element is omitted,
the default value is assumed.

The following single-byte
numeric values:
• 100-500
• 600-900

--

3 value attribute of the
<execConfirm> tag

If necessary, specify whether to display
a confirmation dialog box during
execution of the I/O Plugin. Specify
true if you want to notify users that
processing might require some time.
If the execConfirm element is
omitted, false is assumed.

• true
Displayed

• false
Not displayed

--

4 value attribute of the
<execPreview> tag

If necessary, specify whether to
execute the I/O Plugin in the preview
window.#1

If the execPreview element is
omitted, true is assumed.

• true
Executed

• false
Not executed

--

5 legacy attribute of the
<disableButtonTyp
e> tag

Specify whether to provide
compatibility of execution suppression
of the I/O Plugin. Specify true to
suppress execution of the I/O Plugin in
Navigation Platform 10-10 the same
way as in earlier versions.
If the disableButtonType
element is omitted, true is assumed.

• true
Compatible

• false
Not compatible

--

6 value attribute of the
<disableButtonTyp
e> tag

If necessary, specify whether to
suppress execution of the I/O Plugin
depending on the button type.#2

Set the legacy attribute to false to
suppress the execution depending on
whether transition occurs, by clicking
the button or by directly selecting a
node.
To specify multiple values, use a
single-byte comma to separate each
value.
If the disableButtonType
element is omitted, an empty character
string is assumed.

• start
• show_next_page
• show_previous_pag
e

• show_complete_pag
e

• forward_jump
Valid only if the value of
the legacy attribute is
false

• back_jump
Valid only if the value of
the legacy attribute is
false

--

7 description attribute
of the <param> tag

If necessary, specify the description
(tool tip) of the I/O Plugin.

Any character string#3 0 to 64 characters

8 name attribute of the
<param> tag under
<parameters
type="input">

Specify the input parameter name.
Specify a unique value in the
<parameters type="input">
tag.
You can specify 0 to 100 <param>
tags. Specify the <param> tags for the
number of input parameters.

• Single-byte alphanumeric
characters

• Single-byte underscores
(_)

• Single-byte periods (.)
• Single-byte spaces
• Single-byte hyphens (-)

1 to 64 bytes#4

9 description attribute
of the <param> tag

If necessary, specify the description
(tool tip) of the input parameter.

Any character string#3 0 to 64 characters

4. Developing Plugins

Hitachi Navigation Platform Development Guide 44

No. Information to be edited Description Character strings
specifiable for the attribute
value, and their meanings

String length specifiable
for the attribute value

9 under <parameters
type="input">

If necessary, specify the description
(tool tip) of the input parameter.

Any character string#3 0 to 64 characters

10 name attribute of the
<param> tag under
<parameters
type="output">

Specify the output parameter name.
Specify a unique value in the
<parameters type="output">
tag.
You can specify 0 to 100 <param>
tags. Specify the <param> tags for the
number of output parameters.

• Single-byte alphanumeric
characters

• Single-byte underscores
(_)

• Single-byte periods (.)
• Single-byte spaces
• Single-byte hyphens (-)

1 to 64 bytes#4

11 description attribute
of the <param> tag
under <parameters
type="output">

If necessary, specify the description
(tool tip) of the output parameter.

Any character string#3 0 to 64 characters

Legend:
--: Not applicable

#1
Processing that determines whether to execute the I/O Plugin in the preview window can also be implemented by using the value of the
ucnp.screen.ispreview key in the inputFromNode and outputToNode methods of the server processing implementation
interface (IIoPluginController). However, the setting of the ucnp.screen.ispreview key is used to perform special processing
by the server processing implementation interface (IIoPluginController). Therefore, if you want to simply skip the processing, specify
the setting in the I/O plugin XML file (ioaction.xml). For details about the server processing implementation interface
(IIoPluginController), see 5.2 IIoPluginController (server processing implementation interface).

#2
Processing that determines whether to suppress I/O Plugin execution depending on the button type can also be implemented by using the value
of the ucnp.button.type key in the inputFromNode and outputToNode methods of the server processing implementation interface
(IIoPluginController). However, the setting of the ucnp.button.type key is used to perform special processing by the server
processing implementation interface (IIoPluginController). Therefore, if you want to simply skip processing, specify the setting in
the I/O plugin XML file (ioaction.xml). For details about the server processing implementation interface (IIoPluginController),
see 5.2 IIoPluginController (server processing implementation interface.

#3
The character string specified for description is used as is for the HTML attribute when the tool tip is displayed. Therefore, if you want
to enter a line feed in the character string displayed as the tool tip, specify
. If a control character other than
 is specified, the
display is unpredictable.

#4
If a long character string is specified, ending characters might not be displayed for a Plugin Part. For the I/O action controller class, the character
string specified here is used as is.

Reference
Values specified for the name attribute of the <param> tag under <parameters type="input"> and
<parameters type="output"> are used for the param parameter and return values of the inputFromNode
and outputToNode methods of the server processing implementation interface (IIoPluginController).
The following shows where the values specified for the name attribute are used.

param parameter

• Map object name for the value corresponding to the name ucnp.current.params.map in the
inputFromNode method

• Map object name for the value corresponding to the name ucnp.next.params.map in the
outputToNode method

4. Developing Plugins

Hitachi Navigation Platform Development Guide 45

Return values

• Map object name for the value corresponding to the name ucnp.current.params.map in the
inputFromNode method

• Map object name for the value corresponding to the name ucnp.next.params.map in the
outputToNode method

The following figure shows the correspondence between the values specified for the name attribute and the server
processing implementation interface (IIoPluginController).

Figure 4‒3: Correspondence between the values specified for the name attribute and the server
processing implementation interface (IIoPluginController)

For details about the server processing implementation interface (IIoPluginController), see 5.2
IIoPluginController (server processing implementation interface).

4. Developing Plugins

Hitachi Navigation Platform Development Guide 46

(3) Setting tool tips for parameter descriptions
If you set a description text as a tool tip in the I/O plugin XML file (ioaction.xml), the description appears when
you point the Plugin Part in the Operational Content Editing Window. You can set the following tool tips:

• I/O Plugin description
A tool tip displayed in the title of the Plugin Part

• Input parameter description
A tool tip displayed for input parameters of the Plugin Part

• Output parameter description
A tool tip displayed for output parameters of the Plugin Part

For details about how to set the tool tips and details about the values, see (2) Editing I/O plugin XML files.

(4) Specifying the plugin execution order
In the I/O plugin XML file (ioaction.xml), you can change the plugin execution order. You can specify the following
values for the execution order:

• 100-500

• 600-900

If multiple I/O Plugins are placed in the same node, they are executed in the ascending order specified for the execution
order. If the same execution order is specified for multiple I/O Plugins, the execution order will be undefined.

For details about the values, see (2) Editing I/O plugin XML files.

(5) Specifying whether to display a confirmation dialog box
In the I/O plugin XML file (ioaction.xml), you can specify whether to display a confirmation dialog box during
execution of the I/O Plugin. You can specify the following values:

• true
• false

If true is specified for a plugin placed in the node, a confirmation dialog box for the I/O Plugin appears when the
inputFromNode method is executed. Even if true is specified for multiple plugins in the node, a confirmation
dialog box appears only once. If Cancel is selected in the confirmation dialog box, the KDCZ00266-Q message is
displayed, and then processing of all plugins set in the node is not executed.

For details about the values, see (2) Editing I/O plugin XML files.

(6) Specifying whether to execute plugins in the preview window
In the I/O plugin XML file (ioaction.xml), you can specify whether to execute the I/O Plugin in the preview window.
You can specify the following values:

• true
• false

If multiple plugins are placed in the node, only the I/O Plugins for which true is specified are executed.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 47

For details about the values, see (2) Editing I/O plugin XML files.

(7) Specifying the button type for suppressing execution
In the I/O plugin XML file (ioaction.xml), you can specify the button type for suppressing execution of I/O Plugins.
You can specify the values shown below.

Table 4‒3: Button type for suppressing execution of I/O Plugins

No. Compatibility option
(value of the "legacy"
attribute)

Setting of the button type for
suppressing execution
(value of the "value" attribute)

Operation to suppress execution of the I/O
Plugin

1 false start Switch from the Terminal Node (start) to a Process
Node. Alternatively, display the first Process Node
not connected to the Terminal Node (start).

2 show_next_page Switch to the next node by clicking the button.
Note, however, that if you switch to a Process Node
for which the transition destination node does not
exist and for which the Back button is hidden,
show_complete_page is set.

3 show_previous_page Switch to the previous node by clicking the button.

4 show_complete_page Switch to a node with the Done button displayed.
Alternatively, switch to a Process Node that does not
have the transition destination node and for which the
Back button is not displayed.

5 back_jump Switch to the next node by directly selecting the node.

6 forward_jump Switch to the previous node by directly selecting the
node.

7 true start Switch from the Terminal Node (start) to a Process
Node. Alternatively, display the first Process Node
not connected to the Terminal Node (start).

8 show_next_page Switch to a node by clicking the button or directly
selecting the node.
Note, however, that if you switch to a Process Node
for which the transition destination node does not
exist and for which the Back button is hidden,
show_complete_page is set.

9 show_previous_page Switch to the previous node by clicking the button or
directly selecting the node.

10 show_complete_page Switch to a node with the Done button displayed.
Alternatively, switch to a Process Node for which the
transition destination node does not exist and for
which the Back button is hidden.

If multiple I/O Plugins are placed in the node, the I/O Plugins for which execution is suppressed are not executed.

For details about the values, see (2) Editing I/O plugin XML files.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 48

(8) Implementing processing to be performed by the plugin
To implement the server processing in the I/O Plugin, specify the processing in the class whose name is specified by
the userplugin.server.controller.ioaction key in the plugin information property file. At this time,
specify the processing to be performed during node transition.

If you need to perform processing during plugin initialization or termination, see 4.5 Implementing processing to be
performed during plugin initialization or termination.

4.3.2 Customizing Suspend/Resume Plugins
This subsection describes the procedure for customizing Suspend/Resume Plugins.

To customize a template plugin created as a Suspend/Resume Plugin:

1. Configure the user property file.

2. Implement processing to be performed by the plugin.

The following describes details about each step.

(1) Configuring the user property file
See 4.9 Configuring the user property file, and then edit the user property file.

(2) Implementing processing to be performed by the plugin
To implement the suspend information reference and update processing on the Suspend/Resume Plugin, specify the
processing in the class whose name is specified by the userplugin.server.controller.suspend key in the
plugin information property file.

If you need to perform processing during plugin initialization or termination, see 4.5 Implementing processing to be
performed during plugin initialization or termination.

4.3.3 Customizing Custom Window Plugins
This subsection describes the procedure for customizing Custom Window Plugins.

To customize a template plugin created as a Custom Window Plugin:

1. Edit the custom window JSP file.

2. Implement processing to be performed by the plugin.

(1) Editing the custom window JSP file
See 4.3.4 Creating the JSP file used in custom windows, and then implement the processing required for the custom
window JSP file.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 49

(2) Implementing processing to be performed by the plugin
If you need to perform processing during plugin initialization or termination, see 4.5 Implementing processing to be
performed during plugin initialization or termination.

4.3.4 Creating the JSP file used in custom windows
When you execute the template plugin creation command with the plugin information property file in which Custom
Window Plugin information is defined, the custom window JSP file (ucnpCustom.jsp) is created. Do not edit
ucnpCustom.jsp. JSP files for editing are created in the following directory:

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin\plugin-ID\jsp\plugin-
name.jsp

JSP files for editing (plugin-name.jsp) are included in ucnpCustom.jsp. Because Navigation Platform loads
ucnpCustom.jsp and performs processing, JSP files for editing cannot use the library placed on the layer of the
Application Class Loader. Use the library placed on the layer of the System Class Loader.

The following describes the items that can be specified in the JSP file for editing (plugin-name.jsp).

Table 4‒4: Items that can be specified in a JSP file used in custom windows

No. Category Item Description

1 Tag Directive Specify a directive in the following format:
<%@ directive%>

2 Scriptlet Specify a scriptlet in the following format:
<% Java-code %>

3 Expression Specify an expression in the following format:
<%= expression %>

4 Comment Specify a comment in the following format:
<%-- comment --%>

5 Directive page Define information such as JSP file encoding and Java import statement. To use a
different encoding from that of the custom window JSP file (ucnpCustom.jsp),
specify the pageEncoding attribute.
Do not specify the following attributes:

contentType attribute
"text/html; charset=UTF-8" is automatically applied during execution
of the JSP file.

language attribute
"java" is automatically applied during execution of the JSP file.

6 include Include other files such as a text file and JSP file.

7 Implicit object request Object variable of the javax.servlet.http.HttpServletRequest class

8 response Object variable of the javax.servlet.http.HttpServletResponse
class

9 session Object variable of the javax.servlet.http.HttpSession class

4. Developing Plugins

Hitachi Navigation Platform Development Guide 50

4.4 Adding database connection processing

To add database connection processing to a plugin, specify DB Connector as a Cosminexus resource adapter on the
J2EE server. The required tasks are as follows:

1. Configure (add, change settings of, or delete) a resource adapter.

2. Set a plugin.

3. Implement database connection processing.

The database and resource adapter to be connected are as follows:

Database
HiRDB Single Server 08-00 or later

Resource adapter
DB_Connector_for_HiRDB_Type4
This resource adapter is imported when Navigation Platform is set up.

4.4.1 Adding a resource adapter
To add a resource adapter, you need the Connector attribute file. The following describes the procedure:

1. Execute the command as follows to display a list of resource adapters, and then make sure that a resource adapter
named DB_Connector_for_HiRDB_Type4 is not found:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjlistrar uCNP_J2EE

2. Execute the command as follows to deploy the DB_Connector_for_HiRDB_Type4 resource adapter:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjdeployrar uCNP_J2EE -resname DB_Connector_for_HiRDB_Type4

3. Display a list of resource adapters again, and then make sure that the DB_Connector_for_HiRDB_Type4
resource adapter has been added.

4. Execute the command as follows to acquire the Connector attribute file for the resource adapter you added:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjgetrarprop uCNP_J2EE -resname DB_Connector_for_HiRDB_Type4 -c "C:\temp
\TP_Connector_for_HiRDB_Type4.xml"

"C:\temp\TP_Connector_for_HiRDB_Type4.xml" is the file path to which the acquired Connector
attribute file (extension is .xml) is stored. You can change this file path as needed.
Note that this step is not necessary if you have already created a Connector attribute file.

5. Edit the Connector attribute file to specify the database information to which you want to add the connection
processing.
Specify values for the tags listed below according to the settings for the database:

4. Developing Plugins

Hitachi Navigation Platform Development Guide 51

Tag Explanation

display-name Resource adapter name

description Database port number

DBHostName Database's IP address or host name

encodeLang Character set corresponding to the database's character codes

User Name of the user connecting to the database

Password Password of the user connecting to the database

Observe the following rules when editing the display-name tab:

• Do not specify a character string beginning with ucnp (the specified value is not case sensitive).

• Do not specify a value that is already used in another resource adapter.

Note that this step is not necessary if you have already created a Connector attribute file.

6. Execute the command as follows to apply the contents of the edited Connector attribute file to the resource adapter
you added:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjsetrarprop uCNP_J2EE -resname resource-adapter-display-name -c "C:\temp
\TP_Connector_for_HiRDB_Type4.xml"

The resource adapter display name is either DB_Connector_for_HiRDB_Type4 or the name specified for the
display-name tag in the Connector attribute file.

7. Execute the command as follows to check whether the added resource adapter can connect to the database:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjtestres uCNP_J2EE -type rar -resname resource-adapter-display-name

8. Execute the command as follows to start the resource adapter:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjstartrar uCNP_J2EE -resname resource-adapter-display-name

4.4.2 Changing resource adapter settings
To change settings of an added resource adapter, you need to stop the plugin and resource adapter. The following
describes the procedure:

1. Execute the command as follows to display a list of resource adapters, and then check the status of the resource
adapter for which you want to change the settings:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjlistrar uCNP_J2EE

A resource adapter is running if its display name is preceded by running. A resource adapter is stopped if its
display name is preceded by stopped.
Note that the resource adapter whose display name is uCNP_DB_Connector_for_HiRDB_Type4 is for use
with Navigation Platform. Resource adapters having other display names have been added for plugins.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 52

2. If any plugin is using the resource adapter for which you want to change the settings, stop that plugin by executing
the command as follows:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjstopapp uCNP_J2EE -name plugin-name

3. Execute the command as follows to stop the resource adapter for which you want to change the settings:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjstoprar uCNP_J2EE -resname resource-adapter-display-name

4. Perform step 5 and subsequent steps in 4.4.1 Adding a resource adapter.

4.4.3 Deleting resource adapters
To delete a resource adapter, you must first delete the plugin that is using the resource adapter. The following describes
the procedure:

1. Perform steps 1 and 3 in 4.4.2 Changing resource adapter settings.

2. If any plugin is using the resource adapter to be deleted, execute the command as follows to delete that plugin:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjdeleteapp uCNP_J2EE -name plugin-name

3. Execute the command as follows to delete the resource adapter:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjdeleteres uCNP_J2EE -type rar -resname resource-adapter-display-name

4.4.4 Setting a plugin for database connection processing
To set database connection processing in a plugin, you need to edit the two files (web.xml and cosminexus.xml)
to add resource adapter information. The following shows the storage location and editing contents of each file.

Important note

To edit web.xml and cosminexus.xml, use the editor started by selecting Run as administrator.

