
Nonstop Database

HiRDB Version 9
UAP Development Guide

3020-6-456-10(E)

Relevant program products
List of program products:
For the Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T), or Linux
5 (AMD/Intel 64) operating system:
P-9W62-3592 HiRDB Server Version 9 09-01
P-F9W62-11925 HiRDB Non Recover Front End Server Version 9 09-00
P-F9W62-11926 HiRDB Advanced High Availability Version 9 09-00
This edition of the manual is released for the preceding program products, which have been developed under a quality management
system that has been certified to comply with ISO9001 and TickIT. This manual may also apply to other program products; for
details, see Before Installing or Readme file (for the UNIX version, see Software Information or Before Installing).

Trademarks
ActiveX is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AIX 5L is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AMD is a trademark of Advanced Micro Devices, Inc.
CORBA is a registered trademark of Object Management Group, Inc. in the United States.
DataStage, MetaBroker, MetaStage and QualityStage are trademarks of International Business Machines Corporation in the United
States, other countries, or both.
DB2 is a trademark of International Business Machines Corporation in the United States, other countries, or both.
HACMP is a trademark of International Business Machines Corporation in the United States, other countries, or both.
HP-UX is a product name of Hewlett-Packard Company.
IBM is a trademark of International Business Machines Corporation in the United States, other countries, or both.
Itanium is a trademark of Intel Corporation in the United States and other countries.
Java is a registered trademark of Oracle and/or its affiliates.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.
Microsoft Access is a registered trademark of Microsoft Corporation in the U.S. and other countries.
Motif is a registered trademark of the Open Software Foundation, Inc.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ODBC is Microsoft's strategic interface for accessing databases.
OLE is the name of a software product developed by Microsoft Corporation and the acronym for Object Linking and Embedding.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.Other company and product names mentioned in this
document may be the trademarks of their respective owners.Throughout this document Hitachi has attempted to distinguish
trademarks from descriptive terms by writing the name with the capitalization style used by the manufacturer, or by writing the name
with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use of a trademark in this document should not
be regarded as affecting the validity of the trademark.
OS/390 is a trademark of International Business Machines Corporation in the United States, other countries, or both.
PowerHA is a trademark of International Business Machines Corporation in the United States, other countries, or both.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
Sun is either a registered trademark or a trademark of Oracle and/or its affiliates.
Sun Microsystems is either a registered trademark or a trademark of Oracle and/or its affiliates.
UNIFY2000 is a product name of Unify Corp.
UNIX is a registered trademark of The Open Group in the United States and other countries.
VERITAS is a trademark or registered trademark of Symantec Corporation in the U.S. and other countries.
Visual Basic is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual C++ is a registered trademark of Microsoft Corp. in the U.S. and other countries.

Visual Studio is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows NT is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
X/Open is a registered trademark of The Open Group in the U.K. and other countries.
X Window System is a trademark of X Consortium, Inc.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Issued
Dec. 2011: 3020-6-456-10(E)

Copyright
All Rights Reserved. Copyright (C) 2011, Hitachi, Ltd.

i

Preface

This manual describes the following items:

• Basic techniques needed to develop user application programs using the HiRDB
Version 9 Nonstop Database program product with SQL as the database language.

• Environment setup for HiRDB Client

In this manual, a user application program is referred to as a UAP.

Intended readers
This manual is intended for users who will be constructing or operating HiRDB
Version 9 ("HiRDB") relational database systems.

It is assumed that readers of this manual have the following:

• For Windows systems, a basic knowledge of managing Windows

• For UNIX Systems, a basic knowledge of managing UNIX or Linux

• A basic knowledge of SQL

• A basic knowledge of programming in C language, COBOL, or Java

Organization of this manual
This manual consists of the following chapters and appendixes:

1. Overview
Chapter 1 explains the work flow for creating UAPs and the types of SQL
statements to be used.

2. Database Operations
Chapter 2 explains the data expressions used in a HiRDB database and the basic
database operations.

3. UAP Design
Chapter 3 explains issues to be taken into consideration in designing a UAP.

4. UAP Design for Improving Performance and Handling
Chapter 4 describes issues that UAP designers should consider to improve UAP
performance and usability.

ii

5. Notes about Creating UAPs that Access Object Relational Databases
Chapter 5 describes notes about creating UAPs that access object relational
databases.

6. Client Environment Setup
Chapter 6 explains the procedure for installing a HiRDB client and describes the
environment definition for creating and executing a UAP.

7. UAP Creation
This chapter explains the creation of embedded SQL UAPs written in C or
COBOL.

8. Preparation for UAP Execution
Chapter 8 explains the flow from UAP preprocessing to execution and the
methods used in those operations.

9. Java Stored Procedures and Java Stored Functions
Chapter 9 explains the development of stored procedures and stored functions
with Java.

10. C Stored Procedures and C Stored Functions
Chapter 10 explains how to use C language to develop stored procedures and
stored functions.

11. UAP Troubleshooting
Chapter 11 explains collection of historical information for UAP execution and
error information; also explains the UAP error types and recovery methods.

12. Command Execution from UAPs
Chapter 12 explains the execution of commands from UAPs.

13. Connection from an XDS Client
Chapter 13 explains the development work flow for a UAP that connects to a
HiRDB server through an XDS client.

14. HiRDB Access from ODBC Application Programs
Chapter 14 explains the ODBC driver installation procedure and ODBC
functions.

15. HiRDB Access from OLE DB Application Programs
Chapter 15 explains HiRDB access from OLE DB application programs.

16. HiRDB Access from ADO.NET-compatible Application Programs
Chapter 16 describes how to access HiRDB from application programs that are

iii

compliant with ADO.NET.

17. Type2 JDBC Driver
Chapter 17 explains the Type2 JDBC driver installation and JDBC functions.

18. Type4 JDBC Driver
Chapter 18 explains the Type4 JDBC driver installation and JDBC functions.

19. SQLJ
Chapter 19 explains how to use SQLJ to develop a UAP.

A. SQL Communications Area
Appendix A explains the organization and contents of the SQL Communications
Area, as well as expansion of the SQL Communications Areas.

B. SQL Descriptor Area
Appendix B explains the organization and contents of the SQL Descriptor Area,
as well as expansion of the SQL Descriptor Area.

C. Column Name Descriptor Area
Appendix C explains the organization and contents of the Column Name
Descriptor Area, as well as expansion of the Column Name Descriptor Area.

D. Type Name Descriptor Area
Appendix D explains the organization and contents of the Type Name Descriptor
Area and expansion of the area.

E. Character Set Descriptor Areas
Appendix E describes the organization and content of the character set descriptor
areas. This appendix also explains how to extend character set descriptor areas.

F. SQL Data Types and Data Descriptions
Appendix F explains the correspondence between the SQL data types and the C
data descriptions, and the correspondence between the SQL data types and the
COBOL data descriptions.

G. Data Dictionary Table Retrieval
Appendix G explains the contents of the data dictionary tables and how to
reference them.

H. Functions provided by HiRDB
Appendix H explains the hash function for table partitioning, the space
conversion function, the function for conversion to a DECIMAL signed
normalized number, and the function that sets the character code classification.

iv

I. Scalar Functions That Can Be Specified in the Escape Clause
Appendix I lists the scalar functions that can be specified in the escape clause.

J. Character Code Conversion Rules When Character Sets Are Used
Appendix J explains the rules for converting character codes between selected
character sets.

K. HiRDB SQL Tuning Advisor Environment Setup
Appendix K explains how to set up an environment for HiRDB SQL Tuning
Advisor.

L. Maximum and Minimum HiRDB Values
Appendix L explains the HiRDB maximum and minimum values.

M. List of Sample UAPs
Appendix M provides a list of references to where HiRDB sample UAPs can be
found.

Related publications
This manual is related to the following manuals, which should be read as required.

HiRDB (for UNIX)

• For UNIX Systems HiRDB Version 9 Description (3000-6-451)#

• For UNIX Systems HiRDB Version 9 Installation and Design Guide
(3000-6-452(E))

• For UNIX Systems HiRDB Version 9 System Definition (3000-6-453(E))

• For UNIX Systems HiRDB Version 9 System Operation Guide (3000-6-454(E))

• For UNIX Systems HiRDB Version 9 Command Reference (3000-6-455(E))

• For UNIX Systems HiRDB Version 9 Staticizer Option Description and User's
Guide (3000-6-463)#

• For UNIX Systems HiRDB Version 9 Disaster Recovery System Configuration
and Operation Guide (3000-6-464(E))

• For UNIX Systems HiRDB Version 9 Memory Database Installation and
Operation Guide (3020-6-469)#

• For UNIX Systems HiRDB First Step Guide (3000-6-254)#

HiRDB (for both Windows and UNIX)

• HiRDB Version 9 SQL Reference (3020-6-457(E))

v

• HiRDB Version 9 Messages (3020-6-458(E))

• HiRDB Version 9 XDM/RD E2 Connection Facility (3020-6-465)#

• HiRDB Version 9 Batch Job Accelerator (3020-6-468)#

• HiRDB Version 9 XML Extension (3020-6-480)#

• HiRDB Version 9 Text Search Plug-in (3020-6-481)#

• HiRDB Version 8 Security Guide (3020-6-359)#

• HiRDB Datareplicator Version 8 Description, User's Guide and Operator's
Guide (3020-6-360(E))

• HiRDB Datareplicator Extension Version 8 (3020-6-361)#

• HiRDB Dataextractor Version 8 Description, User's Guide and Operator's Guide
(3020-6-362(E))

In references to HiRDB Version 9 manuals, this manual omits the phrases for UNIX
systems and for Windows systems. Refer to either the UNIX or Windows HiRDB
manual, whichever is appropriate for your platform.

#: This manual has been published in Japanese only; it is not available in English.

For related products

• COBOL85 User's Guide (3000-3-347)#

• COBOL85 Operations Guide (3020-3-747(E))

• OpenTP1 Version 7 System Definition (3000-3-D52(E))

• OpenTP1 Version 7 Programming Reference C Language (3000-3-D54(E))

• OpenTP1 Version 7 Programming Reference COBOL Language
(3000-3-D55(E))

• TP1/LINK USER'S GUIDE (3000- 3-390(E))

• TPBroker User's Guide (3000-3-555(E))

• Cosminexus Application Setup Guide (3020-3-M08(E))

#: This manual has been published in Japanese only; it is not available in English.

Organization of HiRDB manuals
The HiRDB manuals are organized as shown below. For the most efficient use of these
manuals, it is suggested that they be read in the order they are shown, going from left
to right.

vi

vii

Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names:

Full name or meaning Abbreviation

HiRDB Server Version 9 HiRDB/Single
Server

HiRDB or
HiRDB Server

HiRDB/Parallel
Server

HiRDB/Developer's Kit Version 9 HiRDB/
Developer's Kit

HiRDB Client

HiRDB/Developer's Kit Version 9 (64)

HiRDB/Run Time Version 9 HiRDB/Run Time

HiRDB/Run Time Version 9 (64)

HiRDB Advanced High Availability Version 9 HiRDB Advanced High Availability

HiRDB Accelerator Version 8 HiRDB Accelerator

HiRDB Accelerator Version 9

HiRDB Non Recover Front End Server Version 9 HiRDB Non Recover FES

viii

HiRDB Staticizer Option Version 9 HiRDB Staticizer Option

HiRDB Disaster Recovery Light Edition Version 9 HiRDB Disaster Recovery Light
Edition

HiRDB Text Search Plug-in Version 9 HiRDB Text Search Plug-in

HiRDB XML Extension Version 9 HiRDB XML Extension

HiRDB Datareplicator Version 8 HiRDB Datareplicator

HiRDB Dataextractor Version 8 HiRDB Dataextractor

HiRDB Adapter for XML - Standard Edition HiRDB Adapter for XML

HiRDB Adapter for XML - Enterprise Edition

HiRDB Control Manager HiRDB CM

HiRDB Control Manager Agent HiRDB CM Agent

Hitachi TrueCopy TrueCopy

Hitachi TrueCopy basic

TrueCopy

TrueCopy remote replicator

JP1/Automatic Job Management System 3 JP1/AJS3

JP1/Automatic Job Management System 2

JP1/Automatic Job Management System 2 - Scenario Operation JP1/AJS2-SO

JP1/Cm2/Extensible SNMP Agent JP1/ESA

JP1/Cm2/Extensible SNMP Agent for Mib Runtime

JP1/Cm2/Network Node Manager JP1/NNM

JP1/Integrated Management - Manager JP1/Integrated Management or JP1/IM

JP1/Integrated Management - View

JP1/Magnetic Tape Access EasyMT

EasyMT

JP1/Magnetic Tape Library MTguide

JP1/NETM/Audit - Manager JP1/NETM/Audit

Full name or meaning Abbreviation

ix

JP1/NETM/DM JP1/NETM/DM

JP1/NETM/DM Manager

JP1/Performance Management JP1/PFM

JP1/Performance Management - Agent Option for HiRDB JP1/PFM-Agent for HiRDB

JP1/Performance Management - Agent Option for Platform JP1/PFM-Agent for Platform

JP1/Performance Management/SNMP System Observer JP1/SSO

JP1/VERITAS NetBackup BS v4.5 NetBackup

JP1/VERITAS NetBackup v4.5

JP1/VERITAS NetBackup BS V4.5 Agent for HiRDB License JP1/VERITAS NetBackup Agent for
HiRDB License

JP1/VERITAS NetBackup V4.5 Agent for HiRDB License

JP1/VERITAS NetBackup 5 Agent for HiRDB License

OpenTP1/Server Base Enterprise Option TP1/EE

Virtual-storage Operating System 3/Forefront System Product VOS3/FS VOS3

Virtual-storage Operating System 3/Leading System Product VOS3/LS

Virtual-storage Operating System 3/Unific System Product VOS3/US

Extensible Data Manager/Base Extended Version 2
XDM Basic Program XDM/BASE E2

XDM/BASE E2

XDM/Data Communication and Control Manager 3
XDM Data Communication Management System XDM/DCCM3

XDM/DCCM3

XDM/Relational Database
Relational Database System XDM/RD

XDM/RD XDM/RD

XDM/Relational Database Extended Version 2
Relational Database System XDM/RD E2

XDM/RD E2

VOS3 Database Connection Server DB Connection Server

Oracle WebLogic Server WebLogic Server

DB2 Universal Database for OS/390 Version 6 DB2

DNCWARE ClusterPerfect (Linux Edition) ClusterPerfect

JavaTM Java

Full name or meaning Abbreviation

x

Microsoft(R) Office Excel Microsoft Excel or Excel

Microsoft(R) Visual C++(R) Visual C++ or C++ language

PowerHA for AIX, V5.5 PowerHA

PowerHA SystemMirror V6.1

HP-UX 11i V2 (IPF) HP-UX or HP-UX (IPF)

HP-UX 11i V3 (IPF)

AIX 5L V5.2 AIX 5L AIX

AIX 5L V5.3

AIX V6.1 AIX V6.1

Linux(R) Linux

Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T) Linux AS 4 Linux

Red Hat Enterprise Linux AS 4 (x86)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T) Linux ES 4

Red Hat Enterprise Linux ES 4 (x86)

Red Hat Enterprise Linux 5.1 Advanced Platform (x86) Linux 5.1

Red Hat Enterprise Linux 5.1 (x86)

Red Hat Enterprise Linux 5.1 Advanced Platform (AMD/Intel 64)

Red Hat Enterprise Linux 5.1 (AMD/Intel 64)

Red Hat Enterprise Linux 5.2 Advanced Platform (AMD/Intel 64) Linux 5.2

Red Hat Enterprise Linux 5.2 (AMD/Intel 64)

Red Hat Enterprise Linux 5.3 Advanced Platform (AMD/Intel 64) Linux 5.3

Red Hat Enterprise Linux 5.3 (AMD/Intel 64)

Red Hat Enterprise Linux 5.4 Advanced Platform (AMD/Intel 64) Linux 5.4

Red Hat Enterprise Linux 5.4 (AMD/Intel 64)

Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T) Linux (EM64T)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux 5.1 Advanced Platform (AMD/Intel 64)

Full name or meaning Abbreviation

xi

Red Hat Enterprise Linux 5.1 (AMD/Intel 64)

Red Hat Enterprise Linux 5.2 Advanced Platform (AMD/Intel 64)

Red Hat Enterprise Linux 5.2 (AMD/Intel 64)

Red Hat Enterprise Linux 5.3 Advanced Platform (AMD/Intel 64)

Red Hat Enterprise Linux 5.3 (AMD/Intel 64)

Red Hat Enterprise Linux 5.4 Advanced Platform (AMD/Intel 64)

Red Hat Enterprise Linux 5.4 (AMD/Intel 64)

Red Hat Enterprise Linux 5.1 Advanced Platform (x86) Linux 5 (x86) Linux 5

Red Hat Enterprise Linux 5.1 (x86)

Red Hat Enterprise Linux 5.1 Advanced Platform (AMD/Intel 64) Linux 5 (AMD/
Intel 64)

Red Hat Enterprise Linux 5.1 (AMD/Intel 64)

Red Hat Enterprise Linux 5.2 Advanced Platform (AMD/Intel 64)

Red Hat Enterprise Linux 5.2 (AMD/Intel 64)

Red Hat Enterprise Linux 5.3 Advanced Platform (AMD/Intel 64)

Red Hat Enterprise Linux 5.3 (AMD/Intel 64)

Red Hat Enterprise Linux 5.4 Advanced Platform (AMD/Intel 64)

Red Hat Enterprise Linux 5.4 (AMD/Intel 64)

turbolinux 7 Server for AP8000 Linux for AP8000

Microsoft(R) Windows NT(R) Workstation Operating System Version
4.0

Windows NT

Microsoft(R) Windows NT(R) Server Network Operating System
Version 4.0

Microsoft(R) Windows(R) 2000 Professional Operating System Windows 2000

Microsoft(R) Windows(R) 2000 Server Operating System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating System

Microsoft(R) Windows(R) 2000 Advanced Server Operating System

Microsoft(R) Windows(R) 2000 Advanced Server Operating System Windows 2000 Advanced Server

Full name or meaning Abbreviation

xii

Microsoft(R) Windows Server(R) 2003, Standard Edition Windows Server
2003 Standard
Edition

Windows
Server 2003

Microsoft(R) Windows Server(R) 2003, Enterprise Edition Windows Server
2003 Enterprise
Edition

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition Windows Server
2003 Standard x64
Edition

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition Windows Server
2003 Enterprise
x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition Windows Server
2003 R2

Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64 Edition Windows Server
2003 R2 x64
Editions

Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition (64-bit
version)

Windows Server
2003 (IPF)

Microsoft(R) Windows Server(R) 2008 Standard Windows Server
2008 Standard

Windows
Server 2008

Microsoft(R) Windows Server(R) 2008 Enterprise Windows Server
2008 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Standard (x64) Windows Server
2008 R2

Microsoft(R) Windows Server(R) 2008 R2 Enterprise (x64)

Microsoft(R) Windows Server(R) 2008 R2 Datacenter (x64)

Microsoft(R) Windows Server(R) 2008 Standard (x64) Windows Server 2008 (x64)

Microsoft(R) Windows Server(R) 2008 Enterprise (x64)

Full name or meaning Abbreviation

xiii

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition Windows Server
2003 x64 Editions

Windows (x64)

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows(R) XP Professional x64 Edition Windows XP x64
Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition (64-bit
version)

Windows Server
2003 (IPF)

Windows (IPF)

Microsoft(R) Windows(R) XP Professional x64 Edition Windows XP x64
Edition

Windows XP

Microsoft(R) Windows(R) XP Professional Operating System Windows XP
Professional

Microsoft(R) Windows(R) XP Home Edition Operating System Windows XP Home
Edition

Microsoft(R) Windows Vista(R) Home Basic Windows Vista
Home Basic

Windows Vista

Microsoft(R) Windows Vista(R) Home Premium Windows Vista
Home Premium

Microsoft(R) Windows Vista(R) Ultimate Windows Vista
Ultimate

Microsoft(R) Windows Vista(R) Business Windows Vista
Business

Microsoft(R) Windows Vista(R) Enterprise Windows Vista
Enterprise

Microsoft(R) Windows Vista(R) Home Basic (x64) Windows Vista (x64)

Microsoft(R) Windows Vista(R) Home Premium (x64)

Microsoft(R) Windows Vista(R) Ultimate (x64)

Microsoft(R) Windows Vista(R) Business (x64)

Microsoft(R) Windows Vista(R) Enterprise (x64)

Microsoft(R) Windows(R) 7 Home Premium Windows 7

Microsoft(R) Windows(R) 7 Professional

Full name or meaning Abbreviation

xiv

• Windows Server 2003 and Windows Server 2008 may be referred to collectively
as Windows Server. Windows 2000, Windows XP, Windows Server, Windows
Vista, and Windows 7 may be referred to collectively as Windows.

• The hosts file means the hosts file stipulated by TCP/IP (including the /etc/
hosts file). As a rule, a reference to the hosts file means the
%windir%\system32\drivers\etc\hosts file.

This manual also uses the following acronyms:

Microsoft(R) Windows(R) 7 Enterprise

Microsoft(R) Windows(R) 7 Ultimate

Microsoft(R) Windows(R) 7 Home Premium (x64) Windows 7 (x64)

Microsoft(R) Windows(R) 7 Professional (x64)

Microsoft(R) Windows(R) 7 Enterprise (x64)

Microsoft(R) Windows(R) 7 Ultimate (x64)

Single server SDS

System manager MGR

Front-end server FES

Dictionary server DS

Back-end server BES

Acronym Full name or meaning

ACK Acknowledgement

ADM Adaptable Data Manager

ADO ActiveX Data Objects

ADT Abstract Data Type

AP Application Program

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BES Back End Server

BLOB Binary Large Object

Full name or meaning Abbreviation

xv

BMP Basic Multilingual Plane

BOM Byte Order Mark

CD-ROM Compact Disc - Read Only Memory

CGI Common Gateway Interface

CLOB Character Large Object

CMT Cassette Magnetic Tape

COBOL Common Business Oriented Language

CORBA(R) Common ORB Architecture

CPU Central Processing Unit

CSV Comma Separated Values

DAO Data Access Object

DAT Digital Audio Tape

DB Database

DBM Database Module

DBMS Database Management System

DDL Data Definition Language

DF for Windows NT Distributing Facility for Windows NT

DF/UX Distributing Facility/for UNIX

DIC Dictionary Server

DLT Digital Linear Tape

DML Data Manipulate Language

DNS Domain Name System

DOM Document Object Model

DS Dictionary Server

DTD Document Type Definition

DTP Distributed Transaction Processing

DWH Data Warehouse

Acronym Full name or meaning

xvi

EUC Extended UNIX Code

EX Exclusive

FAT File Allocation Table

FD Floppy Disk

FES Front End Server

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GUI Graphical User Interface

HBA Host Bus Adapter

HD Hard Disk

HTML Hyper Text Markup Language

ID Identification number

IP Internet Protocol

IPF Itanium(R) Processor Family

JAR Java Archive File

Java VM Java Virtual Machine

JDBC Java Database Connectivity

JDK Java Developer's Kit

JFS Journaled File System

JFS2 Enhanced Journaled File System

JIS Japanese Industrial Standard code

JP1 Job Management Partner 1

JRE Java Runtime Environment

JTA Java Transaction API

JTS Java Transaction Service

KEIS Kanji processing Extended Information System

LAN Local Area Network

Acronym Full name or meaning

xvii

LDAP Lightweight Directory Access Protocol

LIP Loop Initialization Process

LOB Large Object

LRU Least Recently Used

LTO Linear Tape-Open

LU Logical Unit

LUN Logical Unit Number

LVM Logical Volume Manager

MGR System Manager

MIB Management Information Base

MRCF Multiple RAID Coupling Feature

MSCS Microsoft Cluster Server

MSFC Microsoft Failover Cluster

NAFO Network Adapter Fail Over

NAPT Network Address Port Translation

NAT Network Address Translation

NIC Network Interface Card

NIS Network Information Service

NTFS New Technology File System

ODBC Open Database Connectivity

OLAP Online Analytical Processing

OLE Object Linking and Embedding

OLTP On-Line Transaction Processing

OOCOBOL Object Oriented COBOL

ORB Object Request Broker

OS Operating System

OSI Open Systems Interconnection

Acronym Full name or meaning

xviii

OTS Object Transaction Service

PC Personal Computer

PDM II E2 Practical Data Manager II Extended Version 2

PIC Plug-in Code

PNM Public Network Management

POSIX Portable Operating System Interface for UNIX

PP Program Product

PR Protected Retrieve

PU Protected Update

RAID Redundant Arrays of Inexpensive Disk

RD Relational Database

RDB Relational Database

RDB1 Relational Database Manager 1

RDB1 E2 Relational Database Manager 1 Extended Version 2

RDO Remote Data Objects

RiSe Real time SAN replication

RM Resource Manager

RMM Resource Manager Monitor

RPC Remote Procedure Call

SAX Simple API for XML

SDS Single Database Server

SGML Standard Generalized Markup Language

SJIS Shift JIS

SNMP Simple Network Management Protocol

SNTP Simple Network Time Protocol

SQL Structured Query Language

SQL/K Structured Query Language / VOS K`

Acronym Full name or meaning

xix

Path name representations
• The backslash (\) is used as the delimiter in path names. Readers who are using

a UNIX version of HiRDB must replace the backslash with a forward slash (/).
When the path names in the Windows and UNIX versions differ, both path names
are given.

• The HiRDB directory path is represented as %PDDIR%. However, when the path
names in the Windows and UNIX versions differ, the directory path in the UNIX

SR Shared Retrieve

SU Shared Update

TCP/IP Transmission Control Protocol / Internet Protocol

TM Transaction Manager

TMS-4V/SP Transaction Management System - 4V / System Product

UAP User Application Program

UOC User Own Coding

VOS K Virtual-storage Operating System Kindness

VOS1 Virtual-storage Operating System 1

VOS3 Virtual-storage Operating System 3

WS Workstation

WWW World Wide Web

XDM/BASE E2 Extensible Data Manager / Base Extended Version 2

XDM/DF Extensible Data Manager / Distributing Facility

XDM/DS Extensible Data Manager / Data Spreader

XDM/RD E2 Extensible Data Manager / Relational Database Extended Version 2

XDM/SD E2 Extensible Data Manager / Structured Database Extended Version 2

XDM/XT Extensible Data Manager / Data Extract

XDS Extended Data Server

XFIT Extended File Transmission program

XML Extensible Markup Language

Acronym Full name or meaning

xx

version is represented as $PDDIR, as shown in the following example:

 Windows version: %PDDIR%\CLIENT\UTL\

 UNIX version: $PDDIR/client/lib/

• %windir% refers to a Windows installation directory path.

Log representations
 Windows version

The application log that is displayed by Windows Event Viewer is referred to as
the event log. The following procedure is used to view the event log.

To view the event log:

1. Choose Start, Programs, Administrative Tools (Common), and then Event
Viewer.

2. Choose Log, and then Application.

The application log is displayed. Messages with HiRDBSingleServer or
HiRDBParallelServer displayed in the Source column were issued by HiRDB.

If you specified a setup identifier when you installed HiRDB, the specified setup
identifier follows HiRDBSingleServer or HiRDBParallelServer.

 UNIX version

The OS log is referred to generically as syslogfile. syslogfile is the log output
destination specified in /etc/syslog.conf. Typically, the following files are
specified as syslogfile.

Conventions: Diagrams
This manual uses the following conventions in diagrams:

OS File

HP-UX /var/adm/syslog/syslog.log

Solaris /var/adm/messages or /var/log/syslog

AIX /var/adm/ras/syslog

Linux /var/log/messages

xxi

Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes
menus, menu options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user
or system. For example:
• Write the command as follows:

copy source-file target-file
• The following message appears:

A file was not found. (file = file-name)
Italics are also used for emphasis. For example:
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as
messages) output by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

SD Bold code-font characters indicate the abbreviation for a command.

perm Underlined characters indicate the default value.

xxii

The following table explains the symbols used in this table:

Syntax element conventions

The following table explains the syntactical element symbols used in this manual:

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the
meaning of OR. For example:
A|B|C means A, or B, or C.

{ } In syntax explanations, curly brackets indicate that only one of the enclosed items
is to be selected. For example:
A|B|C means A, or B, or C.

[] In syntax explanations, square brackets indicate that the enclosed item or items
are optional. For example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

... In coding, an ellipsis (...) indicates that one or more lines of coding are not
shown for purposes of brevity.
In syntax explanations, an ellipsis indicates that the immediately preceding item
can be repeated as many times as necessary. For example:
A, B, B, ... means that, after you specify A, B, you can specify B as many
times as necessary.

() Parentheses indicate the range of items to which the vertical bar (|) or ellipsis
(...) is applicable.

~ A swung dash precedes the attributes of a user-specified value.

<< >> Double angle brackets enclose the default value that the system assumes when the
specification is omitted.

< > A single pair of angle brackets encloses the syntax element notation for a
user-specified value.

(()) A double pair of parentheses encloses the permitted range of values that can be
specified.

Syntax element Meaning

<alphabetics> The alphabetic characters (A to Z and a to z) and the underscore (_)

<alphabetics and special characters> The alphabetic characters (A to Z and a to z) and the special characters
#, @, and \

<alphanumerics> Alphabetic characters and the numeric characters (0 to 9)

<alphanumerics and special
characters>

Alphabetic characters, special characters, and numeric characters

xxiii

Use all single-byte characters. Alphabetic characters are case-sensitive. The path name
depends on the OS in use.

#1

If all the numeric characters preceding the period are zeros (0), those zeros can be
omitted. Similarly, if all the numeric characters following the period are zeros (0),
those zeros can be omitted.

Example 1: 0.008 .008

Example 2: 15.000 15

#2

RDAREA names must begin with an alphabetic or special character, and can
include alphanumeric and special characters, underscores (_), hyphens (-), and
spaces. When an RDAREA name includes a space, the entire name must be
enclosed in double quotation marks (").

A host name is a character string that can include one or more alphabetic
characters (A to Z, a to z), numeric characters, periods (.), hyphens (-),
underscores (_), and at marks (@). A host name can begin with a numeric
character.

#3

If you use a space or a parenthesis in a path name, you must enclose the entire path
name in double quotation marks (").

In the Windows edition, you can use a colon (:) in the drive name.

<unsigned-integer> Numeric values

<unsigned-decimal>#1 Numeric value (0 to 9), period (.), numeric value (0 to 9)

<identifier>#2 Alphanumeric character string beginning with an alphabetic character

<character-string> String of any characters

<symbolic-name> Alphanumeric character string beginning with an alphabetic character
or a special character
In the UNIX edition, symbolic names cannot include a backslash (\).

<path-name>#3 In the UNIX edition, path names can include forward slashes (/),
alphanumeric characters, periods (.), hash marks (#), and at marks (@).
In the Windows edition, path names can include backslashes (\),
alphanumeric characters, periods (.), spaces, parentheses ((and)),
hash marks (#), and at marks (@).

Syntax element Meaning

xxiv

Notations used in computational expressions

The following notations are used in computational expressions

Notes on Windows path names
• In this manual, the Windows terms directory and folder are both referred to as

directory.

• Include the drive name when you specify an absolute path name.

Example: C:\win32app\hitachi\hirdb_s\spool\tmp

• When you specify a path name in a command argument, in a control statement
file, or in a HiRDB system definition file, and that path name includes a space or
a parenthesis, you must enclose the entire path name in double quotation marks
(").

Example: pdinit -d "C:\Program
Files(x86)\hitachi\hirdb_s\conf\mkinit"

However, double quotation marks are not necessary when you use the set command
in a batch file or at the command prompt to set an environment variable, or when you
specify the installation directory. If you do use double quotation marks in such a case,
the double quotation marks become part of the value assigned to the environment
variable.

Example: set PDCLTPATH=C:\Program Files\hitachi\hirdb_s\spool

• HiRDB cannot use files on a networked drive, so you must install HiRDB and
configure the HiRDB environment on a local drive. Files used by utilities, such
as utility input and output files, must also be on the local drive.

• Do not use a short path name in place of the full path name (for example, do not
use C:\PROGRA~1).

Symbol Meaning

 Round up the result to the next integer.
Example: The result of 34 3 is 12.

 Discard digits following the decimal point.
Example: The result of 34 3 is 11.

MAX Select the largest value as the result.
Example: The result of Max(10, 2 x 4, 3 + 8) is 11.

MIN Select the smallest value as the result.
Example: The result of Min(10, 2 x 4, 3 + 8) is 8.

xxv

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

HiRDB database language acknowledgements
The interpretations and specifications developed by Hitachi, Ltd. for the HiRDB
database language specifications described in this manual are based on the standards
listed below. In addition to citing the standards relevant to HiRDB database language
specifications, we would like to take this opportunity to express our appreciation to the
original developers of these standards.

• JIS X 3005 Information technology -- Database languages -- SQL

• ISO/IEC 9075 Information technology -- Database languages -- SQL

Legend:

JIS: Japanese Industrial Standards

ISO: International Organization for Standardization

IEC: International Electrotechnical Commission

Important notes on this manual
The following facilities are explained, but they are not supported:

• Distributed database facility

• Server mode system switchover facility

xxvi

• User server hot standby

• Rapid system switchover facility

• Standby-less system switchover (1:1) facility

• Standby-less system switchover (effects distributed) facility

• HiRDB External Data Access facility

• Inner replica facility

• Updatable online reorganization

• Sun Java System Directory Server linkage facility

• Simple setup tool

• Extended syslog facility

• Rapid batch facility

• Memory database facility

• Linkage with JP1/NETM/Audit

The following products and option program products are explained, but they are not
supported:

• HiRDB CM

• HiRDB Disaster Recovery Light Edition

• uCosminexus Grid Processing Server

• HiRDB Text Search Plug-in

• HiRDB XML Extension

• TP1/Server Base

• JP1/PFM-Agent Option for HiRDB

• JP1/VERITAS NetBackup Agent for HiRDB License

• HiRDB Dataextractor

• HiRDB Datareplicator

• XDM/RD

• HiRDB SQL Tuning Advisor

• COBOL2002

Notes on printed manuals
Please note that even though the printed manuals are separated into Part I and Part II,

xxvii

the chapters and page numbers sequentially continue from Part I to Part II. Also, please
note that the index is only included in Part II.

xxix

Contents

Preface i

Intended readers ...i
Organization of this manual ...i
Related publications ...iv
Organization of HiRDB manuals ..v
Conventions: Abbreviations for product names..vii
Path name representations..xix
Log representations ...xx
Conventions: Diagrams ...xx
Conventions: Fonts and symbols..xxi
Notes on Windows path names ..xxiv
Conventions: KB, MB, GB, and TB ...xxv
Conventions: Version numbers..xxv
HiRDB database language acknowledgements...xxv
Important notes on this manual ...xxv
Notes on printed manuals...xxvi

1. Overview 1

1.1 UAP development flow ..2
1.2 UAP characteristics ..3

1.2.1 UAP format ...3
1.2.2 List of SQL statements usable in HiRDB ...4

1.3 Interface with HiRDB...17
1.4 UAP operation environment...18

2. Database Operations 27

2.1 Database data expressions ..28
2.1.1 Relational database tables ...28
2.1.2 Object relational database tables ...30

2.2 Cursor usage ...32
2.3 Data retrieval ..35

2.3.1 Retrieval from a single table ...35
2.3.2 Retrieval from multiple tables...39
2.3.3 Retrieval of a table with FIX attribute ..41

2.4 Data updating..43
2.4.1 Updating using a cursor...43
2.4.2 Updating with a condition specified..44
2.4.3 Updating a table with the FIX attribute...45

xxx

2.4.4 Updating a table with repetition columns... 46
2.5 Data deletion .. 49

2.5.1 Deletion using a cursor ... 49
2.5.2 Deletion with a condition specified .. 50
2.5.3 Deleting all rows in a table ... 51

2.6 Data insertion ... 53
2.6.1 Inserting rows on a column basis ... 53
2.6.2 Inserting rows on a row basis (to a table with the FIX attribute) 54
2.6.3 Inserting rows into a table with repetition columns 55

2.7 Specific data search ... 57
2.7.1 Searching for data within a specified range of values 57
2.7.2 Searching for a specific character pattern... 60
2.7.3 Searching for non-NULL data .. 61
2.7.4 Searching for data that satisfies multiple conditions 62
2.7.5 Searching for data using a Boolean predicate .. 63
2.7.6 Searching for data using a structured repetition predicate 63
2.7.7 Searching for data using a subquery... 64

2.8 Data operations .. 69
2.8.1 Arithmetic operations on numeric data .. 69
2.8.2 Date and time data operations .. 70

2.9 Data processing.. 72
2.9.1 Data grouping ... 72
2.9.2 Data sorting... 73
2.9.3 Duplicated data elimination.. 74

2.10 Outer joining of tables ... 76
2.11 Defining and manipulating a view table .. 81
2.12 Manipulating data in a table with abstract data types .. 89

2.12.1 SGMLTEXT type ... 89
2.12.2 XML type ... 99
2.12.3 User-defined abstract data types... 105

3. UAP Design 111

3.1 Basic SQL configuration in a UAP...112
3.2 Overview of UAPs..119

3.2.1 UAP descriptive languages..119
3.2.2 Interface areas... 120
3.2.3 Integrity constraints .. 121
3.2.4 Retrieval methods using SQL statements ... 121
3.2.5 Static and dynamic SQLs.. 123

3.3 Transaction control .. 131
3.3.1 Connection to and disconnection from a HiRDB system........................... 131
3.3.2 Transaction startup and termination ... 131
3.3.3 Synchronization point setting and rollback .. 131
3.3.4 UAP transaction management in an OLTP environment 132

xxxi

3.3.5 Moving a transaction...134
3.4 Locking...136

3.4.1 Units of locking...136
3.4.2 Lock modes ...137
3.4.3 Lock period ...163
3.4.4 Deadlocks and corrective measures ..164
3.4.5 Unlocked conditional search ...172
3.4.6 Non-locking of index key values ..175
3.4.7 Locking uncommitted data to be deleted ..177
3.4.8 Locking by UAPs ..184
3.4.9 Lock sequence based on SQL statement and index types186
3.4.10 Lock sequence for rows...200
3.4.11 Creating locked resources for index key values ..210

3.5 Use of a cursor..212
3.5.1 Notes on table operations when a cursor is used...212
3.5.2 FOR UPDATE and FOR READ ONLY clauses ...215
3.5.3 Cursor declarations and locks ...216
3.5.4 Holdable cursor ...219
3.5.5 Examples of cursor use ...223

3.6 SQL error identification and corrective measures..227
3.6.1 Error identification ..227
3.6.2 Automatic error identification...230

4. UAP Design for Improving Performance and Handling 233

4.1 Using indexes ...234
4.1.1 Indexes and processing time ...234
4.1.2 Index priority...234
4.1.3 Changing indexes during retrieval ..235
4.1.4 Notes about index searches ...235

4.2 Manipulation of tables ..244
4.2.1 Tables with the FIX attribute...244
4.2.2 Tables used in numbering..244
4.2.3 Tables using character sets ..254

4.3 Stored procedures and stored functions..259
4.3.1 Defining a stored procedure ..259
4.3.2 Defining a stored function...269
4.3.3 Defining and deleting stored functions ...280

4.4 Triggers...283
4.5 SQL optimization ...285

4.5.1 SQL optimizing modes..286
4.5.2 Optimization method types ...300
4.5.3 Specifying SQL optimization..301
4.5.4 Allocating floatable servers (HiRDB/Parallel Server only)302
4.5.5 Grouping processing methods (HiRDB/Parallel Server only)309

xxxii

4.5.6 Join methods ... 314
4.5.7 Search Methods .. 328
4.5.8 Execution of subqueries with no external references 335
4.5.9 Execution of subqueries with external references 341
4.5.10 Preparing for application of hash join and subquery hash execution 347
4.5.11 Deriving high-speed search conditions... 355

4.6 Data guarantee levels ... 368
4.6.1 Specifying the data guarantee level .. 368
4.6.2 Data guarantee level types.. 369
4.6.3 Example of search results when a data guarantee level is specified 370

4.7 Block transfer facility .. 373
4.8 Facilities using arrays .. 377

4.8.1 FETCH facility using arrays... 377
4.8.2 INSERT facility using arrays.. 386
4.8.3 UPDATE facility using arrays .. 399
4.8.4 DELETE facility using arrays .. 402

4.9 Rapid grouping facility .. 406
4.9.1 Overview .. 406
4.9.2 Application criteria ... 406
4.9.3 Specification method .. 407
4.9.4 Tuning method.. 407

4.10 Multi-connection facility ... 409
4.11 Narrowed search .. 424

4.11.1 What is a narrowed search? .. 424
4.11.2 Preparations for executing a narrowed search .. 424
4.11.3 Search using lists .. 425
4.11.4 Action if a rollback occurs for a transaction that uses a list 427
4.11.5 Automatic list deletion at HiRDB startup and termination 428
4.11.6 Notes about using lists .. 428

4.12 File output facility for BLOB data... 431
4.12.1 What is the file output facility for BLOB data? 431
4.12.2 Application criteria ... 432
4.12.3 Specification method .. 433
4.12.4 Notes about using the file output facility for BLOB data......................... 433
4.12.5 Examples of using the file output facility for BLOB data........................ 433

4.13 Partial update and retrieval of BLOB and BINARY data.................................... 436
4.13.1 About partial update and retrieval of BLOB and BINARY data.............. 436
4.13.2 Examples of using the addition update and partial extraction facility for

BLOB data.. 436
4.13.3 Notes about performing partial updating and retrieval of BLOB and BINARY

data ... 439
4.14 Retrieve first n records facility .. 441

4.14.1 Overview .. 441
4.14.2 Notes ... 441

xxxiii

4.14.3 Checking the access path...442
4.15 Automatic reconnect facility ..443

4.15.1 Application criteria..443
4.15.2 Reconnect timings ...443
4.15.3 CONNECT processing during automatic reconnect446
4.15.4 Notes about using the automatic reconnect facility446

4.16 Locator facility ...448
4.16.1 What is the locator facility? ..448
4.16.2 Application standard ...450
4.16.3 Usage method..450
4.16.4 Usage example ..450

4.17 Facility for returning the total number of hits ..453
4.17.1 Overview ...453
4.17.2 Usage examples...453
4.17.3 Note ...454

4.18 Retrieval, updating, or deletion with an RDAREA name specified.....................455
4.18.1 Overview of function ..455
4.18.2 Example...455
4.18.3 Notes..456

4.19 Automatic numbering facility...457
4.19.1 About sequence generators..457
4.19.2 Defining a sequence generator ..458
4.19.3 Deleting a sequence generator...461
4.19.4 Acquiring the sequence numbers generated by a sequence generator461
4.19.5 Examples ...461
4.19.6 Notes..463

5. Notes about Creating UAPs that Access Object Relational Databases 471

5.1 Using abstract data types and user-defined functions ..472
5.2 Restrictions on functions provided by plug-ins..474

6. Client Environment Setup 483

6.1 Types of HiRDB clients..484
6.2 Environment setup procedure for HiRDB clients...485
6.3 HiRDB client installation ...486

6.3.1 Installing a HiRDB client on a UNIX client ...486
6.3.2 Installing a HiRDB client on a Windows client ..486

6.4 Organization of directories and files for a HiRDB client490
6.4.1 Directories and files for UNIX clients ..490
6.4.2 Directories and files for Windows clients ...512

6.5 Setting the hosts file ...532
6.6 Client environment definitions (setting environment variables)533

6.6.1 Environment setup format...533
6.6.2 Specifications for using a UAP under OLTP as the client545

xxxiv

6.6.3 Client environment definitions ... 562
6.6.4 Environment definition information... 574
6.6.5 Environment variables and connection types for HiRDB servers 697

6.7 Registering an environment variable group... 700
6.7.1 Registering an environment variable group in a UNIX environment 700
6.7.2 Registering an environment variable group in a Windows environment

(registry registration).. 701
6.7.3 Registering an environment variable group in a Windows environment (file

registration) .. 708

7. UAP Creation 709

7.1 Overview.. 710
7.1.1 UAP basic configuration .. 710
7.1.2 UAP configuration elements .. 710

7.2 Writing a UAP in C.. 712
7.2.1 Coding rules.. 712
7.2.2 Program example .. 719

7.3 Writing a UAP in COBOL... 750
7.3.1 Coding rules.. 750
7.3.2 Program example .. 755

7.4 Writing a UAP in C++ ... 786
7.4.1 Coding rules.. 786

7.5 Writing a UAP in OOCOBOL ... 787
7.5.1 Coding rules.. 787

7.6 Creating a UAP in 64-bit mode ... 788

8. Preparation for UAP Execution 793

8.1 UAP execution procedure .. 794
8.1.1 Executing a UAP written in C .. 794
8.1.2 Executing a UAP written in COBOL ... 795

8.2 Preprocessing ... 797
8.2.1 Overview .. 797
8.2.2 Preprocessing in UNIX... 798
8.2.3 Preprocessing in Windows ... 816
8.2.4 Validating preprocessor declaration statements.. 831
8.2.5 Dispensing with the embedded SQL declare section 833
8.2.6 Specifying pointers as environment variables .. 834
8.2.7 Referencing structures .. 836
8.2.8 Use of pointers, structures, and structure qualifiers when the -E2 or -E3 option

of the preprocessor is specified .. 839
8.3 Compiling and linking ... 842

8.3.1 Libraries for compiling and linking.. 842
8.3.2 Compiling and linking in UNIX... 849
8.3.3 Compiling and linking in Windows.. 856

xxxv

8.3.4 Compiling and linking when the multi-connection facility is used859
8.4 Notes...866

8.4.1 Notes on UAP execution ...866
8.4.2 Executing UAPs that use an X/Open-based API (TX_function)871
8.4.3 UAP execution using the Unicode functionality of COBOL2002..............880
8.4.4 Converting UAPs created with XDM/RD or UNIFY2000882
8.4.5 Actions required when HiRDB is upgraded..882

9. Java Stored Procedures and Java Stored Functions 883

9.1 Overview ..884
9.2 Procedure from external Java stored routine creation to execution........................887

9.2.1 Creating an external Java stored routine ...887
9.2.2 Registering the JAR file ..890
9.2.3 Defining the external Java stored routine..891
9.2.4 Executing the external Java stored routine..892

9.3 Sample external Java stored routine programs ...894
9.3.1 Sample program ..894
9.3.2 Sample external Java stored routines provided with HiRDB......................897

9.4 Notes about Java program creation ..919
9.4.1 Using a Type 2 or 4 JDBC driver ..919
9.4.2 Unsupported methods..919
9.4.3 Package, class, and method definitions ...920
9.4.4 Parameter input/output mode mapping (Java stored procedures only)921
9.4.5 Results-set return facility (Java stored procedures only)922
9.4.6 Connection in a Java stored procedure..928
9.4.7 Releasing the result sets ..928

9.5 Notes about testing and debugging...929
9.5.1 Java program for a Java stored procedure ...929
9.5.2 Java program for a Java stored function..930

9.6 Notes about JAR file creation...932
9.6.1 Integrating Class files..933
9.6.2 Integrating Java files ...933

10. C Stored Procedures and C Stored Functions 935

10.1 Overview ..936
10.2 Procedure from external C stored routine creation to execution937

10.2.1 Creating an external C stored routine..939
10.2.2 Registering the C library file ...944
10.2.3 Defining the external C stored routine ..945
10.2.4 Executing the external C stored routine ..947

10.3 Sample external C stored routine programs ...948
10.4 Limitations to C program creation ...950

xxxvi

11. UAP Troubleshooting 953

11.1 Gathering error information ... 954
11.1.1 SQL tracing... 954
11.1.2 Client error log facility ... 971
11.1.3 Facility for output of extended SQL error information 974
11.1.4 UAP statistical report facility ... 988
11.1.5 Command trace facility... 1018
11.1.6 SQL trace dynamic acquisition facility .. 1020
11.1.7 Reconnect trace facility .. 1022

11.2 UAP error recovery.. 1025

12. Command Execution from UAPs 1027

12.1 Overview.. 1028
12.2 Preparations for executing commands from COMMAND EXECUTE............. 1030
12.3 Command executability ... 1037

13. Connection from an XDS Client 1045

13.1 Overview of format of connection from an XDS client 1046

14. HiRDB Access from ODBC Application Programs 1047

14.1 ODBC application programs ... 1048
14.2 Installing the ODBC2.0 driver... 1049
14.3 Installing the ODBC 3.5 driver and setting the environment variables............. 1053

14.3.1 Installation .. 1053
14.3.2 Setting the environment variables (in the Windows edition) 1058
14.3.3 Determining the version number of the ODBC 3.5 driver 1059

14.4 ODBC functions provided by HiRDB ... 1060
14.5 ODBC function data types and HiRDB data types.. 1065
14.6 Specifiability of attributes in the ODBC functions.. 1070
14.7 Asynchronous execution of ODBC functions ... 1094
14.8 Setting cursor libraries ... 1098
14.9 File DSNs... 1099
14.10 Executing a UAP in Unicode..1100
14.11 Tuning and troubleshooting ..1103
14.12 Facilities that cannot be used when HiRDB is accessed with ODBC1104
14.13 Notes about using the Linux edition of the HiRDB ODBC 3.5 driver1105
14.14 Automatic SQL statement generation by using .NET Framework Data Provider for

ODBC ..1107

15. HiRDB Access from OLE DB Application Programs 1109

15.1 Overview...1110
15.2 Connection interface ...1111

15.2.1 Registry information..1111

xxxvii

15.2.2 Connection properties ... 1112
15.3 Schema information.. 1114
15.4 Data type correspondences ... 1116
15.5 Error handling procedures .. 1117

15.5.1 Troubleshooting facility .. 1117
15.6 Notes... 1118

16. HiRDB Access from ADO.NET-compatible Application Programs 1119

16.1 Overview ..1120
16.1.1 HiRDB.NET Data Provider...1120
16.1.2 Prerequisite programs for HiRDB.NET Data Provider...........................1120

16.2 Installing HiRDB.NET Data Provider..1123
16.2.1 Installation procedure ..1123
16.2.2 Files that are installed..1123
16.2.3 Checking the version information ...1123

16.3 List of classes provided by HiRDB.NET Data Provider1124
16.4 List of members provided by HiRDB.NET Data Provider1126

16.4.1 List of HiRDBCommand members...1126
16.4.2 List of HiRDBCommandBuilder members...1127
16.4.3 List of HiRDBConnection members ...1129
16.4.4 List of HiRDBDataAdapter members ...1131
16.4.5 List of HiRDBDataReader members...1132
16.4.6 List of HiRDBException members ...1135
16.4.7 List of HiRDBParameter members ...1135
16.4.8 List of HiRDBParameterCollection members...1137
16.4.9 List of HiRDBProviderFactory members ... 1139
16.4.10 List of HiRDBRowUpdatedEventArgs members1140
16.4.11 List of HiRDBRowUpdatingEventArgs members1140
16.4.12 List of HiRDBTransaction members...1141

16.5 Interfaces of HiRDB.NET Data Provider...1142
16.5.1 HiRDBCommand .. 1142
16.5.2 HiRDBCommandBuilder ..1146
16.5.3 HiRDBConnection ..1152
16.5.4 HiRDBDataAdapter ..1157
16.5.5 HiRDBDataReader..1159
16.5.6 HiRDBException .. 1169
16.5.7 HiRDBParameter .. 1169
16.5.8 HiRDBParameterCollection..1174
16.5.9 HiRDBProviderFactory... 1181
16.5.10 HiRDBRowUpdatedEventArgs...1183
16.5.11 HiRDBRowUpdatingEventArgs ...1183
16.5.12 HiRDBTransaction ..1184

16.6 Notes about HiRDB.NET Data Provider..1186
16.6.1 Placing in global assembly cache..1186

xxxviii

16.6.2 Notes about individual methods and properties1187
16.7 Data types of HiRDB.NET Data Provider..1190

16.7.1 DbType and HiRDBType properties ...1190
16.7.2 Data types and accessories used by a UAP ...1192
16.7.3 Type conversion by HiRDB.NET Data Provider1193

16.8 Connection pooling function ... 1200
16.9 Provider-independent codes using DbProviderFactory 1201
16.10 Troubleshooting function of HiRDB.NET Data Provider 1205
16.11 Example of a UAP using HiRDB.NET Data Provider 1210

16.11.1 Connecting to the database ... 1210
16.11.2 Executing the SQL statement ... 1212
16.11.3 Executing a transaction... 1214
16.11.4 Executing a search statement.. 1217
16.11.5 Executing the INSERT facility using arrays... 1218
16.11.6 Executing a repetition column .. 1219
16.11.7 Checking for an error in SQL statements and acquiring error

information ... 1221

17. Type2 JDBC Driver 1223

17.1 Installation and environment setup .. 1224
17.1.1 Installing ... 1224
17.1.2 Environment setup.. 1224
17.1.3 Abbreviation of methods .. 1225

17.2 JDBC1.0 facility .. 1226
17.2.1 Driver class ... 1226
17.2.2 Connection class ... 1235
17.2.3 Statement class.. 1236
17.2.4 PreparedStatement class ... 1237
17.2.5 CallableStatement class .. 1237
17.2.6 ResultSet class .. 1238
17.2.7 ResultSetMetaData class .. 1239
17.2.8 DatabaseMetaData class ... 1242
17.2.9 SQLWarning class... 1242

17.3 JDBC2.0 basic facility ... 1244
17.3.1 Result set enhancements... 1244
17.3.2 Batch updating.. 1246
17.3.3 Added data types .. 1250

17.4 JDBC2.0 Optional Package ... 1259
17.4.1 Database connection using DataSource and JNDI 1259
17.4.2 Connection pooling... 1262
17.4.3 Distributed transactions .. 1264

17.5 JAR file access facility .. 1267
17.5.1 Class name.. 1267
17.5.2 Method name .. 1267

xxxix

17.6 Array class ..1270
17.7 Specifying a value when using a repetition column as the ? parameter1272
17.8 Functions provided by the HiRDB JDBC driver..1275

17.8.1 Provided class..1275
17.8.2 setBlockUpdate ...1275
17.8.3 getBlockUpdate ...1276

17.9 Notes on using the BLOB type...1278
17.10 Setting system properties..1280

17.10.1 Setting the array facility ..1280
17.10.2 Setting the maximum number of SQL search items or ? parameters....1281

17.11 Connection information setup/acquisition interface...1284
17.11.1 setDescription ..1286
17.11.2 getDescription ...1288
17.11.3 setDBHostName..1288
17.11.4 getDBHostName ...1289
17.11.5 setEncodeLang ..1289
17.11.6 getEncodeLang ..1291
17.11.7 setUser ...1291
17.11.8 getUser...1292
17.11.9 setPassword ...1293
17.11.10 getPassword...1293
17.11.11 setXAOpenString...1294
17.11.12 getXAOpenString ..1295
17.11.13 setXACloseString ..1296
17.11.14 getXACloseString..1296
17.11.15 setRMID ..1297
17.11.16 getRMID..1297
17.11.17 setXAThreadMode...1298
17.11.18 getXAThreadMode ..1298
17.11.19 setCommit_Behavior...1299
17.11.20 getCommit_Behavior ..1301
17.11.21 setBlockUpdate ...1301
17.11.22 getBlockUpdate ...1302
17.11.23 setLONGVARBINARY_Access ...1303
17.11.24 getLONGVARBINARY_Access...1304
17.11.25 setSQLInNum..1304
17.11.26 getSQLInNum ...1305
17.11.27 setSQLOutNum ...1306
17.11.28 getSQLOutNum...1307
17.11.29 setSQLWarningLevel...1307
17.11.30 getSQLWarningLevel ..1308
17.11.31 setClear_Env ...1309
17.11.32 getClear_Env ...1309

17.12 Data types and character codes...1311

xl

17.12.1 Data types ..1311
17.12.2 Character code conversion facility ... 1312

17.13 Classes and methods with limitations .. 1314
17.13.1 Driver class ... 1314
17.13.2 Connection class ... 1314
17.13.3 Statement class.. 1315
17.13.4 PreparedStatement class ... 1316
17.13.5 CallableStatement class .. 1316
17.13.6 ResultSet class .. 1317
17.13.7 ResultSetMetaData class .. 1318
17.13.8 DatabaseMetaData class ... 1319
17.13.9 Blob class.. 1326
17.13.10 Array class .. 1326

18. Type4 JDBC Driver 1327

18.1 Installation and environment setup .. 1328
18.1.1 Installation .. 1328
18.1.2 Environment setup.. 1328
18.1.3 Abbreviation of methods .. 1329

18.2 Database connection using the DriverManager class .. 1330
18.2.1 Registering the Driver class.. 1330
18.2.2 Connecting to HiRDB with the getConnection method 1331

18.3 Database connection using a DataSource object and JNDI 1359
18.4 JDBC1.2 core API ... 1363

18.4.1 Driver interface... 1363
18.4.2 Connection interface... 1370
18.4.3 Statement interface ... 1403
18.4.4 PreparedStatement interface ... 1431
18.4.5 CallableStatement interface .. 1468
18.4.6 ResultSet interface.. 1561
18.4.7 DatabaseMetaData interface... 1666
18.4.8 ResultSetMetaData interface ...1811
18.4.9 Blob interface ... 1829
18.4.10 Array interface .. 1836
18.4.11 SQLException interface.. 1842
18.4.12 SQLWarning interface .. 1843
18.4.13 Unsupported interfaces ... 1844

18.5 JDBC2.1 Core API .. 1846
18.5.1 Expansion of the result set.. 1846
18.5.2 Batch update ... 1846
18.5.3 Added data types .. 1853
18.5.4 Unsupported interfaces ... 1853

18.6 JDBC2.0 Optional Package ... 1855
18.6.1 DataSource interface... 1855

xli

18.6.2 ConnectionPoolDataSource interface ...1860
18.6.3 PooledConnection interface ..1864
18.6.4 XAConnection interface..1868
18.6.5 XADataSource interface ...1868
18.6.6 XAResource interface ...1869
18.6.7 XAException interface ..1870
18.6.8 Unsupported interfaces..1870

18.7 Connection information setup and acquisition interface1871
18.7.1 setDescription..1874
18.7.2 getDescription ...1876
18.7.3 setDBHostName..1877
18.7.4 getDBHostName ...1878
18.7.5 setJDBC_IF_TRC ...1878
18.7.6 getJDBC_IF_TRC...1879
18.7.7 setTRC_NO...1880
18.7.8 getTRC_NO ..1880
18.7.9 setUapName ..1881
18.7.10 getUapName..1882
18.7.11 setUser ...1882
18.7.12 getUser ..1883
18.7.13 setPassword ...1884
18.7.14 getPassword...1885
18.7.15 setXAOpenString ..1885
18.7.16 getXAOpenString..1887
18.7.17 setXACloseString..1887
18.7.18 getXACloseString ...1888
18.7.19 setLONGVARBINARY_Access ...1888
18.7.20 getLONGVARBINARY_Access...1889
18.7.21 setSQLInNum..1890
18.7.22 getSQLInNum ...1891
18.7.23 setSQLOutNum...1891
18.7.24 getSQLOutNum ..1892
18.7.25 setSQLWarningLevel ..1893
18.7.26 getSQLWarningLevel ..1894
18.7.27 setXALocalCommitMode ...1894
18.7.28 getXALocalCommitMode...1896
18.7.29 setSQLWarningIgnore ...1896
18.7.30 getSQLWarningIgnore...1897
18.7.31 setHiRDBCursorMode ..1898
18.7.32 getHiRDBCursorMode..1899
18.7.33 setNotErrorOccurred ...1899
18.7.34 getNotErrorOccurred...1900
18.7.35 setEnvironmentVariables...1901
18.7.36 getEnvironmentVariables ..1902

xlii

18.7.37 setEncodeLang.. 1903
18.7.38 getEncodeLang ... 1904
18.7.39 setMaxBinarySize... 1905
18.7.40 getMaxBinarySize .. 1906
18.7.41 setStatementCommitBehavior .. 1907
18.7.42 getStatementCommitBehavior.. 1908
18.7.43 setLONGVARBINARY_AccessSize ... 1909
18.7.44 getLONGVARBINARY_AccessSize ... 1910
18.7.45 setLONGVARBINARY_TruncError.. 1910
18.7.46 getLONGVARBINARY_TruncError ..1911
18.7.47 setStatementCloseBehavior .. 1912
18.7.48 getStatementCloseBehavior.. 1913
18.7.49 setHiRDBINI .. 1914
18.7.50 getHiRDBINI.. 1914
18.7.51 setBatchExceptionBehavior.. 1915
18.7.52 getBatchExceptionBehavior ... 1916

18.8 Data types .. 1917
18.8.1 Mapping SQL data types .. 1917
18.8.2 Mapping during retrieval data acquisition.. 1918
18.8.3 Mapping when a ? parameter is set .. 1921
18.8.4 Data conversion of TIME, DATE, and TIMESTAMP columns............. 1926
18.8.5 Overflow handling.. 1929

18.9 Character conversion facility ... 1939
18.10 Supported client environment definitions.. 1940
18.11 Connection information priorities.. 1951
18.12 Migration from a Type2 JDBC driver.. 1959
18.13 Migration from DABroker for Java ... 1962

18.13.1 System properties related to the DABroker for Java-compatible
facility... 1962

18.13.2 Items that are not compatible with a Type4 JDBC driver 1964
18.14 JDBC interface method trace ... 1968

18.14.1 Setup for trace acquisition .. 1968
18.14.2 Acquisition rules... 1968
18.14.3 Output example... 1969

18.15 Exception trace log .. 1971
18.15.1 Methods to be acquired and setup for log acquisition 1971
18.15.2 Output formats.. 1979
18.15.3 Output example and analysis method... 1986
18.15.4 Required memory size and file size.. 1991
18.15.5 Notes ... 1992

18.16 Example UAP that uses a JDBC driver ... 1995
18.17 Estimating the memory requirements for using a JDBC driver....................... 1998

18.17.1 Estimating the Connection object size.. 1998
18.17.2 Estimating the Statement object size .. 2000

xliii

18.17.3 Estimating the PreparedStatement object size.......................................2001
18.17.4 Estimating the CallableStatement object size2002
18.17.5 Estimating the ResultSet object size ...2003
18.17.6 Estimating the size of trace objects ...2005

19. SQLJ 2007

19.1 Overview ..2008
19.1.1 What is SQLJ?...2008
19.1.2 Environment settings...2010

19.2 SQLJ Translator..2012
19.3 UAP coding rule ...2013

19.3.1 Labeling rule ...2013
19.3.2 SQL coding rule ..2013
19.3.3 SQL statements that can be used in SQLJ...2018
19.3.4 Correspondence between HiRDB data types and SQLJ data types2020
19.3.5 Output variable settings (limited to the native interface edition)............2022
19.3.6 Using data types when a cursor is declared (limited to the native interface

edition) ..2024
19.3.7 Description of connection to and disconnection from a HiRDB server..2025
19.3.8 Description of cursor-based retrieval ..2031
19.3.9 Receiving a dynamic result set..2036
19.3.10 Using JDBC and SQLJ together..2036
19.3.11 Creating and executing a UAP ..2039
19.3.12 Migrating an SQLJ source from the standard interface edition to the native

interface edition ..2043
19.3.13 Notes about UAP development ...2045

19.4 Native Runtime...2047
19.4.1 Package configuration ...2047
19.4.2 Public classes of Native Runtime..2047
19.4.3 Cluster specifications ..2048
19.4.4 Coding examples using the native interface..2054

Appendixes 2059

A. SQL Communications Area...2060
A.1 Organization and contents of the SQL Communications Area2060
A.2 Expanding the SQL Communications Area ..2066

B. SQL Descriptor Area ...2069
B.1 Organization and contents of the SQL Descriptor Area2069
B.2 Expanding the SQL Descriptor Area...2080

C. Column Name Descriptor Area ...2093
C.1 Organization and contents of the Column Name Descriptor Area2093
C.2 Expanding the Column Name Descriptor Area ...2095

D. Type Name Descriptor Area ..2097
D.1 Organization of the Type Name Descriptor Area..2097

xliv

D.2 Contents of the Type Name Descriptor Area.. 2097
D.3 Expanding the Type Name Descriptor Area ... 2098

E. Character Set Descriptor Area... 2100
E.1 Organization and contents of the character set descriptor area 2100
E.2 Expanding the character set descriptor area...2110

F. SQL Data Types and Data Descriptions ...2114
F.1 SQL data types and C data descriptions ...2114
F.2 SQL data types and COBOL data descriptions ... 2135

G. Data Dictionary Table Retrieval .. 2159
G.1 Examples of SQL statements for retrieval .. 2163
G.2 Data dictionary table details.. 2166

H. Functions provided by HiRDB ... 2245
H.1 Hash function for table partitioning.. 2245
H.2 Space conversion function.. 2273
H.3 Function for conversion to a DECIMAL signed normalized number 2280
H.4 Character code type specification function... 2282

I. Scalar Functions That Can Be Specified in the Escape Clause.............................. 2286
J. Character Code Conversion Rules When Character Sets Are Used 2292

J.1 Converting shift JIS kanji codes to EBCDIK .. 2292
J.2 Converting EBCDIK to shift JIS kanji codes .. 2294

K. HiRDB SQL Tuning Advisor Environment Setup.. 2297
L. Maximum and Minimum HiRDB Values.. 2298
M. List of Sample UAPs.. 2300

Index 2303

1

Chapter

1. Overview

This chapter explains the work flow for creating user application programs (UAPs),
the characteristics of UAPs, and the interface between UAPs and the HiRDB system.

This chapter contains the following sections:

1.1 UAP development flow
1.2 UAP characteristics
1.3 Interface with HiRDB
1.4 UAP operation environment

1. Overview

2

1.1 UAP development flow

Before creating a user application program (UAP), the task requirements must be
analyzed in order to create a database that is well suited to the data to be used in the
task. Based on this analysis, you can estimate the overall database size and develop an
outline of the UAP. The following figure shows the relationships between the elements
of the UAP development tasks and the organization of this manual.

Figure 1-1: Relationships between UAP development task elements and the
organization of this manual

#: For work details, see HiRDB Version 9 Installation and Design Guide.

1. Overview

3

1.2 UAP characteristics

1.2.1 UAP format
To manipulate a HiRDB database, descriptions in the SQL language are embedded
directly into a source program written in a high-level language.

The embedded method involves writing descriptions of a database language called
SQL directly into a source program written in a high-level language. If you decide to
create an embedded SQL UAP, program analysis becomes easy. All operations
including the database operations (SQL) can be written as one program.

ODBC functions can also be specified in a UAP, and UAPs can also be created with
JavaTM (SQLJ).

(1) Source program
The following high-level languages can be used to write an embedded SQL UAP:

• C language

• C++ language

• COBOL language

• OOCOBOL language

(2) SQL
SQL is a database language for writing the definition, data manipulation, operation,
and control instructions of a database. You can use these instructions by embedding
them into a source program written in a high-level language. The following figure
shows the SQL functional organization.

1. Overview

4

Figure 1-2: SQL functional organization

For an overview of the SQL language types and functions for programs, see 1.2.2 List
of SQL statements usable in HiRDB. For details about the embedded language, see the
manual HiRDB Version 9 SQL Reference.

1.2.2 List of SQL statements usable in HiRDB
Tables 1-1 to 1-5 list the SQL statements that can be used in HiRDB. In the table
headings, OLTP refers to an application program that complies with X/Open in the
OLTP environment.

For details about the following items, refer to the indicated manuals or locations:

Details about the SQL coding formats

HiRDB Version 9 SQL Reference
Database definitions

HiRDB Version 9 Installation and Design Guide
Database operations

1. Overview

5

2. Database Operations
Database management

3. UAP Design
Embedded language

HiRDB Version 9 SQL Reference
Table 1-1: List of SQL statements (definition SQL)

SQL Function Usability

C COBOL OLTP

ALLOCATE MEMORY
TABLE

(specify a table to be
expanded to the memory
database)

Specifies a table defined by
CREATE TABLE as a table to be
expanded to the memory
database.

U U --

ALTER INDEX

(change index definition)
Renames an index. U U --

ALTER PROCEDURE
(re-create SQL object for
procedure)

Re-creates an SQL object for a
procedure.

U U --

ALTER ROUTINE
(re-create SQL object for
function, procedure, or
trigger)

Re-creates an SQL object for a
function or procedure.

U U --

ALTER TABLE (alter table
definition)

• Adds a new column to end
of a base table.

• Changes a data type.
• Increases the maximum

length of an existing
column of the
variable-length data type.

• Deletes a base table column
that contains no data.

• Changes the uniqueness
constraint for cluster keys
for a base table containing
no data.

• Renames table and
columns.

U U --

ALTER TRIGGER
(re-create SQL object for
trigger)

Re-creates an SQL object for a
trigger.

U U --

1. Overview

6

COMMENT (add comment) Provides a comment in a table
or column.

U U --

CREATE AUDIT (define
audit event)

Defines an audit event to be
recorded as an audit trace and
its target.

U U --

CREATE CONNECTION
SECURITY (define
connection security
facility)

Defines the security item
related to the connection
security facility.

U U --

CREATE FUNCTION
(define function)

Defines a function. U U --

CREATE PUBLIC
FUNCTION

(define public function)

Defines a public function. U U --

CREATE INDEX (define
index)

Defines an index (ascending or
descending order) for columns
in a base table.

U U --

CREATE PROCEDURE
(define procedure)

Defines a procedure. U U --

CREATE PUBLIC
PROCEDURE

(define public procedure)

Defines a public procedure. U U --

CREATE SCHEMA (define
schema)

Defines a schema. U U --

CREATE SEQUENCE

(define sequence
generator)

Defines a sequence generator. U U --

CREATE TABLE (define
base table)

Defines a base table. U U --

CREATE TRIGGER
(define trigger)

Defines a trigger. U U --

CREATE TYPE (define
type)

Defines an abstract data type. U U --

CREATE VIEW (define
view table)

Defines a view table. U U --

SQL Function Usability

C COBOL OLTP

1. Overview

7

CREATE PUBLIC VIEW

(define public view)
Defines a public view table. U U --

DEALLOCATE MEMORY
TABLE

(release table expanded to
memory database)

Releases a table expanded to the
memory database.

U U --

DROP AUDIT (delete
audit event)

Deletes the definition that
matches the audit event and
contents defined by CREATE
AUDIT from the audit targets.

U U --

DROP CONNECTION
SECURITY (delete
connection security
facility)

Deletes the security item related
to the connection security
facility.

U U --

DROP DATA TYPE (delete
user-defined type)

Deletes a user-defined type. U U --

DROP FUNCTION (delete
function)

Deletes a function. U U --

DROP PUBLIC
FUNCTION

(delete public function)

Deletes a public function. U U --

DROP INDEX (delete
index)

Deletes an index. U U --

DROP PROCEDURE (delete
procedure)

Deletes a procedure. U U --

DROP PUBLIC
PROCEDURE

(delete public procedure)

Deletes a public procedure. U U --

DROP SCHEMA (delete
schema)

Deletes a schema. U U --

DROP SEQUENCE

(delete sequence
generator)

Deletes a sequence generator. U U --

SQL Function Usability

C COBOL OLTP

1. Overview

8

DROP TABLE (delete
table)

Deletes a base table, as well as
any indexes, comments, access
privileges, view tables, and
trigger associated with the base
table.

U U --

DROP TRIGGER (delete
trigger)

Deletes a trigger. U U --

DROP VIEW (delete view
table)

Deletes a view table. U U --

DROP PUBLIC VIEW

(delete public view table)
Deletes a public view table. U U --

GRANT AUDIT (change
auditor's password)

Changes the auditor's password. U U --

GRANT CONNECT (grant
CONNECT privilege)

Grants the CONNECT privilege
to users.

U U --

GRANT DBA (grant DBA
privilege)

Grants the DBA privilege to
users.

U U --

GRANT RDAREA (grant
RDAREA usage privilege)

Grants the RDAREA usage
privilege to users.

U U --

GRANT SCHEMA (grant
schema definition
privilege)

Grants the schema definition
privilege to users.

U U --

GRANT access-privilege
(grant access privileges)

Grants access privileges to
users.

U U --

REVOKE CONNECT
(revoke CONNECT
privilege)

Revokes previously granted
CONNECT privileges.

U U --

REVOKE DBA (revoke DBA
privilege)

Revokes previously granted
DBA privileges.

U U --

REVOKE RDAREA (revoke
RDAREA usage
privilege)

Revokes previously granted
RDAREA usage privileges.

U U --

REVOKE SCHEMA
(revoke schema
definition privilege)

Revokes previously granted
schema definition privileges.

U U --

SQL Function Usability

C COBOL OLTP

1. Overview

9

U: Can be used.

--: Cannot be used.

Table 1-2: List of SQL statements (data manipulation SQL)

REVOKE access-privilege
(revoke access privilege)

Revokes previously granted
access privileges.

U U --

SQL Function Usability

C COBOL OLTP

ALLOCATE CURSOR
statement
(allocate cursor)

Allocates a cursor for a SELECT
statement preprocessed by the
PREPARE statement or for a
group of result sets returned by
a procedure.

U U U

ASSIGN LIST statement
(create list)

Creates a list from a base table. U U U

CALL statement#
(call procedure)

Calls a procedure. U U U

CLOSE statement
(close cursor)

Closes a cursor. U U U

DEALLOCATE PREPARE
statement
(release preprocessing)

Releases the allocation of an
SQL statement preprocessed by
the PREPARE statement.

U U U

DECLARE CURSOR
(declare cursor)

Declares a cursor that the
results of a retrieval by the
SELECT statement can be
fetched row by row with the
FETCH statement.

U U U

DELETE statement
(delete rows)

Deletes either the rows that
satisfy specified search
conditions or the row indicated
by the cursor.

U U U

Preparable dynamic
DELETE statement:
locating
(delete row that uses
preprocessable cursor)

Deletes the row indicated by the
specified cursor. This statement
is used for dynamic execution.

U U U

SQL Function Usability

C COBOL OLTP

1. Overview

10

DESCRIBE statement
(receive retrieval and I/O
information)

Returns to the SQL Descriptor
Area SQL retrieval information,
output information, or input
information that was
preprocessed by the PREPARE
statement.

U U U

DESCRIBE CURSOR
statement
(receive retrieval
information for cursor)

Returns to the SQL Descriptor
Area retrieval information for a
cursor that can reference a
result set returned by a
procedure.

U U U

DESCRIBE TYPE
statement
(receive definition
information for
user-defined type)

Receives in the SQL Descriptor
Area the definition information
(including data codes for all
attributes and data length) for a
user-defined type. The
user-defined type has been
directly or indirectly included in
the SQL retrieval item
information that was
preprocessed by the PREPARE
statement.

U U U

DROP LIST statement
(delete list)

Deletes a list. U U U

EXECUTE statement
(execute SQL)

Executes an SQL statement
preprocessed by the PREPARE
statement.

U U U

EXECUTE IMMEDIATE
statement
(preprocess and execute
SQL)

Preprocesses and executes an
SQL statement provided in a
character string.

U U U

FETCH statement
(fetch data)

Advances the cursor to the next
row to be fetched, and reads
column values in that row into
the embedded variable
specified in the INTO clause.

U U U

FREE LOCATOR statement
(invalidate locator)

Invalidates a locator. U U U

SQL Function Usability

C COBOL OLTP

1. Overview

11

INSERT statement
(insert rows)

Inserts rows into a table. A
single row can be inserted by
direct specification of values;
one or more rows can be
inserted by using the SELECT
statement.

U U U

OPEN statement
(open cursor)

Opens a cursor. The cursor
declared by DECLARE CURSOR
or allocated by ALLOCATE
CURSOR is positioned
immediately preceding the first
line of the retrieval results so
that the retrieval results can be
fetched.

U U U

PREPARE statement
(preprocess SQL
statement)

Preprocesses the SQL statement
provided in a character string so
that the statement can be
executed and assigns a name
(SQL statement identifier or
extended statement name) to
that SQL statement.

U U U

PURGE TABLE statement
(delete all rows)

Deletes all rows in a base table. U U --

Single-row SELECT
statement
(retrieve one row)

Searches table data. To fetch
only one row of data from a
table, the single-row SELECT
statement can be used without
having to declare a cursor.

U U U

Dynamic SELECT
statement
(retrieve dynamically)

Searches table data. The
dynamic SELECT statement is
preprocessed by the PREPARE
statement. During the search, a
cursor declared by DECLARE
CURSOR or allocated by
ALLOCATE CURSOR is used to
fetch the retrieval results row by
row.

U U U

UPDATE statement
(update data)

Updates the values of columns
in the rows that satisfy specified
search conditions or in the row
indicated by the cursor.

U U U

SQL Function Usability

C COBOL OLTP

1. Overview

12

U: Can be used.

--: Cannot be used.

#: A procedure that is called under OLTP cannot be executed if it contains a PURGE
TABLE, COMMIT, or ROLLBACK statement.

Table 1-3: List of SQL statements (control SQL)

Preparable dynamic
UPDATE statement:
locating
(update data that uses
preprocessable cursor)

Updates the value of the
specified column in the row
indicated by the specified
cursor. This statement is used
for dynamic execution.

U U U

Assignment statement
(assign value)

Assigns a value to an SQL
variable or SQL parameter.

U U U

SQL Function Usability

C COBOL OLTP

CALL COMMAND statement
(execute command or
utility)

Executes a HiRDB command or
utility.

U U U

COMMIT statement
(terminate transaction
normally)

Terminates the current
transaction normally, sets
synchronization points,
generates one unit of
commitment, and effects the
database updates performed by
the transaction.

U U --

CONNECT statement
(connect UAP to HiRDB)

Passes the authorization
identifier and password to
HiRDB, and enables the UAP to
use HiRDB.

U U --

DISCONNECT statement
(disconnect UAP from
HiRDB)

Terminates the current
transaction normally, sets
synchronization points, and
generates one unit of
commitment, then disconnects
the UAP from HiRDB.

U U --

LOCK statement (lock
control on tables)

Performs exclusive locks on
specified tables.

U U U

SQL Function Usability

C COBOL OLTP

1. Overview

13

U: Can be used.

--: Cannot be used.

Table 1-4: List of SQL statements (embedded language)

ROLLBACK statement
(cancel transaction)

Cancels the current transaction
and nullifies the database
updating performed by the
transaction.

U U --

SET SESSION
AUTHORIZATION
statement (change
execution user)

Changes the user who is
currently connected.

U U U

SQL Function Usability

C COBOL OLTP

BEGIN DECLARE
SECTION (declare
beginning embedded
SQL)

Indicates the beginning of an
embedded SQL declare section,
that specifies the embedded
variables and indicator
variables used in the SQL.

U U U

END DECLARE SECTION
(declare end of embedded
SQL)

Indicates the end of an
embedded SQL declare section.

U U U

ALLOCATE CONNECTION
HANDLE (allocate
connection handle)

Allocates a connection handle
to be used by the UAP in an
environment that uses multiple
connection functions.

U U --

FREE CONNECTION
HANDLE (free connection
handle)

Frees a connection handle that
was allocated by ALLOCATE
CONNECTION HANDLE.

U U --

DECLARE CONNECTION
HANDLE SET (declare
connection handle to be
used)

Declares a connection handle to
be used by the UAP SQL in an
environment that uses the
multi-connection facility.

U U U#

DECLARE CONNECTION
HANDLE UNSET (cancel
all connection handles
being used)

Cancels all declarations of
connection handle use specified
with DECLARE CONNECTION
HANDLE SET statements before
this statement.

U -- --

SQL Function Usability

C COBOL OLTP

1. Overview

14

GET CONNECTION
HANDLE (get connection
handle)

Allocates the connection handle
to be used by the UAP when the
multi-connection facility is to
be used in an X/Open XA
interface environment.

U U U#

COPY (copy cataloged
text)

Copies cataloged text into a
source program.

-- U U

GET DIAGNOSTICS (get
diagnostic information)

If the preceding SQL statement
is CREATE PROCEDURE or CALL,
obtains error information and
diagnostic information from the
diagnostics area.

U U U

COMMAND EXECUTE
(execute commands from
UAP)

Executes HiRDB and OS
commands from inside the
UAP.

U -- --

SQL prefix Indicates the beginning of SQL
statements.

U U U

SQL terminator Indicates the end of SQL
statements.

U U U

WHENEVER (declare
embedded exception)

Declares UAP processing,
based on the return code set by
HiRDB in the SQL
Communications Areas after
SQL statements have been
executed.

U U U

SQLCODE variable Receives the return code issued
by HiRDB after an SQL
statement has been executed.

U U U

SQLSTATE variable Receives the return code issued
by HiRDB after an SQL
statement has been executed.

U U U

Declaration of
PDCNCTHDL-type variable

Declares a connection handle
type variable to be used in an
environment that uses the
multi-connection facility.

U -- --

INSTALL JAR (register
JAR file)

Installs the JAR file in the
HiRDB server.

U -- --

SQL Function Usability

C COBOL OLTP

1. Overview

15

U: Can be used.

--: Cannot be used.

#: The statement can be used if a connection handle was allocated with the GET
CONNECTION HANDLE statement.

Table 1-5: List of SQL statements (routine control SQL)

REPLACE JAR
(re-register JAR file)

Replaces the JAR file in the
HiRDB server.

U -- --

REMOVE JAR

(delete JAR file)
Uninstalls the JAR file from the
HiRDB server.

U -- --

SQL Function Usability

C COBOL OLTP

Compound statement
(execute multiple
statements)

Executes a group of SQL
statements as a single SQL
statement.

PFT PFT --

IF statement (execute by
conditional branching)

Executes the SQL statement
that satisfies a set of specified
conditions.

PFT PFT --

RETURN statement (return
return value)

Returns the return value of a
function.

PFT#1 PFT#1 --

WHILE statement (repeat
statements)

Executes a set of SQL
statements repetitively.

PFT PFT --

FOR statement (repeat
execution of each row)

Repeats execution of an SQL
statement for each row in a
table.

PFT#3 PFT#3 --

LEAVE statement (leave
statement)

Exits from a compound
statement or the WHILE
statement and terminates
execution of the statement.

PFT PFT --

WRITE LINE statement
(output character string to
file)

Outputs a character string of the
specified value expression to a
file.

PFT PFT --

SIGNAL statement (report
error)

Triggers an error and reports it. PFT#2 PFT#2 --

SQL Function Usability

C COBOL OLTP

1. Overview

16

PFT: The statement cannot be used directly in the UAP. However, the statement can be
used to define an SQL procedure, SQL function, or trigger operation in the CREATE
PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER statement.

--: Cannot be used.

Note
In procedure definitions, the SQL statements that can be specified in addition to
the routine control SQL statements are the CALL, CLOSE, DECLARE CURSOR,
DELETE, FETCH, INSERT, OPEN, PURGE TABLE, single-row SELECT, UPDATE,
COMMIT, LOCK, and ROLLBACK statements. In functions, SQL statements other
than routine control SQL statements cannot be specified.

#1: This statement cannot be used if an SQL procedure or a trigger operation is defined
in the CREATE PROCEDURE or CREATE TRIGGER statement.

#2: This statement cannot be used if an SQL function is defined in the CREATE
FUNCTION statement.

#3: This statement cannot be used in the CREATE FUNCTION statement.

RESIGNAL statement
(re-report error)

Triggers an error and reports it
again.

PFT#2 PFT#2 --

SQL Function Usability

C COBOL OLTP

1. Overview

17

1.3 Interface with HiRDB

To manipulate a HiRDB database, create a UAP. The UAP issues SQL statements and
uses the interface area to exchange information with HiRDB.

The following figure shows the interface between a UAP and HiRDB.

Figure 1-3: Interface between a UAP and HiRDB

#: For details about the interface area, see 3.2.2 Interface areas.

1. Overview

18

1.4 UAP operation environment

HiRDB operates in a client/server network environment. The unit used to send a
request for executing a UAP is called the client, and the unit used to receive a request
is called the server. The system used as the server is the HiRDB server.

A client can operate in any combination of these eight modes:

• Operating mode in which a machine other than the server machine is used as the
client

• Operating mode in which the same server machine as the HiRDB server is used
as the client

• Operating mode in which a UAP under On-Line Transaction Processing (OLTP)
is used as the client

• Operating mode in which an ODBC#1-compatible application program is used as
the client

• Operating mode in which an OLE DB#2-compatible application program is used
as the client

• Operating mode in which an ADO.NET-compatible application program is used
as the client

• Operating mode in which a Java (JDBC-compatible) application program is used
as the client

• Operating mode in which a VOS3 system or Linux for AP8000#3 UAP is used as
the client

#1: ODBC refers to a database access mechanism advocated by Microsoft
Corporation. For details about how to access HiRDB from an ODBC-compatible UAP,
see 14. HiRDB Access from ODBC Application Programs.

#2: Like ODBC, OLE DB is an API for accessing a wide range of data sources. Unlike
ODBC, OLE DB also defines interfaces for accessing non-SQL data. For details about
how to access HiRDB from an OLE DB-compatible UAP, see 15. HiRDB Access from
OLE DB Application Programs.

#3: Linux for AP8000 operates with HiRDB/Developer's Kit Version 6.

Figures 1-4 to 1-11 show the client operation modes.

Use the same platform for the HiRDB/Developer's Kit used to create the UAP and the
HiRDB/Developer's Kit used to execute the UAP.

1. Overview

19

Figure 1-4: Operating mode using a machine other than the server machine as a
client

1. Overview

20

Figure 1-5: Operating mode using the same server machine as the HiRDB
server as the client

1. Overview

21

Figure 1-6: Operating mode using a UAP under OLTP as a client

1. Overview

22

Figure 1-7: Operating mode using an ODBC-compatible UAP as a client

1. Overview

23

Figure 1-8: Operating mode using an OLE DB-compatible UAP as a client

1. Overview

24

Figure 1-9: Operating mode using an ADO.NET-compatible UAP as a client

1. Overview

25

Figure 1-10: Operating mode using a Java (JDBC-compatible) application
program as a client

1. Overview

26

Figure 1-11: Operating mode using a VOS3 system or Linux for AP8000 UAP
as a client

27

Chapter

2. Database Operations

This chapter explains the data expressions used in a database and provides examples
of basic database operations.

The SQL statements used in the examples are excerpts from the complete SQL
statements written according to the prescribed syntax; for details about SQL
statements, see the HiRDB Version 9 SQL Reference manual.

This chapter contains the following sections:

2.1 Database data expressions
2.2 Cursor usage
2.3 Data retrieval
2.4 Data updating
2.5 Data deletion
2.6 Data insertion
2.7 Specific data search
2.8 Data operations
2.9 Data processing
2.10 Outer joining of tables
2.11 Defining and manipulating a view table
2.12 Manipulating data in a table with abstract data types

2. Database Operations

28

2.1 Database data expressions

2.1.1 Relational database tables
A HiRDB database is a relational database whose logical structure is expressed by
tables. This section explains tables.

(1) Basic table configuration
A relational database is expressed logically by tables.

The values in the vertical and horizontal directions of a table are called columns and
rows, respectively. The values within a column represent data with the same attribute,
that is, the same data type. A table consists of a set of rows; the row is the basic unit
for retrievals. Each column is assigned a name (column name) that is used for database
manipulations.

The following figure shows an example of a basic table configuration. Ending zeros in
the PRICE column (in this example and throughout the manual) are not displayed on
the actual screen.

Figure 2-1: Basic table configuration example

(2) Tables that use repetition columns
A repetition column refers to a column that consists of multiple elements. Using
repetition columns has the following advantages:

• Multiple tables do not have to be joined.

2. Database Operations

29

• Less disk space is used because many duplicate information items are eliminated.

• Access performance is better because related data items (repetition data items) are
stored near each other rather than in separate tables.

The following figure shows a configuration example of a table that has repetition
columns.

Figure 2-2: Configuration example of a table with repetition columns

(3) View table
A virtual table that limits the range of columns or rows that can be manipulated by the
user can be created based on an actual table (referred to hereafter as a base table). Such
a virtual table is called a view table. A view table can be defined for the following
purposes, thus restricting the manipulation range and simplifying operations:

• To retrieve only certain columns of a table

• To change the order of the columns in a table

• To retrieve only certain rows of a table

Although a view table is usually defined to view only selected columns or rows of a
table, it can be retrieved in the same way as a base table. Because use of a view table
restricts the range of manipulations that are possible, precise security measures can be
implemented by means of view tables.

The following figure shows an example of a view table created from a base table.

For details about how to define and manipulate a view table, see 2.11 Defining and

2. Database Operations

30

manipulating a view table.

Figure 2-3: Example of a base table and view table

2.1.2 Object relational database tables
The HiRDB database can also be defined as an object relational database. An object
relational database table can be created by defining abstract data types in the table
columns.

The following figure shows a basic configuration example of a table that has abstract
data types.

2. Database Operations

31

Figure 2-4: Basic configuration example of a table with abstract data types

2. Database Operations

32

2.2 Cursor usage

Table retrieval results usually consist of multiple rows. A cursor is used by the UAP to
retrieve rows one at a time from the entire set of retrieved rows.

This section explains how to retrieve data using a cursor and how to use the cursor to
update a retrieved row.

For details about how to use a cursor, see 3.5 Use of a cursor.

(1) Retrieval using a cursor
When table retrieval results consist of multiple rows or when retrieving data
dynamically after preprocessing the SQL statement with the PREPARE statement, a
cursor is used to retrieve the individual rows.

When retrieval results consist of one or fewer rows, it is possible to use the single row
SELECT statement for retrieval instead of a cursor.

For details about the PREPARE and single row SELECT statements, see the HiRDB
Version 9 SQL Reference manual.

As an example of using a cursor to retrieve multiple rows, the UAP below retrieves
product codes and unit prices from a stock table:

2. Database Operations

33

(2) Using a cursor to update the row retrieved
When multiple rows are retrieved, a cursor is used to update the rows one at a time.

Although the single row SELECT statement can be used to update a retrieval that
consists of one row or less, use of a cursor results in better processing efficiency.

As an example of using a cursor to update rows one at a time, the UAP below reduces
the unit price of each product in the stock table by 10% (multiplies by 0.9):

2. Database Operations

34

(3) Retrieval without using a cursor (single row retrieval)
As an example of a retrieval that does not use a cursor, the UAP below makes a count
of the items in the stock table and sets the results in an embedded variable.

2. Database Operations

35

2.3 Data retrieval

Selecting those rows that satisfy a condition specified for a particular column is called
a retrieval. You can also join and search two or more tables based on the values of a
specific column and obtain a single set of retrieval results.

This section describes retrieval from one or more tables.

2.3.1 Retrieval from a single table
The following figure shows, as an example of retrieval from a single table, the use of
a SELECT statement to retrieve from a stock table the rows that contain SKIRT as the
product name.

Figure 2-5: Retrieval from a single table

The table retrieval results are expressed as a table and passed to the UAP that requested
the processing.

2. Database Operations

36

A cursor is then used by the UAP to reference the retrieval results table. Because a
cursor can point to a specific row in the retrieval results table, the UAP is able to read
the contents of the row being indicated by the cursor and process that row's contents.

The following figure shows a sequence in which a UAP processes data from a retrieval
results table.

Figure 2-6: UAP data processing sequence for a retrieval results table

The processing steps shown in Figure 2-6 are explained as follows.

1. Cursor definition

To use a cursor, a cursor name, the name of the table to be retrieved using the
cursor, and retrieval conditions are defined. For the example in Figure 2-5, the
following definitions define the cursor name as CUR1 and specify that SKIRT only
is to be retrieved from the stock table:
DECLARE CUR1 CURSOR FOR
SELECT PNAME,COLOR,PRICE FROM STOCK
 WHERE PNAME=N'SKIRT'

2. Cursor opening

2. Database Operations

37

When a cursor is opened, retrieval results can be extracted in accordance with the
defined conditions. The retrieval results are stored in a table format in the system
and remain valid until the cursor is closed.

The following specification opens the cursor:
OPEN CUR1

As soon as a cursor is opened, it is positioned at the first column above the first
row of the retrieval results table. The following table shows a cursor immediately
after it has been opened; in this example, the cursor name is CUR1 and the retrieval
condition for the stock table is SKIRT.

Figure 2-7: Cursor position immediately following cursor opening

3. Data extraction

The FETCH statement advances the cursor by one row (to the next row). The
contents of that row are then stored in a specified area in the UAP.

The following figure shows the cursor immediately after it has been opened and
how the retrieved contents are stored in the UAP.

2. Database Operations

38

Figure 2-8: Example of extracting retrieved contents and storing them in the
UAP

4. Data output

The data stored in the area in the UAP is output as necessary.

5. Cursor closure

When processing of retrieved data by the UAP has been completed, close the
cursor.

Once the cursor is closed, the retrieval results table stored in the system is deleted.
The following specification closes the cursor:
CLOSE CUR1

2. Database Operations

39

2.3.2 Retrieval from multiple tables
The FROM clause of the SELECT statement is used to retrieve data from two or more
tables. The following figure shows, as an example of obtaining a single result from
multiple tables, the procedure for creating a table consisting of form numbers and
product names for products with fewer than 60 units in stock and fewer than 30 units
ordered.

2. Database Operations

40

Figure 2-9: Example of retrieval from two tables

2. Database Operations

41

2.3.3 Retrieval of a table with FIX attribute
When retrieving data from a table with the FIX attribute, an entire row can be retrieved
as a fixed-length record. In a sense, the entire row is manipulated as a single column.
This is called retrieval on a row basis; ROW is specified in the selection clause of the
SELECT statement.

Retrieval on a row basis reduces retrieving overhead for each column, so it enhances
access performance.

The following figure shows, as an example of retrieval on a row basis, the procedure
for using a cursor (CUR1) to retrieve the product name POLO SHIRT from the stock
table and then setting it into an embedded variable (:XROW).

2. Database Operations

42

Figure 2-10: Example of retrieval on a row basis

2. Database Operations

43

2.4 Data updating

The following three methods can be used to update information in a table:

• Updating the row indicated by the cursor

• Updating only those rows that satisfy a condition

• Updating on a row basis (for table with FIX attribute only)

If the table is partitioned by key ranges, the values in the column being used as the key
cannot be updated.

2.4.1 Updating using a cursor
Multiple retrieved rows are updated by using a cursor to retrieve one row at a time. The
following figure shows how to use a cursor to update a table.

Figure 2-11: Procedure for updating a table

2. Database Operations

44

The steps of the processing procedure shown in Figure 2-11 are basically the same as
the steps in Figure 2-6, except for data updating.

The following figure shows an example of using a cursor to update a table. It is
assumed that the steps up to data fetching have been completed.

Figure 2-12: Example of using a cursor to update a table

2.4.2 Updating with a condition specified
When a condition is specified for data updating, all rows that satisfy the condition are
updated. To update by specifying a condition, the WHERE clause must be specified in
the UPDATE statement.

If the table is partitioned by key ranges, the values in the column being used as the key
cannot be updated.

The following figure shows, as an example of updating with a condition specified, the
procedure for updating to 20 the quantity of each item whose product code in the stock
table is 411M.

2. Database Operations

45

Figure 2-13: Example of updating with condition specified

2.4.3 Updating a table with the FIX attribute
When a table with the FIX attribute is updated, an entire row can be updated as
fixed-length data. To update on a row basis, ROW must be specified in the SET clause
of the UPDATE statement.

Updating on a row basis reduces updating overhead for each column, so it enhances
access performance.

The following figure shows, as an example of updating a table on a row basis, the
procedure for updating from 12 to 20 the quantity of each item in the stock table whose
product code is 411M by specifying the new value in an embedded variable (:YROW).

2. Database Operations

46

Figure 2-14: Example of updating on a row basis

2.4.4 Updating a table with repetition columns
The following three methods are provided for updating a table that has repetition
columns:

• Updating an existing element (SET clause)

• Adding a new element (ADD clause)

• Deleting an existing element (DELETE clause)

To update a table that has repetition columns, specify the repetition column elements
to be updated using the following format: repetition-column-name[{subscript| *}].
subscript indicates the element position.

2. Database Operations

47

This section describes the method for adding a new element.

The figure below shows an example of updating a table that has repetition columns.
This example adds in the staff table the element DATABASE to the qualifications of the
employee named SMITH, BOB.

2. Database Operations

48

Figure 2-15: Example of updating a table with repetition columns

2. Database Operations

49

2.5 Data deletion

The following three methods are provided for deleting information in a table:

• Deleting the row indicated by the cursor

• Deleting only those rows that satisfy a condition

• Deleting all rows

2.5.1 Deletion using a cursor
To delete rows in a table, a cursor can be used to verify each row's contents and delete
the rows one row at a time. The following figure shows the procedure for using a cursor
to delete rows in a table.

Figure 2-16: Procedure for deleting a table

The steps of the processing procedure shown in Figure 2-16 are basically the same as
the steps in Figure 2-6, except for data deletion.

2. Database Operations

50

The figure below shows an example of using a cursor to delete data one row at a time.
It is assumed that the steps up to data fetching have been completed.

Figure 2-17: Example of using a cursor to delete rows

2.5.2 Deletion with a condition specified
If a condition is specified for data deletion, all rows that satisfy the condition are
deleted. To delete by specifying a condition, the WHERE clause must be specified in the
DELETE statement.

2. Database Operations

51

The following figure shows, as an example of deletion with a condition specified, the
procedure for deleting from the stock table only the items whose product name is
SKIRT.

Figure 2-18: Example of deletion with a condition specified

2.5.3 Deleting all rows in a table
When the target of data deletion is a base table, it is possible with the PURGE TABLE
statement to delete all rows in the table in one step. Deleting all rows in a table in one
step is more efficient than deleting them by using the DELETE statement with the
WHERE clause omitted (without specifying a condition).

The PURGE TABLE statement cannot be executed if the application program is
compliant with X/Open in the On-Line Transaction Processing (OLTP) environment.

2. Database Operations

52

The following figure shows, as an example of deleting all rows in a table, the
procedure for deleting all data from the stock table.

Figure 2-19: Example of deleting all rows in a table

2. Database Operations

53

2.6 Data insertion

Two methods are provided for inserting rows into a table:

• Inserting rows on a column basis

• Inserting rows on a row basis (to a table with FIX attribute)

2.6.1 Inserting rows on a column basis
To insert a single row by directly specifying values in each column, use the INSERT
statement.

The following figure shows, as an example of inserting rows on a column basis, the
procedure for inserting the values set in embedded variables (:ZPCODE to
:ZSQUANTITY) into columns in the stock table.

2. Database Operations

54

Figure 2-20: Example of row insertion on a column basis

2.6.2 Inserting rows on a row basis (to a table with the FIX attribute)
When rows are inserted into a table with the FIX attribute, an entire row can be inserted
as a fixed-length record. To insert a row on a row basis, ROW must be specified in the
INSERT statement.

Rows can be inserted on a row basis only into a base table.

The following figure shows, as an example of inserting rows on a row basis, the
procedure for inserting into the stock table the values set in an embedded variable
(:ZROW).

2. Database Operations

55

Figure 2-21: Example of row insertion on a row basis

2.6.3 Inserting rows into a table with repetition columns
When inserting rows into a table that has repetition columns, specify the insertion
values for the repetition columns using the following format:
ARRAY[element-value[,element-value]...].

The figure below shows an example of inserting rows into a table that has repetition
columns. This example inserts a row into the staff table.

2. Database Operations

56

Figure 2-22: Example of inserting a row into a table with repetition columns

2. Database Operations

57

2.7 Specific data search

Retrieving specific data with conditions is called a search. A search condition is
specified to manipulate data in a table on the basis of a condition. A search condition
selects the rows to be manipulated; multiple conditions can be combined using logical
operators. The following four methods are provided for searching for data in a table:

• Searching for data within a specified range of values

• Searching for a specified character pattern

• Searching for non-NULL data

• Searching for data that satisfies multiple conditions

2.7.1 Searching for data within a specified range of values
To manipulate rows by specifying a range of values, a comparison predicate, a
BETWEEN predicate, or an IN predicate is used to set a condition.

(1) Comparison predicate
A comparison predicate is used to specify an equivalence or size comparison as the
search condition.

The following figure shows, as an example of a data search using a comparison
predicate, the procedure for searching the stock table for the product codes and product
names of products with 50 or fewer units in stock.

2. Database Operations

58

Figure 2-23: Data search example using a comparison predicate

(2) BETWEEN predicate
A BETWEEN predicate extracts only the data within a specified range of values.

The following figure shows, as an example of a data search using a BETWEEN
predicate, the procedure for searching the stock table for the product codes and product
names of products with 200 to 300 units in stock.

2. Database Operations

59

Figure 2-24: Data search example using a BETWEEN predicate

(3) IN predicate
An IN predicate extracts only those items with data that matches specified multiple
values.

The following figure shows, as an example of a data search using an IN predicate, the
procedure for searching the stock table for the product codes and product names of
products whose unit price is either 36.40 or 47.60.

2. Database Operations

60

Figure 2-25: Data search example using an IN predicate

2.7.2 Searching for a specific character pattern
The LIKE predicate manipulates rows that have a specified character pattern in their
column.

The following figure shows, as an example of a data search using a LIKE predicate,
the procedure for searching the order table for the form numbers, product codes, and
quantities ordered for those customer codes with T as the second character.

2. Database Operations

61

Figure 2-26: Data search example using a LIKE predicate

2.7.3 Searching for non-NULL data
The NULL predicate combined with NOT manipulates rows that do not contain any null
values in their table columns.

When NOT is not combined with the NULL predicate, the rows containing the null value
become the target of manipulation.

The following figure shows, as an example of a data search using the NULL predicate
with NOT specified, the procedure for searching the order table for the form numbers,
product codes, and quantities ordered for all customer codes that have been set
(non-null values).

2. Database Operations

62

Figure 2-27: Data search example using a NULL predicate with NOT

2.7.4 Searching for data that satisfies multiple conditions
The logical operators AND, OR, and NOT manipulate rows containing data that satisfies
multiple conditions.

The following figure shows, as an example of a data search that satisfies multiple
conditions, the procedure for searching the stock table for the product codes and
quantities ordered for products whose name is either BLOUSE or POLO SHIRT, and that
have 50 or more units in stock.

2. Database Operations

63

Figure 2-28: Data search example involving multiple conditions

2.7.5 Searching for data using a Boolean predicate
If the result of a function defined by an abstract data type or the result of a user-defined
function is a Boolean value (TRUE, FALSE, or UNKNOWN), use a Boolean predicate
for the true/false decision. For details about data retrieval strings that use a Boolean
predicate, see 2.12 Manipulating data in a table with abstract data types.

2.7.6 Searching for data using a structured repetition predicate
When searching for data by specifying conditions for multiple repetition columns in a
table that has repetition columns, use a structured repetition predicate.

The following figure shows, as an example of a data search using a structured
repetition predicate, the procedure for searching the staff table for those employees
who list a father as a family member.

2. Database Operations

64

Figure 2-29: Data search example using a structured repetition predicate

2.7.7 Searching for data using a subquery
A query can be represented structurally by specifying values of the query results in a
search condition. A subquery allows an easy access to complex queries in a database.

The following figure shows, as an example of a data search using a subquery, the
procedure for searching the stock table for the product codes of products whose price
equals or exceeds the average price.

2. Database Operations

65

Figure 2-30: Data search example using a subquery

(1) Subquery using a quantified predicate
A quantified predicate can be used to determine whether or not the results of a
subquery satisfy a specified set of comparison conditions and to further narrow the
retrieval results.

2. Database Operations

66

The following figure shows, as an example of a subquery using a qualified predicate,
the procedure for retrieving from the stock table the product codes and names of all
products whose quantity in stock is greater than the quantity in stock for any BLOUSE
(regardless of the product code).

Figure 2-31: Data search example using a subquery and a quantified predicate

2. Database Operations

67

(2) Subquery using the EXISTS predicate
The EXISTS predicate is used to test whether or not the results of a subquery are an
empty set.

The following figure shows, as an example of a subquery using the EXISTS predicate,
the procedure for retrieving from the stock and order tables the names of all products
for which no orders have been received.

Figure 2-32: Example of a subquery using the EXISTS predicate

2. Database Operations

68

2. Database Operations

69

2.8 Data operations

It is possible to search for numeric values, dates, and times in table columns and to
extract the results of operations on such values.

The following types of operations can be performed on data in a table:

• Four types of arithmetic operations on numeric data

• Operations on date and time data

2.8.1 Arithmetic operations on numeric data
Four types of arithmetic operations can be performed on numeric values in specified
columns, and the results of such operations can be extracted.

The four types of arithmetic operations are addition, subtraction, multiplication, and
division.

The following figure shows, as an example of performing arithmetic operations on
numeric data, the procedure for calculating projected sales revenue from the unit prices
and stock quantities of the products named SOCKS, and then retrieving the product
code and calculation result for each product (in units of $1 million).

2. Database Operations

70

Figure 2-33: Example of numeric data operations

2.8.2 Date and time data operations
Operations can be performed on date and time data in a table, and retrieval results
based on a specific period of time can be extracted.

Scalar functions are used to operate date or time data. Date operations are used for date
data, and time operations are used for time data.

The following figure shows, as an example of performing a time operation on data, the
procedure for extracting from the sales order table the form numbers, product codes,
and quantities ordered for all orders received before noon (12:00:00).

2. Database Operations

71

Figure 2-34: Example of time data operation

2. Database Operations

72

2.9 Data processing

Data to be extracted from a table can be processed in various ways, such as by grouping
or by sorting in ascending or descending order. HiRDB provides three types of data
processing:

• Grouping data

• Sorting in ascending or descending order

• Eliminating duplicated data

2.9.1 Data grouping
If a value is repeated in a specified column, all the items with that value can be grouped
as a single item in the retrieval results. The GROUP BY clause performs this grouping.
The AVG, SUM, MAX, MIN, and COUNT set functions, respectively, can be used to obtain
the average value, total value, maximum value, minimum value, and rows count of
each group.

The following figure shows, as an example of data grouping, the procedure for
grouping sets of product codes in the ORDER1 table and then extracting the total
quantity ordered for each group.

2. Database Operations

73

Figure 2-35: Data grouping example

2.9.2 Data sorting
The data in a specified column of a table can be sorted in ascending or descending
order of the values.

The following figure shows, as an example of data sorting, the procedure for retrieving
form numbers, product codes, and quantities ordered from the stock table and then
sorting the retrieved items in ascending order of the product codes.

2. Database Operations

74

Figure 2-36: Data sorting example

2.9.3 Duplicated data elimination
When two or more tables are manipulated, duplicated data can be eliminated from
retrieval results. UNION or DISTINCT specifies duplicated data elimination.

The following figure shows, as an example of eliminating duplicate data, the
procedure for retrieving the product codes of products (with at least 10 units ordered)
from two order tables and then eliminating the duplicated data.

2. Database Operations

75

Figure 2-37: Duplicated data elimination example

2. Database Operations

76

2.10 Outer joining of tables

When it is necessary to join an outer table that contains general information and an
inner table that contains partial information to obtain information on all rows of the
outer table, in addition to the information that can be obtained from normal joining
(inner joining), outer joining provides a method of fetching the retrieval results. In
outer joining, any inner table columns that do not meet a specified set of joining
conditions are assigned null values. One use of outer joining is to join tables that have
missing values.

The following figure shows, as an example of an outer join, the procedure for
performing an outer join on the stock table and order table to retrieve product codes,
produce names, colors, and form numbers of those products whose stock quantity is
less than 100.

2. Database Operations

77

Figure 2-38: Example of outer joining

2. Database Operations

78

The following figure shows an example of an outer join with three or more tables. This
example performs an outer join on the stock table, the current month's order table, and
the previous month's order table to retrieve the product names and unit prices, as well
as the current and previous months' order quantities for all products whose price is
$50.00 or more.

2. Database Operations

79

Figure 2-39: Example of outer joining with three or more tables

2. Database Operations

80

2. Database Operations

81

2.11 Defining and manipulating a view table

Defining a view table derived from other tables to view specific columns and rows
allows you to restrict the table data that can be manipulated.

This section describes definition and manipulation of view tables, using as examples
the stock table and sales table shown in the following figure.

Figure 2-40: Tables used in examples of manipulating view tables

(1) Defining view tables
Five examples of defining view tables are provided in this section:

• Defining a view table to limit the columns to be searched

• Using search conditions to define a view table

• Defining a read-only view table

2. Database Operations

82

• Defining a view table from which duplications are eliminated

• Defining a view table from another view table

(a) Defining a view table to limit the columns to be searched
The following figure shows an example of defining a view table to limit the columns
to be searched. In this example, view table V1 is derived from the stock table so that
the columns that can be searched do not include the color column.

2. Database Operations

83

Figure 2-41: Example of defining a view table for limiting the columns to be
searched

(b) Using search conditions to define a view table
The figure below shows an example of using search conditions to define a view table.
In this example, a query is used to create view table V2 from the stock and sales tables
in order to determine which products at each branch have sold fewer than 10 items.

2. Database Operations

84

Figure 2-42: Example of using search conditions to define a view table

2. Database Operations

85

(c) Defining a read-only view table
The figure below shows an example of defining a read-only view table. In this
example, a query is used to create read-only view table V3 from the stock table to
determine those products whose price is higher than the average price of all products;
the retrieved information includes the product codes, product names, prices, and stock
quantities.

Figure 2-43: Example of defining a read-only view table

(d) Defining a view table from which duplications are eliminated
The figure below shows an example of defining a view table from which duplications
are eliminated. In this example, view table V4 is created from the stock table; in view
table V4, duplicated product names and prices are eliminated.

2. Database Operations

86

Figure 2-44: Example of defining a view table from which duplications are
eliminated

(e) Defining a view table from another view table
The figure below shows an example of defining a view table from another view table.
In this example, a query is used to define view table V5, which is to consist of the rows
in view table V1, defined in (a), that contain SKIRT as the product name.

2. Database Operations

87

Figure 2-45: Example of defining a view table from another view table

(2) Manipulating a view table
The figure below shows an example of manipulating a view table. In this example, the
product name, branch, and sales total of the product with the highest sales total are
retrieved from the view table (V2) defined in (1)(b) Using search conditions to define
a view table. (The view table is specified in the SQL statement that specifies the
subquery.)

2. Database Operations

88

Figure 2-46: Example of manipulating a view table

2. Database Operations

89

2.12 Manipulating data in a table with abstract data types

To manipulate data in a table that has abstract data types, use functions or component
specifications. The functions include constructor functions (or default constructor
functions), which are created automatically when abstract data types are defined, and
user-defined functions, which are any functions that the user defines. Component
specifications manipulate attributes that make up abstract data types.

Some abstract data types are provided by plug-ins and some are defined by the user.
This section discusses the SGMLTEXT and XML types that are provided by plug-ins.

2.12.1 SGMLTEXT type
This section describes examples that use the HiRDB Text Search Plug-in. The HiRDB
Text Search Plug-in provides the abstract data type functions shown in the following
table. For details about the abstract data type functions provided by the plug-in, refer
to the individual plug-in manuals.

Table 2-1: Descriptions of abstract data type functions provided by the HiRDB
Text Search Plug-in

This section also explains examples that use SGML text to manage an operation
manual for medicines. The examples use tables that were defined in the database
creation section (for tables that include abstract data types provided by the plug-in) of
the HiRDB Version 9 Installation and Design Guide.

(1) Retrieving data
(a) Example retrieval with the SGMLTEXT type (1)

Figure 2-47 shows an example of data retrieval with the SGMLTEXT type. This example
searches for medicines that are indicated for relief of headaches. The SQL statement
for retrieving the data can be specified as follows:
SELECT MEDICINE_ID FROM MEDICINE_MGMT_TABLE
 WHERE contains (OPERATION_MANUAL, 'attached text data
[indications {"headaches"}]')
 IS TRUE

This example uses the contains abstract data type function to retrieve medicines that
include the character string headaches in the indications structure section of the

Function name Description

SGML TEXT SGML text registration

Contains Structure specification retrieval

contains_with_score, score Score retrieval

2. Database Operations

90

OPERATION_MANUAL column.

Figure 2-47: Example of retrieval with the SGMLTEXT type (1)

(b) Example retrieval with the SGMLTEXT type (2)
Figure 2-48 shows another example of retrieval with the SGMLTEXT type. This
example retrieves the medicine ID and inventory quantity of medicines that are
indicated for food poisoning. The SQL statement for retrieving the data can be
specified as follows:
SELECT MEDICINE_MGMT_TABLE.MEDICINE_ID,SQUANTITY
 FROM MEDICINE_MGMT_TABLE LEFT OUTER JOIN STOCK
 ON MEDICINE_MGMT_TABLE.MEDICINE_ID=STOCK.MEDICINE_ID
 WHERE contains (OPERATION_MANUAL, 'attached text data
[indications {"food poisoning"}]')

2. Database Operations

91

 IS TRUE

In this example, a medicine management table and a stock table are outer joined and
searched. The example uses the contains abstract data type function to retrieve
medicine IDs that include the character string food poisoning in the indications
structure section of the OPERATION_MANUAL column and find out the stock quantity
for those medicine IDs.

2. Database Operations

92

Figure 2-48: Example of retrieval with the SGMLTEXT type (2)

(2) Updating a table
Figure 2-49 shows an example of updating with the SGMLTEXT type. This example
updates the operation manual for MEDICINE 2. The SQL statement for updating the

2. Database Operations

93

table can be specified as follows:
UPDATE MEDICINE_MGMT_TABLE SET OPERATION_MANUAL =
SGMLTEXT(:sgml AS BLOB(1M))
WHERE MEDICINE_ID = 'MEDICINE 2'

This example uses the SGMLTEXT abstract data type function to update the operation
manual data for MEDICINE 2.

The sgml BLOB-type embedded variable must be defined beforehand in front of the
UPDATE statement:
EXEC SQL BEGIN DECLARE SECTION; 1
 SQL TYPE IS BLOB(300K)sgml; 1
EXEC SQL END DECLARE SECTION; 1
strcpy (sgml. sgml_data,char_ptr_pointing_to_a_sgml_text); 2
sgml.sgml_length=strlen(char_ptr_pointing_to_a_sgml_text); 3

1. Define the sgml BLOB-type embedded variable.

2. Store the new update data in the sgml embedded variable.

3. Set the sgml_length attribute value for the BLOB data that was created to the
length of the stored data.

2. Database Operations

94

Figure 2-49: Example of updating with the SGMLTEXT type

(3) Deleting rows
Figure 2-50 shows an example of row deletion with the SGMLTEXT type. This example

2. Database Operations

95

deletes the row for MEDICINE 2. The SQL statement for deleting the row can be
specified as follows:
DELETE FROM MEDICINE_MGMT_TABLE
 WHERE MEDICINE_ID = 'MEDICINE 2'

This examples deletes the row for MEDICINE 2 from the medicine management table.

2. Database Operations

96

Figure 2-50: Example of deletion with the SGMLTEXT type

2. Database Operations

97

(4) Inserting rows
Figure 2-51 shows an example of row insertion with the SGMLTEXT type. This example
inserts a row for MEDICINE 25. The SQL statement for inserting the row can be
specified as follows:
INSERT INTO MEDICINE_MGMT_TABLE(MEDICINE_ID,OPERATION_MANUAL)
 VALUES(MEDICINE 25,SGMLTEXT(:sgml AS BLOB(1M)))

This example uses the SGMLTEXT abstract data type function to add a row for
MEDICINE 25 to the medicine management table.

The sgml BLOB-type embedded variable must be defined beforehand in front of the
INSERT statement:
EXEC SQL BEGIN DECLARE SECTION; 1
 SQL TYPE IS BLOB(300K) sgml; 1
EXEC SQL END DECLARE SECTION; 1
strcpy(sgml.sgml_data,char_ptr_pointing_to_a_sgml_text); 2
sgml.sgml_length=strlen(char_ptr_pointing_to_a_sgml_text); 3

1. Define the sgml BLOB-type embedded variable.

2. Store the insertion data in the sgml embedded variable.

3. Set the sgml_length attribute value for the BLOB data that was created to the
length of the stored data.

2. Database Operations

98

Figure 2-51: Example of insertion with the SGMLTEXT type

2. Database Operations

99

2.12.2 XML type
This section describes examples that use HiRDB XML Extension. For details about the
abstract data type functions provided by HiRDB XML Extension, see the manual
HiRDB Version 9 SQL Reference.

This section explains examples that use XML documents to manage book information.

The examples presented below are based on a table defined for the discussion of
database creation in the HiRDB Version 9 Installation and Design Guide (table
containing abstract data types provided by plug-ins).

(1) Retrieving data
(a) Example retrieval with the XML type (1)

Figure 2-52 shows an example of data retrieval with the XML type. This example
retrieves the book information for book ID 126513592 as VARCHAR-type values. The
SQL statement for retrieving the data can be specified as follows:
SELECT book_ID, XMLSERIALIZE(book_information AS
VARCHAR(32000))
 FROM book_management_table
 WHERE book_ID = 126513592

2. Database Operations

100

Figure 2-52: Example of retrieval with the XML type (1)

(b) Example of retrieval with the XML type (2)
This example retrieves results of evaluation by the XQuery expression. Figure 2-53
shows an example of retrieving the titles of books whose category is database. The
SQL statement for retrieving the data can be specified as follows:
 SELECT book_ID,
 XMLSERIALIZE(
 XMLQUERY('/book_information/title'
 PASSING BY VALUE book_information
 RETURNING SEQUENCE EMPTY ON EMPTY)
 AS VARCHAR(32000))
 FROM book_management_table
 WHERE XMLEXISTS('/book_information[category="database"]'
 PASSING BY VALUE book_information)

2. Database Operations

101

Explanation:

This example uses the XMLQUERY function to retrieve the results of evaluation by
the XQuery expression. It uses the XMLEXISTS predicate to eliminate output of
rows in which the result of evaluation by the XQuery expression is a null
sequence.

Figure 2-53: Example of retrieval with the XML type (2)

(c) Example of retrieval with the XML type (3)
This example outputs values of the XML type as single XML-type values. Figure 2-54
shows an example of joining the titles of books whose category is database and then
retrieving the result. The SQL statement for retrieving the data can be specified as
follows:
SELECT XMLSERIALIZE(
 XMLAGG(
 XMLQUERY('/book_information/title'

2. Database Operations

102

 PASSING BY VALUE book_information
 RETURNING SEQUENCE EMPTY ON EMPTY)
)
 AS VARCHAR(32000))
 FROM book_management_table
 WHERE XMLEXISTS('/book_information[category="database"]'
 PASSING BY VALUE book_information)

Explanation:

You use the XMLAGG set function to output a value of the XML type on each row
as a single XML-type value.

Figure 2-54: Example of retrieval with the XML type (3)

(d) Example of retrieval with the XML type (4)
This example evaluates the XQuery expression for a value of the XML type as a single
XML-type value. Figure 2-55 shows an example of retrieving all book information

2. Database Operations

103

that has the title Comprehensive SQL and with the same category. The SQL statement
for retrieving the data can be specified as follows:
SELECT
 XMLSERIALIZE(
 XMLQUERY(
 '$BOOKS/book_information[category=$BOOKS/
book_information[title="Comprehensive SQL"]/category]'
 PASSING BY VALUE XMLAGG(book_information) AS BOOKS
 RETURNING SEQUENCE EMPTY ON EMPTY))
 AS VARCHAR(32000))
 FROM book_management_table

2. Database Operations

104

Figure 2-55: Example of retrieval with the XML type (4)

(e) Example of retrieval with the XML type (5)
This example uses a substructure index to retrieve data. The following shows an
example definition of an index that uses the category element in the
book_information as the VARCHAR type key value.

Example definition of substructure index
CREATE INDEX INDX1 ON
book_management_table(book_information)

2. Database Operations

105

 IN (RDAREA02) KEY FROM '/book_information/category' AS
VARCHAR(100)

Use of this index enables the SQL statement shown below to reduce the time required
for narrowing down the rows. The following example retrieves book information
whose category is network from book_management_table.

Example retrieval using a substructure index
SELECT book_ID,
 XMLSERIALIZE(book_information AS VARCHAR(32000))
 FROM book_management_table
 WHERE XMLEXISTS('/book_information[category="network"]'
 PASSING BY VALUE book_information)

(f) Example of retrieval with the XML type (6)
This example retrieves data by using an XML-type full-text search index. The
following shows an example definition of an XML-type full-text search index for the
book_information column.

Example definition of XML-type full-text search index
CREATE INDEX INDX1
 USING TYPE IXXML ON
book_management_table(book_information)
 IN (LOBAREA01)

Use of this index enables the SQL statement shown below to reduce the time required
for narrowing down the rows. The following example retrieves book information that
contains RDBMS in the description from book_management_table.

Example retrieval using an XML-type full-text search index
SELECT book_ID,
 XMLSERIALIZE(book_information AS VARCHAR(32000))
 FROM book_management_table
 WHERE XMLEXISTS('/book_information/description/
text()[contains(. ,"RDBMS")]'
 PASSING BY VALUE book_information)

2.12.3 User-defined abstract data types
This section describes examples of manipulating tables with user-defined abstract data
types. The examples use tables that were defined in the database creation section (for
tables that include user-defined abstract data types) of the HiRDB Version 9
Installation and Design Guide.

(1) Retrieving data from a table with abstract data types
Figure 2-56 shows an example of retrieval from a table that has abstract data types.
The example retrieves staff numbers of employees who have worked for at least 20
years in the company. The SQL statement for retrieving the data can be specified as

2. Database Operations

106

follows:
SELECT STAFF_NUMBER
 FROM STAFF_TABLE
 WHERE YearsOfService(EMPLOYEE)>=20

This example uses the user-defined function YearsOfService to retrieve staff
numbers of employees whose years of service are 20 years or longer. The argument for
the user-defined function YearsOfService is EMPLOYEE.

Figure 2-56: Example of retrieval from a table with abstract data types

(2) Updating a table with abstract data types
Figure 2-57 shows an example of updating a table that has abstract data types. This
example updates the post of the employee with staff number 900123 to MANAGER.
The SQL statement for updating the table can be specified as follows:
UPDATE STAFF_TABLE
 SET EMPLOYEE..POST='MANAGER'
 WHERE STAFF_NUMBER='900123'

In this example, the POST attribute in the EMPLOYEE column is updated to MANAGER
for the employee whose staff number is 900123. A component specification is used
for specifying the attribute of the abstract data type. In this example,
EMPLOYEE..POST is the component specification.

2. Database Operations

107

Figure 2-57: Example of updating a table with abstract data types

(3) Deleting rows from a table with abstract data types
Figure 2-58 shows an example of row deletion from a table that has abstract data types.
The example deletes the rows for employees whose POST is CLERK. The SQL
statement for deleting the rows can be specified as follows:
DELETE FROM STAFF_TABLE
 WHERE EMPLOYEE..POST='CLERK'

This example deletes the rows of employees whose POST attribute in the EMPLOYEE
column is CLERK. A component specification is used to specify the abstract data type
attribute. In this example, the component specification is EMPLOYEE..POST.

2. Database Operations

108

Figure 2-58: Example of deleting rows from a table with abstract data types

(4) Inserting rows into a table with abstract data types
Figure 2-59 shows an example of row insertion into a table that has abstract data types.
This example inserts a row into a staff table. The SQL statement for inserting the row
can be specified as follows:
INSERT INTO STAFF_TABLE
 VALUES ('950070',t_EMPLOYEE('STONE, JANE,
 'F'
 'CLERK'
 '1995-04-01'
 :PHOTOGRAPH AS BLOB,
 1400.00
)
)

In this example, the t_EMPLOYEE constructor function, which was defined when the
abstract data type was defined, is used to insert the row for staff number 950070 into
the staff table.

:PHOTOGRAPH is a BLOB-type embedded variable in which a photographic image of
the employee's face is set.

2. Database Operations

109

Figure 2-59: Example of inserting rows into a table with abstract data types

111

Chapter

3. UAP Design

This chapter explains basic issues that programmers must consider when designing
UAPs.

This chapter contains the following sections:

3.1 Basic SQL configuration in a UAP
3.2 Overview of UAPs
3.3 Transaction control
3.4 Locking
3.5 Use of a cursor
3.6 SQL error identification and corrective measures

3. UAP Design

112

3.1 Basic SQL configuration in a UAP

The figure below shows the basic SQL configuration in a UAP. This explanation
assumes that the UAP is written in COBOL.

Figure 3-1: Basic SQL configuration in a UAP

Note
The numbers enclosed in parenthesis correspond to the numbers of the
explanation sections described as follows.

#: If necessary, specify an error handling process for this section in the error handling

3. UAP Design

113

process specification section or the error identification section. However, make sure
that the error handling process for transaction invalidation specified in the error
handling process specification section does not form an endless loop.

(1) Declaration of embedded and indicator variables
The UAP must declare variables for transferring data between SQL and the UAP
descriptive language so that the UAP can receive data retrieved by SQL statements and
insert UAP data into SQL tables. Use embedded variables for this purpose. If a data
item that includes a null value must be transferred, use an indicator variable along with
the embedded variable for that item.

An example of declarations for embedded and indicator variables is shown as follows.

For details about how to specify embedded and indicator variables in SQL statements,
see (5) Retrieval and update SQL (execution statements).
EXEC SQL
 BEGIN DECLARE SECTION 1
END-EXEC.
77 XUSERID PIC X(7) 2
77 XPSWD PIC X(7) 2
77 XPCODE PIC X(4) 2
77 XPNAME PIC N(8) 2
77 XSTOCK PIC S9(9)COMP 2
77 ISTOCK PIC S9(4)COMP 3
EXEC SQL
 END DECLARE SECTION 4
END-EXEC.

Explanation:

1. Indicates the beginning of the embedded variable declaration section.

2. Declares an embedded variable; if data is to be transferred between SQL and the
UAP, specify embedded variables according to the predetermined rules. For
details about the SQL data types and data specifications, see F. SQL Data Types
and Data Descriptions.

3. Declares an indicator variable for embedded variable (:xstock). The indicator
variable declaration for a BLOB-type embedded variable is PIC S9(9) COMP.

4. Indicates the end of the embedded function declaration section.

If the default value setting facility for null values is used, an embedded variable can
accept a default value (0 for numerical data and a space for character data) in place of
a null value when the retrieval result is a null value. When this facility is used, indicator
variables do not have to be used if the default values and the null value do not have to
be discriminated. For details about the default value setting facility for null values, see
the HiRDB Version 9 SQL Reference manual.

3. UAP Design

114

(2) Connection with HiRDB
This section reports the user's authorization identifier and password to HiRDB so that
the UAP can use HiRDB. This is called connection with HiRDB. The SQL statements
for connection with HiRDB are shown as follows:
EXEC SQL
 CONNECT :XUSERID IDENTIFIED BY :XPSWD
END-EXEC.

Connects with HiRDB based on the authorization identifier stored in the embedded
variable (:XUSERID) and the password stored in the embedded variable (:XPSWD).

(3) Cursor declaration
This section uses the DECLARE CURSOR statement to declare the cursor that allows the
UAP to extract multiple-row retrieval results one row at a time. Use the DECLARE
CURSOR statement to retrieve, update, and delete data. To open the cursor, use the OPEN
statement. To extract the retrieval results and move the cursor to the next line, use the
FETCH statement. To close the cursor, use the CLOSE statement.

Embedded and indicator variables can be specified as retrieval condition values in the
cursor declaration. If such variables are specified, the UAP passes the values in those
variables to HiRDB when the OPEN statement for that cursor is executed.

For details about cursors, see 3.5 Use of a cursor.

The SQL statements for cursor declaration are shown as follows:
EXEC SQL
 DECLARE CR1 CURSOR FOR SELECT PCODE, PNAME, STOCK FROM STOCK
END-EXEC.

Declares cursor CR1 for extracting PCODE, PNAME, and STOCK one row at a time from
the STOCK table.

(4) Error-handling process specification
If a WHENEVER statement is specified before an SQL statement, the UAP can
automatically determine whether an error occurred.

(a) If an error occurs
EXEC SQL
 WHENEVER SQLERROR GO TO error-handling-process
END-EXEC.

WHENEVER SQLERROR

Declares the process to be executed if an error occurs.

GO TO error-handling-process
Switches the process to the specified clause or paragraph name

3. UAP Design

115

(error-handling-process) if an error occurs. If an SQL Communications Area is
referenced from within this process, return code information can be checked.

(b) If a row to be retrieved is not found
EXEC SQL
 WHENEVER NOT FOUND GO TO retrieval-end-process
END-EXEC.

WHENEVER NOT FOUND

Declares the process to be executed if the row to be retrieved is not found.

GO TO retrieval-end-process
Switches the process to the specified clause or paragraph name
(retrieval-end-process), if the row to be retrieved is not found.

(c) Effective range of WHENEVER statement
A WHENEVER statement is effective for all SQL statements found between that
WHENEVER statement and the next WHENEVER statement of the same type. For details
about the effective range of the WHENEVER statement, see the HiRDB Version 9 SQL
Reference manual.

(5) Retrieval and update SQL (execution statements)
In this section, specify SQL statements for retrieving, inserting, or deleting data. For
details about how to specify the individual SQL statements, see 2. Database
Operations.

This section explains how to use embedded and indicator variables.

(a) Specifying embedded and indicator variables in a 1-row SELECT or
FETCH statement
Specify the embedded and indicator variables in the INTO clause of a 1-row SELECT
or FETCH statement. Add a colon in front of each variable. Specify each indicator
variable immediately after its corresponding embedded variable. An example is shown
as follows:

3. UAP Design

116

The embedded variables that were specified in the INTO clause correspond to the
column name sequence specified in the column lineup of the SELECT statement. The
retrieval results are stored to the embedded variables according to this sequence.

If a retrieval result includes a null value, a negative value is stored in the indicator
variable. You can, therefore, check the indicator variable value to determine whether
the result is a null value. In this case, the value of the embedded variable is undefined.
If the value of an indicator variable is 0, a value other than a null value was received.
If the value is positive, character string data other than a null value was received but
the right end was truncated, because the area length of the embedded variable was too
short.

If an embedded variable is specified in a retrieval condition value, the retrieval
condition value can be assigned during SQL execution.

(b) Specifying an embedded or indicator variable in an UPDATE or INSERT
statement
Specify the embedded and indicator variables in the SET clause of an UPDATE
statement or the VALUES clause of an INSERT statement. Add a colon in front of each
variable. Specify each indicator variable immediately after its corresponding

3. UAP Design

117

embedded variable. An example is shown as follows:

UPDATE statement
EXEC SQL
UPDATE STOCK SET STOCK=:XSTOCK:ISTOCK WHERE PCODE=:XPCODE
END-EXEC.

INSERT statement
EXEC SQL
INSERT INTO STOCK VALUES(:XPCODE,:XPNAME,:XCOLOR,:XPRICE,
:XSTOCK:ISTOCK,:XSTOCK_CAPACITY,:XREQSTOCK)
END-EXEC.

If the UPDATE or INSERT statement sets a null value in a table, specify a negative value
in the indicator value before executing that SQL. No setting value is necessary for the
embedded function. When passing a non-null value, set the indicator variable value to
0 or a positive value.

(6) Error identification
If an error occurs during SQL execution, the UAP checks SQLCODE and SQLSTATE to
determine the return codes returned by HiRDB. The UAP uses the return codes to
specify which process should then be executed. However, if an error-handling process
has already been specified in Section (4) Error-handling process specification, the
same process does not have to be specified in this section.

Do not execute error identification immediately after a declaration statement, such as
DECLARE CURSOR. If error identification is executed, the UAP references an incorrect
SQLCODE, and HiRDB malfunctions.

For details about error identification, see 3.6.1 Error identification.

(7) Transaction validation
If update processing was executed in a transaction, this section validates the updated
database contents and terminates the transaction normally.

The SQL statements for validating a transaction are shown as follows:
EXEC SQL
 COMMIT
END-EXEC.

Validates a transaction; to release the UAP from HiRDB after validating the
transaction, specify RELEASE in the COMMIT statement, and execute the statement. If
RELEASE is specified, the DISCONNECT statement does not have to be executed.

(8) Transaction invalidation
This section invalidates the database contents that were updated in a transaction and
terminates the transaction. Specify this section to cancel a database update if the update

3. UAP Design

118

processing in a translation is invalid.

The SQL statements for invalidating a transaction are shown as follows:
EXEC SQL
 ROLLBACK
END-EXEC.

Invalidates a transaction; to release the UAP from HiRDB after terminating the
transaction, specify RELEASE in the ROLLBACK statement, and execute the statement.
If RELEASE is specified, the DISCONNECT statement does not have to be executed.

(9) Disconnection from HiRDB
This section terminates a transaction normally and releases the UAP from HiRDB. The
DISCONNECT statement executes the same processing executed by a COMMIT
statement in which RELEASE is specified.

The SQL statements for terminating a transaction normally and releasing the UAP
from HiRDB are shown as follows:
EXEC SQL
 DISCONNECT
END-EXEC.

Terminates a transaction normally and releases the UAP from HiRDB. To cancel a
transaction and then release the UAP from HiRDB, execute a ROLLBACK statement
where RELEASE is specified.

Note
If you terminate a UAP without executing a DISCONNECT, COMMIT statement
(with RELEASE specified), or ROLLBACK statement (with RELEASE specified), the
system automatically executes a ROLLBACK statement (with RELEASE specified),
and the transaction that was being executed becomes invalid.

3. UAP Design

119

3.2 Overview of UAPs

This section explains the basic issues to be taken into consideration in designing a
UAP.

3.2.1 UAP descriptive languages
In this type of UAP, SQL statements are incorporated directly into a source program
written in C language (based on ANSI-C) or in COBOL (based on COBOL85).

The following table lists the UAP descriptive languages that can be used in HiRDB.

Table 3-1: UAP descriptive languages

#: The multi-connection facility cannot be used.

An embedded-type UAP cannot be compiled or linked directly. Execute the SQL
preprocessor and convert the UAP into a post-source program before compiling and
linking the UAP. For details about how to preprocess, compile and link UAPs, see 8.
Preparation for UAP Execution.

Operating
environment

Descriptive languages

HP-UX • C language (Microsoft Visual C++)
• C++ language (Optimizing C++)
• COBOL language (COBOL85 and COBOL2002)
• OOCOBOL language (OOCOBOL)#

Solaris • C language
• COBOL language#

COBOL85, COBOL2002, and COBOL language products of other companies
(MicroFocusCOBOL and SUN Japanese COBOL)

AIX • C language
• C++ language
• COBOL language (COBOL85 and COBOL2002)

Linux • C language (gcc)
• C++ language (GCC)
• COBOL language (COBOL85 and COBOL2002)
• OOCOBOL language (OOCOBOL)#

Windows • C language (Microsoft Visual C++)
• C++ language (Optimizing C++)
• COBOL language (COBOL85 and COBOL2002)
• OOCOBOL language (OOCOBOL)#

3. UAP Design

120

3.2.2 Interface areas
Interface areas are used for exchanging information between HiRDB and a UAP. The
following table lists and describes the types of interface areas and their usage.

Table 3-2: Interface area types and uses

R: Required

O: Optional

#1: These areas need not be declared, because they are expanded within the UAP when
the SQL preprocessor is executed. For details about SQL preprocessor execution, see
8.2 Preprocessing.

Area type Use Language

C COBOL

SQL Communications
Areas

For obtaining detailed information on SQL execution
results.

R#1 R#1

SQL Descriptor Areas • For sending to the system information on input
variables that are resolved dynamically during UAP
execution.

• For receiving information of item to be retrieved
from SQL statements that are preprocessed for the
dynamic UAP execution.

• For specifying column name data areas.

O O

Column name data areas For receiving information of item to be retrieved from
SQL statements that are preprocessed for the dynamic
UAP execution.

O O

Type name data areas For receiving user-defined data type names. O O

Character set descriptor
areas

• For sending to the system the character set names for
input variables that are resolved dynamically during
UAP execution.

• For receiving character set names for items to be
retrieved from SQL statements that are preprocessed
for dynamic UAP execution.

O O

Embedded variables For transferring values (specified in SQL statements
embedded in UAP).

O O

Indicator variables For transferring values (specified in SQL statements
embedded in UAP).

O O

? parameters For transferring values from a UAP to the SQL
statements that are preprocessed for the dynamic UAP
execution.

O O#2

3. UAP Design

121

#2: An embedded variable and an indicator variable are used instead of a ? parameter.

For details about SQL Communications Areas and SQL Descriptor Areas, see A. SQL
Communications Area and B. SQL Descriptor Area. For details about embedded
variables, indicator areas, and ? parameters, see the HiRDB Version 9 SQL Reference
manual.

3.2.3 Integrity constraints
HiRDB uses the following two integrity constraints to ensure the validity of a
database:

• NOT NULL constraint

• Uniqueness constraint

(1) NOT NULL constraint
The NOT NULL constraint prohibits the null value from being set in a specified column.

The NOT NULL operand of the CREATE TABLE statement is used to implement the NOT
NULL constraint. Because there must always be a value in every row of a column for
which the NOT NULL constraint is specified, a constraint error occurs if an attempt is
made to assign the null value in the column. When a constraint error occurs, the
database cannot be updated; the null value must never be set in a column for which the
NOT NULL constraint is specified.

(2) Uniqueness constraint
When the uniqueness constraint is specified for a column, the value in every row of
the column must be unique (no value can be duplicated in the column).

The uniqueness constraint can be specified for the following types of columns:

(a) Column defined as a cluster key
Specified with the UNIQUE operand of the CREATE TABLE statement.

For details about the cluster key specifications, see the HiRDB Version 9 Installation
and Design Guide.

(b) Column for which an index is defined
Specified with the UNIQUE operand of the CREATE INDEX statement.

For details about the CREATE TABLE and CREATE INDEX specifications, see the
manual HiRDB Version 9 SQL Reference.

3.2.4 Retrieval methods using SQL statements
An SQL statement used to retrieve a table can be executed either statically or
dynamically. The following table shows the classification of UAP retrieval methods
using SQL statements.

3. UAP Design

122

Table 3-3: Classification of UAP retrieval methods using SQL statements

(1) Single-row SELECT statement
The single-row SELECT statement extracts only a single-row of retrieval results from
a table.

Because a cursor need not be used when the single-row SELECT statement is used, you
can retrieve the table with only one SQL statement.

The single-row SELECT statement is effective when used in the cases listed below. You
can also dynamically execute a single-row SELECT statement that is constructed
during UAP execution.

• You know that the retrieval results will be contained within a single-row

• You use a set function without grouping (using a GROUP BY clause)

Even when a single-row is retrieved, using a cursor results in better processing
efficiency for updating or deleting the retrieved row. You should consider whether the
single-row SELECT statement or the cursor will be used.

(2) Cursor declaration
If retrieval results include multiple rows, the UAP cannot receive them all at once. A
cursor is used to extract one row at a time. The flow from cursor declaration to retrieval
completion is described as follows.

1. Execute DECLARE CURSOR to declare a cursor.

2. Execute the OPEN statement to open and use the declared cursor.

3. Execute the FETCH statement to position the cursor at the first row of the retrieval
results. Embedded variables specified by the INTO clause of the FETCH statement
are used to extract the retrieval results.

4. Execute the FETCH statement to advance the cursor to the next row (the retrieval
results are extracted one row at a time in this manner).

5. Repeat the operation in step 4 until there are no more rows to be retrieved.

6. When the retrieval is completed, execute the CLOSE statement to close the cursor.

Retrieval method SQL statement for specifying query

Embedded UAP Static SQL Single-row SELECT statement

Cursor declaration

Dynamic SQL Single-row SELECT statement

Dynamic SELECT statement

3. UAP Design

123

(3) Dynamic SELECT statement
Use the dynamic SELECT statement to extract multiple retrieval results through
dynamic SQL execution. To extract retrieval results with the dynamic SELECT
statement, you must either declare a cursor in advance or allocate a cursor by using the
ALLOCATE CURSOR statement. Once you declare or allocate a cursor, use the PREPARE
statement to preprocess the SQL statements that are constructed during UAP
execution. You can then perform the same operations as in normal retrieval using a
cursor.

3.2.5 Static and dynamic SQLs
SQL statements written directly into the user application program when it is created
are called static SQL statements; SQL statements that are constructed during UAP
execution instead of being written into UAP is called dynamic SQL statements.

Because the execution characteristics of static and dynamic SQLs are different,
evaluate them carefully before you create a UAP.

(1) Differences during execution
The following table shows the execution characteristics of static and dynamic SQLs.

Table 3-4: Execution characteristics of static and dynamic SQLs

#: Processing efficiency improves when an SQL having the same character string is
executed several times.

(2) Values provided at time of execution
When static SQL statements are executed, values to be inserted, new values to be set,
and search conditions can be modified. When dynamic SQL statements are executed,
any part of the SQL statements, such as the table name, column names, and conditional
expressions, can be changed, in addition to those values that can be changed during
execution of static SQL statements.

The following examples show values that can be changed during execution of static
and dynamic SQL statements. Bold letters indicate the areas where values can be

Type Advantage Disadvantage

Static SQL If the UAP is to be executed repeatedly, an
executed SQL statement is converted to
execute form and can be used again in the
shared memory, thus improving processing
efficiency.

Because the SQL statements are embedded
in the UAP, the ability to change search
conditions is limited.

Dynamic SQL Because SQL statements are constructed
during execution, it is easy to change search
conditions.

The SQL statements must be analyzed and
converted to execute form each time they
are executed, resulting in poor processing
efficiency.#

3. UAP Design

124

changed.

Figure 3-2: Example of values provided at the time of SQL execution

(3) Notes on executing dynamic SQL statements
A dynamic SQL provides more flexibility in changing search conditions than a static
SQL. However, dynamic SQL statements must be executed each time a condition is
changed. For this reason, execution efficiency (processing efficiency) must be
considered when deciding whether or not to use a dynamic SQL.

(a) Preprocessing and executing dynamic SQL statements
Dynamic SQL statements need to be processed first by the PREPARE statement and
then executed during UAP execution. How a dynamic SQL statement is executed
depends on whether the SQL statement to be preprocessed is the dynamic SELECT
statement or another statement. If the SQL statement to be preprocessed is the SELECT
statement, it is executed with the OPEN, FETCH, and CLOSE statements. If the SQL
statement to be preprocessed is a statement other than the dynamic SELECT statement,
it is executed with the EXECUTE statement. The EXECUTE IMMEDIATE statement can
also be used to both preprocess and execute an SQL statement in a single operation.
When the same SQL statement is to be executed dynamically by changing values, ?
parameters should be used so that the SQL statement is preprocessed only once, rather
than having to preprocess the SQL statement several times; the SQL statement can
then be executed repeatedly by changing the values that are assigned to the ?
parameters. This results in improved performance (processing efficiency). For details
about ? parameters, see the HiRDB Version 9 SQL Reference manual.

Figure 3-3 shows the dynamic SQL execution mode, and Table 3-5 lists the SQLs that
can be preprocessed by the PREPARE statement and the SQL statements that can be
preprocessed and executed by the EXECUTE IMMEDIATE statement.

3. UAP Design

125

Figure 3-3: Dynamic SQL execution mode

#: XCMND declares any embedded variables in the embedded variable SQL
declaration section. For details about embedded variables, see the HiRDB Version 9
SQL Reference manual.

Table 3-5: SQL statements preprocessed by the PREPARE statement, and SQL
statements preprocessed and executed by the EXECUTE IMMEDIATE statement

Type SQL statement PREPARE EXECUTE
IMMEDIATE

Data Manipulation
SQL

ASSIGN LIST statement U#3 U

CALL U#3 U

DELETE#1 U#3 U

Preparable dynamic DELETE statement: locating U U

DROP LIST statement U#3 U

INSERT U#3 U

PURGE TABLE U#3 --

Single-row SELECT#2 U#3 U

Dynamic SELECT U#4 --

UPDATE#1 U#3 U

Preparable dynamic UPDATE statement: locating U U

Assignment statement U#3 --

3. UAP Design

126

Control SQL CALL COMMAND U U

COMMIT -- --

CONNECT -- --

DISCONNECT -- --

LOCK TABLE U#3 U

ROLLBACK -- --

SET SESSION AUTHORIZATION statement -- --

Definition SQL ALLOCATE MEMORY TABLE U#3 U

ALTER INDEX U#3 U

ALTER PROCEDURE U#3 U

ALTER ROUTINE U#3 U

ALTER TABLE U#3 U

ALTER TRIGGER U#3 U

COMMENT U#3 U

CREATE AUDIT U#3 U

CREATE CONNECTION SECURITY U#3 U

CREATE FUNCTION U#3 U

CREATE INDEX U#3 U

CREATE PROCEDURE U#3 U

CREATE SCHEMA U#3 U

CREATE SEQUENCE U#3 U

CREATE TABLE U#3 U

CREATE TRIGGER U#3 U

CREATE TYPE U#3 U

Type SQL statement PREPARE EXECUTE
IMMEDIATE

3. UAP Design

127

U: Can be used.

--: Cannot be used.

Note
An SQL statement that contains embedded variables cannot be executed
dynamically; in this case, ? parameters must be used instead of embedded
variables. For details about ? parameters, see the HiRDB Version 9 SQL Reference
manual.

#1: Operations requiring the use of a cursor cannot be performed.

#2: The SQL must not contain an INTO clause.

#3: Executed by the EXECUTE statement.

#4: Executed by the OPEN, FETCH, or CLOSE statement.

CREATE VIEW U#3 U

DEALLOCATE MEMORY TABLE U#3 U

DROP AUDIT U U

DROP CONNECTION SECURITY U#3 U

DROP DATA TYPE U#3 U

DROP FUNCTION U#3 U

DROP INDEX U#3 U

DROP PROCEDURE U#3 U

DROP SCHEMA U#3 U

DROP SEQUENCE U#3 U

DROP TABLE U#3 U

DROP TRIGGER U#3 U

DROP VIEW U#3 U

GRANT U#3 U

REVOKE U#3 U

Type SQL statement PREPARE EXECUTE
IMMEDIATE

3. UAP Design

128

An example of inserting data into a dynamically-specified table is shown as follows:

Figure 3-4: Example of inserting data into a dynamically specified table

(b) Using the EXECUTE statement and the EXECUTE IMMEDIATE statement
The EXECUTE IMMEDIATE statement is functionally equivalent to executing the
PREPARE and EXECUTE statements in succession. When SQL statements are to be
executed repeatedly, it is more efficient to execute it iteratively using the EXECUTE
statement after first preprocessing it with the PREPARE statement than to execute it
several times with the EXECUTE IMMEDIATE statement.

(c) Executing dynamic SQL statements with preprocessing a dynamic
SELECT statement
This execution mode varies depending on whether the SQL statement to be
preprocessed is a dynamic SELECT statement or a statement other than the dynamic
SELECT statement. If the SQL statement to be preprocessed is a dynamic SELECT
statement, the SQL statements after preprocessing should be executed using the OPEN,
FETCH, or CLOSE statement; if it is not a dynamic SELECT statement, an EXECUTE

3. UAP Design

129

statement should be used. An example of executing SQL statements with processing a
dynamic SELECT statement is shown as follows:

Figure 3-5: Example of dynamic processing when the preprocessed SQL is a
dynamic SELECT statement

(d) Dynamic execution of an SQL statement that uses a cursor for a dynamic
SELECT statement
When a dynamic SELECT statement is preprocessed and an SQL statement that uses a
cursor is executed dynamically for that dynamic SELECT statement, a cursor declared
in a cursor declaration is not used. In this case, a cursor allocated with the ALLOCATE
CURSOR statement is used for the preprocessed dynamic SELECT statement. An
example of dynamic execution of an SQL statement that uses a cursor for a dynamic
SELECT statement is shown below.

3. UAP Design

130

(e) Receiving information determined during dynamic SQL execution
When a UAP dynamically executes SQL statements, it uses an SQL Descriptor Area
as the area for notifying HiRDB about information determined during the execution
(including the number, attributes, and addresses of data transfer areas). To realize
dynamic execution, the UAP receives search item information for SQL statements
preprocessed with the PREPARE statement in the SQL Descriptor Area by using one of
the following methods:

• Executing the DESCRIBE statement

• Specifying OUTPUT and INPUT when executing the PREPARE statement. (When
this method is used, the number of communications might be reduced, because
information can be received during execution of the PREPARE statement.)

For details about the DESCRIBE statement, see the manual HiRDB Version 9 SQL
Reference. For an example of the use of SQL Descriptor Areas, see B. SQL Descriptor
Area.

PREPARE GLOBAL :SEL FROM :XCMND;
//Adds an extended statement name (:SEL='SEL1') to the dynamic SELECT statement that was set to an embedded variable
(:XCMND).
ALLOCATE GLOBAL :CR CURSOR FOR GLOBAL :SEL;
//Allocates a cursor (:CR='CR1') to the query identified by the extended statement name (:SEL='SEL1').
PREPARE UPD1 FROM
 'UPDATE SET C1=? WHERE CURRENT OF GLOBAL CR1';
//Preprocesses the UPDATE statement that uses the cursor (CR1) and attaches an SQL statement identifier (UPD1).
OPEN GLOBAL :CR;
//Adds a cursor (:CR='CR1').
FETCH GLOBAL :CR INTO :XKEKKA;
//Reads the search results obtained using the cursor (:CR='CR1') into an embedded variable (:XKEKKA).
EXECUTE UPD1 USING :XDATA;
//Executes the UPDATE statement for the preprocessed SQL statement identifier (UPD1). At this time, the embedded variable
(:XDATA) corresponding to the ? parameter is specified.
CLOSE GLOBAL :CR;
//Closes the cursor (:CR='CR1').

3. UAP Design

131

3.3 Transaction control

This section explains when a UAP starts and terminates a transaction in a HiRDB
system, setting synchronization points, handling transactions, and rollbacks.

3.3.1 Connection to and disconnection from a HiRDB system
Executing the CONNECT statement connects a UAP to a HiRDB system, and executing
the DISCONNECT statement disconnects them.

3.3.2 Transaction startup and termination
A transaction is started when an SQL statement of the UAP is executed and is
terminated when a COMMIT or ROLLBACK statement is executed. Any number of
transactions can be started and terminated while the UAP is connected to the HiRDB
system.

The following figure shows examples of transaction startup and termination.

Figure 3-6: Examples of transaction startup and termination

In a HiRDB/Parallel Server, processing of SQL statements is branched to multiple
servers; but a process is managed as one transaction, and you do not need to consider
the internal branches.

3.3.3 Synchronization point setting and rollback
The following table explains the setting of synchronization points and the handling of
transactions.

3. UAP Design

132

Table 3-6: Synchronization points and transactions

#1: Cannot be executed in the OLTP environment. For details about synchronization
point setting and rollback in the OLTP environment, see 3.3.4 UAP transaction
management in an OLTP environment.
#2: Results in implicit rollback; the following are major causes of implicit rollback:

#3: When a transaction is invalidated, all transactions since the most recent
synchronization point are invalidated.

• Deadlock

• RDAREA page shortage

• Detection of RDAREA error or shutdown

3.3.4 UAP transaction management in an OLTP environment
In OLTP, you cannot code the COMMIT and ROLLBACK statements. When
synchronization point setting or transaction rollback occurs in a UAP executing in this
environment, you must use an application program interface (API) that conforms to X/
Open.

An example using OpenTP1 is explained here. For details about how to create a
program by using OpenTP1, see the manual OpenTP1 Version 5 Program Reference C
Language and the manual OpenTP1 Version 5 Program Reference COBOL Language.

A remote procedure call (RPC) can be used to implement one transaction among
multiple OLTP user server processes. Each process is called a transaction branch, and
the totality of these processes is called an OLTP global transaction.

When HiRDB is accessed from an OLTP global transaction, HiRDB cannot be

Synchronization point Set by: Handling
transactions

Set points in UAP by executing SQL
statements

Executing COMMIT statement Validated#1

Executing ROLLBACK statement Invalidated#1, #2

Set points in HiRDB by executing
SQL statements

Executing definition SQL statements Validated#1

Executing PURGE TABLE statement Validated#1

Processing cannot be continued while executing
SQL statements

Invalidated#3

Set points in HiRDB by terminating
UAP

UAP normal termination Validated

UAP abnormal termination Invalidated#2

3. UAP Design

133

accessed by the multiple transaction branches that make up the global transaction
branch.

Sometimes when a resource is to be accessed, a timeout occurs because a lock on the
resource was issued by a preceding transaction branch in the global transaction branch,
thus causing a succeeding transaction branch to wait until the resource becomes
available. Similarly, deadlock can occur between transaction branches.

The chain RPC function can be used in such a situation so that multiple RPCs can be
treated as belonging to the same transaction branch.

(1) C
(a) Transaction startup

Code the tx_begin function in the UAP.

(b) Setting synchronization points
Code the tx_commit function in the UAP.

(c) Setting rollbacks
Code the tx_rollback function in the UAP.

(2) COBOL85
(a) Transaction startup

DATA DIVISION.

*include TX definitions.

 01 TX-RETURN_STATUS
 COPY TXSTATUS.

PROCEDURE DIVISION.
CALL "TXBEGIN" USING TX-RETURN_STATUS.

(b) Setting synchronization points
DATA DIVISION.

*include TX definitions.

 01 TX-RETURN_STATUS
 COPY TXSTATUS.

PROCEDURE DIVISION.
CALL "TXCOMMIT" USING TX-RETURN_STATUS.

(c) Setting rollbacks
DATA DIVISION.

3. UAP Design

134

*include TX definitions.

 01 TX-RETURN_STATUS
 COPY TXSTATUS.

PROCEDURE DIVISION.
CALL "TXROLLBACK" USING TX-RETURN_STATUS.

3.3.5 Moving a transaction
When a UAP commits a transaction in a process different from the process in which
the UAP accessed HiRDB, the commitment processing is called moving the
transaction.

The UAP referenced is a UAP that connects itself to HiRDB via the HiRDB XA
library.

When the transaction-move function is used, 1 must be specified in the PDXAMODE
operand of the client environment definition. For details about the PDXAMODE operand,
see 6.6.4 Environment definition information.

(1) Scope of LOCK TABLE UNTIL DISCONNECT when the PDXAMODE operand
is specified

The specification of the PDXAMODE operand affects the scope of the LOCK TABLE
UNTIL DISCONNECT specification, as explained as follows:

(a) PDXAMODE=0
1. Resource Manager opened by means of AP coding

The LOCK TABLE UNTIL DISCONNECT specification remains in effect until the
Resource Manager is closed.

2. Resource Manager opened separately for each transaction

The LOCK TABLE UNTIL DISCONNECT specification remains in effect throughout
the global transaction.

(b) PDXAMODE=1
1. Resource Manager opened by means of AP coding

• Transaction is not moved

The LOCK TABLE UNTIL DISCONNECT specification remains in effect until
the Resource Manager is closed.

• Transaction is moved

The LOCK TABLE UNTIL DISCONNECT specification remains in effect
throughout the global transaction.

3. UAP Design

135

2. Resource Manager opened separately for each transaction

The LOCK TABLE UNTIL DISCONNECT specification remains in effect throughout
the global transaction.

The following table shows the scope of the LOCK TABLE UNTIL DISCONNECT
specification when OpenTP1 is used.

Table 3-7: Scope of the LOCK TABLE UNTIL DISCONNECT specification
when OpenTP1 is used

Note
The -d option can be specified when the TP1/Server Base version is 03-03 or later
and the HiRDB version is for UNIX systems.

PDXAMODE
specification

OpenTP1 specification Scope of LOCK
TABLE UNTIL
DISCONNECT

0 trn_rm_open_close_scope=process Effective until Resource
Manager is closed.

trn_rm_open_close_scope=transaction Effective within a global
transaction.

1 trn_rm_ope
n_close_sc
ope=proces
s

-d option specified in trnstring operand Effective until the
Resource Manager is
closed.-d option not

specified in
trnstring
operand

A single AP comprises a
global transaction in the
OpenTP1 system.

Multiple APs
comprise a
global
transaction in
the OpenTP1
system.

A single
AP links
to the
HiRDB
XA
library.

Multiple
APs link
to the
HiRDB
XA
library.

Effective within the
global transaction.

trn_rm_open_close_scope=transaction

3. UAP Design

136

3.4 Locking

The HiRDB system automatically locks tables to prevent data inconsistencies, because
data inconsistencies are apt to occur when several users manipulate a table
simultaneously. This section explains the structure of locking and what aspects of
locking the user can change.

3.4.1 Units of locking
(1) Locked resources and inclusive relationships

HiRDB locks a resource to prevent unauthorized referencing or updating.

HiRDB performs locking to maintain database integrity. In a HiRDB/Parallel Server,
closed locking is performed for each server, because resources are not shared among
servers.

When a higher-level resource is locked, the resources under that resource need not be
locked, because locked resources maintain inclusive relationships. The following
figure shows the resources that can be locked and their inclusive relationships.

Figure 3-7: Locked resources and inclusive relationships

#1: When the inner replica facility is used, the highest locked resource is the inner
replica configuration management information or the replica group configuration
management information.

If the inner replica configuration management information cannot be locked, the
replica group configuration management information is locked. When an RDAREA is
accessed, it is locked even if no replica RDAREA has been defined for it. This prevents
a replica RDAREA from being defined for a normal RDAREA or the configuration of
an inner replica group from being changed during job execution.

#2: This file is used by plug-ins.

(2) Setting the minimum unit of resource locking
For purposes of lock control that the HiRDB system implements automatically, the

3. UAP Design

137

minimum unit of resource locking (the row or the page) can be specified for each table.

You can also disable lock control with the index key value for an index. This setting is
called non-locking of index key values.

(a) When the row is specified as the minimum unit of resource locking
Because the row is a smaller unit of resource locking than the page, the efficiency of
concurrent execution improves, but processing time and memory requirements
associated with locking increase.

To specify the row as the minimum unit of resource locking, use the CREATE TABLE,
ALTER TABLE, or LOCK statement. For details, see the HiRDB Version 9 SQL
Reference manual.

(b) When the page is specified as the minimum unit of resource locking
Compared with row-level locking, the processing time and memory requirements
associated with locking decrease, but the efficiency of concurrent execution is
reduced.

To specify the row as the minimum unit of resource locking, use the CREATE TABLE,
ALTER TABLE, or LOCK statement. For details, see the HiRDB Version 9 SQL
Reference manual.

(c) When non-locking of index key values is specified
Locking is applied only to the table and not to the index key value. This setting allows
you to avoid the following problems:

• Deadlock between data update and index retrieval

• Unnecessary wait when data that has the same key is accessed

• Unnecessary wait when data that has a different key is accessed

For details about non-locking of index key values, see 3.4.6 Non-locking of index key
values.

These three settings each have different tradeoffs. These tradeoffs must be considered
when the minimum unit of resource locking is specified.

3.4.2 Lock modes
(1) Mode types

You can apply five lock modes to a resource, as explained as follows:

1. Protected retrieve (PR) mode

In the PR mode, only the first transaction that uses the resource occupies it and
can reference, add to, update, and delete data in the locked resource. Other
transactions can only reference the locked resource.

3. UAP Design

138

2. Exclusive (EX) mode

In the EX mode, only the transaction that uses the resource occupies it and can
reference, add to, update, and delete data in the locked resource. Other
transactions cannot reference, add to, update, or delete the locked resource.

3. Shared retrieve (SR) mode

In the SR mode, if a lock is applied in PR mode to a certain resource, the lock is
applied to the resource that is located above that resource. Other transactions can
also reference, add to, update, and delete the locked resource.

4. Shared update (SU) mode

In the SU mode, if a lock is applied in EX mode to a certain resource, the lock is
applied to the resource that is located above that resource. Other transactions can
also reference, add to, update, and delete the locked resource.

5. Protected update (PU) mode

In the PU mode, the first transaction that uses the resource can reference, add to,
update, and delete data in it; other transactions can only reference the locked
resource.

Unlike the first four modes, the PU mode occurs as a result of locking mode
transition.

Locking is applied first to the highest-level resource and then to lower-level resources.
If a transaction cannot be executed simultaneously with other transactions that have
locking in effect for the same resource, that transaction goes onto wait status. When
the PR or EX mode is encountered while locking is being applied from a higher-level
resource to a lower-level resource, a resource that is located below the resource to
which the mode has been applied is not locked.

When two users attempt to perform identical processing on the same resource, the
difference in the combination of the lock modes may prevent simultaneous execution.
The following table shows when two users can perform execution simultaneously
based on lock modes.

Table 3-8: Simultaneous execution by two users based on lock modes

Mode SR PR SU PU EX

SR A A A A NA

PR A A NA NA NA

SU A NA A NA NA

PU A NA NA NA NA

EX NA NA NA NA NA

3. UAP Design

139

A: Simultaneous execution allowed

NA: Simultaneous execution not allowed

When two users cannot perform execution simultaneously, the system usually waits
for the other transaction to be committed (updated at the synchronization point). WITH
ROLLBACK, or NOWAIT can be specified in the SQL statement to cause an error
return without waiting for the other transaction to be committed.

(2) Mode transition
If the user applies different locking modes repeatedly to the same resource, the mode
shifts to the stronger one.

After locking has been applied using a strong mode, applying a weaker mode does not
cause the mode to shift to the weaker one. For example, if EX is used for locking
during row updating, the lock mode of the row remains as EX, even if PR is applied
subsequently for referencing the updated row.

The following table shows the lock mode transition rules when a lock is applied to the
current lock.

Table 3-9: Lock mode transition rules

--: Mode transition does not occur.

(code): Mode after transition.

(3) Mode combinations
Different lock modes can be combined, depending on the SQL statement and the
execution environment.

Tables 3-10 and 3-11 show typical lock mode combinations based on the SQL
statement and execution environment for row-level locking. Tables 3-12 and 3-13
show similar combinations for page-level locking, and Tables 3-14 and 3-15 show
them for non-locking of index key values. Tables 3-16 and 3-17 show typical lock
mode combinations for cases when a table is set to check pending status.

Mode applied subsequently Current mode

SR PR SU PU EX

SR -- -- -- -- --

PR PR -- PU -- --

SU SU PU -- -- --

EX EX EX EX EX --

3. UAP Design

140

Table 3-10: Typical lock mode combinations (row locking) (1/2)

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Inner
replic

a
config

#6

Replic
a

group
config

#8

RDAREA Tabl
e

Table
(NO

WAIT
searc

h)

For
table

s

For IX For
seque

nce
gener
ator

Last
HiRD

B
file#5

Retrieval NOWAIT
specified

SR SR SR -- -- -- SR

WITH SHARE
specified

SR SR SR -- -- SR --

WITH
EXCLUSIVE
specified#1

SR SR SU SR -- -- SU --

FOR UPDATE
clause
specified#1

SR SR SU SR -- -- SU --

None of the
above

SR SR SR -- -- SR --

Updating
#1, #12

NEXT VALUE
clause specified

SR SU SU EX SU --

None of the
above

SR SU -- EX SU --

Addition
#1

NEXT VALUE
clause specified

SR SU SU EX SU --

None of the
above

SR SU -- EX SU --

Deletion#1 SR SR SU -- -- SU --

3. UAP Design

141

--: Locking is not applied.

(code): Lock mode.

IX: indexes

#1: If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during

LOCK
statement

SHARE

specified#11
SR SR SR -- -- -- PR --

EXCL
USIV
E
specif
ied

Unsh
ared
table

SR SR SU -- -- -- EX --

Share
d
table#

11

SR SR EX -- -- -- EX --

Table deletion#2, #13 -- -- SU -- -- EX

Index Definition#13 -- -- SU -- -- EX --

Deletion#3, #13 -- -- SR#10 SU -- -- EX#4 EX

Deletion of all rows#2, #13,

#14
SR SR SU -- -- EX

Table definition change#13 SR#9 SR#9 SU#7 -- -- EX

Definition of sequence
generator

-- -- -- -- SU -- -- --

Deletion of sequence
generator

-- -- -- -- SU -- -- --

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Inner
replic

a
config

#6

Replic
a

group
config

#8

RDAREA Tabl
e

Table
(NO

WAIT
searc

h)

For
table

s

For IX For
seque

nce
gener
ator

Last
HiRD

B
file#5

3. UAP Design

142

UAP execution, see the HiRDB Version 9 System Operation Guide.

#2: All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.

#3: All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.

#4: Plug-in indexes are locked in the EX mode, but B-Tree indexes are not locked.

#5: If automatic extension of the RDAREA is applied, the last HiRDB file that makes
up the RDAREA is locked from start to end of the automatic extension processing.