(1) Editing web.xml
Add the resource definition to the web.xml file of the User Plugin. The web.xml file is stored in:

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
\plugin-ID\WEB-INF\web.xml

The following shows a coding example when the resource reference name is jdbc/
TP_Connector_for_HiRDB_Type4:

4. Developing Plugins

Hitachi Navigation Platform Development Guide 53

<resource-ref>
 <res-ref-name>jdbc/TP_Connector_for_HiRDB_Type4</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Add the above lines to immediately before </web-app> at the end of the web.xml file.

(2) Editing cosminexus.xml
Edit the cosminexus.xml file of the User Plugin.

The following shows the cosminexus.xml file is stored in:

Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin
\plugin-ID\dd\META-INF\cosminexus.xml

The following shows a coding example when the resource reference name is jdbc/
TP_Connector_for_HiRDB_Type4 and the resource adapter display name is
TP_Connector_for_HiRDB_Type4:

<resource-ref>
 <res-ref-name>jdbc/TP_Connector_for_HiRDB_Type4</res-ref-name>
 <linked-to>TP_Connector_for_HiRDB_Type4</linked-to>
</resource-ref>

Add the above lines to immediately before </war> at the end of the cosminexus.xml file.

4.4.5 Implementing database connection processing
The following indicates the conditions for developing plugins to be connected to a database:

• Processing that acquires the data source is implemented by the plugin initialization processing
(PluginInitializer class of the IPluginInitializer interface).

• Data source lookup processing is implemented by the init method of the PluginInitializer class.

If you are developing plugins to be connected to a database, the following implementations are recommended:

• If an attempt to acquire data sources fails, UCNPPluginUserException is thrown.

• Data source update processing is implemented by the inputFromNode method.

• Data source reference processing is implemented by the outputToNode method.

• For plugins linked with external systems, the update and reference timing is synchronized by using other plugins.

Reference note

If you ignore a failure of the data source lookup processing and then terminate the plugin start processing,
the next lookup processing is not executed until you restart Navigation Platform.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 54

Because the lookup processing fails by either of the following causes, UCNPPluginUserException
must be thrown to prevent Navigation Platform from starting:

• The resource adapter is not running.

• The resource adapter settings are inconsistent with the plugin implementation.

(1) Example of implementing plugin initialization processing

 // Store the data source in the static member variable so that the data
source can be acquired from the inputFromNode method.
 private static DataSource mDs;

 @Override
 public void init() throws UCNPPluginUserException {
 try {
 // Data source lookup processing must be performed within the init
method.
 InitialContext ic = new InitialContext();
 DataSource ds = (DataSource) ic.lookup(
 "java:comp/env/jdbc/TP_Connector_for_HiRDB_Type4");
 mDs = ds;
 } catch (NamingException e) {
 // If lookup processing fails, UCNPPluginUserException must be thrown.
 UCNPPluginUserException ue = new UCNPPluginUserException(
 "Lookup processing failed.", e);
 throw ue;
 }
 }

 public static DataSource getDataSource() {
 return mDs;
 }

(2) Example of implementing the outputToNode method

 public Map<String, Object> outputToNode(HttpSession session, Map<String,
Object> param){
 Map<String, Object> map = new HashMap<String, Object>();

 DataSource ds = PluginInitializer.getDataSource(); // Acquire the
instance
 Connection con = null;
 PreparedStatement statement = null;
 String name = null;
 try {
 // Establish a connection
 con = ds.getConnection();

 // Execute SQL
 // The outputToNode method must perform Reference processing
 statement = con.prepareStatement("SELECT NAME FROM TP_TBL");
 statement.setString(1, uid);
 ResultSet set = statement.executeQuery();

4. Developing Plugins

Hitachi Navigation Platform Development Guide 55

 // Obtain results
 if (set.next()) {
 name = set.getString(1);
 }
 Map<String, String> rtnParm = new HashMap<String, String>();
 rtnParm.put("outputParam1", name);
 map.put("ucnp.next.params.map ",rtnParm);
 } catch (SQLException e) {
 // Store the error information in response and interrupt transition.
 map.put("ucnp.error.message","An error occurred during DB access.");
 map.put("ucnp.error.type","NG");
 } finally {
 if (statement != null) {
 try {
 statement.close();
 } catch (SQLException e) {
 }
 }
 if (con != null) {
 try {
 con.close();
 } catch (SQLException e) {
 }
 }
 }
 return name;
 }

4. Developing Plugins

Hitachi Navigation Platform Development Guide 56

4.5 Implementing processing to be performed during plugin initialization
or termination

In the PluginInitializer class of the IPluginInitializer interface, implement the processing that must
be performed when a plugin starts or stops. If there is no such processing, the PluginInitializer class created
by the template plugin creation command can be used without changes.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 57

4.6 Building plugins

The section describes how to build plugins and how to take actions if an attempt to build a plugin fails.

4.6.1 Procedure for building plugins
You can build customized template plugins by executing build.xml of the pluginSDK project from Ant. To build
plugins:

1. Start Eclipse.

2. Select File, Import, General, and then Existing Projects into Workspace.

3. In the Select root directory text box, specify the following value, and then click the Finish button:
Navigation-Platform-for-Developers-installation-directory\pluginSDK
Do not select the Copy projects into workspace check box.

4. Select Window, Show View, Other, Ant, and then Ant. The Ant view appears.

5. From the project imported in 3.2 Importing a pluginSDK project, drag build.xml into the Ant view.
root is added in the Ant view.

6. In the Ant view, click the + icon for root to display the target list.

7. In the target list, double-click ear.
All plugins under the Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugins
directory are built, and then the EAR file is created in the following directory:

Navigation-Platform-for-Developers-installation-directory\pluginSDK\dest

4. Developing Plugins

Hitachi Navigation Platform Development Guide 58

When you build plugins after the first time, if necessary, double-click clean in the target list before double-clicking
ear in the target list. This deletes intermediate files for the class, library, and plugins.

4.6.2 Actions to be taken if an attempt to build plugins fails
The following describes how to take action if an attempt to build plugins fails.

The probable cause of a failure in building plugins is an error of java.lang.OutOfMemoryError. This error is
likely to occur if there are multiple plugins.

If an error (java.lang.OutOfMemoryError) occurs, perform the following, and then build the plugins again:

1. Right-click root in the Ant view. In the menu that opens, select Run As, and then External Tools Configurations
The External Tools Configurations dialog box opens.

2. Click the JRE tab, and then enter -XX:MaxMetaspaceSize=256m in the VM arguments field.

3. Click the Apply button, and then click the Close button.
The External Tools Configurations dialog box is closed.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 59

4.7 Deploying plugins

Before you can use developed plugins, you must deploy and start them by using Eclipse. The following describes the
procedure.

Tip

You must perform this procedure as a user having Windows administrator roles. Note that the procedure assumes
that the root node of the pluginSDK project has been added to the Eclipse Ant view.

1. Start Navigation Platform (J2EE server).
This step is not necessary if Navigation Platform is already running. For details about how to start Navigation
Platform, see the Hitachi Navigation Platform Setup and Operations Guide.

2. Select Run as administrator, and then start Eclipse.

3. Select Window, Show View, Other, Ant, and then Ant. The Ant view appears.

4. From the project imported in 3.2 Importing a pluginSDK project, drag build.xml into the Ant view.
root is added in the Ant view.

5. In the Ant view, click the + icon for root to display the target list.

6. If any plugin is running on the J2EE server, double-click stopEar in the target list.
The J2EE application for the plugin stops.

7. If a plugin exists on the J2EE server, double-click deleteEar in the target list.
The J2EE application for the plugin is deleted.

8. In the target list, double-click clean, and then double-click ear.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 60

Plugins are built.

9. In the target list, double-click deployEar.
The J2EE applications for plugins are imported.

10. In the target list, double-click startEar.
The J2EE applications for plugins are started.

11. Restart Navigation Platform (J2EE server).

4. Developing Plugins

Hitachi Navigation Platform Development Guide 61

4.8 Associating I/O Plugins with Operational Content

In the Operational Content Editing Window, associate I/O Plugins with Operational Content that uses the plugins. You
do not perform this for Suspend/Resume Plugins and Custom Window Plugins. A port () is displayed with a Guide
Part that can be associated with an I/O Plugin.

This section describes how to associate I/O Plugins with Guide Parts by using mapping lines in the Operational Content
Editing Window.

4.8.1 Drawing mapping lines (connecting Guide Parts and Plugin Parts)
The following describes the procedure for placing I/O Plugin parts and then drawing mapping lines.

Tip

You can view and work with Plugin Parts and mapping lines only when the Guide area is in mapping mode.
For details about each step, see the Hitachi Navigation Platform Content Editing Guide.

1. Specify the following URL on the Web browser to invoke the login window:
http://host-name:port-number/ucnpBase/portal/screen/TitlePortlet/portlet/ucnp/
pane/-44Ob44O844Og55S76Z2i/layout_id/default/tab_id/-44Ob44O844Og55S76Z2i?
start_editor=true&open_editor=true
• host-name

Host name or IP address of the J2EE server machine in a development environment.

• port-number
Web server port number in a development environment. This value will be specified for
ucnp.setup.server.cosminexus.hws.http.port property in the user setup property file
(ucnp_setup_user.properties).

2. Enter the user ID and password, and then click the Login button.
If you enter incorrect information, click the Reset button to clear the entered information, and then enter information
again.
When you click the Login button, the Operational Content Editing Window appears.

3. In the Operational Flow area, click the Process Node in which you want to set a plugin.
The Guide corresponding to the Operational Flow appears in the Guide area.

4. Click (Plugin button) in the toolbar.

The Guide area switches to mapping mode.

5. In the Plugins palette in the Guide area, click (Plugin button).

6. Click a location in the Guide area.
A Plugin Part is placed.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 62

If you want to place other plugins, repeat steps 5 and 6.

7. Draw a mapping line by clicking and dragging from the port () of the transition-source Guide Part to an input
parameter of the Plugin Part (the port on the left of the Plugin Part).
The cache value of the Guide Part will be passed to the plugin as an input parameter.
For details about cache values of each Guide Part, see 5.2.1 (5) Cache values of Guide Parts.

8. Draw a mapping line by clicking and dragging from an output parameter of the Plugin Part (the port to the right of
the Plugin Part) to the transition-destination Guide Part.
The value set in the plugin will be passed to the Guide Part as an output parameter.

Supplementary note:

• Mapping lines appear as colored arrows as shown in the figure below. Because each mapping line has a different
color, you can easily identify lines even if they cross over.

• You can draw mapping lines to multiple input parameters from one Guide Part.

• You cannot draw mapping lines from multiple output parameters to one Guide Part.

• It is not mandatory that you draw mapping lines to the ports of a Plugin Part.

• If you have placed a Plugin Part, plugin processing is invoked when a transition occurs between nodes containing
the plugin in the Operational Content Editing Window, even if no mapping lines are drawn to the Plugin Part.

• Mapping lines or Plugin Parts set in this task are not displayed in the Operational Content Execution Window.

Notes on cache values of Guide Parts
The cache values of Guide Parts are shared between Guide Parts of the same type. When the Operational Flow
includes a Branching node, if a Process Node that has already been displayed is displayed again via another route,
the cache value used when the Process Node was first displayed is used.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 63

You can use I/O Plugins (server processing implementation interface) to change the cache value according to certain
conditions. For details about the server processing implementation interface, see 5.2 IIoPluginController (server
processing implementation interface).

Notes on associating Plugin Parts with drop-down parts in a parent-child relationship
To associate Plugin Parts with drop-down parts that are configured in a parent-child relationship, define the
Operational Content so that the parameter linked to the parent drop-down part is above the parameter linked to the
child drop-down part. The parameters of parent and child drop-down parts need not be contiguous.
The following figure shows an example in which output parameters (the ports on the right side of a Plugin Part) are
associated with drop-down parts in a parent-child relationship.

Figure 4‒4: Example of associating output parameters with drop-down parts in parent-child
relationship

In this example, outputItemName1 is associated with the parent drop-down part, and outputItemName2 is
associated with the child drop-down part. Because the parameters associated with drop-down parts in parent-child
relationships need not be contiguous, for example, outputItemName3 could also be associated with the child
drop-down part.
These notes do not only apply to output parameters. They also apply when you associate input parameters with
parent-child drop-down parts.

Operations after editing plugins
If you edit a plugin after associating its Plugin Part with parameters, you need to place the Plugin Part for the edited
plugin again and redraw the mapping lines.
For details about how to enable edited plugins without placing them and redrawing mapping lines, see the description
about updating User Plugins in the Hitachi Navigation Platform Setup and Operations Guide.

4.8.2 Details about values input to or output from plugins
The following table describes the values input to or output from plugins for each type of Guide Part.

Table 4‒5: Input values from Guide Parts to plugins and output results from plugins to Guide Parts

Guide Part type Value input to the plugin Result output to the Guide Part

Static text The character string displayed as static text The character string is output as the static
text.

Text box The character string entered in the text box The character string is output to the text box.

Text area The character string entered in the text area The character string is output to the text area.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 64

Guide Part type Value input to the plugin Result output to the Guide Part

Radio button The value of the selected radio button The corresponding radio button becomes
selected.

Check box One of the following values depending on whether the check
box is selected:

If the check box is selected
true

If the check box is not selected
false

The check box becomes selected if the value
is true.
For any other value, the check box remains
cleared.

Drop down The value of the selected list The value corresponding to the selected list
entry is output.

Hyperlink The anchor text and URL (specified in the Attribute Settings
window) connected by a linefeed code (\r\n)

The value#1 consisting of the anchor text and
URL connected by a linefeed code (\r\n) is
output.

Image The value#2 consisting of the image part URL and
description (the value in the Tool tip text box) specified in
the Attribute Settings window and connected by a linefeed
code (\r\n)

The value#3 consisting of the URL set for the
image part, a linefeed code (\r\n), and the
image description (the value in the Tool tip
text box) is output.

Inline frame The URL used to display the inline frame The URL used to display the inline frame is
output.

HTML Part Of the information specified in the HTML source string
area for the HTML Part, a character string encoded after the
name and value attributes of the following are acquired:
• Text box
• Password box
• hidden field
• Check box
• Radio button
• Selection box
• Text area

The value set in the HTML source string
area for the HTML Part is output.

#1
Note the following regarding the output value:
- An empty character string is output if the value is null, empty character string, or consists only of a linefeed code.
- If the value does not contain a linefeed code, the entire string is processed as anchor text (an empty character string is output for the URL).
- If the value contains two or more linefeed codes, the values on the third and subsequent lines are ignored.

#2
If the Tool tip text box was left blank (empty character string), the input value will be the URL followed by a linefeed code (\r\n). Take care
not to include the linefeed code if your intention is to extract only the URL.

#3
Note the following regarding the output value:
- An empty character string is output if the value is null.
- If the value does not contain a linefeed code (\r\n), the entire string is processed as a URL. An empty character string is output for the tool
tip.
- If the value contains two or more linefeed codes, the values on the third and subsequent lines are ignored.

4.8.3 Updating Plugin Parts
If you change any of the following items by editing the I/O plugin XML file, you need to update the Plugin Part to
enable the changes:

4. Developing Plugins

Hitachi Navigation Platform Development Guide 65

• File name of a tool icon

• Execution order

• Execution confirmation dialog box

• Preview window execution flag

• Execution suppression by the button type

• Description character string

• Input parameter

• Output parameter

If the plugin before change is already associated with Operational Content, you need to delete the placed plugin and
then perform the association process again. For details about how to enable changes without performing the association
process again, see the description about updating User Plugins in the Hitachi Navigation Platform Setup and Operations
Guide.

Note that the task for associating plugins again or updating User Plugins must also be performed in an editing
environment and execution environment. Therefore, if you edit the I/O plugin XML file, notify the system administrator.

4.8.4 Checking configuration information for Operational Content that
uses plugins

You can check configuration information for Operational Content that uses plugins. To do this, click the Mapping List
button in the toolbar in the Operational Content Editing Window to output a mapping list file. For details about the
output procedure and output contents, see the Hitachi Navigation Platform Content Editing Guide.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 66

4.9 Configuring the user property file

To enable developed plugins so that they operate normally, you need to configure the user property file
(ucnp_user.properties) as follows:

• Do not specify all for the ucnp.base.client.directjump.enable property.
If you specify all, an error occurs in a Suspend/Resume Plugin, and Navigation Platform does not start. Similarly,
I/O Plugins do not operate.

• Specify true for the ucnp.base.client.suspend.enable property only if a Suspend/Resume Plugin
exists.
If you specify true, Suspend/Resume Plugins operate. If you specify true when there is not a Suspend/Resume
Plugin, an error occurs after the login, disabling the Operational Content Execution Window.

• Change the values of the ucnp.base.server.logoutbutton.display property and
ucnp.base.server.close.button.setting property from the defaults according to custom window
processing.
To log out from a custom window, specify false for the ucnp.base.server.logoutbutton.display
property and close_only for the ucnp.base.server.close.button.setting property, and then
make sure that the Close button is displayed in the Operational Content Execution Window of Navigation Platform.

If necessary, change the values of the following properties from the defaults:

• ucnp.base.client.viewer.confirm.discardinput.enable property (whether to display a
confirmation dialog box when input information is discarded)

• ucnp.base.client.suspend.confirm.load.enable property (whether to display a confirmation
dialog box when operation is resumed)

For the storage location of the user property file and details about properties, see the Hitachi Navigation Platform Setup
and Operations Guide.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 67

4.10 Debugging plugins

To debug plugins, use Eclipse.

4.10.1 Conditions for debugging plugins
To debug plugins, you need to set up a development environment by specifying true for the
ucnp.setup.server.cosminexus.debug.enable property in the user setup property file
(ucnp_setup_user.properties). You also need to start Navigation Platform when you start debugging.

For details about the setup procedure, property details, and how to start Navigation Platform, see the Hitachi Navigation
Platform Setup and Operations Guide.

4.10.2 How to debug plugins
To debug a plugin by using the Eclipse debugger function:

1. Start Eclipse.

2. In the Package Explorer View, click the template plugin project imported in 4.2 Importing a template plugin project.
The project is selected.

3. From the menu, select Debug, and then Debug Configurations.
The Debug Configurations dialog box appears.

4. Right-click Remote Java Application and, in the menu that opens, click New.
A new remote Java application is created. For the port number, specify the value set for the
ucnp.setup.server.cosminexus.debug.jdwp.port property in the user setup property file
(ucnp_setup_user.properties).

5. Click the Debug button.
The debugger runs.

6. Set breakpoints in the implemented Java code.

7. In the Web browser, perform the operation below for debugging the plugin.

For I/O Plugins
Perform operation on Operational Content associated with the plugin and make sure that the plugin operates
correctly.

For Suspend/Resume Plugins
Partially perform operation on any Operational Content, and then log out by clicking the Suspend button. Then,
log in again and make sure that the contents of operation up to the suspended point were saved and you can
resume the operation from the middle of the Operational Flow.

For Custom Window Plugins
After you log in, make sure that the custom window appears.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 68

4.11 Deleting plugins

To delete plugins, use Eclipse. Before deleting plugins, you need to check the IDs of the plugins and whether the plugins
use a library.

4.11.1 How to delete plugins
To delete plugins:

1. Start Navigation Platform (J2EE server).
This step is not necessary if Navigation Platform is already running. For details about how to start Navigation
Platform, see the Hitachi Navigation Platform Setup and Operations Guide.

2. To delete I/O Plugins, delete Operational Content that uses the plugins, or delete the association with those plugins
from Operational Content.

3. Select Run as administrator, and then start Eclipse.

4. Select Window, Show View, Other, Ant, and then Ant. The Ant view appears.

5. In the target list, double-click stopEar and then deleteEar to delete all plugins.

6. Delete the directory of the plugins to be deleted (Navigation-Platform-for-Developers-installation-directory
\pluginSDK\plugin\plugin-ID).

7. If the plugins to be deleted only use the library placed on the layer of the System Class Loader, delete both the library
and class path settings.

8. If the plugins deleted in step 5 contain a plugin you do not want to delete, double-click deployEar and then startEar
to deploy it again.

9. Restart Navigation Platform.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 69

4.12 Calculating memory usage for plugins

The expression for obtaining the memory usage for a User Plugin is as follows:

memory-usage-A# - memory-usage-B = memory-usage-for-User-Plugin

Legend:
memory-usage-A: For executing Operational Content created by using a User Plugin
memory-usage-B: For executing Operational Content created without using a User Plugin

#
When using the ucnpOptions parameter, measure the memory usage by specifying the ucnpOptions
parameter before executing Operational Content.

4.12.1 Procedure for creating Operational Content for measurement
To calculate the memory usage for User Plugins, you must execute the same Operational Content by using a User Plugin
and without using a User Plugin, and then measure the memory usage for each case.

To create Operational Content that does not use User Plugins:

1. Log in to Navigation Platform.

2. Copy the Operational Content created by using a User Plugin.

3. Delete the User Plugin from the copy of the Operational Content.

4. Save the Operational Content.

4.12.2 Procedure for measuring the memory usage for plugins
The following describes the procedure for measuring the memory usage.

(1) Restarting Navigation Platform
1. Use the npstop command (stop) to stop Navigation Platform.

2. Use the npstart command (start) to start Navigation Platform.

(2) Executing Operational Content
1. Log in to Navigation Platform.

2. Select Operational Content for which you want to measure the memory usage.

3. Click the Next button repeatedly to execute Operational Content to the end.
If Operational Content contains multiple routes with branching, use the route that passes the node in which the plugin
is placed.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 70

Note after execution is completed
After execution of Operational Content, do not display another Operational Content or log out.

(3) Performing a GC (garbage collection)
1. Execute the following command to acquire the process ID of the process that is using the RMI registry port of

Navigation Platform:

netstat -abo

The following shows a command output example:

Protocol Local address External address Status PID
 TCP 0.0.0.0:24702 navipla:0 LISTENING 1876

Check the PID on the line on which the local address port number is 24702. In this example, 1876 is the process
ID of the process using the RMI registry port. If the RMI registry port is unknown, check the value specified for the
ucnp.setup.server.cosminexus.ejbserver.rmi.naming.port property in the user setup
property file (ucnp_setup_user.properties). The default is 24702.

2. Use the following command to perform a GC:

"Navigation-Platform-installation-directory\PP\uCPSB\jdk\jre\bin
\javagc.exe" -p process-ID-of-the-process-using-the-RMI-registry-port

When you execute the command, the message below appears. Enter y, and then press the Enter key.

Force VM to execute GC: ? (y/n)

(4) Stopping J2EE applications for Navigation Platform and plugin
1. Execute the following command to stop the J2EE application for the plugin:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjstopapp uCNP_J2EE -name User-Plugin-name

If there are multiple User Plugins, repeatedly execute this command until all plugins stop.

2. Execute the following command to stop the J2EE application for Navigation Platform:

Navigation-Platform-installation-directory\PP\uCPSB\CC\admin\bin
\cjstopapp uCNP_J2EE -name ucnp

(5) Checking operating statistics
Check the JavaVM operating statistics file output to the following path:

Navigation-Platform-installation-directory\PP\uCPSB\CC\server\public\ejb
\Navigation Platform-J2EE-server-name\stats\HJVMStats_YYYYMMDDhhmmTZ.csv

Legend:
YYYYMMDDhhmm: Date and time that the operating statistics file is created
TZ: Time zone

4. Developing Plugins

Hitachi Navigation Platform Development Guide 71

If you open the operating statistics file in Excel, the memory usage when Operational Content was executed is output
to cell AK. This value shows the maximum memory usage (unit: bytes) per session released from the Explicit heap in
the last 60 seconds after the J2EE application for Navigation Platform stopped.

(6) Restarting Navigation Platform
1. Use the npstop command (stop) to stop Navigation Platform.

2. Use the npstart command (start) to start Navigation Platform.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 72

4.13 Changing J2EE server settings

This section describes J2EE server setting items that can be changed as required, and how to change them. For items
not described in this manual, do not change the settings from the default.

4.13.1 J2EE server setting items that can be changed during plugin
development

The following shows the J2EE server files that can be edited and the setting items that can be changed.

User property file for J2EE servers (usrconf.properties)
Java VM system property

Option definition file for J2EE servers (usrconf.cfg)
System class path
Minimum value for the Java heap memory usage for Java VM
Maximum value for the Java heap memory usage for Java VM
Maximum size of the Explicit memory block for the Explicit Memory Management functionality of Java VM

In addition, you can also change the resource adapter according to the plugin you develop. For details about changing
the resource adapter, see 4.4 Adding database connection processing.

4.13.2 Storage location of the files used for changing J2EE server setting
items

The storage location of the user property file for J2EE servers (usrconf.properties) and option definition file
for J2EE servers (usrconf.cfg) is as follows:

Navigation-Platform-installation-directory\PP\uCPSB\CC\server\usrconf\ejb
\uCNP_J2EE

4.13.3 Procedure for changing the user property file for J2EE servers
(usrconf.properties)

The setting item that can be changed in the user property file for J2EE servers (usrconf.properties) is the Java
VM system property. The following describes the procedure.

Important note

Do not edit anything not described in this procedure. Do not add any value not described here.

1. Start the editor as an administrator and then open the user property file for J2EE servers (usrconf.properties).

2. Add the value specified for the Java VM system property to a line below the following comment lines:

4. Developing Plugins

Hitachi Navigation Platform Development Guide 73

##
When you edit, please add description below.
##

3. Execute the npstop command (stop) and npstart command (start) to restart Navigation Platform.

(1) Details about the Java VM system property
Format

Specify a key as follows:

key-name = value

Specification method

• Each value ends at the linefeed.

• A line that begins with a hash mark (#) is assumed to be a comment.

• A line that does not contain any value is ignored.

• Character strings such as empty characters and comments cannot be added following the value. If such a string
is added, the value is interpreted to be invalid.

You can specify any character string for a system property key name. However, do not use any of the following prefixes:

• ucnp.
• java.
• javax.
• javax.portlet.
• hptl
• com.cosminexus
• jp.co.hitachi.soft.portal
• The following keys that are reserved for the J2EE server:

• com.cosminexus
• cosminexus.jpa
• ejbserver.application
• ejbserver.client
• ejbserver.commonj
• ejbserver.compiler
• ejbserver.connectionpool
• ejbserver.connector
• ejbserver.container
• ejbserver.ctm
• ejbserver.deploy
• ejbserver.distributedtx

4. Developing Plugins

Hitachi Navigation Platform Development Guide 74

• ejbserver.DynamicStubLoading
• ejbserver.ejb
• ejbserver.ext
• ejbserver.http
• ejbserver.instrumentation
• ejbserver.jca
• ejbserver.jndi
• ejbserver.jpa
• ejbserver.jta
• ejbserver.logger
• ejbserver.management
• ejbserver.manager
• ejbserver.naming
• ejbserver.rmi
• ejbserver.security
• ejbserver.server
• ejbserver.stateful
• ejbserver.stdoutlog
• ejbserver.watch
• ejbserver.webj2ee
• https
• java
• javax
• vbj
• vbroker
• webserver.application
• webserver.connector
• webserver.container
• webserver.context
• webserver.dbsfo
• webserver.eadssfo
• webserver.errorpage
• webserver.http
• webserver.jsp
• webserver.logger
• webserver.servlet

4. Developing Plugins

Hitachi Navigation Platform Development Guide 75

• webserver.session
• webserver.static
• webserver.work
• webserver.xml

(2) Example of editing the user property file for J2EE servers
(usrconf.properties)

The following shows an example of adding a key named com.example.property.key1 in the user property file
for J2EE servers:

##
When you edit, please add description below.
##
com.example.property.key1=value1

4.13.4 Procedure for changing the option definition file for J2EE servers
(usrconf.cfg)

You can change the following items in the option definition file for J2EE servers (usrconf.cfg):

• System class path

• Java heap memory usage for Java VM

• Explicit memory block size for the Explicit Memory Management functionality of Java VM

The following describes the procedure.

Important note

Do not edit anything not described in this procedure. Do not add any value not described here.

1. Start the editor as an administrator and then open the option definition file for J2EE servers (usrconf.cfg).

2. To change the settings of the Java VM Java heap memory usage and the Explicit memory block size for the Java
VM Explicit Memory Management functionality, change the key values on the lines below the following comment
lines:

##
When you change settings, please correct the following description.
##

3. To change the system class path setting, add the specification to a line below the following comment lines:

##
When you edit, please add description below.
##

4. Execute the npstop command (stop) and npstart command (start) to restart Navigation Platform.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 76

(1) System class path
Specify a user-created program, such as a User Plugin or user library, to be loaded by the System Class Loader on the
J2EE server.

Specify a program that can be referenced from the entire J2EE server. Multiple programs can also be specified.

Key name
add.class.path

Specified value
Specify a system class path. To specify multiple paths, delimit them with a semicolon (;).

Default value
None

(2) Details about the Java heap memory usage for Java VM
For the Java heap memory usage for Java VM on the J2EE server, you must specify a value greater than the memory
usage for Navigation Platform. Specify the same value for the minimum value and maximum value.

Important note

You cannot omit the maximum and minimum values for the Java heap memory usage for Java VM on the J2EE
server. Do not delete the add.jvm.arg key entered by default.

Key name
add.jvm.arg

Specified value
-Xmxmemory-usage-sizem
Specify the memory usage size in the range from 1024 to 1434. If you specify a value greater than 1434, the memory
size will exceed the upper-limit for the OS memory size. Note that m at the end of the specified value indicates MB
(megabytes).

Default value
-Xmx1024m

(3) Details about the Explicit memory block size for the Explicit Memory
Management functionality of Java VM

For the maximum size of the Explicit heap for Java VM on the J2EE server, you must specify a value greater than the
Explicit memory block size for Navigation Platform.

Important note

You cannot omit the maximum size of the Explicit heap. Do not delete the add.jvm.arg key entered by
default.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 77

Reference note

User Plugin instances and session information containing the value of the ucnpOptions parameter are stored
in the Explicit heap. Therefore, we recommend that you assume a case in which the Explicit heap must be
expanded for the memory size required for User Plugin instances per user x maximum number of concurrently
executing users.

Key name
add.jvm.arg

Specified value
-XX:HitachiExplicitHeapMaxSize=maximum-size-of-Explicit-heapm
Specify a value equal to or greater than 160 for the maximum size of the Explicit heap. Note that m at the end of the
specified value indicates MB (megabytes).

Default value
-XX:HitachiExplicitHeapMaxSize=160m

4. Developing Plugins

Hitachi Navigation Platform Development Guide 78

4.14 Notes on developing plugins used with Operational Content for iPad

• To execute a process that uses JavaScript to close a window created with the Custom Window Plugin, use the
following code:

var lWindow = window.open('','_self');
lWindow.opener=window;
lWindow.close();

• If the window in which the window-closing processing is performed consists of multiple frames by using iframes
or similar, implement the processing on the top-level frame.

• If execution of JavaScript takes 10 or more seconds, Mobile Safari processing might stop. Develop the plugin so
that plugin processing is completed within 10 seconds, including the communication time.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 79

4.15 About use of plugins developed in old versions

I/O Plugins developed in a development environment for a version earlier than uCosminexus Navigation Developer
09-50 (referred to as a version earlier than 09-50) do not operate in Navigation Platform. If you want to use I/O Plugins
developed in a version earlier than 09-50, you must develop them again, starting with creation of a template plugin.

Similarly, I/O Plugins developed in a development environment for a version of uCosminexus Navigation Developer
09-50 or uCosminexus Navigation Developer 09-60 (referred to as version 09-50 or later) do not operate in Navigation
Platform. However, you do not have to re-develop I/O Plugins developed in version 09-50 or later because they can be
migrated to new template plugins of Navigation Platform.

For details about the migration procedure, see C.1 Procedure for migrating plugins developed in old versions.

Tip

Operational Content associated with I/O Plugins developed in a version earlier than 09-50 cannot be imported
to Navigation Platform. To import such Operational Content, you must first delete all relevant plugins in an
environment that is a version earlier than 09-50.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 80

4.16 Setting up access permissions to Java packages to be used by User
Plugins

For some Java packages to be used by User Plugins, you need to set up access permissions individually.

1. Start the editor by selecting Run as administrator, and open the following file:

Navigation-Platform-installation-directory\PP\uCPSB\CC\server\usrconf\ejb
\uCNP_J2EE\server.policy

2. Add accessClassInPackage settings to the following locations:

grant codeBase "file:${ejbserver.http.root}/ejb/${ejbserver.serverName}/
apps/-" {
 permission java.io.FilePermission "<<ALL FILES>>", "read, write,
delete, execute";
 permission java.lang.RuntimePermission "accessDeclaredMembers";
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission java.lang.RuntimePermission "setFactory";
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
 permission java.lang.RuntimePermission "getenv.*";
 permission java.lang.RuntimePermission "getClassLoader";
 permission java.lang.RuntimePermission "accessClassInPackage.Java-
package-name-to-be-used"; // Add
};

3. Restart Navigation Platform.

4. Developing Plugins

Hitachi Navigation Platform Development Guide 81

5 API Reference (for I/O Plugin Development)

This chapter describes the APIs used for developing I/O Plugins.

Hitachi Navigation Platform Development Guide 82

5.1 List of APIs (for I/O Plugin development)

The following describes the APIs used for developing I/O Plugins.

Table 5‒1: List of APIs (I/O Plugin development)

Category Interface name or class name Description

Common to all
plugins

IUCNPSession An interface for using session information

IPluginInitializer An interface used to implement the processing for starting
(initializing) and terminating User Plugins

UCNPPluginUserException User Plugin exception class

I/O Plugin IIoPluginController An interface used to implement the server processing for
I/O Plugins

ParamConvertUtil A utility class that converts I/O parameters to the Map format

UCNPPluginException A class that indicates exceptions that occurred in I/O Plugins

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 83

5.2 IIoPluginController (server processing implementation interface)

This interface is used to implement the server processing for I/O Plugins.

Package

package jp.co.hitachi.soft.ucnp.plugin.inputoutput.controller;

Format

public interface IIoPluginController

Methods
• inputFromNode method

When transition occurs from a node that contains an I/O Plugin to another node, this method performs processing
to acquire and input information about the transition source node.

• outputToNode method
When transition to a node that contains an I/O Plugin occurs, this method performs processing to output information
to the transition destination node.

5.2.1 inputFromNode method
When transition occurs from a node that contains an I/O Plugin to another node, this method performs processing to
acquire and input information about the transition source node.

You can use this method to effectively implement data update processing, such as acquiring information about the
transition source node and linking with the external system, during node transition.

Notes on the inputFromNode method
• If multiple I/O Plugins are placed in the same node, the inputFromNode methods of all I/O Plugins are executed

irrespective of the results of a previously executed inputFromNode method. Therefore, if you place multiple
plugins whose input parameters must be checked, you need to check the input parameters for the inputFromNode
methods of all I/O Plugins.

• The inputFromNode method is executed more than once in the following cases:

• The result of an inputFromNode method that is executed later indicates an error.

• The transition destination node contains an I/O Plugin and the result of the outputToNode method indicates
an error.