#6: If the inner replica facility is used, the server containing the RDAREA to be
processed is locked. However, if Y is specified in the
pd_inner_replica_lock_shift operand, the corresponding server is not locked.

#7: If an RDAREA is added or is altered with the free space reusage facility, the
RDAREA is locked.

#8: If a change related to the inner replica configuration is made, such as changing the
current database, defining or deleting a replica, or performing updatable online
reorganization, the replica group containing the RDAREA to be processed is locked.
A lock is always applied when Y is specified in the
pd_inner_replica_lock_shift operand.

#9: If an RDAREA to be processed is accessed, the RDAREA is locked.

#10: If the inner replica facility is applied, the resource is locked.

#11: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when a shared table is accessed.

#12: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when an UPDATE statement that does not update the index is executed for a shared
table.

#13: When HiRDB/Parallel Server is used, locking equivalent to an
EXCLUSIVE-specified LOCK statement is applied to all back-end servers when the
operation is executed for a shared table or a shared index. When HiRDB/Single Server
is used, locking equivalent to an EXCLUSIVE-specified LOCK statement is applied
when the operation is executed for a shared table or a shared index.

#14: If USE or nothing is specified in the pd_check_pending operand in the system
definition, the data dictionary table (resource type: 3005, type name: DICT) is locked
temporarily in the EX mode. The data dictionary RDAREA (resource type: 0001, type
name: RDAR) is locked in the SU mode until the transaction terminates.

3. UAP Design

143

Table 3-11: Typical lock mode combinations (row locking) (2/2)

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Index Index
informatio

n file#4

Sequ
ence
gene
rator

Page Ro
w

Key
value

Logical
file

Retrieva
l

NOWAIT specified -- -- -- -- -- -- PR

WITH SHARE
specified

-- -- -- -- PR PR PR

WITH EXCLUSIVE

specified#1
-- -- -- -- EX PR EX

FOR UPDATE clause
specified#1

-- -- -- -- EX PR EX

None of the above -- -- -- -- PR PR PR

Updatin
g#1, #6

NEXT VALUE clause
specified

-- EX SU -- EX EX EX

None of the above -- EX -- -- EX EX EX

Additio
n#1

NEXT VALUE clause
specified

-- EX SU -- EX EX EX

None of the above -- EX -- -- EX EX EX

Deletion#1 -- -- -- -- EX#

8
EX EX

LOCK
stateme
nt

SHARE specified#5 -- -- -- -- -- -- --

EXCLUS
IVE
specifie
d

Unshare
d table

-- -- -- -- -- -- --

Shared
table#5

-- -- -- -- -- -- --

Table deletion#2, #7 -- -- -- -- -- -- --

Index Definition#7 -- -- -- -- -- -- --

Deletion#3, #7 EX -- -- -- -- -- --

Deletion of all rows#2, #7, #9 -- -- -- -- -- -- --

3. UAP Design

144

--: Locking is not applied.

(code): Lock mode.

#1: If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 9 System Operation Guide.

#2: All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.

#3: All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.

#4: The delayed batch creation facility for plug-in indexes is used to lock a plug-in
index when it is updated. The lock is held until a commit statement is executed.

#5: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when a shared table is accessed.

#6: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when an UPDATE statement that does not update the index is executed for a shared
table.

#7: When HiRDB/Parallel Server is used, locking equivalent to an
EXCLUSIVE-specified LOCK statement is applied to all back-end servers when the
operation is executed for a shared table or a shared index.

#8: The row to be deleted is locked in the EX mode until the transaction is committed
or rolled back. However, if another transaction executes retrieval processing while the
row is being deleted, the retrieval processing does not wait for lock-release because it
cannot apply a lock on the row to be deleted.]

#9: If USE or nothing is specified in the pd_check_pending operand in the system

Table definition change#7 -- -- -- -- -- -- --

Definition of sequence
generator

-- -- EX -- -- -- --

Deletion of sequence generator -- -- EX -- -- -- --

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Index Index
informatio

n file#4

Sequ
ence
gene
rator

Page Ro
w

Key
value

Logical
file

3. UAP Design

145

definition, the data dictionary table (resource type: 3005, type name: DICT) is locked
temporarily in the EX mode. The data dictionary RDAREA (resource type: 0001, type
name: RDAR) is locked in the SU mode until the transaction terminates.

Table 3-12: Typical lock mode combinations (page locking) (1/2)

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Inner
replic

a
config

#6

Replic
a

group
config

#8

RDAREA Tabl
e

Table
(NO

WAIT
searc

h)

For
table

s

For IX For
seque

nce
gener
ator

Last
HiRD

B
file#5

Retrieval NOWAIT
specified

SR SR SR -- -- -- SR

WITH SHARE
specified

SR SR SR -- -- SR --

WITH
EXCLUSIVE

specified#1

SR SR SU SR -- -- SU --

FOR UPDATE
clause
specified#1

SR SR SU SR -- -- SU --

None of the
above

SR SR SR -- -- SR --

Updating
#1, #12

NEXT VALUE
clause specified

SR SR SU SU EX SU --

None of the
above

SR SR SU -- EX SU --

Addition
#1

NEXT VALUE
clause specified

SR SR SU SU EX SU --

None of the
above

SR SR SU -- EX SU --

Deletion#1 SR SR SU -- -- SU --

3. UAP Design

146

--: Locking is not applied.

(code): Lock mode.

IX: indexes

#1: If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during

LOCK
statemen
t

SHARE

specified#11
SR SR SR -- -- -- PR --

EXCL
USIV
E
specif
ied

Unsh
ared
table

SR SR SU -- -- -- EX --

Share
d
table#

11

SR SR EX -- -- -- EX --

Table deletion#2, #13 -- -- SU -- -- EX EX

Index Definition#13 -- -- SU -- -- EX --

Deletion#3, #13 -- -- SR#10 SU -- -- EX#4 EX

Deletion of all rows#2, #13,

#14
SR SR SU -- -- EX EX

Table definition change#13 SR#9 SR#9 SU#7 -- -- EX EX

Definition of sequence
generator

-- -- -- SU -- -- --

Deletion of sequence
generator

-- -- -- SU -- -- --

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Inner
replic

a
config

#6

Replic
a

group
config

#8

RDAREA Tabl
e

Table
(NO

WAIT
searc

h)

For
table

s

For IX For
seque

nce
gener
ator

Last
HiRD

B
file#5

3. UAP Design

147

UAP execution, see the HiRDB Version 9 System Operation Guide.

#2: All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.

#3: All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.

#4: Plug-in indexes are locked in the EX mode, but B-Tree indexes are not locked.

#5: If automatic extension of the RDAREA is applied, the last HiRDB file that makes
up the RDAREA is locked from start to end of the automatic extension processing.

#6: If the inner replica facility is used, the server containing the RDAREA to be
processed is locked. However, if Y is specified in the
pd_inner_replica_lock_shift operand, the server is not locked.

#7: If an RDAREA is added or is altered with the free space reusage facility, the
RDAREA is locked.

#8: If a change related to the inner replica configuration is made, such as changing the
current database, defining or deleting a replica, or performing updatable online
reorganization, the replica group containing the RDAREA to be processed is locked.
A lock is always applied when Y is specified in the
pd_inner_replica_lock_shift operand.

#9: If an RDAREA to be processed is accessed, the RDAREA is locked.

#10: If the inner replica facility is applied, the resource is locked.

#11: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when a shared table is accessed.

#12: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when an UPDATE statement that does not update the index is executed for a shared
table.

#13: When HiRDB/Parallel Server is used, locking equivalent to an
EXCLUSIVE-specified LOCK statement is applied to all back-end servers when the
operation is executed for a shared table or a shared index. When HiRDB/Single Server
is used, locking equivalent to an EXCLUSIVE-specified LOCK statement is applied
when the operation is executed for a shared table or a shared index.

#14: If USE or nothing is specified in the pd_check_pending operand in the system
definition, the data dictionary table (resource type: 3005, type name: DICT) is locked
temporarily in the EX mode. The data dictionary RDAREA (resource type: 0001, type
name: RDAR) is locked in the SU mode until the transaction terminates.

3. UAP Design

148

Table 3-13: Typical lock mode combinations (page locking) (2/2)

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Index Index
informatio

n file#4

Sequ
ence
gene
rator

Page Ro
w

Key
value

Logical
file

Retrieva
l

NOWAIT specified -- -- -- -- -- -- PR

WITH SHARE
specified

-- -- -- PR -- PR PR

WITH EXCLUSIVE

specified#1
-- -- -- EX -- PR EX

FOR UPDATE clause
specified#1

-- -- -- EX -- PR EX

None of the above -- -- -- PR -- PR PR

Updatin
g#1, #6

NEXT VALUE clause
specified

-- EX SU EX -- EX EX

None of the above -- EX -- EX -- EX EX

Additio
n#1

NEXT VALUE clause
specified

-- EX SU EX -- EX EX

None of the above -- EX -- EX -- EX EX

Deletion#1 -- -- -- EX -- EX EX

LOCK
stateme
nt

SHARE specified#5 -- -- -- -- -- -- --

EXCLUS
IVE
specifie
d

Unshare
d table

-- -- -- -- -- -- --

Shared
table#5

-- -- -- -- -- -- --

Table deletion#2, #7 -- -- -- -- -- -- --

Index Definition#7 -- -- -- -- -- -- --

Deletion#3, #7 EX -- -- -- -- -- --

Deletion of all rows#2, #7, #8 -- -- -- -- -- -- --

3. UAP Design

149

--: Locking is not applied.

(code): Lock mode.

#1: If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 9 System Operation Guide.

#2: All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.

#3: All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.

#4: The delayed batch creation facility for plug-in indexes is used to lock a plug-in
index when it is updated. The lock is held until a commit statement is executed.

#5: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when a shared table is accessed.

#6: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when an UPDATE statement that does not update the index is executed for a shared
table.

#7: When HiRDB/Parallel Server is used, locking equivalent to an
EXCLUSIVE-specified LOCK statement is applied to all back-end servers when the
operation is executed for a shared table or a shared index.

#8: If USE or nothing is specified in the pd_check_pending operand in the system
definition, the data dictionary table (resource type: 3005, type name: DICT) is locked
temporarily in the EX mode. The data dictionary RDAREA (resource type: 0001, type
name: RDAR) is locked in the SU mode until the transaction terminates.

Table definition change#7 -- -- -- -- -- -- --

Definition of sequence
generator

-- -- EX -- -- -- --

Deletion of sequence generator -- -- EX -- -- -- --

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Index Index
informatio

n file#4

Sequ
ence
gene
rator

Page Ro
w

Key
value

Logical
file

3. UAP Design

150

Table 3-14: Typical lock mode combinations (non-locking of index key values)
(1/2)

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Inner
replic

a
config

#5

Replic
a

group
config

#7

RDAREA Tabl
e

Table
(NO

WAIT
searc

h)

For
table

s

For IX For
seque

nce
gener
ator

Last
HiRD

B
file#4

NOWAIT
specified

SR SR SR -- -- -- SR

WITH SHARE
specified

SR SR SR -- -- SR --

Retrieval WITH
EXCLUSIVE
specified#10

SR SR SU SR -- -- SU SU

FOR UPDATE
clause
specified#10

SR SR SU SR -- -- SU SU

None of the
above

SR SR SR -- -- SR --

Updating
#10, #12

NEXT VALUE
clause
specified

SR SR SU SU EX SU --

None of the
above

SR SR SU -- EX SU --

Addition
#10

NEXT VALUE
clause
specified

SR SR SU SU EX SU --

None of the
above

SR SR SU -- EX SU --

Deletion#10 SR SR SU -- -- SU --

3. UAP Design

151

--: Locking is not applied.

(code): Lock mode.

IX: indexes

#1: All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.

#2: All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.

LOCK
statemen
t

SHARE
specified#11

SR SR SR -- -- -- PR --

EXCL
USIV
E
speci
fied

Unsh
ared
table

SR SR SU -- -- -- EX --

Shar
ed
table
#11

SR SR EX EX -- -- EX --

Table deletion#1, #13 -- -- SU -- -- EX EX

Index Definition#13 -- -- SU -- -- EX --

Deletion#2, #13 -- -- SR#9 SU -- -- EX#3 EX

Deletion of all rows#1, #13,

#14
SR SR SU -- -- EX EX

Table definition change#13 SR#8 SR#8 SU#6 -- -- EX EX

Definition of sequence
generator

-- -- -- SU -- -- --

Deletion of sequence
generator

-- -- -- SU -- -- --

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Inner
replic

a
config

#5

Replic
a

group
config

#7

RDAREA Tabl
e

Table
(NO

WAIT
searc

h)

For
table

s

For IX For
seque

nce
gener
ator

Last
HiRD

B
file#4

3. UAP Design

152

#3: Plug-in indexes are locked in the EX mode, but B-Tree indexes are not locked.

#4: If automatic extension of the RDAREA is applied, the last HiRDB file that makes
up the RDAREA is locked from start to end of the automatic extension processing.

#5: If the inner replica facility is used, the server containing the RDAREA to be
processed is locked. However, if Y is specified in the
pd_inner_replica_lock_shift operand, the server is not locked.

#6: If an RDAREA is added or is altered with the free space reusage facility, the
RDAREA is locked.

#7: If a change related to the inner replica configuration is made, such as changing the
current database, defining or deleting a replica, or performing updatable online
reorganization, the replica group containing the RDAREA to be processed is locked.
A lock is always applied when Y is specified in the
pd_inner_replica_lock_shift operand.

#8: If an RDAREA to be processed is accessed, the RDAREA is locked.

#9: If the inner replica facility is applied, the resource is locked.

#10: If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 9 System Operation Guide.

#11: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when a shared table is accessed.

#12: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when an UPDATE statement that does not update the index is executed for a shared
table.

#13: When HiRDB/Parallel Server is used, locking equivalent to an
EXCLUSIVE-specified LOCK statement is applied to all back-end servers when the
operation is executed for a shared table or a shared index. When HiRDB/Single Server
is used, locking equivalent to an EXCLUSIVE-specified LOCK statement is applied
when the operation is executed for a shared table or a shared index.

#14: If USE or nothing is specified in the pd_check_pending operand in the system
definition, the data dictionary table (resource type: 3005, type name: DICT) is locked
temporarily in the EX mode. The data dictionary RDAREA (resource type: 0001, type
name: RDAR) is locked in the SU mode until the transaction terminates.

3. UAP Design

153

Table 3-15: Typical lock mode combinations (non-locking of index key values)
(2/2)

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Index Index
inform
ation
file#3

Seque
nce

genera
tor

Page Row Key
value

Logica
l file

Retrieval NOWAIT specified -- -- -- -- -- -- PR

WITH SHARE
specified

-- -- -- --,
PR#4

PR,
--# 4

-- PR

WITH
EXCLUSIVE

specified#6

-- -- -- --,
EX#4

EX,
--# 4

-- EX

FOR UPDATE

clause specified#6
-- -- -- --,

EX#4
EX,
--# 4

-- EX

None of the above -- -- -- --
PR#4

PR,
--# 4

-- PR

Updating
#6, 8

NEXT VALUE
clause specified

-- EX SU --,
EX#4, #5

EX,
--#4, #5

-- EX

None of the above -- EX -- --,
EX#4, #5

EX,
--#4, #5

-- EX

Addition
#6

NEXT VALUE
clause specified

-- EX SU --,
EX#4, #5

EX,
--# 4, #5

-- EX

None of the above -- EX -- --,
EX#4, #5

EX,
--#4, #5

-- EX

Deletion#6 -- -- -- --
EX#4, #5

EX,
--#4, #5

-- EX

3. UAP Design

154

--: Locking is not applied.

(code): Lock mode.

#1: All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.

#2: All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.

#3: The delayed batch creation facility for plug-in indexes is used to lock a plug-in
index when it is updated. The lock is held until a commit statement is executed.

#4: In row locking, resource rows are locked and resource pages are not locked. In
page locking, resource rows are not locked, and resource pages are locked.

LOCK
statement

SHARE specified#7 -- -- -- -- -- -- --

EXCLUS
IVE
specified

Unsh
ared
table

-- -- -- -- -- -- --

Shar
ed
table
#7

-- -- -- -- -- -- --

Table deletion#1, #9 -- -- -- -- -- -- --

Index Definition#9 -- -- -- -- -- -- --

Deletion#2, #9 EX -- -- -- -- -- --

Deletion of all rows#1, #9, #10 -- -- -- -- -- -- --

Table definition change#9 -- -- -- -- -- -- --

Definition of sequence
generator

-- -- EX -- -- -- --

Deletion of sequence generator -- -- EX -- -- -- --

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Index Index
inform
ation
file#3

Seque
nce

genera
tor

Page Row Key
value

Logica
l file

3. UAP Design

155

#5: If a unique index is defined, resource rows are locked, even in page locking.

#6: If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 9 System Operation Guide.

#7: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when a shared table is accessed.

#8: When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when an UPDATE statement that does not update the index is executed for a shared
table.

#9: When HiRDB/Parallel Server is used, locking equivalent to an
EXCLUSIVE-specified LOCK statement is applied to all back-end servers when the
operation is executed for a shared table or a shared index.

#10: If USE or nothing is specified in the pd_check_pending operand in the system
definition, the data dictionary table (resource type: 3005, type name: DICT) is locked
temporarily in the EX mode. The data dictionary RDAREA (resource type: 0001, type
name: RDAR) is locked in the SU mode until the transaction terminates.

Table 3-16: Typical lock mode combinations (when check pending status is set)
(1/2)

SQL statement and
utility

Resource#1

Higher level --------------------- Lower level

RDAREA Table Table (NO
WAIT

search)For
tables#

2

For
indexes

For
LOB

Last
HiRDB file

Deletion of all rows#4 SU -- -- -- EX EX

Changing a table's
definition (changing the
storage partitioning
conditions)

SU -- -- -- EX EX

Database load utility
(pdload)#3

SU -- -- -- EX EX

Database
reorganization utility
(pdrorg)#3

SU -- -- -- EX EX

3. UAP Design

156

--: Locking is not applied.

(code): Lock mode.

#1

This table shows resources for tables in which a referential constraint or a check
constraint is defined.

#2

Locking is applied to the RDAREAs in which the check pending status is to be
set.

#3

When a HiRDB/Parallel Server is used, locking equivalent to a LOCK statement
with EXCLUSIVE specified is applied to all back-end servers when the utility is
executed for a shared table. For details about the lock mode applied during
execution of the LOCK statement on a shared table, see the EXCLUSIVE specified
rows under LOCK statement in Tables 3-10 to 3-15.

#4

If USE or nothing is specified in the pd_check_pending operand in the system
definition, the data dictionary table (resource type: 3005, type name: DICT) is
locked temporarily in the EX mode. The data dictionary RDAREA (resource
type: 0001, type name: RDAR) is locked in the SU mode until the transaction
terminates.

Database structure
modification utility
(pdmod)

SU -- -- -- EX EX

Integrity check utility
(pdconstck)#3

SU -- -- -- EX EX

Reflection command
for online
reorganization
(pdorend)#3

SU -- -- -- EX EX

SQL statement and
utility

Resource#1

Higher level --------------------- Lower level

RDAREA Table Table (NO
WAIT

search)For
tables#

2

For
indexes

For
LOB

Last
HiRDB file

3. UAP Design

157

Table 3-17: Typical lock mode combinations (when check pending status is set)
(2/2)

--: Locking is not applied.

#1

This table shows resources for tables in which a referential constraint or a check
constraint is defined.

#2

When a HiRDB/Parallel Server is used, locking equivalent to a LOCK statement

SQL statement
and utility

Resource#1

Higher level --------------------- Lower level

Index Index
informatio

n file

Page Row Key value Logical
file

Deletion of all
rows#3

-- -- -- -- -- --

Changing a table's
definition
(changing the
storage
partitioning
conditions)

-- -- -- -- -- --

Database load
utility (pdload)#2

-- -- -- -- -- --

Database
reorganization
utility (pdrorg)#2

-- -- -- -- -- --

Database structure
modification
utility (pdmod)

-- -- -- -- -- --

Integrity check
utility
(pdconstck)#2

-- -- -- -- -- --

Reflection
command for
online
reorganization
(pdorend)#2

-- -- -- -- -- --

3. UAP Design

158

with EXCLUSIVE specified is applied to all back-end servers when the utility is
executed for a shared table. For details about the lock mode applied during
execution of the LOCK statement on a shared table, see the EXCLUSIVE specified
rows under LOCK statement in Tables 3-10 to 3-15.

#3

If USE or nothing is specified in the pd_check_pending operand in the system
definition, the data dictionary table (resource type: 3005, type name: DICT) is
locked temporarily in the EX mode. The data dictionary RDAREA (resource
type: 0001, type name: RDAR) is locked in the SU mode until the transaction
terminates.

(4) Lock release timings in tables for which the WITHOUT ROLLBACK option is
specified in CREATE TABLE

Tables 3-18 to 3-21 show the lock release timings in tables for which the WITHOUT
ROLLBACK option is specified in CREATE TABLE.

Table 3-18: Lock release timings in tables for which the WITHOUT
ROLLBACK option is specified in CREATE TABLE (when an index is not
defined) (1/2)

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Inner
replica
config#

Replica
group

config#

RDAREA Table Table
(NO

WAIT
searc

h)

For
tables

For
indexes

Last
HiRDB

file

Retrieval NOWAIT
specified

B B B -- -- -- B

WITH SHARE
specified

B B B -- -- B --

WITH
EXCLUSIVE
specified#

B B B -- -- B --

FOR UPDATE
clause
specified#

B B B -- -- B --

None of the
above

B B B -- -- B --

Updating B B B -- -- B --

3. UAP Design

159

--: Locking is not applied or is not applicable (page locking cannot be specified).

B: Lock is not released when the SQL statement is executed.

#: If the inner replica facility is being used, the inner replica configuration management
is locked. If the updatable online reorganization is being used, the inner replica
configuration management or the replica group configuration management is locked.

Addition B B B -- -- B --

Deletion B B B -- -- B --

LOCK
statement

SHARE specified B B B -- -- B --

EXCLUSIVE
specified

B B B -- -- B --

Table deletion -- -- B -- -- B B

Index Definition -- -- B -- -- B B

Deletion -- -- B -- -- B B

Deletion of all rows B B B -- -- B B

Table definition change -- -- -- -- -- B B

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Inner
replica
config#

Replica
group

config#

RDAREA Table Table
(NO

WAIT
searc

h)

For
tables

For
indexes

Last
HiRDB

file

3. UAP Design

160

Table 3-19: Lock release timings in tables for which the WITHOUT
ROLLBACK option is specified in CREATE TABLE (when an index is not
defined) (2/2)

--: Locking is not applied or is not applicable (page locking cannot be specified).

R: Lock is released when the SQL statement is executed.

B: Lock is not released when the SQL statement is executed.

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Index Index
information

file

Page Row Key
value

Logical
file

Retrieval NOWAIT specified -- -- -- -- -- --

WITH SHARE specified -- -- -- B -- --

WITH EXCLUSIVE
specified

-- -- -- B -- --

FOR UPDATE clause
specified

-- -- -- B -- --

None of the above -- -- -- B -- --

Updating -- -- -- R -- --

Addition -- -- -- R -- --

Deletion -- -- -- R -- --

LOCK
statement

SHARE specified -- -- -- -- -- --

EXCLUSIVE specified -- -- -- -- -- --

Table deletion -- -- -- -- -- --

Index Definition -- -- -- -- -- --

Deletion -- -- -- -- -- --

Deletion of all rows -- -- -- -- -- --

Table definition change -- -- -- -- -- --

3. UAP Design

161

Table 3-20: Lock release timings in tables for which the WITHOUT
ROLLBACK option is specified in CREATE TABLE (when an index is defined)
(1/2)

Legend:

--: Locking is not applied or is not applicable (page locking cannot be specified).

SQL statement Resource

Higher level --------------------- Lower level

Inner
replica
config#

Replica
group

config#

RDAREA Table Table
(NO

WAIT
searc

h)

For
tables

For
indexes

Last
HiRDB

file

Retrieval NOWAIT
specified

B B B B -- -- B

WITH SHARE
specified

B B B B -- B --

WITH
EXCLUSIVE
specified

B B B B -- B --

FOR UPDATE
clause specified

B B B B -- B --

None of the
above

B B B B -- B --

Updating B B B B -- B --

Addition B B B B -- B --

Deletion B B B B -- B --

LOCK
statement

SHARE specified B B B B -- B --

EXCLUSIVE
specified

B B B B -- B --

Table deletion -- -- B B -- B B

Index Definition -- -- B B -- B B

Deletion -- -- B B -- B B

Deletion of all rows B B B B -- B B

Table definition change -- -- -- B -- B B

3. UAP Design

162

B: Lock is not released when the SQL statement is executed.

#: If the inner replica facility is being used, the inner replica configuration management
is locked. If the updatable online reorganization is being used, the inner replica
configuration management or the replica group configuration management is locked.

Table 3-21: Lock release timings in tables for which the WITHOUT
ROLLBACK option is specified in CREATE TABLE (when an index is defined)
(2/2)

SQL statement Resource

Higher level --------------------- Lower level

Index Index
information

file

Page Row Key
value

Logical
file

Retrieval NOWAIT
specified

-- -- -- -- -- --

WITH SHARE
specified

-- -- -- B --#1 --

WITH
EXCLUSIVE
specified

-- -- -- B --#1 --

FOR UPDATE
clause specified

-- -- -- B --#1 --

None of the
above

-- -- -- B --#1 --

Updating -- -- -- R --#2 --

Addition -- -- -- R --#3 --

Deletion -- -- -- R --#3 --

LOCK
statement

SHARE specified -- -- -- -- -- --

EXCLUSIVE
specified

-- -- -- -- -- --

Table deletion -- -- -- -- -- --

Index Definition -- -- -- -- -- --

Deletion -- -- -- -- -- --

Deletion of all rows -- -- -- -- -- --

3. UAP Design

163

Legend:

--: Locking is not applied or is not applicable (index definition and page locking
cannot be specified).

R: Lock is released when the SQL statement is executed.

B: Lock is not released when the SQL statement is executed.

#1: If the pd_indexlock_mode operand of the system definition is KEY (index
locking is applied), the lock is released when the key value of the processed target is
changed to another key value.

#2: The lock is released if the resource is a unique key index.

#3: The lock is not released if the pd_indexlock_mode operand of the system
definition is KEY (index locking is applied).

3.4.3 Lock period
(1) Starting and releasing a lock

When a transaction locks a resource, that resource is usually occupied until COMMIT or
ROLLBACK occurs. For example, because the EX mode is in effect while a locked
resource (row or page) is being updated, all other transactions for the resource being
updated must wait until COMMIT or ROLLBACK is executed. However, if the UNTIL
DISCONNECT option is specified in the LOCK statement, the lock on the resource is
retained until either the resource is disconnected or the transaction is committed after
the table is deleted.

Normally, when row deletion is executed, the lock is maintained until the transaction
is completed. However, because the row ends up being deleted from the database,
retrieval processing in other transactions does not wait for lock-release in the row
being deleted. For details about locking other transactions' retrieval processing, see
3.4.7 Locking uncommitted data to be deleted.

(2) Referencing during a lock
Once a resource is locked, that resource is usually not released until COMMIT or
ROLLBACK occurs. When an SQL statement with WITHOUT LOCK specified is used for
retrieval, however, the lock is released from a locked resource (row or page) as soon

Table definition change -- -- -- -- -- --

SQL statement Resource

Higher level --------------------- Lower level

Index Index
information

file

Page Row Key
value

Logical
file

3. UAP Design

164

as that resource has been referenced. When an SQL statement with WITHOUT LOCK
NOWAIT specified is used for retrieval, even tables and rows that have been locked in
EX mode by another transaction can be referenced as if they were not locked, except
when a logical file is referenced. However, a table cannot be referenced if it is being
accessed by the pdload or pdrorg command. For details about the pdload and
pdrorg commands, see the HiRDB Version 9 Command Reference manual.

In retrieval using an SQL statement with WITHOUT LOCK NOWAIT specified,
referencing is allowed even during updating. Therefore, care must be taken, because
the result of the referencing might not be the same as the result after the updating.

3.4.4 Deadlocks and corrective measures
(1) Causes of deadlock

When two transactions attempt to access multiple resources but are waiting for the
other to initiate a move, processing can become stuck; this is called deadlock.

Deadlock occurs most often between a referencing transaction and an updating
(including deleting) transaction. It is, therefore, possible to reduce the frequency of
deadlocks by changing the UAP access sequence.

The figure below shows an example of deadlock, in which two transactions
simultaneously access a row with the same key. The figure also shows the relationship
between the order in which locking is applied and deadlock.

3. UAP Design

165

Figure 3-8: Example of deadlock

With page-locking, there are situations in which deadlock cannot be prevented even
though UAP access procedures are standardized.

3. UAP Design

166

The following figure shows an example of deadlock occurring in page-locking.

Figure 3-9: Example of deadlock in page-locking

In the example shown in Figure 3-9, the order in which rows are stored in a page
cannot be standardized unless a cluster key is specified. Therefore, the sequence of
UAP accesses cannot be standardized at the page level. In this case, ALTER TABLE
must be used to change page locking to row locking in order to prevent deadlock from
occurring.

(2) Deadlock between servers
Deadlock can occur between servers as well as within a single server. In a HiRDB/
Parallel Server, deadlock between servers is called global deadlock.

Global deadlock occurs between a referencing transaction and an updating transaction
in the same way that deadlock occurs within a single server, as shown in Figure 3-9.
The frequency of these deadlocks can be reduced by changing the UAP access
sequence.

The figure below shows an example of global deadlock, in which two transactions
attempt to execute retrieval and updating in reverse order on tables stored on two
separate servers. The figure also shows the relationship between the order in which
locking is applied and deadlock.

3. UAP Design

167

Figure 3-10: Example of global deadlock

In this example, locking occurs between UAP1 and UAP2 within each back-end

3. UAP Design

168

server; however, deadlock occurs at the front-end server because of lock-release wait.

(3) Detection of deadlocks
Deadlock in a unit is detected by the unit's locking mechanism. In HiRDB, for a
resource locked by the same server within the unit, deadlocks among multiple
transactions on that server are detected. However, deadlocks on resources among
multiple servers in the same unit cannot be detected other than by HiRDB based on
occurrence of a lock timeout. Deadlocks on resources among multiple units are
detected based on a timeout in the same manner as with deadlocks among multiple
servers in the same unit.

(a) Deadlock detection method and timing
The deadlock detection method and timing depend on whether lock processing is
distributed. For details about distribution of lock processing, see the HiRDB Version 9
System Operation Guide. The following table describes the deadlock detection method
and timing.

Table 3-22: Deadlock detection method and timing

Legend:

--: Not applicable

pd_lck_deadlock_
check value

pd_lck_pool_pa
rtition value#

Deadlock detection
method

Deadlock detection timing

Y 2 or greater A deadlock monitoring
process is applied
periodically to detect
deadlock (interval
monitoring method).

Deadlocks are detected at the interval
specified in the
pd_lck_deadlock_check_interv
al operand. In such a case, there is a
delay between occurrence of a
deadlock and its detection.

1 Deadlock is detected
when a server process
is placed in
lock-release wait status
(immediate detection
method).

Deadlocks are detected as soon as they
occur.

N -- Deadlock is not
detected. A UAP is
placed in lock-release
wait status for the
amount of time
specified in the
pd_lck_wait_timeo
ut operand and then a
lock timeout error is
issued to the UAP.

--

3. UAP Design

169

#

pd_fes_lck_pool_partition operand value for a front-end server.

(b) Disabling deadlock detection
You can disable deadlock detection by specifying N in the pd_lck_deadlock_check
operand.

If you increase the number of pool partitions for locking when you are using the
interval monitoring method for deadlock detection, locking performance will likely be
affected adversely each time a deadlock is detected. Therefore, in an application
system in which deadlocks do not occur, you might be able to improve SQL execution
performance by disabling deadlock detection. If you are able to configure a
deadlock-free application system, you can disable deadlock detection.

For an application system in which deadlocks might occur, you should not disable
deadlock detection. If a deadlock occurs after deadlock detection has been disabled,
SQL statements will not terminate with an error until the time specified in the
pd_lck_wait_timeout operand elapses and a timeout occurs. Additionally, HiRDB
will not output deadlock information, which will make it difficult to determine the
cause of a deadlock.

(4) Deadlock countermeasures
The two major causes of deadlock are:

• UAP access sequence (order in which lock is applied)

• Retrieving and updating in reverse order

There are other types of deadlock in addition to those shown in Figures 3-8, 3-9, and
3-10. The following table shows the major types of deadlocks and the countermeasures
for each type.

Table 3-23: Deadlocks and their countermeasures

Deadlocked
resources

Cause Countermeasures

Row and row UAP access sequence
(shown in Figure 3-10)

• Standardize UAP access sequence.
• Use LOCK TABLE to lock the table.
• Re-execute UAP after deadlock occurs.

Row and index key Retrieval and updating in
reverse order (shown in
Figure 3-8)

• Do not update the retrieved row.
• Do not update the values in a column to the same

value.
• Minimize index definition.
• Use LOCK TABLE to lock the table.
• Perform NOWAIT retrieval.
• Re-execute UAP after deadlock occurs.
• Apply non-locking of index key values

3. UAP Design

170

(5) Locking based on deadlock priority values
Deadlock priority values can be used to control the transaction that is to be terminated
with an error when a deadlock occurs. When deadlock priority control is specified in
the pd_deadlock_priority_use operand in the system common definition, and
deadlock priority values are specified in the PDDLKPRIO operand in the client
environment definition, HiRDB determines the deadlock priority order of the
transactions based on these specified values. Specification of a low value means a
higher-processing priority; specification of a high value means that an error and
rollback are more likely to occur. If two transactions have the same deadlock priority
value, the error occurs for the transaction that was started later (this transaction is
rolled back). If specification of the PDDLKPRIO operand is omitted, HiRDB triggers
the error for the transaction that caused the deadlock (and rolls back this transaction),
based on the type of UAP, the utility, and the operation command. For the default that
is assumed when specification of the PDDLKPRIO operand is omitted, see 6.6.4
Environment definition information. Unless the transaction is terminated by a
ROLLBACK or DISCONNECT statement, a UAP that is rolled back implicitly because of
deadlock results in an error, even if an SQL statement is issued. When an X/
Open-compliant UAP is used as a client in an OLTP environment, a transaction must
be terminated, even if deadlock occurs in the UAP.

To enable output of deadlock information if a deadlock occurs, specify Y in the
pd_lck_deadlock_info operand of the system definitions. For details about the
pd_lck_deadlock_info operand, see the HiRDB Version 9 System Definition
manual.

(6) Preventing deadlocks
Although the frequency of deadlock occurrences can be reduced by enlarging the lock
range, the concurrent execution capability of transactions declines. Conversely, while
narrowing the lock range improves the concurrent execution capability, incorrect
referencing and updating occurs, resulting in an increase in the deadlock frequency. To

Index key and index key UAP access sequence • Standardize UAP access sequence.
• Minimize index definition.
• Use LOCK TABLE to lock the table.
• Perform NOWAIT retrieval.
• Re-execute UAP after deadlock occurs.
• Apply non-locking of index key values

Page and page Rows are stored in a page
in an unpredictable
sequence (shown in
Figure 3-9)

• Use ALTER TABLE to change page locking to row
locking.

Deadlocked
resources

Cause Countermeasures

3. UAP Design

171

avoid deadlocks while maintaining concurrent execution capability, consider the
measures listed as follows:

• Do not assign indexes to columns that are updated frequently

• Do not update retrieval conditions columns

• Specify the FOR UPDATE OF clause in the cursor definition only for columns to be
updated

• Do not update values in a column (a unique index column in particular) to the
same values (use the SET clause to specify only the columns that it is certain are
updated to a different value)

• Specify the FOR UPDATE clause in the cursor specification to update or delete a
row retrieved by the cursor

• Specify WITH EXCLUSIVE LOCK the columns that are updated after retrieval

• When assigning conditions to multiple columns, consider the use of a
multicolumn index (to avoid expanding the retrieval range of single-column
indexes)

• Consider the use of retrievals that use WITHOUT LOCK NOWAIT

• When accessing multiple tables, standardize the access sequence (if A is accessed
before B, do not access A again; instead, save the value of A)

• Specify LOCK TABLE

• If a row must be updated immediately after being inserted with the INSERT
statement, try to perform both steps in the same transaction

• To allow multiple UAPs to use multiple indexes with AND and update the same
table simultaneously, specify 1 in the pd_work_table_option operand of the
system definitions. For details about how to use multiple indexes with AND, see
the explanation for PDSQLOPTLVL in 6.6.4 Environment definition information.
For details about the pd_work_table_option operand, see the HiRDB Version
9 System Definition manual.

• Apply non-locking of index key values.

• If you employ the snapshot method, create a UAP that can retry operations in the
event of deadlock, because unexpected deadlocks might occur.

As explained above, both the lock range and the lock sequence must be evaluated to
avoid deadlock. The lock sequence depends on the SQL statement and index types. For
details, see Section 3.4.9 Lock sequence based on SQL statement and index types.

(7) Avoiding deadlock in logical files used by plug-ins
If a plug-in uses logical files, use the EX mode to lock the files in logical file units for
update manipulation, and use the PR mode for retrieval manipulation.

3. UAP Design

172

A logical file becomes locked while it is manipulated, regardless of the data value.
Consequently, if an update transaction accesses a column that has a plug-in definition
for using a logical file, logical file contention can occur between that transaction, and
all other transactions that manipulate that column. To prevent contention, avoid
executing any other programs while a program that updates columns with plug-in
definitions for using logical files is being executed.

Deadlock avoidance measure 1

Specify LOCK TABLE.

Deadlock avoidance measure 2

If a logical file becomes a deadlocked resource, check whether the logical file is
used for a data-type plug-in or for an index-type plug-in, and see Table 3-10
through Table 3-15. For details about the deadlock information that is output if a
deadlock occurs, see the HiRDB Version 9 System Operation Guide.

Lock information:

Type 000e -> logical file

First four bytes of lock information -> RDAREA number

Investigate the RDAREA name from the RDAREA number.

If the RDAREA is used for storing abstract data LOB attributes, the data is treated as
a row.

If the RDAREA is used for a plug-in index, the data is treated as an index key.

Notes
• For a plug-in index retrieval, the logical file is locked in PR mode even if

NOWAIT is specified.

• Even if a LOCK TABLE lock is applied, the logical file is locked in EX or
PR mode during data manipulation.

• If multiple columns with plug-in definitions that use logical files have been
defined, deadlock avoidance measure 2 cannot prevent deadlocks. Instead,
use deadlock avoidance measure 1.

3.4.5 Unlocked conditional search
Unlocked conditional search does not lock items whenever retrieval processing is
underway, but instead locks only those rows and key values that satisfy the retrieval
condition. Unlocked conditional search can reduce the retrieval time compared to
ordinary retrieval processing, because rows and key values that do not satisfy the
retrieval condition are not locked.

Moreover, when updating and retrieval are executed simultaneously, it is unnecessary

3. UAP Design

173

to wait for lock-release if another user is updating or adding rows that do not satisfy
the condition. Consequently, the incidence of deadlocks and of lock-release timeouts
is reduced.

The following figure shows the processing flows of an ordinary search and of a search
using unlocked conditional search.

Figure 3-11: Processing flows of an ordinary retrieval and of a retrieval using an
unlocked conditional search

An unlocked conditional search is used by specifying YES in the PDLOCKSKIP operand
in the client environment definition.

An unlocked conditional search is effective under the following conditions:

• When the number of items that satisfy the condition is small compared to the

3. UAP Design

174

number of items to which the conditional search is to be applied.

When a condition is selected for retrieval after the search range has been
narrowed to some extent by means of an index key, only those items that satisfy
the condition are locked. Consequently, if the number of items that satisfy the
condition is small compared to the number of items within the range of the search,
the number of lock processes is reduced (by
number-of-items-that-satisfy-condition/number-of-items-in-search-range)
compared to an ordinary retrieval.

• When retrieval does not use an index

In the case of an ordinary retrieval that does not use an index, all rows are locked
temporarily.

If unlocked conditional search is used for a retrieval that does not use an index,
only those items that satisfy the condition are locked, and therefore the number of
lock processes is reduced (by number-of-items-that-satisfy-condition/
total-number-of-rows-in-target-table).

• When retrieval is executed simultaneously with an updating process that does not
satisfy the condition.

Even if updating has already been performed within the retrieval range by another
updating transaction, no lock-release waiting occurs if the updated results do not
satisfy the condition.

Unlocked conditional search is not applied in the following cases even if it is specified:

• Retrieval that does not apply locking, such as WITHOUT LOCK NOWAIT (0 is
specified in PDISLLVL in the client environment definition and lock option is
omitted)

• Retrieval that uses an index when non-locking of index keys is applied

• Retrieval under any of the following conditions and without using an index:

• A system-defined scalar function is specified

• A user-defined function is specified

• A VARCHAR-type column with a defined length of 256 bytes or more is
specified

• A MVARCHAR-type column with a defined length of 256 bytes or more is
specified

• A NVARCHAR-type column with a defined length of 128 characters or more
is specified

• A BINARY-type column with a defined length of 256 bytes or more is
included

3. UAP Design

175

• A BLOB-type column is specified

• A repetition column is specified

• A component specification is used

• A subquery containing an external reference is specified

• A qualified predicate or IN predicate is specified

• A search spanning two or more tables, except a condition that is evaluated as
an inner table for nest-loop-join

• An index for use of AND multiple indexes (AND PLURAL INDEXES SCAN) is
not used for evaluation

• An index for use of OR multiple indexes (OR PLURAL INDEXES SCAN) is not
used for evaluation

Because unlocked conditional search does not involve locking, uncommitted data
might be used for the conditional search. For example, if a conditional search is
performed simultaneously with an updating transaction, the result of the conditional
search might differ from the result of the update transaction processing.

3.4.6 Non-locking of index key values
Non-locking of index key values is when index key values are not locked. In this case,
only the table data is locked.

When non-locking of index key values is applied, index key values cannot be locked
during retrieval processing that uses an index. Also, in table update processing (row
insertion, row deletion, or column value updating), index key values for the index
defined in the update-target column cannot be locked.

(1) Application criteria
Non-locking of index key values should normally be applied.

However, the uniqueness constraint assurance operations, remaining entries for unique
indexes, and the system log size that is output during table data update must be
considered when deciding whether to apply non-locking of index key values. For
details about the uniqueness constraint assurance operations and remaining entries for
unique indexes, see (4)(b) Remaining entries for unique indexes. For details about the
system log size that is output during table data update, see the HiRDB Version 9
Installation and Design Guide.

(2) Specifying non-locking of index key values
To apply non-locking of index key values, specify NONE in the system definition for
the pd_indexlock_mode operand. For details about the pd_indexlock_mode
operand, see the HiRDB Version 9 System Definition manual.

3. UAP Design

176

If the value specified for the pd_inner_replica_control operand in the system
definition is greater than 1, NONE is assumed for the system definition's
pd_indexlock_mode operand regardless of the actual specification of the
pd_indexlock_mode operand.

(3) Example of deadlock avoidance
Deadlocks like the one shown in Figure 3-8 can be avoided by applying non-locking
of index key values. The following figure shows an example of deadlock avoidance by
applying non-locking of index key values.

Figure 3-12: Example of deadlock avoidance by applying non-locking of index
key values

(4) Notes
(a) Uniqueness constraint assurance operations for unique indexes

When non-locking of index key values is applied, the uniqueness constraint assurance
operations in row addition and update are different from the operations for the index
key value method (a method that does not use non-locking of index key values) in

3. UAP Design

177

tables for which the uniqueness constraint is specified. These operational differences
must be considered when non-locking of index key values is applied.

Uniqueness constraint assurance processing checks whether the data for keys to be
added by using an index (unique index) is already in the table. This processing also
guarantees the uniqueness of added keys.

In uniqueness constraint assurance processing, if index key entries that have the same
key are found, a uniqueness error occurs immediately. Even if the other transaction
operating that index key has the uncomplete status for transaction determination and
rollback is possible, the HiRDB system indicates a uniqueness error immediately,
without executing a lock check.

To continue processing instead of waiting for transaction settlement during insertion
or update processing of table data for which the uniqueness constraint was specified,
apply non-locking of index key values. To give priority to attempting insertion or
update processing even if waiting is involved, also apply non-locking of index key
values or lock the uncommitted data to be deleted by specifying WAIT in the
pd_lock_uncommited_delete_data operand. For details about locking
uncommitted data to be deleted, see 3.4.7 Locking uncommitted data to be deleted.

(b) Remaining entries for unique indexes
Lock-release wait or deadlock may occur in a unique index when non-locking of index
key values is applied.

When non-locking of index key values is applied to a unique index, the index key
before DELETE or UPDATE statement execution is kept instead of being deleted so that
the uniqueness constraint is assured. This remaining index key is called a remaining
entry. Although this remaining entry is deleted at the appropriate timing after
transaction determination, if an INSERT or UPDATE statement is executed for the same
key as the remaining entry, an unexpectedly long wait period or deadlock may occur,
depending on when the statement is executed.

To prevent these conditions, create UAPs so that they do not update columns that have
the uniqueness constraint.

(c) Deadlocks that cannot be avoided even when non-locking of index key
values is applied
Depending on the access sequence of the UAP, a deadlock may occur between index
keys. To prevent this condition, create UAPs so that they do not update columns that
have the uniqueness constraint.

3.4.7 Locking uncommitted data to be deleted
Normally, when an index key is deleted, it is removed from the database before the
deletion transaction is committed. If the deletion transaction rolls back, the contents of
the index key are recovered but the index key is excluded from searches by other

3. UAP Design

178

retrieval transactions that are executing concurrently. The following figure shows an
example of a deleted index key that is excluded from searches.

Figure 3-13: Deleted index key that is excluded from searches

Explanation:

Key A is removed from the database before the deletion transaction is committed.
As a result, retrieval transaction 1 skips key A and uses key B for retrieval. After
that, if rollback does not occur, retrieval transaction 2 also uses key B for retrieval
in the same manner as retrieval transaction 1.

On the other hand, if rollback occurs and key A is recovered, retrieval transaction
2 uses key A for retrieval. Because retrieval transactions 1 and 2 use different
index keys due to rollback, their retrieval results also differ.

The same applies to row deletion. Row data is not removed from the database
until it is committed, but such row data is excluded as a retrieval target by other

3. UAP Design

179

retrieval transactions that are executing concurrently.

By locking uncommitted data until the deletion transaction is committed, you can
prevent uncommitted data from being excluded from being a retrieval target by other
retrieval transactions that are executing concurrently.

(1) Criteria
For the following types of jobs, it is recommended that you lock uncommitted data that
is to be deleted:

• A job in which the nature of one transaction's processing depends on the results
of a preceding transaction's processing

• A job that will not re-execute in the event of rollback

(2) Specification method
You lock uncommitted data to be deleted by specifying WAIT in the
pd_lock_uncommited_delete_data operand. For details about the
pd_lock_uncommited_delete_data operand, see the manual HiRDB Version 9
System Definition.

(3) Effects of locking uncommitted data to be deleted
Effects of locking uncommitted data to be deleted are as follows:

• If a retrieval transaction detects uncommitted data to be deleted during retrieval
processing, it waits until the deletion transaction is committed or rolled back. As
a result, the uncommitted data to be deleted is not skipped by the retrieval
transaction even when the deletion transaction rolls back.

• The uniqueness constraint is guaranteed in the same manner as with locking of
index key values. This prevents detection of a uniqueness error in the event the
deletion transaction rolls back.

(4) Processing of retrieval transactions when uncommitted data to be deleted is
locked

The following table describes the processing of retrieval transactions for each SQL
execution condition when uncommitted data to be deleted is locked, and when it is not
locked.

3. UAP Design

180

Table 3-24: Processing of retrieval transactions for each SQL execution
condition

Example of No. 1:

This example executes DELETE and SELECT statements concurrently on the data
COL1=1 in the table TBL for which an index is defined for column COL1.

No. SQL execution condition Processing of retrieval
transaction when rollback
occurs on the UPDATE or

DELETE statement

SQL
statements
executed

concurrently

Nature of
processing by

UPDATE or
DELETE

statement

Nature of
processing by

SELECT
statement

When data to
be deleted is
not locked

When data to
be deleted is

locked

1 DELETE and
SELECT
statements are
executed
concurrently.

DELETE statement
for deleting rows

The keys to be
deleted by the
DELETE
statement are
included in the
range of search
conditions, or
deleted rows are
referenced.

Skips the deleted
rows and keys
without waiting
for settlement of
the transaction
that executed the
DELETE
statement

Waits for
settlement of the
transaction that
executed the
DELETE
statement and
references the
deleted rows and
keys

2 UPDATE and
SELECT
statements are
executed
concurrently on a
table for which
indexes are
defined.

UPDATE statement
for updating
indexes

The index keys to
be updated by the
UPDATE
statement are
included in the
range of search
conditions.

Skips
non-updated
keys without
waiting for
settlement of the
transaction that
executed the
UPDATE
statement

Waits for
settlement of the
transaction that
executed the
UPDATE
statement and
references the
non-updated
keys

3 UPDATE and
SELECT
statements are
executed
concurrently on a
table for which
multicolumn
indexes are
defined.

UPDATE statement
that specifies some
of the columns
composing the
multicolumn index
in the search
condition, and that
updates other
columns
composing the
index

The multicolumn
index keys to be
updated by the
UPDATE
statement are
included in the
range of search
conditions.

Skips
non-updated
keys without
waiting for
settlement of the
transaction that
executed the
UPDATE
statement

Waits for
settlement of the
transaction that
executed the
UPDATE
statement and
references the
non-updated
keys

3. UAP Design

181

Example of No. 2:

This example executes UPDATE and SELECT statements concurrently on the data
COL1=1 in the table TBL for which an index is defined for column COL1.

3. UAP Design

182

Example of No. 3:

This example executes UPDATE and SELECT statements concurrently on the data
COL1=1 and COL2=1 in the table TBL for which a multicolumn index is defined
for columns COL1 and COL2.

3. UAP Design

183

(5) Notes
(a) Remaining entries for indexes

If uncommitted data to be deleted is locked, index key entries existing before deletion
or update processing remain in the index. As a result, null-value unique index keys and
entries of a non-unique index remain in indexes. If lock-release wait status occurs for
such remaining entries, deadlock might result. If a large number of entries remains in
indexes, retrieval performance might be affected adversely.

Basically, the number of remaining entries increases each time an index key is updated
or deleted. To avoid lock-release waits or deadlocks for remaining entries, you should
delete remaining entries with the database reorganization utility (pdrorg) or the free
page release utility (pdreclaim) whenever a certain amount of update or deletion
processing has occurred. You can use the database condition analysis utility (pddbst)
to determine the total number of remaining entries.

Remaining entries are deleted in the following cases:

• When an attempt is made to add indexes to a page containing remaining entries

3. UAP Design

184

and the index page is split due to a shortage of free space in the page

• After a deletion transaction has been settled, the pdreclaim command with the
-x option specified is executed for the corresponding index.

• After a deletion transaction has been settled, pdrorg is executed on the
corresponding index or the table corresponding to the index.

• PURGE TABLE is executed on the table corresponding to a deleted index.

• An RDAREA containing a deleted index or a table corresponding to such an
index is re-initialized.

Reducing the frequency of index update processing also helps avoid remaining entries.

(b) Remaining entries for tables
For areas storing table row data, entries also remain after rows are deleted. If
uncommitted data to be deleted is locked, these remaining entries are also checked.
This results in some overhead for skipping invalid data and locking.

Although unexpected locking does not occur on remaining entries for tables, unlike
remaining entries for indexes, you should delete remaining entries by executing
pdrorg or pdreclaim whenever a certain amount of update or deletion processing
has occurred. You can use the database condition analysis utility (pddbst) to
determine the total number of remaining entries.

Reducing the frequency of row deletion processing also helps avoid remaining entries.

3.4.8 Locking by UAPs
Although locking is controlled automatically by the HiRDB system, using the UAP to
change the unit of locking sometimes reduces the locking overhead, resulting in better
processing efficiency. Consider the items listed below when you design UAP:

(1) Search
1. If retrieval results will be referenced only once and the data need not be locked

until COMMIT occurs, specify WITHOUT LOCK in the SELECT statement.

When WITHOUT LOCK is specified, lock is released without waiting for
transaction termination, thus resulting in better concurrent execution capability of
transactions.

Even when WITHOUT LOCK NOWAIT is specified, it is not possible to search a table
while it is undergoing data processing by the database load utility (when
nowait=no is specified in the option statement) or by the database
reorganization utility (except when -k unld is specified).

If WITHOUT LOCK NOWAIT is specified, a deadlock with pdload (when
nowait=yes is specified in the option statement) might occur.

3. UAP Design

185

2. In cases other than the one above, lock the target table in the PR mode with the
LOCK statement with SHARE specified.

When a table is locked in advance with the LOCK statement, the overhead is
reduced significantly because locking on a row or table basis does not occur. A
lock buffer shortage can also be prevented.

3. When you search a shared table, we recommend that you specify WITHOUT LOCK
or WITH ROLLBACK.

(2) Update
1. Before updating, lock the target table in the EX mode with the LOCK statement

with EXCLUSIVE specified.

When a table is locked in advance with the LOCK statement, the overhead is
reduced significantly because locking on a row basis does not occur. A lock buffer
shortage can also be prevented.

2. When updating a shared table (including addition and deletion) where the key
value of an index is changed, or when updating a large section of a shared table,
always lock the shared table with an EXCLUSIVE-specified LOCK statement. Note
that when a shared table is locked with an EXCLUSIVE-specified LOCK statement,
the RDAREA for indexes (shared RDAREA), which stores indexes defined for
the shared table, is also locked.

(3) Deletion
1. When dropping a table or an index or when deleting all rows, lock in the EX mode

all segments being used for the target table.

If many segments are being used for the table, all of those segments must be
locked in the EX mode. To do this, have the transaction occupy all of the segments
until the COMMIT statement is executed. Note that in this case, a large table for
managing locked resources is required in the lock buffer. Care must be taken
especially when one of the following statements is used to delete a table, its
schema, its indexes, or all its rows:

• DROP TABLE statement

• DROP SCHEMA statement

• DROP INDEX statement

• PURGE TABLE statement

2. To delete a schema that applies to multiple tables, the individual tables should be
deleted before the schema is deleted.

This method uses less memory.

3. UAP Design

186

(4) Notes
1. When you lock a table with a LOCK statement, avoid simultaneous execution of

other online transactions because those transactions remain in the wait status for
a long time. However, no wait is involved for NOWAIT searches of unshared
tables.

2. When a NOWAIT search is performed on a shared table, the shared table cannot be
accessed if another user has executed an EXCLUSIVE-specified LOCK statement
on that table.

3.4.9 Lock sequence based on SQL statement and index types
(1) Lock sequence of data manipulation SQL statements for index key values and
data page rows

(a) INSERT statement

3. UAP Design

187

(b) DELETE statement that does not use a cursor or UPDATE statement to
search for data matching a condition

3. UAP Design

188

(c) DELETE statement that uses a cursor

(d) UPDATE statement that uses a cursor

3. UAP Design

189

(e) SELECT or FETCH statement

3. UAP Design

190

3. UAP Design

191

3. UAP Design

192

(2) Lock sequence of data manipulation SQL statements when non-locking of
index key values is used

(a) INSERT statement

3. UAP Design

193

(b) DELETE statement that does not use a cursor or UPDATE statement to
search for data matching a condition

3. UAP Design

194

(c) DELETE statement that uses a cursor

(d) UPDATE statement that uses a cursor

3. UAP Design

195

(e) SELECT or FETCH statement

3. UAP Design

196

3. UAP Design

197

(3) Order of locking uncommitted data to be deleted
(a) Searching for the data that satisfies a condition by using the DELETE or

UPDATE statement

3. UAP Design

198

3. UAP Design

199

(b) For SELECT or FETCH statement

3. UAP Design

200

3.4.10 Lock sequence for rows
HiRDB accesses data on the basis of the access path determined by SQL optimization.
Normally, this access path determines the lock sequence for rows. However, the lock
sequence for rows can vary depending on conditions during SQL execution. The
following are examples of cases where the lock sequence for rows depends on
conditions during SQL execution:

• A parallel server is used together with multiple back-end servers to access data

• A snapshot method is used

This subsection discusses the lock sequence for rows based on the access path and the

3. UAP Design

201

cases where the lock sequence for rows varies.

(1) Lock sequence for rows based on the access path
HiRDB accesses data on the basis of the path determined by SQL optimization. The
lock sequence for rows is determined by this access path.

The following example explains the basic sequence of data access.

Example

SQL statement to be executed:
select * from t1,t2 where t1.c1=t2.c1 and t1.c1>3

Conditions:

• HiRDB/Single Server is used.

• Indexes have been defined for t1.c1 and t2.c1.

• The index for t1.c1 is used to access t1.

• For each row of t1, the index for t2.c1 is used to perform nest-loop
join.

• t1's rows 5, 2, 1, and 6 satisfy the condition of t1.c1 > 3, and the index
is used to access the rows in this order.

• The rows in t2 that satisfy the rows in t1 are as follows:

 t2's row 6 satisfies t1's row 1.

 t2's row 2 satisfies t1's row 2.

 t2's rows 4 and 7 satisfy t1's row 5, and the index is used to access
the rows in this order.

 t2's rows 3 and 8 satisfy t1's row 6, and the index is used to access
the rows in this order.

• The snapshot method is not used.

3. UAP Design

202

(2) Case where the lock sequence for rows varies
This subsection discusses the case where the lock sequence for rows varies according
to SQL execution conditions.

(a) HiRDB/Parallel Server
When tables are searched or updated in the parallel mode in order to improve
performance, HiRDB pre-reads data and performs parallel data read operations.
Therefore, the sequence of data accesses among joined tables might differ from what
it would be on a single server, which also means that the lock sequence for rows would
be different as well. As a result, deadlocks might occur.

 Partitioned-table search

The following example explains the sequence of data accesses in a
partitioned-table search.

Example

SQL statement to be executed:

select * from t1 where t1.c1>3

Conditions:

• HiRDB/Parallel Server is used.

• For the table t1, rows 1 through 8 are stored in BES1, and rows 9
through 16 are stored in BES2.

• Table T1's rows 1, 2, 5, 6, 10, 11, 14, and 15 satisfy the condition t1.c1

3. UAP Design

203

> 3. In BES1, the index is used to access rows 5, 2, 1, and 6 in this order.
In BES2, the index is used to access rows 10, 14, 11, and 15 in this order.

• The snapshot method is not used.

Explanation:

The access sequence within each back-end server can be determined, but the
access sequence for BES1 and BES2 cannot be determined because data can
be pre-read or it can be read in the parallel mode. Also, the access sequence
for the rows in BES1 and BES2 cannot be determined.

 Join search

The following example explains the sequence of data accesses in a join search.

Example

SQL statement to be executed:

select * from t1,t2 where t1.c1=t2.c1 and t1.c1>3

Conditions:

• HiRDB/Parallel Server is used.

• Indexes have been defined for t1.c1 and t2.c1.

3. UAP Design

204

• The index for t1.c1 is used to access t1.

• For each row of t1, the index for t2.c1 is used to perform nest-loop
join.

• t1's rows 5, 2, 1, and 6 satisfy the condition of t1.c1 > 3, and the index
is used to access the rows in this order.

• The rows in t2 that satisfy the rows in t1 are as follows:

 t2's row 6 satisfies t1's row 1.

 t2's row 2 satisfies t1's row 2.

 t2's rows 4 and 7 satisfy t1's row 5, and the index is used to access
the rows in this order.

 t2's rows 3 and 8 satisfy t1's row 6, and the index is used to access
the rows in this order.

• The snapshot method is not used.

• The number of rows transferred between back-end servers is 2.

3. UAP Design

205

Explanation:

In the figure, the access sequence for A through D is as follows:

• Within each of the groups A through D, rows are accessed in the order
indicated by the circled numbers.

• B and C are accessed after A has been accessed.

• The access sequence for B and C cannot be determined because data can
be pre-read or it can be read in the parallel mode.

• The access sequence for rows in B and C cannot be determined because
data can be pre-read or it can be read in the parallel mode.

(b) When using the snapshot method
When the snapshot method is used, the lock sequence for rows changes each time an
SQL statement is executed.

This subsection explains the sequence of locking for rows in the following three cases:

3. UAP Design

206

• When the snapshot method is used (only one transaction is executed at a time)

• When the snapshot method is used (multiple transactions are executed
concurrently)

• When the snapshot method is not used

The following SQL statement is used for the example.

Example
select * from t1,t2 where t1.c1=t2.c1 and t1.c1>3

 When the snapshot method is used (only one transaction is executed at a time)

If the snapshot method is used and the page to be referenced contains a row that
is being updated (including rows retrieved by the WITH EXCLUSIVE LOCK lock
option), all rows on the page are locked.

The following shows the sequence of data accesses during SQL execution:

Explanation:

• The row 1s in tables T1 and T2 indicate that the values of columns

3. UAP Design

207

specified in the join condition are the same.

• All rows in tables T1 and T2 are stored on the same page.

 When the snapshot method is used (multiple transactions are executed concurrently)

If the snapshot method is used and the page to be referenced contains a row that
is being updated (including rows retrieved by the WITH EXCLUSIVE LOCK lock
option), all rows up to that row are locked. After that, the lock processing is
canceled and the rows that have been locked so far are referenced. The rows that
were not locked will be locked when they are actually referenced.

The following shows the sequence of data accesses during SQL execution.

Explanation:

• The row 1s in tables T1 and T2 indicate that the values of columns
specified in the join condition are the same.

• All rows in tables T1 and T2 are stored on the same page.

• Table T1's row 3 is locked in the EX mode by another transaction.

• If the snapshot method is used to perform a join search and there is

3. UAP Design

208

another UAP that updates the tables or indexes, or that uses the WITH
EXCLUSIVE LOCK lock option to perform a search, the lock sequence
for rows will vary even for the same SQL statement.

• Because the snapshot method locks all pages to be referenced, the lock
sequence for rows varies when index page splitting occurs.

 When the snapshot method is not used

When the snapshot method is not used, one row is locked at a time.

The following shows the sequence of data accesses during SQL execution:

Explanation:

The row 1s in tables T1 and T2 indicate that the values of columns specified
in the join condition are the same.

(3) How to handle deadlocks
If the lock sequence for rows varies and a UAP that locks rows in the EX mode is
added, deadlock might result even from concurrent execution of multiple identical
SQL statements. The following shows an example of such deadlock:

3. UAP Design

209

Explanation:

• UAP1 and UAP2 lock rows in the PR mode.

• UAP1 and UAP2 execute the same SQL statement, but the lock sequence for
rows varies as follows for the reason discussed in (2) above:

UAP1: Locks rows 1, 2, and 3 in this order.

UAP2: Locks rows 1, 3, and 2 in this order.

• UAP3 and UAP4 locks rows in the EX mode.

You can take the following actions to handle deadlocks:

• Perform the search with the WITHOUT LOCK NOWAIT or the WITHOUT LOCK WAIT
lock option specified.

• Execute the LOCK TABLE statement in IN EXCLUSIVE MODE before performing
the search.

3. UAP Design

210

• Re-execute the transaction.

For details about how to handle deadlocks, see 3.4.4 Deadlocks and corrective
measures.

3.4.11 Creating locked resources for index key values
If a key value for an index exceeds 10 bytes, the system creates a different locked
resource for the index key value, according to the value that was specified for the
pd_key_resource_type operand in the system definitions. For details about the
pd_key_resource_type operand of the system definitions, see the HiRDB Version
9 System Definition manual.

Figure 3-14 shows how a key value locked resource is created when TYPE1 is
specified in the pd_key_resource_type operand. Figure 3-15 shows how a key
value locked resource is created when TYPE2 is specified.

Figure 3-14: Creation of a key value locked resource when
pd_key_resource_type=TYPE1 is used

If the key value length exceeds 10 bytes, the system removes the first two bytes and
the last byte of the key value, extracts the remaining data in 7-byte units, and applies
exclusive-OR while bit-shifting the units. The bit shift operation logically shifts

3. UAP Design

211

each unit by the remainder after the extraction count is divided by eight and applies
exclusive-OR for 8-byte data to the units.

The system stores the exclusive-OR result (intermediate result) to an 8-byte area and
applies exclusive-OR to the first (X) and last (Y) bytes of the intermediate result to
create a 7-byte data value (result).

The system combines the 7-byte data (result) with the first two bytes and the last byte
that were removed initially and sets the resulting 10-byte data value as the locked
resource of the index key value.

Figure 3-15: Creation of a key value locked resource when
pd_key_source_type=TYPE2 is used

If the key value length exceeds 10 bytes, the system removes the first two bytes and
the last byte of the key value, extracts the remaining data in 7-byte units, and applies
exclusive-OR. The system combines the exclusive-OR result with the first two
bytes and the last byte that were removed initially, and sets the resulting 10-byte data
value as the locked resource of the index key value.

3. UAP Design

212

3.5 Use of a cursor

You can use a cursor in a UAP to extract retrieval results.

To use a cursor, declare the cursor with DECLARE CURSOR or allocate the cursor with
ALLOCATE CURSOR.

This section explains the effects of using a cursor and issues to consider when using a
cursor.

3.5.1 Notes on table operations when a cursor is used
(1) How operations that do not use a cursor relate to cursor updatability and
whether an operation that uses a cursor is performed

Once you declare or allocate a cursor and open it with an OPEN statement, you can
extract data and perform other operations such as referencing and updating. However,
after the cursor is opened, whether or not operations that do not use a cursor can be
performed depends on the specification of the FOR READ ONLY or FOR UPDATE clause
and whether or not an operation that uses a cursor (updating or deletion) is performed.
The FOR READ ONLY and FOR UPDATE clauses are specified in the cursor declaration
and in the SELECT statement identified by either the SQL statement identifier specified
in the cursor declaration or the extended statement name specified in the cursor
allocation.

The table below shows the relationships between cursor updatability and operations
that do not use a cursor. When the SQL optimization option for suppressing creation
of update-SQL work tables is specified, the restrictions on operations that do not use a
cursor are relaxed.

Table 3-25: Relationships between cursor updatability and operations that do
not use a cursor

Condition Operation that does not use a cursor

Specification of
cursor updatability

Process
that uses a

cursor

SQL optimization option
for suppressing creation of

update-SQL work tables
not applied

SQL optimization option for
suppressing creation of
update-SQL work tables

applied and index key value
no-lock facility used

UD Del Ret UD Del Add Ret UD Del Add

Static
SQL

FOR READ
ONLY
clause
specified

NP NP Y Y Y Y Y Y Y Y

3. UAP Design

213

FOR
UPDATE
OF column
name
specified

NP NP Y CU N N Y Y#2 Y#2 Y#2

NP P Y Y Y Y Y Y Y Y

P NP Y CU N N Y Y#2 Y#2 Y#2

P P Y Y Y Y Y Y Y Y

FOR
UPDATE
clause
specified

NP NP Y Y Y Y Y Y Y Y

NP P Y Y Y Y Y Y Y Y

P NP Y Y Y Y Y Y Y Y

P P Y Y Y Y Y Y Y Y

None of
the
above#1

NP NP Y N N N Y Y#2 Y#2 Y#2

NP P Y Y Y Y Y Y Y Y

P NP Y Y Y Y Y Y Y Y

P P Y Y Y Y Y Y Y Y

Dynamic
SQL

FOR READ
ONLY
clause
specified

NP NP Y Y Y Y Y Y Y Y

FOR
UPDATE
OF column
name
specified

NP NP Y CU N N Y Y#2 Y#2 Y#2

NP P Y Y Y Y Y Y Y Y

P NP Y CU N N Y Y#2 Y#2 Y#2

P P Y Y Y Y Y Y Y Y

Condition Operation that does not use a cursor

Specification of
cursor updatability

Process
that uses a

cursor

SQL optimization option
for suppressing creation of

update-SQL work tables
not applied

SQL optimization option for
suppressing creation of
update-SQL work tables

applied and index key value
no-lock facility used

UD Del Ret UD Del Add Ret UD Del Add

3. UAP Design

214

The abbreviations in the column headers denote the following:

UD: Updating

Del: Deletion

Ret: Retrieval

Add: Addition

Legend:

P: Performed

NP: Not performed

Y: Can be performed.

CU: Specified column can be updated.

N: Cannot be performed.

#1: Specification of the FOR UPDATE clause is assumed when the same post source
contains an update or deletion in which the CURRENT OF cursor name is specified.

#2: If the index being used in the retrieval that uses the cursor is updated, the retrieval
results that were obtained with the cursor are not guaranteed. An example of this case
and countermeasures are shown as follows.

FOR
UPDATE
clause
specified

NP NP Y Y Y Y Y Y Y Y

NP P Y Y Y Y Y Y Y Y

P NP Y Y Y Y Y Y Y Y

P P Y Y Y Y Y Y Y Y

None of
the above

NP NP Y N N N Y Y#2 Y#2 Y#2

NP P Y Y Y Y Y Y Y Y

P NP Y Y Y Y Y Y Y Y

P P Y Y Y Y Y Y Y Y

Condition Operation that does not use a cursor

Specification of
cursor updatability

Process
that uses a

cursor

SQL optimization option
for suppressing creation of

update-SQL work tables
not applied

SQL optimization option for
suppressing creation of
update-SQL work tables

applied and index key value
no-lock facility used

UD Del Ret UD Del Add Ret UD Del Add

3. UAP Design

215

Example:

CREATE INDEX X1 ON T1(C1);
DECLARE CR1 CURSOR FOR SELECT C1 FROM T1 WHERE C1>0;

The cursor that was declared is used to execute the following FETCH and
UPDATE statements repeatedly:

FETCH CR1 INTO :XX;
UPDATE T1 SET C1=10;

The line that was updated to C1=10 is retrieved again.

Countermeasure:

Implement one of the following countermeasures:

• Change the search conditions so that the update value in the UPDATE
statement does not satisfy the search condition.

Example: WHERE C1>0 AND C1 <>10

• Delete the problem-causing column from the configuration columns of
the index used in the retrieval. However, note that when a configuration
column of the index is deleted, the performance may drop if the column
was one that significantly narrowed the search described by the search
conditions. Also note that deleting a configuration column of the index
increases the number of index key duplications and may increase the
incidence of lock-release waiting and deadlock. Therefore, check the
potential effects of this countermeasure thoroughly before applying it.

(2) Using multiple cursors simultaneously
To use multiple cursors for updating the same table simultaneously, you must specify
all columns to be updated in the FOR UPDATE clause of the individual cursor
declarations or dynamic SELECT statements. For example, to use cursor 1 to update
column 1 and cursor 2 to update column 2, specify both column 1 and column 2 in the
FOR UPDATE clause when you declare cursor 1 and cursor 2. If only column 1 is
specified for cursor 1 or only column 2 is specified for cursor 2, an error occurs during
updating.

3.5.2 FOR UPDATE and FOR READ ONLY clauses
To use a cursor to perform row updating, deletion, or insertion on a table being
retrieved, you must define the cursor with DECLARE CURSOR or ALLOCATE CURSOR.
When you define the cursor, specify the FOR UPDATE (including FOR UPDATE OF)
and FOR READ ONLY clauses according to the processing contents of the UAP.

3. UAP Design

216

A good way to update or delete a row that uses a cursor without updating nearly all of
the retrieved rows is to specify WITH SHARE LOCK as the lock option. If a lock option
is not specified, WITH EXCLUSIVE LOCK is assumed.

Care must be taken, because specifying the FOR UPDATE (or FOR UPDATE OF) clause
or the FOR READ ONLY clause may result in a significant drop in processing efficiency
in some cases.

The following table lists issues to be considered when the FOR UPDATE (or the FOR
UPDATE OF) clause and the FOR READ ONLY clause are specified.

Table 3-26: Specifying FOR UPDATE and FOR READ ONLY clauses

Even if the FOR UPDATE or FOR READ ONLY clause is not specified, a work table may
be created internally during the first FETCH, so overhead creation must still be taken
into account.

No internal work table is created when only retrieval is to be performed; in this case,
do not consider overhead.

3.5.3 Cursor declarations and locks
When a FETCH or a single-row SELECT statement is executed, the lock mode that has
priority is based on the lock option specified in the cursor declaration, dynamic
SELECT statement, or preprocessing for the single-row SELECT statement. If the
cursor declaration does not specify a lock option, the lock mode is determined by the
data guarantee level (if a data guarantee level is not specified, the default is 2). The data
guarantee level is specified with PDISLLVL in the client environment definitions or

Application Consideration

FOR UPDATE
clause

Specified for a table being retrieved using a
cursor when the rows for which the cursor is
used will be updated or deleted, followed by
updating, deletion, or addition of rows for
which the cursor is not used.

To guarantee correct operation even when
the target index is updated during retrieval
of a row for which the cursor is used, a work
table is created internally during the first
FETCH; creation of this work table involves
overhead during retrieval.

FOR UPDATE OF
clause

Specified for a table being retrieved using a
cursor when only some of the columns will be
updated.

When the index assigned to a column
specified by its column name is used for
retrieval, a work table is created internally
during the first FETCH; creation of this work
table involves overhead during retrieval.

FOR READ ONLY
clause

Specified when another cursor will be used for
updating (or deletion or insertion) during
retrieval using a cursor or for updating (or
deletion) by directly specifying a search
condition.

When another cursor will be used for
updating during retrieval using a cursor, a
work table is created internally during the
first FETCH so that there will be no impact
on the processing result; creation of this
work table involves overhead during
retrieval.

3. UAP Design

217

with ISOLATION LEVEL in the SQL compile options specified in the procedure or
trigger definitions. When the data guarantee level is used, the lock mode is also
affected by whether updating (or deletion) using a cursor is specified and whether
WITH EXCLUSIVE LOCK is assumed during FOR UPDATE processing.

The specification for assuming WITH EXCLUSIVE LOCK during FOR UPDATE
processing requires specifying PDFORUPDATEEXLOCK in the client environment
definitions and the data guarantee level (specification of FOR UPDATE EXCLUSIVE)
in the SQL compile options specified in the procedure or trigger definitions.

The lock mode that takes effect during execution depends on the lock option specified
in the cursor declaration (DECLARE CURSOR), the lock option in the dynamic SELECT
statement specified in the cursor declaration (DECLARE CURSOR) and the cursor
allocation (ALLOCATE CURSOR), or the lock option specified in the single-row SELECT
statement. The following table shows the relationships between the lock option
specified during cursor declaration or dynamic SELECT statement preprocessing, and
the lock option specified during table operations.

For details about the lock option in the cursor declaration, see the manual HiRDB
Version 9 SQL Reference.

Table 3-27: Relationships between the lock option specified during cursor
declaration or dynamic SELECT statement preprocessing and the lock option
specified during table operations

Lock option in SQL
statement

WITH
EXCLUSIVE

LOCK
assumed

during FOR
UPDATE

processing

Data
guarantee

level

Update
permission

using
cursor#1

Lock option during
table manipulation
and assumed value

in FOR UPDATE
clause

Specified WITH EXCLUSIVE
LOCK

--#2 --#2 No WITH EXCLUSIVE
LOCK

Yes WITH EXCLUSIVE
LOCK FOR UPDATE

WITH SHARE
LOCK

No WITH SHARE LOCK

Yes WITH SHARE LOCK
FOR UPDATE

WITHOUT LOCK
WAIT

No WITHOUT LOCK WAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

3. UAP Design

218

Legend:

--: Does not apply.

Notes
Depending on which lock option is specified, the following conditions may occur
during execution:

WITHOUT LOCK
NOWAIT

No WITHOUT LOCK
NOWAIT

Yes Error

Not specified Yes 2 No WITH SHARE LOCK

Yes WITH EXCLUSIVE
LOCK FOR UPDATE

1 No WITHOUT LOCK WAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

0 No WITHOUT LOCK
NOWAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

No 2 No WITH SHARE LOCK

Yes WITH EXCLUSIVE
LOCK FOR UPDATE

1 No WITHOUT LOCK WAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

0 No WITHOUT LOCK
NOWAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

Lock option in SQL
statement

WITH
EXCLUSIVE

LOCK
assumed

during FOR
UPDATE

processing

Data
guarantee

level

Update
permission

using
cursor#1

Lock option during
table manipulation
and assumed value

in FOR UPDATE
clause

3. UAP Design

219

• When WITH SHARE LOCK is specified

Because rows in the table will be changed from the protected retrieve mode
to the exclusive mode during updating, deadlock may occur.

• When WITHOUT LOCK WAIT is specified

Incorrect updating (double updating) or a deletion error may occur
depending on other transactions.

• When WITHOUT LOCK NOWAIT is specified

If an SQL statement updates a table retrieved with WITHOUT LOCK NOWAIT
specified, an error will occur.

#1: Update using a cursor is permitted in the following cases:

• The FOR UPDATE clause is specified.

• The FOR UPDATE clause is not specified, but there is an UPDATE or DELETE
statement that specifies the same cursor (the cursor specified in the cursor
declaration).

Update using a cursor is not permitted in the following case:

• The FOR UPDATE clause is not specified, and there is also no UPDATE or
DELETE statement that specifies the same cursor (the cursor specified in the
cursor declaration).

#2: The lock option in the SQL statement has priority regardless of the specified
contents.

HiRDB might have pre-read rows targeted for retrieval by the FETCH statement.
Because pre-read rows are locked, more rows might be locked than the rows acquired
by the FETCH statement. In such a case, if the number of resources to be locked is
estimated based on the number of rows to be retrieved by the FETCH statement, rather
than on the actual number of rows retrieved, a shortage of lock buffer space might
occur. If you use a cursor, estimate the number of resources to be locked based on the
actual number of rows retrieved. To limit the number of resources to be locked, you
must narrow down the rows by using search conditions. If the target rows cannot be
narrowed down, you must consider disabling locking (such as by changing the locking
units). For details about disabling locking, see 3.4.8 Locking by UAPs.

3.5.4 Holdable cursor
(1) Overview

A holdable cursor does not close, even when a COMMIT statement is executed.

To use a holdable cursor, declare the cursor by specifying UNTIL DISCONNECT or
WITH HOLD in the DECLARE CURSOR statement. When these statements are specified,
the cursor remains open until execution of a CLOSE, DISCONNECT, or ROLLBACK

3. UAP Design

220

statement (including ROLLBACK and DISCONNECT processing that is executed
implicitly if an error occurs).

(2) Advantages of using a holdable cursor
Using a holdable cursor can reduce the incidence of locked resources, because a
COMMIT statement can be executed while retrieving or updating a large amount of data.
Moreover, because a COMMIT statement can be executed while keeping the cursor
open, a synchronization point can be activated even when a large amount of data is
being retrieved or updated (i.e., when a transaction executes for an extended period of
time), thus reducing the restart time.

(3) Processing using a holdable cursor
When a holdable cursor is used, deletion of a work table file and release of work table
buffer space are executed during commit processing after the holdable cursor used to
create the work table file has closed.

When a holdable cursor is opened, each back-end server process becomes occupied
even if there are no transactions. Therefore, the maximum number of server processes
must be estimated carefully when a holdable cursor is to be used.

The locked resources that are inherited beyond a transaction differ depending on
whether a LOCK statement with UNTIL DISCONNECT specified is executed and
whether a search in which a work table is created or a parallel scan is executed. The
locked resources that are inherited are shown below.

3. UAP Design

221

Explanation:

The numbers in the figure are explained below.

When a UAP executing in an OLTP environment is using a holdable cursor, use must

No. Execution of LOCK
statement with UNTIL

DISCONNECT
specified

Search in which
work table is

created or parallel
scan

Inherited locked resources

1 Executed Not applicable Only the resource of the LOCK statement

2 Not executed Executed All resources

3 Not executed Only the resource at the cursor position

3. UAP Design

222

be specified in the pd_oltp_holdcr operand of the HiRDB system definition.

For a UAP executing in an OLTP environment to use a holdable cursor, the following
conditions must be satisfied:

• The UAP must use an X/Open-compliant API to access HiRDB.

• The service function of the UAP using the holdable cursor must perform cursor
postprocessing sometime after the holdable cursor is opened but before the
service function returns control.#

#: The cursor postprocessing procedure is described below:

1. Close the cursor.

2. Execute the ROLLBACK statement.

3. Execute the DISCONNECT statement.

4. Terminate the UAP.

The SQL execution sequence from the UAP service function is shown below. Note the
sequential relationships between the start transaction API, OPEN cursor, CLOSE cursor,
and COMMIT API steps in the figure.

3. UAP Design

223

Explanation:

1. Duration that the cursor is held

2. Duration of the transaction

3.5.5 Examples of cursor use
This section shows examples in which a cursor is used.

(1) Example of updating a table while retrieving rows with a cursor
This example discounts the price (PRICE) values by 10% while using a cursor (CR1)
to retrieve all rows from a stock table (STOCK).
 :
EXEC SQL BEGIN DECLARE SECTION;
 char xpcode[5] ; ..1
 char xpname[17];

3. UAP Design

224

..1
 char xcolor[3];
..1
 int xprice; ..1
 int xsquantity; ...1
EXEC SQL END DECLARE SECTION;
 :
EXEC SQL DECLARE CR1 CURSOR FOR
 SELECT * FROM STOCK
 FOR UPDATE OF PRICE;2
EXEC SQL OPEN CR1;3
EXEC SQL FETCH CR1
INTO:xpcode,:xpname,:xcolor,:xprice,:xsquantity;.......4
EXEC SQL UPDATE STOCK
 SET PRICE=0.9*:xprice
 WHERE CURRENT OF CR1;5
EXEC SQL CLOSE CR1;6
 :

Explanation:

1. Declares an embedded function to be used in retrieval, update, and insertion.

2. Declares cursor CR1. FOR UPDATE OF column-name is specified in this
statement because cursor CR1 will be used to update only the PRICE column.

3. Opens cursor CR1.

4. Fetches the value from the PRICE column of the row indicated by cursor CR1
and places the value in embedded variable (:xprice).

5. Discounts the PRICE value by 10% (0.9*:xprice).

6. Closes cursor CR1.

(2) Example of updating while retrieving rows with a cursor and then inserting
rows

This example updates a stock table (STOCK) while using a cursor (CR1) to retrieve all
rows from the table. The example then inserts a row without using the cursor (CR1).
 :
EXEC SQL BEGIN DECLARE SECTION;
 char xpcode[5];1
 char xpname[17] ;1
 char xcolor[3] ;1
 int xprice ; ..1
 int xsquantity ;1
EXEC SQL END DECLARE SECTION;
 :

3. UAP Design

225

EXEC SQL DECLARE CR1 CURSOR FOR
 SELECT * FROM STOCK
 FOR UPDATE; 2
EXEC SQL OPEN CR1; 3
EXEC SQL FETCH CR1
 INTO:xpcode,:xpname,:xcolor,:xprice,:xsquantity;4
EXEC SQL UPDATE STOCK
 SET QUANTITY=:xsquantity+100
 WHERE CURRENT OF CR1;5
EXEC SQL INSERT INTO STOCK
VALUES(:xpcode,:xpname,:xcolor,:xprice,:xsquantity); ...6
EXEC SQL CLOSE CR1;7
 :

Explanation:

1. Declares an embedded function to be used in retrieval.

2. Declares cursor CR1. Cursor CR1 is used to update the table, and the FOR
UPDATE clause, is specified for row insertion without using cursor CR1.

3. Opens cursor CR1.

4. Fetches the values from the row indicated by cursor CR1 and places the
values in the embedded variables.

5. Adds 100 to the QUANTITY value.

6. Inserts a row into the STOCK table without using cursor CR1.

7. Closes cursor CR1.

(3) Example of using a holdable cursor
This example modifies the price (PRICE) values to 50% of the original values while
using a cursor (CR1) to retrieve all rows from a stock table (STOCK). The cursor (CR1)
is left open and is used for another manipulation.
 :
EXEC SQL BEGIN DECLARE SECTION:
 char xpcode[5] ;1
 char xpname[17] ;1
 char xcolor[3] ;1
 int xprice ; 1
 int xsquantity ;1
END DECLARE SECTION ;
 :
EXEC SQL LOCK TABLE STOCK
 IN EXCLUSIVE MODE UNTIL DISCONNECT;2
 :
EXEC SQL DECLARE CR1 CURSOR WITH HOLD FOR

3. UAP Design

226

 SELECT * FROM STOCK
 FOR UPDATE OF PRICE3
EXEC SQL OPEN CR1;4
EXEC SQL FETCH CR1
 INTO :xpcode,:xpname,:xcolor,:xprice,:xsquantity;5
EXEC SQL UPDATE STOCK SET PRICE=0.5*:xprice
 WHERE CURRENT OF CR1;6
Decision for executing next COMMIT statement in
1000-row units 7
EXEC SQL COMMIT; 8
Execution of the next CLOSE statement after all rows
have been updated 9
EXEC SQL CLOSE CR1;10
 :

Explanation:

1. Declares an embedded variable (for example, :xprice) to be used in
retrieval and update.

2. Locks the STOCK table with a LOCK statement in which UNTIL DISCONNECT
is specified, so that a holdable cursor can be used. This statement also
specifies a lock mode (IN EXCLUSIVE MODE) because the cursor is used for
updating the table.

3. Declares cursor CR1. The cursor declaration specifies WITH HOLD because
the cursor is a holdable cursor. The PRICE column is specified in the FOR
UPDATE OF clause because PRICE is the only column to be updated.

4. Opens cursor CR1.

5. Fetches the value from the PRICE column in the row indicated by cursor CR1
and places it in embedded variable (:xprice).

6. Modifies the PRICE value to 50% of the original value (0.5*:xprice).

7. Specifies the decision for executing the next COMMIT statement for each
1,000 rows to be updated or for continuing the update process if the COMMIT
statement is not to be executed.

8. Commits the update process.

9. Specifies the decision for executing the next CLOSE statement if there are no
rows to be updated or continuing the update process if there are still rows to
be updated.

10. Closes cursor CR1.

3. UAP Design

227

3.6 SQL error identification and corrective measures

When a UAP is used to execute an SQL statement, it is important to ascertain whether
or not the SQL statement executed correctly.

This section explains how to determine whether or not an SQL statement executed
correctly and the measures to be taken when an error is detected.

3.6.1 Error identification
(1) Return codes

HiRDB sets up return codes (SQLCODE and SQLSTATE) when SQL statements execute.
However, HiRDB does not set return codes for declaration statements, such as
DECLARE CURSOR. The following variables can be used to reference the return
codes:

• SQLCODE

• SQLSTATE

An SQL statement's execution status can be determined by referencing the SQLCODE
and SQLSTATE variables.

The following table shows the relationships between SQL statement execution status
and the values set in variables.

Table 3-28: Values set in variables and SQL statement execution status

SQL statement execution
status

SQLCODE
variable value

SQLWARN0
value

SQLWARN6
value

SQLSTATE
variable value

Normal
termination

Without
warning

0 ' ' -- '00000'

With
warning#4

0 'W' -- '01nnn'#1

(nnn R00)

>0 (100, 110) -- -- 'R01R00'

Without data#3 110 -- -- 'R2000'

No data 100 -- -- '02000'

Termination
with error

Without
implicit
rollback

-1 to -1999 -- ' ' 'mmnnn'#2

With implicit
rollback

-1 to -1999 'W' 'W' '40nnn'#1

3. UAP Design

228

mm: Class

nnn: Subclass

--: No value is set.

#1: The SQLSTATE subclass is set in nnn. For details about SQLSTATE, see the manual
HiRDB Version 9 Messages.

#2: The SQLSTATE class is set in mm. For details about SQLSTATE, see the manual
HiRDB Version 9 Messages.

#3: This status occurs when a search using a list is executed and a row that was present
when the list was created is not returned.

#4: The warning information is set in the SQLWARN1 to SQLWARNF areas or is indicated
by the SQLCODE value (positive number other than 100). When warning information
is set in the SQLWARN1 to SQLWARNF areas, W is set in SQLWARN0. Therefore, when
SQLWARN0 contains W, the SQLWARN1 to SQLWARNF areas should also be checked.

For details about the contents of the SQLWARN0 to SQLWARNF areas, see A. SQL
Communications Area.

If warning information is indicated with an SQLCODE value (positive number other
than 100), the SQLSTATE subclass (nnn) becomes R00. The following table shows the
relationships among the SQLSTATE, SQLCODE, and SQLWARN0 values when normal
termination with a warning occurs.

Table 3-29: Relationship among SQLSTATE, SQLCODE, and SQLWARN0
values when normal termination with a warning occurs

(a) SQLCODE=100 or SQLSTATE='02000'
The UAP determines that there are no more rows to be retrieved.

This setting is useful for determining the following:

• There are no more rows to be fetched with the FETCH statement.

• No row was selected with the 1-row SELECT statement.

• There were no rows to be updated with the INSERT, DELETE, or UPDATE
statement.

SQLSTATE value SQLCODE value SQLWARN0 value

01nnn (nnn R00) 0 W

01R00 Positive number other than 100 Null or 'W'

3. UAP Design

229

(b) SQLCODE<0 or SQLSTATE='mmnnn '(mm is not '00', '01', or '02', or mm
is not '00', '01', '02', or 'R2' when a search using a list is executed)
The UAP determines that an SQL error occurred.

If an SQL error occurred, implicit rollback may also have occurred. If SQLWARN6='W'
or SQLSTATE='40nnn', the UAP determines that implicit rollback occurred.

To identify the SQL statement that caused the error, check the SQL trace information.
For details about the SQL trace information, see 11.1.1 SQL tracing.

(c) Values other than (a) or (b)
The UAP determines that the SQL statements terminated normally. Normal
termination may come with warning information. If SQLWARN0='W', SQLCODE is a
positive value other than 100, or SQLSTATE='01nnn', the UAP determines that normal
termination with warning occurred.

When a search using a list is executed, normal termination without any data (a row that
was present when the list was created has been deleted) may occur. If SQLCODE is 110
or SQLSTATE is 'R2000', the UAP must determine that normal termination without any
data occurred and skip the processing for selection rows.

For details about normal termination with warning, see Table 3-29.

(2) Corrective measures for detected errors
When you detect an error, use the following procedure:

1. Output or display the return codes.

2. If the cause of the error cannot be determined on the basis of the return code alone,
specify display or output of additional return code information. It is also possible
to display either the SQL statement at which the error occurred or information that
can be used to identify the affected SQL statement.

The following table shows the additional return code information and the item
that is referred to by the information.

Table 3-30: Additional return code information and items referred to by the
information

#: If the FETCH statement is re-executed after an error has occurred, HiRDB returns the
return code for the previous error; however, variable parts of such an error message
may not be applicable.

1. Cancel the transaction (ROLLBACK or abort the UAP). If a UAP transaction is

Additional information Referenced item

Message concerning SQLCODE# SQLERRML field in SQL Communications Areas and
contents of SQLERRMC field

3. UAP Design

230

rolled back implicitly by deadlock, the following processing is executed:

Normal UAP:

If a transaction is rolled back implicitly, the next SQL statement that is
executed becomes the start of a new transaction (the ROLLBACK or
DISCONNECT statement can also be executed).

UAP executing in an OLTP environment:

If a transaction is rolled back implicitly, HiRDB cannot accept any
statements except DISCONNECT or ROLLBACK from the UAP executing in
the OLTP environment.

If an X/Open-compliant UAP is operated as a client in the OLTP environment and
a deadlock occurs while the UAP is being executed, the affected transaction must
be terminated.

2. Terminate the UAP or start a transaction (new execution of a different transaction
or re-execution of the same transaction).

Before re-executing the same transaction, you must take error correction
measures. If the transaction is re-executed before the cause of the error has been
eliminated, the system may enter an endless loop. If the same error occurs after
re-execution, you may have to terminate the UAP.

3.6.2 Automatic error identification
When WHENEVER statements are used, errors can be detected automatically.

WHENEVER statements can identify the following conditions:

• Error occurrence

• No more rows to be retrieved

• Whether or not warning information is present in normal termination

For details about the WHENEVER statement, see the HiRDB Version 9 SQL Reference
manual.

(a) Identification of an error occurrence (SQLCODE<0)
Determined by using the WHENEVER statement where SQLERROR is specified. When an
error occurs, the system shifts to the specified measure. If an error referencing
operation is specified, the return codes and related information can be referenced.

(b) No more rows to be retrieved (SQLCODE=100)
Determined by using the WHENEVER statement where NOT FOUND is specified. By
specifying the process to be taken when there are no more lines to be searched, the
system shifts to the specified measure.

3. UAP Design

231

(c) Whether or not warning information is present in normal termination
(SQLWARN0='W', or SQLCODE>0 but SQLCODE 100)
Determined by using the WHENEVER statement where SQLWARNING is specified. When
a measure to be taken when warning information is present in normal termination is
specified, the system shifts to the specified measure only when warning information is
present.

When a search using a list is executed, normal termination without any data (a row that
was present when the list was created has been deleted) may occur. If SQLCODE is 110
or SQLSTATE is R2000, the UAP must determine that normal termination without any
data occurred and skip the processing for selection rows.

233

Chapter

4. UAP Design for Improving
Performance and Handling

This chapter describes issues that UAP designers should consider to improve UAP
performance and usability.

This chapter contains the following sections:

4.1 Using indexes
4.2 Manipulation of tables
4.3 Stored procedures and stored functions
4.4 Triggers
4.5 SQL optimization
4.6 Data guarantee levels
4.7 Block transfer facility
4.8 Facilities using arrays
4.9 Rapid grouping facility
4.10 Multi-connection facility
4.11 Narrowed search
4.12 File output facility for BLOB data
4.13 Partial update and retrieval of BLOB and BINARY data
4.14 Retrieve first n records facility
4.15 Automatic reconnect facility
4.16 Locator facility
4.17 Facility for returning the total number of hits
4.18 Retrieval, updating, or deletion with an RDAREA name specified
4.19 Automatic numbering facility

4. UAP Design for Improving Performance and Handling

234

4.1 Using indexes

An index is a key created on the basis of values in a specified column in a table to
improve processing speed during data retrieval. Using indexes can reduce the number
of I/O operations during retrievals.

This section explains the implications on UAP design of using indexes. For details
about index definition, see the HiRDB Version 9 Installation and Design Guide.

4.1.1 Indexes and processing time
(1) Benefits of using indexes

An index reduces the number of rows to be retrieved, thus reducing processing time.
When a multicolumn index is used, fewer I/O accesses to the database are required
than when a single index is used.

Retrieval performance is improved when an index is set on the following columns:

• Columns to be used as the condition for narrowing data

• Columns to be used for joining tables

• Columns to be used for sorting or grouping

When many rows are to be updated or when the rows to be retrieved cannot be
narrowed, the benefits of defining and using an index are not realized.

In the following cases, the benefits of using an index are not realized, because the
number of rows to be retrieved cannot be reduced:

• No search condition is specified

• Many of the rows have the null value or the default value in the column

(2) Drawbacks of using indexes
Because all related indexes are updated during data addition, updating, or deletion, the
number of indexes affects processing efficiency. Processing time increases and
efficiency declines, unless the number of indexes is minimized to the required number.
An SQL error can also occur.

4.1.2 Index priority
When multiple indexes are defined for a table, the HiRDB system usually uses the
indexes sequentially, beginning with the one that defines the most efficient condition
to narrow the number of retrieved rows. However, depending on the search conditions,
the HiRDB system might first use the index it judges to be the most appropriate,
regardless of the priority.

There is no need to consider how to retrieve data from a table when creating a UAP.

4. UAP Design for Improving Performance and Handling

235

However, to ensure that HiRDB selects the index best suited to the system, define an
index for the column for which the search condition is specified.

4.1.3 Changing indexes during retrieval
During table manipulation, it is possible to add new indexes or to change the
configuration of an index to change the processing or to improve retrieval efficiency.
However, adding unnecessary indexes reduces retrieval efficiency.

If a UAP is running using a schema, you cannot add or delete an index for the table in
the schema.

4.1.4 Notes about index searches
This subsection describes the internal processing for making changes to an index
(index maintenance that follows data change), and provides guidelines for UAP design
with respect to index searches.

Indexes are used as an efficient means of narrowing down the rows that satisfy
specified search conditions, as well as providing high-speed data access and return of
search results.

HiRDB achieves a high-response, high-throughput system by enabling multiple
transactions to concurrently perform index searches and index changes. However, if
searches using indexes are performed while the indexes are being changed, the search
results might be affected. One method for preventing inconsistent results is to lock the
target table during a search (by executing the LOCK TABLE statement). However, this
method cannot always be used due to system performance requirements.

If you run applications that execute multiple transactions concurrently and that require
a precise sequencing of events, you should apply the UAP design guidelines discussed
in this subsection when you develop your applications.

In addition, you should perform index searches with caution when you update columns
that compose a multicolumn index (such as a status column).

(1) Internal processing for index change
An index change resulting from a change to a value in an index configuration column
(UPDATE statement) is achieved by two processes, which are the index entry change
processing for the pre-update column value and the index entry change processing for
the post-update column value.

Index entry change processing for the pre-update column value means deletion of the
index key when a row's data item contains the corresponding index key. The index
entry change processing for the post-update column value means addition of an index
key when a row's data item contains the corresponding index key. Deletion of an index
key and addition of an index key are performed in this order in order to prevent an
increase in the size of the index during index change processing.

4. UAP Design for Improving Performance and Handling

236

The following figure shows an example of the internal processing for index change.

Figure 4-1: Example of internal processing for index change

Explanation:

This example executes a transaction that updates from B to K the value in a
column that has been indexed.

In step 1, the update transaction deletes index key B that corresponds to the
pre-update column's value.

In step 2, index key K that corresponds to the post-update column's value is added.

(2) Results of index searches
If you perform an index search while index change processing is underway, the search
results might differ. The following are two such cases:

• The row being updated is excluded from the search target.

• The row to be updated appears more than once in the search results.

(a) Case where the row being updated is excluded from the search target
This subsection discusses the case where the row being updated is excluded from the
search target.

Updating indexes from the pre-search range to the post-search range
If you use the UPDATE statement to update an index key from the range for which an
index search is currently underway to a range for which an index search has been
completed, that index key will be excluded from the search target.

The following figure shows an example of a case where the row being updated is
excluded from the search target.

4. UAP Design for Improving Performance and Handling

237

Figure 4-2: Example of case where the row being updated is excluded from the
search target (1)

Explanation:

This example executes a transaction that updates from K to D the value in a
column that has been indexed; it does this at the same time that another
transaction is retrieving the index.

Index retrieval steps 1 through 3 (key J) have been completed.

When key K is retrieved, the update transaction deletes it (step 4) and adds key D
(step 5); therefore, the corresponding rows are excluded as a search target.

Supplement:

If the index search condition applies to all index keys (for a multicolumn index,
all configuration columns), there is no problem because the search target rows no
longer satisfy the search condition due to the UPDATE statement. However, if the
search condition applies to the configuration columns of a multicolumn index that
are not to be changed, a problem might arise, depending on the application. For
details about countermeasures, see 4.1.4(4) UAP design guidelines.

Adding index keys to the post-search range
If you execute the INSERT statement before you perform an index search, but add an
index key to the range in which the index search has been completed, that index key is
excluded from the search target.

The following figure shows an example of a case where the row being updated is
excluded from the search target.

4. UAP Design for Improving Performance and Handling

238

Figure 4-3: Example of case where the row being updated is excluded from the
search target (2)

Explanation:

This example executes a transaction that adds a row containing D in a column that
has been indexed; it does this at the same time that another transaction is
retrieving the index.

Index search step 3 (retrieval of key J) has already been completed in HiRDB's
internal processing when the update transaction adds key D. As a result, the row
for the added key D is excluded from the search target.

Supplement:

Because the row being updated is excluded from the search target, a problem
might arise in applications that demand precise sequencing of events. For details
about countermeasures, see 4.1.4(4) UAP design guidelines.

Changing index keys with the UPDATE statement
If, during index change processing, an index search is performed after the index key
has been deleted, the corresponding row is excluded from the search target.

The following figure shows an example of a case where the row being updated is
excluded from the search target.

4. UAP Design for Improving Performance and Handling

239

Figure 4-4: Example of case where the row being updated is excluded from the
search target (3)

Explanation:

This example executes a transaction that updates from D to E a column that has
been indexed; it does this at the same time that another transaction is retrieving
the index.

By the time the update transaction has deleted key D in step 1, the retrieval
transaction has already completed retrieval of keys B and C in steps 2 and 3.
Therefore, the row corresponding to the added key E in step 4 is excluded from
the search target.

Supplement:

• If the pre-update index key is the same as the post-update index key, the
index is not changed (there is no index key deletion or addition) unless the
index satisfies any of the following conditions:

 The index includes a variable-length string-type configuration column
with a defined length of 256 bytes or more.

 The index has a repetition column as a configuration column

 It is a substructure index.

• If the index search condition applies to all index keys, there is no problem
because the search target rows no longer satisfy the search condition due to
the UPDATE statement. However, if the search condition applies to the
configuration columns of a multicolumn index that are not to be changed, a
problem might arise, depending on the application. The following figure
shows an example of a case where rows are no longer searched due to a
change made to the index keys by the UPDATE statement.

4. UAP Design for Improving Performance and Handling

240

Figure 4-5: Example of case where rows are no longer searched due to a change
made to the index keys by the UPDATE statement

Explanation:

This example adds the value 100 to the stock quantity because 100 items whose
product code is 104 have been delivered.

The example uses a multicolumn index that consists of PCODE, PNAME, and
SQUANTITY for searches. In this case, the row being updated in step 1 is not
included in the search results because it is not a search target.

For details about countermeasures, see 4.1.4(4) UAP design guidelines.

(b) Case where the row to be updated appears more than once in the search
results
This subsection discusses the case where the row to be updated appears more than once
in the search results.

Updating indexes from the post-search range to the pre-search range
If WITHOUT LOCK WAIT is specified as the lock option, the row to be updated might
appear more than once in the search results because the search results are not
guaranteed until transactions are completed. The same applies to the WITHOUT LOCK
NOWAIT lock option. Specifically, if you use the UPDATE statement to update an index
key from a range for which the index search has been completed to a range for which
the index search has not been completed, that index key will be searched again.

4. UAP Design for Improving Performance and Handling

241

The following figure shows an example of a case where the row to be updated appears
more than once in the search results.

Figure 4-6: Example of case where the row to be updated appears more than
once in the search results

Explanation:

This example executes a transaction that updates from B to K a column that has
been indexed; it does this at the same time that another transaction is retrieving
the index.

When key B is retrieved in step 1, the update transaction can update the
corresponding rows because lock has been released by the lock option.

Before the retrieval transaction retrieves key J in step 5, the update transaction had
already updated the corresponding rows (by deleting key B in step 3 and adding
key K in step 4). Therefore, the corresponding updated row appears for the second
time in the search results in step 6 (retrieval of key K).

Supplement:

This causes no problem if the search results do not need to be precise (such as for
statistical information), but it might be a problem if the search results are to be
used by other applications that require highly accurate data. For details about
countermeasures, see 4.1.4(4) UAP design guidelines.

(3) Index search processing
The following table shows the possibility of obtaining different search results when an
index is searched while the INSERT, UPDATE, and DELETE statements are executing.

4. UAP Design for Improving Performance and Handling

242

Table 4-1: Possibility of obtaining different search results

Legend:

NC: Search results do not change.

MC: Search results might change (search target rows might be excluded from the
search).

#

If the WITHOUT LOCK WAIT or WITHOUT LOCK NOWAIT lock option is used, a row
to be updated might appear more than once in the search results.

If the subsequent processing is the INSERT statement, there is no possibility of getting
different search results because the INSERT statement does not use indexes for search
processing.

Whether a row to be updated appears more than once in the search results depends on
how the index key values before and after update processing are changed. If the
direction of the index key value change that takes place when the update transaction
updates the index is the same as the direction of the index search by the retrieval
transaction, the update target row might appear more than once in the search results,
as shown in the following table:

Subsequent
processing (search

using index)

Prior processing

INSERT statement UPDATE statement DELETE statement

SELECT statement MC MC# NC

UPDATE statement MC MC NC

DELETE statement MC MC NC

Direction of index
search

Direction of index key value change by the UPDATE statement

Index key value
becomes larger

Index key value
becomes smaller

Index key value remains
the same (same-value

update)

Ascending order
(from smaller key value to
larger key value)

MC NC NC

Descending order
(from larger key value to
smaller key value)

NC MC NC

4. UAP Design for Improving Performance and Handling

243

Legend:

NC: Search results do not change.

MC: Search results might change (the same row might appear more than once in
the search results).

(4) UAP design guidelines
If you execute multiple transactions concurrently and develop an application that
requires a precise sequence of events, you must lock the applicable table for the UAP
and serialize index changes and index search processes. If this affects performance,
evaluate the following measures:

1. Do not include in the index configuration columns any items to be updated.

2. If an item to be updated must be included in the index configuration columns for
search frequency and condition reasons, evaluate whether only the index
configuration columns that do not contain the item to be updated can be used for
search conditions during index searching without causing any problem in the
application. If there would be a problem, do not use this index in those search
conditions.

3. If measure 2 above cannot be employed, include search results re-check
processing in the UAP.

4. UAP Design for Improving Performance and Handling

244

4.2 Manipulation of tables

4.2.1 Tables with the FIX attribute
The rows in a table with the FIX attribute are fixed in length. Thus, when a table has
many columns, processing efficiency is improved if the table is assigned the FIX
attribute. In a sense, the entire row is manipulated as a single column. This is called
manipulation on a row basis.

Manipulation of a table on a row basis provides the following advantages over
manipulation on a column basis:

• Processing time is shorter.

• Processing time is unaffected by increases in the number of columns to be
processed.

• Because one row can be transferred as one item of data, UAPs are easy to create
and maintain.

If a table is assigned the FIX attribute, manipulating the table on a row basis rather than
a column basis improves the processing efficiency for the following operations:

• When all or most of the columns will be retrieved

• When all or most of the columns will be updated

• When data will be inserted

Because an entire row is the target of manipulation, the embedded variables for
transferring data must be re-declared if a column is added to the table.

A table with the FIX attribute cannot contain variable-length columns or null values.
Therefore, manipulation on a row basis can be executed only for a table with no
variable-length columns or null values. If manipulating an entire row as a single
column will improve efficiency (particularly when there are many columns), consider
eliminating columns with variable-length data and columns with null values; make the
table attribute FIX. Use the following methods to do this:

• Look for short variable-length columns or variable-length columns where only a
restricted portion stores data: convert them to fixed-length columns.

• Replace null values with some other values (that is, 0 for numeric data and spaces
for character data).

4.2.2 Tables used in numbering
There are two numbering methods:

• Using a table for which the WITHOUT ROLLBACK option is specified

4. UAP Design for Improving Performance and Handling

245

• Using the automatic numbering facility

This subsection describes numbering using a table for which the WITHOUT ROLLBACK
option is specified. For details about the automatic numbering facility, see 4.19
Automatic numbering facility.

(1) When to use numbering
In actual applications, there are various types of numbering for purposes such as
managing form and document numbers. When a user attempts to acquire a form
number, another user might also be acquiring a form number at the same time.

When a user attempts to acquire a form number, you must keep track of the form
numbers so that the same number is not assigned to two users.

In such a case, one user might be placed on wait status while the other user is acquiring
a number. HiRDB provides functions that minimizes the effects of locking while you
perform numbering.

(2) Designing the table
In order to perform efficient numbering, you must design the table so as to minimize
the effects of locking. HiRDB provides a function that releases locks from table rows
and prevents rollback when update processing (including addition and deletion) on the
table is completed without having to wait for transmissions to commit. To implement
this function, the table designer must specify the WITHOUT ROLLBACK option in
CREATE TABLE when the table is designed.

(3) Condition of application to jobs
When the WITHOUT ROLLBACK option is specified during table definition, rollback
will not occur when rows are updated. If the UAP or HiRDB system terminates
abnormally, the correct rollback will be achieved and data integrity will be maintained
for the table for a job that uses assigned numbers when the HiRDB system is restarted,
but the specific point in the numbering management table update processing at which
rollback occurred cannot be determined. In such a case, the numbers assigned by the
numbering process might no longer be used by the job. Therefore, such an application
is not suitable for a job that requires consecutive numbers. Apply this method to a job
that does not require consecutive numbers.

(4) Example of a table used for managing numbering
The following figure shows an example of a table used for managing numbering.

4. UAP Design for Improving Performance and Handling

246

Figure 4-7: Example of a table used for managing numbering

Note
For examples of table definitions (WITHOUT ROLLBACK option), see the HiRDB
Version 9 Installation and Design Guide.

(5) Example of a numbering application program
This subsection presents an example of a numbering application program. This
example assumes the same transactions for an application program that uses the
numbering management table and job table.

Example:

There is a numbering management table that manages form numbers and document
numbers. The following shows an example SQL statement that acquires the most
recent form number from the numbering management table and uses that number in a
job.

 INSERT INTO NUMBERING_MANAGEMENT_TABLE VALUE('FORM_NUMBER',1)
....1

 :

 DECLARE CUR1 CURSOR FOR 2
 SELECT NUMBERING FROM NUMBERING_MANAGEMENT_TABLE
 WHERE TYPE='FORM_NUMBER' FOR UPDATE OF NUMBERING
 OPEN CUR1 3
 FETCH CUR1 INTO :x_NUMBERING 4
 UPDATE NUMBERING_MANAGEMENT_TABLE SET
NUMBERING=:x_NUMBERING+1 5
 WHERE CURRENT OF CUR1
 CLOSE CUR1 6

 :

4. UAP Design for Improving Performance and Handling

247

 Accessing-the-job-table-by-using-the-acquired-number ..7

 :

Explanation:

1. Inserts 1 in the numbering management table as the initial value for the form
numbers.

2. Declares the cursor CUR1 used to retrieve the most recent form number from the
numbering management table.

3. Opens the cursor CUR1.

4. Retrieves the form number in x_NUMBERING.

5. Increments the number (from the most recent number) for the next user to retrieve
a form number. When this processing is finished, the row is released from locked
status without waiting for commit.

6. Closes the cursor CUR1.

7. Performs user-defined processing on the basis of the form number retrieved in
x_NUMBERING.

Steps 3 through 7 are repeated each time numbering is performed.

(6) Notes about managing more than one type of numbering
(a) About locking

If multiple rows are stored in a table for which the WITHOUT ROLLBACK option is
specified, and no index is defined for the table, all rows are locked temporarily because
they are all subject to search. In such a case, locking might occur between, for
example, a form numbering process and a document numbering process. You can
prevent this by specifying YES in PDLOCKSKIP in the client environment definition to
perform an unlocked conditional search. If an unlocked conditional search has been
performed, only the rows satisfying the search condition are locked and no lock is
applied during search processing.

(b) About rollback
If you perform more than one type of numbering, do not update multiple rows with a
single SQL statement. The timing at which lock release and rollback no longer occur
is set to the point in time where update processing on each row is completed. If a UAP
that updates multiple rows terminates abnormally, some of the rows might not be rolled
back.

4. UAP Design for Improving Performance and Handling

248

(7) Examples of numbering using stored procedures
Because numbering is often performed in a specific pattern, it is convenient if you
register a numbering process as a stored procedure.

This subsection presents three examples of table definition and stored procedures.

Example 1:

This example assigns sequential numbers by using a table with WITHOUT
ROLLBACK specified and a stored procedure.

It assigns numbers up to the maximum value of INTEGER, whose initial value is
1 and increment value is 1.

If the maximum value of INTEGER is exceeded, an overflow error is returned.
Note that if the default value setting facility (PDDFLNVAL) is used, the null value
is assumed (no overflow error occurs), resulting in a NOT NULL constraint
violation. If no row containing the initial value has been inserted, the table is
treated as being empty, in which case if the UPDATE statement is executed, an
error is caused by the cursor not being positioned in a row. If multiple rows have
been inserted, only the first row is used and any subsequent rows are ignored.

CREATE FIX TABLE
 owner_id.sequence_tbl(sequence_no INTEGER NOT NULL)
 WITHOUT ROLLBACK;
.......................................1
CREATE PROCEDURE owner_id.nextval(OUT next_no INTEGER)
 BEGIN
 DECLARE update_no INTEGER;
..............................2
 DECLARE cr1 CURSOR FOR
 SELECT sequence_no FROM owner_id.sequence_tbl
 FOR UPDATE;
 OPEN cr1;
 FETCH cr1 INTO update_no;
...............................3
 SET next_no=update_no;
..................................4
 UPDATE owner_id.sequence_tbl SET sequence_no=update_no+1
 WHERE CURRENT OF cr1;
.................................5
 CLOSE cr1;
..3
 END
...2
COMMIT WORK;
..6
INSERT INTO owner_id.sequence_tbl(sequence_no) VALUES(1);

4. UAP Design for Improving Performance and Handling

249

...7
COMMIT WORK;
..8

<Assigning sequential numbers> 9
CALL owner_id.nextval(OUT:xnext_no);
 :
processing-using-assigned-sequential-number-xnext_no
 :
CALL owner_id.nextval(OUT:xnext_no);
 :

Explanation:

1. Defines the table owner_id.sequence_tbl used to assign the value
of INTEGER.

2. Defines the procedure owner_id.nextval that assigns a sequential
number and outputs it by using the next_no parameter.

3. Searches the table owner_id.sequence_tbl for the column
sequence_no.

4. Places the retrieved value in the next_no parameter.

5. Updates the value of the column sequence_no in the table
owner_id.sequence_tbl by adding the increment value 1 to it.

6. Commits the transaction to apply the table and procedure definitions.

7. Uses the INSERT statement to insert a row whose initial value is 1.

8. Commits the transaction to apply the inserted row.

9. Calls the procedure owner_id.nextval by using the CALL statement,
assigns a sequential number, and then acquires the value by using the
next_no parameter. Each time the CALL statement is executed, the next
sequential number is assigned.

Example 2:

This example assigns more than one type of sequential number by using a table
with WITHOUT ROLLBACK specified and a stored procedure.

For each key that identifies the sequence number, this example assigns numbers
up to the maximum value of INTEGER, whose initial value is 1 and increment
value is 1.

If the maximum value of INTEGER is exceeded, an overflow error is returned.
Note that if the default value setting facility (PDDFLNVAL) is used, the null value
is assumed (no overflow error occurs), resulting in a NOT NULL constraint

4. UAP Design for Improving Performance and Handling

250

violation. If no row containing the initial value has been inserted for the key value
used to identify sequential numbers, the table is treated as being empty, in which
case if the UPDATE statement is executed, an error is caused by the cursor not
being positioned in a row. If multiple rows have been inserted for the key value
used to identify sequential numbers, only the first row is used and any subsequent
rows are ignored.

Note 1
No index can be defined for a table with WITHOUT ROLLBACK specified. In
order to prevent lock contention, you must specify PDLOCKSKIP=YES in the
client environment definition.

Note 2
Because no index can be defined for a table with WITHOUT ROLLBACK
specified, if you use many different types of sequential numbers, provide
multiple tables and procedures.

CREATE FIX TABLE
 owner_id.sequence_tbl(sequence_key CHAR(30) NOT NULL,
 sequence_no INTEGER NOT NULL)
 WITHOUT ROLLBACK;
..1
CREATE PROCEDURE owner_id.nextval(IN input_key CHAR(30),
 OUT next_no INTEGER)
 BEGIN
 DECLARE update_no INTEGER;
.................................2
 DECLARE cr1 CURSOR FOR
 SELECT sequence_no FROM owner_id.sequence_tbl
 WHERE sequence_key=input_key FOR UPDATE OF
sequence_no;
 OPEN cr1;
 FETCH cr1 INTO update_no;
..................................3
 SET next_no=update_no;
.....................................4
 UPDATE owner_id.sequence_tbl SET sequence_no=update_no+1
 WHERE CURRENT OF cr1;
....................................5
 CLOSE cr1;
...3
 END
..2
COMMIT WORK;
...6
INSERT INTO owner_id.sequence_tbl(sequence_key,sequence_no)
 VALUES('key_value_1',1);

4. UAP Design for Improving Performance and Handling

251

...................................7
COMMIT WORK;
...8
INSERT INTO owner_id.sequence_tbl(sequence_key,sequence_no)
 VALUES('key_value_2',1);
...................................7
COMMIT WORK;
...8
 :
(Insert as many rows containing an initial value as there are types of sequential
numbers)

<Assigning sequential number to 'key_value_1'>
............................9
xinput_key <-- 'key_value_1'
CALL owner_id.nextval(IN:xinput_key,OUT:xnext_no);
 :
processing-using-sequential-number-xnext_no-assigned-to-'key_value_1'
 :
xinput_key <-- 'key_value_1'
CALL owner_id.nextval(IN:xinput_key,OUT:xnext_no);
 :

<Assigning sequential number to 'key_value_2'>
............................9
xinput_key <-- 'key_value_2'
CALL owner_id.nextval(IN :xinput_key,OUT:xnext_no);
 :
processing-using-sequential-number-xnext_no-assigned-to-'key_value_2'
 :
xinput_key <-- 'key_value_2'
CALL owner_id.nextval(IN:xinput_key,OUT:xnext_no);
 :

Explanation:

1. Defines the table owner_id.sequence_tbl used to assign the value
of INTEGER for each key that identifies sequence numbers.

2. Defines the procedure owner_id.nextval that inputs a key for
identifying sequential numbers by using the input_key parameter.
Then assigns a sequential number and outputs it by using the next_no
parameter.

3. Specifies a key used to identify sequential numbers for the column
sequence_key in the table owner_id.sequence_tbl and then
searches the column sequence_no.

4. UAP Design for Improving Performance and Handling

252

4. Places the retrieved value in the next_no parameter.

5. Updates the value of the column sequence_no in the table
owner_id.sequence_tbl by adding increment value 1 to it.

6. Commits the transaction to apply the table and procedure definitions.

7. Uses the INSERT statement to insert a row whose initial value is 1 for
each key that identifies sequential numbers.

8. Commits the transaction to apply the inserted row.

9. Calls the procedure owner_id.nextval by using the CALL statement,
assigns a sequential number, and then acquires the value by using the
next_no parameter. Each time the CALL statement is executed, the next
sequential number is assigned.

Example 3:

This example assigns sequential numbers by rotating numbers between minimum
and maximum values and using a table with WITHOUT ROLLBACK specified and a
stored procedure.

If no row containing the initial value has been inserted, the table is treated as
empty, in which case if the UPDATE statement is executed, an error is caused by
the cursor not being positioned in a row. If multiple rows have been inserted, only
the first row is used and any subsequent rows are ignored.

CREATE FIX TABLE
 owner_id.sequence_tbl(sequence_no INTEGER NOT NULL)
 WITHOUT ROLLBACK;
...1
CREATE PROCEDURE owner_id.nextval(OUT next_no INTEGER)
 BEGIN
 DECLARE update_no INTEGER;
.................................2
 DECLARE cr1 CURSOR FOR
 SELECT sequence_no FROM owner_id.sequence_tbl FOR
UPDATE;
 OPEN cr1;
 FETCH cr1 INTO update_no;
..................................3
 SET next_no=update_no;
.....................................4
 IF update_no=2147483647 THEN
 SET update_no=-2147483648;
 ELSE
 SET update_no=update_no+1;
 END IF;
..5

4. UAP Design for Improving Performance and Handling

253

 UPDATE owner_id.sequence_tbl SET sequence_no=update_no
 WHERE CURRENT OF cr1;
....................................6
 CLOSE cr1;
...3
 END
..2
COMMIT WORK;
...7
INSERT INTO owner_id.sequence_tbl(sequence_no)VALUES(1);
.......8
COMMIT WORK;
...9

<Assigning sequential numbers >
...10
CALL owner_id.nextval(OUT:xnext_no);
 :
processing-using-assigned-sequential-number-xnext_no
 :
CALL owner_id.nextval(OUT:xnext_no);
 :

Explanation:

1. Defines the table owner_id.sequence_tbl used to assign the value
of INTEGER.

2. Defines the procedure owner_id.nextval that assigns sequential
numbers to the column sequence_no in the table
owner_id.sequence_tbl by rotating numbers whose minimum
value is -2,147,483,648, maximum value is 2,147,483,647, and
increment value is 1, in such a manner that the value is reset to the
minimum value once the maximum value is reached.

3. Searches the column sequence_key in the table
owner_id.sequence_tbl.

4. Places the retrieved value in the next_no parameter.

5. If the retrieved value is the maximum value (2,147,483,647), the next
value will be the minimum value -2,147,483,648; otherwise, it will be
the retrieved value plus 1 (increment value).

6. Updates the sequence number in the column sequence_no in the table
owner_id.sequence_tbl to the next value.

7. Commits the transaction to apply the table and procedure definitions.

4. UAP Design for Improving Performance and Handling

254

8. Uses the INSERT statement to insert a row whose initial value is 1.

9. Commits the transaction to apply the inserted row.

10. Calls the procedure owner_id.nextval by using the CALL statement,
assigns a sequential number, and then acquires the value by using the
next_no parameter. Each time the CALL statement is executed, the next
sequential number is assigned.

4.2.3 Tables using character sets
If you define character sets, you can store character string data using a different
character set in each table column.

(1) Transferring character string data for which a character set is specified
This subsection describes an example that transfers character string data for which a
character set is specified.

Example:

This example searches column C2 (character set EBCDIK) in table T1. The
following shows table T1 and the retrieval SQL statement.

• Table T1 is defined as follows (underline indicates the character set
specification):

• The example uses the following retrieval SQL statement:

The following figure shows how data is transferred.

CREATE TABLE T1
 (C1 INT, C2 CHAR(30) CHARACTER SET EBCDIK)

<Declaration of embedded variable>

char DATA[31];
 :
SELECT C2 FROM T1
 WHERE C2 = :DATA

4. UAP Design for Improving Performance and Handling

255

Figure 4-8: Transfer of character string data specifying a character set

Explanation:

1. Acquires character set information for column C2 from the data
dictionary table and stores it in the SQL object.

2. Sets the character set name for C2 in the character set descriptor area#.

3. If the character set in the input variable differs from the character set in
the character set descriptor area, the character set is converted and then
assigned.

If the character set in the output variable differs from the character set
in the character set descriptor area, the character set is converted and
then stored.

#

This area contains the character set name in a variable (DATA) that was
determined dynamically during UAP execution. The contents of the
character set descriptor area are used to perform the following processing:

• The character set name specified by the client is sent to the HiRDB
server.

• The client receives the items retrieved by the SQL statement
preprocessed by the HiRDB server and the character set name in the ?
parameter.

For details about the character set descriptor area, see Appendix E. Character
Set Descriptor Area.

4. UAP Design for Improving Performance and Handling

256

(2) Character code conversion
If the client and server use different character sets, the server converts the character
codes. If the client and server both use a predefined character set, character codes are
not converted. However, if PDCLTCNVMODE is specified in the client environment
definition, character codes are converted according to the specification.

The following table shows character code conversion between client and server,
depending on whether character sets are defined.

Table 4-2: Character code conversion between client and server

Legend:

UD: No character set is defined.

EK: EBCDIK is defined as the character set.

U16: UTF16 is defined as the character set.

U16C: UTF16, UTF-16LE, or UTF-16BE is defined as the character set.

SVR: The server converts character codes.

Character codes
used on the client

Character codes used on the server

SJIS UJIS UTF-8 LANG-
C

CHINESE CHINES
E-GB18

030

UD EK UD UD U1
6

UD UD UD

SJIS UD -- SVR CLT CLT C-S UN N N

EK SVR -- N N N N N N

UJIS UD N N -- N N UN N N

UTF-8 UD N N N -- SV
R

UN N N

U16C N N N SVR --# N N N

UCS-2 UD N N CLT CLT C-S N N N

LANG-C UD -- SVR -- -- SV
R

-- -- --

CHINESE UD N N N N N UN -- N

CHINESE-
GB18030

UD N N N N N N N --

4. UAP Design for Improving Performance and Handling

257

CLT: The client converts character codes (conversion is specified by using
PDCLTCNVMODE in the client environment definition).

C-S: The client performs the server's character code conversion (specified by
using PDCLTCNVMODE in the client environment definition) and the server
converts the character codes for the character set.

--: Character code conversion is not needed.

UN: Character code conversion is not needed. However, if NOUSE is specified in
PDCLTCNVMODE in the client environment definition, character code conversion
is performed (double-byte characters are not converted).

N: Character code conversion cannot be performed.

#

If the client and server use different endians for the character codes, endian
conversion is performed.

(a) Access from ODBC and ADO.NET application programs
The conversion rules shown in Table 4-2 also apply to access from ODBC and
ADO.NET application programs.

Note that the following client versions assume the character set descriptor area as
follows:

Client version earlier than 08-05

The client observes the conversion rules shown in Table 4-2, assuming that there
is no character set descriptor area.

Client version 08-05 or later

If the client's character encoding is UCS-2 and the server's character encoding is
UTF-8, the client observes the conversion rules shown in Table 4-2, assuming
UTF-16LE in the character set descriptor area.

(b) Access from OLE DB application programs and JDBC application
programs that use a Type2 JDBC driver
These application programs observe the conversion rules shown in Table 4-2,
assuming that there is no character set descriptor area.

(c) Access from JDBC application programs that uses a Type4 JDBC driver
If the client version is earlier than 08-05 or the server uses a character encoding
that is not UTF-8

The JDBC driver converts character codes to those used by the server by using
the encoder provided by Java Virtual Machine (JVM). If the server specifies a
character set, then the server converts the character codes.

4. UAP Design for Improving Performance and Handling

258

If the client version is 08-05 or later and the server uses UTF-8 character encoding

If the server specifies the UTF16 character set, UTF-16BE is used to transfer data
with the server. If the server does not specify the UTF16 character set, the encoder
provided by JVM is used to convert character codes to UTF-8.

4. UAP Design for Improving Performance and Handling

259

4.3 Stored procedures and stored functions

This section explains how to define stored procedures and stored functions.

Be sure to create the necessary RDAREA spaces before defining stored procedures and
stored functions. For details about the operation of stored procedures and stored
functions, see the HiRDB Version 9 System Operation Guide.

You can use SQL, Java, or C language to code stored procedures and stored functions.
Those coded in SQL are called SQL stored procedures and SQL stored functions.
Those coded in Java are called Java stored procedures and Java stored functions, and
those coded in C language are called C stored procedures and C stored functions.

The stored procedures and stored functions are referred to collectively as stored
routines. A stored routine whose owner is PUBLIC, meaning all users, is called a public
routine.

For details about Java stored procedures and Java stored functions, see 9. Java Stored
Procedures and Java Stored Functions. For details about C stored procedures and C
stored functions, see 10. C Stored Procedures and C Stored Functions.

Note
If an error occurs while an SQL stored procedure or SQL stored function is being
executed, processing of the SQL stored procedure or SQL stored function terminates
at the point when the error occurred (the programs exits from control of the SQL stored
procedure or SQL stored function). Therefore, error-handling processes cannot be
specified in SQL stored procedures and SQL stored functions.

4.3.1 Defining a stored procedure
A stored procedure is a facility that registers an SQL-coded database processing
procedure to a database as a procedure.

(1) Benefits of using an SQL stored procedure
Manipulating a database may involve searching for data with the FETCH statement and
then issuing the UPDATE or INSERT statement, depending on whether or not matching
data is found. This process may be repeated many times, resulting in high overhead
between the client and the server. This type of database access processing can also be
defined in a routine that is stored as a procedure and can then be executed by calling it
with a CALL statement. Use of a stored procedure reduces the amount of overhead
associated with passing and receiving data between the client and the server. Because
the SQL statements that are stored in a procedure are stored at the server in a compiled
form (as SQL objects), using a stored procedure permits the client and the server to
share processing, at the same time reducing the SQL parsing overhead.

The following figure shows the benefits of using an SQL stored procedure.

4. UAP Design for Improving Performance and Handling

260

Figure 4-9: Benefits of using an SQL stored procedure

(2) Defining and executing an SQL stored procedure
CREATE PROCEDURE or CREATE TYPE stores a defined procedure in a database as an
SQL stored procedure; DROP PROCEDURE deletes an SQL stored procedure from the
database. Once stored in a database, an SQL stored procedure can be executed by
calling it with a CALL statement.

If a procedure has an SQL object that has been invalidated, the ALTER PROCEDURE or
ALTER ROUTINE statement can be used to re-create that procedure.

If an SQL stored procedure has already been registered, the pddefrev command can
be executed to create definition-type SQL statements for that SQL stored procedure.
This command is useful for creating a new SQL stored procedure, the processing of
which is similar to that of an existing SQL stored procedure. For details about the
pddefrev command, see the HiRDB Version 9 Command Reference manual.

The following figure illustrates the definition and execution of an SQL stored
procedure.

4. UAP Design for Improving Performance and Handling

261

Figure 4-10: Defining and executing an SQL stored procedure

Public procedure

If you use a stored procedure defined by another user, you must specify the
owner's authorization identifier and routine identifier when you call the stored
procedure from within a UAP. However, if CREATE PUBLIC PROCEDURE is
executed to define the stored procedure as a public procedure, there is no need to
specify the owner's authorization identifier when the stored procedure is called
from a UAP (only the routine identifier must be specified).

(3) Example of an SQL stored procedure
An example of the definition and execution of an SQL stored procedure that defines
SQL statements and statements for controlling the SQL statements (routine control
SQL) is shown as follows:

4. UAP Design for Improving Performance and Handling

262

Figure 4-11: Example of an SQL stored procedure

Explanation
1. Defines the procedure name and the SQL parameters.

2. Begins compound statements.

3. Declares SQL variables.

4. Specifies repetitive execution of statements.

4. UAP Design for Improving Performance and Handling

263

5. Specifies exiting a statement.

6. Specifies conditional branching.

7. Specifies value assignments.

8. Ends the conditional branch.

9. Ends repetitive executions of statements.

10. Ends the compound statements.

11. Calls the procedure.

Notes
1. For details about the individual SQL statements, see the HiRDB Version 9

SQL Reference manual.

2. This example specifies entrydate as a selection item in the SELECT clause
for cursor declaration, so that the data can be sorted according to
entrydate. However, because entrydate values are not referenced, the
FETCH statement omits the embedded variable corresponding to entrydate
and does not fetch entrydate values.

(4) Debugging an SQL stored procedure
To debug an SQL stored procedure, use WRITE LINE statements in a routine control
SQL and output the SQL variables and SQL parameters to be referenced to a client file.
For details about the WRITE LINE statement, see the manual HiRDB Version 9 SQL
Reference.

An example of specifying WRITE LINE statements in an SQL stored procedure is
shown below.

Explanation:

1. Converts the value of the fromdate SQL parameter to a character string and
outputs the string to a file.

2. Converts the value of the todate SQL parameter to a character string and
outputs the string to a file.

To output the values of the value expressions in the WRITE LINE statements from the
SQL stored procedure in which the WRITE LINE statements were written to a client

 CREATE PROCEDURE proc_1 (IN fromdate date, IN todate date)
 BEGIN
 ...
 WRITE LINE 'fromdate='||char(fromdate); 1
 WRITE LINE 'todate='||char(todate); 2
 ...

4. UAP Design for Improving Performance and Handling

264

file, set the PDWRTLNFILSZ client environment definition, and call the SQL stored
procedure from the UAP. An example is shown below.

PDWRTLNFILSZ setup example for csh (C shell) (UNIX edition HiRDB client)

PDWRTLNFILSZ setup example (Windows edition HiRDB client)

Calling the SQL stored procedure:

Contents of output file:

Note: The output file is set with PDWRTLNPATH in the client environment definition.

Once debugging is completed, if you no longer need to output the values of the value
expressions in the WRITE LINE statements from the SQL stored procedure in which
the WRITE LINE statements were specified to a file, omit the PDWRTLNFILSZ client
environment definition before executing the UAP. When the PDWRTLNFILSZ
specification is omitted, the WRITE LINE statements in the SQL stored procedure are
not executed.

(5) Completing a transaction in a stored procedure
(a) SQL statements for completing a transaction

To complete a transaction in a stored procedure, execute one of the following SQL
statements in that procedure (note that SQL statements cannot be executed within a C
stored procedure):

• COMMIT statement

 setenv PDWRTLNFILSZ 4096

 PDWRTLNFILSZ=4096

 strcpy(e_fromdate, "2003-06-01");

 strcpy(e_todate, "2003-06-30");

 EXEC SQL CALL proc_1(IN :e_fromdate, IN :e_todate);

 fromdate=2003-06-01

 todate=2003-06-30

4. UAP Design for Improving Performance and Handling

265

• ROLLBACK statement

COMMIT is executed automatically when one of the following SQL statements is
executed:

• PURGE TABLE statement

• Definition SQL (in Java stored procedures only)

ROLLBACK is executed automatically when the following condition applies:

• An error that requires ROLLBACK execution occurs.

(b) Notes about re-executing stored procedures
If an error occurs during a stored procedure after a transaction has been completed,
execution of the procedure is terminated before completion. If you re-execute the
stored procedure that resulted in an error, the procedure processes are executed again
from the beginning. You must therefore consider whether the operations performed
before the transaction was terminated due to error can be executed twice. An example
is shown below.

(6) Results-set return facility (limited to SQL stored procedures)
When defining an SQL stored procedure, you can use the results-set return facility by
specifying a value of 1 or higher in the DYNAMIC RESULT SETS clause of CREATE
PROCEDURE. The results-set return facility cannot be used for SQL stored functions.

(a) What is the results-set return facility?
The results-set return facility allows the calling source of an SQL stored procedure to
reference the cursor obtained when the SELECT statement in the SQL stored procedure
is executed.

4. UAP Design for Improving Performance and Handling

266

The following figure provides an overview of the results-set return facility.

Figure 4-12: Overview of results-set return facility (for SQL stored procedures)

(b) Languages of calling sources that can use the results-set return facility
Listed below are the languages of calling sources that can use the results-set return
facility:

• Java

• C

• C++

• COBOL#

• OOCOBOL

#: COBOL can be used if an RDB file input/output function is not used.

(c) Example of using the results-set return facility
In this example, the SQL stored procedure searches the emps_1 and emps_2 tables
and retrieves id, name, and age data for id column values that satisfy the condition
id<10. The calling source accepts the two result sets and executes them.

Definitions of the SQL stored procedure

4. UAP Design for Improving Performance and Handling

267

Explanation:

1. Defines the procedure name and the parameter.

2. Specifies the number of search result information sets to be returned.

3. Declares the CUR1 cursor.

4. Declares the CUR2 cursor.

5. Opens the CUR1 cursor.

6. Opens the CUR2 cursor.

7. Terminates the call and returns the result sets.

Calling source (embedded UAP written in C)

CREATE PROCEDURE proc2(IN param1 INTEGER) 1
 DYNAMIC RESULT SETS 2 2
 BEGIN
 DECLARE CUR1 CURSOR WITH RETURN 3
 FOR SELECT id,name,age FROM emps_1
 WHERE id < param1 ORDER BY id;
 DECLARE CUR2 CURSOR WITH RETURN 4
 FOR SELECT id,name,age FROM emps_2
 WHERE id < param1 ORDER BY id;
 OPEN CUR1; .. 5
 OPRN CUR2; .. 6
 END; .. 7

#include <stdio.h>
#include <string.h>

main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 struct {
 short len;
 char str[31];
 } cur1;
 int emp_id;
 char emp_name[13];
 int emp_age;
 EXEC SQL END DECLARE SECTION;

4. UAP Design for Improving Performance and Handling

268

Explanation:

1. Sets the cursor name.

2. Executes the CALL statement.

3. Determines whether there is a result set to be returned.

4. Assigns a cursor (associates the first result set with the cursor).

5. Outputs information from the first result set.

6. Closes the cursor (associates the second result set with the cursor).

7. Determines whether there is another result set.

8. Outputs information from the second result set.

9. Closes the cursor.

 --------(CONNECT process to HiRDB (omitted))--------

 cur1.len = sprintf(cur1.str, "cursor1"); 1

 EXEC SQL CALL PROC(10); 2

 If (SQLCODE == 120) { 3

 EXEC SQL ALLOCATE GLOBAL :cur1
 FOR PROCEDURE PROC2; 4

 printf("*** emps_1 ***\n"); 5
 while (1) { ... 5
 EXEC SQL FETCH GLOBAL :cur1 5
 INTO :emp_id,:emp_name,:emp_age; 5
 if (SQLCODE<0 || SQLCODE==100) break; 5
 printf("ID=%d NAME=%s AGE=%d\n", 5
 emp_id, emp_name, emp_age); 5
 } ... 5
 CLOSE GLOBAL :cur1; 6

 if (SQLCODE==121) { 7
 printf("*** emps_2 ***\n"); 8
 while (1) { ... 8
 EXEC SQL FETCH GLOBAL :cur1 8
 INTO :emp_id,:emp_name,:emp_age; 8
 if (SQLCODE<0 || SQLCODE==100) break; 8
 printf("ID=%d NAME=%s AGE=%d\n", 8
 emp_id, emp_name, emp_age); 8
 } ... 8
 CLOSE GLOBAL :cur1; 9
 }
 }
}

4. UAP Design for Improving Performance and Handling

269

(d) Notes about using the results-set return facility
Defining the SQL stored procedure with CREATE PROCEDURE

1. Specify WITH RETURN in the cursor declarations of the cursors to be returned
as result sets.

2. Of the cursors declared with the WITH RETURN specification, only those that
are open when the procedure ends are returned as result sets.

3. If there are two or more result sets to be returned, they are returned in the
order that their corresponding cursors were opened.

Creating the calling source

1. When a procedure that returns a result state is executed, SQLSTATE is set to
0100C and SQLCODE to 120.

2. To have an embedded UAP and an SQL stored procedure receive a result set,
use the ALLOCATE CURSOR statement to allocate a cursor to the group of
result sets and associate the cursor with the first result set. If another result
set is to be returned, execute the CLOSE statement for the cursor that is
referencing the previous result set. A cursor is then associated with that
subsequent result set. When the CLOSE statement is executed and there is a
subsequent result set, SQLSTATE is set to 0100D and SQLCODE to 121 when
that result set is associated with a cursor. If there is no subsequent result set,
SQLSTATE is set to 02001 and SQLCODE to 100.

4.3.2 Defining a stored function
A stored function is a facility that registers a sequence of SQL-coded database
operations to a database as a user-defined function.

(1) Defining and executing an SQL stored function
CREATE FUNCTION or CREATE TYPE registers a user-defined function in a database
as an SQL stored function. DROP FUNCTION deletes an SQL stored function from the
database. Once registered in a database, a user-defined function can be executed by
calling it in an SQL statement. If a function has an SQL object that has been
invalidated, the ALTER ROUTINE statement can be used to re-create that function. The
following figure shows the definition and execution of an SQL stored function.

4. UAP Design for Improving Performance and Handling

270

Figure 4-13: Defining and executing an SQL stored function

Public function

If you use a stored function defined by another user, you must specify the owner's
authorization identifier and routine identifier when you call the stored function
from within a UAP. However, if CREATE PUBLIC FUNCTION is executed to define
the stored function as a public function, there is no need to specify the owner's
authorization identifier when the stored function is called from a UAP (only the
routine identifier must be specified).

(2) Example of an SQL stored function
The following shows an example of the definition and execution of an SQL stored
function that combines multiple routine control SQL statements and defines them as a
user-defined function (function).

4. UAP Design for Improving Performance and Handling

271

Figure 4-14: SQL stored function example

Explanation
1. Defines the user-defined function name and the SQL parameters.

2. Specifies the function return value.

3. Begins the compound statements.

4. Declares SQL variables.

5. Specifies value assignments.

6. Specifies return of the function return value.

7. Ends the compound statements.

8. Retrieves the SQL stored function with a function call.

Note
For details about the individual SQL statements, see the HiRDB Version 9 SQL
Reference manual.

Defining the following functions is helpful.

Function that calculates the last date of a month containing the specified date
CREATE FUNCTION LASTDAY(INDATE DATE) RETURNS DATE
 BEGIN
 DECLARE MM1 INTEGER;
 SET MM1=MONTH(INDATE)-1;
 RETURN (INDATE-MM1 MONTHS+(31-DAY(INDATE))
 DAYS+MM1 MONTHS);
 END

4. UAP Design for Improving Performance and Handling

272

Function that calculates the day of a specified date with an integer from 0
(Sunday) through 6 (Saturday)
CREATE FUNCTION DNOFWEEK(INDATE DATE) RETURNS INTEGER
 BEGIN
 RETURN MOD(DAYS(INDATE),7);
 END

Function that calculates the day of a specified date in English
CREATE FUNCTION DAYOFWEEK(INDATE DATE) RETURNS CHAR(3)
 BEGIN
 RETURN (CASE MOD(DAYS(INDATE),7) WHEN 0 THEN 'SUN'
 WHEN 1 THEN 'MON'
 WHEN 2 THEN 'TUE'
 WHEN 3 THEN 'WED'
 WHEN 4 THEN 'THU'
 WHEN 5 THEN 'FRI'
 ELSE 'SAT' END);
 END

Function that calculates the date of the specified day that immediately follows a
specified date
CREATE FUNCTION NEXTDAY(INDATE DATE, DAYOFWEEK CHAR(3))
 RETURNS DATE
 BEGIN
 DECLARE SDOW, TDOW INTEGER;
 SET TDOW=(CASE, DAYOFWEEK WHEN 'SUN' THEN 0
 WHEN 'MON' THEN 1
 WHEN 'TUE' THEN 2
 WHEN 'WED' THEN 3
 WHEN 'THU' THEN 4
 WHEN 'FRI' THEN 5
 ELSE 6 END);
 SET SDOW=MOD(DAYS(INDATE),7);
 RETURN (INDATE + (CASE WHEN TDOW>SDOW THEN TDOW-SDOW
 ELSE 7+TDOW-SDOW END) DAYS);
 END

(When the day argument is an integer [0 to 6])
CREATE FUNCTION NEXTDAY(INDATE DATE, DNOFWEEK INTEGER)
 RETURNS DATE
 BEGIN
 DECLARE SDOW, TDOW INTEGER;
 SET TDOW=DNOFWEEK;
 SET SDOW=MOD(DAYS(INDATE),7);
 RETURN (INDATE + (CASE WHEN TDOW>SDOW THEN TDOW-SDOW
 ELSE 7+TDOW-SDOW END) DAYS);
 END

4. UAP Design for Improving Performance and Handling

273

Function that calculates the year and month (yyyy-mm) of a specified date when
each month ends on the 20th

CREATE FUNCTION YYYYMM20(INDATE DATE) RETURNS CHAR(7)
 BEGIN
 RETURN SUBSTR(CHAR(INDATE+1 MONTH -20 DAYS),1,7);
 END

Function that calculates the year (yyyy) of the specified date when each fiscal year
ends on March 20
CREATE FUNCTION YYYY0320(INDATE DATE) RETURNS CHAR(4)
 BEGIN
 RETURN SUBSTR(CHAR(INDATE-2 MONTHS -20 DAYS)1,4);
 END

Function that calculates the year and quarter (yyyy-nQ) of the specified date when
each fiscal year ends on March 20
CREATE FUNCTION YYYYNQ0320(INDATE DATE) RETURNS CHAR(7)
 BEGIN
 DECLARE WORKDATE DATE;
 SET WORKDATE=(INDATE -2 MONTHS -20 DAYS);
 RETURN (SUBSTR(CHAR(WORKDATE),1,5)||
 SUBSTR(DIGITS((MONTH(WORKDATE)+2)/3),10,1)| |'Q');
 END

Function that calculates the year and half (yyyy-nH) of the specified date when
each fiscal year ends on March 20
CREATE FUNCTION YYYYNH0320(INDATE DATE) RETURNS CHAR(7)
 BEGIN
 DECLARE WORKDATE DATE;
 SET WORKDATE=(INDATE -2 MONTHS -20 DAYS);
 RETURN (SUBSTR(CHAR(WORKDATE),1,5) ||
 SUBSTR(DIGITS((MONTH(WORKDATE)+5)/6),10,1)| |'H');
 END

Function that calculates the number of months between dates (argument 1 -
argument 2)(extra days are discarded)
CREATE FUNCTION MONTHBETWEEN0(INDATE1 DATE, INDATE2 DATE)
 RETURNS INTEGER
 BEGIN
 DECLARE YMINTERDATE INTERVAL YEAR TO DAY;
 SET YMINTERDATE=INDATE1-INDATE2;
 RETURN (YEAR(YMINTERDATE)*12+MONTH(YMINTERDATE));
 END

Function that calculates the number of months between two dates (argument 1 -
argument 2) to several decimal places. (The number-of-months value for one day
is calculated by setting the day of the earlier date as the starting point of each

4. UAP Design for Improving Performance and Handling

274

month and then dividing 1 by the number of days in the month with the later date.)
CREATE FUCNTION MONTHBETWEEN(INDATE1 DATE,INDATE2 DATE)
 RETURNS DECIMAL(29,19)
 BEGIN
 DECLARE INTERDATE INTERVAL YEAR TO DAY;
 DECLARE DMONTHS DEC(29,19);
 DECLARE YYI,MMI INTEGER;
 DECLARE WDATE DATE;
 DECLARE SIGNFLAG DEC(1);
 IF INDATE1>INDATE2 THEN
 SET INTERDATE=INDATE1-INDATE2;
 SET WDATE=INDATE2;
 SET SIGNFLAG=1;
 ELSEIF INDATE1<INDATE2 THEN
 SET INTERDATE=INDATE2-INDATE1;
 SET WDATE=INDATE1;
 SET SIGNFLAG=-1;
 ELSE RETURN 0;
 END IF;
 SET YYI=YEAR(INTERDATE);
 SET MMI=MONTH(INTERDATE);
 SET WDATE=WDATE+YYI YEARS+MMI MONTHS;
 SET DMONTHS=YYI*12+MMI
 +DEC(DAY(INTERDATE),2)/(DAYS(WDATE+1 MONTH)-
DAYS(WDATE));
 IF SIGNFLAG=1 THEN RETURN DMONTHS;
 ELSE RETURN -DMONTHS;
 END IF;
 END

Function that calculates the number of years between two dates (argument 1 -
argument 2) to several decimal places (the number-of-years value for one day is
calculated by setting the month and day of the earlier date as the starting point of
each year and then dividing 1 by the number of days in the year with the later
date).
CREATE FUNCTION YEARBETWEEN(INDATE1 DATE,INDATE2 DATE)
 RETURNS DECIMAL(29,19)
 BEGIN
 DECLARE INTERDATE INTERVAL YEAR TO DAY;
 DECLARE DYEARS DEC(29,19);
 DECLARE YYI,MMI INTEGER;
 DECLARE WDATE1, WDATE2 DATE;
 DECLARE SIGNFLAG DEC(1);
 IF INDATE1>INDATE2 THEN
 SET INTERDATE=INDATE1-INDATE2;
 SET WDATE1=INDATE1;
 SET WDATE2=INDATE2;
 SET SIGNFLAG=1;

4. UAP Design for Improving Performance and Handling

275

 ELSEIF INDATE1<INDATE2 THEN
 SET INTERDATE-INDATE2-INDATE1;
 SET WDATE1=INDATE2;
 SET WDATE2=INDATE1;
 SET SIGNFLAG=-1;
 ELSE RETURN 0;
 END IF;
 SET YYI=YEAR(INTERDATE);
 SET WDATE2=WDATE2+YYI YEARS;
 SET DYEARS=YYI
 +DEC(DAYS(WDATE1)-DAYS(WDATE2),3)
 /(DAYS(WDATE2+1 YEAR)-DAYS(WDATE2));
 IF SIGNFLAG=1 THEN RETURN DYEARS;
 ELSE RETURN -DYEARS;
 END IF;
 END

(3) Rules for determining the called function and the result data type
• A function is called if the counts for authorization identifiers, routine identifiers,

and arguments all match, if the argument data types do not include abstract data
types, and if the parameter data types perfectly match the argument order. In this
case, the data type of the function result is the RETURNS clause data type of the
called function.

• A function is not called if any of the counts for authorization identifiers, routine
identifiers, or arguments do not match.

• If the counts for authorization identifiers, routine identifiers, and arguments all
match, but the argument data types include an abstract data type or the parameter
data types do not perfectly match the argument order, the called function is
determined as follows:

• If an abstract data type is not included in the arguments

The HiRDB system checks the arguments sequentially from the leftmost
argument and sets the pre-defined data types of the individual arguments as
references. The system then calls the function whose parameters have
pre-defined data types with priorities that are equal to those of the references.
If it does not find such a function, the system looks at the functions whose
parameters have pre-defined data types with priorities that are less than those
of the references and calls the function with the highest data type priorities.
The following table shows the priorities of pre-defined data types. If an
abstract data type is not included in the arguments, the called function is
uniquely determined during SQL parsing, and the RETURNS clause data type
of the called function becomes the data type of the function result.

4. UAP Design for Improving Performance and Handling

276

Table 4-3: Priorities of pre-defined data types

A B: Indicates that A has a higher priority than B.

• If an abstract data type is included in the arguments

If an abstract data type is included in the arguments, the function to be called is
determined according to the sequence described as follows:

1. Determining the basic function

The HiRDB system checks the arguments sequentially from the leftmost
argument and sets the data types of the individual arguments as references. The
system then selects the function whose parameters have data types with priorities
that are equal to those of the references and sets that function as the basic function.
If it does not find such a function, the system looks at the functions whose
parameters have pre-defined data types with priorities that are less than those of
the references and selects the function with the highest data type priorities. If a
data type is a pre-defined data type, the priority is determined according to Table
4-3. If a data type is an abstract data type, the priority is determined according to
the following table.

Table 4-4: Priorities of abstract data types

#: The super type that is specified directly by the UNDER clause in an abstract type
definition has a higher priority than other super types.

A B: Indicates that A has a higher priority than B.

1. Determining other candidate functions

If an argument has an abstract data type, the data types of values that can actually

Argument data type Priority

Numeric data
SMALLINT INTEGER DECIMAL SMALLFLT F
LOAT

Character data
CHAR VARCHAR

National character data
NCHAR NVARCHAR

Mixed character string data
MCHAR MVARCHAR

Argument data type Priority

Abstract data type
Same data type super type#

4. UAP Design for Improving Performance and Handling

277

be used as data for that argument are the same as the abstract data type in the
argument definition and the subtypes of that data type. In addition to the basic
function, all functions that have parameters corresponding to the same data type
as the abstract data type of the argument, or to the abstract data type of a subtype,
become candidates for the called function.

If the basic function is the only candidate function, it becomes the called function.
The data type of the function result becomes the RETURNS clause data type of the
called function.

2. Limiting the candidate functions based on the data type in the RETURNS clause

For each candidate function other than the basic function, the HiRDB system
checks whether the RETURNS clause data type is compatible with the RETURNS
clause data type for the basic function. If the data type is not compatible, the
function is dropped from the candidate functions. After checking this
compatibility for all candidate functions, the HiRDB system determines the data
type of the function result based on the RETURNS clause data types for the
remaining candidate functions. The system performs a set operation
(UNION[ALL] or EXCEPT[ALL]) on the remaining candidates. The resulting data
type and data length become the data type and data length of the function result.
For details, see the HiRDB Version 9 SQL Reference manual.

However, if the data type of the function result is an abstract data type, the abstract
data type of the RETURNS clause for the basic function is used.

3. Determining the called function when an SQL statement is executed

If there are two or three functions that cannot be determined uniquely, the HiRDB
system determines which one of these candidate functions to call based on the
actual data type used for each abstract data type argument when the SQL
statement is executed. The system checks the arguments sequentially from the
leftmost argument. If the actual value of an argument is a non-null value, the data
type of that value is used as a reference. If the actual value is a null value, the data
type of that argument is used as reference. From the candidate functions, the
HiRDB system selects the function whose parameters have data types with
priorities that are equal to those of the references and sets that function as the
called function. If it cannot find such a function, the system looks at the functions
whose parameters have pre-defined data types with priorities that are less than
those of the references and selects the function with the highest data type
priorities.

Because HiRDB allows a function to be defined more than once, there may be several
candidates for a called function. The called function is determined by how the function
call specification and the function definition match. The following figure shows the
correspondences between a table with abstract data types and the called function.

4. UAP Design for Improving Performance and Handling

278

Figure 4-15: Correspondences between a table with abstract data types and the
called function

Explanation
Suppose that the following SQL statement uses the abstract data type function
REMUNERATION to retrieve data from the staff table:
SELECT STAFF_NUMBER FROM STAFF_TABLE WHERE
 REMUNERATION(EMPLOYEE)>=2000.00

In this case, the function for each data type is determined and called according to
whether the data for the parameter value is t_EMPLOYEE or t_SALESPERSON.

For details about the definitions of this staff table, see the HiRDB Version 9
Installation and Design Guide.

#1: REMUNERATION = SALARY x REMUNERATION_RATE()

#2: REMUNERATION = TOTAL_NUMBER_OF_CLIENTS x 1,000 + SALARY x
REMUNERATION_RATE()

Examples of determining the called function when abstract data types are included

In the examples below, A, B, and C are abstract data types, C is the super type of
B, and B is the super type of A (priority of abstract data type: A B C).

Example 1
Prerequisite conditions

Table definition

CREATE TABLE T1(C1 C)

4. UAP Design for Improving Performance and Handling

279

Function definitions

f(A), f(B), f(C)

SQL statement

SELECT f(C1) FROM T1

Results

Basic function

f(C)

Candidate functions when function call is f(C1)

f(A), f(B), f(C)

Called function

The following table shows which function is called when the SQL statement
is executed.

Example 2
Prerequisite conditions

Table definition

CREATE TABLE T1(C1 C,C2 B)

Function definitions

f(A,A), f(A,B), f(A,C), f(B,A), f(B,C), f(C,A),
f(C,B), f(C,C)

SQL statement

SELECT f(C1,C2) from T1

Results

Basic function

f(C,B)

Actual value of T1.C1 Called function

Type A f(A)

Type B f(B)

Type C f(C)

Null value f(C)

4. UAP Design for Improving Performance and Handling

280

Candidate functions when function call is f(C1,C2)

f(A,A), f(A,B), f(A,C), f(B,A), f(B,C), f(C,A), f(C,B)

Called function

The following table shows which function is called when the SQL
statement is executed.

4.3.3 Defining and deleting stored functions
This section describes how to define and delete stored functions.

(1) Defining stored functions
When a stored function is created, an existing stored function may become
invalid
An existing stored function becomes invalid under the following condition:

• A UAP has called a stored function that has the same name (same
authorization identifier and same routine identifier) and the same number of
parameters as the stored function to be created.

In this case, use ALTER ROUTINE to re-create the stored function that was
invalidated.

When a stored function is created, an existing stored procedure may become

Actual value of T1.C1 Actual value of T1.C2 Called function

Type A Type A f(A,A)

Type B f(A,B)

Null value f(A,B)

Type B Type A f(B,A)

Type B f(B,C)

Null value f(B,C)

Type C Type A f(C,A)

Type B f(C,B)

Null value f(C,B)

Null value Type A f(C,A)

Type B f(C,B)

Null value f(C,B)

4. UAP Design for Improving Performance and Handling

281

invalid
When a stored function is created, an existing stored procedure may become
invalid. An existing stored procedure becomes invalid under the following
condition:

• The stored procedure calls a stored procedure that has the same name (same
authorization identifier and same routine identifier) and the same number of
parameters as the stored function to be created.

In this case, use ALTER PROCEDURE or ALTER ROUTINE to re-create the stored
procedure that was invalidated.

When a stored function is created, an existing trigger may become invalid
When a stored function is created, an existing trigger may become invalid. An
existing trigger becomes invalid under the following condition:

• The trigger calls a stored function that has the same name (same
authorization identifier and same routine identifier) and the same number of
parameters as the stored function to be created.

In this case, use ALTER TRIGGER or ALTER ROUTINE to re-create the trigger that
was invalidated.

A created stored function becomes invalid
A stored function may become invalid if it is created under the following
circumstances:

1. A plug-in is installed.

2. A stored function that calls a function provided by the plug-in in step 1 is
created.

3. A plug-in that is different from the one that was installed in step 1 is installed.

If the plug-ins installed in steps 1 and 3 provide functions that have the same name
and same number of parameters, the stored function that was created in step 2
becomes in valid when step 3 is executed.

In this case, use ALTER ROUTINE to re-create the stored function that was
invalidated.

(2) Deleting stored functions
When a stored function is deleted, another stored function may become
invalid
An existing stored function becomes invalid under the following condition:

• A UAP has called a stored function that has the same name (same
authorization identifier and same routine identifier) and the same number of

4. UAP Design for Improving Performance and Handling

282

parameters as the stored function to be deleted.

In this case, use ALTER ROUTINE to re-create the stored function that was
invalidated.

When a stored function is invalid, a stored procedure that has the same name
may become invalid
An existing stored procedure becomes invalid under the following condition:

• A UAP has called a stored procedure that has the same name (same
authorization identifier and same routine identifier) and the same number of
parameters as the stored function to be created.

In this case, use ALTER PROCEDURE or ALTER ROUTINE to re-create the stored
procedure that was invalidated.

4. UAP Design for Improving Performance and Handling

283

4.4 Triggers

By defining a trigger, you can execute an SQL statement automatically when an
operation (update, insertion, or deletion) is performed on a certain table. To define a
trigger, specify information such as the table that defines the trigger, the SQL statement
that specifies the trigger operation timing (trigger-activating SQL statement), the SQL
statement to be executed automatically (trigger SQL statement), and the conditions
under which that operation is executed (trigger operation search conditions). When an
SQL statement that satisfies the trigger operation search conditions is executed for the
table that defines the trigger, the trigger SQL statement is executed automatically. The
following figure provides an overview of triggers.

Figure 4-16: Trigger overview

Explanation:

When the UAP executes an SQL that activates the trigger, table A, which defines
the trigger, calls the trigger. If the search conditions for trigger operation are
satisfied, the trigger SQL statement (in this case, row insertion for table B and row
update for table C) is automatically executed.

If you use a trigger, you do not need to describe the following types of operations in
the UAP:

• When a certain table is updated, always update another table.

• When a certain table is updated, always update a certain column in the updated
row. (Associate a column with another column.)

For example, suppose that when prices in a product management table are changed, the
changes are accumulated in a product management history table. If a trigger is not
used, the UAP that updates the product management table must also always update the

4. UAP Design for Improving Performance and Handling

284

product management history. If a trigger is used, the UAP that updates the product
management table need not be concerned about updating the product management
history table because the latter table can be manipulated automatically. By using
triggers appropriately as in this example, you can reduce the work load involved in
creating a UAP.

When a trigger is defined, the functions, procedures, and trigger SQL objects that use
that table become invalid and must be re-created. When a resource (such as a table or
index) being used by a trigger is defined, redefined, or deleted, the SQL objects of the
trigger become invalid and must be re-created.

For details about triggers, see the HiRDB Version 9 Installation and Design Guide.

4. UAP Design for Improving Performance and Handling

285

4.5 SQL optimization

HiRDB features an optimization facility that improves the retrieval efficiency of SQL
statements.

Optimization processing includes SQL optimizing modes that use different methods.
HiRDB determines the SQL optimizing mode for each SQL based on the specified
value of the SQL extension optimizing option and the SQL syntax.

The SQL optimizing mode types are as follows:

• Optimizing mode 1 based on cost (optimization processing method used in
HiRDB versions before Version 06-00)

• Optimizing mode 2 based on cost (optimization processing method used in
HiRDB versions starting from Version 06-00)

You can also consider the status of the database and specify an optimization method to
determine the most efficient access path. There are three types of optimization
methods:

• SQL optimization specifications

• SQL optimization options

• SQL extension optimizing options

SQL optimization specifications

SQL optimization specifications can be specified in SQL statements. These
optimization methods are applied to the SQL statements that specify the methods.

For details about SQL optimization specifications, see the manual HiRDB Version
9 SQL Reference.

SQL optimization options and SQL extension optimizing options

The SQL optimization options and the SQL extension optimizing options are
assigned multiple functions from which you can select those that are necessary.
The functions specified by using the SQL optimization options are effective with
both optimizing mode 1 based on cost and optimizing mode 2 based on cost. The
functions specified with the SQL extension optimizing options are effective with
only optimizing mode 2 based on cost.

For details about the SQL optimization options and SQL extension optimizing
options, see 6.6.4 Environment definition information.

Notes
Indicators for selecting the SQL optimizing mode are described as follows:

4. UAP Design for Improving Performance and Handling

286

When installing HiRDB for the first time with Version 06-00 or a later version
• Hitachi recommends that you use optimizing mode 2 based on cost.

• If you use optimizing mode 2 based on cost, execute the optimizing
information collection facility as necessary to further improve the
optimizing precision. For details about the necessity of executing the
optimizing information collection utility, see the manual HiRDB
Version 9 Command Reference.

• The SQL optimization option and the SQL extension optimizing option
have recommended values that should be specified. Make sure that
these recommended values are specified, and also examine whether
other functions can be used.

When upgrading a HiRDB version earlier than Version 06-00
Hitachi recommends that you use optimizing mode 1 based on cost so that
you can use the HiRDB system under the same conditions as before the
version upgrade. However, because some SQL statements always use
optimizing mode 2 based on cost, study the specification values of the SQL
extension optimizing option when you start a new operation in the
environment that is already constructed. Also, do not change the
specification values of the SQL optimization option.

4.5.1 SQL optimizing modes
(1) Features of the SQL optimizing modes

The following table describes the features of the SQL optimizing modes.

Table 4-5: Features of the SQL optimizing modes

SQL
optimizing

mode

Explanation Advantages Disadvantages Selection method

Optimizing
mode 1 based on
cost

This is the
optimization
processing method
based on cost for
HiRDB versions
before Version
06-00. This mode
can also be used in
HiRDB Version
06-00 and later
versions.

Even if HiRDB is
upgraded from a
version earlier than
Version 06-00,
searches can be
performed with the
same access paths
used in the earlier
version.
Access paths are
sometimes changed
for high-speed
retrieval.

The optimal access
path cannot always
be selected because
there are only a few
access path
candidates. (Access
paths are not
selected by setting
facilities such as
hash join as
candidates.)

Specify NONE or 0 in
the SQL extension
optimizing option.
Some SQL
statements always
use optimizing mode
2 based on cost. For
details, see (2) as
follows.

4. UAP Design for Improving Performance and Handling

287

(2) SQL statements that forcibly apply optimizing mode 2 based on cost
Even if optimizing mode 1 based on cost is being used, optimizing mode 2 based on
cost is sometimes forcibly applied. The SQL statements that forcibly apply optimizing
mode 2 based on cost are as follows:

• Subquery in the SET clause of the UPDATE statement

• Outer join + (inner) join

• COUNT(*) in a set operation result

• Value expression of the DISTINCT set function

• Specification of the query name of a viewed table or WITH clause to an outer join

• Partial updating and retrieval of BLOB and BINARY data

• SQL optimization specification

• Sorting with a value expression with a defined length exceeding 255 bytes

• Retrieve first n records

• Retrieval using the BINARY type

• Retrieval of a viewed table or WITH clause containing an internally derived table
that becomes a nesting structure with at least two levels

• Matrix partitioning

• Subquery for a joined table

• Application of the MIN or MAX set function to a repetition column

• Row value constructor

• Subquery in the CASE expression

• POSITION function in which value equation 2 is the BLOB type

Optimizing
mode 2 based on
cost

This is the
optimization
processing method
based on cost that is
used in HiRDB
Version 06-00 and
later. This mode is
designed for fast
retrieval.

High-speed retrieval
is possible because
this mode selects
access paths from
candidates that
combine hashing to
join search and
subquery
processing.

Optimization
processing takes
time because this
mode performs
complex
optimization
processing.

Specify the use of
optimizing mode 2
based on cost in the
SQL extension
optimizing option, or
omit the SQL
extension optimizing
option.

SQL
optimizing

mode

Explanation Advantages Disadvantages Selection method

4. UAP Design for Improving Performance and Handling

288

• Referential constraint

• Check constraint

• Limit release to allow data with a defined length of 256 bytes or more

• Specification of a table targeted for data update, deletion, or addition in a
subquery

• Unnesting facility for repetition column in the FROM clause

• LIMIT clause

• Search in which an internally derived table has two or more nesting layers

• Expansion of the specification location in the query expression body

• Window functions

• SIMILAR predicate

• Retrieval using the XML type

• Character set

• Retrieval, updating, or deletion with an RDAREA name specified

The application condition and an example of each SQL sentence are shown as follows.