Therefore, when you implement the processing, maintain the integrity of data to be updated so that no problem
occurs if the inputFromNode method is executed multiple times. Note that a method's execution results, other
than error, are normal and warning.

(1) Format

public Map<String, Object> inputFromNode(HttpSession session, Map<String,
Object> param);

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 84

(2) Arguments

(a) session
This argument stores the current session. To execute the setAttribute() method for the HttpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute()
method:

• Name beginning with "ucnp"
• Name beginning with "java."
• Name beginning with "javax."
• Name beginning with "javax.portlet."
• Name beginning with "hptl"
• Name beginning with "com.cosminexus"
• Name beginning with "jp.co.hitachi.soft.portal"

You can also use the URL request parameter. To use this parameter, you must acquire the ucnpOptions parameter
by using the ucnp.request.options key.

You can acquire the ucnpOptions parameter for each session or for each window ID. We recommend that you acquire
the value of the ucnpOptions parameter for each window ID. For details about how to acquire the values for each
window ID, see (b) param.

Reason why data acquisition for each session is not recommended
If multiple windows of Navigation Platform are displayed in the same session, the HTTP session is overwritten with
the value of the ucnpOptions parameter of the window that you worked with last. As a result, information of the
ucnpOptions parameters for previously used windows is deleted.

ucnp.request.options key
This key is used to acquire the value of the ucnpOptions parameter (specified for the URL) from the session. By
specifying this key in the HttpSession.getAttribute() method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

• Specification example of the ucnp.request.options key (for each session) (not recommended)

public class IoPluginController implements IIoPluginController {

 /**
 * Execute the server processing for I/O Plugins.
 *
 * @param session
 * The current session
 * @param param
 * The parameter sent from the client
 */
 public Map<String, Object> inputFromNode(HttpSession session,
Map<String, Object> param){

 /* Obtain the value of the ucnpOptions parameter from the current
session. */
 String ucnpOptions = (String)
session.getAttribute("ucnp.request.options");

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 85

 if (ucnpOptions != null) {
 /* If the ucnpOptions parameter is specified, describe the
processing for that value. */
 ...
 }
 }
}

(b) param
This argument stores the information sent from the client during execution of the I/O Plugin. The table below provides
details. Do not update the param parameter.

Table 5‒2: Keys stored in param (inputFromNode method)

No. Key name Value Description

1 ucnp.current.params.map Map<String,String>
• Key: String of one or more

characters
• Value: String of zero or

more characters

When an I/O Plugin is executed, a Map containing
the following key and value pair is passed:
• Key

Input parameter name of the I/O Plugin
• Value

Cache value of the Guide associated with the
input parameter

Parameters not associated with the Guide are not
contained in the key.
For details about cache values of Guide Parts, see
(5) Cache values of Guide Parts.

2 ucnp.button.type String
One of the following:
• "start"
• "show_next_page"
• "show_previous_pa
ge"

• "show_complete_pa
ge"

Indicates the type of the clicked button or the type
of transition.
• "start"

Switch from the Terminal Node (start) to a
Process Node.
Alternatively, display the first Process Node
not connected to the Terminal Node (start).

• "show_next_page"
Switch to the next node by clicking the button
or directly selecting the node.
Alternatively, switch to a Process Node for
which the transition destination node exists or
a Process Node with the Back button
displayed.

• "show_previous_page"
Switch to the previous node by clicking the
button or directly selecting the node.

• "show_complete_page"
Switch to a node with the Done button
displayed.
Alternatively, switch to a Process Node for
which the transition destination node does not
exist and for which the Back button is hidden.

3 ucnp.isdirectjump String
Either of the following:
• "true"
• "false"

Indicates whether the transition type is direct
transition.
• "true"

Direct transition
• "false"

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 86

No. Key name Value Description

3 ucnp.isdirectjump String
Either of the following:
• "true"
• "false"

Not direct transition

4 ucnp.current.node.name String
String of zero or more
characters

The node name corresponding to the transfer-
source Guide is passed.
If the node name has not been set, an empty
character string is passed.

5 ucnp.next.node.name String
String of zero or more
characters

The node name corresponding to the transfer-
destination Guide is passed.
If the node name has not been set, an empty
character string is passed.

6 ucnp.current.node.id String
String of zero or more
characters

The node ID corresponding to the transfer-source
Guide is passed.
If the node ID has not been set, an empty character
string is passed.

7 ucnp.next.node.id String
String of zero or more
characters

The node ID corresponding to the transfer-
destination Guide is passed.
If the node ID has not been set, an empty character
string is passed.

8 ucnp.flow.contents.id String
String of one or more
characters

The Operational Content ID of the selected
Operational Content is passed.

9 ucnp.flow.contents.name String
String of one or more
characters

The Operational Content name of the selected
Operational Content is passed.

10 ucnp.flow.contents.execute.
id

String Indicates the Operational Content execution ID,
which is assigned during execution of Operational
Content

11 ucnp.flow.contents.version.
id

String Indicates the version ID of the Operational Content
being used for execution.

12 ucnp.screen.id String
String of one or more
characters

The window ID is passed, which uniquely
identifies the window being used for execution of
Operational Content.

13 ucnp.screen.ispreview String
Either of the following:
• "true"
• "false"

Indicates whether the window being used for
execution of Operational Content is the preview
window.
• "true"

Preview window
• "false"

Operational Content Execution Window

14 ucnp.options.param# String Indicates the URL decoded value of the
ucnpOptions parameter acquired for each
window ID.
This key is not set if the ucnpOptions parameter
is not specified.

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 87

#
This key is used to acquire the value of the ucnpOptions parameter (specified for the URL) for each window ID.
By specifying this key in the param argument, you can acquire the URL decoded value of the ucnpOptions
parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.

• Specification example of the ucnp.options.param key (for each window ID) (recommended)

public class IoPluginController implements IIoPluginController {
 /**
 * Execute the server processing for I/O Plugins.
 *
 * @param session
 * The current session
 * @param param
 * The parameter sent from the client
 */
 public Map<String, Object> inputFromNode(HttpSession
session,Map<String, Object> param) {
 /* Acquire the value of the ucnpOptions parameter from the
argument. */
 String ucnpOptions = (String) param.get("ucnp.options.param");
 if (ucnpOptions != null) {
 /* If the ucnpOptions parameter is specified, describe the
processing for that value. */
 }
 }
}

(3) Return values
The execution result of the I/O Plugin is returned as a Map. The table below provides details. Values not covered in the
table are ignored.

Table 5‒3: Return values of the inputFromNode method

No. Key name Value Description

1 ucnp.error.message String
String of zero or more
characters

Set this key if you want to display a message for
users after execution of the inputFromNode
method.
The string specified for this key is displayed in the
message dialog box after the inputFromNode
methods of all I/O Plugins associated with the
transfer-source node are executed.
Note the following when setting this key:
• Use \n to specify a linefeed.
• If this key is set for multiple I/O Plugins, the

specified strings are connected and displayed
in the message dialog box, using a linefeed as
a delimiter. If a message is too long, it might
not be displayed fully in the window. Check the
message size and make sure that the whole
message can be displayed in the window.

2 ucnp.error.type String
Either of the following:
• "NG"
• "WARNING"

Specify whether to suppress node transition after
the message dialog box specified for
ucnp.error.message is displayed.
• "NG"

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 88

No. Key name Value Description

2 ucnp.error.type String
Either of the following:
• "NG"
• "WARNING"

Transition is suppressed.
• "WARNING"

Transition is not suppressed.

The value specified for this key is ignored in the
following cases:
• A value is not specified for
ucnp.error.message.

• Null is specified for
ucnp.error.message.

"NG" is assumed in the following cases:
• A string other than "NG" and "WARNING" is

specified.
• Null is specified.
• A value is not specified.

When you execute multiple I/O Plugins, operation
is different depending on the setting as shown
below:
• "WARNING" is specified for all I/O Plugins.

Transition is not suppressed.
• "WARNING" is not specified for any I/O

Plugin.
Transition is suppressed.

3 ucnp.error.params.list List<String>
String of one or more
characters

Set this key if you want to highlight a Guide Part
for which node transition is suppressed. For the
value of the key, specify the list of input parameters
associated with that part. The Guide Part will be
displayed with a colored frame.
The default frame color is red. You can change the
frame color by using the
ucnp.base.client.erroritem.emphas
is.border.color property in the user
property file (ucnp_user.properties).
For details about the user property file, see the
Hitachi Navigation Platform Setup and Operations
Guide.
Specify this key together with the
ucnp.error.message key in the Map of the
return value. If you set this key without setting the
ucnp.error.message key, the highlight
display is disabled.
If node transition is not suppressed, the value
specified for this key is ignored.

The following table describes the return values of the inputFromNode method and operations after execution of the
I/O Plugin associated with the transition source node.

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 89

Table 5‒4: Return values and operations after execution of the I/O Plugin associated with the
transition source node

No. Value
specified for
"ucnp.error.m
essage"

Value specified
for
"ucnp.error.type
"

Value specified
for
"ucnp.error.par
ams.list"

Execution result
of the method

Dialog box
display

Node
transition

Highlight
display

1 Not specified,
or null

NG Specified (other
than null)

Normal Disabled Disabled Disabled

2 Not specified, or
null

Normal Disabled Disabled Disabled

3 WARNING Specified (other
than null)

Normal Disabled Disabled Disabled

4 Not specified, or
null

Normal Disabled Disabled Disabled

5 Values other than
NG and
WARNING

Specified (other
than null)

Normal Disabled Disabled Disabled

6 Not specified, or
null

Normal Disabled Disabled Disabled

7 Specified
(other than
null)

NG Specified (other
than null)

Error Enabled Enabled Enabled

8 Not specified, or
null

Error Enabled Enabled Disabled

9 WARNING Specified (other
than null)

Warning Enabled Disabled Disabled

10 Not specified, or
null

Warning Enabled Disabled Disabled

11 Values other than
NG and
WARNING

Specified (other
than null)

Error Enabled Enabled Enabled

12 Not specified, or
null

Error Enabled Enabled Disabled

(4) Exception
None

(5) Cache values of Guide Parts
The following table describes the cache values of Guide Parts retained in plugins.

Table 5‒5: Cache values for each type of Guide Part

No. Type of part Cache value Default value

1 Static text Displayed character string The value specified in the Displayed string
text box in the Attribute Settings window

2 Image A string consisting of the URL and the attribute
value of the tool tip connected by a linefeed
code (if the tool tip is an empty character string,
the linefeed code is still included in the cache
value).

A string consisting of the value specified in
the URL text box, a linefeed code, and the
value specified for the Tool tip text box in
the Attribute Settings dialog box

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 90

No. Type of part Cache value Default value

3 Text box The value entered in the text box The value specified in the Default value text
box in the Attribute Settings window

4 Text area The value entered in the text area The value specified in the Default value text
area in the Attribute Settings window

5 Radio button The value entered in the Value text box in the
Attribute Settings window for the selected
button (if a radio button is not selected: null)

null

6 Check box true: The check box is selected
false: The check box is cleared
(In any case, a single-byte character string is
used.)

The value varies depending on whether the
Change the default value to the check
status check box in the Attribute Settings
window is selected.
• true is assumed if the check box is

selected.
• false is assumed if the check box is

cleared.

7 Drop down The value selected in the Selections list field
(Even if the value including commas or
quotation marks ("), specify the value as is
without using escape characters in CSV. For
example, Cali"fornia" specified for the
cache value is not interpreted as
"Cali""fornia""".

• The first value in the Selections list field
(in the Attribute Settings window) that
corresponds to a value in the Parent
value field (if no corresponding value
exists in the Parent value field, an empty
character string is used)

• If no parent drop down exists, the first
value of the Selections list field (in the
Attribute Settings window) for which the
Parent value field is an empty character
string

8 Hyperlink A string consisting of the anchor string and the
value specified for the URL, connected by a
linefeed code
(A tool tip is not included in the string.)

• A string consisting of the anchor string
and the value specified for the URL,
connected by a linefeed code

• The values specified in the Anchor
String text box and URL text box in the
Attribute Settings window

9 Inline frame The URL of the displayed page
(The setting of whether to display a frame is not
included.)

The value specified in the URL text box in
the Attribute Settings window

10 HTML Part Displayed HTML Content The value specified in the HTML String
text box in the Attribute Settings window

Notes applicable to all types of parts
• If you display the Guide area while proceeding with a task or returning to a previous step in the Operational Content

Execution Window, values are displayed with the following priority:

1. Output values of the I/O Plugin

2. Values previously entered by the user in the Operational Content Execution Window (not including static text
parts)

3. Default cache values for each part (Table 5-5)

• The lifecycle of a cache value is from starting of a task to its end or disposal. When you resume a task that was
temporarily saved by using a Suspend/Resume Plugin, the cache values are also inherited.

• A cache value is shared between Guide Parts of the same type in the Guide areas corresponding to the same Process
Node. Therefore, for an Operational Flow including a branch, if a Process Node that has already been displayed is

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 91

displayed again via another route, the cache value used when the Process Node was previously displayed is used as
is. If you want to change the cache value according to certain conditions, use an I/O Plugin.

• The linefeed code for cache values is \r\n. To include a linefeed in a cache value specified for a return value of
this method, specify \r\n as a linefeed.

Note on text boxes
• If a string including a linefeed is output as a cache value from a plugin, the string from which the linefeed is excluded

will be set as the cache value.

Notes on drop-down parts
• If the cache value specified for a parent drop-down part is different from the value specified in the plugin, the cache

value of the child drop-down part is reset. The reset cache value of the child drop-down part is displayed as the first
value of the corresponding parent drop-down part in the Selections list field in the Attribute Settings window.
For example, the figure below shows drop-down parts specified in the Attribute Settings window. If the cache value
of the parent drop-down part is California and the specified plugin value is Georgia, the reset cache value of
the child drop-down part is Cobb county, which first corresponds to Georgia.

Note that if you change the selection status of a parent drop-down part in the Operational Content Execution Window,
the values of child drop-down parts are also reset.

• Cache values are applied in the order of plugin parameters. Therefore, to update cache values of drop-down parts
configured in a parent-child relationship, the child drop-down part must be associated with a parameter that appears
later than the parameter associated with the parent drop-down part.

• If the value specified for the cache value is not found in the Selections list field corresponding to the Parent value
field in the Attribute Settings window, the specified cache value is ignored.

Note on hyperlinks
• If the cache value does not contain a linefeed, the system assumes that only the label is specified.

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 92

5.2.2 outputToNode method
When transition to a node that contains an I/O Plugin occurs, this method performs processing to output information to
the transition destination node.

You can use this method to effectively implement data reference processing, such as applying information acquired
from external systems, during node transition.

If you want to switch the I/O Plugin processing for each transition path at a Branch Node, determine the transition path
from the transition source node by using the I/O Plugin outputToNode method, and then switch the processing.

Notes on the outputToNode method
• If an I/O Plugin is placed in the transition source node and the execution result of the inputFromNode that was

executed in advance indicates an error, the outputToNode methods of all I/O Plugins are not executed.

• If multiple I/O Plugins are placed in the same node and the execution result of the outputToNode method was
executed in advance indicates an error, subsequent I/O Plugins are not executed.

Note that a method's execution results, other than error, are normal and warning.

(1) Format

public Map<String, Object> outputToNode(HttpSession session, Map<String,
Object> param);

(2) Arguments

(a) session
This argument stores the current session. To execute the setAttribute() method for the HttpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute()
method:

• Name beginning with "ucnp"
• Name beginning with "java."
• Name beginning with "javax."
• Name beginning with "javax.portlet."
• Name beginning with "hptl"
• Name beginning with "com.cosminexus"
• Name beginning with "jp.co.hitachi.soft.portal"

You can also use the URL request parameter. To use this parameter, you must acquire the ucnpOptions parameter
by using the ucnp.request.options key.

You can acquire the ucnpOptions parameter for each session or for each window ID. We recommend that you acquire
the value of the ucnpOptions parameter for each window ID. For details about how to acquire the values for each
window ID, see (b) param.

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 93

Reason why data acquisition for each session is not recommended
If multiple windows of Navigation Platform are displayed in the same session, the HTTP session is overwritten with
the value of the ucnpOptions parameter of the window that you worked with last. As a result, information of the
ucnpOptions parameters for previously used windows is deleted.

ucnp.request.options key
This key is used to acquire the value of the ucnpOptions parameter (specified for the URL) from the session. By
specifying this key in the HttpSession.getAttribute() method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.
For details about a specification example of the ucnp.request.options key, see the specification example of
the inputFromNode method in 5.2 IIoPluginController (server processing implementation interface).

(b) param
This argument stores the information sent from the client during execution of the I/O Plugin. The table below provides
details. Do not update the param parameter.

Table 5‒6: Keys stored in param (outputToNode method)

No. Key name Value Description

1 ucnp.next.params.map Map<String,String> When an I/O Plugin is executed, a Map containing
the following key and value pair is passed:
• Key

Output parameter name of the I/O Plugin
• Value

Cache value of the Guide associated with the
output parameter at the point before transition

Parameters not associated with the Guide are not
contained in the key.
For details about cache values of Guide Parts, see
5.2.1(5) Cache values of Guide Parts.

2 ucnp.button.type String
One of the following:
• "start"
• "show_next_page"
• "show_previous_pa
ge"

• "show_complete_pa
ge"

Indicates the type of the clicked button or the type
of transition.
• "start"

Switch from the Terminal Node (start) to a
Process Node.
Alternatively, display the first Process Node
not connected to the Terminal Node (start).

• "show_next_page"
Switch to the next node by clicking the button
or directly selecting the node.
Alternatively, switch to a Process Node for
which the transition destination node exists or
a Process Node with the Back button
displayed.