(a) Subquery in the SET clause of the UPDATE statement
• When a scalar or line subquery is specified in the SET clause of the UPDATE

statement

Example
UPDATE T1 SET(C1,C2)=(SELECT MAX(C1),MAX(C2) FROM T2) WHERE
C3=1

Note
The underlined section is the applicable location.

(b) Outer join + (inner) join
• When an (inner) join is specified in the FROM clause

Example
SELECT T1.C1,T2.C2 FROM T1 INNER JOIN T2 ON T1.C1=T2.C1

Note
The underlined section is the applicable location.

• When a table reference that includes LEFT [OUTER] JOIN and any other table
reference are delimited with a comma (,) and specified in the FROM clause

4. UAP Design for Improving Performance and Handling

289

Example
SELECT T1.C1,T2.C2 FROM T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C1,
T3 WHERE T1.C1=T3.C1

Note
The underlined section is the applicable location.

• When table-reference1 LEFT [OUTER] JOIN table-reference2 is specified in
the FROM clause, and LEFT [OUTER] JOIN is nested and specified in
table-reference2
Example
SELECT T1.C1,T2.C2,T3.C2 FROM T1 LEFT OUTER JOIN
 (T2 LEFT OUTER JOIN T3 ON T2.C1=T3.C1)
 ON T1.C1=T3.C1

Note
The underlined section is the applicable location.

(c) COUNT(*) in a set operation result
• When the query expression body specified in the FROM clause includes a set

operation

Example
SELECT COUNT(*) FROM (SELECT C1 FROM T1 UNION SELECT C1 FROM
T2)

Note
The underlined section is the applicable location.

(d) Value expression of the DISTINCT set expression
• When a value expression other than a column specification is specified as an

argument of the DISTINCT set function (COUNT, SUM, or AVG)

Example
SELECT AVG(DISTINCT C1+C2) FROM T1

Note
The underlined section is the applicable location.

(e) Specification of the query name of a viewed table or WITH clause to an
outer join

• When LEFT [OUTER] JOIN for the query name of a viewed table or WITH clause
is specified in the FROM clause, and an internally derived table is created from the
query name of that viewed table or WITH clause

4. UAP Design for Improving Performance and Handling

290

Example
WITH W1(C1,C2) AS (SELECT C1,COUNT(*) FROM T1 GROUP BY C1)
 SELECT W1.C1,W1.C2,T2.C2 FROM W1 LEFT JOIN T2 ON
W1.C1=T2.C1

Note
The underlined section is the applicable location.

(f) Partial updating and retrieval of BLOB and BINARY data
• When BLOB-type data is specified in value expression 1 of the SUBSTR scalar

function

Example
SELECT SUBSTR(C1,1,500) FROM T1

Note
The underlined section is the applicable location. C1 is a BLOB-type column.

• When the update target of an UPDATE statement is a BLOB-type column, and a
concatenation operation is specified in the update value

Example
UPDATE T1 SET C1=C1||?

Note
The underlined section is the applicable location. C1 is a BLOB-type column.

• When the update target of an UPDATE statement is a BLOB-type column or has the
BLOB attribute, and a column or component specification is specified in the update
value

Example
UPDATE T1 SET C1=C2

Note
The underlined section is the applicable location. C1 and C2 are BLOB-type
columns.

(g) SQL optimization specification
• When an SQL optimization specification for a used index is specified

Example
SELECT T1.C1 FROM T1 WITH INDEX(idx1) WHERE T1.C2<=500

Note
The underlined section is the applicable location.

4. UAP Design for Improving Performance and Handling

291

• When an SQL optimization specification for a join method is specified

Example
SELECT T1.C1,T2.C2 FROM T1 INNER JOIN BY NEST T2 ON
T1.C1=T2.C1

Note
The underlined section is the applicable location.

• When an SQL optimization specification for a subquery execution method is
specified

Example
SELECT T1.C1 FROM T1 WHERE T1.C1=ANY
 (HASH SELECT T2.C1 FROM T2 WHERE T2.C2='302S')

Note
The underlined section is the applicable location.

(h) Sorting with a value expression with a defined length exceeding 255
bytes

• When a CHAR, VARCHAR, MCHAR, or MVARCHAR expression with a minimum
defined length of 256 bytes, or an NCHAR or NVARCHAR expression with a
minimum defined length of 128 characters is specified as the sort key item in an
ORDER BY clause

Example 1
SELECT C1,C2 FROM T1 ORDER BY C2

Note
The underlined section is the applicable location. C2 is a VARCHAR(300)
column.

Example 2
SELECT C1,C3||C4 FROM T1 ORDER BY 2

Note
The underlined section is the applicable location. C3||C4 is an
NCHAR(150) value expression.

(i) Retrieve first n records
• When a LIMIT clause is specified directly after an ORDER BY clause

Example
SELECT PCODE,SQUANTITY FROM STOCK WHERE SQUANTITY>20 ORDER
BY 2,1 LIMIT 10

4. UAP Design for Improving Performance and Handling

292

Note
The underlined section is the applicable location.

(j) Retrieval using the BINARY type
• When a BINARY-type column is retrieved

Example
SELECT C1 FROM T1

Note
The underlined section is the applicable location. C1 is a BINARY-type
column.

(k) Retrieval of a viewed table or WITH clause containing an internally
derived table that becomes a nesting structure with at least two levels

• When a FROM clause contains a query specification that specifies the query name
of a viewed table or WITH clause, and that viewed table or WITH clause contains
a FROM clause for a derived query expression that specifies the viewed table or
WITH clause that becomes the internally derived table

Example
WITH Q1(QC1,QC2) AS (SELECT C1,C2 FROM V1 GROUP BY C1,C2)

SELECT AVG(QC1),QC2 FROM Q1 GROUP BY QC2

Note
The underlined section is the applicable location. V1 is the viewed table that
becomes the internally derived table.

(l) Matrix partitioning
• When a retrieval, update, deletion, or list operation is performed on a

matrix-partitioned table

Example
SELECT * FROM T1

Note
The underlined section is the applicable location. T1 is a matrix-partitioned
table.

(m) Subquery for a joined table
• When a query specification containing a joined table is specified and a subquery

is specified in the ON search condition of the FROM clause, in the WHERE clause, or
in the HAVING clause

4. UAP Design for Improving Performance and Handling

293

Example
SELECT * FROM T1 LEFT JOIN T2 ON T1.C1=T2.C1
 WHERE T1.C1=ANY(SELECT C1 FROM T3)

Note
The underlined section is the applicable location.

(n) Application of the MIN or MAX set function to a repetition column
• When a repetition column in the FLAT specification is specified in the MIN or MAX

set function

Example
SELECT MIN(FLAT(C1)) FROM T1

Note
The underlined section is the applicable location. C1 is a repetition column.

(o) Row value constructor
• When a row value constructor is specified

Example
SELECT * FROM T1 WHERE (C1,C2,C3)>(1,2,3)

Note
The underlined section is the applicable location.

(p) Subquery in the CASE expression
• When a subquery is specified in the CASE expression

Example
SELECT CASE(SELECT C1 FROM T1) WHEN 1 THEN C2 ELSE C1 END
FROM T1

Note
The underlined section is the applicable location.

(q) POSITION scalar function in which value expression 2 is the BLOB type
• When the BLOB type is specified in value expression 2 of the POSITION scalar

function

Example
SELECT POSITION(? AS BLOB(1K) IN C1) FROM T1

Note
The underlined section is the applicable location. C1 is a BLOB-type column.

4. UAP Design for Improving Performance and Handling

294

(r) Referential constraint
• When insertion, update, or deletion is executed for a referenced table or a

referencing table

Example
UPDATE T1 SET C1=?

Note
The underlined section is the applicable location. T1 is a referenced table or
a referencing table.

(s) Check constraint
• When insertion or update is executed for a column in which a check constraint is

defined

Example
INSERT INTO T1(C1,C2) VALUES(?,?)

Note
The underlined section is the applicable location. C1 is the column in which
a check constraint is defined.

(t) Limit release to allow data with a defined length of 256 bytes or more
• When one of the following expressions is defined in the GROUP BY clause

• CHAR, VARCHAR, MCHAR, or MVARCHAR type with a defined length of 256
bytes or more

• NCHAR or NVARCHAR type of 128 bytes or more

• BINARY type of 256 bytes or more

Example
SELECT C1,COUNT(*) FROM T1 GROUP BY C1

Note
The underlined section is the applicable location. T1.C1 is a character string
of 256 bytes or more.

• When one of the following value expressions is specified for an argument of a set
function

• CHAR, VARCHAR, MCHAR, or MVARCHAR type with a defined length of 256
bytes or more

• NCHAR or NVARCHAR type of 128 bytes or more

4. UAP Design for Improving Performance and Handling

295

• BINARY type of 256 bytes or more

Example
SELECT MIN(C1) FROM T1

Note
The underlined section is the applicable location. T1.C1 is a character string
of 256 bytes or more.

• When a query expression body is specified in a viewed table, a WITH clause, or a
FROM clause, an internally defined table is created, and one of the following value
expressions is specified in the selection expressions of the internally derived table

• CHAR, VARCHAR, MCHAR, or MVARCHAR type of 256 bytes or more

• NCHAR or NVARCHAR type of 128 bytes or more

• BINARY type of 256 bytes or more

Example
WITH W1(C1,C2) AS (SELECT DISTINCT C1,C2 FROM T1)
 SELECT C2,COUNT(*) FROM W1 GROUP BY C2

Note
The underlined section is the applicable location. T1.C1 is a character string
of 256 bytes or more.

(u) Specification of a table targeted for data update, deletion, or addition in a
subquery

• When a table targeted for data update, deletion, or addition is specified in a
subquery

Example 1
UPDATE T1 SET C1=NULL WHERE C1=(SELECT MIN(C1) FROM T1)

Example 2
DELETE FROM T1 WHERE C1=(SELECT MIN(C1) FROM T1)

Example 3
INSERT INTO T1(C1,C2) VALUES((SELECT MIN(C1) FROM T1),NULL)

Note
The underlined section is the applicable location.

• When a table to which data is to be added is specified in the query expression
body of the INSERT statement

4. UAP Design for Improving Performance and Handling

296

Example
INSERT INTO T1(C1,C2) SELECT C1,C2+1 FROM T1

Note
The underlined section is the applicable location.

(v) Unnesting facility for repetition column in the FROM clause
• When FLAT is specified in the FROM clause

Example
SELECT C1,C2 FROM T1(FLAT(C1,C2)) WHERE C1<10 AND C2 >20

Note
The underlined section is the applicable location. C1 and C2 are repetition
columns.

(w) LIMIT clause
• When the LIMIT clause is specified

Example
SELECT PCODE, SQUANTITY FROM STOCK WHERE SQUANTITY > 20 ORDER
BY 2, 1 LIMIT 20, 10

Note
The underlined section is the applicable location.

(x) Search in which an internally derived table has two or more nesting
layers

• When the FROM clause of a query specification that creates an internally derived
table also specifies a query specification that becomes an internally derived table

Example
SELECT AVG(QC1),QC2 FROM(SELECT C1,C2 FROM V1 GROUP BY C1,C2)
AS Q1(QC1,QC2)

Note
The underlined section is the applicable location. V1 is a view table that
becomes an internally derived table.

(y) Expansion of the specification location in the query expression body
• When a set operation is specified in a viewed table, the WITH clause, or the FROM

clause and this query creates an internally derived table

Example
WITH V1(C1,C2) AS (SELECT C1,C2 FROM T1 UNION SELECT C1,C2

4. UAP Design for Improving Performance and Handling

297

FROM T2)
 SELECT C1 FROM V1 WHERE C2>0

Note
The underlined section is the applicable location.

• When a set operation is specified in the INSERT statement

Example
INSERT INTO T3 (C1,C2)
 SELECT C1,C2 FROM T1 UNION ALL SELECT C1,C2 FROM T2

Note
The underlined section is the applicable location.

• When a set operation is specified in a subquery

Example
SELECT C1, C2 FROM T3
 WHERE EXISTS(SELECT C1 FROM T1 EXCEPT SELECT C1 FROM T2)

Note
The underlined section is the applicable location.

(z) Window functions
• When a selection expression contains a window function

Example
SELECT C1,C2,COUNT(*) OVER() FROM T1

Note
The underlined section is the applicable location.

(aa) SIMILAR predicate
• When the SIMILAR predicate is specified

Example
SELECT C1 FROM T1 WHERE C2 SIMILAR TO '%(b|g)%'

Note
The underlined section is the applicable location.

4. UAP Design for Improving Performance and Handling

298

(ab)Retrieval using the XML type
• When a retrieval using the XML type is performed

Example
SELECT C1 FROM T1
 WHERE XMLEXISTS('/BOOK_INFORMATION[PRICE=1000]'
 PASSING BY VALUE C2)

Note
The underlined section is the applicable location. T1.C2 is an XML-type
column.

(ac) Character set
• When the SQL statement contains a column for which a character set is specified

Example
SELECT C1, C2 FROM T1 WHERE C1='HiRDB'

Note
The underlined section is the applicable location. T1.C1 is the column for
which a character set is specified.

(ad)Retrieval, updating, or deletion with an RDAREA name specified
• When the SQL statement contains the names of RDAREAs at the destination

Example
SELECT C1 FROM T1 IN ('RU01,RU02') WHERE C1='HiRDB'

Note
The underlined section is the applicable location. RU01 and RU02 are the
RDAREAs at the destination.

(3) Valid scope of the SQL optimization option and SQL extension optimizing
option

The following table shows the SQL optimizing modes in which the SQL optimization
option and SQL extension optimizing option are valid.

Table 4-6: SQL optimizing modes in which the SQL optimization option and
SQL extension optimizing option are valid

SQL optimizing mode SQL optimization option SQL extension optimizing
option

Optimizing mode 1 based on cost V --

Optimizing mode 2 based on cost V V

4. UAP Design for Improving Performance and Handling

299

V: The option is valid in this mode.

--: The option is invalid in this mode.

(4) Checking the SQL optimizing mode selected by the optimization process
To check the SQL optimizing mode that was selected by the optimization process for
each SQL statement, use the access path display utility. For details about the access
path display utility, see the HiRDB Version 9 Command Reference manual.

(5) Notes
1. When the SQL optimizing mode is changed, the search performance of an SQL

statement may drop because the access path is changed. If the environment being
used for actual operation does not allow adequate evaluation of performance,
Hitachi recommends that you do not change the SQL optimizing mode.

2. If you are installing HiRDB for the first time, Hitachi recommends that you use
optimizing mode 2 based on cost. If you are using another SQL extension
optimizing option, use it by adding it to optimizing mode 2 based on cost. By
using optimizing mode 2 based on cost, you can select access paths capable of
retrieving data faster because the optimization process can select many types of
access paths.

Normally, optimizing mode 2 based on cost is applied because it is the default
value for the pd_additional_optimize_level operand in the HiRDB
system definition. Optimizing mode 2 based on cost is also applied when you use
the simple setup tool, SPSetup.bat, or an environment setup support tool (such
as HiRDEF) to set up your HiRDB environment.

3. If you upgrade HiRDB from a version earlier than 06-00, Hitachi recommends
that you continue to use optimizing mode 1 based on cost because you are using
HiRDB in the same conditions as before the version upgrade. However, some
SQL statements may always use optimizing mode 2 based on cost.

4. Normally, the narrowing condition is considered in the optimization process.
However, if a hash join, subquery hash execution is applied to the SQL extension
optimizing option and there is no narrowing condition, or if the narrowing
condition does not produce much narrowing of the number of rows, a hash join
that sets a table with more rows as an inner table may be applied, or a table with
more rows may be transferred. In such cases, execute the optimizing information
collection utility by using one of the following methods, as necessary. For details
about the necessity of executing the optimizing information collection utility, see
the manual HiRDB Version 9 Command Reference and verify the performance.

• With data stored in the table, set the optimizing information collection level
to lvl1 (specify lvl1 in the -c option) and execute the optimizing
information collection utility. When lvl1 is specified, the optimizing
information collection utility can be executed in a relatively short time

4. UAP Design for Improving Performance and Handling

300

because the utility fetches only information on the number of rows in the
table. To fetch the number of rows for all tables in the schema, specify ALL
in the -t option.

• If data cannot be stored in the table or if a test environment is being used,
specify the number of rows (NROWS) found in the table used in the actual
environment, specify the -s option for each table, and then execute
optimization. The following is an example of the specification in the
optimization parameter file when the number of rows in the table is set to
1,000:

Table optimization information
 NROWS 1000 # Total number of rows in table

5. If you are using optimizing mode 1 based on cost, normally you do not need to
execute the optimizing information collection utility. But if you do execute the
utility, set the optimizing information collection level to lvl1.

4.5.2 Optimization method types
This subsection describes the optimization method types for SQL optimization
specifications, SQL optimization options, and SQL extension optimizing options.

(1) SQL optimization specifications
The SQL optimization specifications consist of the following optimization methods:

• SQL optimization specification for a used index

• SQL optimization specification for a join method

• SQL optimization specification for a subquery execution method

(2) SQL optimization options
The SQL optimization options consist of the following optimization methods:

1. Forced nest-loop-join

2. Making multiple SQL objects

3. Increasing the target floatable servers (back-end servers for fetching data)

4. Prioritized nest-loop-join

5. Increasing the number of floatable server candidates

6. Priority of OR multiple index use

7. Group processing, ORDER BY processing, and DISTINCT set function processing
at the local back-end server

8. Suppressing use of AND multiple indexes

4. UAP Design for Improving Performance and Handling

301

9. Rapid grouping processing

10. Limiting the floatable target servers (back-end servers for fetching data)

11. Separating data collecting servers

12. Suppressing index use

13. Forcing use of multiple indexes

14. Suppressing creation of update-SQL work tables

15. Deriving high-speed search conditions

16. Applying a key condition that includes a scalar operation

17. Facility for batch acquisition from functions provided by plug-ins

18. Facility for moving search conditions into derived table

(3) SQL extension optimizing options
The SQL extension optimizing options consist of the following optimization methods:

1. Application of optimizing mode 2 based on cost

2. Hash join, subquery hash execution

3. Facility for applying join conditions including value expression

4.5.3 Specifying SQL optimization
(1) Locations where SQL optimization can be specified

(a) SQL optimization specifications
SQL optimization specifications can be specified in the following SQL statements:

• Subqueries

• Table expressions

• DELETE statement

• UPDATE statement

(b) SQL optimization options and SQL extension optimizing options
SQL optimization options and SQL extension optimizing options can be specified at
the following locations. Normally, you would specify this options in the system
common definitions, so that the options will be valid for all SQL statements.

• pd_optimize_level, pd_additional_optimize_level operand of the
system common definitions

• pd_optimize_level, pd_additional_optimize_level operand of the
front-end server definitions

4. UAP Design for Improving Performance and Handling

302

• PDSQLOPTLVL, PDADDITIONALOPTLVL of the client environment definitions

• SQL compile option (procedure body of ALTER PROCEDURE, ALTER ROUTINE,
ALTER TRIGGER, CREATE PROCEDURE, CREATE TRIGGER and CREATE TYPE)

(2) Priority
The priority when SQL optimization options and SQL extension optimizing options
are specified in several locations is as follows. If SQL optimization specifications are
specified in SQL statements, they have priority over SQL optimization options and
SQL extension optimizing options.

(a) Data manipulation SQL statements in locations other than stored
routines and triggers
The priority is as follows:

1. PDSQLOPTLVL and PDADDITIONALOPTLVL of the client environment definitions

2. pd_optimize_level and pd_additional_optimize_level operands of
the front-end server definitions

3. pd_optimize_level and pd_additional_optimize_level operands of
the system common definitions

(b) Data manipulation SQL statements in stored routines and in triggers
The priority is as follows:

1. SQL command options (procedure body of ALTER PROCEDURE, ALTER
ROUTINE, ALTER TRIGGER, CREATE PROCEDURE, CREATE TRIGGER and
CREATE TYPE)

2. pd_optimize_level and pd_additional_optimize_level operands of
the front-end server definitions

3. pd_optimize_level and pd_additional_optimize_level operands of
the system common definitions

4.5.4 Allocating floatable servers (HiRDB/Parallel Server only)
(1) Query processing method in HiRDB

The HiRDB/Parallel Server divides query processing of SQL statements into three
main steps and executes the statements. The following figure shows the query
processing method of SQL statements in a HiRDB/Parallel Server.

4. UAP Design for Improving Performance and Handling

303

Figure 4-17: SQL statement query processing in a HiRDB/Parallel Server

Explanation
1. The back-end servers fetch data. If the query involves two or more tables,

data communication is executed between back-end servers using a join
method, and step 1 may be broken down into several levels.

2. The floatable servers perform grouping, sorting, duplicate elimination, and
set operation processing. Depending on the processing method, there are
times when floatable servers are not used and when data communication is
executed between floatable servers, and Step 2 is broken down in several
levels.

4. UAP Design for Improving Performance and Handling

304

3. The front-end server collects the query results and transfers the results to the
client.

In the HiRDB system, the floatable servers that are used in step 2 automatically
allocate the back-end servers that are not accessed with SQL statements to those
individual SQL statements. However, if the SQL optimization option is specified, the
allocation method for floatable servers can be changed.

The optimization methods related to floatable server allocation are shown as follows.
For details about these optimization methods, see (2) as follows:

• Increasing the target floatable servers (back-end servers for fetching data)

• Limiting the target floatable servers (back-end servers for fetching data)

• Separating data collecting servers

When the next optimization method is applied, the number of allocated floatable
servers can be increased to the maximum value. The features of this optimization
method are described in (3).

• Increasing the number of floatable server candidates

(2) Optimization features related to floatable server allocation
The following table shows the optimization features related to floatable server
allocation.

Table 4-7: Optimization features related to floatable server allocation

Optimization method Advantages Disadvantages

Omitted When an SQL statement that fetches
data is executed concurrently from the
same back-end server, search processing
can be executed rapidly because
load-imposing processes such as sorting
are not allocated to back-end servers for
fetching data.

The communication load increases
because back-end servers that do not
fetch data are allocated as floatable
servers.

Increasing the target
floatable servers (back-end
servers for fetching data)

When this method is combined with
"increasing the number of floatable
server candidates," the effectiveness of
parallel processes such as sorting
increases in the floatable servers
because all back-end servers are
allocated as floatable servers.

When multiple SQL statements are
executed concurrently, the concurrent
execution performance drops because
multiple processes are allocated to the
same floatable server. The
communication load also increases.

4. UAP Design for Improving Performance and Handling

305

(3) Optimization features related to the number of floatable server allocation
candidates

The following table shows the optimization features related to the number of floatable
server allocation candidates.

Table 4-8: Optimization features related to number of floatable server allocation
candidates

Limiting the target floatable
servers (back-end servers
for fetching data)

Work division of the back-end servers
can be implemented based on table
definitions because only those back-end
servers in which tables to be used for
searching are defined are allocated as
floatable servers.

If a large volume of data is stored in a
table that has few partitions, all
back-end servers cannot be used
effectively because the number of
floatable servers that can be used
decreases.

Separating data collection
servers

When data is sent to a data collection
server from both that server and a
separate server at the same time, the
transfer from the same server has
priority. Therefore the processing for the
separate server is performed later. When
separating data collection servers is
applied, data is accepted equally for all
servers because all servers can be treated
as individual servers.

When a single SQL statement
contains multiple queries, such as set
operations and searches involving
subqueries, the concurrent execution
performance drops because the same
floatable server is used for all of those
queries.

Optimization method Advantages Disadvantages

Omitted In searches involving many data items,
more servers are allocated as floatable
servers. In searches involving few data
items, fewer servers are allocated as
floatable servers.

If a narrowing predicate such as = or
BETWEEN is specified in the search
conditions, the HiRDB system judges
that the number of data items is low
and automatically reduces the number
of allocated floatable servers. If the =
or BETWEEN specification does not
actually narrow the search, the
processing load on the servers
increases.

Increasing the number of
floatable server candidates

In searches involving many data items,
the HiRDB system uses all floatable
servers so that the search can be
performed efficiently.

If the number of data items is small,
the concurrent execution performance
for SQL statements drops because the
HiRDB system uses all floatable
servers. Also, when there are many
table partitions, the communication
load increases because the
communication paths between the
servers become complex.

Optimization method Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

306

(4) Allocating floatable servers at each optimization
(a) When the optimization method is omitted

The following figure shows floatable server allocation when the optimization method
is omitted.

Figure 4-18: Floatable server allocation when the optimization method is
omitted

Explanation
If increasing the number of floatable server candidates is not specified, the
HiRDB system determines the number of floatable servers that is necessary and
allocates them from FLT1 and FLT2.

If increasing the number of floatable server candidates is specified, the HiRDB
system allocates both FLT1 and FLT2 as floatable servers.

Apply this optimization method if the system has back-end servers in which no
tables are defined, multiple SQL statements fetch the same data, and the back-end
servers for fetching data are to be used only for fetching data.

(b) When increasing the target floatable servers (back-end servers for
fetching data) is applied
The following figure shows floatable server allocation when increasing the target
floatable servers (back-end servers for fetching data) is applied.

4. UAP Design for Improving Performance and Handling

307

Figure 4-19: Floatable server allocation when increasing the target floatable
servers (back-end servers for fetching data) is applied

Explanation
If increasing the number of floatable server candidates is not specified, the
HiRDB system determines the number of floatable servers necessary and
allocates them from BES1, BES2, BES3, FLT1, and FLT2. However, all of these
servers are not necessarily allocated.

If increasing the number of floatable server candidates is specified, the HiRDB
system allocates BES1, BES2, BES3, FLT1, and FLT2 as floatable servers.

Apply this optimization method if the SQL statements are executed individually,
and all back-end servers are to be used efficiently.

(c) When limiting the target floatable servers (back-end servers for fetching
data) is applied
The following figure shows floatable server allocation when limiting the target
floatable servers (back-end servers for fetching data) is applied.

4. UAP Design for Improving Performance and Handling

308

Figure 4-20: Floatable server allocation when limiting the target floatable
servers (back-end servers for fetching data) is applied

Explanation
If increasing the number of floatable server candidates is not specified, the
HiRDB system determines the number of floatable servers necessary and
allocates them from BES1, BES2, and BES3. However, all of these servers are
not necessarily allocated.

If increasing the number of floatable server candidates is specified, the HiRDB
system allocates BES1, BES2, and BES3 as floatable servers.

Apply this optimization method if multiple SQL statements are to be executed,
each search process accesses tables defined in a different back-end server, and the
back-end servers used for the individual tables are to be operated separately.

(d) When separating data collecting servers is applied
The following figure shows floatable server allocation when separating data collecting
servers is used.

4. UAP Design for Improving Performance and Handling

309

Figure 4-21: Floatable server allocation when separating data collecting servers
is applied

Explanation
For SQL statements that must collect data (data collecting) from multiple BES
units into one BES, the HiRDB system allocates FLT2 from FLT1, FLT2, and
FLT3 as the server for data collecting. If an SQL statement executes data
collecting several times, the HiRDB system always allocates this data collecting
server (FLT3). If a process other that data collecting is to be executed and
increasing the number of floatable server candidates is not specified, the HiRDB
system determines the number of floatable servers that is necessary and allocates
them from BES1, BES2, BES3, FLT1, and FLT2. However, all of these servers are
not necessarily allocated.

If increasing the number of floatable server candidates is specified, the HiRDB
system allocates BES1, BES2, BES3, FLT1, and FLT2 as floatable servers.

Apply this optimization method if the SQL statements do not contain data
collecting processes, and increasing the target floatable servers (back-end servers
for fetching data) is applied.

4.5.5 Grouping processing methods (HiRDB/Parallel Server only)
The following optimization methods affect grouping processing:

• Rapid grouping processing

• Group processing, ORDER BY processing, and DISTINCT set function processing
at the local back-end server

If the HiRDB system judges that sort and hash processing for grouping are
unnecessary, it selects a method that can process the data faster. For details about
grouping processing, see the HiRDB Version 9 Command Reference manual.

4. UAP Design for Improving Performance and Handling

310

The following table describes the optimization features related to grouping processing
methods.

Table 4-9: Optimization features related to grouping processing methods

(a) Grouping processing when the optimization method is omitted
The following figure shows grouping processing when the optimization method is
omitted.

Optimization method
(type of grouping

processing method)

Advantages Disadvantages

Omitted (FLOATABLE
SORT)

Data can be searched rapidly if the data
count values are unevenly distributed
among the back-end servers and
grouping does not reduce the data count.

If the group count is small and the data
count is high, the performance drops
because the communication volume
increases.

Rapid grouping processing
(HASH)

Data can be searched rapidly when the
group count is small.

If the group count is large, the
performance drops because the data is
grouped by hashing.

Group processing, ORDER
BY processing, and
DISTINCT set function
processing at the local
back-end server (LIST
SORT)

Data can be searched rapidly if grouping
substantially decreases the data count.
Data can also be searched rapidly if the
data is grouped by partitioning keys.

If the data count values are unevenly
distributed among the back-end
servers because of sorting in each
back-end server, the performance
drops because processing takes a long
time in servers that have a high data
count.

4. UAP Design for Improving Performance and Handling

311

Figure 4-22: Grouping processing method when the optimization method is
omitted

Explanation
1. The back-end servers perform only data fetching.

2. The floatable servers perform only sorting and grouping by grouping
columns.

3. The front-end server collects grouping processing results and transfers the
results to the client.

4. UAP Design for Improving Performance and Handling

312

(b) Grouping processing when rapid grouping processing is applied
The following figure shows grouping processing when rapid grouping processing is
applied.

Figure 4-23: Grouping processing when rapid grouping processing is applied

Explanation
1. The back-end servers fetch data, and then hash and group the data by

grouping columns. (The floatable servers are not used.)

2. The front-end server collects grouping results from each back-end server,
regroups the combined data, and transfers the results to the client.

4. UAP Design for Improving Performance and Handling

313

(c) Grouping processing when group processing, ORDER BY processing,
and DISTINCT set function processing are applied at the local back-end
server
The following figure shows grouping processing when group processing, ORDER BY
processing, and DISTINCT set function processing are applied at the local back-end
server. However, this diagram shows the processing when one table is searched.

Figure 4-24: Grouping processing when group processing, ORDER BY
processing, and DISTINCT set function processing are applied at the local
back-end server

Explanation

4. UAP Design for Improving Performance and Handling

314

1. The back-end servers fetch data, and then sort and group the data by
grouping columns. (The floatable servers are not used.)

2. The front-end server collects grouping results from each back-end server,
regroups the combined data, and transfers the results to the client.

4.5.6 Join methods
(1) Join method types

The following table describes the join method types (except direct product) and their
features. If the join methods found in this table cannot be applied, direct product is
applied.

Table 4-10: Join method types and features

Join method Processing
method

Initial data
fetching

Advantages Disadvantages

Merge join This method sorts
the data by join
column and
executes matching
in sequence from
the smallest value in
the join column.

Slow The performance
degradation is small
compared with other
methods because even
tables with many hits can
be joined with a small
amount of memory.
Data can be searched
rapidly if the join column
data has already been
sorted, and the sort
processing for merge
join can be cancelled.

If the data in the
columns to be joined has
not been sorted, the sort
processing load
increases, and the
performance drops.

Nested-loops-j
oin

This method uses
join column values
from the outer table,
searches the index
defined in the join
column of the inner
table, and
repeatedly
processes nested
matches.

Fast Data can be searched
rapidly if the inner table
can be narrowed with the
index specified in the
join column.

If the hit count of the
outer table is high, the
performance drops
because the index is used
to search the inner table
each time a row is
fetched from the outer
table.

4. UAP Design for Improving Performance and Handling

315

#: In some cases, the optimal access path cannot be selected even if the optimizing
information collection utility is executed. For details about the necessity of executing
the optimizing information collection utility, see the manual HiRDB Version 9
Command Reference and verify the performance.

(2) Processing methods
(a) Merge join

Merge join is effective when the outer table cannot be narrowed very much.

SORT MERGE JOIN

This join method fetches rows from the outer and inner table, creates the
respective work tables, and sorts the data. The join method then joins the rows if
the join condition is satisfied.

The following figure shows the processing of SORT MERGE JOIN.

Hash join This method creates
a hash table from the
join column of the
inner table, hashes
the join column of
the outer table, and
executes matching
with the hash table
that was created
from the inner table.

Fast if the
number of
hits in the
inner table is
small (slower
than
next-loop-joi
n, but faster
than merge
join)

Data can be searched
rapidly when the hit
count is low for the inner
table and high for the
outer table.

If the hit count in the
inner table is high,
memory usage becomes
high. The performance
drops because the hits
for which memory is
unavailable are first
saved to a file.

SELECT-APSL If a condition
contains a ?
parameter, this
method prepares
several join method
candidates, and
determines the
optimal search
method when the
value of the ?
parameter is input.

Differs
depending on
the search
method that is
selected

The optimal search
method can be selected
when the value of the ?
parameter is input.

The optimizing
information collection
utility (pdgetcst) must
be executed.# Also, the
SQL object size
becomes large because
several join methods are
prepared.

Join method Processing
method

Initial data
fetching

Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

316

Figure 4-25: Processing of SORT MERGE JOIN

KEY SCAN MERGE JOIN

This join method system fetches rows from the outer and inner table by using KEY
SCAN. The join method then joins the rows if the join condition is satisfied.

The following figure shows the processing of KEY SCAN MERGE JOIN.

Figure 4-26: Processing of KEY SCAN MERGE JOIN

LIST SCAN MERGE JOIN

This join method creates work tables from the outer and inner tables, and fetches
rows in ascending join column order without sorting the data beforehand. The join
method then joins the rows if the join condition is satisfied.

The following figure shows the processing of LIST SCAN MERGE JOIN.

4. UAP Design for Improving Performance and Handling

317

Figure 4-27: Processing of LIST SCAN MERGE JOIN

L-KEY R-LIST MERGE JOIN

This join method fetches rows from the outer table by using KEY SCAN. The
method creates a work table for the inner table and fetches rows without first
sorting the data. The join method then joins the rows if the join condition is
satisfied.

L-KEY R-SORT MERGE JOIN

This join method system fetches rows from the outer table by using KEY SCAN.
The join method creates a work table for the inner table, sorts the data, and fetches
rows. The join method then joins the rows if the join condition is satisfied.

L-LIST R-KEY MERGE JOIN

This join method creates a work table for the outer table and fetches rows without
first sorting the data. The join method fetches rows from the inner table by using
KEY SCAN. The join method then joins the rows if the join condition is satisfied.

L-LIST R-SORT MERGE JOIN

This join method creates a work table for the outer table and fetches rows without
first sorting the data. The join method creates a work table for the inner table, sorts
the data, and fetches rows. The join method then joins the rows if the join
condition is satisfied.

L-SORT R-KEY MERGE JOIN

This join method creates a work table for the outer table, sorts the data, and
fetches rows. The join method fetches rows from the inner table by using KEY
SCAN. The join method then joins the rows if the join condition is satisfied.

L-SORT R-LIST MERGE JOIN

This join method creates a work table for the outer table, sorts the data, and
fetches rows. The join method creates a work table for the inner table, sorts the
data, and fetches rows. The join method then joins the rows if the join condition
is satisfied.

4. UAP Design for Improving Performance and Handling

318

(b) Nested-loops-join
Nested-loops-join is effective if an index is defined in the inner table, and the outer
table can be narrowed significantly

NESTED LOOPS JOIN

This join method fetches rows one at a time from the outer table, matches them to
individual rows in the inner table, and executes nested loop processing that
fetches rows that satisfy the join condition.

The following figure shows the processing of NESTED LOOPS JOIN.

Figure 4-28: Processing of NESTED LOOPS JOIN

Note
In some cases, an index is used when the outer table is searched.

R-LIST NESTED LOOPS JOIN

This join method fetches rows from the inner table and creates a work table. The
join method then fetches rows one at a time from the outer table, matches the work
table that was created from the inner table to those individual rows, and executes
nested loop processing that fetches rows that satisfy the join conditions.

The following figure shows the processing of R-LIST NESTED LOOPS JOIN.

4. UAP Design for Improving Performance and Handling

319

Figure 4-29: Processing of R-LIST NESTED LOOPS JOIN

Note
In some cases, an index is used when the outer table is searched.

(c) Hash join
HASH JOIN

This join method first hashes the inner table with the join column values and
creates a hash table. The join method then hashes the outer table with the join
column values each time a row is fetched, and matches the outer table with the
hash table that was created from the inner table.

The following figure shows the processing of HASH JOIN.

4. UAP Design for Improving Performance and Handling

320

Figure 4-30: Processing of HASH JOIN

There are four hash join processing methods. The following table describes the hash
join processing methods and features.

Table 4-11: Hash join processing methods and features

Processing
method

Description Advantages Disadvantages Selection
method

Batch hash
join

This method performs
hash join by expanding the
hash table that was created
from the inner table into
the buffer area for all work
tables.

Hash join can be
processed rapidly
because this method
expands the entire
hash table in the
work table buffer
area before
executing hash join.

If the hash table for
the inner table is
large, the system's
capability to execute
SQL statements
simultaneously is
diminished because
the work table work
area becomes large.

Change the
hash table size.#

4. UAP Design for Improving Performance and Handling

321

Bucket
partitioning
hash join

This method partitions the
inner and outer tables into
several buckets, creates a
hash table from some of
the inner table buckets,
and expands it in the work
table buffer area. This
method then saves the
remaining buckets in a
work table file and reads
the contents of inner table
buckets that were
expanded in the work table
buffer area and the outer
table buckets of the area
with the same value. The
method then expands the
inner table from the work
table file to the work table
buffer area a little at a
time, and executes hash
join.
The amount of memory
used becomes small, and
the processing
performance drops
slightly.

Hash join can be
executed in
environments that
have a small work
table buffer area.

Because the rows of
the inner and outer
table are first saved
to a work table file,
the performance
drops compared to
when hash join is
executed with only
work table buffer
area.

Change the
hash table size.#

Continuous
hash join

When three or more tables
are searched, this method
creates hash tables from
the tables, except the
outermost table, expands
the hash tables in the work
table buffer area, and
executes hash join in
succession.
The amount of memory
used becomes large, and
the processing
performance improves.

Hash join can be
processed rapidly
because this method
expands the entire
hash table in the
work table buffer
area before
executing hash join.
Also, hash join can
be processed rapidly
when only the
outermost table is
large.

When the number of
tables to be executed
becomes large, the
work table buffer
area that is used
becomes large.

This method
cannot be
selected. The
HiRDB system
automatically
selects the
optimal method
based on the
number of table
rows.

Processing
method

Description Advantages Disadvantages Selection
method

4. UAP Design for Improving Performance and Handling

322

#: For details about how to change the hash table size, see 4.5.10 Preparing for
application of hash join and subquery hash execution.

The processing methods are summarized as follows.

Batch hash join
This processing method expands the entire hash table created from the inner table
in the work table buffer area and then executes hash join. The following figure
shows the processing method of batch hash join.

Figure 4-31: Processing method of batch hash join

Bucket partitioning hash join

Intermittent
hash join

When three or more tables
are searched, this method
executes hash join by
saving the join results to a
work table file each time
tables or work tables are
joined.

Hash join involving
three or more tables
can be executed even
in environments that
have a small work
table buffer area.

The number of I/O
operations increases
and performance
drops because the
join results are first
saved to a file each
time tables or work
tables are joined.

This method
cannot be
selected. The
HiRDB system
automatically
selects the
optimal method
based on the
number of table
rows.

Processing
method

Description Advantages Disadvantages Selection
method

4. UAP Design for Improving Performance and Handling

323

This processing method partitions the inner and outer table into buckets, expands
part of the inner table into the work table buffer area, and saves the remaining
sections to a work table file.

Bucket partitioning refers to hashing a table with join row values and partitioning
the table into multiple small tables. Join processing is executed on an inner table
section that was expanded in the work file buffer area. First, a hash table is created
from the inner table, and rows are fetched one at a time from the outer table and
then merged and joined with the hash table that was created from the inner table.
After joining of the tables found in the work table buffer area is completed, the
buckets of the outer and inner tables are expanded from the work table files into
the work table buffer area, and join processing is executed in the same manner.
Processing ends after all tables are expanded into the work table buffer area and
joined.

The following figure shows the processing method of bucket partitioning hash
join.

4. UAP Design for Improving Performance and Handling

324

Figure 4-32: Processing method of bucket partitioning hash join

Continuous hash join
This processing method is applied to searches involving three or more tables.

First, hash tables are created from all target tables except the outermost table and
expanded into the work table buffer area. Next, a row is fetched from the outer
table, hashed, and then matched and joined with the hash table that was created
from the inner table. If the join condition is satisfied, the row is hashed with the
join result, and then matched and joined with the hash table.

When joining is completed to the last row or when the condition becomes false,
processing returns to the outermost table, the next row is fetched, and join
processing is repeated in the same manner. During join processing, if there is a

4. UAP Design for Improving Performance and Handling

325

location where the join key value in the inner table is duplicated, processing
returns to that location and join processing is repeated. When processing of all
duplicate key values is completed, processing returns to the outermost table, the
next row is fetched, and join processing is repeated in the same manner.

The following figure shows the processing method of a continuous hash join.

Figure 4-33: Processing method of continuous hash join

Intermittent hash join
This processing method is applied to searches involving three or more tables.

First, a hash table is created from the inner table of the first join and expanded in
the work table buffer area. Next, rows are fetched one at a time from the outer
table, hashed with the join column values of the outer table, and then matched and
joined with the hash table that was created from the inner table. After all lines
from the outer table have been fetched and joined, processing proceeds to the next
join process.

The processing changes depending on whether the join result becomes the outer
table or the inner table.

If the join result becomes the outer table, a hash table is created from the next
inner table to be joined, and rows are fetched one at a time from the join results
and then matched and joined with the hash table that was created from the inner
table.

4. UAP Design for Improving Performance and Handling

326

If the join result becomes the inner table, a hash table is created from the join
results, and rows are fetched one at a time from the outer table and then matched
and joined with the hash table that was created from the join results.

The figure below shows the processing method of intermittent hash join. In the
example shown for this processing method, that tables are joined as follows: outer
table 1 ((outer table 2 inner table 1) inner table 2).

Figure 4-34: Processing method of intermittent hash join

4. UAP Design for Improving Performance and Handling

327

(d) SELECT-APSL
SELECT-APSL is a method that dynamically determines the join method during SQL
execution.

SELECT-APSL (HiRDB/Parallel Server only)

If the conditions include the ? parameter, the optimal join method may change
depending on the value of the ? parameter. Also, if the value of the ? parameter
cannot be determined during SQL optimization processing, the optimal join
method cannot be determined. The system therefore determines the join method
by calculating the hit ratio during SQL execution.

SELECT-APSL is described as follows based on a display example of the access
path display utility (pdvwopt).

Condition T1(outer-table).C1=? parameter

Reference value 0.047

[1] Nest-loop-join

[2] Merge join

Explanation
• If the hit rate of the predicate T1(outer-table).C1=? parameter is less

than the reference value (0.047), nested-loops-join is selected during
execution because the hit rate is small and the outer table can be narrowed
substantially.

• If the hit rate of the predicate T1(outer-table).C1=? parameter is
equal to or greater than the reference value (0.047), merge join is selected
during execution because the hit rate is large and the outer table cannot be
narrowed very much.

(e) Cross join
CROSS JOIN

The CROSS JOIN process method combines and joins all rows of the outer table
and all rows of the inner table. If there are conditions that apply across both tables,
the conditions are judged after the tables are joined.

The following figure shows the CROSS JOIN processing method.

4. UAP Design for Improving Performance and Handling

328

Figure 4-35: CROSS JOIN processing method

Note
Depending on the condition, sometimes a work table is not created.

4.5.7 Search Methods
(1) Search method types

The table below describes the search method types (except LIST SCAN and ROWID
FETCH) and their features.

LIST SCAN is applied when a work table is created and searched, for example, in a
viewed table search or a WITH clause query expression. ROWID FETCH is applied when
a cursor is used.

Table 4-12: Search method types and features

Search method Processing method Advantages Disadvantages

Table scan(TABLE
SCAN)

This method sequentially
searches the pages (data
pages) in which the table
is stored and references all
rows. The initial data
fetch is fairly slow.

When all data items are to be
searched, the data can be
searched rapidly.
The data can be searched
rapidly even if the search
cannot be narrowed with an
index.

Even if the search results
can be narrowed by
conditions, the
performance is poor
because all data pages are
referenced.

4. UAP Design for Improving Performance and Handling

329

Index scan
(INDEX SCAN, MULTI
COLUMNS INDEX
SCAN, PLUGIN INDEX
SCAN)

This method executes a
binary search of the index,
and then each time it
retrieves the row identifier
of a target data item, it
references the database
row indicated by that row
identifier. The initial data
fetch is fast.

The data can be searched
rapidly when the search can
be narrowed with an index.
The data can be searched
rapidly even if a cluster key
index is used and the search
cannot be narrowed very
much.
The sort processing might be
omitted.#1

If the search cannot be
narrowed very much with
an index, the number of
random I/O operations
performed on the data
pages increases, and
performance drops.

Key scan(KEY SCAN,
MULTI COLUMNS KEY
SCAN, PLUGIN KEY
SCAN)

This method executes a
binary search of the index
and references only the
data found in the index
(configuration column
values or row identifiers
of the index). This method
is applied when only the
configuration columns or
row identifiers of the
index are to be referenced.
The initial data fetch is
fast.

Even if the search cannot be
narrowed very much with an
index, the data can be
searched rapidly because
only the index pages are
referenced and there is no
data page input or output.
The sort processing might be
omitted.#1

None

SELECT-APSL If a condition contains a ?
parameter, this method
prepares several join
method candidates, and
determines the optimal
search method when the
value of the ? parameter is
input.
The speed of the initial
data fetch differs
according to the search
method that is actually
selected.

When the value of the ?
parameter is input, the
optimal search method can
be selected by considering
the narrowing rate obtained
with the index.

The optimizing
information collection
utility (pdgetcst) must
be executed.#2 Also, the
SQL object size becomes
large because several
search candidates are
prepared.

AND multiple index
usage(AND PLURAL
INDEXES SCAN)

This method uses multiple
indexes, creates multiple
work tables, combines
product sets, sum sets, and
difference sets between
the work tables to obtain
results.
The initial data fetch is
slow.

Because the results are
obtained by combining,
product sets, sum sets, and
difference sets, indexes can
be used in evaluating the
data even when multiple
conditions are specified.

This method creates
several work tables and
sorts the data in each
work table. Thus, if the
search cannot be
narrowed with an index,
the performance drops
because the number of
items to be sorted is large.

Search method Processing method Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

330

#1: If indexes can be sorted by ORDER BY or GROUP BY processing, data is retrieved
without being sorted. By checking the access path, you can determine whether or not
sort processing was omitted.

#2: In some cases, the optimal access path cannot be selected even if the optimizing
information collection utility is executed. For details about the necessity of executing
the optimizing information collection utility, see the manual HiRDB Version 9
Command Reference and verify the performance.

(2) Processing methods
(a) Search using no index

TABLE SCAN

This processing method searches the database pages of a table without using an
index. The following figure shows the TABLE SCAN processing method.

Figure 4-36: TABLE SCAN processing method

(b) Search using one index
INDEX SCAN

This processing method searches the index pages of a single-column index to
narrow the search and then searches the data pages of the table. The following
figure shows the INDEX SCAN processing method.

OR multiple index
usage(OR PLURAL
INDEXES SCAN)

This method stores results
retrieved by using
multiple indexes into one
work table, and executes
duplicate elimination at
the end to obtain results.
The initial data fetch is
slow.

The data can be searched
rapidly if narrowing with an
index is possible for the
individual search conditions
that are combined with the
OR operator.

This method uses
multiple indexes to
search the data, stores the
results in one work table,
sorts the results, and
executes duplicate
elimination. Thus, if
there are many data items
before duplicate
elimination, the
performance drops.

Search method Processing method Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

331

Figure 4-37: INDEX SCAN processing method

KEY SCAN

This processing method searches only the index pages of a single-column index.
The data pages are not searched.

The following figure shows the KEY SCAN processing method.

Figure 4-38: KEY SCAN processing method

MULTI COLUMNS INDEX SCAN

This processing method searches the index pages of a multi-column index to
narrow the search and then searches the data pages of the table.

The following figure shows the MULTI COLUMNS INDEX SCAN processing
method.

Figure 4-39: MULTI COLUMNS INDEX SCAN processing method

4. UAP Design for Improving Performance and Handling

332

MULTI COLUMNS KEY SCAN

This processing method searches only the index pages of a multi-column index.
The data pages are not searched.

The following figure shows the MULTI COLUMNS KEY SCAN processing method.

Figure 4-40: MULTI COLUMNS KEY SCAN processing method

PLUGIN INDEX SCAN

This processing method uses a plug-in index to narrow the search and then
searches the data pages of the table.

The following figure shows the PLUGIN INDEX SCAN processing method.

Figure 4-41: PLUGIN INDEX SCAN processing method

Note
The structure of the plug-in index differs according to the plug-in.

PLUGIN KEY SCAN

This processing method searches only the index pages of a plug-in index. The data
pages are not searched.

The following figure shows the PLUGIN KEY SCAN processing method.

4. UAP Design for Improving Performance and Handling

333

Figure 4-42: PLUGIN KEY SCAN processing method

Note
The structure of the plug-in index differs according to the plug-in.

(3) SELECT APSL
SELECT-APSL (for HiRDB/Parallel Server)

If the conditions include the ? parameter, the optimal search method may change
depending on the value of the ? parameter. Also, if the value of the ? parameter
cannot be determined during preprocessing, the optimal search method cannot be
determined. The system therefore determines the search method by calculating
the hit ratio during SQL execution.

(4) Search using multiple indexes
AND PLURAL INDEXES SCAN

For search conditions that are combined with the AND or OR operator, the
respective indexes are used to conduct the search, and the row identifiers (ROWID)
are stored in the respective work tables. These work tables are consolidated into
a single work table by forming a product set when the AND operator is used, a sum
set when the OR operator is used, and a difference set when the ANDNOT operator
(can only be used in the ASSIGN LIST statement) is used. Then rows are fetched
based on the row identifiers of this work table.

When creating a work table of row identifiers from each condition, HiRDB
sometimes uses TABLE SCAN to create the work table, even if the condition
column does not have an index.

The following figure shows the AND PLURAL INDEXES SCAN processing method.

4. UAP Design for Improving Performance and Handling

334

Figure 4-43: AND PLURAL INDEXES SCAN processing method

OR PLURAL INDEXES SCAN

For search conditions that are combined with the OR operator, the respective
indexes are used to conduct the search, and the row identifiers (ROWID) are stored
in one work table. After the duplicate rows in the work table are eliminated by
duplicate elimination, the rows are fetched based on the row identifiers.

When creating a work table of row identifiers from each condition, HiRDB
sometimes uses TABLE SCAN to create the work table, even if the condition
column does not have an index.

The following figure shows the OR PLURAL INDEXES SCAN processing method.

Figure 4-44: OR PLURAL INDEXES SCAN processing method

4. UAP Design for Improving Performance and Handling

335

(5) Search of internally created work table
LIST SCAN

This processing method searches a work table that was created internally.

The following figure shows the LIST SCAN processing method.

Figure 4-45: LIST SCAN processing method

(6) Search using a row identifier
ROWID FETCH

This processing method searches a table by using row identifiers (ROWID) as keys.
If the row does not have to be fetched, a search is not executed.

The following figure shows the ROWID FETCH processing method.

Figure 4-46: ROWID FETCH processing method

4.5.8 Execution of subqueries with no external references
(1) Execution method types

Table 4-13 describes the execution formats and features of inquiries that do not have
external references. Table 4-14 describes the optimal execution methods of queries that
do not have external references.

4. UAP Design for Improving Performance and Handling

336

Table 4-13: Execution methods and features of subqueries with no external
references

Execution
method

Processing method Advantages Disadvantages

Work table ATS
execution

This method obtains the
subquery results beforehand
and creates a work table.
Then when a search using
an index is conducted for an
external query, this method
uses the work table that was
created from the subquery
results to narrow the search
range.

An index can be used for an
external query. Therefore,
when the number of
subquery hits is small and
the number of external
queries is large, data can be
searched rapidly when an
index is used to narrow the
search range.

When the number of
subquery hits is large, the
performance drops because
a search using an index for
the external query must be
performed for each row in
the subquery results.

Work table
execution

This method obtains the
subquery results beforehand
and creates a work table.
Then each time a row of the
external query is searched,
this method matches the
row with the work table that
was created from the
subquery results and
evaluates the predicate that
contains the subquery.

This method can be applied
to all subquery conditions
that require a work table.

The performance drops
when the number of
external queries is large.

Row value
execution

This method obtains the
subquery beforehand. (A
work table is not created.)
Then, when an external
query is searched, this
method uses the values of
the subquery results to
evaluate the condition that
includes the subquery.

An index can be used for
external queries.
Therefore, if the number of
external queries is large, an
index can be used to
narrow the search range,
and data can be searched
rapidly.

The performance drops
when the number of
external queries is high and
the predicates that include
subqueries cannot be
narrowed using an index.

Hash execution This method creates a hash
table from the subquery
results beforehand. Then
each time a row of the
external query is retrieved,
this method hashes the
external query value and
evaluates the condition that
includes the subquery.

Data can be searched
rapidly when the number of
subquery hits is small and
the number of external
queries is large.

If the number of subquery
hits is large, the work table
buffer size to be used
becomes large. Although
the work table buffer size
to be used can be specified,
the buffer data must be
saved to a work table file
when the work table buffer
becomes full, and
consequently the
performance drops.

4. UAP Design for Improving Performance and Handling

337

Table 4-14: Optimal execution method of subqueries with no external references

Subquery Optimal execution method

Table subqueries specified
on the right side of the
=ANY and =SOME
quantified predicates and
the IN predicate

The method differs depending on the number of data items in the external query or
subquery.

External queries: Many
Subqueries: Few

Work table ATS execution or hash
execution is effective.

External queries: Intermediate
Subqueries: Few

External queries: Few
Subqueries: Few

External queries: Many
Subqueries: Intermediate

Hash execution is effective

External queries: Intermediate
Subqueries: Intermediate

External queries: Few
Subqueries: Intermediate

Hash execution or work table execution is
effective.

External queries: Many
Subqueries: Many

Hash execution is effective. (Performance
improvement cannot be executed because
the number of data items is high.)

External queries: Intermediate
Subqueries: Many

External queries: Few
Subqueries: Many

Hash execution or work table execution is
effective. If the predicate is converted to an
EXISTS predicate that contains an external
reference, HiRDB may be able to conduct
the search rapidly.

Table subqueries specified
on the right side of
quantified predicates
(except =ANY and =SOME)
and the IN predicate

Work table execution is always applied.

Subqueries of the EXISTS
predicate

Row value execution is always applied.

Other subqueries (scalar
subqueries and row
subqueries)

4. UAP Design for Improving Performance and Handling

338

(2) Processing methods
(a) Work table ATS execution

WORK TABLE ATS SUBQ

This processing method applies to table subqueries specified on the right side of
=ANY and =SOME quantified predicates and IN predicates.

First, HiRDB calculates the values of the subquery selection expression and
creates a work table. Next, HiRDB uses an index to retrieve external queries. To
retrieve the queries, HiRDB uses the subquery results to narrow the index search
range. The query search conditions are ATS and RANGES.

In some cases, HiRDB executes duplicate elimination (DISTINCT) internally for
subqueries.

The following figure shows the WORK TABLE ATS SUBQ processing method.

Figure 4-47: WORK TABLE ATS SUBQ processing method

An example of a quantified predicate and a comparison predicate is shown as
follows.

Example

4. UAP Design for Improving Performance and Handling

339

SELECT C1 FROM T1 WHERE C2=ANY(SELECT C2 FROM T2)

Note
This example supposes that an index is defined in T1 (C2).

First, table T2 of the subquery is searched, and a work table is created from
the values of T2.C2. Next, the values of T2.C2 are fetched one row at a time
from the work table, and a search is conducted by narrowing the search range
of the index defined in T1.C2 of the external query.

(b) Work table execution
WORK TABLE SUBQ

This processing method is applied to table subqueries specified on the right side
of quantified predicates and IN predicates. First, the values of the subquery
selection expression are determined and a work table is created. Next, the outer
query is searched. Each time a row of the outer query is searched, the row is
matched with the results of the subquery, and the search conditions are evaluated.

The following figure shows the WORK TABLE SUBQ processing method.

Figure 4-48: WORK TABLE SUBQ processing method

Example
SELECT T1.C1 FROM T1 WHERE T1.C2=ANY(SELECT C2 FROM T2)

First, table T2 of the subquery is searched, and a work table is created from the
values of T2.C2. Next, the outer query is executed, the rows are fetched one at a
time, the T1.C2 values are matched with the work table that was created from the
subquery, and the search conditions are evaluated.

4. UAP Design for Improving Performance and Handling

340

(c) Row value execution
ROW VALUE SUBQ

This processing method is applied to row subqueries, scalar subqueries, and
EXISTS predicates. With this method, first the value of the selection expression
in the subquery is determined. Then, the value of the subquery result is used in
evaluating the conditions, including the subquery of the outside query.

With comparison predicates, if HiRDB judges that using an index is better when
searching an external query, it uses an index in the search.

The following figure shows the ROW VALUE SUBQ processing method.

Figure 4-49: ROW VALUE SUBQ processing method

An example is shown as follows.

Example
SELECT T1.C1 FROM T1 WHERE T1.C2<(SELECT MAX(C2) FROM T2)

First, table T2 of the subquery is searched, and the MAX(T2.C2) values are
fetched. (A work table is not created.) Next, the condition that includes the
subquery in the external query is evaluated with the MAX(T2.C2) values.

(d) Hash execution
HASH SUBQ

This processing method is applied to table subqueries specified on the right side
of quantified predicates and IN predicates.

First, the values of the subquery selection expression are determined, and a hash
table is created from the selection expression values. Next, the external query is
executed, hashed with the column values specified on the left side of the
quantified predicate and IN predicate, matched with the hash table that was
created from the subquery, and searched.

The following figure shows the HASH SUBQ processing method.

4. UAP Design for Improving Performance and Handling

341

Figure 4-50: HASH SUBQ processing method

An example is shown as follows.

Example
SELECT T1.C1 FROM T1 WHERE T1.C2=ANY(SELECT C2 FROM T2)

First, table T2 of the subquery is searched, and a hash table is created from the
T2.C2 values. Next, the external query is executed, hashed with the T1.C2
values, matched with the hash table that was created from the subquery, and
searched.

4.5.9 Execution of subqueries with external references
(1) Execution method types

The following table shows the execution methods and features of subqueries that have
external references.

4. UAP Design for Improving Performance and Handling

342

Table 4-15: Execution methods and features of subqueries with external
references

Execution
method

Processing method Advantages Disadvantages

Nested loops work
table execution

Each time a row of the
external query is searched,
this method executes the
subquery, creates a work
table, and evaluates the
condition that includes the
subquery.

An index can be used for the
subquery search conditions
that include a reference
column to the outside.
Therefore, data can be
searched rapidly when a
subquery search condition
can narrow the search range
by using an index.
In external query searches,
the subquery search can be
omitted when the external
reference column repeatedly
searches a row of the same
value.

The performance drops
when the number of
external query hits is
high.

Nested loops row
value execution

Each time a row of the
external query is searched,
this method executes the
subquery (a work table is not
created) and evaluates the
condition that includes the
subquery.

An index can be used for the
subquery search conditions
that include a reference
column to the outside.
Therefore, data can be
searched rapidly when a
subquery search condition
can narrow the search range
by using an index.
In external query searches,
the subquery search can be
omitted when the external
reference column repeatedly
searches a row of the same
value.

The performance drops
when the number of
external query hits is
high.

4. UAP Design for Improving Performance and Handling

343

(2) Processing methods
(a) Nested loops work table execution

NESTED LOOPS WORK TABLE SUBQ

This processing method is applied to table subqueries specified on the right side
of quantified predicates and IN predicates.

First, the external query is executed. During the execution, each time a row of the
external query is fetched, the values in the external reference column are used to
execute the subquery, the values of the subquery selection expression are
calculated, and a work table is created. Next, the work table that was created from
the subquery is used to evaluate the condition that includes the external subquery.

Because the external query is processed one row at a time, multiple work table
areas are never created at the same time. Also, because the subquery is executed
for each row in the external query, the performance drops when the external query
has many rows.

The following figure shows the NESTED LOOPS WORK TABLE SUBQ processing
method.

Hash execution This method creates a hash
table from the subquery
results beforehand. Then
each time a row is fetched
from the external query, this
method hashes the values of
the external query and
matches them with the hash
table.

Data can be searched rapidly
when the number of
subquery hits, excluding
conditions that include
external reference columns,
is low and the number of
external queries is high.

An index cannot be used
for conditions that
include an external
reference column. If the
hit count for subqueries
that exclude conditions
that include an external
reference column is high,
the size of the work table
buffer used becomes
large. Although the work
table buffer size to be
used can be specified, the
buffer data must be saved
to a work table file when
the work table buffer
becomes full, and
consequently the
performance drops.
If subqueries are to be
joined, conditions that
include external
reference columns are
evaluated after the
subqueries are joined.

Execution
method

Processing method Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

344

Figure 4-51: NESTED LOOPS WORK TABLE SUBQ processing method

Example
SELECT C1 FROM T1
 WHERE C1=ANY(SELECT C1 FROM T2 WHERE C2=T1.C2)

Note
The underlined section is the external reference column.

The external query is executed. The values of the outer reference column
(T1.C2) are used to execute the subquery for all rows of the external query,
and a work table is created from the T2.C1 values. Next, T1.C1 is matched
with the T2.C1 work table, and the condition that includes the subquery is
evaluated.

(b) Nested loops row value execution
NESTED LOOPS ROW VALUE SUBQ

This processing method is applied to row subqueries, scalar subqueries, and
EXISTS predicates.

First, the external query is executed. During the execution, each time a row of the
external query is fetched, the values in the external reference column are used to
execute the subquery, and the values of the subquery selection expression are
calculated. (A work table is not created.) Next, the values of the subquery results
are used to evaluate the condition that includes the subquery of the external query.

Because the subquery is executed for each row in the external query, the
performance drops when the external query has many rows.

The following figure shows the NESTED LOOPS ROW VALUE SUBQ processing

4. UAP Design for Improving Performance and Handling

345

method.

Figure 4-52: NESTED LOOPS ROW VALUE SUBQ processing method

Example
SELECT C1 FROM T1
 WHERE C1=(SELECT MAX(C1) FROM T2 WHERE C2=T1.C2)

Note
The underlined section is the external reference column.

The external query is executed. The values of the outer reference column
(T1.C2) are used to search the subquery for all rows of the external query,
and the MAX(T2.C1) value is fetched. (A work table is not created.) Next,
the condition that includes the subquery found in the external query is
evaluated.

(c) Hash execution
HASH SUBQ

This processing method applies to table subqueries specified in EXISTS
predicates and on the right side of comparison predicates, quantified predicates,
and IN predicates.

First, the subquery is executed without the condition that includes the external
reference column, and the values of the query selection expression are
determined. At this time, the columns that were narrowed by the external
reference column from the search condition compared with = in the subquery are
used to create a hash table. (If the predicate is =ANY, =SOME or IN, the selection
expression is used to create the hash table.)

Next, an external query is executed, each fetched row is hashed with the value of
the external reference column, matched with the hash table that was created from
the subquery, and searched. (If the predicate is =ANY, =SOME, or IN, the columns
values specified on the left side of the predicate are also used for hashing.)

4. UAP Design for Improving Performance and Handling

346

The following figure shows the HASH SUBQ processing method.

Figure 4-53: HASH SUBQ processing method

Examples of an EXISTS predicate and a comparison predicate are shown as
follows.

Example 1: EXISTS predicate
SELECT T1.C1 FROM T1
 WHERE EXISTS(SELECT * FROM T2 WHERE C1='a' AND C2=T1.C2)

Note
The underlined section is the external reference column.

First, the subquery is evaluated without the condition that includes the
external reference column, and a hash table is created from the subquery
column (T2.C2) that has been narrowed by using the external reference
column. Next, the external query is executed, hashed with the values of the
external reference column (T1.C2), and matched with the hash table that was
created from the subquery. Then the EXISTS predicate is evaluated.

Example 2: Comparison predicate
SELECT T1.C1 FROM T1
 WHERE T1.C3<(SELECT T2.C3 FROM T2 WHERE C1='a' AND
C2=T1.C2)

Note
The underlined section is the external reference column.

First, the subquery is evaluated without the condition that includes the
external reference column, and a hash table is created from the subquery
column (T2.C2) that has been narrowed by using the external reference
column. Next, the external query is executed, hashed with the values of the

4. UAP Design for Improving Performance and Handling

347

external reference column (T1.C2), and matched with the hash table created
from the subquery. Then the condition that includes the external reference
column is evaluated. If the result is true, the comparison predicate (<) is
evaluated.

4.5.10 Preparing for application of hash join and subquery hash
execution

This section describes the items that must be set before hash join or hash execution of
a subquery can be applied with the SQL extension optimizing option.

(1) Items to be preset
Before hash join or hash execution of a subquery can be applied, the following items
must be set:

• Hash table size
• Method for allocating the work table buffer
• Work table buffer size
• Hashing mode

(a) Hash table size
Use the pd_hash_table_size operand in the system definition or PDHASHTBLSIZE
in the client environment definition to set the hash table size. Calculate the maximum
hash table row length, and then set the hash table size to a value that is equal to or
greater than the value obtained from the following formula:

The hash table size must be smaller than the value in the pd_work_buff_size or
pd_work_buff_expand_limit operand in the system definition. If the hash table
size is equal to or greater than the value of these operands, an error will occur during
hash join or subquery hash execution.

maximum-hash-table-row-length
For each SELECT statement, calculate the hash table row lengths for the following
units. Then select the largest calculated value (maximum hash table row length).

• Query specifications that join multiple tables with =

• Subqueries that correspond to one of the following:

 Table subquery specified on the right side of an =ANY quantified predicate

 Table subquery specified on the right side of an =SOME quantified
predicate

hash-table-size (in kilobytes) (maximum-hash-table-row-length (in bytes) x 2 + 32) 128 x 128

4. UAP Design for Improving Performance and Handling

348

 Table subquery specified on the right side of an IN predicate

 Other subquery that specifies an external reference column with = in a
search condition

The calculation methods for hash table row length are shown as follows.

Query specification that joins multiple tables with =

1. For columns specified in the selection expressions and search conditions of
the tables that are linked with =, calculate the row length in each table from
the following formula:

2. From the table row lengths that were calculated in 1, use one that is not the
smallest value and calculate the hash table length from the following
formula:

Subquery

For columns specified in subquery selection expressions and columns specified
in predicates that include an external reference column in the search condition,
calculate the hash table row length from the following formula:

ai
Data length of the i-th data item. For details about data length, see the HiRDB
Version 9 Installation and Design Guide. However, for character data

4. UAP Design for Improving Performance and Handling

349

(including national character data and mixed character data) that is specified
only in a selection expression of a table joined with = and has a defined
length of 256 bytes or more, the data length becomes 12.

Hash tables of the size calculated previously can store 1,500 to 2,000 rows. If the
number of inner tables to be joined or the number of subquery searches is high,
bucket partitioning is executed several times, and the performance may not
improve. In this case, either calculate and set the hash table size for batch hash
join shown as follows or see (2) to tune the hash table size.

Determine the hash table page length from the hash table row length as shown in the
following table.

hash-table-size-for-batch-hash-join (in kilobytes) = (number-of-hash-table-data-pages +
number-of-hash-table-management-table-pages) number-of-one-segment-pages x 128

number-of-hash-table-data-pages = number-of-hash-table-rows MIN{ (hash-table-page-length 48)
hash-table-row-length , 255} + 63

number-of-hash-table-management-table-pages = (16 x number-of-hash-table-rows +
((number-of-hash-table-data-pages x hash-table-page-length + 16 x number-of-hash-table-rows)
(number-of-one-segment-pages x hash-table-page-length) x 8) + 8) hash-table-page-length x
hash-table-page-length

number-of-one-segment-pages = (128 x 1024) hash-table-page-length

Hash table row length Hash table page length

0 to 1,012 4,096

1,013 to 2,036 8,192

2,037 to 4,084 16,384

4,085 to 16,360 32,768

4. UAP Design for Improving Performance and Handling

350

(b) Method for allocating the work table buffer
The method for allocating the work table buffer must be set to buffer batch allocation
(pool) in server process units. Therefore specify pool in the pd_work_buff_mode
operand of the system definition.

(c) Work table buffer size
Hash tables are allocated in the work table buffer. If the work table buffer size or the
upper limit size for expansion allocation of the work table buffer is smaller than the
specified hash table size, an error occurs because of insufficient space in the work table
buffer. Therefore, in the pd_work_buff_size or pd_work_buff_expand_limit
operand of the system definition, set a value that is equal to or larger than the value
calculated with the following formula:

work-table-buffer-size (in kilobytes) (hash-table-size (in kilobytes) x 2 +
256) x maximum-number-of-hash-joins-in-SELECT-statement + 128

maximum-number-of-hash-joins-in-SELECT-statement
Calculate the number of hash joins in each SELECT statement from the following
formula, and set the largest value as the maximum number of hash joins in a
SELECT statement. The number of hash joins is determined by counting the items
that have HASH JOIN as the join type in the join processing information that is
output by the access path display utility (pdvwopt).
number-of hash-joins-in-SELECT-statement =
((number-of-tables-joined-with-=)
(number-of-query-specifications-joined-with-=)), +
(number-of-=ANY-quantified-predicates) +
(number-of-=SOME-quantified-predicates) +
(number-of-IN-(subquery)-specifications) +
(number-of-other-subqueries-that-specify-external-reference-columns-with-=-in
-search-conditions)

If multiple cursors are to be opened at the same time and searched, total the values
that are calculated for the individual cursors.

Example
SELECT A.A1,B.B2,C.C3 FROM A,B,C 3-1

16,361 to 32,720 (hash-table-row-length + 48) 2048 x 2048
hash-table-row-length:

Number of inner tables to be joined when the targets of batch
hash join are joined. If the targets are subqueries, this value is
the number of subquery searches excluding the predicates that
include outer reference columns in the search conditions.

Hash table row length Hash table page length

4. UAP Design for Improving Performance and Handling

351

 WHERE A.A1=B.B1 AND A.A2=B.B2
 AND B.B3=C.C3
 AND A.A1=C.C1
 AND A.A4=ANY(SELECT D.D4 FROM D) 1
 AND A.A5=SOME(SELECT E.E5 FROM E) 1
 AND A.A6 IN(SELECT F.F6 FROM F
 WHERE F.F1=A.A1) 1
 AND EXISTS(SELECT G.G1 FROM G WHERE G.G1=B.B1) 1

In this example, the values are (3-1) + 1 + 1 + 1 + 1, so the number of hash
joins in this SELECT statement is 6.

Adding about 4,096 extra kilobytes to the value calculated from the work table
buffer size formula shown previously increases the input/output unit size during
bucket partitioning, which in turn improves the performance.

If batch hash join without bucket partitioning is to be executed on all data, the
operation can be executed if the following formula is satisfied:

work-table-buffer-size (in kilobytes) hash-table-size (in kilobytes) x
maximum-number-of-hash-joins-in-SELECT-statement + 384

(d) Hashing mode
A retrieval that accompanies a hash join or subquery execution is processed by
hashing.

You can select the hashing mode with the pd_hashjoin_hashing_mode operand of
the system definition or with PDHJHASHINGMODE client environment definition. The
default is TYPE1.

TYPE1 is the hashing mode of HiRDB versions before 07-02. If you use hash join for
the first time in HiRDB version 07-02 or a more recent version, specify TYPE2.

If you specify TYPE1 in HiRDB version 07-02 or a more recent version, you may not
obtain the desired performance. If this happens, specify TYPE2 as the hashing mode,
or see (3) Tuning the hashing mode, and tune the mode.

(2) Tuning methods for hash table size
(a) Tuning information used

The hash table size can be tuned based on either of the following types of tuning
information:

• UAP statistical report (specify client environment definition PDUAPREPLVL)

• UAP statistical information from the statistics analysis utility

For details about the UAP statistical report, see 11.1.4 UAP statistical report facility.
For details about the statistics analysis utility, see the HiRDB Version 9 Command
Reference manual.

4. UAP Design for Improving Performance and Handling

352

(b) Items derived from tuning information
When tuning information about the hash table size is obtained, the following items can
be determined:

• Whether batch hash join, which expands data into a hash file all at once, or bucket
partitioning hash join, which expands data into a hash table in bucket units, is set

• Whether bucket repartitioning is being executed when bucket partitioning hash
join is set

• How large the hash table size should be set to execute batch hash join when bucket
partitioning hash join is set

• How large the hash table size should be set to avoid bucket repartitioning when
bucket partitioning hash join is set

Bucket repartitioning refers to the repetition of bucket partitioning recursively for up
to three levels when the bucket size exceeds the hash table size. An example is shown
as follows.

The number of partitions in one bucket partitioning is determined from the following
formula:

number-of-bucket-partitions = MIN{ (hash-table-size 2)
hash-table-page-length , 64}

Even with batch hash join, level 1 bucket partitioning is executed for inner tables to be
joined.

(c) Tuning methods
The following table describes the tuning methods for hash table size.

4. UAP Design for Improving Performance and Handling

353

Table 4-16: Tuning methods for hash table size

#1: When the hash table size is increased, the number of bucket partitions at each
partitioning execution may increase according to the formula for calculating the
number of bucket partitions. Consequently, a hash table size that is larger than the size
that was used during tuning information acquisition may be necessary.

If you used tuning information and increased the hash table size, get the tuning
information again. If the intended results are not realized, increase the hash table size
again according the new tuning information that was acquired.

#2: When the hash table size is increased, the number of bucket partitions at each
partitioning execution may increase according to the formula for calculating the
number of bucket partitions. Consequently, bucket partitioning may terminate at the
intended level even if the hash table size is smaller than the size that was used during
tuning information acquisition.

Tuning information (unit:
kilobytes)

Tuning method

Maximum batch hash table
size

If a value that is equal to or greater than this value was set as the hash table size,
batch hash join without bucket partitioning is set for all data.#1 If this value
exceeds the maximum hash table size that can be specified, batch hatch join
cannot be used.
If this value is 0, hash join or subquery hash execution has not been performed.

Level 1 maximum bucket size If a value that is equal to or greater than this value was set as the hash table size,
bucket partitioning has terminated at level 1. If bucket partitioning is set to level
2 or higher, specifying this value as the hash table size terminates bucket
partitioning at level 1.#2

If batch hash join without bucket partitioning was executed on all data, 0 is
displayed for this value.

Level 2 maximum bucket size If a value that is equal to or greater than this value was set as the hash table size,
bucket partitioning has terminated at level 2. If bucket partitioning is set to level
3 or higher, specifying this value as the hash table size terminates bucket
partitioning at level 2.#2

If level 2 bucket partitioning was not executed even once, 0 is displayed for this
value.

Level 3 maximum bucket size If a value that is equal to or greater than this value was set as the hash table size,
bucket partitioning has terminated at level 3.
If the hash table size is smaller than this value, each bucket is partially expanded
into the hash table, and the processing efficiency becomes worse. In this case,
set the hash table size to this value or larger.#2

In some cases, not applying hash join or subquery hash execution improves the
performance.
If level 3 bucket partitioning was not executed even once, 0 is displayed for this
value.

4. UAP Design for Improving Performance and Handling

354

On the other hand, when the hash table size is decreased, the number of bucket
partitions at each partitioning execution may decrease. Consequently, bucket
partitioning may not terminate at the same level used during tuning information
acquisition. You should therefore use this tuning information when the hash table size
is increased.

(3) Tuning the hashing mode
(a) Tuning information used

The hash table size can be tuned based on either of the following types of tuning
information:

• UAP statistical report (specify client environment definition PDUAPREPLVL)

• UAP statistical information from the statistics analysis utility

For details about the UAP statistical report, see 11.1.4 UAP statistical report facility.
For details about the statistics analysis utility, see the manual HiRDB Version 9
Command Reference.

(b) Item derived from tuning information
By obtaining tuning information about the hash table size, you can determine the
following item:

• Retrieval performance of the specified hashing mode

(c) Tuning mode
The following table shows tuning information for the hashing mode.

Table 4-17: Tuning information for the hashing mode

Note

If the tuning information value is 0, hash join or subquery hash execution has not
been performed.

Tuning method example

Set TYPE1 and TYPE2 in client environment definition PDHJHASHINGMODE, and
get the average number of comparisons from the statistical information for each

Tuning information (unit: number) Description

Maximum number of comparisons Maximum number of comparisons during hash searching

Total number of comparisons Total number of comparisons during hash searching

Number of searches Number of hash table searches

Average number of comparisons Total number of comparisons / number of searches

4. UAP Design for Improving Performance and Handling

355

mode. Compare the average number of comparisons, and set the hashing mode
with the smaller value to the pd_hashjoin_hashing_mode operand.

4.5.11 Deriving high-speed search conditions
A high-speed search condition refers to a condition derived from a WHERE clause
search condition or an ON search condition in a FROM clause by CNF conversion or
condition shifting. When high-speed search conditions are derived, the retrieval
performance improves because the rows to be retrieved can be narrowed at an earlier
stage.

When HiRDB derives high-speed search conditions, it retains the original search
conditions used in the derivation. HiRDB can therefore generate just those derived
conditions that are optimal conditions without generating derived conditions that
cannot be used to narrow the search.

When HiRDB derives high-speed search conditions, it optimizes the search by
considering the new derived conditions when it determines the access path (including
the table retrieval method, join method, and join sequence). Therefore, when HiRDB
derives high-speed search conditions, the access paths may change as described as
follows:

• HiRDB determines that the rows to be retrieved can be narrowed down at an early
stage, and retrievals with an index become easier to select.

• If OR is specified in a join condition, and the CNF conversion and OR reduction
operations extract the join condition outside OR, then nested-loops-join, merge
join, and hash join can be applied outside direct products.

• If a limiting condition is specified for only one of the tables to be joined,
nested-loops join becomes easier to select. If limiting conditions are specified for
both tables, merge join and hash join become easier to select.

When high-speed search conditions are derived from complex conditions, it takes
longer to generate the high-speed search conditions and to evaluate the conditions
when the search is executed. Therefore, depending on the SQL statements involved,
the performance may actually drop instead of improve.

(1) Application scope of high-speed search conditions
Whether or not HiRDB derives high-speed search conditions depends on the
specification values of the SQL optimization and SQL extension optimizing options.
The following table shows the relationships between the SQL optimization and SQL
extension optimizing options and deriving high-speed search conditions.

4. UAP Design for Improving Performance and Handling

356

Table 4-18: Relationships between the SQL optimization and SQL extension
optimizing options and deriving high-speed search conditions

Legend:

G: HiRDB generates high-speed search conditions.

--: HiRDB does not generate high-speed search conditions.

#1: Specify the value for deriving high-speed search conditions in the SQL
optimization options.

#2: If a direct product is specified in the search at the derivation source of high-speed
search conditions, high-speed search conditions are generated depending on the
conditions described below. The following table describes whether high-speed search
conditions are derived, and the derivation condition.

Type Derivation source
condition

Derived condition Specified SQL optimization option
or SQL extension optimizing

option

Do not derive Derive#1

CNF
conversion

OR condition for one
table

One-table condition -- --

OR condition
extending across two
or more tables

One-table condition G#2 G

Join condition
(column=column) is
extracted by OR reduction

G#2 G

Other condition for two or
more tables

-- --

Condition
shifting

Join condition for
tables A and B, and
condition for table A

One-table condition for
table B

-- G

Join condition for
tables A and B, and
join condition for
tables A and C

Join condition for tables B
and C

-- --

4. UAP Design for Improving Performance and Handling

357

Search at the
derivation source

Derivation condition High-speed search
conditions that are

derived

Whether
derived or

not

Two-tabl
e search

Direct
product

Join condition
(column=column)
cannot be extracted by
OR reduction.

The search
condition of
the
derivation
source
includes a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

None N

The search
condition of
the
derivation
source does
not include a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

One-table condition Y

-- Join condition
(column=column)

--

Other two-table
condition

N

4. UAP Design for Improving Performance and Handling

358

Join condition
(column=column) can
be extracted by OR
reduction.

The search
condition of
the
derivation
source
includes a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

None N

The search
condition of
the
derivation
source does
not include a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

One-table condition Y

-- Join condition
(column=column)

Y

Other two-table
condition

N

No direct
product

-- N

Search at the
derivation source

Derivation condition High-speed search
conditions that are

derived

Whether
derived or

not

4. UAP Design for Improving Performance and Handling

359

Search
in three
or more
tables

All direct
product

Join condition
(column=column)
cannot be extracted by
OR reduction.

The search
condition of
the
derivation
source
includes a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

None N

The search
condition of
the
derivation
source does
not include a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

One-table condition Y

-- Join condition
(column=column)

--

Other two-table
condition

N

Join condition
(column=column) can
be extracted partially by
OR reduction.

The search
condition of
the
derivation
source
includes a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

None N

Search at the
derivation source

Derivation condition High-speed search
conditions that are

derived

Whether
derived or

not

4. UAP Design for Improving Performance and Handling

360

The search
condition of
the
derivation
source does
not include a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

One-table condition Y

-- Join condition
(column=column)

Y

Other two-table
condition

N

Join condition
(column=column) can
be extracted by OR
reduction.

The search
condition of
the
derivation
source
includes a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

None N

The search
condition of
the
derivation
source does
not include a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

One-table condition Y

Search at the
derivation source

Derivation condition High-speed search
conditions that are

derived

Whether
derived or

not

4. UAP Design for Improving Performance and Handling

361

-- Join condition
(column=column)

Y

Other two-table
condition

N

Partially
direct
product

Join condition
(column=column)
cannot be extracted by
OR reduction.

The search
condition of
the
derivation
source
includes a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

None N

The search
condition of
the
derivation
source does
not include a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

One-table condition Y

-- Join condition
(column=column)

--

Other two-table
condition

N

Search at the
derivation source

Derivation condition High-speed search
conditions that are

derived

Whether
derived or

not

4. UAP Design for Improving Performance and Handling

362

Join condition
(column=column) can
be extracted partially by
OR reduction.

The search
condition of
the
derivation
source
includes a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

None N

The search
condition of
the
derivation
source does
not include a
one-table
condition for
the same
table as for
the one-table
condition to
be derived.

One-table condition Y

-- Join condition
(column=column)

Y

Other two-table
condition

N

Join condition
(column=column) can
be extracted by OR
reduction.

The search
condition of
the
derivation
source
includes a
one-table
condition for
the same
table as for
the two-table
condition to
be derived.

None N

Search at the
derivation source

Derivation condition High-speed search
conditions that are

derived

Whether
derived or

not

4. UAP Design for Improving Performance and Handling

363

Legend:

Y: Derived

N: Not derived

--: Not applicable

(2) Deriving high-speed search conditions by CNF conversion
CNF conversion refers to converting conditions joined with OR (disjunctive normal
form (DNF) format) into equivalent conditions joined with AND (conjunctive normal
form (CNF) format). High-speed search conditions can be derived by applying CNF
conversion to WHERE clause search conditions or to ON search conditions in FROM
clauses.

(a) Search conditions derived by CNF conversion
The following search conditions are derived by CNF conversion:

• If CNF conversion can generate a one-table condition from a condition that
extends across two or more tables joined with OR, HiRDB derives the one-table
condition as a high-speed search condition. By deriving the one-table condition,
HiRDB can narrow the number of items to be joined.

• If all conditions joined with OR are included in the same join condition

The search
condition of
the
derivation
source does
not include a
one-table
condition for
the same
table as for
the two-table
condition to
be derived.

One-table condition Y

-- Join condition
(column=column)

Y

Other two-table
condition

N

No direct
product

-- N

Search at the
derivation source

Derivation condition High-speed search
conditions that are

derived

Whether
derived or

not

4. UAP Design for Improving Performance and Handling

364

(column=column only) for two tables, HiRDB can derive (join-condition OR ...
OR join-condition) by applying CNF conversion to that condition. Then if the
same condition can be used to execute duplicate elimination on all join conditions
joined with OR (OR reduction), HiRDB derives the join conditions as high-speed
search conditions. By deriving the join conditions, HiRDB can eliminate direct
product processing and improve the performance.

Furthermore, the specifications for the SQL optimization options and SQL extension
optimizing options determine whether HiRDB derives high-speed search conditions.
For details about the relationships between SQL optimization options and SQL
extension optimizing options, and deriving of high-speed search conditions, see (1)
Application scope of high-speed search conditions.

(b) Conditions when CNF conversion is not executed
High-speed search conditions are not derived by CNF conversion if any one of the
following conditions applies:

• A derived search condition would include a subquery.

• Deriving the derivation-source conditions specified in the ON search condition of
an outer join would produce conditions that are confined to the outer table.

• Deriving the derivation-source conditions specified in the WHERE clause of an
outer join would produce conditions that are confined to the inner table.

• Deriving the derivation-source conditions specified in the WHERE clause of an
outer join would produce conditions for two or more tables.

• If HiRDB derived high-speed search conditions, the maximum nest count of the
Boolean operations would exceed 255.

• A search condition is specified in a HAVING clause.

• A derived search condition would be a join condition resulting from direct
product.

(3) Deriving high-speed search conditions by condition shifting
Condition shifting refers to deriving a new condition from two or more conditions.

The methods of deriving search conditions by condition shifting are described as
follows.

• Deriving high-speed search conditions by shifting a one-table condition through
a join condition

• Deriving high-speed search conditions by shifting join conditions (applicable to
the UNIX edition only)

Furthermore, the specifications for the SQL optimization options and SQL extension
optimizing options determine whether HiRDB derives high-speed search conditions.

4. UAP Design for Improving Performance and Handling

365

For details about the relationships between SQL optimization options and SQL
extension optimizing options, and deriving of high-speed search conditions, see (1)
Application scope of high-speed search conditions.

(a) Deriving high-speed search conditions by shifting a one-table condition
through a join condition
If the search conditions consist of a two-table join condition (column=column only)
and a one-table condition that includes the join column, HiRDB derives a one-table
condition for the column in the table to be joined. An example is shown as follows:

T1.C1 = T2.C1 AND T1.C1 > 10

T1.C1 = T2.C1 AND T1.C1 > 10 AND T2.C1 > 10

The underlined section becomes the derived high-speed search condition.

One-table conditions that are targets for condition shifting

The one-table conditions that are targets for condition shifting are listed as
follows:

• column-specification comparison operator
{value-specification|reference-column-to-outside}
Condition shifting is executed even when the left and right sides of the
comparison operator (=, <>, ^=, !=, <, <=, >, or >=) are switched.

• column-specification IS [NOT] NULL
• column-specification [NOT] IN

(value-specification[,value-specification]...)
• column-specification [NOT] LIKE pattern-character-string [ESCAPE

escape-character]
If the join columns have different data lengths, condition shifting is executed
only when the pattern character string is a literal and forward matching is
applied.

• column-specification [NOT] XLIKE pattern-character-string [ESCAPE
escape-character]
If the join columns have different data lengths, condition shifting is not
executed.

• column-specification BETWEEN
{value-specification|reference-column-to-outside} AND
{value-specification|reference-column-to-outside}

4. UAP Design for Improving Performance and Handling

366

• column-specification [NOT] SIMILAR TO pattern-character-string
[ESCAPE escape-character]
If the join columns have different data lengths, condition shifting is executed
only when the pattern character string is a literal and forward matching that
produces a LIKE-predicate equivalent is applied.

Conditions when condition shifting is not executed

Condition shifting is not executed if any one of the following conditions applies:

• The join condition is an outer join.

• The join condition is an inner join, and condition shifting would take place
between a WHERE clause search condition and an ON search condition in a
FROM clause. (For an inner join involving three or more tables, HiRDB
executes condition shifting between multiple ON search conditions.)

• The data type of the join columns is a comparison of fixed length and
variable length.

• The data type of the join columns is FLOAT or SMALLFLT.

• If HiRDB derived high-speed search conditions, the maximum nest count of
the Boolean operations would exceed 255.

• A search condition is specified in a HAVING clause.

(b) Deriving high-speed search conditions by shifting join conditions
(applicable to the UNIX edition only)
If the search conditions consist of a two-table join condition (column=column only)
and a join condition (column=column only) between a column in one of the two tables
and a column in a separate third table, HiRDB derives a new join condition from the
remaining two columns that are not linked by a join condition. If correlation names are
specified, the tables are viewed as separate tables if the correlation names are different.
An example is shown as follows:

T1.C1 = T2.C1 AND T2.C1 = T3.C1

T1.C1 = T2.C1 AND T2.C1 = T3.C1 AND T1.C1 = T3.C1

The underlined section is the rapid search condition that was derived.

Conditions when the join condition is not shifted

The join condition is not shifted if any one of the following conditions applies:

• The join condition is an outer join.

• The join condition is an inner join, and condition shifting would take place
between a WHERE clause search condition and an ON search condition in a

4. UAP Design for Improving Performance and Handling

367

FROM clause. (For an inner join involving three or more tables, HiRDB
executes condition shifting between multiple ON search conditions.)

• The data type of the join columns is a comparison of fixed length and
variable length.

• The data type of the join columns is FLOAT or SMALLFLT.

• If HiRDB derived high-speed search conditions, the maximum nest count of
the Boolean operations would exceed 255.

• A search condition is specified in a HAVING clause.

4. UAP Design for Improving Performance and Handling

368

4.6 Data guarantee levels

The data guarantee level specifies the transaction point up to which the retrieved data
is to be guaranteed. The data guarantee levels range from 0 to 2. Specify the data
guarantee level according to operation goals, for example, whether you want to prevent
other users from updating data or whether you want to allow other users to reference
data being updated.

4.6.1 Specifying the data guarantee level
A data guarantee level can be specified for each UAP. To specify a data guarantee level
for each SQL statement, specify a lock option for that SQL statement.

If both a data guarantee level and a lock option are specified concurrently, the lock
option specification becomes valid. The following table shows the lock option for each
data guarantee level.

Table 4-19: Relationship between data guarantee level and lock option

#1: When the FOR UPDATE clause is specified in a cursor declaration or a dynamic
SELECT statement, a data guarantee level of 1 is assumed even if 0 is specified.

#2: When the FOR UPDATE clause is specified in a cursor declaration or a dynamic
SELECT statement, WITH EXCLUSIVE LOCK is assumed.

#3: WITH EXCLUSIVE LOCK is assumed in the following cases:

• YES is specified in client environment definition PDFORUPDATEEXLOCK
when a cursor declaration or dynamic SELECT statement in which the FOR
UPDATE clause is specified is executed.

• FOR UPDATE EXLOCK is specified immediately after the data guarantee
level in the SQL compile options that are specified when the routine is
defined.

The data guarantee level can be specified at the following locations:

• PDISLLVL in the client environment definition

• SQL compile option in ALTER PROCEDURE

Data guarantee level Lock option

0 WITHOUT LOCK NOWAIT#1, #3

1 WITHOUT LOCK WAIT#3

2 WITH SHARE LOCK or EXCLUSIVE LOCK#2

4. UAP Design for Improving Performance and Handling

369

• SQL compile option in ALTER ROUTINE

• SQL compile option in ALTER TRIGGER

• SQL compile option in CREATE PROCEDURE

• SQL compile option in CREATE TRIGGER

• SQL compile option in procedure body of CREATE TYPE

4.6.2 Data guarantee level types
(1) Data guarantee level 0

Specify data guarantee level 0 to allow other users to view data being updated without
waiting for update completion. This guarantee level can improve the concurrent
execution capability more than the other guarantee levels. However, if the same rows
are searched twice in the same transaction, the first and second search results may not
be the same.

The following figure shows the data guarantee range of data guarantee level 0.

Figure 4-54: Data guarantee range of data guarantee level 0

(2) Data guarantee level 1
Specify data guarantee level 1 to prevent other users from updating data that has been
searched once until the search processing is completed (until HiRDB finishes viewing
the pages or rows). This guarantee level therefore improves the concurrent execution
capability. However, if the same rows are searched twice in the same transaction, the
first and second search results may not be the same.

The following figure shows the data guarantee range of data guarantee level 1.

Figure 4-55: Data guarantee range of data guarantee level 1

4. UAP Design for Improving Performance and Handling

370

(3) Data guarantee level 2
Specify data guarantee level 2 to prevent other users from updating data that has been
searched once until the transaction ends. Data that has been searched is therefore
guaranteed until the end of the transaction. However, data that has not been searched
is not guaranteed. If the same rows are searched twice in the same transaction, the first
and second transaction results may not be the same if there are added rows.

The following figure shows the data guarantee range of data guarantee level 2.

Figure 4-56: Data guarantee range of data guarantee level 2

(4) Notes
If data guarantee level 0 is specified for a cursor declaration that accompanies an
update, the specification is ignored, and level 1 is assumed.

4.6.3 Example of search results when a data guarantee level is
specified

The figure below shows an example of search results when a data guarantee level is
specified. UAP1 is a UAP that searches the PRODUCT table, UAP2 is a UAP that inserts
data into the PRODUCT table, and UAP3 is a UAP that updates PRODUCT table data. The
numbers 1. to 4. show the execution sequence of UAP1, UAP2, and UAP3.

4. UAP Design for Improving Performance and Handling

371

Figure 4-57: Example of search results when a data guarantee level is specified

When the UAPs are executed as shown previously, the search results of 1. and 4. of
UAP1 are as shown as follows. In this example, UAP1, UAP2, and UAP3 are all executed
at the same data guarantee level.

Data
guarantee

level

UAP1 search results Explanation

1. 4.

0 TV 100

VIDEO 80

TV 100

VIDEO 200

AMPLIFIER 50

• Although the same data is searched
twice in the same transaction, the search
results of 1. and 4. are different.

• Because the data is not guaranteed, the
processing for 2. and 3. is reflected in the
search results for 4.

1 TV 100

VIDEO 80

TV 100

VIDEO 200

AMPLIFIER 50

• Although the same data is searched
twice in the same transaction, the search
results of 1. and 4. are different.

• Although the data is guaranteed during
search processing, the data is no longer
guaranteed once a search process ends.
Consequently, the processing for 2. and
3. is reflected in the search results for 4.

4. UAP Design for Improving Performance and Handling

372

2 TV 100

VIDEO 80

TV 100

VIDEO 80

AMPLIFIER 50

• Although the same data is searched
twice in the same transaction, the search
results of 1. and 4. are different.

• When the data is searched in 1., the
TELEVISION and VIDEO rows are
guaranteed. However, because the data
is not guaranteed in 2., the processing of
2. is reflected. However, the processing
for 3. enters wait status because the data
is guaranteed, and the processing for 3.
is not reflected in the search results for 4.

Data
guarantee

level

UAP1 search results Explanation

1. 4.

4. UAP Design for Improving Performance and Handling

373

4.7 Block transfer facility

(1) Overview of the block transfer facility
Block transfer means that the HiRDB system sends data to a HiRDB client in units of
a specified number of rows. The block transfer facility is useful when a HiRDB client
accesses the HiRDB system to retrieve a large amount of data.

The following figure provides an overview of the block transfer facility.

Figure 4-58: Overview of block transfer facility

(2) Usage method
The block transfer facility is executed when both of the following conditions are
satisfied:

4. UAP Design for Improving Performance and Handling

374

1. When at least two values are specified in client environment definition PDBLKF
or when at least one value is specified in PDBLKBUFFSIZE

2. When the FETCH statement is specified (except when one of the following
conditions applies)

• Update using a cursor

• Retrieval involving a BLOB-type selection expression

• Retrieval in which the value of client environment definition
PDBINARYBLKF is NO and involving a BINARY-type selection expression
with a definition length of 32,001 bytes or more

• Retrieval that uses a BLOB locator type or BINARY locator type variable to
accept results and that uses a holdable cursor

(3) Specification of communication buffer size between server and client
You can use client environment definition PDBLKBUFFSIZE to specify the
communication buffer size between the server and the client.

For retrievals in which the number of rows to be extracted (PDBLKF specification
value) is large, specifying PDBLKBUFFSIZE suppresses the allocation of a
communication buffer memory larger than the value specified in the server. However,
a communication buffer memory for transferring one row is allocated.

For details about the calculation equation for the communication buffer size between
the server and the client, see Formula for size of memory required during block
transfer or array FETCH in the HiRDB Version 9 Installation and Design Guide.

(4) Number of rows transferred in one transmission
The table below shows the number of rows transferred in one transmission when the
block transfer facility is used.

4. UAP Design for Improving Performance and Handling

375

#: Certain SQL statements may be able to transfer more than the calculated number of
rows.

(5) Notes
1. If one of the following events occurs, HiRDB interrupts retrieval processing and

returns the data that was retrieved to that point:

• A warning error occurs during retrieval processing. (HiRDB returns the
warning information and the data that was retrieved to that point.)#

• During a search via a list, a row that was present when the list was created is
deleted or an attribute value is deleted or updated. (HiRDB returns return
code information (SQLCODE=+110) that indicates the event and the data that
was retrieved to that point.)

#: HiRDB may not interrupt retrieval processing even if a warning error occurs.

PDBLKF
specification

value

PDBLKBUFFSIZE specification value

0 1 or higher

1 Block transfer facility
does not apply.

Number of rows = MIN(X, 4096)#

X:
The number of rows becomes the maximum value
(number of rows that can be stored in the specified
buffer size) of n that satisfies the following condition
expression. However, if (a - b) < ci, then the number of
rows becomes 1 (i is 1).

 n

(a - b) ci (unit: bytes)
 i=1

ci: Data length of the i-th row in the search results received
with the FETCH statement
a: Specified buffer size (PDBLKBUFFSIZE value x 1024)
b: Header information and other information (864 + 22 x d
+ 2 x e)
The d and e variables in the calculation expression for b are
described below.
d: Number of retrieval items specified in the SELECT clause
e: Number of BINARY-type selection items in retrieval
items specified in the SELECT clause

2 or higher Number of rows =
PDBLKF value

Number of rows = MIN(X, Y)*

X: Number of rows that can be stored in specified buffer
size (same as X shown above)
Y: PDBLKF value

4. UAP Design for Improving Performance and Handling

376

If HiRDB does not interrupt processing, it continues retrieval processing until the
specified number of rows and returns all warning error information that occurred
during the retrieval, and the retrieved data.

2. The block transfer facility can shorten the retrieval time because it decreases the
communication overhead by transferring a large number of rows at a time.
However, the facility must be used with caution because it increases the amount
of required memory. When client environment definition PDBLKBUFFSIZE is
specified, the memory size used for the communication buffer is held below a
fixed value. However, if the value is too small, the block transfer facility becomes
ineffective because the number of communications cannot be reduced.

3. When the block transfer facility is being used and the search results of one cursor
are received with multiple FETCH statements, specify the same embedded
variable or embedded variables with the same attribute in each of those FETCH
statements. If you try to receive the search results with embedded variables
having different attributes, an error occurs.

4. UAP Design for Improving Performance and Handling

377

4.8 Facilities using arrays

4.8.1 FETCH facility using arrays
(1) Overview

You can use the FETCH statement to fetch the retrieval results for multiple rows at a
time. To do this, specify an array-type embedded variable in the INTO clause or specify
the number of retrieval rows in an embedded variable of the BY clause. This method is
effective when the HiRDB client accesses the HiRDB system and retrieves a large
volume of data. Unlike the block transfer facility, the FETCH facility using arrays
clearly specifies in the program that multiple rows of retrieval results are to be fetched.

(2) Usage methods
(a) Static execution

Convert all embedded and indicator variables specified in the INTO clause of the
FETCH statement into array-type variables. The number of rows to be retrieved at one
time becomes the minimum number of array elements for the specified embedded
variables.

(b) Dynamic execution
To execute the FETCH facility using arrays:

1. Use the PREPARE statement to preprocess the SELECT statement.

2. Use the DESCRIBE statement to fetch information about the SQL descriptor area
of the preprocessed SELECT statement.

3. In the SQLDATA area indicated in the SQL descriptor area, specify the receiving
area for each data item. For variable-length data, specify the size of one element
in the SQLSYS area.

4. Specify the SQL descriptor area in the USING DESCRIPTOR clause of the FETCH
statement and specify an embedded variable in the BY clause. Use the embedded
variable to specify the number of rows to be retrieved at one time.

(3) Notes
1. A cursor specified with the FETCH facility using arrays becomes a dedicated

cursor for that facility. When that cursor is used, the block transfer facility
becomes ineffective. If that cursor is used to execute the normal FETCH facility,
Note 4 applies. When the same module (preprocessing unit) uses both the FETCH
facility using arrays and the normal FETCH facility, use a separate cursor for each.

2. Note that, unlike the normal FETCH facility, the FETCH facility using arrays
fetches data up to the row before the NOT FOUND occurrence if the rows to be

4. UAP Design for Improving Performance and Handling

378

fetched run out during retrieval processing. Similarly, if an error occurs, the
FETCH facility using arrays fetches the data up to the row in which the error
occurred.

3. If the FETCH facility using arrays is executed dynamically, the UAP area may be
destroyed if the number of rows specified in the embedded variable of the BY
clause is larger than the receiving area.

4. The FETCH facility using arrays cannot be used if one of the following conditions
applies:

• A query specification contains a BLOB-type selection expression.

• A query specification contains a BINARY-type selection expression, and the
defined length for one element in the receiving area of the BINARY-type
selection expression is not a multiple of 4.

• The search includes a BINARY-type selection expression having a defined
length of 32,001 bytes or more, and the version of either HiRDB Server or
HiRDB Client Library is 07-00 or earlier.

(4) Usage examples
Following is a coding example of a FETCH operation using arrays:

Example 1

This example uses FETCH statement format 3. The target table consists of the
PCODE (CHAR(4)), PNAME (VARCHAR(17)), COLOR (NCHAR(1)), PRICE
(INTEGER), and SQUANTITY (INTEGER) columns.

 long sel_cnt;
 long data_cnt;
 short i;
 char work[17];

 /* Declaration of array-type embedded variables */
 EXEC SQL BEGIN DECLARE SECTION;
 char xpcode[50][5];
 SQL TYPE IS VARCHAR(17) xpname[50];
 char xcolor[50][3];
 long xprice[50];
 long xsquantity[50];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL
 DECLARE CR3 CURSOR FOR
 SELECT PCODE,PNAME,COLOR,PRICE,SQUANTITY
 FROM STOCK;

 EXEC SQL WHENEVER SQLERROR GOTO FIN;

4. UAP Design for Improving Performance and Handling

379

 EXEC SQL OPEN CR3;

 /* Heading */

 printf(" ***** Stock Table List *****\n\n");
 printf(" Product code Product name Color Price Stock
quantity\n");
 printf(" ---- ---------------- -- -------- --------\n");

 EXEC SQL WHENEVER SQLERROR GOTO FIN;
 EXEC SQL WHENEVER NOT FOUND GOTO FIN;

 /* FETCH */
 sel_cnt = 0;
 for(;;){
 EXEC SQL
 FETCH CR3 INTO
:xpcode,:xpname,:xcolor,:xprice,:xsquantity;
 /* Store total row count retrieved with this */
 /* cursor to SQLERRD2 */
 data_cnt = SQLERRD2 - sel_cnt; /* Calculate number
of retrieved rows */
 for(i=0; i < data_cnt; i++){
 memcpy(work, xpname[i].str, xpname[i].len);
 work[xpname[i].len] = '\0';
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode[i], work, xcolor[i], xprice[i],
xsquantity[i]);
 }
 sel_cnt = SQLERRD2;
 }

FIN:
/* */
/* Display remaining data because data is read even */
/* if error or NOT FOUND occurs */
/* */
 if(sel_cnt != SQLERRD2){
 data_cnt = SQLERRD2 - sel_cnt;
 for(i=0; i < data_cnt; i++){
 memcpy(work, xpname[i].str, xpname[i].len);
 work[xpname[i].len] = '\0';
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode[i], work, xcolor[i], xprice[i],
xsquantity[i]);
 }
 }

4. UAP Design for Improving Performance and Handling

380

FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL CLOSE CR3;
 EXEC SQL COMMIT;

Example 2

This example uses FETCH statement format 2. The target table consists of the
PCODE (CHAR(4)), PNAME (VARCHAR(17)), COLOR (NCHAR(1)), PRICE
(INTEGER), and SQUANTITY (INTEGER) columns.

#include <pdbsqlda.h> /* Include this file to use */
 /* user-defined SQLDA*/

 long sel_cnt;
 long data_cnt;
 short i;
 char work[17];

 /* Declaration of user-defined SQLDA */
 PDUSRSQLDA(5) xsqlda;

 /* Declaration of array-type embedded variables */
 EXEC SQL BEGIN DECLARE SECTION;
 char xpcode[50][5];
 SQL TYPE IS VARCHAR(17) xpname[50];
 char xcolor[50][3];
 long xprice[50];
 long xsquantity[50];
 short arry_num;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO FIN;

 /* Preprocessing of retrieval SQL */
 EXEC SQL PREPARE SEL1 FROM
 'SELECT * FROM STOCK' ;

 /* Acquisition of retrieval SQL output information */
 PDSQLN(xsqlda) = 5 ; /* Set SQLVAR count */
 EXEC SQL DESCRIBE SEL1 INTO :xsqlda ;

 EXEC SQL
 DECLARE CR3 CURSOR FOR SEL1 ;

 EXEC SQL OPEN CR3;

 /* SQLVAR setting: Normally, it would better if I/O */
 /* area was allocated dynamically from SQLDA. */

4. UAP Design for Improving Performance and Handling

381

 /* However, the specification is omitted because */
 /* this is an example. */
 /* Values that were set during DESCRIBE processing */
 /* are used for SQLLEN, SQLXDIM, and SQLSYS. */
 /* PCODE column information settings */
 PDSQLDATA(xsqlda, 0) = (void *)xpcode ; /* Set address */
 PDSQLIND(xsqlda, 0) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 0) = PDSQL_CHAR ; /* Set data code */
 /* PNAME column information settings */
 PDSQLDATA(xsqlda, 1) = (void *) xpname; /* Set address */
 PDSQLIND(xsqlda, 1) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 1) = PDSQL_VARCHAR ; /* Set data code */
 PDSQLSYS(xsqlda, 1) = sizeof(xpname[0]) ; /* Set SQLSYS
because this is */
 /* variable-length
data */
 /* COLOR column information settings */
 PDSQLDATA(xsqlda, 2) = (void *) xcolor; /* Set address */
 PDSQLIND(xsqlda, 2) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 2) = PDSQL_NCHAR ; /* Set data code */
 /* PRICE column information settings */
 PDSQLDATA(xsqlda, 3) = (void *) xprice; /* Set address */
 PDSQLIND(xsqlda, 3) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 3) = PDSQL_INTEGER ; /* Set data code */
 /* SQUANTITY column information settings */
 PDSQLDATA(xsqlda, 4) = (void *) xsquantity; /* Set address */
 PDSQLIND(xsqlda, 4) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 4) = PDSQL_ INTEGER; /* Set data code */

 /* Heading */

 printf(" ***** Stock Table List *****\n\n");
 printf(" Product code Product name Color Price
Stock quantity\n");
 printf(" ---- ---------------- -- --------
--------\n");

 EXEC SQL WHENEVER SQLERROR GOTO FIN;
 EXEC SQL WHENEVER NOT FOUND GOTO FIN;

 /* FETCH */
 sel_cnt = 0;
 for(;;){

4. UAP Design for Improving Performance and Handling

382

 arry_num = 50 ;
 EXEC SQL
 FETCH CR3 USING DESCRIPTOR :xsqlda BY :arry_num ROWS ;
 /* Store total row count retrieved with this */
 /* cursor to SQLERRD2 */
 data_cnt = SQLERRD2 - sel_cnt; /* Calculate number
of fetched rows */
 for(i=0; i < data_cnt; i++){
 memcpy(work, xpname[i].str, xpname[i].len);
 work[xpname[i].len] = '\0';
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode[i], work, xcolor[i], xprice[i], xsquantity
[i]);
 }
 sel_cnt = SQLERRD2;
 }

FIN:
/* */
/* Display remaining data because data is read even */
/* if error or NOT FOUND occurs */
/* */
 if(sel_cnt != SQLERRD2){
 data_cnt = SQLERRD2 - sel_cnt;
 for(i=0; i < data_cnt; i++){
 memcpy(work, xpname[i].str, xpname[i].len);
 work[xpname[i].len] = '\0';
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode[i], work, xcolor[i], xprice[i], xsquantity
[i]);
 }
 }
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL CLOSE CR3;
 EXEC SQL COMMIT;

Example 3

The example uses FETCH statement format 3. The target table consists of the
XCODE (INTEGER) and ROW_DATA (BINARY(3002)) columns.

 long sel_cnt;
 long data_cnt;
 short i;

 /* Declaration of array-type embedded variables */
 EXEC SQL BEGIN DECLARE SECTION;
 long xcode[50];

4. UAP Design for Improving Performance and Handling

383

 /* To fetch data using BINARY-type array, */
 /* define area length with multiple of 4 */
 SQL TYPE IS BINARY(3004) xrow_data[50];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL
 DECLARE CR3 CURSOR FOR
 SELECT * FROM T_BINARY;

 EXEC SQL WHENEVER SQLERROR GOTO FIN;

 EXEC SQL OPEN CR3;

 /* Heading */

 printf(" ***** Binary Data Table *****\n\n");

 EXEC SQL WHENEVER SQLERROR GOTO FIN;
 EXEC SQL WHENEVER NOT FOUND GOTO FIN;

 /* FETCH */
 sel_cnt = 0;
 for(;;){

 EXEC SQL
 FETCH CR3 INTO : xcode,: xrow_data;
 /* Store total row count retrieved with this */
 /* cursor to SQLERRD2 */
 data_cnt = SQLERRD2 - sel_cnt; /* Calculate number
of fetched rows */
 for(i=0; i < data_cnt; i++){
 printf(" CODE=%8d\n",xcode[i]);
 printf(" DATA_LENGTH=%d\n", xrow_data [i].len);
/* Do not display BINARY data section because this is */
/* only an example */
/* Convert xrow_data[i].str to individual format of */
/* each UAP */
 }
 sel_cnt = SQLERRD2;
 }

FIN:
/* */
/* Display remaining data because data is read even */
/* if error or NOT FOUND occurs */
/* */
 if(sel_cnt != SQLERRD2){
 data_cnt = SQLERRD2 - sel_cnt;

4. UAP Design for Improving Performance and Handling

384

 for(i=0; i < data_cnt; i++){
 printf(" CODE=%8d\n",xcode[i]);
 printf(" DATA_LENGTH=%d\n", xrow_data [i].len);
/* Do not display BINARY data section because this is */
/* only an example */
/* Convert xrow_data[i].str to individual format of */
/* each UAP */
 }
 }
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL CLOSE CR3;
 EXEC SQL COMMIT;

Example 4

This example uses FETCH statement format 2. The target table consists of the
XCODE (INTEGER) and ROW_DATA (BINARY(3002)) columns.

#include <pdbsqlda.h> /* Include this file to use */
 /* user-defined SQLDA */

 long sel_cnt;
 long data_cnt;
 short i;

 /* Declaration of user-defined SQLDA */
 PDUSRSQLDA(2) xsqlda;

 /* Declaration of array-type embedded variable */
 EXEC SQL BEGIN DECLARE SECTION;
 long xcode[50];
 /* To fetch data using BINARY-type array, */
 /* define area length with multiple of 4 */
 SQL TYPE IS BINARY(3004) xrow_data[50];
 short arry_num;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO FIN;

 /* Preprocessing of retrieval SQL */
 EXEC SQL PREPARE SEL1 FROM
 'SELECT * FROM T_BINARY ;

 /* Acquisition of retrieval SQL output information */
 PDSQLN(xsqlda) = 2 ; /* Set SQLVAR count */
 EXEC SQL DESCRIBE SEL1 INTO :xsqlda ;

 EXEC SQL

4. UAP Design for Improving Performance and Handling

385

 DECLARE CR3 CURSOR FOR SEL1 ;

 EXEC SQL OPEN CR3;

 /* SQLVAR setting: Normally, it would better if I/O */
 /* area was allocated dynamically from SQLDA. */
 /* However, the specification is omitted because */
 /* this is an example. */
 /* Values that were set during DESCRIBE processing */
 /* are used for SQLLEN, SQLXDIM, and SQLSYS. */
 /* XCODE column information settings */
 PDSQLDATA(xsqlda, 0) = (void *)xcode ; /* Set address */
 PDSQLIND(xsqlda, 0) = NULL ; /* Clear NULL indicator
variable */
 PDSQLCOD(xsqlda, 0) = PDSQL_INTEGER ; /* Set data code */
 /* R_DATA column information settings */
 PDSQLDATA(xsqlda, 1) = (void *) xrow_data; /* Set address */
 PDSQLIND(xsqlda, 1) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD (xsqlda, 1) = PDSQL_BINARY ; /* Set data code*/
 PDSQLLEN (xsqlda, 1) = 3004 ; /* Reset because
defined length */
 /* is not multiple of 4 */

 /* Heading */

 printf(" ***** Binary Data Table *****\n\n");

 EXEC SQL WHENEVER SQLERROR GOTO FIN;
 EXEC SQL WHENEVER NOT FOUND GOTO FIN;

 /* FETCH */
 sel_cnt = 0;
 for(;;){
 arry_num = 50 ;
 EXEC SQL
 FETCH CR3 USING DESCRIPTOR :xsqlda BY :arry_num ROWS ;
 /* Store total row count retrieved with this */
 /* cursor to SQLERRD2 */
 data_cnt = SQLERRD2 - sel_cnt; /* Calculate number
of fetched rows */
 for(i=0; i < data_cnt; i++){
 printf(" CODE=%8d\n",xcode[i]);
 printf(" DATA_LENGTH=%d\n", xrow_data [i].len);
/* Do not display BINARY data section because this is an example
*/
/* Convert xrow_data[i].str to individual format of each UAP */
 }

4. UAP Design for Improving Performance and Handling

386

 sel_cnt = SQLERRD2;
 }

FIN:
/* */
/* Display remaining data because data is read even */
/* if error or NOT FOUND occurs */
/* */
 if(sel_cnt != SQLERRD2){
 data_cnt = SQLERRD2 - sel_cnt;
 for(i=0; i < data_cnt; i++){
 printf(" CODE=%8d\n",xcode[i]);
 printf(" DATA_LENGTH=%d\n", xrow_data [i].len);
/* Do not display BINARY data section because this is */
/* only an example */
/* Convert xrow_data[i].str to individual format of */
/* each UAP */
 }
 }
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL CLOSE CR3;
 EXEC SQL COMMIT;

4.8.2 INSERT facility using arrays
(1) Overview

You can insert multiple rows of data with one SQL statement by specifying an
array-type variable in which the data for the multiple rows has been set. Using the
INSERT facility using arrays reduces the number of communications between the
HiRDB client and the HiRDB server. This facility is therefore effective when you want
to access the HiRDB server from the HiRDB client and insert a large volume of data
at high speed.

(2) Usage methods
(a) Static execution

Specify the embedded variables in the INSERT statement's FOR clause and use an
array-type variable to specify all embedded and indicator variables. The embedded
variables specified in the FOR clause control the number of rows that can be inserted
at one time (batch insertion).

(b) Dynamic execution
To execute the INSERT facility using arrays:

1. Use the PREPARE statement to preprocess the INSERT statement (specify one or
more ? parameters).

4. UAP Design for Improving Performance and Handling

387

2. In the USING clause of the EXECUTE statement, use an array to specify the values
to be assigned to the input ? parameter of the preprocessed INSERT statement,
and specify an embedded variable in the BY clause. Use the embedded variable
specified in the BY clause to control the number of rows to be inserted by batch
insertion.

If you specify an embedded variable in the USING clause, change all embedded
and indicator variables to array-type variables.

If you specify an SQL descriptor area in the USING clause, use the array format
to specify data in all areas indicated by SQLDATA. In the SQLSYS area, specify
values that correspond to the data type.

(3) Note
If a row count that exceeds the write area is specified in the embedded variable in the
FOR clause of the INSERT statement or the BY clause of the EXECUTE statement, DB
destruction or UAP area destruction may occur.

(4) Usage examples
Explained as follows are coding examples for the INSERT facility using arrays.

Example 1

This example uses INSERT statement format 3 to set the data read from the file
into an array-format embedded variable and to insert 50 rows at a time into the
STOCK table.

The target table is consists of the PCODE (CHAR(4)), PNAME (VARCHAR(17)),
COLOR (NCHAR(1)), PRICE (INTEGER), and SQUANTITY (INTEGER) columns.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 short in_pname_len;
 char in_pname[17];
 char in_color[3];
 int in_price;
 int i;

4. UAP Design for Improving Performance and Handling

388

 EXEC SQL BEGIN DECLARE SECTION;
 short xinsert_num;
 /* Declare array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to
be inserted */
 /* in PCODE (CHAR(4) type
column) */
 SQL TYPE IS VARCHAR(17) xpname[50];
 /* For specifying value to
be inserted */
 /* in PNAME (VARCHAR(17)
type column) */
 char xcolor[50][3]; /* For specifying value to
be inserted */
 /* in COLOR (NCHAR(1) type
column) */
 long xprice[50]; /* For specifying value to
be inserted */
 /* in PRICE (INTEGER type
column) */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (!feof(input)) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If last data in file, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;
 }

4. UAP Design for Improving Performance and Handling

389

 sscanf(indata, "%4s %hd %16s %2s %8d",
 in_pcode, &in_pname_len, in_pname, in_color, &in_price);
 /* Set input data into array variable elements */
 strncpy(xpcode[i], in_pcode, 5);
 xpname[i].len = in_pname_len;
 strncpy(xpname[i].str, in_pname, 17);
 strncpy(xcolor[i], in_color, 3);
 xprice[i] = in_price;
 }
 /* INSERT execution */
 EXEC SQL FOR :xinsert_num
 INSERT INTO STOCK (PCODE, PNAME, COLOR, PRICE)
 VALUES (:xpcode, :xpname, :xcolor, :xprice);
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

Example 2

This example uses INSERT statement format 3 to set data read from the data read
function to an array-type embedded variable and to insert 50 rows at a time into
the STOCK table.

The target table consists of the PCODE (CHAR(4)) and ROW_DATA
(BINARY(3002)) columns.

4. UAP Design for Improving Performance and Handling

390

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void abnormalend();

main() {
 int i,rc;

 EXEC SQL BEGIN DECLARE SECTION;
 short xinsert_num;
 /* Declaration of array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to be
inserted */
 /* in PCODE (CHAR(4) type column) */
 SQL TYPE IS BINARY(3004) xrow_data[50];
 /* For specifying value to be inserted in
ROW_DATA (BINARY(3002) type column) */
 /* However, set data length to multiple of 4. */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 rc = 0 ;
 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (0==rc) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read BINARY data: Function details omitted */
 rc = get_binarydata(&xpcode[i],&xrow_data[i]);
 if (0 != rc){
 /* If input data runs out, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;
 }
 }
 /* INSERT execution */
 EXEC SQL FOR :xinsert_num
 INSERT INTO STOCK (PCODE, ROW_DATA)
 VALUES (:xpcode, :xrow_data);
 }

4. UAP Design for Improving Performance and Handling

391

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

Example 3

This example uses EXECUTE statement format 2 to set data read from a file to
array-format embedded variables and insert 50 rows at a time into the STOCK
table.

The target table consists of the PCODE (CHAR(4)), PNAME (VARCHAR(17)),
COLOR (NCHAR(1)), PRICE (INTEGER), and SQUANTITY (INTEGER) columns.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 short in_pname_len;
 char in_pname[17];
 char in_color[3];
 int in_price;
 int i;

 EXEC SQL BEGIN DECLARE SECTION;

4. UAP Design for Improving Performance and Handling

392

 short xinsert_num;
 /* Declaration of array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to be
inserted */
 /* in PCODE (CHAR(4) type column) */
 SQL TYPE IS VARCHAR(17) xpname[50];
 /* For specifying value to be inserted
in PNAME (VARCHAR(17) type column) */
 char xcolor[50][3]; /* For specifying value to be inserted
in COLOR (NCHAR(1) type column) */
 long xprice[50]; /* For specifying value to be inserted
in PRICE (INTEGER type column) */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* SQL preprocessing execution */
 EXEC SQL PREPARE INS1 FROM
 'INSERT INTO STOCK(PCODE, PNAME, COLOR, PRICE)
VALUES(?,?,?,?)';

 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (!feof(input)) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If input data runs out, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;
 }
 sscanf(indata, "%4s %hd %16s %2s %8d",
 in_pcode, &in_pname_len, in_pname, in_color, &in_price);
 /* Set input data to array variable elements */
 strncpy(xpcode[i], in_pcode, 5);

4. UAP Design for Improving Performance and Handling

393

 xpname[i].len = in_pname_len;
 strncpy(xpname[i].str, in_pname, 17);
 strncpy(xcolor[i], in_color, 3);
 xprice[i] = in_price;
 }
 /* EXECUTE execution */
 EXEC SQL EXECUTE INS1
 USING :xpcode, :xpname, :xcolor, :xprice
 BY :xinsert_num ROWS ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

Example 4

This example uses EXECUTE statement format 2 to set data read from a file to
array-format embedded variables and uses a user-defined SQLDA to insert 50 rows
at a time into the STOCK file.

The target table consists of the PCODE (CHAR(4)), PNAME (VARCHAR(17)),
COLOR (NCHAR(1)), PRICE (INTEGER), and SQUANTITY (INTEGER) columns.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <pdbsqlda.h> /* Include file to use */

4. UAP Design for Improving Performance and Handling

394

 /* user-defined SQLDA */

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 short in_pname_len;
 char in_pname[17];
 char in_color[3];
 int in_price;
 int i;

 /* Declaration of user-defined SQLDA */
 PDUSRSQLDA(4) xsqlda;

 EXEC SQL BEGIN DECLARE SECTION;
 short xinsert_num;
 /* Declaration of array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to be
inserted */
 /* in PCODE (CHAR(4) type column) */
 SQL TYPE IS VARCHAR(17) xpname[50];
 /* For specifying value to be inserted to
PNAME (VARCHAR(17) type column) */
 char xcolor[50][3]; /* For specifying value to be
inserted to COLOR (NCHAR(1) type column) */
 long xprice[50]; /* For specifying value to be inserted
to PRICE (INTEGER type column) */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* SQL preprocessing execution */
 EXEC SQL PREPARE INS1 FROM

4. UAP Design for Improving Performance and Handling

395

 'INSERT INTO STOCK(PCODE, PNAME, COLOR, PRICE)
VALUES(?,?,?,?)';

 /* SQLVAR settings */
 PDSQLN(xsqlda) = 4 ; /* Set SQLVAR count */
 PDSQLD(xsqlda) = 4 ; /* Set ? parameter count */
 /* Set PCODE column information */
 PDSQLCOD(xsqlda, 0) = PDSQL_CHAR ; /* Set data code */
 PDSQLXDIM(xsqlda, 0) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLSYS(xsqlda, 0) = 0 ; /* Length of one element */
 /* (fixed to 0 except for
variable-length character strings) */
 PDSQLLEN(xsqlda, 0) = 4 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 0) = (void *)xpcode ; /* Set data area
address */
 PDSQLIND(xsqlda, 0) = NULL ; /* Clear NULL indicator
variable */
 /* Set PNAME column information */
 PDSQLCOD(xsqlda, 1) = PDSQL_VARCHAR ; /* Set data code */
 PDSQLXDIM(xsqlda, 1) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLLEN(xsqlda, 1) = 17 ; /* Set data defined length */
 PDSQLSYS(xsqlda, 1) = sizeof(xpname[0]) ; /* Length of one
element */
 PDSQLDATA(xsqlda, 1) = (void *) xpname; /* Set data area
address */
 PDSQLIND(xsqlda, 1) = NULL ; /* Clear NULL indicator
variable */
 /* Set COLOR column information */
 PDSQLCOD(xsqlda, 2) = PDSQL_NCHAR ; /* Set data code */
 PDSQLXDIM(xsqlda, 2) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLSYS(xsqlda, 2) = 0 ; /* Length of one element */
 /* (fixed to 0 except for
variable-length character strings) */
 PDSQLLEN(xsqlda, 2) = 1 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 2) = (void *) xcolor; /* Set data area
address */
 PDSQLIND(xsqlda, 2) = NULL ; /* Clear NULL indicator
variable */
 /* Set PRICE column information */
 PDSQLCOD(xsqlda, 3) = PDSQL_INTEGER ; /* Set data code */
 PDSQLXDIM(xsqlda, 3) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLSYS(xsqlda, 3) = 0 ; /* Length of one element */
 /* (fixed to 0 except for
variable-length character strings) */

4. UAP Design for Improving Performance and Handling

396

 PDSQLLEN(xsqlda, 3) = 4 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 3) = (void *) xprice; /* Set data area
address */
 PDSQLIND(xsqlda, 3) = NULL ; /* Clear NULL indicator
variable */

 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (!feof(input)) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If last data in file, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;
 }
 sscanf(indata, "%4s %hd %16s %2s %8d",
 in_pcode, &in_pname_len, in_pname, in_color, &in_price);
 /* Set input data to array variable elements */
 strncpy(xpcode[i], in_pcode, 5);
 xpname[i].len = in_pname_len;
 strncpy(xpname[i].str, in_pname, 17);
 strncpy(xcolor[i], in_color, 3);
 xprice[i] = in_price;
 }
 /* EXECUTE execution */
 EXEC SQL EXECUTE INS1
 USING DESCRIPTOR :xsqlda
 BY :xinsert_num ROWS ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()

4. UAP Design for Improving Performance and Handling

397

{
 int wsqlcode;

 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

Example 5

This example uses EXECUTE statement format 2 to set data read by a data read
function to array-type embedded variables and uses a user-defined SQLDA to
insert 50 rows at a time into the STOCK file.

The target table consists of the PCODE (CHAR(4)) and ROW_DATA
(BINARY(3002)) columns.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <pdbsqlda.h> /* Include file for using */
 /* user-defined SQLDA */

void abnormalend();

main() {
 int i,rc;

 /* Declaration of user-defined SQLDA */
 PDUSRSQLDA(4) xsqlda;

 EXEC SQL BEGIN DECLARE SECTION;
 short xinsert_num;
 /* Declaration of array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to be inserted
*/
 /* to PCODE (CHAR(4) type column) */
 SQL TYPE IS BINARY(3004) xrow_data[50];
 /* For specifying value to be inserted to
ROW_DATA (BINARY(3002) type column) */
 /* However, set data length to multiple of 4 */
 EXEC SQL END DECLARE SECTION;

4. UAP Design for Improving Performance and Handling

398

 -------(CONNECT processing to HiRDB (omitted))-------

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* SQL preprocessing execution */
 EXEC SQL PREPARE INS1 FROM
 'INSERT INTO STOCK(PCODE, ROW_DATA) VALUES(?,?)';

 /* SQLVAR settings */
 PDSQLN(xsqlda) = 2 ; /* Set SQLVAR count */
 PDSQLD(xsqlda) = 2 ; /* Set ? parameter count */
 /* Set PCODE column information */
 PDSQLCOD(xsqlda, 0) = PDSQL_CHAR ; /* Set data code */
 PDSQLXDIM(xsqlda, 0) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLSYS(xsqlda, 0) = 0 ; /* Length of one element */
 /* (fixed to 0 except for
variable-length character strings) */
 PDSQLLEN(xsqlda, 0) = 4 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 0) = (void *)xpcode ; /* Set data area
address */
 PDSQLIND(xsqlda, 0) = NULL ; /* Clear NULL indicator
variable */
 /* Set ROW_DATA column information */
 PDSQLCOD(xsqlda, 1) = PDSQL_BINARY ; /* Set data code */
 PDSQLXDIM(xsqlda, 1) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLLOBLEN(xsqlda, 1) = 3004 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 1) = (void *) xrow_data; /* Set data */
 /* area address */
 PDSQLIND(xsqlda, 1) = NULL ; /* Clear NULL indicator
variable */

 rc = 0 ;
 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (0==rc) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read BINARY data: Function details omitted */
 rc = get_binarydata(&xpcode[i],&xrow_data[i]);
 if (0 != rc){
 /* If input data runs out, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;

4. UAP Design for Improving Performance and Handling

399

 }
 }
 /* EXECUTE execution */
 EXEC SQL EXECUTE INS1
 USING DESCRIPTOR :xsqlda
 BY :xinsert_num ROWS ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

4.8.3 UPDATE facility using arrays
(1) Overview

You can update multiple table columns with one SQL statement by specifying an
array-type variable in which the data for multiple columns has been set.

Using the UPDATE facility using arrays reduces the number of communications
between the HiRDB client and the HiRDB server. This facility is therefore effective
when you want to access the HiRDB server from the HiRDB client and update a large
volume of data at high speed.

(2) Usage methods
(a) Static execution

In the UPDATE statement, specify an embedded variable in the FOR clause and change
all embedded and indicator variables specified in the search condition to array-type
variables. Use the embedded variable specified in the FOR clause to control the number
of updates to be performed by batch processing.

4. UAP Design for Improving Performance and Handling

400

(b) Dynamic execution
To execute the UPDATE facility using arrays:

1. Use the PREPARE statement to preprocess the UPDATE statement. (Specify the ?
parameter for the update values and in the search condition.)

2. In the USING clause of the EXECUTE statement, use an array to specify the values
to be assigned to the input ? parameter of the preprocessed UPDATE statement,
and specify an embedded variable in the BY clause. Use the embedded variable
specified in the BY clause to control the number of updates to be performed by
batch processing.

Notes about dynamic execution are described below.

• If you specify an embedded variable in the USING clause, change all embedded
and indicator variables to array-type variables.

• If you specify an SQL Descriptor Area in the USING clause, use the array format
to specify data in all areas indicated by SQLDATA. In the SQLSYS area, specify
values that correspond to the data type.

(3) Note
1. If a count that exceeds the write area is specified in the embedded variable in the

FOR clause of the UPDATE statement or the BY clause of the EXECUTE statement,
database destruction or UAP area destruction may occur.

(4) Usage example
Example

This example sets the data read from a file into an array-format embedded
variable and performs several updates to the STOCK table by batch processing.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 int in_quantity;
 int i;

4. UAP Design for Improving Performance and Handling

401

 EXEC SQL BEGIN DECLARE SECTION;
 short xupdate_num;
 /* Declare array-type embedded variables */
 char xpcode[50][5]; /* For search condition to PCODE (CHAR(4) type
column) */
 long squantity[50]; /* For specifying update value to SQUANTITY
(INTEGER type column) */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* Batch update count (up to 50 updates) */
 xupdate_num=50;
 while (!feof(input)) {
 /* Set update/search condition data for 50 updates (if last */
 /* data in file, up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If last data in file, set array elements up to last data */
 /* in batch update count, and escape for statement */
 xupdate_num= i;
 break;
 }
 sscanf(indata, "%4s %8d", in_pcode, &in_quantity);
 /* Set update/search condition data into array variable elements */
 strncpy(xpcode[i], in_pcode, 5);
 xquantity[i] = in_quantity;
 }
 /* UPDATE execution */
 EXEC SQL FOR :xupdate_num
 UPDATE STOCK SET ZQUANTITY = :xquantity WHERE PCODE =
:xpcode ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:

4. UAP Design for Improving Performance and Handling

402

 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

4.8.4 DELETE facility using arrays
(1) Overview

You can delete multiple rows with one SQL statement by specifying an array-type
variable in which the data for multiple deletions has been set.

Using the DELETE facility using arrays reduces the number of communications
between the HiRDB client and the HiRDB server. This facility is therefore effective
when you want to access the HiRDB server from the HiRDB client and delete a large
volume of data at high speed.

(2) Usage methods
(a) Static execution

In the DELETE statement, specify an embedded variable in the FOR clause and change
all embedded and indicator variables specified in the search condition to array-type
variables. Use the embedded variable specified in the FOR clause to control the number
of deletions to be performed by batch processing.

(b) Dynamic execution
To execute the DELETE facility using arrays:

1. Use the PREPARE statement to preprocess the DELETE statement (specify the ?
parameter in the search condition).

4. UAP Design for Improving Performance and Handling

403

2. In the USING clause of the EXECUTE statement, use an array to specify the values
to be assigned to the input ? parameter of the preprocessed DELETE statement,
and specify an embedded variable in the BY clause. Use the embedded variable
specified in the BY clause to control the number of deletions to be performed by
batch processing.

Notes about dynamic execution are described below.

• If you specify an embedded variable in the USING clause, change all embedded
and indicator variables to array-type variables.

• If you specify an SQL Descriptor Area in the USING clause, use the array format
to specify data in all areas indicated by SQLDATA. In the SQLSYS area, specify
values that correspond to the data type.

(3) Note
1. If a count that exceeds the write area is specified in the embedded variable in the

BY clause of the EXECUTE statement, database destruction or UAP area
destruction may occur.

(4) Usage example
Example

This example sets the data read from a file into an array-format embedded
variable and performs several deletions from the STOCK table by batch
processing.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 int i;

 EXEC SQL BEGIN DECLARE SECTION;
 short xdelete_num;
 /* Declare array-type embedded variables */
 char xpcode[50][5]; /* For search condition to PCODE (CHAR(4) type
column) */

4. UAP Design for Improving Performance and Handling

404

 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* Batch deletion count (up to 50 deletions) */
 xdelete_num=50;
 while (!feof(input)) {
 /* Set search condition data for 50 deletions (if last */
 /* data in file, up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If last data in file, set array element count up to last data */
 /* in batch deletion count and escape for statement */
 xdelete_num= i;
 break;
 }
 sscanf(indata, "%4s", in_pcode);
 /* Set search condition data into array variable elements */
 strncpy(xpcode[i], in_pcode, 5);
 }
 /* DELETE execution */
 EXEC SQL FOR :xdelete_num
 DELETE FROM STOCK WHERE PCODE = :xpcode ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{

4. UAP Design for Improving Performance and Handling

405

 int wsqlcode;
 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

4. UAP Design for Improving Performance and Handling

406

4.9 Rapid grouping facility

4.9.1 Overview
When the GROUP BY clause of the SQL is specified for grouping, grouping is
performed after sorting. Rapid grouping is accomplished by combining hashing with
grouping. The rapid grouping facility reduces the time required for grouping as the
number of groups to be grouped gets smaller and as the number of rows gets larger.

In HiRDB/Parallel Server, you must also consider the grouping processing method,
because how the floatable servers are used affects performance. For details about
grouping processing methods, see 4.5.5 Grouping processing methods (HiRDB/
Parallel Server only).

4.9.2 Application criteria
The rapid grouping facility can be used when an SQL that satisfies all the following
conditions is executed:

HiRDB/Parallel Server
• The GROUP BY clause is specified.

• Use of the rapid grouping facility is defined in the system common
definitions, front-end server definitions, client environment definitions, or
routine definitions.

• The selection expression column length is 4,096 or less.

• The grouping process is not for an inquiry specification that becomes the
input for a set operation (UNION, EXCEPT).

• DISTINCT is not specified within the set function.

• A character string-type column with a defined length of 256 bytes or more,
a BINARY-type column, or a BLOB-type column is not specified in the set
function.

• When a HAVING clause is specified in the specification of a query in which
the GROUP BY clause is specified, no subquery is specified in the HAVING
clause.

• No subquery is specified in the selection expression.

In the following case, rapid grouping is performed regardless of whether or not
the SQL optimization option is specified:

• Grouping can be executed without sorting, using a grouping column index.

The following facilities cannot be used when the rapid grouping facility is used:

4. UAP Design for Improving Performance and Handling

407

• Facility for creating multiple objects

• AND multi-index use (however, this function is used with structured
repetition predicates and functions dedicated to index type plug-ins).

HiRDB/Single Server
• The GROUP BY clause is specified.

• Use of the rapid grouping facility is defined in the system common
definitions, client environment definitions, or routine definitions.

• The grouping process is not for an inquiry specification that becomes the
input for a set operation (UNION, EXCEPT).

• DISTINCT is not specified within the set function.

• A character string-type column with a defined length of 256 bytes or more,
a BINARY-type column, or a BLOB-type column is not specified in the set
function.

In the following case, rapid grouping is performed regardless of whether or not
the SQL optimization option is specified:

• Grouping can be executed without sorting, using a grouping column index or
by sorting join columns for sort/merge join.

The following facility is not used when the rapid grouping facility is used:

• AND multi-index use (however, this function is used with structured
repetition predicates and functions dedicated to index type plug-ins).

4.9.3 Specification method
To use the rapid grouping facility, specify in the SQL optimization options either
RAPID_GROUPING or a value to which 1,024 has been added. For details about how to
specify the SQL optimization options, see the following locations:

• The pd_optimize_level description in the manual HiRDB Version 9 System
Definition

• The SQL optimization options description in the manual HiRDB Version 9 SQL
Reference

• The PDSQLOPTLVL description in 6.6.4 Environment definition information

4.9.4 Tuning method
If the number of groups to be grouped is high, the rapid grouping facility may not be
effective. If this is the case, specify a value of the required size (number of groups or
higher) in the PDAGGR operand of the client environment definitions. Note, however,
that a large amount of process-specific memory may be used. If the amount of memory
used is large and a value of the required size cannot be specified, specify the maximum

4. UAP Design for Improving Performance and Handling

408

specifiable value that is less than the number of groups. Specifying a value larger than
the number of groups is no more effective than specifying a value equal to the number
of groups. For details about the PDAGGR operand, see 6.6.4 Environment definition
information.

4. UAP Design for Improving Performance and Handling

409

4.10 Multi-connection facility

(1) Overview
(a) What is the multi-connection facility?

The multi-connection facility establishes multiple connections to the HiRDB server
from one UAP process in a HiRDB client.

The multi-connection facility establishes independent individual connections. A
separate server process is allocated to each connection, and the connections are
processed as separate transactions. The UAP can, therefore, execute multiple SQL
statements simultaneously. Because multiple connections can be established from one
UAP, the number of UAPs to be executed can be reduced, and the overall memory
requirement for UAPs can be reduced.

Because each connection is counted as a separate user, the maximum number of server
connections becomes the maximum number of simultaneous connections rather than
the maximum number of users.

The multi-connection facility has the following characteristics:

• A different authorization server and password can be used for each connection.

• One UAP can connect to HiRDB servers on multiple server computers and
execute SQL statements, because each connection can be connected to a server in
a different server computer.

• The multi-connection facility can be used for all servers that can connect to the
client library.

(b) Multi-connection facility in the X/Open XA interface environment
When the multi-connection facility is used in the X/Open XA interface environment,
a UAP operating under a single transaction manager (such as OpenTP1) can use the
XA interface to access multiple HiRDB systems. Because the UAP is using the XA
interface, the UAP can synchronize and control processing among transactions that
access multiple HiRDB systems.

For the open character string to be specified in the xa_open() function, specify the
name of the file in which the environment variables (client environment definitions)
were set. The xa_open() function establishes a connection to HiRDB according to
those environment variables. You can select the destination to which an SQL statement
is issued from among the connection destinations connected by the xa_open()
function.

The multi-connection facility in the X/Open XA interface environment can be used
only with the following client platforms:

4. UAP Design for Improving Performance and Handling

410

• HP-UX 11.0

• Solaris

• AIX

• Linux (single thread)

• Windows

(2) Processing overview
Figures 4-59 through 4-63 show an overview of multi-connection facility processing.

Figure 4-59: Overview of multi-connection facility processing (when
multithreading is not used)

4. UAP Design for Improving Performance and Handling

411

Figure 4-60: Overview of multi-connection facility processing (when
multithreading is used)

4. UAP Design for Improving Performance and Handling

412

Figure 4-61: Overview of multi-connection facility processing (when a
connection is shared by multiple threads)

4. UAP Design for Improving Performance and Handling

413

Figure 4-62: Overview of multi-connection facility processing (when an AP
uses an X/Open-compliant API in a single-thread OLTP system)

Explanation
Register HiRDB 1 and HiRDB 2 in the OLTP system beforehand. When
tx_open() is executed, the OLTP system connects to all registered HiRDB
systems. When an SQL statement is executed, select the connection destination
for that SQL statement.

4. UAP Design for Improving Performance and Handling

414

Figure 4-63: Overview of multi-connection facility processing (when an AP
uses an X/Open-compliant API in a multi-thread OLTP system)

4. UAP Design for Improving Performance and Handling

415

Explanation
Register HiRDB 1 and HiRDB 2 in the OLTP system beforehand. When
tx_begin() is executed, the OLTP system connects to all registered HiRDB
systems. When an SQL statement is executed, select the connection destination
for that SQL statement. Because the individual transactions are independent, SQL
statements for different threads can be executed simultaneously.

(3) Coding example
(a) Normal UAPs

Figures 4-64 and 4-65 show coding examples of UAPs that use the multi-connection
facility.

4. UAP Design for Improving Performance and Handling

416

Figure 4-64: Coding example (C) of a UAP that uses the multi-connection
facility

4. UAP Design for Improving Performance and Handling

417

Explanation
1. Defines the connection handle.

2. Allocates the connection handle.

3. Specifies HiRDB processing for connection 1.

4. Specifies HiRDB processing for connection 2.

5. Releases the connection handle.

4. UAP Design for Improving Performance and Handling

418

Figure 4-65: Coding example (COBOL) of a UAP that uses the
multi-connection facility

Note

4. UAP Design for Improving Performance and Handling

419

Specify the entire SQL, including the SQL prefix and terminator, in the B area
(columns 12 to 72).

Explanation
1. Defines the connection handle.

2. Allocates the connection handle.

3. Specifies HiRDB processing for connection 1.

4. Specifies HiRDB processing for connection 2.

5. Releases the connection handle.

(b) UAPs that use an X/Open-compliant API under OLTP
Figures 4-66 and 4-67 show coding examples in which the multi-connection facility is
used by UAPs that use an X/Open-compliant API under OLTP.

4. UAP Design for Improving Performance and Handling

420

Figure 4-66: Coding example (C) in which the multi-connection facility is used
by a UAP that uses an X/Open-compliant API under OLTP

Explanation
Register HiRDB 1 (environment variable group identifier HDB1) and HiRDB 2
(environment variable group identifier HDB2) in the OLTP system beforehand.

4. UAP Design for Improving Performance and Handling

421

For details about how to register a HiRDB system to a transaction manager, see
the HiRDB Version 9 Installation and Design Guide.

Figure 4-67: Coding example (COBOL) in which the multi-connection facility
is used by a UAP that uses an X/Open-compliant API under OLTP

Note

4. UAP Design for Improving Performance and Handling

422

Specify the entire SQL, including the SQL prefix and terminator, in the B area
(columns 12 to 72).

Explanation
Register HiRDB 1 (environment variable group identifier HDB1) and HiRDB 2
(environment variable group identifier HDB2) in the OLTP system beforehand.
For details about how to register a HiRDB system to a transaction manager, see
the HiRDB Version 9 Installation and Design Guide.

(4) Rules
1. If a UAP is to use the multi-connection facility, a special library must be linked to

that UAP. For details, see 8.3.4 Compiling and linking when the multi-connection
facility is used.

2. If a UAP that uses the multi-connection facility library branches a thread while
maintaining a single connection, and that thread executes SQL statements,
serialize the processing between that thread and the other threads that issue SQL
statements. SQL statements for the same connection cannot be issued
simultaneously. However, SQL statements for different connections can be issued
simultaneously.

3. To obtain error information for ALLOCATE CONNECTION HANDLE or FREE
CONNECTION HANDLE, reference the value of the return code receiving variable
instead of SQLCODE and SQLERRM. For details about the return code receiving
variable, see the HiRDB Version 9 SQL Reference manual.

4. To reference an SQL Communications Area, the UAP must use the DECLARE
CONNECTION HANDLE SET statement to declare a connection handle to the SQL
Communications Area to be referenced.

5. When the programming language is COBOL, UAPs containing SQL statements
that use the multi-connection facility cannot specify SQL statements except those
for connection handle allocation and fetching before the DECLARE CONNECTION
HANDLE SET specification (outside the effective scope).

6. When the programming language is COBOL, DECLARE CONNECTION HANDLE
UNSET cannot be used.

7. The multi-connection facility can be used by UAPs that support multiple threads
(DCE threads or real threads) or a single thread. To create a UAP that supports
multi-threads and uses the multi-connection facility, you need to know how to
develop a UAP in HiRDB and how to develop a UAP that uses DCE threads or
real threads.

8. If an X/Open XA interface is not used, the multi-connection function in Windows
can be used only by UAPs that support multi-threads. Therefore, when specifying
the C runtime library to be used in UAP compilation using Visual Studio, select
the multi-thread DLL (specify Multithread DLL in Compile option: Code

4. UAP Design for Improving Performance and Handling

423

generation).

9. If an X/Open XA interface is used, the multi-connection function in Windows can
also be used by UAPs that support only single threads. For UAPs that support
single threads, when specifying the C runtime library to be used in UAP
compilation using Visual Studio, also select the multi-thread DLL (specify
Multithread DLL in Compile option: Code generation).

10. When using C or C++ to reference the SQL Communications Area, use and
reference macro names that begin with SQL. Do not reference the SQLCA
structures directly. For details about the macro names to be used, see B.2(1)(a) C.

4. UAP Design for Improving Performance and Handling

424

4.11 Narrowed search

4.11.1 What is a narrowed search?
A narrowed search refers to a search that limits the target records in stages.

When a narrowed search is executed, lists are created with the ASSIGN LIST
statement of the data manipulation SQL. The lists are used in information searches that
specify conditions and limit the data items in stages until the appropriate number of
data items is reached. These lists are intermediate-stage data sets that are temporarily
saved with a name (list name) or data sets that are saved.

If a list is created for a certain condition, using that list can increase the processing
speed. When several conditions are specified, a search that combines several lists can
be executed.

4.11.2 Preparations for executing a narrowed search
Before executing a narrowed search, perform the following preparations:

• Specify the system definition

• Create an RDAREA for lists

You can execute a narrowed search (create lists) after you specify the system
definitions and create an RDAREA for lists.

(1) Specifying the system definition
Before executing a narrowed search, specify the operands for the narrowed search in
the system definition. The following operands must be specified before a narrowed
search can be executed:

• pd_max_list_users (maximum number of users who can create lists)

• pd_max_list_count (maximum number of lists that each user can create)

In addition, the following operands can be specified if necessary:

• pd_max_list_users_wrn_pnt (output timing of the usage rate warning
message for the specified pd_max_list_users value)

• pd_max_list_count_wrn_pnt (output timing of the usage rate warning
message for the specified pd_max_list_count value)

• pd_rdarea_list_no_wrn_pnt (output timing of the usage rate warning
message for the maximum number of lists that can be created in the server)

For details about these system definition operands, see the HiRDB Version 9 System
Definition manual.

4. UAP Design for Improving Performance and Handling

425

(2) Creating an RDAREA for lists
To create an RDAREA for lists, use the database initialization utility (pdinit) or the
database structure modification utility (pdmod). For details about the database
initialization utility and the database structure modification utility, see the HiRDB
Version 9 Command Reference manual.

For the HiRDB file system area to be specified in the RDAREA for lists, specify WORK
as the usage purpose. For details about how to design the RDAREA for lists, see the
HiRDB Version 9 Installation and Design Guide.

4.11.3 Search using lists
This section explains the method of searching using lists.

The following figure shows an example of a search that uses a list.

4. UAP Design for Improving Performance and Handling

426

Figure 4-68: Example of a search that uses lists

4. UAP Design for Improving Performance and Handling

427

4.11.4 Action if a rollback occurs for a transaction that uses a list
If a transaction is cancelled by the ROLLBACK statement of SQL or an error, you many
need to re-create a list that was created or deleted by that transaction. The following
table describes the user action to be taken depending on the status of a list that had been
created or deleted when a transaction was cancelled.

List operation in cancelled transaction List status User action

List created with
ASSIGN LIST statement
in the transaction

If the list was created
with a list name that did
not exist before the
transaction was started

The list that was created
cannot be found.

Reexecute the transaction
process.

If the list was created
with a list name that
existed before the
transaction was started

The list that had the same
list name before the
transaction was started
cannot be used. (An error
occurs if the list is
searched.)#

To use the list that had the
same list name before the
transaction was started in
the transaction, re-create
the list. Then reexecute the
transaction.

4. UAP Design for Improving Performance and Handling

428

#: Depending on when the transaction was cancelled, you still may be able to use the
list normally.

4.11.5 Automatic list deletion at HiRDB startup and termination
When HiRDB is terminated or started, all lists that have been created are deleted
regardless of the start mode.

If a HiRDB/Parallel Server is being used, and a single unit is terminated or started, all
lists in the RDAREA for lists in that unit are deleted. If a single server is terminated or
started, all lists in the RDAREA for lists in that server are deleted. When a deleted list
is searched, an error occurs.

If HiRDB terminates abnormally in a unit or if all the units that configure the HiRDB
system are stopped, all created lists are deleted when HiRDB is started. If some of the
units terminate abnormally and those units are restarted, all lists in the RDAREA for
lists in those units are deleted. When a deleted list is searched, an error occurs.

If such an error occurs, use one of the following methods to delete or re-create the list.

If you want to use the list that was affected by the search error
Use the ASSIGN LIST statement to create a list with the same list name that was
used previously.

If you do not want to use the list that was affected by the search error
Use the DROP LIST statement to delete the list that resulted in the search error,
or terminate and restart HiRDB to delete all created lists.

4.11.6 Notes about using lists
(1) List after disconnection from HiRDB

A list is not deleted even after the UAP is disconnected from the HiRDB system. To
delete a list, either use the DROP LIST statement or stop the HiRDB system to delete

List to be deleted by
DROP LIST statement in
the transaction

If the deletion-target list
did not exist before the
transaction was started

The list that was deleted
cannot be found.

Reexecute the transaction
process.

If the deletion-target list
existed before the
transaction was started

The list that did not exist
before the transaction was
started cannot be found.
The deletion-target list
that existed before the
transaction was started
cannot be used. (An error
occurs if the list is
searched.)#

To use the deletion-target
list that existed before the
transaction was started in
the transaction, re-create
that list. Then reexecute
the transaction.

List operation in cancelled transaction List status User action

4. UAP Design for Improving Performance and Handling

429

all lists.

(2) List status after row insertion or deletion
In a search that uses a list, rows that were present in the list when the list was created
but then later deleted are not searched. If a row is updated after the list is created, the
updated data is fetched.

(3) Row insertion and deletion after list creation
In a search that uses a list, rows that were inserted after the list was created and after
rows in the base table were deleted are sometimes searched.

(4) Execution of the ASSIGN LIST statement for a row partitioned table
If the ASSIGN LIST statement is executed for a row partitioned table and the table
cannot be searched because of shutdown of some of the RDAREAs in the base table,
an error occurs even if the data of an RDAREA that can be searched is specified in a
search condition for a partitioned column.

(5) List operation by the same user
The same user cannot connect to multiple HiRDB systems simultaneously and operate
a list.

(6) Stopping of the dictionary server or a unit found in the dictionary server
With a HiRDB/Parallel Server, if the dictionary server or the unit that contains the
dictionary server is stopped, the list management information is lost. As a result,
operations (search, deletion, and update) become disabled for all lists that were created
up to that point. (An error occurs if a list is operated.) To use a list that triggered an
error when operated, use the ASSIGN LIST statement to create a new list that has the
same list name as the previous list.

If the dictionary server is restarted, the KFPA11998-E error (list operation while
transaction is undetermined) may be displayed for processes that use a list. This error
may be displayed until recovery is completed for all list-using transactions of other
users that were started before the server was stopped.

(7) Recovery of a list base table with the database recovery utility
If a log is used to recover a list base table to its latest status, the lists that were created
can be used without modification. However, for a recovery that uses only a backup, a
time-specification recovery that uses a log, or a recovery that does not use the latest
log, use one of the following methods to delete or re-create all lists that were based on
the recovered table:

If you want to use the lists:
Use the ASSIGN LIST statement to create lists that have the same list names as
the previous lists.

4. UAP Design for Improving Performance and Handling

430

If you do not want to use the lists:
Use the DROP LIST statement to delete the lists, or terminate and restart HiRDB
to delete all created lists.

(8) Reinitialization of an RDAREA where a list base table is stored
Use one of the following methods to delete or re-create all lists that are based on a list
stored in a reinitialized RDAREA:

If you want to use the lists:
Use the ASSIGN LIST statement to create lists that have the same list names as the
previous lists.

If you do not want to use the lists:
Use the DROP LIST statement to delete the lists, or terminate and restart HiRDB
to delete all created lists.

(9) Execution of reorganization, creation mode download, or the PURGE TABLE
statement on a list base table

Executing reorganization, creation mode download, or the PURGE TABLE statement
on a list base table invalidates previously obtained search results for lists that were
created based on that table. To use the lists, you must use the ASSIGN LIST statement
to re-create the lists.

(10) Narrowed search when the inner replica facility is used
When you use the inner replica facility and also use the pddbchg command,
PDDBACCS in the UAP environment definitions, or PDDBACCS in the client
environment definitions to switch the RDAREA to be accessed, the search results
become invalid unless one of the following conditions is satisfied:

• The RDAREA to be accessed during list retrieval matches the RDAREA to be
accessed during list creation.

• The RDAREA to be accessed during list retrieval contains data that was copied
from the RDAREA to be accessed during list creation.

To use a list, perform one of the following:

• Use the RDAREA to be accessed during list creation.

• Use the access-target RDAREA to which data was copied from the RDAREA to
be accessed during list creation.

• Re-create the list in the RDAREA that is currently being accessed.

4. UAP Design for Improving Performance and Handling

431

4.12 File output facility for BLOB data

4.12.1 What is the file output facility for BLOB data?
Before you can search BLOB data, you must prepare a memory area for storing BLOB
data in the client. You will also need a send buffer for BLOB data returns in the server
and memory for a receive buffer that accepts BLOB data in the client library.
Consequently, a large amount of memory must be allocated according to the BLOB data
size, and the memory resources will be strained.

More and more systems are configured so that a middleware program that operates as
a HiRDB client is placed between the end user program and HiRDB. This
configuration design has further increased the amount of memory used as BLOB data
is transferred between these programs.

The file output facility for BLOB data prevents increased memory usage during BLOB
data searches by outputting retrieved BLOB data directly to a file in a single server or a
unit with a front-end server, instead of returning the BLOB data to the client. The
facility then returns the name of the file to the client.

The following figure provides an overview of the file output facility for BLOB data.

4. UAP Design for Improving Performance and Handling

432

Figure 4-69: Overview of the file output facility for BLOB data

Explanation
1. When the client searches BLOB data, the server outputs that BLOB data in

single rows and single columns to a file.

2. The server returns the file name of the BLOB data that was output in (1) to the
client.

3. Based on the file name that was returned, the client accesses the BLOB data
file located in the server.

4.12.2 Application criteria
Apply the file output facility for BLOB data to reduce the amount of memory required
during BLOB data search.

This facility is effective in reducing the memory size required for client programs and
the memory size required for the communication buffer used in server-client
communication. However, applying this facility also increases the disk input/output
operations that take place during file output. Therefore, be sure to consider both the
required memory size effects and the disk input/output effects before you use the file

4. UAP Design for Improving Performance and Handling

433

output facility for BLOB data.

4.12.3 Specification method
Specify the file output facility for BLOB data in a WRITE specification of SQL. The
WRITE specification can be specified in a cursor specification or a query specification.

For details about the WRITE specification, see the HiRDB Version 9 SQL Reference
manual.

4.12.4 Notes about using the file output facility for BLOB data
1. When a BLOB data file that was created becomes unnecessary, the user must delete

that file. Note the following point about deleting BLOB data files. Also, BLOB data
files can be deleted unconditionally after cursor close or transaction resolution.

• When deleting a BLOB data file immediately after FETCH processing, and the
FETCH result prior to the same cursor search and the BLOB value are the
same, there are cases in which the file is not re-created with the same file
name. In this case, control the processing by storing the prior file name and
then deleting it when the file name changes.

2. Created BLOB data files are not deleted if an error or a rollback occurs. Note that
if the BLOB data files are not deleted, they use up disk space and operating system
resources.

3. Check that there is enough disk space available before using the following
facilities:

• FETCH facility using arrays

Each time FETCH is executed, a file is created for each array element.

• Block transfer facility

During the first FETCH is executed, a file is created for each block transfer
row. Subsequently, each time the FETCH for all block transfer rows is
completed and the next FETCH is executed, the file creation for each block
transfer row is repeated.

4. If a file name is the same as the file name of another transaction or cursor search,
the files may destroy one another. To avoid this problem, for each transaction or
cursor, change the directory or file name in the file prefix so that file names are
not duplicated.

4.12.5 Examples of using the file output facility for BLOB data
This section shows search examples in which the file output facility for BLOB data is
used.

4. UAP Design for Improving Performance and Handling

434

(1) Retrieving BLOB columns
In the following example, columns C1 and C2 are searched from table T1. The BLOB
data in column C1 is output to files, and the names of those files are obtained.

(2) Retrieving an abstract data type that has the BLOB attribute
In the following example, the ADT1 column in which CONTAINS() is true is searched
from table T2. At this time, the BLOB values of the results for passing the columns
values to the EXTRACTS() argument are output to a file, and the file name is obtained.
This example shows the case when all values are hit.

4. UAP Design for Improving Performance and Handling

435

4. UAP Design for Improving Performance and Handling

436

4.13 Partial update and retrieval of BLOB and BINARY data

4.13.1 About partial update and retrieval of BLOB and BINARY data
If all registered BLOB or BINARY# data must be updated when new data is added, or if
all BLOB or BINARY# data must be fetched when data is retrieved, both the server and
client must secure large amounts of memory that match the enormous data size.
Consequently, the memory resources become used up. Partial update and retrieval of
BLOB and BINARY data provides the following functions to solve this problem:

• Addition update of BLOB and BINARY data

• Partial extraction of BLOB and BINARY data

• Rear deletion update of BLOB and BINARY data

#: This refers to BINARY data that has a minimum defined length of 32,001 bytes.

(1) Addition update of BLOB or BINARY data
To add new data to registered BLOB or BINARY data, specify a concatenation operation
in the SET clause of the UPDATE statement. The amount of memory used is suppressed
to the amount of data to be added.

(2) Partial extraction of BLOB or BINARY data
To extract only the specified portion from BLOB or BINARY data, specify the SUBSTR
scalar function. The amount of memory used is suppressed to the amount of data to be
extracted.

(3) Rear deletion update of BLOB and BINARY data
You can delete only the rear part of BLOB or BINARY data by using the SUBSTR scalar
function that specifies the columns to be processed and the literal 1 as the start position
in the SET clause in the UPDATE statement. This facility enables you to limit the
amount of required memory and log space because data can be updated without having
to acquire as much memory as would be needed for all data that is to be updated.

4.13.2 Examples of using the addition update and partial extraction
facility for BLOB data
(1) Addition update of BLOB data

Multiple files are stored as one BLOB data element.

4. UAP Design for Improving Performance and Handling

437

Explanation
1. The BLOB data of file 1 is inserted in column C2 of row A in the target table

(T1).

2. The BLOB data of file 2 is added by concatenating the data to column C2 of
row A. The same applies when subsequent data is added.

(2) Partial extraction of BLOB data
The BLOB data of file 2 is extracted from the BLOB data (column C2) in row A that was
stored in Addition update of BLOB data.

4. UAP Design for Improving Performance and Handling

438

Explanation
The SUBSTR scalar function is used to extract data from the starting position (byte
(100 x 1024 + 1) = byte 102401) of the data column for file 2. Only the amount
of data equivalent to the length of the data column in file 2 (200 x 1024 = 204800
bytes) is extracted.

(3) Rear deletion update of BLOB data
The rear part of the BLOB data (column C2) in row A that was stored in Addition update
of BLOB data is deleted and only files 1 and 2 are retained.

4. UAP Design for Improving Performance and Handling

439

Explanation:

The SUBSTR scalar function is used to replace data from the start position (byte
1) of the data column for file 1 with as much data as there is in files 1 and 2 (100
x 1024 + 200 x 1024 = 307200 bytes). As a result, only files 1 and 2 remain, and
the rear part of the data is deleted.

4.13.3 Notes about performing partial updating and retrieval of
BLOB and BINARY data

You should note the following about performing partial updating and retrieval of BLOB
and BINARY data:

1. A concatenation operation for BLOB or BINARY data can be specified only with
an update value in the SET clause of the UPDATE statement. The item specified for
the first term in the concatenation operation must be a column specification, and
the item specified for the second term must be an embedded variable, the ?
parameter, an SQL variable, or an SQL parameter.

For details about the rules for using the concatenation operation to update a
BLOB-type or BINARY-type column, see the manual HiRDB Version 9 SQL
Reference.

2. To execute an addition update, create a column that stores unique key values, and
specify that column in the search conditions to identify the update row. To
accelerate the row identification process, create an index in that column.

3. The minimum input/output unit for BLOB data is the page length of the RDAREA,
and HiRDB performs batch input/output of up to 128 kilobytes. Therefore, to

4. UAP Design for Improving Performance and Handling

440

improve the performance of BLOB data insertion, addition update, or partial
extraction, you should set the data length to units of 128 x 1024 x n bytes (n is a
nonzero positive integer).

4. If BACKWARD_CUTOFF_UPDATE is not specified in the pd_rpl_func_control
operand in the system common definitions, rear deletion update is disabled. In
such a case, the data specified in SUBSTR is extracted into memory and then is
updated.

4. UAP Design for Improving Performance and Handling

441

4.14 Retrieve first n records facility

4.14.1 Overview
Sometimes the SQL retrieval performance can be improved by obtaining the retrieval
results of only the first n rows. The performance improvement can be expected to
increase as the number of retrieval result rows decreases.

When the retrieve first n records facility is used, only the first n rows from the
beginning of the SQL retrieval results (or after the specified offset of the first row to
return has been skipped) are accepted. In this case, the access path selected by the SQL
optimization method changes. Consequently, the SQL retrieval performance may
improve as described as follows:

• Fewer rows may need to be sorted because sort processing that targets all rows
that satisfy the search conditions becomes unnecessary.

• The work tables that HiRDB creates exclusively for the ORDER BY clause may
become unnecessary.

• The amount of communication between server processes can sometimes be
reduced by having the server processes not read the rows that do not fall in the
first n rows of the retrieval results.

To use the retrieve first n records facility, specify LIMIT. For details about LIMIT, see
the manual HiRDB Version 9 SQL Reference.

4.14.2 Notes
In the following cases, the retrieval performance may not improve, or conversely, may
become worse, even if the retrieve first n records facility is used.

1. If the sum of the offset of the first row to return and the maximum number of rows
to return is the same or extremely close to the value when the LIMIT clause is not
specified.

2. If the LIMIT clause is specified but the ORDER BY clause is not, HiRDB cannot
uniquely determine which rows are to be retrieved. The ORDER BY clause should
therefore be specified whenever the LIMIT clause is specified. However, when
the ORDER BY clause is specified, the SQL optimization method may select a
different access path and the retrieval performance may worsen. To check the
access path selected by the SQL optimization method, use the access path display
utility (pdvwopt).

3. If both the ORDER BY and LIMIT clauses are specified and there are several rows
that have the same sort key value as the last row that was skipped based on the
offset of the first row to return or the last row that was obtained based on the
maximum number of rows to return, HiRDB cannot uniquely determine which of

4. UAP Design for Improving Performance and Handling

442

the rows with the same sort key value are to be retrieved. To retrieve a specific
row that has the same sort key value as the row that satisfies this condition, add
more columns to the sort key. However, when more sort key columns are added,
the SQL optimization method may select a different access path, and the retrieval
performance may worsen. To check the access path selected by the SQL
optimization method, use the access path display utility (pdvwopt).

In cases like those described, do not use the retrieve first n records facility.

If the maximum number of rows to return is 1 or more and the sum of the offset of the
first row to return and the maximum number of rows to return is 32,767 or less, HiRDB
stores the rows that fall within that sum in memory instead of creating a work table.
Therefore, the required memory size increases compared to when the facility is not
used. For details about the required memory size, see Calculating the required memory
size for execution of the retrieve first n records facility in the HiRDB Version 9
Installation and Design Guide.

4.14.3 Checking the access path
Depending on whether or not the retrieve first n records facility is used to accelerate
retrieval processing, the SQL optimization method may select an access path that
differs from the ORDER BY processing method. For details about the ORDER BY
processing method, see the pdvwopt description in the manual HiRDB Version 9
Command Reference.

4. UAP Design for Improving Performance and Handling

443

4.15 Automatic reconnect facility

The automatic reconnect facility automatically reconnects the HiRDB client to the
HiRDB server if the connection with the HiRDB server is disconnected because of a
service process failure, system switchover, network failure, or other cause. By using
the automatic reconnect facility, you can continue UAP execution without worrying
about disconnections with the HiRDB server.

To use the automatic reconnect facility, specify YES in the PDAUTORECONNECT client
environment definition.

4.15.1 Application criteria
If the HiRDB server is executing any of the processes listed below, the HiRDB client
waits until that process terminates.

• Changing the system definitions (executing the pdchgconf command)

• Updating the current HiRDB to the HiRDB update version (executing the
pdprgcopy and pdprgrenew commands)

• Performing planned system switchover by using the transaction queuing facility
(pdtrnqing command)

While the HiRDB client is waiting, the wait time is monitored based on the
PDCWAITTIME time. If the PDCWAITTIME time is exceeded, the wait status is released
and a PDCWAITTIME over error is returned to the UAP.

Depending on the execution timing, the HiRDB client might not be able to detect that
the above process is underway, resulting in a communication error. If you know ahead
of time that the above process is to be performed, evaluate the use of the automatic
reconnect facility. If you use this facility, the HiRDB client can continue processing
without returning an error to the UAP even if the above process is underway.

4.15.2 Reconnect timings
Reconnection is performed at the following times:

• When the HiRDB client executes an SQL statement immediately after executing
the CONNECT statement, or when the transaction for the previous SQL statement
is completed

• When the HiRDB client executes an SQL statement while the HiRDB server is
processing the transaction for the previous SQL statement

• When the HiRDB client executes the CONNECT statement

4. UAP Design for Improving Performance and Handling

444

(1) If the HiRDB client executes an SQL statement immediately after executing
the CONNECT statement, or when the transaction for the previous SQL statement
is completed

When the HiRDB client executes an SQL statement, the automatic reconnect facility
detects whether the connection with the HiRDB server has been disconnected. If the
facility detects a disconnection, it reconnects the client to the server, and re-executes
the SQL statement after the connection is re-established. If the automatic reconnect
facility detects a connection failure when the HiRDB client executes an SQL statement
after automatic reconnection, it returns an error to the UAP. The following figure
shows the reconnect timing (when the HiRDB client executes an SQL statement
immediately after executing the CONNECT statement, or when the transaction for the
previous SQL statement is completed).

Figure 4-70: Reconnect timing (when the HiRDB client executes an SQL
statement immediately after executing the CONNECT statement, or when the
transaction for the previous SQL statement is completed)

(2) When the HiRDB client executes an SQL statement while the HiRDB server is
processing the transaction for the previous SQL statement

When the HiRDB client executes an SQL statement, the automatic reconnect facility
detects whether the connection with the HiRDB server has been disconnected. If the
facility detects a disconnection, it returns a connection error (SQLCODE = -722 or
-723) to the UAP. When the client executes the next SQL statement, the facility

4. UAP Design for Improving Performance and Handling

445

reconnects with the server and re-executes the previous SQL statement.

If the automatic reconnect facility detects a connection failure when the HiRDB client
executes an SQL statement after automatic reconnection, it returns an error to the UAP.
The figure below shows the reconnect timing (when the HiRDB client executes an
SQL statement while the HiRDB server is processing the transaction for the previous
SQL statement). Any uncompleted transactions that were being executed when the
SQL statement with the returned error was executed are rolled back.

Figure 4-71: Reconnect timing (when the HiRDB client executes an SQL
statement while the HiRDB server is processing the transaction for the previous
SQL statement)

(3) When the HiRDB client executes the CONNECT statement
If the HiRDB client executes the CONNECT statement and the connection fails because
of a communication error, the automatic reconnect facility executes reconnect
processing.

The following figure shows the reconnect timing (when the HiRDB client executes the

4. UAP Design for Improving Performance and Handling

446

CONNECT statement).

Figure 4-72: Reconnect timing (when the HiRDB client executes the
CONNECT statement)

4.15.3 CONNECT processing during automatic reconnect
The automatic reconnect facility executes the CONNECT statement five times internally
at 5-second intervals. You can use PDRCCOUNT and PDRCINTERVAL to change the
number of times the CONNECT statement is executed, and the execution interval,
respectively.

If the reconnect timing is the CONNECT statement, HiRDB uses the
PDCONNECTWAITTIME value to monitor the processing time. If it is not the CONNECT
statement, HiRDB uses the PDCWAITTIME value. If the processing time for automatic
reconnect exceeds the PDCONNECTWAITTIME or PDCWAITTIME value, HiRDB aborts
the automatic reconnect process and returns an error to the UAP. If you wish to retry
the automatic reconnect facility as many times as specified in PDRCCOUNT, specify at
least the value of PDRCCOUNT x PDRCINTERVAL in PDCWAITTIME.

4.15.4 Notes about using the automatic reconnect facility
1. The automatic reconnect facility cannot be used if the UAP contains a LOCK

statement that specifies UNTIL DISCONNECT.

2. If the UAP that uses a holdable cursor is being used, the automatic reconnect
facility returns an error to the UAP, even if a transaction is not being processed.

4. UAP Design for Improving Performance and Handling

447

3. If the JDBC driver#1 or DABroker for JAVA#2 accesses the system and a
statement that applies over several transactions is effective, the JDBC statement
becomes ineffective after the automatic reconnect facility reconnects the HiRDB
client. In this case, the prepareStatement() method must be executed again.

4. If the time specified in PDCWAITTIME is reached by the first SQL statement of the
transaction, HiRDB re-executes the CONNECT statement and SQL statement
without returning an error to the UAP. Therefore, HiRDB might return an error
when the amount of time equivalent to about twice the PDCWAITTIME value is
reached.

5. If Cosminexus is connected and DB Connector's statement pooling facility is
enabled, an SQLException exception including the KFPA11901-E message
might occur when an SQL statement is executed after connection has been
re-established by HiRDB's automatic reconnect facility. If you use the statement
pooling facility, do not use the automatic reconnect facility. For details about the
statement pooling facility, see the Cosminexus Application Setup Guide.

#1: When the JDBC driver is used, a statement that applies over several
transactions becomes effective when "CLOSE" or "RESERVE" is set to
COMMIT_BEHAVIOR. COMMIT_BEHAVIOR can be set with the Properties
info argument of the connect method in the Driver class, the Properties
info argument of the DriverManager.getConnection method, or the
COMMIT_BEHAVIOR key in a URL connection.

#2: When DABroker for JAVA is used, a statement that applies over several
transactions becomes effective when the DABroker version is 03-06 or later and
the DABroker for JAVA version is 02-10 or later.

4. UAP Design for Improving Performance and Handling

448

4.16 Locator facility

4.16.1 What is the locator facility?
For the client UAP to accept retrieved BLOB or BINARY data in embedded variables of
that data type, the client must have a memory area available for storing the data.
Therefore, the memory resources of the client become overburdened when large object
data is retrieved. Furthermore, the amount of data transferred from the server to the
client becomes large. However, if only a portion of that data is required or if the
accepted data is simply specified unchanged into another SQL statement and returned
to the server, transferring all the data to the client makes processing ineffective.

HiRDB provides a locator facility to resolve this problem. A locator is a 4-byte value
that identifies data on the server. When a locator embedded variable is specified in the
INTO clause of a FETCH or single-row SELECT statement, a locator value that
identifies that data is received as the search result instead of the actual data entity. Also,
by specifying the locator embedded variable identifying the data into another SQL
statement, you can execute a process that handles the data identified by the locator.

The following figure provides an overview of the locator facility.

4. UAP Design for Improving Performance and Handling

449

Figure 4-73: Overview of the locator facility

Explanation
When the locator facility is not used:

1. The server transfers the BLOB data retrieved from the database to the client.

2. The client transfers the BLOB data to the server for storage in the database.

When the locator facility is used:

1. The server creates locator data that identifies the data retrieved from the
database.

2. The server transfers the locator data to the client.

3. The client transfers the locator data to the server.

4. UAP Design for Improving Performance and Handling

450

4. The server stores the BLOB data identified by the locator data in the database.

4.16.2 Application standard
Apply the locator facility when you are retrieving BLOB or BINARY data and you want
to reduce the amount of memory required in the client or decrease the amount of data
transferred between the server and the client.

When the locator facility is used, memory for the actual data size does not need to be
allocated in the client. In addition, the amount of transferred data can be decreased
because a locator can be used for transferring data between the server and the client.

4.16.3 Usage method
To accept a locator value, specify a locator embedded variable of the corresponding
data type at the location where the embedded variable for accepting the BLOB-type or
BINARY-type data is specified in the SQL statement. To process the data assigned to
the locator, specify a locator embedded variable of the corresponding data type instead
of specifying a BLOB-type or BINARY-type embedded variable in the SQL statement.

4.16.4 Usage example
This example replaces only the first 400 kilobytes starting from a certain binary data
column (search_data) of the data in column C2 of row C1=1 in table T1 with other
data (change_data). The result is inserted into table T1 in column C2 of a new row
(C1=2).

The data types of the columns in table T1 are shown below:

• C1: INTEGER NOT NULL (INDEX)

• C2: BLOB (100M) NOT NULL

void abnormalend(void);

main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 SQL TYPE IS BLOB AS LOCATOR alldata_loc; /* Locator representing
all data */
 long change_pos; /* Change start position */
 SQL TYPE IS BLOB(10) search_data; /* Binary data column to
be searched */
 SQL TYPE IS BLOB(400K) change_data; /* Binary data column to
be changed */
 SQL TYPE IS BLOB AS LOCATOR enddata_loc; /* Locator representing
data */
 /* that follows section to be changed */
 long pos;
 EXEC SQL END DECLARE SECTION;

4. UAP Design for Improving Performance and Handling

451

 -------(CONNECT process to HiRDB (omitted)) -------
 -------(Settings for binary data column to be searched (omitted))-------
 -------(Settings for binary data column to be changed (omitted))-------

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;
 /* Use locator to get column data */
 EXEC SQL SELECT C2 INTO :alldata_loc FROM T1 WHERE C1 = 1;
 /* Get start position that includes binary data to be searched */
 EXEC SQL SET :change_pos = POSITION(:search_data AS BLOB(10)
 IN :alldata_loc AS BLOB(100M));
 pos = change_pos + 409600;
 /* Use locator to get data that follows changed portion */
 EXEC SQL SET :enddata_loc = SUBSTR(:alldata_loc AS BLOB(100M),
:pos);
 pos = change_pos -1;
 /* Use locator to insert data in front of changed section */
 EXEC SQL INSERT INTO T1 VALUES(2, SUBSTR
 (:alldata_loc AS BLOB(100M), 1, :pos));
 /* Locator representing all data is nullified because it is no longer necessary */
 EXEC SQL FREE LOCATOR :alldata_loc;
 /* Link data of changed section and update */
 EXEC SQL UPDATE T1 SET C2 = C2 || :change_data WHERE C1 = 2;
 /* Use locator to link data that follows changed section and update */
 EXEC SQL UPDATE T1 SET C2 = C2 || :enddata_loc WHERE C1 = 2;
 EXEC SQL COMMIT;
 printf(" *** normally ended ***\n");
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;
 wsqlcode = -SQLCODE;printf("\n*** HiRDB SQL ERROR SQLCODE
 = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

(1) Note
1. For server data to be assigned to a locator, the server may need memory to store

the data assigned to the locator. Therefore, if a single transaction assigns many
data items to locators and keeps the locators valid, the server memory will be

4. UAP Design for Improving Performance and Handling

452

overburdened. To prevent this problem, use the FREE LOCATOR statement to
invalidate locators that are no longer necessary.

4. UAP Design for Improving Performance and Handling

453

4.17 Facility for returning the total number of hits

4.17.1 Overview
Normally, you would have to execute two SQL statements to obtain the total number
of hits and the values of the rows that were hit. However, by using the facility for
returning the total number of hits, you can combine the SQL statement for obtaining
the total number of hits and the SQL statement for obtaining the values of the hit rows
into a single SQL statement. As a result, the retrieval time for executing the two SQL
statements essentially becomes the same as the retrieval time for executing one SQL
statement.

To use the facility for returning the total number of hits, specify the COUNT(*)
OVER()window function in a selection expression. For details about window
functions, see the manual HiRDB Version 9 SQL Reference.

4.17.2 Usage examples
Shown below are examples in which a count of the total number of products whose
price (PRICE) is $50.00 or more is obtained from the stock table (STOCK), along with
the product names of these products (PNAME), and then the resulting list of products is
sorted by quantity (SQUANTITY).

When the facility for returning the total number of hits is not used

SELECT COUNT(*) FROM STOCK WHERE PRICE>=5000
SELECT PNAME FROM STOCK WHERE PRICE>=5000 ORDER BY
SQUANTITY

Explanation
When the facility for returning the total number of hits is not used, two SQL
statements are required.

When the facility for returning the total number of hits is used

SELECT COUNT(*) OVER(), PNAME
 FROM STOCK WHERE PRICE>=5000 ORDER BY SQUANTITY

Explanation
Because the underlined sections of the two SQL statements are the same, you
can use the facility for returning the total number of hits in order to combine
the two SQL statements into a single SQL statement, and so obtain the total
number of hits in the first fetch operation.

4. UAP Design for Improving Performance and Handling

454

4.17.3 Note
When you use the facility for returning the total number of hits in the cases listed
below, improvement of retrieval performance cannot be expected, and in fact
performance may even drop. If performance drops, do not use the facility for returning
the total number of hits.

1. If DISTINCT, the ORDER BY clause, or the FOR READ ONLY clause is not
specified

2. If the ORDER BY clause is specified and an access path that can cancel the sorting
for ORDER BY is selected

To check whether the sorting for ORDER BY can be canceled, use the access path
display utility (pdvwopt). For details about the access path display utility, see the
manual HiRDB Version 9 Command Reference.

3. If the projection length is short, and the communication volume increase
attributed to the 4-byte string length of COUNT(*) OVER() cannot be ignored

4. If the retrieval processing cost is small

4. UAP Design for Improving Performance and Handling

455

4.18 Retrieval, updating, or deletion with an RDAREA name
specified

4.18.1 Overview of function
When you use row-partitioned tables on multiple front-end servers and perform
retrieval, update, or deletion processing with RDAREA names specified, you can limit
the RDAREAs to be accessed. This enables you to access multiple RDAREAs in
parallel, thereby distributing the load among the server machines.

4.18.2 Example
This example performs retrieval processing with RDAREA names specified.

Figure 4-74: Example of retrieval processing with RDAREA names specified

Explanation:

This example performs retrieval processing on the row-partitioned table T1 that
is stored in RDAREAs RD01, RD02, and RD03. Each of the three UAPs (AP1,
AP2, and AP3) issues the SELECT statement specifying an RDAREA to be
accessed. This method enables the RDAREAs to be accessed in parallel via the

4. UAP Design for Improving Performance and Handling

456

front-end servers FES1, FES2, and FES3, thereby distributing the load among the
server machines where the UAP and front-end servers are located.

4.18.3 Notes
• This function is not applicable in the following cases:

• Retrieval, update, or deletion processing is performed on a table for which
WITHOUT ROLLBACK is specified in CREATE TABLE

• The UAP is running in the no-log mode

• The -i option in the pdlbuffer operand is used for local buffer allocation
for indexes

• When this function is applied, only those indexes that have the same number of
partitions as the table partitions are used. If you perform only retrieval, update, or
deletion processing with an RDAREA name specified, and have defined an index
that has a different number of partitions than the table partitions, that index is not
used. If you perform retrieval, update, or deletion processing with an RDAREA
name specified, define an index that has the same number of partitions as the table
partitions.

4. UAP Design for Improving Performance and Handling

457

4.19 Automatic numbering facility

The automatic numbering facility returns a series of integer values whenever data in
the database is called. You can use this facility by defining a sequence generator. The
automatic numbering facility helps you improve the efficiency of developing UAPs
that perform numbering. It also helps improve portability from UAPs created using
other DBMSs that support sequence generators. We recommend that you use the
automatic numbering facility for numbering.

4.19.1 About sequence generators
A sequence generator generates one consecutive number (sequential number) at a time
regardless of user or transaction status. The following figure provides an overview of
a sequence generator.

Figure 4-75: Overview of a sequence generator

Explanation:

The NEXT VALUE expression is used to acquire a sequential number generated by
the sequence generator. This expression acquires the value that immediately
follows the most recent value (current value) generated by the sequence
generator, and then updates the current value to that value.

If the NEXT VALUE expression has not yet been used since the sequence generator
was defined, no current value is set. When the NEXT VALUE expression is used
while no current value is set, the sequence generator's start value is returned and
that value is stored as the current value.

4. UAP Design for Improving Performance and Handling

458

Note
The current value is not recovered during a rollback. The next number in
sequence is always generated regardless of the transaction's status.

4.19.2 Defining a sequence generator
You use CREATE SEQUENCE to define a sequence generator. For details about CREATE
SEQUENCE, see the manual HiRDB Version 9 SQL Reference.

The following shows an example of a definition of a sequence generator:

CREATE SEQUENCE SEQ1..........1
 AS INTEGER..................2
 START WITH 10...............3
 INCREMENT BY 10.............4
 MAXVALUE 999................5
 MINVALUE 10.................6
 CYCLE.......................7
 LOG INTERVAL 3..............8
IN RD01.......................9

Explanation:

1. Defines sequence generator SEQ1 consisting of conditions 2 through 9.

2. Data type

3. Start value

4. Increment value

5. Maximum value

6. Minimum value

7. Cycle specification

Cycles the numbers so that the maximum value (999) is followed
immediately by the minimum value (10) with an increment value of 10.

8. Log output interval

9. Storage RDAREA name

Note
When the cycle specification is used, the sequence generator is capable of
generating duplicate sequence numbers.

(1) Specifying the sequence generator storage RDAREA
When you define a sequence generator, you can specify any RDAREA for the storage

4. UAP Design for Improving Performance and Handling

459

for the sequence generator that satisfies the following conditions:

• RDAREA in which fewer than 500 tables and sequence generators combined are
defined

• RDAREA that is not shut down

• RDAREA to which the inner replica facility is not being applied

Notes
• In a HiRDB/Parallel Server, if the sequence generator and the table that uses

the sequence generator (and which is not partitioned among multiple servers)
are stored in separate servers, communication will occur each time the
sequence generator is used, which will have an adverse effect on
performance. For a table that is partitioned among multiple servers, you
might be able to reduce the overhead for communication by storing the
sequence generator and the table that uses the sequence generator in an
RDAREA on the same server. Therefore, we recommend that you store a
sequence generator and the table that uses the sequence generator in an
RDAREA on the same server.

• The inner replica facility cannot be used on an RDAREA that stores a
sequence generator.

(2) Specifying the log output interval
You can improve performance by how you specify the log output interval when you
define the sequence generator.

Sequence generator logs are output at the following times:

• The first time the NEXT VALUE expression is used after the sequence generator has
been defined

• When the number of times a sequence number is collected equals the log output
interval that has been specified

The following figure shows an example of a sequence generator for which a log output
interval is specified.

4. UAP Design for Improving Performance and Handling

460

Notes
• Setting a small value for the sequence generator's log output interval will

reduce the number of skipped numbers in the event of a system failure, but
performance will be affected adversely because the number of log output
operations is increased. On the other hand, if you set a large value for the log
output interval, more numbers will be skipped in the event of a system
failure, but performance will be improved because you reduce the number of
log output operations.

• The maximum number of skipped numbers will be the same as the value
specified for the log output interval.

4. UAP Design for Improving Performance and Handling

461

4.19.3 Deleting a sequence generator
You use DROP SEQUENCE to delete a sequence generator. For details about DROP
SEQUENCE, see the manual HiRDB Version 9 SQL Reference.

4.19.4 Acquiring the sequence numbers generated by a sequence
generator

There are two ways to acquire the sequence numbers generated by a sequence
generator:

• Data loading using the automatic numbering facility

• Using the NEXT VALUE expression

For details about data loading using the automatic numbering facility, see the manual
HiRDB Version 9 Command Reference. For details about the NEXT VALUE expression,
see the manual HiRDB Version 9 SQL Reference.

4.19.5 Examples
For these examples, you specify the NEXT VALUE expression in a selection expression
in a query expression in the INSERT statement, an insertion value in the INSERT
statement, or an update value in the UPDATE statement. If you specify the NEXT VALUE
expression more than once for the same row using the same sequence generator, the
NEXT VALUE expressions all return the same value.

Examples of the NEXT VALUE expression are presented below. These examples use
sequence generator SEQ1 that was defined in 4.19.2 Defining a sequence generator.

Example:

If the NEXT VALUE expression is executed before any sequence number has been
acquired from sequence generator SEQ1, the sequence generator's start value (10)
is returned.

Example:

If two or more NEXT VALUE expressions with the same sequence generator

4. UAP Design for Improving Performance and Handling

462

specified are specified for the same row, they all return the same value (20).

Example:

If two or more NEXT VALUE expressions with the same sequence generator
specified are specified for the same row for a table that contains repetition
columns, they all return the same value (30).

Example:

If the NEXT VALUE expression is specified when the current value of sequence
generator SEQ1 is the maximum value (990), the value immediately following the
complete cycle (10) is returned.

4. UAP Design for Improving Performance and Handling

463

4.19.6 Notes
Depending on the order in which the sequence generator storage RDAREA and the
RDAREA storing the table that uses the sequence generator are backed up, there might
be duplicate or missing sequence numbers after the database has been recovered.

(1) Case in which there are no duplicate or missing sequence numbers
If you back up the sequence generator storage RDAREA and the RDAREA storing the
table that uses the sequence generator at the same time, there will be no duplicated or
missing sequence numbers.

4. UAP Design for Improving Performance and Handling

464

Figure 4-76: Backing up the sequence generator storage RDAREA and the
RDAREA storing the table that uses the sequence generator at the same time

(2) Case in which there are duplicated or missing sequence numbers
(a) When the sequence generator is backed up before the table that uses the

sequence generator
There might be duplicated sequence numbers. The following figure provides an
example.

4. UAP Design for Improving Performance and Handling

465

Figure 4-77: When the sequence generator is backed up before the table that
uses the sequence generator

(b) When the replication facility is used
Sequence numbers might be duplicated.

Sequence generators cannot be used with the replication facility (HiRDB
Dataextractor and HiRDB Datareplicator). If sequence generators with the same name

4. UAP Design for Improving Performance and Handling

466

are used at the source and the target, sequence numbers might be duplicated because
the source sequence generator's current value cannot be inherited to the target.

(c) When the table that uses the sequence generator is backed up before the
sequence generator
There might be missing sequence numbers. The following figure provides an example.

4. UAP Design for Improving Performance and Handling

467

Figure 4-78: When the table that uses the sequence generator is backed up
before the sequence generator

(d) When logs are used for recovery
If you wish to restore the database to a desired synchronization point after a backup
was made or to the most recent synchronization point before a failure, you must restore

4. UAP Design for Improving Performance and Handling

468

the backup files and system log files or unload log file. In this case, as many sequence
numbers might be missing as the value you set for the log output interval when you
defined the sequence generator. The following figure provides an example.

4. UAP Design for Improving Performance and Handling

469

Figure 4-79: When logs are used for recovery

Explanation:

4. UAP Design for Improving Performance and Handling

470

If the unload log file is used to recover sequence generator SEQ1 and the table,
and then the NEXT VALUE expression is executed after recovery, the value 21 is
obtained from sequence generator SEQ1. The values 17 through 20 are missing
because they had not been acquired between the time the backup was made and
time the failure occurred.

471

Chapter

5. Notes about Creating UAPs that
Access Object Relational Databases

This chapter gives notes about creating UAPs that access object relational databases.

This chapter contains the following sections:

5.1 Using abstract data types and user-defined functions
5.2 Restrictions on functions provided by plug-ins

5. Notes about Creating UAPs that Access Object Relational Databases

472

5.1 Using abstract data types and user-defined functions

This section describes writing UAPs that access tables with abstract data types and
UAPs that have user-defined functions.

(1) Embedded variable data types
User-defined data types cannot be specified in embedded variable declarations
(that is, in embedded SQL declaration clauses).

If the table column to be retrieved contains an abstract data type, no column can
be specified in the selection expression of the SELECT statement.

When embedded variables are specified in function arguments, the specifications
must match the actual argument data types of the function used. If the embedded
variable specifications and the argument data types in the function do not match,
that function cannot be used.

To determine the argument data types of a function, retrieve the
SQL_ROUTINE_PARAMS dictionary table. For details about how to retrieve data
dictionary tables, see Appendix G.1 Examples of SQL statements for retrieval.

Note
An embedded variable cannot be used if the ROW data type is specified in a
function argument.

(2) Literal data types
When literals are used in function arguments, the literals must match the actual
argument data types of the function used. For example, if the data type of a function
argument is SMALLINT, and an integer literal is specified, the literal does not match the
data type. If another function has the same name, the same number of arguments, and
an argument with the integer type, that function may be used instead.

Literals cannot be used in function arguments that have one of the following data types
specified:

• SMALLINT

• SMALLFLT

• CHAR

• NCHAR

• MCHAR

• DATE

• TIME

5. Notes about Creating UAPs that Access Object Relational Databases

473

• TIMESTAMP

• INTERVAL YEAR TO DAY

• INTERVAL HOUR TO SECOND

• ROW

• BLOB

• BINARY

5. Notes about Creating UAPs that Access Object Relational Databases

474

5.2 Restrictions on functions provided by plug-ins

Functions provided by plug-ins are called plug-in distribution functions.

(1) Restrictions on passing values between plug-in distribution functions
(a) Types of plug-in distribution functions

The following table lists the types of plug-in distribution functions.

Table 5-1: Types of plug-in distribution functions

#1: An example of this function type that the HiRDB Text Search Plug-in provides is
the score function.

#2: An example of this function type that the HiRDB Text Search Plug-in provides is
the contains_with_score function.

The HiRDB system allows values to be passed between plug-in distribution functions.
Because HiRDB automatically passes inter-function values between plug-in
distribution functions, the inter-function value does not have to be specified as an
argument of the plug-in distribution function.

Note
Where the plug-in distribution function can be specified in an SQL differs
depending on the function type. For details about the plug-in distribution function
types, see the plug-in manuals.

The following explanations use these terms:

Function type Plug-in process

Process that generates
inter-function values to be
passed and sends them to
other plug-in distribution

functions

Process that receives
inter-function values sent

from other plug-in
distribution functions

Function that does not have
inter-function values

Not supported Not supported

Function that sends inter-function
values#1

Not supported Supported

Function that receives passed
inter-function values#2

Supported Not supported

Function that sends and receives
inter-function values

Supported Supported

5. Notes about Creating UAPs that Access Object Relational Databases

475

• Function that does not have passing inter-function values Function without
inter-function values

• Function that receives passing inter-function values Receive function for
passing inter-function values

• Function that sends passing inter-function values Send function for passing
inter-function values

• Function that sends and receives passing inter-function values Send/
receive function for passing inter-function values

(b) Correspondences between send and receive functions for passing
inter-function values
The following are rules for the correspondences between send and receive functions
for passing inter-function values.

• Some combinations of send and receive functions for passing inter-function
values do not allow inter-function values to be passed. For details about the
correspondences between send and receive functions for passing inter-function
values, see the plug-in manuals.

• The first arguments in both the send and receive functions for passing
inter-function values must be the same and must be a column specification for a
base table, an SQL parameter, or an SQL variable. The first argument cannot be
a component specification.

• Use one query specification to close the send and receive functions for passing
inter-function values. However, when you specify a send function for passing
inter-function values during list creation to store the passing inter-function values
to a list, and then specify a receive function for passing inter-function values
during search via a list to get the passing inter-function values from the list, you
can specify the send and receive functions for passing inter-function values across
multiple queries. (For details, see (3)(c) Methods of executing set operations
between lists.)

The following table shows the combinations of receive and send functions for passing
inter-function values and the action by HiRDB.

Table 5-2: Correspondences between receive and send functions for passing
inter-function values

Receive function for passing
inter-function values

Send function for passing
inter-function values

HiRDB action

Not specified Not specified Can be executed

Specified

5. Notes about Creating UAPs that Access Object Relational Databases

476

#: When passing inter-function values are to be obtained from a list, the send and
receive functions for passing inter-function values can be specified across multiple
queries.

(c) Restrictions on plug-in distribution functions
Functions without inter-function values
Any of these functions can be specified in locations where a function can be
specified.

Receive functions for passing inter-function values
• These functions can be specified only in the selection expression of a

SELECT statement, the selection expression of an INSERT statement that has
a query specification, or the update value of a SET clause in an UPDATE
statement.

• These functions cannot be specified in CASE expressions or the VALUE
scalar function.

• When a GROUP BY clause, a HAVING clause, or a set function is specified,
receive functions for passing inter-function values that have an SQL variable
or an SQL parameter as the first argument can be specified only in a set
function argument.

Send functions for passing inter-function values
If a receive function for passing inter-function values is not specified

Any send function for passing inter-function values can be specified in
locations where a function can be specified.

If a receive function for passing inter-function values is specified
• The receive function can be specified only in a WHERE clause or an ON search

condition.

• If a send function for passing inter-function values is specified in the ON
search condition of a joined table that specifies an outer join, a column of the
outer table cannot be specified in the first argument of the function.

• If a send function for passing inter-function values is specified in the search

Specified Not specified Cannot be executed#

Specified (one) Can be executed

Specified (two or more) Cannot be executed

Receive function for passing
inter-function values

Send function for passing
inter-function values

HiRDB action

5. Notes about Creating UAPs that Access Object Relational Databases

477

conditions of the OR operand, all of the following conditions must be
satisfied:

- A plug-in instance is defined in the first argument of the send function for
passing inter-function values.

- The first argument of the send function for passing inter-function values
specifies a base table column that is not a reference column to the outside.

- The second and subsequent arguments of the send function for passing
inter-function values do not specify a column (except a reference column to
the outside) or an argument that includes a value expression for a component
specification of a column.

- A predicate that includes IS FALSE, IS UNKNOWN, or NOT is not specified
for the send function for passing inter-function values.

- The send function for passing inter-function values is not specified in a
CAST specification.

- If the FROM clause contains specifications for two or more tables, a table
column that is different from the column specified in the first argument of the
send function for passing inter-function values cannot be specified in the
search conditions of the OR operand. (When the WHERE clause or the ON
search condition contains the NOT Boolean operator, the same applies, even
if the previous condition is satisfied after the NOT Boolean operator is
eliminated by De Morgan's theorem.)

• Send functions for passing inter-function values cannot be specified in CASE
expressions or the VALUE scalar function.

• A restriction applies if a named derived table defined by specifying the
GROUP BY clause, HAVING clause, or a set function is specified in the FROM
clause, and the named derived table does not create an internal derived table.
In this case, a send function for passing inter-function values in which the
first argument becomes an SQL value or SQL parameter cannot be specified
in the search conditions of the query specification that specifies the named
derived table.

Send/receive functions for passing inter-function values
These functions cannot be specified in SQL statements.

(2) Restrictions on executing plug-in distribution functions
(a) Execution methods for plug-in distribution functions

You can execute plug-in distribution functions in two ways:

• Use an index-type plug-in to execute a plug-in distribution function

• Execute a plug-in distribution function without using an index-type plug-in

5. Notes about Creating UAPs that Access Object Relational Databases

478

Some plug-in distribution functions can be executed only if an index-type plug-in is
used (index-type plug-in-dependent function).

When HiRDB executes an index-type plug-in-dependent function, an error occurs if
HiRDB determines that the index-type plug-in cannot be used. The table below shows
the combinations that trigger an error. To find out whether a plug-in distribution
function requires an index-type plug-in, see the plug-in manuals.

Table 5-3: Combinations that trigger an error when a plug-in distribution
function is executed

E: Can be executed

--: Error occurs when executed

NA: Not applicable

#: Index-type plug-in-dependent functions fall into this category. Examples for the
HiRDB Text Search Plug-in are contains and contains_with_score.

(b) Restrictions on execution methods for index-type plug-in-dependent
functions
The following restrictions apply when index-type plug-in-dependent functions are
used:

1. Only a base table column specification can be specified in the first argument.
Also, the column cannot be an external-referencing column.

2. Arguments that include the following value expressions cannot be specified in
any argument except the first:

• Column specifications, except external-referencing columns

• Component specifications for columns

3. Index-type plug-in-dependent functions can be specified in WHERE clauses and ON
search conditions.

4. If an index-type plug-in-dependent function is specified in the WHERE clause of a
query specification that specifies an outer join, a column that becomes the inner

Method that uses
index-type plug-in to

execute function

Method that
executes function

without using
index-type plug-in

Retrieval method selected by HiRDB

Retrieval with
index-type plug-in

Retrieval without
index-type

plug-in

Provided Provided E E

Provided# Not provided# E --

Not provided Provided NA E

5. Notes about Creating UAPs that Access Object Relational Databases

479

table of the outer join cannot be specified in the first argument. An example is
shown as follows:

5. If a index-type plug-in dependent function is specified in the ON search condition
of a joined table that specifies an outer join, the following columns cannot be
specified in the first argument:

• Columns of the outer table

• Columns of the outer-joined inner table included in the inner table, if the
inner table is a joined table containing an outer join

6. If the FROM clause contains specifications for two or more tables, a table column
that is different from the column specified in the first argument of an index-type
plug-in-dependent function cannot be specified in the search condition of the OR
operand. However, when the WHERE clause or the ON search condition contains the
NOT logical operator, a different table column can be specified, if the previous
condition is not satisfied after the NOT logical operator is eliminated by De
Morgan's theorem.# An example is shown as follows:

Example:
SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE T1.C1=10 AND ((CONTAINS(T2.ADT,'ABC') IS TRUE)
 OR CONTAINS(T2.ADT,'DEF') IS TRUE))

5. Notes about Creating UAPs that Access Object Relational Databases

480

The UNION representation of this SQL is as follows:
(SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE T1.C1=10 AND (CONTAINS(T1.ADT,'ABC') IS TRUE)
UNION ALL
 SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE T1.C1=10 AND (CONTAINS(T2.ADT,'DEF') IS TRUE))
EXCEPT ALL
 SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE T1.C1=10 AND (CONTAINS(T2.ADT,'DEF') IS TRUE)
 AND (CONTAINS(T1.ADT,'ABC') IS TRUE)

#: Assume that the following SQL statements have been specified:
SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE NOT(CONTAINS(T1.ADT, ...)IS NOT TRUE AND T1.C1=10)
 AND T1.C1=T2.C1

If the NOT logical operator is eliminated according to De Morgan's theorem, the
result is as follows:
SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE NOT(CONTAINS(T1.ADT, ...)IS TRUE OR T1.C1<>10)
 AND T1.C1=T2.C1

7. Index-type plug-in dependent functions cannot be specified in CASE expressions
and CAST specifications.

8. Predicates that include IS FALSE, IS UNKNOWN, or negation (NOT) cannot be
specified for index-type plug-in-dependent functions.

Examples related to these restrictions are as follows.

Example 1
If the WHERE clause specifies a send function for passing inter-function values and
that function is dependent on an index-type plug-in, the first argument cannot
contain one query specification that specifies that send function, together with an
index-type plug-in-dependent function that has a column from the same table.
SELECT C1,C2, score(SENTENCES) FROM T1
 WHERE contains(SENTENCES,...)IS TRUE
 AND contains_with_score(SENTENCES, ...) IS TRUE

Example 2
This example outer-joins tables T1 and T2 and retrieves data by specifying an
index-type plug-in-dependent function in the WHERE clause.
SELECT T1.C1,T2.C2 FROM T1 LEFT OUTER JOIN T2
 ON T1.C1=T2.C1 WHERE contains(T1.C3, ...)IS TRUE

5. Notes about Creating UAPs that Access Object Relational Databases

481

(3) Notes on storing passing inter-function values to a list
(a) Storing passing inter-function values to a list

When target records are narrowed hierarchically (a narrowed search is performed), the
results of the receive function for passing inter-function values can be obtained quickly
by storing the passing inter-function values to a list.

To store passing inter-function values to a list, use the ASSIGN LIST statement to
specify a send function for passing inter-function values in the search conditions for
creating a list from a base table. The send function for passing inter-function values
must be able to store the passing inter-function values to a list. (However, only one
send function for passing inter-function values that can store such values to a list can
be specified in the ASSIGN LIST statement.)

For information about whether the functions provided by a plug-in can store passing
inter-function values to a list, refer to the manual for that plug-in.

You can also use the ASSIGN LIST statement to store passing inter-function values
from a list that stores such values to a new list.

(b) Getting passing inter-function values from a list
To get passing inter-function values stored to a list without specifying a send function
for passing inter-function values, specify a receive function for passing inter-function
values that can get such values from a list (receive function for passing inter-function
values for lists) in the selection expression of the cursor specification for search via a
list.

For information about whether the functions provided by a plug-in can get passing
inter-function values from a list, refer to the manual for that plug-in.

If a receive function for passing inter-function values that can get such values from a
list is specified in the selection expression of the cursor specification for search via a
list, HiRDB gets those values without evaluating the type of send function for passing
inter-function values that stored those values to the list. Therefore, be sure to specify a
receive function for passing inter-function values that corresponds to the send function
for passing inter-function values specified when the list was created.

(c) Methods of executing set operations between lists
If a set operation between lists is to be performed, the set operation execution method
changes depending on the send function for passing inter-function values that was
specified in the search conditions for list creation.

The following table shows the passing inter-function values in the set operation results
for the following:

list-name-1 {AND | OR | AND NOT | ANDNOT} list-name-2

5. Notes about Creating UAPs that Access Object Relational Databases

482

Table 5-4: Passing inter-function values in set operation results

Legend:

N: Cannot be executed.

#1: For information about send functions for storing inter-function variables that allow
a set operation method to be specified, refer to the manual of the individual plug-in.

#2: The set operation result becomes the null value if the OR operation results do not
include passing inter-function values.

Send function for passing
inter-function values when

list-name-1 is created#1

Send function for passing inter-function values when
list-name-2 is created#1

When passing inter-function values
can be stored to a list

Other cases

Passing
inter-function

values for
narrowing used is

specified

No set operation
method is
specified

When passing
inter-function
values can be
stored to a list.

Passing
inter-function
values for
narrowing used is
specified.

N N Passing
inter-function

values of
list-name-1#2

No set operation
method is specified.

N N N

Other cases N N None

483

Chapter

6. Client Environment Setup

This chapter explains how to install a HiRDB client and how to define the environment
for creating and executing a UAP.

This chapter contains the following sections:

6.1 Types of HiRDB clients
6.2 Environment setup procedure for HiRDB clients
6.3 HiRDB client installation
6.4 Organization of directories and files for a HiRDB client
6.5 Setting the hosts file
6.6 Client environment definitions (setting environment variables)
6.7 Registering an environment variable group

6. Client Environment Setup

484

6.1 Types of HiRDB clients

There are two programs that are categorized as HiRDB clients. These programs are
called HiRDB clients:

• HiRDB/Developer's Kit

• HiRDB/Run Time

The available operations, from UAP creation to execution, depend on the type of
HiRDB client. The following figure shows the procedure from UAP creation to
execution.

The operations available to each type of HiRDB client are as follows:

• HiRDB/Developer's Kit

(1) - (4) are available.

• HiRDB/Run Time

(4) only is available. Because the programs provided for the HiRDB client are
also provided by the HiRDB server, use the HiRDB server functions to execute
(1) - (3).

Note
Use the same platform for the HiRDB/Developer's Kit used to create the UAP and
the HiRDB/Developer's Kit used to execute the UAP.

6. Client Environment Setup

485

6.2 Environment setup procedure for HiRDB clients

The procedure for setting the client environment is shown as follows.

6. Client Environment Setup

486

6.3 HiRDB client installation

The installation procedure is the same for both HiRDB/Developer's Kit and HiRDB/
Run Time.

Note that the HiRDB client programs are already included in the HiRDB server.
Therefore, if you want use the HiRDB client on the same server machine on which the
HiRDB server operates, you do not need to install the HiRDB client on that server
machine. See Figure 1-5 for the operating mode in which the HiRDB client operates
on the same server machine as the HiRDB server.

6.3.1 Installing a HiRDB client on a UNIX client
You use the Hitachi Program Product Installer to install a HiRDB client.

6.3.2 Installing a HiRDB client on a Windows client
When you install the HiRDB client, the environment definition file (HIRDB.INI) is
stored in the system directory.

To install the HiRDB client:

1. Start the installer

Execute hcd_inst.exe found on the integrated CD-ROM to start Hitachi
Integrated Installer.

At the Hitachi Integrated Installer screen, select one of the following, and then
click the Execute installation button:

• For HiRDB/Run Time, select HiRDB/Run Time.

• For HiRDB/Developer's Kit, select HiRDB/Developer's Kit.
The HiRDB setup program is activated.

At the Select Program Product screen of the HiRDB setup program, select one of
the following, and then click the Next button:

• For HiRDB/Run Time, select HiRDB/Run Time.

• For HiRDB/Developer's Kit, select HiRDB/Developer's Kit.
The setup program of the selected program product is activated.

2. Register user information

The User Information screen is displayed.

Enter the user name and company name, and then click the Next button.

3. Start installation

6. Client Environment Setup

487

The Select Installation Folder screen is displayed.

In Installation folder, specify the location where the HiRDB client is to be
installed. If you omit this value, the drive in which Windows is installed is
assumed. After specifying the installation folder, click the Next button.

4. Select the setup type

The Setup Type dialog box is displayed.

Depending on the setup type, you can change the functions to be installed.

Typical
Installs all functions.

Compact
Installs the minimum number of functions that are required.

Custom
Installs the functions you select.

The following table shows the functions that are installed when Typical and
Compact are selected.

Table 6-1: Functions that are installed

No. Client Function Product
type

Setup type

All Minimum

1 XDS client Regular libraries RT,DK Y# Y#

2 ODBC driver RT,DK Y N

3 JDBC driver RT,DK Y N

4 Sample UAP DK Y N

6. Client Environment Setup

488

Legend:

RT: HiRDB/Run Time

DK: HiRDB/Developer's Kit

Y: Installed

N: Not installed

#

Commands and utilities are also installed with HiRDB/Run Time.

Commands, utilities, and the SQL preprocessor are also installed with
HiRDB/Developer's Kit.

Once you have selected the setup type, click the Next button.

5. Select functions

If you selected Custom, the Select Features dialog box is displayed.

Select the functions that you wish to install and then click the Next button.

6. Set up the Path and CLASSPATH environment variables

The Set up Environment Variable Path dialog box and the Set up Environment
Variable CLASSPATH dialog box might be displayed. If these dialog boxes are
displayed, select either the XDS client or the client for a server that provides
primary functions, and then click the Next button.

5 Client of a server that
provides primary functions

Regular libraries RT,DK Y# Y#

6 XA libraries RT,DK Y N

7 ODBC driver RT,DK Y N

8 HiRDB OLE DB
provider

RT,DK Y N

9 HiRDB.NET data
provider

RT,DK Y N

10 JDBC driver RT,DK Y N

11 SQLJ RT,DK Y N

12 Sample UAP DK Y N

No. Client Function Product
type

Setup type

All Minimum

6. Client Environment Setup

489

7. Start copying files

The Starting Copying Files dialog box is displayed.

Check the current settings, and then click the Next button.

8. Check the execution status of the installation

The execution status of the installation is displayed.

If there is not enough space to install the HiRDB client, the message Error
occurred during data transfer is displayed while the execution status of
the installation is displayed, and the installation is canceled. In such a case, check
that there is adequate space at the installation target and then re-execute the
installation.

9. Terminate the installation program

When installation is complete, the Setup Complete screen is displayed.

Notes
• The maximum length of a line in the environment definition file is 512 bytes.

A definition line that exceeds 512 bytes is ignored.

• When you install a HiRDB client, you must have Administrator or Power
User permissions. If a user who does not have Administrator or Power User
permissions installs the client, the system environment variables are not
updated. In Windows 2000, redistributed files are not updated either.

6. Client Environment Setup

490

6.4 Organization of directories and files for a HiRDB client

When a HiRDB client is installed, directories and files are created automatically. This
section explains the organization of the directories and files.

6.4.1 Directories and files for UNIX clients
Tables 6-2 to 6-7 list the files and directories that are created automatically during
HiRDB client installation on a client machine.

Table 6-2: Files and directories for workstation - HiRDB/Developer's Kit

Name Dir#1 File name Platform

HP
(32)

HP
(64)

Sol
(32)

Sol
(64)

AIX
(32)

AIX
(64)

Linux
(32)

Header files /HiRDB/
include

SQLCA.CBL C C C C C C C

SQLCA64.CBL -- -- -- -- -- C --

SQLDA.CBL C C C C C C C

SQLDA64.CBL -- -- -- -- -- C --

SQLIOA.CBL C C C C C C C

SQLIOA64.CB
L

-- -- -- -- -- C --

pdbtypes.h C C C C C C C

pdberrno.h C C C C C C C

pdbmisc.h C C C C C C C

pdbmiscm.h C C C C C C C

pdbsqlda.h C C C C C C C

pdbsqlcsna.
h

C C C C C C C

pddbhash.h C C C C C C C

pdauxcnv.h C C C C C C C

SQLCAM.cbl C C C C C C C

SQLDAM.cbl C C C C C C C

6. Client Environment Setup

491

SQLIOAM.cbl C C C C C C C

SQLIOAMTH.C
BL

C C -- -- C C C

SQLIOAMTH64
.CBL

-- -- -- -- -- C --

SQLCAMTH.CB
L

C C -- -- C C C

SQLCAMTH64.
CBL

-- -- -- -- -- C --

SQLCSNA.CBL C C C C C C C

SQLCSNA64.C
BL

-- -- -- -- -- C --

Archive files /HiRDB/
client/
lib

libclt.a C C C C C C C

libclt64.a -- C -- C -- C --

libcltxa.a C C C C C C C

libcltya.a C C C C C C C

libcltm.a C C C C -- -- --

libcltxam.a NF NF NF NF -- -- --

libcltyam.a NF NF NF NF -- -- --

libcltk.a C C C C C C C

libcltk64.a -- C -- C -- C --

libclts.a C C C C C C C

Shared
library
files#2

/HiRDB/
client/
lib

libzclt.sl C C C C C C C

libzclt64.s
l

-- C -- C -- C --

libzcltx.sl C C C C C C C

Name Dir#1 File name Platform

HP
(32)

HP
(64)

Sol
(32)

Sol
(64)

AIX
(32)

AIX
(64)

Linux
(32)

6. Client Environment Setup

492

libzclty.sl C C C C C C C

libzcltm.sl C C C C -- -- --

libzcltxm.s
l

NF NF NF NF -- -- --

libzcltym.s
l

NF NF NF NF -- -- --

libzcltk.sl C C C C C C C

libzcltk64.
sl

-- C -- C -- C --

libzpdodbc.
sl

C C -- -- -- -- --

libsqlauxf.
sl

C C C C C C C

libsqlauxf6
4.sl

-- C -- C -- C --

libzcltxk.s
l

C C C C C C NF

libzcltyk.s
l

C C C C C C NF

libzclts.sl C C C C C C C

libzcltxs.s
l

C C C C C C C

libzcltys.s
l

C C C C C C C

libzclty64.
sl

-- -- -- -- -- C --

libzcltys64
.sl

-- -- -- -- -- C --

JDBC driver /HiRDB/
client/
lib

libjjdbc.sl C C C C C C C

pdjdbc.jar C C C C C C C

Name Dir#1 File name Platform

HP
(32)

HP
(64)

Sol
(32)

Sol
(64)

AIX
(32)

AIX
(64)

Linux
(32)

6. Client Environment Setup

493

pdjdbc2.jar C C C C C C C

ODBC
driver

/HiRDB/
client/
lib

libodbcdrv.
sl

-- -- -- -- -- -- C

libodbcdrv6
4.sl

-- -- -- -- -- -- --

Command
utilities

/HiRDB/
client/
utl

pdcpp C C C C C C C

pdocc C C C C C C C

pdcbl C C C C C C C

pdocb C C C C C C C

pdprep C C C C C C C

pdtrcmgr C C C C C C C

pdodbcsetup C C -- -- -- -- --

pdodbcconfi
g

C C -- -- -- -- --

/HiRDB/
bin

pddef C C C C C C C

SQLJ /HiRDB/
client/
lib

pdruntime.j
ar

C -- C -- C -- C

pdnativert.
jar

C -- C -- C -- C

pdsqlj.jar C -- C -- C -- C

libpdparse.
sl

C -- C -- C -- C

libpdsqljn.
sl

C -- C -- C -- C

/HiRDB/
client/
utl

pdjava C -- C -- C -- C

Message
object file

/HiRDB/
lib

msgtxt C C C C C C C

Name Dir#1 File name Platform

HP
(32)

HP
(64)

Sol
(32)

Sol
(64)

AIX
(32)

AIX
(64)

Linux
(32)

6. Client Environment Setup

494

Legend:

Parsing
libraries#2

/HiRDB/
lib/sjis

libasqap.sl C C C C C C C

/HiRDB/
lib/
chinese

C C C C C C C

/HiRDB/
lib/
lang-c/

C C C C C C C

/HiRDB/
lib/ujis

C C C C C C C

/HiRDB/
lib/
utf-8

C C C C C C C

/HiRDB/
lib/
chinese-
gb18030

C C C C C C C

Sample
source files

/HiRDB/
client/
samplep/
uap

CREATE.ec C C C C C C C

SAMPLE1.ec C C C C C C C

SAMPLE2.ec C C C C C C C

SAMPLE3.ec C C C C C C C

sample1.ecb C C C C C C C

sample.mk C C C C C C C

inputf1 C C C C C C C

inputf2 C C C C C C C

XML
conversion
commands#3

/HiRDB/
client/
utl

phdxmlcnv C C C C C C C

XML
conversion
libraries#3

/HiRDB/
client/
lib

XMLConverte
r.jar

C C C C C C C

Name Dir#1 File name Platform

HP
(32)

HP
(64)

Sol
(32)

Sol
(64)

AIX
(32)

AIX
(64)

Linux
(32)

6. Client Environment Setup

495

HP (32): 32-bit mode HP-UX

HP (64): 64-bit mode HP-UX

Sol (32): 32-bit mode Solaris

Sol (64): 64-bit mode Solaris

AIX (32): 32-bit mode AIX

AIX (64): 64-bit mode AIX

Linux (32): 32-bit mode Linux

C: The file is created.

NF: The file is created, but the facility that uses that file does not operate.

--: The file is not created.

#1: The underlined portion indicates the HiRDB installation directory.

#2: The suffixes for the shared library files and parsing libraries differ according to the
platform. In Solaris and Linux, the suffix is .so; in AIX, the suffix is .a.

#3: These items are not included in the HiRDB client provided as part of the HiRDB
server products because they are included in HiRDB XML Extension.

Table 6-3: Files and directories for HiRDB/Run Time (UNIX client)

Name Dir#1 File name Platform

HP
(32)

HP
(64)

Sol
(32)

Sol
(64)

AIX
(32)

AIX
(64)

Linux
(32)

Archive
files

/HiRDB/
client/
lib

libclt.a C C C C C C C

libclt64.a -- C -- C -- C --

libcltxa.a C C C C C C C

libcltya.a C C C C C C C

libcltm.a C C C C -- -- --

libcltxam.a NF NF NF NF -- -- --

libcltyam.a NF NF NF NF -- -- --

libcltk.a C C C C C C C

libcltk64.a -- C -- C -- C --

libclts.a C C C C C C C

6. Client Environment Setup

496

Shared
library
files#2

/HiRDB/
client/
lib

libzclt.sl C C C C C C C

libzclt64.sl -- C -- C -- C --

libzcltx.sl C C C C C C C

libzclty.sl C C C C C C C

libzcltm.sl C C C C -- -- --

libzcltxm.sl NF NF NF NF -- -- --

libzcltym.sl NF NF NF NF -- -- --

libzcltk.sl C C C C C C C

libzcltk64.sl -- C -- C -- C --

libzpdodbc.sl C C -- -- -- -- --

libsqlauxf.sl C C C C C C C

libsqlauxf64.
sl

-- C -- C -- C --

libzcltxk.sl C C C C C C NF

libzcltyk.sl C C C C C C NF

libzclts.sl C C C C C C C

libzcltxs.sl C C C C C C C

libzcltys.sl C C C C C C C

libzclty64.sl -- -- -- -- -- C --

libzcltys64.s
l

-- -- -- -- -- C --

JDBC
driver

/HiRDB/
client/
lib

libjjdbc.sl C C C C C C C

pdjdbc.jar C C C C C C C

pdjdbc2.jar C C C C C C C

Name Dir#1 File name Platform

HP
(32)

HP
(64)

Sol
(32)

Sol
(64)

AIX
(32)

AIX
(64)

Linux
(32)

6. Client Environment Setup

497

Legend:

HP (32): 32-bit mode HP-UX

HP (64): 64-bit mode HP-UX

Sol (32): 32-bit mode Solaris

Sol (64): 64-bit mode Solaris

AIX (32): 32-bit mode AIX

AIX (64): 64-bit mode AIX

Linux (32): 32-bit mode Linux

ODBC
driver

/HiRDB/
client/
lib

libodbcdrv.sl -- -- -- -- -- -- C

libodbcdrv64.
sl

-- -- -- -- -- -- --

SQLJ
Runtime
Library

/HiRDB/
client/
lib

pdruntime.jar C -- C -- C -- C

pdnativert.ja
r

C -- C -- C -- C

libpdsqljn.sl C -- C -- C -- C

Comman
d utilities

/HiRDB/
client/
utl

pdtrcmgr C C C C C C C

pdodbcsetup C C -- -- -- -- --

pdodbcconfig C C -- -- -- -- --

XML
conversio
n
command
s#3

/HiRDB/
client/
utl

phdxmlcnv C C C C C C C

XML
conversio
n
libraries#

3

/HiRDB/
client/
lib

XMLConverter.
jar

C C C C C C C

Name Dir#1 File name Platform

HP
(32)

HP
(64)

Sol
(32)

Sol
(64)

AIX
(32)

AIX
(64)

Linux
(32)

6. Client Environment Setup

498

C: The file is created.

NF: The file is created, but the facility that uses that file does not operate.

--: The file is not created.

#1: The underlined portion indicates the HiRDB installation directory.

#2: The suffixes for the shared library files and parsing libraries differ according to the
platform. In Solaris and Linux, the suffix is .so; in AIX, the suffix is .a.

#3: These items are not included in the HiRDB client provided as part of the HiRDB
server products because they are included in HiRDB XML Extension.

6. Client Environment Setup

499

Table 6-4: Files and directories for HiRDB/Developer's Kit (UNIX client in IPF
machine)

Name Directory File name Platform

HP-UX

Header files /HiRDB/include SQLCA.CBL C

SQLCA64.CBL C

SQLDA.CBL C

SQLDA64.CBL C

SQLIOA.CBL C

SQLIOA64.CBL C

pdbtypes.h C

pdberrno.h C

pdbmisc.h C

pdbmiscm.h C

pdbsqlda.h C

pdbsqlcsna.h C

pddbhash.h C

pdauxcnv.h C

SQLCAM.cbl C

SQLDAM.cbl C

SQLIOAM.cbl C

SQLIOAMTH.CBL C

SQLIOAMTH64.CBL C

SQLCAMTH.CBL C

SQLCAMTH64.CBL C

SQLCSNA.CBL C

SQLCSNA64.CBL C

6. Client Environment Setup

500

Shared libraries /HiRDB/client/lib libzclt.so C

libzclt64.so C

libzcltx.so C

libzcltx64.so C

libzclty.so C

libzclty64.so C

libzcltk.so C

libzcltk64.so C

libsqlauxf.so C

libsqlauxf64.so C

libzcltxk.so NF

libzcltxk64.so NF

libzcltyk.so NF

libzcltyk64.so C

libzclts.so C

libzclts64.so C

libzcltxs.so C

libzcltxs64.so C

libzcltys.so C

libzcltys64.so C

JDBC drivers /HiRDB/client/lib libjjdbc.so C

libjjdbc32.so C

pdjdbc.jar C

pdjdbc2.jar C

pdjdbc32.jar C

Name Directory File name Platform

HP-UX

6. Client Environment Setup

501

ODBC driver /HiRDB/client/lib libodbcdrv.sl --

libodbcdrv64.sl --

Command
utilities

/HiRDB/client/utl pdcpp C

pdocc C

pdcbl C

pdocb C

pdprep C

pdtrcmgr C

/HiRDB/bin pddef C

SQLJ /HiRDB/client/lib pdruntime.jar C

pdruntime32.jar C

pdnativert.jar C

pdnativert32.jar C

pdsqlj.jar C

pdsqlj32.jar C

libpdsqljn.so C

libpdsqljn32.so C

libpdparse.so C

/HiRDB/client/utl pdjava C

Message object
file

/HiRDB/lib msgtxt C

Name Directory File name Platform

HP-UX

6. Client Environment Setup

502

Legend:

C: The file is created.

NF: The file is created, but the facility that uses that file does not operate.

--: The file is not created.

Note
The underlined portion indicates the HiRDB installation directory.

#: These items are not included in the HiRDB client provided as part of the HiRDB

Syntax analysis
libraries

/HiRDB/lib/sjis libasqap.so C

/HiRDB/lib/chinese C

/HiRDB/lib/lang-c C

/HiRDB/lib/ujis C

/HiRDB/lib/utf-8 C

/HiRDB/lib/
chinese-gb18030

C

Sample source
files

/HiRDB/client/sampleap/
uap

CREATE.ec C

SAMPLE1.ec C

SAMPLE2.ec C

SAMPLE3.ec C

Sample1.ecb C

Sample.mk C

inputf1 C

inputf2 C

XML
conversion
commands#

/HiRDB/client/utl phdxmlcnv C

XML
conversion
libraries#

/HiRDB/client/lib XMLConverter.jar C

Name Directory File name Platform

HP-UX

6. Client Environment Setup

503

server products because they are included in HiRDB XML Extension.

Table 6-5: Files and directories for HiRDB/Run Time (UNIX client in IPF
machine)

Name Directory File name Platform

HP-UX

Shared libraries /HiRDB/client/lib libzclt.so C

libzclt64.so C

libzcltx.so C

libzcltx64.so C

libzclty.so C

libzclty64.so C

libzcltk.so C

libzcltk64.so C

libsqlauxf.so C

libsqlauxf64.so C

libzcltxk.so NF

libzcltxk64.so NF

libzcltyk.so NF

libzcltyk64.so C

libzclts.so C

libzclts64.so C

libzcltxs.so C

libzcltxs64.so C

libzcltys.so C

libzcltys64.so C

6. Client Environment Setup

504

Legend:

C: The file is created.

NF: The file is created, but the facility that uses that file does not operate.

--: The file is not created.

Note
The underlined portion indicates the HiRDB installation directory.

#

These items are not included in the HiRDB client provided as part of the HiRDB

JDBC driver /HiRDB/client/lib libjjdbc.so C

libjjdbc32.so C

pdjdbc.jar C

pdjdbc2.jar C

pdjdbc32.jar C

ODBC driver /HiRDB/client/lib libodbcdrv.sl --

libodbcdrv64.sl --

SQLJ runtime
files

/HiRDB/client/lib pdruntime.jar C

pdruntime32.jar C

pdnativert.jar C

pdnativert32.jar C

libpdsqljn.so C

libpdsqljn32.so C

Command
utilities

/HiRDB/client/utl pdtrcmgr C

XML conversion
commands#

/HiRDB/client/utl phdxmlcnv C

XML conversion
libraries#

/HiRDB/client/lib XMLConverter.jar C

Name Directory File name Platform

HP-UX

6. Client Environment Setup

505

server products because they are included in HiRDB XML Extension.

Table 6-6: Files and directories for HiRDB/Developer's Kit (Linux (EM64T))

Name Directory File name

Header files /HiRDB/include SQLCA.CBL

SQLCA64.CBL

SQLDA.CBL

SQLDA64.CBL

SQLIOA.CBL

SQLIOA64.CBL

pdbtypes.h

pdberrno.h

pdbmisc.h

pdbmiscm.h

pdbsqlda.h

pdbsqlcsna.h

pddbhash.h

pdauxcnv.h

SQLCAM.cbl

SQLDAM.cbl

SQLIOAM.cbl

SQLIOAMTH.CBL

SQLIOAMTH64.CBL

SQLCAMTH.CBL

SQLCAMTH64.CBL

SQLCSNA.CBL

SQLCSNA64.CBL

6. Client Environment Setup

506

Shared libraries /HiRDB/client/lib libzclt.so

libzclt64.so

libzcltx.so

libzclty.so

libzclty64.so

libzcltys64.so

libzcltk.so

libzcltk64.so

libsqlauxf.so

libsqlauxf64.so

libzcltxk.so

libzcltyk.so

libzcltyk64.so

libzclts.so

libzcltxs.so

libzcltys.so

JDBC driver /HiRDB/client/utl libjjdbc.so

pdjdbc.jar

pdjdbc2.jar

ODBC driver /HiRDB/client/lib libodbcdrv.sl

libodbcdrv64.sl

Name Directory File name

6. Client Environment Setup

507

Command utilities /HiRDB/client/utl pdcpp

pdocc

pdcbl

pdocc

pdprep

pdtrcmgr

/HiRDB/bin pddef

pddivinfgt

SQLJ /HiRDB/client/lib pdsqlj.jar

pdruntime.jar

pdnativert.jar

libpdparse.so

libpdsqljn.so

/HiRDB/client/utl pdjava

Message object file /HiRDB/lib msgtxt

Parsing libraries /HiRDB/lib/sjis libasqap.so

/HiRDB/lib/chinese

/HiRDB/lib/lang-c

/HiRDB/lib/ujis

/HiRDB/lib/utf-8

/HiRDB/lib/
chinese-gb18030

Name Directory File name

6. Client Environment Setup

508

Note
The underlined portion indicates the HiRDB installation directory.

#: These items are not included in the HiRDB client provided as part of the HiRDB
server products because they are included in HiRDB XML Extension.

Sample source files /HiRDB/client/
sampleap/uap

CREATE.ec

SAMPLE1.ec

SAMPLE2.ec

SAMPLE3.ec

Sample1.ecb

Sample.mk

inputf1

inputf2

XML conversion
commands#

/HiRDB/client/utl phdxmlcnv

XML conversion
libraries#

/HiRDB/client/lib XMLConverter.jar

Name Directory File name

6. Client Environment Setup

509

Table 6-7: Files and directories for HiRDB/Run Time (Linux (EM64T))

Name Directory# File name

Shared libraries /HiRDB/client/lib libzclt.so

libzclt64.so

libzcltx.so

libzclty.so

libzclty64.so

libzcltys64.so

libzcltk.so

libzcltk64.so

libsqlauxf.so

libsqlauxf64.so

libzcltxk.so

libzcltyk.so

libzcltyk64.so

libzclts.so

libzcltxs.so

libzcltys.so

JDBC driver /HiRDB/client/utl libjjdbc.so

pdjdbc.jar

pdjdbc2.jar

ODBC driver /HiRDB/client/lib libodbcdrv.sl

libodbcdrv64.sl

SQLJ runtime /HiRDB/client/lib libpdsqljn.so

pdruntime.jar

pdnativert.jar

Command utility /HiRDB/client/utl pdtrcmgr

/HiRDB/bin pddivinfgt

6. Client Environment Setup

510

Note
The underlined portion indicates the HiRDB installation directory.

#: These items are not included in the HiRDB client provided as part of the HiRDB
server products because they are included in HiRDB XML Extension.

Archived files and shared library files used for each purpose
Table 6-8 shows the archived files that are used for each purpose. Table 6-9 shows
the shared library files that are used for each purpose.

Table 6-8: Archived files used for each purpose (UNIX client)

#: The connection type can be switched between static connection and dynamic
connection by the switch registered to TM.

Table 6-9: Shared library files used for each purpose (UNIX client)

XML conversion
commands#

/HiRDB/client/utl phdxmlcnv

XML conversion
libraries#

/HiRDB/client/lib XMLConverter.jar

Purpose File used

Normal UAP libclt.a

XA interface
connection

Dynamic connection (single thread) libcltxa.a

Static or dynamic connection (single thread)#1 libcltya.a

Multi-connection
facility

DCE thread libcltm.a

Kernel thread libcltk.a

Solaris thread libcltk.a

Single thread libclts.a

Purpose File used

Normal UAP libzclt.sl

Name Directory# File name

6. Client Environment Setup

511

Note
The suffix of the shared library files differs according to the platform. In Solaris
and Linux, the suffix is .so; in AIX, the suffix is .a.

#: The connection type can be switched between static and dynamic by the switch that
is registered to TM.

 Library files used by each transaction manager

The following table lists the libraries that are used by each transaction manager.

XA interface
connection

Dynamic connection Single thread libzcltx.sl

libzcltx64.sl

libzcltxs.sl (when the
multi-connection facility is used)
libzcltxs64.sl (when the
multi-connection facility is used)

Multiple threads libzcltxk.sl

Static or dynamic
connection#

Single thread libzclty.sl

libzclty64.sl

libzcltys.sl (when the
multi-connection facility is used or
TUXEDO is supported)
libzcltys64.sl (when the
multi-connection facility is used)

Multiple threads libzcltyk.sl

libzcltyk64.sl

Multi-connection
facility

DCE thread libzcltm.sl

Kernel thread libzcltk.sl

Solaris thread libzcltk.sl

Single thread libzclts.sl

ODBC connection libzpodbc.sl

SQL auxiliary functions libsqlauxf.sl

Purpose File used

6. Client Environment Setup

512

Table 6-10: Library files used by each transaction manager (UNIX client)

Legend:

Y: The BES connection holding facility can be used.

N: The BES connection holding facility cannot be used.

Note
The suffix of the shared library files differs according to the platform. In Solaris
and Linux, the suffix is .so; in AIX, the suffix is .a.

6.4.2 Directories and files for Windows clients
Tables 6-11 through 6-17 list the files and directories that are created automatically
during HiRDB client installation.

Transaction manager Library name BES connection holding facility

OpenTP1 libzcltx.sl Y

libzclty.sl Y

libzcltxs.sl Y

libzcltys.sl Y

libzcltx64.sl Y

libzclty64.sl Y

libzcltxs64.sl Y

libzcltys64.sl Y

TPBroker for C++ libzcltxk.sl N

libzcltyk.sl N

TUXEDO libzcltys.sl Y

WebLogic Server libzcltyk.sl N

TP1/EE libzcltyk.sl Y

libzcltyk64.sl Y

6. Client Environment Setup

513

Table 6-11: Files and directories for HiRDB/Developer's Kit (Windows client)

Name Directory File name

Header files xxxx\INCLUDE PDBTYPES.H

PDBERRNO.H

PDBMISC.H

SQLCA.CBL

SQLIOA.CBL

PDBMISCM.H

SQLDA.CBL

PDBSQLDA.H

PDBSQLCSNA.H

SQLIOAD.CBL

SQLCAD.CBL

PDDBHASH.H

PDAUXCNV.H

SQLIOAMTH.CBL

SQLCAMTH.CBL

SQLCSNA.CBL

Message object file xxxx\LIB msgtxt

6. Client Environment Setup

514

Linkage libraries xxxx\LIB CLTDLL.LIB

PDCLTM32.LIB

PDCLTM50.LIB

PDCLTX32.LIB

PDCLTXM.LIB

PDSQLAUXF.LIB

PDCLTXS.LIB

PDCLTXM5.LIB

PDCLTM71.LIB

PDCLTM80S.LIB

Command utilities xxxx\UTL PDCPP.EXE

PDOCC.EXE

PDCBL.EXE

PDOCB.EXE

PDPREP.EXE

PDPREP7.EXE

PDPREP8.EXE

PDPREPA.EXE

PDPREPC.EXE

PDPREPG.EXE

PDTRCMGR.EXE

PDCLTADM.EXE

Name Directory File name

6. Client Environment Setup

515

DLL files xxxx\UTL CLTDLL.DLL

PDCLTM32.DLL

PDCLTM50.DLL

PDCLTX32.DLL

PDCLTXM.DLL

PDSQLAUXF.DLL

PDSQLAUXF71.DLL

PDOLEDB.DLL

PDCLTXS.DLL

PDCLTXM5.DLL

PDCLTM71.DLL

PDCLTM80S.DLL

JDBC drivers xxxx\UTL JJDBC.DLL

PDJDBC.JAR

PDJDBC2.JAR

SQLJ xxxx\UTL PDSQLJ.JAR

PDRUNTIME.JAR

PDNATIVERT.JAR

PDPARSE.DLL

PDJAVA.EXE

PDSQLJN.DLL

HiRDB.NET data providers xxxx\UTL and
\Windows\assembly

PDDNDP.DLL

PDDNDPCORE.DLL

PDDNDP20.DLL

PDDNDPCORE20.DLL

Name Directory File name

6. Client Environment Setup

516

#: These items are not included in the HiRDB client provided as part of the HiRDB
server products because they are included in HiRDB XML Extension.

Notes
1. xxxx indicates the name of the directory specified during installation. The

directory name can be specified when HiRDB/Developer's Kit is installed.
\Windows indicates the system directory.

2. This table does not include redistributed files and installer management files.

Publisher policies for HiRDB.NET
data provider

\Windows\assembly policy.9.1.pddndp.dll

policy.9.1.pddndpcore.dll

policy.9.1.pddndp20.dll

policy.9.1.pddndpcore20.dll

XML conversion commands# xxxx\UTL phdxmlcnv.bat

XML conversion libraries# xxxx\UTL XMLConverter.jar

ODBC driver \Windows\system32 pdodbcdrv3.dll

pdodbstp3.dll

pdclto32.dll

Interface definition file xxxx\LIB HIRDB.PKG

Sample files xxxx\SAMPLEAP CREATE.EC

SAMPLE1.EC

SAMPLE2.EC

SAMPLE3.EC

SAMPLE1.ECB

INPUTF1

INPUTF2

README file xxxx README.TXT

Environment definition file \WINDOWS HIRDB.INI

Name Directory File name

6. Client Environment Setup

517

Table 6-12: Files and directories for HiRDB/Run Time (Windows client)

Name Directory File name

Linkage libraries xxxx\LIB PDCLTX32.LIB

PDCLTXM.LIB

PDCLTXS.LIB

PDCLTXM5.LIB

Command utilities xxxx\UTL CLTDLL.DLL

PDCLTM32.DLL

PDCLTM50.DLL

PDCLTP32.DLL

PDCLTX32.DLL

PDTRCMGR.EXE

PDSQLAUXF.DLL

PDSQLAUXF71.DLL

PDCLTXM.DLL

PDOLEDB.DLL

PDCLTADM.EXE

PDCLTXS.DLL

PDCLTXM5.DLL

PDCLTM71.DLL

PDCLTM80S.DLL

JJDBC.DLL

PDJDBC.JAR

PDJDBC2.JAR

PDRUNTIME.JAR

PDNATIVERT.JAR

PDSQLJN.DLL

phdxmlcnv.bat

6. Client Environment Setup

518

Notes

1. xxxx indicates the name of the directory specified during installation. The
directory name can be specified when HiRDB/Run Time is installed.
\Windows indicates the system directory.

2. This table does not include redistributed files and installer management files.

XMLConverter.jar

xxxx\UTL and
\Windows\assembly

PDDNDP.DLL

PDDNDPCORE.DLL

PDDNDP20.DLL

PDDNDPCORE20.DLL

\Windows\assembly policy.9.1.pddndp.dll

policy.9.1.pddndpcore.dll

policy.9.1.pddndp20.dll

policy.9.1.pddndpcore20.dll

ODBC driver \Windows\system32 pdodbcdrv3.dll

pdodbstp3.dll

pdclto32.dll

README file xxxx README.TXT

Environment definition file \WINDOWS HIRDB.INI

Name Directory File name

6. Client Environment Setup

519

Table 6-13: Files and directories for HiRDB/Developer's Kit (Windows client in
IPF machine)

Name Directory File name

Header files xxxx\INCLUDE PDBTYPES.H

PDBERRNO.H

PDBMISC.H

PDBMISCM.H

SQLDA.CBL

PDBSQLDA.H

PDBSQLCSNA.H

SQLIOA.CBL

SQLCA.CBL

SQLIOAD.CBL

SQLCAD.CBL

PDDBHASH.H

PDAUXCNV.H

SQLIOAMTH.CBL

SQLCAMTH.CBL

SQLCSNA.CBL

Linkage libraries xxxx\LIB PDCLTM64.LIB

PDCLTX64.LIB

PDCLTXM64.LIB

PDSQLAUXF64.LIB

PDCLTXS64.LIB

6. Client Environment Setup

520

Command utilities xxxx\UTL PDCPP.EXE

PDOCC.EXE

PDCBL.EXE

PDOCB.EXE

PDPREP.EXE

PDPREP7.EXE

PDPREP8.EXE

PDPREPA.EXE

PDPREPC.EXE

PDPREPG.EXE

PDJAVA.EXE

PDTRCMGR.EXE

PDCLTADM.EXE

DLL files xxxx\UTL PDCLTM64.DLL

PDCLTX64.DLL

PDCLTXM64.DLL

PDSQLAUXF64.DLL

PDCLTXS64.DLL

JDBC drivers xxxx\UTL JJDBC.DLL

PDJDBC.JAR

PDJDBC2.JAR

SQLJ xxxx\UTL PDSQLJ.JAR

PDRUNTIME.JAR

PDNATIVERT.JAR

PDPARSE.DLL

PDSQLJN.DLL

Name Directory File name

6. Client Environment Setup

521

Notes

1. xxxx indicates the name of the directory specified during installation. The
directory name can be specified when HiRDB/Developer's Kit is installed.
\Windows indicates the system directory.

2. This table does not include redistributed files and installer management files.

Sample files xxxx\SAMPLEAP CREATE.EC

SAMPLE1.EC

SAMPLE2.EC

SAMPLE3.EC

SAMPLE1.ECB

INPUTF1

INPUTF2

README file xxxx README.TXT

Environment definition file \Windows HIRDB.INI

Message object file xxxx\LIB msgtxt

Name Directory File name

6. Client Environment Setup

522

Table 6-14: Files and directories for HiRDB/Run Time (Windows client in IPF
machine)

Notes

1. xxxx indicates the name of the directory specified during installation. The
directory name can be specified when HiRDB/Run Time is installed.
\Windows indicates the system directory.

2. This table does not include redistributed files and installer management files.

Name Directory File name

Command utilities xxxx\UTL PDCLTM64.DLL

PDCLTX64.DLL

PDCLTXM64.DLL

PDSQLAUXF64.DLL

PDCLTXS64.DLL

PDTRCMGR.EXE

PDCLTADM.EXE

PDJDBC.JAR

PDJDBC2.JAR

JJDBC.DLL

PDRUNTIME.JAR

PDNATIVERT.JAR

PDSQLJN.DLL

README file xxxx README.TXT

Environment definition file \Windows HIRDB.INI

6. Client Environment Setup

523

Table 6-15: Files and directories for HiRDB/Developer's Kit (EM64T machine
Windows client)

Name Directory File name

Header files xxxx\INCLUDE PDBTYPES.H

PDBERRNO.H

PDBMISC.H

PDBMISCM.H

SQLDA.CBL

SQLDA64.CBL

PDBSQLDA.H

PDBSQLCSNA.H

SQLIOA.CBL

SQLIOA64.CBL

SQLCA.CBL

SQLCA64.CBL

SQLIOAD.CBL

SQLIOAD64.CBL

SQLCAD.CBL

SQLCAD64.CBL

PDDBHASH.H

PDAUXCNV.H

SQLIOAMTH.CBL

SQLIOAMTH64.CBL

SQLCAMTH.CBL

SQLCAMTH64.CBL

SQLCSNA.CBL

SQLCSNA64.CBL

6. Client Environment Setup

524

Linkage libraries xxxx\LIB CLTDLL.LIB

PDCLTM32.LIB

PDCLTM50.LIB

PDCLTM64.LIB

PDCLTX32.LIB

PDCLTXM.LIB

PDSQLAUXF.LIB

PDSQLAUXF64.LIB

PDCLTXS.LIB

PDCLTXM5.LIB

PDCLTM71.LIB

PDCLTM80S.LIB

Command utilities xxxx\UTL PDCPP.EXE

PDOCC.EXE

PDCBL.EXE

PDOCB.EXE

PDPREP.EXE

PDPREP7.EXE

PDPREP8.EXE

PDPREPA.EXE

PDPREPC.EXE

PDPREPG.EXE

PDJAVA.EXE

PDTRCMGR.EXE

PDCLTADM.EXE

Name Directory File name

6. Client Environment Setup

525

DLL files xxxx\UTL CLTDLL.DLL

PDCLTM32.DLL

PDCLTM50.DLL

PDCLTM64.DLL

PDCLTM71.DLL

PDCLTM80S.DLL

PDCLTX32.DLL

PDCLTXM.DLL

PDOLEDB.DLL

PDSQLAUXF.DLL

PDSQLAUXF64.DLL

PDPARSE.DLL

PDCLTXS.DLL

JDBC drivers xxxx\UTL JJDBC.DLL

PDJDBC.JAR

PDJDBC2.JAR

SQLJ xxxx\UTL PDSQLJ.JAR

PDRUNTIME.JAR

PDNATIVERT.JAR

PDSQLJN.DLL

HiRDB.NET data provider xxxx\UTL PDDNDP.DLL

PDDNDPCORE.DLL

PDDNDP20.DLL

PDDNDPCORE20.DLL

xxxx\UTL and
\Windows\assembly

PDDNDP20x.DLL

PDDNDPCORE20x.DLL

Name Directory File name

6. Client Environment Setup

526

Notes:

1. xxxx indicates the name of the HiRDB installation directory. This directory
name can be specified during installation. \Windows indicates the system
directory.

2. This table does not include redistributed files and installer management files.

#

Publisher policies for HiRDB.NET
data provider

\Windows\assembly policy.9.1.pddndp20x.dll

policy.9.1.pddndpcore20x.d
ll

XML conversion commands# xxxx\UTL phdxmlcnv.bat

XML conversion libraries# xxxx\UTL XMLConverter.jar

ODBC 3.5 drivers \Windows\SysWOW64 pdodbcdrv3.dll

pdodbstp3.dll

pdclto32.dll

\Windows\system32 pdodbcdrv3x.dll

pdodbstp3x.dll

pdclto64.dll

Interface definition file xxxx\BIN HIRDB.PKG

Sample xxxx\SAMPLEAP CREATE.EC

SAMPLE1.EC

SAMPLE2.EC

SAMPLE3.EC

SAMPLE1.ECB

INPUTF1

INPUTF2

README file xxxx README.TXT

Environment definition file \Windows HIRDB.INI

Message object file xxxx\LIB msgtxt

Name Directory File name

6. Client Environment Setup

527

These items are not included in the HiRDB client provided as part of the HiRDB
server products because they are included in HiRDB XML Extension.

Table 6-16: Files and directories for HiRDB/Run Time (EM64T machine
Windows client)

Name Directory File name

Linkage libraries xxxx\LIB PDCLTX32.LIB

PDCLTXM.LIB

PDCLTXS.LIB

PDCLTXM5.LIB

Command utilities xxxx\UTL PDTRCMGR.EXE

PDCLTADM.EXE

DLL files xxxx\UTL CLTDLL.DLL

PDCLTM32.DLL

PDCLTM50.DLL

PDCLTM64.DLL

PDCLTX32.DLL

PDCLTM71.DLL

PDCLTM80S.DLL

PDCLTXM.DLL

PDOLEDB.DLL

PDSQLAUXF.DLL

PDSQLAUXF64.DLL

PDPARSE.DLL

PDCLTXS.DLL

JDBC driver xxxx\UTL JJDBC.DLL

PDJDBC.JAR

PDJDBC2.JAR

6. Client Environment Setup

528

Notes:

1. xxxx indicates the name of the HiRDB installation directory. This directory
name can be specified during installation. \Windows indicates the system
directory.

2. This table does not include redistributed files and installer management files.

#

SQLJ runtime xxxx\UTL PDRUNTIME.JAR

PDNATIVERT.JAR

PDSQLJN.DLL

HiRDB data providers xxxx\UTL PDDNDP.DLL

PDDNDPCORE.DLL

PDDNDP20.DLL

PDDNDPCORE20.DLL

xxxx\UTL and
\Windows\assembly

PDDNDP20x.DLL

PDDNDPCORE20x.DLL

Publisher policies for HiRDB.NET
data provider

\Windows\assembly policy.9.1.pddndp20x.dll

policy.9.1.pddndpcore20x.d
ll

XML conversion commands# xxxx\UTL phdxmlcnv.bat

XML conversion libraries# xxxx\UTL XMLConverter.jar

ODBC 3.5 drivers \Windows\SysWOW64 pdodbcdrv3.dll

pdodbstp3.dll

pdclto32.dll

\Windows\system32 pdodbcdrv3x.dll

pdodbstp3x.dll

pdclto64.dll

README files xxxx README.TXT

Environment definition file \Windows HIRDB.INI

Name Directory File name

6. Client Environment Setup

529

These items are not included in the HiRDB client provided as part of the HiRDB
server products because they are included in HiRDB XML Extension.

Table 6-17: Files and directories for ODBC driver (Windows client)

Note

\Windows indicates the system directory.

#: The file is not created on EM64T machines running Windows clients.

 Linkage library files used by application

The following table lists the linkage library files that are used according to their
purpose.

Table 6-18: Linkage library files used according to purpose (Windows client)

Name Directory File name

Setup files \Windows DRVSETUP.EXE#

DRVSTP32.EXE

Setup DLL HIRDBSTP.DLL#

HRDSTP32.DLL

Driver PDODBDRV.DLL#

PDODBD32.DLL

HiRDB/ClientDLL PDCLTLIB.DLL#

PDCLTL32.DLL

Purpose File used

Usual UAP CLTDLL.DLL

XA interface connection
(static connection or
dynamic connection)#

Single thread PDCLTX32.DLL

PDCLTXS.DLL (for OTS or TUXEDO)

Multi-thread PDCLTXM.DLL

Multi-connection facility (for multi-thread) PDCLTM32.DLL

PDCLTM50.DLL (for VisualC++5.0)
PDCLTM71.DLL (when Visual Studio .NET 2003 is
supported)
PDCLTM80S.DLL (when Visual Studio 2005 is
supported)

For SQL auxiliary functions PDSQLAUXF.DLL

6. Client Environment Setup

530

#: The connection type can be switched between static connection and dynamic
connection by the switch registered to TM.

 Library files used by each transaction manager

The following table lists the libraries that are used by each transaction manager.

Table 6-19: Library files used by each transaction manager (Windows client)

Legend:

Y: The BES connection holding facility can be used.

N: The BES connection holding facility cannot be used.

 List of libraries and compilers

The following table lists the libraries and compilers.

Table 6-20: List of libraries and compilers (Windows client)

Transaction manager Library name BES connection holding facility

OpenTP1 pdcltx32.dll Y

pdcltxs.dll Y

TPBroker for C++ pdcltxm.dll N

TUXEDO pdcltxs.dll Y

WebLogic Server pdcltxm.dll N

Library name Compiler version VisualC runtime used

cltdll.dll VisualC++ 2.0 Multi-thread static

pdcltm32.dll VisualC++ 4.2 Multi-thread DLL

pdcltx32.dll

pdcltxm.dll

pdcltxs.dll

pdcltm50.dll VisualC++ 5.0

pdcltxm5.dll

pdsqlauxf.dll

pdcltm71.dll Visual Studio .NET 2003 Multi-thread static

pdsqlauxf71.dll

6. Client Environment Setup

531

jjdbcinter.dll VisualC++5.0 Multi-thread DLL

jjdbcinter.dll Visual Studio 2003 Multi-thread static

PDCLTM80S.dll Visual Studio 2005

Library name Compiler version VisualC runtime used

6. Client Environment Setup

532

6.5 Setting the hosts file

When different machines are used for the client and the server, the following
information must be specified in the hosts file of the client machine.

• IP address

• Host name

If DNS is used, the hosts file does not need to be set.

If you do not specify the standard host in the hosts file, you must specify
PDCLTRCVADDR in the client environment definitions.

(1) HiRDB/Single Server
• IP address

Specify the IP address of the HiRDB/Single Server.

• Host name

Specify the host name of the HiRDB/Single Server.

System-switching without IP address inheritance
Specify the IP addresses and the host names of both the execution system and the
standby system.

(2) HiRDB/Parallel Server
• IP address

Specify the IP address of the server machine at which the front-end server is
defined.

• Host name

Specify the host name of the server machine at which the front-end server is
defined.

System-switching without IP address inheritance
Specify the IP addresses and the host names of both the execution system and the
standby system.

6. Client Environment Setup

533

6.6 Client environment definitions (setting environment variables)

6.6.1 Environment setup format
To execute a UAP, you must specify client environment definitions for each client.

(1) UNIX environment
To execute commands and utilities, add the following directory to the PATH
environment variable:

Executing a client on the server machine
/opt/HiRDB/client/utl/

Logging into the HiRDB server from a remote system
$PDDIR/client/utl/

Retrieval sequence for client environment definitions

If the client environment definitions are set at several locations, each client
environment definition is retrieved in the sequence below. If a client environment
definition has no specified value, the default value is applied.

1. Environment variables group#

2. User environment variables

#: When the multi-connection facility is used, use ALLOCATE CONNECTION
HANDLE to specify the file name. If a UAP under OLTP is used as the client,
specify the file name in an open character string. For details about open character
strings, see the HiRDB Version 9 Installation and Design Guide.

(a) sh (Bourne shell)
You must store the environment variables shown below in the .profile file. These
environment variables execute automatically at the time of startup.
 $
PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-server-host-name]
 $ PDNAMEPORT=HiRDB-server-port-number
 $ PDFESHOST=front-end-server-host-name
 [:port-number-of-unit-containing-front-end-server]
 [,secondary-system-front-end-server-host-name

[:port-number-of-unit-containing-secondary-system-front-end-server]]
 $ PDSERVICEGRP=server-name
 $ PDSRVTYPE={WS|PC}
 $ PDSERVICEPORT=high-speed-connection-port-number
 [,secondary-system-high-speed-connection-port-number]

6. Client Environment Setup

534

 $
PDFESGRP=FES-group[,switchover-FES-group[,switchover-FES-group]...]
 $ PDCLTRCVPORT=client-receive-port-number
 $ PDCLTRCVADDR={client-IP-address|client-host-name}
 $ PDTMID=OLTP-identifier
 $ PDXAMODE={0|1}
 $
PDTXACANUM=maximum-number-of-concurrent-transaction-executions-per-UAP
 $ PDXARCVWTIME=transaction-recovery-wait-time
 $ PDXATRCFILEMODE={LUMP|SEPARATE}
 $ PDXAAUTORECONNECT={YES|NO}
 $
HiRDB_PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-server-host-
name]
 $ HiRDB_PDNAMEPORT=HiRDB-server-port-number
 $ HiRDB_PDTMID=OLTP-identifier
 $ HiRDB_PDXAMODE={0|1}
 $ PDUSER=[authorization-identifier/password]
 $ PDCLTAPNAME=identification-name-of-UAP-to-be-executed
 $ PDCLTLANG={SJIS|CHINESE|UJIS|C|UTF-8|CHINESE-GB18030}
 $ PDLANG={UTF-8|SJIS|CHINESE|CHINESE-GB18030|ANY}
 $ PDDBLOG={ALL|NO}
 $ PDEXWARN={YES|NO}
 $ PDSUBSTRLEN={3|4|5|6}
 $ PDCLTCNVMODE={AUTO|NOUSE|UJIS|UJIS2|UTF8|UTF8MS|
 UTF8_TXT|UTF8_EX|UTF8_EX2|UTF8MS_TXT|UCS2_UJIS|
 UCS2_UTF8}
 $ PDCLTGAIJIDLL=user-defined-external-character-conversion-DLL-file-name
 $ PDCLTGAIJIFUNC=user-defined-external-character-conversion-function-name
 $ PDCLTGRP=client-group-name
 $ PDTCPCONOPT={0|1}
 $ PDAUTORECONNECT={YES|NO}
 $ PDRCCOUNT=CONNECT-retry-count-with-automatic-reconnect-facility
 $ PDRCINTERVAL=CONNECT-retry-interval-with-automatic-reconnect-facility
 $ PDUAPENVFILE=UAP-environment-definition-file-name
 $ PDDBBUFLRU={YES|NO}
 $ PDHATRNQUEUING=NO
 $ PDASTHOST=HiRDB-Control-Manager-Agent-host-name
 [,secondary-system-HiRDB-Control-Manager-Agent-host-name]
 $ PDASTPORT=HiRDB-Control-Manager-Agent-port-number
 $
PDSYSTEMID=HiRDB-identifier-of-HiRDB-server-managed-by-HiRDB-Control-Ma
nager-Agent
 $ PDASTUSER=OS-user-name/password
 $ PDCMDWAITTIME=maximum-client-wait-time-during-command-execution
 $ PDCMDTRACE=command-trace-file-size

6. Client Environment Setup

535

 $ PDIPC={MEMORY|DEFAULT}
 $ PDSENDMEMSIZE=data-send-memory-size-in-client
 $ PDRECVMEMSIZE=data-receive-memory-size-in-client
 $ PDCWAITTIME=maximum-client-wait-time
 $ PDSWAITTIME=maximum-server-wait-time-during-transaction-processing
 $ PDSWATCHTIME=maximum-server-wait-time-outside-transaction-processing
 $ PDCWAITTIMEWRNPNT=output-time-for-SQL-runtime-warning
 $ PDKALVL={0|1|2}
 $ PDKATIME=packet-send-interval
 $ PDTIMEDOUTRETRY=retry-count
 $
PDNBLOCKWAITTIME=connection-establishment-monitoring-time-in-nonblock-mode
 $
PDCONNECTWAITTIME=maximum-wait-time-in-HiRDB-client-during-server-connect
ion
 $ PDCLTPATH=trace-file-storage-directory
 $ PDSQLTRACE=SQL-trace-file-size
 $ PDUAPERLOG=client-error-log-file-size
 $ PDERRSKIPCODE=SQLCODE[,SQLCODE]...
 $ PDPRMTRC={YES|NO|IN|OUT|INOUT}
 $ PDPRMTRCSIZE=
maximum-data-length-of-parameter-information-output-to-SQL-trace
 $ PDTRCMODE={ERR|NONE}
 $ PDUAPREPLVL={[s][u][p][r]|a}
 $ PDREPPATH=storage-directory-for-UAP-statistical-report-files
 $ PDTRCPATH=storage-directory-for-dynamic-SQL-trace-files
 $ PDSQLTRCOPENMODE={CNCT|SQL}
 $ PDSQLTEXTSIZE=SQL-statement-size
 $ PDSQLEXECTIME={YES|NO}
 $ PDRCTRACE=reconnect-trace-file-size
 $
PDWRTLNPATH=storage-directory-for-files-to-which-WRITE-LINE-statement-value-e
xpression-values-are-output
 $
PDWRTLNFILSZ=maximum-size-of-output-files-for-WRITE-LINE-statement-value-ex
pression-values
 $ PDWRTLNCOMSZ=total-size-of-WRITE-LINE-statement-value-expression-values
 $ PDUAPEXERLOGUSE={YES|NO}
 $ PDUAPEXERLOGPRMSZ=maximum-data-length-of-parameter-information
 $ PDARYERRPOS={YES|NO}
 $ PDVWOPTMODE={0|1|2}
 $ PDTAAPINFPATH=access-path-information-file-output-directory-name
 $ PDTAAPINFMODE={0|1}
 $ PDTAAPINFSIZE=access-path-information-file-size
 $ PDSTJTRNOUT={YES|NO}
 $ PDLOCKLIMIT=maximum-locked-resource-request-count-per-user

6. Client Environment Setup

536

 $ PDDLKPRIO={96|64|32}
 $ PDLOCKSKIP={YES|NO}
 $ PDFORUPDATEEXLOCK={YES|NO}
 $ PDISLLVL=data-guarantee-level
 $ PDSQLOPTLVL=SQL-optimization-option[,SQL-optimization-option]...
 $ PDADDITIONALOPTLVL=SQL-extension-optimizing-option
 [,SQL-extension-optimizing-option]...
 $
PDHASHTBLSIZE=hash-table-size-when-hash-join-or-subquery-hash-execution-is-a
pplied
 $ PDDFLNVAL={USE|NOUSE}
 $ PDAGGR=group-count-resulting-from-grouping
 $ PDCMMTBFDDL={YES|NO}
 $ PDPRPCRCLS={YES|NO}
 $ PDAUTOCONNECT={ON|OFF}
 $ PDDDLDEAPRPEXE={YES|NO}
 $ PDDDLDEAPRP={YES|NO}
 $ PDLCKWAITTIME=lock-release-wait-time
 $ PDCURSORLVL={0|1|2}
 $ PDDELRSVWDFILE=SQL-reserved-word-deletion-file-name
 $ PDHJHASHINGMODE={TYPE1|TYPE2}
 $ PDCALCMDWAITTIME=maximum-wait-time-for-CAL-COMMAND-statement
 $ PDSTANDARDSQLSTATE={YES|NO}
 $ PDBLKF=block-transfer-row-count
 $ PDBINARYBLKF={YES|NO}
 $ PDBLKBUFFSIZE=communication-buffer-size
 $ PDBLKFUPD={YES|NO}
 $ PDBLKFERRBREAK={YES|NO}
 $ PDNODELAYACK={YES|NO}
 $ PDBINDRETRYCOUNT=bind-system-call-retries-count
 $ PDBINDRETRYINTERVAL=bind-system-call-retry-interval
 $ PDCLTSIGPIPE={CATCH|IGNORE}
 $ PDDBACCS=generation-number-of-RDAREA-to-be-accessed
 $ PDDBORGUAP={YES|NO}
 $ PDSPACELVL={0|1|3}
 $ PDCLTRDNODE=XDM/RD-E2-database-identifier
 $ PDTP1SERVICE={YES|NO}
 $ PDCNSTRNTNAME={LEADING|TRAILING}
 $ PDBESCONHOLD={YES|NO}
 $ PDBESCONHTI=BES-connection-holding-period
 $ PDODBSTATCAHE={0|1}
 $ PDODBESCAPE={0|1}
 $ PDGDATAOPT={YES|NO}
 $ PDODBLOCATOR={YES|NO}
 $ PDODBSPLITSIZE=partition-acquisition-size
 $ PDODBCWRNSKIP={YES|NO}
 $ PDJETCOMPATIBLE={YES|NO}

6. Client Environment Setup

537

 $ PDPLGIXMK={YES|NO}
 $ PDPLGPFSZ=initial-size-of-delayed-batch-creation-index-information-file
 $
PDPLGPFSZEXP=extension-value-of-delayed-batch-creation-index-information-file

 $ export PDHOST PDNAMEPORT PDFESHOST PDSERVICEGRP PDSRVTYPE
 PDSERVICEPORT PDFESGRP PDCLTRCVPORT PDCLTRCVADDR PDTMID
PDXAMODE
 PDTXACANUM PDXARCVWTIME PDXATRCFILEMODE
PDXAAUTORECONNECT PDUSER
 PDCLTAPNAME PDCLTLANG PDLANG PDDBLOG PDEXWARN
PDSUBSTRLEN
 PDCLTCNVMODE PDCLTGAIJIDLL PDCLTGAIJUFUNC PDCLTGRP
PDTCPCONOPT
 PDAUTORECONNECT PDRCCOUNT PDRCINTERVAL PDUAPENVFILE
PDDBBUFLRU
 PDHATRNQUEUING PDASTHOST PDASTPORT PDSYSTEMID PDASTUSER
 PDCMDWAITTIME PDCMDTRACE PDIPC PDSENDMEMSIZE
 PDRECVMEMSIZE PDCWAITTIME PDSWAITTIME PDSWATCHTIME
 PDCWAITTIMEWRNPNT PDKALVL PDKATIME PDTIMEDOUTRETRY
 PDNBLOCKWAITTIME PDCONNECTWAITTIME PDCLTPATH PDSQLTRACE
 PDUAPERLOG PDERRSKIPCODE PDPRMTRC PDPRMTRCSIZE
PDTRCMODE
 PDUAPREPLVL PDREPPATH PDTRCPATH PDSQLTRCOPENMODE
PDSQLTEXTSIZE
 PDSQLEXECTIME PDRCTRACE PDWRTLNPATH PDWRTLNFILSZ
PDWRTLNCOMSZ
 PDUAPEXERLOGUSE PDUAPEXERLOGPRMSZ PDARYERRPOS
PDVWOPTMODE
 PDTAAPINFPATH PDTAAPINFMODE PDTAAPINFSIZE PDSTJTRNOUT
 PDLOCKLIMIT PDDLKPRIO PDLOCKSKIP PDFORUPDATEEXLOCK
PDISLLVL
 PDSQLOPTLVL PDADDITIONALOPTLVL PDHASHTBLSIZE PDDFLNVAL
PDAGGR
 PDCMMTBFDDL PDPRPCRCLS PDAUTOCONNECT PDDDLDEAPRPEXE
 PDDDLDEAPRP PDLCKWAITTIME PDCURSORLVL
 PDDELRSVWDFILE PDHJHASHINGMODE PDCALCMDWAITTIME
 PDSTANDARDSQLSTATE PDBLKF PDBINARYBLKF PDBLKBUFFSIZE
PDBLKFUPD
 PDBLKFERRBREAK PDNODELAYACK PDBINDRETRYCOUNT
 PDBINDRETRYINTERVAL PDCLTSIGPIPE PDDBACCS
 PDDBORGUAPPDSPACELVL PDCLTRDNODE
 PDTP1SERVICE PDCNSTRNTNAME PDBESCONHOLD PDBESCONHTI
 PDODBSTATCAHE PDODBESCAPE PDGDATAOPT PDODBLOCATOR
PDODBSPLITSIZE
 PDODBCWRNSKIP PDJETCOMPATIBLE PDPLGIXMK PDPLGPFSZ
PDPLGPFSZEXP

6. Client Environment Setup

538

(b) csh (C shell)
You must store the environment variables shown below in the .login or .cshrc file.
These environment variables execute automatically at the time of startup.
 % setenv PDHOST HiRDB-server-host-name
 [,secondary-system-HiRDB-server-host-name]
 % setenv PDNAMEPORT HiRDB-server-port-number
 % setenv PDFESHOST front-end-server-host-name
 [:port-number-of-unit-containing-front-end-server]
 [,secondary-system-front-end-server-host-name
 [:host-name-of-unit-containing-secondary-system-front-end-server]]
 % setenv PDSERVICEGRP server-name
 % setenv PDSRVTYPE {WS|PC}
 % setenv PDSERVICEPORT high-speed-connection-port-number
 [,secondary-system-high-speed-connection-port-number]
 % setenv PDFESGRP
FES-group[,switchover-FES-group[,switchover-FES-group]...]
 % setenv PDCLTRCVPORT client-receive-port-number
 % setenv PDCLTRCVADDR {client-IP-address
 |client-host-name}
 % setenv PDTMID OLTP-identifier
 % setenv PDXAMODE {0|1}
 % setenv PDTXACANUM
maximum-number-of-concurrent-transaction-executions-per-UAP
 % setenv PDXARCVWTIME transaction-recovery-wait-time
 % setenv PDXATRCFILEMODE {LUMP|SEPARATE}
 % setenv PDXAAUTORECONNECT {YES|NO}
 % setenv HiRDB_PDHOST HiRDB-server-host-name
 [,secondary-system-HiRDB-server-host-name]
 % setenv HiRDB_PDNAMEPORT HiRDB-server-port-number
 % setenv HiRDB_PDTMID OLTP-identifier
 % setenv HiRDB_PDXAMODE {0|1}
 % setenv PDUSER authorization-identifier/password
 % setenv PDCLTAPNAME identification-name-of-UAP-to-be-executed
 % setenv PDCLTLANG
{SJIS|CHINESE|UJIS|C|UTF-8|CHINESE-GB18030}
 % setenv PDLANG {UTF-8|SJIS|CHINESE|CHINESE-GB18030|ANY}
 % setenv PDDBLOG {ALL|NO}
 % setenv PDEXWARN {YES|NO}
 % setenv PDCLTCNVMODE
{AUTO|NOUSE|UJIS|UJIS2|UTF8|UTF8MS|UTF8_TXT|
 UTF8_EX|UTF8_EX2|UTF8MS_TXT|UCS2_UJIS|UCS2_UTF8}
 % setenv PDCLTGAIJIDLL
user-defined-external-character-conversion-DLL-file-name
 % setenv PDCLTGAIJIFUNC
user-defined-external-character-conversion-function-name

6. Client Environment Setup

539

 % setenv PDCLTGRP client-group-name
 % setenv PDTCPCONOPT {0|1}
 % setenv PDAUTORECONNECT {YES|NO}
 % setenv PDRCCOUNT CONNECT-retry-count-with-automatic-reconnect-facility
 % setenv PDRCINTERVAL
CONNECT-retry-interval-with-automatic-reconnect-facility
 % setenv PDUAPENVFILE UAP-environment-definition-file-name
 % setenv PDDBBUFLRU {YES|NO}
 % setenv PDHATRNQUEUING NO
 % setenv PDASTHOST HiRDB-Control-Manager-Agent-host-name
 [,secondary-system-HiRDB-Control-Manager-Agent-host-name]
 % setenv PDASTPORT HiRDB-Control-Manager-Agent-port-number
 % setenv PDSYSTEMID
HiRDB-identifier-of-HiRDB-server-managed-by-HiRDB-Control-Manager-Agent
 % setenv PDASTUSER [OS-user-name/password]
 % setenv PDCMDWAITTIME
maximum-client-wait-time-during-command-execution
 % setenv PDCMDTRACE command-trace-file-size
 % setenv PDIPC {MEMORY|DEFAULT}
 % setenv PDSENDMEMSIZE data-send-memory-size-in-client
 % setenv PDRECVMEMSIZE data-receive-memory-size-in-client
 % setenv PDCWAITTIME maximum-client-wait-time
 % setenv PDSWAITTIME
maximum-server-wait-time-during-transaction-processing
 % setenv PDSWATCHTIME
maximum-server-wait-time-outside-transaction-processing
 % setenv PDCWAITTIMEWRNPNT output-time-for-SQL-runtime-warning
 % setenv PDKALVL {0|1|2}
 % setenv PDKATIME packet-send-interval
 % setenv PDTIMEDOUTRETRY retry-count
 % setenv PDNBLOCKWAITTIME
connection-establishment-monitoring-time-in-nonblock-mode
 % setenv PDCONNECTWAITTIME
maximum-wait-time-in-HiRDB-client-during-server-connection
 % setenv PDCLTPATH trace-file-storage-directory
 % setenv PDSQLTRACE SQL-trace-file-size
 % setenv PDUAPERLOG client-error-log-file-size
 % setenv PDERRSKIPCODE SQLCODE[,SQLCODE]...
 % setenv PDPRMTRC {YES|NO|IN|OUT|INOUT}
 % setenv PDPRMTRCSIZE=
maximum-data-length-of-parameter-information-output-to-SQL-trace
 % setenv PDTRCMODE {ERR|NONE}
 % setenv PDUAPREPLVL {[s][u][p][r]|a}
 % setenv PDREPPATH storage-directory-for-UAP-statistical-report-files
 % setenv PDTRCPATH storage-directory-for-dynamic-SQL-trace-files
 % setenv PDSQLTRCOPENMODE {CNCT|SQL}

6. Client Environment Setup

540

 % setenv PDSQLTEXTSIZE SQL-statement-size
 % setenv PDSQLEXECTIME {YES|NO}
 % setenv PDRCTRACE reconnect-trace-file-size
 % setenv PDWRTLNPATH
storage-directory-for-files-to-which-WRITE-LINE-statement-value-expression-value
s-are-output
 % setenv PDWRTLNFILSZ
maximum-size-of-output-files-for-WRITE-LINE-statement-value-expression-values
 % setenv PDWRTLNCOMSZ
total-size-of-WRITE-LINE-statement-value-expression-values
 % setenv PDUAPEXERLOGUSE {YES|NO}
 % setenv PDUAPEXERLOGPRMSZ
maximum-data-length-of-parameter-information
 % setenv PDARYERRPOS{YES|NO}
 % setenv PDVWOPTMODE {0|1|2}
 % setenv PDTAAPINFPATH access-path-information-file-output-directory-name
 % setenv PDTAAPINFMODE {0|1}
 % setenv PDTAAPINFSIZE access-path-information-file-size
 % setenv PDSTJTRNOUT {YES|NO}
 % setenv PDLOCKLIMIT maximum-locked-resource-request-count-per-user
 % setenv PDDLKPRIO {96|64|32}
 % setenv PDLOCKSKIP {YES|NO}
 % setenv PDFORUPDATEEXLOCK {YES|NO}
 % setenv PDISLLVL data-guarantee-level
 % setenv PDSQLOPTLVL
SQL-optimization-option[,SQL-optimization-option]...
 % setenv PDADDITIONALOPTLVL SQL-extension-optimizing-option
 [,SQL-extension-optimizing-option]...
 % setenv PDHASHTBLSIZE
hash-table-size-when-hash-join-or-subquery-hash-execution-is-applied
 % setenv PDDFLNVAL {USE|NOUSE}
 % setenv PDAGGR group-count-resulting-from-grouping
 % setenv PDCMMTBFDDL {YES|NO}
 % setenv PDPRPCRCLS {YES|NO}
 % setenv PDAUTOCONNECT {ON|OFF}
 % setenv PDDDLDEAPRPEXE {ON|OFF}
 % setenv PDDDLDEAPRP {YES|NO}
 % setenv PDLCKWAITTIME lock-release-wait-time
 % setenv PDCURSORLVL {0|1|2}
 % setenv PDDELRSVWDFILE SQL-reserved-word-deletion-file-name
 % setenv PDHJHASHINGMODE {TYPE1|TYPE2}
 % setenv PDCALCMDWAITTIME
maximum-wait-time-for-CAL-COMMAND-statement
 % setenv PDSTANDARDSQLSTATE {YES|NO}
 % setenv PDBLKF block-transfer-row-count
 % setenv PDBINARYBLKF {YES|NO}

6. Client Environment Setup

541

 % setenv PDBLKBUFFSIZE communication-buffer-size
 % setenv PDBLKFUPD {YES|NO}
 % setenv PDBLKFERRBREAK {YES|NO}
 % setenv PDNODELAYACK {YES|NO}
 % setenv PDBINDRETRYCOUNT bind-system-call-retries-count
 % setenv PDBINDRETRYINTERVAL bind-system-call-retry-interval
 % setenv PDCLTSIGPIPE {CATCH|IGNORE}
 % setenv PDDBACCS generation-number-of-RDAREA-to-be-accessed
 % setenv PDDBORGUAP {YES|NO}
 % setenv PDSPACELVL {0|1|3}
 % setenv PDCLTRDNODE XDM/RD-E2-database-identifier
 % setenv PDTP1SERVICE {YES|NO}
 % setenv PDCNSTRNTNAME {LEADING|TRAILING}
 % setenv PDBESCONHOLD {YES|NO}
 % setenv PDBESCONHTI BES-connection-holding-period
 % setenv PDODBSTATCAHE {0|1}
 % setenv PDODBESCAPE {0|1}
 % setenv PDGDATAOPT {YES|NO}
 % setenv PDODBLOCATOR {YES|NO}
 % setenv PDODBSPLITSIZE partition-acquisition-size
 % setenv PDODBCWRNSKIP {YES|NO}
 % setenv PDJETCOMPATIBLE {YES|NO}
 % setenv PDPLGIXMK {YES|NO}
 % setenv PDPLGPFSZ
initial-size-of-delayed-batch-creation-index-information-file
 % setenv PDPLGPFSZEXP
extension-value-of-delayed-batch-creation-index-information-file

Notes on the UNIX environment
• The environment variables are required for preprocessing. For details about

preprocessing, see 8.2 Preprocessing.

• When you use the Type4 JDBC driver, client environment definitions set
using this method are not valid.

• Client environment definitions that begin with PDJDB are not valid when
they are set using this method.

(2) Windows environment
If you have selected in a Windows environment to set environment variables during
installation, the directory is set in the PATH environment variable. However, the
directory may not be set automatically if the path name is too long or if you do not have
write privileges for PATH. You should therefore check whether the directory has been
set to PATH. If the directory has not been set, you must add the following directory to
PATH. xxxx indicates the directory name in which the HiRDB client is installed.
xxxx\UTL

6. Client Environment Setup

542

Set the environment variables as system environment variables or user environment
variables, or store them in the HiRDB.INI file in the Windows directory. If you are
using a function in the UAP to set the environment variables, use the
SetEnvironmentVariable function. Do not use the putenv function.

Retrieval sequence for client environment definitions

If the client environment definitions are set at several locations, each client
environment definition is retrieved in the sequence below. If a client environment
definition has no specified value, the default value is applied.

1. Environment variables group#

2. User environment variables

3. HIRDB.ini

#: When the multi-connection facility is used, use ALLOCATE CONNECTION
HANDLE to specify the group name or file name. If a UAP under OLTP is used as
the client, specify the group name or file name in an open character string. For
details about open character strings, see the HiRDB Version 9 Installation and
Design Guide.

A specification example of the HiRDB.INI file is shown below.

 [HIRDB]

PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-server-host-name]
 PDNAMEPORT=HiRDB-server-port-number
 PDFESHOST=front-end-server-host-name
 [:port-number-of-unit-containing-front-end-server]
 [,secondary-system-front-end-server-host-name

[:port-number-of-unit-containing-secondary-system-front-end-server]]
 PDSERVICEGRP=server-name
 PDSRVTYPE={WS|PC}
 PDSERVICEPORT=high-speed-connection-port-number
 [,secondary-system-high-speed-connection-port-number]
 PDFESGRP=FES-group[,switchover-FES-group[,switchover-FES-group]...]
 PDCLTRCVPORT=client-receive-port-number
 PDCLTRCVADDR={client-IP-address|client-host-name}
 PDXATRCFILEMODE={LUMP|SEPARATE}
 PDUSER=[authorization-identifier/password]
 PDCLTAPNAME=identification-name-of-UAP-to-be-executed
 PDCLTLANG={SJIS|CHINESE|UJIS|C|UTF-8|CHINESE-GB18030}
 PDLANG={UTF-8|SJIS|CHINESE|CHINESE-GB18030|ANY}
 PDDBLOG={ALL|NO}
 PDEXWARN={YES|NO}

6. Client Environment Setup

543

 PDSUBSTRLEN={3|4|5|6}
 PDCLTCNVMODE={AUTO|NOUSE|UJIS|UJIS2|UTF8|UTF8MS|
 UTF8_TXT|UTF8_EX|UTF8_EX2|UTF8MS_TXT|UCS2_UJIS|
 UCS2_UTF8}
 PDCLTGAIJIDLL=user-defined-external-character-conversion-DLL-file-name
 PDCLTGAIJIFUNC=user-defined-external-character-conversion-function-name
 PDCLTGRP=client-group-name
 PDTCPCONOPT={0|1}
 PDAUTORECONNECT={YES|NO}
 PDRCCOUNT=CONNECT-retry-count-with-automatic-reconnect-facility
 PDRCINTERVAL=CONNECT-retry-interval-with-automatic-reconnect-facility
 PDUAPENVFILE=UAP-environment-definition-file-name
 PDDBBUFLRU={YES|NO}
 PDHATRNQUEUING=NO
 PDCLTBINDLOOPBACKADDR={YES|NO}
 PDASTHOST=HiRDB-Control-Manager-Agent-host-name
 [,secondary-system-HiRDB-Control-Manager-Agent-host-name]
 PDASTPORT=HiRDB-Control-Manager-Agent-port-number
 PDSYSTEMID=HiRDB-identifier-of-HiRDB-server-managed-by-HiRDB-Control
Manager-Agent
 PDASTUSER=OS-user-name/password
 PDCMDWAITTIME=maximum-client-wait-time-during-command-execution
 PDCMDTRACE=command-trace-file-size
 PDIPC={MEMORY|DEFAULT}
 PDSENDMEMSIZE=data-send-memory-size-in-client
 PDRECVMEMSIZE=data-receive-memory-size-in-client
 PDCWAITTIME=maximum-client-wait-time
 PDSWAITTIME=maximum-server-wait-time-during-transaction-processing
 PDSWATCHTIME=maximum-server-wait-time-outside-transaction-processing
 PDCWAITTIMEWRNPNT=output-timing-for-SQL-runtime-warning
 PDKALVL={0|1|2}
 PDKATIME=packet-send-interval
 PDTIMEDOUTRETRY=retry-count

PDNBLOCKWAITTIME=connection-establishment-monitoring-time-in-nonblock-mode

PDCONNECTWAITTIME=maximum-wait-time-in-HiRDB-client-during-server-connect
ion
 PDCLTPATH=trace-file-storage-directory
 PDSQLTRACE=SQL-trace-file-size
 PDUAPERLOG=client-error-log-file-size
 PDERRSKIPCODE=SQLCODE[,SQLCODE]...
 PDPRMTRC={YES|NO|IN|OUT|INOUT}
 PDPRMTRCSIZE=
maximum-data-length-of-parameter-information-output-to-SQL-trace

6. Client Environment Setup

544

 PDTRCMODE={ERR|NONE}
 PDUAPREPLVL={[s][u][p][r]|a}
 PDREPPATH=storage-directory-for-UAP-statistical-report-files
 PDTRCPATH=storage-directory-for-dynamic-SQL-trace-files
 PDSQLTRCOPENMODE={CNCT|SQL}
 PDSQLTEXTSIZE=SQL-statement-size
 PDSQLEXECTIME={YES|NO}
 PDRCTRACE=reconnect-trace-file-size

PDWRTLNPATH=storage-directory-for-files-to-which-WRITE-LINE-statement-value-e
xpression-values-are-output

PDWRTLNFILSZ=maximum-size-of-output-files-for-WRITE-LINE-statement-value-ex
pression-values
 PDWRTLNCOMSZ=total-size-of-WRITE-LINE-statement-value-expression-values
 PDUAPEXERLOGUSE={YES|NO}
 PDUAPEXERLOGPRMSZ=maximum-data-length-of-parameter-information
 PDARYERRPOS={YES|NO}
 PDDNDPTRACE=method-trace-file-size
 PDVWOPTMODE={0|1|2}
 PDTAAPINFPATH=access-path-information-file-output-directory-name
 PDTAAPINFMODE={0|1}
 PDTAAPINFSIZE=access-path-information-file-size
 PDSTJTRNOUT={YES|NO}
 PDLOCKLIMIT=maximum-locked-resource-request-count-per-user
 PDDLKPRIO={96|64|32}
 PDLOCKSKIP={YES|NO}
 PDFORUPDATEEXLOCK={YES|NO}
 PDISLLVL=data-guarantee-level
 PDSQLOPTLVL=SQL-optimization-option[,SQL-optimization-option]...
 PDADDITIONALOPTLVL=SQL-extension-optimizing-option
 [,SQL-extension-optimizing-option]...

PDHASHTBLSIZE=hash-table-size-when-hash-join-or-subquery-hash-execution-is-a
pplied
 PDDFLNVAL={USE|NOUSE}
 PDAGGR=group-count-resulting-from-grouping
 PDCMMTBFDDL={YES|NO}
 PDPRPCRCLS={YES|NO}
 PDAUTOCONNECT={ON|OFF}
 PDDDLDEAPRPEXE={YES|NO}
 PDDDLDEAPRP={YES|NO}
 PDLCKWAITTIME=lock-release-wait-time
 PDCURSORLVL={0|1|2}
 PDDELRSVWDFILE=SQL-reserved-word-deletion-file-name
 PDHJHASHINGMODE={TYPE1|TYPE2}

6. Client Environment Setup

545

 PDCALCMDWAITTIME=maximum-wait-time-for-CAL-COMMAND-statement
 PDSTANDARDSQLSTATE={YES|NO}
 PDBLKF=block-transfer-row-count
 PDBINARYBLKF={YES|NO}
 PDBLKBUFFSIZE=communication-buffer-size
 PDBLKFUPD={YES|NO}
 PDBLKFERRBREAK={YES|NO}
 PDNODELAYACK={YES|NO}
 PDBINDRETRYCOUNT=bind-system-call-retries-count
 PDBINDRETRYINTERVAL=bind-system-call-retry-interval
 PDDBACCS=generation-number-of-RDAREA-to-be-accessed
 PDDBORGUAP={YES|NO}
 PDSPACELVL={0|1|3}
 PDCLTRDNODE=XDM/RD-E2-database-identifier
 PDTP1SERVICE={YES|NO}
 PDRDCLTCODE={SJIS|UTF-8}
 PDCNSTRNTNAME={LEADING|TRAILING}
 PDBESCONHOLD={YES|NO}
 PDBESCONHTI=BES-connection-holding-period
 PDODBSTATCAHE={0|1}
 PDODBESCAPE={0|1}
 PDGDATAOPT={YES|NO}
 PDODBLOCATOR={YES|NO}
 PDODBSPLITSIZE=partition-acquisition-size
 PDODBCWRNSKIP={YES|NO}
 PDJETCOMPATIBLE={YES|NO}
 PDPLGIXMK={YES|NO}
 PDPLGPFSZ=initial-size-of-delayed-batch-creation-index-information-file
 PDPLGPFSZEXP=extension-value-of-delayed-batch-creation-index-information-file

Notes on the Windows environment
• The environment variables are required for preprocessing. For details about

how to preprocess, see 8.2 Preprocessing.

• When you use the Type4 JDBC driver, client environment definitions set
using this method are not valid.

• Client environment definitions that begin with PDJDB are not valid when
they are set using this method.

6.6.2 Specifications for using a UAP under OLTP as the client
(1) Using a UAP under OpenTP1 as the client

For the operation mode in which a UAP under OpenTP1 is used as the client, specify
the client environment definitions in the system service definitions for OpenTP1. The
environment variables are specified in the following OpenTP1 definitions:

6. Client Environment Setup

546

System environment
When a common specification is made for all environment variables

Transaction service
When a specification related to recovery control of a transaction error is made

User service default
When a common specification is made for all UAPs

Individual user service
When separate specifications are made for individual UAPs

The table below shows the OpenTP1 definitions in which the environment variables
are specified.

The putenv format is used to specify environment variables.

Table 6-21: OpenTP1 definitions in which the environment variables are
specified

Environment variable System
environment

definition

Transaction
service

definition

User service
default

definition

User
service

definition

HiRDB_PDHOST#9 M#1 N N N

HiRDB_PDNAMEPORT#9 M#2 N N N

HiRDB_PDTMID#9 O#3, #4 N N N

HiRDB_PDXAMODE#9 O#5 N N N

PDHOST N M#1, #6 M#1, #6 O#1, #6, #7

PDNAMEPORT N M#2, #6 M#2, #6 O#2, #6, #7

PDTMID#9 N O#3, #4, #6 O#3, #4, #6 O#3, #4, #6, #7

PDXAMODE#9, #10 N O#5, #6 O#5, #6 O#5, #6, #7

PDTXACANUM#9 N O O O

PDCLTPATH N O O O

PDUSER N N M M

PDCWAITTIME N O O O

PDSWAITTIME N M M M

6. Client Environment Setup

547

M: Required.

O: Optional; specify as needed.

N: Not required.

PDSQLTRACE N O O O

PDUAPERLOG N O O O

PDCLTAPNAME N O O#8 O#8

PDSWATCHTIME N N M M

PDTRCMODE N O O O

PDUAPREPLVL N O O O

PDREPPATH N O O O

PDTRCPATH N O O O

PDSQLTRCOPENMODE N O O O

PDAUTOCONNECT N N N N

PDXARCVWTIME#9 N O N N

PDCWAITTIMEWRNPNT N O O O

PDTCPCONOPT N O O O

PDAUTORECONNECT N N N N

PDRCCOUNT N N N N

PDRCINTERVAL N N N N

PDKALVL N N N N

PDKATIME N N N N

PDSQLTEXTSIZE N O O O

PDSQLEXECTIME N O O O

PDRCTRACE N N N N

Other environment variable N N O O

Environment variable System
environment

definition

Transaction
service

definition

User service
default

definition

User
service

definition

6. Client Environment Setup

548

Note
For details about the OpenTP1 system service definitions, see the manual
OpenTP1 System Definition.

#1: When HiRDB_PDHOST is specified, it is not necessary to specify PDHOST because
the value specified in HiRDB_PDHOST is assumed for PDHOST. However, if
HiRDB_PDHOST is not specified, PDHOST must be specified. If PDHOST and
HiRDB_PDHOST are both specified, HiRDB_PDHOST takes precedence.

When PDHOST is specified in an environment variable group, the PDHOST
specification of the environment variable group becomes effective.

For guidelines on the value to be specified in PDHOST, see (7) Fixing the
communication-target server by specifying the PDFESHOST name in PDHOST
(limited to HiRDB/Parallel Server).
#2: When HiRDB_PDNAMEPORT is specified, it is not necessary to specify
PDNAMEPORT because the value specified in HiRDB_PDNAMEPORT is assumed for
PDNAMEPORT. However, if HiRDB_PDNAMEPORT is not specified, PDNAMEPORT must
be specified. If PDNAMEPORT and HiRDB_PDNAMEPORT are both specified,
HiRDB_PDNAMEPORT takes precedence.

When PDNAMEPORT is specified in an environment variable group, the PDNAMEPORT
specification of the environment variable group becomes effective.

#3: This information must be specified for accessing one HiRDB server using an X/
Open-compatible API from multiple OLTPs.

#4: When HiRDB_PDTMID is specified, it is not necessary to specify PDTMID because
the value specified in HiRDB_PDTMID is assumed for PDTMID. However, if
HiRDB_PDTMID is not specified, PDTMID must be specified. If PDTMID and
HiRDB_PDTMID are both specified, HiRDB_PDTMID takes precedence.

#5: When HiRDB_PDXAMODE is specified, it is not necessary to specify PDXAMODE
because the value specified in HiRDB_PDXAMODE is assumed for PDXAMODE.
However, if HiRDB_PDXAMODE is not specified, PDXAMODE must be specified. If
PDXAMODE and HiRDB_PDXAMODE are both specified, HiRDB_PDXAMODE takes
precedence.

#6: The same information must be specified in the various definitions.

#7: The same specification must be made at the servers of all users who access HiRDB.
For this reason, specify this information in the user service default definition, rather
than in the separate user service definitions.

#8: So that the user servers can be distinguished, this information should be specified
in the individual user service definitions, rather than in the separate user-service
default definition.

#9: When the multi-connection facility is used, the environment variable specification

6. Client Environment Setup

549

variables become invalid, even if these environment variables are set to the
environment variable group that was registered for each connection destination. Also,
in the Windows environment, variables become invalid even though they are specified
in the HiRDB.ini file. The information that was specified in the OpenTP1 system
service definitions becomes valid for these environment variables.

#10: Note that if the trnstring option and the PDXAMODE setting do not match, the
xa function results in a -6 error.

(2) Using a UAP under TP1/LiNK as the client
If a UAP under TP1/LiNK is used as the client, the client environment definitions must
be specified in the TP1/LiNK definitions. The specification procedures are as follows.

Specifying environment variables for recovery control if a transaction failure
occurs:
In the Resource Manager window, click the Options button. When the Options
dialog box is displayed, specify the environment variables in the Transaction
Service Environment Variables field.

Specifying environment variables that are common to all UAPs:
Open the SPP (or SUP) Environment Assignment dialog box and specify the
environment variables in the Global field of the User Server Environment
Variables field.

Specifying environment variables individually for each UAP:
Open the SPP (or SUP) Environment Assignment dialog box and specify the
environment variables in the Local field of the User Server Environment
Variables field.

The following table shows the TP1/LiNK definitions in which the environment
variables are specified.

Table 6-22: TP1/LiNK definitions in which the environment variables are
specified

Environment variable Transaction Service
Environment Variables field

User Server Environment
Variables field

Global field Local field

HiRDB_PDHOST N N N

HiRDB_PDNAMEPORT N N N

HiRDB_PDTMID N N N

HiRDB_PDXAMODE N N N

6. Client Environment Setup

550

M: Required.

PDHOST M#2 M#2 O#2, #3

PDNAMEPORT M#2 M#2 O#2, #3

PDTMID#5 O#1, #2 O#1, #2 O#1, #2, #3

PDXAMODE#5 O#2 O#2 O#2, #3

PDTXACANUM#5 O O O

PDCLTPATH O O O

PDUSER N N M

PDCWAITTIME O O O

PDSWAITTIME M M M

PDSQLTRACE O O O

PDUAPERLOG O O O

PDCLTAPNAME O O#4 O#4

PDSWATCHTIME M M M

PDTRCMODE O O O

PDUAPREPLVL O O O

PDREPPATH O O O

PDTRCPATH O O O

PDSQLTRCOPENMODE O O O

PDAUTOCONNECT N N N

PDXARCVWTIME O N N

PDCWAITTIMEWRNPNT O O O

PDTCPCONOPT O O O

Other environment variable N O O

Environment variable Transaction Service
Environment Variables field

User Server Environment
Variables field

Global field Local field

6. Client Environment Setup

551

O: Optional; specify as needed.

N: Not required.

Note
For details about the TP1/LiNK definitions, see the TP1/LiNK User's Guide.

#1: This information must be specified for accessing one HiRDB server using an X/
Open-compatible API from multiple OLTPs.

#2: The same information must be specified in the various definitions.

#3: The same specification must be made at the servers of all users who access HiRDB.
For this reason, specify this information in the Global field of the User Server
Environment Variables field, rather than in the Local field.

#4: So that the user servers can be distinguished, this information should be specified
in the Local field of the User Server Environment Variables field, rather than in the
Global field.

#5: When the multi-connection facility is used, the environment variable specification
variables become invalid, even if these environment variables are set to the
environment variable group that was registered for each connection destination. Also,
in the Windows environment, variables become invalid even though they are specified
in the HiRDB.ini file. The information that was specified in the TP1/LiNK definitions
becomes valid for these environment variables.

(3) Using a UAP under TPBroker for C++ as the client
If a UAP under TPBroker for C++ is used as the client, the client environment
definitions must be specified in the TPBroker for C++ system definitions. For details
about the TPBroker for C++ system definitions, see the TPBroker User's Guide.

The client environment definitions are specified with the following format.

Specifying client environment definitions in a transaction completion
process:
Specify the client environment definitions in the transaction definition. In this
case, use the tsdefvalue command of TPBroker for C++ to specify the
definitions. The definition key is /OTS, and the definition parameter is
completion_process_env.
tsdefvalue /OTS completion_process_env
 -a 'environment-variable-name=specification-value',
['environment-variable-name=specification-value', ...]

Specifying client environment definitions in a transaction recovery process in
the event of a transaction failure:
Specify the client environment definitions in the transaction definition. In this

6. Client Environment Setup

552

case, use the tsdefvalue command of TPBroker for C++ to specify the
definitions. The definition key is /OTS, and the definition parameter is
recovery_process_env.
tsdefvalue /OTS recovery_process_env
 -a 'environment-variable-name=specification-value',
['environment-variable-name=specification-value', ...]

Specifying client environment definitions individually for each UAP:
Specify the client environment definitions in the operating environment of each
UAP. Specify the definitions according to the environment variable setting
method (for example, the SET or SETENV format) of the operating environment.

Specifying client environment definitions individually for each UAP to be
monitored:
Specify the client environment definitions in the definition file of each process
monitoring definition of TPBroker for C++.

The following table shows the TPBroker for C++ definitions in which the environment
variables are specified.

Table 6-23: TPBroker for C++ definitions in which the environment variables
are specified

Environment variable Transaction completion
process

Transaction recovery
process

Each UAP

HiRDB_PDHOST#8 O#1, #4 O#1, #4 O#1, #4

HiRDB_PDNAMEPORT#8 O#1, #5 O#1, #5 O#1, #5

HiRDB_PDTMID#8 O#1, #3, #6 O#1, #3, #6 O#1, #3, #6

HiRDB_PDXAMODE#8 O#1, #7 O#1, #7 O#1, #7

PDHOST O#1, #4 O#1, #4 O#1, #4

PDNAMEPORT O#1, #5 O#1, #5 O#1, #5

PDTMID#8 O#1, #3, #6 O#1, #3, #6 O#1, #3, #6

PDXAMODE#8 O#1, #7 O#1, #7 O#1, #7

PDTXACANUM#8 O O O

PDCLTPATH O O O

PDUSER M N M

6. Client Environment Setup

553

M: Required.

O: Optional; specify as needed.

N: Not required.

PDCWAITTIME O O O

PDSWAITTIME M M M

PDSQLTRACE O O O

PDUAPERLOG O O O

PDCLTAPNAME O O O#2

PDSWATCHTIME N N N

PDTRCMODE O O O

PDUAPREPLVL O O O

PDREPPATH O O O

PDTRCPATH O O O

PDSQLTRCOPENMODE O O O

PDAUTOCONNECT N N N

PDCWAITTIMEWRNPNT O O O

PDTCPCONOPT O O O

PDAUTORECONNECT N N N

PDRCCOUNT N N N

PDRCINTERVAL N N N

PDKALVL N N N

PDKATIME N N N

PDSQLTEXTSIZE O O O

PDSQLEXECTIME O O O

PDRCTRACE N N N

Other environment variable O N O

Environment variable Transaction completion
process

Transaction recovery
process

Each UAP

6. Client Environment Setup

554

#1: The same information must be specified in the client environment definitions for
the transaction completion process, transaction recovery process, and each UAP.

#2: So that the processes can be distinguished, this information should be specified in
the individual processes.

#3: This information must be specified for accessing one HiRDB server using an X/
Open-compatible API from multiple OLTPs.

#4: When HiRDB_PDHOST is specified, it is not necessary to specify PDHOST because
the value specified in HiRDB_PDHOST is assumed for PDHOST. However, if
HiRDB_PDHOST is not specified, PDHOST must be specified. If PDHOST and
HiRDB_PDHOST are both specified, HiRDB_PDHOST takes precedence.

When PDHOST is specified in an environment variable group, the PDHOST
specification of the environment variable group becomes effective.

For guidelines on the value to be specified in PDHOST, see (7) Fixing the
communication-target server by specifying the PDFESHOST name in PDHOST
(limited to HiRDB/Parallel Server).
#5: When HiRDB_PDNAMEPORT is specified, it is not necessary to specify
PDNAMEPORT because the value specified in HiRDB_PDNAMEPORT is assumed for
PDNAMEPORT. However, if HiRDB_PDNAMEPORT is not specified, PDNAMEPORT must
be specified. If PDNAMEPORT and HiRDB_PDNAMEPORT are both specified,
HiRDB_PDNAMEPORT takes precedence.

When PDNAMEPORT is specified in an environment variable group, the PDNAMEPORT
specification of the environment variable group becomes effective.

#6: When HiRDB_PDTMID is specified, it is not necessary to specify PDTMID because
the value specified in HiRDB_PDTMID is assumed for PDTMID. However, if
HiRDB_PDTMID is not specified, PDTMID must be specified. If PDTMID and
HiRDB_PDTMID are both specified, HiRDB_PDTMID takes precedence.

#7: When HiRDB_PDXAMODE is specified, it is not necessary to specify PDXAMODE
because the value specified in HiRDB_PDXAMODE is assumed for PDXAMODE.
However, if HiRDB_PDXAMODE is not specified, PDXAMODE must be specified. If
PDXAMODE and HiRDB_PDXAMODE are both specified, HiRDB_PDXAMODE takes
precedence.

#8: When the multi-connection facility is used, the environment variable specification
variables become invalid, even if these environment variables are set in the
environment variable group that was registered to each connection destination. Also,
in the Windows environment, variables become invalid even though they are specified
in the HiRDB.ini file. The information that was specified in the TPBroker for C++
system definitions becomes valid for these environment variables.

6. Client Environment Setup

555

(4) Using a UAP under TUXEDO as the client
For the operation mode in which a UAP under TUXEDO is used as the client, specify
the client environment definitions in the file specified by the ENVFILE parameter in
the TUXEDO configuration file (UBBCONFIG file).

The following table shows the environment variables that can be specified.

Table 6-24: Environment variable specification status (for a UAP under
TUXEDO)

Environment variable Specification status

HiRDB_PDHOST N

HiRDB_PDNAMEPORT N

HiRDB_PDTMID N

HiRDB_PDXAMODE N

PDHOST M#1

PDNAMEPORT M#1

PDTMID#4 O#1, #3

PDXAMODE#4 M#1

PDTXACANUM N

PDUSER M

PDSWAITTIME M

PDCLTAPNAME O#2

PDSWATCHTIME N

PDAUTORECONNECT N

PDRCCOUNT N

PDRCINTERVAL N

PDKALVL N

PDKATIME N

PDRCTRACE N

Other environment variable O

6. Client Environment Setup

556

M: Required.

O: Optional; specify as needed.

N: Do not specify.

#1: The same information must be specified in the environment variables for the
transaction manager server, TUXEDO system server, and each UAP.

For guidelines on the value to be specified in PDHOST, see (7) Fixing the
communication-target server by specifying the PDFESHOST name in PDHOST
(limited to HiRDB/Parallel Server).
#2: So that the processes can be distinguished, this information should be specified in
the individual processes.

#3: This information must be specified for accessing one HiRDB server using an X/
Open-compatible API from multiple OLTPs.

#4: In the Windows environment, variables become invalid even though they are
specified in the HiRDB.ini file. The information that was specified in the file
specified by the ENVFILE parameter in the TUXEDO configuration file becomes valid
for these environment variables.

(5) Using a UAP under WebLogic Server as the client
For the operation mode in which a UAP under WebLogic Server is used as a client,
specify the client environment definitions in the environment variables of the
WebLogic Server process.

The following table shows the environment variables that can be specified.

Table 6-25: Environment variable specification status (for a UAP under
WebLogic Server)

Environment variable Specification status

HiRDB_PDHOST N

HiRDB_PDNAMEPORT N

HiRDB_PDTMID N

HiRDB_PDXAMODE N

PDHOST M#3

PDNAMEPORT M

PDTMID#4 O#1

PDXAMODE#4 M

6. Client Environment Setup

557

M: Required.

O: Optional; specify as needed.

N: Do not specify.

#1: This environment variable must be specified when multiple OLTP programs use
an X/Open-compliant API to access one HiRDB system.

#2: This environment variable should be specified in each process so that the
individual processes can be identified.

#3: For guidelines on the value to be specified in PDHOST, see (7) Fixing the
communication-target server by specifying the PDFESHOST name in PDHOST
(limited to HiRDB/Parallel Server).
#4: In the Windows environment, variables become invalid even though they are
specified in the HiRDB.ini file. The information that was specified in the file
specified by the ENVFILE parameter in the TUXEDO configuration file becomes valid
for these environment variables.

Notes

1. For the timeout second count that can be specified in the transaction
attributes of WebLogic Server, specify a value that is larger than the
maximum wait time specified by PDCWAITTIME. If you specify a value that
is smaller than the maximum wait time specified by PDCWAITTIME, the
system may not be able to complete UAP transactions.

PDUSER M

PDSWAITTIME M

PDCLTAPNAME O#2

PDSWATCHTIME N

PDAUTORECONNECT N

PDRCCOUNT N

PDRCINTERVAL N

PDKALVL N

PDKATIME N

PDRCTRACE N

Other environment variable O

Environment variable Specification status

6. Client Environment Setup

558

2. If the maximum number of concurrent transactions per process specified by
PDTXACANUM is less than the number of connections specified by the JDBC
connection pool of WebLogic Server, the number of connections established
by the JDBC connection pool cannot exceed the PDTXACANUM value.

(6) Using a UAP under TP1/EE as the client (limited to the UNIX edition)
For the operation mode in which a UAP under TP1/EE is used as a client, specify the
client environment definitions in the OpenTP1 system service definitions of the TP1/
EE execution environment. For details, see (1) Using a UAP under OpenTP1 as the
client.
Be sure to specify PDXAMODE. If the value specified for the OpenTP1 system in which
TP1/EE is executed and the value specified for PDXAMODE are different, specify
PDXAMODE in the user service definitions of the OpenTP1 system.

(7) Fixing the communication-target server by specifying the PDFESHOST name
in PDHOST (limited to HiRDB/Parallel Server)

When the PDFESHOST host name is specified in PDHOST, the HiRDB client can be
connected to the HiRDB server if a failure occurs in the system manager unit. In
addition, the SQL execution destination, the PC cancel destination, and the XA
recovery request destination can be fixed to a single communication-target server. PC
cancel refers to the server completion instruction when the PDCWAITTIME duration is
exceeded. XA recovery refers to the transaction completion instruction when a UAP
under OLTP is used. For certain combinations of the client and server versions, the
host name that can be specified in PDHOST is limited to the host name of the system
manager.

The following figure shows the differences between fixing and not fixing the
communication-target server.

6. Client Environment Setup

559

Figure 6-1: Differences between fixing and not fixing the communication-target
server

Application standard

The following conditions must be satisfied if the communication-target server is
to be fixed:

• HiRDB/Parallel Server is being used.

• The connection is a FES host direct connection or high-speed connection.

• The table below shows that specifying the PDFESHOST name in PDHOST is
recommended for the UAP execution environment.

UAP execution environment Specification
recommended

Non-OLTP
system

A UAP has one connection, or the same PDFESHOST is specified for each
connection when a UAP has multiple connections.

Y

A different PDFESHOST is specified for each connection when a UAP has
multiple connections.

N

6. Client Environment Setup

560

Legend:

Y: Specifying the PDFESHOST host name in PDHOST is recommended.

N: Specify the host name of the transaction manager in PDHOST.

#1: Specify the host name in the following location:

• For OpenTP1

Environment variables specified in the user service, user default, or
system environment definitions

• For TUXEDO

Client environment definitions of the transaction manager server, the
TUXEDO system server, and each UAP

• For TPBroker for C++

OLTP
system

OLTP system
(WebLogic
Server)
operating with a
single process
(multi-thread)

The same PDFESHOST is specified for all connection
destinations in the OLTP system (the connection
destinations are the same).#1

Y

Each thread operating in the OLTP system specifies a
different PDFESHOST.#1

N

OLTP system
(OpenTP1,
TUXEDO,
TPBroker for
C++, or TP1/
LiNK)
operating with
multiple
processes

All UAPs specify the same PDFESHOST#1 Y

Each UAP
specifies a
separate
PDFESHOST#1

Client
environment
definition of a
UAP for which
PDFESHOST is
specified#2

The same
PDFESHOST is
specified for all
connection
destinations of a
UAP for which
PDFESHOST is
specified

Y

A different
PDFESHOST is
specified for
each connection
destination of a
UAP for which
PDFESHOST is
specified.

N

Client environment definition for
the transaction manager#3

N

UAP execution environment Specification
recommended

6. Client Environment Setup

561

Transaction definitions (for completed processes and recovery
processes) and client environment definitions for each UAP

• For TP1/LiNK

Global and Local fields of the User server environment variables
field

• When the multi-connection facility is used

Environment variable settings file

#2: Specify the host name in the following location:

• For OpenTP1

Environment variables specified in the user service or user default
definitions

• For TUXEDO

Client environment definitions of each UAP

• For TPBroker for C++

Transaction definitions (for completed processes) and client
environment definitions of the UAP

• For TP1/LiNK

Global and Local fields of the User server environment variables
field

• When the multi-connection facility is used

Environment variable settings file

#3: Specify the host name in the following location:

• For OpenTP1

Environment variables specified in the transaction service definitions

• For TUXEDO

Client environment definitions of the transaction manager server and
the TUXEDO system server

• For TPBroker for C++

Transaction definition (recovery process)

• For TP1/LiNK

Transaction service environment variables field

• When the multi-connection facility is used

6. Client Environment Setup

562

Environment variable settings file

Note

If a host number is specified in PDFESHOST, connect the port number of the
connection destination to PDNAMEPORT.

6.6.3 Client environment definitions
The table below lists the client environment definitions. The numbers in the list
correspond to the individual environment definition numbers used in 6.6.4
Environment definition information.

Environment variables that must be specified
The environment variables displayed in bold characters must be specified
regardless of which HiRDB system environment is used. Specify all other
environment variables according to the HiRDB system environment being used.

Table 6-26: Client environment definitions

No. Environment variable Function Category

1 PDHOST Specifies the host name of the HiRDB system
to be connected.

System
configuration#3

2 PDNAMEPORT Specifies the port number of the HiRDB
system.

3 PDFESHOST Specifies the host name of the front-end
server.

4 PDSERVICEGRP Specifies the server name of the single server
or front-end server.

5 PDSRVTYPE Specifies the HiRDB server type.

6 PDSERVICEPORT Specifies the port number for high-speed
connection.

7 PDFESGRP Specifies the FES group to which connection
is to be established when a high-speed
connection is used.

8 PDCLTRCVPORT Specifies the receive port number of the client.

9 PDCLTRCVADDR Specifies the IP address or host name of the
client.

10 PDTMID Specifies a unique identifier for each OLTP
when multiple OLTPs access one HiRDB
server.

Clients that use an
X/Open-compliant
API in an OLTP
environment#1

6. Client Environment Setup

563

11 PDXAMODE Specifies whether the transaction transfer
function is to be used when the HiRDB client
is linked with an OLTP system.

12 PDTXACANUM Specifies the maximum number of
transactions to be executed simultaneously
from a UAP that uses an X/Open-compliant
API.

13 PDXARCVWTIME Specifies the wait time if a transaction cannot
be recovered.

14 PDXATRCFILEMODE Specifies the format of each trace file name in
the connection mode that uses the X/
Open-compliant API.

15 PDXAAUTORECONNECT Specifies whether connection is to be
re-established automatically when TP1/EE is
linked.

16 HiRDB_PDHOST Specifies the host name of the HiRDB server
to be connected.

17 HiRDB_PDNAMEPORT Specifies the port number of the HiRDB
server.

18 HiRDB_PDTMID Specifies a unique identifier for each OLTP
when multiple OLTPs access one HiRDB
server.

19 HiRDB_PDXAMODE Specifies whether the transaction transfer
function is to be used when the HiRDB client
is linked with an OLTP system.

20 PDUSER#4 Specifies the authorization identifier and
password. This environment variable can be
omitted in the UNIX environment.

User execution
environment

21 PDCLTAPNAME Specifies UAP identification information
(UAP identifier) for accessing the HiRDB
server.

22 PDCLTLANG Specifies the character code classification
used in the descriptions of UAPs to be
processed by the preprocessor.

23 PDLANG Specifies that the character code used when
the UAP is executed is either Unicode or EUC
Chinese kanji code. In the Linux edition,
specifies that SJIS is used as the character
code.

No. Environment variable Function Category

6. Client Environment Setup

564

24 PDDBLOG Specifies whether the database update log is to
be collected when a UAP is executed.

25 PDEXWARN Specifies whether return codes with warnings
are to be accepted from the server.

26 PDSUBSTRLEN Specifies the maximum number of bytes used
to represent one character.

27 PDCLTCNVMODE Specifies whether character codes are to be
converted if the HiRDB server and the HiRDB
client use different character code
classifications.

28 PDCLTGAIJIDLL Specifies the name of the user-defined
external character conversion DLL file.

29 PDCLTGAIJIFUNC Specifies the name of the user-defined
external character conversion function.

30 PDCLTGRP Specifies a client group name when the
connection frame guarantee facility for client
groups is used.

31 PDTCPCONOPT Specifies that the number of TCP ports used in
server connection processing is to be reduced
when the client connects to a HiRDB server
with a version of 06-02 or later.

32 PDAUTORECONNECT Specifies whether the automatic reconnect
facility is to be used.

33 PDRCCOUNT Specifies the number of times the CONNECT
statement is to be retried by the automatic
reconnect facility.

34 PDRCINTERVAL Specifies the retry interval for CONNECT
statement execution by the automatic
reconnect facility.

35 PDUAPENVFILE Specifies the UAP environment definition file
that defines the execution environment if the
UAP is to be executed in a separate
environment.

36 PDDBBUFLRU Specifies whether the LRU method is used for
caching in global buffer pages accessed by the
UAP.

37 PDHATRNQUEUING Specifies that the client is not using the
transaction queuing facility.

No. Environment variable Function Category

6. Client Environment Setup

565

38 PDCLTBINDLOOPBACKADD
R

Specifies whether a loopback address is to be
used for bind() when the receive port used
for communication with the HiRDB server is
created.

39 PDASTHOST Specifies the host name of HiRDB Control
Manager - Agent to be connected when the
UAP is executed.

Command
execution from a
UAP

40 PDASTPORT Specifies the port number of Control Manager
- Agent to be connected when the UAP is
executed.

41 PDSYSTEMID Specifies the HiRDB identifier of the HiRDB
server managed by HiRDB Control Manager -
Agent to be connected when the UAP is
executed.

42 PDASTUSER Specifies the user name and password for the
OS that will run commands.

43 PDCMDWAITTIME Specifies the maximum time the client is to
wait from the time it sends a request to HiRDB
Control Manager - Agent until a response is
returned.

44 PDCMDTRACE Specifies the size of the command trace file
when a file is output during UAP execution.

45 PDIPC Specifies the communication method between
processes.

Inter-process
memory
communication
facility

46 PDSENDMEMSIZE Specifies the data storage area size when the
client sends data to the server while the
inter-process memory communication facility
is used.

47 PDRECVMEMSIZE Specifies the data storage area size when the
client receives data from the server while the
inter-process memory communication facility
is used.

No. Environment variable Function Category

6. Client Environment Setup

566

48 PDCWAITTIME#4 Specifies the maximum time that the HiRDB
client waits for a response to be returned after
issuing a request to the HiRDB server.

System monitoring

49 PDSWAITTIME#4 Specifies the maximum time that the HiRDB
server waits for the next request from the
HiRDB client to arrive after returning a
response to the previous request from the
HiRDB client. This function monitors the time
during transaction processing.

50 PDSWATCHTIME Specifies the maximum time that the HiRDB
server waits for the next request from the
HiRDB client to arrive after returning a
response to the previous request from the
HiRDB client. This function monitors the time
outside transaction processing.

51 PDCWAITTIMEWRNPNT Specifies the output timing of the SQL runtime
warning information file when the SQL
runtime running output facility is used. The
output timing is specified as a percentage of
the maximum wait time of the HiRDB client
or as a time.

52 PDKALVL Specifies whether the facility that sends
packets regularly from the HiRDB client to the
HiRDB server is to be used.

53 PDKATIME Specifies the interval for sending packets
regularly from the HiRDB client to the HiRDB
server.

54 PDTIMEDOUTRETRY Specifies the number of times the connect()
system call is to be retried if an error occurs in
the connect() system call executed when the
HiRDB client connects with the HiRDB
server.

55 PDNBLOCKWAITTIME Specifies the connection establishment
monitoring time in nonblock mode when
completion of the connection between the
HiRDB server and client is monitored.

56 PDCONNECTWAITTIME Specifies the maximum wait time that the
HiRDB client waits from a response from the
HiRDB server during connection with the
HiRDB server.

No. Environment variable Function Category

6. Client Environment Setup

567

57 PDCLTPATH Specifies the storage directory for the SQL
trace file and client error log file created by the
HiRDB client.

Trouble-shooting

58 PDSQLTRACE Specifies the size of the SQL trace file (in byte
units) into which the SQL trace of the UAP is
to be output.

59 PDUAPERLOG Specifies the size of the client error log file (in
bytes) to which UAP error logs are to be
output.

60 PDERRSKIPCODE Specifies specific client error logs that are not
to be output.

61 PDPRMTRC Specifies whether parameter information and
retrieval data is to be output to the SQL trace
information.

62 PDPRMTRCSIZE Specifies the maximum length of the
parameter information and retrieval data to be
output to the SQL trace information.

63 PDTRCMODE Specifies whether troubleshooting
information other than SQL trace information
is to be output.

64 PDUAPREPLVL Specifies output information for UAP
statistical reports.

65 PDREPPATH Specifies the output directory for UAP
statistical reports when these files are to be
created in a directory different from the one
specified by PDCLTPATH.

66 PDTRCPATH Specifies the storage directory for dynamic
SQL trace files.

67 PDSQLTRCOPENMODE Specifies the open mode for the SQL trace file
when PDREPPATH is specified.

68 PDSQLTEXTSIZE Specifies the size of the SQL statement to be
output to the SQL trace information.

69 PDSQLEXECTIME Specifies whether the SQL runtime is to be
output to the SQL trace information.

70 PDRCTRACE Specifies the size of the file that outputs the
UAP reconnect trace.

No. Environment variable Function Category

6. Client Environment Setup

568

71 PDWRTLNPATH Specifies the storage directory for files to
which value expression values of WRITE LINE
statements are to be output.

72 PDWRTLNFILSZ Specifies the maximum size of the files to
which value expression values of WRITE LINE
statements are to be output.

73 PDWRTLNCOMSZ Specifies the total size of the value expression
values in WRITE LINE statements.

74 PDUAPEXERLOGUSE Specifies whether the facility for output of
extended SQL error information is to be used.

75 PDUAPEXERLOGPRMSZ Specifies the maximum data length for the
parameter information to be output to the
client error log file and to the SQL error report
file when the facility for output of extended
SQL error information is used.

76 PDARYERRPOS Specifies whether the value indicating an
erroneous array element is to be set in the SQL
Communications Area when update
processing using arrays results in an error.

77 PDDNDPTRACE Specifies the file size for method traces output
by the HiRDB.NET data provider supporting
ADO.NET 2.0.

78 PDVWOPTMODE Specifies whether or not the access path
information file is to be obtained.

Access path display
utility

79 PDTAAPINFPATH Specifies the output destination directory
when the access path information file is output
to the HiRDB client side. The file is not output
without this specification.

Access path
information file for
HiRDB SQL
Tuning Advisor

80 PDTAAPINFMODE Specifies the file name format of the access
path information file when it is output to the
HiRDB client side.

81 PDTAAPINFSIZE Specifies the file size of the access path
information file when it is output to the
HiRDB client side.

82 PDSTJTRNOUT Specifies whether UAP statistical information
is to be output to the client side.

Output unit of UAP
statistical
information

83 PDLOCKLIMIT Specifies the maximum number of lock
requests that a UAP can issue to one server.

Lock control

No. Environment variable Function Category

6. Client Environment Setup

569

84 PDDLKPRIO Specifies the deadlock priority value of a UAP.

85 PDLOCKSKIP Specifies whether search using condition
evaluation with no lock is to be performed.

86 PDFORUPDATEEXLOCK Specifies whether WITH EXCLUSIVE LOCK is
to be applied to the lock option of the SQL
statement in which the FOR UPDATE clause
was specified (or assumed).

87 PDISLLVL Specifies the data guarantee level for SQL
statements.

SQL-related

88 PDSQLOPTLVL Specifies the optimization method (SQL
optimization option) for determining the most
efficient access path in consideration of the
database status.

89 PDADDITIONALOPTLVL Specifies the optimization method (SQL
extension optimizing option) for determining
the most efficient access path in consideration
of the database status.

90 PDHASHTBLSIZE Specifies the hash table size to be used when
hash join or subquery hash execution is
applied in SQL optimization.

91 PDDFLNVAL When table data is to be fetched into an
embedded variable, specifies whether a
default value is to be set into the embedded
variable if the fetched value is a null value.

92 PDAGGR Specifies the maximum number of groups
allowed in each server so that the memory size
used in GROUP BY processing can be
determined.

93 PDCMMTBFDDL Specifies whether a transaction that has that
executed a data manipulation SQL statement
must execute commit processing
automatically before it executes a definition
SQL statement.

94 PDPRPCRCLS Specifies whether an open cursor is to be
closed automatically if the SQL identifier
being used by the open cursor is used again by
the PREPARE statement.

95 PDAUTOCONNECT Specifies whether autoconnection is to be
executed if an SQL statement is executed
while the client is not connected to HiRDB.

No. Environment variable Function Category

6. Client Environment Setup

570

96 PDDDLDEAPRPEXE Specifies that the preceding transaction's
preprocessing results are to be ignored and the
definition transaction is to be executed.

97 PDDDLDEAPRP Specifies whether the definition information
of a table being used by a closed holdable
cursor can be changed by another UAP
between transactions.

98 PDLCKWAITTIME Specifies the maximum amount of time the
HiRDB client is to monitor a lock request for
the lock to be released, beginning when the
lock request is placed on wait status.

99 PDCURSORLVL Specifies whether an open/close cursor
request is to be sent automatically to the
HiRDB server when a search is performed
using the cursor.

100 PDDELRSVWDFILE Specifies the name of the SQL reserved word
deletion file when the SQL reserved word
deletion file is used.

101 PDHJHASHINGMODE Specifies the hashing method when Apply
hash join, subquery hash execution is selected
as the SQL extension optimizing option.

102 PDCALCMDWAITTIME Specifies the maximum amount of time the
HiRDB client is to wait for termination of a
command executed by the CALL COMMAND
statement or a utility, beginning when the
command's execution starts.

103 PDSTANDARDSQLSTATE Specifies whether the details of the SQLSTATE
value are to be displayed.

104 PDBLKF Specifies the number of rows to be sent by a
single transfer process when the HiRDB
server transfers search results to the HiRDB
client.

Block transfer
facility

105 PDBINARYBLKF Specifies whether the block transfer facility is
to be applied when a table having a selection
expression for BINARY-type data with a
defined length of 32,001 bytes or more is
searched.

106 PDBLKBUFFSIZE Specifies the size of the server-client
communication buffer used by the block
transfer facility.

No. Environment variable Function Category

6. Client Environment Setup

571

107 PDBLKFUPD Specifies whether the block transfer facility is
to be suppressed when an extended cursor is
used for retrieval for a query with FOR UPDATE
specified.

108 PDBLKFERRBREAK Specifies when an error is to be returned to the
UAP if an implicit rollback occurs while
multiple rows are being acquired by the block
transfer facility.

109 PDNODELAYACK Specifies whether immediate
acknowledgement is to be used. This
environment variable is limited to the AIX
version.

HiRDB
communication
processing

110 PDBINDRETRYCOUNT Specifies the retries count when EADDRINUSE
is returned for a bind system call in a UNIX
domain.

111 PDBINDRETRYINTERVAL Specifies the retry interval when EADDRINUSE
is returned for a bind system call in a UNIX
domain.

112 PDCLTSIGPIPE Specifies whether the HiRDB client's signal
handler is to be set for the SIGPIPE signal.

113 PDDBACCS Specifies the generation number of an
RDAREA if an RDAREA that is not the
current RDAREA is to be accessed while the
inner replica facility is being used.

Inner replica facility

114 PDDBORGUAP Specifies that the UAP is to be executed for the
original RDAREA for online reorganization
hold.

Updatable online
reorganization

115 PDSPACELVL Specifies the space conversion level for data
storage, comparison, and retrieval.

Space conversion
for data

116 PDCLTRDNODE Specifies the identifier of the XDM/RD E2
database to be connected when the XDM/RD
E2 connection facility is used.

XDM/RD E2
connection facility

117 PDTP1SERVICE Specifies whether OpenTP1 service names are
to be reported to XDM/RD E2 when the
XDM/RD E2 connection facility is used.

118 PDRDCLTCODE Specifies the character code classification that
the client uses when the XDM/RD E2
connection facility is used.

No. Environment variable Function Category

6. Client Environment Setup

572

119 PDCNSTRNTNAME Specifies the position of the constraint name
definition when a referential or check
constraint is defined.

Referential or check
constraint

120 PDBESCONHOLD Specifies whether the BES connection holding
facility is to be used.

BES connection
holding facility

121 PDBESCONHTI Specifies the BES connection holding period
when the BES connection holding facility is
used.

122 PDODBSTATCACHE Specifies whether column information or
index information that is collected the first
time an ODBC function (SQLColumns() or
SQLStatistics()) is issued is to be cached.

ODBC functions

123 PDODBESCAPE Specifies whether the & ESCAPE character is
to be specified for the pattern character string
in a retrieval that uses a cataloging ODBC
function.

124 PDGDATAOPT Specifies that the SQLGetData function of
ODBC is to fetch data from columns, even if
the data has already been fetched from those
columns.

125 PDODBLOCATOR Specifies whether the locator facility is to be
used to partition and retrieve data when a
database access tool is used to retrieve
BLOB-type or BINARY-type column data. The
database access tools are the ODBC driver, the
OLE DB provider, and the HiRDB.NET data
provider.

126 PDODBSPLITSIZE Specifies the partition acquisition size when
PDODBLOCATOR=YES is specified.

127 PDODBCWRNSKIP Specifies whether warnings are to be skipped
when an ODBC connection is used.

128 PDJETCOMPATIBLE Specifies whether the ODBC 3.5 driver is to be
operated in a mode that is compatible with
Microsoft Access, rather than operating on the
basis of the ODBC 3.5 specification.

129 PDPLGIXMK Specifies whether delayed batch creation of
plug-in indexes is to be used.

Plug-ins

130 PDPLUGINNSUB#2 For details, see the manual for the target
plug-in.

No. Environment variable Function Category

6. Client Environment Setup

573

#1: Environment variables in this category are specified only for clients that use an X/
Open-compliant API in an OLTP environment to access the HiRDB server. These
environment variables are invalid for any other clients, even if the variables are
specified.

For details about whether each environment variable is necessary, see 6.6.2
Specifications for using a UAP under OLTP as the client.
When the multi-connection facility is used, the values specified for the
environment variables become invalid, even if they are registered to the
environment variable group for each connection definition.

#2: This environment variable is set for plug-ins. The client libraries do not check the
setting contents of this environment variable. Also, the information is not output to the
SQL trace.

131 PDPLGPFSZ Specifies the initial size of the index
information file for delayed batch creation of
plug-ins.

132 PDPLGPFSZEXP Specifies the extension size of the index
information file for delayed batch creation of
plug-ins.

133 PDJDBFILEDIR Specifies the file output destination of the
Exception trace log using the Type4 JDBC
driver.

JDBC driver

134 PDJDBFILEOUTNUM Specifies the number of outputs to the
Exception trace log file using the Type4 JDBC
driver.

135 PDJDBONMEMNUM Specifies the number of acquired information
items in the Exception trace log memory using
the Type4 JDBC driver.

136 PDJDBTRACELEVEL Specifies the trace acquisition level of the
Exception trace log using the Type4 JDBC
driver.

137 PDXDSHOST Specifies the host name of the XDS to be
connected.

XDS client only

138 PDXDSPORT Specifies the port number of the XDS to be
connected.

139 PDXVWOPT Specifies whether the access path of the SQL
statement used to access a table to be
expanded to the memory database is to be
output.

No. Environment variable Function Category

6. Client Environment Setup

574

#3: For the environment variables related to system configuration, specify the
necessary information when the client connects with the HiRDB server. Whether or
not these environment variables can be specified depends on the connection format
with the HiRDB server. For details about connection formats with the HiRDB server,
see 6.6.5 Environment variables and connection types for HiRDB servers.

#4: Can be specified in the ENVIRONMENT operand in the CALL COMMAND statement.

6.6.4 Environment definition information
(1) PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-server-host-n
ame]

~ <identifier> ((up to 511 bytes))

This environment variable specifies the host name of the HiRDB server to be
connected.

For HiRDB/Single Server, this environment variable specifies the host name of the
server machine on which the single server is installed. For HiRDB/Parallel Server, this
environment variable specifies the host name of the server machine on which the
system manager is installed. If PDFESHOST is specified, the PDFESHOST host name
can be specified. When the PDFESHOST host name is specified, the HiRDB client can
be connected to the HiRDB server even if a failure occurs in the system manager unit.

The FQDN or the IP address can also be specified instead of the host name. The
specification methods are shown below.

Host name
The host name that was specified in the pdunit -x operand of the system
common definition must be specified.

Example:
PDHOST=host1

FQDN
The Free Qualified Domain Name (FQDN) connects the host name and domain
name of the HiRDB server with a period.

Example:
PDHOST=host1.soft.hitachi.co.jp

IP address
The IP address is specified with a decimal number that has each group of 3 digits
separated with a period.

Example:
PDHOST=172.18.131.34

6. Client Environment Setup

575

System switchover with IP address inheritance
• For the UNIX edition

Specify the host name of the primary system.

• For the Windows edition

Specify the virtual network name registered for the MSCS or MSFC network
name. For details about the virtual network, see the HiRDB Version 9 System
Operation Guide.

System switchover without IP address inheritance
Specify the host names of both the primary system and the secondary system. If
you specify only the host name of the primary system, you must change the
specification of this environment variable after system switching occurs. After
system switching, change the host name to that of the new primary system.

When an X/Open-compliant UAP under OLTP is the client and
HiRDB_PDHOST is specified in the system environment definition

The HiRDB_PDHOST specification takes precedence. The PDHOST setting is
replaced with the value specified in HiRDB_PDHOST.

Rules for FQDN specification
Do not specify an FQDN if the version of the HiRDB server to be connected is
earlier than 05-03. If an FQDN is specified and there is a server process remaining
after the maximum wait time (PDCWAITTIME) of the client elapses, the server
process cannot be cancelled by sending a cancel process to the HiRDB server.

When a loopback address is specified in the pdunit -x operand in the system
common definition

Specify the same loopback address in this environment variable in IP address
format.

(2) PDNAMEPORT=HiRDB-server-port-number
~ <unsigned integer> ((5001-65535)) <<20000>>

This environment variable specifies the port number of the HiRDB server to be
connected. Specify the HiRDB server port number to be accessed in the server
machine of the host specified in PDHOST.

If there are multiple HiRDBs, the port number differs for each HiRDB server.
However, specify the port number of the HiRDB server to be accessed.

For details about the pd_name_port operand, see the manual HiRDB Version 9
System Definition.

When an X/Open-compliant UAP under OLTP is the client and

6. Client Environment Setup

576

HiRDB_PDNAMEPORT is specified in the system environment definition
The specification of HiRDB_PDNAMEPORT takes precedence. The setting of
PDNAMEPORT is replaced with the value specified in HiRDB_PDNAMEPORT.

(3) PDFESHOST=front-end-server-host-name[:port-number-of-unit-containing-fr
ont-end-server][,secondary-system-front-end-server-host-name][:port-number-
of-unit-containing-secondary-system-front-end-server]

~ <identifier> ((up to 523 bytes))

This environment variable is related to the HiRDB/Parallel Server.

If there are multiple front-end servers, this environment variable specifies the host
name of the front-end server for the HiRDB server to be connected. If the client is to
be connected to the host with a port number that is specified with -p in the pdunit
system definition (when the system switchover facility is used), that port number must
be specified.

The front-end servers determined by the system manager include
recovery-unnecessary front-end servers.

The FQDN or the IP address can also be specified instead of the host name.

Host name
The host name that was specified in the pdunit -x operand of the system
common definition must be specified.

Example:
PDFESHOST=host1

FQDN
The Free Qualified Domain Name (FQDN) connects the host name and domain
name of the HiRDB server with a period.

Example:
PDFESHOST=host1.soft.hitachi.co.jp

IP address
The IP address is specified with a decimal number that has each group of 3 digits
separated with a period.

Example:
PDFESHOST=172.18.131.34

System switchover with IP address inheritance
• For the UNIX edition

Specify the host name of the primary system.

6. Client Environment Setup

577

• For the Windows edition

Specify the virtual network name registered for the MSCS or MSFC network
name. For details about the virtual network, see the HiRDB Version 9 System
Operation Guide.

System switchover without IP address inheritance
Specify the host names of both the primary system and the secondary system. If
you specify only the host name of the primary system, you must change the
specification of this environment variable after system switching occurs. After
system switching, change the host name to that of the new primary system.

Rules for FQDN specification
Do not specify an FQDN if the version of the HiRDB server to be connected is
earlier than 05-03. If an FQDN is specified, cancellation of the HiRDB server
process might fail and a server process might remain after the client's maximum
wait time (PDCWAITTIME) has elapsed.

Rules for port number omission
If the port number is omitted, the port number that was specified with
PDNAMEPORT is used as the default value. The port number that was specified
with PDNAMEPORT is also used as the default value if the port number of the host
containing the secondary system front-end server is omitted.

Relationship with other environment variables
1. This environment variable must be specified for multiple front-end servers

when the front-end server to be connected is selected by the client user or
when PDSERVICEPORT is specified.