• "show_previous_page"
Switch to the previous node by clicking the
button or directly selecting the node.

• "show_complete_page"
Switch to a node with the Done button
displayed.
Alternatively, switch to a Process Node for
which the transition destination node does not
exist and for which the Back button is hidden.

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 94

No. Key name Value Description

3 ucnp.isdirectjump String
Either of the following:
• "true"
• "false"

Indicates whether the transition type is direct
transition.
• "true"

Direct transition
• "false"

Not direct transition

4 ucnp.current.node.name String
String of zero or more
characters

The node name corresponding to the transfer-
source Guide is passed.
If the node name has not been set, an empty
character string is passed.

5 ucnp.next.node.name String
String of zero or more
characters

The node name corresponding to the transfer-
destination Guide is passed.
If the node name has not been set, an empty
character string is passed.

6 ucnp.current.node.id String
String of zero or more
characters

The node ID corresponding to the transfer-source
Guide is passed.
If the node ID has not been set, an empty character
string is passed.

7 ucnp.next.node.id String
String of zero or more
characters

The node ID corresponding to the transfer-
destination Guide is passed.
If the node ID has not been set, an empty character
string is passed.

8 ucnp.flow.contents.id String
String of one or more
characters

The Operational Content ID of the selected
Operational Content is passed.

9 ucnp.flow.contents.name String
String of one or more
characters

The Operational Content name of the selected
Operational Content is passed.

10 ucnp.flow.contents.execute.
id

String Indicates the Operational Content execution ID,
which is assigned during execution of Operational
Content

11 ucnp.flow.contents.version.
id

String Indicates the version ID of the Operational Content
being used for execution.

12 ucnp.screen.id String
String of one or more
characters

The window ID is passed, which uniquely
identifies the window being used for execution of
Operational Content.

13 ucnp.screen.ispreview String
Either of the following:
• "true"
• "false"

Indicates whether the window being used for
execution of Operational Content is the preview
window.
• "true"

Preview window
• "false"

Operational Content Execution Window

14 ucnp.options.param# String Indicates the URL decoded value of the
ucnpOptions parameter acquired for each
window ID.
This key is not set if the ucnpOptions parameter
is not specified.

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 95

#
This key is used to acquire the value of the ucnpOptions parameter (specified for the URL) for each window ID.
By specifying this key in the param argument, you can acquire the URL decoded value of the ucnpOptions
parameter. If the ucnpOptions parameter is not specified for the URL, null is returned. For details about the
specification example of the ucnp.options.param key, see the specification example of the inputFromNode
method in 5.2 IIoPluginController (server processing implementation interface).

(3) Return values
The execution result of the I/O Plugin is returned as a Map. The table below provides details. Values not covered in the
table are ignored.

Table 5‒7: Return values of the outputToNode method

No. Key name Value Description

1 ucnp.next.params.map Map<String, String> When an I/O Plugin is executed, a Map containing
the following key and value pair is passed:
• Key

Output parameter name of the I/O Plugin
• Value

Cache value of the Guide associated with the
output parameter

2 ucnp.error.message String Set this key if you want to display a message for
users after execution of the outputToNode
method.
If the I/O Plugin associated with the transition
destination node terminates with either of the
following results, the string specified for this key
is displayed in the message dialog box:
• The execution result type of the
outputToNode method for any I/O Plugin is
error.

• The execution result type of the
outputToNode method for all I/O Plugins is
normal or warning.

Note the following when setting this key:
• Use \n to specify a linefeed.
• If this key is set for multiple I/O Plugins, the

specified strings are connected and displayed
in the message dialog box, using a linefeed as
a delimiter. If a message is too long, it might
not be displayed fully in the window. Check the
message size and make sure that the whole
message can be displayed in the window.

3 ucnp.error.type String
Either of the following:
• "NG"
• "WARNING"

Specify whether to suppress node transition after
the message dialog box specified for
ucnp.error.message is displayed. You can
specify the following strings.
• "NG"

Transition is suppressed.
• "WARNING"

Transition is suppressed.

The value specified for this key is ignored in the
following cases:

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 96

No. Key name Value Description

3 ucnp.error.type String
Either of the following:
• "NG"
• "WARNING"

• A value is not specified for
ucnp.error.message.

• Null is specified for
ucnp.error.message.

"NG" is assumed in the following cases:
• A string other than "NG" and "WARNING" is

specified.
• Null is specified.
• A value is not specified.

When you execute multiple I/O Plugins, operation
is different depending on the setting as shown
below:
• "WARNING" is specified for all I/O Plugins.

Transition is not suppressed.
• "WARNING" is not specified for any I/O

Plugin.
Transition is suppressed.

The following table describes the return values of the outputToNode method and operations after execution of the
I/O Plugin associated with the transition destination node.

Table 5‒8: Return values and operations after execution of the I/O Plugin associated with the
transition destination node

No. Value specified for
"ucnp.error.message"

Value specified for
"ucnp.error.type"

Execution
result of the
method

Dialog box
display

Node
transition

1 Not specified, or null NG Normal Disabled Disabled

2 WARNING Normal Disabled Disabled

3 Values other than NG and
WARNING

Normal Disabled Disabled

4 Specified (other than null) NG Error Enabled Enabled

5 WARNING Warning Enabled Disabled

6 Values other than NG and
WARNING

Error Enabled Enabled

(4) Exception
None

5.2.3 Plugin processing during preview
I/O Plugins are executed when node transition occurs during preview, in addition to node transition in the Operational
Content Execution Window. If you do not want I/O Plugins to be executed during a preview, use the param parameter
when implementing the inputFromNode or outputToNode method. When this parameter is specified as shown
in the following example, the system checks whether the window used to execute the plugin is a preview window, and
from this check determines whether to allow plugin processing to be performed.

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 97

Implementation example

public Map<String,Object> outputToNode(HttpSession session,
Map<String,Object> param) {

 boolean isPreview = Boolean.valueOf((String)
param.get("ucnp.screen.ispreview"));
 if (!isPreview) {
 // Perform plugin processing only when a preview window is not used.

 }
}

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 98

5.3 IPluginInitializer (User Plugin startup (initialization) and termination
processing implementation interface)

This interface is used to implement the processing for starting (initializing) and terminating User Plugins.

Package

package jp.co.hitachi.soft.ucnp.base.pluginmng.controller;

Format

public interface IPluginInitializer

Methods
• init method

Implements the User Plugin initialization processing.

• destroy method
Implements the User Plugin termination processing.

5.3.1 init method
This method is invoked when a User Plugin EAR starts. When this method is invoked, the User Plugin initialization
processing is performed.

For example, when you implement a User Plugin that performs database connection processing, use this method to
perform data source lookup processing. For details about how to implement database connection processing, see 4.4
Adding database connection processing.

A data source lookup for connection with the database must be implemented within this method. If you implement the
lookup with any other method, operation is unpredictable. To use the data source with the inputFromNode() method,
or any other method, implement processing so that the data source instance found by the lookup in the init() method
is retained in a static variable and passed.

(1) Format

public void init() throws UCNPPluginUserException;

(2) Arguments
None

(3) Return values
None

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 99

(4) Exception
If an error occurs with this method, startup of the User Plugin is interrupted and the UCNPPluginUserException
exception is thrown.

5.3.2 destroy method
This method is invoked when a User Plugin EAR stops. When this method is invoked, the User Plugin termination
processing is performed.

(1) Format

public void destroy();

(2) Arguments
None

(3) Return values
None

(4) Exception
None

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 100

5.4 UCNPPluginUserException (User Plugin exception class)

This exception is thrown by a User Plugin to Navigation Platform.

Package

package jp.co.hitachi.soft.ucnp.base.pluginmng.controller;

Format

public class UCNPPluginUserException extends Exception;

Constructor
• UCNPPluginUserException(String) constructor

Invokes the Exception(String) constructor of the parent class.

• UCNPPluginUserException(String, Throwable) constructor
Invokes the Exception(String, Throwable) constructor of the parent class.

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 101

5.5 ParamConvertUtil (I/O parameter conversion utility class)

This utility class converts I/O parameters to the Map format.

Package

package jp.co.hitachi.soft.ucnp.plugin.inputoutput.util;

Format

public class ParamConvertUtil

Method
• decodeHtmlPartParam method

Receives encoded character strings input from an HTML Part as arguments, and then converts them to the Map
format.

5.5.1 decodeHtmlPartParam method
This method receives encoded character strings input from an HTML Part as arguments, and then converts them to the
Map format.

(1) Format

public static Map<String, String> decodeHtmlPartParam(String param)
 throws UCNPPluginException;

(2) Arguments

(a) param
This argument stores the encoded character strings input from the HTML Part.

(3) Return values
Map<String, String>

The value corresponding to an input item in the HTML Part is returned in a Map. The Map contains the name attribute
as the key and the value attribute as the value. If the param argument is an empty character string, an empty Map is
returned. You can acquire the value from the returned Map by using the name attribute of the element specified in the
HTML Part as the key.

(4) Exception
UCNPPluginException - Conversion of an encoded character string fails.

If an error occurs with this method, conversion to the Map format is interrupted and the UCNPPluginException
exception is thrown. The following shows a list of errors.

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 102

Table 5‒9: List of errors that occur in the decodeHtmlPartParam method

Error Message ID

This method is executed for data other than an HTML Part. KDCZ10205-E

(5) Example
The following describes an example of using the decodeHtmlPartParam method within the inputFromNode
method of the IIoPluginController interface.

Conditions
This example is based on the following conditions:

• Use a sample I/O Plugin.
For details about sample I/O Plugins, see A.1 How to use I/O Plugins (sample).

• The following external CSS files for HTML Parts are created:

table.sample {
 border:1px solid #777777;
 border-collapse:collapse;
 border-spacing:0;
 background-color:#ffffff;
}
th.sample {
 border-right:1px solid #777777;
 border-bottom:1px solid #777777;
 background-color:#e3e5e7;
 padding:0.3em 1em;
 text-align:center;
}
td.sample {
 border-right:1px solid #777777;
 border-bottom:1px solid #777777;
 padding:0.3em 1em;
}

• Input parameter inputItemName1 is associated with the HTML Part to which the following source code is input:

<TABLE class="sample">
 <TBODY>
 <TR>
 <TH class="sample"></TH>
 <TH class="sample">Order number</TH>
 </TR>
 <TR>
 <TD class="sample"><input type="radio" name="order"
value="0001-20100801-00001" /></TD>
 <TD class="sample"> 0001-20100801-00001</TD>
 </TR>
 <TR>
 <TD class="sample"><input type="radio" name="order"
value="0001-20100801-00002" /></TD>
 <TD class="sample"> 0001-20100801-00002</TD>
 </TR>

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 103

 </TBODY>
</TABLE>

The HTML Part displayed in the window is as follows:

• Output parameter outputItemName1 is associated with static text parts.

• The order number displayed in the Guide area of the next step changes according to the radio button selected by the
user.

I/O Plugin implementation example
The following shows an example of implementation to receive and process the input parameter from the HTML Part
indicated in the conditions. The decodeHtmlPartParam method is used in the part in bold.

package jp.co.hitachi.soft.ucnp.plugin.sample.ioaction.controller;

import java.util.HashMap;
import java.util.Map;
import javax.servlet.http.HttpSession;
import
jp.co.hitachi.soft.ucnp.plugin.inputoutput.controller.IIoPluginController;
import
jp.co.hitachi.soft.ucnp.plugin.inputoutput.common.UCNPPluginException;
import jp.co.hitachi.soft.ucnp.plugin.inputoutput.util.ParamConvertUtil;

public class IoPluginController implements IIoPluginController {
 /* The member variable that retains the input parameter values received
from the client */
 private String param1 = null;
 private String param2 = null;
 private String param3 = null;

 public Map<String, Object> inputFromNode(HttpSession session,
 Map<String, Object> param) {

 /* Create a Map used for sending processing results to the client.
*/
 Map<String, Object> map = new HashMap<String, Object>();

 /* Processing changes depending on the button type.*/
 String buttonType = (String) param.get("ucnp.button.type");
 if ("show_next_page".equals(buttonType)) {
 /* If the Next button is clicked, input values are obtained and
then retained in the member variables. */

 /* Expand the data received from the client to the Map. */
 Map<?, ?> inParamMap = (Map<?, ?>)
param.get("ucnp.current.params.map");

 /* Obtain the value to be converted from the Map. */
 String inParam1 = (String) inParamMap.get("inputItemName1");

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 104

 Map<String, String> decodedMap = null;
 /* Enclose the API to be used in the try-catch block.*/
 try {
 decodedMap = ParamConvertUtil.decodeHtmlPartParam(inParam1);

 } catch (UCNPPluginException e) {
 /* Perform exception processing. */
 String errMsg = e.getMessage();
 /* Perform processing such as outputting plugin log data. */
 /* Return the map with an error message added.*/
 map.put("ucnp.error.message", errMsg);
 return map;
 }
 /* Obtain the value of the value attribute corresponding to the
name attribute "order".*/
 String value = decodedMap.get("order");

 /* Set the input parameter values in the member variables. */
 param1 = value;
 param2 = (String) inParamMap.get("inputItemName2");
 param3 = (String) inParamMap.get("inputItemName3");

 } else if ("show_previous_page".equals(buttonType)) {
 /* If the Back button is clicked, nothing is performed. */
 }

 return map;
 }

 public Map<String, Object> outputToNode(HttpSession session,
 Map<String, Object> param) {

 /* Create a Map to be sent to the client. */
 Map<String, Object> map = new HashMap<String, Object>();

 /* Processing changes depending on the button type.*/
 String buttonType = (String) param.get("ucnp.button.type");
 if ("show_next_page".equals(buttonType)) {
 /* If the Next button is clicked, input values are mapped to
the output items. */

 Map<String, String> outParamMap = new HashMap<String, String>();

 /* Set data to be sent to the Map. */
 /* Because the static text parts are set for outputItemName1,
 the values obtained from the HTML Part are set as the values
of the static text parts. */
 outParamMap.put("outputItemName1", param1);
 outParamMap.put("outputItemName2", param2);
 outParamMap.put("outputItemName3", param3);

 map.put("ucnp.next.params.map", outParamMap);

 } else if ("show_previous_page".equals(buttonType)) {
 /* If the Back button is clicked, nothing is performed. */
 }

 return map;

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 105

 }

}

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 106

5.6 UCNPPluginException (I/O Plugin exception class)

This class indicates exceptions that occurred in I/O Plugins.

Package

package jp.co.hitachi.soft.ucnp.plugin.inputoutput.common;

Format

public class UCNPPluginException extends Exception

Methods
• getMessage method

Acquires detailed messages describing the causes of errors.

• getMessageId method
Acquires message IDs.

5.6.1 getMessage method
This method acquires detailed messages describing the causes of errors. Message IDs are not included.

(1) Format

public String getMessage();

(2) Arguments
None

(3) Return values
Detailed messages describing the causes of errors

(4) Exception
None

5.6.2 getMessageId method
This method acquires message IDs.

(1) Format

public String getMessageId();

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 107

(2) Arguments
None

(3) Return values
Message IDs

(4) Exception
None

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 108

5.7 IUCNPSession (session information use interface)

This interface is used for using session information.

You can acquire an instance of this interface from the HttpSession object by using the following code:

IUCNPSession ucnpSession =
(IUCNPSession)session.getAttribute("ucnp.session");

Note that you can acquire the instance of the IUCNPSession interface only when you are logged in. If you are not
logged in, the ucnpSession variable in the above code is set to null.

Package

package jp.co.hitachi.soft.ucnp.base.portlet;

Format

public interface IUCNPSession

Method
• getLoginId method

Returns the user ID of the current login user.

5.7.1 getLoginId method
This method returns the user ID of the current login user.

(1) Format

public String getLoginId();

(2) Arguments
None

(3) Return values
User ID

(4) Exception
None

5. API Reference (for I/O Plugin Development)

Hitachi Navigation Platform Development Guide 109

6 API Reference (for Suspend/Resume Plugin
Development)

This chapter describes the APIs used for developing Suspend/Resume Plugins.

Hitachi Navigation Platform Development Guide 110

6.1 List of APIs (for Suspend/Resume Plugin development)

The following describes the APIs used for developing Suspend/Resume Plugins.

Table 6‒1: List of APIs (for Suspend/Resume Plugin development)

Category Interface name or class name Description

Suspend/Resume Plugin ISuspendActionController An interface used to manipulate suspend information

ISuspendInfo An interface that indicates the suspend information to
be saved or recovered

SupendInfoSerializeUtil A utility class used to serialize suspend information
or recover the serialized suspend information

UCNPPluginException A class that indicates exceptions that occurred in
Suspend/Resume Plugins

For details about the APIs that can be used with any type of plugin, see 5.1 List of APIs (for I/O Plugin development).

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 111

6.2 ISuspendActionController (suspend/resume action controller
interface)

This interface is used to manipulate suspend information in Suspend/Resume Plugins.

Package

package jp.co.hitachi.soft.ucnp.plugin.suspend.controller;

Format

public Interface ISuspendActionController

Methods
• save method

Saves suspend information associated with Operational Content IDs.

• load method
Loads the suspend information associated with Operational Content IDs.

• contains method
Checks whether suspend information associated with Operational Content IDs exists.

• delete method
Deletes the suspend information associated with Operational Content IDs.

• deleteAll method
Deletes all suspend information associated with Operational Content IDs.

About an instance of a user implementation class that inherits ISuspendActionController
An instance of a user implementation class that inherits ISuspendActionController is created only once when
a method is invoked for the first time. All methods are invoked for the same instance.