2. This environment variable should be specified with PDSERVICEGRP.

Notes
1. If a program that uses the X/Open XA interface connects to a

recovery-unnecessary front-end server, that program cannot reference or
update the database. In this case, specify PDFESHOST and PDSERVICEGRP,
and be sure to connect to a front-end server that is not a
recovery-unnecessary front-end server.

2. If there are multiple front-end servers, specify equivalent host names in
PDFESHOST so that the load is not concentrated on the connected front-end
server.

3. The host name specified in PDFESHOST can also be specified in PDHOST.
This allows the HiRDB client to be connected to the HiRDB server even if
an error occurs in the system manager unit.

4. If reflection processing is performed using the two-phase commit method

6. Client Environment Setup

578

(fxa_sqle is specified for the reflection system definition
commitment_method operand) as the synchronization point processing
method in the reflected side Datareplicator, reflection processing fails if a
recovery-unnecessary front-end server in the reflected-side HiRDB is
connected. In this case, specify PDFESHOST and PDSERVICEGRP, and be
sure to connect to a front-end server that is not a recovery-unnecessary
front-end server.

(4) PDSERVICEGRP=server-name
~ <character string> ((up to 30 bytes))

This environment variable specifies the single-server name or front-end server name
of the HiRDB server to be connected.

If multiple front-end servers are used with a HiRDB/Parallel Server, this environment
variable specifies the server name of the front-end server to be connected.

Relationship with other environment variables
1. The time required to connect to the HiRDB server can be shortened by

specifying this environment variable simultaneously with PDSERVICEPORT.

2. When using a HiRDB/Parallel Server, also specify PDFESHOST.

Note
1. If a program that uses the X/Open XA interface connects to a

recovery-unnecessary front-end server, that program cannot reference or
update the database. In this case, specify PDSERVICEGRP and PDFESHOST,
and be sure to connect to a front-end server that is not a
recovery-unnecessary front-end server.

2. If reflection processing is performed using the two-phase commit method
(fxa_sqle is specified for the reflection system definition
commitment_method operand) as the synchronization point processing
method in the reflected side Datareplicator, reflection processing fails if a
recovery-unnecessary front-end server in the reflected-side HiRDB is
connected. In this case, specify PDFESHOST and PDSERVICEGRP, and be
sure to connect to a front-end server that is not a recovery-unnecessary
front-end server.

(5) PDSRVTYPE={WS|PC}
This environment variable specifies the server type of the HiRDB server to be
connected.

WS

Specify this server type if the HiRDB server is the HP-UX, Solaris, or AIX
version.

6. Client Environment Setup

579

PC

Specify this server type if the HiRDB server is the Linux or Windows edition.

(6) PDSERVICEPORT=high-speed-connection-port-number[,secondary-system-
high-speed-connection-port-number]

~ <unsigned integer> ((5001-65535))

This environment variable specifies the port number for high-speed connection when
the high-speed connection facility is used. This is the port number for the scheduler
process specified in the system definition. The port number for the scheduler process
is specified in the following operands in the system definition:

• pd_service_port operand

• pd_scd_port operand

• -s option in the pdunit operand

For details about each operand, see the manual HiRDB Version 9 System Definition.

You specify this operand when a firewall or NAT is installed at the HiRDB server. For
details about the settings applicable when a firewall or NAT is installed, see the HiRDB
Version 9 Installation and Design Guide.

For multiple front-end servers, specify the high-speed connection port number of the
front-end server to be connected.

Note that you must determine the connection target in such a manner that the server
load is distributed, because the front-end server to be connected is fixed.

Benefits
Specifying this operand can shorten the amount of time required to connect to the
HiRDB server.

Relationship with other environment variables
When this operand is specified, the following operands must also be specified:

If the HiRDB server runs Windows or Linux, specify PC in the PDSRVTYPE
environment variable.

HiRDB/Single Server

• PDHOST

• PDNAMEPORT

• PDSERVICEGRP

HiRDB/Parallel Server

• PDHOST

6. Client Environment Setup

580

• PDNAMEPORT

• PDFESHOST

• PDSERVICEGRP

Note
1. If you use the system switchover facility for mutual system switchover and

specify different port numbers for each system in the pd_service_port
operand of the system definitions, also specify a high-speed connection port
number for the secondary system.

2. If a communication failure occurs in an environment where the HiRDB
server is connected via a wide area LAN, the system manager process might
be affected adversely and might not be able to accept many concurrent
HiRDB connection requests. Therefore, if your system connects via a wide
area LAN, we recommend that you specify this environment variable.

(7) PDFESGRP=FES-group[,switchover-FES-group[,switchover-FES-group]...]
~ <character string> ((up to 1024 bytes))

Specify this environment variable if you use a high-speed connection with a HiRDB/
Parallel Server. When you specify this environment variable, you must also specify the
following operands in the system definition:

• pd_service_port operand

• pd_scd_port operand

• -s option in the pdunit operand

To set up a high-speed connection, specify the FES group to be connected. In a
configuration with multiple front-end servers, specify the FES group of the connection
destination, and the switchover FES group for switching the connection if an error
occurs in the first FES group.

The information to be specified for FES-group and switchover-FES-group is described
below.

FES-group
A FES group collectively specifies all information for a high-speed connection
destination (PDFESHOST, PDSERVICEGRP, and PDSERVICEPORT). Delimit the
connection destinations with a colon (:). A specification example is shown
below.

host1:fes1:20001

You can specify in PDFESHOST two host names (for the primary and secondary

6. Client Environment Setup

581

systems), but only one host name can be specified for a single FES group.
Similarly, you can specify two port numbers in PDSERVICEPORT, but only one
port number can be specified for a single FES group.

switchover-FES-group
In a configuration with multiple front-end servers, a switchover FES group is a
FES group to which the connection can be switched over if a failure occurs in the
front-end server of the connected FES group. If an error occurs when a switchover
FES group is specified, the connection switches to the switchover FES group. If
multiple switchover FES groups are specified, the connection is switched over
according to the sequence in which the groups are specified.

A switchover FES group is specified in the same way as a FES group.

Notes
1. If this environment variable is specified, the PDFESHOST, PDSERVICEGRP,

and PDSERVICEPORT specifications are ignored.

2. When a switchover FES group is specified, the number of connections for
the switchover FES group may increase temporarily because the connection
destination is switched if a server error occurs or the number of connected
users is exceeded. You must therefore check and, if necessary, revise the
value of the pd_max_users operand for the switchover FES group.

3. When switchover FES groups are specified, it may take a while for HiRDB
to return an error to the UAP if errors occur in all specified switchover FES
groups or if the number of connected users is exceeded.

4. If a switchover FES group is specified and all connections to multiple FESs
result in errors, only the error information for the last FES whose connection
was attempted is returned to the UAP.

Usage example
When only one FES group is specified

6. Client Environment Setup

582

Explanation
If only one FES group is specified, the client is connected only to front-end
server fes1 of host host1.

When one FES group and one switchover FES group are specified

Explanation
If an error occurs in the connection of 1, the client is connected with 2. If an
error occurs in 2 as well, HiRDB returns an error to the UAP.

When one FES group and multiple switchover FES groups are specified

6. Client Environment Setup

583

Explanation
If an error occurs in the connection of 1, Client 1 is connected with 2. If
additional connection errors occur, Client 1 is connected with 3 and then 4.
If errors occur in all connections, HiRDB returns an error to the UAP.

(8) PDCLTRCVPORT=client-receive-port-number
~ <unsigned integer> ((0, 5001-65535, 5001-65535, 5001-65535)) <<0>>

This environment variable specifies the receive port number or range of receive port
numbers to be used when the HiRDB client communicates with the HiRDB server.

If this environment variable is omitted, the operating system automatically specifies
the receive port number or range of receive port numbers. Therefore, this environment
variable normally does not have to be specified.

Specification method
Specification examples of the receive port number are shown as follows.

6. Client Environment Setup

584

• Specifying one port number:

10000-10000 or 10000

• Specifying a range of port numbers:

10000-10500

If 0 is specified, HiRDB assumes that this environment variable has not been
specified.

Benefits
If a firewall has been set between the HiRDB server and the HiRDB client, and
the receive port numbers that can pass through the firewall are limited, specifying
this environment variable allows communications to pass through the firewall.

Notes
1. If a range of receive port numbers is specified in this environment variable,

the HiRDB client automatically assigns an unused port number from the
specified range. If there is no unused port number in the specified range, an
error occurs.

2. The HiRDB client uses one port number for one connection to the HiRDB
server. Consequently, one UAP uses multiple port numbers in the following
cases:

 The ODBC uses multiple connections.

 The multi-connection facility is used.

3. When multiple UAPs are executed concurrently, one port number can be
used only by one UAP. Therefore, if a range that includes the same port
numbers is specified for multiple UAP to be executed concurrently,
contention may occur when the port numbers are assigned. To ensure that the
port numbers do not run out in this case, specify a range that includes more
port numbers than the largest number of port numbers to be used.

4. Specify receive port numbers that are not in the range of port numbers that
the operating system assigns automatically. The range of port numbers that
the operating system assigns automatically differs for each operating system.

5. If the ODBC is used via a product such as Microsoft Access, multiple
connections with the HiRDB server are established implicitly.

6. When specifying a range that includes 10 or more port numbers, make sure
that the range includes about 20% more port numbers than will actually be
used. If this margin is not included, the efficiency of the port number search
process drops.

7. Any port number that is being used by other programs cannot be used by the

6. Client Environment Setup

585

HiRDB client.

8. Port numbers being used by the HiRDB client cannot be used by other
programs. If a service uses a fixed port number found in the range specified
in this environment variable, there may be times when that service cannot be
started.

9. Manage the programs found inside the firewall so that programs other than
the HiRDB client do not improperly use port numbers that have been set, so
that the HiRDB client can communicate through the firewall.

(9) PDCLTRCVADDR={client-IP-address|client-host-name}
~ <unsigned integer> or <identifier> ((up to 256 bytes))

When multiple communication paths are set to the host of an HiRDB client and you
wish to identify a communication path for communicating with the HiRDB server, this
environment variable specifies the IP address, FQDN, or host name for that
communication path. The specification methods are shown below.

IP address:

Specify a decimal address, using a period to delimit each byte.

Example:

 PDCLTRCVADDR=172.18.131.34

FQDN:

The FQDN is comprised of the host name and domain name of a HiRDB server
separated by periods.

Example:

 PDCLTRCVADDR=host1.soft.hitachi.co.jp

Notes
1. If you omit this environment variable, the IP address corresponding to the

client machine's default host name is assumed. You must register the client
machine's default host name in the hosts file or DNS (as a maximum of 256
bytes). An error will result if the default host name is not registered in the
hosts file or DNS. If the HiRDB client and the HiRDB server are
configured on the same machine in a HiRDB/Single Server and the default
host name is not registered in the hosts file or DNS, the HiRDB server's
host name will be assumed as the IP address.

2. If an invalid IP address or host name is specified in this environment
variable, the HiRDB client cannot receive a response from the HiRDB server
during connect processing to the HiRDB server. Therefore, an error
(SQLCODE -732) occurs after the five-minute timer monitoring elapses.

6. Client Environment Setup

586

3. PDCLTRCVADDR is ignored in the following cases:

 The value 1 is specified in the pd_change_clt_ipaddr operand in the
system definition.

 MEMORY is specified in the PDIPC environment variable.

4. The following table shows the client's IP address to be used depending on the
combination of the values specified in PDCLTRCVADDR and PDHOST:

(10) PDTMID=OLTP-identifier
~ <identifier> ((4 characters))

This environment variable specifies a unique 4-character identifier of the applicable
OLTP when multiple OLTPs use an X/Open-compliant API to access a HiRDB server.

If one of the following conditions applies to the specification of this environment
variable, the HiRDB server cannot identify the OLTP to which a transaction belongs.
Therefore, if a system failure or a transaction error occurs in an OLTP, the transaction
completion timing is not synchronized.

• This environment variable is omitted in an operating mode in which multiple
OLTPs access the HiRDB server.

• The identifiers assigned to the OLTPs are not unique in an operating mode in
which multiple OLTPs access the HiRDB server.

• Multiple OLTP identifiers are assigned to the same OLTP.

When an X/Open-compliant UAP under OLTP is the client and HiRDB
_PDTMID is specified in the system environment

The HiRDB_PDTMID specification takes precedence. The PDTMID setting is
replaced with the value specified in HiRDB_PDTMID.

Value specified in PDCLTRCVADDR PDHOST

Loopback
address

Local IP
address

Another
machine's IP

address

Loopback address Value specified in PDCLTRCVADDR

Local IP address

Omitted Default host registered in the hosts file Default host specified in the hosts file

No default host registered
in the hosts file

Type4
JDBC driver

Value specified
in PDHOST

KFPZ02444-E
error

KFPZ02444-E
error

Other Value specified
in PDHOST

Value specified
in PDHOST

KFPZ02444-E
error

6. Client Environment Setup

587

(11) PDXAMODE={0|1}
This environment variable specifies whether the transaction transfer facility is to be
used when linking with a UAP that uses an X/Open-compliant API under OLTP.

0: Do not use the transaction transfer facility.

1: Use the transaction transfer facility.

This environment variable should be specified in accordance with instructions
provided by the HiRDB administrator. For details about the transaction transfer
facility, see the HiRDB Version 9 Installation and Design Guide.

When an X/Open-compliant UAP under OLTP is the client and
HiRDB_PDXAMODE is specified in the system environment definition

The HiRDB_PDXAMODE specification takes precedence. The PDXAMODE setting is
replaced with the value specified in HiRDB_PDXAMODE.

When the client is linked with OpenTP1
The trnstring operand of OpenTP1 and the specification of the DXAMODE
setting must match.

When the client is linked with TPBroker for C++
At the completion of a TPBroker for C++ transaction, a transaction completion
process that is different from the one used by the UAP is used. Therefore, 1 must
be specified in PDXAMODE when the client is linked with TPBroker. If 0 is
specified, UAP transactions cannot be completed.

When the client is linked with TUXEDO
At the completion of a TUXEDO global transaction, a transaction manager server
(TMS) that is different from the one used by the UAP is used. Therefore, 1 must
be specified in PDXAMODE when the client is linked with TPBroker. If 0 is
specified, UAP transactions cannot be completed.

When the client is linked with WebLogic Server
Specify 1 in PDXAMODE. If PDXAMODE is omitted or if 0 is specified, UAP
transactions cannot be completed.

When the client is linked with TP1/EE (limited to the UNIX edition)
Specify 0 in PDXAMODE. If PDXAMODE is omitted or if 1 is specified, transactions
sometimes cannot be completed.

(12) PDTXACANUM=maximum-number-of-concurrent-transaction-executions-p
er-process

~ <unsigned integer> ((1-2147483647)) <<20>>

This environment variable specifies the maximum number of transactions that can be

6. Client Environment Setup

588

executed simultaneously per process when a UAP that uses an X/Open-compliant API
supporting multi-thread or X/Open-compliant API using multi-connection facility
accesses HiRDB.

Estimation method
Estimate the value to be specified for this environment variable based on the
following formula:

specification-value = (number-of-transactions-that-can-occur-in-target-process)
x (number-of-HiRDB-servers-that-target-process-can-access)

When linked with TP1/EE:

Add the number of recovery and monitoring threads of TP1/EE to the above
value.

Specified value = (number-of-transactions-that-can-occur-in-target-process
+ number-of-recovery-and-monitoring-threads)

x (number-of-HiRDB-servers-that-target-process-can-access)

(13) PDXARCVWTIME=transaction-recovery-wait-time
~ <unsigned integer> ((0-270)) <<2>> (seconds)

This environment variable specifies how long to wait before sending the next
connection request to HiRDB, when OpenTP1 that accesses HiRDB using an X/
Open-compliant API cannot connect to HiRDB during a transaction recovery process
or a resource manager monitoring process, or when HiRDB cannot recover a
transaction.

If 0 is specified, a connection request is issued for each HiRDB transaction recovery
instruction.

Estimation method
Estimate the specification value from the following calculation equation:

specification-value = a x b (c - d x e)

a: 270

b: Total number of OpenTP1 transaction recovery processes to be connected to
HiRDB

c: Total number of automatic allocation port numbers on the HiRDB single server
or the server machine containing the system manager

d: Number of port numbers used during peak transaction times on the HiRDB

6. Client Environment Setup

589

single server or the server machine containing the system manager

e: If the system switchover facility is being used, use 2. If not, use 1.

Notes
1. If you specify a small time value in PDXARCVWTIME, and several transactions

are stopped in OpenTP1, a port number shortage may occur on the HiRDB
single server or the server machine containing the system manager.
Therefore, if the time calculated with the estimation method is larger than the
default value, you should specify the time calculated with the estimation
method.

2. If startup of the HiRDB single server or system manager unit is completed
immediately after the OpenTP1 transaction recovery process begins the wait
time specified in PDXARCVWTIME, recovery of the transaction connected to
HiRDB may take longer to complete.

(14) PDXATRCFILEMODE={LUMP|SEPARATE}
This environment variable specifies the format of trace file names when the connection
mode uses an X/Open-compliant API. If the connection mode does not use an API that
is X/Open-compliant, the PDXATRCFILEMODE specification is ignored.

LUMP

Output the trace files without adding an execution process ID to each trace file
name.

The LUMP specification is recommended if the UAP is non-resident and is
executed repeatedly and the process ID changes with each execution. By
specifying LUMP, you can prevent the number of trace files from increasing each
time the non-resident UAP is executed and thus causing unstable operation of the
operating system and other programs.

When LUMP is specified, the output destination for trace information becomes
limited, and the trace output size may need to be increased. In addition, the
processing time may increase because the trace output competes with the output
of other processes.

SEPARATE

Output the trace files by adding an execution process ID to each trace file name.

If the UAP is a resident process, we recommend that you specify SEPARATE.

(15) PDXAAUTORECONNECT={YES|NO}
When TP1/EE is linked, this environment variable specifies whether connection is to
be re-established automatically when the HiRDB server connection status is checked
at the time a transaction begins and TP1/EE is not connected to the HiRDB server. If
the cause of disconnection is neither a machine failure nor a network failure,

6. Client Environment Setup

590

connection is re-established automatically even if this environment variable is omitted.

This environment variable is ignored, if specified, in the following cases:

• TP1/EE is not linked.

• Dynamic registration is used with the transaction manager.

• The value 0 is specified in the PDCWAITTIME client environment variable.

YES

Re-establish connection automatically when a transaction begins. This option
affects transaction performance because communication with the HiRDB server
is performed each time a transaction begins.

NO

Do not re-establish connection automatically when a transaction begins. If
connection is lost due to a machine or network failure, an SQL error might be
returned because connection will not be re-established.

Notes
• The maximum amount of time spent checking the HiRDB server connection

status is the value specified in the PDCWAITTIME client environment
variable.

• If connection re-establishment fails, the error that caused the failure is
returned to the UAP.

(16) HiRDB_PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-serv
er-host-name]

~ <identifier>

This environment variable specifies the host name of the HiRDB server to be
connected. The value specified in this environment value is replaced with the PDHOST
setting.

For a HiRDB/Single Server, this environment variable specifies the host name of the
server machine in which the Single Server is installed. For a HiRDB/Parallel Server,
this environment variable specifies the host name of the server machine in which the
system manager is installed.

Other than the host name, you can specify the FQDN or the IP address. The
specification methods are shown below.

Host name
The host name that was specified in the pdunit -x operand of the system
common definition must be specified.

Example:

6. Client Environment Setup

591

PDHOST=host1

FQDN:
The FQDN is comprised of the host name and domain name of a HiRDB server
separated by periods.

Example:

 PDHOST=host1.soft.hitachi.co.jp

IP address
The IP address is specified with a decimal number that has each byte separated
with a period.

Example:
PDHOST=172.18.131.34

System switchover with IP address inheritance
• For the UNIX edition

If the IP address is to be inherited, specify the host name of the primary system.

• For the Windows edition

If the IP address is to be inherited, specify the virtual network name
registered for the MSCS or MSFC network name. For details about the
virtual network, see the HiRDB Version 9 System Operation Guide.

System switchover without IP address inheritance
Specify the host names of both the primary system and the secondary system. If
you specify only the host name of the primary system, you must change the
specification of this environment variable after system switching occurs. After
system switching, change the host name to that of the new primary system.

(17) HiRDB_PDNAMEPORT=HiRDB-server-port-number
~ <unsigned integer> ((5001-65535))

This environment variable specifies the port number of the HiRDB server. The port
number must be the value that was specified in pd_name_port of the system
definition for the HiRDB server to be connected. The value specified in this
environment variable is replaced by the PDNAMEPORT setting.

For multiple HiRDBs, the port number differs for each HiRDB server, so you must
specify the port number of the HiRDB server to be connected.

For details about pd_name_port, see the manual HiRDB Version 9 System Definition.

6. Client Environment Setup

592

(18) HiRDB_PDTMID=OLTP-identifier
~ <integer> ((4 characters))

This environment variable specifies a unique identifier for the applicable OLTP when
multiple OLTPs use an X/Open-compliant API to access a HiRDB server. The value
specified in this environment variable is replaced by the PDTMID setting.

If one of the following conditions applies to the specification of this environment
variable, the server cannot identify the OLTP to which a transaction belongs.
Therefore, if a system failure or transaction error occurs in an OLTP, the transaction
conclusion timing is not synchronized.

• This environment variable and the PDTMID specification are omitted in an
operating mode in which multiple OLTPs access the HiRDB server.

• The identifiers assigned to the OLTPs are not unique in an operating mode in
which multiple OLTPs access the HiRDB server.

(19) HiRDB_PDXAMODE={0|1}
This environment variable specifies whether or not the transaction transfer facility is
used when a UAP that uses an X/Open-compliant API under OLTP is being used as
the client. The value specified in this environment variable is replaced with the
PDXAMODE setting.

0: Do not use the transaction transfer facility.

1: Use the transaction transfer facility.

This operand should be specified in accordance with instructions provided by the
HiRDB administrator. For details about the transaction transfer facility, see the HiRDB
Version 9 Installation and Design Guide.

(20) PDUSER=authorization-identifier[/password]
~ <<current user's name without password>>

This environment variable cannot be omitted in the Windows environment. It can be
omitted in the UNIX environment.

This environment variable specifies the authorization identifier and password in the
format authorization-identifier/password. If specification of a password is not
necessary (when setup is for users who do not have passwords), the password can be
omitted.

Regardless of whether the specification uses upper case or lower case characters, the
password is handled as upper case. However, if lower-case characters are enclosed in
quotation marks, the password is handled as lower-case characters.

Note
• When you use OpenTP1, do not register PDUSER as a system environment

6. Client Environment Setup

593

variable. If you do, abort code psti0rf will be output when OpenTP1
starts, and HiRDB will quit.

Notes
1. When a UAP under OpenTP1 is used as the client, specify the authorization

identifier and password in the format 'authorization-identifier/password'.
If you wish to use lower-case alphabetic characters for the authorization
identifier and password, use the format '"authorization-identifier"/
"password"'.

2. When you omit the password and specify only the authorization identifier,
entry of a password may be requested, depending on the utility. In such a
case, use the format authorization-identifier/password to specify a character
string for the password. If the command is executed from the UAP (COMMAND
EXECUTE is executed), the password cannot be omitted.

(21) PDCLTAPNAME=identification-name-of-UAP-to-be-executed
~ <character string> ((30 characters)) <<Unknown>>

This environment variable specifies identification information about the UAP that will
access the HiRDB system (that is, a UAP identifier). This name is used to identify the
UAP being executed.

The name specified in this environment variable is displayed as the UAP name in the
following information:

• Display result of the pdls command

• SQL trace file

• Connection user information file (%PDDIR%\spool\cnctusrinf)

Note
• If non-alphanumeric characters are specified in the UAP identification name,

the pdcancel command may not be executed. For this reason, only
alphanumeric characters should be specified for name.

• Do not use the following character strings in the UAP identification names:

 Character string that begins with pd#

 Character string that begins with hds

 Character string that begins with 0

#: If a character string that begins with pd is specified in the identification name
of a UAP, that UAP may not be monitored by the skipped effective
synchronization point dump monitoring facility.

6. Client Environment Setup

594

(22) PDCLTLANG={SJIS|CHINESE|UJIS|C|UTF-8|CHINESE-GB18030}
This environment variable specifies the character code classification to be used in the
UAPs to be processed by the preprocessor. UJIS cannot be specified with the Windows
edition. When this environment variable is omitted in the Windows edition, SJIS is
assumed.

SJIS

Shift JIS kanji codes are set as the character code classification. Use this
environment variable if you specify SJIS in the Linux edition.

CHINESE

chinese_s is set as the character code classification.

UJIS

ja_JP.EUC (ja_JP.eucJP or ja) is set as the character code classification.

C

Single-byte character codes are set as the character code classification.

UTF-8

UTF-8 is set as the character code classification.

CHINESE-GB18030

CHINESE-GB18030 is set as the character code classification.

During UAP preprocessing, the character code classification is determined as shown
in the following table.

PDCLTLANG Client operating system

HP-UX Solaris AIX Linux Windows

SJIS ja_JP.SJIS ja_JP.PCK ja_JP Shift JIS Shift JIS

CHINESE chinese-s chinese-s chinese-s chinese
-s

EUC
Chinese
character
code
(GB2312)

UJIS ja_JP.eucJP ja ja_JP ja_JP.e
ucJP

Error

C C C C C C

UTF-8 UTF-8 UTF-8 UTF-8 UTF-8 UTF-8

6. Client Environment Setup

595

#: If a character code was set in the LANG environment variable during preprocessing,
that character code is assumed.

The following table shows whether connection is possible based on the character code
classification combination between the server and the client.

C: Can be connected.

--: Cannot be connected.

#1: A Windows client can connect with any character code classification used in a
server. A VOS3 system client can connect with the server when the character code
classification in the server is SJIS.

#2: Connection is possible when the server is set to the default character code
classification. For Solaris and Linux, the default character code classification is UJIS.
For other operating systems, the default character code classification is SJIS.

(23) PDLANG={UTF-8|SJIS|CHINESE|CHINESE-GB18030|ANY}
You use this environment variable when you use a character encoding that is not
supported by the OS in a UAP execution environment. When this environment

CHINESE-GB18030 CHINESE-GB18
030

CHINESE-GB1803
0

CHINESE-GB18
030

CHINESE
-GB1803
0

CHINESE-G
B18030

No setting# ja_JP.SJIS ja ja_JP ja Shift JIS

Other Error Error Error Error Error

Character code
classification of

client#1

Character code classification of server

SJIS CHINESE UJIS C UTF-8 CHINESE
-GB18030

SJIS C -- -- -- -- --

CHINESE -- C -- -- -- --

UJIS -- -- C -- -- --

C C#2 -- C#2 C -- --

UTF-8 -- -- -- -- C --

CHINESE-GB18030 -- -- -- -- -- C

PDCLTLANG Client operating system

HP-UX Solaris AIX Linux Windows

6. Client Environment Setup

596

variable is omitted, the value of the LANG environment variable is assumed.

SJIS is supported by the Linux edition only. For the Windows edition, you can specify
only ANY.

When ANY is specified, the client can connect to a server that uses any character codes.
However, the client (application) needs to be aware of the character codes used by the
connected server for data operations and creation of SQL statements.

For details about the value of PDLANG, see 8.4.1(1) Notes about the character code
classification.

(24) PDDBLOG={ALL|NO}
This environment variable specifies whether a database update log is to be collected
when UAPs are executed.

ALL

Execute UAPs in the log collection mode.

When ALL is specified, the error correction operation becomes simple, but a
significant amount of processing time is required when a large volume of data is
updated.

NO

Execute UAPs in the no-log mode.

If a UAP terminates abnormally during execution, the database updates
performed by the transaction cannot be recovered. The NO option reduces
processing time to the extent that no time is spent on collecting a database update
log. However, backups must be made before and after UAP execution, and
approval to specify NO must be obtained from the HiRDB administrator.

For details about how to execute UAPs in the no-log mode, see the HiRDB
Version 9 System Operation Guide.

The following log information is collected regardless of the specification of this
environment variable:

• Log information about updates to the master directory, data directory, and data
dictionary RDAREAs

• Log information about updates to user RDAREA definition information

(25) PDEXWARN={YES|NO}
This environment variable specifies whether return codes with warnings are to be
accepted from the server.

YES: Accept return codes with warnings.

NO: Do not accept return codes with warnings.

6. Client Environment Setup

597

When YES is specified for this environment variable, the error decision method must
be changed for UAPs (including stored procedures) that process all SQLCODEs other
than 0 and +100 as errors. For details about error decision methods, see 3.6 SQL error
identification and corrective measures.

(26) PDSUBSTRLEN={3|4|5|6}
This environment variable specifies the maximum number of bytes used to represent
one character. This environment variable is valid only when the character code
classification is Unicode (UTF-8); it affects the length of the SUBSTR scalar function.
For details about SUBSTR, see the manual HiRDB Version 9 SQL Reference.

Relationship with system definition
If this environment variable is omitted, the setting for the pd_substr_length
operand of the system common definition is assumed.

Note
For details about when you specify this environment variable, see the
pd_substr_length operand in the manual HiRDB Version 9 SQL Reference.

(27) PDCLTCNVMODE={AUTO|NOUSE|UJIS|UJIS2|UTF8|UTF8MS|UTF8_TXT|UT
F8_EX|UTF8_EX2|UTF8MS_TXT|UCS2_UJIS|UCS2_UTF8}

This environment variable specifies how character codes are to be converted when the
character code classifications of the HiRDB server and the HiRDB client are different.
Character code conversion can be performed only when the HiRDB client uses Shift
JIS kanji codes or UCS-2, and the HiRDB server uses EUC Japanese kanji codes or
Unicodes.

The following table lists and describes the specification values:

Specification
value

Description

AUTO The HiRDB client automatically checks the character code classification used in the
HiRDB server and converts the character codes if possible. Character code conversion can
be applied when the HiRDB client uses shift JIS kanji codes and the HiRDB server uses
EUC Japanese kanji codes or Unicodes. When AUTO is specified, NOUSE, UJIS or UTF8 is
set as the specification value.

NOUSE Character code conversion is not used. Data is transferred without execution of character
code conversion.

UJIS The HiRDB client assumes that the HiRDB server uses EUC Japanese kanji codes, and
converts character codes without checking what is used in the HiRDB server. The HiRDB
client must be using shift JIS kanji codes. If the HiRDB client accepts data of
variable-length character string types (VARCHAR, MVARCHAR, and NVARCHAR), it uses the
number of spaces equivalent to the SQLLEN value to clear the SQLDATA area indicated by
the SQL descriptor area.

6. Client Environment Setup

598

#

UJIS2 The processing is the same as for UJIS. However, if the HiRDB client accepts data of the
variable-length character string types (VARCHAR, MVARCHAR, and NVARCHAR), it does not
use spaces to clear the SQLDATA area indicated by the SQL descriptor area.

UTF8 The HiRDB client uses shift JIS kanji codes and converts characters codes by assuming
that the HiRDB server uses Unicodes (UTF-8). However, if the HiRDB client accepts data
of variable-length character string types (VARCHAR and MVARCHAR), it uses the number of
spaces equivalent to the SQLLEN value to clear the SQLDATA area indicated by the SQL
descriptor area.

UTF8MS The processing is the same as for UTF8. However, the HiRDB server uses MS-Unicodes,
and the HiRDB client uses the Windows encoding character set to convert character codes.

UTF8_TXT The processing is the same as for UTF8. However, the HiRDB client does not convert
character codes for data of fixed-length character string types (CHAR and MCHAR) or
variable-length character string types (VARCHAR and MVARCHAR).

UTF8_EX Processing is the same as for UTF8. However, when the HiRDB client receives a backslash
(0x5C) from the HiRDB server, it does not convert the character code, but handles it as a
SJIS backslash (0x5C). If the HiRDB client receives a Unicode (UTF-8) backslash
(0xC2A5), it converts it to a SJIS backslash (0x5C), in the same way as when UTF8 is
specified.
When a backslash (0x5C) is entered at the HiRDB client, the character code is not
converted and 0x5C is passed to the HiRDB server.

UTF8_EX2 The processing is the same as for UTF8_EX. However, when a SJIS backslash (0x5C) is
entered at the HiRDB client, it is converted to a Unicode (UTF-8) backslash (0xC2A5), in
the same way as when UTF8 is specified, and it is passed to the HiRDB server.

UTF8MS_TXT The processing is the same as for UTF8MS. However, the HiRDB client does not convert
character codes for data of fixed-length character string types (CHAR and MCHAR) or
variable-length character string types (VARCHAR and MVARCHAR).

UCS2_UJIS To convert character codes, the HiRDB client uses UCS-2 and the HiRDB server uses EUC
Japanese kanji codes#. If the HiRDB server uses character codes other than EUC Japanese
kanji codes, an error is generated when the HiRDB server is connected. You can specify
UCS2_UJIS only when accessing the system from a Unicode-compliant ODBC 3.0 driver,
ODBC 3.5 driver, HiRDB.NET data provider, or HiRDB SQL Executer version 02-06 or
later.

UCS2_UTF8 To convert character codes, the HiRDB client uses UCS-2 and the HiRDB server uses
Unicodes (UTF-8)#. If the HiRDB server uses character codes other than Unicodes
(UTF-8), an error is generated when the HiRDB server is connected. You can specify
UCS2_UTF8 only when accessing the system from a Unicode-compliant ODBC 3.0 driver,
ODBC 3.5 driver, HiRDB.NET data provider, or HiRDB SQL Executer version 02-06 or
later.

Specification
value

Description

6. Client Environment Setup

599

The converted character code range is that of UCS-4.

AUTO is specified when the character code classification of the HiRDB server cannot
be identified. UJIS is specified when the character code classification of the HiRDB
server can be identified as EUC Japanese kanji codes.

The following character strings are converted:

• Character strings in SQL statements

• Data codes in the SQL descriptor area that are CHAR, VARCHAR, NCHAR,
NVARCHAR, MCHAR, or MVARCHAR character strings

• Column names stored in the Column Name Descriptor Area (SQLCNDA)

• Error messages stored in the SQL Communications Area

• Data type names stored in the Type Name Descriptor Area (SQLTNDA)

The following table shows the PDCLTCNVMODE settings in terms of the combination of
HiRDB client and HiRDB server character codes.

Legend:

Cannot be specified: Cannot be specified because conversion is not possible.

No conversion necessary: Does not need to be specified because code conversion

Character
codes used
by HiRDB

client
application

Character codes at HiRDB server

SJIS Unicode (UTF-8) UJIS C GB18030

SJIS No conversion
necessary

UTF8, UTF8MS,
UTF8_TXT,
UTF8_EX,
UTF8_EX2,
UTF8MS_TXT

UJIS, UJIS2 NOUSE Cannot be
specified

Unicode
(UTF-8)

Cannot be
specified

No conversion
necessary

Cannot be
specified

NOUSE Cannot be
specified

UJIS Cannot be
specified

Cannot be specified No conversion
necessary

NOUSE Cannot be
specified

UCS-2 Cannot be
specified

UCS2_UTF8 UCS2_UJIS Not needed Cannot be
specified

C NOUSE NOUSE NOUSE NOUSE Cannot be
specified

GB18030 Cannot be
specified

Cannot be specified Cannot be
specified

Cannot be
specified

No conversion
necessary

6. Client Environment Setup

600

is not necessary.

Tables 6-27 and 6-28 show the differences in character code conversions when UTF8,
UTF8_EX, and UTF8_EX2 are specified.

Table 6-27: Differences in character code conversions when UTF8, UTF8_EX,
and UTF8_EX2 are specified (for characters received from a HiRDB server)

#: Character code is not converted.

Table 6-28: Differences in character code conversions when UTF8, UTF8_EX,
and UTF8_EX2 are specified (for characters entered at the HiRDB client)

#: Character code is not converted.

Notes
• If a data string contains 2-byte external characters, they are replaced with

full-sized number signs (#), except when the client environment definitions
PDCLTGAIJIDLL and PDCLTGAIJIFUNC are specified in the client. EUC
3-byte external characters cannot be used.

• Single-byte katakana characters are 1-byte codes in the shift JIS kanji codes
and 2-byte codes in the EUC Japanese kanji codes. Therefore, if a character
string contains single-byte katakana characters, the data length changes
when the character codes are converted. If a character string received from

Character received from HiRDB
server (Unicode (UTF-8))

PDCLTCNVMODE
setting

Character code after HiRDB
client conversion (SJIS)

0x5C (backslash) UTF8 0x815F (double-byte backslash)

UTF8_EX 0x5C (\ symbol)#

UTF8_EX2

0xC2A5 (\ symbol) UTF8 0x5C (\ symbol)

UTF8_EX

UTF8_EX2

Character entered at HiRDB
client (SJIS)

PDCLTCNVMODE
setting

Character code after HiRDB
client conversion (Unicode

(UTF-8))

0x5C (\ symbol) UTF8 0xC2A5 (\ symbol)

UTF8_EX 0x5C (backslash)#

UTF8_EX2 0xC2A5 (\ symbol)

6. Client Environment Setup

601

the server contains single-byte katakana characters, the character string
becomes shorter after conversion. If a character string to be sent to the server
contains single-byte katakana characters, the character string becomes
longer after conversion.

In the Unicodes, characters that are not ASCII (0x0-0x7f) characters are
expressed as 2- to 4-byte characters. Therefore, the data length changes when
the character codes are converted. If a character string received from the
server contains non-ASCII characters, the character string becomes shorter
after conversion. If a character string to be sent to the server contains
non-ASCII characters, the character string becomes longer after conversion.

When the character string length changes, the following processing takes
place:

1. When data codes set in the SQL descriptor area are CHAR or MCHAR character
strings:

If the character string length becomes shorter, the HiRDB client pads the
converted codes with single-byte spaces (0x20) until the original character
string length is reached. (The length becomes shorter when the HiRDB client
receives a UJIS character string containing single-byte katakana characters
or a Unicode character string containing non-ASCII characters from the
HiRDB server.)

If the character string length becomes longer, the HiRDB client passes the
entire converted character string to the HiRDB server without truncating the
character string. (The length becomes shorter when the HiRDB client passes
a UJIS-converted character string containing single-byte katakana characters
or a Unicode-converted character string containing non-ASCII characters to
the HiRDB server.)

Therefore, an adequate length must be allocated for the column that stores
the character string. If all characters can be identified as single-byte katakana
characters, the area must have a byte count that is twice the character count
(for Unicodes, the area must have a byte count that is three times the
character count).

2. When data codes set in the SQL descriptor area are VARCHAR or MVARCHAR
character strings, or for character strings in SQL statements, column names
stored in the Column Name Descriptor Area (SQLCNDA), error messages
stored in the SQL Communications Area, or data type names stored in the
Type Name Descriptor Area (SQLTNDA):

If the character string becomes shorter, the character string length is changed
to the post-conversion character string length.

If the character string becomes longer, the character string length is changed
to the post-conversion character string length.

6. Client Environment Setup

602

If all characters can be identified as single-byte katakana characters, the area
must have a byte count that is twice the character count (for Unicodes, the
area must have a byte count that is three times the character count).

3. For NCHAR or NVARCHAR character strings pointed to from the SQL
Descriptor Area (data codes are NCHAR or NVARCHR character strings)

Because single-byte katakana characters cannot be used, the length remains
unchanged, even after conversion.

• If a CHAR or VARCHAR column is used to store binary data, the character code
conversion process may produce unexpected conversions when the column
is accessed. In this case, disable character code conversion (specify NOUSE
in PDCLTCNVMODE).

• Character code conversion cannot be executed on BLOB-type data. For
example, if a BLOB column is being used to store text data, have the UAP
execute the character code conversion.

• The following two methods are used for character mapping between shift JIS
kanji codes and Unicodes:

JIS method

This method conforms to the mapping method defined by JIS X 0221. The
JIS method is used when a value other than UTF8MS or UTF8MS_TXT is
specified in PDCLTCNVMODE.

Conversion targets: Shift JIS to JIS X0221

Kanji scope: JIS level-1 kanji set and JIS level-2 kanji set

MS method

This method conforms to the mapping method defined by Microsoft. The MS
method is used when UTF8MS or UTF8MS_TXT is specified in
PDCLTCNVMODE.

Conversion targets: Windows signed character set to MS-UNICODE

Kanji scope: JIS level-1 kanji set, JIS level-2 kanji set, IBM expansion kanji,
NEC-selected IBM expansion kanji, NEC special characters

• Note that the shift JIS kanji codes and the Windows signed character set have
different external character code ranges.

• To apply the MS method, which can handle more kanji characters, specify
UTF8MS or UTF8MS_TXT in PDCLTCNVMODE. Before you use the MS
method, make sure that you fully understand the problems that may occur as
a result of mapping differences.

• A user-defined external character conversion DLL file for UJIS cannot be

6. Client Environment Setup

603

applied directly to Unicode external character conversion. To execute
Unicode external character conversion, you must use a user-defined external
character conversion DLL file to which a Unicode external character
conversion function has been added.

Notes when the client uses UCS-2 character codes
• Error messages (SQLERRMC) set in the SQL Communications Area may

exceed 254 bytes, depending on the character code conversion. In such cases,
a maximum of 254 bytes are set for column names and type names and any
excess is truncated.

• To receive CHAR, MCHAR, VARCHAR, or MVARCHAR data, the SQL description
area data length requires twice the maximum definition length.

• Data cannot be received if it exceeds the following applicable value after
character code conversion:

 30,000 bytes for CHAR, NCHAR, and MCHAR

 32,000 bytes for VARCHAR, NVARCHAR, and MVARCHAR

Therefore, data stored in the server may not be able to be searched if
fixed-length character type data exceeds 15,000 bytes, and if variable-length
character type data exceeds 16,000 bytes.

• The length of data specified by input parameters cannot exceed the following
values:

 32,000 bytes for VARCHAR, NVARCHAR, and MVARCHAR

 32,000 bytes for VARCHAR, NVARCHAR, and MVARCHAR

• When data codes set in the SQL description area are CHAR, MCHAR,
VARCHAR, or MVARCHAR and the character strings are sent to the server, the
character string length is changed to the post-conversion character string
length (for the fixed-length, SQLLEN is changed to the post-conversion
character string length).

• Do not add BOM at the beginning of UCS-2 character strings. Such character
strings with BOM are not converted correctly. The UCS-2 byte order is
processed as the byte order of the host that runs the program.

(28) PDCLTGAIJIDLL=user-defined-external-character-conversion-DLL-file-nam
e

~ <character string>

This environment variable is valid only in the Windows edition.

This environment variable specifies the name of the DLL file for user-defined external
character conversion. This environment variable is effective during character code

6. Client Environment Setup

604

conversion only if a value other than NOUSE or UCS2_UTF8 is specified for
PDCLTCNVMODE. If this environment variable is omitted, double-byte external
characters are converted to double-byte number signs (#).

(29) PDCLTGAIJIFUNC=user-defined-external-character-conversion-function-na
me

~ <character string>

This environment variable is valid only in the Windows edition.

This environment variable specifies the name of the user-defined external character
conversion function. This environment variable is effective for character code
conversion only if PDCLTGAIJIDLL is specified.

Descriptive format for a user-defined external character conversion function
The descriptive format for a user-defined external character conversion function
is as follows:
 _declspec(dllexport)#1 WINAPI#2
user-defined-external-character-conversion-function-name (
 long direct,
 unsigned char far *instr,
 unsigned char far *outstr) ;

#1: The DLL declaration format differs according to the compiler being used.
Comply with the DLL format of the compiler being used.

#2: The export function name (user-defined external character conversion
function name) of the created DLL differs depending on which compiler is used.
Use one of the following methods to check which export function name to
specify:

• During DLL creation, specify the project settings so that a MAP file is
output. Then check the export function name from the MAP file.

• Use the dumpbin command (dumpbin /exports DLL-name) of
Microsoft Visual C++ to check the export function name.

Input
direct

Indicates the conversion direction. A value from 1 to 6 is set.

1: Data conversion from the HiRDB client to the HiRDB server

2: Data conversion from the HiRDB server to the HiRDB client

3: Data conversion from the HiRDB client to the HiRDB server (for
Unicodes)

6. Client Environment Setup

605

4: Data conversion from the HiRDB server to the HiRDB client (for
Unicodes)

5: Data conversion from the HiRDB client UCS-2 to the HiRDB server UJIS

6: Data conversion from the HiRDB server UJIS to the HiRDB client UCS-2

7: Data conversion from the HIRDB client UTF-16 (surrogate pair) to the
HiRDB server UJIS

Note
When the Gaiji conversion DLL passes a Unicode character, the data is
converted to two or four bytes of UCS-2 (UTF-16) format data. Conversion
to data in UTF-8 format is performed by a library.

instr

Indicates the pointer to the external character storage area for characters to
be converted. The area size is fixed to two bytes when a value other than 7
is specified in direct, and four bytes when 7 is specified.

instr[0] = First byte of external character to be converted

instr[1] = Second byte of external character to be converted

instr[2] = Third byte of external character to be converted

instr[3] = Fourth byte of external character to be converted

outstr

Indicates the pointer to the post-conversion external character storage area.
The area size is two bytes when a value other than 6 is specified in direct,
and four bytes when 6 is specified.

outstr[0] = First byte of character code (external character) after
conversion

outstr[1] = Second byte of character code (external character) after
conversion

outstr[2] = Third byte of character code (external character) after
conversion

outstr[3] = Fourth byte of character code (external character) after
conversion

Even though code conversion could not be performed, set an appropriate
value as the converted value (the passed value is used unconditionally).

For UCS-2 (Unicodes) external character codes, byte columns need to be
returned with a big endian byte column. For example, for , set 0x67 for
the first byte and 0x71 for the second byte.

6. Client Environment Setup

606

Output
*outstr

Stores the converted character string.

Note

The following table shows the character code combinations that can be
specified for *instr and *outstr.

Table 6-29: Character code combinations that can be specified for *instr and
*outstr

The following table shows the external code ranges for each character code
classification.

direct instr outstr PDCLTCNVMODE

1 External character codes of the shift
JIS kanji codes

External character codes of the
EUC Japanese kanji codes

UJIS or UJIS2

2 External character codes of the EUC
Japanese kanji codes

External character codes of the
shift JIS kanji codes

UJIS or UJIS2

3 External character codes of the shift
JIS kanji codes

Unicode external character
codes

UTF8 or UTF8_TXT

External character codes of the
Windows signed character set

MS-Unicode external character
codes

UTF8MS or UTF8MS_TXT

4 External character codes of the
Unicode BMP (Basic Multilingual
Plane)

External character codes of the
shift JIS kanji codes

UTF8 or UTF8_TXT

MS-Unicode external character codes External character codes of the
Windows signed character set

UTF8MS or UTF8MS_TXT

5 External character codes of the
Unicode BMP (Basic Multilingual
Plane) and JIS level 3 and 4 kanji
codes placed in Unicode BMP

External EUC Japanese kanji
character codes

UCS2_UJIS

6 External EUC Japanese kanji
character codes

Any UTF-16 format codes UCS2_UJIS

7 Unicode surrogate pair External character codes of the
EUC Japanese kanji code

UCS2_UJIS

6. Client Environment Setup

607

Table 6-30: External code ranges for each character code classification

#: Because Microsoft has assigned its own characters to codes 0xe000 to
0xe757, and 0xf8f0 to 0xf8ff, the user-defined external character conversion
DLL is not called for these external character codes.

The following table shows the surrogate pair range.

Table 6-31: Surrogate pair range

(30) PDCLTGRP=client-group-name
~ <letter> ((1 character))

This environment variable specifies a client group name when the connection frame
guarantee facility for client groups is used. The client group name that was specified
in the pdcltgrp operand of the system definition is specified with an uppercase letter.
Even if a lowercase letter is specified, the system assumes that an uppercase letter was
specified.

If the pdcltgrp operand of the system definition is not specified, or if this
environment variable specifies a client group name that is not specified by the
pdcltgrp operand, the specification for this environment variable becomes invalid.
For details about the connection frame guarantee facility for client groups, see the
HiRDB Version 9 System Operation Guide.

(31) PDTCPCONOPT={0|1}
This environment variable is valid when the HiRDB client connects to a HiRDB server
of version 06-02 or later. This environment variable is specified when the number of
TCP ports used for communication to the server is to be reduced.

Character code First byte Second byte

Shift JIS kanji codes 0xf0 to 0xfc 0x40 to 0x7e

0x80 to 0xfc

Windows signed character set 0xf0 to 0xfa 0x40 to 0x7e

0x80 to 0xfc

EUC Japanese kanji codes 0xf5 to 0xfe 0xa1 to 0xfe

Unicodes or MS-Unicodes# 0xe0 to 0xf8 0x00 to 0xff

Encoding High-order surrogate Low-order surrogate

Byte 1 Byte 2 Byte 1 Byte 2

UTF-16 0xd8 to 0xdb 0x00 to 0xff 0xdc to 0xdf 0x00 to 0xff

6. Client Environment Setup

608

According to the TCP protocol specifications, after a TCP connection ends, the TCP
port may switch to TIME_WAIT status for a fixed period of time (1 to 4 minutes) during
which it cannot be used in a new connection. The TIME_WAIT-status port is used by
the TCP connection that was completed. When PDTCPCONOPT is set to 1, the number
of TIME_WAIT-status TCP ports that occur in the HiRDB client and server can be
reduced.

0

Do not reduce the number of TCP ports that are used in communication with the
HiRDB server.

1

Reduce the number of TCP ports that are used in communication with the HiRDB
server.

The following table shows the number of TIME_WAIT-status TCP ports that can
be eliminated when 1 is specified.

UAP
execution

environment

Connection
mode from UAP
to HiRDB server

Communication
type

Environment
variable

effect

Number of TCP
ports in TIME_WAIT
status that can be

eliminated#1

Client#2 Server

OLTP Normal connection Communication for
connecting UAP to
HiRDB server#3

V 1 1

Failure recovery
communication from
OLTP to HiRDB
server#4, #5

V 1 1

High-speed
connection and FES
host direct
connection

Communication for
connecting UAP to
HiRDB server

I -- --

Failure recovery
communication from
OLTP to HiRDB
server#4, #5

V 1 1

6. Client Environment Setup

609

Legend:

V: Becomes valid when 1 is specified for PDTCPCONOPT.

I: Becomes invalid even if 1 is specified for PDTCPCONOPT.

--: Does not apply.

#1: The number of TCP ports that are switched to TIME_WAIT status depends on the
timing when packets that participate in the termination protocol for TCP connections
arrive. Therefore, the number changes according to the network status. Consequently,
the number of TIME_WAIT-status TCP ports that can be deleted may change.

#2: During failure recovery communication from OLTP, the OLTP failure recovery
process becomes the client.

#3: Some of the TCP ports that are used when the UAP connects to the HiRDB server
are switched to TIME_WAIT status.

#4: Failure recovery communication from OLTP to the HiRDB server takes place
when the OLTP failure recovery process calls an X/Open-compliant XA interface
function (such as xa_open, xa_recover, or xa_rollback) to recover a transaction
interrupted by a failure. At this time, some of the TCP ports used in XA interface
execution are switched to TIME_WAIT status. The number of TIME_WAIT-status TCP
ports that can be eliminated is the number that can be eliminated when one XA
interface function is called. Therefore when n XA interface functions are called, n
times that number can be eliminated.

#5: The method of specifying the environment variable for the OLTP failure recovery
process differs in each OLTP environment. For example, in OpenTP1, the environment
variable is specified in a transaction service definition.

Application standard
Specify 1 in PDTCPCONOPT if either of the following conditions is satisfied:

Other Normal connection Communication for
connecting UAP to
HiRDB server#3

V 1 1

High-speed
connection and FES
host direct
connection

Communication for
connecting UAP to
HiRDB server

I -- --

UAP
execution

environment

Connection
mode from UAP
to HiRDB server

Communication
type

Environment
variable
effect

Number of TCP
ports in TIME_WAIT
status that can be

eliminated#1

Client#2 Server

6. Client Environment Setup

610

• If the number of TCP ports that the OS allocates automatically is less than
5000 (the TCP port range differs according to the OS)

• If PDXAMODE is set to 1 in a UAP under OpenTP1

However, if the specification value of the pd_max_users operand in the system
definitions is less than 100, or if the pd_registered_port operand is specified,
you do not need to specify 1 even if one of the above conditions is satisfied.

Notes
1. If the version of the HiRDB server to be connected is earlier than version

06-02, do not specify 1 in PDTCPCONOPT. If you specify 1, a shortage may
occur in the communication sockets that the HiRDB server can use.

2. When you specify 1 in PDTCPCONOPT, you must check and, if necessary,
revise the value of the maxfiles_lim operating system parameter in the
HiRDB server. For details about estimating values for operating system
parameters, see the HiRDB Version 9 Installation and Design Guide.

(32) PDAUTORECONNECT={YES|NO}
This environment variable specified whether or not the automatic reconnect facility is
to be used.

For details about the automatic reconnect facility, see 4.15 Automatic reconnect
facility.

YES

Use the automatic reconnect facility.

When this facility is used, it automatically reconnects the HiRDB client to the
HiRDB server if the connection is disconnected because of a service process
failure, system switchover, or network failure.

NO

Do not use the automatic reconnect facility.

Application standard
Apply the automatic reconnect facility if the HiRDB server is executing the
system reconfiguration command (pdchgconf) or updating to the HiRDB update
version (pdprgcopy or pdprgrenew). If the automatic reconnect facility is used
in this situation, the HiRDB client can continue processing without returning an
error to the UAP, even if the connection with the HiRDB server is disconnected.

Notes
1. Use PDRCCOUNT and PDRCINTERVAL to specify the number of CONNECT

statement retries and the retry interval when reconnection is executed.

6. Client Environment Setup

611

2. The time during which the automatic reconnect facility operates with SQL
statements other than the CONNECT statement is monitored based on the
PDCWAITTIME time. If the PDCWAITTIME time is exceeded, automatic
reconnect processing is aborted.

3. If automatic reconnect fails, an error indicating the cause is returned to the
UAP.

4. If specified, this environment variable is ignored and NO is assumed for an
application that uses an API that is X/Open-compliant to access the HiRDB
server.

5. If one of the following conditions is satisfied, the automatic reconnect
facility is enabled only when the CONNECT statement is executed:

 The HiRDB server version is earlier than 07-00.

 The XDM/RD E2 connection facility is being used.

 The XDM/RD E2 version is 10-02 or earlier.

(33) PDRCCOUNT=CONNECT-retry-count-with-automatic-reconnect-facility
~ <unsigned integer> ((1-200)) <<5>>

This environment variable specifies the number of times the CONNECT statement is
retried during reconnection by the automatic reconnect facility. This environment
variable becomes effective when PDAUTORECONNECT=YES is specified.

(34) PDRCINTERVAL=CONNECT-retry-interval-with-automatic-reconnect-facility
~ <unsigned integer> ((1-600)) <<5>> (seconds)

This environment variable specifies the CONNECT retry interval at which the automatic
reconnect facility executes reconnect processing. The interval is specified in units of
seconds. This environment variable becomes effective when
PDAUTORECONNECT=YES is specified.

(35) PDUAPENVFILE=UAP-environment-definition-file-name
~ <identifier> ((up to 8 characters))

This environment variable specifies the name of the UAP environment definition file
that defines the execution environment if the UAP is to be executed in a separate
environment. Specifying PDUAPENVFILE allows you to switch the execution
environment of each UAP.

For details about UAP environment definitions, see the manual HiRDB Version 9
System Definition.

If the UAP environment definitions contain an error, a definition error occurs during
CONNECT execution. If the UAP environment definition file does not contain any
definitions, the PDUAPENVFILE specification is ignored.

6. Client Environment Setup

612

Uppercase and lowercase characters in the UAP environment definition file name are
not discriminated in HiRDB for Windows systems. Note therefore that files that have
the same name except for case differences are treated as the same file.

(36) PDDBBUFLRU={YES|NO}
This environment variable specifies whether or not the LRU method for global buffers
is to be changed for each UAP in an OLTP environment.

YES:

Use the LRU method.

NO:

Do not use the LRU method. In this case, pages that do not hit the buffer become
the target for being flushed out of the global buffer regardless of the access
frequency when the global buffer becomes full. For that reason, the number of
pages to be cached in the global buffer can be minimized.

Application standard
You will usually omit this environment variable (use the LRU method). In the
OLTP environment, when a large number of searches are performed or a large
number of UAP updates are executed using the global buffer, the most recent
contents cached in the global buffer are flushed out, which may cause a temporary
drop in system performance. In order to avoid this, specify PDDBBUFLRU=NO for
a UAP that performs a large volume of searches or updates in an OLTP
environment.

Notes
1. Pages accessed by a UAP that does not use the LRU method are subject to

being flushed out of the global buffer regardless of the access frequency. For
that reason, a UAP that does not use the LRU method could cause a drop in
response performance, due to an increase in the number of inputs/outputs
caused by the drop in the buffer hit ratio.

2. SQL processing by a UAP secures 1 to 4 global buffer sectors
simultaneously. Therefore, even though the UAP does not use the LRU
method, pages cached in the global buffer for each UAP may be flushed out
from the 1 to 4 global buffer sectors.

3. If the LRU method is not used for a UAP to be updated, writing to the
database becomes frequent. For that reason, log output triggers occur
frequently compared to when the LRU method is used and the amount of
output log information increases. In such a case, a lack of system log file
capacity may occur, so you should take one of the following actions:

 Re-evaluate the size of the system log file

6. Client Environment Setup

613

 Specify NO in the PDDBLOG operand of the client environment definition.

The formula is shown below for estimating the log size when the LRU
method is not used. Note that when the system definition's
pd_log_rec_leng operand is set to 1,024, the amount of output log
information when the LRU method is not used can be minimized.

Updated-GET-count# x value-of-pd_log_rec_leng-operand
#: You can check the updated GET count from the DIDUC value of the UAP
statistics report, or from the DIDUC value of the UAP statistical information.

(37) PDHATRNQUEUING=NO
When queuing is specified in the pd_ha_transaction operand of the system
definition, this environment variable is specified when application of the transaction
queuing facility is to be changed for each client. If the transaction queuing facility is
not to be applied to a client, specify NO.

NO

Do not apply the transaction queuing facility during connection processing from
the client.

For details about the transaction queuing facility, see the HiRDB Version 9 System
Operation Guide.

(38) PDCLTBINDLOOPBACKADDR={YES|NO}
This environment variable specifies whether a loopback address is to be used for
bind() when the receive port used for communication with the HiRDB server is
created.

YES

Use the loopback address to execute bind().

NO

Do not use the loopback address for bind().

Specify YES in this environment variable when you have specified a loopback address
in the pdunit -x operand in the system common definition.

This environment variable is applicable to the Windows edition of HiRDB server.
When you specify this environment variable, see the HiRDB Version 9 Installation and
Design Guide for information about registration in the Windows firewall exception
list.

(39) PDASTHOST=HiRDB-Control-Manager-Agent-host-name[,secondary-syste
m-HiRDB-Control-Manager-Agent-host-name]

~ <identifier> <<PDHOST specification value>>

6. Client Environment Setup

614

When a UAP executes a command, this environment variable specifies the host name
of the HiRDB Control Manager-Agent to be connected. The COMMAND EXECUTE
statement of SQL is used when a UAP executes a command.

When a UAP executes a command, the HiRDB Control Manager-Agent actually
executes that command.

For HiRDB/Parallel Server, the host name of the server machine that contains the
system manager is specified.

In addition to the host name, you can specify the FQDN or the IP address. The
specification methods are as follows:

Host name
The host name that was specified in the pdunit -x operand of the system
common definition must be specified.

Example:
PDHOST=host1

FQDN:
The FQDN is comprised of the host name and domain name of a HiRDB server,
separated by periods.

Example:

 PDASTHOST=host1.soft.hitachi.co.jp

IP address
The IP address is specified with a decimal number that has each group of 3 digits
separated with a period.

Example:
PDHOST=172.18.131.34

System switchover without IP address inheritance
Specify the host names of both the primary system and the secondary system. If
you specify only the host name of the primary system, you must change the
specification of this environment variable after system switching occurs. After
system switching, change the host name to that of the new primary system.

(40) PDASTPORT=HiRDB-Control-Manager-Agent-port-number
~ <unsigned integer> ((5001-49999))

This environment variable specifies the port number of the HiRDB Control Manager
- Agent to be connected when a command is executed from a UAP.

Specify a port number that is registered in the services file (for the UNIX edition, /

6. Client Environment Setup

615

etc/services; for the Windows edition,
%windir%\system32\drivers\etc\services).

(41) PDSYSTEMID=HiRDB-identifier-of-HiRDB-server-managed-by-HiRDB-Contr
ol-Manager-Agent

~ <identifier> ((4 characters))

When a command is executed from a UAP, this environment variable specifies the
HiRDB identifier of the HiRDB server being managed by the HiRDB Control
Manager - Agent to be connected. Specify the HiRDB identifier with the
pd_system_id operand of the system definitions.

(42) PDASTUSER=OS-user-name/password
~ <<PDUSER specification value>>

This environment variable specifies the user name and password for the OS that runs
commands executed from a UAP. This must be the user name and password for an OS
that has the execution privilege for the commands. Specify in the format user-name/
password.

If a password specification is not required (i.e., the setting is for a user without a
password), the password can be omitted.

The user name and password for an OS are handled as upper case characters regardless
of whether the specification is in upper case or lower case. However, if lower-case
characters are enclosed in quotation marks, they are handled as lower-case characters.

(43) PDCMDWAITTIME=maximum-client-wait-time-during-command-execution
~ <unsigned integer> ((0, 6-43200)) <<0>> (minutes)

When a command is executed from a UAP, this environment variable specifies, the
maximum time that the HiRDB client waits for a response from the HiRDB Control
Manager - Agent after it sends a request to the server.

If 0 is specified, the HiRDB client continues to wait until a response is returned from
the HiRDB Control Manager - Agent.

If there is no response from HiRDB Control Manager - Agent after the specified
amount of waiting time has elapsed, an error is returned to the client (UAP). If a
command in the UAP is still processing at that time, either HiRDB Control Manager -
Agent or the command must be canceled.

(44) PDCMDTRACE=command-trace-file-size
~ <unsigned integer> ((0, 4096-2000000000)) (bytes)

When a command is executed from a UAP, this environment variable specifies, the
size of the command trace output file.

If 0 is specified, the maximum file size is assumed, and a command trace that exceeds

6. Client Environment Setup

616

the maximum size is not output. If a value from 4,096 to 2,000,000,000 is specified,
the specified value becomes the file size, and the output destination switches when the
file size exceeds the specified value. If this environment variable is omitted, a
command trace is not collected.

For details about command traces, see 11.1.5 Command trace facility.

Relationship with other environment variables
The command trace output file is created in the directory specified by
PDCLTPATH. If PDCLTPATH is omitted, the file is created in the current directory
when the UAP is executed. (If the UAP is executed from OpenTP1, the file is
created under the OpenTP1 installation directory \tmp\home\server-namexx.)

(45) PDIPC={MEMORY|DEFAULT}
This environment variable specifies the inter-process communication method to be
used when the server and client are found in the same host.

MEMORY

Use the memory for inter-process communication. This is called the inter-process
memory communication facility.

DEFAULT

Use the default communication method (TCP/IP or PIPE) in each platform for
inter-process communication.

Notes
1. If the client and server are not on the same host, the PDIPC specification is

ignored (the system assumes DEFAULT). In this case, the connection process
may take longer.

2. If you use the multithread-capable XA interface libraries (pdcltxm.dll for
Windows edition clients or libzcltxk.sl(so) or libzcltyk.sl(so)
for UNIX edition clients) to access HiRDB with the XA interface, and a UAP
running on TPBroker for C++ or Weblogic Server is set as the client, the
specification of this environment variable is ignored, and HiRDB assumes
that DEFAULT was specified for PDIPC.

3. If PDIPC=MEMORY is specified in UNIX-edition clients, HiRDB allocates a
common memory size equal to values specified for PDSENDMEMSIZE and
PDRECVMEMSIZE, for each client connection. Consequently, a common
memory shortage may occur if multiple clients are executed concurrently. To
avoid a memory shortage, consider the common memory size that can be
used when specifying PDSENDMEMSIZE and PDRECVMEMSIZE.

4. If PDIPC=MEMORY is specified, the specification of PDCLTRCVADDR is
ignored.

6. Client Environment Setup

617

5. If PDIPC=MEMORY is specified, and concurrently p, r, or a is specified in
PDUAPREPLVL or PDWRTLNFILSZ is specified, the specification for PDIPC
becomes invalid.

(46) PDSENDMEMSIZE=data-send-memory-size-in-client
~ <unsigned integer> ((4-2097152)) <<16>> (kilobytes)

This environment variable specifies the data storage area size, in multiples of 4 KB, to
be used when the client sends data to the server, when the inter-process memory
communication facility is used. This environment variable becomes effective when
PDIPC=MEMORY is specified.

If the specified value is not a multiple of 4, the value is rounded up to multiple of 4.

If data larger than the size specified here is sent, the inter-process memory
communication facility cannot be used. (The communication method for
PDIPC=DEFAULT is used.)

Estimation method
Estimate the value to be specified for this environment variable based on the
following formula:

specification-value (bytes) = (400 + 16 x number-of-retrieved-columns + 16 x
number-of-?-parameters + SQL-statement-length) 4096 x 4

The value calculated with this formula differs from the data size that is actually
sent during communication.

(47) PDRECVMEMSIZE=data-receive-memory-size-in-client
~ <unsigned integer> ((4-2097152)) <<32>> (kilobytes)

This environment variable specifies the data storage area size, in multiples of 4 KB, to
be used when the client receives data from the server, when the inter-process memory
communication facility is used. This environment variable becomes effective when
PDIPC=MEMORY is specified.

If the specified value is not a multiple of 4, the value is rounded up to a multiple of 4.

If data larger than the size specified here is received, the inter-process memory
communication facility cannot be used. (The communication method for
PDIPC=DEFAULT is used.)

Estimation method
Estimate the value to be specified for this environment variable based on the
following formula:

specification-value (bytes) = (600 + 25 x number-of-retrieved-columns +
column-data-lengths) 4096 x 4

6. Client Environment Setup

618

If the data type of column-data-length is VARCHAR, replace column-data-length
with structure-length in the preceding formula. If the HiRDB client accepts array
FETCH statements or repetition columns, use column-data-length x
number-of-array-columns or column-data-length x
number-of-repetition-column-elements.

If PDBLKF is specified, calculate the value based on the following formula:

specification-value (bytes) = (600 + 19 x number-of-retrieved-columns + (7 x
number-of-retrieved-columns + column-data-lengths) x PDBLKF-value)
4096 x 4

The value calculated with this formula differs from the data size that is actually
sent during communication.

(48) PDCWAITTIME=maximum-client-wait-time
~ <unsigned integer> ((0-65535)) <<0>> (seconds)

This environment variable specifies the maximum time that the HiRDB client waits for
a response from the HiRDB server after sending a request to the HiRDB server.
Specify PDCWAITTIME when implementing interval monitoring of long running SQL
statements.

Estimation method
Specify the value that satisfies the condition shown below, because this will help
you identify the cause of slow SQL processing:

watch_time or tran_expiration_time in the OpenTP1 system definition >
PDCWAITTIME > pd_lck_wait_timeout

If you do not use OpenTP1, you can ignore the OpenTP1 system definition.

Notes
1. When 0 is specified, the HiRDB client continues to wait until it receives a

response from the HiRDB server. If the HiRDB client does not receive a
response from the HiRDB server before the maximum wait time elapses, the
HiRDB client returns an error to the UAP. If this occurs during transaction
processing, the process in the HiRDB server is cancelled.

2. When 0 is specified, the no response status may be set in the HiRDB client
if one of the following errors occurs:

 Communication error (communication error between a HiRDB client and
a HiRDB server or between two HiRDB servers (including temporary
errors))

 Process not responding because of a disk error

6. Client Environment Setup

619

Hitachi therefore recommends that you specify a nonzero value that is larger
than maximum SQL execution time. If the UAP executes an SQL statement
for which lock-release wait occurs, you must also consider the
pd_lck_wait_timeout operand value in the system definitions when
determining the PDCWAITTIME value.

(49) PDSWAITTIME=maximum-server-wait-time-during-transaction-processing
~ <unsigned integer> ((0-65535)) <<600>> (seconds)

This environment variable specifies the maximum time that the HiRDB server waits
for the next request from the HiRDB client to arrive after returning a response to the
previous request from the HiRDB client. This function monitors the time during
transaction processing (from startup of SQL execution to commit or rollback). The
monitoring time is reset when the request from the HiRDB client arrives at the HiRDB
server.

If the HiRDB server does not receive a request within the specified amount of time, it
assumes that an error occurred in the UAP and rolls back the current transaction. The
HiRDB server also severs the connection with the HiRDB client without notifying the
HiRDB client.

If 0 is specified, the HiRDB server continues to wait until it receives a request from
the HiRDB client. If the client machine or network is shut down, that shutdown status
might not be detected.

If the specified value is too large and the client machine or network is shut down, it
will take some time to detect the shutdown status.

Specify PDSWAITTIME to avoid process survival.

Notes
1. When the block transfer facility (PDBLKF) is used, the HiRDB client

executes FETCH statement processing until all rows that were
block-transferred from the HiRDB server are processed. The HiRDB client
does not send another request to the HiRDB server until the FETCH statement
processing ends. Therefore, if the block transfer facility is used, the value
specified in this environment variable must include the amount of time the
FETCH statement requires to process the number of blocks that will be
transferred.

2. This environment variable must be specified for the operating mode in which
the client is a UAP under OLTP. Otherwise, the default value of 600 seconds
is used, and connections may be severed inappropriately.

(50) PDSWATCHTIME=maximum-server-wait-time-outside-transaction-processi
ng

~ <unsigned integer> ((0-65535)) (seconds)

6. Client Environment Setup

620

This environment variable specifies the maximum time that the HiRDB server waits
for the next request from the HiRDB client to arrive after returning a response to the
previous request from the HiRDB client. This function monitors the time outside
transaction processing (i.e., outside the interval from start of SQL execution to
commit or rollback). The monitoring time is reset when the request from the
HiRDB client arrives at the HiRDB server.

If the HiRDB server does not receive a request within the specified amount of time, it
assumes that an error occurred in the UAP and severs the connection with the HiRDB
client without reporting the disconnection to the HiRDB client.

Specify 0 for a UAP for which the client is always connected (such as a resident SPP
in OpenTP1 or a Cosminexus UAP using a connection pool). If 0 is specified, the
HiRDB server continues to wait until it receives a request from the HiRDB client.

If 0 is specified and the client machine or network is shut down, that shutdown status
might not be detected.

If the specified value is too large and the client machine or network is shut down, it
will take some time to detect the shutdown status.

Specify PDSWATCHTIME to avoid process survival.

Notes
1. This environment variable must be set to 0 for the operating mode in which

the client is a UAP under OLTP, or if the UAP always connects to the HiRDB
server regardless of whether a transaction is being processed.

2. If the HiRDB server disconnects the connection with the HiRDB client, it
does not report the disconnection to the HiRDB client.

Relationship to the system definition
If this environment variable is omitted, the HiRDB server uses the value that was
specified in the pd_watch_pc_client_time operand of the system definition
and monitors processing until the start of a transaction. For details about the
pd_watch_pc_client_time operand, see the manual HiRDB Version 9 System
Definition.

Relationship with other environment variables
The following figure shows the relationships among PDCWAITTIME,
PDSWAITTIME, and PDSWATCHTIME.

6. Client Environment Setup

621

Figure 6-2: Relationships among PDCWAITTIME, PDSWAITTIME, and
PDSWATCHTIME

6. Client Environment Setup

622

(51) PDCWAITTIMEWRNPNT=output-timing-for-SQL-runtime-warning
This environment variable specifies the output time of the SQL runtime warning
information file when the SQL runtime warning output facility is used.

The SQL runtime warning output facility outputs an SQL runtime warning information
file and a warning message (KFPA20009-W) if the runtime of an SQL statement
exceeds a fixed time. For details about the SQL runtime warning output facility, see
the HiRDB Version 9 System Operation Guide.

Use one of the following methods to specify the output timing of the SQL runtime
running information file:

Percentage of the PDCWAITTIME specification value (when the decimal point is
not specified)

~ <unsigned integer> ((0-99)) (%)

Specify the timing as a percentage of the PDCWAITTIME specification value. For
example, if you specify 100 (seconds) in the PDCWAITTIME operand and 90 (%)
in PDCWAITTIMEWRNPNT, HiRDB checks the SQL runtime after it executes an
SQL statement. If the result indicates that the SQL runtime was 90 seconds or
longer but less than 100 seconds, HiRDB outputs warning information.

Percentage of the PDCWAITTIME specification value (when the decimal point is
specified)

~ <unsigned decimal number> ((0-99.999999)) (%)

Specify the timing as a percentage (including the decimal point) of the
PDCWAITTIME specification value.

Output time of SQL runtime warning

~ <unsigned decimal number> ((0-PDCWAITTIME)) (seconds)

Specify the output time for the SQL runtime warning. (For example, if the output
time is 60 seconds, specify PDCWAITTIMEWRNPNT=60sec.) A decimal point can
be specified in the time specification. The specified value must be less than the

6. Client Environment Setup

623

PDCWAITTIME specification value.

Relationship with system definitions
When PDCWAITTIMEWRNPNT is omitted, the specification value of the
pd_cwaittime_wrn_pnt operand in the system definitions is assumed. For
details about the pd_cwaittime_wrn_pnt operand, see the manual HiRDB
Version 9 System Definition.

(52) PDKALVL={0|1|2}
This environment variable specifies whether the facility that periodically sends
packets from the HiRDB client to the HiRDB server is to be used.

This environment variable is effective only when the multi-thread versions of the
HiRDB client libraries are used.

If a value other than 0 is specified, one packet sending thread is generated for each
connection with HiRDB. The packet send interval can be specified in PDKATIME.

If specified, this environment variable is ignored and 0 is assumed for an application
that uses an API that is X/Open-compliant to access HiRDB.

0

Do not use the facility that sends packets periodically.

1

Use the facility that sends packets periodically. The packet transmission thread
sends packets to the connection path with the HiRDB server at fixed time
intervals.

HiRDB does not reset the PDSWAITTIME and PDSWATCHTIME monitoring times
that the HiRDB server uses for time monitoring.

If the HiRDB client and the HiRDB server are installed in the same machine, do
not specify 1.

2

Use the facility that sends packets periodically. The packet transmission thread
sends packets to the connection path with the HiRDB server at fixed time
intervals and receives packets returned from the HiRDB server.

HiRDB resets the PDSWAITTIME and PDSWATCHTIME monitoring times that the
HiRDB server uses for time monitoring.

If a packet from the HiRDB server is not returned within the PDCWAITTIME time
specified in the client environment definitions, the connection is invalidated. If
this happens, the timeover SQLCODE (-732) is returned to the application when
the SQL execution thread executes the next SQL statement.

6. Client Environment Setup

624

If the SQL execution thread receives an SQL request from the application while
the packet transmission thread is waiting for a response from the HiRDB server,
the SQL execution thread is set to wait status until the packet transmission thread
receives a response from the HiRDB server. Consequently, the SQL runtime may
be delayed. Also, because the select() system call is issued during the
reception wait period, the CPU usage is higher than when 1 is specified as the
setting value. If the PDSWAITTIME and PDSWATCHTIME monitoring times that the
HiRDB server uses for time monitoring do not need to be reset, Hitachi
recommends that you specify 1 as the setting value.

Application standard
Network management applications such as routers and firewalls sometimes
feature an idle-time monitoring facility that disconnects the connection if there is
no packet flow for a fixed period of time. By specifying a value other than 0 in
PDKALVL, you can retain the HiRDB connection and prevent a Web application
waiting for a service request from using the network management application to
improperly disconnect the HiRDB connection.

When the time-monitoring environment variables (PDSWAITTIME and
PDSWATCHTIME) are set to infinite in the HiRDB server, uncompleted processes
may still remain in the HiRDB server if the HiRDB client machine fails or a
network failure occurs. By specifying 2 in PDKALVL, you can avoid connection
disconnect by the time monitoring facilities of the HiRDB server without having
to set the time-monitoring values in the HiRDB server to infinite.

Application examples
1. If the following conditions apply, specify 1 in PDKALVL and specify a time that is

shorter than the firewall monitoring time in PDKATIME. (For example, if the
firewall monitoring time is 1,200 seconds, specify 1,000 seconds in PDKATIME.)

• The Web application issues SQL execution requests to the DB server at
irregular times, and no SQL statements are executed for long periods of time.

• A firewall has been set up between the Web server and the DB server, and
the firewall disconnects the connection if there is no packet flow for a fixed
period of time.

2. If the following conditions apply, specify 2 in PDKALVL and specify a time that is
shorter than the PDSWATCHTIME monitoring time in PDKATIME. (For example, if
the PDSWATCHTIME monitoring time is 3,600 seconds, specify 3,000 seconds in
PDKATIME.)

• A connection-pooling application accesses HiRDB.

• A connection is reused for each SQL execution request but is sometimes
disconnected according to the PDSWATCHTIME monitoring time because the
connection is not used for a long time.

6. Client Environment Setup

625

(53) PDKATIME=packet-send-interval
~ <unsigned integer> ((60-65535)) <<3000>> (seconds)

This environment variable specifies the interval at which the HiRDB client regularly
sends packets to the HiRDB server. The interval is specified in units of seconds.
Specify a time that is shorter than the reset monitoring time.

PDKATIME is enabled when a value other than 0 is specified in PDKALVL.

If the SQL execution thread is executing an SQL statement when a packet is scheduled
to be sent, the packet transmission thread does not send the packet and instead waits
until the next transmission time.

(54) PDTIMEDOUTRETRY=retry-count
~ <unsigned integer> ((0-32767)) <<2>>

This environment variable specifies the number of times the connect() system call
can be retried when a WSAETIMEDOUT error (ETIMEDOUT error for the UNIX edition)
of winsock occurs in the case of a connect() system call that is executed when a
HiRDB client connects to the HiRDB server.

Benefit
When connect() system calls to the HiRDB server become too great, filling the
listen queue, a WSAETIMEDOUT error or ETIMEDOUT error is returned from
connect(). Such a connection error can be avoided by retrying the connect()
system call.

Note
In the event of a WSAETIMEDOUT error or ETIMEDOUT error that occurs due to a
network failure or server machine power outage, the return from the connect()
system call may take some time. Therefore, if a large number of retries is set, it
may take a while for a connection error to be returned to the UAP. If the IP address
for client connection is not inherited during system switchover after a network
failure, switchover to the standby system will take a long time. In such an
environment, you can reduce the time required for switchover to the standby
system by specifying a small number of retries.

(55) PDNBLOCKWAITTIME=connection-establishment-monitoring-time-in-nonbl
ock-mode

~ <unsigned integer> ((0-120)) <<0>> (seconds)

This environment variable specifies the connection establishment monitoring time in
nonblock mode when connection completion between the HiRDB server and client is
monitored.

If 1 or a higher value is set for this environment variable, the communication between
the HiRDB server and client is set to nonblock communication and completion of the

6. Client Environment Setup

626

connect() system call is monitored. This is called the nonblock mode. If 0 is
specified, the system waits until the timeout time of the OS for the connection to be
completed. This is called the block mode.

Application standard
Specify this environment variable (set the nonblock mode) if you want to avoid
having the connect() system call wait several tens of seconds (the actual time
depends on the OS) if a LAN failure occurs. Specifying this environment variable
allows the system to detect LAN failures earlier. If specified in the nonblock
mode, PDTIMEDOUTRETRY=0 is always assumed.

Estimation method
If the specified value is too small, an unwarranted error may occur depending on
the network status. Set a value higher than the value obtained from the following
calculation expression:

MAX(A + 1, 8)

A:

Arrival time between the HiRDB server and client as measured by an OS
command such as ping. The arrival time of ping and other commands
fluctuates depending on the network load. Assume the highest load status
when measuring the arrival time.

(56) PDCONNECTWAITTIME=maximum-wait-time-in-HiRDB-client-during-server
-connection

~ <unsigned integer> ((1-300)) <<300>> (seconds)

This environment variable specifies the maximum wait time that the HiRDB client
waits for a response from the HiRDB server when it connects with the HiRDB server.

If a system switchover or a system failure occurs after the HiRDB server accepts a
connection request from the HiRDB client, the HiRDB client waits only the specified
amount of time for a response.

Application standard
If the system switchover facility is being used, specify this environment variable
to allow applications to detect failures early. If this environment variable is
specified together with PDNBLOCKWAITTIME, failures are detected even earlier.

Estimation method
If the specified value is too small, normal connection processing may result in an
error if the processing takes too long because of the network status or the
scheduling wait during connection processing. Set a value higher than the value
obtained from the following calculation expression:

6. Client Environment Setup

627

MIN(value-of-pd_max_users-operand-in-system-definition x 0.2, 300)

Relationship with other environment variables
The following figure shows the relationships among PDTIMEDOUTRETRY,
PDNBLOCKWAITTIME, and PDCONNECTWAITTIME.

Figure 6-3: Relationships among PDTIMEDOUTRETRY,
PDNBLOCKWAITTIME, and PDCONNECTWAITTIME

(57) PDCLTPATH=trace-file-storage-directory
~<path name> ((path name of current directory))

This environment variable specifies the storage directory for the SQL trace file and
client error log file created by the HiRDB client.

(58) PDSQLTRACE=SQL-trace-file-size
~<unsigned integer> ((0, 4,096-2,000,000,000)) (bytes)

6. Client Environment Setup

628

This environment variable specifies the size of the SQL trace file into which SQL trace
information for the UAP is to be output.

If 0 is specified, the maximum file size is assumed, and an SQL trace that exceeds the
maximum size is not output. If a value from 4,096 to 2,000,000,000 is specified, the
specified value becomes the file size, and the output destination switches when the file
size exceeds the specified value. When this environment variable is omitted, the SQL
trace is not output.

For details about the SQL trace, see 11.1.1 SQL tracing.

Relationship with other environment variables
The SQL trace is output to the directory specified by PDCLTPATH. If no value is
specified for PDCLTPATH, the SQL trace is output to the current directory when
the UAP is started. (When the UAP is started from OpenTP1, the current directory
is %PDDIR%\tmp\home\server-namexx.)

Estimation method
Calculate the size of the SQL trace file from the number of SQL statements to be
collected. For each SQL statement to be collected, calculate the size of the
individual rows (80 bytes) and the size of the SQL statement, and use the overall
total as an estimate for the value to be specified.

(59) PDUAPERLOG=client-error-log-file-size
~ <unsigned integer> ((0, 4096-2000000000)) <<65536>> (bytes)

This environment variable specifies the size (in bytes) of the client error log file to
which the UAP error logs are to be output.

If 0 is specified, the maximum file size is assumed, and a client error log that exceeds
the maximum size is not output. If a value from 4,096 to 2,000,000,000 is specified,
the specified value becomes the file size, and the output destination switches when the
file size exceeds the specified value.

For details about client error logs, see 11.1.2 Client error log facility.

Relationship with other environment variables
Client error logs are output to the directory specified in PDCLTPATH. If no value
is specified for PDCLTPATH, the SQL trace is output to the current directory when
the UAP is started. (When the UAP is started from OpenTP1, the current directory
is %PDDIR%\tmp\home\server-namexx.)

(60) PDERRSKIPCODE=SQLCODE[,SQLCODE]...
This environment variable specifies SQLCODEs for which message output to the client
error log is to be suppressed. Up to 10 SQLCODEs can be specified.

For example, to suppress SQLCODEs -901 and -917, specify this environment

6. Client Environment Setup

629

variable as follows:
PDERRSKIPCODE=-901,-917

Benefits
Depending on the UAP structure, there are errors that will inevitably occur during
SQL processing. If this type of error occurs frequently during normal processing,
the file system may be overwhelmed. Especially for a UAP that uses an API that
is X/Open-compliant, two client error log files are created for each process. If this
environment variable is specified, message output can be suppressed for specific
errors, and the load on the file system can be reduced.

Application standard
Apply this environment variable if both of the following conditions are satisfied:

• Errors occur frequently because of the UAP structure.

• The cause of an error can be identified beforehand, and there is no need to
investigate the cause.

When this environment variable is specified, the cause of unforeseen errors
cannot be investigated. Use caution when applying this environment variable.

(61) PDPRMTRC={YES|NO|IN|OUT|INOUT}
This environment variable specifies whether parameter information and retrieval data
are to be output in the SQL trace information. For details about the output contents, see
11.1.1 SQL tracing.

YES

Output input parameter information in the SQL trace. If YES is specified, retrieval
data information and the input parameters are output.

NO

Do not output parameter information in the SQL trace.

IN

Output the input parameter information in the SQL trace. This also applies to the
IN and INOUT# parameters of the CALL statement.

OUT

Output the output parameter information and retrieval data information in the
SQL trace. This also applies to the OUT and INOUT# parameters of the CALL
statement.

INOUT

Output the input parameter information, the output parameter information, and

6. Client Environment Setup

630

the retrieval data information in the SQL trace. The INOUT parameter# of the
CALL statement is output twice.

#: Information on the INOUT parameter of the CALL statement is used only as output
data.

(62) PDPRMTRCSIZE=maximum-data-length-of-parameter-information-output-t
o-SQL-trace

~ <unsigned integer> ((4-32008)) <<256>> (bytes)

This environment variable specifies the maximum data length of the parameter
information and retrieval data to be output in the SQL trace. For variable-length
character string-type, BLOB-type, and BINARY-type data, the area of the character
string length is included in the data length.

This environment variable is valid only when a value other than PDPRMTRC=NO is
specified.

Increasing the specified value of this environment variable increases the amount of
information that is output. Therefore, the size of the SQL trace file (PDSQLTRACE
specification value) must also be increased.

(63) PDTRCMODE={ERR|NONE}
This environment variable specifies whether troubleshooting information
(pderr*.trc information) other than SQL trace information is to be output.

ERR: Output pderr*.trc information.

NONE: Do not output pderr*.trc information.

(64) PDUAPREPLVL={[s][u][p][r]|a}
This environment variable specifies output information for the UAP statistical report.
A file to which a UAP statistical report is output is called a UAP statistical report file.
This environment variable becomes effective when PDCLTPATH is specified.

If this environment variable is omitted, only SQL trace information is output.

For details about UAP statistical reports, see 11.1.4 UAP statistical report facility.

s: SQL unit information is output. SQL trace information is also output.

u: UAP unit information is output.

p: Access path information is output.

r: SQL runtime interim results are output.

a: All information is output.

s, u, p, and r can be specified in different combinations (such as su, sr, or upr).
Specifying supr is the same as specifying a. If u, p, r, up, ur, pr, or upr is specified,

6. Client Environment Setup

631

SQL trace information is not output.

Notes
1. If access path information or SQL runtime interim results are to be collected,

the server load might increase because SQL objects are re-created even if
they already exist in the buffer.

2. Information for a UAP is not output in the following cases:

 The program uses an API that is X/Open-compliant under OLTP.

 The UAP terminates without executing DISCONNECT.

3. If the size of the access path information and SQL runtime interim results
exceeds 1 gigabyte, the information is not output.

4. The value 0 is displayed in the time display (for example, SQL execution
time, load wait time, or CPU time) if the value is too small to be retrieved by
a system call of the operating system.

5. With a HiRDB/Parallel Server, privilege check processing by the connected
dictionary server is not included in the UAP unit information.

6. If you specify output of access path information or SQL runtime interim
results and also specify the inter-process memory communication facility
(PDIPC=MEMORY in the client environment definitions), the PDIPC
specification is ignored and PDIPC=DEFAULT is assumed.

(65) PDREPPATH=storage-directory-for-UAP-statistical-report-files
~ <path name> ((up to 256 bytes))

This environment variable specifies the directory in which UAP statistical report files
are to be created if the files are to be created in a different directory from the directory
specified by PDCLTPATH. This environment variable is effective only when
PDUAPREPLVL is specified.

Information is output to the UAP statistical report file each time the UAP is connected
or disconnected. The file name is formed from the connection time
(HH:MM:SS:mmm) and the connection number (XXX). Examples are
pdHHMMSSmmm_XXX_1.trc and pdHHMMSSmmm_XXX_2.trc.

(66) PDTRCPATH=storage-directory-for-dynamic-SQL-trace-files
~ <path name> ((up to 256 bytes))

This environment variable specifies the storage directory for dynamic SQL trace files
that the HiRDB client creates. This environment variable must be specified when
dynamic SQL trace files are collected with the trace acquisition command
(pdtrcmgr).

When the directory specified here is specified in the pdtrcmgr command, an SQL

6. Client Environment Setup

632

trace file is created in the specified directory from the next connection. For details
about pdtrcmgr, see 11.1.6 SQL trace dynamic acquisition facility.

(67) PDSQLTRCOPENMODE={CNCT|SQL}
This environment variable specifies the open mode for SQL trace files when
PDREPPATH is specified.

CNCT

Opens and closes the SQL trace file in CONNECT and DISCONNECT units, and
outputs trace information. When CNCT is specified instead of SQL in
PDSQLTRCOPENMODE, the SQL trace output time can be shortened because the
overhead is reduced.

When CNCT is specified, the system continues to write information as long as the
SQL trace file is open. Therefore, some SQL trace information may be discarded
if DISCONNECT cannot be executed properly.

SQL

Opens and closes the SQL trace file in operation units (SQL units), and outputs
trace information.

(68) PDSQLTEXTSIZE=SQL-statement-size
~ <unsigned integer> ((4096-2000000)) <<4096>> (bytes)

This environment variable specifies the size of the SQL statement to be output to the
SQL trace.

If this environment variable is omitted during access path acquisition, 2000000 is
assumed instead of 4096.

(69) PDSQLEXECTIME={YES|NO}
This environment variable specifies whether the SQL runtime is to be output to the
SQL trace.

YES

Output the SQL runtime.

The unit for the SQL runtime that is output is microseconds. Normally runtime
values over 24 hours are not output in the SQL trace.

NO

Do not output the SQL runtime.

(70) PDRCTRACE=reconnect-trace-file-size
~ <unsigned integer> ((0, 4096-2000000000)) (bytes)

This environment variable specifies the size of the output file for UAP reconnect trace

6. Client Environment Setup

633

information.

If 0 is specified, the maximum file size is assumed, and UAP reconnect trace
information that exceeds the maximum size is not output. UAP reconnect trace
information also is not output when this environment variable is omitted.

If a value from 4,096 to 2,000,000,000 is specified, the specified value becomes the
file size, and the output destination switches when the file size exceeds the specified
value.

The reconnect trace is output to the directory specified in PDCLTPATH. If PDCLTPATH
is not specified, the reconnect trace is output in the current directory when the UAP is
executed (current directory during J2EE server execution if the UAP is executed from
Cosminexus). For details about the reconnect trace, see 11.1.7 Reconnect trace facility.

(71) PDWRTLNPATH=storage-directory-for-files-to-which-WRITE-LINE-statemen
t-value-expression-values-are-output

~ <path name> ((up to 256 bytes))

This environment variable specifies the storage directory for files to which value
expression values of WRITE LINE statements are to be output. For details about the
WRITE LINE statement, see the manual HiRDB Version 9 SQL Reference.

If PDWRTLNPATH is omitted, the directory specified in PDCLTPATH is assumed.

Two files are created in the specified directory (or the directory specified in
PDCLTPATH if PDWRTLNPATH is omitted). The files that are created differ depending
on whether or not an X/Open-compliant API (TX_function) is used. The names of
the created files are shown as follows.

If TX_function is not used

pdwrtln1.trc and pdwrtln2.trc

If TX_function is used

pdwrtlnxxxxx-1.trc and pdwrtlnxxxxx-2.trc
xxxxx: Process ID when the UAP is executed

(72) PDWRTLNFILSZ=maximum-size-of-output-files-for-WRITE-LINE-statement-
value-expression-values

~ <unsigned integer> ((0, 4096-2000000000)) (bytes)

This environment variable specifies the maximum size of the files to which value
expression values of WRITE LINE statements are to be output.

If 0 is specified, the maximum file size is the maximum file size that the OS can
manage. If the maximum size is exceeded, the value expression values of WRITE LINE
statements are not output. Value expression values of WRITE LINE statements also are
not output if this environment variable is omitted.

6. Client Environment Setup

634

If a value from 4,096 to 2,000,000,000 is specified, the specified value becomes the
maximum file size, and the output destination switches when the file size exceeds the
specified value.

Notes
1. If both PDWRTLNFILSZ and PDIPC=MEMORY are specified, the PDIPC

specification becomes invalid.

2. The files are output to the directory specified in PDWRTLNPATH.

3. If a file becomes full when values are being output, values are output to the
other file. When this happens, the information already stored in the
switchover-destination file is deleted, and new information is written to that
file. Therefore, if the file contains required information, save that
information before switchover occurs. To find out which file is currently
being used, use the following method. The file that has the more recent
update date is the current file.

 In UNIX: Execute the ls -l command of the OS.

 In Windows: Execute the DIR command from the command prompt, or
use Windows Explorer to check the files.

(73) PDWRTLNCOMSZ=total-size-of-WRITE-LINE-statement-value-expression-v
alues

~ <unsigned integer> ((1024-131072)) <<1024>> (bytes)

This environment variable specifies the total size of the value expression values in
WRITE LINE statements.

If the total size of the value expression values in WRITE LINE statements exceeds the
value specified in this environment variable, the excess information is ignored. In this
case, **PDWRTLNCOMSZover** is output in the following line.

(74) PDUAPEXERLOGUSE={YES|NO}
This environment variable specifies whether the facility for output of extended SQL
error information is to be used.

For details about the facility for output of extended SQL error information, see 11.1.3
Facility for output of extended SQL error information.

YES

Use the facility for output of extended SQL error information.

NO

Do not use the facility for output of extended SQL error information.

Relationship to the system definition

6. Client Environment Setup

635

When this environment variable is omitted, the specification value of the
pd_uap_exerror_log_use operand in the system definition is assumed.

(75) PDUAPEXERLOGPRMSZ=maximum-data-length-of-parameter-information
~ <unsigned integer> ((0-32008)) (bytes)

This environment variable specifies the maximum data length for the parameter
information to be output to the client error log file and SQL error report file when the
facility for output of extended SQL error information is used. Parameter information
is output when a value of 1 or higher is specified, but parameter information is not
output when 0 is specified.

Relationship to the system definition
When this environment variable is omitted, the specification value of the
pd_uap_exerror_log_param_size operand in the system definition is
assumed.

Notes
1. For variable-length character string-type, BLOB-type, and BINARY-type data,

the area of the character length is included in the specification value of this
environment variable.

2. If the data length of the parameter information to be output exceeds the
specification value of this environment variable, the excess portion of the
information is truncated.

(76) PDARYERRPOS={YES|NO}
This environment variable specifies whether the value indicating an erroneous array
element is to be set in the SQL Communications Area when update processing using
arrays results in an error.

YES

Set the value indicating an erroneous array element in the SQL Communications
Area.

NO

Do not set the value indicating an erroneous array element in the SQL
Communications Area.

The SQL Communications Area used to set the value indicating an erroneous array
element is as follows:

• In C language, the location is set in SQLERRD2.

• In COBOL, the location is set in SQLERRD(3).

An erroneous array element is indicated by setting a value from -1 to -n, where -1

6. Client Environment Setup

636

indicates the first element of the array and -n represents the last element. For details
about the SQL Communications Area, see Appendix A. SQL Communications Area.

(77) PDDNDPTRACE=method-trace-file-size
~ <unsigned integer> ((0, 65536 to 2147483647)) (bytes)

This environment variable specifies the file size for method traces that are output by
the HiRDB.NET data provider supporting ADO.NET 2.0.

When this environment variable is specified, the system outputs the method traces to
the directory specified in PDCLTPATH.

If you specify 0, as much method trace information will be output as there is space on
the disk. If a value in the range from 65536 to 2147483647 is specified, the specified
value is treated as the maximum size. When this maximum size is reached, the trace
output destination is changed. If this environment variable is omitted, no method trace
information is output. For details about method traces, see 16.10 Troubleshooting
function of HiRDB.NET Data Provider.

(78) PDVWOPTMODE ={0|1|2}
This environment variable specifies whether access path information is to be acquired
for the access path display utility.

The access path information file is created under the SQL information directory
(%PDDIR%\spool\pdsqldump) of the unit containing the single server or the
front-end server to which the UAP is connected.

For details about the access path display utility, see the HiRDB Version 9 Command
Reference manual.

0

Do not collect access path information.

1

Collect access path information and output the information to the access path
information file. No information is output for SQL statements that have SQL
objects in the buffer.

2

Collect access path information and output the information to the access path
information file. For SQL statements that have SQL objects in the buffer, the SQL
objects are re-created and the information is output.

Notes
1. Specify PDTAAPINFPATH to acquire access path information for HiRDB

SQL Tuning Advisor.

6. Client Environment Setup

637

2. Note that when 1 is specified, no information is output for SQL statements
that have SQL objects in the buffer. If you want the information output to
include information about SQLs that have SQL objects in the buffer, specify
2.

3. If 2 is specified, the server load increases compared to when 1 is specified
because SQL objects are also re-created for SQL statements that have SQL
objects in the buffer.

4. If the total of %PDDIR%-path-length + authorization-identifier-length +
UAP-name-length is larger than 220 characters when the Windows-edition
HiRDB is used, creation of the access path information file may fail. If this
happens, use the UAP statistical report facility and get access path
information. For details about the UAP statistical report facility, see 11.1.4
UAP statistical report facility.

5. The following table shows the relationships between the SQL types and the
PDVWOPTMODE specification values.

Y: Access path information is output.

--: Access path information is not output.

(79) PDTAAPINFPATH=access-path-information-file-output-directory-name
~<path name>

This environment variable specifies the output destination directory when an access
path information file for HiRDB SQL Tuning Advisor is output. If an output
processing error occurs even with this environment variable specified, because the
output destination directory does not exist or because there is no write privilege for the

SQL type Condition PDVWOPTMODE
specification value

0 1 2

Static SQL SQL objects are not found in the buffer. -- Y Y

SQL objects are found in the buffer. -- -- Y

dynamic SQL SQL objects are not found in the buffer. -- Y Y

SQL objects are found in the buffer. -- -- Y

Routine definition None -- Y Y

CALL statement Index information for procedure SQL objects is invalid as
a result of index addition or deletion.

-- Y Y

Other condition -- -- --

6. Client Environment Setup

638

specified directory, the access path information is not output. Note that even when an
output processing error occurs, there is no error in the executing SQL.

Notes
• This environment variable is ignored when the dynamic browsing function

of HiRDB SQL Tuning Advisor is used.

• The inter-process memory communication facility cannot be used when this
environment variable is specified. Even though you specify MEMORY for the
PDIPC operand in the client environment definition, operation is the same as
when DEFAULT is specified.

(80) PDTAAPINFMODE={0|1}
This environment variable specifies the file name format of the access path
information files that are output for HiRDB SQL Tuning Advisor.

0:

The file names are pdtaapinf1 and pdtaapinf2.

1:

The file names are in the format pdtaapinfHHMMSSmmm_XXX_1 and
pdtaapinfHHMMSSmmm_XXX_2.

HHMMSSmmm:

Connection time (same as the connection start time of the applicable
CONNECT output in an SQL trace)

XXXXXXXXXX:

Connection sequence number (maximum of 10 digits)

(81) PDTAAPINFSIZE=access-path-information-file-size
~<unsigned integer>((100000 - 2000000000)) (409600) (bytes)

This environment variable specifies the file size of an access path information file that
is output for HiRDB SQL Tuning Advisor. When the file size specified here is reached
in the current access path information file, the output destination is switched to the
other file. After that, the two files are used alternately by repeating this switching.

(82) PDSTJTRNOUT={YES|NO}
This environment variable specifies whether UAP statistical information is to be
output to a statistical log file for each transaction.

YES

Output UAP statistical information to a statistical log file for each transaction.

NO

6. Client Environment Setup

639

Output UAP statistical information to a statistical log file for each connection.

To specify the start of UAP statistical information output, use the pdstbegin operand
of the system definition or the pdstbegin command. For details about the
pdstbegin operand, see the manual HiRDB Version 9 System Definition. For details
about the pdstbegin command, see the manual HiRDB Version 9 Command
Reference.

If this environment variable is omitted when the UAP is operating in an OLTP
environment, UAP statistical information is output to a statistical log file for each
transaction. If this environment variable is omitted when the UAP is operating in
another environment, UAP statistical information is output to a statistical log file for
each connection.

(83) PDLOCKLIMIT=maximum-locked-resource-request-count-per-user
~ <unsigned integer> ((0-200000000)) <<0>> (count)

This environment variable specifies the maximum number of lock requests (that is, the
maximum number of locked resource requests) that a UAP can issue to one server.

If 0 is specified or this environment variable is omitted, the HiRDB system does not
check the maximum number of lock requests. In this case, the maximum possible
number of lock requests is issued.

If a locked resources shortage occurs, an SQL error results.

Estimation method
There are two methods:

• One method determines the maximum number of locked resources from the
number of locked resources used by one UAP.

The number of locked resources depends on the SQL. Estimate the number
of locked resources depending on the lock processing to determine the value
to be specified in this operand. For details about how to estimate the locked
resource count, see the manual HiRDB Version 9 System Definition. For
details about lock processing, see 3.4 Locking.

• The other method determines the maximum number of locked resources
from the number of locked resources that can be used by one UAP among all
the locked resources available to the HiRDB server that connects the UAP.

For details about how to estimate the number of locked resources, see the
manual HiRDB Version 9 System Definition.

(84) PDDLKPRIO={96|64|32}
This environment variable specifies the deadlock priority value of the UAP and
becomes effective when Y is specified in the pd_deadlock_priority_use operand
of the system definition.

6. Client Environment Setup

640

If a deadlock occurs between two programs, the program with the smaller value
specified in this environment variable is processed at a higher priority. The program
with the larger value is terminated with an error, and that program is rolled back.

If a deadlock occurs between two programs that have the same deadlock priority value,
the one with the transaction that started earlier is processed first. The following table
lists the deadlock priority values:

--: Not applicable

(85) PDLOCKSKIP={YES|NO}
This environment variable specifies whether an unlocked conditional search can be
performed.

YES

Enables an unlocked conditional search.

NO

Disables an unlocked conditional search.

When YES is specified in this environment variable, the conditional search of a
retrieval process (including retrieval for DELETE and UPDATE) is performed without
locking all items. For details about unlocked conditional search, see 3.4.5 Unlocked
conditional search.

(86) PDFORUPDATEEXLOCK={YES|NO}
This environment variable specifies whether WITH EXCLUSIVE LOCK is to be applied
to the lock option of SQL statements in which the FOR UPDATE clause is specified (or
assumed) in the UAP. If WITH EXCLUSIVE LOCK is applied, the value specified in

PDDLKPRIO specification Deadlock priority value

96 96

64 64

32 32

Omitted When the X/Open XA interface is used 96

When the X/Open XA interface is not used 64

-- Utility 64

Operation
command

pddbchg, pdhold (-b and -s),
pdorbegin, or pdorend

Specification value of the
pd_command_deadlock_priority
operand in the system definition

Other operation command 64

6. Client Environment Setup

641

PDISLLVL in the client environment definition is ignored.

YES

Apply WITH EXCLUSIVE LOCK to the lock option of SQL statements in which
the FOR UPDATE clause is specified.

NO

Apply the PDISLLVL specification value to the lock option of SQL statements in
which the FOR UPDATE clause is specified.

If PDFORUPDATEEXLOCK is specified for an SQL statement in a routine, the
specification becomes invalid. To apply WITH EXCLUSIVE LOCK to an SQL statement
specifying the FOR UPDATE clause in a routine, specify WITH EXCLUSIVE LOCK as
an SQL compile option when defining the routine.

(87) PDISLLVL=data-guarantee-level
~ <unsigned integer> ((0-2)) <<2>>

This environment variable specifies the data guarantee level of an SQL statement. The
data guarantee level is the point in a transaction up to which data is to be guaranteed.
This environment variable has the same function as the WITHOUT LOCK option that is
specified in the SELECT statement.

This environment variable enables batch determination of all lock options for the SQL
statements in a UAP. Note that the data guarantee level specified in the lock option of
an SQL statement takes precedence over this operand.

For details about the data guarantee level, see 4.6 Data guarantee levels.

0

If another user is updating data, users are allowed to reference the same data
without having to wait for completion of the update processing. This specification
can improve the processing concurrency level. However, if the same row of data
is retrieved twice within the same transaction, the same data might not be
received. For example, if a stock table is retrieved with SELECT * FROM STOCK,
the user can retrieve the desired data without having to wait for lock release, even
when another user is updating the stock table. This corresponds to the SELECT
statement with WITHOUT LOCK NOWAIT.

1 is always assumed for a cursor declaration used with update processing, even if
0 is specified.

1

If a user is retrieving data, other users are not allowed to update that data until
retrieval processing is completed. Other users are allowed to reference or update
that data when the retrieval terminates, even if the transaction has not terminated.
This specification therefore improves the apparent concurrent execution property.

6. Client Environment Setup

642

However, if the same row is retrieved twice in the same transaction, the same data
may not be retrieved. For example, if data is being retrieved from a stock table
with SELECT * FROM STOCK, other users are allowed to update or reference the
stock table after the retrieval ends, without having to wait for the transaction to
terminate. This corresponds to the SELECT statement with WITHOUT LOCK
WAIT.

2

All other users are prohibited from updating the data being retrieved until the
retrieval transaction terminates. For example, if a stock table is retrieved with
SELECT * FROM STOCK, the contents of the stock table are guaranteed until the
transaction terminates. This corresponds to the SELECT statement with WITH
SHARE LOCK.

For a cursor declaration that accompanies an update, WITH EXCLUSIVE LOCK is
assumed.

Notes
1. The data guarantee level of SQL statements in a stored procedure is

determined by the specifications for CREATE PROCEDURE, CREATE TYPE,
ALTER PROCEDURE, and ALTER ROUTINE. Therefore, when a procedure is
executed, the data guarantee level is not affected by this environment
variable.

2. If this environment variable is omitted along with the lock option in an SQL
statement, the WITH SHARE LOCK option is assumed for the SQL statement.
For details about lock options, see the HiRDB Version 9 SQL Reference
manual.

(88) PDSQLOPTLVL=SQL-optimization-option[,SQL-optimization-option]...
~ <identifier or unsigned integer>

This environment variable specifies optimization methods for determining the most
efficient access path by taking the database status into consideration.

Although SQL optimization options can be specified either with identifiers (character
strings) or numbers, specifying the options with identifiers is usually recommended.

Specifying the SQL optimization methods with identifiers
PDSQLOPTLVL="identifier"[,"identifier"]...

Examples
• Applying prioritized nest-loop-join and rapid grouping processing:

PDSQLOPTLVL="PRIOR_NEST_JOIN","RAPID_GROUPING"

• Applying no optimization method:

6. Client Environment Setup

643

PDSQLOPTLVL="NONE"

Rules
1. Specify at least one identifier.

2. When specifying two or more identifiers, separate them with commas.

3. For details about the information (optimization methods) that can be
specified with identifiers, see Specification values for the SQL
optimization option.

4. If no optimization is to be applied, specify NONE as the identifier.
However, if another identifier is specified together with NONE, then
NONE becomes invalid.

5. The identifiers can be specified with uppercase and lowercase
characters.

6. Even if the same identifier is specified more than once, HiRDB
recognizes only one specification. However, try not to specify the same
identifier more than once.

7. The character string specified for "identifier"[,"identifier"]... can
have up to 575 bytes.

Specifying the SQL optimization methods with numbers
PDSQLOPTLVL=unsigned-integer[,unsigned-integer]...

Examples
• Applying making multiple SQL objects, suppressing use of AND

multiple indexes, and forcing use of multiple indexes
Specification when unsigned integers are separated by commas:

PDSQLOPTLVL=4,10,16

Specification when the sum of the unsigned integers is specified:

PDSQLOPTLVL=30

• Specification when 14 (4+10) is already specified and 16 is added:

PDSQLOPTLVL=14,16

• Applying no optimization method:

PDSQLOPTLVL=0

Rules
1. When HiRDB is updated from a version before 06-00 to version 06-00

or later, the total value specification of the earlier version remains

6. Client Environment Setup

644

effective. If the optimization options do not need to be changed after
HiRDB is updated to version 06-00 or later, the specification value of
this operand does not need to be changed.

2. Specify at least one unsigned integer.

3. When specifying two or more unsigned integers, separate them with
commas.

4. For details about the information (optimization methods) that can be
specified with unsigned integers, see Specification values for the SQL
optimization option.

5. If no optimization is to be applied, specify 0 as the identifier. However,
if another identifier is specified together with 0, then 0 becomes invalid.

6. Even if the same unsigned integer is specified more than once, HiRDB
recognizes only one specification. However, try not to specify the same
unsigned integer more than once.

7. Multiple optimization methods can also be specified by specifying the
sum of the unsigned integers. However, do not add the same
optimization method value more than once. (Otherwise, the specified
result may be interpreted as an unintended optimization methods.)

8. If multiple optimization method values are added together and
specified, it becomes difficult to determine which optimization methods
are being specified. Hitachi therefore recommends that you separate the
values with commas. If several optimization method values have
already been added and specified, and a new optimization method
becomes necessary, you can separate the new value with a comma and
specify it after the previous specification.

9. The character string specified for
"unsigned-integer"[,"unsigned-integer"]... can have up to 575 bytes.

Relationship to the system definition

1. When this environment variable is omitted, the value specified in the
pd_optimize_level operand of the system definition is assumed. For
details about the pd_optimize_level operand, see the manual HiRDB
Version 9 System Definition.

2. If the pd_floatable_bes or pd_non_floatable_bes operand is
specified in the system definitions, the specifications for increasing the target
floatable servers (back-end servers for fetching data) and limiting the target
floatable servers (back-end servers for fetching data) specifications become
invalid.

3. If KEY is specified (for index key value locking) in the

6. Client Environment Setup

645

pd_indexlock_mode operand of the system definitions, the specification
for suppressing creation of update-SQL work tables becomes invalid.

4. We recommend that you specify all the following identifiers when you omit
the pd_optimize_level operand in the system definition:

"PRIOR_NEST_JOIN","PRIOR_OR_INDEXES",

"DETER_AND_INDEXES","RAPID_GROUPING",

"DETER_WORK_TABLE_FOR_UPDATE",

"APPLY_ENHANCED_KEY_COND",

"MOVE_UP_DERIVED_COND"

Relationship with SQL

The SQL optimization option for an SQL statement in a stored procedure is
determined by the specifications for CREATE PROCEDURE, CREATE TYPE,
ALTER PROCEDURE, or ALTER ROUTINE, and is not affected by the
PDSQLOPTLVL specification.

If an SQL optimization specification is specified in an SQL statement, the SQL
optimization specification has priority over the SQL optimization option. For
details about SQL optimization specifications, see the manual HiRDB Version 9
SQL Reference.

Specification values for the SQL optimization option

The following table shows the values that can be specified for the SQL
optimization option.

Table 6-32: Specification values of the SQL optimization option

Number Optimization method Specification value

Identifier Unsigned
integer

1 Forced nest-loop-join "FORCE_NEST_JOIN" 4

2 Making multiple SQL objects "SELECT_APSL" 10

3 Increasing the target floatable servers
(back-end servers for fetching data)#1,

#2

"FLTS_INC_DATA_BES" 16

4 Prioritized nest-loop-join "PRIOR_NEST_JOIN" 32

5 Increasing the number of floatable
server candidates#2

"FLTS_MAX_NUMBER" 64

6. Client Environment Setup

646

#1: If increasing the target floatable servers (back-end servers for fetching data) and
limiting the target floatable servers (back-end servers for fetching data) are both
specified, neither optimization method becomes effective. Instead, the servers operate
as separating data collecting servers.

#2: When a HiRDB/Single Server is used, this option becomes invalid, even if
specified.

Recommended specification values

6 Priority of OR multiple index use "PRIOR_OR_INDEXES" 128

7 Group processing, ORDER BY
processing, and DISTINCT set
function processing at the local
back-end server#2

"SORT_DATA_BES" 256

8 Suppressing use of AND multiple
indexes

"DETER_AND_INDEXES" 512

9 Rapid grouping processing "RAPID_GROUPING" 1024

10 Limiting the target floatable servers
(back-end servers for fetching data)#1,

#2

"FLTS_ONLY_DATA_BES" 2048

11 Separating data collecting servers#1, #2 "FLTS_SEPARATE_COLLECT_SVR" 2064

12 Suppressing index use (forced table
scan)

"FORCE_TABLE_SCAN" 4096

13 Forcing use of multiple indexes "FORCE_PLURAL_INDEXES" 32768

14 Suppressing creation of update-SQL
work tables

"DETER_WORK_TABLE_FOR_UPDATE" 131072

15 Deriving high-speed search conditions "DERIVATIVE_COND" 262144

16 Applying key conditions that include
scalar operations

"APPLY_ENHANCED_KEY_COND" 524288

17 Facility for batch acquisition from
functions provided by plug-ins

"PICKUP_MULTIPLE_ROWS_PLUGIN" 1048576

18 Facility for moving search conditions
into derived table

"MOVE_UP_DERIVED_COND" 2097152

Number Optimization method Specification value

Identifier Unsigned
integer

6. Client Environment Setup

647

The recommended specification values are indicated with item numbers in the
examples and the following table. These numbers correspond to the numbers in
the Number column of Table 6-32.

• HiRDB/Single Server

Specify item numbers 4, 6, 8, 9,14,16 and 18. An example of how these
numbers are specified with identifiers is shown as follows.

PDSQLOPTLVL="PRIOR_NEST_JOIN",
 "PRIOR_OR_INDEXES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "DETER_WORK_TABLE_FOR_UPDATE",
 "APPLY_ENHANCED_KEY_COND",
 "MOVE_UP_DERIVED_COND"

• HiRDB/Parallel Server

The following table shows the recommended specification values for the
SQL optimization option.

Table 6-33: Recommended specification values for the SQL optimization option
(for HiRDB/Parallel Server)

Condition Specification value

Use as many back-end
servers as feasible for
SQL processing so that
the individual SQL
statements can be
processed quickly

To process SQL statements
involving mass-data
searches quickly

Specify item numbers 3 to 9, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="FLTS_INC_DATA_BES",
 "PRIOR_NEST_JOIN",
 "FLTS_MAX_NUMBER",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

To process searches with
numerous results (several
tens of data items) quickly

Specify item numbers 3, 4, 6 to 9, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="FLTS_INC_DATA_BES",
 "PRIOR_NEST_JOIN",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

6. Client Environment Setup

648

Explanation of optimization methods

1. Forced nest-loop-join

If indexes are defined in the columns of the join condition, only nest-loop-join is
used in join processing. For details about the join processing method for
nest-loop-join, see 4.5.6 Join methods.

However, if one of the following conditions applies, a method other than
nest-loop-join may be used in join processing:

• An entity (for example, a scalar operation) other than a column is specified
in the join condition.

• The join condition is not a = predicate.

• The column in the join condition is not the first configuration column of the
index. Also, if the column in the join condition is the n-th configuration
column of the index, a = predicate or a restriction condition of the IS NULL

To separate back-end
servers for each job

To process SQL statements
involving mass-data
searches quickly

Specify item numbers 4 to 10, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="PRIOR_NEST_JOIN",
 "FLTS_MAX_NUMBER",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "FLTS_ONLY_DATA_BES",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

To process searches with
numerous results (several
tens of data items) quickly

Specify item numbers 4, 6 to 10, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="PRIOR_NEST_JOIN",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "FLTS_ONLY_DATA_BES",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

Other conditions Specify item numbers 4, 6 to 9, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="PRIOR_NEST_JOIN",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

Condition Specification value

6. Client Environment Setup

649

predicate is not specified for any of the preceding configuration columns
(first configuration column to n -1 -th configuration column).

• A join condition is not specified in the ON search condition for an outer join.

• In the join condition, a plug-in presentation function that executes a search
using the indexes of two tables to be joined, or a structured repetition
predicate, is specified for the two tables.

• A HiRDB/Parallel Server is used, and a partitioned column of the inner table
is not specified in the join condition for an outer join that uses a partitioned
table as the inner table.

• A HiRDB/Parallel Server is used, and the outer join uses a flexible hashed
partitioned table as the inner table.

Notes
1. If a joined table is to be processed by nest-loop-join, the table that was specified
as the outer table in the SQL is used as the outer table.

2. If an index is defined in only one of the columns of the join condition and the
join is to processed with nest-loop-join, the table with the defined index becomes
the inner table.

3. Except when a joined table is involved, if a join where indexes are defined in
the columns on both sides of the join condition is processed by nest-loop-join,
HiRDB judges and determines the outer and inner tables of the nest-loop-join.
However, if a view table or WITH clause query name is not specified in the FROM
clause, HiRDB determines the outer and inner tables according to the following
rules:

 If partitioned tables of a HiRDB/Parallel Server are to be joined, and all
partitioned columns of one table but not all partitioned columns of the other table
are specified in the join condition, the table for which all partitioned columns are
specified in the join condition becomes the inner table.

 If (a) previously does not apply, the first table specified in the FROM clause
becomes the outer table.

4. If forced nest-loop-join is applied in the HiRDB/Parallel Server and mass data
is to be joined, partition the tables with joined columns as much as possible.

2. Making multiple SQL objects

Multiple SQL objects are created in advance, and the optimum SQL object is
selected during execution, based on the value of an embedded variable or the ?
parameters.

3. Increasing the target floatable servers (back-end servers for fetching data)

Normally, back-end servers that are not used for fetching data are used as floating

6. Client Environment Setup

650

servers. With this optimization method, back-end servers that are used for
fetching data can also be used as floating servers. However, the HiRDB system
calculates the number of back-end servers that can be used as floating servers, and
not all back-end servers end up being used as floating servers. To use all back-end
servers, also specify the specification for increasing the number of floatable
server candidates.

For details about how to allocate floatable servers, see 4.5.4 Allocating floatable
servers (HiRDB/Parallel Server only).
This specification is applicable only to a HiRDB/Parallel Server.

4. Prioritized nest-loop-join

If indexes are defined in the columns of the join condition, nest-loop-join is used
with priority in join processing. For details about the join processing method for
nest-loop-join, see Section 4.5.6 Join methods.

This optimization method is different from 1. Forced nest-loop-join. Forced
nest-loop-join always executes nest-loop-join if indexes are defined in the join
condition, even if there is no narrowing condition (except when restrictions
apply). On the other hand, while prioritized nest loop join always executes
nest-loop-join if a narrowing condition is specified, HiRDB determines the join
method if there is no narrowing condition. However, if one of the following
conditions applies, a method other than nest-loop-join may be used in join
processing, even if a narrowing condition is specified:

• An entity (for example, a scalar operation) other than a column is specified
in the join condition.

• The join condition is not a = predicate.

• The column in the join condition is not the first configuration column of the
index. Also, if the column in the join condition is the n-th configuration
column of the index, a = predicate or a restriction condition of the IS NULL
predicate is not specified for any of the preceding configuration columns
(first configuration column to n -1 -th configuration column).

• A join condition is not specified in the ON search condition for an outer join.

• In the join condition, a plug-in presentation function that executes a search
using the indexes of two tables to be joined or a structured repetition
predicate is specified for the two tables.

• A HiRDB/Parallel Server is used, and a partitioned column of the inner table
is not specified in the join condition for an outer join that uses a partitioned
table as the inner table.

• A HiRDB/Parallel Server is used, and the outer join uses a flexible hashed
partitioned table as the inner table.

6. Client Environment Setup

651

• The optimizing information collection utility (pdgetcst) is being executed.

• The narrowing condition is a search condition that includes only a CHAR,
VARCHAR, MCHAR, or MVARCHAR column that has a definition length of at
least 256 bytes; an NCHAR or NVARCHAR column that has a definition length
of at least 128 characters; or a BLOB column.

• The narrowing condition is a search condition that includes only a NOT or OR
operator.

Notes
1. If a joined table is to be processed by nest-loop-join, the table that was specified
as the outer table in the SQL is used as the outer table.

2. If an index is defined in only one of the columns of the join condition and the
join is processed with nest-loop-join, the table with the defined index becomes the
inner table.

3. Except when joined tables are involved, if an index is defined in both columns
of the join condition and the join is to be processed with nest-loop-join, HiRDB
determines which table becomes the outer table and which becomes the inner
table in the nest-loop-join. However, if a view table or WITH clause query name
is not specified in the FROM clause, and only a join clause is specified in the search
conditions, HiRDB determines the outer and inner tables according to the
following rules:

 If partitioned tables of HiRDB/Parallel Server are being joined, specify all
partitioned columns of one table in the join conditions. If the partitioned columns
of the other table being joined contains columns that were not specified in the
search conditions, the table with the partitioned columns that were all specified in
the join conditions becomes the inner table.

 If the preceding rule does not apply, the first table specified in the FROM clause
becomes the outer table.

4. If 1. Forced nest-loop-join is also specified, this optimization option becomes
invalid.

5. Increasing the number of floatable server candidates

Normally, the HiRDB system calculates and allocates the number of floating
servers that are necessary from the floatable servers that can be used. When this
optimization method is applied, all usable floating servers are used, except for
back-end servers that are used for fetching data.

If you wish to include the back-end servers used for fetching data for use as
floatable servers, also specify the value for increasing the target floatable servers
(back-end servers for fetching data).

For details about how to allocate floatable servers, see 4.5.4 Allocating floatable

6. Client Environment Setup

652

servers (HiRDB/Parallel Server only). This specification is applicable only to a
HiRDB/Parallel Server.

6. Priority of OR multiple index use

Specify this method to give application priority to the method that uses OR
multiple indexes in searching. The OR multiple index use method is used when
multiple conditions are combined with OR in the search condition. This method
uses an index to search each condition and evaluates the search condition by
taking a sum set of the search results.

When A OR B OR C ... OR Z is specified in the WHERE clause or OR search
condition and the data is narrowed by using = for all conditions combined with
OR, a high-speed search can be realized by applying priority of OR multiple index
use.

Even when the value for priority of OR multiple index use is not specified, HiRDB
applies OR multiple index use when retrieving data if the number of ORs is small.
However, as the number of ORs increases, the retrieval costs that HiRDB expends
in internal calculations also increases, and HiRDB may stop applying OR multiple
index use. If this happens, specify the value for priority of OR multiple index use
so that OR multiple index use is always applied, even if the number of ORs
becomes large.

Notes
1. If an AND condition is specified together with the OR conditions, and the AND
condition uses an index to narrow the data, that index may be used in the search
process.

2. This optimization method is applied when all conditions specified with OR are
narrowed with = in the comparison predicate. Also, a single-column index or the
index that becomes the first configuration column of a multi-column index must
be defined for all columns that were narrowed with =.

3. In a join search of two or more tables, this optimization method may not be
applied if HiRDB determines that searching the data by using a joined column
index would be faster.

4. For some SQL statements, AND multiple index use, which involves sum sets, is
applied instead of OR multiple index use. In such cases, high-speed retrieval is
also possible, just as when OR multiple index use is applied. However, if AND
conditions are specified, product sets and sum sets may be combined when use of
AND multiple indexes is applied.

If the performance is poor when use of AND multiple indexes specified with
product sets is applied, you can improve the performance with either of the
following methods:

 Specify both priority of OR multiple index use and suppressing use of AND

6. Client Environment Setup

653

multiple indexes at the same time.

 If several column conditions linked with AND can be narrowed, define a
multi-column index that includes these condition columns.

5. If application of optimizing mode 2 based on cost is not used in the SQL
extension optimizing option, multiple indexes are not used in the join search.
However, if there is a condition that cannot be evaluated without applying
multiple index use, multiple indexes are used regardless of the specification of
this optimization method.

7. Group processing, ORDER BY processing, and DISTINCT set function processing
at the local back-end server

Usually, group processing, ORDER BY processing, and DISTINCT set function
processing use a floating server. However, when this optimization is used for a
single table search, group processing, ORDER BY processing, and DISTINCT set
function processing are performed at the back-end server (local back-end server)
where the table is defined.

For details about grouping processing methods, see 4.5.5 Grouping processing
methods (HiRDB/Parallel Server only).
When rapid grouping processing is used, or when as a result of an index search
HiRDB determines that there is no need to sort for group processing, ORDER BY
processing, or DISTINCT set function processing, a faster processing method is
selected.

8. Suppressing use of AND multiple indexes

This specification prevents the use of access paths that use AND multiple indexes.

AND multiple indexes are used when a search condition contains multiple
conditions connected by AND, and a different index is defined for each column
(e.g., SELECT ROW FROM T1 WHERE C1=100 AND C2=200). In this case, the
indexes are used to create work tables for the rows that satisfy the conditions, and
a product set is obtained from the resulting work tables.

If the AND multiple indexes being used include OR multiple indexes, this
specification suppresses multiple index use for the AND portion but not for the OR
portion.

Depending on the data characteristics, the product set is effective in some cases
and can worsen performance in others. Multiple index use is effective when using
those indexes significantly narrows the number of items to be searched, and the
amount of duplicated data is reduced when the product set is taken.

Apply this optimization method if you think that using AND multiple indexes is
not effective.

The use of AND multiple indexes cannot be suppressed if a query specification

6. Client Environment Setup

654

contains multiple conditions that include columns for the same table, in the
following locations:

• In a retrieval condition for a structured repetition predicate

• In the first argument of a plug-in distribution function that retrieves data with
an index

9. Rapid grouping processing

This optimization method uses hashing to rapidly process the groups specified in
the GROUP BY clause of the SQL statement.

For details about the rapid grouping facility, see 4.9 Rapid grouping facility.

10. Limiting the target floatable servers (back-end servers for fetching data)

Normally, back-end servers that are not used for fetching data are used as floating
servers. When this optimization method is applied, only back-end servers used for
fetching data are used as floating servers. This application is permitted only for a
HiRDB/Parallel Server. For details about how to allocate floatable servers, see
4.5.4 Allocating floatable servers (HiRDB/Parallel Server only).

11. Separating data collecting servers

If increasing the target floatable servers (back-end servers for fetching data) or
limiting the target floatable servers (back-end servers for fetching data) is
specified, the separating data collecting server method is applied.

When this method is applied, the back-end servers that are not transmitting data
are allocated for data collecting if the SQL statement requires data from multiple
back-end servers to be collected in one back-end server. The back-end servers that
are not used for data collecting (included back-end servers for fetching data) are
allocated as floatable servers for other uses.

For details about how to allocate floatable servers, see 4.5.4 Allocating floatable
servers (HiRDB/Parallel Server only).

12. Suppressing index use (forced table scan)
Normally, the HiRDB system determines whether or not an index is to be used.
When this optimization method is applied, the method that does not use an index
is forcibly used.

However, index use cannot be suppressed if nest loops are linked with the JOIN
command, a structured repetition predicate is specified in the retrieval condition,
or a condition for an index-type plug-in-dependent function is specified.

13. Forcing use of multiple indexes

Specify this optimization option to forcibly select the use of AND multiple indexes
when searching tables.

6. Client Environment Setup

655

If several conditions linked with AND area specified and this optimization method
is not specified, normally only up to two indexes are used even if AND multiple
index use is selected. The number of indexes to be used changes slightly
according to the table definitions, index definitions, and search conditions.

When this optimization method is specified, all conditions that can narrow the
search range by using indexes are used.

The use of AND multiple indexes is effective when using those indexes
significantly narrows the number of items to be searched, and the amount of
duplicated data is reduced when the product set is taken.

If application of optimizing mode 2 based on cost is not used in the SQL extension
optimizing option, multiple indexes are not used in the join search. However, if
there is a condition that cannot be evaluated without applying multiple index use,
multiple indexes are used regardless of the specification of this optimization
method.

14. Suppressing creation of update-SQL work tables

If this optimization method is used when index key value with no lock is applied,
HiRDB does not create work tables for internal processing even if an index is used
for a search, UPDATE statement, or DELETE statement specified in the FOR
UPDATE clause. The SQL statement can therefore be processed at high speed.

If an index key value with no lock is not applied, HiRDB creates work tables.

To check whether an index is being used, use the access path display utility.

If you specify suppressing creation of update-SQL work tables and also use
non-locking of index key values, the restrictions of table manipulation when a
cursor is used are relaxed.

The following table shows the relationships between SQL statements that create
work tables and the option for suppressing creation of update-SQL work tables.

6. Client Environment Setup

656

Table 6-34: Relationships between SQL statements that create work tables and
suppressing creation of update-SQL work tables

C: Work tables are created.

--: Work tables are not created.

#1: This includes FOR UPDATE clauses that are assumed when data is updated
using the cursor of this SELECT statement.

#2: Work tables are not created if the configuration column of the index to be used
is not specified in the FOR UPDATE OF column name.

#3: Work tables are not created if the configuration column of the index to be used
is not specified in the column to be updated on the left side of the SET clause.

#4: Work tables for the ORDER BY clause are sometimes not created when indexes
are used.

#5: A table from which data is being retrieved with a cursor can be updated by
another SQL statement. However, if the index that is being used for retrieval with
the cursor is updated, the results retrieved with the cursor are not guaranteed.

15. Deriving high-speed search conditions

When this optimization method is specified, HiRDB derives high-speed search

SQL statement Indexes are used Indexes
are not
usedThis optimization is

applied
This optimization

is not applied

SELECT
statement

FOR UPDATE#1 -- C --

FOR UPDATE OF -- C#2 --

FOR READ ONLY C C C

ORDER BY C#4, #5 C#4 C

Previous clauses are not
specified

--#5 -- --

UPDATE
statement

Only values are specified for
updated values in the SET
clause

-- C#3 --

A non-value entity is specified
for an updated value in the SET
clause

C#3 C#3 --

DELETE statement -- C --

6. Client Environment Setup

657

conditions.

A high-speed search condition refers to a condition that is derived from a WHERE
clause search condition or an ON search condition in a FROM clause by CNF
conversion or condition shifting. When a high-speed search condition is derived,
the retrieval performance improves because the rows to be retrieved are narrowed
down at an early stage. However, generating and executing a high-speed search
condition may take a long time, and the intended access path is not always
achieved. Therefore, whenever possible, specify the high-speed search condition
directly in an SQL statement instead of specifying this optimization option. For
details about deriving high-speed search conditions, see 4.5.11 Deriving
high-speed search conditions.

16. Applying key conditions that include scalar operations

When this optimization method is specified and all columns included in the scalar
operation specified in a limiting condition are index configuration columns,
HiRDB narrows the search by evaluating the condition for each index key value.
This condition is evaluated as a key condition.

HiRDB operation when applying key conditions that include scalar operations
is specified

When HiRDB uses an index to retrieve data, it evaluates the data in the
following sequence:

1. HiRDB narrows the search range of the index (search condition).

2. For the narrowed results obtained in 1., HiRDB evaluates the condition for
each key value of the index and narrows the search further (key condition).

3. For all key values evaluated as true in 2., HiRDB use the row identifier
(ROWID) to reference the data page and evaluate the condition.

If this optimization method is not specified, conditions that include a scalar
operation are evaluated as described in 3. If this optimization method is
specified, such conditions are evaluated as described in 2. Consequently, the
number of rows for which data page referencing is performed becomes
smaller, and the number of input/output operations can be decreased. For
details about search conditions and key conditions, see the manual HiRDB
Version 9 Command Reference.

Notes on applying key conditions that include scalar operations

1. When this optimization method is specified, HiRDB judges that
narrowing using indexes is an effective method of data retrieval, and
consequently, it becomes easier for indexes to be used. Therefore, do not
specify this option unless beneficial results can be expected when indexes in
conditions containing scalar operations are used to narrow searches.

6. Client Environment Setup

658

2. A condition is not evaluated as a key condition if one of the following
applies:

 The condition includes a columns that is not an index configuration
column.

 The condition includes a system-defined scalar function.

 The condition includes the system built-in scalar function
IS_USER_CONTAINED_IN_HDS_GROUP.

 The condition includes function calling.

 The condition includes a repetition column that has an integer subscript.

3. The evaluation of a structured repetition predicate that includes a scalar
operation causes an error because such predicates cannot be evaluated
without using an index. Therefore, the key condition is applied, even if this
optimization method is not specified.

17. Facility for batch acquisition from functions provided by plug-ins

If a function provided by a plug-in is specified in the search conditions and
HiRDB uses a plug-in index to retrieve data, HiRDB normally obtains the results
returned from that function (row position information and, if necessary, passing
inter-function values) one row at a time.

When this optimization method is applied, the number of times the function
provided by the plug-in is called can be decreased because the results returned by
the function provided by the plug-in can be obtained in batches of multiple rows.
Consequently, the retrieval performance also improves. Note that when the
facility for batch acquisition from functions provided by plug-ins is applied,
HiRDB creates an internal work table.

Even if this optimization method is not specified, HiRDB sometimes
unconditionally applies the facility for batch acquisition from functions provided
by plug-ins if it determines that data can be retrieved at high-speed if the facility
is always applied. The following table describes the cases when the facility for
batch acquisition from functions provided by plug-ins is applied.

6. Client Environment Setup

659

Legend:

UA:

The facility for batch acquisition from functions provided by plug-ins is
applied unconditionally.

WTA:

A new work table is created, and the facility for batch acquisition from
functions provided by plug-ins is applied.

NA:

The facility for batch acquisition from functions provided by plug-ins is not
applied.

#: For details about SQL statements that require a work table file, see the manual
HiRDB Version 9 Description.

Notes on the facility for batch acquisition from functions provided by plug-ins

1. When HiRDB obtains results returned by a function provided by a plug-in,
it must create a work table internally. Normally, this optimization method
improves the retrieval performance since the time needed to create a work
table is usually shorter than the time needed to accept results returned one
row at a time. However, sometimes the retrieval performance drops when
this optimization method is specified. Therefore, if the effect of the drop in
performance is large, do not specify this optimization method.

2. If this optimization method is specified for a retrieval in which a work
table is not created, the time when the first FETCH occurs is delayed. This is

Type of specified SQL statement Specification of
facility for batch
acquisition from

functions provided
by plug-ins

No Yes

SQL statement that requires a work table for the
base table search results#

Function that does not support
batch acquisition

NA NA

Function that supports batch
acquisition

UA UA

SQL statement that does not require a work table
for the base table search results#

Function that does not support
batch acquisition

NA NA

Function that supports batch
acquisition

NA WTA

6. Client Environment Setup

660

because the process that returns results to the client each time a row is
fetched changes to a process that returns results to the client after all rows
satisfying the search condition of the function provided by the plug-in are
fetched and the work table is created. If a drop in the performance of the first
FETCH process becomes a problem, do not specify this optimization method.

3. When this optimization method is applied, the required memory size
increases because the results of the functions provided by plug-ins are
obtained in batches of multiple rows. For details about the required memory
size, see the HiRDB Version 9 Installation and Design Guide.

18. Facility for moving search conditions into derived table

Normally, a work table for a derived table contains rows that do not satisfy the
search condition for the derived table columns. If this optimization method is
applied, the HiRDB system first eliminates the rows that do not satisfy the search
conditions for the derived table columns, and then creates a work table for the
derived table. This enables you to reduce the space used for work tables as well
as the number of input/output operations on work tables. By using such an access
path, you might be able to use indexes that are more efficient in narrowing down
the rows to be retrieved.

When you install HiRDB version 08-02 or later for the first time, we recommend
that you use this function.

Notes about the facility for moving search conditions into derived table:

If you upgrade your HiRDB system from a version earlier than 08-02 and use
this function, the access path might change. If the access path changes, the
selected index might not be able to efficiently narrow down the rows to be
retrieved, thereby adversely affecting performance. In such a case, check the
access path before and after you use this function to make sure that the
optimum index is being used. If the optimum index is not being used, specify
the index used in the SQL optimization specification for a used index, or stop
using this function.

Notes

1. For a table for which no indexes have been defined, the following optimization
methods have no effect, even if they are specified:

Forced nest-loop-join

Making multiple SQL objects

Prioritized nest-loop-join

Priority of OR multiple index use

Suppressing use of AND multiple indexes

6. Client Environment Setup

661

Suppressing index use (forced table scan)

Forcing use of multiple indexes

Suppressing creation of update-SQL work tables

Applying key conditions that include scalar operations

2. When the ASSIGN LIST statement is used (except in subqueries), HiRDB always
uses indexes to retrieve data. Therefore, specifying the following optimization
methods has no effect:

Suppressing use of AND multiple indexes

Suppressing index use (forced table scan)

3. If optimizing information is not retrieved with the optimizing information
collection utility (pdgetcst), specifying the value for making multiple SQL
objects has no effect.

4. If the number of groups to be grouped is large, rapid grouping processing may not
have any effect. In this case, a value of the required size should be specified by
estimating PDAGGR. Specifying a value larger than the estimated value will have
no beneficial effect. Remember that the use of process-specific memory increases
as a larger value is specified.

5. For SQL statements that use all back-end servers to fetch data, even if the value
for increasing the target floatable servers (back-end servers for fetching data) is
not specified, the back-end servers for fetching data are used as floatable servers.

6. If the optimization option values for priority of OR multiple index use and
suppressing index use (forced table scan) are specified at the same time, the
specification for priority of OR multiple index use becomes ineffective.

7. If the optimization option values for suppressing use of AND multiple indexes and
forcing use of multiple indexes are specified at the same time, multiple index use
is suppressed for AND sections and is forced for OR sections.

8. If the optimization option values for forcing use of multiple indexes and
suppressing index use (forced table scan) are specified at the same time, the
specification for forcing use of multiple indexes becomes ineffective.

9. SQL optimization option values that are stored in the SQL_ROUTINES dictionary
table are converted to decimal format (sum of unsigned integers used to specify
individual optimization methods).

10. If Suppressing creation of update-SQL work tables is specified and a search with
a FOR UPDATE clause specification is performed, the same row may be retrieved
several times if the configuration column of an index used in the search is updated
for a value that satisfies the search condition.

Example:

6. Client Environment Setup

662

[Index definition]
CREATE INDEX X1 ON T1(C1)
[Cursor definition]
DECLARE CR1 CURSOR FOR SELECT C1 FROM T1 WHERE C1>0 FOR
UPDATE

When this cursor is used and the next FETCH and UPDATE statements are repeated,
the row that was updated to C1=10 is retrieved several times.
FETCH CR1 INTO :XX
UPDATE T1 SET C1=10 WHERE CURRENT OF CR1

Correction methods:

• Change the search condition so that the update value in the UPDATE
statement does not satisfy the search condition of the search.

Example:

Change WHERE C1>0 to WHERE C1>0 AND C1< >10.

• Do not specify the optimization option value for suppressing creation of
update-SQL work tables for UAPs that have problems with the same row
being retrieved more than once. For a stored routine, redefine the routine
instead of specifying the optimization option value when defining the
routine.

• Delete the affected column from the configuration columns of the indexes to
be used in the search. However, if an index configuration column is deleted,
the search performance may become worse if that column significantly
narrows the search scope with the search condition. Also, if part of an index
is deleted, the number of index key duplications increases, and lock wait and
deadlock may occur frequently. This correction method is therefore not
highly recommended. If you plan to employ this correction method, be sure
to verify the effects thoroughly.

The same line may also be updated several times if an index configuration file to
be used in an UPDATE statement is specified as the column name of the SET clause
in that UPDATE statement, and a value that satisfies the search condition of the
WHERE clause is specified as the update value.

(89) PDADDITIONALOPTLVL=SQL-extension-optimizing-option[,SQL-extension
-optimizing-option]...

~ <identifier or unsigned integer>

This environment variable specifies optimization methods for determining the most
efficient access path by taking the database status into consideration.

The SQL extension optimizing methods can be specified with identifiers (character
strings) or numbers.

6. Client Environment Setup

663

Specifying the SQL extension optimizing methods with identifiers
PDADDITIONALOPTLVL="identifier"[,"identifier"]...

Examples
• Applying application of optimizing mode 2 based on cost and hash join,

subquery hash execution:

PDADDITIONALOPTLVL="COST_BASE_2","APPLY_HASH_JOIN"

• Applying no optimization method:

PDADDITIONALOPTLVL="NONE"

Rules
1. Specify at least one identifier.

2. When specifying two or more identifiers, separate them with commas.

3. For details about the information (optimization methods) that can be
specified with identifiers, see Specification values for the SQL extension
optimizing option.

4. If no optimization is to be applied, specify NONE as the identifier.

5. The identifiers can be specified with uppercase and lowercase
characters.

6. Even if the same identifier is specified more than once, HiRDB
recognizes only one specification. However, try not to specify the same
identifier more than once.

7. The character string specified for "identifier"[,"identifier"]... can
have up to 575 bytes.

Specifying the SQL extension optimizing methods with numbers
PDADDITIONALOPTLVL=unsigned-integer[,unsigned-integer]...

Examples
• Applying application of optimizing mode 2 based on cost and hash join,

subquery hash execution:

PDADDITIONALOPTLVL=1,2

• Applying no optimization method:

PDADDITIONALOPTLVL=0

Rules
1. Specify at least one unsigned integer.

6. Client Environment Setup

664

2. When specifying two or more unsigned integers, separate them with
commas.

3. For details about the information (optimization methods) that can be
specified with unsigned integers, see Specification values for the SQL
extension optimizing option.

4. If no optimization is to be applied, specify 0 as the identifier.

5. Even if the same unsigned integer is specified more than once, HiRDB
recognizes only one specification. However, try not to specify the same
unsigned integer more than once.

6. The character string specified for
"unsigned-integer"[,"unsigned-integer"]... can have up to 575
bytes.

Relationship to the system definition

We recommend that you specify both the following identifiers when you omit the
pd_additional_optimize_level operand in the system definition:

COST_BASE_2 and APPLY_JOIN_COND_FOR_VALUE_EXP

When this environment variable is omitted, the value specified in the
pd_additional_optimize_level operand of the system definition is
assumed. For details about the pd_additional_optimize_level operand,
see the manual HiRDB Version 9 System Definition.

Relationship with SQL

The SQL extension optimizing option for an SQL statement in a stored procedure
is determined by the specifications for CREATE PROCEDURE, CREATE TYPE,
ALTER PROCEDURE, or ALTER ROUTINE, and is not affected by the
PDADDITIONALOPTLVL specification.

If SQL optimization specifications are specified in SQL statements, those
specifications have priority over the SQL extension optimizing options. For
details about SQL optimization specifications, see the manual HiRDB Version 9
SQL Reference.

Specification values for the SQL extension optimizing option

The following table shows the specification values for the SQL extension
optimizing option.

6. Client Environment Setup

665

Table 6-35: Specification values of the SQL extension optimizing option

Note

Item numbers 2 to 3 become effective when the value for application of
optimizing mode 2 based on cost is specified.

Recommended specification values

• When HiRDB is installed for the first time, Hitachi recommends that you use
optimizing mode 2 based on cost. When you use optimizing mode 2 based
on cost to improve the accuracy of optimization, execute the optimizing
information collection utility as needed. If the database scope (number of
table rows) differs between the test environment and actual environment, the
access path may change in the test environment and actual environment
when the optimizing information collection utility is executed. In the test
environment, specify the numbers of table rows (NROWS) being used in the
actual environment in the optimizing information parameter file, specify
the-s option in the optimizing information collection utility, and execute the
utility.

• If you are upgrading HiRDB from a version before version 06-00, investigate
whether optimizing mode 2 based on cost should be used. If you are setting
up the same operating environment that was used before the version upgrade,
do not use optimizing mode 2 based on cost. However, some of the SQL
statements that are supported from version 06-00 always use optimizing
mode 2 based on costs in optimization processing.

• If hash join is not being used, hash join, subquery hash execution does not
need to be specified.

Explanation of optimization methods

1.Application of optimizing mode 2 based on cost

This optimization method uses optimizing mode 2 based on cost to execute

Number Optimization method Specification value

Identifier Unsigned
integer

1 Application of optimizing mode
2 based on cost

"COST_BASE_2" 1

2 Hash join, subquery hash
execution

"APPLY_HASH_JOIN" 2

3 Facility for applying join
conditions including value
expression

"APPLY_JOIN_COND_FOR_VALUE_EXP" 32

6. Client Environment Setup

666

optimization processing. For details about optimizing mode 2 based on cost, see
4.5.1 SQL optimizing modes.

2.Hash join, subquery hash execution

When a join search is executed, this optimization method applies hash join to
optimize the search process. If the search involves a subquery, hashing is used to
process the subquery. When deciding whether or not to apply this optimization
method, consider the join methods, the execution methods for subqueries with no
external references, and the execution methods for subqueries with external
references. For details about these methods, see 4.5.6 Join methods, 4.5.8
Execution of subqueries with no external references, and 4.5.9 Execution of
subqueries with external references.

When this optimization method is applied, the system definitions must be
specified beforehand. For details about preparing for application of hash join and
subquery hash execution, see 4.5.10 Preparing for application of hash join and
subquery hash execution.

3. Facility for applying join conditions including value expression

If this function is specified, a join condition is created for conditions including
value expressions.

Example:

This example creates a join condition for the following expression:

substr(t1.c1,1,100)=t2.c1

If there are only join conditions including value expressions, this function
changes the access path from direct product to nest-loop join, hash join, or merge
join, so that high-speed SQL execution can be expected.

Notes
When you install HiRDB version 08-04 or later for the first time, we
recommend that you use this function.

If you upgrade your HiRDB system from a version earlier than 08-04 and use
this function, the number of join conditions increases and the join sequence
and join method might change. If the join sequence and join method change,
the selected join sequence might not provide effective narrowing, or the
selected join method might exhibit poor performance, thereby having
adverse effects on overall performance. Furthermore, if the selected join
sequence cannot narrow down the rows efficiently, the intermediate join
results cannot be placed in the work table and an error might result.
Therefore, check the access path before and after you apply this function to
make sure that this function will not affect performance negatively or cause
errors. If performance is affected adversely or errors occur due to application

6. Client Environment Setup

667

of this function, stop using the function or specify the join sequence by using
INNER or LEFT OUTER in the join tables and specify the optimum join
method by using an SQL optimization specification.

(90) PDHASHTBLSIZE=hash-table-size-when-hash-join-subquery-hash-executio
n-is-applied

For 32-bit mode

~ <unsigned integer> ((128-524288)) (kilobytes)

For 64-bit mode

~ <unsigned integer> ((128-2097152)) (kilobytes)

This environment variable specifies the hash table size when the value for hash join,
hash subquery execution is specified in the SQL extension optimizing options.

Specify a value that is a multiple of 128. If the specified value is not a multiple of 128,
the value is rounded up to the next multiple of 128.

When the server is set to 32-bit mode, an upper limit of 524,288 is assumed when a
value from 524,289 to 2,097,152 is specified.

Specification value reference
See 4.5.10 Preparing for application of hash join and subquery hash execution.

Relationship to the system definition
If this environment variable is omitted, the HiRDB uses the value that was
specified in the pd_hash_table_size operand of the system definition.

(91) PDDFLNVAL={USE|NOUSE}
This environment variable specifies whether the default value is to be set into an
embedded variable if the table data fetched into an embedded variable is a null value.

USE

Use the default value setting facility for null values.

NOUSE

Do not use the default value setting facility for null values.

For details about the default value setting facility for null values, see the HiRDB
Version 9 SQL Reference manual.

For an internal Type 4 JDBC driver that is run with a Java stored procedure, use the
same PDDFLNVAL specification as for the program that calls the Java stored procedure.

(92) PDAGGR=group-count-resulting-from-grouping
For 32-bit mode

6. Client Environment Setup

668

~ <unsigned integer> ((0-30000000)) <<1024>>

For 64-bit mode

~ <unsigned integer> ((0-2147483647)) <<1024>>

This environment variable specifies the maximum number of groups allowed in each
server so that the memory size used in GROUP BY processing can be determined. This
environment variable becomes effective when rapid grouping processing is specified
as the SQL optimization option.

Estimation method
• When at least 1,024 groups will be created or when the expected

performance cannot be achieved:

Specify a large value for this environment variable; however, consider the
balance with the required memory size, and increase the specified value
gradually.

If a memory shortage occurs when 1,024 is specified, specify a value
according to the amount of memory available.

• When fewer than 1,024 groups will be created or if a memory shortage
occurs:

Specify a small value for this environment variable. If a value of the required
size cannot be specified because the amount of required memory is too large,
specify the largest value that can be specified, even if the value is less than
the number of groups.

Note
If the specified value is too large, a memory shortage may occur. If the number of
groups created exceeds the specified value, processing may become slow because
the allocated memory size is insufficient. For details about the formula for
calculating the required memory size used by the rapid grouping facility, see the
HiRDB Version 9 Installation and Design Guide.

(93) PDCMMTBFDDL={YES|NO}
When a definition SQL is to be executed in a transaction that is executing a data
manipulation SQL, this environment variable specifies whether the transaction is to be
committed automatically before the definition SQL is executed. When the transaction
is automatically committed before the definition SQL is executed, the open holdable
cursors are closed, and the results of the preprocessed SQL statements become invalid.

YES

Automatically commit the transaction that executes the data manipulation SQL
before executing the definition. When this value is specified, the open holdable
cursors are closed, and the results of the preprocessed SQL statements become

6. Client Environment Setup

669

invalid.

NO

Execute the definition SQL after explicitly committing the transaction executing
the data manipulation SQL.

(94) PDPRPCRCLS={YES|NO}
This environment variable specifies whether an open cursor is to be closed
automatically if a PREPARE statement reuses the SQL identifier that is using that open
cursor.

PDPRPCRCLS becomes effective if the -Xe option is not specified during
preprocessing. For details about preprocessing, see 8.2 Preprocessing.

YES

Close the open cursor automatically.

NO

Do not close the open cursor automatically.

(95) PDAUTOCONNECT={ON|OFF}
This environment variable specifies whether the HiRDB client is to connect
automatically with the HiRDB server if an SQL statement is executed while the client
is not connected to the server.

ON

Connect to the HiRDB server automatically and then execute the SQL statement.

OFF

Do not connect to the HiRDB server automatically. In this case, the SQL
statement generates an error (SQLCODE=-563).

If the SET SESSION AUTHORIZATION statement is executed while the HiRDB client
is not connected to the HiRDB server, an error (SQLCODE=-563) occurs regardless of
the PDAUTOCONNECT specification.

When you create a UAP, Hitachi recommends that you specify OFF in
PDAUTOCONNECT because the HiRDB client must be able to determine whether it is
properly connected to HiRDB.

(96) PDDDLDEAPRPEXE={YES|NO}
If a transaction that is already running (called the preceding transaction) is already
making normal use of a resource (such as a table, stored routine, or abstract data type)
that is to be manipulated by a transaction that executes a definition SQL statement
(called the definition transaction), the definition transaction waits for the preceding
transaction to be completed. If you specify YES in this environment variable, the

6. Client Environment Setup

670

HiRDB system ignores the preceding transaction's preprocessing results and executes
the definition transaction.

Reference note:

You can specify the timing of executing a definition transaction by specifying
the following environment variables:

1. PDDDLDEAPRPEXE

Ignores the preceding transaction's preprocessing results and executes the
definition transaction.

2. PDDDLDEAPRP

Executes the definition transaction after the preceding transaction's
holdable cursor has closed and the transaction including that holdable
cursor has been completed. When the definition transaction is executed,
the holdable cursor's preprocessing results are ignored.

3. PDLCKWAITTIME

Enables you to specify the lock-release wait time. If you use this
environment variable together with PDDDLDEAPRP and PDLCKWAITTIME,
you can prevent the definition transaction from resulting in a timeout error
before the preceding transaction is completed.

The following table shows whether the preceding transaction's preprocessing
results are ignored when this environment variable is specified together with
PDDDLDEAPRPEXE and PDDDLDEAPRP.

Legend:

Y: Can be ignored.

AP: Can be ignored after the preceding transaction is completed.

N: Cannot be ignored.

Client environment definition Preprocessing
results used by
holdable cursor

Preprocessing
results that are not
used by holdable

cursor
PDDDLDEAPRPEXE PDDDLDEAPRP

YES YES Y Y

NO Y Y

NO YES AP N

NO N N

6. Client Environment Setup

671

YES

Ignore the preceding transaction's preprocessing results and execute the definition
transaction. The following shows an example when YES is specified:

Explanation:

The definition transaction does not wait for completion of the preceding
transaction.

When the definition transaction is executed, the preceding transaction's
preprocessing results are ignored and the preceding transaction can no longer
be executed.

Notes
You can ignore the preprocessing results by specifying YES in this environment
variable only when the definition transaction performs the following operations
(except when the preceding transaction is executing preprocessing):

• Executes a definition SQL statement

• Closes the data dictionary LOB RDAREA for storing stored routines' SQL
objects

• Any of the following operations performed by the database structure
modification utility (pdmod):

 Deleting a data dictionary RDAREA for storing database state analyzed
tables (SQL_DB_STATE_ANALYZED) and database management tables
(SQL_DB_MANAGEMENT) by using the remove rdarea statement (for
deleting RDAREAs)

6. Client Environment Setup

672

 Changing the reference privilege or mixed character string data usage
setting by using the alter system statement (for changing the data
dictionary table attribute definitions)

 Renaming an RDAREA by using the alter rdarea statement (for
changing RDAREA attributes)

Note that if the preceding transaction is executing a definition SQL statement
(including the rebalancing utility), a definition transaction that uses the table,
procedure, or function whose definition is being changed will result in an error.

NO

Do not execute a definition transaction prior to completion of the preceding
transaction. The following shows an example when NO is specified:

Explanation:

The definition transaction waits for completion of the preceding transaction
regardless of the SQL statement being executed by the preceding transaction.

The definition transaction is executed after the preceding transaction has
been completed.

(97) PDDDLDEAPRP={YES|NO}
This environment variable specifies whether the definition information of a table being
used by a closed holdable cursor can be changed by another UAP between
transactions. When a definition SQL is executed, the preprocessing of the holdable
cursor becomes invalid.

6. Client Environment Setup

673

YES

Allow another UAP to change the definition information of the table between
transactions of the UAP using the holdable cursor.

The following figure shows an example of the processing when YES is specified.

Explanation
The definition SQL executed by UAP2 can be executed after the holdable
cursor of UAP1 is closed and the transaction containing that holdable cursor
is completed. Also, if the holdable cursor of UAP1 is reopened, error
SQLCODE=-1512 occurs (the processing becomes invalid).

NO

Do not allow another UAP to change the definition information of the table
between transactions of the UAP using the holdable cursor.

The following figure shows an example of the processing when NO is specified.

6. Client Environment Setup

674

Explanation
The definition SQL executed by UAP2 can be executed after DISCONNECT
processing of UAP1.

Relationship with other environment variables
You can specify a lock-release wait time in PDLCKWAITTIME. By combining
PDDDLDEAPRP and PDLCKWAITTIME, you can prevent a definition SQL
statement from resulting in a timeout error before the transaction is completed.

(98) PDLCKWAITTIME=lock-release-wait-time
~<unsigned integer>((0 to 65535)) <<pd_lck_wait_timeout value in system
definition>> (seconds)

This environment variable specifies the maximum amount of time the HiRDB client is
to monitor a lock request for the lock to be released, beginning when the lock request
is placed on wait status. If the lock is not released within the specified time, the SQL
statement returns an error. If 0 is specified, the HiRDB client waits until the lock is
released without monitoring the wait status.

(99) PDCURSORLVL={0|1|2}
This environment variable specifies the timing for sending an open/close cursor
request from a HiRDB client to the HiRDB server when performing a search using the

6. Client Environment Setup

675

cursor. By specifying this environment variable, the request is not sent to the HiRDB
server when the open cursor request is received from the application but rather the
open cursor is requested when data is fetched for the first time. Also, when it is
detected that there is no data to be searched (SQLCODE=100), the cursor is closed. This
environment variable reduces the communication overhead.

0:

The HiRDB client requests execution of cursor open/close to the HiRDB server
when it receives a request from the application.

1:

When there is no data to be searched, the HiRDB server closes the cursor when it
returns SQLCODE=100, without a request from the HiRDB client. If the HiRDB
client has already detected SQLCODE=100 when it receives a close cursor request
from the application, the HiRDB client does not send the close cursor request to
the HiRDB server. The close cursor request is sent only when SQLCODE=100 has
not been detected.

For an open cursor request, the operation is the same as when 0 is specified.

2:

When the client receives an open cursor request from the application, it does not
request that the HiRDB server execute it, but requests opening of the cursor at the
same time it sends the initial request to fetch data.

For the close cursor request, the operation is the same as when 1 is specified.

The following figure provides an overview of the processing for each setting.

6. Client Environment Setup

676

Figure 6-4: Overview of processing for each setting of PDCURSORLVL

Notes
• Even when 1 or 2 is specified for this environment variable, if the client

receives a request to close the cursor for a results-set returned from the
procedure, the client requests that the HiRDB server execute the request.

6. Client Environment Setup

677

• When 1 or 2 is specified for this environment variable, a cursor close is
added to the number of SQL executions in the UAP statistical information,
but the cursor close is not output to the SQL statistical information. Also,
when 2 is specified for this environment variable, a cursor open is added to
the number of SQL executions in the UAP statistical information, but the
cursor open is not output to the SQL statistical information.

• When 1 or 2 is specified for this environment variable, the open/close cursor
operation code is output to the SQL trace. If the FETCH statement is used to
open or close the cursor, SQL statistical information, access path
information, and SQL runtime interim results of the open/close cursor are
output to the FETCH side.

• In the case of a HiRDB/Parallel Server, the first data fetch may take a long
time if there is a long delay from when the open cursor is executed until the
first data is fetched.

• When 2 is specified for this environment variable, even though the PREPARE
statement is executed again on a cursor that is open before the initial fetch
call, an error does not occur because the open cursor request is not sent to the
HiRDB server. When the PREPARE statement is executed again, the cursor
opening needs to be executed again because the PREPARE statement
information is used as cursor information.

• When 1 or 2 is specified for this environment variable, even though the
PREPARE statement or OPEN statement is executed without executing the
CLOSE statement after SQLCODE=100 is detected, an error does not occur
because the cursor is already closed. Also, when the FETCH statement is
executed following detection of SQLCODE=100, SQLCODE=-501 (which
indicates that the cursor is not open) is returned without producing a
no-data-to-be-searched situation.

(100) PDDELRSVWDFILE=SQL-reserved-word-deletion-file-name
~ <identifier> ((up to 8 characters))

This environment variable specifies the name of the SQL reserved word deletion file
when the SQL reserved word deletion facility is used. The keywords to be deleted from
the SQL reserved words are specified in the SQL reserved word deletion file.

Relationship to the system definition
When PDDELRSVWDFILE is specified, an SQL reserved word deletion file must
be specified in the pd_delete_reserved_word_file operand of the system
definition. For details about the SQL reserved word deletion file, see the manual
HiRDB Version 9 System Definition.

Note
For a Windows edition HiRDB, the SQL reserved word deletion file name is not

6. Client Environment Setup

678

case sensitive. Note. therefore, that files having the same name except for case
differences are treated as the same file.

(101) PDHJHASHINGMODE={TYPE1|TYPE2}
This environment variable specifies the hashing method when Apply hash join,
subquery hash execution is selected as the SQL extension optimizing option.

TYPE1

This specification preserves the HiRDB performance found in versions before
version 07-02.

TYPE2

Hashing is performed more uniformly compared to TYPE1.

Specification value guidelines
• Normally specify TYPE2. However, if the hashing method does not distribute

the records uniformly because of the data in the columns specified in the join
condition, specify TYPE1.

• TYPE1 is the HiRDB hashing method found in versions before version
07-02. If TYPE1 is specified after the HiRDB version is upgraded and the
expected performance is not achieved, specify TYPE2.

Relationship to the system definition
When this environment variable is omitted, the specification of the
pd_hashjoin_hashing_mode operand in the system definition is assumed.

(102) PDCALCMDWAITTIME=maximum-wait-time-for-CAL-COMMAND-statemen
t

~ <unsigned integer>>((0 to 65535)) <<PDCWAITTIME specification value>>
(seconds)

This environment variable specifies the maximum amount of time the HiRDB client is
to wait for termination of a command executed by the CALL COMMAND statement or a
utility, beginning when its execution starts. If no response is received from the server
within the specified time, an error is returned to the UAP and the server's process is
canceled. If you specify 0, the HiRDB client will wait until a response is received from
the HiRDB server.

(103) PDSTANDARDSQLSTATE={YES|NO}
This environment variable specifies whether the details of the SQLSTATE value are to
be displayed.

YES

Display the details of the SQLSTATE value.

6. Client Environment Setup

679

NO

Do not display the details of the SQLSTATE value.

Relationship to the system definition
If this environment variable is omitted, the pd_standard_sqlstate operand
value in the system common definition is assumed. However, if an error occurs
before connection establishment with the server is completed, HiRDB assumes
that NO is specified in this environment variable.

For details about SQLSTATE, see the manual HiRDB Version 9 Messages.

If a Java stored procedure uses a type 4 JDBC driver, whether the details of the
SQLSTATE value returned to the Java stored procedure are to be set depends on the
combination of the client's (program that called the Java stored procedure)
PDSTANDARDSQLSTATE specification, pd_standard_sqlstate in the system
common definition, and PDSTANDARDSQLSTATE in the Java stored procedure. The
following table shows the combinations of these specifications:

The value of SQLSTATE returned from the ODBC driver follows the ODBC standards
regardless of the pd_standard_sqlstate specification in the system common
definition.

(104) PDBLKF=block-transfer-row-count
~ <unsigned integer> ((1-4096)) <<1>>

This environment variable specifies the number of rows to be sent in one transfer when
the server transfers retrieval results to the client.

Note that the actual number of rows that are sent changes according to the specification
value of the PDBLKBUFFSIZE client environment definition. For details about the
number of rows to be sent, see 4.7(4) Number of rows transferred in one transmission.

Specifying a large value reduces the communication overhead and shortens the
retrieval time, but much more memory becomes necessary. Therefore, be sure to
consider the balance of retrieval time and memory.

Value of client's
PDSTANDARDSQL
STATE environment

variable

Value of
pd_standard_sqlstat

e in the system
common definition

Value of
PDSTANDARDSQLSTAT

E in Java stored
procedure

Whether details of
SQLSTATE are to be

set

YES y, n, or omitted YES Details are set

Omitted y YES

NO y, n, or omitted NO or omitted Details are not set

Omitted n or omitted NO or omitted

6. Client Environment Setup

680

For details about the calculation expression for memory required in the server, see
Formula for the size of memory required during block transfer or array FETCH in the
manual HiRDB Version 9 Installation and Design Guide. The calculation expression
for memory required in the client is shown below.

Memory calculation expression (kilobytes)

= (600 + 19 x retrieval-column-count + (7 x retrieval-column-count +
defined-column-lengths#) x PDBLKF-value) 4096 x 4

#: The unit is bytes.

(105) PDBINARYBLKF={YES|NO}
This environment variable specifies whether the block transfer facility is to be applied
when a table having a BINARY-type selection expression with a defined length of
32,001 bytes or more is searched. For details about the block transfer facility, see 4.7
Block transfer facility.

YES

Apply the block transfer facility.

NO

Do not apply the block transfer facility.

When this value is specified, the data is transferred one row at a time even if the
value specified in the PDBLKF client environment definition is 2 or higher and the
value specified in PDBLKBUFFSIZE is 1 or higher.

(106) PDBLKBUFFSIZE=communication-buffer-size
~ <unsigned integer> ((0-2000000)) <<0>> (kilobytes)

This environment variable specifies the size of the server-client communication buffer
used by the block transfer facility.

If 0 is specified, HiRDB calculates the communication buffer size (in units of bytes)
from the value of the PDBLKF client environment definition and the maximum length
of one row.

The value specified in PDBLKBUFFSIZE affects the following values for buffer size
and number of rows:

• Size of the server-client communication buffer used for search result transfer

• Number of search result rows that a single server or a front-end server sends to
the client during one communication

6. Client Environment Setup

681

(107) PDBLKFUPD={YES|NO}
This environment variable specifies whether the block transfer facility is to be
suppressed when an extended cursor is used to retrieve a query with FOR UPDATE
specified. When you specify this environment variable, you can perform retrieval
using an extended cursor for a query with FOR UPDATE specified even when the block
transfer facility is used.

YES

Suppress the block transfer facility.

NO

Do not suppress the block transfer facility.

Application standard
In general, you must either specify YES in this environment variable or omit this
operand.

If you specify NO, the results of update processing using an extended cursor might
differ from the results obtained when YES is specified. The following shows an
example.