6.2.1 save method
This method saves suspend information in Suspend/Resume Plugins. It saves the suspend information associated with
the Operational Content ID specified by the parameter.

If this method throws the UCNPPluginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

Processing of this method must be implemented in the suspend/resume action controller class created by using the
template plugin creation command.

(1) Format

public void save(String contentId, ISuspendInfo suspendInfo, HttpSession
session)
 throws UCNPPluginException;

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 112

(2) Arguments

(a) contentId
This argument indicates the Operational Content ID.

(b) suspendInfo
This argument stores the suspend information of the Operational Content selected when the Suspend button is clicked.

(c) session
This argument stores the current session. To execute the setAttribute() method for the HttpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute()
method:

• Name beginning with "java."
• Name beginning with "javax."
• Name beginning with "javax.portlet."
• Name beginning with "hptl"
• Name beginning with "com.cosminexus"
• Name beginning with "jp.co.hitachi.soft.portal"

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key:

ucnp.request.options key
This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the HttpSession.getAttribute() method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.
For details about a specification example of the ucnp.request.options key, see the specification example of
the inputFromNode method in 5.2 IIoPluginController (server processing implementation interface).

(3) Return values
None

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being saved.

Navigation Platform displays the detailed message for the UCNPPluginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPPluginException exception to be
thrown, set the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, the message dialog box might not be fully
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing
Navigation Platform invokes this method when:

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 113

• The Suspend button is clicked.

6.2.2 load method
This method loads and recovers suspend information in Suspend/Resume Plugins, by loading the suspend information
associated with the Operational Content ID specified by a parameter.

This method is invoked only if the return value of the contains() method is true. Therefore, if the return value of
this method is null, a plugin error message is displayed in the dialog box. If no suspend information is found, throw the
UCNPPluginException exception for which a message is set.

If this method throws the UCNPPluginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

If the return value of this method is invalid or if this method throws the UCNPPluginException exception, a message
appears in the dialog box, and then the operation starts from the beginning.

(1) Format

public ISuspendInfo load(String contentId, HttpSession session)
 throws UCNPPluginException;

(2) Arguments

(a) contentId
This argument indicates the Operational Content ID.

(b) session
This argument stores the current session. To execute the setAttribute() method for the HttpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute()
method:

• Name beginning with "ucnp"
• Name beginning with "java."
• Name beginning with "javax."
• Name beginning with "javax.portlet."
• Name beginning with "hptl"
• Name beginning with "com.cosminexus"
• Name beginning with "jp.co.hitachi.soft.portal"

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key:

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 114

ucnp.request.options key
This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the HttpSession.getAttribute() method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.
For details about a specification example of the ucnp.request.options key, see the specification example of
the inputFromNode method in 5.2 IIoPluginController (server processing implementation interface).

(3) Return values
Suspend information associated with the Operational Content ID

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being loaded.

Navigation Platform displays the detailed message for the UCNPPluginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPPluginException exception to be
thrown, set the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, part of the message dialog box might not be
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing
Navigation Platform invokes this method if the following occurs:

• After the contains() method of the implementation class that inherits the suspend/resume action controller
interface was invoked, that contains() method returns true.
If the contains() method returns false or if the UCNPPluginException exception is thrown, this method
is not invoked. For details about the time that the contains() method is invoked, see the description of the
contains method in 6.2 ISuspendActionController (suspend/resume action controller interface).

6.2.3 contains method
This method checks the presence of suspend information associated in Suspend/Resume Plugins. It checks whether the
suspend information associated with the Operational Content ID specified by the parameter exists. This method returns
true if the associated suspend information exists, and returns false if such information does not exist.

If this method throws the UCNPPluginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

Processing of this method must be implemented in the suspend/resume action controller class created by using the
template plugin creation command.

(1) Format

public boolean contains(String contentId, HttpSession session)
 throws UCNPPluginException;

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 115

(2) Arguments

(a) contentId
This argument indicates the Operational Content ID.

(b) session
This argument stores the current session. To execute the setAttribute() method for the HttpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute()
method:

• Name beginning with "ucnp"
• Name beginning with "java."
• Name beginning with "javax."
• Name beginning with "javax.portlet."
• Name beginning with "hptl"
• Name beginning with "com.cosminexus"
• Name beginning with "jp.co.hitachi.soft.portal"

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key:

ucnp.request.options key
This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the HttpSession.getAttribute() method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.
For details about a specification example of the ucnp.request.options key, see the specification example of
the inputFromNode method in 5.2 IIoPluginController (server processing implementation interface).

(3) Return values
• true: Suspend information associated with the Operational Content ID exists.

• false: Suspend information associated with the Operational Content ID does not exist.

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being loaded.

Navigation Platform displays the detailed message for the UCNPPluginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPPluginException exception to be
thrown, specify the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, part of the message dialog box might not be
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing
Navigation Platform invokes this method if either of the following occurs:

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 116

• A user selects Operational Content in the Operational Content Execution Window.

• A URL is directly specified and Operational Content is selected by using the contentId parameter that directly
specifies the Operational Content ID.

6.2.4 delete method
This method deletes suspend information in Suspend/Resume Plugins. It deletes suspend information associated with
the Operational Content ID specified by the parameter.

If this method throws the UCNPPluginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

Processing of this method must be implemented in the suspend/resume action controller class created by using the
template plugin creation command.

(1) Format

public void delete(String contentId, HttpSession session)
 throws UCNPPluginException;

(2) Arguments

(a) contentId
This argument indicates the Operational Content ID.

(b) session
This argument stores the current session. To execute the setAttribute() method for the HttpSession object
acquired in a plugin, do not specify any of the following names for the name argument of the setAttribute()
method:

• Name beginning with "ucnp"
• Name beginning with "java."
• Name beginning with "javax."
• Name beginning with "javax.portlet."
• Name beginning with "hptl"
• Name beginning with "com.cosminexus"
• Name beginning with "jp.co.hitachi.soft.portal"

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key.

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 117

ucnp.request.options key
This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the HttpSession.getAttribute() method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.
For details about a specification example of the ucnp.request.options key, see the specification example of
the inputFromNode method in 5.2 IIoPluginController (server processing implementation interface).

(3) Return values
None

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being deleted.

Navigation Platform displays the detailed message for the UCNPPluginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPPluginException exception to be
thrown, set the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, part of the message dialog box might not be
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing
Navigation Platform invokes this method if either of the following occurs:

• A user clicks the Done button in the Operational Content Execution Window.

• After the load method of the implementation class that inherits the suspend/resume action controller interface was
invoked, an error occurs during the check of the suspend information returned by that load method.
During the check, the system checks whether Operational Content has been updated since the suspend information
was saved, and then assumes an error if any update was found. For details about the time that the load method is
invoked, see the description of the load method in 6.2 ISuspendActionController (suspend/resume action controller
interface).

Note:
This function is invoked only when Suspend/Resume Plugins are enabled in the system. If Suspend/Resume Plugins
are disabled in the system, this function cannot be invoked even if the above conditions exist.

6.2.5 deleteAll method
This method deletes all suspend information associated with the Operational Content in Suspend/Resume Plugins. This
method deletes all suspend information associated with the Operational Content ID specified by the parameter.

If a user who creates Operational Content edits or deletes Operational Content, the user invokes this method to delete
all the associated suspend information. If Operational Content is edited or deleted, the saved suspend information is
disabled. Therefore, delete all suspend information associated with the Operational Content.

If this method throws the UCNPPluginException exception, Navigation Platform displays the message for the
UCNPPluginException exception in the dialog box. A message ID is not appended to the message displayed in
the dialog box.

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 118

Processing of this method must be implemented in the suspend/resume action controller class created by using the
template plugin creation command.

(1) Format

public void deleteAll(String contentId, HttpSession session)
 throws UCNPPluginException;

(2) Arguments

(a) contentId
This argument indicates the Operational Content ID.

(b) session
This argument stores the current session. If this method is executed during publishing start processing of Operational
Content in the publishing reservation status, the value is null. To execute the setAttribute() method for the
HttpSession object acquired in a plugin, do not specify any of the following names for the name argument of the
setAttribute() method:

• Name beginning with "ucnp"
• Name beginning with "java."
• Name beginning with "javax."
• Name beginning with "javax.portlet."
• Name beginning with "hptl"
• Name beginning with "com.cosminexus"
• Name beginning with "jp.co.hitachi.soft.portal"

You can also acquire and use the URL request parameter. To use this parameter, you must acquire the ucnpOptions
parameter by using the following key:

ucnp.request.options key
This key is used to acquire the value of the ucnpOptions parameter specified for the URL from the session. By
specifying this key in the HttpSession.getAttribute() method, you can acquire the URL decoded value
of the ucnpOptions parameter. If the ucnpOptions parameter is not specified for the URL, null is returned.
For details about a specification example of the ucnp.request.options key, see the specification example of
the inputFromNode method in 5.2 IIoPluginController (server processing implementation interface).

(3) Return values
None

(4) Exception
UCNPPluginException - An error occurred while, for example, suspend information was being deleted.

Navigation Platform displays the detailed message for the UCNPPluginException exception thrown by this method
in the dialog box in the Operational Content Execution Window. For the UCNPPluginException exception to be

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 119

thrown, set the message that helps users understand what kind of error occurred and what action to take. If the error
message output by the Suspend/Resume Plugin contains many linefeeds, part of the message dialog box might not be
displayed in the window because a JavaScript Alert is used to display the error message. Therefore, make sure that the
error message size does not exceed the limit that can be displayed in the window.

(5) Invocation timing
The following table describes when Navigation Platform invokes this method and the suspend information to be deleted.

Table 6‒2: When the deleteAll method is invoked and suspend information to be deleted

Invoked when: Suspend information to be deleted

The contents of Operational Content displayed in the Operational
Content Execution Window change by operation on the Web browser.

All suspend information associated with the target Operational
Content

A user who creates Operational Content deletes Operational Content
in the Operational Content Editing Window.

All suspend information associated with the deleted Operational
Content

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 120

6.3 ISuspendInfo (suspend information interface)

This interface indicates suspend information in Suspend/Resume Plugins. This interface is used to send and receive
suspend information to be saved or recovered by each method of the ISuspendActionController interface. An
object of this interface is created by the system and therefore, you do not need to create that object for plugins.

Package

package jp.co.hitachi.soft.ucnp.plugin.suspend.model;

Format

public interface ISuspendInfo

Methods
• getContentSuspendedId method

Acquires the suspend ID, which can be used to match the log data output to the audit log with suspend information.

• getWorkId method
Acquires the work IDs, which can be used for matching to check whether the operations output to the operation log
are the same as the operations that were suspended.

• getContentName method
Acquires the name of Operational Content being used for execution when operation is suspended.

• getGroupName method
Acquires the group name of Operational Content being used for execution when operation is suspended.

• getCurrentNodeName method
Acquires the name of the node being executed when operation is suspended.

6.3.1 getContentSuspendedId method
This method acquires the suspend ID, which can be used to match the log data output to the audit log with suspend
information.

(1) Format

public String getContentSuspendedId();

(2) Arguments
None

(3) Return values
Suspend ID

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 121

(4) Exception
None

6.3.2 getWorkId method
This method acquires the work IDs, which can be used for matching to check whether the operations output to the
operation log are the same as those that were suspended.

(1) Format

public String getWorkId();

(2) Arguments
None

(3) Return values
Work ID

(4) Exception
None

6.3.3 getContentName method
This method acquires the name of Operational Content being used for execution when operation is suspended.

(1) Format

public String getContentName();

(2) Arguments
None

(3) Return values
Name of Operational Content being used for execution when operation is suspended

(4) Exception
None

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 122

6.3.4 getGroupName method
This method acquires the group name of Operational Content being used for execution when operation is suspended.

(1) Format

public String getGroupName();

(2) Arguments
None

(3) Return values
Group name of Operational Content being used for execution when operation is suspended

(4) Exception
None

6.3.5 getCurrentNodeName method
This method acquires the name of the node being executed when operation is suspended.

(1) Format

public String getCurrentNodeName();

(2) Augments
None

(3) Return values
Name of the node being executed when operation is suspended

(4) Exception
None

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 123

6.4 SupendInfoSerializeUtil (utility class for suspend information
serialization)

This utility class provides the methods for serializing and deserializing suspend information (ISuspendInfo).

You can use the serialize method of this class to serialize suspend information (ISuspendInfo) to XML format.
You can also use the deserialize method to recover the suspend information (ISuspendInfo) serialized to XML
format.

Package
package jp.co.hitachi.soft.ucnp.plugin.suspend.util;

Format
public class SuspendInfoSerializeUtil

Methods
• serialize method

Serializes suspend information to XML format.

• deserialize method
Loads and recovers the serialized suspend information.

6.4.1 serialize method
This method is used to serialize suspend information in Suspend/Resume Plugins. It serializes the suspend information
(suspendInfo) specified by the parameter to XML format, and then writes the results into the output stream out.
This method does not close the output stream out. The invocation side is responsible for performing the close
processing.

If an attempt to serialize the suspend information or output the information to the stream fails, the method throws the
UCNPPluginException exception. A Navigation Platform message ID is added to the detailed message for the
UCNPPluginException exception thrown by this method. You need to handle the thrown exception and then throw
the UCNPPluginException exception for which the message to be displayed in the dialog box is set.

(1) Format

public static void serialize(ISuspendInfo suspendInfo, OutputStream out)
 throws UCNPPluginException;

(2) Arguments

(a) suspendInfo
This argument stores suspend information.

(b) out
This argument stores the output stream to which the serialized suspend information is written.

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 124

(3) Return values
None

(4) Exception
UCNPPluginException - An attempt to serialize and output suspend information fails.

If an error occurs with this method, serialization processing is interrupted and the UCNPPluginException exception
is thrown. The following shows a list of errors.

Table 6‒3: List of errors that occur in the serialize method

Error Message ID

Null is specified for the suspendInfo parameter. KDCZ10083-E

Null is specified for the out parameter. KDCZ10083-E

An invalid object (an object not created by Navigation Platform) is specified for the
suspendInfo parameter.

KDCZ10084-E

It was not possible to write information to the output stream specified by the parameter due
to a problem with access permissions or disk space.

KDCZ10085-E

6.4.2 deserialize method
This method is used to recover the serialized suspend information in Suspend/Resume Plugins. It loads the serialized
suspend information from the input stream in specified by the parameter, and then recovers the suspend information.
This method does not close the input stream in. The invocation side is responsible for performing the close processing.

If an attempt to recover the serialized suspend information or input the information from the stream fails, the method
throws the UCNPPluginException exception. A system message ID is added to the message for the exception
thrown by this method. You need to handle the thrown exception and then throw the UCNPPluginException
exception for which the message to be displayed in the dialog box is set.

(1) Format

public static ISuspendInfo deserialize(InputStream in)throws
UCNPPluginException;

(2) Arguments

(a) in
This argument stores the input stream from which the deserialized suspend information is loaded.

(3) Return values
Serialized suspend information recovered from the input stream

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 125

(4) Exception
UCNPPluginException - An attempt to recover and input suspend information fails.

If an error occurs with this method, deserialization processing is interrupted and the UCNPPluginException
exception is thrown. The following shows a list of errors.

Table 6‒4: List of errors that occur in the deserialize method

Error Message ID

Null is specified for the in parameter. KDCZ10083-E

The input stream specified for the in parameter cannot be used to recover suspend
information (ISuspendInfo).

KDCZ10086-E

It was not possible to load information from the input stream specified by the parameter due
to a problem with access permissions.

KDCZ10093-E

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 126

6.5 UCNPPluginException (Suspend/Resume Plugin exception class)

This class indicates exceptions that occurred in Suspend/Resume Plugins.

If an error occurs in a method of ISuspendActionController, the method throws this exception with a message
set. The exception message is displayed in the dialog box.

If the message describing the Suspend/Resume Plugin error is too long, the full text might not be displayed because,
depending on the Web browser, the string might be truncated in the message dialog box.

Package

package jp.co.hitachi.soft.ucnp.plugin.suspend.common;

Format

public class UCNPPluginException extends Exception

Constructors
• UCNPPluginException(String message) constructor

Creates a new exception by using the specified detailed message.

• UCNPPluginException(String message, Throwable cause) constructor
Creates a new exception by using the specified detailed message and cause of the error.

6.5.1 UCNPPluginException(String message) constructor
This constructor creates a new exception by using the specified detailed message.

(1) Format

public UCNPPluginException(String message);

(2) Arguments

(a) message
This argument displays the detailed message indicating the cause of the error.

This message is displayed in the dialog box in the Operational Content Execution Window. Therefore, specify the
message that helps users to understand error details and how to take action.

(3) Exception
None

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 127

6.5.2 UCNPPluginException(String message, Throwable cause)
constructor

This constructor creates a new exception by using the specified detailed message and cause of the error.

(1) Format

public UCNPPluginException(String message, Throwable cause);

(2) Arguments

(a) message
This argument displays the detailed message indicating the cause of the error.

This message is displayed in the dialog box in the Operational Content Execution Window. Therefore, specify the
message that helps users to understand error details and how to take action.

(b) cause
This argument stores the Throwable object that caused the error.

(3) Exception
None

6. API Reference (for Suspend/Resume Plugin Development)

Hitachi Navigation Platform Development Guide 128

7 API Reference (for Custom Window Plugin
Development)

This chapter describes the APIs used for developing Custom Window Plugins.

Hitachi Navigation Platform Development Guide 129

7.1 List of APIs (for Custom Window Plugin development)

The following describes the APIs used for developing Custom Window Plugins.