Example:

This example searches a table (T1) containing 50 rows of data by using an
extended cursor while block transfer is enabled (PDBLKF=100), and then
uses the extended cursor to update the rows.

PREPARE :SQL1 FROM 'SELECT * FROM T1 FOR UPDATE' 1
ALLOCATE GLOBAL :CR1 CURSOR FOR :SQL1 2
OPEN :CR1 3
FETCH :CR1 INTO :C1; 4
UPDATE SET C1=999 WHERE CURRENT OF :CR1 5

The row to be updated in line 5 varies according to the value specified in this
environment variable as described below:

• When YES is specified

The row at the cursor location that was fetched in line 4 is updated.

• When NO is specified

Because the cursor position in line 4 has moved by the number of
blocks, the row at the resulting cursor position is updated. If there is no
row at the resulting cursor position, an error results.

Notes

6. Client Environment Setup

682

If you enable this function, note the following:

• For a UAP written in C or C++ language, you must link a client library
version 07-03 or later.

• For a UAP written in COBOL, you must use a preprocessor version 07-03 or
later to create a post-source program.

(108) PDBLKFERRBREAK={YES|NO}
This environment variable specifies when an error is to be returned to the UAP after
implicit rollback occurs while multiple rows are being acquired by the block transfer
facility.

If an error occurs while multiple rows are being acquired from the HiRDB server, the
HiRDB client returns an error to the UAP at the actual row where the error occurred.
Depending on the nature of the error, implicit rollback might occur and the transaction
might no longer be valid. In such a case, if another SQL statement is issued while the
retrieval results are being acquired, the obtained results might be invalid. By
specifying this environment variable, you can return an error when the UAP acquires
the first row of the rows in the retrieval results held by the HiRDB client.

YES

Return an error when the first row of the rows in the retrieval results held by the
HiRDB client is acquired.

NO

Return an error when the actual row resulting in the error is acquired.

The following figure illustrates the timing of acquiring an implicit rollback error:

(109) PDNODELAYACK={YES|NO}
This environment variable is limited to the AIX version.

This environment variable specifies whether immediate acknowledgment is to be used

6. Client Environment Setup

683

for communication between the HiRDB server machine and the HiRDB client
machine. For details about using immediate acknowledgment for HiRDB
communication, see the HiRDB Version 9 Installation and Design Guide.

YES

Use immediate acknowledgment.

NO

Do not use immediate acknowledgment.

Notes
• This environment variable is not valid when the HiRDB server to be

connected is on the same machine.

• If you use the tcp_nodelayack OS parameter to specify sending of an
immediate acknowledgement, the capability to delay acknowledgment
sending is suppressed throughout the entire system. In such a case,
immediate acknowledgment is used in the entire system regardless of the
setting of this environment variable.

Relationship with system definition
• When the HiRDB server is another server machine in an AIX version

environment, immediate acknowledgment can also be used for HiRDB
servers. To use immediate acknowledgment between HiRDB servers, set Y
for the pd_ipc_tcp_nodelayack operand in the system common
definition.

(110) PDBINDRETRYCOUNT=bind-system-call-retries-count
~ <integer> ((-1 to 1000))<<10>>

This environment variable specifies the number of retries that can be attempted when
EADDRINUSE is returned for a bind system call in a UNIX domain.

If the client and server are on the same host, the HiRDB client prepares for UNIX
domain communication by issuing a bind system call to assign a named file to a
socket. In Solaris 9 or later, if SQL DISCONNECT and SQL CONNECT are executed
within a brief interval, the bind system call might return EADDRINUSE. You can avoid
this by re-issuing the system call.

If you specify -1, the HiRDB client retries until EADDRINUSE is no longer returned.
If you specify 0, the HiRDB client returns an error to the UAP without retrying.

Specification value guidelines
If the KFPZ02444-E message has been output to the client error log file due to
the network failure indicated in the KFPA11723-E message (reason=NETWORK)
and the message displays func=bind and errno=EADDRINUSE with count and

6. Client Environment Setup

684

interval, increase the value of this environment variable as well as the value of
PDBINDRETRYINTERVAL.

(111) PDBINDRETRYINTERVAL=bind-system-call-retry-interval
~ <unsigned integer> ((0 to 1000)) <<0>> (milliseconds)

This environment variable specifies the retry interval when EADDRINUSE is returned
for a bind system call in a UNIX domain. If you specify 0, the HiRDB client retries
immediately.

(112) PDCLTSIGPIPE={CATCH|IGNORE}
This environment variable specifies whether the HiRDB client's signal handler is to be
set for the SIGPIPE signal.

This environment variable is applicable only to the UNIX edition multithread-capable
client libraries. For details about the multithread-capable libraries, see 6.4.1
Directories and files for UNIX clients.

CATCH

Set the HiRDB client's signal handler in the SIGPIPE signal.

IGNORE

Set SIG_IGN (ignore) in the SIGPIPE signal.

The HiRDB client sets a signal handler in the SIGPIPE signal. If you execute a UAP
using the multi-connection facility in a multi-thread environment, the signal handler
set by the HiRDB client might be used as is. If a UAP execution process unloads the
HiRDB client libraries in this status, the process will terminate abnormally when
SIGPIPE occurs. If you use this environment variable to set SIG_IGN (ignore) in the
SIGPIPE signal, you can avoid setting the HiRDB client's signal handler while a UAP
execution process is running.

Notes
In a multi-thread environment, if the HiRDB client libraries might be unloaded by
a process of the UAP (such as Cosminexus or TP1/EE) using COBOL, specify
SIG_IGN (ignore) for the SIGPIPE signal. If you do not specify SIG_IGN
(ignore), you must make sure that the HiRDB client libraries will not be unloaded.

(113) PDDBACCS=generation-number-of-RDAREA-to-be-accessed
~ <unsigned integer> ((0-10))

If the inner replica facility is being used and an RDAREA that is not the current
RDAREA in the inner replica group is to be accessed, this environment variable
specifies the generation number of that RDAREA. The generation number of the
original RDAREA is 0. If you omit this environment variable, the value of PDDBACCS
in the UAP environment definition is assumed.

6. Client Environment Setup

685

PDDBACCS is applied to all inner replica groups defined in HiRDB. If a replication
RDAREA of the generation specified in PDDBACCS is not defined, the current
RDAREA in the target inner replica group is processed. Therefore when setting up a
test environment that uses replica RDAREAs, you must check that replica RDAREAs
of the specified generation are defined for all RDAREAs to be accessed. This is so that
an RDAREA for actual operation is not accessed by mistake.

(114) PDDBORGUAP={YES|NO}
This environment variable specifies whether to execute a UAP on the original
RDAREA during online processing in a replica RDAREA.

YES

Execute the UAP on the original RDAREA being held for online reorganization.

NO

Do not execute the UAP on the original RDAREA being held for online
reorganization.

(115) PDSPACELVL={0|1|3}
This environment variable specifies the space conversion level for data storage,
comparison, and search processing. Space conversion is not executed when a
definition SQL is executed.

0

Do not convert spaces.

1

Convert spaces in data for literals, embedded variables, and ? parameters of data
manipulation SQL as follows:

• If a character string literal is determined to be a national character string
literal, two single-byte space bytes are converted to a double-byte space
character. If one single-byte space character appears alone, it is not
converted.

• For a mixed character string literal, one double-byte space character is
converted to two single-byte space characters.

• During data storage to a national character string-type column or comparison
with a national character string-type value expression, two single-byte space
bytes in embedded variables and ? parameters are converted to one
double-byte space character. If one single-byte space character appears
alone, it is not converted.

• During data storage to a mixed character string-type column or comparison
with a mixed character string-type value expression, double-byte space

6. Client Environment Setup

686

characters in embedded variables and ? parameters are converted to two
single-byte space characters.

3

In addition to the conversions for space conversion level 1, convert each
double-byte space character to two single-byte space characters when data in a
national character string-type value expression is searched.

Relationship to the system definition
If this environment variable is omitted, the HiRDB system uses the value that was
specified in the pd_space_level operand of the system common definition.

Notes
1. If the space conversion level is changed, the UAP results obtained before and

after the change may be different. To obtain the same UAP results, do not
change the space conversion level.

2. If space conversion level 3 is specified and the data is sorted, the expected
results may not be obtained because HiRDB applies space conversion to the
sort results.

3. When data is stored to a cluster key column, a unique error may occur as a
result of space conversion. If this occurs, store the data without applying
space conversion, or make all spaces in the existing database uniform (apply
space conversion with the database reorganization utility).

4. Space conversion of a national character string is executed in two-byte units
from the beginning of the string.

5. If space conversion level 1 or 3 is specified and the UAP uses the hash
function for table partitioning to determine the storage RDAREA of a
hash-partitioned table, the space conversion level must also be specified as
an argument of the hash function for table partitioning. Otherwise, the results
of the hash function for table partitioning may become invalid. For details
about the hash function for table partitioning, see H.1 Hash function for table
partitioning.

6. If space conversion level 1 or 3 is specified and the UAP executes key range
partitioning on a key range-partitioned table that has a national character
string-type or mixed character string-type column in the partitioning key, the
partitioning key value must be converted with the space conversion function.
Otherwise, the results of key range partitioning may become invalid. For
details about the space conversion function, see H.2 Space conversion
function.

(116) PDCLTRDNODE=XDM/RD-E2-database-identifier
~ <identifier>

6. Client Environment Setup

687

This environment variable specifies the identifier of the XDM/RD E2 database to be
connected when the XDM/RD E2 connection facility is used. The database identifier
refers to the RD node name specified in the XDM subsystem definitions.

(117) PDTP1SERVICE={YES|NO}
This environment variable specifies whether OpenTP1 service names are to be
reported to XDM/RD E2 when the XDM/RD E2 connection facility is used.

PDTP1SERVICE cannot be specified if HiRDB client library cltdll.dll is being
used in the Windows edition. This environment variable can be specified if the HiRDB
client is relinked to another HiRDB client library (for example, pdcltm32.dll).

YES

Report OpenTP1 service names to XDM/RD E2.

When OpenTP1 service names are reported to XDM/RD E2, the XDM/RD E2
statistical information can be analyzed for each service. This function is supported
only if the XDM/RD E2 version is 09-01 or later.

When OpenTP1 is not used, or if the service is not an OpenTP1 service (for
example, if the service is SUP), the service name is not reported even when YES
is specified.

NO

Do not report OpenTP1 service names.

(118) PDRDCLTCODE={SJIS|UTF-8}
This environment variable is valid for Windows clients. For UNIX clients, this
environment variable is invalid even when specified.

This environment variable specifies the character code classification used by the client
when the XDM/RD E2 connection facility is used.

SJIS

Use shift JIS kanji codes.

UTF-8

Use Unicode (UTF-8) codes. When UTF-8 is specified, specify NOUSE in the
PDCLTCNVMODE client environment definition, or omit PDCLTCNVMODE.

Rules when UTF-8 is specified
1. Unicode (UTF-8) codes can be used in input/output data handled by

embedded variables and data handled by the ? parameter.

2. Only ASCII codes can be specified in SQL statements specified in a UAP.
To specify a non-ASCII character (kanji, single-byte katakana, or Gaiji
character) in an SQL statement, use the PREPARE or EXECUTE IMMEDIATE

6. Client Environment Setup

688

statement and specify the SQL statement in an embedded variable.

3. Error messages returned from XDM/RD E2 and stored in the SQL
Communications Area, column names stored in the Column Name
Descriptor Area (SQLCNDA), and data type names stored in the Type Name
Descriptor Area (SQLTNDA) use Unicode (UTF-8) codes. For this reason,
if characters other than ASCII codes are contained in these values and are
output as Shift JIS kanji codes, they may not be displayed correctly.

4. When the XDM/RD E2 side converts character codes from Unicode (UTF-8)
to EBCDIK or KEIS, or EBCDIK or KEIS to Unicode (UTF-8), the data
length may be changed. Therefore, pay attention to the definition length of
embedded variables.

(119) PDCNSTRNTNAME={LEADING|TRAILING}
This environment variable specifies the position of the constraint name definition
when a referential or check constraint is defined.

LEADING

Specify the constraint name definition before the constraint definition.

TRAILING

Specify the constraint name definition after the constraint definition.

Relationship to the system definition
If this environment variable is omitted, the value of the pd_constraint_name
operand in the system definition is assumed.

(120) PDBESCONHOLD={YES|NO}
This environment variable can be specified when HiRDB/Parallel Server is used.

This environment variable specifies whether the BES connection holding facility is to
be used. For details about the BES connection holding facility, see the HiRDB Version
9 System Operation Guide.

YES

Use the BES connection holding facility.

NO

Do not use the BES connection holding facility.

Relationship to the system definition
If this environment variable is omitted, the value of the
pd_bes_connection_hold operand in the system definition is assumed.

6. Client Environment Setup

689

(121) PDBESCONHTI=BES-connection-holding-period
~ <unsigned integer> ((0-3600)) (seconds)

This environment variable specifies the BES connection holding period when the BES
connection holding facility is used.

When the BES connection holding facility is used, the back-end server monitors the
time elapsed from when a transaction ends until the next transaction is executed. If the
time until the next transaction is executed falls within the PDBESCONHTI specification
value, the back-end server continues the BES connection holding facility. If the time
exceeds the PDBESCONHTI specification value, the back-end server disconnects the
connection with the front-end-server.

Notes
1. If 0 is specified, the back-end server does not monitor the time. The

connection between the front-end server and the back-end server is
disconnected only when the connection between the front-end server and the
client is disconnected, such as when the DISCONNECT (xa_close when the
XA library is used) SQL statement is executed or the time specified by the
PDCWAITTIME client environment definition is exceeded.

2. PDBESCONHTI becomes valid when YES is specified in PDBESCONHOLD.

(122) PDODBSTATCACHE={0|1}
This environment variable specifies whether the column information or index
information collected the first time an ODBC function (SQLColumns() or
SQLStatistics()) is issued is to be cached.

0

Do not cache the information.

Column information or index information is collected by accessing the server
each time the SQLColumns() or SQLStatistics() function is called.

1

Cache the column information or index information collected the first time the
function is called.

However, the cache is not refreshed while the server is connected. Thus, if the
table definition is altered while the server is connected, column information or
index information that is different from the actual definition is returned.
Therefore, the server connection must be terminated first.

Benefits
When the SQLColumns() and SQLStatistics() functions are called
repeatedly with the same parameters, the number of communications with the

6. Client Environment Setup

690

server can be reduced by returning the retrieval results stored in the cache to the
UAP.

Notes
To determine whether specifying this option will be effective, collect an ODBC
trace and investigate whether the SQLColumns() or SQLStatistics()
function is issued repeatedly with the same parameters during the same
connection.

The number of rows that can be cached is x:

SQLColumns()

Approximately 60,000/(50 + table-owner-name-length + table-name-length
+ column-name-length + comment-length) rows

SQLStatistics()

Approximately 60,000/(50 + table-owner-name-length + table-name-length
+ index-name-length + column-name-length) rows

(123) PDODBESCAPE={0|1}
This environment variable specifies whether the & ESCAPE character is to be specified
for the pattern character in a retrieval using a cataloging ODBC function
(SQLTables(), SQLColumns(), etc.).

0

Do not specify the & ESCAPE character for the pattern character.

1

Specify the & ESCAPE character for the pattern character.

Notes
1. If the column attribute of the dictionary table is CHAR (dictionary

datatype mchar nouse specified by the database initialization utility) and
a double-byte character containing code 0x26 is used in the table name and
the column name, 0 should specified in this option. If 1 is specified and the
HiRDB system is accessed through ODBC, some tables and columns may
not be recognized.

2. If an underscore (_) is used in the identifier of a table name, 1 should be
specified in this option. If 0 is specified, some ODBC-compatible software
programs may not be able to access the identifier that uses the underscore.

(124) PDGDATAOPT={YES|NO}
This environment variable specifies whether the SQLGetData function of the ODBC
functions is to repeatedly retrieve data for columns from which data has already been

6. Client Environment Setup

691

retrieved.

Normally, when data retrieval is repeated for a column after data has already been
retrieved from that column, SQL_NO_DATA is returned as the return value.

YES

The SQLGetData function can retrieve data repeatedly for columns from which
data has already been retrieved.

NO

When the SQLGetData function goes to retrieve data for columns for which data
has already been retrieved, SQL_NO_DATA is returned as the return value.

Application standard
This environment variable is specified when data is to be retrieved repeatedly for
the same column. For example, this environment variable is specified when a host
UAP that expects SQL_SUCCESS for repeated data retrieval executions is used.

Note
When Internet Banking Server is used, set PDGDATAOPT=YES in the HiRDB.ini
file of the HiRDB client. If this specification is not set, the following problem may
occur after the customer information management utility or transaction history
management utility of Internet Banking Server is used to log into HiRDB. After
a function selection key, such as Register Customer, Update Customer
Information, or Reference Customer Information is pressed, screen operations
other than the Return button may become disabled.

(125) PDODBLOCATOR={YES|NO}
This environment variable specifies whether the locator facility is to be used to
partition and retrieve data when a database access tool is used to retrieve BLOB-type or
BINARY-type column data. The database access tools are the ODBC driver, the OLE
DB provider, and the HiRDB.NET data provider.

YES

Use the locator facility to partition and retrieve data when a database access tool
is used to retrieve BLOB-type or BINARY-type column data.

NO

Do not use the locator facility when a database access tool is used to retrieve
BLOB-type or BINARY-type column data.

Application standard
If NO is specified (NO is also the assumed value when this environment variable is
omitted), the database access tool allocates a data reception area that has the
defined length of the column. The HiRDB client also requires a data reception

6. Client Environment Setup

692

area that has the defined length of the column.

Since a memory shortage may occur during execution if the defined length of the
column is large, specify YES to avoid running out of memory. Note that when YES
is specified, the number of communications with the HiRDB server increases by
the number of partition acquisitions.

(126) PDODBSPLITSIZE=partition-acquisition-size
~ <unsigned integer> ((4-2097152)) <<100>> (kilobytes)

This environment variable specifies the partition acquisition size when
PDODBLOCATOR=YES is specified.

Specification value guideline
Consider the distribution of the actual data length, and specify a value that reduces
the number of partition acquisitions but does not trigger a memory shortage.

(127) PDODBCWRNSKIP={YES|NO}
This environment variable specifies whether warnings should be skipped for ODBC
connections. For non-ODBC connections, this environment variable is ignored, if
specified.

YES

The ODBC driver returns SQL_SUCCESS as the SQLFetch() return value even
if SQLFetch() processing is prolonged and SQLWARN is set.

NO

The ODBC driver returns SQL_SUCCESS_WITH_INFO as the SQLFetch()
return value if SQLFetch() processing is prolonged and SQLWARN is set.

Application standard
When SQLWARN is set in the SQL Communications Area of HiRDB during
retrieval processing, the ODBC driver returns SQL_SUCCESS_WITH_INFO as the
SQLFetch() return value. However, depending on the higher-level application#
that calls the ODBC driver, retrieval processing may be terminated by the
SQL_SUCCESS_WITH_INFO return value. If YES is specified in this environment
variable, SQL_SUCCESS is returned as the return value even if SQLWARN is set to
the SQL Communications Area during retrieval processing, and retrieval
processing can continue.

#: For example, if ADO.Net is used and connected to HiRDB through an ODBC
connection, retrieval processing may be terminated by the
SQL_SUCCESS_WITH_INFO return value.

6. Client Environment Setup

693

(128) PDJETCOMPATIBLE={YES|NO}
This environment variable specifies whether the ODBC 3.5 driver is to be operated in
a mode compatible with Microsoft Access, rather than on the basis of the ODBC 3.5
specification.

YES

The ODBC 3.5 driver is to operate in a mode compatible with Microsoft Access.

NO

The ODBC 3.5 driver is to operate as specified.

Application standard
Specify this environment variable when you use Microsoft Access to access
HiRDB. When this variable is not specified, #Delete may be displayed as the
search result, or inserted data may be converted incorrectly. If such events occur
with other Microsoft products or interfaces, you might be able to prevent them by
specifying this environment variable.

(129) PDPLGIXMK={YES|NO}
This environment variable specifies whether delayed batch creation of plug-in indexes
is to be used. For details about delayed batch creation of plug-in indexes, see the
HiRDB Version 9 System Operation Guide.

YES

Use delayed batch creation of plug-in indexes.

NO

Do not use delayed batch creation of plug-in indexes.

(130) PDPLUGINNSUB
For details, see the manual for the target plug-in.

(131) PDPLGPFSZ=initial-size-of-delayed-batch-creation-index-information-file
~ <unsigned integer> ((1-1048574000)) <<8192>> (kilobytes)

This environment variable specifies the initial size of the index information file for
delayed batch creation of plug-in indexes. This specification is effective when the
index information file is to be created in the HiRDB file system area.

When this environment variable is specified, PDPLGIXMK=YES should also be
specified.

(132) PDPLGPFSZEXP=extension-value-of-delayed-batch-creation-index-inform
ation-file

~ <unsigned integer> ((1-1048573000)) <<8192>> (kilobytes)

6. Client Environment Setup

694

This environment variable specifies the extension size of the index information file for
delayed batch creation of plug-in indexes. When the index information file becomes
full, the file is extended by the value specified in this environment variable. This
specification is effective when the index information file is to be created in the HiRDB
file system area.

When this environment variable is specified, PDPLGIXMK=YES should also be
specified.

(133) PDJDBFILEDIR=exception-trace-log-file-storage-directory
~<path name> PDCLTPATH setting

This environment variable specifies the Exception trace log file storage directory with
the Type4 JDBC driver. To specify the file storage directory, specify the absolute path
of the directory (maximum of 256 bytes). This environment variable can be specified
only when the Type4 JDBC driver is used.

For details about the Exception trace log, see 18.15 Exception trace log. For other
details, see system property HiRDB_for_Java_FileDIR in 18.15.1(2)(b) Setting
system properties.

(134) PDJDBFILEOUTNUM=number-of-outputs-to-exception-trace-log-file
~<unsigned integer>((1-50)) (5)

This environment variable specifies the number of outputs to the Exception trace log
file with the Type4 JDBC driver. This environment variable can be specified only
when the Type4 JDBC driver is used.

For details about the Exception trace log, see 18.15 Exception trace log. For other
details, see system property HiRDB_for_Java_FileOutNUM in 18.15.1(2)(b) Setting
system properties.

(135) PDJDBONMEMNUM=number-of-acquired-information-items-in-exception-t
race-log-memory

~<unsigned integer>((500-10000)) (1000)

This environment variable specifies the number of acquired information items in the
Exception trace log memory. This environment variable can be specified only when
the Type4 JDBC driver is used.

For details about the Exception trace log, see 18.15 Exception trace log. For other
details, see system property HiRDB_for_Java_OnMemNUM in 18.15.1(2)(b) Setting
system properties.

(136) PDJDBTRACELEVEL=trace-acquisition-level-of-exception-trace-log
~<unsigned integer>((0~5)) (1)

This environment variable specifies the trace acquisition level of the Exception trace

6. Client Environment Setup

695

log with the Type4 JDBC driver. If 0 is specified, the Exception trace log is not
acquired. This environment variable can be specified only when the Type4 JDBC
driver is used.

For details about the Exception trace log, see 18.15 Exception trace log. For other
details, see system property HiRDB_for_Java_TraceLevel in 18.15.1(2)(b) Setting
system properties.

(137) PDXDSHOST=XDS-host-name[,secondary-XDS-host-name]
~ <identifier> ((maximum 511 bytes)) <<value of PDFESHOST>>

This client environment definition is applicable only to XDS clients.

This environment variable specifies the host name of the XDS to be connected. You
can also specify a domain name or IP address for the host name. Express an IP address
as decimal numbers using a period as the delimiter between bytes.

The value to be specified depends on whether the IP address is to be inherited after the
systems have been switched when the dual memory database function is used.

For system switchover that inherits IP addresses
Specify the primary host name in PDXDSHOST in the client environment
definition.

For system switchover that does not inherit IP addresses
Specify both primary and secondary host names in PDXDSHOST in the client
environment definition. If you specify only the primary host name, you must
change the primary host name in this operand after system switchover has
occurred.

If you omit this environment variable, the HiRDB client uses the host name specified
in PDFESHOST. Note that the port number of the front-end server specified in
PDFESHOST is not used. The name of the host to be connected depends on the
specification of PDXDSHOST and PDFESHOST. The following table shows how the
connection-target host name is determined.

Table 6-36: How to determine the connection-target host name

Legend:

PDXDSHOST PDFESHOST Connection-target host name

Y Y PDXDSHOST value

N

N Y PDFESHOST value

N No host name specified

6. Client Environment Setup

696

Y: Specified

N: Omitted

(138) PDXDSPORT=XDS-port-number
~ <unsigned integer> ((5001 to 65535)) <<value of PDSERVICEPORT>>

This client environment definition is applicable only to XDS clients.

This environment variable specifies the port number of the XDS to be connected. This
must be the port number specified in the -p option in the pdqmyrecvdef operand in
the XDS server definition. For details about the pdqmyrecvdef operand, see the
HiRDB Version 9 Memory Database Installation and Operation Guide.

If you omit this environment variable, the HiRDB client uses the first high-speed
connection port number specified in PDSERVICEPORT.

The connection-target port number depends on the port number specification in
PDXDSPORT, PDSERVICEPORT, and PDFESHOST. The following table shows how the
connection-target port number is determined.

Table 6-37: How to determine the connection-target port number

Legend:

Y: Specified

N: Omitted

(139) PDXVWOPT=output-of-access-path
~ <unsigned integer> ((0 to 1)) <<0>>

This client environment definition is applicable only to XDS clients.

PDXDSPORT PDSERVICEPORT PDFESHOST Connection-target port
number

Y Y Y PDXDSPORT value

N

N Y

N

N Y Y PDSERVICEPORT value

N

N Y No port number specified

N

6. Client Environment Setup

697

This environment variable specifies whether the access path of the SQL statement used
to access a table to be expanded to the memory database is to be output.

0

Do not output the access path.

1

Output the access path of a preprocessed SQL statement if the SQL statement was
preprocessed in XDS. Note that if the SQL statement was found in the SQL pool,
the access path will not be output.

6.6.5 Environment variables and connection types for HiRDB
servers

The following table shows the relationships among environment variables and
connection types for connecting with the HiRDB server.

Table 6-38: Relationships between environment variables and connection types

S: Must be specified.

: Must be specified if the HiRDB server is the Linux or Windows edition.

--: Does not have to be specified.

Environment
variable

HiRDB/Single
Server

HiRDB/Parallel Server

Single front-end
server

Multiple front-end servers

Normal High-
speed

Normal High-
speed

Normal Connection with
specific front-end

server

FES-host
direct

High-
speed

PDHOST S S S S S S S

PDFESHOST -- -- -- S# -- S S#

PDNAMEPORT S S S S S S S

PDSERVICEPORT -- S -- S# -- -- S#

PDSERVICEGRP -- S -- S# -- S S#

PDFESGRP -- -- -- S# -- -- S#

PDSRVTYPE -- -- -- --

6. Client Environment Setup

698

Notes
1. The connection format in which all required environment variables are

specified is selected in the priority order of high-speed connection, FES-host
direct connection, and normal connection. Unnecessary environment
variables are not used.

2. The following relationships apply to the connection time to the HiRDB
server and the number of TCP ports used during connection:

Normal connection time > FES-host direct connection time > high-speed
connection time

A high-speed connection is recommended if you want to shorten the connection
time. A normal connection is recommended in order to use the connected
front-end server efficiently.

If you want to reduce the number of TCP ports required when a normal
connection is used, specify 1 in PDTCPCONOPT in the client environment
definition. For details about PDTCPCONOPT, see 6.6.4 Environment definition
information.

#

There are two ways to specify high-speed connection:

• Specify PDFESHOST, PDSERVICEGRP, and PDSERVICEPORT

• Specify PDFESGRP

If you specify only one host name in PDFESHOST or PDFESGRP, the two methods
above are treated as being the same. If you specify multiple host names, the
specification method depends on the conditions shown in the following table:

In No. 2, there are multiple FESs (multiple front-end servers), but you must

No. Condition for specifying multiple host names Environment variables to
be specified

System switchover facility Number of
FESs

1 The system switchover facility is used on the unit
where the FES is located and the IP address of the
primary system used for connection from the
client is different from the IP address of the
secondary system.

1 PDFESHOST, PDSERVICEGRP,
and PDSERVICEPORT

2 Multiple PDFESHOST, PDSERVICEGRP,
and PDSERVICEPORT

3 Other than the above Multiple PDFESGRP

6. Client Environment Setup

699

specify PDFESHOST, PDSERVICEGRP, and PDSERVICEPORT and use only one
FES as the connection target. If multiple FESs are specified in PDFESGRP and an
error (KFPA11932-E) occurs in the running system due to too many connected
users, the following problems might occur:

• An unnecessary attempt is made to connect to the standby system.

• If a connection error occurs in all FES groups and the FES group for which
the last connection attempt was made is a standby system, information about
errors only in the standby system is returned to the UAP, making it
impossible to detect an error that might be caused by too many connected
users in the running system.

6. Client Environment Setup

700

6.7 Registering an environment variable group

The environment variables of a client can be registered as a group. When the
environment variables of each client are registered, the environment variables can be
changed for each connection. This operation is therefore convenient when the
environment variables must be changed for each connection.

The environment variables are registered to a normal file in the UNIX environment
and to a registry or a file in the Windows environment. Information about the
registered environment variables is obtained during connection to the HiRDB server.

When an open character string is specified while a UAP that uses an X/
Open-compliant API under OLTP is used as the client, the environment variables of
the environment variables group specified in the open character string have priority
over environment variables specified according to 6.6.2 Specifications for using a
UAP under OLTP as the client. For details about open character strings, see the HiRDB
Version 9 Installation and Design Guide.

6.7.1 Registering an environment variable group in a UNIX
environment

When registering environment variables to a normal file, use the following rules:

• Specify one environment variable per line.

• Specify the environment variable with the following format:

client-environment-variable=specification-value
• When specifying a comment, specify a slash and asterisk (/*) before the

comment and an asterisk and slash (*/) after the comment. Comments cannot be
embedded. Do not use line breaks in comments.

• If the same environment variable is specified more than once, the final
specification becomes effective.

• A specified value that includes a space must be enclosed in double quotation
marks ("). If such a value is not enclosed in double quotation marks, the space will
be deleted.

• [HIRDB] can be specified in the first line.

An example of how environment variables are set to a normal file (/HiRDB_P/
Client/HiRDB.ini) is shown as follows.

Example
[HIRDB]
PDCLTPATH=trace-file-storage-directory
PDHOST=system-manager-host-name

6. Client Environment Setup

701

PDUSER="authorization-identifier"/"password"
PDNAMEPORT=port-number-of-system-manager-process
PDCLTAPNAME=identification-name-of-UAP-to-be-executed

Note
With this method, client environment definitions that begin with PDJDB become
invalid except in the case of UAPs that use the Type4 JDBC driver.

6.7.2 Registering an environment variable group in a Windows
environment (registry registration)

Use the tool for registering HiRDB client environment variables to register
environment variables in the registry.

To use the tool for registering HiRDB client environment variables, execute
xxxx\UTL\pdcltadm.exe (xxxx is %PDDIR%\client in the HiRDB server and the
HiRDB client installation directory in the HiRDB client).

The rest of this section describes procedures for registering environment variables in
the registry with the tool for registering HiRDB client environment variables.

In an OLE DB connection, the environment variables registered with the tool for
registering HiRDB client environment variables have priority over the user
environment variables and the specifications in HIRDB.INI.

Client environment definitions set using this method become invalid when the Type4
JDBC driver is used. Client environment definitions that begin with PDJDB become
invalid if this method is used.

(1) Starting the tool for registering HiRDB client environment variables
Execute xxxx\UTL\pdcltadm.exe. The Tool for Registering HiRDB Client
Variables dialog box is displayed.

6. Client Environment Setup

702

Explanation
User Group

Select this item to add, delete, or modify an environment variable group for a user.
This information is registered in HKEY_CURRENT_USER.

System Group
Select this item to add, delete, or modify an environment variable group for a
computer. This information is registered in HKEY_LOCAL_MACHINE.

Select either User Group or System Group, and click the Add button.

Note
When a UAP that uses an X/Open-compliant API under OLTP is used as a client,
select System Group so that you can use the tool for registering HiRDB client
environment variables to register the environment variables group whose name is
specified in the open character string. For details about open character strings, see
the HiRDB Version 9 Installation and Design Guide.

6. Client Environment Setup

703

(2) Registering an environment variable group
The HiRDB Client Environment Variable Setup dialog box is displayed.

Explanation
Group Name

6. Client Environment Setup

704

Specify the group name with up to 30 characters.

Environment variable fields

Specify a setting for each environment variable. For details about each
environment variable, see 6.6.4 Environment definition information.

After completing the setup, click the OK button. When the OK button is clicked, the
client environment variable settings are registered in the registry, and the Tool for
Registering HiRDB Client Variables dialog box is displayed again.

Click the Cancel button to cancel the client environment variable settings and return
to the Tool for Registering HiRDB Client Variables dialog box.

(3) Changing the settings of an environment variable group
After one or more environment variable groups are registered, a list of the registered
environment variable group names is displayed, as shown in the next dialog box.

When an environment variable group name in the list is selected, the Delete,
Configure, and Test buttons become enabled and can be clicked. Click the Configure
button or double-click an environment variable group name in the list. The following
dialog box is displayed:

6. Client Environment Setup

705

Change the environment variable settings, and click the OK button. When the OK
button is clicked, the new client environment variable settings are registered in the
registry, and the Tool for Registering HiRDB Client Variables dialog box is
displayed again.

Click the Cancel button to cancel the client environment variable settings and return

6. Client Environment Setup

706

to the Tool for Registering HiRDB Client Variables dialog box.

(4) Checking the HiRDB connection with a registered environment variable
group

You can use a registered environment variable group to check whether a connection to
HiRDB can be established for that group.

From the environment variable group name list in the Tool for Registering HiRDB
Client Variables dialog box, select the environment variable group name for which
connection to HiRDB is to be checked, and click the Connect button. The following
dialog box is displayed:

Click Yes.

If connection to HiRDB is successful, the following dialog box is displayed:

If connection to HiRDB fails, the following dialog box is displayed. If the error is due
to the contents of an environment variable, change the settings of the environment
variable group.

6. Client Environment Setup

707

(5) Deleting an environment variable group
From the environment variable group name list in the Tool for Registering HiRDB
Client Variables dialog box, select the environment variable group name to be
deleted, and click the Delete button.

The following dialog box is displayed:

(6) Setting an OLE DB provider trace
The OLE DB provider trace is for troubleshooting only. Do not set this trace for any
other investigation. Note that when a trace is performed, the performance of other
operations may drop dramatically.

To set an OLE DB provider trace when the HiRDB client is connected to an OLE DB,
open the Tool for Registering HiRDB Client Variables dialog box, and click the
OLE DB Trace button. The following dialog box is displayed:

To perform a trace, select TRACE ON and then click the OK button. Note that the
trace continues until you select TRACE OFF and click the OK button.

6. Client Environment Setup

708

For the log file name, always specify the absolute path name of the file.

For the data size, specify the output size, in bytes, of the void*-type data dump.

(a) Environment variables that become invalid when the multi-connection
facility is used
When the multi-connection facility is used, the following environment variables
cannot be set for each connection destination. These environment variables become
invalid even if they are registered to a normal file or registry and specified in each
connection destination.

• HiRDB_PDHOST

• HiRDB_PDNAMEPORT

• HiRDB_PDTMID

• HiRDB_PDXAMODE

• PDTMID

• PDXAMODE

• PDTXACANUM

6.7.3 Registering an environment variable group in a Windows
environment (file registration)

The client environment definitions can be set to a file and the environment variable
definitions can then be obtained from the file during HiRDB server connection.

To register an environment variable group to the file, you must specify [HIRDB] in the
first line.

An example of setting an environment variable group to a file
(c:\HiRDB_P\Client\HiRDB.ini) is shown below.

Example
[HIRDB]
PDCLTPATH=trace-file-storage-directory
PDHOST=system-manager-host-name
PDUSER="authorization-identifier"/"password"
PDNAMEPORT=port-number-of-system-manager-process
PDCLTAPNAME=identification-name-of-UAP-to-be-executed

Note
For a UAP using the Type4 JDBC driver, follow the rules described in 6.7.1
Registering an environment variable group in a UNIX environment.

709

Chapter

7. UAP Creation

This chapter explains how to embed SQL statements in a UAP written in C, C++,
COBOL, or OOCOBOL.

This chapter contains the following sections:

7.1 Overview
7.2 Writing a UAP in C
7.3 Writing a UAP in COBOL
7.4 Writing a UAP in C++
7.5 Writing a UAP in OOCOBOL
7.6 Creating a UAP in 64-bit mode

7. UAP Creation

710

7.1 Overview

To create an embedded SQL UAP, embed SQL statements into a source program
written in the C or COBOL language. This section explains the basic configuration of
and rules for writing UAPs in which SQL statements will be embedded.

7.1.1 UAP basic configuration
The following is an example of the basic configuration of an embedded SQL UAP
written in C.

Figure 7-1: Example of the basic configuration of an embedded SQL UAP

7.1.2 UAP configuration elements
An embedded SQL UAP consists of the following four principal elements:

• Declaration of embedded variables and indicator variables

• Declaration of SQL Communications Areas

7. UAP Creation

711

• Specification of operations to be performed when unexpected events occur

• SQL statements to be executed

(1) Declaration of embedded variables and indicator variables
Embedded variables and indicator variables to be used in the SQL statement must be
declared. For details, see the HiRDB Version 9 SQL Reference manual.

(2) Declaration of SQL Communications Areas
Areas for receiving information (return codes) returned from HiRDB must be
declared. The SQL Communications Areas need not be described in the UAP because
they are expanded automatically within the source program when the UAP is
preprocessed (for details, see A. SQL Communications Area).

(3) Specification of operations to be performed when unexpected events occur
WHENEVER statements should be specified to set the operations the UAP must perform
for the various return codes returned by HiRDB after SQL statement execution.

Even when no WHENEVER statements are specified, it is possible to specify operations
to be performed when unexpected events occur, providing that the return codes are
identified directly after SQL statements execution. For details about how to specify the
WHENEVER statement and about return code identification, see 3.6 SQL error
identification and corrective measures.

(4) SQL statement execution
The SQL statement to be executed must be specified. For details about the coding rules
for C, see 7.2.1 Coding rules. For details about the coding rules for COBOL, see 7.3.1
Coding rules.

7. UAP Creation

712

7.2 Writing a UAP in C

This section explains, by way of examples, the coding rules for embedding SQL
statements in UAPs written in C.

7.2.1 Coding rules
When a UAP is created, the labelling rules, SQL coding rules, and SQL syntax rules
must be followed.

(1) Labeling rules
Labels must be assigned according to the C language rules. These types of labels
cannot be used:

• Labels that begin with uppercase SQL

• Labels that begin with lowercase p_

• Labels that begin with lowercase pd

• Labels that begin with uppercase PD

For naming embedded variables, indicator variables, and branching destination labels,
the labeling and the C language rules must be followed.

(2) SQL coding rules
1. Each SQL statement must be preceded by the SQL prefix (EXEC SQL) and

followed by the SQL terminator (;).

Valid example:
EXEC SQL SQL-statement;

2. The C language macro function cannot be used for an embedded SQL statement
or any part of it.

Invalid example:
#define X USER.MEMBER
EXEC SQL
 SELECT NAME INTO MANNAME FROM X;

3. The underline indicates the invalid portion.

SQL reserved words can be in uppercase letters, lowercase letters, or a mixture of
both.

Example 1:
EXEC SQL
 SELECT MEM INTO :NAME FROM TABLE;

7. UAP Creation

713

Example 2:
exec sql
select MEM into :NAME from TABLE;

Example 3:
exec SQL
 SELECT MEM Into :NAME From TABLE;

4. One line each must be used for the SQL prefix, the embedded SQL start
declaration, and the embedded SQL termination declaration. A space is used to
separate the words making up each item.

A line consists of a character string that begins with the character following the
linefeed character and ends with the next linefeed character. The maximum length
of a row in a UAP source program that can be preprocessed is 32,000 characters.

Valid specification:
EXEC SQL
 BEGIN DECLARE SECTION;
...
EXEC SQL
 END DECLARE SECTION;

EXEC SQL
 SELECT... ;

Invalid specification:
EXEC SQL
 BEGIN
 DECLARE SECTION;
 :

EXEC SQL
 END
 DECLARE SECTION;

EXEC \
 SQL
 SELECT ... ;

5. The embedded SQL declaration section must precede the SQL statements that use
the embedded variables and indicator variables.

Example:
EXEC SQL
 BEGIN DECLARE SECTION;
short SALES;
EXEC SQL
 END DECLARE SECTION;

7. UAP Creation

714

...
EXEC SQL
 SELECT PRICE INTO :SALES
 FROM TABLE;

6. The following rules apply to specifying embedded variables and indicator
variables.

• A declaration statement can span multiple lines. Multiple definition
statements can also be described in a single declaration statement.

Specification example:
short SALES,
 QUANTITY;
short SALES; short QUANTITY;

• The following table shows the items that can be described in an embedded
SQL declaration section.

Table 7-1: Items that can be described in an embedded SQL declaration section

D: Can be described.

--: Cannot be described.

• The same embedded variable or indicator variable cannot be repeated within
the same source file.

• Multiple embedded variables or indicator variables can be declared in a
single declaration statement.

Specification example:
short SALES, QUANTITY; 1

short XSALES, XQUANTITY; 2

1: Declaration of embedded variables

Described Item Description within embedded declaration

Note D

C language instruction statement --

C language control statement --

SQL statement --

Embedded variable declaration D

Indicator variable declaration D

7. UAP Creation

715

2: Declaration of indicator variables

• For details about the data types that can be used in embedded variables, see
F. SQL Data Types and Data Descriptions.

7. Embedded variables declared within a function become local variables;
embedded variables declared outside a function become global variables.

8. Although embedded SQL statements can also be described in locations within a
function block where C language instruction statements can be described, they
cannot be described on the same lines as another SQL statement or statements
written in C language.

Note
A label can be placed before an SQL prefix.

The following table shows the locations where SQL statements can be specified.

Table 7-2: Locations where SQL statements can be described

D: Can be described.

Description location within a line SQL statement
description

C language and instruction statement Front --

Middle --

Back --

C language control statement Front --

Middle --

Back --

Label Front --

Back D

Comments Front D

Middle --

Back D

SQL statement# Front --

Middle --

Back --

7. UAP Creation

716

--: Cannot be described.

#: Must begin with an SQL prefix and end with an SQL terminator.

9. To include a Microsoft Foundation Class (MFC) header file (AFXxxxxx.H) in a
UAP source program that uses HiRDB with the Visual C++ compiler, include the
HiRDB header file after the MFC header file by using the following SQL
statement:

EXEC SQL INCLUDE HIRDB_HEADERS;

• INCLUDE HIRDB_HEADERS includes the HiRDB header file that was
automatically included at the beginning of the post source file at the specified
location.

• INCLUDE HIRDB_HEADERS can be used only with C and C++. It cannot be
used with other languages.

• INCLUDE HIRDB_HEADERS can only be used once in a UAP.

• If INCLUDE HIRDB_HEADERS is not used, the HiRDB header file is included
at the beginning of the post source file.

The MFC header files provided by Visual C++ are sequentially related according
to the order in which they are included. If the WINDOWS.H header file (header file
used by HiRDB) is included first, an error may occur. In this case, use INCLUDE
HIRDB_HEADERS.

HiRDB uses the following Visual C++ header files:

• WINDOWS.H

• STRING.H

An example of using INCLUDE HIRDB_HEADERS is shown as follows.
#include <afx.h>
EXEC SQL INCLUDE HIRDB_HEADERS ;

10. Comments (/*...*/) specified between the SQL prefix and the SQL terminator
are deleted. However, SQL optimization specifications (/*>>...<<*/) are not
deleted but instead treated as SQL statements. For details about comments and
SQL optimization specifications in SQL statements, see the HiRDB Version 9
SQL Reference manual.

11. The backslash (\) symbol cannot be used to indicate row continuation.

12. When you use the -E option, the preprocessor declaration statement for the C
compiler becomes effective. Consequently, you can use #ifdef to specify SQL
statement switching and use macro literals to specify literals in the embedded
SQL declare section. However, the following restrictions apply:

• Preprocessor declaration statements cannot be specified between the SQL

7. UAP Creation

717

prefix and SQL terminator.

• Macros that change the column positions of the SQL prefix and SQL
terminator cannot be specified.

• Macro definitions of the SQL prefix and SQL terminator cannot be specified.

13. When you use the -E option, you can use an embedded variable, as long as you
declare the variable according to the C syntax rules, and the embedded variable
corresponds to an SQL data type. This is allowed even if you do not declare the
embedded variable in the embedded SQL declare section. If there is another
variable with the same name, the effective scope of each variable is determined
according to the C syntax rules. You can also use variables declared in an included
header. However, the following restrictions apply:

• Only the first 63 characters of the variable name are distinguished. The
subsequent characters are not distinguished. Note that a universal character
name (\uxxxx or \Uxxxxxxxx) is counted as one character.

• Nested structures cannot be used.

• Declare statements cannot contain embedded variables that use an
expression in a subscript.

• const-type embedded variables can be used only as input variables.

• varchar cannot be used for C language identifiers such as variable names
and function names, regardless of whether upper or lower case is used.

14. When you use the -E option, you can declare a structure that has multiple
embedded variables as members as an embedded variable. All members must
have a format that corresponds to an SQL data type. A structure cannot contain
another structure or a union. However, you can use a structure that corresponds to
the variable-length character string type or the BINARY type.

15. When you use the -E option, you can declare a pointer as an embedded variable.
The declaration format conforms to the C syntax rules. When using such an
embedded variable in an SQL statement, specify the variable with the same
format used for normal embedded variables. Do not add an asterisk in front of the
embedded variable name.

16. When you use the -E option and specify a structure member explicitly as an
embedded variable, include the structure name as a modifier. The format of the
structure member specification becomes :structure.member-name. If you are
using a pointer to the structure, include the pointer as a modifier. The format of
the structure member specification becomes :pointer->member-name.

17. When you specify the -E option in Windows, the following restrictions apply:

• Defining the same typedef name twice with typedef does not trigger a
syntax error. However, there is also no check for determining whether the

7. UAP Creation

718

defined contents are the same.

• Members of anonymous structures cannot be used as embedded variables.

• Declarators specified without a storage class or data type cannot be used as
embedded variables.

18. When you specify the -E option, you cannot use the COPY statement.

19. A variable-length array cannot be used as an embedded variable.

20. If you specify the -E option, neither digraphs, such as <: and <%, nor trigraphs,
such as ??(and ??=, can be specified. Even if you do not specify the -E option,
you cannot specify trigraphs in SQL statements or the embedded SQL declare
section. If you use trigraphs, they are treated as normal characters.

21. When you specify the -E option, you can use the reserved words listed below that
are not stipulated in the C standard (C99):

Usage Processing Environment#1 Reserved words

Type qualifier or
type specifier#2

Treated as a type
qualifier or type
specifier during
syntax analysis

Windows __int8,__int16,__int32,
__int64,_int8,_int16,
_int32,_int64

UNIX __volatile__,
__builtin_va_list,
__complex__,
__signed__

7. UAP Creation

719

#1

The Windows environment's reserved words are used in Visual C++. These
reserved words are defined in Visual C++ 6.0 or later and begin with two
consecutive underscores (__). You can also use the reserved words that begin
with a single underscore (_) in source codes created with an earlier version
of Visual C++.

The UNIX environment's reserved words are used in GCC.

#2

Reserved words treated as type qualifiers or type specifiers cannot be used in
the declaration of an embedded variable.

22. When you specify the -E option, a bit field can be declared as any integer type.
Note that a bit field cannot be used in the declaration of an embedded variable.

7.2.2 Program example
This section provides an example of an embedded SQL UAP written in C language.
For details about the SQL syntax, see the HiRDB Version 9 SQL Reference manual.

Other Ignored because the
word is treated during
syntax analysis as
meaningless

Windows __based,__cdecl,
__export,__far,
__fastcall,
__forceinline,
__inline,__near,
__pascal,__ptr32,
__ptr64,__stdcall,
__unaligned,__w64,
_based,_cdecl,
_export,_far,_fastcall,
_forceinline,_inline,
_near,_pascal,
_stdcall__declspec,
__pragma,
_declspec__try,
__except,
__finally__asm,_asm

UNIX __const,__const__,
__extension__,
__inline,__inline__,
__restrict,
__attribute__,
__asm__

Usage Processing Environment#1 Reserved words

7. UAP Creation

720

(1) Examples of basic operations
(a) PAD chart

Figures 7-2 and 7-3 show a flowchart of the program example.

7. UAP Creation

721

Figure 7-2: Flowchart example of an embedded SQL UAP written in C

7. UAP Creation

722

Figure 7-3: Flowchart example of an embedded SQL UAP written in C

(b) Coding example
A coding example of an embedded SQL UAP written in C follows:
 1 #include <string.h>
 2 #include <stdlib.h>
 3
 4 #define MAXCOLUMN 80 /* max column in one line */

7. UAP Creation

723

 5 #define INFILE "inputf1" /* input data file name */
 6
 7 /* declare functions */
 8 void abnormalend();
 9 void connecterror();
 10
 11 FILE *input = NULL;
 12
 13 main()
 14 {
 15 /* input data */
 16 char indata[MAXCOLUMN + 1];
 17
 18 char in_userid[31];
 19 char in_passwd[31];
 20 char in_type;
 21 char in_pcode[5];
 22 char in_pname[17];
 23 char in_color[3];
 24 int in_price;
 25 int in_stock;
 26 char in_flux;
 27
 28 /* variables for SQL */
 29 EXEC SQL BEGIN DECLARE SECTION; 1
 30 char xuserid[31]; 1
 31 char xpasswd[31]; 1
 32 char xpcode[5]; 1
 33 char xpname[17]; 1
 34 char xcolor[3]; 1
 35 int xprice; 1
 36 int xstock; 1
 37 EXEC SQL END DECLARE SECTION; 1
 38
 39 /* input file open */ 2
 40 input = fopen(INFILE, "r"); 2
 41 if (input == NULL) { 2
 42 /* input file open error */ 2
 43 fprintf(stderr, "can't open %s.", INFILE); 2
 44 goto FIN; 2
 45 } 2
 46 2
 47 /* get userid/passwd */ 2
 48 fgets(indata, 81, input); 2
 49 sscanf(indata, "%30s %30s", xuserid, xpasswd); 2
 50 if (feof(input)) { 2
 51 fprintf(stderr, "*** error *** no data for connect
 ***"); 2

7. UAP Creation

724

 52 goto FIN; 2
 53 } 2
 54 printf("connect start,\n"); 2
 55 EXEC SQL WHENEVER SQLERROR PERFORM connecterror; (a) 2
 56 EXEC SQL CONNECT USER :xuserid USING :xpasswd; (b) 2
 57 printf("connected,\n"); 2
 58
 59 /* read data from inputfile */
 60 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;
 61 fgets(indata, MAXCOLUMN, input);
 62
 63 while (!feof(input)) {
 64 sscanf(indata, "%c %4s %16s %2s %8d %8d %c",
 65 &in_type, in_pcode, in_pname, in_color,
 66 &in_price, &in_stock, &in_flux);
 67 switch (in_type) {
 68 case 'I':
 69 strncpy(xpcode, in_pcode, 4);
 70 strncpy(xpname, in_pname, 8);
 71 strncpy(xcolor, in_color, 2);
 72 xprice = in_price;

 73 xstock = in_stock;
 74 EXEC SQL 3
 75 INSERT INTO
 STOCK(PCODE,PNAME,COLOR,PRICE,SQUANTITY) 3
 76 VALUES(:xpcode,:xpname,:xcolor,:xprice,:xstock);
 3
 77 break;
 78 case 'U':
 79 strncpy(xpcode, in_pcode, 4); 4
 80 xstock = in_stock; 4
 81 if (in_flux == '1') { 4
 82 EXEC SQL (a) 4
 83 UPDATE STOCK
 SET SQUANTITY =SQUANTITY+:xstock (a) 4
 84 WHERE PCODE=: xpcode; (a) 4
 85 } else { 4
 86 EXEC SQL (b) 4
 87 UPDATE STOCK
 SET SQUANTITY=SQUANTITY-:xstock (b) 4
 88 WHERE PCODE=:xpcode; (b) 4
 89 }
 90 break;
 91 case 'D':
 92 strncpy(xpcode, in_pcode, 4);
 93 EXEC SQL 5
 94 DELETE FROM STOCK WHERE PCODE=:xpcode; 5

7. UAP Creation

725

 95 break;
 96 }
 97 fgets(indata, MAXCOLUMN, input);
 98 }
 99
 100 /* print stock list */
 101 EXEC SQL 6
 102 DECLARE CR1 CURSOR FOR 6
 103 SELECT PCODE,PNAME,COLOR,PRICE,SQUANTITY FROM
 STOCK; 6
 104 EXEC SQL OPEN CR1; 7
 105
 106 /* print title */
 107 printf("\n\n");
 108 printf(" ***** Stock Table List *****\n\n");
 109 printf(" Product code Product name Color Price
 Current stock\n");
 110 printf(" ---- ---------------- -- --------
 --------\n");
 111
 112 /* FETCH */
 113 SQLCODE = 0;
 114 while (SQLCODE <= 100) {
 115 EXEC SQL WHENEVER NOT FOUND GO TO FINISH;
 116 EXEC SQL 8
 117 FETCH CR1 INTO :
 xpcode,:xpname,:xcolor,:xprice,:xstock; 8
 118 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 119 printf(" %4s %-16s %2s %8d %8d\n",
 120 xpcode, xpname, xcolor, xprice, xstock);
 121 }
 122
 123 FINISH:
 124 /* finish */
 125 EXEC SQL CLOSE CR1; (a) 9
 126 EXEC SQL COMMIT; (b) 9
 127 printf(" *** normal ended ***\n");
 128
 129 FIN:
 130 if (input != NULL) {
 131 fclose(input);
 132 }
 133 EXEC SQL WHENEVER SQLERROR CONTINUE;
 134 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 135 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 136 EXEC SQL DISCONNECT; 10
 137 return(0);
 138 }

7. UAP Creation

726

 139
 140
 141 Void connecterror()
 142 {
 143
 144 printf("\n************ error *** cannot connect ***\n");
 145 fclose(input);
 146 EXEC SQL DISCONNECT;
 147 exit(1);
 148 }
 149
 150
 151 void abnormalend()
 152 {
 153 int wsqlcode;
 154
 155 wsqlcode = -SQLCODE;
 156 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n",
wsqlcode);
 157 printf("SQLERRMC = %s\n", SQLERRMC);
 158
 159 EXEC SQL ROLLBACK; (a) 11
 160 EXEC SQL DISCONNECT; (b) 11
 161 exit(2);
 162 }

1. Starting and ending the embedded SQL declaration section

Encloses the variables to be used in the UAP between BEGIN DECLARE
SECTION and END DECLARE SECTION. The variables indicate the start and end
of the embedded SQL declaration section.

2. Connecting with HiRDB

Specifying the abnormal processing

Specifies the branch destination (connecterror) as the process to be
executed if an error (SQLERROR) occurs after execution of the subsequent
SQL statements.

Connecting to HiRDB

Informs HiRDB of the authorization identifier and the password so that the
UAP can use HiRDB.

3. Inserting rows into the stock table

Inserts the values read into the embedded variables into each column of the stock
table.

4. Updating stock table rows

7. UAP Creation

727

Incoming stock

Sets the product code that was read into the embedded variable (:xpcode)
as the key, and retrieves the row to be updated from the stock table. Updates
the row by adding the value that was read into the embedded variable
(:xquantity) to the QUANTITY value of the retrieved row.

Stock

Sets the product code that was read into the embedded variable (:xpcode)
as the key, and retrieves the row to be updated from the stock table. Updates
the row by deleting the value that was read into the embedded variable
(:xquantity) from the QUANTITY value of the retrieved row.

5. Deleting stock table rows

Sets the product code that was read into the embedded variable (:xpcode) as the
key, and deletes the rows that have a key equal to that value.

6. Declaring the CR1 cursor

Declares the CR1 cursor for retrieving rows from the stock table (STOCK).

7. Opening the CR1 cursor

Positions the cursor immediately in front of a row to be retrieved from the stock
table (STOCK) so that the row can be fetched.

8. Fetching stock table rows

Retrieves the row indicated by the CR1 cursor from the stock table (STOCK), and
sets the row values into the embedded variables.

9. Closing cursor CR1 and terminating a transaction

Closing the CR1 cursor

Closes the CR1 cursor.

Terminating HiRDB

Terminates the current transaction normally, and validates the results of the
database addition, update, and deletion operations that were executed in that
transaction.

10. Disconnecting from HiRDB

Disconnects the UAP from HiRDB.

11. Rolling back the transaction

Invalidating the transaction

Rolls back the current transaction to invalidate the results of the database
addition, update, and deletion operations that were executed in that

7. UAP Creation

728

translation.

Disconnecting from HiRDB

Disconnects the UAP from HiRDB.

(2) Example that uses an SQL descriptor area for user definitions
(a) PAD chart

Figures 7-4 through 7-7 show the PAD chart for program example 2.

Figure 7-4: PAD chart for program example 2 (1/4)

7. UAP Creation

729

Figure 7-5: PAD chart for program example 2 (2/4)

7. UAP Creation

730

Figure 7-6: PAD chart for program example 2 (3/4)

7. UAP Creation

731

Figure 7-7: PAD chart for program example 2 (4/4)

(b) Coding example
A coding example for program example 2 follows:
 1 /**/
 2 /* */
 3 /* ALL RIGHTS RESERVED, COPYRIGHT (C) 1997, HITACHI, LTD.
*/
 4 /* LICENSED MATERIAL OF HITACHI, LTD. */
 5 /* */
 6 /* SAMPLE OF FETCH WITH SQLDA */
 7 /* */
 8 /**/
 9
 10
 11 #include <stdio.h>
 12 #include <stdlib.h>
 13 #include <string.h>
 14 #include "pdbsqlda.h" 1

7. UAP Creation

732

 15
 16
 17 static void Describe();
 18 static void Fetch();
 19 static void ClearSqlda(short);
 20 static void errmsg();
 21
 22 /**/
 23 /* GLOBAL VARIABLE */
 24 /**/
 25 short ErrFlg;
 26
 27 /**/
 28 /* GLOBAL VARIABLE */
 29 /**/
 30
 31 /* sqlda */
 32 PDUSRSQLDA(10) xsqlda; 2
 33
 34 /* sqlcnda */ 3
 35 struct { 3
 36 short sqlnz; 3
 37 struct { 3
 38 short sqlnamel; 3
 39 char sqlnamec[30]; 3
 40 } SQLNAME[10]; 3
 41 } ucnda; 3
 42
 43
 44 /**/
 45 /* */
 46 /* MAIN ROUTINE */
 47 /* */
 48 /**/
 49 int main(
 50 int argc,
 51 char *argv[])
 52 {
 53
 54 /**/
 55 /* CONNECT */
 56 /**/
 57 EXEC SQL
 58 WHENEVER SQLERROR GOTO:ERR_EXIT
 59
 60 printf("***** connect start \n");
 61 EXEC SQL
 62 CONNECT; 4

7. UAP Creation

733

 63 printf("***** connect : END\n");
 64
 65 /**/
 66 /* DESCRIBE */
 67 /**/
 68 Describe(); 5
 69 if(ErrFlg <0){ 5
 70 goto ERR_EXIT; 5
 71 } 5

 72 5
 73 /***/ 5
 74 /* FETCH */ 5
 75 /***/ 5
 76 Fetch(); 5
 77 if(ErrFlg <0){ 5
 78 goto ERR_EXIT; 5
 79 } 5
 80
 81 /**/
 82 /* END OF ALL */
 83 /***/
 84 ERR_EXIT :
 85 if(SQLCODE <0){
 86 errmsg();
 87 ErrFlg = -1;
 88 }
 89
 90 EXEC SQL
 91 WHENEVER SQLERROR CONTINUE;
 92 EXEC SQL
 93 WHENEVER NOT FOUNT CONTINUE;
 94 EXEC SQL
 95 WHENEVER SQLWARNING CONTINUE;
 96
 97 EXEC SQL
 98 DISCONNECT; 6
 99
100 return (ErrFlg);
101 }
102
103
104 /***/
105 /* */
106 /* DYNAMIC CURSOR */
107 /* */
108 /***/
109 static void Fetch()

7. UAP Creation

734

110 {
111 EXEC SQL BEGIN DECLARE SECTION;
112 char XCUSTOM_CD[6];
113 char XCUSTOM_NAME[31];
114 char XTELNO[13];
115 char XZIPCD[4];
116 char XADDRESS[31];
117 EXEC SQL END DECLARE SECTION;
118
119 EXEC SQL
120 WHENEVER SQLERROR GOTO :Exit_Fetch;
121
122 EXEC SQL
123 DECLARE CUR2 CURSOR FOR SEL1; 7
124
125 /***/
126 /* OPEN CURSOR */
127 /***/
128 printf("***** DYNAMIC CURSOR open start\n");
129 EXEC SQL
130 OPEN CUR2; 8
131 printf("***** DYNAMIC CURSOR open : END\n");
132
133
134 /***/
135 /* FETCH */
136 /***/
137 printf("***** fetch (use sqlda) start\n");
138
139
140 EXEC SQL
141 WHENEVER NOT FOUND GOTO FETCH2_END;
142
143 for(;;) {
144 ClearSqlda(5); 9
145 PDSQLDATA(xsqlda, 0) = (void *)
 XCUSTOM_CD; (a) 9
146 PDSQLCOD(xsqlda, 0) = PDSQL_CHAR; (a) 9
147 PDSQLLEN(xsqlda, 0) = sizeof
 (XCUSTOM_CD)-1; (a) 9
148 PDSQLDATA(xsqlda, 1) = (void *)
 XCUSTOM_NAME; (b) 9
149 PDSQLCOD(xsqlda, 1) = PDSQL_CHAR; (b) 9
150 PDSQLLEN(xsqlda, 1) = sizeof
 (XCUSTOM_NAME)-1; (b) 9
151 PDSQLDATA(xsqlda, 2) = (void *)XTELNO; (c) 9
152 PDSQLCOD(xsqlda, 2) = PDSQL_CHAR; (c) 9
153 PDSQLLEN(xsqlda, 2) = sizeof(XTELNO)-1; (c) 9

7. UAP Creation

735

154 PDSQLDATA(xsqlda, 3) = (void *)XZIPCD; (d) 9
155 PDSQLCOD(xsqlda, 3) = PDSQL_CHAR; (d) 9
156 PDSQLLEN(xsqlda, 3) = sizeof(XZIPCD)-1; (d) 9
157 PDSQLDATA(xsqlda, 4) =
 (void *)XADDRESS; (e) 9
158 PDSQLCOD(xsqlda, 4) = PDSQL_CHAR; (e) 9
159 PDSQLLEN(xsqlda, 4) =
 sizeof(XADDRESS)-1; (e) 9
160
161 memset(XCUSTOM_CD, 0, sizeof(XCUSTOM_CD));
162 memset(XCUSTOM_NAME, 0, sizeof(XCUSTOM_NAME));
163 memset(XTELNO, 0, sizeof(XTELNO));
164 memset(XZIPCD, 0, sizeof(XZIPCD));
165 memset(XADDRESS, 0, sizeof(XADDRESS));
166
167 EXEC SQL FETCH CUR2
168 USING DESCRIPTOR :xsqlda; 10
169
170 printf("%s", XCUSTOM_CD);
171 printf("%s", XCUSTOM_NAME);
172 printf("%s", XTELNO);
173 printf("%s", XZIPCD);
174 printf("%s\n", XADDRESS);
175 }
176 FETCH2_END:
177 printf("***** fetch : END\n");
178
179 /***/
180 /* CLOSE CURSOR */
181 /***/
182 printf("***** close start\n");
183 EXEC SQL
184 WHENEVER NOT FOUND CONTINUE;
185 EXEC SQL
186 CLOSE CUR2; 11
187 printf("***** close : END\n");
188
189 /***/
190 /* */
191 /***/
192 Exit_Fetch:
193 if(SQLCODE <0){
194 errmsg();
195 ErrFlg = -1;
196 }
197 return;
198 }
199

7. UAP Creation

736

200
201 /***/
202 /* DESCRIBE */
203 /***/
204 static void Describe()
205 {
206 short I;
207
208 EXEC SQL
209 WHENEVER SQLERROR GOTO :Exit_Describe;
210
211 /***/
212 /* PREPARE */
213 /***/
214 printf("***** prepare start\n");
215 EXEC SQL 12
216 PREPARE SEL1 12
217 FROM 'SELECT * FROM CUSTOM' 12
218 WITH SQLNAME OPTION; 12
219 printf("***** prepare : END\n");
220
221 /***/
222 /* DESCRIBE */
223 /***/
224 PDSQLN(xsqlda) = 10;
225 printf("***** describe start\n");
226 EXEC SQL
227 DESCRIBE SEL1 INTO :xsqlda :ucnda; 13
228 printf("***** describe : END\n");
229
230 printf(" describe result\n");
231 printf(" NUMBER OF DATA =%d\n",
 PDSQLD(xsqlda));
232 printf(" NUMBER OF COLUMN NAME = %d\n",
 ucnda.sqlnz);
233 for (i=0 ; i < ucnda.sqlnz ; i++) {
234 printf(" [%d]), i);
235 printf(" DATA TYPE(%d)", PDSQLCOD(xsqlda,
 i));
236 printf(" DATA LENGTH(%d)",
 PDSQLLEN(xsqlda, i));
237 printf(" COLUMN NAME(%s)\n",
 ucnda.SQLNAME[i].sqlnamec);
238 }
239
240 /***/
241 /* */
242 /***/

7. UAP Creation

737

243 Exit_Describe:
244 if(SQLCODE <0){
245 errmsg();
246 ErrFlg = -1;
247 }
248 return;
249 }
250
251
252 /***/
253 /* Clear SQLDA */
254 /***/
255 static void ClearSqlda (
256 short num)
257 {
258 PDSQLN(xsqlda) = num; 14
259 PDSQLD(ssqlda) = num; 14

260 while(num 0){
261 PDSQLDATA(xsqlda, num) = NULL; 15
262 PDSQLIND(xsqlda, num) = NULL; 15
263 PDSQLDIM(xsqlda, num) = 0; 15
264 PDSQLXDIM(xsqlda, num) = 1; 15
265 PDSQLSYS(xsqlda, num) = 0; 15
266 PDSQLCOD(xsqlda, num) = 0; 15
267 PDSQLLEN(xsqlda, num) = 0; 15
268 }
269 return;
270 }
271
272
273 /***/
274 /* */
275 /* WARNING */
276 /* */
277 /***/
278 static void errmsg()
279 {
280 int wsqlcode;
281
282 if(SQLCODE > 0){
283 printf(">>> warning\n");
284 }
285 if(SQLCODE <0){
286 printf(">>> error occurred\n");
287 }
288 wsqlcode = SQLCODE;
289 printf(">>> sqlcode = %d\n", SQLCODE);
290 printf(">>> sqlwarn = %c", SQLWARN0);

7. UAP Creation

738

291 printf("%c", SQLWARN1);
292 printf("%c", SQLWARN2);
293 printf("%c", SQLWARN3);
294 printf("%c", SQLWARN4);
295 printf("%c", SQLWARN5);
296 printf("%c", SQLWARN6);
297 printf("%c", SQLWARN7);
298 printf("%c", SQLWARN8);
299 printf("%c", SQLWARN9);
300 printf("%c", SQLWARNA);
301 printf("%c", SQLWARNB);
302 printf("%c\n", SQLWARNC);
303
304 #if defined(HIUXWE2) || defined(WIN32)
305 printf(">>> message = %s\n", SQLERRMC);
306 #else
307 printf(">>> message = %Fs\n", SQLERRMC);
308 #endif
309 return;
310 }

1. Including the distributed header file

Declares the data code literals used for setting and referencing the SQL descriptor
area, and declare the data type of the SQL descriptor area itself.

2. Declaring the SQL descriptor area

Defines the individual SQL descriptor area for use with the UAP. The data type is
defined in the distributed header file.

3. Declaring the column name descriptor area

Defines the variable to be used when a column name is obtained with the
DESCRIBE statement.

4. Connecting to HiRDB

Uses the authorization identifier and password set in the PDUSER environment
variable to connect to the server.

5. Retrieving the customer table (CUSTOM)

Obtains the name of each column in the customer table (CUSTOM), and uses the
SQL descriptor area for user definitions to retrieve and display all rows stored in
the table.

6. Disconnecting from HiRDB

Disconnects the UAP from the server.

7. Declaring the CUR2 cursor

7. UAP Creation

739

Declares the CUR2 cursor for retrieving customer table (CUSTOM) rows.

8. Opening the CUR2 cursor

Positions the cursor immediately in front of a row to be retrieved from the
customer table (CUSTOM) so that the row can be retrieved.

9. Setting the SQL descriptor area for user definitions

Sets the SQL descriptor area for user definitions to be specified when the FETCH
statement is executed.

• Sets the storage area address, the data code, and the data length for the
column 1 data.

• Sets the storage area address, the data code, and the data length for the
column 2 data.

• Sets the storage area address, the data code, and the data length for the
column 3 data.

• Sets the storage area address, the data code, and the data length for the
column 4 data.

• Sets the storage area address, the data code, and the data length for the
column 5 data.

10. Fetching the customer table rows

Fetches the row indicated by the CUR2 cursor from the customer table (CUSTOM),
and sets it into the area indicated by the SQL descriptor area for user definitions.

11. Closing the CUR2 cursor

Closes the CUR2 cursor.

12. Preparing for SQL dynamic execution

Prepares the SELECT statement for retrieving the table so that the DESCRIBE
statement can fetch the column name, data type, and data length of each column
in the customer table (CUSTOM).

13. Fetching column names and data types

Fetches the data type and data length of each column in the customer table
(CUSTOM), and sets the information into the SQL descriptor area for user
definitions. Also, fetches the column name of each column, and sets the
information into the user column name descriptor area.

14. Setting the row count for the SQL definition area for user definitions

In the SQL descriptor area for user definitions, sets the size of the SQL descriptor
area and the number of rows to be fetched.

7. UAP Creation

740

15. Clearing the SQL descriptor area for user definitions

Clears each column area in the SQL descriptor area for user definitions.

(3) Example of manipulating LOB data
(a) PAD chart for program example 3

Figures 7-8 through 7-10 show the PAD chart for program example 3.

Figure 7-8: PAD chart for program example 3 (1/3)

7. UAP Creation

741

Figure 7-9: PAD chart for program example 3 (2/3)

7. UAP Creation

742

Figure 7-10: PAD chart for program example 3 (3/3)

7. UAP Creation

743

(b) Coding example
A coding example of program example 3 follows:
 1 /***/
 2 /* */
 3 /* ALL RIGHTS RESERVED, COPYRIGHT (C) 1997,
 HITACHI, LTD. */
 4 /* LICENSED MATERIAL OF HITACHI, LTD. */
 5 /* */
 6 /***/
 7
 8
 9 #include <stdio.h>
 10 #include <stdlib.h>
 11 #include <stddef.h>
 12 #include <ctype.h>
 13 #include <string.h>
 14
 15 static void InitTable();
 16 static void TestBlob();
 17 static void warning();
 18
 19
 20 /***/
 21 /* GLOBAL VARIABLE */
 22 /***/
 23 short ErrFlg;
 24
 25 EXEC SQL BEGIN DECLARE SECTION;
 26 short XSINT_IN;
 27 short XSINT_OUT;
 28 long XINT_IN;
 29 long XINT_OUT;
 30 SQL TYPE IS BLOB(16K) XBLOB_IN; 1
 31 SQL TYPE IS BLOB(16K) XBLOB_OUT; 1
 32 EXEC SQL END DECLARE SECTION;
 33
 34 /*
 35 * name = MAIN
 36 * func = SAMPLE
 37 * io = argc : i :
 38 * argv : i :
 39 * return = 0,-1
 40 * note = This program needs "RDUSER02" rdarea
 on Server.
 41 * date = 98.04.24 by matsushiba
 42 */
 43 int main(

7. UAP Creation

744

 44 int argc,
 45 char *argv[])
 46 {
 47 ErrFlg = 0;
 48
 49 /***/
 50 /* */
 51 /***/
 52 EXEC SQL
 53 WHENEVER SQLERROR goto ERR_EXIT;
 54
 55 EXEC SQL
 56 WHENEVER SQLWARNING PERFORM :warning;
 57
 58 EXEC SQL CONNECT; 2
 59
 60
 61 /***/
 62 /* INIT */
 63 /***/
 64 InitTable(); 3
 65 if(ErrFlg <0){ 3
 66 goto ERREXIT; 3
 67 } 3
 68
 69 /***/
 70 /* */
 71 /***/
 72 TestBlob(); 4

 73 if(ErrFlg <0){ 4
 74 goto ERR_EXIT; 4
 75 } 4
 76
 77 /***/
 78 /* */
 79 /***/
 80 ERREXIT:
 81 if(SQLCODE <0){
 82 printf(":> ERROR HAPPENED!!\n");
 83 warning();
 84 ErrFlg = -1;
 85 }
 86
 87 EXEC SQL
 88 WHENEVER SQLERROR CONTINUE;
 89 EXEC SQL
 90 WHENEVER NOT FOUND CONTINUE;

7. UAP Creation

745

 91 EXEC SQL
 92 WJEMEVER SQLWARNING CONTINUE;
 93
 94 EXEC SQL DISCONNECT; 5
 95
 96 return (ErrFlg);
 97 }
 98
 99
100 /***/
101 /* INIT */
102 /***/
103 static void InitTable()
104 {
105
106 /***/
107 /* */
108 /***/
109 EXEC SQL
110 WHENEVER SQLERROR CONTINUE;
111
112 EXEC SQL 6
113 DROP TABLE SMPTBL; 6
114 6
115 EXEC SQL 6
116 CREATE SCHEMA; 6
117
118 printf("## CREATE TABLE\n");
119
120 EXEC SQL
121 WHENEVER SQLERROR GOTO INIT_ERROR;
122
123 printf("## CREATE SMPTBL\n");
124 EXEC SQL 7
125 CREATE TABLE SMPTBL(CLM1 BLOB(30K) IN
 RDUSER02, 7
126 CLM2 SMALLINT, 7
127 CLM3 INTEGER); 7
128
129 return;
130
131 INIT_ERROR:
132 warning();
133 ErrFlg = -1;
134 return;
135 }
136
137

7. UAP Creation

746

138
139 /**/
140 /* TEST BLOB */
141 /**/
142 static void TestBlob()
143 {
144 short cnt;
145
146 EXEC SQL
147 WHENEVER SQL ERROR goto :ExitTestBlob;
148
149 EXEC SQL
150 WHENEVER SQLWARNING PERFORM :warning;
151
152 /***/
153 /* INSERT */
154 /***/
155 memset(XBLOB_IN.XBLOB_IN_data,
156 0x55,
157 sizeof(XBLOB_IN.XBLOB_IN_data));
158 XBLOB_IN.XBLOB_IN_length =
 sizeof(XBLOB_IN.XBLOB_IN_data);
159
160 printf("## INSERT \n");
161 for(cnt=1; cnt<5; cnt++){
162 XSINT_IN = cnt;
163 XINT_IN = 100+cnt;
164 EXEC SQL 8
165 INSERT INTO SMPTBL 8
166 VALUES(:XBLOB_IN, :XSINT_IN,
 :XINT_IN); 8
167 }
168 EXEC SQL COMMIT;
169
170 /***/
171 /* FETCH */
172 /***/
173 printf("## FETCH \n");
174
175 EXEC SQL 9
176 DECLARE CUR_BLOB CURSOR FOR 9
177 SELECT * FROM SMPTBL; 9
178
179 EXEC SQL
180 OPEN CUR_BLOB; 10
181
182 EXEC SQL
183 WHENEVER NOT FOUND GOTO FETCH_END;

7. UAP Creation

747

184
185 for(;;){
186 memset (XBLOB_OUT.XBLOB_OUT_data,
187 0
188 sizeof(XBLOB_OUT.XBLOB_OUT_data));
189 XBLOB_OUT.XBLOBL_OUT_length = 0;
190 EXEC SQL 11
191 FETCH CUR_BLOB INTO :XBLOB_OUT, 11
192 :XSINT_OUT, 11
193 :XINT_OUT; 11
194
195 printf("CLM1 XBLOB_length == %d\n",
196 XBLOB_OUT.XBLOB_OUT_length);
197 printf("CLM2 = %d\n", XSINT_OUT);
198 printf("CLM3 = %ld\n", XINT_OUT);
199 }
200 FETCH_END:
201 EXEC SQL
202 WHENEVER NOT FOUND CONTINUE;
203
204 EXEC SQL
205 CLOSE CUR_BLOB; 12
206
207 /***/
208 /* UPDATE */
209 /***/
210 memset(XBLOB_IN.XBLOB_IN_data,
211 0x38,
212 sizeof(XBLOB_IN.XBLOB_IN_data));
213 XBLOB_IN.XBLOB_IN_length =
 sizeof(XBLOB_IN.XBLOB_IN_data);
214
215 printf("## UPDATE\n");
216 EXEC SQL
217 UPDATE SMPTBL SET CLM1=:XBLOB_IN; 13
218
219 EXEC SQL COMMIT
220
221 /***/
222 /* */
223 /***/
224 ExitTestBlob:
225 if(SQLCODE < 0){
226 warning();
227 ErrFlg = -1;
228 }
229 return;
230)

7. UAP Creation

748

231
232
233 /***/
234 /* WARNING */
235 /***/
236 static void warning()
237 {
238 if(SQLCODE <0){
239 printf(">>>ERROR\n");
240 printf(">>> sqlcode = %d\n", SQLCODE);
241 #if defined(HIUXWE2) || defined(WIN32)
242 printf(":> message = %s\n", SQLERRMC);
243 #else
244 printf(":> message = %Fs\n", SQLERRMC);
245 #endif
246 }
247 else{
248 printf(">>>WARNING\n");
249 printf(">>>sqlwarn = %c", SQLWARN0)
250 printf("%c", SQLWARN1);
251 printf("%c", SQLWARN2);
252 printf("%c", SQLWARN3);
253 printf("%c", SQLWARN4);
254 printf("%c", SQLWARN5);
255 printf("%c", SQLWARN6);
256 printf("%c", SQLWARN7);
257 printf("%c", SQLWARN8);
258 printf("%c", SQLWARN9);
259 printf("%c", SQLWARNA);
260 printf("%c", SQLWARNB);
261 printf("%c\n", SQLWARNC);
262 }
263 return
264 }

1. Declaring LOB-type embedded variables

Declares the LOB-type embedded variable for writing data (:XBLOB_IN) and the
LOB-type embedded variable for reading data (:XBLOB_OUT).

2. Connecting to HiRDB

Uses the authorization identifier and password set in the PDUSER environment
variable to connect to the server.

3. Initializing the table

Defines an SMPTBL table that contains LOB-type columns.

4. Inserting, retrieving, and updating LOB data

7. UAP Creation

749

Inserts rows that include LOB-type columns in the empty SMPTBL table, retrieves
all rows, and then updates the contents of the LOB-type columns with new LOB
data.

5. Disconnecting from HiRDB

Disconnects the UAP from the server.

6. Preparing for SMPTBL creation

To create the SMPTBL table containing LOB-type columns, deletes any tables that
have the same name, and creates a schema in case there are no schemas.

7. Creating the SMPTBL table containing LOB-type columns

Creates the SMPTBL table containing LOB-type columns. A LOB RDAREA user
must be created, because the LOB data is defined for storage in a special
RDAREA for LOB data. If there is no LOB RDAREA user, an error occurs.

8. Adding LOB data

Adds the values that were set in the embedded variables (:XBLOB_IN,
:XINT_IN, and :XSINT_IN) to the SMPTBL table containing LOB-type columns.

9. Declaring the CUR_BLOB cursor

Declares the CUR_BLOB cursor for retrieving the SMPTBL table containing
LOB-type columns.

10. Opening the CUR_BLOB cursor

Positions the cursor immediately in front of a row to be retrieved from the
SMPTBL table containing LOB-type columns so that the row can be fetched.

11. Fetching LOB-type data

Fetches the row indicated by the CUR_BLOB cursor from the SMPTBL table
containing LOB-type columns, and sets the data to the embedded variables
(:XBLOB_OUT, :XINT_OUT, and :XSINT_OUT).

12. Closing the CUR_BLOB cursor

Closes the CUR_BLOB cursor.

13. Updating LOB data

Updates the values of the LOB-type columns in the SMPTBL table with the
embedded variable (:XBLOB_IN) values.

7. UAP Creation

750

7.3 Writing a UAP in COBOL

This section explains, by way of examples, the coding rules for embedding SQL
statements in UAPs written in COBOL.

Note that UAPs written in COBOL cannot be created for Windows Server 2003 (IPF)
edition or Linux for AP8000 edition clients.

7.3.1 Coding rules
When a UAP is written, the labeling rules, SQL coding rules, and SQL syntax rules
must be followed.

(1) Labeling rules
Labels must be assigned according to COBOL rules. These rules apply to labels:

(a) SQL reserved words
• Both uppercase and lowercase letters can be used

• Uppercase and lowercase letters can be mixed

(b) Host names
• Labels that begin with SQL cannot be used

• Spaces can be entered following a colon within a host name

• Host names are not case-sensitive

• Uppercase and lowercase letters can be mixed

• The corresponding double-byte and single-byte versions of letters, numeric
characters, symbols, katakana characters, and the space character are treated as
different characters.

Embedded variables, indicator variables, and branching destination labels must be
named in accordance with the COBOL labeling rules. The following types of labels,
which have the external attribute, cannot be used:

• Labels that begin with the uppercase SQL

• Labels that begin with the lowercase p_

• Labels that begin with the lowercase pd

(2) SQL coding rules
1. Each SQL statement must be preceded by the SQL prefix (EXEC SQL) and

followed by the SQL terminator (END-EXEC).

Example:

7. UAP Creation

751

EXEC SQL SQL-statement; END-EXEC.

2. COBOL statements and SQL statements can both be specified on the same line.

3. All SQL statements (from the SQL prefix through the SQL suffix) must be
entered in the B area (columns 12 - 72)

4. The SQL statement continuation rules are generally the same as the COBOL line
continuation rules.

A line break can occur in an SQL description wherever a space must be specified
or can be specified; a description can span multiple lines.

To break a line where a space cannot be specified in the SQL statement, a hyphen
(-) must be specified in the indicator area; the description can resume on the next
line in any column in the B area.

To break a line in the middle of a character string literal, the description must be
specified through column 72, and a quotation mark (") must be specified
anywhere in the B area on the next line. To continue the character string, first
specify a quotation mark or an apostrophe (whichever was specified at the
beginning of the character string), and resume the character string specification
from the next column after that quotation mark or apostrophe.

5. A paragraph header can be entered before the SQL prefix (but not on the same
line as the SQL prefix).

Valid specification:
FINISH.
 EXEC SQL SQL-statement END-EXEC.

Invalid specification:
FINISH.
 EXEC SQL SQL-statement END-EXEC.

Bold letters indicate the invalid portion.

6. One SQL statement is treated as one COBOL language instruction. Therefore, if
an SQL statement is the last instruction of a concluding statement, a period and
space must be specified following the SQL terminator.

Example of when an SQL statement constitutes a concluding statement:
EXEC SQL

7. UAP Creation

752

 SQL-statement
END-EXEC.

Example of when an SQL statement is the last instruction of a concluding
statement:
IF U-FLUX = '2'
THEN
 EXEC SQL SQL-statement END-EXEC.

Example of when an SQL is an instruction in the middle of a concluding
statement:
IF U-FLUX = '1'
THEN
 EXEC SQL SQL-statement
 END-EXEC
ELSE IF U-FLUX = '2'
 THEN NEXT SENTENCE.

7. Although a comment cannot be specified within an SQL statement, any number
comment lines can be specified between the SQL prefix and the SQL terminator.

Example:
 EXEC SQL
*Declaration of cursor for SELECT statement (1)
*that retrieves STOCK table (1)
 SQL-statement
 END-EXEC.

(1): Comment lines

8. The following rules apply to declaring embedded variables.

• Specify the embedded SQL declare section in one of the following sections:

 FILE SECTION of DATA DIVISION

 WORKING-STORAGE SECTION

 LOCAL-STORAGE SECTION

 LINKAGE SECTION

• For details about embedded variables for SQL data types, see F. SQL Data
Types and Data Descriptions.

• JUSTIFIED, BLANK, and the WHEN ZERO clause cannot be specified in the
data description item of an embedded variable.

• Although a level 66 re-instruction item or level 88 conditional name item
cannot be used as an embedded variable, such items can be defined in an
embedded SQL declaration section.

7. UAP Creation

753

• The COBOL line continuation rules apply to continuation of data description
item lines of an embedded SQL declaration section.

• FILLER cannot be used as an embedded variable.

• A data item that uses the TYPE, TYPEDEF, or SAME AS clause can be used as
an embedded variable.

• If you use the REDEFINES clause, the system does not check whether the
item that performs the redefining and item to be redefined use the same
column justification. The size of the larger area is used.

• A data item in which the PICTURE clause is omitted and only the VALUE
clause is specified cannot be used as an embedded variable.

• When you use the -E option, you can use the declared data item as an
embedded variable even if you do not use an embedded SQL declare section.
However, the only data items that can be used as embedded variables in SQL
statements are those that are declared with a format described in F. SQL Data
Types and Data Descriptions. Data items that are declared with other formats
cannot be used as embedded variables.

The effective scope of each data item name is determined by the COBOL
syntax rules. The data items that can be used as embedded variables must be
specified in the source program. Data items in library text that is included
with the COPY or INCLUDE statement cannot be used as embedded variables.

• Data items that are inherited from a parent class by the class inheritance
facility of COBOL2002 cannot be used as embedded variables.

• If you specify the -XU16 option when you execute the SQL preprocessor,
UAPs that use the Unicode functionality of COBOL2002 can use Japanese
data items for storing UTF-16 character data as embedded variables. You can
specify an embedded variable using Japanese data items at any location in a
SQL statement that allows an embedded variable for a mixed character string
data type (MCHAR or MVARCHAR). The supported characters are limited to the
range of characters supported by the Unicode functionality of COBOL2002.

For details about UAP execution using the Unicode functionality of
COBOL2002, see 8.4.3 UAP execution using the Unicode functionality of
COBOL2002.

9. The following rules apply to declaring indicator variables.

• An indicator variable must be either a basic item between level 01 and level
49 or an independent item of level 77.

• For details about the data description terms for embedded variables, see F.
SQL Data Types and Data Descriptions.

• The SIGN, JUSTIFIED, BLANK, and WHEN ZERO clauses cannot be specified

7. UAP Creation

754

in the data description item of an indicator variable.

• FILLER cannot be used as an indicator variable name.

• When you use the -E option, you can use the declared data item as an
indicator variable even if you do not use an embedded SQL declare section.
However, the only data items that can be used as indicator variables in SQL
statements are those that are declared with a format described in F. SQL Data
Types and Data Descriptions. Data items that are declared with other formats
cannot be used as indicator variables.

The effective scope of each data item name is determined by the COBOL
syntax rules. The data items that can be used as indicator variables must be
specified in the source program. Data items in library text that is included
with the COPY or INCLUDE statement cannot be used as indicator variables.

• Data items that are inherited from a parent class by the class inheritance
facility of COBOL2002 cannot be used as indicator variables.

10. The following table shows the divisions (DIVISION) in COBOL in which SQL
statements can be described.

Table 7-3: Divisions in COBOL for describing SQL statements

D: Can be described.

--: Cannot be described.

#: Indicates the working section, file section, or linkage section.

SQL statement Data division# Procedure
division

Definition SQL -- D

Data manipulation SQL -- D

Control SQL -- D

Embedded
language

BEGIN DECLARE SECTION D --

END DECLARE SECTION D --

COPY D D

WHENEVER -- D

DECLARE CONNECTION HANDLE UNSET -- --

COMMAND EXECUTE -- --

Other statement -- D

7. UAP Creation

755

11. Because the WHENEVER statement and cursor declaration are declaration
statements, they cannot be specified within an IF or EVALUATE instruction.

12. Do not specify a control word for compile list output (EJECT, SKIP1, SKIP2,
SKIP3, or TITLE) in the SQL statements that are enclosed between the SQL
prefix and SQL terminator. To use EJECT, SKIP1, SKIP2, SKIP3, or TITLE as a
table name or column name, close the word in double quotation marks. However,
if EJECT, SKIP1, SKIP2, SKIP3, or TITLE is contained in a word phrase, such
as a table name or column name, enclosing the word in quotation marks is
unnecessary.

13. Comments (/*...*/) specified between the SQL prefix and the SQL terminator
are deleted. However, SQL optimization specifications (/*>>...<<*/) are not
deleted but instead treated as SQL statements. If a specified comment or SQL
optimization specification extends over several lines, each line is assumed to start
from the beginning of the B area until */ is specified. Do not use line continuation
characters. For details about comments and SQL optimization specifications in
SQL statements, see the manual HiRDB Version 9 SQL Reference.

14. A note (*>) can be specified in a line. However, notes within lines cannot be used
between the SQL prefix and the SQL terminator. If a note within a line is
specified, the note is treated as a character string instead of a note.

15. In lines specified in the embedded SQL declare section and SQL statements, the
tab code is treated as being one character in length. If you use the -E2 or -E3
option, the tab code is treated as being one character in length in all data sections.

16. When the object-oriented facility of COBOL2002 is used, the rules described in
7.5.1(2) SQL coding rules also apply.

7.3.2 Program example
This section provides an example of an embedded SQL UAP written in COBOL. For
details about the SQL syntax, see the HiRDB Version 9 SQL Reference manual.

(1) Example of basic operation
(a) PAD chart

Figures 7-11 through 7-13 show a PAD flowchart of example 4.

7. UAP Creation

756

Figure 7-11: Flowchart of program example 4 (1/3)

7. UAP Creation

757

Figure 7-12: Flowchart of program example 4 (2/3)

7. UAP Creation

758

Figure 7-13: Flowchart of program example 4 (3/3)

7. UAP Creation

759

(b) Coding example
A coding example of an embedded SQL UAP written in COBOL follows:
00010*STOCK MANAGEMENT PROG.
00020*
00030*
00040* ALL RIGHTS RESERVED,COPYRIGHT (C)1997 HITACHI,LTD.
00050* LICENSED MATERIAL OF HITACHI,LTD.
00060*
00070 IDENTIFICATION DIVISION.
00080 PROGRAM-ID. ECOBUAP.
00090*
00100 ENVIRONMENT DIVISION.
00110 CONFIGURATION SECTION.
00120 SOURCE-COMPUTER. HITAC.
00130 OBJECT-COMPUTER. HITAC.
00140 INPUT-OUTPUT SECTION.
00150 FILE-CONTROL.
00160 SELECT INPUT-CARD-FILE
00170 ASSIGN TO DISK
00180 ORGANIZATION IS LINE SEQUENTIAL.
00190 SELECT PRINT-STOCK-FILE
00200 ASSIGN TO LP.
00210*
00220 DATA DIVISION.
00230 FILE SECTION.
00240 FD INPUT-CARD-FILE
00250 DATA RECORD USER-CARD-REC I-STOCK-REC.
00260*
00270 01 USER-CARD-REC.
00280 02 IUSERID PIC X(20).
00290 02 IPSWD PIC X(20).

7. UAP Creation

760

00300 02 FILLER PIC X(40).
00310*
00320 01 I-STOCK-REC.
00330 02 ITYPE PIC X(1).
00340 02 FILLER PIC X(2).
00350 02 IPCODE PIC X(4).
00360 02 FILLER PIC X(2).
00370 02 IPNAME PIC N(8).
00380 02 ICOLOR PIC N(1).
00390 02 IPRICE PIC X(9).
00400 02 ISTOCK PIC X(9).
00410 02 IFLUX PIC X(1).
00420 02 FILLER PIC X(34).
00430*
00440 FD PRINT-STOCK-FILE RECORDING MODE IS F
00450 LABEL RECORD IS OMITTED
00460 DATA RECORD PRINT-STOCK-REC.
00470 01 PRINT-STOCK-REC PIC X(132).
00480*
00490 WORKING-STORAGE SECTION.
00500*
00510 EXEC SQL 1
00520 BEGIN DECLARE SECTION 1
00530 END-EXEC. 1
00540 77 XUSERID PIC X(30). 1
00550 77 XPSWD PIC X(30). 1
00560 77 XPCODE PIC X(4) VALUE '0000'. 1
00570 77 XPNAME PIC N(8). 1
00580 77 XCOLOR PIC N(1). 1
00590 77 XPRICE PIC S9(9) COMP. 1
00600 77 XSTOCK PIC S9(9) COMP. 1
00610* INDICATOR VARIABLE 1
00620 77 XIPCODE PIC S9(4) COMP VALUE 1040. 1
00630 77 XIPNAME PIC S9(4) COMP VALUE 1050. 1
00640 77 XICOLOR PIC S9(4) COMP VALUE 1060. 1
00650 77 XIPRICE PIC S9(4) COMP VALUE 1070. 1
00660 77 XISTOCK PIC S9(4) COMP VALUE 1080. 1
00670* 1
00680* 1
00690 EXEC SQL 1
00700 END DECLARE SECTION 1
00710 END-EXEC. 1
00720*
00730 01 HEADING-REC.
00740 02 FILLER PIC X(13) VALUE SPACE.
00750 02 FILLER PIC X(32)
00760 VALUE '****** STOCK TABLE LIST ******'.
00770 02 FILLER PIC X(87) VALUE SPACE.

7. UAP Creation

761

00780*
00790 01 COLUMN-NAME-REC.
00800 02 FILLER PIC X(14) VALUE SPACE.
00810 02 FILLER PIC X(9) VALUE 'PCODE'.
00820 02 FILLER PIC X(16) VALUE 'PNAME'.
00830 02 FILLER PIC X(8) VALUE 'COLOR'.
00840 02 FILLER PIC X(8) VALUE 'PRICE'.
00850 02 FILLER PIC X(8) VALUE 'QUANTITY'.
00860 02 FILLER PIC X(69) VALUE SPACE.
00870*
00880 01 LINE-REC.
00890 02 FILLER PIC X(14) VALUE SPACE.
00900 02 FILLER PIC X(9) VALUE '----- '.
00910 02 FILLER PIC X(16) VALUE '-------- '.
00920 02 FILLER PIC X(8) VALUE '------- '.
00930 02 FILLER PIC X(8) VALUE '------- '.
00940 02 FILLER PIC X(8) VALUE '------- '.
00950 02 FILLER PIC X(69) VALUE SPACE.
00960*
00970 01 SELECT-OUT-REC.
00980 02 FILLER PIC X(14) VALUE SPACE.
00990 02 O-PCODE PIC X(5).
01000 02 FILLER PIC X(2) VALUE SPACE.
01010 02 O-KANJI CHARACTER TYPE KEIS.
01020 03 O-PNAME PIC N(8).
01030 03 FILLER PIC X(2) VALUE SPACE.
01040 03 O-COLOR PIC N(5).
01050 03 FILLER PIC X(6) VALUE SPACE.
01060 03 O-PRICE PIC X(8) JUST RIGHT.
01070 03 FILLER PIC X(2) VALUE SPACE.
01080 03 O-STOCK PIC X(8) JUST RIGHT.
01090 03 FILLER PIC X(69) VALUE SPACE.
01100 77 O-PCODE-NULL PIC X(5) VALUE '*****'.
01110 77 O-PNAME-NULL PIC N(10) VALUE NC'----------'.
01120 77 O-COLOR-NULL PIC N(5) VALUE NC'-----'.
01130 77 O-PRICE-NULL PIC X(8) VALUE '********'.
01140 77 O-STOCK-NULL PIC X(8) VALUE '********'.
01150*
01160 01 I-CARD-ERROR-REC.
01170 02 FILLER PIC X(14) VALUE SPACE.
01180 02 FILLER PIC X(41)
01190 VALUE '*** ERROR *** NO CARD FOR CONNECT ***'.
01200 02 FILLER PIC X(77) VALUE SPACE.
01210*
01220 01 CONNECT-ERROR-REC.
01230 02 FILLER PIC X(14) VALUE SPACE.
01240 02 FILLER PIC X(45)
01250 VALUE '*** ERROR *** CANNOT CONNECT *** CODE

7. UAP Creation

762

= '.
01260 02 CNCT-EC PIC X(5).
01270 02 FILLER PIC X(68) VALUE SPACE.
01280*
01290 01 NORMAL-END-REC.
01300 02 FILLER PIC X(14) VALUE SPACE.
01310 02 FILLER PIC X(22)
01320 VALUE '*** NORMAL ENDED ***'.
01330 02 FILLER PIC X(96) VALUE SPACE.
01340*
01350 01 SQLERR-PRINT-REC.
01360 02 FILLER PIC X(14) VALUE SPACE.
01370 02 FILLER PIC X(34)
01380 VALUE '*** HiRDB SQL ERROR MESSAGE-ID = '.
01390 02 RC-MSGID PIC X(8).
01400 02 FILLER PIC X(14) VALUE ' SQLERRORMC ='.
01500 02 RC-SQLERRMC PIC X(62).
01510*
01520 01 WSQLCODE PIC -(10)9.
01530*
01540 01 WMSGID.
01550 02 FILLER PIC X(8).
01560 02 MSGID PIC X(3).
01570*
01580 01 ERRORMSGID.
01590 02 FILLER PIC X(5) VALUE 'KFPA1'.
01600 02 E-MSGID PIC X(4).
01610 02 FILLER PIC X(2) VALUE '-E'.
01620*
01630 01 EOF PIC X(1) VALUE '0'.
01640 01 ERR-FLG PIC X(1) VALUE '0'.
01650*
01660*
01670 PROCEDURE DIVISION.
01680 MAIN SECTION.
01690 M-1.
01700 OPEN INPUT INPUT-CARD-FILE
01710 OUTPUT PRINT-STOCK-FILE.
01720 READ INPUT-CARD-FILE
01730 AT END
01740 MOVE '1' TO ERR-FLG
01750 GO TO M-3
01760 END-READ.
01770 MOVE IUSERID TO XUSERID.
01780 MOVE IPSWD TO XPSWD.
01790*
01800 EXEC SQL (a) 2
01810 WHENEVER SQLERROR (a) 2

7. UAP Creation

763

01820 GO TO M-2 (a) 2
01830 END-EXEC. (a) 2
01840 EXEC SQL (b) 2
01850 CONNECT USER :XUSERID USING :XPSWD (b) 2
01860 END-EXEC. (b) 2
01870 PERFORM CHANGE.
01880 GO TO M-3.
01890 M-2.
01900 MOVE '2' TO ERR-FLG.
01910*
01920 M-3.
01930 EVALUATE ERR-FLG
01940 WHEN '0'
01950 PERFORM NORMAL
01960 WHEN '1'
01970 WRITE PRINT-STOCK-REC
01980 FROM I-CARD-ERROR-REC
01990 AFTER ADVANCING 2 LINES
02000 WHEN '2'
02010 MOVE SQLCODE TO CNCT-EC
02020 WRITE PRINT-STOCK-REC
02030 FROM CONNECT-ERROR-REC
02040 AFTER ADVANCING 2 LINES
02050 WHEN '3'
02060 PERFORM ERROR
02070 END-EVALUATE.
02080 M-4.
02090 CLOSE INPUT-CARD-FILE
02100 PRINT-STOCK-FILE.
02110 M-EX.
02120 EXEC SQL
02130 WHENEVER SQLERROR CONTINUE
02140 END-EXEC.
02150 EXEC SQL
02160 WHENEVER NOT FOUND CONTINUE
02170 END-EXEC
02180 EXEC SQL
02190 WHENEVER SQLWARNING CONTINUE
02200 END-EXEC.
02210 EXEC SQL
02220 DISCONNECT
02230 END-EXEC.
02240 GOBACK.
02250 CHANGE SECTION.
02260 H-1.
02270 READ INPUT-CARD-FILE
02280 AT END
02290 MOVE '1' TO ERR-FLG

7. UAP Creation

764

02300 END-READ.
02310 EXEC SQL
02320 WHENEVER SQLERROR
02330 GO TO H-2
02340 END-EXEC.
02350 PERFORM UNTIL EOF = '1' OR ERR-FLG NOT = '0'
02360 EVALUATE ITYPE
02370 WHEN 'I'
02380 PERFORM ADDITION
02390 WHEN 'U'
02400 PERFORM UPDATE
02410 WHEN 'D'
02420 PERFORM DELETION
02430 END-EVALUATE
02440 READ INPUT-CARD-FILE
02450 AT END
02460 MOVE '1' TO EOF
02470 END-READ
02480 END-PERFORM.
02490 GO TO H-EX.
02500 H-2.
02510 MOVE '3' TO ERR-FLG.
02520 H-EX.
02530 EXIT.
02540*
02550 ADDITION SECTION.
02560 T-1.
02570 MOVE IPCODE TO XPCODE.
02580 MOVE IPNAME TO XPNAME.
02590 MOVE ICOLOR TO XCOLOR.
02600 MOVE IPRICE TO XPRICE.
02610 MOVE ISTOCK TO XSTOCK.
02620 EXEC SQL
02610 WHENEVER SQLERROR GO TO T-2
02620 END-EXEC.
02630 EXEC SQL 3
02640 INSERT INTO STOCK(PCODE, PNAME, COLOR, PRICE,
SQUANTITY) 3
02650 VALUES(:XPCODE, :XPNAME, :XCOLOR, :XPRICE,
:XSTOCK) 3
02660 END-EXEC. 3
02670 GO TO T-EX.
02680 T-2.
02690 MOVE '3' TO ERR-FLG.
02700 T-EX.
02710 EXIT.
02720 UPDATE SECTION.
02730 K-1.

7. UAP Creation

765

02740 MOVE IPCODE TO XPCODE.
02750 MOVE ISTOCK TO XSTOCK.
02760 EXEC SQL
02770 WHENEVER SQLERROR GO TO K-2
02780 END-EXEC.
02790 EVALUATE IFLUX
02800 WHEN '1' 4
02810 EXEC SQL (a) 4
02820 UPDATE STOCK SET SQUANTITY = SQUANTITY +
:XSTOCK (a) 4
02830 WHERE PCODE=:XPCODE (a) 4
02840 END-EXEC (a) 4
02850 WHEN '2' 4
02860 EXEC SQL (b) 4
02870 UPDATE STOCK SET SQUANTITY = SQUANTITY -
:XSTOCK (b) 4
02880 WHERE PCODE=:XPCODE (b) 4
02890 END-EXEC (b) 4
02900 END-EVALUATE.
02910 GO TO K-EX.
02920 K-2.
02930 MOVE '3' TO ERR-FLG.
02940 K-EX.
02950 EXIT.
02960*
02970 DELETION SECTION.
02980 S-1.
02990 MOVE IPCODE TO XPCODE.
03010 EXEC SQL
03020 WHENEVER SQLERROR GO TO S-2
03030 END-EXEC.
03040 EXEC SQL 5
03050 DELETE FROM STOCK 5
03060 WHERE PCODE=:XPCODE 5
03070 END-EXEC. 5
03080 GO TO S-EX.
03090 S-2.
03100 MOVE '3' TO ERR-FLG.
03110 S-EX.
03120 EXIT.
03130*
03140 NORMAL SECTION.
03150 F-0.
03160 WRITE PRINT-STOCK-REC
03170 FROM HEADING-REC
03180 AFTER ADVANCING 4 LINES.
03190 WRITE PRINT-STOCK-REC
03200 FROM COLUMN-NAME-REC

7. UAP Creation

766

03210 AFTER ADVANCING 2 LINES.
03220 WRITE PRINT-STOCK-REC
03230 FROM LINE-REC
03240 AFTER ADVANCING 2 LINES.
03250 F-1.
03260 EXEC SQL
03270 WHENEVER SQLERROR GO TO F-4
03280 END-EXEC.
03290 EXEC SQL (a) 6
03300 DECLARE CR1 CURSOR FOR (a) 6
03310 SELECT PCODE,PNAME,COLOR,PRICE,SQUANTITY FROM
STOCK (a) 6
03320 END-EXEC. (a) 6
03330 EXEC SQL (b) 6
03340 OPEN CR1 (b) 6
03350 END-EXEC. (b) 6
03360 F-2.
03370 EXEC SQL (a) 7
03380 WHENEVER NOT FOUND (a) 7
03390 GO TO F-3 (a) 7
03400 END-EXEC. (a) 7
03410 EXEC SQL (b) 7
03420 FETCH CR1 (b) 7
03430 INTO :XPCODE:XIPCODE, :XPNAME:XIPNAME,
(b) 7
03440 :XCOLOR:XICOLOR, :XPRICE:XIPRICE,
:XSTOCK:XISTOCK (b) 7
03450 END-EXEC. (b) 7
03460 EXEC SQL
03470 WHENEVER NOT FOUND
03480 CONTINUE
03490 END-EXEC.
03500 IF XIPCODE IS >= 0 THEN
03510 MOVE XPCODE TO O-PCODE
03520 ELSE
03530 MOVE O-PCODE-NULL TO O-PCODE
03540 END-IF.
03550 IF XIPNAME IS >= 0 THEN
03560 MOVE XPNAME TO O-PNAME
03570 ELSE
03580 MOVE O-PNAME-NULL TO O-PNAME
03590 END-IF.
03600 IF XICOLOR IS >= 0 THEN
03610 MOVE XCOLOR TO O-COLOR
03620 ELSE
03630 MOVE O-COLOR-NULL TO O-COLOR
03640 END-IF.
03650 IF XIPRICE IS >= 0 THEN

7. UAP Creation

767

03660 MOVE XPRICE TO O-PRICE
03670 ELSE
03680 MOVE O-PRICE-NULL TO O-PRICE
03690 END-IF.
03700 IF XISTOCK IS >= 0 THEN
03710 MOVE XSTOCK TO O-STOCK
03720 ELSE
03730 MOVE O-STOCK-NULL TO O-STOCK
03740 END-IF.
03750 WRITE PRINT-STOCK-REC
03760 FROM SELECT-OUT-REC
03770 AFTER ADVANCING 2 LINES.
03780 GO TO F-2.
03790 F-3.
03800 EXEC SQL
03810 WHENEVER SQLERROR CONTINUE
03820 END-EXEC.
03830 EXEC SQL
03840 WHENEVER NOT FOUND CONTINUE
03850 END-EXEC
03860 EXEC SQL
03870 WHENEVER SQLWARNING CONTINUE
03880 END-EXEC.
03890 EXEC SQL (a) 8
03900 CLOSE CR1 (a) 8
03910 END-EXEC. (a) 8
03920*
03930 EXEC SQL (b) 8
03940 COMMIT (b) 8
03950 END-EXEC. (b) 8
03960*
03970 WRITE PRINT-STOCK-REC
03980 FROM NORMAL-END-REC
03990 AFTER ADVANCING 2 LINES.
04000 GO TO F-EX.
04010 F-4.
04020 PERFORM ERROR.
04030 F-EX.
04040 EXIT.
04050 ERROR SECTION.
04060 I-1.
04070 MOVE SQLCODE TO WSQLCODE.
04080 MOVE WSQLCODE TO WMSGID.
04090 MOVE MSGID TO E-MSGID.
04100 MOVE ERRORMSGID TO RC-MSGID.
04110 MOVE SQLERRMC TO RC-SQLERRMC.
04120 WRITE PRINT-STOCK-REC
04130 FROM SQLERR-PRINT-REC

7. UAP Creation

768

04140 AFTER ADVANCING 2 LINES.
04150 EXEC SQL (a) 9
04160 WHENEVER SQLERROR CONTINUE (a) 9
04170 END-EXEC. (a) 9
04180 EXEC SQL (a) 9
04190 WHENEVER NOT FOUND CONTINUE (a) 9
04200 END-EXEC. (a) 9
04210 EXEC SQL (a) 9
04220 WHENEVER SQLWARNING CONTINUE (a) 9
04230 END-EXEC. (a) 9
04240 EXEC SQL (b) 9
04250 ROLLBACK (b) 9
04260 END-EXEC. (b) 9
04270 I-EX.
04280 EXIT.

1. Starting and ending the embedded SQL declaration section

Encloses the variables to be used in the UAP between BEGIN DECLARE SECTION
and END DECLARE SECTION. These variables indicate the start and end of the
embedded SQL declaration section.

2. Connecting with HiRDB

(a)Specifying the abnormal processing

Specifies the branch destination (M-2) as the process to be executed if an
error (SQLERROR) occurs after execution of the subsequent SQL statements.

(b)Connecting to HiRDB

Informs HiRDB of the authorization identifier (XUSERID) and the password
(XPSWD) so that the UAP can use HiRDB.

3. Inserting rows into the stock table

Inserts the values read into the embedded variables into each column of the stock
table.

4. Updating stock table rows

(a)Incoming stock

Sets the product code that was read into embedded variable :XPCODE as the
key, and retrieves the row to be updated from the stock table. Updates the
row by adding the value that was read into embedded variable :XQUANTITY
to the QUANTITY value of the retrieved row.

(b)Stock

Sets the product code that was read into embedded variable :XPCODE as the
key, and retrieves the row to be updated from the stock table. Updates the

7. UAP Creation

769

row by deleting the value that was read into embedded variable
:XQUANTITY from the QUANTITY value of the retrieved row.

5. Deleting stock table rows

Sets the product code that was read into embedded variable :XPCODE as the key,
and deletes the rows having a key equal to that value.

6. Declaring and opening the CR1 cursor

(a)Declaring the CR1 cursor

Declares the CR1 cursor for retrieving rows from the stock table (STOCK).

(b)Opening the CR1 cursor

Positions the cursor immediately in front of a row to be retrieved from the
stock table (STOCK) so that the row can be fetched.

7. Fetching stock table rows

(a)Specifying the abnormal processing

Retrieves the row indicated by the CR1 cursor from the stock table (STOCK),
and sets the row values into the embedded variables.

(b)Executing the FETCH statement

Fetches the row indicated by the CR1 cursor from the stock table (STOCK),
and sets the data to the embedded variables.

8. Terminating the transaction

(a)Closing the CR1 cursor

Closes the CR1 cursor.

(b)Terminating the transaction

Terminates the current transaction normally, and validates the results of the
database addition, update, and deletion operations that were executed in that
transaction.

9. Rolling back the transaction

Specifying the processing

Specifies continuation to the next instruction (without special processing) if
an error (SQLERROR) or warning (SQLWARNING) occurs during execution of
a subsequent SQL statement.

Invalidating the transaction

Rolls back the current transaction to invalidate the results of the database
addition, update, and deletion operations that were executed in that

7. UAP Creation

770

transaction.

(2) Example that uses a row interface
(a) PAD chart

Figures 7-14 through 7-17 show the PAD chart for program example 5.

7. UAP Creation

771

Figure 7-14: PAD chart for program example 5 (1/4)

7. UAP Creation

772

Figure 7-15: PAD chart for program example 5 (2/4)

7. UAP Creation

773

7. UAP Creation

774

Figure 7-16: PAD chart for program example 5 (3/4)

7. UAP Creation

775

Figure 7-17: PAD chart for program example 5 (4/4)

(b) Coding example
00010 **
00020 * *
00030 * EMBEDDED TYPE SQL COBOL UAP *
00040 * ROW INTERFACE SAMPLE *
00050 * 1997/11/27 *
00060 **
00070 IDENTIFICATION DIVISION.
00080 PROGRAM-ID. ROW-SAMPLE.
00090 AUTHOR. CLIENT.
00100 DATA-WRITTEN. 1997/11/27.
00110 DATA-COMPILED. ROW-SAMPLE.
00120 REMARKS.
00130 *
00140 ENVIRONMENT DIVISION.
00150 CONFIGURATION SECTION.
00160 SOURCE-COMPUTER. HITAC.

7. UAP Creation

776

00170 OBJECT-COMPUTER. HITAC.
00180 INPUT-OUTPUT SECTION.
00190 FILE-CONTROL.
00200 SELECT OUTLIST ASSIGN TO LP.
00210 *
00220 DATA DIVISION.
00230 FILE SECTION.
00240 FD OUTLIST RECORDING MODE IS F
00250 LABEL RECORD IS OMITTED
00260 DATA RECORD OUTREC.
00270 01 OUTREC PIC X(80).
00280 *
00290 WORKING STORAGE SECTION.
00300 EXEC SQL
00310 BEGIN DECLARE SECTION
00320 END-EXEC.
00330 01 IN-REC1 IS GLOBAL.
00340 02 IN-CHR1 PIC X(15) VALUE 'EVA-00'.
00350 02 IN-INT1 PIC S9(9) COMP VALUE 255.
00360 02 IN-INT2 PIC S9(9) COMP VALUE 1.
00370
00380 01 XSQLROW IS GLOBAL1
00390 02 ROW-CHR1 PIC X(30). 1
00400 02 ROW-INT1 PIC S9(9) COMP. 1
00410 02 ROW-INT2 PIC S9(9) COMP. 1
00420
00430 EXEC SQL
00440 END DECLARE SECTION
00450 END-EXEC.
00460
00470 01 DISP-REC IS GLOBAL.
00480 02 DISP-CHR1 PIC X(15).
00490 02 DISP-INT1 PIC S9(9).
00500 02 DISP-INT2 PIC S9(4).
00510 01 ERRFLG PIC S9(4) COMP IS GLOBAL.
00520
00530 01 MSG-ERR PIC X(10) VALUE '!! ERROR'.
00540 01 MSG-CODE IS GLOBAL.
00550 02 FILLER PIC X(15) VALUE '!! SQLCODE ='
00560 02 MSG-SQLCODE PIC S9(9) DISPLAY.
00570 01 MSG-MC IS GLOBAL.
00580 02 FILLER PIC X(15) VALUE '!! SQLERRMC ='
00590 02 MSG-SQLERRMC PIC X(100).
00600
00610 PROCEDURE DIVISION.
00620 **
00630 * DISPLAY TITLE
00640 **

7. UAP Creation

777

00650 MAIN SECTION
00660 CALL 'DISPLAY-TITLE'.
00670 MOVE ZERO TO ERRFLG.
00680
00690 **
00700 * CONNECT
00710 **
00720 EXEC SQL
00730 WHENEVER SQLERROR GOTO ERR-EXIT
00740 END-EXEC
00750
00760 DISPLAY '***** CONNECT '.
00770 EXEC SQL 2
00780 CONNECT 2
00790 END-EXEC. 2
00800 DISPLAY '***** CONNECT : END'.
00810
00820 **
00830 * INIT
00840 **
00850 DISPLAY '## TABLE WILL BE INITIALIZED'.
00860 CALL 'INIT-TABLE'.
00870 IF ERRFLG < ZERO
00880 GO TO ERR-EXIT
00890 END-IF
00900 DISPLAY '## IS NORMAL'.
00910
00920 **
00930 * INSERT
00940 **
00950 DISPLAY 'INSERT ## DATA'.
00960 CALL 'TEST-INSERT'.
00970 IF ERRFLG < ZERO
00980 GO TO ERR-EXIT
00990 END-IF
01000 DISPLAY '## IS NORMAL'.
01010
01020 **
01030 * ROW
01040 **
01050 DISPLAY '## ROW TYPE TEST WILL BE EXECUTED'.
01060 CALL 'TEST-ROW'.
01070 IF ERRFLG < ZERO
01080 GO TO ERR-EXIT
01090 END-IF
01100 DISPLAY '## IS NORMAL'.
01110
01120 **

7. UAP Creation

778

01130 * DISCONNECT
01140 **
01150 ERR-EXIT.
01160 IF SQLCODE < ZERO
01170 MOVE SQLCODE TO MSG-SQLCODE
01180 MOVE SQLERRMC TO MSG-SQLERRMC
01190 DISPLAY MSG-ERR
01200 DISPLAY MSG-CODE
01210 DISPLAY MSG-MC
01220 MOVE -1 TO ERRFLG
01230 END-IF
01240
01250 EXEC SQL
01260 WHENEVER SQLERROR CONTINUE
01270 END-EXEC
01280 EXEC SQL
01290 WHENEVER NOT FOUND CONTINUE
01300 END-EXEC
01310 EXEC SQL
01320 WHENEVER SQLWARNING CONTINUE
01330 END-EXEC
01340
01350 DISPLAY '##DISCONNECT'
01360
01370 EXEC SQL 3
01380 DISCONNECT 3
01390 END-EXEC 3
01400 STOP RUN.
01410
01420 **
01430 * INSERT STATEMENT TEST
01440 **
01450 IDENTIFICATION DIVISION.
01460 PROGRAM-ID. TEST-INSERT.
01470 DATA DIVISION.
01480 WORKING-STORAGE SECTION.
01490 01 DCNT PIC S9(9) COMP.
01500 PROCEDURE DIVISION.
01510 EXEC SQL
01520 WHENEVER SQLERROR GOTO :Exit-Test-Insert
01530 END-EXEC.
01540 **
01550 * INSERT HOST
01560 **
01570 DISPLAY 'INSERT start WITH ***** EMBEDDED
 VARIABLE'
01580 MOVE ZERO TO DCNT.
01590 INSERT-LOOP.

7. UAP Creation

779

01600 COMPUTE IN-INT1 = DCNT
01610 COMPUTE IN-INT2 = DCNT + 100
01620 COMPUTE DCNT = DCNT + 1
01630 EXEC SQL 4
01640 INSERT INTO TT1(CLM1, 4
01650 CLM2, 4
01660 CLM3) 4
01670 VALUES (:IN-CHR1, 4
01680 :IN-INT1, 4
01690 :IN-INT2) 4
01700 END-EXEC 4
01710 IF DCNT <20 THEN
01720 GO TO INSERT-LOOP
01730 END-IF
01740 DISPLAY '***** insert : SUCCESS'.
01750 **
01760 *
01770 **
01780 EXIT-TEST-INSERT.
01790 IF SQLCODE < ZERO
01800 MOVE SQLCODE TO MSG-SQLCODE
01810 MOVE SQLERRMC TO MSG-SQLERRMC
01820 DISPLAY MSG-CODE
01830 DISPLAY MSG-MC
01840 MOVE -1 TO ERRFLG
01850 END-IF
01860 DISPLAY '>> TEST-INSERT<<'
01870 GOBACK.
01880 **
01890 * WARNING
01900 **
01910 INSERT-WARNING.
01920 DISPLAY 'WARNING'
01930 MOVE SQLCODE TO MSG-SQLCODE
01940 MOVE SQLERRMC TO MSG-SQLERRMC
01950 DISPLAY MSG-CODE
01960 DISPLAY MSG-MC,
01970 END PROGRAM TEST-INSERT.
01980
01990 **
02000 * TEST ROW
02010 **
02020 IDENTIFICATION DIVISION.
02030 PROGRAM-ID. TEST-ROW.
02040 DATA DIVISION.
02050 WORKING-STORAGE SECTION.
02060 PROCEDURE DIVISION.
02070 DISPLAY '***** ROW CURSOR OPEN'

7. UAP Creation

780

02080 EXEC SQL 5
02090 DECLARE CUR_ROW CURSOR FOR 5
02100 SELECT ROW FROM TT15
02110 WHERE CLM2 = 10 5
02120 FOR UPDATE OF CLM35
02130 END-EXEC 5
02140 **
02150 * ROW CURSOR
02160 **
02170 DISPLAY '***** ROW CURSOR OPEN'.
02180 EXEC SQL
02190 WHENEVER SQLERROR GOTO :Exit-Test-Row
02200 END-EXEC
02210 EXEC SQL 6
02220 OPEN CUR_ROW 6
02230 END-EXEC 6
02240
02250 **
02260 * FETCH ROW CURSOR
02270 **
02280 DISPLAY '***** ROW CURSOR FETCH'
02290 EXEC SQL
02300 WHENEVER NOT FOUND GOTO :Exit-Test-ROW
02310 END-EXEC
02320 EXEC SQL
02330 WHENEVER SQLERROR GOTO :Exit-Test-ROW
02340 END-EXEC
02350 MOVE SPACE TO XSQLROW
02360 EXEC SQL 7
02370 FETCH CUR_ROW INTO :XSQLROW 7
02380 END-EXEC 7
02390 DISPLAY '## FETCH DATA'
02400 MOVE ROW-CHR1 TO DISP-CHR1
02410 MOVE ROW-INT1 TO DISP-INT1
02420 MOVE ROW-INT2 TO DISP-INT2
02430 DISPLAY DISP-REC
02440
02450 DISPLAY '***** ROW UPDATE'
02460 MOVE 'ANGEL' TO ROW-CHR1
02470 EXEC SQL 8
02480 UPDATE TT1 SET ROW = :XSQLROW 8
02490 WHERE CURRENT OF CUR_ROW 8
02500 END-EXEC 8
02510
02520 **
02530 * FETCH ROW CURSOR
02540 **
02550 DISPLAY '***** ROW CURSOR CLOSE'

7. UAP Creation

781

02560 EXEC SQL
02570 WHENEVER NOT FOUND CONTINUE
02580 END-EXEC
02590 EXEC SQL
02600 WHENEVER SQLERROR CONTINUE
02610 END-EXEC
02620 EXEC SQL 9
02630 CLOSE CUR_ROW 9
02640 END-EXEC. 9
02650 **
02660 *
02670 **
02680 EXIT-TEST-ROW.
02690 IF SQLCODE < ZERO THEN
02700 MOVE SQLCODE TO MSG-SQLCODE
02710 MOVE SQLERRMC TO MSG-SQLERRMC
02720 DISPLAY MSG-CODE
02730 DISPLAY MSG-MC
02740 MOVE -1 TO ERRFLG
02750 END-IF
02760 EXEC SQL
02770 WHENEVER NOT FOUND CONTINUE
02780 END-EXEC
02790 EXEC SQL
02800 WHENEVER SQLERROR CONTINUE
02810 END-EXEC
02820 EXEC SQL
02830 COMMIT
02840 END-EXEC
02850 DISPLAY '>> TEST-ROW END <<'
02860 GOBACK.
02870
02880 **
02890 * WARNING
02900 **
02910 ROW-WARNING.
02920 DISPLAY 'WARNING'
02930 MOVE SQLCODE TO MSG-SQLCODE
02940 MOVE SQLERRMC TO MSG-SQLERRMC
02950 DISPLAY MSG-CODE
02960 DISPLAY MSG-MC.
02970 END PROGRAM TEST-ROW.
02980
02990
03000 **
03010 * INITIALIZE TABLE
03020 **
03030 IDENTIFICATION DIVISION.

7. UAP Creation

782

03040 PROGRAM-ID. INIT-TABLE.
03050 DATA DIVISION.
03060 WORKING-STORAGE SECTION.
03070 PROCEDURE DIVISION.
03080 EXEC SQL
03090 WHENEVER SQLERROR CONTINUE
03100 END-EXEC
03110
03120 **
03130 * DROP TABLE
03140 **
03150 DISPLAY '***** DROP TABLE'.
03160 EXEC SQL 10
03170 DROP TABLE TT1 10
03180 END-EXEC 10
03190 DISPLAY '***** CREATE SCHEMA'.
03200 EXEC SQL 11
03210 CREATE SCHEMA 11
03220 END-EXEC 11
03230
03240 **
03250 * COMMIT
03260 **
03270 DISPLAY '***** COMMIT START'.
03280 EXEC SQL
03290 WHENEVER SQLERROR GOTO EXIT-INIT-TABLE
03300 END-EXEC
03310 EXEC SQL
03320 COMMIT
03330 END-EXEC
03340 DISPLAY '***** COMMIT : END '.
03350
03360 **
03370 * CREATE TABLE
03380 **
03390 DISPLAY '***** create table'.
03400 EXEC SQL 12
03410 CREATE FIX TABLE TT1(CLM1 CHAR(30), 12
03420 CLM2 INTEGER, 12
03430 CLM3 INTEGER) 12
03440 END-EXEC 12
03450
03460 DISPLAY '***** create table : SUCCESS'.
03470
03480 **
03490 *
03500 **
03510 EXIT-INIT-TABLE.

7. UAP Creation

783

03520 IF SQLCODE < ZERO THEN
03530 MOVE SQLCODE TO MSG-SQLCODE
03540 MOVE SQLERRMC TO MSG-SQLERRMC
03550 DISPLAY MSG-CODE
03560 DISPLAY MSG-MC
03570 MOVE -1 TO ERRFLG
03580 END-IF
03590 GOBACK.
03600
03610 **
03620 * WARNING
03630 **
03640 INIT-TABLE-WARNING.
03650 DISPLAY 'WARNING'
03660 MOVE SQLCODE TO MSG-SQLCODE
03670 MOVE SQLERRMC TO MSG-SQLERRMC
03680 DISPLAY MSG-CODE
03690 DISPLAY MSG-MC.
03700 END PROGRAM INIT-TABLE.
03710
03720 **
03730 * DISPLAY
03740 **
03750 IDENTIFICATION DIVISION.
03760 PROGRAM-ID. DISPLAY-TITLE.
03770 DATA DIVISION.
03780 WORKING-STORAGE SECTION.
03790 PROCEDURE DIVISION.
03800 DISPLAY '###################################'
03810 DISPLAY '# #'
03820 DISPLAY '# THIS PROGRAM IS A SAMPLE #'
03830 DISPLAY '# PROGRAM FOR THE ROW-TYPE #'
03840 DISPLAY '# INTERFACE #'
03850 DISPLAY '###################################'
03860 END PROGRAM DISPLAY-TITLE.
03870 END PROGRAM ROW-SAMPLE.

1. Declaring a ROW-type embedded variable

Declares the embedded variable (:XSQLROW) to be used by the row interface.

2. Connecting to HiRDB

Uses the authorization identifier and password set in the PDUSER environment
variable to connect to the server.

3. Disconnecting from HiRDB

Disconnects the UAP from the server.

7. UAP Creation

784

4. Adding rows

Adds data to the FIX table (TT1).

5. Declaring the CUR_ROW cursor

Declares the CUR_ROW cursor, because the row interface will be used to retrieve
the FIX table (TT1).

6. Opening the CUR_ROW cursor

Positions the cursor immediately in front of a row to be retrieved from the FIX
table (TT1) so that the row can be fetched.

7. Fetching rows

Fetches the row indicated by the CUR_ROW cursor from the FIX table (TT1), and
sets the value to the embedded variable (:XSQLROW).

8. Updating rows

Updates the FIX table (TT1) row where the CUR_ROW cursor is positioned with
the embedded variable (:XSQLROW) value.

9. Closing the CUR_ROW cursor

Closes the CUR_ROW cursor.

10. Dropping tables (TT1)

Deletes any existing tables of the same name so that the FIX table (TT1) can be
created.

11. Creating a schema

Creates a schema in case there are no schemas.

12. Creating the FIX table (TT1)

Creates the FIX table (TT1). The row interface can be used only for tables that
have the FIX attribute.

(3) Example that uses the TYPE, TYPEDEF, and SAME AS clauses
A coding example that uses the TYPE, TYPEDEF, and SAME AS clauses follows:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CBL001.
000300 DATA DIVISION.
000400 WORKING-STORAGE SECTION.
000500 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
000600* -- type declaration --
000700 01 VCHR20 TYPEDEF.
000800 05 LEN PIC S9(4) COMP.

7. UAP Creation

785

000900 05 STR PIC X(20).
001000
001100* -- data declaration --
001200 01 D-4C.
001300 05 XCUT TYPE VCHR20.
001400 05 XCOLOR PIC X(10).
001500 05 XCLARITY SAME AS XCOLOR.
001600 05 XCARAT PIC S9(4) COMP.
001700
001800 EXEC SQL END DECLARE SECTION END-EXEC.
 : :
 : :
002000 PROCEDURE DIVISION.
002100 CB_001 SECTION.
 : :
 : :
003400 INS-1.
003500 EXEC SQL
003600 INSERT INTO A_DIM (C1, C2, C3, C4)
003700 VALUES (:XCUT, :XCOLOR, :XCLARITY, :XCARAT)
003800 END-EXEC.
 : :
 : :
005000 INS-EX.
005100 EXIT.
005200 END PROGRAM CBL001.

7. UAP Creation

786

7.4 Writing a UAP in C++

This section explains the coding rules for embedding SQL statements in UAPs written
in C++.

7.4.1 Coding rules
When a UAP is written, the labeling rules, SQL coding rules, and SQL syntax rules
must be followed.

(1) Labeling rules
The labeling rules are basically same as for C. These types of labels cannot be used:

• Labels that begin with uppercase letters SQL

• Labels that begin with lowercase letter p_

• Labels that begin with lowercase letters pd

For naming embedded variables, indicator variables, and branching destination labels,
the labeling rules and the C rules must be followed.

(2) SQL coding rules
• The notation // can be used to indicated a comment statement.

• Members of an object cannot be used as embedded variables.

• An object method cannot be specified in the WHENEVER statement.

• An SQL statement cannot be coded in a class definition.

All other coding rules are the same as for C. For details, see 7.2.1(2) SQL coding rules.

7. UAP Creation

787

7.5 Writing a UAP in OOCOBOL

This section explains the coding rules for embedding SQL statements in UAPs written
in OOCOBOL.

7.5.1 Coding rules
When a UAP is written, the labeling rules, SQL coding rules, and SQL syntax rules
must be followed.

(1) Labeling rules
The labeling rules are basically same as for COBOL. These rules apply to labels:

(a) SQL reserved words
• Both uppercase and lowercase letters can be used

• Uppercase and lowercase letters can be mixed

(b) Host names
• Labels that begin with SQL cannot be used

• Spaces can be entered following a colon within a host name

• Host names are not case-sensitive

• Uppercase and lowercase letters can be mixed

Embedded variables, indicator variables, and branching destination labels must be
named in accordance with the COBOL labeling rules.

The following labels, which have the external attribute, cannot be used:

• Labels that begin with the uppercase letters SQL

• Labels that begin with the lowercase letter p_

• Labels that begin with the lowercase letters pd

(2) SQL coding rules
1. Members of an object cannot be used as embedded variables.

2. An object method cannot be specified in the WHENEVER statement.

3. An SQL statement cannot be coded in a class definition.

All other coding rules are the same as for COBOL. For details, see 7.3.1(2) SQL coding
rules.

7. UAP Creation

788

7.6 Creating a UAP in 64-bit mode

This section describes how to create at a HiRDB client a UAP that supports 64-bit
mode.

(1) Languages and functions available to 64-bit-mode UAPs
(a) Languages

You can use C language, C++ language, and COBOL (COBOL2002) to create UAPs.
OOCOBOL is not supported.

(b) Functions
The XA interfaces are not supported. Other functions are fully supported.

The multi-connection facility provides real threads, not pseudo-threads.

(2) Differences in SQL Communications Area
The structure of the SQL Communications Area changes when you set your HiRDB in
64-bit mode. The lengths of the communications area names also change, as shown in
the table below. For details about the SQL Communications Area, see Appendix A.
SQL Communications Area.

Table 7-4: Communications area names that change in 64-bit mode

(3) Differences in the SQL descriptor area
The structure of SQL descriptor areas changes when you set your HiRDB in 64-bit
mode. The lengths of the descriptor area names also change, as shown in the table
below. For details about the SQL descriptor areas, see Appendix B. SQL Descriptor
Areas.

Communications area name Length (bytes)

32-bit mode 64-bit mode

SQLCA 336 368

SQLCABC 4 8

SQLCODE 4 8

SQLERRD 4 x 6 8 x 6

7. UAP Creation

789

Table 7-5: Descriptor area names that change in 64-bit mode

Legend:

n: Number of SQLVARs specified in the descriptor area name SQLN

--: There is no change to the length or data type.

(4) Differences between SQL data types and C data description
In a UAP written in C language when 64-bit mode is supported, the size of the long
type is 8 bytes. Therefore, embedded variables that have been using long will use int
instead of long. This change affects the data descriptions in C language as shown in
the table below. For details about the data descriptions in C language, see Appendix
F.1 SQL data types and C data descriptions.

Table 7-6: C data descriptions that change in 64-bit mode

Descriptor area name 32-bit mode 64-bit mode

Length
(bytes)

Data type Length
(bytes)

Data type

SQLDA 16 + 16 x n -- 24 + 24 x n --

SQLDABC 4 -- 8 --

SQLVAR 16 x n -- 24 x n --

SQLVAR_LOB 16 x n -- 24 x n --

SQLLOBLEN -- long -- int

SQLDATA 4 -- 8 --

SQLIND 4 -- 8 --

SQLLOBIND 4 long * 8 int *

SQL data type C data description Item
specification

Remarks

INTEGER Simpl
e
format

int variable-name; variable None

Array
format

int variable-name[n]; array 1 n 4096

Indicator variable for BLOB int
indicator-variable-name
;

-- None

7. UAP Creation

790

Legend:

n: Length (bytes)

--: Cannot be specified

(5) Differences in creating UAPs that use hash functions for table partitioning
(applicable to HP-UX and Linux editions only)

When you compile and link a UAP that uses hash functions for table partitioning, the
shared libraries to be specified are different. For details about how to create a UAP that
uses hash functions for table partitioning, see Appendix H.1 Hash function for table
partitioning.

(6) Migrating a HiRDB client from 32-bit mode to 64-bit mode
In order to migrate a HiRDB client from 32-bit mode to 64-bit mode, you must upgrade
your HiRDB client to 64-bit mode edition (by installing 64-bit mode edition of HiRDB
client and then setting up the client environment). For details about client environment
setup, see 6. Client Environment Setup.

When you install the 64-bit mode edition of HiRDB client, files for 64-bit mode are
created. For details about the files that are created during installation, see 6.4
Organization of directories and files for a HiRDB client.
Once you have set up the client environment, you must make changes to the UAPs so
that they will function in 64-bit mode. The procedure is explained below:

Procedure

1. If the long type is specified in the declaration of an embedded variable,
change it to the int type.

2. Preprocess the UAP. In this step, specify the option for generating a
64-bit-mode post source (-h64 in UNIX, /h64 in Windows).

3. Compile the UAP. In this step, specify the option for generating a
64-bit-mode object.

4. Link the UAP. In this step, specify the 64-bit-mode client libraries to be
linked.

Note

SQL statement struct{

 int len;
 char str[n];
}variable-name;

structure None

SQL data type C data description Item
specification

Remarks

7. UAP Creation

791

For details about preprocessing, compiling, and linking, see 8.2
Preprocessing and 8.3 Compiling and linking.

793

Chapter

8. Preparation for UAP Execution

This chapter explains the preparations required before a UAP is executed.

This chapter contains the following sections:

8.1 UAP execution procedure
8.2 Preprocessing
8.3 Compiling and linking
8.4 Notes

8. Preparation for UAP Execution

794

8.1 UAP execution procedure

A UAP in which SQL statements are embedded cannot be executed directly. This
section explains the procedure for executing such a UAP.

8.1.1 Executing a UAP written in C
A UAP in which SQL statements are embedded in a source program written in C must
be converted to a post-source program by an SQL preprocessor. The resulting post
source becomes a load module (executable file) when it is compiled and linked by a
dedicated language compiler.

The following figure shows the procedure for executing a UAP written in C.

8. Preparation for UAP Execution

795

Figure 8-1: Execution procedure for UAP written in C

8.1.2 Executing a UAP written in COBOL
A UAP in which SQL statements are embedded in a source program written in
COBOL must be converted to a post-source program by an SQL preprocessor. The

8. Preparation for UAP Execution

796

resulting post source becomes a load module (executable file) when it is compiled and
link edited by the COBOL85 compiler.

The following figure shows the procedure for executing a UAP written in COBOL.

Figure 8-2: Execution procedure for a UAP written in COBOL

8. Preparation for UAP Execution

797

8.2 Preprocessing

8.2.1 Overview
(1) What is preprocessing?

Because a UAP source file in which SQL statements are embedded cannot be executed
directly, an SQL preprocessor must be executed. Executing the SQL preprocessor
converts the embedded SQL statements into a high-level language description. This
process of converting a UAP source to a post source that can be converted by a
language compiler by executing the SQL preprocessor is called preprocessing.

The SQL preprocessor creates a high-level language function corresponding to the
SQL statements and embeds it in the source. During this process, the SQL
preprocessor checks the validity of the data types and values of the variables, as well
as the syntax of various names. If the checking results indicate that an error was
detected in the input source program, a message to that effect is output to the standard
error output.

(2) Items that are not checked by the SQL preprocessor
The SQL preprocessor does not check the following items:

• If there are any table names for which a query needs to be addressed to the server

• If there are any column names for which a query needs to be addressed to the
server

• If there are other identifiers, data types, or functions for which a query needs to
be addressed to the server

• Table access privileges

(3) Notes about preprocessing
1. The setting of environment variables and the command specification methods

differ depending on the language used in the source program and the
environment. The SQL preprocessor must therefore match the language and the
environment being used.

2. In the Windows environment, the SQL preprocessor cannot perform a rigorous
SQL syntax check unless /Xp is specified. Therefore, the preprocessor may not
be able to detect all syntax errors in the SQL statements. Also, with Linux for
AP8000 and AIX clients, the SQL preprocessor cannot perform a rigorous SQL
syntax check if a character code type other than SJIS is used.

3. In the Windows environment, only sjis and lang-c character codes can be used
because EUC codes cannot be recognized. If a value other than sjis or lang-c
is specified as the character code type in the HiRDB server, an error occurs when

8. Preparation for UAP Execution

798

a HiRDB client executes a UAP.

8.2.2 Preprocessing in UNIX
(1) C

(a) Environment variable setting
The following environment variable can be set before a UAP is preprocessed:

PDDIR

This environment variable specifies the absolute path name for the installation
directory for HiRDB (server or client); the default directory is /HiRDB.

This variable need not be specified when the installation destination is /HiRDB.

LANG

This environment variable specifies the character code classification of the
HiRDB client environment. The following figure shows the character codes that
can be specified in LANG.

Table 8-1: Character codes that can be specified for LANG

Legend:

--: Specify the PDCLTLANG environment variable instead of LANG.

Note

If the character code classification of the character strings described in a UAP

Server character code
classification set with

pdsetup command

Value of LANG environment variable

HP-UX Solaris AIX Linux#1

sjis ja_JP.SJIS ja_JP.PCK Ja_JP Any value#2

chinese chinese-s chinese-s chinese-s chinese-s

ujis ja_JP.eucJP ja ja_JP ja_JP.eucJP,
ia_JP, or
Ja_JP.ujis

lang-c Single-byte character codes of each language

utf-8 --

chinese-gb18030 --

No specification ja_JP.SJIS ja Ja_JP ja_JP.eucJP,
ia_JP, or
Ja_JP.ujis

8. Preparation for UAP Execution

799

does not match the character code classification for UAP execution, the UAP does
not operate correctly. Therefore, the value of the LANG environment variable
specified for UAP creation must be the same as the LANG value specified for UAP
execution.

#1: For locales that are not supported by HiRDB, lang-c is assumed.

#2: Hitachi recommends that you set the LANG environment variable to a character
code classification that can be used by the corresponding HiRDB server. If the HiRDB
server cannot use the target character code classification, specify the lang-c value.

If this environment variable is not specified, or if the specified value is different
from the value that was set to the environment variable, ja_SP.SJIS is assumed.
In the HP-UX environment, only ja_JP.SJIS can be specified.

For details about the pdsetup command, see the HiRDB Version 9 Command
Reference manual.

PDCLTLANG

This environment variable specifies the character code classification to be used in
preprocessing instead of the character code classification specified by the LANG
environment variable. For details about the PDCLTLANG operand, see 6.6.4
Environment definition information.

Example 1: Setting the environment in sh (Bourne shell)

• HiRDB is being installed in the /prdb directory.
$ PDDIR="/prdb"$ export PDDIR

Example 2: Setting the environment in csh (C shell)

• HiRDB is being installed in the /prdb directory
% setenv PDDIR "/prdb"

(b) SQL preprocessor activation
To activate the SQL preprocessor, use the pdcpp command (for C) or the pdocc
command (for C++).

Following is the input format for starting the SQL preprocessor:
pdcpp input-file-name [options
[output-file-name|authorization-identifier]]

Note
In the case of C++, the underlined section must be changed to pdocc.

input-file-name
Specifies the name of the C source file. .ec must be used as the file identifier.

8. Preparation for UAP Execution

800

output-file-name
Specifies the name of the C source file. If the output filename is omitted, .c is
used as the file identifier.

authorization-identifier
Specifies the default authorization identifier to be used when an authorization
identifier is omitted in the SQL.

If the authorization identifier is omitted, the user identifier used during CONNECT
is assumed.

options
Specifies, as necessary, the options shown in the table below. Upper-case and
lower-case characters are not discriminated in the options.

Table 8-2: Preprocessing options (for C in the UNIX environment)

Preprocessing option Description

-s Specifies that only syntax is checked and that no post source is to
be output; when this option is omitted, the post source is output.

-o file-name Specifies a filename for the post source that is to be output; when
this option is omitted, the input filename with its file identifier
changed to .c is used as the output filename.

-A authorization-identifier Specifies that the default authorization identifier, which is used
when no authorization identifier is specified in a static SQL
statement, is to be changed.
A static SQL statement refers to the INSERT, UPDATE, DELETE,
single-row SELECT, OPEN (format 1), CALL, LOCK, or PURGE
TABLE statement.

-h64 Specifies that a post source for 64-bit mode is to be created. Note
that this option cannot be specified if you have used a 32-bit edition
preprocessor. If an embedded variable that uses the long type is
declared, an error occurs.

-P Specifies that no syntax check is to be executed on the SQL. This
option can be specified when one of the following UAPs is
preprocessed:
• UAP for XDM/RD E2 connection
• UAP that uses the SQL reserved word deletion facility

If this option is not specified, the reserved words to be deleted by
the SQL reserved word deletion facility and the SQL statements
that can be used by XDM/RD E2 may cause syntax errors.

8. Preparation for UAP Execution

801

-Xo Specifies that the SQL statements extracted from the UAP are to be
output to standard output. The output method for outputting the
SQL statements is described below.
• Embedded variables in SQL statements are replaced with the ?

parameter.
• INTO clauses in single-row SELECT statements are deleted.
• Multiple space characters between word clauses in SQL

statements are replaced with one space character.
• Any SQL statement that is split across several lines is

consolidated into a single line.
• Only SQL statements that are sent to the server during

execution are output. SQL statements that are not executed
(such as WHENEVER statements and BEGIN DECLARE SECTION)
are not output.

• A semicolon (;) is added to the end of an SQL statement.
• Declarations of embedded variables are not output.
• A dynamic SQL statement is output only if the SQL is specified

with a literal. In all other cases, dynamic SQL statements are not
output.

• An OPEN statement outputs a query expression only if a format
1 cursor is used.

• A post source is not generated.

-Xe{y|n} Specifies whether the cursor for PREPARE statement execution is to
be closed automatically.
y: Creates a post source that closes the cursor automatically.
n: Creates a post source that does not close the cursor automatically.
If this option is omitted, the preprocessor creates a post source
according to the specification value in the PDPRPCRCLS client
environment definition.

-Xv Specifies that VARCHAR- and BINARY-type structures are to be
analyzed as normal structures when the -E2 option is specified. To
declare VARCHAR- and BINARY-type embedded variables, use the
SQL TYPE IS-type variable declaration. This option must be
specified together with the -E2 option. Do not specify this option if
the UAP uses macros for repetition columns.

Preprocessing option Description

8. Preparation for UAP Execution

802

-E{1|2|3} ["option-character-string"] Specifies that preprocessor declaration statements used in the UAP
are to be validated or that embedded variables are to be used without
being declared in the embedded SQL declare section, or both. Note
that this option is ignored in pdocc.
-E1: Specifies that preprocessor declaration statements are to be
validated.
-E2: Specifies that embedded variables are to be used without being
declared in the embedded SQL declare section. This value can also
specify that pointers or structure references are to be used as
embedded variables.
-E3: Specifies that both -E1 and -E2 apply.
"option-character-string":
Specifies the path name of the directory from which the file to be
included is to be retrieved. Specify the path name in the format of
the -I option specified in the C compiler. When specifying multiple
options in option-character-string, use semicolons to separate the
options. You can also specify any C compiler. When the -E2 option
is specified, this value ignored.
When the -E1 option is specified, the path name to the compiler
must be specified in the PATH environment variable because the
preprocessor calls the C compiler internally.

Preprocessing option Description

8. Preparation for UAP Execution

803

-XU16[L|B][T"type-specifier"] • Specifies the UTF-16 byte order.
If a UTF-16 character set name is specified in the declaration of
an embedded variable, you must specify the UTF-16 byte order
to be stored in embedded variables.

-XU16L[T"type-specifier"]
Use little endian for the UTF-16 byte order.

-XU16B[T"type-specifier"]
Use big endian for the UTF-16 byte order.

If neither L nor B is specified, or this option is omitted, the UTF-16
byte order of the OS used for preprocessing is assumed as the byte
order.
• Specifies the type specifier used for expanding UTF-16

embedded variables.
If you have declared a variable in a data description beginning
with SQL TYPE IS CHAR or SQL TYPE IS VARCHAR, this option
specifies the type specifier to be added to the variable or
structure member that stores UTF-16 character string data in a
C declaration that is expanded into the post source.
You can only specify sizeof(type-specifier) == 2 for the type
specifier, because one 2-byte UTF-16 character data item is
stored in one array element of the type specified by the type
specifier.

Example of type specifier:
This example can be used only by a compiler that is
sizeof(wchar_t)==2:
-XU16T"wchar_t"

The following example can be used by any compiler because it
is sizeof(unsigned short)==2:
-XU16T"unsigned short"

If you omit T"type-specifier" or this option, char is used as the
type specifier. In such a case, one 2-byte UTF-16 character data is
stored in two char-type array elements.

-g{c89|c99} When the -E2 or -E3 option is specified, specifies the C standard
that is to be complied with when the SQL preprocessor analyzes a
UAP source.
-gc89

Comply with C89 (ISO/IEC 9899:1990, Programming
languages - C).

-gc99
Comply with C99 (ISO/IEC 9899:1999, Programming
languages - C).

If this option is omitted, -gc99 is assumed.
If the -E2 and -E3 options are both omitted, this option is ignored,
if specified.

Preprocessing option Description

8. Preparation for UAP Execution

804

Note 1

The following table shows the functions that can be used when the -E option
is specified.

Legend:

Y: The function can be used.

N: The function cannot be used.

Note 2

When the -E option is specified, the preprocessor calls the C compiler
internally. The following table shows the C compiler for each platform.

If you wish to use any other C compiler, specify the absolute path name of
the compiler, including the load directory, at the beginning of the
option-character-string value. The directory name and the load name cannot
include spaces or semicolons. If a path name has been added to the PATH
environment variable, the path name does not have to be the absolute path
name.

When specifying a load name, separate the load name and the options with a
semicolon.

The compiler to be used must support the -C and -E options. This is because

Function Omitted -E1 -E2 -E3

Validate the macro defined with #define. N Y N Y

Validate the header file that was included with #include. N Y N Y

Enable conditional compilation with #if, #ifdef, and other statements. N Y N Y

Use variables declared anywhere in the UAP as embedded variables. N N Y Y

Use structures as embedded variables. N N Y Y

Use pointers as embedded variables. N N Y Y

Platform Compiler type Load name for calling

HP-UX HP-C compiler cc

Solaris SUN Workshop compiler cc

AIX C for AIX compiler xlc

Linux gcc compiler gcc

Windows Microsoft Visual C++ compiler CL.EXE

8. Preparation for UAP Execution

805

to process pseudo-instructions such as #define and #include, the
preprocessor internally specifies the -C and -E options to the C compiler and
creates temporary work files. In Linux, the preprocessor uses the -xc option
in addition to the -C and -E options. In Solaris, the preprocessor also uses
the -Xs option.

The other options that can be specified in option-character-string depend on
the specifications of the compiler to be used. However, if an option that is
incompatible with the -C or -E option is specified, the preprocessor
produces an error. If an option that displays help information is used, the
operation is not guaranteed.

Examples are shown as follows.

Example 1: The default C compiler is to be used

pdcpp connect.ec -E1"-I$PDDIR/include;-DDEBUG"

Example 2: If a user-specified C compiler is to be used

pdcpp connect.ec -E1"/usr/bin/gcc;-I$PDDIR/
include;-DDEBUG"

If the -E2 and -E3 options are both specified, the preprocessor analyzes
syntax based on the C standard (C89 or C99) that is specified in, or assumed
for, the -g option in order to recognize embedded variables declared at any
location in the UAP. Therefore, a syntax error might result in the following
cases:

• The -E2 or -E3 option is specified, but a syntax that does not comply
with the selected standard is used in the UAP source file.

• The -E3 option is specified, but a syntax that does not comply with the
selected standard is used in the header file included by applying the
#include statement.

To avoid syntax errors, use the syntax that complies with the selected
standard in the UAP source files and header files. If a syntax error occurs
because a syntax that does not comply with the selected standard is used in
header files provided by the compiler product, you might be able to avoid the
errors by specifying compiler options that comply with the selected standard
in -E3 option-character-string.

Example 3: IBM XL C V9.0 is used and the C89-compliant option
(-qlanglvl=extc89) is specified

pdcpp connect.ec -E3"-qlanglvl=extc89;-I$PDDIR/include"

8. Preparation for UAP Execution

806

-gc89

Note 3

SQL statements and SQL TYPE IS-type variable declarations cannot be
specified in the included header file. If the preprocessor finds an SQL
statement or an SQL TYPE IS-type variable declaration in the header file, it
displays an error message and continues processing but does not generate a
post source. If you specify the -E1 option and also specify an embedded
SQL declare section in the header file, that section becomes invalid. To use
variables defined in the header file as embedded variables, specify the -E3
option. However, in this case as well, SQL TYPE IS-type variable
declarations cannot be specified in the include file.

Note 4

If a UTF16 character set name is specified in the declaration of an embedded
variable, the SQL preprocessor expands the source code for specifying the
character set name in the character set descriptor area in the post source. The
source code depends on the specified -XU16 option: UTF-16LE is set for
little endian, and UTF-16BE is set for big endian.

If you determine the character set name for I/O variables during UAP
execution by using an SQL descriptor area and character set descriptor area
without using an embedded variable, the byte order specified in the -XU16
option is ignored. In such a case, if you specify UTF16 for the character set
name, the byte order is set to big endian.

Note 5

The following data descriptions are applicable to a function for which a type
specifier is specified in the -XU16 option:

• SQL TYPE IS CHAR(2n) CHARACTER SET [IS] [MASTER.]UTF16
variable-name;

• SQL TYPE IS CHAR(2n) CHARACTER SET [IS] [MASTER.]UTF16
variable-name[m];

• SQL TYPE IS CHAR(2n) CHARACTER SET [IS] [MASTER.]UTF16
*variable-name;

• SQL TYPE IS VARCHAR(2n) CHARACTER SET [IS]
[MASTER.]UTF16 variable-name;

• SQL TYPE IS VARCHAR(2n) CHARACTER SET [IS]
[MASTER.]UTF16 variable-name[m];

• SQL TYPE IS VARCHAR(2n) CHARACTER SET [IS]

8. Preparation for UAP Execution

807

[MASTER.]UTF16 *variable-name;
Note 6

The handling of the reserved words added in C99 depends on the specified
-g option. The following reserved words have been added in C99:

restrict, inline, _Bool, _Complex, _Imaginary, _Pragma

In C89, restrict and inline can be used as identifiers such as variable
names, but they can no longer be used as identifiers in C99. If restrict and
inline are used as identifiers in an existing UAP that is compliant with C89
and that UAP is analyzed as being compliant with C99, an error will result.

The following table describes the handling of the reserved words added in
C99:

#

Names that begin with one underscore (_) followed immediately by an upper-case
letter (A to Z) or by a second underscore are also reserved for libraries in C89.
Therefore, if _Bool, _Complex, _Imaginary, or _Pragma is used as an
identifier in a UAP, the preprocessor operation is not guaranteed.

The table below explains the -g option specifications. The -g option has no
effect other than on the handling of reserved words added in C99.

You should note the following about specifying the -g option:

• If a C99-compliant compiler product is used, reserved words added in
C99 might be used in a header file provided by the compiler. If you
specify the -E3 option, such a header file might be included by the
#include statement.

-g option Handling

Omitted
-gc99 specified

Handled as reserved words as in C99.

-gc89 specified Handled as identifiers.#

Usage of reserved words added
in C99

-g option specification

Used as reserved words Omit the -g option or specify -gc99.

Used as identifiers Specify -gc89.

Not used as reserved words or
identifiers

There is no need to specify the -g option. The words can be specified
as comments.

8. Preparation for UAP Execution

808

• Some compiler products enable you to specify the handling of reserved
words individually (for example, specifying restrict as a reserved
word and inline as a non-reserved word). However, with the SQL
preprocessor, the handling of reserved words cannot be specified
individually.

In a UNIX environment, we recommend that you specify in the -g option the
standard supported by the compiler in order to avoid problems. Do not
specify a compiler option that supports specification of the handling of
reserved words added in C99 individually.

Note 7

If you omit the -E2 and -E3 options, reserved words added in C99 are
handled as identifiers in the embedded SQL declaration section. Only the
embedded SQL declaration section and SQL statements (EXEC SQL ...;) are
analyzed.

1. Examples of command specification in C

Example 1
The C source filename is sample and post source is not to be output.
pdcpp sample.ec -s

Example 2
The C source filename is sample and the filename of the post source to be output
is main.
pdcpp sample.ec -o main.c

2. Examples of command specification in C++

Example 1
The C source filename is sample and post source is not to be output.
pdocc sample.EC -s

Example 2
The C source filename is sample and the filename of the post source to be output
is main.
pdocc sample.EC -o main.C

(c) SQL preprocessor return codes
The SQL preprocessor returns a return code to the OS when the processing is
complete. The return code can be referenced by displaying the contents of the $? shell
variable (in the case of Bourne shell) or the $status shell variable (in the case of C
shell).

8. Preparation for UAP Execution

809

The following table lists and describes the return codes.

Table 8-3: SQL preprocessor return codes (for C programs in a UNIX
environment)

(d) Error output
When a syntax error is detected in an SQL statement, the SQL preprocessor ignores
the SQL statement and continues processing. If an error is detected in an option
specification, however, processing is suspended. Processing terminates abnormally
when a system error, such as a memory shortage or a file I/O error, occurs and
processing cannot be continued.

For a syntax error in an SQL statement, the SQL preprocessor outputs an error message
to the standard error output. By redirecting the standard error output, the error message
can be stored in a file. This file can be referenced for the error content, the UAP source
filename, and the error location (line number in the SQL statement).

The following table shows the standard input and output for the SQL preprocessor.

Table 8-4: SQL preprocessor standard input and output (for C programs in a
UNIX environment)

(2) COBOL
(a) Environment variable setting

The following environment variables can be set before a UAP is preprocessed:

PDDIR

This environment variable specifies the absolute path name for the installation
directory for HiRDB (server or client); the default directory is /HiRDB.

This variable need not be specified if the installation destination is /HiRDB.

Return code Explanation

0 Normal termination

4, 8 Error (preprocessing was completed)

12, 16 Error (preprocessing terminated abnormally)

File Application

Standard input File input (cannot be used by the user)

Standard output File output (cannot be used by the user)

Standard error output Output of error messages

8. Preparation for UAP Execution

810

PDCBLFIX

This environment variable specifies an optional file identifier other than the
standard identifier of the COBOL source file.

The specification must be a character string of 1-4 alphabetic characters
beginning with a period. The file identifier specified in this environment variable
can be used only for the input file.

PDCBLLIB

This environment variable specifies directories from which library texts to be
included in the source file are to be retrieved by the SQL COPY statement.
Multiple directories must be separated by a colon. When this environment
variable is omitted, only the current directory is retrieved.

LANG

This environment variable specifies the character code classification of the
HiRDB client environment.

For details about the character code classifications that can be specified in LANG,
see Table 8-1.

If you do not specify this environment variable or if you specify a different value
from the value that is specified in the environment variable, ja_JP.SJIS is
assumed.

PDCLTLANG

This environment variable specifies the character code classification to be used in
preprocessing instead of the character code classification specified by the LANG
environment variable. For details about the PDCLTLANG operand, see 6.6.4
Environment definition information.

Example 1: Setting the environment in sh (Bourne shell)
$ PDDIR="/prdb" 1
$ PDCBLFIX=".Cob" 2
$ PDCBLLIB=$HOME/cobol/include:$HOME/cobol/source 3
$ export PDDIR PDCBLFIX PDCBLLIB 4

1. Specifies the installation directory (/prdb in this example).

2. Specifies .Cob as the COBOL language source file identifier.

3. Specifies the two directories ($HOME/cobol/include and $HOME/
cobol/source) from which library text is to be retrieved.

4. Enables referencing by the SQL preprocessor.

Example 2: Setting the environment in csh (C shell)
% setenv PDDIR "/prdb" 1

8. Preparation for UAP Execution

811

% setenv PDCBLFIX ".Cob" 2
% setenv PDCBLLIB $HOME/cobol/include:$HOME/cobol/source 3

1. Specifies the installation directory (/prdb in this example).

2. Specifies .Cob as the COBOL language source file identifier.

3. Specifies two directories ($HOME/cobol/include and $HOME/cobol/
source) from which library text is to be retrieved.

(b) SQL preprocessor activation
To activate the SQL preprocessor, use the pdcbl command (for COBOL) or the
pdocb command (for OOCOBOL).

Following is the input format for starting the SQL preprocessor:
pdcbl input-file-name [options
[output-file-name|authorization-identifier]]

Note
In the case of OOCOBOL, the underlined section must be changed to pdocb.

input-file-name
Specifies the name of the COBOL source file. .ecb, .cob, or .cbl must be used
as the file identifier. If any other file identifier was registered during environment
setting, that identifier can also be used.

output-file-name
Specifies the name of the COBOL source file. If the output filename is omitted,
.cbl is used as the file identifier.

authorization-identifier
Specifies the default authorization identifier to be used when an authorization
identifier is omitted in the SQL.

If the authorization identifier is omitted, the user identifier used during CONNECT
is assumed.

options
Specifies, as necessary, the options shown in the table below. Upper-case and
lower-case characters are not discriminated in the options.

Table 8-5: Preprocessing options (for COBOL in the UNIX environment)

Preprocessing option Description

-s Specifies that only syntax is checked and that no post source is
output; when this option is omitted, the post source is output.

8. Preparation for UAP Execution

812

-o file-name Specifies a filename for the post source; when this option is
omitted, the input filename with its file identifier changed to .cbl
is used as the output filename.
If the input file identifier is .cbl, this option must be specified to
change the post source filename to an identifier other than .cbl.

-Xc Specifies that the double quotation mark is used as the quotation
mark in the character string created by the SQL preprocessor; the
default quotation mark is the apostrophe.

-A authorization-identifier Specifies that the default authorization identifier, which is used
when no authorization identifier is specified in a static SQL
statement, is to be changed.
A static SQL statement refers to the INSERT, UPDATE, DELETE,
single-row SELECT, OPEN (format 1), CALL, LOCK, or PURGE
TABLE statement.

-h64 Specifies that a post source for 64-bit mode is to be created. Note
that this option cannot be specified if you have used a 32-bit edition
preprocessor.

-P Specifies that no syntax check is to be executed on the SQL. This
option can be specified when one of the following UAPs is
preprocessed:
• UAP for XDM/RD E2 connection
• UAP that uses the SQL reserved word deletion facility

If this option is not specified, the reserved words to be deleted by
the SQL reserved word deletion facility and the SQL statements
that can be used by XDM/RD E2 may cause syntax errors.

Preprocessing option Description

8. Preparation for UAP Execution

813

-Xo Specifies that the SQL statements extracted from the UAP are to be
output to standard output. The output method for outputting the
SQL statements is described below.
• Embedded variables in SQL statements are replaced with the ?

parameter.
• INTO clauses in single-row SELECT statements are deleted.
• Multiple space characters between word clauses in SQL

statements are replaced with one space character.
• Any SQL statement that is split across several lines is

consolidated into a single line.
• Only SQL statements that are sent to the server during

execution are output. SQL statements that are not executed
(such as WHENEVER statements and BEGIN DECLARE SECTION)
are not output.

• A semicolon (;) is added to the end of an SQL statement.
• Declarations of embedded variables are not output.
• A dynamic SQL statement is output only if the SQL is specified

with a literal. In all other cases, dynamic SQL statements are not
output.

• An OPEN statement outputs a query expression only if a format
1 cursor is used.

• A post source is not generated.

-c {m|s} Specifies the COBOL compiler type.
m: Micro Focus COBOL
s: SUN Japanese COBOL

-Xe{y|n} Specifies whether the cursor for PREPARE statement execution is to
be closed automatically.
y: Creates a post source that closes the cursor automatically.
n: Creates a post source that does not close the cursor automatically.
If this option is omitted, the preprocessor creates a post source
according to the specification value in the PDPRPCRCLS client
environment definition.

-E2 Specifies that embedded variables are to be used without being
declared in the embedded SQL declare section.

Preprocessing option Description

8. Preparation for UAP Execution

814

1. Examples of command specification in COBOL

Example 1
The UAP source filename is sample and no post source will be output.
pdcbl sample.ecb -s

Example 2
The UAP source filename is sample and the filename of the post source to be
output is main.
pdcbl sample.ecb -o main.cbl

2. Examples of command specification in OOCOBOL

Example 1
The UAP source filename is sample and no post source will be output.
pdocb sample.eoc -s

Example 2
The UAP source filename is sample and the filename of the post source to be
output is main.
pdocb sample.eoc -o main.ocb

-XU16[L|B] You specify this option when you use the Unicode function of
COBOL2002. For details about the execution of UAPs that use the
Unicode function of COBOL2002, see 8.4.3 UAP execution using
the Unicode functionality of COBOL2002.
This option specifies the byte order of character codes (UTF-16) in
Japanese data items.
-XU16L

Uses little endian for the UTF-16 byte order.
-XU16B

Uses big endian for the UTF-16 byte order.
-XU16

Uses the byte order of the OS used for preprocessing for the
UTF-16 byte order:
• In Windows and Linux, little endian is used.
• In AIX, big endian is used.

If this option is specified for any other OS, preprocessor
operations are not guaranteed.

Do not specify this option if you do not use the Unicode function of
COBOL2002. If this option is specified in such a case, it will not be
possible to use Japanese data items in the declaration of embedded
variables.

Preprocessing option Description

8. Preparation for UAP Execution

815

(c) SQL preprocessor return codes
The SQL preprocessor returns a return code to the OS when the processing is
completed. The return code can be referenced by displaying the contents of the $? shell
variable (in the case of Bourne shell) or the $status shell variable (in the case of C
shell).

The following table lists and describes the return codes.

Table 8-6: SQL preprocessor return codes (for COBOL programs in a UNIX
environment)

(d) Error output
When a syntax error is detected in an SQL statement, the SQL preprocessor ignores
that SQL statement and continues processing. If an error is detected in an option
specification, however, processing is suspended. Processing terminates abnormally
when a system error, such as a memory shortage or a file I/O error, occurs and
processing cannot be continued.

For a syntax error in an SQL statement, the SQL preprocessor outputs an error message
to the standard error output. By redirecting the standard error output, the error message
can be stored in a file. This file can be referenced for the error content, the UAP source
filename, and the error location (line number in the SQL statement).

The following table shows the standard input and output of the SQL preprocessor.

Table 8-7: SQL preprocessor standard input and output (for COBOL programs
in a UNIX environment)

Return code Explanation

0 Normal termination

4, 8 Error (preprocessing was completed)

12, 16 Error (preprocessing terminated abnormally)

File Application

Standard input File input (cannot be used by the user)

Standard output File output (cannot be used by the user)

Standard error output Output of error messages

8. Preparation for UAP Execution

816

8.2.3 Preprocessing in Windows
(1) C

(a) Environment variable setting
Before a UAP is preprocessed, the environment variable described below can be
specified in the HiRDB.INI file, if necessary.

The HiRDB.INI file is installed in the %windir% directory.

PDCLTLANG

Specifies the character code classification to be used for preprocessing. If this
environment variable is omitted, sjis is assumed. For details about the
PDCLTLANG operand, see 6.6.4 Environment definition information.

(b) SQL preprocessor activation
Following are the three methods of activating the SQL preprocessor:

• Execution by means of overlaying icons

• Execution by means of filename specification

• Execution from the command prompt or MS-DOS prompt

Execution by overlaying icons
In Windows Explorer, drag the file to be preprocessed onto and overlay it on the
preprocessor file (PDCPP.EXE); execution then occurs automatically.

When this method is used, no options can be specified to be set during execution.

Execution by filename specification
Click the preprocessor icon (PDCPP.EXE), and follow the procedures below:

1. Select Run from the File menu.

2. Specify a filename and options on the command line.

Execution from the command prompt or MS-DOS prompt
Activate the command prompt or MS-DOS prompt. Execute the program by
entering either PDCPP.EXE (in C) or PDOCC.EXE (in C++).

A command is entered in the following format:
PDCPP.EXE input-file-name [options
[output-file-name|authorization-identifier]]

Note
In the case of C++, the underlined section must be changed to PDOCC.EXE.

input-file-name

8. Preparation for UAP Execution

817

Specifies the name of the C source file. .EC must be used as the file identifier.

output-file-name
Specifies the name of the C source file. If the output filename is omitted, .C is
used as the file identifier.

authorization-identifier
Specifies the default authorization identifier to be used when an authorization
identifier is omitted in the SQL. If the authorization identifier is omitted, the user
identifier used during CONNECT is assumed.

options
Specifies, as necessary, the options shown in table below. Upper-case and
lower-case characters are not discriminated in the options.

Table 8-8: Preprocessing options (for C in the Windows environment)

Preprocessing option Description

/S Specifies that only syntax is checked and that no post source will be
output; when this option is omitted, the post source is output. Note
that the SQL preprocessor may not be able to detect all syntax errors
in the SQL statements because it does not perform a rigorous SQL
syntax check unless /Xp is also specified.

/O file-name Specifies a filename for the post source that is output; when this
option is omitted, the input filename with its file identifier changed
to .C is used as the output filename.

/A authorization-identifier Specifies that the default authorization identifier, which is used
when no authorization identifier is specified in a static SQL
statement, is to be changed.
A static SQL statement refers to the INSERT, UPDATE, DELETE,
single-row SELECT, OPEN (format 1), CALL, LOCK, or PURGE
TABLE statement.

/h64 Specifies that a post source for 64-bit mode is to be created. Note
that this option cannot be specified if you have used a 32-bit edition
preprocessor.
If an embedded variable that uses the long type is declared, an error
occurs.

/Xe{y|n} Specifies whether the cursor for PREPARE statement execution is to
be closed automatically.
y: Creates a post source that closes the cursor automatically.
n: Creates a post source that does not close the cursor automatically.
If this option is omitted, the preprocessor creates a post source
according to the specification value in the PDPRPCRCLS client
environment definition.

8. Preparation for UAP Execution

818

/Xv Specifies that VARCHAR- and BINARY-type structures are to be
analyzed as normal structures when the /E2 option is specified. To
declare VARCHAR- and BINARY-type embedded variables, use the
SQL TYPE IS-type variable declaration. This option must be
specified together with the /E2 option. Do not specify this option if
the UAP uses macros for repetition columns.

/XA Specifies that an X/Open-compliant API is to be used to create the
UAP.

/Xo Specifies that the SQL statements extracted from the UAP are to be
output to standard output. The output method for outputting the
SQL statements is described below.
• Embedded variables in SQL statements are replaced with the ?

parameter.
• INTO clauses in single-row SELECT statements are deleted.
• Multiple space characters between word clauses in SQL

statements are replaced with one space character.
• Any SQL statement that is split across several lines is

consolidated into a single line.
• Only SQL statements that are sent to the server during

execution are output. SQL statements that are not executed
(such as WHENEVER statements and BEGIN DECLARE SECTION)
are not output.

• A semicolon (;) is added to the end of an SQL statement.
• Declarations of embedded variables are not output.
• A dynamic SQL statement is output only if the SQL is specified

with a literal. In all other cases, dynamic SQL statements are not
output.

• An OPEN statement outputs a query expression only if a format
1 cursor is used.

• A post source is not generated.

Preprocessing option Description

8. Preparation for UAP Execution

819

/E{1|2|3} ["option-character-string"] Specifies that preprocessor declaration statements used in the UAP
are to be validated or that embedded variables are to be used without
being declared in the embedded SQL declare section, or both. Note
that this option is ignored in PDOCC.EXE.
/E1: Specifies that preprocessor declaration statements are to be
validated.
/E2: Specifies that embedded variables are to be used without being
declared in the embedded SQL declare section. This value can also
specify that pointers or structure references are to be used as
embedded variables.
/E3: Specifies that both /E1 and /E2 apply.
"option-character-string":
Specifies the path name of the directory from which the file to be
included is to be retrieved. Specify the path name in the format of
the /I option specified in the C compiler. When specifying multiple
options in option-character-string, use semicolons to separate the
options. You can also specify any C compiler. When the /E2 option
is specified, this value ignored.
When the /E1 option is specified, the path name to the compiler
must be specified in the PATH environment variable because the
preprocessor calls the C compiler internally.

/Xp Specifies that a rigorous SQL syntax check is to be executed.
However, do not specify this option when the SQL reserved word
deletion facility is used.

Preprocessing option Description

8. Preparation for UAP Execution

820

/XU16[L|B][T"type-specifier"] • Specifies the UTF-16 byte order.
If a UTF16 character set name is specified in the declaration of
an embedded variable, you must specify the UTF-16 byte order
to be stored in embedded variables.

/XU16L[T"type-specifier"]
Use little endian for the UTF-16 byte order.

/XU16B[T"type-specifier"]
Use big endian for the UTF-16 byte order.

If neither L nor B is specified, or this option is omitted, the UTF-16
byte order of the OS used for preprocessing is assumed as the byte
order.
• Specifies the type specifier used for expanding UTF-16

embedded variables.
If you have declared a variable in a data description beginning
with SQL TYPE IS CHAR or SQL TYPE IS VARCHAR, this option
specifies the type specifier to be added to the variable or
structure member that stores UTF-16 character string data in a
C declaration that is expanded into the post source.
You can only specify sizeof(type-specifier) == 2 for the type
specifier, because one 2-byte UTF-16 character data item is
stored in one array element of the type specified by the type
specifier.

Example of type specifier:
This example can be used only by a compiler that is
sizeof(wchar_t)==2:
/XU16T"wchar_t"

The following example can be used by any compiler because it
is sizeof(unsigned short)==2:
/XU16T"unsigned short"

If you omit T"type-specifier" or this option, char is used as the
type specifier. In such a case, one 2-byte UTF-16 character data is
stored in two char-type array elements.

/g{c89|c99} When the /E2 or /E3 option is specified, specifies the C standard
that is to be complied with when the SQL preprocessor analyzes a
UAP source.
/gc89

Comply with C89 (ISO/IEC 9899:1990, Programming
languages - C).

/gc99

Comply with C99 (ISO/IEC 9899:1999, Programming
languages - C).

If this option is omitted, /gc89 is assumed.
If the /E2 and /E3 options are both omitted, this option is ignored,
if specified.

Preprocessing option Description

8. Preparation for UAP Execution

821

Note 1

The following table shows the functions that can be used when the /E option
is specified.

Legend:

Y: The function can be used.

N: The function cannot be used.

Note 2

When the /E option is specified, the preprocessor calls the Microsoft Visual
C++ compiler (load name during calling: CL.EXE) internally.

If you wish to use any other C compiler, specify the absolute path name of
the compiler, including the load directory, at the beginning of the
option-character-string value. The directory name and the load name cannot
include spaces or semicolons. If a path name has been added to the PATH
environment variable, the path name does not have to be the absolute path
name.

When specifying a load name, separate the load name and the options with a
semicolon.

The compiler to be used must support the /C and /E options. This is because
to process pseudo-instructions such as #define and #include, the
preprocessor internally specifies the /C and /E options to the C compiler and
creates temporary work files. The other options that can be specified in
option-character-string depend on the specifications of the compiler to be
used. However, if an option that is incompatible with the /C or /E option is
specified, the preprocessor produces an error. If an option that displays help
information is used, the operation is not guaranteed.

If the /E2 and /E3 options are both specified, the preprocessor analyzes
syntax based on the C standard (C89 or C99) that is specified in or assumed

Function Omitted /E1 /E2 /E3

Validate the macro defined with #define. N Y N Y

Validate the header file that was included with #include. N Y N Y

Enable conditional compilation with #if, #ifdef, and other statements. N Y N Y

Use variables declared anywhere in the UAP as embedded variables. N N Y Y

Use structures as embedded variables. N N Y Y

Use pointers as embedded variables. N N Y Y

8. Preparation for UAP Execution

822

for the /g option in order to recognize embedded variables declared at any
location in the UAP. Therefore, a syntax error might result in the following
cases:

• The /E2 or /E3 option is specified, but a syntax that does not comply
with the selected standard is used in the UAP source file.

• The /E3 option is specified, but a syntax that does not comply with the
selected standard is used in the header file included by applying the
#include statement.

To avoid syntax errors, use the syntax that complies with the selected
standard in the UAP source files and header files. If a syntax error occurs
because a syntax that does not comply with the selected standard is used in
header files provided by the compiler product, you might be able to avoid the
errors by specifying compiler options that comply with the selected standard
in /E3 option-character-string.

Note 3

SQL statements and SQL TYPE IS-type variable declarations cannot be
specified in the included header file. If the preprocessor finds an SQL
statement or an SQL TYPE IS-type variable declaration in the header file, it
displays an error message and continues processing but does not generate a
post source. If you specify the /E1 option and also specify an embedded
variable declare section in the header file, that section becomes invalid. To
use variables defined in the header file as embedded variables, specify the /
E3 option. However, in this case as well, SQL TYPE IS-type variable
declarations cannot be specified in the include file.

Note 4

If a UTF16 character set name is specified in the declaration of an embedded
variable, the SQL preprocessor expands the source code for specifying the
character set name in the character set descriptor area in the post source. The
source code depends on the specified /XU16 option: UTF-16LE is set for
little endian, and UTF-16BE is set for big endian.

If you determine the character set name for I/O variables during UAP
execution by using an SQL descriptor area and character set descriptor area
without using an embedded variable, the byte order specified in the /XU16
option is ignored. In such a case, if you specify UTF16 for the character set
name, the byte order is set to big endian.

Note 5

The following data descriptions are applicable to a function for which a type
specifier is specified in the /XU16 option:

• SQL TYPE IS CHAR(2n) CHARACTER SET [IS] [MASTER.]UTF16

8. Preparation for UAP Execution

823

variable-name;
• SQL TYPE IS CHAR(2n) CHARACTER SET [IS] [MASTER.]UTF16

variable-name[m];
• SQL TYPE IS CHAR(2n) CHARACTER SET [IS] [MASTER.]UTF16

*variable-name;
• SQL TYPE IS VARCHAR(2n) CHARACTER SET [IS]

[MASTER.]UTF16 variable-name;
• SQL TYPE IS VARCHAR(2n) CHARACTER SET [IS]

[MASTER.]UTF16 variable-name[m];
• SQL TYPE IS VARCHAR(2n) CHARACTER SET [IS]

[MASTER.]UTF16 *variable-name;
Note 6

The handling of the reserved words added in C99 depends on the specified /
g option. The following reserved words have been added in C99:

restrict, inline, _Bool, _Complex, _Imaginary, _Pragma

In C89, restrict and inline can be used as identifiers such as variable
names, but they can no longer be used as identifiers in C99. If restrict and
inline are used as identifiers in an existing UAP that is compliant with C89
and that UAP is analyzed as being compliant with C99, an error will result.

The following table describes the handling of the reserved words added in
C99:

#

Names that begin with one underscore (_) followed immediately by an upper-case
letter (A to Z) or by a second underscore are also reserved for libraries in C89.
Therefore, if _Bool, _Complex, _Imaginary, or _Pragma is used as an
identifier in a UAP, the preprocessor operation is not guaranteed.

The table below explains the /g option specifications. The /g option has no
effect other than on the handling of reserved words added in C99.

/g option Handling

Omitted Handled as identifiers.#

/gc99 specified Handled as reserved words as in C99.

/gc89 specified Handled as identifiers.#

8. Preparation for UAP Execution

824

You should note the following about specifying the /g option:

• If a C99-compliant compiler product is used, reserved words added in
C99 might be used in a header file provided by the compiler. If you
specify the /E3 option, such a header file might be included by the
#include statement.

• Some compiler products enable you to specify the handling of reserved
words individually (for example, specifying restrict as a reserved
word and inline as a non-reserved word). However, with the SQL
preprocessor, the handling of reserved words cannot be specified
individually.

Note 7

If you omit the /E2 and /E3 options, reserved words added in C99 are
handled as identifiers in the embedded SQL declaration section. Only the
embedded SQL declaration section and SQL statements (EXEC SQL ...;) are
analyzed.

1. Examples of command specification in C

Example 1
The UAP source filename is SAMPLE and no post source will be output.
PDCPP SAMPLE.EC /S

Example 2
The UAP source filename is SAMPLE and the filename of the post source to be
output is MAIN.
PDCPP SAMPLE.EC /O MAIN.C

2. Examples of command specification in C++

Example 1
The UAP source filename is SAMPLE and no post source will be output.

Usage of reserved words added
in C99

/g option specification

Used as reserved words If you specify /gc99, you can execute the SQL preprocessor. A post
source cannot be compiled because Visual C++ (version up to 2008)
does not support C99. If the compiler used is not Visual C++, the
compilation operation is not guaranteed.

Used as identifiers Omit the /g option or specify /gc89.

Not used as reserved words or
identifiers

There is no need to specify the /g option. The words can be specified
as comments.

8. Preparation for UAP Execution

825

PDOCC.EXE SAMPLE.ECP /S

Example 2
The UAP source filename is SAMPLE and the filename of the post source to be
output is MAIN.
PDOCC.EXE SAMPLE.ECP /O MAIN.CPP

(c) SQL preprocessor return codes
The SQL preprocessor returns a return code to the OS when the processing is
completed. The return code can be referenced by the OS batch command
ERRORLEVEL.

The following table lists and describes the return codes.

Table 8-9: SQL preprocessor return codes (for C programs in a Windows
environment)

(d) Error output
When a syntax error is detected in an SQL statement, the SQL preprocessor ignores
that SQL statement and continues processing. If an error is detected in an option
specification, however, processing is suspended. Processing terminates abnormally
when a system error, such as a memory shortage or a file I/O error, occurs and
processing cannot be continued.

For a syntax error in an SQL statement, the SQL preprocessor outputs an error message
to the standard error output. By redirecting the standard error output, the error message
can be stored in a file. This file can be referenced for the error content, the UAP source
filename, and the error location (line number in the SQL statement).

The following table shows the standard input and output for the SQL preprocessor.

Table 8-10: SQL preprocessor standard input and output (for C programs in a
Windows environment)

Return code Explanation

0 Normal termination

4, 8 Error (preprocessing was completed)

12, 16 Error (preprocessing terminated abnormally)

File Application

Standard input File input (cannot be used by the user)

Standard output File output (cannot be used by the user)

8. Preparation for UAP Execution

826

(2) COBOL
(a) Environment variable setting

The following environment variables can be set in the HIRDB.INI file before a UAP
is preprocessed (the HIRDB.INI file is installed in the %windir% directory):

PDCBLFIX

This environment variable specifies an optional file identifier other than the
standard identifier of the COBOL source file.

The specification must be a character string of 1-4 alphabetic characters
beginning with a period. The file identifier specified in this environment variable
can be used only for the input file.

PDCBLLIB

This environment variable specifies directories from which library texts to be
included in the source file are to be retrieved by the COPY statement. When
specifying multiple directories, separate the directories with a colon. When this
environment variable is omitted, only the current directory is retrieved.

PDCLTLANG

This environment variable should be specified if a specific type of character codes
is to be used for preprocessing. The default is sjis. For details about the
PDCLTLANG operand, see 6.6.4 Environment definition information.

Example
[HiRDB] 1
PDCBLFIX=.AAA 2
PDCBLLIB=E:\USER\COPY 3

1. Specifies [HiRDB].

2. Specifies .AAA as a COBOL language source file identifier.

3. Specifies a directory (E:\USER\COPY in this example) from which library
text to be included by the COPY statement is to be retrieved.

(b) SQL preprocessor activation
Following are the three methods of activating the SQL preprocessor:

• Execution by means of overlaying icons

• Execution by means of filename specification

Standard error output Output of error messages

File Application

8. Preparation for UAP Execution

827

• Execution from the command prompt or MS-DOS prompt

Execution by overlaying icons
In Windows Explorer, drag the file to be preprocessed onto and overlay it on the
preprocessor file (PDCBL.EXE). Execution then occurs automatically.

When this method is used, no options can be specified to be set during execution.

Execution by filename specification
Click the preprocessor icon (PDCBL.EXE) and use the following procedure:

1. Select Run from the File menu.

2. Specify a filename and options on the command line.

Execution from the command prompt or MS-DOS prompt
Activate the command prompt or MS-DOS prompt. Execute the program by
entering either PDCBL.EXE (in COBOL) or PDOCB.EXE (in OOCOBOL).

A command is entered in the following format:
PDCBL.EXE input-file-name [options [output-file-name|authorization-identifier]]

Note
In the case of OOCOBOL, the underlined section must be changed to
PDOCB.EXE.

input-file-name
Specifies the name of the COBOL source file. .ECB, .COB, or .CBL must be used
as the file identifier. If any other file identifier was registered during environment
setting, that identifier can also be used.

output-file-name
Specifies the name of the COBOL source file. If the output filename is omitted,
.CBL is used as the file identifier.

authorization-identifier
Specifies the default authorization identifier to be used when an authorization
identifier is omitted in the SQL. If the authorization identifier is omitted, the user
identifier used during CONNECT is assumed.

options
Specifies, as necessary, the options shown in the table below. Upper-case and
lower-case characters are not discriminated in the options.

8. Preparation for UAP Execution

828

Table 8-11: Preprocessing options (for COBOL in the Windows environment)

Preprocessing option Description

/S Specifies that only syntax is checked and that no post source will be
output; when this option is omitted, the post source is output.
Note that the SQL preprocessor may not be able to detect all syntax
errors in the SQL statements because it does not perform a rigorous
SQL syntax check unless /Xp is also specified.

/O file-name Specifies that the filename for the output post source is to be
changed.
When this option is omitted, the input filename with its file
identifier changed to .CBL (for COBOL language) or .OCB (for
OOCOBOL language) and is used as the output filename.
If the input file identifier is .CBL (for COBOL language) or .OCB
(for OOCOBOL language), this option must be specified to change
the post source filename to an identifier other than .CBL (for
COBOL language) or .OCB (for OOCOBOL language).

/XC Specifies that the double quotation mark is used as the quotation
mark in the character string to be created by the SQL preprocessor;
the default quotation mark is the apostrophe.

/A authorization-identifier Specifies that the default authorization identifier, which is used
when no authorization identifier is specified in a static SQL
statement, is to be changed.
A static SQL statement refers to the INSERT, UPDATE, DELETE,
single-row SELECT, OPEN (format 1), CALL, LOCK, or PURGE
TABLE statement.

/h64 Specifies that a post source for 64-bit mode is to be created. Note
that this option cannot be specified if you have used a 32-bit edition
preprocessor.

/XD Specifies that a DLL is to be created.
The prerequisite compiler for creating a DLL is COBOL85 Version
4.0 04-02 or a later version. Do not create an application that
contains both UAPs that were preprocessed by specifying the /XD
option and UAPs that were preprocessed without specifying the /
XD option. Otherwise, an error (KCCBO204R-S) occurs in the
COBOL runtime library during application execution.

/Xe{y|n} Specifies whether the cursor for PREPARE statement execution is to
be closed automatically.
y: Creates a post source that closes the cursor automatically.
n: Creates a post source that does not close the cursor automatically.
If this option is omitted, the preprocessor creates a post source
according to the specification value in the PDPRPCRCLS client
environment definition.

/XAD Specifies that a UAP that used an X/Open-compliant API is to be
created as a DLL.

8. Preparation for UAP Execution

829

/XA Specifies that the UAP is to be created by using an X/
Open-compliant API.

/Xo Specifies that the SQL statements extracted from the UAP are to be
output to standard output. The output method for outputting the
SQL statements is described below.
• Embedded variables in SQL statements are replaced with the ?

parameter.
• INTO clauses in single-row SELECT statements are deleted.
• Multiple space characters between word clauses in SQL

statements are replaced with one space character.
• Any SQL statement that is split across several lines is

consolidated into a single line.
• Only SQL statements that are sent to the server during

execution are output. SQL statements that are not executed
(such as WHENEVER statements and BEGIN DECLARE SECTION)
are not output.

• A semicolon (;) is added to the end of an SQL statement.
• Declarations of embedded variables are not output.
• A dynamic SQL statement is output only if the SQL is specified

with a literal. In all other cases, dynamic SQL statements are not
output.

• An OPEN statement outputs a query expression only if a format
1 cursor is used.

• A post source is not generated.

/E2 Specifies that embedded variables are to be used without being
declared in the embedded SQL declare section.

/Xp Specifies that a rigorous SQL syntax check is to be executed.
However, do not specify this option when the SQL reserved word
deletion facility is used.

Preprocessing option Description

8. Preparation for UAP Execution

830

1. Examples of command specification in COBOL

Example 1
The UAP source filename is SAMPLE and no post source will be output.
PDCBL SAMPLE.ECB /S

Example 2
The UAP source filename is SAMPLE and the filename of the post source to be
output is MAIN.
PDCBL SAMPLE.ECB /O MAIN.CBL

2. Examples of command specification in OOCOBOL

Example 1
The UAP source filename is SAMPLE and no post source will be output.
PDOCB.EXE SAMPLE.EOC /S

Example 2
The UAP source filename is SAMPLE and the filename of the post source to be
output is MAIN.
PDOCB.EXE SAMPLE.EOC /O MAIN.OCB

/XU16[L|B] You specify this option when you use the Unicode function of
COBOL2002. For details about the execution of UAPs that use the
Unicode function of COBOL2002, see 8.4.3 UAP execution using
the Unicode functionality of COBOL2002.
This option specifies the byte order of character codes (UTF-16) in
Japanese data items.
/XU16L

Uses little endian for the UTF-16 byte order.
/XU16B

Uses big endian for the UTF-16 byte order.
/XU16

Uses the byte order of the OS used for preprocessing for the
UTF-16 byte order:
• In Windows and Linux, little endian is used.
• In AIX, big endian is used.

If this option is specified for any other OS, the preprocessor
operations are not guaranteed.

Do not specify this option if you do not use the Unicode function of
COBOL2002. If this option is specified in such a case, it will not be
possible to use Japanese data items in the declaration of embedded
variables.

Preprocessing option Description

8. Preparation for UAP Execution

831

(c) SQL preprocessor return codes
The SQL preprocessor returns a return code to the OS when the processing is
completed. The return code can be referenced by the OS batch command
ERRORLEVEL.

The following table lists and describes the return codes.

Table 8-12: SQL preprocessor return codes (for COBOL programs in a
Windows environment)

(d) Error output
When a syntax error is detected in an SQL statement, the SQL preprocessor ignores
that SQL statement and continues processing. If an error is detected in an option
specification, however, processing is suspended. Processing terminates abnormally
when a system error, such as a memory shortage or a file I/O error, occurs and
processing cannot be continued.

For a syntax error in an SQL statement, the SQL preprocessor outputs an error message
to the standard error output. By redirecting the standard error output, the error message
can be stored in a file. This file can be referenced for the error content, the UAP source
filename, and the error location (line number in the SQL statement).

The following table shows the standard input and output of the SQL preprocessor.

Table 8-13: SQL preprocessor standard input and output (for COBOL programs
in a Windows environment)

8.2.4 Validating preprocessor declaration statements
(1) Overview

The preprocessor features an option that allows you to use preprocessor declaration
statements of the C compiler.

Return code Explanation

0 Normal termination

4, 8 Error (preprocessing was completed)

12, 16 Error (preprocessing terminated abnormally)

File Application

Standard input File input (cannot be used by the user)

Standard output File output (cannot be used by the user)

Standard error output Output of error messages

8. Preparation for UAP Execution

832

By specifying the -E option, you can execute the following functions with the
preprocessor:

• Define literals and macros by using the #define declaration statement.

• Define literals and macros in include files that have been included with the
#include statement#.

• Execute conditional compilation based on #ifdef, #if, and other statements.

• Use macros to specify literals in embedded variable declarations.

#: SQL statements and SQL TYPE IS-type variable declarations cannot be specified
in include files. (Otherwise, an error occurs during compilation because the
preprocessor does not generate a header post source.)

(2) Usage examples
(a) Literal usage

Assume that the following embedded variable declaration is specified in a UAP source
file:

#include "user.h"
EXEC SQL BEGIN DECLARE SECTION;
 char xchar1[MAX_CHAR_LEN];
EXEC SQL END DECLARE SECTION;

Also assume that the following literal is defined in the header file (user.h) that the
UAP has included:

#define MAX_CHAR_LEN 256

In this case, the preprocessor reads the include file and uses the MAX_CHAR_LEN
definition value to convert the embedded variable declaration to char
xchar1[256]; before analyzing the UAP source file. However, macro literals cannot
be used between the SQL prefix and the SQL terminator (in SQL statements).

Specify the directory path for include file retrieval as an option argument. The default
directory of the C compiler does not need to be specified.

(b) Conditional compilation
You can use the #ifdef statement to select the SQL statement to be preprocessed. An
example is shown as follows.

#ifdef DEF_SWITCH
 EXEC SQL DECLARE CUR1 CURSOR FOR SELECT * FROM TABLE1;
#else

8. Preparation for UAP Execution

833

 EXEC SQL DECLARE CUR1 CURSOR FOR SELECT * FROM TABLE2;
#endif

However, preprocessor declaration statements of the C compiler cannot be specified
between the SQL prefix and SQL terminator (in SQL statements).

8.2.5 Dispensing with the embedded SQL declare section
(1) Overview

When you specify the -E option, the preprocessor can use variables that correspond to
SQL data types as embedded variables regardless of where those variables are declared
in the UAP source file. However, variables of the register storage class cannot be
used as embedded variables.

The rules of the host language used to write the UAP source file determines the
effective scope of a variable. Only UAP source files written in C or COBOL can use
this function.

When this function is used, the following operations can be performed:

• Variable declarations can be used as embedded variables without having to be
specified between an embedded SQL begin declaration (BEGIN DECLARE
SECTION) and an embedded SQL end declaration (END DECLARE SECTION).
Variable declarations can also be used together with embedded variables.

• The effective scope of a global variable, local variable, or function argument is
determined by the syntax of the host language. If embedded variables have
different effective scopes, they are discriminated as different embedded variables
even if variables of the same name are declared. In this case, the preprocessor
assumes that the innermost variable that includes the SQL statement that uses that
variable was specified.

(2) Usage example
A usage example is shown as follows.

int fetchdata(long xprice){
 char xpcode[5];
 char xpname[17];
 char xcolor[3];
 long xstock;
:
 EXEC SQL
 DECLARE CR3 CURSOR FOR
 SELECT PCODE,PNAME,COLOR,SQUANTITY
 FROM STOCK WHERE PRICE=:xprice;
:
 EXEC SQL OPEN CR3 ;

8. Preparation for UAP Execution

834

:
 /* heading */
 printf(" ***** STOCK TABLE LIST *****\n\n");
 printf(" PRODUCT CODE PRODUCT NAME COLOR PRICE
CURRENT STOCK\n");
 printf(" ---- ---------------- -- --------
--------\n");

 EXEC SQL WHENEVER SQLERROR GOTO END;
 EXEC SQL WHENEVER NOT FOUND GOTO END;

 /* FETCH */
 for(;;){
 EXEC SQL
 FETCH CR3 INTO :xpcode,:xpname,:xcolor,:xstock;
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode, xpname, xcolor, xprice, xstock);
 }
 }
END:

8.2.6 Specifying pointers as environment variables
(1) Overview

In C, the -E option allows you to declare pointers as embedded variables. When you
use this function, you can directly specify dynamically allocated areas in SQL
statements.

For details about SQL preprocessor options, see the option descriptions in 8.2.2
Preprocessing in UNIX, or 8.2.3 Preprocessing in Windows. For details about SQL
statements that can use pointers, see 8.2.8 Use of pointers, structures, and structure
qualifiers when the -E2 or -E3 option of the preprocessor is specified.

Declare pointer variables according to the C syntax. An example is shown as follows.

long *xprice;
long *xstock;
char *xpname;
...
xprice = (long *)malloc(sizeof(long));
xstock = (long *)malloc(sizeof(long));
xpname = (char *)malloc(MAX_CHAR_LEN+1);
memset(xspname, ' ', MAX_CHAR_LEN);
xspname [MAX_CHAR_LEN] = '\0';
EXEC SQL FETC CUR1 INTO :xprice,:xstock,:xpname;

8. Preparation for UAP Execution

835

(2) Rules
1. When specifying a pointer variable, add a colon before the variable name in the

SQL statement. An asterisk cannot be used.

2. The size of the value to be referenced becomes the size of the data type specified
in the declaration. However, this does not apply to the fixed-length character
string type (CHAR).

3. The data length of a fixed-length character string-type pointer is determined
during execution, and not during preprocessing. The value size becomes the
length (strlen (pointer variable)) up to the end (\0) of the character string that
is stored in the area indicated by the pointer. When storing the search results of a
single-row SELECT statement or a FETCH statement, you must first clear the entire
area with a character other than \0 before executing the SQL statement and then
specify \0 at the end of the area.

4. You must allocate the area that the pointer points to. If the pointer is a fixed-length
character string-type pointer, allocate an extra byte to the area so that \0 can be
stored. If the pointer is an invalid value or if the area allocated for storing the data
is too small, the operation is not guaranteed.

5. Pointers to pointers cannot be used.

6. Pointers to structures can be specified.

7. Pointers to classes cannot be used.

8. Pointers to arrays cannot be used. To use a pointer to an array, use a structure and
declare the structure as follows:

struct {
long xprice[50];
long xstock[50];
char xpname[50][17];
} *xrec_ptr;

(3) Notes on using repetition-type pointers in machines that use a RISC-type
CPU

1. Because repetition column-type variables have the following structure, address
(1), which coincides with a word boundary, must be specified in the pointer.

8. Preparation for UAP Execution

836

Normally, there is no problem because areas allocated with malloc() are already
adjusted to word boundaries. However, if you calculate and allocate the memory
address on your own, you must adjust the address to a word boundary.

If the address specified in the pointer does not coincide with a word boundary, a
memory access exception occurs when the UAP uses macros for repetition
column manipulation to reference or set data. For details about the structure of
embedded variables in repetition columns, see B.2(5) Expansion format of
repetition columns.

2. For FLOAT-type repetition columns, the data length of the repetition elements
becomes larger than the area that stores the number of repetitions. The boundary
address must be adjusted to the word length of the repetition items. In the pointer,
specify address (2), which includes the leading free space.

The preprocessor creates a post source that automatically uses address (3), which
is 4 bytes from the beginning, as the beginning of the repetition column. Macros
that manipulate a FLOAT-type repetition column also use address (3) as the
beginning of the column. If you use the SQL descriptor area to specify the address
of the repetition column directly, specify address (3).

3. Because the maximum number of repetition elements is determined by the
declared value, a memory access exception may occur if an area smaller than the
declared value is allocated.

Normally, problems can be avoided by allocating the memory as shown in the
following coding.

PD_MV_SINT(32) *ptr; /* maximum element count 32 */
ptr = malloc(sizeof(*ptr));
EXEC SQL FETCH CUR1 INTO :ptr;

8.2.7 Referencing structures
(1) Overview

The preprocessor features an option that allows you to use a structure written in C to
specify multiple embedded variables at one time.

Structures can be used as embedded variables in the following locations:

• INTO clause of the single-row SELECT or FETCH statement

8. Preparation for UAP Execution

837

• VALUES clause of the INSERT statement

• USING or INTO clause of the EXECUTE statement

For details about SQL preprocessor options, see the option descriptions in 8.2.2
Preprocessing in UNIX or 8.2.3 Preprocessing in Windows. For details about SQL
statements that can use structures, see 8.2.8 Use of pointers, structures, and structure
qualifiers when the -E2 or -E3 option of the preprocessor is specified.

(2) Rules
1. When you specify a structure as an embedded variable, the preprocessor assumes

that each member of the structure was specified as an embedded variable and
generates the same post source it would generate if the members were specified
separately. The member expansion sequence in the post source is the same as the
member declaration sequence in the structure. The sequence of the retrieval items
and columns in SQL statements that specify the structure must match the member
sequence.

2. The members of a structure can also be specified individually as embedded
variables.

3. Structures that contain a union cannot be used.

4. Structures that contain another structure cannot be used. However, structures that
correspond to the variable-length character string type and the BINARY type can
be used.

(3) Usage examples
Structure usage example

A structure usage example is shown as follows.

 struct {
 char xpcode[5];
 char xpname[17];
 char xcolor[3];
 long xstock;
 long xprice;
 } xrec;
 ...
 EXEC SQL
 DECLARE CR3 CURSOR FOR
 SELECT PCODE,PNAME,COLOR,SQUANTITY, PRICE FROM STOCK;
 ...
 EXEC SQL OPEN CR3 ;

 /* heading */
 printf(" ***** STOCK TABLE LIST *****\n\n");
 printf(" PRODUCT CODE PRODUCT NAME COLOR PRICE

8. Preparation for UAP Execution

838

CURRENT STOCK\n");
 printf(" ---- ---------------- -- --------
--------\n");

 EXEC SQL WHENEVER SQLERROR GOTO END;
 EXEC SQL WHENEVER NOT FOUND GOTO END;

 /* FETCH */
 for(;;){
 EXEC SQL FETCH CR3 INTO :xrec;
 printf(" %4s %-16s %2s %8d %8d\n",
 xrec.xpcode, xrec.xpname, xrec.xcolor, xrec.xprice,
xrec.xstock);
 }
END:
 ...

Usage example of a structure that contains indicator variables

When you use a structure as an embedded variable and also want to use indicator
variables, declare the indicator variables in a structure as well. Associate the individual
members of the indicator variable structure in declaration sequence with the individual
members of the embedded variable structure. An example is shown as follows.

 struct {
 char xpcode[5];
 char xpname[17];
 char xcolor[3];
 long xstock;
 long xprice;
 } xrec;
 struct {
 short xpcode_ind;
 short xpname_ind;
 short xcolor_ind;
 short xstock_ind;
 short xprice_ind;
 } xrec_ind;
 ...
 /* FETCH */
 for(;;){
 EXEC SQL FETCH CR3 INTO :xrec :xrec_ind;
 printf(" %4s %-16s %2s %8d %8d\n",
 xrec.xpcode, xrec.xpname, xrec.xcolor, xrec.xprice,
xrec.xstock);
 }
 ...

8. Preparation for UAP Execution

839

Example in which a pointer to a structure is specified as an embedded variable

You can also specify a pointer to a structure as an embedded variable. The area
indicated by the pointer must be allocated beforehand.

struct tag_xrec {
 char xpcode[5];
 char xpname[17];
 char xcolor[3];
 long xstock;
 long xprice;
} *xrec_ptr;
struct tag_xrec_ind {
 short xpcode_ind;
 short xpname_ind;
 short xcolor_ind;
 short xstock_ind;
 short xprice_ind;
} *xrec_ind_ptr;
 ...
/* FETCH */
xrec_ptr = (struct tag_xrec *)malloc(sizeof(struct tag_xrec));
xrec_ind_ptr = (struct tag_xrec_ind *)
 malloc(sizeof(struct tag_xrec_ind));
 for(;;){
 EXEC SQL FETCH CR3 INTO :xrec_ptr :xrec_ind_ptr;
 printf(" %4s %-16s %2s %8d %8d\n",
 xrec_ptr->xpcode, xrec_ptr->xpname, xrec_ptr->xcolor,
 xrec_ptr->xprice, xrec_ptr->xstock);
 }
 ...

8.2.8 Use of pointers, structures, and structure qualifiers when the
-E2 or -E3 option of the preprocessor is specified

The table below shows whether pointers, structures, and structure qualifiers can be
used when you specify the preprocessor's /E2 or /E3 option (-E2 or -E3 option in the
UNIX edition).

A pointer refers to a variable declared with (type-name * variable-name). A structure
refers to a variable declared with (struct structure-name variable-name).
(However, structures that specify an SQL statement, as well as VARCHAR- and
BINARY-type structures, are excluded.) A structure qualifier refers to a variable that
has the (structure.member-variable-name)(structure->member-variable-name)
format.

8. Preparation for UAP Execution

840

Table 8-14: Use of pointers, structures, and pointer qualifiers when the -E2 or
-E3 option is specified

SQL statement that specifies embedded
variable or indicator variable

Pointer Structure Structure
qualifier

Data
manipulation
SQL statement

CALL statement Y N Y

DECLARE CURSOR Y N Y

DELETE statement Y N Y

DESCRIBE TYPE statement Y N N

EXECUTE statement with USING
specification

Y Y Y

EXECUTE statement with INTO
specification

Y Y Y

EXECUTE statement with USING
specification

Y Y Y

EXECUTE statement with BY
specification

Y N Y

EXECUTE IMMEDIATE statement
with SQL character string
location

Y N N

EXECUTE IMMEDIATE statement
with INTO specification

Y Y Y

EXECUTE IMMEDIATE statement
with USING specification

Y Y Y

FETCH statement with INTO
specification

Y Y Y

FETCH statement with USING
DESCRIPTOR specification

Y N Y

INSERT statement with VALUES
specification

Y Y Y

OPEN statement Y N Y

PREPARE statement Y N N

SELECT statement with INTO
specification

Y Y Y

UPDATE statement Y N Y

8. Preparation for UAP Execution

841

Legend:

Y: Can be specified.

N: Cannot be specified.

FREE LOCATOR Y Y Y

SET Y N Y

ALLOCATE CURSOR Y N N

Control SQL
statement

CONNECT statement Y N Y

CONNECT statement with TO
specification

Y N Y

SET SESSION AUTHORIZATION
statement

Y N Y

Embedded
language

GET DIAGNOSTICS N N N

COMMAND EXECUTE N N N

INSTALL JAR Y N N

REPLACE JAR Y N N

REMOVE JAR Y N N

ALLOCATE CONNECTION
HANDLE

N N N

FREE CONNECTION HANDLE N N N

DECLARE CONNECTION HANDLE
SET

N N N

GET CONNECTION HANDLE N N N

SQL statement that specifies embedded
variable or indicator variable

Pointer Structure Structure
qualifier

8. Preparation for UAP Execution

842

8.3 Compiling and linking

8.3.1 Libraries for compiling and linking
When executing compiling and linking, specify a library provided by HiRDB. Tables
8-15 and 8-16 show the libraries to be specified for compiling and linking.

Table 8-15: Libraries to be specified for compiling and linking (in non-OLTP
environment)

Platform Multi-
connection

facility

Library name

Shared library file Archive file

HP-UX 11.0
HP-UX 11i
HP-UX 11i V2
(PA-RISC)

Used For a single thread:
libzclts.sl

For a single thread in 64-bit mode:
libzcltk64.sl

For multiple threads (DCE
threads):

libzcltm.sl

For multiple threads (kernel
threads):

libzcltk.sl

For 64-bit mode multiple threads
(kernel threads):

libzcltk64.sl

For a single thread:
libclts.a

For a single thread in 64-bit
mode:

libcltk64.a

For multiple threads (DCE
threads):

libcltm.a

For multiple threads (kernel
threads):

libcltk.a

For 64-bit mode multiple
threads (kernel threads):

libcltk64.a

Not used For 32-bit mode:
libzclt.sl

For 64-bit mode:
libzclt64.sl

For 32-bit mode:
libclt.a

For 64-bit mode:
libclt64.a

8. Preparation for UAP Execution

843

HP-UX 11i V2 (IPF)
HP-UX 11i V3 (IPF)

Used For a single thread:
libzclts.so

For a single thread in 64-bit mode:
libzclts64.so

For multiple threads (kernel
threads):

libzcltk.so

For 64-bit mode multiple threads
(kernel threads):

libzcltk64.so

--

Not used For 32-bit mode:
libzclt.so

For 64-bit mode:
libzclt64.so

--

Solaris Used For a single thread:
libzclts.so

For multiple threads (Solaris
threads):

libzcltk.so

libzcltm.so

For 64-bit mode multiple threads
(Solaris threads):

libzcltk64.so

For a single thread:
libclts.a

For multiple threads (Solaris
threads):

libcltk.a

libcltm.a

For 64-bit mode multiple
threads (Solaris threads):

libcltk64.a

Not used For 32-bit mode:
libzclt.so

For 64-bit mode:
libzclt64.so

For 32-bit mode:
libclt.a

For 64-bit mode:
libclt64.a

Platform Multi-
connection

facility

Library name

Shared library file Archive file

8. Preparation for UAP Execution

844

AIX Used For a single thread:
libzclts.a

For a single thread in 64-bit mode:
libzcltk64.a

For multiple threads (POSIX
threads):

libzcltk.a

For 64-bit mode multiple threads
(POSIX threads):

libzcltk64.a

For a single thread:
libclts.a

For a single thread in 64-bit
mode:

libcltk64.a

For multiple threads (POSIX
threads):

libcltk.a

For 64-bit mode multiple
threads (POSIX threads):

libcltk64.a

Not used For 32-bit mode:
libzclt.a

For 64-bit mode:
libzclt64.a

For 32-bit mode:
libclt.a

For 64-bit mode:
libclt64.a

Linux Used For a single thread:
libzclts.so

For multiple threads (POSIX
threads):

libzcltk.so

For a single thread:
libclts.a

For multiple threads (POSIX
threads):

libcltk.a

Not used libzclt.so libclt.a

Linux (EM64T) Used For a single thread:
libzclts.so

For a single thread in 64-bit mode:
libzcltk64.so

For multiple threads (POSIX
threads):

libzcltk.so

For 64-bit mode multiple threads
(POSIX threads):

libzcltk64.so

--

Not used For 32-bit mode:
libzclt.so

For 64-bit mode:
libzclt64.so

--

Platform Multi-
connection

facility

Library name

Shared library file Archive file

8. Preparation for UAP Execution

845

Legend:

--: Not applicable

#

Created only for an XDS client.

Windows Used PDCLTM32.LIB

PDCLTM71.LIB

PDCLTM80S.LIB

PDCLTM90S.LIB#

--

Not used CLTDLL.LIB

PDCLTM71.LIB

PDCLTM80S.LIB

PDCLTM90S.LIB#

--

Windows (IPF) Used PDCLTM64.LIB --

Not used PDCLTM64.LIB --

Windows (x64) Used For 32-bit mode:
PDCLTM80S.LIB

PDCLTM90S.LIB#

For 64-bit mode:
PDCLTM64.LIB

PDCLTM90S64.LIB#

--

Not used For 32-bit mode:
PDCLTM80S.LIB

PDCLTM90S.LIB#

For 64-bit mode:
PDCLTM64.LIB

PDCLTM90S64.LIB#

--

Platform Multi-
connection

facility

Library name

Shared library file Archive file

8. Preparation for UAP Execution

846

Table 8-16: Libraries to be specified for compiling and linking (in OLTP
environment)

Platform Transaction
registration

method

Library name

Shared library file Archive file

HP-UX 11.0
HP-UX 11i
HP-UX 11i V2
(PA-RISC)

Dynamic
registration

For a single thread:
libzcltx.sl

libzcltxs.sl (for multiple
connections)

For multiple threads (kernel
threads):

libzcltxk.sl

For a single thread:
libcltxa.a

libcltxas.a (for multiple
connections)

For multiple threads (kernel
threads):

libcltxak.a

Dynamic or
static
registration

For a single thread:
libzclty.sl

libzcltys.sl (for multiple
connections)

For multiple threads (kernel
threads):

libzcltyk.sl

For a single thread:
libcltya.a

libcltyas.a (for multiple
connections)

For multiple threads (kernel
thread):

libcltyak.a

HP-UX 11i V2 (IPF)
HP-UX 11i V3 (IPF)

Dynamic
registration

For a single thread:
libzcltx.so

libzcltxs.so (for multiple
connections)

--

Dynamic
registration or
static
registration

For a single thread:
libzclty.so

libzcltys.so (for multiple
connections)

For a 64-bit mode single thread
(kernel threads):

libzclty64.so

libzcltys64.so (for
multiple connections)

For 64-bit mode multiple threads
(kernel threads):

libzcltyk64.so

--

8. Preparation for UAP Execution

847

Solaris Dynamic
registration

For a single thread:
libzcltx.so

libzcltxs.so (for multiple
connections)

For multiple threads (Solaris
threads):

libzcltxk.so

For a single thread:
libcltxa.a

libcltxas.a (for multiple
connections)

For multiple threads (Solaris
threads):

libcltxak.a

Dynamic or
static
registration

For a single thread:
libzclty.so

libzcltys.so (for multiple
connections)

For multiple threads (Solaris
threads):

libzcltyk.so

For a single thread:
libcltya.a

libcltyas.a (for multiple
connections)

For multiple threads (Solaris
threads):

libcltyak.a

AIX Dynamic
registration

For a single thread:
libzcltx.a

libzcltxs.a (for multiple
connections)

For multiple threads (POSIX
threads):

libzcltxk.a

For a single thread:
libcltxa.a

libcltxas.a (for multiple
connections)

For multiple threads (POSIX
threads):

libcltxak.a

Dynamic or
static
registration

For a single thread:
libzclty.a

libzcltys.a (for multiple
connections)

For a single thread in 64-bit mode:
libzclty64.a

libzcltys64.a (for
multiple connections)

For multiple threads (POSIX
threads):

libzcltyk.a

For a single thread:
libcltya.a

libcltyas.a (for multiple
connections)

For multiple threads (POSIX
threads):

libcltyak.a

Platform Transaction
registration

method

Library name

Shared library file Archive file

8. Preparation for UAP Execution

848

Linux Dynamic
registration

For a single thread:
libzcltx.so

libzcltxs.so (for multiple
connections)

For multiple threads (POSIX
threads):

libzcltxk.so

For a single thread:
libcltxa.a

libcltxas.a (for multiple
connections)

For multiple threads (POSIX
threads):

libcltxak.a

Dynamic or
static
registration

For a single thread:
libzclty.so

libzcltys.so (for multiple
connections)

For multiple threads (POSIX
threads):

libzcltyk.so

For a single thread:
libcltya.a

Linux (EM64T) Dynamic
registration

For a single thread:
libzcltx.so

libzcltxs.so (for multiple
connections)

For multiple threads (POSIX
threads):

libzcltxk.so

--

Dynamic
registration or
static
registration

For a single thread:
libzclty.so

libzcltys.so (for multiple
connections)

For a 64-bit mode single thread
(kernel threads):

libzclty64.so

libzcltys64.so (for
multiple connections)

For multiple threads (POSIX
threads):

libzcltyk.so

For 64-bit mode multiple threads
(POSIX threads):

libzcltyk64.so

--

Platform Transaction
registration

method

Library name

Shared library file Archive file

8. Preparation for UAP Execution

849

Legend:

--: Not applicable

Note

For details about dynamic registration and static registration, see the description
of methods for registering HiRDB to the transaction manager in the HiRDB
Version 9 Installation and Design Guide.

8.3.2 Compiling and linking in UNIX
You must use a compiler that conforms to the language used for the UAP in which the
SQL statements are embedded to compile and link edit a post-source program created
by the SQL preprocessor.

This section explains how to specify commands for compiling and linking in the UNIX
environment, for each language.

Windows Dynamic
registration

-- --

Dynamic or
static
registration

For a single thread:
PDCLTX32.LIB

PDCLTXS.LIB (for multiple
connections)

For multiple threads:
PDCLTXM.LIB

--

Windows (IPF) Dynamic
registration

-- --

Dynamic
registration or
static
registration

For a single thread:
PDCLTX64.LIB

PDCLTXS64.LIB (for
multiple connections)

For multiple threads:
PDCLTXM64.LIB

--

Windows (x64) Dynamic
registration

-- --

Dynamic
registration or
static
registration

For a single thread:
PDCLTX32.LIB

PDCLTXS.LIB (for OTS)
For multiple threads:

PDCLTXM.LIB

--

Platform Transaction
registration

method

Library name

Shared library file Archive file

8. Preparation for UAP Execution

850

(1) C
Post-source programs in C must be compiled with a compiler that conforms to the
ANSI C standards. Similarly, post-source programs in C++ must be compiled with a
compiler that conforms to the C++ standards. The cc command (lowercase) is used to
activate an ANSI C compiler, and the CC command (uppercase) is used to activate a
C++ compiler. These commands can also be used to compile and link. This is the
command format for activating a compiler:
cc [options] file-name directory distributed-library

Note
For C++, the underlined section must be changed to CC.

file-name
Specifies the name of the post-source file; the file identifier must be .c.

directory
Specifies the include directory (directory containing the header file of the library
provided by HiRDB).

distributed-library
Specifies the library provided by HiRDB. Normally, a shared library should be
used. An archive library should be used only to limit the version of the library
used, or if a shared library cannot be used. If the UAP uses a thread, link a
multi-connection library that corresponds to that thread.

options
Specifies the following options, as necessary:

-o

Specifies an optional name for the object file that is to be output; when this
option is omitted, the filename is a.out.

-I

Specifies that an include directory is designated; compilation does not
execute if this option is omitted.

-Wl, +s

Specifies that different HiRDB distribution library directories are used for
UAP creation and for UAP execution. Specify this option if you use shared
libraries with an HP-UX edition.

When different distribution library directories are used for linkage and for
execution, the SHLIB_PATH environment variable must be used at the time
of execution to set the directory containing the distribution library.

8. Preparation for UAP Execution

851

(a) Examples of command specification in C
Examples of command specification in C are shown as follows. In these examples, the
underlined text specifies the HiRDB installation directory.

For UAPs that support the 32-bit mode

Example 1: Shared library
• The post-source filename is sample and an executable form filename is not

specified.

Example 2: Archive library
• The post-source filename is sample and the executable form filename is

SAMPLE.

Example 3: HP-UX (IPF)

Example 4: For multiple threads in HP-UX (IPF)

Example 5: Linux (EM64T)

Example 6: For multiple threads in Linux (EM64T)

For UAPs that support the 64-bit mode

Example 1: Shared library

cc -I/HiRDB/include sample.c -L/HiRDB/client/lib -lzclt

aCC +DD32 -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt

aCC -Ae -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt

aCC -Ae -mt -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzcltk

gcc -m32 -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt

gcc -m32 -D_REENTRANT -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzcltk

8. Preparation for UAP Execution

852

• The post-source filename is sample and an executable form filename is not
specified.

HP-UX 11.0

HP-UX (IPF)

Multiple threads in HP-UX (IPF)

Solaris 8 and Solaris 9

AIX

Linux (EM64T)

Multiple threads in Linux (EM64T)

Note: Use libzcltk64.so even though the multi-connection facility is used by
a single-threaded UAP.

Example 2: Archive library
• The post-source filename is sample and an executable form filename is not

specified.

HP-UX 11.0

cc +DD64 -I/HiRDB/include sample.c -L/HiRDB/client/lib lzclt64

aCC -Ae +DD64 -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt64

aCC -Ae -mt +DD64 -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzcltk64

cc -xarch=v9 -I/HiRDB/include sample.c -L/HiRDB/client/lib -lzclt64 -lnsl -lsocket

xlc -q64 -I/HiRDB/include sample.c -Wl,-L/HiRDB/client/lib -lzclt64

gcc -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt64

gcc -D_REENTRANT -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzcltk64

cc +DD64 -I/HiRDB/include sample.c /HiRDB/client/lib libclt64.a

8. Preparation for UAP Execution

853

Solaris 8, and Solaris 9

AIX

(b) Examples of command specification in C++
Examples of command specification in C++ are shown as follows. In these examples,
the underlined sections specify the HiRDB installation directory.

For UAPs that support the 32-bit mode

Example 1: Shared library
• The post-source filename is sample and an executable form filename is not

specified.

Example 2: Archive library
• Post-source filename is sample and the executable form filename is

SAMPLE.

For UAPs that support the 64-bit mode

Example 1: Shared library

• The post-source filename is sample and an executable form filename is not
specified.

HP-UX 11.0

Solaris 8, and Solaris 9

AIX

Example 2: Archive library

cc -xarch=v9 -I/HiRDB/include sample.c -L/HiRDB/client/lib -lclt64 -lnsl -lsocket

xlc -q64 -I/HiRDB/include sample.c -Wl,-L/HiRDB/client/lib -lclt64

CC -I/HiRDB/include sample.C -L/HiRDB/client/lib -lzclt

CC -o SAMPLE -I/HiRDB/include sample.C /HiRDB/client/lib/libclt.a

CC +DA2.0w -I/HiRDB/include sample.C -L/HiRDB/client/lib lzclt64

CC -xarch=v9 -I/HiRDB/include sample.C -L/HiRDB/client/lib -lzclt64 -lnsl -lsocket

xlc -q64 -I/HiRDB/include sample.C -Wl,-L/HiRDB/client/lib,-lzclt64

8. Preparation for UAP Execution

854

• The post-source filename is sample and an executable form filename is not
specified.

HP-UX 11.0

Solaris 8, and Solaris 9

AIX

(2) COBOL
Post-source programs in COBOL must be complied with the COBOL85,
COBOL2002, MicroFocus COBOL, or SUN Japanese COBOL compiler. Post-source
programs in OOCOBOL must be compiled with a compiler that conforms to the
OOCOBOL standards.

The ccbl command is used to activate a COBOL85 compiler, and the ocbl command
is used to activate an OOCOBOL compiler. These commands can also be used to
compile and link. Following is the command format for activating a compiler:
ccbl [options] file-name directory distributed-library

Note
For OOCOBOL, the underlined section must be changed to ocbl.

file-name
Specifies the name of the post-source filename; the file identifier must be .cbl.

directory
Specifies the include directory (directory containing the header file of the library
provided by HiRDB).

distributed-library
Specifies the COBOL library provided by HiRDB.

options
Specifies the following options, as necessary:

-Wl, +s

Specifies that different HiRDB distribution library directories is used for
UAP creation and for UAP execution. Specify this option if you use shared

CC +DA2.0w -I/HiRDB/include sample.C /HiRDB/client/lib libclt64.a

CC -xarch=v9 -I/HiRDB/include sample.C -L/HiRDB/client/lib -lclt64 -lnsl -lsocket

xlc -q64 -I/HiRDB/include sample.C -Wl,-L/HiRDB/client/lib,-lclt64

8. Preparation for UAP Execution

855

libraries with an HP-UX edition.

When different distribution library directories are used for linkage and for
execution, the SHLIB_PATH environment variable must be used at the time
of execution to set the directory containing the distribution library.

-o

Specifies an optional name for the object file that is to be output; when this
option is omitted, the filename is a.out.

The -Kl and -Xb options must not be specified; the -Xc option must not be
specified together with the -Hf, -Hv, or -V3 option.

environment-variable
Specifies the following environment variable:

CBLLIB

Include directory.

(a) Examples of command specification in COBOL
Examples of command specification in COBOL are shown as follows. In these
examples, the underlined sections specify the HiRDB installation directory. For the
HP-UX (IPF) edition of COBOL2002, ccbl becomes ccbl2002.

For UAPs in 32-bit mode

Example 1: Shared library

• The post-source filename is sample.

Example 2: Archive library

• The post-source filename is sample.

For UAPs in 64-bit mode

Example 1: Shared library

• The post-source filename is sample.

CBLLIB=/HiRDB/include
export CBLLIB
ccbl sample.cbl -L/HiRDB/client/lib -lzclt

CBLLIB=/HiRDB/include
export CBLLIB
ccbl sample.cbl /HiRDB/client/lib/libclt.a

8. Preparation for UAP Execution

856

(b) Examples of command specification in OOCOBOL
Examples of command specification in OOCOBOL are shown as follows. In these
examples, the underlined sections specify the HiRDB installation directory.

Example 1: Shared library

• The post-source filename is sample.

Example 2: Archive library

• The post-source filename is sample.

(3) Note
When a UAP is created with the Solaris edition of HiRDB, that UAP cannot be
connected to the HiRDB server when all of the following conditions are satisfied:

• The library that the HiRDB client uses is version 07-00-/C or later, and the library
that the HiRDB server uses is earlier than 07-00-/C.

• The UAP and the HiRDB server to be connected are on the same machine.

In this case, use the client library (shared library) of the HiRDB server.

8.3.3 Compiling and linking in Windows
You must use a compiler that conforms to the language used for the UAP in which the
SQL statements are embedded to compile and link edit a post-source program created
by the preprocessor.

For the compilation and linkage methods in the Windows environment, see the
manuals for the compilers applicable to the particular languages. This section explains
the compilation and linkage options for each language. The section also contains
instructions for Windows (x64).

CBLLIB=/HiRDB/include
export CBLLIB
ccbl2002 sample.cbl -L/HiRDB/client/lib -lzclt64

CBLLIB=/HiRDB/include
export CBLLIB
ocbl sample.ocb -L/HiRDB/client/lib -lzclt

CBLLIB=/HiRDB/include
export CBLLIB
ocbl sample.ocb /HiRDB/client/lib/libclt.a

8. Preparation for UAP Execution

857

(1) C
To compile post-source programs written in C, use Microsoft Visual C++.

To set options for compilation and linkage using Microsoft Visual C++, from the
Project menu, choose Setup. (The setup method differs depending on the Microsoft
Visual C++ version.)

The following table shows the items to be set in Setup.

Table 8-17: Items set with Setup

Note
The directory where HiRDB is installed is underlined.

#: All libraries except CLTDLL are created with multiple threads.

For Windows (IPF), only the 64-bit mode client library can be used. When creating a
UAP in 64-bit mode, adhere to the following conditions:

• Alignment of configuration members: 8 bytes

• Runtime library used: Multi-thread DLL

• Include file path: \HiRDB\INCLUDE
• Linkage library: \HiRDB\LIB\PDCLTM64.LIB

(2) COBOL
To compile post-source programs in COBOL, use a compiler that conforms to the
COBOL85 or COBOL2002 standards. To compile a post-source program in
OOCOBOL, use a compiler that conforms to the OOCOBOL standard.

To set options for compilation and linkage using COBOL85 (version 1.0 or subsequent
versions), choose Edit, then Edit Project.
For Windows, choose Option, then Compile and Linker.

For COBOL2002, from the Project Setup menu, choose the Linker tab.

Table 8-18 shows the item to be set with Edit Project in COBOL85. Do not specify

Item Category Category setting Setting value

Compiler Code generation Alignment of structure
members

8 bytes

Runtime library to be used Multi-thread#

Preprocessor Include file path \HiRDB\include

Linker Input Library \HiRDB\lib\cltdll

8. Preparation for UAP Execution

858

the -Kl, -Xb, -Bb, or -Fb option. Also do not specify the -Xc option together with
-Hf, -Hv, or -V3. Table 8-19 shows the item to be set with Project Setup in
COBOL2002.

Table 8-18: Item to be set with Edit Project in COBOL85

Note
The directory where HiRDB is installed is underlined.

Table 8-19: Item to be set with Project Setup in COBOL2002

Note
The directory where HiRDB is installed is underlined.

COBOL85 has an option to be set for Compilation Environment. The table below
shows the item to be set for Compilation Environment in COBOL85. In
COBOL2002, this item is set to an environment variable.

Table 8-20: Item to be set for Compilation Environment in COBOL85

Note
The directory where HiRDB is installed is underlined.

#: For COBOL2002, the item is set for Environment Variable.

(3) Instruction for Windows (x64)
Windows (x64) provides both 32-bit mode and 64-bit mode client libraries. To create
a UAP in 32-bit mode, specify the compilation options and library for 32-bit mode. To
create a UAP in 64-bit mode, specify the compilation options and library for 64-bit
mode.

The following table lists the UAP creation conditions:

Item Setting item Setting value

Linkage option setting Import library \HiRDB\lib\cltdll.lib

Compilation option /NOI (Upper-case and lower-case
characters are discriminated in the file
identifier.)

Item Setting item Setting value

Link Library specification \HIRDB\lib\cltdll.lib

Item Setting item Setting value

Environment variable setting# CBLLIB variable \HiRDB\include

8. Preparation for UAP Execution

859

Note: Specify an HiRDB installation directory for the area indicated by underscoring.

#: Specify regardless of whether the multi-connection facility is to be used. Note that
PDCLTM90S.LIB and PDCLTM90S64.LIB can be specified only for an XDS client.

UAPs that use the XA interface cannot be created for 64-bit mode.

8.3.4 Compiling and linking when the multi-connection facility is
used
(1) For multi-thread UAPs

This subsection explains how to compile and link normal, non-OLTP UAPs that use
the multi-connection facility.

(a) In the UNIX environment
For HP-UX 11.0, Solaris, AIX, and Linux, link the libcltk.a and libzcltk.sl
libraries. The table below shows the libraries to be linked when the multi-connection
facility is used. For information about the libraries that must be linked for using
multiple threads, see the manual for each operating system.

Table 8-21: Libraries to be linked when the multi-connection facility is used

UAP creation 32-bit mode 64-bit mode

Alignment of structure
members

Default (8 bytes) Default (8 bytes)

Runtime library to be
used

Multi-thread DLL Multi-thread DLL

Include file directory \HiRDB\INCLUDE \HiRDB\INCLUDE

Linkage library# \HiRDB\LIB\PDCLTM80S.LIB
\HiRDB\LIB\PDCLTM90S.LIB

\HiRDB\LIB\PDCLTM64.LIB
\HiRDB\LIB\PDCLTM90S64.LIB

UAP operating
system

Thread used by UAP Library to be linked

Shared library file Archive file

HP-UX 11.0
HP-UX 11i
HP-UX 11i V2
(PA-RISC)

Kernel thread
(native thread)

For 32-bit mode:
libzcltk.sl

For 64-bit mode:
libzcltk64.sl

For 32-bit mode:
libcltk.a

For 64-bit mode:
libcltk64.a

DCE thread libzcltm.sl libcltm.a

8. Preparation for UAP Execution

860

Legend:

--: Not applicable

C examples
Examples of compiling and linking when the multi-connection facility is used by a
UAP written in C are shown as follows. In these examples, the underlined sections
specify the HiRDB installation library.

Example 1: Linking a UAP and a shared library in HP-UX 11.0

• The post-source file name is sample and an executable form file name is not
specified.

Example 2: Linking a UAP and a 64-bit mode shared library in HP-UX 11.0

• The post-source file name is sample and an executable form file name is not
specified.

HP-UX 11i V2
(IPF)
HP-UX 11i V3
(IPF)

Kernel thread
(native thread)

For 32-bit mode:
libzcltk.so

For 64-bit mode:
libzcltk64.so

--

Solaris Solaris thread
(native thread)

For 32-bit mode:
libzcltm.so

libzcltk.so

For 64-bit mode:
libzcltk64.so

For 32-bit mode:
libcltm.a

libcltk.a

For 64-bit mode:
libcltk64.a

AIX POSIX thread For 32-bit mode:
libzcltk.a

For 64-bit mode:
libzcltk64.a

For 32-bit mode:
libcltk.a

For 64-bit mode:
libcltk64.a

Linux POSIX thread libzcltk.so libcltk.a

Linux (EM64T) POSIX thread For 32-bit mode:
libzcltk.so

For 64-bit mode:
libzcltk64.so

--

cc -I/HiRDB/include sample.c -D_REENTRANT -D_HP_UX_SOURCE -D_POSIX_C_SOURCE=199506L
-L/HiRDB/client/lib/ -lzcltk -lpthread

UAP operating
system

Thread used by UAP Library to be linked

Shared library file Archive file

8. Preparation for UAP Execution

861

Example 3: Linking a Solaris-thread UAP and a shared library in Solaris

• The post-source file name is sample and an executable form file name is not
specified.

Example 4: Linking a POSIX-thread UAP and a shared library in Solaris

• The post-source file name is sample and an executable form file name is not
specified.

Example 5: Linking a Solaris-thread UAP and a 64-bit mode shared library in Solaris

• The post-source file name is sample and an executable form file name is not
specified.

Example 6: Linking a POSIX-thread UAP and a 64-bit mode shared library in Solaris

• The post-source file name is sample and an executable form file name is not
specified.

Example 7: Linking a UAP and a shared library in Linux

• The post-source file name is sample and an executable form file name is not
specified.

Example 8: Linking a UAP and a shared library in AIX

• The post-source file name is sample and an executable form file name is not
specified.

cc -I/HiRDB/include sample.c +DD64 -D_REENTRANT -D_HP_UX_SOURCE
-D_POSIX_C_SOURCE=199506L
-L/HiRDB/client/lib/ -lzcltk64 -lpthread

cc -I/HiRDB/include sample.c -D_REENTRANT -L/HiRDB/client/lib/ -lzcltk -lthread
-lnsl -lsocket

cc -I/HiRDB/include sample.c -D_REENTRANT -D_POSIX_PTHREAD_SEMANTICS
-L/HiRDB/client/lib/ -lzcltk -lthread -lnsl -lsocket

cc -I/HiRDB/include sample.c -xarch=v9 -D_REENTRANT -L/HiRDB/client/lib/
-lzcltk64 -lthread -lnsl -lsocket

cc -I/HiRDB/include sample.c -xarch=v9 -D_REENTRANT -D_POSIX_PTHREAD_SEMANTICS
-L/HiRDB/client/lib/ -lzcltk64 -lthread -lnsl -lsocket

cc -I/HiRDB/include sample.c -D_REENTRANT -L/HiRDB/client/lib/ -lzcltk -lthread

xlc_r -I/HiRDB/include sample.c -L/HiRDB/client/lib/ -lzcltk

8. Preparation for UAP Execution

862

Example 9: Linking a UAP and a 64-bit mode shared library in AIX

• The post-source file name is sample and an executable form file name is not
specified.

COBOL examples
UAPs written in COBOL must be compiled and linked with a multi-thread version
(03-01 or later) of the COBOL85 compiler.

During compilation, specify the -Mt option (for POSIX threads, you must also specify
the -Mp option). If an object compiled with the -Mt option is linked with an object
compiled without the -Mt option, the operation is not guaranteed. For details about
compiling UAPs written in COBOL, see the COBOL85 User's Guide.

Examples of compiling and linking when the multi-connection facility is used by a
UAP written in COBOL are shown as follows. In these examples, the underlined
sections specify the HiRDB installation directory.

Example 1: Using DCE threads in HP-UX 11.0

• The post-source file name is sample and an executable form file name is not
specified.

Example 2: Using kernel threads in HP-UX 11.0

• The post-source file name is sample and an executable form file name is not
specified.

Example 3: Linking a Solaris-thread UAP and a shared library in Solaris

• The post-source file name is sample and an executable form file name is not
specified.

xlc_r -I/HiRDB/include sample.c -q64 -L/HiRDB/client/lib/ -lzcltk64

setenv CBLLIB /HiRDB/include
ccbl -Mt sample.cbl -L/HiRDB/client/lib/ -lzcltm -ldce

setenv CBLLIB /HiRDB/include
ccbl -Mt -Mp sample.cbl -L/HiRDB/client/lib/ -lzcltk -lpthread

setenv CBLLIB /HiRDB/include
ccbl -Mt -Mp sample.cbl -L/HiRDB/client/lib/ -lzcltk -lpthread

8. Preparation for UAP Execution

863

Example 4: Linking a POSIX-thread UAP and a shared library in Linux

• The post-source file name is sample and an executable form file name is not
specified.

Example 5: Linking a POSIX-thread UAP with a shared library in AIX

• The post-source file name is sample and an executable form file name is not
specified.

(b) In the Windows environment
Link PDCLTM32.LIB instead of CLTDLL.LIB. For a UAP that uses an X/
Open-compliant API under OLTP, link PDCLTXM.LIB.

C
This explanation assumes that Microsoft Visual C++ Version 4.2 is used. Select Set
from the Project menu, and set the individual items. The table below shows the items
that can be set in Set. If multiple threads are to be used, see the Operating System
manual for details about the files that must be linked.

Table 8-22: Items to be set with Set

Note
The underlined sections specify the HiRDB installation library.

COBOL
UAPs written in COBOL must be compiled and linked with a multi-thread version of

setenv CBLLIB /HiRDB/include
ccbl -Mt -Mp sample.cbl -L/HiRDB/client/lib/ -lcltk -lpthread

setenv CBLLIB /HiRDB/include
ccbl -Mt -Mp sample.cbl -L/HiRDB/client/lib/ -lzcltk -lpthread

Item Category Category setting Setting value

Compiler Code generation Alignment of structure
members

8 bytes

Run time library to be used Multi-thread DLL

Preprocessor Include file path \HIRDB\INCLUDE

Linker Input Library \HIRDB\LIB\PDCLTM32.LIB

8. Preparation for UAP Execution

864

the COBOL85 compiler. The descriptions in this subsection assume that COBOL85
Version 5.0 is being used.

During compilation, specify the -Mt option in the Compiler Option dialog box. If an
object compiled with the -Mt option is linked with an object compiled without the -Mt
option, the operation is not guaranteed. For details about compiling UAPs written in
COBOL, see the COBOL85 User's Guide.

The following table shows the items to be specified with the Option menu.

Table 8-23: Items to be specified with the Option menu

Note: Specify the HiRDB installation directory in the underlined sections.

(2) For single-thread UAPs
This subsection explains how to compile and link single-thread UAPs that use the
multi-connection facility. HP-UX 11.0 is used as an example for explanatory purposes.

(a) Compiling and linking in HP-UX 11.0
Link the libclts.a or libzclts.sl instead of libclt.a or libzclt.sl.

During compilation, the following compilation options and libraries for multiple
threads cannot be specified:

• -D_REENTRANT

• -DRWSTD_MULTI_THREAD

• -D_THREAD_SAFE

• -lcma

• -lpthread

Also, pthread headers cannot be included.

C examples
Examples of compiling and linking when the multi-connection facility is used by a
single-thread UAP written in C are shown as follows. In these examples, the
underlined sections specify the HiRDB installation library.

Submenu Dialog box Setting item Setting value

Compiler COBOL85
Compiler Option

COBOL85 compiler
option

Check the -Mt item.

Environment variable
setting

CBLLIB=C:\HIRDB\INCLUDE

Linker Linker Option
Setting

Import/user-specified
library

C:\HIRDB\LIB\PDCLTM32

8. Preparation for UAP Execution

865

Example 1: Shared library

• The post-source file name is sample and an executable form file name is not
specified.

Example 2: Archive library

• The post-source file name is sample and an executable form file name is not
specified.

cc -I/HiRDB/include sample.c -L/HiRDB/client/lib/ -lzclts

cc -I/HiRDB/include sample.c -L/HiRDB/client/lib/libclts.a

8. Preparation for UAP Execution

866

8.4 Notes

8.4.1 Notes on UAP execution
This subsection provides notes concerning UAP execution.

(1) Notes about the character code classification
To execute UAPs, you must specify the LANG environment variable, or PDLANG or
PDCLTLANG in the client environment definition according to the HiRDB server's
character code classification (specified by the pdsetup command in the UNIX edition
and the pdntenv command in the Windows edition). If the HiRDB server and HiRDB
client use different character code classifications, an error occurs during UAP
execution. The following table shows the values of LANG and PDLANG for each
platform.

Table 8-24: Values of LANG and PDLANG for each platform

Character encoding type#1 HP-UX Solaris AIX Linux

lang-c LANG C C C C

PDLA
NG

-- -- -- --

sjis LANG ja_JP.SJIS ja_JP.PCK Ja_JP Any#2

PDLA
NG

-- -- -- SJIS

ujis LANG ja_JP.eucJP ja ja_JP ja_JP.eucJP#

3

PDLA
NG

-- -- -- --

chinese LANG chinese-s Any#2 Any#2 Any#2

PDLA
NG

CHINESE CHINESE CHINESE CHINESE

utf-8 LANG Any#2 Any#2 Any#2 Any#2

PDLA
NG

UTF-8 UTF-8 UTF-8 UTF-8

8. Preparation for UAP Execution

867

Legend:

--: There is no setting

#1

This is the HiRDB server's character code classification as specified in pdsetup
or pdntenv.

#2

If the platform in use supports the corresponding character encoding, specify that
character encoding in the LANG environment variable. If the platform does not
support the character encoding, specify C.

#3

ja_JP is handled in the same way as ja_JP.eucJP.

(2) Notes about SHLIB_PATH
For executing a UAP, add $PDDIR/client/lib to SHLIB_PATH. If you are using a
different platform, replace SHLIB_PATH with the corresponding environment variable
for that platform.

(3) Notes about a recovery-unnecessary front-end server in the HiRDB system
If the HiRDB system includes a recovery-unnecessary front-end server and it
processes a UAP that uses the X/Open XA interface to connect to the
recovery-unnecessary front-end server, it will not be possible to execute that UAP's
SQL statements. In such a case, you must specify the PDFESHOST and PDSERVICEGRP
client environment definitions and connect to a front-end server that is not a
recovery-unnecessary front-end server.

(4) Notes about Windows Server 2003 or later
Because of changes in the socket security specifications in Windows Server 2003,
Windows Vista, Windows Server 2008, and Windows 7, a receive port already in use
by another program might be assigned to a communication socket acquired by the
HiRDB client. If a receive port that is already in use is assigned, the HiRDB server's
message when connection is established is sent to the other program. As a result, the
HiRDB client does not receive the message and the KFPA11732-E error (receive
timeout) occurs. For this reason, it is important to take preventive measures to ensure
that a receive port will not be duplicated when UAPs are executed in a Windows Server

chinese-gb18030 LANG Any#2 Any#2 Any#2 Any#2

PDLA
NG

CHINESE-
GB18030

CHINESE-
GB18030

CHINESE-
GB18030

CHINESE-
GB18030

Character encoding type#1 HP-UX Solaris AIX Linux

8. Preparation for UAP Execution

868

2003 or later environment.

Tables 8-25 and 8-26 show the conditions that result in receive port duplication and the
corrective measures to be taken in Windows Server 2003 or later.

Table 8-25: Conditions resulting in duplicate receive ports and corrective
measures (1/2)

Client that starts later Client that starts first

Library version
earlier than 08-03

Library version 08-03 or later

PDCLTBINDLOO
PBACKADDR=Y

ES

PDCLTBINDLOOPB
ACKADDR=NO

PDCLTR
CVPOR

T
specifie

d

PDCLT
RCVPO

RT
omitted

PDCL
TRCV
PORT
specifi

ed

PDCLT
RCVPO

RT
omitted

PDCLTR
CVPORT
specified

PDCLTR
CVPOR

T
omitted

Library version
earlier than 08-03

PDCLTRC
VPORT
specified

-- -- -- -- -- --

PDCLTRC
VPORT
omitted

-- -- -- -- -- D1

Library
version
08-03
or later

PDCLTBI
NDLOOP
BACKA
DDR=YE
S

PDCLTRC
VPORT
specified

-- -- -- -- -- --

PDCLTRC
VPORT
omitted

-- -- -- -- -- --

PDCLTBI
NDLOOP
BACKA
DDR=N
O

PDCLTRC
VPORT
specified

-- -- -- -- -- --

PDCLTRC
VPORT
omitted

-- D1 -- -- -- --

8. Preparation for UAP Execution

869

Table 8-26: Conditions resulting in duplicate receive ports and corrective
measures (2/2)

Type 4
JDBC
driver

PDCLTBI
NDLOOP
BACKA
DDR=YE
S

PDCLTRC
VPORT
specified

-- -- -- -- -- --

PDCLTRC
VPORT
omitted

-- -- -- -- -- D1

PDCLTBI
NDLOOP
BACKA
DDR=N
O

PDCLTRC
VPORT
specified

-- -- -- -- -- --

PDCLTRC
VPORT
omitted

-- D1 -- D1 -- D1

Client that starts later Client that starts first, HiRDB server, or other program

Type 4 JDBC driver HiRDB
server, or

other
program

PDCLTBINDLOOPBACKA
DDR=YES

PDCLTBINDLOOPBAC
KADDR=NO

PDCLTRCVP
ORT

specified

PDCLTRC
VPORT
omitted

PDCLTRC
VPORT

specified

PDCLTRC
VPORT
omitted

Library version
earlier than 08-03

PDCLTRC
VPORT
specified

-- -- -- -- --

PDCLTRC
VPORT
omitted

-- -- -- D1 D2

Client that starts later Client that starts first

Library version
earlier than 08-03

Library version 08-03 or later

PDCLTBINDLOO
PBACKADDR=Y

ES

PDCLTBINDLOOPB
ACKADDR=NO

PDCLTR
CVPOR

T
specifie

d

PDCLT
RCVPO

RT
omitted

PDCL
TRCV
PORT
specifi

ed

PDCLT
RCVPO

RT
omitted

PDCLTR
CVPORT
specified

PDCLTR
CVPOR

T
omitted

8. Preparation for UAP Execution

870

Legend:

--

No preventive measure is needed because there will be no receive port
duplication.

D1

The receive port will be duplicated. Specify different ranges of port numbers

Librar
y
versio
n
08-03
or
later

PDCLT
BINDL
OOPBA
CKADD
R=YES

PDCLTRC
VPORT
specified

-- -- -- -- --

PDCLTRC
VPORT
omitted

-- -- -- D1 D2

PDCLT
BINDL
OOPBA
CKADD
R=NO

PDCLTRC
VPORT
specified

-- -- -- -- --

PDCLTRC
VPORT
omitted

-- D1 -- D1 D2

Type 4
JDBC
driver

PDCLT
BINDL
OOPBA
CKADD
R=YES

PDCLTRC
VPORT
specified

-- -- -- -- --

PDCLTRC
VPORT
omitted

-- -- -- D1 D2

PDCLT
BINDL
OOPBA
CKADD
R=NO

PDCLTRC
VPORT
specified

-- -- -- -- D2

PDCLTRC
VPORT
omitted

-- D1 -- D1 D2

Client that starts later Client that starts first, HiRDB server, or other program

Type 4 JDBC driver HiRDB
server, or

other
program

PDCLTBINDLOOPBACKA
DDR=YES

PDCLTBINDLOOPBAC
KADDR=NO

PDCLTRCVP
ORT

specified

PDCLTRC
VPORT
omitted

PDCLTRC
VPORT

specified

PDCLTRC
VPORT
omitted

8. Preparation for UAP Execution

871

in the PDCLTRCVPORT client environment variable for the clients that start
first and those that start later so that the port numbers used by these programs
are not duplicated.

D2

The receive port will be duplicated. Specify in the PDCLTRCVPORT client
environment variable for the client that starts later a port number that will not
be used by the HiRDB server or other programs, thus ensuring that the port
numbers used by programs will not be duplicated.

8.4.2 Executing UAPs that use an X/Open-based API (TX_function)
A UAP that uses an X/Open-based API (TX_function) uses a dedicated library. To
compile and link edit such a UAP, the library dedicated to the TX_function and the
library provided by HiRDB must be coupled.

Linux for AP8000 clients cannot execute UAPs that use an X/Open-based API (TX_
function).

(1) Preprocessing a UAP that uses an X/Open-based API (TX_ function)
This item describes notes on executing a UAP in a HiRDB system that is linked with
TP1/LiNK (transaction control).

Linking with TP1/LiNK is possible when both the HiRDB server and the HiRDB
client are for Windows.

(a) UAP preprocessing and linkage
If a UAP is to be executed in a TP1/LiNK environment, execute UAP preprocessing
and linkage as described as follows.

Preprocessing

During SQL preprocessor execution, specify one of the following options:

• /XAD: Specify this option to create a UAP written in COBOL as a DLL.

• /XA: Specify this option in all other cases.

Command specification example for C

PDCPP SAMPLE /XA

Command specification example for COBOL

PDCBL SAMPLE.ECB /XAD

Linkage

8. Preparation for UAP Execution

872

Link the following library to the UAP:

• %PDDIR%\CLIENT\LIB\PDCLTX32.LIB

Do not link CLTDLL.LIB.

(2) Using OpenTP1
UAP compilation and linkage when OpenTP1 is used are explained here. For details
about compilation and linkage using OpenTP1, see the OpenTP1 Programming
Reference C Language manual or the OpenTP1 Programming Reference COBOL
Language manual.

(a) C
Transaction control object file creation

When OpenTP1 is used to create a UAP that accesses HiRDB, it is necessary to create
a transaction control object file with the OpenTP1 trnmkobj operation command;
following is the specification:
trnmkobj -o control-object-filename -r HiRDB_DB_server

Example
• The transaction control object filename is control.

trnmkobj -o control -r HiRDB_DB_server

Compilation and linkage
The following is specified to compile and link a UAP that uses API.

To use a shared library:

Notes
1. The directory for installing HiRDB is underlined.

2. With the HP-UX edition, the -W1, +s option must be specified if different
directories are used for the libraries provided by HiRDB during UAP
creation and UAP execution. When different distribution library directories
are used for linkage and for execution, the SHLIB_PATH environment
variable must be used at the time of execution to set the directory containing
the distribution library.

3. Depending on the method of OLTP registration that is used, the HiRDB
system provides the following four libraries for UAPs that use an X/

/usr/bin/cc -c -l$DCDIR/include -I/HiRDB/include filename.c
 /usr/bin/cc -o UAP-executable-form-filename UAP-filename.o
 $DCDIR/spool/trnrmcmd/userobj/control-object-filename.o
 -L/HiRDB/client/lib -lzclty -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a, default -lbetran -L/usr/lib -ltactk -lbsd -lc

8. Preparation for UAP Execution

873

Open-compatible API. The library name that is specified for the linkage must
match the applicable OLTP registration method.

-lzcltx (dynamic registration)

-lzclty (static/dynamic registration)

-lzcltxs (dynamic registration when the multi-connection facility is used)

-lzcltys (static/dynamic registration when the multi-connection facility is
used)

In static/dynamic registration, the registration type can be switched to static
registration or dynamic registration by the switch registered to TM. For
details about the registration procedure, see the explanation of registering a
HiRDB system in the transaction manager in the HiRDB Version 9
Installation and Design Guide.

4. To create a UAP that uses an X/Open-compatible API in AIX, specify -brtl
in the linkage option.

Example
The filename (UAP name) is sample, UAP executable form filename is SAMPLE,
and the transaction control object filename is control.

To use an archive library:

Notes
1. The directory for installing HiRDB is underlined.

2. The archive library provided by HiRDB (-lcltxa) must be specified before
the library provided by OpenTP1 (-lbetran).

3. Depending on the method of OLTP registration that is used, the HiRDB
system provides the following two libraries for UAPs that use an X/
Open-compatible API. The library name that is specified for the linkage must
match the applicable OLTP registration method.

/usr/bin/cc -c -I$DCDIR/include -I/HiRDB/include sample.c
 /usr/bin/cc -o SAMPLE sample.o
 $DCDIR/spool/trnrmcmd/userobj/control.o
 -L/HiRDB/client/lib -lzclty -L$DCDIR/lib
 -Wl,-B,immediate -Wl,-a,default
 -lbetran -L/usr/lib -ltactk -lbsd -lc

/usr/bin/cc -c -l$DCDIR/include -I/HiRDB/include filename.c
 /usr/bin/cc -o UAP-executable-form-filename UAP-filename.o
 $DCDIR/spool/trnrmcmd/userobj/control-object-filename.o
 -L/HiRDB/client/lib -lcltxa -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a, default -lbetran -L/usr/lib -ltactk -lbsd -lc

8. Preparation for UAP Execution

874

-lcltxa (dynamic registration)

-lcltya (static/dynamic registration)

In static/dynamic registration, the registration type can be switched to static
registration or dynamic registration by the switch registered to TM. For
details about the registration procedure, see the explanation of registering a
HiRDB system in the transaction manager in the HiRDB Version 9
Installation and Design Guide.

Example
The filename (UAP name) is sample, UAP executable form filename is SAMPLE,
and the transaction control object filename is control.

(b) COBOL
Transaction control object file creation

When OpenTP1 is used to create a UAP that accesses HiRDB, it is necessary to create
a transaction control object file with the OpenTP1 trnmkobj operation command;
following is the specification:
trnmkobj -o control-object-filename -r HiRDB_DB_SERVER

Example
• The transaction control object filename is control.

trnmkobj -o control -r HiRDB_DB_SERVER

Compilation and linkage
The following is specified to compile and link a UAP that uses API.

To use a shared library:

Notes
1. The directory for installing HiRDB is underlined.

2. With the HP-UX edition, the -W1, +s option must be specified if different

/usr/bin/cc -c -I$DCDIR/include -I/HiRDB/include sample.c
 /usr/bin/cc -o SAMPLE sample.o
 $DCDIR/spool/trnrmcmd/userobj/control.o
 -L/HiRDB/client/lib -lcltxa -L$DCDIR/lib
 -Wl,-B,immediate -Wl,-a,default
 -lbetran -L/usr/lib -ltactk -lbsd -lc

ccbl -o UAP-executable-form-filename -Mw filename.cbl
 $DCDIR/spool/trnrmcmd/userobj/control-object-filename.o
 -L/HiRDB/client/lib -lzclty -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a, default -lbetran -L/usr/lib -ltactk -lbsd -lc

8. Preparation for UAP Execution

875

directories are used for the libraries provided by HiRDB during UAP
creation and UAP execution. When different distribution library directories
are used for linkage and for execution, the SHLIB_PATH environment
variable must be used at the time of execution to set the directory containing
the distribution library.

3. Depending on the method of OLTP registration that is used, the HiRDB
system provides the following 4 libraries for UAPs that use an X/
Open-compatible API. The library name that is specified for the linkage must
match the applicable OLTP registration method.

-lzcltx (dynamic registration)

-lzclty (static/dynamic registration)

-lzcltxs (multi-connection facility is used with dynamic registration)

-lzcltys (multi-connection facility is used with static/dynamic
registration)

In static/dynamic registration, the registration type can be switched to static
registration or dynamic registration by the switch registered to TM. For
details about the registration procedure, see the explanation of registering a
HiRDB system in the transaction manager in the HiRDB Version 9
Installation and Design Guide.

4. To create a UAP that uses an X/Open-compatible API in AIX, specify -brtl
in the linkage option.

Example
The filename (UAP name) is sample, the UAP executable form filename is
SAMPLE, and the transaction control object filename is control.

To use an archive library:

Notes
1. The directory for installing HiRDB is underlined.

2. The archive library provided by HiRDB (-lcltxa) must be specified before

ccbl -o SAMPLE -Mw sample.cbl
 $DCDIR/spool/trnrmcmd/userobj/control.o
 -L/HiRDB/client/lib -lzclty -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a,default -lbetran -L/usr/lib -ltactk -lbsd -lc

ccbl -o UAP-executable-form-filename -Mw filename.cbl
 $DCDIR/spool/trnrmcmd/userobj/control-object-filename.o
 -L/HiRDB/client/lib -lcltxa -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a,default -lbetran -L/usr/lib -ltactk -lbsd -lc

8. Preparation for UAP Execution

876

the library provided by OpenTP1 (-lbetran).

3. Depending on the method of OLTP registration that is used, the HiRDB
system provides the following two libraries for UAPs that use an X/
Open-compatible API. The library name that is specified for the linkage must
match the applicable OLTP registration method.

-lcltxa (dynamic registration)

-lcltya (static/dynamic registration)

In static/dynamic registration, the registration type can be switched to static
registration or dynamic registration by the switch registered to TM. For
details about the registration procedure, see the explanation of registering an
HiRDB system in the transaction manager in the HiRDB Version 9
Installation and Design Guide.

Example
The filename (UAP name) is sample, the UAP executable form filename is
SAMPLE, and the transaction control object filename is control.

(3) Using TPBroker for C++
UAP compilation and linkage when TPBroker for C++ is used are explained here. The
UAP is assumed to use the multi-thread XA interface. For details about compilation
and linkage using TPBroker for C++, see the TPBroker User's Guide manual. The
libraries that are dedicated to the multi-thread XA interface support only C and C++.

(a) Transaction control object file creation
When TPBroker for C++ is used to create a UAP that accesses HiRDB, it is necessary
to create a transaction control object file with the TPBroker for C++ tsmkobj
operation command; following is the specification:

(b) Compilation and linkage
The following is specified to compile and link a UAP.

ccbl -o SAMPLE -Mw sample.cbl
 $DCDIR/spool/trnrmcmd/userobj/control.o
 -L/HiRDB/client/lib -lcltxa -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a,default -lbetran -L/usr/lib -ltactk -lbsd -lc

tsmkobj -o control-object-filename -r HiRDB_DB_SERVER

8. Preparation for UAP Execution

877

Notes
1. The directory for installing the HiRDB client is underlined.

2. With the HP-UX edition, the -W1, +s option must be specified if different
directories are used for the libraries provided by HiRDB during UAP creation and
UAP execution. When different distribution library directories are used for
linkage and for execution, the SHLIB_PATH environment variable must be used
at the time of execution to set the directory containing the distribution library.

3. Depending on the method of OLTP registration that is used (dynamic registration
or static registration), the HiRDB system provides two libraries (-lzcltxk and
-lzcltyk) for UAPs that use an XA interface that supports multiple threads. The
library name that is specified for the linkage must match the applicable OLTP
registration method.

(4) Using TUXEDO
UAP compilation and linkage when TUXEDO is used are explained here. The libraries
that are dedicated to the XA interface support only C and C++.

(a) UNIX
Load module construction for the transaction manager server (TMS)

Load module construction for the TUXEDO system server

Load module creation for the TUXEDO client

(b) Windows
Load module construction for the transaction manager server (TMS)

aCC +inst_implicit_include +DAportable -c -I$TPDIR/include
 -I$TPDIR/include/dispatch -I/HiRDB/include -D_REENTRANT
 -D_HP_UX_SOURCE -D_POSIX_C_SOURCE=199506Lfilename.c
aCC +inst_implicit_include +Daportable -o
 UAP-executable-form-filename UAP-filename.o
 $TPDIR/otsspool/XA/control-object-filename.o
 -L/HiRDB/client/lib -lzcltxk -L$TPDIR/lib -Wl,+s -lots_r
 -lorb-r
 -Wl,-B,immediate -Wl,-a,default -L/usr/lib -lpthread

buildtms -r HiRDB_DB_SERVER -o TMSload-module-filename

buildserver -r HiRDB_DB_SERVER -s service-name
 -o server-load-module-filename -f server-filename.o

buildclient -o client-load-module-name -f client-filename.c

8. Preparation for UAP Execution

878

Load module construction for the TUXEDO system server

Load module creation for the TUXEDO client

(5) Using TP1/EE (limited to UNIX)
UAP compilation and linkage when TP1/EE is used are explained here. For details
about the TP1/EE commands, see the TP1/Server Base Enterprise Option User's
Guide.

(a) C
Object file creation for resource manager linking

When using TP1/EE to create a UAP that accesses HiRDB, you must use a TP1/
EE operation command to create an object file for linking with the resource
manager. Use the eetrnmkobj command to create the object file.

The specification for creating an object file for linking with the resource manager
is as follows:

Example
The name of the object file for linking with the resource manager is
control, and the static registration method is used to create the object file.

Compilation and linkage

set LINK=/EXPORT:_imp_pdtxa_switch=pdtxa_switch
 /EXPORT:_inp_pdtxa_switch_y=pdtxa_switch_y
buildtms -r HiRDB_DB_SERVER -o TMSload-module-filename

set LINK=/EXPORT:_imp_pdtxa_switch=pdtxa_switch
 /EXPORT:_inp_pdtxa_switch_y=pdtxa_switch_y
buildserver -r HiRDB_DB_SERVER -s service-name
 -o server-load-module-filename -f server-filename.obj

buildclient -o client-load-module-name -f client-filename.c

eetrnmkobj -o name-of-object-file-for-resource-manager-linking -r HiRDB_DB_SERVER \
 -s RM-switch-name -O RM-object-file-name \
 -i header-path-provided-by-HiRDB

eetrnmkobj -o control -r HiRDB_DB_SERVER -s pdtxa_switch_y \
 -O /HiRDB/client/lib/libzcltyk.sl -i /HiRDB/include

8. Preparation for UAP Execution

879

The following is specified to compile and link a UAP that uses the multi-thread
XA interface.

• Using a shared library

Notes
1. The directory for installing the HiRDB client is underlined.

2. When the multi-thread XA interface is used, specify -lzcltyk as the library
for the TP1/EE UAP, and specify a corresponding name as the library name
to be specified during linkage. For details about the registration procedure,
see the HiRDB Version 9 Installation and Design Guide.

Example
The name of the UAP executable file is SAMPLE, and the name of the object file
for linking with the resource manager is control.

(b) COBOL
Creating an object file for resource manager linking

When TP1/EE is used to create a UAP that accesses HiRDB, a TP1/EE operation
command must be used to create an object file for linking with the resource
manager. The eetrnmkobj command is used for this purpose.

The following is specified to create an object file for resource manager linking:

Example
The name of the object file for resource manager linking is control, and the
file is created by the static registration method.

/usr/vac/bin/xlc_r -o executable-file-name $DCDIR/lib/ee_main.o
 resource-manager-linking-object -brtl -bdynamic -L/HiRDB/lib -L/HiRDB/client/lib
 -L$DCDIR/lib -lpthread -lisode -lc_r -ldl -lzcltyk -lee -lee_rm
 -lbetran2 -ltactk

/usr/vac/bin/xlc_r -o SAMPLE $DCDIR/lib/ee_main.o control.o
 -brtl -bdynamic -L/HiRDB/lib -L/HiRDB/client/lib -L$DCDIR/lib
 -lpthread -lisode -lc_r -ldl -lzcltyk -lee -lee_rm -lbetran2 -ltactk

eetrnmkobj -o name-of-object-file-for-resource-manager-linking -r HiRDB_DB_SERVER \
 -s RM-switch-name -O RM-related-object-file-name \
 -i header-path-provided-by-HiRDB

8. Preparation for UAP Execution

880

Compilation and linkage

For details about compilation and linkage of a UAP that uses the multi-thread XA
interface, see the TP1/Server Base Enterprise Option User's Guide.

8.4.3 UAP execution using the Unicode functionality of COBOL2002
For UAPs that use the Unicode functionality of COBOL2002, you can use Japanese
data items for storing UTF-16 character data as embedded variables.

(1) Character codes of SQL-related character data
The following table shows the character codes and character data in UAPs that use the
Unicode functionality of COBOL2002.

Table 8-27: Character codes and character data in UAPs that use the Unicode
functionality of COBOL2002

(2) Character code conversion performed by the HiRDB server
The following table describes the character code conversion performed by the HiRDB
server when UAPs that use the Unicode functionality of COBOL2002 execute SQL
statements.

Table 8-28: Character code conversion performed by the HiRDB server when
UAPs that use the Unicode functionality of COBOL2002 execute SQL
statements.

eetrnmkobj -o control -r HiRDB_DB_SERVER -s pdtxa_switch_y \
 -O /HiRDB/client/lib/libzcltyk.sl -i /HiRDB/include

Character data in UAP Character codes

SQL
statements

UTF-8

Embedded
variables

Alphanumeric
data items

UTF-8

Japanese data
items

UTF-16LE or UTF-16BE

Character data in UAP Character code conversion performed by the HiRDB server
when SQL statements are executed

SQL statement No conversion is performed because the client and server both use UTF-8
character codes.

8. Preparation for UAP Execution

881

#

For details about the data types that can be converted (assigned and compared),
see the manual HiRDB Version 9 SQL Reference.

(3) SQL execution conditions
In order to execute the SQL statements by a UAP that uses the Unicode functionality
of COBOL2002, all the following conditions must be satisfied:

The HiRDB server's default character set is UTF-8.

The -XU16 option is specified when the SQL preprocessor is executed.

No embedded SQL statement contains characters in JIS X0213 level 3 or 4 kanji
codes.

NOUSE (default value) is specified in the PDCLTCNVMODE client environment
definition.

(a) HiRDB server's default character set
If you specify utf-8 as the character code classification in the pdntenv command (in
the UNIX edition, pdsetup command), the HiRDB server's default character set is set
to UTF-8.

(b) Preprocessing options
For details about the -XU16 option, see Table 8-5 Preprocessing options (for COBOL
in the UNIX environment) or Table 8-11 Preprocessing options (for COBOL in the
Windows environment).

(c) Limitations to the characters in embedded SQL statements
An error will occur during preprocessing if an embedded SQL statement in the UAP
source contains characters in JIS X0213 level 3 or 4 kanji codes. For character data

Embedded
variable

Alphanumeric
data item

Character codes are converted if the character set of character data used by
the server that is subject to assignment and comparison processing is
UTF-16.#

Japanese data
item

Character codes are converted if the character set of character data used by
the server that is subject to assignment and comparison processing is the
default character set (UTF-8).#
If the pre-conversion data contains single-byte characters, the single-byte
characters (double-byte characters in UTF-16) are stored.
Data in embedded variables is treated as having the character data type
(CHAR or VARCHAR) for which the character set name, UTF-16LE or
UTF-16BE, has been specified according to the -XU16 option.

Character data in UAP Character code conversion performed by the HiRDB server
when SQL statements are executed

8. Preparation for UAP Execution

882

stored in embedded variables, you must use characters in the range supported by the
Unicode functionality of COBOL2002.

(d) Client environment definition
You must specify NOUSE in the PDCLTCNVMODE client environment definition in order
to prevent the HiRDB client from performing character code conversion.

8.4.4 Converting UAPs created with XDM/RD or UNIFY2000
If a UAP created with XDM/RD or UNIFY2000 possesses SQL compatibility, it can
use HiRDB by executing the SQL preprocessor (a UAP that does not possess SQL
compatibility must be rewritten). For details about the SQLs used by HiRDB, see 1.2.2
List of SQL statements usable in HiRDB. For details about SQLs, see the HiRDB
Version 9 SQL Reference manual.

The following table shows the portability of UAPs from XDM/RD or UNIFY2000.

Table 8-29: UAP transferability from XDM/RD or UNIFY2000

T: Can be transferred

--: Cannot be transferred

NA: Not applicable

8.4.5 Actions required when HiRDB is upgraded
The APIs provided by HiRDB are upgradeable. In general, this means that there is no
need to update UAPs when you upgrade your HiRDB.

However, if the following conditions are applicable, you must preprocess, compile,
and link all UAPs again:

• You will be using new HiRDB features.

• A UAP created in C language or COBOL will be executed by a HiRDB client that
uses a different version of the OS.

Creation
system

How to operate
database

Transferability Transfer condition

XDM/RD Embedding SQL
statements

T Re-execution of SQL preprocessor

Module type -- NA

CALL type -- NA

UNIFY2000 Embedding SQL/A
statements

T Re-execution of SQL preprocessor

Using RHLI -- NA

883

Chapter

9. Java Stored Procedures and Java
Stored Functions

This chapter explains the procedures for creating and executing Java stored procedures
and Java stored functions that code procedures in Java. Note that Linux for AP8000
clients cannot use Java stored procedures and Java stored functions.

This chapter contains the following sections:

9.1 Overview
9.2 Procedure from external Java stored routine creation to execution
9.3 Sample external Java stored routine programs
9.4 Notes about Java program creation
9.5 Notes about testing and debugging
9.6 Notes about JAR file creation

9. Java Stored Procedures and Java Stored Functions

884

9.1 Overview

Stored procedures and stored functions that are coded in Java are called Java stored
procedures and Java stored functions, respectively. They are referred to collectively in
this chapter as external Java stored routines.

External Java stored routines cannot be used on all HiRDB operation platforms. For
details, see the section that describes environments in which Java stored procedures
and Java stored functions can be used in the HiRDB Version 9 System Operation
Guide.

The following figure shows the procedure from creation to execution of an external
Java stored routine.

9. Java Stored Procedures and Java Stored Functions

885

Figure 9-1: Procedure from creation to execution of an external Java stored
routine

9. Java Stored Procedures and Java Stored Functions

886

Explanation
1. Create an external Java stored routine. For details, see 9.2.1 Creating an

external Java stored routine.

2. Test and debug the Java stored routine as a client AP. For details, see 9.2.1
Creating an external Java stored routine.

3. Register the JAR file in HiRDB. For details, see 9.2.2 Registering the JAR
file.

4. Define the external Java stored routine. For details, see 9.2.3 Defining the
external Java stored routine.

5. Execute the external Java stored routine. For details, see 9.2.4 Executing the
external Java stored routine.

Features of external Java stored routines
1. There is no overhead for communication between the server and a

client.
Because external Java stored routines are processed at the server in the same
manner as SQL stored procedures and SQL stored functions, there is no
communication overhead between server and client.

2. The procedure or function itself can be coded in Java.
Because Java is used as the programming language, more advanced control
is available than with SQL.

3. Java stored routines are supported by different types of DBMS.
Because Java is a platform-independent programming language, a program
created in Java can be run in a variety of DBMSs that support external Java
stored routines.

4. Debugging is easy.
To debug an SQL stored procedure or an SQL stored function, you need to
execute it at the server. In contrast, an external Java stored routine can be
debugged at the client, including testing of database accesses, as long as the
Java debugger is installed at the client.

Preparations for external Java stored routine execution
To execute an external Java stored routine, you must have first installed the JDBC
driver. For details about installing the JDBC driver, see 17.1 Installation and
environment setup.

9. Java Stored Procedures and Java Stored Functions

887

9.2 Procedure from external Java stored routine creation to
execution

To create and execute an external Java stored routine:

1. Create the external Java stored routine.

2. Register the JAR file.

3. Define the external Java stored routine.

4. Execute the external Java stored routine.

5. Re-register and delete the JAR file.

9.2.1 Creating an external Java stored routine
To code an external Java stored routine:

1. Code the Java program (create a Java file).

2. Compile (create a Class file).

3. Test and debug.

4. Archive in JAR format (create the JAR file).

(1) Coding a Java program (creating a Java file)
Code the program that is to be registered as an external Java stored routine.

For notes about Java program coding, see 9.4 Notes about Java program creation.

The following figure shows an example of Java program coding.

Figure 9-2: Example of Java program coding

(2) Compiling (creating a Class file)
Create a Class file from the Java file using the javac command.

The following figure shows an example of compilation.

9. Java Stored Procedures and Java Stored Functions

888

Figure 9-3: Example of compilation

Explanation
If you specified package for the Java file, specify the -d option during
compilation. When the Java file is compiled, a directory with the specified
package name is created and a Class file is created in that directory.

(3) Testing and debugging
Execute the compiled file on the client's Java virtual machine to test and debug it.

For notes about testing and debugging, see 9.5 Notes about testing and debugging.

The following figure provides an overview of testing and debugging.

9. Java Stored Procedures and Java Stored Functions

889

Figure 9-4: Overview of testing and debugging

(4) Archiving in JAR format (creating a JAR file)
Use the jar command to create a JAR file from multiple Class files.

For notes about JAR file creation, see 9.6 Notes about JAR file creation.

The following figure shows an example of archiving in the JAR format.

Figure 9-5: Example of archiving in JAR format

9. Java Stored Procedures and Java Stored Functions

890

9.2.2 Registering the JAR file
Register (copy) the created JAR file onto the server.

There are three ways to do this:

Executing SQL "INSTALL JAR"
Use a UAP or the database definition utility to specify and execute INSTALL
JAR.

Executing the pdjarsync command
Execute the pdjarsync command (specifying the -I option).

Only the HiRDB administrator can execute the pdjarsync command.

Calling a Java method for installation
Call a Java method for installation, which is Jdbh_JARReInstall in the
Jdbh_JARAccss class, to register the JAR file.

The following figure provides an overview of JAR file registration.

Figure 9-6: Overview of JAR file registration

9. Java Stored Procedures and Java Stored Functions

891

Reference note:

You use the REPLACE JAR SQL statement to re-register a JAR file. You use the
REMOVE JAR SQL statement to delete a JAR file. The HiRDB administrator
must use the pdjarsync command to re-register or delete a JAR file.

Note that only the user who registered a JAR file or the HiRDB administrator
can re-register or delete it.

9.2.3 Defining the external Java stored routine
You use CREATE PROCEDURE or CREATE FUNCTION to define an external Java stored
routine. CREATE PROCEDURE or CREATE FUNCTION defines the association of a Java
method with the procedure name or function name.

Java stored procedure

Use CREATE PROCEDURE to register a Java method as a Java stored procedure.

Java stored function

Use CREATE FUNCTION to register a Java method as a Java stored function.

The following figure shows an example of an external Java stored routine definition.

Figure 9-7: Example of an external Java stored routine definition

Defining public routines

To use an external Java stored routine defined by another user, you must specify
its owner's authorization identifier and the routine identifier when you call the
stored routine from within the UAP.

However, if the external Java stored routine was defined as a public routine by
executing CREATE PUBLIC PROCEDURE or CREATE PUBLIC FUNCTION, then

9. Java Stored Procedures and Java Stored Functions

892

there is no need to specify the owner's authorization identifier when the stored
routine is called from within a UAP (only the routine identifier needs to be
specified).

Redefining external Java stored routines

You use ALTER PROCEDURE or ALTER ROUTINE to redefine an external Java
stored routine, such as when you need to make changes to the Java program.

Deleting external Java stored routines

You use DROP PROCEDURE or DROP FUNCTION to delete an external Java stored
routine.

To delete a public routine, use DROP PUBLIC PROCEDURE or DROP PUBLIC
FUNCTION. Note that a public routine can be deleted only by the user who defined
it or by a user with the DBA privilege.

9.2.4 Executing the external Java stored routine
You use the CALL statement or a function call to execute an external Java stored
routine. When the CALL statement or SQL statement specifying a function call
executes, a Java method is called as the external Java stored routine and executed at
the server's Java virtual machine.

Java stored procedures

Use the CALL statement to execute a Java method as a Java stored procedure.

Java stored functions

Use an SQL statement specifying a function call to execute a Java method as a
Java stored function.

For details about the CALL statement and function calls, see the HiRDB Version 9 SQL
Reference manual.

The following figure shows an example of executing an external Java stored routine.

9. Java Stored Procedures and Java Stored Functions

893

Figure 9-8: Example of execution of an external Java stored routine

9. Java Stored Procedures and Java Stored Functions

894

9.3 Sample external Java stored routine programs

9.3.1 Sample program
This section presents an example of a stored procedure that uses the SELECT statement
to retrieve BLOB data stored in the pics table, zips the data (compresses the data in
the ZIP format), then returns it to the calling program.

Definition of the Java stored procedure

Explanation
1. Defines the procedure name and parameters.

2. Specifies LANGUAGE.

3. Associates with the Java method.

4. Specifies PARAMETER STYLE.

Body of the Java stored procedure

CREATE PROCEDURE get_pic ...1
 (IN pic_num INTEGER, OUT pic_data BLOB) 1
 LANGUAGE JAVA ..2
 EXTERNAL NAME 'mypack.jar:JStrPics.getZippedPic(int, byte[][])' 3
 PARAMETER STYLE JAVA; ..4

import java.sql.*;

import java.io.*;

import java.util.zip.*;

public class JStrPics{ ...1

 public static void getZippedPic(int jpic_num, byte[][] jpic_data) ..2

 throws SQLException, IOException{ 3

 Connection con = DriverManager.getConnection(....................4

 "jdbc:hitachi:hirdb"); 4

 PreparedStatement pstmt = con.prepareStatement 5

 ("select p_name,p_data from pics where p_num = ?"); 5

9. Java Stored Procedures and Java Stored Functions

895

 pstmt.setInt(1, jpic_num); 5

 ResultSet rs = pstmt.executeQuery(); 6

 String name; ...7

 byte[] srcPic; ...7

 while(rs.next()){

 name = rs.getString("p_name"); 8

 srcPic = rs.getBytes("p_data"); 9

 }

 ByteArrayOutputStream baos = new ByteArrayOutputStream(); 10

 ZipOutputStream zos = new ZipOutputStream(baos); 10

 ByteArrayInputStream bais = new ByteArrayInputStream(srcPic); 10

 ZipEntry ze = new ZipEntry(name); 10

 zos.putNextEntry(ze); ..10

 int len = 0; ...10

 byte[] buff = new byte[1024]; 10

 while((len = bais.read(buff)) != -1){ 10

 zos.write(buff, 0, len); ...10

 } ..10

 zos.closeEntry(); ..11

 bais.close(); ..11

 zos.close(); ...11

 jpic_data[0] = baos.toByteArray(); 12

 baos.close(); ..12

9. Java Stored Procedures and Java Stored Functions

896

Explanation
1. Defines the class name.

2. Defines the method name and parameter name.

3. Defines an action to be taken in the event of an exception.

4. Obtains the Connection object. (Because the Java stored procedure runs
within the calling program's connection, there is no increase in the number
of users connected to HiRDB.)

5. Preprocesses the SELECT statement.

6. Executes the SELECT statement and obtains the result set.

7. Declares variables.

8. Obtains the value of the p_name column from the result set.

9. Obtains the value of the p_data column from the result set.

10. Compresses the data in the srcPic array in the ZIP format and stores it in
the zos stream.

11. Closes the input and output streams.

12. Specifies the byte column of the baos stream in the method's OUT
parameter.

13. End of method execution.

Execution of the Java stored procedure

 return; ..13

 }

}

import java.sql.*;

import java.io.* ;

public class Caller{ ...1

 public static void main(String[] args) 2

 throws SQLException, IOException{ 3

9. Java Stored Procedures and Java Stored Functions

897

Explanation
This sample Java application program calls a Java stored procedure.

1. Defines the class name.

2. Defines the method name and parameter name.

3. Defines an action to be taken in the event of an exception.

4. Obtains the Connection object. (Because the connection to HiRDB is
established by obtaining a Connection object, there is an increase in the
number of users.)

5. Preprocesses the CALL statement.

6. Executes the CALL statement.

7. Obtains the OUT parameter of the byte array type.

9.3.2 Sample external Java stored routines provided with HiRDB
(1) Sample 1

This sample Java stored procedure obtains a calendar of the specified year and month.

External Java procedure (filename: sample1.java)

 Connection con = DriverManager.getConnection(......................4

 "jdbc:hitachi:hirdb","USER1","PASS1"); 4

 CallableStatement cstmt = con.prepareCall("{call get_pic(?,?)}"); ..5

 cstmt.setInt(1, 10); ...5

 cstmt.registerOutParameter(2, java.sql.Types.LONGVARBINARY); 5

 cstmt.executeUpdate(); ...6

 byte[] getPic = cstmt.getBytes(2); 7

 }

}

9. Java Stored Procedures and Java Stored Functions

898

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

/* LICENSED MATERIAL OF HITACHI,LTD. */

/**/

/* name = HiRDB 06-00 sample program of Java stored procedure 1 */

/**/

import java.lang.*;

import java.util.*;

/**/

/* name = sample_1 class */

/**/

public class sample1 {

 /*==*/

 /* name = main method for debugging */

 /*==*/

 public static void main(java.lang.String[] args) {

 java.lang.Integer year = new Integer(args[0]);

 java.lang.Integer month = new Integer(args[1]);

 java.lang.String calendar[] = new String[1];

 calendar(year, month, calendar);

 System.out.println(calendar[0]);

 }

 /*==*/

 /* name = sample_1 method */

 /*==*/

 public static void calendar(java.lang.Integer year,

 java.lang.Integer month,

 java.lang.String[] calendar) {

9. Java Stored Procedures and Java Stored Functions

899

 int DayOfWeek; // first day of the week in the specified month

 int week; // For linefeed control

 int wyear = year.intValue(); // Year work

 int wmonth = month.intValue(); // Month work

 // Creating the calendar header

 calendar[0] = " " + wyear + " / " + wmonth + "\n";

 calendar[0] += "Sun Mon Thu Wed Tue Fri Sat\n";

 // Generating the calendar object

 Calendar target_cal = new GregorianCalendar(wyear, wmonth - 1, 1);

 // Calculating the first day of the week in the specified month

 DayOfWeek = target_cal.get(Calendar.DAY_OF_WEEK);

 // Specifying spaces up to the first day of the week

 for (week = 1; week < DayOfWeek; week++) {

 calendar[0] += " ";

 }

 // Specifying the date

 for (;

 target_cal.get(Calendar.MONTH) == wmonth - 1;

 target_cal.add(Calendar.DATE, 1), week++) {

 // Adjusting spaces according to the date and digits

 if (target_cal.get(Calendar.DATE) < 10) {

 calendar[0] += " " + target_cal.get(Calendar.DATE);

 } else {

 calendar[0] += " " + target_cal.get(Calendar.DATE);

 }

9. Java Stored Procedures and Java Stored Functions

900

The following is an example of defining and executing a Java stored procedure using
the external Java procedure shown above:

Compiling the Java file (for HP-UX)

Creating the JAR file (for HP-UX)

Registering the JAR file in HiRDB (using INSTALL JAR SQL statement)

Defining the Java stored procedure

Executing the Java stored procedure

 // Specifying padding characters between dates

 if (week == 7) {

 calendar[0] += "\n";

 week = 0;

 } else {

 calendar[0] += " ";

 }

 }

 return;

 }

}

javac sample1.java

jar -cvf sample1.jar sample1.class

INSTALL JAR 'sample1.jar' ;

CREATE PROCEDURE calendar(IN pyear INT, IN pmonth INT, OUT
 calendar VARCHAR(255))
 LANGUAGE JAVA
 EXTERNAL NAME 'sample1.jar:sample1.calendar(java.lang.Integer,
 java.lang.Integer,java.lang.String[])
 returns void'
 PARAMETER STYLE JAVA
end_proc;

CALL calendar(?,?,?)

9. Java Stored Procedures and Java Stored Functions

901

(2) Sample 2
This example accepts the specified date as a processing range and updates the total for
the goods_no column in that range.

The example assumes that the table is defined as follows:
CREATE TABLE master_t1 (goods_no int,total_quantity dec(17,2))
CREATE TABLE tran_t1(goods_no int,quantity_1
dec(17,2),entrydate date)

External Java procedure (filename: sample2.java)
/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

/* LICENSED MATERIAL OF HITACHI,LTD. */

/**/

/* name = HiRDB 06-00 Java stored sample 2 */

/**/

import java.lang.*;

import java.math.*;

import java.sql.*;

/**/

/* name = sample_2 class */

/**/

public class sample2 {

 /*==*/

 /* name = main method for debugging */

 /*==*/

 public static void main(String args[]) throws SQLException {

 java.sql.Date fromdate = Date.valueOf("1996-06-01");

 java.sql.Date todate = Date.valueOf("1996-06-30");

 try {

 // Registering the Driver class

 Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver");

 } catch (ClassNotFoundException ex) {

9. Java Stored Procedures and Java Stored Functions

902

 System.out.println("\n*** ClassNotFoundException caught ***\n");

 ex.printStackTrace();

 System.out.println ("");

 System.out.println("\n*************************************\n");

 return;

 }

 jproc1(fromdate, todate);

 }

 /*==*/

 /* name = sample_2 method */

 /*==*/

 public static void jproc1(java.sql.Date fromdate, java.sql.Date todate)

 throws SQLException {

 java.lang.Integer x_goods_no;

 java.math.BigDecimal x_quantity_1, x_total_quantity;

 try {

 // Creating a connection object (CONNECT not issued within the Java

 procedure)

 java.sql.Connection con =

 DriverManager.getConnection("jdbc:hitachi:hirdb");

 con.setAutoCommit(false); // Suppressing automatic commit

 // SELECT (stmt1) preprocessing

 java.sql.PreparedStatement stmt1 =

 con.prepareStatement("SELECT goods_no, quantity_1

 , entrydate FROM tran_t1

9. Java Stored Procedures and Java Stored Functions

903

 WHERE entrydate BETWEEN ? AND ? ORDER BY entrydate");

 // SELECT (stmt2) preprocessing (outside the loop)

 java.sql.PreparedStatement stmt2 =

 con.prepareStatement("SELECT total_quantity FROM master_t1

 WHERE goods_no = ?");

 // INSERT (stmt3) preprocessing (outside the loop)

 java.sql.PreparedStatement stmt3 =

 con.prepareStatement("INSERT INTO master_t1 VALUES(?, ?)");

 // UPDATE (stmt4) preprocessing (outside the loop)

 java.sql.PreparedStatement stmt4 =

 con.prepareStatement("UPDATE master_t1 SET total_quantity = ?

 WHERE goods_no = ?");

 // Specifying SELECT (stmt1) input parameters

 stmt1.setDate(1, fromdate);

 stmt1.setDate(2, todate);

 // Executing SELECT (stmt1)

 java.sql.ResultSet rs1 = stmt1.executeQuery();

 while (rs1.next()) {

 // Obtaining the retrieval result of SELECT (stmt1)

 x_goods_no = (Integer)rs1.getObject("goods_no");

 x_quantity_1 = rs1.getBigDecimal("quantity_1");

 // Specifying SELECT (stmt2) input parameter

 stmt2.setObject(1, x_goods_no);

9. Java Stored Procedures and Java Stored Functions

904

 // Executing SELECT (stmt2)

 java.sql.ResultSet rs2 = stmt2.executeQuery();

 // Checking whether or not goods_no has been registered to

 determine action

 if (!rs2.next()) { // Not registered ==> Add a new entry

 // Closing the SELECT (stmt2) cursor before updating

 rs2.close();

 // Specifying INSERT (stmt3) input parameters

 stmt3.setObject(1, x_goods_no);

 stmt3.setBigDecimal(2, x_quantity_1);

 // Executing INSERT (stmt3)

 stmt3.executeUpdate();

 } else { // Registered ==> Update the

 existing entry

 // Obtaining the current value

 x_total_quantity = rs2.getBigDecimal("total_quantity");

 // Incrementing

 x_total_quantity = x_total_quantity.add(x_quantity_1);

 // Closing SELECT (stmt2) cursor before updating

 rs2.close();

 // Specifying UPDATE (stmt4) input parameters

 stmt4.setBigDecimal(1, x_total_quantity);

 stmt4.setObject(2, x_goods_no);

9. Java Stored Procedures and Java Stored Functions

905

 stmt4.executeUpdate() ;

 }

 }

 // Closing SELECT (stmt1) cursor

 rs1.close();

 // Releasing each statement object

 stmt1.close();

 stmt2.close();

 stmt3.close();

 stmt3.close();

 // Disconnecting

 con.close();

 } catch (SQLException ex) { // SQL error handling procedure

 SQLException fast_ex = ex;

 System.out.println("\n***** SQLException caught *****\n");

 while (ex != null) {

 System.out.println ("SQLState: " + ex.getSQLState ());

 System.out.println ("Message: " + ex.getMessage ());

 System.out.println ("Vendor: " + ex.getErrorCode ());

 ex.printStackTrace();

 ex = ex.getNextException ();

 System.out.println ("");

 }

9. Java Stored Procedures and Java Stored Functions

906

The following is an example of defining and executing a Java stored procedure using
the external Java procedure shown above:

Compiling the Java file (for HP-UX)

Creating the JAR file (for HP-UX)

Registering the JAR file in HiRDB (using INSTALL JAR SQL statement)

Defining the Java stored procedure

Executing the Java stored procedure

(3) Sample 3
This example compresses and decompresses BLOB data using gzip and ungzip.

External Java function (filename: sample3.java)

 System.out.println("*******************************\n");

 throw fast_ex;

 }

 return;

 }

}

javac sample2.java

jar cvf sample2.jar sample2.class

INSTALL JAR 'sample2.jar' ;

CREATE PROCEDURE jproc1(IN fromdate DATE, IN todate DATE)
 LANGUAGE JAVA
 EXTERNAL NAME 'sample2.jar:sample2.jproc1(java.sql.Date, java.sql.Date)
 returns void'
 PARAMETER STYLE JAVA
end_proc;

CALL jproc1(IN ?,IN ?)

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

/* LICENSED MATERIAL OF HITACHI,LTD. */

9. Java Stored Procedures and Java Stored Functions

907

/**/

/* name = HiRDB 06-00 Java stored sample 3 */

/**/

import java.util.zip.*;

import java.io.*;

public class sample3 {

 private final static int BUFF_SIZE = 4096;

 /*==*/

 /* name = main method for debugging */

 /*==*/

 public static void main(String[] args) throws IOException {

 // Obtaining input data

 String sin = args[0];

 byte[] bin = args[0].getBytes();

 System.out.println("input data : " + sin);

 // GZIP(BLOB)

 byte[] bwork = gzip(bin);

 System.out.println("gzip(BLOB) : " +

 bin.length + "=>" + bwork.length +

 "(" + (bwork.length * 100 / bin.length) + "%): " +

 "");

 // GUNZIP(BLOB)

 byte[] bout = gunzip(bwork);

 System.out.println("gunzip(BLOB): " +

 bwork.length + "=>" + bout.length +

9. Java Stored Procedures and Java Stored Functions

908

 "(" + (bout.length * 100 / bwork.length) + "%): " +

 new String(bout));

 return;

 }

 /*==*/

 /* name = sample_3 method [gzip(BLOB)] */

 /*==*/

 public static byte[] gzip(byte indata[]) {

 // Creating a stream for output of compressed data

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 // Output of compressed data

 try {

 GZIPOutputStream zos = new GZIPOutputStream(baos);

 zos.write(indata, 0, indata.length);

 zos.close();

 baos.close();

 } catch (IOException ex) {

 System.out.println("gzip(BLOB): IOException: " + ex);

 ex.printStackTrace();

 }

 // Creating a byte array after compressing return value

 byte[] outdata = baos.toByteArray();

 return outdata;

 }

9. Java Stored Procedures and Java Stored Functions

909

 /*==*/

 /* name = sample_3 method [gunzip(BLOB)] */

 /*==*/

 public static byte[] gunzip(byte[] indata) {

 int rlen; // Actual input/output length

 byte[] buff = new byte[BUFF_SIZE]; // Input/output buffer

 // Creating a stream for input of compressed data

 ByteArrayInputStream bais = new ByteArrayInputStream(indata);

 // Creating a stream for output of decompressed data

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 // Input of compressed data and output of decompressed data

 try {

 GZIPInputStream zis = new GZIPInputStream(bais);

 while ((rlen = zis.read(buff, 0, buff.length)) >= 0) {

 baos.write(buff, 0, rlen);

 }

 zis.close();

 bais.close();

 baos.close();

 } catch (IOException ex) {

 System.out.println("gunzip(BLOB): IOException: " + ex);

 ex.printStackTrace();

 }

 // Creating a byte array after decompressing return value

9. Java Stored Procedures and Java Stored Functions

910

The following is an example of defining and executing a Java stored procedure using
the external Java function shown above:

Compiling the Java file (for HP-UX)

Creating the JAR file (for HP-UX)

Registering the JAR file in HiRDB (using INSTALL JAR SQL statement)

Defining the Java stored procedure

Executing the Java stored procedure

(4) Sample 4
This example uses a dynamic result set to return the result of retrieving two tables.

External Java procedure (filename: sample4rs.java)

 byte[] outdata = baos.toByteArray();

 return outdata;

 }

}

javac sample3.java

jar -cvf sample3.jar sample3.class

INSTALL JAR 'sample3.jar' ;

CREATE FUNCTION gzip(indata BLOB(1M)) RETURNS BLOB(1M)
 LANGUAGE JAVA
 EXTERNAL NAME 'sample3.jar:sample3.gzip(byte[]) returns byte[]'
 PARAMETER STYLE JAVA
end_proc;
CREATE FUNCTION gunzip(indata BLOB(1M)) RETURNS BLOB(1M)
 LANGUAGE JAVA
 EXTERNAL NAME 'sample3.jar:sample3.gunzip(byte[]) returns byte[]'
 PARAMETER STYLE JAVA
end_proc;

INSERT INTO t1 values(10, ?, gzip(? AS BLOB(1M)))
 :
SELECT c1, c2, gunzip(c3), length(c2), length(c3) from t1

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

9. Java Stored Procedures and Java Stored Functions

911

/* LICENSED MATERIAL OF HITACHI,LTD. */

/**/

/* name = HiRDB 06-00 Java stored Result Set connection job */

/**/

import java.lang.*;

import java.math.*;

import java.sql.*;

/**/

/* name = Result Set connection class (procedure side) */

/**/

public class sample4rs {

 /*==*/

 /* name = main method for debugging */

 /*==*/

 public static void main(String args[]) throws SQLException {

 java.lang.Integer p1 = new Integer(10);

 int[] cr_cnt = null;

 java.sql.ResultSet[] rs1 = null;

 java.sql.ResultSet[] rs2 = null;

 try {

 // Registering Driver class

 Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver");

 } catch (ClassNotFoundException ex) {

 System.out.println("\n***** ClassNotFoundException caught *****\n");

 ex.printStackTrace();

 System.out.println ("");

 System.out.println("*******************************\n");

9. Java Stored Procedures and Java Stored Functions

912

 return;

 }

 rs_proc(p1, cr_cnt, rs1, rs2);

 }

 /*==*/

 /* name = Result Set connection method */

 /*==*/

 public static void rs_proc(java.lang.Integer p1,int icnt_cr[],

 java.sql.ResultSet[] rs1,

 java.sql.ResultSet[] rs2) throws SQLException {

 java.lang.Integer x_goods_no;

 java.math.BigDecimal x_quantity_1, x_total_quantity;

 try {

 // Creating a connection object (CONNECT not issued within

 Java procedure)

 java.sql.Connection con =

 DriverManager.getConnection("jdbc:hitachi:hirdb");

 con.setAutoCommit(false); // Suppressing automatic commit

 // SELECT (stmt1) preprocessing

 java.sql.PreparedStatement stmt1 =

 con.prepareStatement("SELECT c1, c2 FROM rs_t1 WHERE c1 > ?");

 // Specifying SELECT (stmt1) input parameter

 stmt1.setInt(1, p1.intValue());

9. Java Stored Procedures and Java Stored Functions

913

 // SELECT (stmt2) preprocessing

 java.sql.PreparedStatement stmt2 =

 con.prepareStatement("SELECT c1, c2 FROM rs_t2 WHERE c1 > 10");

 // Executing SELECT (stmt1)

 rs1[0] = stmt1.executeQuery();

 // Executing SELECT (stmt2)

 rs2[0] = stmt2.executeQuery();

 // Number of dynamic result sets

 icnt_cr[0] = 2;

 // Executing SELECT (stmt2) (retrieving only one row)

 rs2[0].next();

 } catch (SQLException ex) { // SQL error handling procedure

 SQLException fast_ex = ex;

 System.out.println("\n***** SQLException caught *****\n");

 while (ex != null) {

 System.out.println ("SQLState: " + ex.getSQLState ());

 System.out.println ("Message: " + ex.getMessage ());

 System.out.println ("Vendor: " + ex.getErrorCode ());

 ex.printStackTrace();

 ex = ex.getNextException ();

 System.out.println ("");

 }

9. Java Stored Procedures and Java Stored Functions

914

UAP (sample4ap.java)

 System.out.println("*******************************\n");

 throw fast_ex;

 }

 return;

 }

}

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

/* LICENSED MATERIAL OF HITACHI,LTD. */

/**/

/* name = HiRDB 06-00 Java stored Result Set connection object */

/**/

import java.lang.*;

import java.math.*;

import java.sql.*;

/**/

/* name = Result Set connection class (CALL side) */

/**/

public class sample4ap {

 /*==*/

 /* name = main method for debugging */

 /*==*/

 public static void main(String args[]) throws SQLException {

 try {

 // Registering Driver class

 Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver");

9. Java Stored Procedures and Java Stored Functions

915

 } catch (ClassNotFoundException ex) {

 System.out.println("\n***** ClassNotFoundException caught *****\n");

 ex.printStackTrace();

 System.out.println ("");

 System.out.println("*******************************\n");

 return;

 }

 rs_call();

 }

 /*==*/

 /* name = Result Set connection method */

 /*==*/

 public static void rs_call() throws SQLException {

 java.lang.Integer xc1;

 java.lang.String xc2;

 int cr_cnt[] = new int[1];

 try {

 // Creating a connection object (CONNECT not issued within

 Java procedure)

 java.sql.Connection con =

 DriverManager.getConnection

 ("jdbc:hitachi:hirdb", "\"USER1\""

 , "\"PASS1\"");

 con.setAutoCommit(false); // Suppressing automatic commit

 // CALL (stmt1) preprocessing

 java.sql.CallableStatement stmt1 =

9. Java Stored Procedures and Java Stored Functions

916

 con.prepareCall("{CALL rs_proc(?,?)}");

 // Specifying CALL (stmt1) input parameters

 stmt1.setInt(1, 10);

 stmt1.registerOutParameter(2, java.sql.Types.INTEGER);

 // Executing CALL (stmt1)

 stmt1.execute();

 // Obtaining CALL (stmt1) output parameter

 cr_cnt[0] = stmt1.getInt(2);

 System.out.println("cr_cnt=" + cr_cnt[0] + "\n");

 // Obtaining dynamic result set

 java.sql.ResultSet rs = stmt1.getResultSet();

 while (rs.next()) {

 // Obtaining SELECT (stmt1) retrieval result

 xc1 = (Integer)rs.getObject("c1");

 xc2 = (String)rs.getObject("c2");

 System.out.println("xc1=" + xc1 + ",xc2=" + xc2 + "\n");

 }

 // Closing the cursor

 rs.close();

 if (stmt1.getMoreResults()) {

 rs = stmt1.getResultSet();

9. Java Stored Procedures and Java Stored Functions

917

 while (rs.next()) {

 // Obtaining SELECT (stmt1) retrieval result

 xc1 = (Integer)rs.getObject("c1");

 xc2 = (String)rs.getObject("c2");

 System.out.println("xc1=" + xc1 + ",xc2=" + xc2 + "\n");

 }

 }

 // Closing the cursor

 rs.close();

 // Releasing each statement object

 stmt1.close();

 // Disconnecting

 con.close();

 } catch (SQLException ex) { // SQL error handling procedure

 SQLException fast_ex = ex;

 System.out.println("\n***** SQLException caught *****\n");

 while (ex != null) {

 System.out.println ("SQLState: " + ex.getSQLState ());

 System.out.println ("Message: " + ex.getMessage ());

 System.out.println ("Vendor: " + ex.getErrorCode ());

 ex.printStackTrace();

 ex = ex.getNextException ();

 System.out.println ("");

 }

9. Java Stored Procedures and Java Stored Functions

918

Defining the Java stored procedure

 System.out.println("*******************************\n");

 throw fast_ex;

 }

 return;

 }

}

CREATE PROCEDURE rs_proc(IN p1 INT,OUT cr_cnt INT)
 DYNAMIC RESULT SETS 2
 LANGUAGE JAVA
 EXTERNAL NAME 'sample4.jar:sample4rs.rs_proc(java.lang.Integer, int[]
 , java.sql.
ResultSet[], java.sql.ResultSet[]) returns void'
 PARAMETER STYLE JAVA
end_proc;

9. Java Stored Procedures and Java Stored Functions

919

9.4 Notes about Java program creation

This section describes the points to be observed when creating a Java program. There
are the following limitations to the specification of control processing in Java:

• No thread can be created.

• A GUI cannot be used.

• Connection cannot be established with another DBMS.

• File manipulation is not supported.

• Do not change the Java Runtime Environment security policy.

9.4.1 Using a Type 2 or 4 JDBC driver
If you run a Java stored procedure by using a Type 2 or 4 JDBC driver, it is important
that you check the settings described in 18.12 Migration from a Type2 JDBC driver. If
a driver name, a protocol name that is set in the URL when HiRDB is connected, a
sub-protocol name, and a sub-name are specified in a Java stored procedure, whether
a Type2 JDBC driver or a Type4 JDBC driver is used is determined on the basis of
specified information.

9.4.2 Unsupported methods
On a Java virtual machine, you can limit available methods by specifying the access
privilege with the security policy. The Java virtual machine in HiRDB does not allow
any method to be executed without the access privilege.

For the specification of the access privilege with the security policy and a list of
unsupported methods, see the manual provided with JDK.

The following figure shows method execution control using the security policy.

9. Java Stored Procedures and Java Stored Functions

920

Figure 9-9: Method execution control using security policy

9.4.3 Package, class, and method definitions
This section describes the points to be observed when defining packages, classes, and
methods. For details about the packages, classes, and methods, see the manual
provided with JDK.

(1) Package
1. Specification of a package name is optional.

9. Java Stored Procedures and Java Stored Functions

921

2. If you specify the package name, the length of the package-name.class-name
character string must be no longer than 255 characters.

3. You cannot use either of the following package names:

• Package name existing in JRE

• Package name provided by HiRDB

(2) Class
1. A class name must be no longer than 255 characters.

2. Define a class in the format public class <class-name>.

(3) Method
1. A method name must be no longer than 255 characters.

2. Define a method as follows:

Java stored procedure
public static void <method-name>

Java stored function
public static <return-value> <method-name>

3. If there is a possibility of an exception occurring in the method, you must either
declare the exception in the throw section or specify try.catch. For Java
stored procedures, there is a possibility of an SQLException exception
occurring in nearly all JDBC methods.

4. A method can reference a class included in the Java platform core API or a class
included in the JAR file that contains the current method.

9.4.4 Parameter input/output mode mapping (Java stored
procedures only)

This section explains the mapping of the SQL parameter input/output mode (IN, OUT,
or INOUT) with Java stored procedures. You cannot specify a parameter input/output
mode for a Java stored function.

For details about mapping, see the type mapping in the HiRDB Version 9 SQL
Reference manual.

The following figure shows an example of parameter input/output mode mapping.

9. Java Stored Procedures and Java Stored Functions

922

Figure 9-10: Example of parameter input/output mod mapping

(1) IN parameter
For a parameter defined as an IN parameter with SQL, a Java program uses the
corresponding data type as is.

Suppose that the IN parameter is defined as an INTEGER type with the CREATE
PROCEDURE SQL statement. With a Java program, it is defined as the corresponding
int type or java.lang.Integer type (param1 and jparam1 in Figure 9-10).

(2) OUT or INPUT parameter
For a parameter defined as an OUT or INOUT parameter with SQL, a Java program
defines it as the array type of the corresponding data type. The OUT and INOUT
parameters are implemented in this manner because a parameter is to be passed as a
one-element array of the corresponding data type with the pointer representation
method in the Java language.

Suppose that the OUT parameter is defined as SMALLINT type with the CREATE
PROCEDURE SQL statement. With a Java program, it is defined as the array type of the
corresponding short or java.long.Short type (param2 and jparam2; param3
and jparam3 in Figure 9-10). To return a value to the OUT or INOUT parameter, set
the value at the beginning of the array (jparam2 and jparam3 in Figure 9-10).

9.4.5 Results-set return facility (Java stored procedures only)
You can use the results-set return facility by specifying 1 or a greater value in the
DYNAMIC RESULT SETS clause in CREATE PROCEDURE during Java stored procedure
definition. The results-set return facility is not supported for Java stored functions.

(1) What is the results-set return facility?
The results-set return facility enables the Java stored procedure caller to reference the
cursor that is acquired by the execution of the SELECT statement within the Java stored
procedure.

The following figure provides an overview of the results-set return facility.

9. Java Stored Procedures and Java Stored Functions

923

Figure 9-11: Overview of the results-set return facility (for a Java stored
procedure)

(2) Calling-source languages supporting the results-set return facility
The calling-source languages that support the results-set return facility are as follows:

• Java

• C

• C++

• COBOL#

• OOCOBOL

#: COBOL can be used if the RDB file input/output facility is not used.

(3) Example of using the results-set return facility
This example obtains columns rank, name, and age, which satisfy condition
rank<10 in tables emps_1 and emps_2 within a Java stored procedure. The caller
receives two result sets to manipulate them.

Defining the Java stored procedure

9. Java Stored Procedures and Java Stored Functions

924

Explanation
1. Defines the procedure name and parameters.

2. Specifies the number of retrieval result sets to be returned.

3. Specifies LANGUAGE.

4. Associates with the Java method.

5. Specifies PARAMETER STYLE.

Java stored procedure

CREATE PROCEDURE proc2(IN param1 INTEGER) 1
 DYNAMIC RESULT SETS 2 2
 LANGUAGE JAVA 3
 EXTERNAL NAME 4
 'mypack.jar:JStrSmp1.getEmp2(int, ResultSet[]
 , ResultSet[])' ..4
 PARAMETER STYLE JAVA; 5

import java.sql.*; 1

public class JStrSmp1{ 2

 public static void getEmp2 3

 (int jparam1, ResultSet[] rs1_out

 , ResultSet[] rs2_out) 4

 throws SQLException { 4

 Connection con = DriverManager.getConnection (...5

 "jdbc:hitachi:hirdb"); 5

 con.setAutoCommit(false); 6

 PreparedStatement pstmt1 = con.prepareStatement ..7

 ("select rank,name,age from emps_1 where

 rank < ? 7

 order by rank"); 7

 pstmt1.setInt(1, jparam1); 7

 ResultSet rs1 = pstmt1.executeQuery(); 8

9. Java Stored Procedures and Java Stored Functions

925

Explanation
1. Imports the java.sql package.

2. Defines the class name.

3. Defines the method name.

4. Defines the parameter name (the second and third arguments are for
returning result sets).

5. Obtains the Connection object.

6. Suppresses automatic commit processing.

7. Preprocesses the SELECT statement.

8. Executes the SELECT statement.

9. Sets the obtained result set rs1 in the second argument of the ResultSet[]
type.

10. Preprocesses the SELECT statement.

11. Executes the SELECT statement.

12. Sets the obtained result set rs1 in the third argument of the ResultSet[]
type.

13. Terminates the call and returns the result sets.

Executing the Java stored procedure (caller)

 rs1_out[0] = rs1; 9

 PreparedStatement pstmt2 = con.prepareStatement ..10

 ("select rank,name,age from emps_2 where

 rank < ? 10

 order by rank"); 10

 pstmt2.setInt(1, jparam1); 10

 ResultSet rs2 = pstmt2.executeQuery(); 11

 rs2_out[0] = rs2; 12

 return; 13

 }

}

9. Java Stored Procedures and Java Stored Functions

926

import java.sql.*; ..1

public class Caller{ ..2

 public static void main(String[] args)

 throws SQLException { 3

 Connection con = DriverManager.getConnection(.......................4

 "jdbc:hitachi:hirdb","USER1","PASS1"); 4

 ,"PASS1"); ...4

 CallableStatement cstmt = con.prepareCall

 ("{call proc2(?)}"); 5

 cstmt.setInt(1, 10); ..5

 ResultSet rs; ...6

 int emp_rank; ...6

 String emp_name; ..6

 int emp_age; ..6

 if(cstmt.execute()){ ..7

 rs = cstmt.getResultSet(); 8

 System.out.println("*** emps_1 ***"); 9

 while(rs.next()){ ..9

 emp_rank = rs.getInt(1); 9

 emp_name = rs.getString(2); 9

 emp_age = rs.getInt(3); ..9

 System.out.println("RANK =" + emp_rank + 9

 " NAME = " + emp_name + " AGE =

 " + emp_age); 9

9. Java Stored Procedures and Java Stored Functions

927

Explanation
1. Imports the java.sql package.

2. Defines the class name.

3. Defines the method name.

4. Obtains the Connection object.

5. Preprocesses the CALL statement.

6. Declares variables.

7. Executes the CALL statement.

8. Obtains the result set.

 }

 }

 if(cstmt.getMoreResults()){ ...10

 rs= cstmt.getResultSet(); ..11

 System.out.println("*** emps_2 ***"); 12

 while(rs.next()){ ..12

 emp_rank = rs.getInt(1); 12

 emp_name = rs.getString(2); 12

 emp_age = rs.getInt(3); ..12

 System.out.println("RANK =" + emp_rank + 12

 " NAME = " + emp_name + " AGE =

 " + emp_age); ..12

 }

 rs.close(); ..13

 }

 }

}

9. Java Stored Procedures and Java Stored Functions

928

9. Outputs information obtained from the first result set.

10. Checks to see if there are any more result sets.

11. Obtains the next result set.

12. Outputs information obtained from the second result set.

13. Closes the result sets.

(4) Notes about using the results-set return facility
(a) When defining a Java stored procedure with CREATE PROCEDURE

1. In the DYNAMIC RESULT SETS clause, specify the maximum number of result
sets to be returned from within the Java stored procedure. If a value of 0 is
specified, the system does not use the results-set return facility.

2. For a parameter in CREATE PROCEDURE, do not specify the OUT parameter of
ResultSet[] type that is specified for a parameter in the Java stored procedure.

3. When using EXTERNAL NAME to define correspondence with a Java program,
include arguments of the ResultSet[] type.

(b) When creating a caller's method
1. In the CALL statement's parameters, do not include a parameter of the

ResultSet[] type in the method for Java stored procedure.

2. If there is more than one result set to be returned, to receive the second or
subsequent result set, use the getMoreResult method (to determine whether
there are more result sets) and the getResultSet method (to receive the next
result).

(c) When creating a method for a Java stored procedure
Specify the retrieval result (ResultSet) in the OUT parameter of the ResultSet[]
type without closing it.

9.4.6 Connection in a Java stored procedure
You can create only one active connection within a Java stored procedure. Database
manipulation using a connection object is not available if the database and JDBC
resources are released by the garbage collector, or the close() method is used to
explicitly release the database and JDBC resources before the Java stored procedure is
terminated.

9.4.7 Releasing the result sets
To release a result set object, use the close() method. Implicit release using the
garbage collector does not release the resources until the Java stored procedure is
terminated.

9. Java Stored Procedures and Java Stored Functions

929

9.5 Notes about testing and debugging

Because external Java stored routines are based on the architecture of running a normal
Java program on a DBMS server, the methods of testing and debugging them are the
same as for Java applications.

After creating a Java program, you need to test it and debug it so that the Java program
runs successfully as a stored procedure or stored function. This section describes the
points to be observed when testing and debugging a Java program.

9.5.1 Java program for a Java stored procedure
When testing or debugging a Java program for a Java stored procedure, note the
following:

1. You can use a Java program for a Java stored procedure during server execution
without having to modify the debugged program.

2. A caller Java program directly calls the method of the Java program for a Java
stored procedure during debugging. During server execution, it uses the CALL
statement.

3. Available methods may be different because the Java virtual machine
environment is different between debugging and server execution. For details
about the methods that cannot be executed, see 9.4.2 Unsupported methods.

The following figure shows the procedure for testing and debugging a Java program
for a Java stored procedure.

9. Java Stored Procedures and Java Stored Functions

930

Figure 9-12: Procedure for testing and debugging a Java program for a Java
stored procedure

9.5.2 Java program for a Java stored function
When testing or debugging a Java program for a Java stored function, note the
following:

1. You can use a Java program for a Java stored function during server execution
without having to modify the debugged program.

2. A caller Java program directly calls the method of the Java program for a Java

9. Java Stored Procedures and Java Stored Functions

931

stored function during debugging. During server execution, it uses a function call.

3. Available methods may be different because the Java virtual machine
environment is different between debugging and server execution. For details
about the methods that cannot be executed, see 9.4.2 Unsupported methods.

The following figure shows the procedure for testing and debugging a Java program
for a Java stored function.

Figure 9-13: Procedure for testing and debugging a Java program for a Java
stored function

9. Java Stored Procedures and Java Stored Functions

932

9.6 Notes about JAR file creation

This section describes the points to be observed when creating a JAR file.

Java has a concept called package to classify and manage programs by their function.
A package is actually expressed as a directory structure; therefore, a Class file is
created in the directory with the package name after compilation.

The following figure shows the location at which Class files are created.

Figure 9-14: Location at which Class files are created

When creating Java files, you can integrate and compress the files, including the
directory structure.

You can integrate not only Class files but also Java files at the same time. When
obtaining the Java program source with a specified Class from the JAR files registered
in HiRDB by conducting a retrieval specifying
GET_JAVA_STORED_ROUTINE_SOURCE, you need to integrate the Java files at the
same time. For details about the GET_JAVA_STORED_ROUTINE_SOURCE
specification, see the HiRDB Version 9 SQL Reference manual.

9. Java Stored Procedures and Java Stored Functions

933

9.6.1 Integrating Class files
If a package is specified during Java program creation, integration in the JAR file takes
place for each package directory. Do not specify individual Class files only.

The following figure shows an example of integrating Class files in JAR files.

Figure 9-15: Example of integrating Class files in JAR files

The Class files with the same name can be integrated in the same JAR file if their
packages are different.

9.6.2 Integrating Java files
The following describes the points to be observed when integrating Java files:

1. To retrieve a Java program source corresponding to a Class file, the Java file must
be integrated at the same time as the Class file.

2. A Java file to be integrated in a JAR file can be stored in any directory.

3. If multiple packages have the same Class filename, you can retrieve each Java
program source by storing the corresponding Java file in a different directory. The
following shows an example:

Example
If the Class files consist of the following packages, pack1.aaa.JStrAAA
and pack2.ccc.JStrAAA, they will have the same Class filename:

9. Java Stored Procedures and Java Stored Functions

934

./pack1/aaa/JstrAAA.class

./pack1/bbb/JstrBBB.class

./pack2/ccc/JstrAAA.class

There is no need to manage the Java files with the same directory structure,
but if there are multiple files with the same name, they cannot be stored under
the same directory. In this case, individual files can be stored as follows:

./src1/JStrAAA.java

./src1/JStrBBB.java

./src2/JStrAAA.java

This example cannot identify each Java file corresponding to a specified Class
file; therefore, all Java files with the specified name are retrieved. For example, a
retrieval of JStrAAA.java results in both pack1.aaa.JStrAAA.java and
pack2.ccc.JStrAAA.java. A retrieval of JStrBBB.java results in
pack1.bbb.JStrBBB.java.

935

Chapter

10. C Stored Procedures and C
Stored Functions

This chapter explains the procedures for creating and executing C stored procedures
and C stored functions that code procedures in C language.

10.1 Overview
10.2 Procedure from external C stored routine creation to execution
10.3 Sample external C stored routine programs
10.4 Limitations to C program creation

10. C Stored Procedures and C Stored Functions

936

10.1 Overview

Stored procedures and stored functions coded in C language are called C stored
procedures and C stored functions, respectively. They are referred to collectively in
this chapter as external C stored routines.

Features of external C stored routines
• There is no overhead for communication between the server and a

client.
Because external C stored routines are processed at the server in the same
manner as SQL stored procedures and SQL stored functions, there is no
communication overhead between server and client.

• The procedure or function itself can be coded in C language.
Because C instructions can be specified directly, processing can be coded
more flexibly than with SQL control statements.

• Debugging is easy.
To debug an SQL stored procedure or an SQL stored function, you need to
execute it at the server. In contrast, an external C stored routine can be
debugged at the client, as long as the C debugger is installed at the client.

10. C Stored Procedures and C Stored Functions

937

10.2 Procedure from external C stored routine creation to execution

To create and execute an external C stored routine:

1. Create an external C stored routine.

2. Register the C library file.

3. Define the external C stored routine.

4. Execute the external C stored routine.

The following figure shows the procedure from external C stored routine creation to
execution.

10. C Stored Procedures and C Stored Functions

938

Figure 10-1: Procedure from external C stored routine creation to execution

Note
The C library file extension depends on the OS.

10. C Stored Procedures and C Stored Functions

939

Explanation
1. Creation of an external C stored routine. For details, see 10.2.1 Creating an

external C stored routine.

2. Registration of the C library file into the HiRDB system. For details, see
10.2.2 Registering the C library file.

3. Definition of the external C stored routine. For details, see 10.2.3 Defining
the external C stored routine.

4. Execution of the external C stored routine. For details, see 10.2.4 Executing
the external C stored routine.

10.2.1 Creating an external C stored routine
To create an external C stored routine:

1. Code a C program (create a C file).

2. Compile (create an object file).

3. Link (create a C library file).

(1) Coding a C program (creating a C file)
You code a C program that is to be registered as an external C stored routine.

(a) C program creation rules
This subsection discusses the rules for creating C programs. Also see 10.4 Limitations
to C program creation.

• Specify the C language's default call convention (__cdecl).

• For the case where the program terminates normally, set 00000 in the output
parameter for SQLSTATE.

Example: memcpy(sqlstate, "00000", 5);

• For the case where the program terminates abnormally, set 38XYY in the output
parameter for SQLSTATE, where the values of X and Y must be in the following
ranges:

X: I to Z

Y: 0 to 9 or A to Z

Example 1: memcpy(sqlstate, "38I01", 5);

Example 2: memcpy(sqlstate, "38ZCB", 5);

• For the case where the program terminates abnormally, set a message text that
indicates the cause of the error.

10. C Stored Procedures and C Stored Functions

940

The following figure shows an example of C program coding.

Figure 10-2: Example C program coding

(b) Mapping of parameter input/output modes
The following figure shows a sample mapping of SQL parameter input/output modes
(IN, OUT, and INOUT) in an external C stored routine. For details about mapping, see
type mapping in the manual HiRDB Version 9 SQL Reference.

10. C Stored Procedures and C Stored Functions

941

Figure 10-3: Example of mapping of parameter input/output modes (external C
stored routine)

(2) Compiling (creating an object file)
You use a method such as the cc command to create an object file from the C file.

The figure below shows an example of compilation. For details about the compiler
options, see the OS documentation.

10. C Stored Procedures and C Stored Functions

942

Figure 10-4: Example of compilation (external C stored routine)

Note
For details about the compiler options, see the applicable OS's documentation.

(3) Linking (creating a C library file)
You use a method such as the ld command to create a C library file from multiple
object files. If you use library functions, link the required libraries by using, for
example, the -l option.

The following figure shows an example of linking.

Figure 10-5: Example of linking

Note 1
The C library file extension depends on the OS.

Note 2
For details about the linker options, see the documentation for the applicable OS.

10. C Stored Procedures and C Stored Functions

943

(4) Examples of C library file creation for different OSs
This subsection presents examples of C library file creation from a C file (sample.c)
for the different OSs. Creation of C library files varies according to the OS. For details,
see the applicable OS's documentation.

The examples presented here assume that the compiler and linker are on the specified
path.

(a) In HP-UX
Create a C library file named sample.sl from sample.c:

1. Create an object file by using the cc command with the +z option specified.

$ cc -c +z sample.c

2. Create a C library file by using the ld command with the -b option specified.

$ ld -b -o sample.sl sample.o

In 64-bit mode:

If you use the C library file in a 64-bit-mode HiRDB system, compile the file in
64-bit mode. In this case, specify the +DD64 compiler option.

In the POSIX library edition:

If you use the C library file in a 64-bit-mode HiRDB system, make sure that the
following conditions are satisfied, because the file must support multiple threads:

• Specify the following options during compilation:

-D_REENTRANT -D_POSIX_C_SOURCE=199506L
-D_THREAD_SAFE -D_HPUX

• Use thread-safe functions.

(b) In Solaris
Create a C library file by using the cc command with the -G option specified. The
following example creates a C library file named sample.so from sample.c:

$ cc -G sample.c -o sample.so

In 64-bit mode:

If you use the C library file in a 64-bit-mode HiRDB system, compile the file in
64-bit mode. In this case, specify the -xarch=v9 compiler option.

(c) In Linux
Create a C library file by using the gcc command with the -shared option specified.
The following example creates a C library file named sample.so from sample.c:

$ gcc -shared -fPIC -o sample.so sample.c

10. C Stored Procedures and C Stored Functions

944

(d) In AIX
Create a C library file named sample.so from sample.c:

1. Create an object file by using the xlc command.

$ xlc -c -o sample.o sample.c

2. Create a C library file by using the xlc command with the -G option specified.

$ xlc -G -bexpall -o sample.so sample.o

In 64-bit mode:

If you use the C library file in a 64-bit-mode HiRDB system, compile and link the
file in 64-bit mode. In this case, specify the -q64 compiler option and -b64 linker
option.

In the POSIX library edition:

If you use the C library file in a 64-bit-mode HiRDB system, make sure that the
following conditions are satisfied, because the file must support multiple threads:

• Compile the C file by using the xlc_r command.

• Use thread-safe functions.

(e) In Windows
Create a C library file (DLL file) named sample.dll from sample.c:

1. Create an object file by using the cl command.

cl /MD /c sample.c

2. Create a C library file (DLL file) by using the link command. Also create a
module definition file (sample.def) and specify the function to be exported.

link /dll /def:sample.def sample.obj

Notes
• Do not specify the base address (default load address) of the DLL to be

created. If the base address is specified, address contention might occur
between the DLLs of HiRDB and of the system, resulting in an overload of
DLL loading processing.

• You must use a multi-thread DLL edition (/MD) of the Microsoft Visual C++
runtime library. If any other library edition is used, area management
processing might fail, resulting in abnormal termination of server processes.

10.2.2 Registering the C library file
Register (copy) the created C library file into the HiRDB server. C library files can be
registered only by the UAP's developer or the HiRDB administrator.

10. C Stored Procedures and C Stored Functions

945

The UAP developer registers the file
Specify the INSTALL CLIB SQL statement in the UAP and then execute the UAP.

The HiRDB administrator registers the file
Execute the pdclibsync command (with the -I option specified). Only the
HiRDB administrator can execute the pdclibsync command.

The C library file will be stored in the directory specified in the
pd_c_library_directory operand.

The following figure provides an overview of C library file registration.

Figure 10-6: Overview of C library file registration

Reference note:

You use the REPLACE CLIB SQL statement to re-register a C library file. You
use the REMOVE CLIB SQL statement to delete a C library file. The HiRDB
administrator must use the pdclibsync command to re-register or delete a C
library file.

Note that only the user who registered a C library file or the HiRDB
administrator can re-register or delete it.

10.2.3 Defining the external C stored routine
You use CREATE PROCEDURE or CREATE FUNCTION to define an external C stored

10. C Stored Procedures and C Stored Functions

946

routine. CREATE PROCEDURE or CREATE FUNCTION defines the association of a C
function with the procedure name or function name.

C stored procedure

Use CREATE PROCEDURE to register a C function as a C stored procedure.

C stored function

Use CREATE FUNCTION to register a C function as a C stored function.

The following figure shows an example of external C stored routine definition.

Figure 10-7: Example of an external C stored routine definition

Defining public routines

To use an external C stored routine defined by another user, you must specify its
owner's authorization identifier and the routine identifier when you call the stored
routine from within a UAP.

However, if the external C stored routine was defined as a public routine by
executing CREATE PUBLIC PROCEDURE or CREATE PUBLIC FUNCTION, then
there is no need to specify the owner's authorization identifier when the stored
routine is called from within a UAP (only the routine identifier needs to be
specified).

Redefining external C stored routines

You use ALTER PROCEDURE or ALTER ROUTINE to redefine an external C stored
routine, such as when you need to make changes to the C program.

Deleting external C stored routines

You use DROP PROCEDURE or DROP FUNCTION to delete an external C stored

10. C Stored Procedures and C Stored Functions

947

routine.

To delete a public routine, use DROP PUBLIC PROCEDURE or DROP PUBLIC
FUNCTION. Note that a public routine can be deleted only by the user who defined
it or by a user with the DBA privilege.

10.2.4 Executing the external C stored routine
You use the CALL statement or a function call to execute an external C stored routine.
When the CALL statement or an SQL statement specifying a function call executes, the
C function is called as the external C stored routine and executed on the server
machine.

C stored procedure

Use the CALL statement to execute a C function as a C stored procedure.

C stored function

Use an SQL statement specifying a function call to execute a C function as a C
stored function.

For details about the CALL statement and function calls, see the HiRDB Version 9 SQL
Reference manual.

The following figure shows an example of executing an external C stored routine.

Figure 10-8: Example of external C stored routine execution

10. C Stored Procedures and C Stored Functions

948

10.3 Sample external C stored routine programs

This sample external C function acquires the fraction part from a real number.

Body of the C function (file name: sample1.c)

The following is an example of defining and executing a C stored procedure using the
C function shown above:

Compiling the C file
This example is for an HP-UX (32-bit mode). For examples for other OSs, see
10.2.1(4) Examples of C library file creation for different OSs.

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2007,HITACHI,LTD. */
/* LICENSED MATERIAL OF HITACHI,LTD. */
/**/
/* name = HiRDB 08-03 sample program of C stored function 1 */
/**/
#include <math.h>
#include <stdio.h>

/*---*/
/* Define structure for receiving VARCHAR-type data */
/*---*/
typedef struct varchar{
 short len;
 char str[80];
}VCH;

/**/
/* name = sample1 */
/**/
 void func_modf(double *value, double *ret,
 short *ind1, short *ind_ret,
 char *sqlstate, VCH *routine_name,
 VCH *specific_name, VCH *message_text)
{
 double int_value;

 /* Set fraction part obtained by calling modf function as return value */
 *ret = modf(*value, &int_value);

 /* Set indicator part of return value (non-null value) */
 *ind_ret = 0;

 /* Set SQLSTATE (normal termination) */
 memcpy(sqlstate, "00000", 5);

 /* Set null character string in message text */
 message_text->len = sprintf(message_text->str, "");
}

10. C Stored Procedures and C Stored Functions

949

Creating the C library file
This example is for an HP-UX (32-bit mode). For examples for other OSs, see
10.2.1(4) Examples of C library file creation for different OSs.

Registering the C library file (using the INSTALL CLIB SQL statement)

Defining the C stored function

Executing the C stored function

cc +z -c sample1.c

ld -b -o sample1.sl sample1.o

INSTALL CLIB 'sample1.sl' ;

CREATE function func_modf(parm1 FLOAT) RETURNS FLOAT
 LANGUAGE C
 EXTERNAL NAME 'sample1.sl!func_modf'
 PARAMETER STYLE RDSQL;

select func_modf(double_value) from t1

10. C Stored Procedures and C Stored Functions

950

10.4 Limitations to C program creation

The following limitations must be observed when you code control processing in C
language:

• None of the following functions can be used; using them might result in serious
adverse effects on the HiRDB operation:

• Process manipulation functions, such as fork(), exit(), abort(), and
exec()

• sleep(),select(),wait()

• Stack manipulation functions (such as setjmp() and longjmp())

• Shared memory manipulation functions

• Semaphore manipulation functions

• Socket manipulation functions

• System resource manipulation functions (such as setrlimit)

• mmap(),munmap()

• gethostent(),sethostent(),endhostent(),gethostbyname(),gethostbyaddr(),herror
()

• tempnam(),tmpnam()

• pstat()

• system()

• Do not create threads.

• Do not use GUI.

• SQL statements cannot be specified.

• Do not manipulate files.

• Do not use special files (such as PIPE).

• Do not use the standard input, standard output, or standard error output.

• Do not use recursive function calls.

• None of the following names is permitted as global variable and function names:

• Names beginning with the upper-case letters SQL, Y, or Z

• Names beginning with the lower-case letters p_, pd, yy, or z

• Names beginning with the lower-case letter _p

10. C Stored Procedures and C Stored Functions

951

• Names beginning with the lower-case letters da, dbr, or dp

• Do not set or change environment variables.

• Do not perform signal manipulation.

• Do not change the system date or time.

• If you allocate memory, make sure that the memory is released when the routine
terminates.

• The stack size cannot exceed 4,096 bytes.

953

Chapter

11. UAP Troubleshooting

This chapter explains the collection of historical information for UAP execution and
the collection of error information to be used for troubleshooting. It also describes the
types of UAP errors and the recovery methods.

This chapter contains the following sections:

11.1 Gathering error information
11.2 UAP error recovery

11. UAP Troubleshooting

954

11.1 Gathering error information

When an error occurs in a UAP, the troubleshooting functions can be used to
investigate the cause of the error. The troubleshooting functions are as follows:

• SQL tracing

• Client error log facility

• Facility for output of extended SQL error information

• UAP statistical report facility

• Command trace facility

• SQL trace dynamic acquisition facility

• Reconnect trace facility

11.1.1 SQL tracing
This function collects in an SQL trace file the SQL trace information for an executed
UAP.

If an SQL error occurs during UAP execution, the SQL trace information can be used
to identify the SQL statement that caused the error.

When the current SQL trace file becomes full, a new file is swapped in and the
previous information in that file can be overwritten.

(1) Collecting SQL trace information
SQL trace information is collected by setting values in the PDCLTPATH and
PDSQLTRACE environment variables during client environment definition. For details
about the client environment definition, see 6.6 Client environment definitions (setting
environment variables).
This subsection describes the output destination and file names of SQL traces.

Output destination

SQL trace files are output to the directory specified in PDCLTPATH. If
PDCLTPATH is not specified, the SQL trace files are output to the current
directory.

File names

The following table shows the files names that are assigned.

11. UAP Troubleshooting

955

Table 11-1: Whether an X/Open-compliant API (TX_ function) is used and the
file names that are assigned

xxxxx: Process ID during UAP execution

The following table lists the SQL trace file names for each library type.

Table 11-2: SQL trace file names for each library type

Legend:

--: Not applicable
#

Use of TX_function File names that are assigned

No pdsql1.trc and pdsql2.trc

Yes pdsqlxxxxx-1.trc and pdsqlxxxxx-2.trc

Library
type#

Whether
TX_

function is
used

PDXATRCFILEMODE
environment variable

Client library

Version earlier than
08-05

Version 08-05
or later

Regular
library

-- -- pdsql1.trc or
pdsql2.trc

pdsql1.trc or
pdsql2.trc

Single-thread
edition of XA
library

No LUMP pdsql1.trc or
pdsql2.trc

pdsql1.trc or
pdsql2.trc

SEPARATE pdsqlxxxxx-1.trc or
pdsqlxxxxx-2.trc

pdsql1.trc or
pdsql2.trc

Yes LUMP pdsql1.trc or
pdsql2.trc

pdsql1.trc or
pdsql2.trc

SEPARATE pdsqlxxxxx-1.trc or
pdsqlxxxxx-2.trc

pdsqlxxxxx-1.
trc or
pdsqlxxxxx-2.
trc

Multi-thread
edition of XA
library

No -- pdsql1.trc or
pdsql2.trc

pdsql1.trc or
pdsql2.trc

Yes LUMP pdsql1.trc or
pdsql2.trc

pdsql1.trc or
pdsql2.trc

SEPARATE pdsqlxxxxx-1.trc or
pdsqlxxxxx-2.trc

pdsqlxxxxx-1.
trc or
pdsqlxxxxx-2.
trc

11. UAP Troubleshooting

956

The following table shows the library types:

#1

The suffix for shared libraries depends on the platform. It is .so in Solaris and
Linux, and .a in AIX.

#2

Created as a regular library for an XDS client.

(2) Examining SQL trace information
SQL trace information is output after the execution of SQL statements is completed.
An example of output of SQL trace information is shown as follows, followed by an
explanation.