Table 7‒1: List of APIs (Custom Window Plugin development)

Category Interface name or class name Description

Logout function CustomWindowUrlUtil A utility class used to acquire the URL of a custom window

LogoutActionUtil A utility class used to log out from Navigation Platform

For details about the APIs that can be used with any type of plugin, see 5.1 List of APIs (for I/O Plugin development).

7. API Reference (for Custom Window Plugin Development)

Hitachi Navigation Platform Development Guide 130

7.2 CustomWindowUrlUtil (utility class for custom window URL
acquisition)

This utility class is used to acquire the URL of a custom window.

Package

package jp.co.hitachi.soft.ucnp.base.common;

Format

public class CustomWindowUrlUtil

Method
• getCustomWindowUrl method

Acquires the URL of a custom window.

7.2.1 getCustomWindowUrl method
This method acquires the URL of a custom window. You need to specify the ucnpUserPageId parameter for the
URL acquired by this method.

(1) Format

public static String getCustomWindowUrl(HttpServletRequest request,
HttpServletResponse response);

(2) Arguments
None

(3) Return values
The custom window URL beginning with ucnpBase is returned.

(4) Exception
None

(5) Example of use
The following shows an example when the form tag is used in the JSP file of the custom window.

<%
 String url = CustomWindowUrlUtil.getCustomWindowUrl(request, response);
%>

<form action="<%= url %>" method="post" target="_self">
<input type="hidden" name="ucnpUserPageId" value="userCustomPage" />

7. API Reference (for Custom Window Plugin Development)

Hitachi Navigation Platform Development Guide 131

(snip)
</form>

7. API Reference (for Custom Window Plugin Development)

Hitachi Navigation Platform Development Guide 132

7.3 LogoutActionUtil (logout processing class)

This utility class is used to log out from Navigation Platform. This class is used in the JSP file. To make a branch to the
logout processing from normal processing in the custom window, use the ucnpUserData parameter.

For details about the ucnpUserData parameter, see 2.5.2 Data that can be received by Custom Window Plugins.

Package

package jp.co.hitachi.soft.ucnp.base.common;

Format

public class LogoutActionUtil

Method
• logout method

Logs out from Navigation Platform.

7.3.1 logout method
This method logs out from Navigation Platform. If you have not logged in to Navigation Platform, nothing is performed.

To check the logout results, see the trace file. If an attempt to log out fails, the KDCZ18033-E message is output to the
trace file.

The default storage directory of the trace file is as follows:

Storage directory
Navigation-Platform-installation-directory\logs\ucnp_trace[N].log ([N]: number of files)

(1) Format

public static void logout(HttpServletRequest request, HttpServletResponse
response);

(2) Arguments

(a) request
Specify the JSP implicit object request. If any other value is specified, an error occurs.

(b) response
Specify the JSP implicit object request. If any other value is specified, an error occurs.

(3) Return values
None

7. API Reference (for Custom Window Plugin Development)

Hitachi Navigation Platform Development Guide 133

(4) Exception
None

7. API Reference (for Custom Window Plugin Development)

Hitachi Navigation Platform Development Guide 134

Appendixes

Hitachi Navigation Platform Development Guide 135

A. How to Use Sample Plugins

Navigation Platform for Developers provides the following sample plugins:

• I/O Plugin (sample)
When a node transition occurs, this plugin retains input values of Guide Parts associated with Plugin Part parameters.
When the operation is completed, the retained input values are output to a file.

• Suspend/Resume Plugin (sample)
This plugin is useful when you use multiple Operational Contents in parallel. Even if you reference another
Operational Content or log out in the middle of operation, this plugin allows you to resume the Operational Content
operation from the temporarily saved status.
Suspend information is saved in a file system on the server. When you resume the operation, suspend information
is read from the file system on the server.

This section describes how to use sample plugins. When using sample plugins, you must note the restrictions in A.3
Notes on using sample plugins.

A.1 How to use I/O Plugins (sample)
To use the I/O Plugin (sample):

1. Copy the sample plugin to the plugin development work directory.
The following indicates the file to be copied and the destination directory.

File to be copied
Navigation-Platform-for-Developers-installation-directory\sample\plugin
\sample.OutputGuideData

Destination directory
Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin

2. Build the plugin.
For details about how to build the plugin, see 4.6 Building plugins.

3. Deploy and start the plugin.
For details about how to deploy the plugin, see 4.7 Deploying plugins.

4. Create the output destination folder for files to which input values are output when an operation is completed.

To use the sample plugin as is:
C:\ucnpwork

To change the output folder:
Customize the plugin. For details about how to customize plugins, see 4.3.1(8) Implementing processing to be
performed by the plugin.

5. Associate the sample plugin with Operational Content, and then check the operation
For details about how to associate sample plugins with Operational Content, see 4.8 Associating I/O Plugins with
Operational Content. To use sample plugins, you need to place Plugin Parts and a Terminal Node in the Operational
Flow as follows:

• Place a Plugin Part in the start Process Node.

A. How to Use Sample Plugins

Hitachi Navigation Platform Development Guide 136

• Place a Terminal Node at the end point of the Operational Flow, and place a Plugin Part in the Process Node
immediately before the Terminal Node.

A.2 How to use Suspend/Resume Plugins (sample)
To use a Suspend/Resume Plugin (sample):

1. Copy the sample plugin to the plugin development work directory.
The following indicates the file to be copied and the destination directory.

File to be copied
Navigation-Platform-for-Developers-installation-directory\sample\plugin\ucnp.plugin.suspend

Destination directory
Navigation-Platform-for-Developers-installation-directory\pluginSDK\plugin

2. Edit the value specified for the constant DEFAULT_SAVE_FOLDER to change the folder to which suspend
information will be output.

3. Build the plugin.
For details about how to build the plugin, see 4.6 Building plugins.

4. Enable the Suspend/Resume Plugin in the system.
Specify true for the ucnp.base.client.suspend.enable key in the user property file
(ucnp_user.properties). For details about how to configure the user property file, see the Hitachi Navigation
Platform Setup and Operations Guide.

A.3 Notes on using sample plugins
Note the following when using sample plugins:

• Sample plugins do not contain error processing. If necessary, add error processing.

• Before using plugins, sufficiently confirm the operation to ensure that no error occurs.

• If a user without Windows administrator roles adds a file to copy the sample plugin to a work directory under the
OS-installation-drive:\Program Files directory, the file might be redirected to a user folder. Therefore, the user
who adds the file must have Windows administrator privileges.

• If an installation directory other than the default is used in an attempt to import a sample plugin project into Eclipse,
building of the project fails with the following error messages:

Project 'OutputGuideData' is missing required library: 'C:\Program Files
(x86)\Hitachi\HNP\lib\ucnppluginif.jar'
Project 'OutputGuideData' is missing required library: 'C:\Program Files
(x86)\Hitachi\HNP\syslib\ucnpsys.jar'
Project 'OutputGuideData' is missing required library: 'C:\Program Files
(x86)\Hitachi\HNP\lib\ucnpclasses.jar'
Project 'OutputGuideData' is missing required library: 'C:\Program Files
(x86)\Hitachi\HNP\PP\uCPSB\CC\client\lib\j2ee-javax.jar'

In this case, change the JAR file paths displayed in the message as follows:
Navigation-Platform-installation-directory\lib\ucnppluginif.jar

A. How to Use Sample Plugins

Hitachi Navigation Platform Development Guide 137

Navigation-Platform-installation-directory\syslib\ucnpsys.jar
Navigation-Platform-installation-directory\lib\ucnpclasses.jar
Navigation-Platform-installation-directory\PP\uCPSB\CC\client\lib\j2ee-javax.jar

A. How to Use Sample Plugins

Hitachi Navigation Platform Development Guide 138

B. Important Point for I/O Plugin Development

This section describes the important point for developing I/O Plugins.

B.1 Suppressing execution of I/O Plugins depending on the presence of
mapping lines

You can suppress execution of I/O Plugins depending on the presence of mapping lines between I/O parameters and
Guide Parts.

The following describes suppression of the I/O Plugin processing in the example of Operational Content shown below.

Figure B‒1: Example of Operational Content

If transition occurs from Process Node A to Process Node D in Operational Content in this figure, the I/O Plugins
perform processing in the following order:

1. outputToNode method of the I/O Plugin placed in Process Node B

2. inputFromNode method of the I/O Plugin placed in Process Node B

3. outputToNode method of the I/O Plugin placed in Process Node C

B. Important Point for I/O Plugin Development

Hitachi Navigation Platform Development Guide 139

4. inputFromNode method of the I/O Plugin placed in Process Node C

If you want to suppress the processing of the method executed in 1, confirm the following and then suppress the
processing:

• The value of the ucnp.next.params.map key in the param argument of the outputToNode method is an
empty Map.

If you want to suppress the processing of the method executed in 4, confirm the following and then suppress the
processing:

• The value of the ucnp.current.params.map key in the param argument of the inputFromNode method
is an empty Map.

Note that if you do not want to suppress the processing of the method executed in 4, draw a mapping line to the input
parameter of the I/O Plugin in Process Node C. This allows the processing to be performed without being suppressed.

B. Important Point for I/O Plugin Development

Hitachi Navigation Platform Development Guide 140

C. Migration from Old Versions

This section describes the procedure for migrating old versions of development environment settings and developed
files to Navigation Platform. This section also describes the functions that cannot be migrated from old versions and
the functions that do not need migration.

C.1 Procedure for migrating plugins developed in old versions
By migrating I/O Plugins and Suspend/Resume Plugins developed in an old version (version 09-50 or later), you can
use them in Navigation Platform. To migrate such plugins:

1. See 4.1 Creating template plugins and create a new template plugin.
Apply the values specified in version 09-50 or later to the plugin information property file of the new template.

Values you must apply:
The value specified for the userplugin.id key
The value specified for the userplugin.name key
The value specified for the userplugin.server.controller.ioaction.type key

For details about the storage location of the plugin information property file for plugins of version 09-50 or later,
see the manual used for development.

2. Overwrite the new template plugin files with the files of version 09-50 or later.

Table C‒1: List of files for overwriting (common)

No. Files of version 09-50 or later Copy destination folder Copy is required if:

1 Files directly under Navigation-
Platform-installation-directory
\pluginSDK\plugin\plugin-name
\WEB-INF\lib

Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF\lib

The file to be loaded to Application
Class Loader is added.

2 Files directly under Navigation-
Platform-installation-directory
\usrlib\app#1

3 Files directly under Navigation-
Platform-installation-directory
\usrlib\sys#2

Navigation-Platform-installation-
directory\usrlib\sys

The file to be loaded to System Class
Loader is added.

4 Files directly under the path specified for
the add.class.path key added by
the developer to the option definition file
for J2EE servers (usrconf.cfg)#2

5 Navigation-Platform-installation-
directory\pluginSDK
\base\dd\META-INF
\cosminexus.xml#1

Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\dd\META-INF

Resource adapter settings are added.

6 portal-project\WEB-INF\web.xml#1 Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF

#1
These files were shared by all plugins in old versions, but are no longer shared in Navigation Platform. Therefore, you need to place these
files in all plugins individually.

C. Migration from Old Versions

Hitachi Navigation Platform Development Guide 141

#2
You also need to set the class path in the Option definition file for J2EE servers (usrconf.cfg).

3. For I/O Plugins, further overwrite the files listed below in the new template plugin files.

Table C‒2: List of files for overwriting (I/O Plugin)

No. Files of version 09-50 or later Copy destination folder Note

1 Files directly underNavigation-
Platform-installation-directory
\pluginSDK\plugin\plugin-name
\images

Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\images

Copy all the files even if there are more
old version files than new template
plugin files.

2 Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF\conf
\ioaction.xml

Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF\conf

Apply the contents of the old version file
by editing the file of the same name in
the copy destination folder, rather than
copying the old file to overwrite the new
one.
Note that the URL specified for the
iconURL tag is different from that of
old versions.

The value specified for the iconURL
tag in old versions

"/plugin-name/images/file-
name"

The value specified for the new
iconURL tag

"/ucnpPlugins/plugin-name/
images/file-name"

• For migration from 09-60
The button type specified for the
diableButtonType tag allows
you to distinguish between transfer
by buttons and direct transfer. If you
want the same operation as that in
09-60, specify true for the
legacy attribute.

3 Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF\src\Java-
package\controller\I/O-action-
controller.java

Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF\src\Java-
package\controller

Change the character code to UTF-8
while retaining the file contents, and
then overwrite the file.

4. For Suspend/Resume Plugins, further overwrite the files listed below in the new template plugin files.

Table C‒3: List of files for overwriting (Suspend/Resume Plugin)

No. File of version 09-50 or later Copy destination folder Note

1 Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF\src\Java-
package\controller\I/O-action-
controller.java

Navigation-Platform-installation-
directory\pluginSDK\plugin
\plugin-name\WEB-INF\src\Java-
package\controller

Change the character code to UTF-8
while retaining the file contents, and
then overwrite the file.

5. If the plugin uses a resource adapter, see 4.4 Adding database connection processing and then add resource adapter
settings.

6. Build, deploy, and then debug the plugin in the same way as for creating a new plugin.

C. Migration from Old Versions

Hitachi Navigation Platform Development Guide 142

• 4.6 Building plugins

• 4.7 Deploying plugins

• 4.10 Debugging plugins

C.2 Migration of the menu area developed in old versions
In old versions, the menu area was able to be customized by using HTML or JSP files. However, the menu area in
Navigation Platform cannot be customized.

C.3 Migration of custom windows (new windows) developed in old
versions

In old versions, custom windows (new windows) were developed separately from plugins. In Navigation Platform,
custom windows (new windows) must also be developed again as plugins.

In old versions, a custom window was required to use the search function. However, you do not need to develop a custom
window for the search function in Navigation Platform because the search function is provided by default.

For details about how to develop plugins for custom windows, see Chapter 4. Developing Plugins.

C.4 J2EE server settings in old versions
If you have changed J2EE server settings in the development environment of an old version, return the settings to the
default values, except for the items described in 4.13.1 J2EE server setting items that can be changed during plugin
development.

C. Migration from Old Versions

Hitachi Navigation Platform Development Guide 143

D. Reference Material for This Manual

This appendix provides reference information, including various conventions, for this manual.

D.1 Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):

(1) Navigation Platform manuals
The Navigation Platform manuals are listed below. Note that in the texts of these manuals, references to these manuals
omit the Hitachi Navigation Platform portion of the titles.

• Hitachi Navigation Platform Setup and Operations Guide (3021-3-023(E))
This manual provides an overview of Navigation Platform and its functionality, and describes how to set up and
operate a system that incorporates Navigation Platform.
Users of Navigation Platform should read this manual first.

• Hitachi Navigation Platform Content Editing Guide (3021-3-024(E))
This manual describes how to create, modify, and delete Operational Content, and how to manage the permissions
that govern access to this content.

• Hitachi Navigation Platform Development Guide (3021-3-025(E))
The manual you are reading. This manual describes how to develop plugins and custom windows for Navigation
Platform.

• Hitachi Navigation Platform Messages (3021-3-026(E))
This manual explains the messages output when using Navigation Platform.

(2) Manuals for related software
Manuals related to Navigation Platform are listed below.

• uCosminexus Application Server Command Reference Guide (3020-3-Y15(E))

D. Reference Material for This Manual

Hitachi Navigation Platform Development Guide 144

• uCosminexus Application Server Definition Reference Guide (3020-3-Y16(E))

• uCosminexus Application Server Application and Resource Definition Reference Guide (3020-3-Y17(E))

D.2 Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names and related software names:

Abbreviation Full name or meaning

Cosminexus# uCosminexus Primary Server Base

Eclipse Eclipse Web Tools Platform

#
In descriptions of uCosminexus Navigation Platform, the term Cosminexus is sometimes used generically to refer to uCosminexus Application
Server and uCosminexus Developer.

D.3 Conventions: Acronyms
This manual also uses the following acronyms:

Acronym Full name or meaning

EAR Enterprise ARchive

ISO International Organization for Standardization

J2EE Java 2 Platform, Enterprise Edition

JavaVM Java Virtual Machine

UTF UCS Transformation Format

WAR Web ARchive

XML eXtensible Markup Language

D.4 Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

D. Reference Material for This Manual

Hitachi Navigation Platform Development Guide 145

E. Glossary

application server
A server used to process user operations from the Web browser and apply the results to a business system
such as a database.

Branch Node
A node required to create an Operational Flow with branching steps. A Branch Node is represented by a
diamond in Navigation Platform windows.

cache
Data of the values input or set for Guides of Operational Content by the user. By using the cache, plugins
can save the values in the middle of input and pass the input values to other windows or systems.

Content Editor
A user who has permission to access Operational Content as an editor.

Content Manager
A user who has permission to access Operational Content as a manager.

Custom Window Plugin
A plugin used to develop windows other than the windows of Navigation Platform. A window developed
by this plugin is called a custom window.

development environment
An environment in which plugins are developed. You must have Hitachi Navigation Platform for
Developers or JP1/Navigation Platform for Developers to use a development environment.

editing environment
An environment in which you can create and edit Operational Content, and assign access permission for
Operational Content. You must have Hitachi Navigation Platform or JP1/Integrated Management -
Navigation Platform to use the editing environment.

execution environment
The environment accessed by users who use Operational Content to perform an operation. You must have
Hitachi Navigation Platform or JP1/Integrated Management - Navigation Platform to use the execution
environment.

export
To output the configuration information of Operational Content and access permissions in ZIP format.
Exported data can be imported to another environment.

Guide
A type of Operational Content. A Guide is a description of the individual tasks performed as part of an
operation.

E. Glossary

Hitachi Navigation Platform Development Guide 146

Guide Part
A component used to create Guides. You can create a Guide by selecting Guide Parts from the Guide
pallette and placing them in the guide area.

import
To load the exported information into the local environment.

You can import the configuration information of Operational Content and access permissions.

I/O Plugin
A plugin that processes the information input in the Navigation Platform windows, and determines what
information to display in the windows. By using I/O Plugins, you can check the integrity of values input
into a Guide, output the input values to external programs, or prepare them for recording as log data.

I/O plugin XML file
A file that defies information (input and output parameters) required to associate I/O Plugins with
Operational Content. Information defined in this file is displayed in Plugin Parts in the Plugins pallette.

In addition, icons in the Plugins pallette displayed in the Operational Content Editing Window can be set
in any file.

mapping line
An arrow that represents the input or output relationship between Guide Parts and Plugin Parts.

Navigation Platform
A collective term for Hitachi Navigation Platform, JP1/Integrated Management - Navigation Platform,
Hitachi Navigation Platform for Developers, and JP1/Navigation Platform for Developers.

node
A component displayed in an Operational Flow that represents a step in the operation. There are three types
of node: Terminal Nodes, Process Nodes, and Branch Nodes.

Operational Content
The information required to perform an operation. You can create and display Operational Content in the
windows of Navigation Platform.

Operational Content Editing Window
A window of Navigation Platform in which you can perform the following operations:

• Create, modify, copy, and delete Operational Content

• Publish and unpublish Operational Content

• Associate I/O Plugins

• Set access permissions for Operational Content

Operational Flow
A type of Operational Content. An Operational Flow is the flow of an operation presented as a flow chart.

E. Glossary

Hitachi Navigation Platform Development Guide 147

part
A component placed in the Navigation Platform window.

plugin
A user program developed for use with Navigation Platform. Its purpose might be to link Navigation
Platform with an external program, or to use certain extended functionality of Navigation Platform.
Navigation Platform provides the interfaces required to develop plugins.

plugin information property file
A file that defines information required to create template plugins.

Plugin Part
A component that associates plugins with Operational Content. You can select Plugin Parts from the Plugins
pallette and place them in the guide area.

Process Node
A node that represents an intermediate step in an operation. There must be at least one Process Node between
Terminal Nodes. A Process Node is represented by a rectangle in Navigation Platform windows.

relation line
An arrow that shows the transition from one node to another.

Suspend/Resume Plugin
A plugin required to allow a user to resume the operation from the temporarily saved status even if the user
references information about other operations or logs out in the middle of operation.

suspend information
Information that is temporarily saved when the user suspends window operation in an environment in which
Suspend/Resume Plugins are used. Suspend information is recovered when the user resumes the window
operation.

System Plugin
A plugin provided by Navigation Platform that is required to link with external programs or between Guide
Parts.

template plugin
A file from which plugins are created. You can create plugins by editing a template plugin.

Template plugins are created in the format of an Eclipse Java project.

Terminal Node
A node that represents the start or end of an operation. A Terminal Node is placed at the beginning and end
of an Operational Flow. A Terminal Node is represented by a circle in Navigation Platform windows.

User Plugin
A plugin developed by a developer using the API provided by Navigation Platform.

Web server
A server that performs processing relating to receiving requests from and sending data to the Web browser.

E. Glossary

Hitachi Navigation Platform Development Guide 148

window ID
An ID that uniquely identifies the window in which an operation of Operational Content is being performed.

E. Glossary

Hitachi Navigation Platform Development Guide 149

Index

A
abbreviations for products 145
access permissions to Java packages used by user
plugins, setting up 81
acronyms 145
actions to be taken if attempt to build plugins fails 59
adding

database connection processing 51
libraries 28
libraries, notes on 29
resource adapter 51

API reference
for Custom Window Plugin development 129
for I/O Plugin development 82
for Suspend/Resume Plugin development 110

application server (glossary) 146
associating I/O Plugins with Operational Content 62

B
Branch Node (glossary) 146
building plugins 58
button type for suppressing execution, specifying 48

C
cache (glossary) 146
cache values 90
changing resource adapter settings 52
checking configuration information for Operational
Content that uses plugins 66
conditions for debugging 68
configuring

libraries 28
user property file 67

constructors
UCNPPluginException(String message, Throwable
cause) 128
UCNPPluginException(String message) 127
UCNPPluginUserException(String, Throwable) 101
UCNPPluginUserException(String) 101

contains method 115
Content Editor (glossary) 146
Content Manager (glossary) 146
conventions

abbreviations for products 145

acronyms 145
fonts and symbols 6
KB, MB, GB, and TB 145

creating
icon of Plugins palette and Plugin Parts 40
libraries 28
property file, notes on 31
template plugins 31

customizing
Custom Window Plugins 49
I/O Plugins 40
Suspend/Resume Plugins 49
template plugins 40

custom window JSP file 50
Custom Window Plugin (glossary) 146
Custom Window Plugins, customizing 49
CustomWindowUrlUtil 131

D
database connection processing

adding 51
implementing 54

debugging plugins 68
decodeHtmlPartParam method 102
deleteAll method 118
delete method 117
deleting

plugins 69
resource adapter 53

deploying 60
plugins 60

deserialize method 125
destroy method 100
details about values input to or output from plugins 64
developing

plugins 30
plugins used with Operational Content for iPad,
notes on 79

development environment (glossary) 146
directory for storing icons 40
drawing mapping lines (connecting Guide Parts and
Plugin Part) 62

Hitachi Navigation Platform Development Guide 150

E
editing

I/O plugin XML file 41
plugin information property file 31

editing environment (glossary) 146
execution environment (glossary) 146
export (glossary) 146

F
flow of plugin development 14
font conventions 6

G
GB meaning 145
GC (garbage collection) 71
getContentName method 122
getContentSuspendedId method 121
getCurrentNodeName method 123
getCustomWindowUrl method 131
getGroupName method 123
getLoginId method 109
getMessageId method 107
getMessage method 107
getWorkId method 122
Guide (glossary) 146
Guide Part (glossary) 147

H
how to use

I/O Plugins (sample) 136
sample plugins 136
Suspend/Resume Plugins (sample) 137

I
I/O parameter conversion utility class 102
I/O Plugin (glossary) 147
I/O Plugin exception class 107
I/O Plugins

customizing 40
important points development 139

I/O Plugins (sample), how to use 136
I/O plugin XML file 34

directory for storing 42
editing 41

I/O plugin XML file (glossary) 147

icon 40
format 40

icon of Plugins palette and Plugin Parts, creating 40
IIoPluginController 84
implementing

database connection processing 54
processing to be performed by plugin 49

import (glossary) 147
importing

pluginSDK project 27
template plugin project 39

init method 99
inputFromNode method 84
ioaction.xml (I/O plugin XML file) 41
IPluginInitializer 99
ISuspendActionController 112
ISuspendInfo 121
IUCNPSession 109

J
Java heap memory usage 73

K
KB meaning 145

L
libraries

adding 28
creating and configuring 28
notes on adding 29

list of APIs
for Custom Window Plugin development 130
for I/O Plugin development 83
for Suspend/Resume Plugin development 111

load method 114
location to place libraries 28
LogoutActionUtil 133
logout method 133
logout processing class 133

M
Map format 102
mapping line (glossary) 147
mapping lines (connecting Guide Parts and Plugin
Part), drawing 62
MB meaning 145

Hitachi Navigation Platform Development Guide 151

memory usage for plugins
calculating 70
procedure for measuring 70

methods
contains 115
decodeHtmlPartParam 102
delete 117
deleteAll 118
deserialize 125
destroy 100
getContentName 122
getContentSuspendedId 121
getCurrentNodeName 123
getCustomWindowUrl 131
getGroupName 123
getLoginId 109
getMessage 107
getMessageId 107
getWorkId 122
init 99
inputFromNode 84
load 114
logout 133
outputToNode 93
save 112
serialize 124

migration 141

N
Navigation Platform (glossary) 147
node (glossary) 147
notes on

adding libraries 29
creating property file 31
developing plugins used with Operational Content
for iPad 79

O
Operational Content (glossary) 147
Operational Content Editing Window (glossary) 147
Operational Flow (glossary) 147
option definition file for J2EE servers 76
outputToNode method 93
overview

of development 12
of Navigation Platform plugins 17

P
ParamConvertUtil 102
param parameter

inputFromNode method 86
outputToNode method 94

part (glossary) 148
plugin (glossary) 148
plugin execution order, specifying 47
plugin for database connection processing, setting 53
plugin information property file, editing 31
plugin information property file (glossary) 148
plugin overview 16
Plugin Part (glossary) 148
Plugin Parts, updating 65
plugin processing during preview 97
plugins

building 58
debugging 68
deleting 69
deploying 60
developing 30

plugins developed in old versions 80
pluginSDK project, importing 27
preparation of development 25
procedure

for building plugins 58
for creating Operational Content for measurement70

processing to be performed by plugin, implementing 49
Process Node (glossary) 148
property file description format 31

R
range of development 13
related publications

manuals for related software 144
Navigation Platform manuals 144

relation line (glossary) 148
resource adapter

adding 51
changing settings 52
deleting 53

S
sample plugins

how to use 136
notes on using 137

Hitachi Navigation Platform Development Guide 152

save method 112
serialize method 124
server processing implementation interface 84
session information use interface 109
setting

plugin for database connection processing 53
tool tips for parameter descriptions 47

specification example
of ucnp.options.param key (for each window ID)
(recommended) 88
of ucnp.request.options key (for each session) (not
recommended) 85

specifying
button type for suppressing execution 48
plugin execution order 47
whether to display confirmation dialog box 47
whether to display plugins in preview window 47

SupendInfoSerializeUtil 124
suppressing execution of I/O Plugins depending on
presence of mapping lines 139
suspend/resume action controller interface 112
Suspend/Resume Plugin (glossary) 148
Suspend/Resume Plugin exception class 127
Suspend/Resume Plugins, customizing 49
Suspend/Resume Plugins (sample), how to use 137
suspend information (glossary) 148
suspend information interface 121
symbol conventions 6
System Plugin (glossary) 148

T
TB meaning 145
template plugin (glossary) 148
template plugin creation command, executing 35
template plugin project, importing 39
template plugins

creating 31
customizing 40

Terminal Node (glossary) 148
tool tips for parameter descriptions, setting 47

U
ucnp.request.options key 85
ucnpOptions parameter (session) 85
UCNPPluginException 107, 127
UCNPPluginException(String message, Throwable
cause) constructor 128

UCNPPluginException(String message) constructor
127

UCNPPluginUserException 101
UCNPPluginUserException(String, Throwable)
constructor 101
UCNPPluginUserException(String) constructor 101
ucnpUserData parameter 24
updating, Plugin Parts 65
userplugin.id 32
userplugin.java.package 33
userplugin.name 32
userplugin.server.controller.ioaction 34
userplugin.server.controller.ioaction.type 34
userplugin.server.controller.suspend 34
userplugin.type 33
userplugin.version 33
User Plugin (glossary) 148
User Plugin exception class 101
User Plugin startup (initialization) and termination
processing implementation interface 99
user property file

configuring 67
for J2EE servers 73

usrconf.cfg 76
usrconf.properties 73
utility class

for custom window URL acquisition 131
for suspend information serialization 124

W
Web server (glossary) 148
whether to display confirmation dialog box, specifying

47
whether to execute plugins in preview window,
specifying 47
window ID (glossary) 149

Hitachi Navigation Platform Development Guide 153

	Hitachi Navigation Platform Development Guide
	Notices
	Summary of amendments
	Preface
	Contents
	1. Overview of Development
	1.1 Range of development
	1.2 Flow of plugin development

	2. Plugin Overview
	2.1 Overview of Navigation Platform plugins
	2.1.1 About initialization and termination processing of plugins
	2.1.2 About plugin sessions

	2.2 Types of plugins
	2.3 Overview of I/O Plugins
	2.3.1 I/O Plugin execution timing
	2.3.2 Execution order of I/O Plugins
	2.3.3 Data that can be passed by I/O Plugins
	2.3.4 Lifecycle of I/O Plugin instances

	2.4 Overview of Suspend/Resume Plugins
	2.4.1 Suspend/Resume Plugin execution timing
	2.4.2 Lifecycle of Suspend/Resume Plugins

	2.5 Overview of Custom Window Plugins
	2.5.1 Custom Window Plugin execution timing
	2.5.2 Data that can be received by Custom Window Plugins
	2.5.3 Processing if an error occurs in a Custom Window Plugin

	3. Preparation of Development
	3.1 Setting up Eclipse
	3.2 Importing a pluginSDK project
	3.3 Adding libraries
	3.3.1 Location to place libraries
	3.3.2 Creating and configuring libraries
	3.3.3 Notes on adding libraries

	4. Developing Plugins
	4.1 Creating template plugins
	4.1.1 Editing the plugin information property file
	4.1.2 Executing the template plugin creation command

	4.2 Importing a template plugin project
	4.3 Customizing template plugins
	4.3.1 Customizing I/O Plugins
	4.3.2 Customizing Suspend/Resume Plugins
	4.3.3 Customizing Custom Window Plugins
	4.3.4 Creating the JSP file used in custom windows

	4.4 Adding database connection processing
	4.4.1 Adding a resource adapter
	4.4.2 Changing resource adapter settings
	4.4.3 Deleting resource adapters
	4.4.4 Setting a plugin for database connection processing
	4.4.5 Implementing database connection processing

	4.5 Implementing processing to be performed during plugin initialization or termination
	4.6 Building plugins
	4.6.1 Procedure for building plugins
	4.6.2 Actions to be taken if an attempt to build plugins fails

	4.7 Deploying plugins
	4.8 Associating I/O Plugins with Operational Content
	4.8.1 Drawing mapping lines (connecting Guide Parts and Plugin Parts)
	4.8.2 Details about values input to or output from plugins
	4.8.3 Updating Plugin Parts
	4.8.4 Checking configuration information for Operational Content that uses plugins

	4.9 Configuring the user property file
	4.10 Debugging plugins
	4.10.1 Conditions for debugging plugins
	4.10.2 How to debug plugins

	4.11 Deleting plugins
	4.11.1 How to delete plugins

	4.12 Calculating memory usage for plugins
	4.12.1 Procedure for creating Operational Content for measurement
	4.12.2 Procedure for measuring the memory usage for plugins

	4.13 Changing J2EE server settings
	4.13.1 J2EE server setting items that can be changed during plugin development
	4.13.2 Storage location of the files used for changing J2EE server setting items
	4.13.3 Procedure for changing the user property file for J2EE servers (usrconf.properties)
	4.13.4 Procedure for changing the option definition file for J2EE servers (usrconf.cfg)

	4.14 Notes on developing plugins used with Operational Content for iPad
	4.15 About use of plugins developed in old versions
	4.16 Setting up access permissions to Java packages to be used by User Plugins

	5. API Reference (for I/O Plugin Development)
	5.1 List of APIs (for I/O Plugin development)
	5.2 IIoPluginController (server processing implementation interface)
	5.2.1 inputFromNode method
	5.2.2 outputToNode method
	5.2.3 Plugin processing during preview

	5.3 IPluginInitializer (User Plugin startup (initialization) and termination processing implementation interface)
	5.3.1 init method
	5.3.2 destroy method

	5.4 UCNPPluginUserException (User Plugin exception class)
	5.5 ParamConvertUtil (I/O parameter conversion utility class)
	5.5.1 decodeHtmlPartParam method

	5.6 UCNPPluginException (I/O Plugin exception class)
	5.6.1 getMessage method
	5.6.2 getMessageId method

	5.7 IUCNPSession (session information use interface)
	5.7.1 getLoginId method

	6. API Reference (for Suspend/Resume Plugin Development)
	6.1 List of APIs (for Suspend/Resume Plugin development)
	6.2 ISuspendActionController (suspend/resume action controller interface)
	6.2.1 save method
	6.2.2 load method
	6.2.3 contains method
	6.2.4 delete method
	6.2.5 deleteAll method

	6.3 ISuspendInfo (suspend information interface)
	6.3.1 getContentSuspendedId method
	6.3.2 getWorkId method
	6.3.3 getContentName method
	6.3.4 getGroupName method
	6.3.5 getCurrentNodeName method

	6.4 SupendInfoSerializeUtil (utility class for suspend information serialization)
	6.4.1 serialize method
	6.4.2 deserialize method

	6.5 UCNPPluginException (Suspend/Resume Plugin exception class)
	6.5.1 UCNPPluginException(String message) constructor
	6.5.2 UCNPPluginException(String message, Throwable cause) constructor

	7. API Reference (for Custom Window Plugin Development)
	7.1 List of APIs (for Custom Window Plugin development)
	7.2 CustomWindowUrlUtil (utility class for custom window URL acquisition)
	7.2.1 getCustomWindowUrl method

	7.3 LogoutActionUtil (logout processing class)
	7.3.1 logout method

	Appendixes
	A. How to Use Sample Plugins
	A.1 How to use I/O Plugins (sample)
	A.2 How to use Suspend/Resume Plugins (sample)
	A.3 Notes on using sample plugins

	B. Important Point for I/O Plugin Development
	B.1 Suppressing execution of I/O Plugins depending on the presence of mapping lines

	C. Migration from Old Versions
	C.1 Procedure for migrating plugins developed in old versions
	C.2 Migration of the menu area developed in old versions
	C.3 Migration of custom windows (new windows) developed in old versions
	C.4 J2EE server settings in old versions

	D. Reference Material for This Manual
	D.1 Related publications
	D.2 Conventions: Abbreviations for product names
	D.3 Conventions: Acronyms
	D.4 Conventions: KB, MB, GB, and TB

	E. Glossary

	Index