Output example

Librar
y type

Library names in UNIX environment#1 Library names in Windows environment

Regular
library

libzclt.sl,ibzclt64.sl,

libzclts.sl,libzclts64.sl,

libzcltk.sl,libzcltk64.sl,

libzcltm.sl,libclt.a,

libclt64.a,libclts.a,

libclts64.a,libcltk.a,

libcltk64.a,libcltm.a

cltdll.dll,pdcltm32.dll,

pdcltp32.dll,

pdcltm50.dll,

pdcltm71.dll,

pdcltm80s.dll,

pdcltm64.dll,

pdcltm90s.dll,

pdcltm90s64.dll

Single-t
hread
edition
of XA
library

libzcltx.sl,libzclty.sl,

libzcltx64.sl,libzclty64.sl,

libzcltxs.sl,libzcltys.sl,

libcltxa.a,libcltya.a,

libcltxas.a,libcltyas.a

pdcltx32.dll,

pdcltxs.dll,pdcltx64.dll,

pdcltxs64.dll

Multi-t
hread
edition
of XA
library

libzcltxk.sl,libzcltyk.sl,

libzcltxk64.sl,

libzcltyk64.sl,

libcltxak.a,libclttyak.a

pdcltxm5.dll,

pdcltxm64.dll,

pdclto32.dll#2,pdclto64.dll#2

11. UAP Troubleshooting

957

 [20] [19] [22]
 ** UAP TRACE (CLT:VV-RR(Mmm dd yyyy) SVR:VV-RR US) WIN32(WIN32) **

 USER APPLICATION PROGRAM FILE NAME : XXXXXXXX [1]
 USERID : YYYYYYYY [2]
 UAP START TIME : YYYY/MM/DD HH:MM:SS [3]
 UAP ENVIRONMENT : [4]
 LANG(ja_JP.SJIS)
 USER("hirdb")
 HOST(h9000vr5)
 NAMEPORT(20281)
 FESHOST()
 SVCGRP() SVCPORT() SRVTYPE()
 SWAIT(600) CWAIT(0) SWATCH(0)

 BLKF(1) RDABLKF(-1) LOCKLMT(0) ISLLVL(2) DBLOG(ALL) DFLNVAL(NOUSE)
 AGGR(1024) DLKPRIO(64) EXWARN(NO) VWOPTMODE(0)
 LOCKSKIP(NO) CLTGRP(A) DSQLOBJCACHE(YES) PLGIXMK(NO)
 CLTRCVPORT(5000) CLTRCVADDR(192.134.35.4) PLGPFSZ(8192)
 PLGPFSZEXP(8192) SPACELVL(-1) STJTRNOUT()
 OPTLVL("SELECT_APSL","RAPID_GROPING")
 ADDITIONALOPTLVL("COST_BASE_2","APPLY_HASH_JOIN")
 UAPREPLVL() REPPATH()
 TRCPATH()

 IPC(MEMORY) SENDMEMSIZE(16) RECVMEMSIZE(32)
 HASHTBLSIZE(128) CMMTBFDDL(NO) PRPCRCLS()
 SQLTRCOPENMODE(SQL) AUTOCONNECT(ON) CWAITTIMEWRNPNT(-1) TCPCONOPT(0)
 WRTLNFILSZ(-1) WRTLNCOMSZ(1024)
 WRTLNPATH() UAPENVFILE()
 TP1SERVICE(NO) AUTORECONNECT(NO) RCCOUNT(0) RCINTERVAL(0)
 KALVL(0) KATIME(0) CLTCNVMODE(NOUSE)
 PRMTRC(YES) PRMTRCSIZE(256) BESCONHOLD() BESCONHTI(-1)
 BLKBUFFSIZE(0) BINARYBLKF(NO) FORUPDATEEXLOCK(NO)
 CNSTRNTNAME() SQLTEXTSIZE(4096) RCTRACE(-1)
 FESGRP()
 NBLOCKWAITTIME(0) CONNECTWAITTIME(300) DBBUFLRU(YES)
 UAPEXERLOGUSE() UAPEXERLOGPRMSZ() HJHASHINGMODE(TYPE1)
 DDLDEAPRP(NO) DELRSVWDFILE() HATRNQUEUING()
 ODBSPLITSIZE(100) NODELAYACK(NO) CURSORLVL(0)
 TAAPINFPATH() TAAPINFMODE(0) TAAPINFSIZE(409600)
 JETCOMPATIBLE(NO) SUBSTRLEN() BLKFUPD() ARYERRPOS()
 CALCMDWAITTIME(0) BLKFERRBREAK(NO) XAAUTORECONNECT(NO)
 CLTBINDLOOPBACKADDR(NO)
 STANDARDSQLSTATE() LCKWAITTIME(-1) DDLDEAPRPEXE(NO)
 CONNECTION STATUS : [5]
 CURHOST(dcm3500) CURPORT(4439) SRVNAME(fes1)
 CNCTNO(1) SVRPID(8945) CLTPID(9155) CLTTID() CLTCNCTHDL(0x0)

11. UAP Troubleshooting

958

1. UAP name: Displays the name specified in the PDCLTAPNAME environment
variable.

2. Authorization identifier: Displays the authorization identifier of the user who
executed the UAP.

3. UAP start time: Displays the time at which execution of the UAP started.

4. UAP execution environment: Displays the values of the environment variables
when the UAP was executed.

If the client environment definition is omitted, -1 is displayed for SWATCH,
RDABLKF, SPACELVL, HASHTBLSIZE, CWAITTIMEWRNPNT, WRTLNFILSZ,
BESCONHTI, RCTRACE, UAPEXERLOGPRMSZ, and LCKWAITTIME.

5. UAP execution status: Displays the status of the connection with the server when

 [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [23]
 CNCT CLPID CLTID NO OP SEC SQL SQL START-TIME END-TIME OP EXEC-TIME
 NO CODE NO CODE WARN TION
 ---- ----- ----- -- ---- --- ---- ----- ------------ ------------ ---- -----------
 1 9155 0 1 CNCT 0 0 WC040 16:03:55.720 16:03:58.080 0001 2356125
 1 9155 0 2 AUI2 1 0 -0000 16:03:58.630 16:03:59.400 M000 769651

 SQL INSERT INTO STOCK(GNO,GNAME,PLAN,PRICE,QUANTITY,DISCOUNT) VALUES(?,?,
.........17
 ?,?,?,?)
..17

 1 9155 0 3 SET 2 0 -0000 16:04:00.820 16:04:01.540 M000 719825

 SQL SELECT GNO,GNAME,PLAN,PRICE,QUANTITY,DISCOUNT FROM STOCK
......................17

 1 9155 0 4 OPEN 2 0 -0000 16:04:02.090 16:04:02.800 M000 709123
 1 9155 0 5 FETC 2 -204 -0000 16:04:03.080 16:04:03.790 M000 708902
 1 9155 0 6 SET 2 0 W8800 16:04:04.060 16:04:04.830 M000 765147

 SQL(AUTHID) INSERT INTO TBL01 VALUES('12345',12345) 17

 1 9155 0 7 SAUT 0 0 -0000 16:04:04.834 16:04:04.835 M000 912

 USER hirdb01
..18

 1 9155 0 8 AUI2 3 0 -0000 16:05:05.110 16:05:05.121 M000 9456

 SQL INSERT INTO TBL01 VALUES(?,100) ...21
 PARAM NO= 1 COD=c5 XDIM= 1 SYS= 0 LEN= 15 IND= 0 21
 DATA=30 35 2d 30 35 00 00 00 00 00 00 00 00 00 00 *05-05.........* ..21

 1 9155 9 DISC 0 0 -0000 16:05:55.110 16:05:56.660 M004 1547893

11. UAP Troubleshooting

959

the UAP was executed:

• CURHOST: Connection-destination host name

• CURPORT: Connection port number

• SRVNAME: Front-end server name or single-server name

• CNCTNO: Connection serial number

• SVRPID: Connected server's process number

• CLTPID: UAP process number

If connection is established from a Type4 JDBC driver, 0 is displayed.

• CLTTID: UAP thread number

If connection is established from a Type4 JDBC driver, 0 is displayed.

• CLTCNCTHDL: Connection handle

If information cannot be obtained, an invalid value may be displayed (Windows).

6. Connection serial number: Displays the connection serial number. Connection
serial numbers are assigned sequentially each time the server accepts CONNECT.

7. Displays the process number of the UAP.

If connection is established from a Type4 JDBC driver, 0 is displayed. If the
correct process number cannot be obtained, an invalid value may be displayed
(Windows).

8. UAP thread number: Displays the UAP thread number when the UAP is running
in a multi-thread environment. If the UAP is not running in a thread, or connection
was established from a Type4 JDBC driver, 0 is displayed. A thread number that
cannot be allocated can sometimes be displayed as an invalid value.

9. SQL counter: Displays the SQL counter values. Each time an SQL statement is
accepted, the counter value is incremented (from 1 through 999999, after which
the counter value returns to 1).

10. Operation code: Displays the operation code that corresponds to each SQL
statement.

The following table shows the SQL statements that correspond to the displayed
operation codes.

Operation code Corresponding SQL statement

ALCR ALLOCATE CURSOR statement

11. UAP Troubleshooting

960

AUI2 DELETE statement (static SQL), INSERT statement (static SQL), UPDATE statement (static
SQL), LOCK statement (static SQL), PURGE TABLE statement (static SQL), single-row
SELECT statement (static SQL), FREE LOCATOR statement (static SQL)

AUI3 Assignment statement (static SQL)

AUX EXECUTE statement

AUXI EXECUTE IMMEDIATE statement, all definition SQL statements

AUXO EXECUTE statement (INTO specified)

CALL CALL statement

CLIN INSTALL CLIB

CLOS CLOSE statement

CLRM REMOVE CLIB

CLRP REPLACE CLIB

CMIT COMMIT statement

CNCT CONNECT statement

CPRP Commit prepare#

DESC DESCRIBE statement (OUTPUT specified)

DEST DESCRIBE TYPE statement

DISC DISCONNECT statement, COMMIT statement (RELEASE specified)

DISR ROLLBACK statement (RELEASE specified)

DIST Disconnect + Tran Check#

DSCM Used by the system.

DSET DEALLOCATE PREPARE statement

DSPR Used by the system.

DSRL Used by the system.

FETC FETCH statement

GETD GET DIAGNOSTICS

HVAR DESCRIBE statement (INPUT specified)

Operation code Corresponding SQL statement

11. UAP Troubleshooting

961

JARI INSTALL JAR

JARR REPLACE JAR

JARU REMOVE JAR

OPEN OPEN statement (dynamic SQL)

OPN2 OPEN statement (static SQL)

OPNR OPEN statement (dynamic SQL (multiple cursors))

RENV Used by the system.

RNCN CONNECT statement (TO specified)

RNDS DISCONNECT statement (TO specified)

ROLL ROLLBACK statement

RSDC DESCRIBE statement (OUTPUT and RESULT SET specified)

RSFT FETCH statement (RESULT SET specified)

RSCL CLOSE statement (RESULT SET specified)

SAUT SET SESSION AUTHORIZATION statement

SET PREPARE statement

SINF Used by the system.

SOPT Used by the system.

SVLS Used by the system.

THRE Used by the system.

THSU Used by the system.

TRCK Used by the system.

TRC2 Used by the system.

TRST Used by the system.

TSCM Used by the system.

TSRL Transfer Rollback#

TSPR Transfer Prepare#

Operation code Corresponding SQL statement

11. UAP Troubleshooting

962

#: Applicable only when the XA interface is used.

11. Section number: Displays a number for verifying SQL statement correspondence;
this number is assigned automatically by the SQL preprocessor.

12. SQLCODE: Displays the SQLCODE that occurs as a result of SQL statement
execution.

13. SQLWARN: Displays warning information (in hexadecimal). Starting from the left,
one bit each is allocated to warning information SQLWARN0 through SQLWARNF.
A 16-bit value is obtained by setting each bit to 1 if the warning flag is set and to
0 if it is not set. This obtained value is displayed as a 4-digit hexadecimal number.

W is displayed at the beginning if at least one warning flag is set; - is displayed if
no warning flags are set.

Example 1

Example 2

14. SQL statements execution request receipt time: Displays the time at which the
SQL execution request was received (in HH:MM:SS:mmm format).

15. SQL statement execution request termination time: Displays the time at which the
SQL statement execution request was terminated (in HH:MM:SS:mmm format).

16. Information used by the system: Displays the information used by the system. If
the first byte is M, memory is used for process-to-process communication. The
other part of the information is used by the HiRDB developer for maintenance
purposes.

17. SQL statement: Displays the SQL statement, but only when the operation code is
SET, AUXI, AUI2, or OPN2.

11. UAP Troubleshooting

963

The maximum SQL statement length that can be output is 4,096 bytes (the
PDSQLTEXTSIZE environment variable can be used to change this value); any
excess part is truncated. If the -A option was specified during preprocessing, or
the /A option was used during preprocessing to specify the authorization
identifier to be assumed when the authorization identifier in the SQL statement is
omitted, *SQL* is displayed as *SQL (assumed-authorization-identifier)*.

18. New user identifier: Displays a new user identifier if the user identifier was
changed during a single connection. This information is also displayed if the user
identifier change operation fails.

19. Platform for UAP:

20. Library creation date: Displays the creation date of the linked library in the
following format:

Mmm: Month (first three letters of the month in English with the first letter in
upper case). For example, June is displayed as Jun.

dd: Date

yyyy: Year

Platform Character string to be displayed

HP-UX 11.0 HP32

HP-UX 11.0 (64-bit mode) HP64

Solaris SOL

Solaris (64-bit mode) SOL64

AIX AIX

AIX (64-bit mode) AIX64

Linux LINUX

Windows WIN32

HP-UX (IPF) 32-bit mode HPI32

HP-UX (IPF) 64-bit mode HPI64

Linux (EM64T) LINX64

Windows (IPF) 64-bit mode WINI64

Windows (x64) 64-bit mode WINX64

Type4 JDBC driver Type4

11. UAP Troubleshooting

964

21. Parameter trace: Displays input parameter information, output parameter
information, and retrieved data when PDPRMTRC=YES, IN, OUT, or INOUT is
specified in the client environment definitions.

The parameter information data is displayed up the length specified in
PDPRMTRCSIZE (or 256 bytes if omitted), and any excess part is discarded. For
details, see (4) Parameter trace output examples.

NO

Parameter number

COD

Data type code

XDIM

Number of array elements

SYS

Length of one element, including gaps

LEN

Data length

IND

Value of indicator variable

ARRAY NUM

Number of elements in repetition array

ROW NUM

Number of execution rows in SQL that uses embedded variables in an array

DATA

Data (dump format)

22. Linked library name

Library name Displayed characters

libzclt.sl, libclt.a UNIX, UNIX_32

libzclts.sl, libclts.a UNIX_S, UNIX_32S

libzcltm.sl, libcltm.a UNIX_M, UNIX_32M

libzcltk.sl, libcltk.a UNIX_K, UNIX_32K

11. UAP Troubleshooting

965

23. SQL runtime: Displays the SQL runtime in microseconds when
PDSQLEXECTIME=YES is specified in the client environment definitions.

libzcltx.sl, libcltxa.a UNIX_XA, UNIX_XA_32

libzcltxs.sl, libcltxas.a UNIX_XA_S, UNIX_XA_32S

libzcltxm.sl, libcltxam.a UNIX_XA_M, UNIX_XA_32M

libzcltxk.sl, libcltxak.a UNIX_XA_K, UNIX_XA_32K

libzclt64.sl, libclt64.a UNIX_64

libzcltk64.sl, libcltk64.a UNIX_64K

libzclts64.sl UNIX_64S

libzcltx64.sl, libzclty64.sl UNIX_XA_64

libzcltxk64.sl, libzcltyk64.sl UNIX_XA_64K

libzcltxs64.sl, libzcltys64.sl UNIX_XA_64S

CLTDLL.DLL WIN_32

PDCLTM32.DLL WIN_M32

PDCLTM50.DLL WIN_M50

PDCLTM71.DLL WIN_M71

PDCLTM80S.DLL WIN_M80S

PDCLTP32.DLL WIN_P32

PDCLTX32.DLL WIN_XA_32

PDCLTXM.DLL WIN_XA_32M

PDCLTXS.DLL WIN_XA_32S

PDCLTXM5.DLL WIN_XA_50M

PDCLTM64.DLL WIN_M64

PDCLTX64.DLL WIN_XA_64

PDCLTXM64.DLL WIN_XA_64M

PDCLTXS64.DLL WIN_XA_64S

PDJDBC2.JAR Type4

Library name Displayed characters

11. UAP Troubleshooting

966

(3) Making a backup of an SQL trace file
If the SQL trace file becomes full while SQL trace information is being output, HiRDB
stops writing to that file and outputs SQL trace information to another SQL trace file.
Any information that already exists in the switched-in SQL trace file is overwritten in
chronological order by the new SQL trace information. To prevent that information
from being lost, copy the contents of the SQL trace file into a backup file whenever
execution of a UAP is completed.

To determine the SQL trace file that is being used currently, check the most recent
update dates/times of the files. The SQL trace file that was updated most recently is
the current file.

For a Windows edition HiRDB client, you use the dir command or the Explorer to
check the file update dates/times.

For a UNIX edition HiRDB client, you use the OS's 1s -1 command to check the file
update dates/times.

(4) Parameter trace output examples
Output examples of representative parameter traces are shown below.

11. UAP Troubleshooting

967

(a) INSERT statement (with null value and repetition column)

Explanation
This is an output example of parameter trace information when INTEGER and
VARCHAR(10) repetition column (five elements) values are inserted with the
INSERT statement. The values are output in the sequence in which the ?
parameters are specified.

1. For input parameters, *INPRM* is displayed. However, when
PDPRMTRC=YES, *PARAM* is displayed.

2. For a repetition column, the number of repeated elements is displayed in
ARRAY NUM.

3. The number before each DATA clause is the indicator variable of each

11. UAP Troubleshooting

968

element in the repetition column.

4. The number in parentheses in each DATA clause is the repetition column
element number.

5. For VARCHAR-type data, the first 2 bytes of DATA is the data length area (the
first 4 bytes for BINARY-type data, and the first 8 bytes for BLOB-type data).
When PDPRMTRC is YES, the size of the output information is the sum of the
defined length and the data area length. When PDPRMTRC is IN, OUT, or
INOUT, the size of the output information is the sum of the actual data length
and the data area length.

6. If the indicator variable is a negative value, only the information up to DATA=
is displayed.

7. If the data extends beyond one line, --- SAME x LINES --- (x is the
number of lines) is output. However, when PDPRMTRC=YES, all data is
output.

(b) Single-row SELECT statement

Explanation
This is an output example of parameter trace information when
PDPRMTRC=INOUT is specified. The retrieval data information is output first in
retrieval item sequence, and the input parameter information is output later in the
specification sequence.

1. This is the retrieval data information. This information is not output when
PDPRMTRC=IN. When PDPRMTRC=YES, *PARAM* is displayed instead of
OUTPM.

2. This is the input parameter information. This information is not output when
PDPRMTRC=OUT. When PDPRMTRC=YES, *PARAM* is displayed instead of
INPRM.

11. UAP Troubleshooting

969

(c) Stored procedure execution (CALL statement)

Explanation
1. This is the IN parameter. When PDPRMTRC=OUT, this information is not

output.

2. This is the input parameter of the INOUT parameter. However, the contents
of the DATA clause become output data.

3. This is the OUT parameter. This information is not output when
PDPRMTRC=IN or YES.

4. This is the output parameter of the INOUT parameter. This information is not
output when PDPRMTRC=IN or YES.

11. UAP Troubleshooting

970

(d) Retrieval (FETCH statement)

Explanation
This is an output example of parameter trace information for the FETCH
statement. A parameter trace is not output when PDPRMTRC=IN or YES.

1. If the SQLCODE of the FETCH statement is a value other than 0, a parameter
trace is not output.

11. UAP Troubleshooting

971

(e) Retrieval (FETCH facility using arrays)

Explanation
This is an output example of parameter trace information for the FETCH facility
using arrays. A parameter trace is not output when PDPRMTRC=IN or YES.

1. ROW NUM displays the number of array elements (number of retrieval rows).

2. The number before each DATA clause is the indicator variable of each array
element.

3. The number in parentheses in each DATA clause is the array element number.

4. If the SQLCODE of the FETCH statement is a value other than 0, parameter
trace information is output for the number of rows returned from the server.

11.1.2 Client error log facility
When an error occurs during communication between a client and the HiRDB server
or in the XA interface specified by X/Open, error information is collected as a client
error log in a client error log file.

When the current client error log file becomes full, a new file is swapped in and the
oldest information in that file is overwritten.

11. UAP Troubleshooting

972

(1) How to collect client error log information
You can collect client error logs by specifying appropriate values in PDCLTPATH and
PDUAPERLOG in the client environment definitions. For details about client
environment definition, see 6.6 Client environment definitions (setting environment
variables).
The two client error log files in which information is to be collected are created under
a specified directory. The files that are created depend on whether or not an X/
Open-compliant API (TX_function) is used.

The following table shows the relationship between use of an X/Open-compliant API
(TX_ function) and the error log files that are created.

Table 11-3: Relationship between use of an X/Open-compliant API (TX_
function) and error log files that are created

xxxxx: Process ID during UAP execution

(2) How to interpret the client error log information
Client error log information is output whenever an error occurs during SQL statement
execution, during communication, and during execution of an X/Open-compliant XA
interface function.

An example of client error log information that is output is shown below, followed by
an explanation of the output items.

Output example

1. Client error log lead identifier: >> is displayed for an error that occurred during
SQL execution; > is displayed for any other error.

2. UAP process number: Displays the process number of the UAP where the error

Use of TX_function Client error log files that are created

No pderr1.trc and pderr2.trc

Yes pderrxxxxx-1.trc and pderrxxxxx-2.trc

11. UAP Troubleshooting

973

occurred. If the correct process number cannot be obtained, an invalid value may
be displayed (Windows).

3. UAP thread number: Displays the UAP thread number when the UAP in which
the error occurred is running in a multi-thread environment. Displays 0 if the UAP
is not running in a multi-thread environment. The correct thread number cannot
be assigned, and an invalid numeric value can sometimes be displayed as a result.

4. Server process number: Displays the process number at the server that is
connected.

5. Client error log counter: Displays a value provided by the error log counter. Each
time error log information is accepted, the counter value is incremented by 1
(from 0 through 65535).

6. Collection date and time: Displays the date and time the client error log
information was collected (in YYYY/MM/DD HH:MM:SS format).

7. Log data: Displays the error information (error message).

8. SQLCODE: Displays the SQLCODE when the client error log is for an SQLCODE that
is to be returned to the UAP.

9. SQL counter: Displays the SQL counter value for the SQL statement in which the
error occurred. If the SQL counter value consists of more than five digits, only the
five leading digits are displayed. For details about the SQL counter, see the output
example explanation in Section 11.1.1 SQL tracing.

10. Error collection time: Displays (in milliseconds) the amount of time used to
collect the client error log information.

11. Error detection location: Displays the name of the source file and the row number
where the error was detected.

12. Operation code: Displays the operation code of the SQL statement in which the
error occurred.

(3) Making a backup of a client error log file
If the client error log file becomes full while client error log information is being
output, HiRDB stops writing to that file and resumes output of client error log
information to the other client error log file. Any information that already exists in the
switched-in client error log file is overwritten (beginning with the oldest information)
by the new client error log information. To prevent information from being lost by
overwriting, you should copy the contents of the client error log file into a backup file
whenever execution of a UAP is completed.

To determine the client error log file that is being used currently, check the most recent
update dates/times of files. The client error log file that was updated most recently is
the current file.

11. UAP Troubleshooting

974

For a Windows edition HiRDB client, you use the dir command or the Explorer to
check the file update dates/times.

For a UNIX edition HiRDB client, you use the OS's 1s -1 command to check the file
update dates/times.

11.1.3 Facility for output of extended SQL error information
(1) What is the facility for output of extended SQL error information

The facility for output of extended SQL error information performs the following
functions:

• Outputs the affected SQL statement and parameter information as information for
the client error log facility. (The information produced when an SQL statement
and parameter information are added to the client error log facility's information
is called SQL error information.)

• Outputs SQL error information to the server as well. (The file to which SQL error
information is output is called the SQL error report file.)

(2) Benefits
Centralized management of SQL error information

If an SQL error occurs, SQL error information is output on the server side, as well
as on the client side. Since SQL error information for multiple clients can be
output to the SQL error report file of one server, centralized management of SQL
error information is possible.

Output of the affected SQL statement and parameter information

The SQL statement affected by the error and the related parameter information are
output. The affected SQL statement can be investigated from this information.

(3) Usage method
When you use the facility for output of extended SQL error information, specify the
following system definitions or client environment definitions:

Whether or not the facility for output of extended SQL error information is to be
used

Use the pd_uap_exerror_log_use operand or PDUAPEXERLOGUSE to set
whether or not the facility for output of extended SQL error information is to be
used. Specify the pd_uap_exerror_log_use operand to set a value for the
entire HiRDB system, and specify PDUAPEXERLOGUSE to set a value for each
application.

Output destination directory and maximum size of the SQL error report file

Use the pd_uap_exerror_log_dir operand to set the output directory of the

11. UAP Troubleshooting

975

SQL error report file. Use the pd_uap_exerror_log_size operand to set the
maximum size of the SQL error report file.

Maximum data length of the parameter information output to the client error log
file or the SQL error report file

Use the pd_uap_exerror_log_param_size operand or
PDUAPEXERLOGPRMSZ to set the maximum data length of the parameter
information output to the error log file or the SQL error report file. Specify the
pd_uap_exerror_log_param_size operand to set a value for the entire
HiRDB system, and specify PDUAPEXERLOGPRMSZ to set a value for each
application.

(4) Interpreting SQL error information
(a) Output format of the SQL error report file

The output format of the SQL error report file is shown below.

Output format

** UAP ERROR INFORMATION aa...aa bbbbbbbbbbbbbbbbbbbbbbbbbb ** [1]

* UAP INFORMATION * [2]
 UAP_NAME(cc...cc) USERID(dd...dd)
 IPADDR(ee...ee) CLTPID(ff...ff) THRDID(gg...gg)
 START_TIME(hhhhhhhhhhhhhhhhhhh)

* SERVER INFORMATION * [3]
 HOST(ii...ii) PORT(jj...jj) PLATFORM(kk...kk)
 SVRNAME(ll...ll) SVRPID(mm...mm)

* SQL INFORMATION * [4]
 OPTIMIZE_LEVEL(nn...nn) ADDITIONAL_OPTIMIZE_LEVEL(oo...oo)
 ISOLATION_LEVEL(pp...pp)

CNCTNO SQL- OP SEC SQL SQL OP ERROR
 COUNTER CODE NO CODE WARN TION COUNTER
---------- ---------- ---- ---- ----- ----- ---- -----
rrrrrrrrrr ssssssssss tttt uuuu vvvvv wwwww xxxx yyyyy

START-TIME END-TIME EXEC-TIME
--------------- --------------- -----------------
zzzzzzzzzzzzzzz AAAAAAAAAAAAAAA BB...BB

* SQL MESSAGE * [5]
 "CC...CC" [DD...DD]

* SQL STATEMENT * [6]

11. UAP Troubleshooting

976

 "EE...EE"

* PARAMETER * [7]
ELM NO= FFFFF
GGGGG NO=HHHHH COD=III XDIM=JJJJJ SYS=KKKKK LEN=LLLLLLLLLLL
IND=MMMMMMMMMMM
 ARRAY NUM=NNNNN
 DATA=OO...OO

Explanation
1. Title of SQL error report file

2. UAP information

3. Server information

4. SQL information

5. SQL message

6. SQL statement

7. Parameter information

aa...aa
Displays the HiRDB version in the format shown below. (The maximum size
of the displayed characters is 8 bytes.)

vv-rr-zz
If there is no -zz value, -zz is not output.

bbbbbbbbbbbbbbbbbbbbbbbbbb
Displays the date and time that the error information was output. The output
format is shown below. (The maximum size of the displayed characters is 26
bytes.)

YYYY/MM/DD hh:mm:ss.uuuuuu
YYYY: Year

MM: Month

DD: Day

hh: Hour

mm: Minute

ss: Second

11. UAP Troubleshooting

977

uuuuuu: Microsecond

cc...cc
Displays the UAP name that was specified in the PDCLTAPNAME client
environment definition. (The maximum size of the displayed characters is 30
bytes.)

dd...dd
Displays the authorization identifier of the connected user. (The maximum
size of the displayed characters is 8 bytes.)

ee...ee
Displays the IP address of the UAP. (The maximum size of the displayed
characters is 15 bytes.)

ff...ff
Displays the UAP process number. (The maximum size of the displayed
characters is 10 bytes.)

If the correct process number cannot be obtained, an invalid value may be
displayed (Windows).

gg...gg
Displays the UAP thread number if the UAP is operating in multiple threads.
(The maximum size of the displayed characters is 11 bytes.) If the UAP is
not operating in multiple threads, 0 is displayed.

An incorrect number may be displayed if the correct thread number cannot
be obtained. If the client version is 07-01 or earlier, * is displayed.

hhhhhhhhhhhhhhhhhhh
Displays the UAP execution time in the format shown below. (The maximum
size of the displayed characters is 19 bytes.)

YYYY/MM/DD hh:mm:ss
YYYY: Year

MM: Month

DD: Day

hh: Hour

mm: Minute

ss: Second

ii...ii

11. UAP Troubleshooting

978

Displays the name of the host in which the server process is operating. (The
maximum size of the displayed characters is 30 bytes.)

jj...jj
Displays the communication port number of the server process. (The
maximum size of the displayed characters is 5 bytes.)

kk...kk
Displays the platform supported by the client library. (The maximum size of
the displayed characters is 6 bytes.)

For details about the output information, see the UAP operation platform in
11.1.1(2) Examining SQL trace information. If the client version is 07-01 or
earlier, * is output.

ll...ll
Displays the server name of the single server or the front-end server. (The
maximum size of the displayed characters is 8 bytes.)

mm...mm
Displays the process number of the server process. (The maximum size of
the displayed characters is 10 bytes.)

nn...nn
Displays the value of the SQL optimization option in decimal format. (The
maximum size of the displayed characters is 10 bytes.)

oo...oo
Display the value of the SQL extension optimizing option in decimal format.
(The maximum size of the displayed characters is 10 bytes.)

pp...pp
Displays the value of the data guarantee level. (The maximum size of the
displayed characters is 10 bytes.)

rrrrrrrrrr
Displays the connection sequence number each time the server accepts
CONNECT. (The maximum size of the displayed characters is 10 bytes.) The
displayed connection sequence number is right-justified and padded with
leading single-byte space characters.

ssssssssss
Displays the incremented SQL counter value each time an SQL statement is
accepted. (The maximum size of the displayed characters is 10 bytes.) The
displayed SQL counter value is right-justified and padded with leading

11. UAP Troubleshooting

979

single-byte space characters.

tttt
Displays the operation code for the SQL statement. (The maximum size of
the displayed characters is 4 bytes.)

uuuu
Displays the section number of the SQL statement. (The maximum size of
the displayed characters is 4 bytes.) The displayed section number is
right-justified and padded with leading single-byte space characters. If an
error occurs during execution of a control SQL, **** is displayed.

vvvvv
Displays the SQLCODE of the SQL execution result. (The maximum size of
the displayed characters is 5 bytes.) The displayed SQLCODE is right-justified
and padded with leading single-byte space characters.

wwwww
Displays warning information in hexadecimal format. (The maximum size of
the displayed characters is 5 bytes.) In the warning information, one bit is
assigned to each of the items SQLWARN0 to SQLWARNF, starting from the left.
If a warning flag is set to one of these items, the corresponding bit is set to
1. If a warning flag is not set, the bit is set to 0. All of these bits combined
are output as a 4-digit hexadecimal value. If at least one warning flag is set,
the 4-digit hexadecimal value is preceded by W. If no warning flag is set, the
value is preceded by -. Examples are shown below.

Example:

xxxx
Displays information that the system uses. (The maximum size of the
displayed characters is 4 bytes.)

If the first byte is M, it indicates that the inter-process memory
communication facility is being used. The other three bytes represent

11. UAP Troubleshooting

980

maintenance information. However, if the client version is 07-01 or earlier,
**** is displayed.

yyyyy
Displays the error log number. (The maximum size of the displayed
characters is 5 bytes.)

The output error log number is right-justified and padded with leading
single-byte space characters. However, If the client version is 07-01 or
earlier, ***** is displayed.

zzzzzzzzzzzzzzz
Displays the time that the SQL execution request was received from the
client. The time is displayed in the format shown below. (The maximum size
of the displayed characters is 15 bytes.)

hh:mm:ss.uuuuuu
hh: Hour

mm: Minute

ss: Second

uuuuuu: Microsecond

AAAAAAAAAAAAAAA
Displays the time that processing of the client request ended. The time is
displayed in the format shown below. (The maximum size of the displayed
characters is 15 bytes.)

hh:mm:ss.uuuuuu
hh: Hour

mm: Minute

ss: Second

uuuuuu: Microsecond

BB...BB
Displays the processing time of the client request in the format shown below.
(The maximum size of the displayed characters is 17 bytes.) The displayed
seconds value is right-justified and padded with leading single-byte space
characters.

ssssssssss.uuuuuu
ssssssssss: Seconds

11. UAP Troubleshooting

981

uuuuuu: Microseconds

CC...CC
Displays the message that was output during SQL execution. (The maximum
size of the displayed characters is 254 bytes.)

DD...DD
Displays information that the system uses. (The maximum size of the
displayed characters is 21 bytes.)

EE...EE
Displays the SQL statement. (The maximum size of the displayed characters
is 2,000,000 bytes.)

If comments or SQL optimization specifications are described in the SQL
statement, those are also displayed. If an error occurred during execution of
a control SQL statement, * is displayed. For details about comments and
SQL optimization specifications, see the manual HiRDB Version 9 SQL
Reference.

FFFFF
Displays the affected element number if an error occurs in an SQL statement
that uses an array. (The maximum size of the displayed characters is 5 bytes.)

GGGGG
Displays INPRM for input parameter information or OUTRM for output
parameter information. For input/output parameter information, this variable
displays INPRM for input information and OUTRM for output information.
(The maximum size of the displayed characters is 5 bytes.)

HHHHH
Displays the parameter number. (The maximum size of the displayed
characters is 5 bytes.)

III
Displays the data-type code. (The maximum size of the displayed characters
is 3 bytes.)

JJJJJ
Displays the number of array elements. (The maximum size of the displayed
characters is 5 bytes.)

KKKKK
Displays the area length of one element, including gaps. (The maximum size
of the displayed characters is 5 bytes.)

11. UAP Troubleshooting

982

LLLLLLLLLLL
Displays the data length. (The maximum size of the displayed characters is
11 bytes.)

MMMMMMMMMMM
Displays the indicator variable value. (The maximum size of the displayed
characters is 11 bytes.)

NNNNN
Displays the number of elements in the repetition column if the SQL
statement contains a repetition column. (The maximum size of the displayed
characters is 5 bytes.) If the SQL statement does not contain a repetition
column, this information is not displayed.

OO...OO
Displays parameter information. (The size of the displayed characters is the
value specified for the pd_uap_exerror_log_param_size operand.)
The types of parameter information are input parameter information, output
parameter information, and input/output parameter information. The rules
pertaining to parameter information are as follows:

• If an input parameter is a BLOB-type or BINARY-type locator, the value
of the BLOB-type or BINARY-type locator is displayed.

• If the indicator variable is a negative value, only the portion up to
DATA= is displayed.

• If there is information for several parameters, the parameter information
is displayed in the sequence that the parameters were specified.

• If similar data extends beyond one line, --- SAME x LINES --- (x is
the number of lines) is displayed.

• The size of the displayed parameter information is the sum of the actual
data length and the data area length.

• For a repetition column, the number of elements in the repetition
column is displayed in ARRAY NUM.

• For a repetition column, DATA is preceded by an indicator variable for
each repetition element.

• For a repetition column, DATA is followed by the repetition column
element number enclosed in parentheses.

(b) Output format of the client error log file
The output format of the client error log file when the facility for output of extended
SQL error information is used is shown below.

11. UAP Troubleshooting

983

Output format

> 8355 0 8393 9 2005/08/12 14:06:30 KFPZ03000-I Error
information, type=CONNECT STATUS,
 inf=CLT=07-02(Aug 4 2005):WS SVR=07-02 US:WS LIBTYPE=UNIX_32
> 8355 0 8393 10 2005/08/12 14:06:30 KFPZ03000-I Error
information, type=SQL STREAM,
 inf=insert into t1 values (? , ? ,?)
>> 8355 0 8393 11 2005/08/12 14:06:30 SQLCODE:-404
47(140630218) sqaexp0.c :2348 AUX
 KFPA11404-E Input data too long for column or assignment target
in variable 3
 UAP userprog1,hiuser01 [1]
 SVR host03,1146,sds,hp [2]
 SQLINF
1034,1,2,7,17,-0000,0000,14:06:30.216463,14:06:30.217765,0.001
302 [3]
 SQL INSERT INTO T1 VALUES(?,?,?) [4]
 PRM [5]
 INPRM 1,f1,1,0,4,0
 DATA=00 00 ff ff *....
*
 INPRM 2,c1,10,258,255,9
 ARRAY NUM= 9
 0 DATA(0)=00 01 61 *..a
*
 0 DATA(1)=00 02 61 62 *..ab
*
 0 DATA(2)=00 03 61 62 63
*..abc *
 0 DATA(3)=00 04 61 62 63 64
*..abcd *
 0 DATA(4)=00 05 61 62 63 64 65
*..abcde *
 0 DATA(5)=00 06 61 62 63 64 65 66
*..abcdef *
 0 DATA(6)=00 07 61 62 63 64 65 66 67
*..abcdefg *
 0 DATA(7)=00 08 61 62 63 64 65 66 67 68
*..abcdefgh *
 -1 DATA(8)=
 INPRM 3,93,1,0,32002,0
 DATA=00 00 00 00 00 00 7d 02 41 41 41 41 41 41 41 41
......}.AAAAAAAA
 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
AAAAAAAAAAAAAAAA
 --- SAME 14 LINES ---

11. UAP Troubleshooting

984

Explanation
1. UAP information

UAP name

The name of the UAP that was specified in the PDCLTAPNAME client
environment definition is displayed.

Authorization identifier

The authorization identifier of the connected user is displayed.

2. Server information

Host name

The name of the host in which the server process is operating is displayed.

Port number

The communication port number of the server process is displayed.

Server name

The server name of the single server or front-end server is displayed.

Platform

The platform supported by the client library is displayed.

For details about the displayed information, see the UAP operation platform
in 11.1.1(2) Examining SQL trace information. If the client version is 07-01
or earlier, * is displayed.

3. SQL information

SQL optimization option

The value of the SQL optimization option is displayed in decimal format.

SQL extension optimizing option

The value of the SQL extension optimizing option is displayed in decimal
format.

Data guarantee level

The value of the data guarantee level is displayed.

Connection sequence number

The connection sequence number, which is incremented sequentially each
time the server accepts CONNECT, is displayed.

Section number

11. UAP Troubleshooting

985

The section number of the SQL statement is displayed.

SQLWARN

Warning information is displayed in hexadecimal format. In the warning
information, one bit is assigned to each of the items SQLWARN0 to
SQLWARNF, starting from the left. If a warning flag is set to one of these
items, the corresponding bit is set to 1. If a warning flag is not set, the bit is
set to 0. All of these bits combined are output as a 4-digit hexadecimal value.
If at least one warning flag is set, the 4-digit hexadecimal value is preceded
by W. If no warning flag is set, the value is preceded by -. (For examples, see
the explanation for wwwww in (a) Output format of the SQL error report
file.)

System information

Information used by the system is displayed.

If the first byte is M, it indicates that the inter-process memory
communication facility is being used. The other three bytes represent
maintenance information. However, if the client version is 07-01 or earlier,
**** is displayed.

SQL start time

The time when the SQL execution request from the client was received is
displayed in the following format:

hh:mm:ss.uuuuuu
hh: Hour

mm: Minute

ss: Second

uuuuuu: Microsecond

SQL end time

The time when the process requested by the client ended is displayed in the
following format:

hh:mm:ss.uuuuuu
hh: Hour

mm: Minute

ss: Second

uuuuuu: Microsecond

SQL runtime

11. UAP Troubleshooting

986

The processing time of the client request is output in the following format.
The displayed seconds value is right-justified and padded with leading
single-byte space characters.

ssssssssss.uuuuuu
ssssssssss: Second

uuuuuu: Microsecond

4. SQL statement

SQL statement

The SQL statement is displayed.

If comments or SQL optimization specifications are described in the SQL
statement, those are also displayed. The size of the displayed SQL statement
is the value specified for PDSQLTEXTSIZE in the client environment
definitions.

If an error occurs during execution of a control SQL statement, that SQL
statement cannot be obtained and * is displayed instead.

For details about comments and SQL optimization specifications, see the
manual HiRDB Version 9 SQL Reference.

5. Parameter information

ELM NO

If an error occurs in an SQL statement that uses an error, the number of that
element is displayed.

Parameter information type

INPRM is displayed for input parameter information and OUTRM for output
parameter information. For input/output parameter information, INPRM is
displayed for input information and OUTRM for output information.

NO

The parameter number is displayed.

COD

The data type code is displayed.

XDIM

The number of array elements is displayed.

SYS

The area length of one element, including gaps, is displayed.

11. UAP Troubleshooting

987

LEN

The data length is displayed.

IND

The value of the indicator variable is displayed.

ARRAY NUM

If the SQL statement contains a repetition column, the number of elements
in the repetition column is displayed. If the SQL statement does not contain
a repetition column, this information is not displayed.

DATA

Parameter information is displayed.

The types of parameter information are input parameter information, output
parameter information, and input/output parameter information.

The rules pertaining to parameter information are as follows:

• If an input parameter is a BLOB-type or BINARY-type locator, the value
of the BLOB-type or BINARY-type locator is displayed.

• If the indicator variable is a negative value, only the portion up to
DATA= is displayed.

• If there is information for several parameters, the parameter information
is displayed in the sequence that the parameters were specified.

• If similar data extends beyond one line, --- SAME x LINES --- (x is
the number of lines) is displayed.

• The size of the displayed parameter information is sum of the actual
data length and the data area length.

• For a repetition column, the number of elements in the repetition
column is displayed in ARRAY NUM.

• For a repetition column, DATA is preceded by an indicator variable for
each repetition element.

• For a repetition column, DATA is followed by the repetition column
element number enclosed in parentheses.

(5) Rules for SQL error report files
The rules pertaining to the SQL error report files are described below. To view an SQL
error report file, use a text editor or similar software.

1. HiRDB executes SQL statements, and each time it detects an error, it opens the
SQL error report file, writes SQL error information, and then closes the file. Since

11. UAP Troubleshooting

988

the SQL error information is appended to the final position of the SQL error report
file, SQL error information accumulates in the file in chronological order.

2. Two SQL error report files are created (pduaperrlog1 and pduaperrlog2). If
the size of the file to which data is currently being written exceeds the specified
value of the pd_uap_exerror_log_size operand in the system definition, the
output destination is switched to the other file. The system uses the two files
alternately by performing this switching process on the other file as well. (After
switching takes place, the contents of the previous file are deleted.) After HiRDB
is started, the file that was most recently updated becomes the output destination.

3. When SQL processing ends, the SQL error report files are closed. Therefore,
when an SQL statement is not being executed, you can use an OS command to
back up or view the files. Even while an SQL statement is being executed, you
can back up or view the file that is not the output destination.

4. To determine the SQL error report file that is being used currently, use the OS's
dir command (1s -1 command in UNIX) to check the most recent update dates
of the files. The SQL error report file that was updated most recently is the current
file.

(6) Notes
1. When the facility for output of extended SQL error information is used, time is

required for executing a system call that retrieves the SQL start time and runtime,
even if SQL error information is not output.

2. If the OS detects an error (such as a file system failure or an invalid file write
privilege) while information is being output to a client error log file or to an SQL
error report file, SQL error information is not output to the client error log file or
SQL error report file.

3. When the facility for output of extended SQL error information is used, memory
space becomes necessary because parameter information is output.

11.1.4 UAP statistical report facility
The UAP statistical report facility outputs UAP statistical information during UAP
execution to a UAP statistical report file.

(1) How to obtain the UAP statistical report
To obtain UAP statistical reports, specify values to PDCLTPATH, PDSQLTRACE, and
PDUAPREPLVL in the client environment definitions.

This subsection describes the output destination and names of the UAP statistical
report files.

Output destination

Two UAP statistical report files are output to the directory specified in

11. UAP Troubleshooting

989

PDCLTPATH. If you specify PDREPPATH, the UAP statistical report files are
output to a different directory than the one specified in PDCLTPATH.

File names

pdHHMMSSmmm_xxxxxxxxxx_1.trc or
pdHHMMSSmmm_xxxxxxxxxx_2.trc
Explanation:

HHMMSSmmm: Time (hour, minute, second, millisecond) at which the
request to connect to HiRDB was issued

xxxxxxxxxx: Connection number (up to 10 bytes)

You can open and close SQL trace files in CONNECT and DISCONNECT units by
specifying CNCT in PDSQLTRCOPENMODE. For details about the individual client
environment definitions, see 6.6 Client environment definitions (setting environment
variables).
You can specify the information to be obtained using PDUAPREPLVL in the client
environment definitions. The following table shows the relationship between the value
of PDUAPREPLVL and the information to be obtained.

Table 11-4: Relationship between the value of PDUAPREPLVL and
information to be obtained

Value of PDUAPREPLVL Information to be obtained

By SQL By UAP Access path
information

SQL runtime
interim results

s# Y N N N

u N Y N N

p N N Y N

r N N N Y

su# Y Y N N

sp# Y N Y N

sr# Y N N Y

up N Y Y N

ur N N Y Y

pr N N Y Y

11. UAP Troubleshooting

990

Y: Information is obtained.

N: Information is not obtained.

#: If s is specified, SQL trace information is also obtained.

Notes
1. When access path information or SQL runtime interim results are obtained,

the server's workload may increase because the system re-creates an SQL
object even if the SQL object is found in the buffer.

2. Information is not output for a UAP in the following cases:

 The program uses an X/Open-compliant API under OLTP.

 The UAP terminated without issuing DISCONNECT.

3. The facility does not display access path information or SQL runtime interim
results if the size of the information exceeds one gigabyte.

4. For time information (such as SQL execution time, lock-release wait time,
and CPU time), 0 is displayed for any value that is too small to be obtained
by using system calls of the OS.

5. For a HiRDB/Parallel Server, the information by the UAP does not include
the privilege checking executed at the connected dictionary server.

6. If you specify output of access path information or SQL runtime interim
results, and you are using the inter-process memory communication facility
(PDIPC=MEMORY specified in the client environment definitions), the PDIPC
specification is ignored and PDIPC=DEFAULT is assumed.

Size of an SQL trace file
You can use the formula shown below to determine the size of an SQL trace file. Note
that you can change the size of SQL statements by using the PDSQLTEXTSIZE
environment variable.

sur# Y Y N Y

spr# Y N Y Y

upr N Y Y Y

a or sup# Y Y Y Y

Value of PDUAPREPLVL Information to be obtained

By SQL By UAP Access path
information

SQL runtime
interim results

11. UAP Troubleshooting

991

Size of SQL trace file = 3208 + A + 80 x number of operations + total length of SQL
statements (maximum of 4096) (bytes)

A: Total length of character strings specified in PDHOST, PDFESHOST, PDSQLOPTLVL,
PDADDITIONALOPTLVL, PDREPPATH, and PDTRCPATH in the client environment
definitions

To output information by SQL, information by UAP, access path information, and SQL
runtime interim results, add the following sizes (bytes):

Information by SQL: 83# x number of SQL statements

Information by UAP: 2740# x number of DISCONNECTs
Access path information: See (2)(b) Access path information.

SQL runtime interim results: See (2)(c) SQL runtime interim results.

#: This is the maximum value. The value changes according to the number of digits to
be displayed.

(2) Interpreting a UAP statistical report
The following shows a sample UAP statistical report, followed by explanations (a)
through (d):

Output example

 CNCT CLPID CLTID NO OP SEC SQL SQL START-TIME END-TIME OP
 NO CODE NO CODE WARN TION
 ---- ----- ----- -- ---- --- ---- ----- ------------ ------------ ----
 1 9155 0 1 CNCT 0 0 WC040 16:03:55.720 16:03:58.080 0001
 1 9155 0 2 AUI2 1 0 -0000 16:03:58.630 16:03:59.400 0000

SQL INSERT INTO T1(C1,C2,C3,C4,C5,C6) VALUES(?,?,?,?,?,?)
00:00:00.770 00:00:00.430000 340 1 0 0 0 0 0(a)
 [1] [2] [3] [4] [5] [6] [7] [8] [9]

 1 9155 0 3 SET 2 0 -0000 16:04:00.820 16:04:01.540 0000

SQL SELECT * from T1, T2, T3 where ((T1.C1='a' and T1.C2='A')
 or (T1.C1='a' and T1.C2='B')) and T1.C1=T2.C1 and T1.C2=T2.C2 and T2.C3>=1995
 and T1.C1=T3.C1 and T1.C2=T3.C2 order by T1.C1

00:00:00.720 00:00:00.240000 480 1 0 0 0

Result of SQL Optimizer : ...(b)
 Connect No : 1

11. UAP Troubleshooting

992

 --
 Section No : 2
 UAP Source :XXXXXXXX.ec
 Optimize Mode : COST_BASE_2
 SQL Opt Level : 0x00000420(1056) = "PRIOR_NEST_JOIN"(32),"RAPID_GROUPING"(1024)
 Add Opt Level : 0x00000003(3) = "COST_BASE_2"(1),"APPLY_HASH_JOIN"(2)
 Work Table : 0
 Table Cost : 12672.66944
 ----- QUERY EXPRESSION BODY ID : 1 -----
 :
 ----- QUERY ID : 1 -----
 :
 JOIN
 :
 SCAN
 :

 --

 1 9155 0 4 OPEN 2 0 -0000 16:04:02.090 16:04:02.800 0000

Result of SQL Execution : ...(c)
--
Connect No : 1
UAP Source : XXXXXXXX.ec
Section No : 2
----- QUERY EXPRESSION BODY ID : 1 -----
 :
----- QUERY ID : 1 -----
 :
JOIN
 :
SCAN
 :
--

 1 9155 0 9 DISC 0 0 -0000 16:05:55.110 16:05:56.660 0004

UAP INFORMATION: ...(d)
 [1]UAPNAME()
 [2]SVHOST(dcm3500) [3]SVPORT(4439) [4]SVNAME(fes1) [5]CNCTNO(1)
 [6]SVPID(8945) [7]CLPID(9155) [8]CLTTID(0)
 [9]WAITT(0) [10]CTIME(0)
 [11]ROREQ(0) [12]ROHITS(0)

11. UAP Troubleshooting

993

(a) Information by the SQL
1. SQL execution time (milliseconds)

Displays the SQL execution time in the format HH:MM:SS.mmm. If YES is
specified in the PDSQLEXECTIME client environment definition, the unit becomes
microseconds.

2. SQL execution time at server (microseconds)

Displays the SQL execution time at the server in the format
HH:MM:SS.mmmmmm.

3. Difference between 1 and 2 (milliseconds)

Provides a guideline for communication time. If YES is specified in the
PDSQLEXECTIME client environment definition, the unit becomes microseconds.

4. Number of processed rows

Displays the number of rows processed by the SQL statements that were issued
during the session.

5. Work table creations count

Displays the number of times a work table was created during internal processing
for the SQL statements that were issued during the session.

 [13]SOREQ(10) [14]SOHITS(3) [15]SOCRT(0) [16]SOMAX(0)
 [17]COMT(0) [18]ROLB(0) [19]FROW(0) [20]DROW(0) [21]IROW(3)
 [22]UROW(0) [23]SET(1) [24]OPEN(2) [25]FETC(1) [26]CLOS(0)
 [27]DESC(0) [28]SEL(1) [29]INS(3) [30]UPD(0) [31]DEL(0)
 [32]LOCK(0) [33]CRTT(0) [34]DRPT(0) [35]ALTT(0) [36]CRTI(0)
 [37]DRPI(0) [38]CMTT(0) [39]CMTC(0) [40]CRTS(0) [41]DRPS(0)
 [42]GRTR(0) [43]GRTS(0) [44]GRTA(0) [45]GRTC(0) [46]GRTD(0)
 [47]RVKR(0) [48]RVKS(0) [49]RVKA(0) [50]RVKC(0) [51]RVKD(0)
 [52]CRTV(0) [53]DRPV(0) [54]PRGT(0) [55]CRTP(0) [56]DRPP(0)
 [57]ALTP(0) [58]CALL(0) [59]DESI(0) [60]MISC(0)
 [61]MAXIO(0) [62]MAXIOM(0) [63]MINIO(0) [64]MINIOM(0)
 [65]IOTIM(0) [66]IOTIMM(0)

 [67]DIDRC(0) [68]DIDUC(0) [69]DIDHC(0) [70]DIDRD(0) [71]DIDWT(0)
 [72]LBRFC(0) [73]LBUPC(0) [74]LBRHC(0) [75]LBUHC(0) [76]LBRDC(0)
 [77]LBWTC(0) [78]BFSHC(2320) [79]BRDWC(0) [80]BWTWC(50)
 [81]BLKWC(2) [82]MWFN(0) [83]MWFEC(0) [84]MWFVL(0)
 [85]WFRDC(0) [86]WFWTC(0) [87]WBFOC(0)
 [88]MWHTS(0) [89]MBSL1(0) [90]MBSL2(0) [91]MBSL3(0)
 [92]SCHSKD(0) [93]SCHCHG(0)
 [94]CINSM(0) [95]CAFLS(0) [96]CAFWR(0) [97]CFMAX(0) [98]CFAVG(0)
 [99]LDIRC(0) [100]LDIUC(0) [101]LDIHC(0) [102]LDIRD(0)
[103]LDIWT(0) [104]LBFSHC(0)
[105]ARREQ(0) [106]ARWC(0) [107]ARWT(0) [108]ARWTM(0)
[109]ARWTA(0) [110]ARWTMA(0) [111]ARSTA(0) [112]ARSTMA(0)
[113]HJMAX(0) [114]HJCMC(0) [115]HJHTC(0)

11. UAP Troubleshooting

994

6. Work table deletions count

Displays the number of times a work table was deleted during internal processing
for the SQL statements that were issued during the session.

7. SQL object size (bytes)

Displays the size of the SQL object created by the SQL statements that were
issued during the session.

8. Total comparison count during hash table search processing by hash join,
subquery hash execution

Displays the total number of comparisons that the SQL statements issued during
this connection perform on the data having the same hash value during the hash
table search.

9. Total hash join search count during hash join, subquery hash execution

Displays the number of times that the hash table was searched by the SQL
statements issued during this connection.

(b) Access path information
A UAP statistical report displays access path information. Connect No displays the
connect number. By executing an upward search based on the connect number, you can
identify the SQL statements displayed in the SQL trace information. You can also use
the connect number to find out the execution request start and end times of the SQL
statements displayed in the SQL trace information. For dynamic SQL, execute a
downward search based on the connect number, while for static SQL, execute an
upward search. If you specify information acquisition in SQL units, the SQL execution
times are also displayed. If you find an SQL statement that has a long SQL execution
time, tune the UAP.

The UAP statistical report facility does not include the following information in the
access path information: HiRDB version, number of back-end servers, UAP name,
authorization identifier, SQL optimization processing time, and SQL statements.
However, if the routine contains data manipulation SQL statements, the facility
displays them as the SQL statements.

If the access path is SELECT-APSL for a HiRDB/Single Server (access path is to be
selected from multiple candidates by the boundary value during execution), the facility
displays the boundary value at the beginning, followed by multiple candidates
separated by Section No.

For details about the access path information, see the access path display utility in the
manual HiRDB Version 9 Command Reference.

Notes
1. The facility does not display access path information for an external Java

11. UAP Troubleshooting

995

stored routine.

2. For an SQL routine, the facility displays the access path information if the
SQL object's index information becomes invalid due to an index addition or
deletion made to the table used within the routine.

3. The access path information increases the size of the SQL trace file. You can
use the formula shown below to determine this increase in size. This is just
a guideline; the actual size of the access path information depends on the
table definitions, index definitions, and SQL statement used.

(c) SQL runtime interim results
A UAP statistical report displays SQL runtime interim results.

When SQL runtime interim results are displayed, the information listed below can be
checked. (The number of rows displayed in the results is the number of rows that
HiRDB actually processed at the stage that the interim results are displayed.)

• Number of rows fetched from the table

• Number of rows narrowed by the index

• Number of rows in the results for each join

• Number of input/output rows for any duplicate exclusion, GROUP BY, ORDER BY,
or LIMIT specified in the query and number of rows in the query results

• Number of rows in the results for each set operation

Use the SQL runtime interim results and the access path information to carry out SQL
tuning. For details about using access path information for SQL tuning, see the
description of the access path display utility in the manual HiRDB Version 9 Command
Reference.

Output format

11. UAP Troubleshooting

996

Explanation
1. Set operation process information

For details about set operation process information, see Set operation
process information.

2. Query process information

For details about query process information, see Query process information.

3. Join process information

For details about join process information, see Join process information.

4. Base table search process information

For details about base table search process information, see Base table
search process information.

aa...a
Displays the connection sequence number.

bb...b
Displays the UAP source file name.

cc...c
Displays the section number (number for checking the SQL
correspondence).

The information after Connect No is repeated for each SQL statement. By
conducting a search using a connection sequence number and a section number,
you can identify correspondences with the SQL statements displayed in SQL
trace information and the access path information.

Set operation process information

Connect No : aa...a
UAP Source : bb...b
Section No : cc...c
 ----- QUERY EXPRESSION BODY ID : ... ----- 1
 :
 ----- QUERY ID : ... ----- 2
 :
 JOIN ...3
 :
 SCAN ...4
 :

11. UAP Troubleshooting

997

Explanation
aa...a

Displays the query express body ID.

An ID number is assigned to each query expression body that includes a set
operation. If the SQL statement consists of multiple query expression bodies,
this line is used to separate the information displayed for each query
expression body.

When (b) Access path information is being displayed, this value corresponds
to the query expression body ID displayed in the access path information.

bb...b
Displays the number of rows in the results of the query expression.

cc...c ROWS <-- dd...d ROWS
Displays the final number of rows for the process (LIMIT process) that gets
search results for the maximum number of rows to return.

If LIMIT clause is not specified, this line is not displayed.

cc...c
Displays the number of output rows in the LIMIT process.

dd...d
Displays the number of input rows in the LIMIT process.

ee...e
Displays the number of rows of the sort process (ORDER BY process).

This line is not displayed if any one of the following conditions applies:

• An ORDER BY clause is not specified.

• The sort processing specified in the ORDER BY clause is omitted.

• A LIMIT clause is specified.

ff...f = gg...g ROWS <-- hh...h ii...i hh...h

----- QUERY EXPRESSION BODY ID : aa...a -----
Query : bb...b ROWS
Limit : cc...c ROWS <-- dd...d ROWS
Order by : ee...e ROWS
SetOpe Process : ff...f = gg...g ROWS <-- hh...h ii...i hh...h
 :

11. UAP Troubleshooting

998

Displays the number of rows in the results of the set operation.

If multiple set operations are specified, the information is displayed over
several lines.

If the facility that executes partitioned scanning of UNION ALL is applied
(this facility returns the search results of each query in succession without
creating a work table), this line is not displayed.

ff...f
Displays the set operation number of the set operation results in the format
LID(set-operation-number).

If access path information is being displayed, this corresponds to the set
operation number displayed in the access path information.

gg...g
Displays the number of rows in the set operation results.

hh...h
If the query expression body to be operated is a query specification, this
information is displayed in the format QID(query-ID). If the query
expression body to be operated is the joined result of multiple query
specifications, LID(set-operation-number) is displayed.

ii...i
Displays the set operation type (UNION, UNION ALL, EXCEPT, or EXCEPT
ALL). The hh...h values before and after this value form the query expression
body.

Query process information

Explanation
aa...a

Displays the query ID.

A number is assigned to each query specification. If the SQL statement

 ----- QUERY ID : aa...a -----
 Query : bb...b ROWS
 Limit : cc...c ROWS <-- dd...d ROWS
 Order by : ee...e ROWS
 Distinct : ff...f ROWS <-- gg...g ROWS
 Having : hh...h ROWS
 Group by : ii...i ROWS <-- jj...j ROWS

11. UAP Troubleshooting

999

consists of multiple query specifications, this line is used to separate the
information displayed for each specification.

If access path information is being displayed, this value corresponds to the
query ID displayed in the access path information.

bb...b
Displays the number of rows in the query results.

cc...c ROWS <-- dd...d ROWS
Displays the final number of rows for the process (LIMIT process) that gets
the search results for the maximum number of rows to return.

If LIMIT is not specified, this line is not displayed.

cc...c
Displays the number of output rows in the LIMIT process.

dd...d
Displays the number of input rows in the LIMIT process.

ee...e
The number of rows in sort processing (ORDER BY processing) is displayed.
Note that ORDER BY processing may be executed implicitly even if an ORDER
BY clause is not specified.

This line is not displayed if any one of the following conditions applies:

• An ORDER BY clause is not specified.

• The sort processing specified in the ORDER BY clause is omitted.

• ORDER BY processing is not executed implicitly.

• A LIMIT clause is specified.

ff...f ROWS <-- gg...g ROWS
Displays the number of rows processed by duplicate exclusion. Note that
duplicate exclusion may be executed implicitly even if duplicate exclusion is
not specified.

This line is not displayed if any one of the following conditions applies:

• Duplicate exclusion is not specified.

• Duplicate exclusion is not executed implicitly.

• A LIMIT clause is specified.

ff...f

11. UAP Troubleshooting

1000

The number of output rows in duplicate exclusion processing is displayed.

gg...g
The number of input rows in duplicate exclusion processing is displayed.

hh...h
Displays the number of rows after the HAVING clause is evaluated.

If a HAVING clause is not specified, this line is not displayed.

ii...i ROWS <-- jj...j ROWS
Displays the number of rows processed by grouping (including implicit
grouping).

If grouping is not executed, this line is not displayed.

ii...i
Displays the number of output rows in grouping.

jj...j
Displays the number of input rows in grouping.

Join process information

Explanation
aa...a

Displays the join process ID.

An ID number is assigned to each join process unit, and if there are multiple
join processes, the processes are separated with this line.

If access path information is being displayed, this value corresponds to the
join process ID displayed in the access path information.

bb...b
Displays the number of rows in the join process results.

cc...c

 JOIN
 # Join ID : aa...a
 Row Count : bb...b ROWS
 Left : cc...c ROWS
 Right : dd...d ROWS
 Join Type : ee...e(ff...f)

11. UAP Troubleshooting

1001

Displays the number of rows that were fetched from the join partner on the
left side.

dd...d
Displays the number of rows that were fetched from the join partner on the
right side.

ee...e
• For HiRDB/Single Server and for HiRDB/Parallel Server when the join

method is not determined dynamically during SQL execution

Displays the join process type (MERGE JOIN, NESTED LOOPS JOIN,
CROSS JOIN, or HASH JOIN).

• For HiRDB/Parallel Server when the join method is determined
dynamically during SQL execution

Displays SELECT-APSL as the join process type.

ff...f
Displays the execution type of the join process (INNER, LEFT OUTER,
EXIST, NOT EXIST, ALL, or VALUE).

Base table search process information

• When no index or only one index is used in the search process

Explanation
aa...a(aa...a)

Displays the name of the table to be searched and the correlation name (in
parentheses). If a correlation name is not being used, the correlation name (in
parentheses) is not displayed. If there are several search processes, this line
is used to separate the information displayed for each search.

0xbbbbbbbb(bb...b)
Displays the ID of the table to be searched in hexadecimal and decimal (in
parentheses) formats.

cc...c

 SCAN
 # Table Name : aa...a(aa...a) 0xbbbbbbbb(bb...b)
 Row Count : cc...c ROWS
 Index Name : dd...d 0xeeeeeeee(ee...e)
 Search : ff...f gg...g
 Key : hh...h gg...g

11. UAP Troubleshooting

1002

Displays the number of rows fetched from the base table.

dd...d
Displays the index name to be used in the search.

This line is not displayed in the following cases:

• The search is performed without the use of an index.

• HiRDB/Parallel Server dynamically determines the search method
during SQL execution.

0xeeeeeeee(ee...e)
Displays the ID of the index used in the search. The ID is displayed in
hexadecimal and decimal (in parentheses) formats.

ff...f
Displays the number of rows in the results narrowed by the search condition.

When an index is used in the search, the number of rows that make up the
index is displayed, even if there is no search condition.

This line is not displayed when the surrogate facility for plug-in indexes is
used to determine the results of a set function.

gg...g
Displays ELEMENTS for an index that contains a repetition column and ROWS
for all other cases.

hh...h
Displays the number of rows in the results narrowed by the key condition.

If there is no key condition, this line is not displayed.

• When multiple indexes are used in the search process

 SCAN
 # Table Name : aa...a(aa...a) 0xbbbbbbbb(bb...b)
 Row Count : cc...c ROWS
 Index Name : dd...d = ee...e 0xffffffff(ff...f)
 Search : gg...g hh...h
 Key : ii...i hh...h
 Row Count : jj...j ROWS
 dd...d = ee...e 0xffffffff(ff...f)
 Search : gg...g hh...h
 Key : ii...i hh...h
 Row Count : jj...j ROWS
 dd...d = kk...k ROWS <-- ll...l mm...m ll...l

11. UAP Troubleshooting

1003

Explanation
aa...a(aa...a)

Displays the name of the table to be searched and the correlation name (in
parentheses).

If a correlation name is not being used, the correlation name (in parentheses)
is not displayed. If there are multiple search processes, this line is used to
separate the information displayed for each process.

0xbbbbbbbb(bb...b)
Displays the ID of the table to be searched in hexadecimal and decimal (in
parentheses) formats.

cc...c
Displays the number of rows fetched from the base table.

dd...d
Displays the number of the work table created when AND PLURAL INDEXES
SCAN# is executed. The work table number is displayed in the
LID(work-table-number) format.

If access path information is being displayed, this value corresponds to the
work table number displayed in the access path information.

ee...e
Displays the name of the index used to create the work table when AND
PLURAL INDEXES SCAN# or OR PLURAL INDEXES SCAN# is executed.
The index name is displayed in multiple lines. However, if a work table is
created without the use of an index, (NO USE) is displayed as the index
name.

0xffffffff(ff...f)
Displays the index IDs used in the search. The IDs are displayed in
hexadecimal and decimal (in parentheses) formats.

gg...g
Displays the number of rows in the results narrowed by the search condition.

Even if there is no search condition, the number of rows that make up the
index is displayed when a search using an index is executed.

hh...h
Displays ELEMENTS for an index that contains a repetition column and ROWS
for all other cases.

11. UAP Troubleshooting

1004

ii...i
Displays the number of rows in the results narrowed by the key condition.

If there is no key condition, this line is not displayed.

jj...j
Displays the number of rows fetched from the base table.

dd...d = kk...k ROWS <-- ll...l mm...m ll...l
Displays the creation sequence of the work tables created when AND PLURAL
INDEXES SCAN# is executed. When three or more indexes are used in the
search process, this information is displayed in multiple lines.

kk...k
Displays the number of rows in the operation results.

ll...l
Displays the work table that becomes the input for the operation. The work
table is displayed in the LID(work-table-number) format.

mm...m
Displays the operation type (AND, OR, or ANDNOT) performed on the work
tables.

#: For details about AND PLURAL INDEXES SCAN and OR PLURAL INDEXES
SCAN, see the description of the access path display utility in the manual HiRDB
Version 9 Command Reference.

• When a work table is created for retrieving the results of a view table

Explanation
aa...a(aa...a)

Displays the view name and the correlation name (in parentheses).

If a correlation name is not being used, the correlation name (in parentheses)
is not displayed.

0xbbbbbbbb(bb...b)
Displays the view ID in hexadecimal and decimal (in parentheses) formats.

 SCAN
 # Table Name : aa...a(aa...a) 0xbbbbbbbb(bb...b)
 Row Count : cc...c ROWS

11. UAP Troubleshooting

1005

cc...c
Displays the number of rows that were fetched from the table.

• When a work table is created for the WITH clause

Explanation
aa...a(aa...a)

Displays the WITH clause query name and the correlation name (in
parentheses).

If a correlation name is not being used, the correlation name (in parentheses)
is not displayed.

bb...b
Displays the number of rows that were fetched from the table.

• When a work table is created for the derived table specified in the FROM clause

Explanation
aa...a(aa...a)

Displays (NO NAME) or (NO NAME)(correlation-name).

bb...b
Displays the number of rows that were fetched from the table.

• When a work table that HiRDB creates internally is searched

Explanation

 SCAN
 # Table Name : aa...a(aa...a)
 Row Count : bb...b ROWS

 SCAN
 # Table Name : aa...a(aa...a)
 Row Count : bb...b ROWS

 SCAN
 # Table Name : aa...a
 Row Count : bb...b ROWS

11. UAP Troubleshooting

1006

aa...a
Displays the name of the work table that HiRDB created internally.

The name of the work table that HiRDB created internally is displayed in
(DUMMY work-table-number) format.

The work table number is a three-digit integer.

bb...b
Displays the number of rows fetched from the work table that HiRDB
created internally.

Notes
1. SQL runtime interim results are displayed when of one of the following SQL

statements is executed:

• Definition SQL#1

• ASSIGN LIST statement#5

• CLOSE statement

• DELETE statement

• EXECUTE statement#1

• EXECUTE IMMEDIATE statement#2

• INSERT statement#3

• PREPARE statement#4

• PURGE TABLE statement#1

• Single-row SELECT statement

• UPDATE statement

• COMMIT statement#1

• DISCONNECT statement#1

• ROLLBACK statement#1

• If an error that has implicit rollback occurs#1

#1: SQL runtime interim results are displayed if there is a cursor that has not been
closed.

#2: SQL runtime interim results are displayed for the following SQL statements:

11. UAP Troubleshooting

1007

 ASSIGN LIST statement

 DELETE statement

 INSERT statement

 UPDATE statement

#3: SQL runtime interim results are displayed when a scalar subquery or a query
specification is specified in the VALUES clause.

#4: If YES is specified in the PDPRPCRCLS client environment definition and an
SQL identifier being used by an open cursor is reused by a PREPARE statement,
the SQL runtime interim results of the open cursor are displayed.

#5: SQL runtime interim results are not displayed when FOR ALTER LIST is
specified.

2. SQL runtime interim results are not displayed for an SQL statement described in
a stored procedure, even if the CALL statement is executed.

3. SQL runtime interim results are not displayed for a trigger SQL statement
described in a trigger, even if the trigger is executed.

4. When HiRDB/Parallel Server is used, the total number of rows of all servers is
displayed.

5. The displayed number of rows may not be an accurate value.

6. When SQL runtime interim results are displayed, the size of the SQL trace file
increases by the size shown in the expression below. Note this increase when
estimating the size of the SQL trace file. However, the size of the interim results
varies significantly depending on the table definitions, the index definitions, and
the SQL statements. The value estimated with the following expression should be
used only as a rough guideline.

n: Number of queries specified in SQL statement

Si: Number of tables in query specification i
(d) Information by the UAP

1. UAP name

This is the name of the UAP for which statistical information was edited.

Size of SQL runtime interim results
 n

 = 0.8 + 0.1 x set-operation-count + 0.9 x (Si) (kilobytes)
 i=1

11. UAP Troubleshooting

1008

2. Host name

This is the name of the host at the connected server.

3. Port number

This is the port number at the connected server.

4. Connected server name

This is the name of the front-end server or single server that was connected.

5. Connection sequence number

This is the sequence number assigned by the server each time CONNECT is
accepted.

6. Server process number

This is the connected server's process number.

7. Client process number

This is the UAP's process number. If connection is established from a Type4
JDBC driver, 0 is displayed.

8. Client's thread number

This is the thread number of the UAP that is running in multi-thread. If connection
is established from a Type4 JDBC driver, 0 is displayed.

9. Lock release wait time (milliseconds)#1

This is the length of time during which a lock acquisition request in the server was
placed on lock release wait status because another user locked the requested
resource.

10. CPU time (milliseconds)#1

This is the CPU time at the server that was used by transaction during UAP
execution.

11. Stored procedure's SQL object acquisition requests count

This is the number of times a stored procedure's SQL object acquisition request
was issued for the SQL object buffer at the single server or front-end server.

12. Stored procedure object buffer hits count

This is the number of times requested information was found in the SQL object
buffer at the single server or front-end server.

13. SQL object acquisition requests count

This is the number of times an SQL object acquisition request was issued for the

11. UAP Troubleshooting

1009

SQL statements issued during the session.

14. SQL object buffer hits count

This is the number of times requested information was found in the SQL object
buffer for the SQL statements issued during the session.

15. SQL object creations count

This is the number of times an SQL object was created for the SQL statements
issued during the session.

16. Maximum size of SQL object created (bytes)

This is the maximum size of the SQL object created with the SQL statements
issued during the session.

17. COMMIT statement executions count during the session.

18. ROLLBACK statement executions count during the session.

19. Number of retrieval rows passed to UAP by the FETCH and SELECT statements
during the session.

20. Number of rows deleted by the DELETE statements during the session.

21. Number of rows inserted by the INSERT statements during the session.

22. Number of rows updated by the UPDATE statements during the session.

23. Preprocessing time during the session.

24. OPEN statement executions count during the session.

25. FETCH statement executions count during the session.

26. CLOSE statement executions count during the session.

27. DESCRIBE statement executions count during the session.

28. SELECT statement executions count during the session.

29. INSERT statement executions count during the session.

30. UPDATE statement executions count during the session.

31. DELETE statement executions count during the session.

32. LOCK statement executions count during the session.

33. CREATE TABLE executions count during the session.

34. DROP TABLE executions count during the session.

35. ALTER TABLE executions count during the session.

36. CREATE INDEX executions count during the session.

11. UAP Troubleshooting

1010

37. DROP INDEX executions count during the session.

38. COMMENT (TABLE) executions count during the session.

39. COMMENT (COLUMN) executions count during the session.

40. CREATE SCHEMA executions count during the session.

41. DROP SCHEMA executions count during the session.

42. GRANT RDAREA executions count during the session.

43. GRANT SCHEMA executions count during the session.

44. GRANT access privilege executions count during the session.

45. GRANT CONNECT executions count during the session.

46. GRANT DBA executions count during the session.

47. REVOKE RDAREA executions count during the session.

48. REVOKE SCHEMA executions count during the session.

49. REVOKE access privilege executions count during the session.

50. REVOKE CONNECT executions count during the session.

51. REVOKE DBA executions count during the session.

52. CREATE VIEW executions count during the session.

53. DROP VIEW executions count during the session.

54. PURGE TABLE statement executions count during the session.

55. CREATE PROCEDURE executions count during the session.

56. DROP PROCEDURE executions count during the session.

57. ALTER PROCEDURE executions count during the session.

58. CALL statement executions count during the session.

59. DESCRIBE statement (INPUT) executions count during the session.

60. Other SQL executions count during the session.

61. Maximum input/output time (seconds).

62. Maximum input/output time (microseconds). (A value in seconds is not
included.)

63. Maximum input/output time (seconds).

64. Maximum input/output time (microseconds) (A value in seconds is not included.)

Check whether the input and output times are appropriate. If input/output

11. UAP Troubleshooting

1011

processing takes longer than necessary, obtain and check the hardware log for any
hardware errors.

If you used the asynchronous READ facility, the input and output times for batch
look-ahead reading by the asynchronous READ process are not included.

65. Cumulative input/output time for database (seconds).

66. Cumulative input/output time for database (microseconds) (A value in seconds is
not included.)

Use this information to determine whether the cause is input/output or CPU.

If you used the asynchronous READ facility, the input and output times for batch
look-ahead reading by the asynchronous READ process are not included.

67. Data, index, and directory page references count

This is the number of times a data, index, or directory page was referenced from
this UAP.

68. Data, index, and directory page updates count

This is the number of times a data, index, or directory page was updated from this
UAP.

69. Data, index, and directory page buffer hits count

This is the number of times a requested data, index, or directory page was found
in the buffer. If the hit rate ((item 69 item 67) x 100) is low, obtain the global
buffer statistical information and tune the global buffer with a low hit rate. In this
case, all global buffers are subject to tuning except for the LOB global buffer.

70. Data, index, and directory page real READs count

This is the number of times a data, index, or directory page was actually read by
this UAP.

If you are using the prefetch facility, the number of look-ahead READs by the
prefetch facility is included. If you used the asynchronous READ facility, the
number of look-ahead READs by the asynchronous READs process is also
included.

If the buffer hit rate is low, the READs count becomes high.

71. Data, index, and directory page real WRITEs count

This is the number of times a data, index, or directory page was actually written
by this UAP. If the commit output facility is used, this count includes the number
of outputs to the database during commit processing.

72. LOB page references count

This is the number of times a LOB page was referenced by this UAP. This count

11. UAP Troubleshooting

1012

includes the LOB data and plug-in retrieval operations.

73. LOB page updates count

This is the number of times a LOB page was updated by this UAP. This count
includes the LOB data and plug-in update operations.

74. LOB page reference buffer hits count

This is the reference buffer hits count. This information is applicable if the LOB
global buffer is used. If the hit rate ((item 74 item 72) x 100) is low, obtain the
global buffer statistical information and tune the global buffer with a low hit rate.
In this case, the LOB global buffer is subject to tuning. If the LOB global buffer
is not used, the hit rate is 0.

75. LOB page update buffer hits count

This is the update buffer hits count. This information is applicable if the LOB
global buffer is used. If the hit rate (item 75 item 73 x 100) is low for LOB data
updating or plug-in index updating, obtain the global buffer statistical information
and tune the global buffer with a low hit rate. In this case, the LOB global buffer
is subject to tuning. If the LOB global buffer is not used, the hit rate is 0. Update
buffer hits are not applicable to addition of new LOB data.

76. LOB page real READs count

This is the number of times a LOB page was actually read by this UAP. If the LOB
global buffer is used and the READ buffer hit rate is low, the READs count
becomes high.

77. LOB page real WRITEs count

This is the number of times a LOB page was actually written by this UAP. When
updating a plug-in index, you can reduce the real WRITEs count by using the
LOB global buffer.

78. Global buffer flushes count

This is the number of times the buffer was flushed to create space for a new page.
This indicates the number of times a page was swept out of memory because the
buffer was full.#2

79. Global buffer READ waits count

This is the number of times the UAP was placed on wait status because a page in
the global buffer was being read from a HiRDB file by another user. This indicates
the number of times the UAP was placed on wait status until a READ operation
was completed because the page to be referenced was under READ operation by
another user.#2

80. Global buffer WRITE waits count

11. UAP Troubleshooting

1013

This is the number of times the UAP was placed on wait status because a page in
the global buffer was being output to a HiRDB file by another user. This indicates
the number of times the UAP was placed on wait status until a WRITE operation
was completed because the page to be updated was under WRITE operation by
another user.#2

81. Global buffer lock release waits count

This is the number of times the UAP was placed on wait status because a page in
the global buffer was in use by another user. This indicates the number of times
the UAP was placed in wait status until update processing was completed because
the page to be referenced or updated was under update processing by another
UAP.#2

82. Maximum work table files count

This is the maximum number of work table files used by this UAP.#3 You can
determine the validity of the -l option value (maximum number of files)
specified in the pdfmkfs command. The value of the -l option must satisfy the
following condition:#4

Value of -l option total number of work table files for all UAPs that are
executed concurrently + 20

83. Maximum work table file extensions count

This is the maximum number of work table file extensions for this UAP. You can
determine the validity of the -e option value (maximum number of extensions)
specified in the pdfmkfs command. The value of the -e option must satisfy the
following condition:#4

Value of -e option total number of work table file extensions for all UAPs that
are executed concurrently

84. Maximum size of work table file (MB)

This is the maximum size of a work table file for this UAP. You can determine the
validity of the -n option value (maximum number of extensions) specified in the
pdfmkfs command. The value of the -n option must satisfy the following
condition:#4

Value of -n option total size of work table files for all UAPs that are executed
concurrently + management area size for HiRDB file system area

85. Work table file READs count

This is the number of times work table data was input from file to buffer.#1

86. Work table file WRITEs count

11. UAP Troubleshooting

1014

This is the number of times work table data was output from buffer to file.#1

87. Forced outputs count for the work table buffer

This is the number of times buffer contents in use were forcibly output to a file
due to a shortage of the work table buffer.#1 If this value is not 0, increase the
value of the pd_work_buff_size operand (size of the work table buffer) in the
system definitions.

88. Estimated value for expanding hash table in batch mode (KB)

This is the estimated size of the hash table required to expand the processed hash
data in batch mode during hash join or subquery hash execution.#3

If the size of the hash table is greater than this value, batch hash join is assumed,
which does not involve any packet division.#5 If this value exceeds the specified
range of the hash table size, batch hash join is not possible. If this value is 0, hash
join or subquery hash execution has not taken place.

89. Maximum packet size at level 1 (KB)

This is the maximum packet size after level 1 packet division during hash join or
subquery hash execution.#3

If the size of the hash table is at least this value, packet division was completed at
level 1. If the packet division level is 2 or more, you can complete the packet
division at level 1 by specifying this value as the hash table size.#6 For a batch
hash join that does not involve any packet division, this value is 0.

90. Maximum packet size at level 2 (KB)

This is the maximum packet size after level 2 packet division during hash join or
subquery hash execution.#3

If the size of the hash table is at least this value, packet division was completed at
level 2. If the packet division level is 3 or more, you can complete the packet
division at level 2 by specifying this value as the hash table size.#6 If level 2
packet division did not take place, this value is 0.

91. Maximum packet size at level 3 (KB)

This is the maximum packet size after level 3 packet division during hash join or
subquery hash execution.#3

If the size of the hash table is at least this value, data was processed in packets
with a maximum level of 3. If the hash table size is not greater than this value, a
packet was partially expanded in the hash table, thereby adversely affecting the
processing efficiency. In this case, specify at least this value as the hash table
size.#6 Alternatively, performance may improve by avoiding the hash join or

11. UAP Troubleshooting

1015

subquery hash execution. If level 3 packet division did not take place, this value
is 0.

92. Unsuccessful page searches count during free space reusage execution

This is the number of times that the mode was returned to new page allocation
mode because the free space reusage facility was unable to find reusable free
space when the mode was switched from new page allocation mode to free page
reuse mode. If this value is a value other than 0, an inefficient page search process
may have occurred during an update or insertion process executed by the UAP.
For details about the free space reusage facility, see the HiRDB Version 9
Installation and Design Guide.

93. Mode switches count from new page allocation mode to free page reuse mode

This is the number of times that the mode was switched from new page allocation
mode to free page reuse mode when the free area reusage facility was executed.
If this value is close to the number of update and insertion processes executed by
the UAP, an inefficient page search process may have occurred.

94. Cache buffer shortage occurrences count

This is internal information used by the system.

95. Cache buffer allocation flushes count

This is internal information used by the system.

96. WRITEs count during cache buffer area allocation flushing

This is internal information used by the system.

97. Maximum cache buffer allocation flushes count

This is internal information used by the system.

98. Average cache buffer allocation flushes count

This is internal information used by the system.

99. Data and index page references count when local buffer used

This is the number of times a data or index page was referenced from this UAP.

100. Data and index page updates count when local buffer used

This is the number of times a data or index page was updated from this UAP.

101. Data and index page buffer hits count in local buffer

This is the buffer hits count for data pages and index pages.

If the buffer hit rate (101 99 x 100) is low for a UAP that performs random
access, tune the buffer.

11. UAP Troubleshooting

1016

102. Data and index page real READs count when local buffer is used

This is the number of times a data or index page was actually read by this UAP.

If the prefetch facility is being used, the number of look-ahead READs by the
prefetch facility is also included. If the buffer hit rate is low, the READs count
becomes high.

103. Data and index page real WRITEs count when local buffer is used

This is the number of times a data or index page was actually written by this UAP.

104. Local buffer flush count

This is the number of times the buffer was flushed to create space for a new page.
This indicates the number of times a page was swept out of memory because the
buffer was full.

105. Asynchronous READ request count

This is the number of times the asynchronous READ process requested a batch
look-ahead read processing when the asynchronous READ facility was used.

106. Synchronization wait count during asynchronous READ

This is the number of times a synchronization wait occurred while the
asynchronous READ process performed a batch look-ahead read when the
asynchronous READ facility was used.

107. Cumulative synchronization wait time during asynchronous READ (seconds)

This is the cumulative wait time of the synchronization waits that occurred while
the asynchronous READ process performed a batch look-ahead read when the
asynchronous READ facility was used.

108. Cumulative synchronization wait time during asynchronous READ
(microseconds) (A value in seconds is not included.)

This is the cumulative wait time of the synchronization waits that occurred while
the asynchronous READ process performed a batch look-ahead read when the
asynchronous READ facility was used.

109. Average synchronization wait time during asynchronous READ (seconds)

This is the average wait time of the synchronization waits that occurred while the
asynchronous READ process performed a batch look-ahead read when the
asynchronous READ facility was used.

110. Average synchronization wait time during asynchronous READ (microseconds)
(A value in seconds is not included.)

This is the average wait time of the synchronization waits that occurred while the
asynchronous READ process performed a batch look-ahead read when the

11. UAP Troubleshooting

1017

asynchronous READ facility was used.

111. Average synchronous input/output time during asynchronous READ (seconds)

This is the average synchronous READ time for initial batch reads of the first
page when the asynchronous READ facility was used.

112. Average synchronous input/output time during asynchronous READ
(microseconds) (A value in seconds is not included.)

This is the average synchronous READ time for initial batch reads of the first
page when the asynchronous READ facility was used.

113. Maximum comparison count#3 during hash table search processing in hash join,
subquery hash execution

This is the maximum number of comparisons for data items that have the same
hash value in one hash table search.

114. Total comparison count#1 during hash table search processing in hash join,
subquery hash execution

This is the total number of comparisons for data items that have the same hash
value during hash table search processing.

115. Total hash table search count#1 in hash join, subquery hash execution

This is the number of times the hash table is searched.

#1: For HiRDB/Parallel Server, this is the total of all servers.

#2: This is the sum of all global buffers.

#3: For HiRDB/Parallel Server, this is the maximum value of each back-end server.

#4: More resources than the value obtained from the formula may be required due to
temporary fragmentation. Therefore, specify a sufficient value.

#5: If the hash table size increases, the number of packet divisions may increase;
therefore, a bigger hash table may be required than when the tuning information was
obtained. If you have increased the hash table size on the basis of this tuning
information, obtain the tuning information again. If an expected result is not obtained,
you need to increase the hash table size again on the basis of the obtained tuning
information.

#6: If the hash table size increases, the number of packet divisions may increase;
therefore, a smaller hash table may be enough to complete packet division at an
intended level than when the tuning information was obtained. On the other hand, if
you reduce the hash table size, the number of packet divisions may decrease; therefore,
packet division may not be completed at the same level as when the tuning information
was obtained. Therefore, use the tuning information for the purpose of increasing the

11. UAP Troubleshooting

1018

hash table size.

11.1.5 Command trace facility
The command trace facility outputs a client's trace information to the command trace
file when a command is executed by a UAP (during the execution of the COMMAND
EXECUTE SQL statement).

When the command trace file becomes full, the facility overwrites the oldest
information.

(1) How to obtain command trace information
You can obtain command trace information by specifying appropriate values in
PDCLTPATH and PDCMDTRACE in the client environment definitions. For details about
each client environment definition, see 6.6 Client environment definitions (setting
environment variables).
Two command trace files named pdccmd1.trc and pdccmd2.trc are output to the
specified directory.

(2) Interpreting command trace information
Command trace information is output when a command is executed by a UAP. The
following shows sample command trace information and explains each item:

Output example
** COMMAND TRACE (CLT:06-00:Jan 11 2001) HP32 ** [1]

 USER APPLICATION PROGRAM FILE NAME : TESTAP [2]
 COMMAND START TIME : 2001/01/11 10:55:27 [3]
 COMMAND EXECUTE ENVIRONMENT & STATUS : [4]
 PDASTHOST(dcm3500)
 PDASTPORT(20266)
 PDSYSTEMID("HRD1")
 PDUSER("hirdb")
 PDASTUSER("hirdb ")
 PDCMDWAITTIME(0)
 ENVGROUP("")
 CLTPID(9155) CLTTID(0)
 [5] [6] [7] [8] [9]
 9155 0 2001/01/11 10:55:27 0 pdhold -r RDDATA01
 9155 0 2001/01/11 10:55:27 1 KFPZ02444-E Communication
error,
 func=connect, errno=2

Explanation
1. Command trace header

The header contains the following information:

11. UAP Troubleshooting

1019

• Version of the linked library

• Library creation date (in the format Mmm dd yyyy)

• Platform in use (For details about the character strings that are displayed for
the platforms, see the Explanation section in 11.1.1(2) Examining SQL trace
information.)

2. UAP name

This is the value of PDCLTAPNAME specified in the client environment definition.

3. Command start date and time

This is the date and time the command execution began.

4. Command execution environment and status

This is the value of the client environment definition and status during command
execution.

5. UAP process number

This is the UAP process number. If the correct process number cannot be
obtained, an invalid value may be displayed (Windows).

6. UAP thread number

If the UAP is running with multi-thread, this indicates the UAP thread number;
otherwise, a value of 0 is displayed. Note that the facility may display an invalid
numeric value if it is unable to obtain the correct thread number.

7. Command trace acquisition date and time

This is the date and time the command trace information was acquired.

8. Command trace counter

This is the count that was incremented each time a command trace was accepted.
The value range is from 0 to 65535.

9. Trace data

This is the trace data.

(3) Backing up the command trace file
If the command trace file becomes full while writing command trace information,
HiRDB continues output using another command trace file. In this case, existing
contents of the command trace file are overwritten, beginning with the oldest
information. Therefore, you should make a backup copy of a command trace file when
the UAP is terminated.

To determine the command trace file that is being used currently, check the most recent
update dates/times of the files. The command trace file that was updated most recently

11. UAP Troubleshooting

1020

is the current file.

For a Windows edition HiRDB client, you use the dir command or the Explorer to
check the file update dates/times.

For a UNIX edition HiRDB client, you use the OS's 1s -1 command to check the file
update dates/times.

11.1.6 SQL trace dynamic acquisition facility
The SQL trace dynamic acquisition facility lets you dynamically obtain SQL trace
information using a command during UAP execution. Acquisition of SQL trace
information begins at the next CONNECT.

(1) Output destination and names of SQL trace files
This subsection describes the output destination and names of the SQL trace files.

Output destination

Specify the SQL trace file storage directory in PDTRCPATH beforehand. Two SQL
trace files are output to the specified directory.

File names

pdHHMMSSmmm_xxxxxxxxxx_1.trc or
pdHHMMSSmmm_xxxxxxxxxx_2.trc
Explanation:

HHMMSSmmm: Time (hour, minute, second, millisecond) at which the
request to connect to HiRDB was issued

xxxxxxxxxx: Connection number (up to 10 bytes)

When you use the pdclttrc command to obtain SQL traces, the destination and
names of the SQL trace files are as follows:

Output destination

The SQL trace files are output to the directory specified in PDCLTPATH. If
PDCLTPATH is omitted, the SQL trace files are output to the current directory.

File names

pdsqlxxxxxxxxyyyyyyyyyy-1.trc and pdsqlxxxxxxxxyyyyyyyyyy-2.trc
Explanation:

xxxxxxxx: Server name (up to 8 bytes)

yyyyyyyyyy: Server process ID (up to 10 bytes)

For details about the pdclttrc command, see the manual HiRDB Version 9
Command Reference.

11. UAP Troubleshooting

1021

(2) Trace acquisition command (pdtrcmgr)
If the directory specified with the -d option is the same as the directory specified in
the PDTRCPATH client environment definition variable during UAP execution, the
pdtrcmgr command issues the trace acquisition start and end requests.

(a) Format

(b) Options
-d directory-name-specified-in-PDTRCPATH

~ <path name>

Specifies the absolute path name of the value (directory name) specified in the
PDTRCPATH client environment definition variable to start or stop the acquisition of
trace information for the UAP.

The facility issues a trace acquisition start or stop request for all UAPs for which the
specified directory matches the directory in PDTRCPATH.

{-b| -e}
Specifies whether to start or stop the acquisition of the SQL trace:

-b: Starts the acquisition of SQL trace.

-e: Stops the acquisition of SQL trace.

-k{[s] [u] [p] [r] | a}
Specifies the information to be output. When this option is omitted, the facility outputs
only the SQL trace information.

s: Outputs information by the SQL.

u: Outputs information by the UAP.

p: Outputs access path information.

r: Outputs SQL runtime interim results.

a: Outputs all information.

s, u, p, and r can be specified in different combinations (such as su, spr, or spr).
Specifying sup is the same as specifying a. If u, p, r, ur, pr, or upr is specified, SQL
trace information is not output.

pdtrcmgr -d directory-name-specified-in-PDTRCPATH
 [{-b| -e}]
 [-k{[s] [u] [p] [r]| a}]
 [-n PDCLTAPNAME]
 [-s SQL-trace-file-size]
 [-o]

11. UAP Troubleshooting

1022

When the -e option is specified, the specification of the -k option becomes invalid.

For details about the UAP statistical report, see 11.1.4 UAP statistical report facility.

-n PDCLTAPNAME
Specifies that only the UAP specified in the PDCLTAPNAME client environment
definition variable is to be subject to acquisition of an SQL trace. The facility ignores
this option if the -e option is specified.

-s SQL-trace-file-size
~ <unsigned integer> ((0 or 32,768 to 2,000,000,000)) <<32,768>>

Specifies the size of the SQL trace file in bytes.

If 0 is specified, the maximum file size is assumed. If a value in the range from 32,768
to 2,000,000,000 is specified, the specified size of file is used.

The facility ignores this option if the -e option is specified.

-o
Specifies that SQL trace files are to opened and closed in CONNECT and DISCONNECT
units. The facility ignores this option when the -e option is specified.

When SQL trace files are opened and closed in CONNECT and DISCONNECT units
instead of operation units (SQL units), the SQL trace output time can be shortened
because the overhead is reduced.

If you omit this option, the SQL trace dynamic acquisition facility opens and closes
SQL trace files in operation units.

This facility continues to write information as long as the SQL trace file is open.
Therefore, if you specify this option, some SQL trace information may be discarded if
DISCONNECT cannot be executed properly.

11.1.7 Reconnect trace facility
When the automatic reconnect facility executes reconnection, reconnect trace
information, which consists of the connection handle value managed internally by
HiRDB, the connection information before and after reconnect, and the reconnect
time, is output to the reconnect trace file. This information is used for tracking
connection information in the trace output by the PRF trace facility of Cosminexus.

(1) How to obtain the reconnect trace information
Reconnect trace information can be obtained by setting a value in the PDRCTRACE
client environment definition.

HiRDB creates two reconnect trace files in the directory specified in the PDCLTPATH
client environment definition. The names of the created files are pdrcnct1.trc and
pdrcnct2.trc.

11. UAP Troubleshooting

1023

(2) Interpreting reconnect trace information
Reconnect trace information is output when the automatic reconnect facility
establishes a connection automatically.

An output example of a reconnect trace is shown below.

Explanation
1. Connection handle value

The connection handle value that HiRDB manages internally is output in
hexadecimal format.

The value is 8 digits if the client is operating in 32-bit mode or 16 digits if
the client is operating in 64-bit mode. The UAP views traces that have the
same connection handle value as the same connection.

In the output example above, 40004250 is output twice as the connection
handle value. When viewed from the UAP that uses this connection handle,
this information indicates that reconnect processing was executed twice.

2. Reconnect result

The reconnection result is displayed.

S: Success

F: Failure

3. Reconnect start and end dates and times

After a disconnection is detected, the dates and times when the reconnection
was started and when it ended normally are displayed in milliseconds. If
reconnect processing fails, the date and time immediately before control is
returned to the UAP is displayed.

4. Connection information before and after reconnect

Connection information for both before reconnect and after reconnect is
displayed. The connection information displays the connection server name,
the connection sequence number, and the process ID of the connection

 [1] [2] [3] [4]
40004250 S 2004/04/12 11:10:36.766 - 2004/04/12 11:10:41.846 sds:9:23763 =>
sds:10:23750
40004250 S 2004/04/12 11:11:07.491 - 2004/04/12 11:11:12.547 sds:10:23750 =>
sds:11:23765
40004850 F 2004/04/12 11:17:58.285 - 2004/04/12 11:18:23.395 sds:14:23751 =>
40005050 S 2004/04/12 11:27:35.098 - 2004/04/12 11:27:40.152 sds:1:24414 =>
sds:2:24418

11. UAP Troubleshooting

1024

server, with the items separated by colons.

If reconnect processing fails, the connection information for after the
reconnect is not displayed (becomes blank).

(3) Matching trace information with PRF trace information of Cosminexus
The connection information shown under 4 of the output example is output to the PRF
trace information of Cosminexus. If the automatic reconnect facility subsequently
executes reconnect processing, match the trace information with PRF trace
information as follows.

To match trace information with the PRF trace information of Cosminexus:

1. Get the HiRDB connection information in the PRF trace information.

2. In 4 of the reconnect trace file, search for the connection information obtained in
Step 1, and get the corresponding connection handle value.

3. From 1 of the reconnect trace file, track the trace information that has the same
connection handle value obtained in Step 2. If the same connection handle value
is found, and the connection information before reconnect is the same as the
connection information after reconnect for the previous instance of the same
connection handle, the connection handle can be used for tracking. If the
connection information is different, the connection handle cannot be used for
tracking because a new connection (DISCONNECT-CONNECT) was established
with the connection handle.

(4) Backing up reconnect trace information
If the reconnect log file becomes full while reconnect trace information is being output,
the reconnect log is output to the other reconnect trace file. In this case, the old
reconnect trace information stored in the takeover reconnect trace file is erased and
overwritten by new reconnect trace information. Therefore, if the system is being
operated for a long period of time, copy the contents of the reconnect trace file and
back up the information, as necessary.

To determine the reconnect trace file that is being used currently, check the most recent
update dates/times of the files. The reconnect trace file that was updated most recently
is the current file.

For a Windows edition HiRDB client, you use the dir command or the Explorer to
check the file update dates/times.

For a UNIX edition HiRDB client, you use the OS's 1s -1 command to check the file
update dates/times.

11. UAP Troubleshooting

1025

11.2 UAP error recovery

When an error occurs in a UAP, measures must be taken to prevent the entire HiRDB
system from halting. This section explains the following three methods of recovering
from UAP errors:

• UAP transaction rollback by HiRDB

• Transaction rollback by UAP instruction

• Memory capacity re-evaluation

The following table shows the UAP error types and recovery methods.

Table 11-5: UAP error types and recovery methods

#1: Front-end or back-end server.

#2: Request that the HiRDB system administrator re-evaluate shared memory and
process-specific memory.

(1) Monitoring UAP processing time
When a UAP is executed, HiRDB's UAP monitors the processing time to prevent a
UAP error from halting the HiRDB processing for an extended period of time.

For time monitoring, a monitoring time must be specified in the PDSWAITTIME
environment variable during client environment definition; if omitted, the UAP
monitors by HiRDB's default monitoring time.

Error type Detection method System action Recovery method

UAP abnormal termination UAP processing time
Monitoring

Disconnects the UAP UAP transaction
rollback

UAP endless loop

Transaction incomplete

UAP processing error Various error detection
at the servers#1

Sends error response to
UAP

Transaction rollback
by UAP instruction

Error detection and rollback
request by UAP

Error detection by
UAP

Follows an instruction
from UAP

Deadlock HiRDB deadlock
detection

Sends error response to
UAP (implicit rollback)

Termination of UAP
transaction

Memory shortage Error during memory
allocation

Disables UAP activation Reevaluate shared
memory and
process-specific
memory#2

11. UAP Troubleshooting

1026

For details about client environment definition, see 6.6 Client environment definitions
(setting environment variables).

(2) Detecting errors at servers
A HiRDB/Parallel Server returns an error status to the UAP when an error, such as a
database processing error, is detected at the front-end server or back-end server while
executing SQL statements; steps such as process disconnection must be taken. When
a UAP issues a rollback request in response to an error status, HiRDB performs a
recovery process.

(3) Detecting UAP errors
When an error is detected in a UAP, a recovery process is started when a rollback
request is issued. If the UAP was processed normally, the process is disconnected
based on a disconnection instruction from the UAP.

(4) Re-evaluating memory capacity
When a shortage occurs in the shared memory or process-specific memory, a message
is output indicating the memory or disk space shortage. When such a message is
output, enough memory to activate the UAP must be allocated and the UAP must be
re-executed.

For details about how to check and, if necessary, revise shared memory and
process-specific memory, see the HiRDB Version 9 Installation and Design Guide or
contact the HiRDB system administrator.

1027

Chapter

12. Command Execution from UAPs

This chapter explains how to execute commands from UAPs.

This chapter contains the following sections:

12.1 Overview
12.2 Preparations for executing commands from COMMAND EXECUTE
12.3 Command executability

12. Command Execution from UAPs

1028

12.1 Overview

You execute commands by specifying them in a UAP. The specified commands are
executed at the HiRDB server.

The following SQL statements are used to execute commands from a UAP:

• CALL COMMAND statement

This statement is used to execute HiRDB operation commands and utilities. The
CALL COMMAND statement does not require any preparations for command
execution.

• COMMAND EXECUTE

This statement is used to execute HiRDB operation commands, utilities, and OS
commands.

Because execution of commands from COMMAND EXECUTE is implemented by
collaboration between the HiRDB client and HiRDB Control Manager - Agent,
HiRDB Control Manager - Agent must be installed on the HiRDB server. For
details about HiRDB Control Manager - Agent, see the respective Release Notes.

Command execution from COMMAND EXECUTE can be used only when the UAP is
written in C.

The following figure provides an overview of command execution from COMMAND
EXECUTE.

12. Command Execution from UAPs

1029

Figure 12-1: Overview of command execution from COMMAND EXECUTE

12. Command Execution from UAPs

1030

12.2 Preparations for executing commands from COMMAND
EXECUTE

(1) HiRDB/Single Server
This section uses a sample UAP that executes data loading (database load utility). The
following figure shows a sample server-client configuration for a HiRDB/Single
Server.

Figure 12-2: Sample server-client configuration for a HiRDB/Single Server

To execute a data-loading UAP with the server-client configuration shown in Figure
12-2, you need to define the following information beforehand:

1. Specify the following client environment definitions:

PDSYSTEMID

Specifies the HiRDB server's HiRDB identifier (HRD1).

PDASTHOST

Specifies the HiRDB Control Manager - Agent's host name (HOST1).

PDASTPORT

Specifies the HiRDB Control Manager - Agent's port number (22201).

2. Prepare the control information file and input data file needed for loading data at
the HiRDB server.

12. Command Execution from UAPs

1031

3. Suppose that the HiRDB administrator's user name is USERA (password: USERA)
and the owner of the table subject to data loading is USERB (password: USERB).
In this case, specify the following client environment definitions:
PDASTUSER=USERA/USERA
PDUSER=USERB/USERB

You can now execute the data-loading UAP. For details about each client environment
definition, see 6.6.4 Environment definition information.

The following shows a sample UAP for loading data:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC SQL BEGIN DECLARE SECTION;
char CmdLine[30000]; /* CmdLine variable */
long ReturnCode; /* variable receiving return
 code */
long OutBufLen; /* size of area for receiving
 execution result */
long CmdRetCode; /* variable for receiving
 executed command's return
 code */
long OutDataLen; /* variable for receiving the
 length of execution result */
PDOUTBUF OutBuf; /* area for receiving
execution
 result */
char EnvGroup[256]; /* environment variable group
 name variable */
EXEC SQL END DECLARE SECTION;

void main()
{
strcpy(CmdLine,"pdhold -r RDDATA10"); /* specifying execution
command
 line command line (RDAREA
 shutdown) */
OutBuf = malloc(30000); /* allocating the execution
 result receiving area */
if (OutBuf == NULL){ /* memory allocation error */
printf("Memory allocation error\n");
return ;
}
OutBufLen = 30000 ; /* specifying the size of
 execution result
 receiving area */
EnvGroup[0] = '\0' ; /* specifying no environment

12. Command Execution from UAPs

1032

 variable group */

/* Command execution */
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) {
 /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode==0) { /* if command execution is
 normal */

/* Specifying execution command line (to execute dataloading) */
strcpy(CmdLine,"pdload -i c -be STOCK c:\HiRDB_S\conf\LOAD");
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) {
 /* if COMMAND EXECUTE terminates
 normally */
if (CmdRetCode==0) { /* if command execution is
 normal */
printf("pdload command successfully\n");
printf("%s\n", OutBuf);
} else { /* execution command error */
printf("pdload command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
} else { /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
} else { /* execution command error */
printf("pdhold command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
strcpy(CmdLine,"pdrels -r RDDATA10");
 /* specifying execution command
 line (RDAREA shutdown
 release) */
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) {
 /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode!=0) { /* execution command error */
printf("pdrels command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
} else { /* COMMAND EXECUTE error */

12. Command Execution from UAPs

1033

printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
} else { /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
return ;
}

(2) HiRDB/Parallel Server
This section uses a sample UAP that executes data loading (database load utility). The
following figure shows a sample server-client configuration for a HiRDB/Parallel
Server.

Figure 12-3: Sample server-client configuration for a HiRDB/Parallel Server

To execute a data-loading UAP with the server-client configuration shown in Figure
12-3, you need to define the following information beforehand:

1. Specify the following client environment definitions:

PDSYSTEMID

Specifies the HiRDB server's HiRDB identifier (HRD1).

PDASTHOST

Specifies the HiRDB Control Manager - Agent's host name (HOST1). For a
HiRDB/Parallel Server, specify the host name of the server machine where
the system manager is located.

12. Command Execution from UAPs

1034

PDASTPORT

Specifies the HiRDB Control Manager - Agent's port number (22201).

2. Prepare the control information file and input data file needed for loading data at
the HiRDB server.

3. Suppose that the HiRDB administrator's user name is USERA (password: USERA)
and the owner of the table subject to data loading is USERB (password: USERB).
In this case, specify the following client environment definitions:
PDASTUSER=USERA/USERA
PDUSER=USERB/USERB

You can now execute the data-loading UAP. For details about each client environment
definition, see 6.6.4 Environment definition information.

The following shows a sample UAP for loading data:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC SQL BEGIN DECLARE SECTION;
char CmdLine[30000]; /* CmdLine variable */
long ReturnCode; /* variable receiving return
 code */
long OutBufLen; /* size of area for receiving
 execution result */
long CmdRetCode; /* variable for receiving
 executed command's return
 code */
long OutDataLen; /* variable for receiving the
 length of execution result */
PDOUTBUF OutBuf; /* area for receiving
execution
 result */
char EnvGroup[256]; /* environment variable group
 name variable */
EXEC SQL END DECLARE SECTION;

void main()
{
strcpy(CmdLine,"pdhold -r RDDATA10"); /* specifying execution
command
 line (RDAREA shutdown) */
OutBuf = malloc(30000); /* allocating the execution
 result receiving area */
if (OutBuf == NULL){ /* memory allocation error */
printf("Memory allocation error\n");
return ;

12. Command Execution from UAPs

1035

}
OutBufLen = 30000 ; /* specifying the size of
 execution result receiving
 area */
EnvGroup[0] = '\0' ; /* specifying no environment
 variable group */

/* Command execution */
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) { /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode==0) { /* if command execution is
 normal */

/* Specifying execution command line (to execute dataloading) */
strcpy(CmdLine,"pdload -i c -be STOCK c:\HiRDB_P\conf\LOAD");
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) { /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode==0) { /* if command execution is
 normal */
printf("pdload command successfully\n");
printf("%s\n", OutBuf);
} else { /* execution command error */
printf("pdload command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
} else { /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
} else { /* execution command error */
printf("pdhold command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
strcpy(CmdLine,"pdrels -r RDDATA10"); /* specifying execution
command
 line (RDAREA shutdown
 release) */
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) { /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode!=0) { /* execution command error */
printf("pdrels command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);

12. Command Execution from UAPs

1036

}
} else{ /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
} else { /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
return ;
}

12. Command Execution from UAPs

1037

12.3 Command executability

Some HiRDB commands can be executed from UAPs and some cannot. The following
table shows whether each command is executable from UAPs.

Table 12-1: Command executability from UAPs

Type Command Description Executability
from

COMMAND
EXECUTE

Executability
from CALL
COMMAND

System operation pdadmvr Gets the HiRDB version
information.

E E

pdcat Displays file contents. E E

pdchgconf System reconfiguration command -- E

pdclibsyn
c

Manipulates C library files. E E

pdconfchk Checks system definitions. -- E

pdcspool Deletes troubleshooting information. E E

pddivinfg
t

Acquires and outputs table
partitioning conditions.

-- --

pdgeter Acquires error information. E E

pdinfoget Acquires error information and
estimates its volume.

-- E

pditvtrc Periodically gets the HiRDB status. E E

pditvstop Stops periodic acquisition of the
HiRDB status.

E E

pdjarsync Manipulates JAR files. E E

pdlistls Displays list definition information. E E

pdlodsv Reduces the size of the installation
directory.

-- --

pdls Displays HiRDB system status. E E

pdmemsv Saves memory space. -- --

pdntenv Sets the HiRDB operation
environment.

-- --

12. Command Execution from UAPs

1038

pdobjconv Migrates SQL objects into
64-bit-mode HiRDB.

E --

pdopsetup Installs an additional HiRDB
program product.

-- --

pdsetup Registers or deletes a HiRDB system
in the OS.

-- --

pdsvhostn
ame

Displays the server host name. -- E

pdvrup Upgrades HiRDB. -- E

HiRDB file
system

pdfbkup Backs up the HiRDB file system. E E

pdfls Displays HiRDB file system
information.

E E

pdfmkfs Initializes a HiRDB file system area. E E

pdfrm Deletes a HiRDB file. E E

pdfrstr Restores the HiRDB file system. E E

pdfstatfs Displays the status of a HiRDB file
system area.

E E

pdffsck Verifies and restores HiRDB file
system area integrity.

E E

Type Command Description Executability
from

COMMAND
EXECUTE

Executability
from CALL
COMMAND

12. Command Execution from UAPs

1039

Log files pdlogadpf Allocates a log file. E E

pdlogatul Controls the automatic log unloading
facility.

-- E

pdlogchg Changes the status of a log file. E E

pdlogcls Closes a log file. E E

pdloginit Initializes a log file. E E

pdlogls Displays log file information. E E

pdlogopen Opens a log file. E E

pdlogrm Deletes a log file. E E

pdlogswap Swaps log files. E E

pdlogsync Collects a synchronization point
dump.

E E

pdlogucat Displays unload log file information. E E

pdlogunld Unloads a log file. E E

Status files pdstscls Closes an open status file. E E

pdstsinit Initializes a status file. E E

pdstsopen Opens a status file. E E

pdstsrm Deletes a status file. E E

pdstsswap Swaps status files. E E

HiRDB startup
and termination

pdstart Starts a HiRDB system, unit, or
server.

E E

pdstop Terminates a HiRDB system, unit, or
server.

E E

Type Command Description Executability
from

COMMAND
EXECUTE

Executability
from CALL
COMMAND

12. Command Execution from UAPs

1040

Statistics log pdstbegin Starts output of statistical
information.

E E

pdstend Stops output of statistical
information.

E E

pdstjswap Swaps statistics log files. E E

pdstjsync Copies the contents of the statistics
log buffer to the statistics log file.

E E

RDAREAs pdclose Closes RDAREAs. E E

pddbls Displays the status of RDAREAs. E E

pdhold Shuts down RDAREAs. E E

pdopen Opens RDAREAs. E E

pdrels Releases RDAREAs from shutdown
status.

E E

pddbfrz Executes frozen update of full
HiRDB files in the user LOB
RDAREA.

E E

pdrdrefls Displays related RD area
information.

E E

Global Buffer pdbufls Displays global buffer information. E E

pdbufmod Dynamically changes the global
buffer.

E E

Transaction
control

pdcmt Commits a transaction. E E

pdfgt Forcibly terminates a transaction. E E

pdrbk Rolls back a transaction. E E

pdtrndec Forcibly completes uncompleted
transactions automatically.

-- E

Type Command Description Executability
from

COMMAND
EXECUTE

Executability
from CALL
COMMAND

12. Command Execution from UAPs

1041

Process control pdcancel Forcibly terminates UAP and utility
processing.

E E

pdchprc Changes the number of server
process activations.

E E

pdkill Stops a process forcibly. -- E

pdpfresh Refreshes a server process. E E

pdrpause Restarts a process server process. -- E

Update to HiRDB
update version

pdprgcopy Copies the HiRDB update version. -- E

pdprgrene
w

Updates HiRDB to the update
version.

-- E

HiRDB
Datareplicator
linkage

pdrplstar
t

Starts HiRDB Datareplicator
linkage.

-- E

pdrplstop Stops HiRDB Datareplicator
linkage.

-- E

Inner replica
facility

pddbchg Switches the replica status of the
replica RDAREA.

E E

Updatable online
reorganization

pdorbegin Commits the database for online
reorganization.

E E

pdorcheck Checks the application conditions
for online reorganization.

E E

pdorchg Switches the current RDAREA for
online reorganization.

E E

pdorcreat
e

Creates a reflection environment for
online reorganization.

E E

pdorend Executes reflection of online
reorganization.

E E

Type Command Description Executability
from

COMMAND
EXECUTE

Executability
from CALL
COMMAND

12. Command Execution from UAPs

1042

Security audit pdaudbegi
n

Starts audit trail acquisition. E E

pdaudend Stops audit trail acquisition. E E

pdaudrm Deletes audit trail files that are shut
down.

E E

pdaudswap Swaps the current audit trail file. E E

pdaudatld Controls the facility for
automatically loading audit trail
table data.

E E

pdaudput Outputs audit logs for JP1/NETM/
Audit.

E --

Connection
security facility

pdacunlck Unlocks the consecutive
certification failure account lock
state.

-- E

Real Time SAN
Replication

pdrisechk Checks the configuration of Real
Time SAN Replication.

-- E

pdrisedbt
o

Inherits the Real Time SAN
Replication database.

-- E

pdriseset Sets the site status of Real Time SAN
Replication.

-- E

In-memory data
processing

pdmemdb Performs in-memory data
processing.

E E

SQL trace
acquisition

pdclttrc Dynamically acquires an SQL trace. E E

SQL object
information
display

pdobils Displays statistical information for
an SQL object.

-- E

SQL compilation pdcbl COBOL preprocessor -- --

pdcpp C preprocessor -- --

pdocb OOCOBOL preprocessor -- --

pdocc C++ preprocessor -- --

Type Command Description Executability
from

COMMAND
EXECUTE

Executability
from CALL
COMMAND

12. Command Execution from UAPs

1043

Database creation pdinit Database initialization utility -- E

pddef Database definition utility -- E

pdload Database load utility E E

pdparaloa
d

Parallel loading facility -- --

pdsql# Interactive SQL execution utility -- --

pddefrev Generates a definition SQL
statement.

-- E

Database
operations

pdmod Database structure modification
utility

E E

pdrorg Database reorganization utility E E

pdexp Dictionary import/export utility -- E

pdrbal Rebalancing utility -- E

pdreclaim Free page release utility E E

pdpgbfon Global buffer residence utility E E

pdconstck Integrity check utility -- E

Tuning pdstedit Statistics analysis utility -- E

pddbst Database condition analysis utility E E

pdgetcst Optimizing information collection
utility

-- E

pdvwopt Access path display utility -- E

Database error
handling

pdcopy Database copy utility E E

pdbkupls Displays backup file information. E E

pdrstr Database recovery utility E E

Plug-in-related pdplgrgst Registers a plug-in. -- --

pdplgset Sets up a plug-in. -- --

pdreginit Registry facility initialization utility E --

Type Command Description Executability
from

COMMAND
EXECUTE

Executability
from CALL
COMMAND

12. Command Execution from UAPs

1044

E: Can be executed from UAPs.

--: Cannot be executed from UAPs.

Notes

1. The following commands cannot be used in the UNIX edition:

pdkill, pdntenv

2. The following commands cannot be used in the Windows edition:

pdgeter, pditvtrc, pditvstop, pdlodsv, pdmemsv, pdopsetup,
pdplgset, pdrisechk, pdrisedbto, pdriseset, pdrpause, pdsetup

#: This command does not exist in the Windows edition; instead, the HiRDB SQL
Executer is used.

1045

Chapter

13. Connection from an XDS Client

This chapter describes the procedure for developing UAPs by connecting from an XDS
client.

13.1 Overview of format of connection from an XDS client

13. Connection from an XDS Client

1046

13.1 Overview of format of connection from an XDS client

Not supported.

1047

Chapter

14. HiRDB Access from ODBC
Application Programs

This chapter explains the OBDC driver installation procedure, ODBC functions, and
tuning and troubleshooting procedures that are necessary when ODBC application
programs access HiRDB.

The ODBC2.0 driver has become obsolete. It is currently supported in order to
maintain compatibility with applications, but this support will be discontinued in the
future. Please use the ODBC 3.5 driver.

14.1 ODBC application programs
14.2 Installing the ODBC2.0 driver
14.3 Installing the ODBC 3.5 driver and setting the environment variables
14.4 ODBC functions provided by HiRDB
14.5 ODBC function data types and HiRDB data types
14.6 Specifiability of attributes in the ODBC functions
14.7 Asynchronous execution of ODBC functions
14.8 Setting cursor libraries
14.9 File DSNs
14.10 Executing a UAP in Unicode
14.11 Tuning and troubleshooting
14.12 Facilities that cannot be used when HiRDB is accessed with ODBC
14.13 Notes about using the Linux edition of the HiRDB ODBC 3.5 driver
14.14 Automatic SQL statement generation by using .NET Framework Data

Provider for ODBC

14. HiRDB Access from ODBC Application Programs

1048

14.1 ODBC application programs

Examples of ODBC application programs are Microsoft Access and Microsoft Excel.
The ODBC driver must be installed before these application programs can access
HiRDB. For information on ODBC driver installation, see 14.2 Installing the
ODBC2.0 driver. You can also access HiRDB via the ODBC driver from a UAP that
uses the ODBC functions provided by HiRDB. For information on the ODBC
functions provided by HiRDB, see 14.4 ODBC functions provided by HiRDB.

When the ODBC 3.5 driver is used, you can access HiRDB from a UAP that uses the
ODBC 3.x interface.

14. HiRDB Access from ODBC Application Programs

1049

14.2 Installing the ODBC2.0 driver

To run an ODBC application program or a UAP that uses ODBC functions, you need
to install the ODBC driver in the HiRDB client beforehand. To execute a UAP via
ODBC on the HiRDB server, you also need to install the ODBC driver in the HiRDB
server.

This section presents the ODBC driver installation procedure. Be sure to exit all
Windows applications before starting the installation.

To install the ODBC driver:

1. Execute the ODBC20INST.exe file that is expanded under the
HiRDB-client-installation-directory\utl directory after the HiRDB client has
been installed. The Hitachi self-expanding program starts.

2. In the Hitachi Integrated Installer dialog box, click the Install button to start the
installer for the ODBC driver.

3. Select the displayed HiRDB driver and choose the OK button. Installation does
not take place if you choose OK without selecting anything.

4. Existing data sources are displayed. If no data source has been defined, nothing is
displayed. Choose the Add button.

5. Select the HiRDB driver as being subject to data source addition.

14. HiRDB Access from ODBC Application Programs

1050

6. A dialog box for setting up the data source is displayed.

Explanation
Data source name

Specify a name identifying the data source. The name can have up to 32
single-byte characters or 16 double-byte characters. Single-byte and
double-byte characters can also be mixed.

PDHOST (host name)

14. HiRDB Access from ODBC Application Programs

1051

Specify the host name of the server machine. This is the name specified in
the client environment definition. For details about PDHOST, see 6.6.4
Environment definition information. If this information is omitted, the
system assumes the value in the client environment definition.

PDNAMEPORT (HiRDB port number)
Specify the port number of the server machine. This is the port number
specified in the client environment definition. For details about
PDNAMEPORT, see 6.6.4 Environment definition information. If this
information is omitted, the system assumes the value in the client
environment definition.

HiRDB client environment definition file name (absolute path name)#

Specify the absolute path name of the HiRDB client environment definition
file. Use this item to change the specification values for the HiRDB client
environment variables for a particular data source. For example, if you are
using the high-speed connection facility (PDSERVICEPORT) to connect to
multiple HiRDB systems, you can use this item to specify the file name of
the HiRDB client environment definition file and change the connection
destination for each data source.

If this information is omitted, the system assumes HIRDB.INI. For all client
environment variables, except PDHOST and PDNAMEPORT, the system uses
the settings in the HiRDB client environment definition file specified here.

If the specified file is not HIRDB.INI, the system ignores the specifications
in HIRDB.INI.

7. After specifying all items, choose the OK button. The specified data source is
displayed. To change the settings, choose the Set button to display the previous
dialog box.

14. HiRDB Access from ODBC Application Programs

1052

#: When you install a HiRDB client, a HiRDB client environment definition file
is automatically created under the filename HiRDB.INI in the system directory.
To install the ODBC driver before installing the HiRDB client, you need to create
the HIRDB.INI file, because this file has not been created. To create a client
environment definition file, copy the HIRDB.INI file found in the
odb32\Disk1\Sampleap directory of the installation CD-ROM to an
appropriate directory, and then edit the file. For details about each client
environment variable, see 6.6.4 Environment definition information.

14. HiRDB Access from ODBC Application Programs

1053

14.3 Installing the ODBC 3.5 driver and setting the environment
variables

14.3.1 Installation
(1) Installation directory

The following table shows the ODBC 3.5 driver installation directory.

Table 14-1: ODBC 3.5 driver (32-bit mode) installation directory

Note 1

The default Windows directory is C:\WINNT in Windows 2000 and C:\WINDOWS
in other platforms.

Note 2

• Underline indicates the HiRDB client installation directory.

Table 14-2: ODBC 3.5 driver (64-bit mode) installation directory

Note 1

Platform Installation directory

Windows 2000 Windows-directory\System32 or
Windows-directory\SysWOW64

Windows Server 2003

Windows Server 2008

Windows XP

Windows Vista

Windows 7

Linux /HiRDB/client/lib/

Platform Installation directory

Windows Server 2003 Windows-directory

Windows Server 2008

Windows XP

Windows Vista

Linux /HiRDB/client/lib/

14. HiRDB Access from ODBC Application Programs

1054

The default Windows directory is C:\WINDOWS.

Note 2

Underline indicates the HiRDB client installation directory.

(2) Installation flow
The ODBC 3.5 driver installation flow is described as follows.

1. Installing the ODBC 3.5 driver

Insert the provided medium and follow the installation procedure.

2. Installing the ODBC driver manager

In the Windows edition, if the ODBC driver manager version is old, install the
new ODBC driver manager.

In the Linux edition, HiRDB does not provide an ODBC driver manager.
Separately install an ODBC driver manager that supports ODBC 3.5 API and that
can be run on Linux.

3. Setting data sources

Set data sources.

(3) Installation procedure (in the Windows edition)
(a) Installing the ODBC 3.5 driver

To install the ODBC 3.0 driver:

1. Execute hcd_inst.exe found on the integrated CD-ROM to start Hitachi
Integrated Installer.

2. At the Hitachi Integrated Installer screen, select one of the following, and then
click the Execute Installation button to start the HiRDB setup program:

For Windows edition client products:

• For HiRDB/Run Time: HiRDB/Run Time
• For HiRDB/Developer's Kit: HiRDB/Developer's Kit

For Windows edition server products:

• For a HiRDB/Single Server: HiRDB/Single Server
• For a HiRDB/Parallel Server: HiRDB/Parallel Server

3. Perform the following operation; the setup program for the selected program
process starts:

For Windows edition client products:

From the Select Program Process window of the HiRDB setup program, select

14. HiRDB Access from ODBC Application Programs

1055

one of the following, and then click the Next button:

• For HiRDB/Run Time: HiRDB/Run Time
• For HiRDB/Developer's Kit: HiRDB/Developer's Kit

For Windows edition server products:

From the Select Program Process window of the HiRDB setup program, select
HiRDB/Run Time, and then click the Next button.

4. When the Select Installation Destination dialog box appears, change the
installation destination as needed and click the Next button.

5. In the Select Setup Type dialog box, select Typical or Custom, and then click the
Next button.

6. If you have selected Custom in step 5, in the Select Component dialog box, select
ODBC3.5 driver, and then click the Next button.

7. The ODBC 3.5 driver is copied under Windows-directory\System32.

8. The installation procedure is now complete.

(b) Installing the ODBC driver manager (which is included in MDAC2.6RTM)
If the version of the installed ODBC driver manager is old, you must download the
most recent MDAC from the Microsoft home page and install it. To determine the
version of the ODBC driver manager, start the ODBC Administrator and double-click
the About the ODBC driver manager tab. If the driver manager version is
3.520.6526.0 or earlier, it is old.

(c) Setting data sources
To set data sources:

1. Start the ODBC Data Source Administrator.

2. Make sure that the tab item is User DSN and click the Add button.

3. When the Add Data Source dialog box appears, select HiRDB ODBC3.5 Driver
and click the Finish button.

4. When the HiRDB ODBC3.5 Driver Setup dialog box appears, specify the
necessary items.

Data source name
Specify a name identifying the data source. The name can have up to 32
single-byte characters or 16 double-byte characters. Single-byte and
double-byte characters can also be mixed.

PDHOST (host name)
For a HiRDB/Single Server, specify the host name of the server machine on

14. HiRDB Access from ODBC Application Programs

1056

which the single server is located. For a HiRDB/Parallel Server, specify the
host name of the server machine on which the system manager is located.

If this item is omitted, the value specified for PDHOST in the client
environment definition is assumed. For details about PDHOST, see 6.6.4
Environment definition information.

PDNAMEPORT (HiRDB port number)
Specify the port number (the value specified for the pd_name_port operand
of the system definition) of the HiRDB server to be accessed.

If this item is omitted, the value specified for PDNAMEPORT in the client
environment definition is assumed. For details about PDNAMEPORT, see 6.6.4
Environment definition information.

HiRDB client environment definition file name
Specify the absolute path name of the HiRDB client environment definition
file. Use this item to change the specification values for the HiRDB client
environment variables for a particular data source. For example, if you are
using the high-speed connection facility (PDSERVICEPORT) to connect to
multiple HiRDB systems, you can use this item to specify the file name of
the HiRDB client environment definition file and change the connection
destination for each data source.

If this item is omitted, HIRDB.INI is assumed.

5. Choosing the OK button returns the window to the User DSN tab, and the
registered data sources are displayed.

Stopping data source setup

To stop data source setup, from the HiRDB ODBC3.5 Driver Setup dialog box, click
the Cancel button. When the Cancel button is clicked, no data source is registered.

Deleting a data source

To delete a data source:

1. From the Data Source dialog box, select the name of the data source to be deleted.

2. Click the Delete button to delete the data source.

(4) Installation procedure (in the Linux edition)
(a) Installing the ODBC 3.5 driver

Start the Hitachi Program Product Installer and install the ODBC 3.5 driver.

(b) Installing the ODBC driver manager
The Linux edition of HiRDB does not provide an ODBC driver manager. You must
install it separately.

14. HiRDB Access from ODBC Application Programs

1057

(c) Registering the ODBC driver information
You must edit the odbcinst.ini file in order to register the ODBC driver
information.

This subsection describes an example that uses unixODBC as the driver manager.

The odbcinst.ini file is located in /usr/local/etc. The following example
edits the odbcinst.ini file for using the HiRDB ODBC 3.5 driver for the
32-bit-mode edition of Linux.

Example

1. Driver name

Square brackets ([]) enclose the driver name that corresponds to the data
source. You can specify any name.

2. Driver

Specify the absolute path of the HiRDB ODBC 3.5 driver for the Linux
edition. In 64-bit mode, it is libodbcdrv64.so.

(d) Setting data sources
Edit the odbc.ini file.

This subsection describes an example that uses unixODBC as the driver manager.

The odbc.ini file is located in /usr/local/etc. It also exists as a hidden file
named .odbc.ini in the home directory. These two files correspond to the system
DSN and the user DSN in Windows. If you edit the file as user DSN, place the
.odbc.ini file in the home directory of the user who executes applications.

The following example edits the odbc.ini file.

Example

1. Data source name

Specify a name identifying the data source. This name must observe the rules for

[HiRDBOdbcDriver] ..1
Driver = /HiRDB/client/lib/libodbcdrv.so 2

[HiRDB_LIN30] ..1
Driver = HiRDBOdbcDriver2
PDHOST = 10.209.34.2233
PDNAMEPORT = 22200 ...4
INIFLNAME = /usr/local/etc/HiRDB.ini5

14. HiRDB Access from ODBC Application Programs

1058

the ODBC driver manager being used.

2. Driver

Specify the driver name specified in the odbcinst.ini file when you registered
the driver.

3. PDHOST

For a HiRDB/Single Server, specify the host name of the server machine on
which the single server is located. For a HiRDB/Parallel Server, specify the host
name of the server machine on which the system manager is located.

If this item is omitted, the value specified for PDHOST in the client environment
definition is assumed. For details about PDHOST, see 6.6.4 Environment definition
information.

4. PDNAMEPORT

Specify the port number (value specified in the pd_name_port operand in the
system definition) of the HiRDB server to be accessed.

If this item is omitted, the value specified for PDNAMEPORT in the client
environment definition is assumed. For details about PDNAMEPORT, see 6.6.4
Environment definition information.

5. INIFLNAME

Specify the absolute path name of the HiRDB client environment definition file.
You use this item to change specification values for HiRDB client environment
variables for a particular data source. For example, if you are using the high-speed
connection facility (PDSERVICEPORT) to connect to multiple HiRDB systems,
you can use this item to specify the file name of the HiRDB client environment
definition file and change the connection destination for each data source.

If this item is omitted, the values specified in the environment definition are
assumed.

In the UNIX edition, the HiRDB client environment definition file (HiRDB.ini)
is not created. Therefore, you must provide the file and then specify it in this item.

14.3.2 Setting the environment variables (in the Windows edition)
Set up the following environment variables:

PATH=Windows-directory;Windows-directory\System32

Note 1

The default Windows directories are as follows:

14. HiRDB Access from ODBC Application Programs

1059

• Windows 2000: C:\WINNT

• Windows Server, Windows XP, Windows Vista, and Windows 7:
C:\WINDOWS

Note 2

Set as system environment variables.

14.3.3 Determining the version number of the ODBC 3.5 driver
To determine the version number of the ODBC driver, start the ODBC Data Source
Administrator and select the Driver tab. For the storage location of ODBC Data
Source Administrator, see 14.3.1(1) Installation directory.

Note:

In the ODBC data source administrator, the ODBC 3.5 driver is registered
under the name HiRDB ODBC3.0 Driver, but its functions comply with ODBC
3.5.

14. HiRDB Access from ODBC Application Programs

1060

14.4 ODBC functions provided by HiRDB

HiRDB provides ODBC functions, and you can access HiRDB on a server from a UAP
that utilizes these ODBC functions. The following table shows the ODBC functions
provided by HiRDB.

Table 14-3: ODBC functions provided by HiRDB

Classification ODBC functions ODBC2.0 driver ODBC 3.5 driver

Provided? Expansion
level

Provided? Expansion
level

Connection to data
source

SQLAllocEnv Y Core -- --

SQLAllocHandle -- -- Y Core

SQLAllocConnect Y Core -- --

SQLConnect Y Core Y Core

SQLDriverConnect Y 1 Y Core

SQLBrowseConnect Y 2 Y 1

Driver and data
source information
acquisition

SQLDataSources Y#1 2 Y#1 Core

SQLDrivers -- -- Y#1 Core

SQLGetInfo Y 1 Y Core

SQLGetFunctions -- -- Y Core

SQLGetTypeInfo Y 1 Y Core

Driver option
setting and
acquisition

SQLSetConnectOption Y 1 -- --

SQLGetConnectOption Y 1 -- --

SQLSetStmtOption Y 1 -- --

SQLGetStmtOption Y 1 -- --

SQLSetConnectAttr -- -- Y Core

SQLGetConnectAttr -- -- Y Core

SQLSetEnvAttr -- -- Y Core

SQLGetEnvAttr -- -- Y Core

SQLSetStmtAttr -- 1 Y Core

14. HiRDB Access from ODBC Application Programs

1061

SQLGetStmtAttr -- 1 Y Core

Descriptor value
setup

SQLGetDescField -- -- Y Core

SQLGetDescRec -- -- Y Core

SQLSetDescField -- -- Y Core

SQLSetDescRec -- -- Y Core

SQLCopyDesc -- -- Y Core

SQL request
creation

SQLAllocStmt Y Core -- --

SQLPrepare Y Core Y Core

SQLBindParameter Y 11 Y Core

SQLSetParam#2 Y 1 -- --

SQLGetCursorName Y Core Y Core

SQLSetCursorName Y Core Y Core

SQLDescribeParam Y 2 -- --

SQLNumParam Y 2 -- --

SQLDescribeParams -- -- Y 2

SQLNumParams -- -- Y Core

SQLParamOptions N 2 -- --

SQLSetScrollOptions N#3 2 N 2

SQL execution SQLExecute Y Core Y Core

SQLExecDirect Y Core Y Core

SQLNativeSql Y 2 Y Core

SQLParamData Y 1 Y Core

SQLPutData Y 1 Y Core

Classification ODBC functions ODBC2.0 driver ODBC 3.5 driver

Provided? Expansion
level

Provided? Expansion
level

14. HiRDB Access from ODBC Application Programs

1062

Execution result
and execution
result information
acquisition

SQLRowCount Y Core Y Core

SQLNumResultCols Y Core Y Core

SQLDescribeCol Y Core Y Core

SQLColAttributes Y Core -- --

SQLColAttribute -- -- Y Core

SQLBindCol Y Core Y Core

SQLFetch Y Core Y Core

SQLFetchScroll -- -- Y#4 Core

SQLExtendedFetch N#3 2 Y Core

SQLGetData Y 1 Y Core

SQLSetPos N#3 2 Y#4 1

SQLBulkOperations -- -- N 1

SQLMoreResults#5 Y 2 Y 1

SQLError Y Core -- --

SQLGetDiagField -- -- Y Core

SQLGetDiagRec -- -- Y Core

Data source system
information
acquisition

SQLColumnPrivileges Y 2 Y 2

SQLColumns Y 1 Y Core

SQLForeignKeys Y#6 2 Y#6 2

SQLPrimaryKeys Y#6 2 Y#6 1

SQLProcedureColumns Y 2 Y 1

SQLProcedure Y 2 Y 1

SQLSpecialColumns Y#6 1 Y#6 Core

SQLStatistics Y 1 Y Core

Classification ODBC functions ODBC2.0 driver ODBC 3.5 driver

Provided? Expansion
level

Provided? Expansion
level

14. HiRDB Access from ODBC Application Programs

1063

Legend:

Y: The applicable ODBC function is provided.

N: The applicable ODBC function is not provided.

--: Not applicable

1: Level 1

2: Level 2

Core: Core level

#1

This function is provided by the drive manager.

#2

Although the SQLSetParam function was included in SQLBindParameter
beginning with ODBC 2.0, this function is provided to maintain compatibility
with applications that do not support ODBC 2.0.

#3

Because this function is installed in the ODBC2.0 cursor library, the range of
functions specified by the cursor library can be used. To use

SQLTablePrivileges Y 2 Y 2

SQLTables Y 1 Y Core

SQL execution
termination

SQLFreestmt Y Core Y Core

SQLCloseCursor -- -- Y Core

SQLCancel Y Core Y Core

SQLTransact Y Core Y Core

SQLEndTran -- -- Y Core

Disconnection SQLDisconnect Y Core Y Core

SQLFreeConnect Y Core -- --

SQLFreeEnv Y Core -- --

SQLFreeHandle -- -- Y Core

Classification ODBC functions ODBC2.0 driver ODBC 3.5 driver

Provided? Expansion
level

Provided? Expansion
level

14. HiRDB Access from ODBC Application Programs

1064

SQLExtendedFetch, set up a cursor library. For details on setting up a cursor
library, see 14.8 Setting cursor libraries.

#4

To use these ODBC functions, you must use the cursor library provided by
Microsoft.

#5

The statement handle used to execute an SQL statement is used to call
SQLMoreResults. If the executed SQL statement uses HiRDB's results-set
return facility and a result set is available, the function returns SQL_SUCCESS and
the next result set becomes available. If the next result set is not available, the
function returns SQL_NO_DATA.

For details about the results-set return facility, see the manual HiRDB Version 9
SQL Reference.

#6

Only the call is supported. The result set created by this function always contains
no rows.

14. HiRDB Access from ODBC Application Programs

1065

14.5 ODBC function data types and HiRDB data types

The table below shows the correspondence between ODBC function data types and
server HiRDB data types.

ODBC function data type refers to an SQL data type that is specified in an argument
of an ODBC function.

Table 14-4: ODBC function data types and HiRDB data types

Classification ODBC data type HiRDB data type Description Availability

Character data SQL_CHAR CHAR(n) Fixed-length character
string

U

SQL_VARCHAR VARCHAR(n) Variable-length character
string

U

SQL_LONGVARCHAR VARCHAR(n) Variable-length character
string

U

SQL_CHAR NCHAR(n) Fixed-length national
character string NATIONAL
CHARACTER(n)

U

SQL_VARCHAR NVARCHAR(n) Variable-length national
character string

U

SQL_CHAR MCHAR(n) Fixed-length mixed
character string

U

SQL_VARCHAR MVARCHAR(n) Variable-length mixed
character string

U

14. HiRDB Access from ODBC Application Programs

1066

Numeric data SQL_DECIMAL DEC[IMAL](p,s) Fixed-point number
Precision (total number of
digits) = p, Scale (number
of digits below the decimal
point) = s
1 p 15, 0 s
p

U

SQL_NUMERIC -- NU

SQL_SMALLINT SMALLINT Integer from -32,768 to
32,767

U

SQL_INTEGER INTEGER Integer from
-2,147,483,648 to
2,147,483,647

U

SQL_TINYINT -- Integer from -256 to 255 NU

SQL_BIGINT -- 1-digit sign and 19-digit
integer

NU

SQL_REAL SMALLFLT,REAL Single-precision
floating-point number

U

SQL_FLOAT FLOAT, DOUBLE
PRECISION

Double-precision
floating-point number

U

SQL_DOUBLE FLOAT, DOUBLE
PRECISION

Double-precision
floating-point number

U

SQL_BIT -- Bit NU

SQL_BINARY -- Fixed-length binary data NU

SQL_LONGVARBINARY BINARY(n) Variable-length binary
data

U

SQL_LONGVARBINARY BLOB Variable-length binary
data

U

Date and time
data

SQL_TYPE_DATE DATE Date U

SQL_TYPE_TIMESTAM
P

TIMESTAMP Date/time U

SQL_TYPE_TIME TIME Time U

--# INTERVAL YEAR
TO DAY

Date interval NU

SQL_INTERVAL_HOUR
_TO_SECOND

INTERVAL HOUR
TO SECOND

Time interval U

Classification ODBC data type HiRDB data type Description Availability

14. HiRDB Access from ODBC Application Programs

1067

--: Data type not available in ODBC.

U: Can be used.

NU: Cannot be used.

#: Database data types in the server are reported without change.

Note

For details about the maximum character string lengths and value ranges for the
various data types, see the manual HiRDB Version 9 SQL Reference.

(1) Facilities available to ODBC functions
When a UAP uses ODBC functions to access the HiRDB system in the server, not all
HiRDB facilities are available to the UAP. The following table lists the facilities that
can be used by such a UAP.

Table 14-5: Available facilities

U: Can be used.

User-defined
type

-- Abstract data type Abstract data type NU

Facility Availability

Obtaining special column information --

Obtaining index information U

Using date and time data types U#1

Using repetition columns NU#3

Using array columns --

Obtaining table and column headers --

Asynchronous processing NU

Using the escape character for the LIKE predicate U

Obtaining an updated row count U

Setting the timeout value for logging in NU

Using Japanese data types U#2

Executing definition SQL statements U

Classification ODBC data type HiRDB data type Description Availability

14. HiRDB Access from ODBC Application Programs

1068

NU: Cannot be used.

--: Not a DBMS function

#1: The INTERVAL YEAR TO DAY data type cannot be used.

#2: The database data types are reported without change.

#3: A repetition column can be accessed if it has a simple structure without repeated ?
parameters.

Example
Column C1 of table T1 is a repetition column.
SELECT C1[1],C1[2] FROM T1 A
SELECT C1 FROM T1 --
INSERT INTO T1 VALUES(ARRAY[?,?]) A
INSERT INTO T1 VALUES(?) --

A: Can be accessed

--: Cannot be accessed

(2) Setting update and deletion operations that use cursors
The SQLGetCursorName function obtains the user cursor name that was set with the
SQLSetCursorName function. If no cursor name has been set, the
SQLGetCursorName function cannot obtain a system-defined cursor. Therefore, set
an appropriate user cursor name to update or delete an item with a cursor.

(3) Setting driver options
The options that can be set with the SQLSetConnectOption or
SQLGetConnectOption function are limited. The following table shows the options
that can be set.

Table 14-6: Options that can be set with the SQLSetConnectOption and
SQLGetConnectOption functions

Option Setting

SQL_ACCESS_MODE SQL_MODE_READ_WRITE

SQL_AUTOCOMMIT SQL_AUTOCOMMIT_OFF or SQL_AUTOCOMMIT_ON

SQL_LOGIN_TIMEOUT --

SQL_TRANSLATE_DLL --

SQL_TRANSLATE_OPTION --

SQL_TXN_ISOLATION --

14. HiRDB Access from ODBC Application Programs

1069

--: Cannot be set

14. HiRDB Access from ODBC Application Programs

1070

14.6 Specifiability of attributes in the ODBC functions

(1) SQLSetConnectAttr
The following table lists the ODBC connection attributes that can be specified in
SQLSetConnectAttr.

Table 14-7: ODBC connection attributes that can be specified in
SQLSetConnectAttr

Attribute Whether
specifiable

Compliance
level

Remarks

SQL_ATTR_ACCESS_MODE Y Core --

SQL_ATTR_ASYNC_ENABLE Y Level 1 --

SQL_ATTR_AUTO_IPD N Level 2 --

SQL_ATTR_AUTO_COMMIT Y Level 1 --

SQL_ATTR_CONNECTION_DEAD N Level 1 --

SQL_ATTR_CONNECTION_TIMEOUT Y Level 2 Only 0 can be specified. If
any other value is
specified, an error results.

SQL_ATTR_CURRENT_CATALOG N Level 2 --

SQL_ATTR_LOGIN_TIMEOUT Y Level 2 Only 0 can be specified. If
any other value is
specified, 0 is set.

SQL_ATTR_METADATA_ID N Core --

SQL_ATTR_ODBC_CURSORS N Core --

SQL_ATTR_PACKET_SIZE N Level 2 --

SQL_ATTR_QUIET_MODE N Core --

SQL_ATTR_TRACE Y Core --

SQL_ATTR_TRACEFILE Y Core --

SQL_ATTR_TRANSLATE_LIB N Core --

SQL_ATTR_TRANSLATE_OPTION N Core --

SQL_ATTR_ANSI_APP Y Undefined --

SQL_ATTR_TXN_ISOLATION Y Level 1 --

14. HiRDB Access from ODBC Application Programs

1071

Legend:

Y: Can be specified

N: Cannot be specified

--: Not applicable

(2) SQLGetConnectAttr
The following table lists the ODBC connection attributes that can be specified in
SQLGetConnectAttr.

Table 14-8: ODBC connection attributes that can be specified in
SQLGetConnectAttr

SQL_ATTR_ENLIST_IN_DTC Y Undefined --

Attribute Whether
specifiabl

e

Compliance
level

Remarks

SQL_ATTR_ACCESS_MODE Y Core --

SQL_ATTR_ASYNC_ENABLE Y Level 1 --

SQL_ATTR_AUTO_IPD Y Level 2 --

SQL_ATTR_AUTO_COMMIT Y Level 1 --

SQL_ATTR_CONNECTION_DEAD Y Level 1 --

SQL_ATTR_CONNECTION_TIMEOUT N Level 2 --

SQL_ATTR_CURRENT_CATALOG N Level 2 --

SQL_ATTR_LOGIN_TIMEOUT N Level 2 --

SQL_ATTR_METADATA_ID Y Core --

SQL_ATTR_ODBC_CURSORS N Core --

SQL_ATTR_PACKET_SIZE N Level 2 --

SQL_ATTR_QUIET_MODE N Core --

SQL_ATTR_TRACE Y Core Returned by the driver
manager

SQL_ATTR_TRACEFILE Y Core Returned by the driver
manager

Attribute Whether
specifiable

Compliance
level

Remarks

14. HiRDB Access from ODBC Application Programs

1072

Legend:

Y: Can be specified

N: Cannot be specified

--: Not applicable

(3) SQLSetDescField
The following table lists the ODBC descriptor attributes that can be specified in
SQLSetDescField.

Table 14-9: ODBC descriptor attributes that can be specified in
SQLSetDescField

SQL_ATTR_TRANSLATE_LIB N Core --

SQL_ATTR_TRANSLATE_OPTION N Core --

SQL_ATTR_ANSI_APP Y Undefined --

SQL_ATTR_TXN_ISOLATION Y Level 1 --

Attribute Whether
specifiable

Compliance
level

Remarks

SQL_DESC_ALLOC_TYPE N Core --

SQL_DESC_ARRAY_SIZE Y Core --

SQL_DESC_ARRAY_STATUS_PTR Y Core --

SQL_DESC_BIND_OFFSET_PTR Y Core --

SQL_DESC_DESC_BIND_TYPE Y Core --

SQL_DESC_COUNT Y Core --

SQL_DESC_ROWS_PROCESSED_PTR Y Core --

SQL_DESC_AUTO_UNIQUE_VALUE N Level 2 --

SQL_DESC_BASE_COLUMN_NAME N Core --

SQL_DESC_BASE_TABLE_NAME N Level 1 --

SQL_DESC_CASE_SENSITIVE N Core --

SQL_DESC_CATALOG_NAME N Level 2 --

Attribute Whether
specifiabl

e

Compliance
level

Remarks

14. HiRDB Access from ODBC Application Programs

1073

SQL_DESC_CONCISE_TYPE Y Core --

SQL_DESC_DATA_PTR Y Core --

SQL_DESC_DATETIME_INTERVAL_CODE Y Core --

SQL_DESC_DATETIME_INTERVAL_PRECISION Y Core --

SQL_DESC_SQL_DESC_DISPLAY_SIZE N Core --

SQL_DESC_FIXED_PREC_SCALE N Core --

SQL_DESC_INDICATOR_PTR Y Core --

SQL_DESC_LABEL N Level 2 --

SQL_DESC_LENGTH Y Core --

SQL_DESC_LITERAL_PREFIX N Core --

SQL_DESC_LITERAL_SUFFIX N Core --

SQL_DESC_LOCAL_TYPE_NAME N Core --

SQL_DESC_NAME Y Core --

SQL_DESC_NULLABLE N Core --

SQL_DESC_NUM_PREC_RADIX Y Undefined --

SQL_DESC_OCTET_LENGTH Y Core --

SQL_DESC_OCTET_LENGTH_PTR Y Core --

SQL_DESC_PARAMETER_TYPE Y Core --

SQL_DESC_PRECISION Y Core --

SQL_DESC_ROWVER N Level 1 --

SQL_DESC_SCALE Y Core --

SQL_DESC_SCHEMA_NAME N Level 1 --

SQL_DESC_SEARCHABLE N Core --

SQL_DESC_TABLE_NAME N Level 1 --

SQL_DESC_TYPE Y Core --

SQL_DESC_TYPE_NAME N Core --

Attribute Whether
specifiable

Compliance
level

Remarks

14. HiRDB Access from ODBC Application Programs

1074

Legend:

Y: Can be specified

N: Cannot be specified

--: Not applicable

(4) SQLGetDescField
The following table lists the ODBC descriptor attributes that can be specified in
SQLGetDescField.

Table 14-10: ODBC descriptor attributes that can be specified in
SQLGetDescField

SQL_DESC_UNNAMED Y Core --

SQL_DESC_UNSIGNED N Core --

SQL_DESC_UPDATABLE N Core --

Attribute Whether
specifiable

Compliance
level

Remarks

SQL_DESC_ALLOC_TYPE Y Core --

SQL_DESC_ARRAY_SIZE Y Core --

SQL_DESC_ARRAY_STATUS_PTR Y Core --

SQL_DESC_BIND_OFFSET_PTR Y Core --

SQL_DESC_DESC_BIND_TYPE Y Core --

SQL_DESC_COUNT Y Core --

SQL_DESC_ROWS_PROCESSED_PTR Y Core --

SQL_DESC_AUTO_UNIQUE_VALUE Y Level 2 --

SQL_DESC_BASE_COLUMN_NAME Y Core --

SQL_DESC_BASE_TABLE_NAME Y Level 1 --

SQL_DESC_CASE_SENSITIVE Y Core --

SQL_DESC_CATALOG_NAME Y Level 2 --

SQL_DESC_CONCISE_TYPE Y Core --

Attribute Whether
specifiable

Compliance
level

Remarks

14. HiRDB Access from ODBC Application Programs

1075

SQL_DESC_DATA_PTR Y Core --

SQL_DESC_DATETIME_INTERVAL_CODE Y Core --

SQL_DESC_DATETIME_INTERVAL_PRECISION Y Core --

SQL_DESC_SQL_DESC_DISPLAY_SIZE Y Core --

SQL_DESC_FIXED_PREC_SCALE Y Core --

SQL_DESC_INDICATOR_PTR Y Core --

SQL_DESC_LABEL Y Level 2 --

SQL_DESC_LENGTH Y Core --

SQL_DESC_LITERAL_PREFIX Y Core --

SQL_DESC_LITERAL_SUFFIX Y Core --

SQL_DESC_LOCAL_TYPE_NAME Y Core --

SQL_DESC_NAME Y Core --

SQL_DESC_NULLABLE Y Core --

SQL_DESC_NUM_PREC_RADIX Y Undefined --

SQL_DESC_OCTET_LENGTH Y Core --

SQL_DESC_OCTET_LENGTH_PTR Y Core --

SQL_DESC_PARAMETER_TYPE Y Core --

SQL_DESC_PRECISION Y Core --

SQL_DESC_ROWVER N Level 1 --

SQL_DESC_SCALE Y Core --

SQL_DESC_SCHEMA_NAME Y Level 1 --

SQL_DESC_SEARCHABLE Y Core --

SQL_DESC_TABLE_NAME Y Level 1 --

SQL_DESC_TYPE Y Core --

SQL_DESC_TYPE_NAME Y Core --

SQL_DESC_UNNAMED Y Core --

Attribute Whether
specifiable

Compliance
level

Remarks

14. HiRDB Access from ODBC Application Programs

1076

Legend:

Y: Can be specified

N: Cannot be specified

--: Not applicable

(5) SQLSetEnvAttr
The following table lists the ODBC environment attributes that can be specified in
SQLSetEnvAttr.

Table 14-11: ODBC environment attributes that can be specified in
SQLSetEnvAttr

Legend:

Y: Can be specified

--: Not applicable

(6) SQLGetEnvAttr
The following table lists the ODBC environment attributes that can be specified in
SQLGetEnvAttr.

SQL_DESC_UNSIGNED Y Core --

SQL_DESC_UPDATABLE Y Core --

Attribute Whether
specifiable

Compliance level Remarks

SQL_ATTR_CONNECTION_POOLING Y Undefined Not included in the
conformance level

SQL_ATTR_CP_MATCH Y Undefined Not included in the
conformance level

SQL_ATTR_ODBC_VERSION Y Core --

SQL_ATTR_OUTPUT_NTS Y Undefined Not included in the
conformance level

Attribute Whether
specifiable

Compliance
level

Remarks

14. HiRDB Access from ODBC Application Programs

1077

Table 14-12: ODBC environment attributes that can be specified in
SQLGetEnvAttr

Legend:

Y: Can be specified

--: Not applicable

(7) SQLSetStmtAttr
The following table lists the ODBC statement attributes that can be specified in
SQLSetStmtAttr.

Table 14-13: ODBC statement attributes that can be specified in
SQLSetStmtAttr

Attribute Whether
specifiable

Compliance
level

Remarks

SQL_ATTR_CONNECTION_POOLING Y Undefined Not included in the
conformance level

SQL_ATTR_CP_MATCH Y Undefined Not included in the
conformance level

SQL_ATTR_ODBC_VERSION Y Core --

SQL_ATTR_OUTPUT_NTS Y Undefined Not included in the
conformance level

Attribute Whether
specifia

ble

Complian
ce level

Remarks

SQL_ATTR_APP_PARAM_DESC Y Core --

SQL_ATTR_APP_ROW_DESC Y Core --

SQL_ATTR_ASYNC_ENABLE Y Level 1 --

SQL_ATTR_CONCURRENCY Y Level 2 --

SQL_ATTR_CURSOR_SCROLLABLE Y Level 1 --

SQL_ATTR_CURSOR_SENSITIVITY Y Level 2 --

SQL_ATTR_CURSOR_TYPE Y Level 2 Only
SQL_CURSOR_FORWARD_ONLY
can be specified. If any other
value is specified,
SQL_CURSOR_FORWARD_ONLY is
set.

14. HiRDB Access from ODBC Application Programs

1078

SQL_ATTR_ENABLE_AUTO_IPD Y Level 2 --

SQL_ATTR_FETCH_BOOKMARK_PTR N Level 2 --

SQL_ATTR_IMP_PARAM_DESC N Core --

SQL_ATTR_IMP_ROW_DESC N Core --

SQL_ATTR_KEYSET_SIZE N Level 2 --

SQL_ATTR_MAX_LENGTH Y Level 1 --

SQL_ATTR_MAX_ROWS Y Level 1 --

SQL_ATTR_METADATA_ID Y Core --

SQL_ATTR_NOSCAN Y Core --

SQL_ATTR_PARAM_BIND_OFFSET_PTR N Core --

SQL_ATTR_PARAM_BIND_TYPE Y Core --

SQL_ATTR_PARAM_OPERATION_PTR N Core --

SQL_ATTR_PARAM_STATUS_PTR Y Core --

SQL_ATTR_PARAMS_PROCESSED_PTR Y Core --

SQL_ATTR_PARAMSET_SIZE Y Core --

SQL_ATTR_QUERY_TIMEOUT N Level 2 --

SQL_ATTR_RETRIEVE_DATA Y Level 1 --

SQL_ATTR_ROW_ARRAY_SIZE Y Core --

SQL_ATTR_ROW_BIND_OFFSET_PTR Y Core --

SQL_ATTR_ROW_BIND_TYPE Y Core --

SQL_ATTR_ROW_NUMBER N Level 1 --

SQL_ATTR_ROW_OPERATION_PTR Y Level 1 --

SQL_ATTR_ROW_STATUS_PTR Y Core --

SQL_ATTR_ROWS_FETCHED_PTR Y Core --

SQL_ATTR_SIMULATE_CURSOR N Level 2 --

SQL_ATTR_USE_BOOKMARKS N Level 2 --

Attribute Whether
specifia

ble

Complian
ce level

Remarks

14. HiRDB Access from ODBC Application Programs

1079

Legend:

Y: Can be specified

N: Cannot be specified

--: Not applicable

(8) SQLGetStmtAttr
The following table lists the ODBC statement attributes that can be specified in
SQLGetStmtAttr.

Table 14-14: ODBC statement attributes that can be specified in
SQLGetStmtAttr

Attribute Whether
specifiable

Compliance
level

Remarks

SQL_ATTR_APP_PARAM_DESC Y Core --

SQL_ATTR_APP_ROW_DESC Y Core --

SQL_ATTR_ASYNC_ENABLE Y Level 1 --

SQL_ATTR_CONCURRENCY Y Level 2 --

SQL_ATTR_CURSOR_SCROLLABLE Y Level 1 --

SQL_ATTR_CURSOR_SENSITIVITY Y Level 2 --

SQL_ATTR_CURSOR_TYPE Y Level 2 --

SQL_ATTR_ENABLE_AUTO_IPD Y Level 2 --

SQL_ATTR_FETCH_BOOKMARK_PTR N Level 2 --

SQL_ATTR_IMP_PARAM_DESC Y Core --

SQL_ATTR_IMP_ROW_DESC Y Core --

SQL_ATTR_KEYSET_SIZE N Level 2 --

SQL_ATTR_MAX_LENGTH Y Level 1 --

SQL_ATTR_MAX_ROWS Y Level 1 --

SQL_ATTR_METADATA_ID Y Core --

SQL_ATTR_NOSCAN Y Core --

SQL_ATTR_PARAM_BIND_OFFSET_PTR N Core --

SQL_ATTR_PARAM_BIND_TYPE N Core --

14. HiRDB Access from ODBC Application Programs

1080

Legend:

Y: Can be specified

N: Cannot be specified

--: Not applicable

(9) SQLGetInfo
This subsection shows the information types that can be specified in SQLGetInfo.

(a) Driver information
The SQLGetInfo function returns information about the ODBC driver, such as the
number of active statements, data source name, and interface standard conformance
level. The following table lists the driver information items that can be specified in
SQLGetInfo.

SQL_ATTR_PARAM_OPERATION_PTR Y Core --

SQL_ATTR_PARAM_STATUS_PTR Y Core --

SQL_ATTR_PARAMS_PROCESSED_PTR Y Core --

SQL_ATTR_PARAMSET_SIZE Y Core --

SQL_ATTR_QUERY_TIMEOUT N Level 2 --

SQL_ATTR_RETRIEVE_DATA Y Level 1 --

SQL_ATTR_ROW_ARRAY_SIZE Y Core --

SQL_ATTR_ROW_BIND_OFFSET_PTR N Core --

SQL_ATTR_ROW_BIND_TYPE N Core --

SQL_ATTR_ROW_NUMBER N Level 1 --

SQL_ATTR_ROW_OPERATION_PTR Y Level 1 --

SQL_ATTR_ROW_STATUS_PTR Y Core --

SQL_ATTR_ROWS_FETCHED_PTR Y Core --

SQL_ATTR_SIMULATE_CURSOR N Level 2 --

SQL_ATTR_USE_BOOKMARKS N Level 2 --

Attribute Whether
specifiable

Compliance
level

Remarks

14. HiRDB Access from ODBC Application Programs

1081

Table 14-15: Driver information items that can be specified in SQLGetInfo

Option value Whether
specifiable

Remarks

SQL_ACTIVE_ENVIRONMENTS Y --

SQL_ASYNC_MODE Y --

SQL_BATCH_ROW_COUNT Y --

SQL_BATCH_SUPPORT Y --

SQL_DATA_SOURCE_NAME Y --

SQL_DRIVER_HDBC Y --

SQL_DRIVER_HDESC Y Returned by the
driver manager

SQL_DRIVER_HENV Y --

SQL_DRIVER_HLIB Y Returned by the
driver manager

SQL_DRIVER_HSTMT Y --

SQL_DRIVER_NAME Y --

SQL_DRIVER_ODBC_VER Y --

SQL_DRIVER_VER Y --

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 Y --

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 Y --

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 Y --

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 Y --

SQL_FILE_USAGE Y --

SQL_GETDATA_EXTENSIONS Y --

SQL_INFO_SCHEMA_VIEWS Y --

SQL_KEYSET_CURSOR_ATTRIBUTES1 Y --

SQL_KEYSET_CURSOR_ATTRIBUTES2 Y --

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS Y --

SQL_MAX_CONCURRENT_ACTIVITIES Y --

14. HiRDB Access from ODBC Application Programs

1082

Legend:

Y: Can be specified

--: Not applicable

(b) Information about DBMS product
The SQLGetInfo function returns information about the DBMS product, such as the
DBMS product name and version. The following table lists the DBMS product
information items that can be specified in SQLGetInfo.

Table 14-16: DBMS product information items that can be specified in
SQLGetInfo

Legend:

Y: Can be specified

--: Not applicable

SQL_MAX_DRIVER_CONNECTIONS Y --

SQL_ODBC_INTERFACE_CONFORMANCE Y --

SQL_ODBC_VER Y --

SQL_PARAM_ARRAY_ROW_COUNTS Y --

SQL_PARAM_ARRAY_SELECTS Y --

SQL_ROW_UPDATES Y --

SQL_SEARCH_PATTERN_ESCAPE Y --

SQL_SERVER_NAME Y --

SQL_STATIC_CURSOR_ATTRIBUTES1 Y --

SQL_STATIC_CURSOR_ATTRIBUTES2 Y --

Option value Whether specifiable Remarks

SQL_DATABASE_NAME Y --

SQL_DBMS_NAME Y --

SQL_DBMS_VER Y --

Option value Whether
specifiable

Remarks

14. HiRDB Access from ODBC Application Programs

1083

(c) Data source information
The SQLGetInfo function returns information about the data source, such as the
cursor attributes and transaction functions. The following table lists the data source
information items that can be specified in SQLGetInfo.

Table 14-17: Data source information items that can be specified in SQLGetInfo

Option value Whether specifiable Remarks

SQL_ACCESSIBLE_PROCEDURES Y --

SQL_ACCESSIBLE_TABLES Y --

SQL_BOOKMARK_PERSISTENCE Y --

SQL_CATALOG_TERM Y --

SQL_COLLATION_SEQ Y --

SQL_CONCAT_NULL_BEHAVIOR Y --

SQL_CURSOR_COMMIT_BEHAVIOR Y --

SQL_CURSOR_ROLLBACK_BEHAVIOR Y --

SQL_CURSOR_SENSITIVITY Y --

SQL_DATA_SOURCE_READ_ONLY Y --

SQL_DEFAULT_TXN_ISOLATION Y --

SQL_DESCRIBE_PARAMETER Y --

SQL_MULT_RESULT_SETS Y --

SQL_MULTIPLE_ACTIVE_TXN Y --

SQL_NEED_LONG_DATA_LEN Y --

SQL_NULL_COLLATION Y --

SQL_PROCEDURE_TERM Y --

SQL_SCHEMA_TERM Y --

SQL_SCROLL_OPTIONS Y --

SQL_TABLE_TERM Y --

SQL_TXN_CAPABLE Y --

SQL_TXN_ISOLATION_OPTION Y --

SQL_USER_NAME Y --

14. HiRDB Access from ODBC Application Programs

1084

Legend:

Y: Can be specified

--: Not applicable

(d) SQL statement information
The SQLGetInfo function returns information about the SQL statements that are
supported by the data source. The following table lists the SQL statement information
items that can be specified in SQLGetInfo.

Table 14-18: SQL statement information items that can be specified in
SQLGetInfo

Option value Whether
specifiable

Remarks

SQL_AGGREGATE_FUNCTIONS Y --

SQL_ALTER_DOMAIN Y --

SQL_ALTER_SCHEMA N --

SQL_ALTER_TABLE Y --

SQL_ANSI_SQL_DATETIME_LITERALS Y --

SQL_CATALOG_LOCATION Y --

SQL_CATALOG_NAME Y --

SQL_CATALOG_NAME_SEPARATOR Y --

SQL_CATALOG_USAGE Y --

SQL_COLUMN_ALIAS Y --

SQL_CORRELATION_NAME Y --

SQL_CREATE_ASSERTION Y --

SQL_CREATE_CHARACTER_SET Y --

SQL_CREATE_COLLATION Y --

SQL_CREATE_DOMAIN Y --

SQL_CREATE_SCHEMA Y --

SQL_CREATE_TABLE Y --

SQL_CREATE_TRANSLATION Y --

SQL_DDL_INDEX Y --

14. HiRDB Access from ODBC Application Programs

1085

SQL_DROP_ASSERTION Y --

SQL_DROP_CHARACTER_SET Y --

SQL_DROP_COLLATION Y --

SQL_DROP_DOMAIN Y --

SQL_DROP_SCHEMA Y --

SQL_DROP_TABLE Y --

SQL_DROP_TRANSLATION Y --

SQL_DROP_VIEW Y --

SQL_EXPRESSIONS_IN_ORDERBY Y --

SQL_GROUP_BY Y --

SQL_IDENTIFIER_CASE Y --

SQL_IDENTIFIER_QUOTE_CHAR Y --

SQL_INDEX_KEYWORDS Y --

SQL_INSERT_STATEMENT Y --

SQL_INTEGRITY Y --

SQL_KEYWORDS Y --

SQL_LIKE_ESCAPE_CLAUSE Y --

SQL_NON_NULLABLE_COLUMNS Y --

SQL_SQL_CONFORMANCE Y --

SQL_OJ_CAPABILITIES Y --

SQL_ORDER_BY_COLUMNS_IN_SELECT Y --

SQL_OUTER_JOINS Y --

SQL_PROCEDURES Y --

SQL_QUOTED_IDENTIFIER_CASE Y --

SQL_SCHEMA_USAGE Y --

SQL_SPECIAL_CHARACTERS Y --

Option value Whether
specifiable

Remarks

14. HiRDB Access from ODBC Application Programs

1086

Legend:

Y: Can be specified

N: Cannot be specified

--: Not applicable

(e) Information about limitations to SQL statements
The SQLGetInfo function returns information about the limitations to SQL statement
identifiers and clauses, such as the maximum length of an identifier and the maximum
number of columns in a list. The following table lists information items related to SQL
statement limitations that can be specified in SQLGetInfo.

Table 14-19: Information items related to SQL statement limitations that can be
specified in SQLGetInfo

SQL_SUBQUERIES Y --

SQL_UNION Y --

Option value Whether
specifiable

Remarks

SQL_MAX_BINARY_LITERAL_LEN Y --

SQL_MAX_CATALOG_NAME_LEN Y --

SQL_MAX_CHAR_LITERAL_LEN Y --

SQL_MAX_COLUMN_NAME_LEN Y --

SQL_MAX_COLUMNS_IN_GROUP_BY Y --

SQL_MAX_COLUMNS_IN_INDEX Y --

SQL_MAX_COLUMNS_IN_ORDER_BY Y --

SQL_MAX_COLUMNS_IN_SELECT Y --

SQL_MAX_COLUMNS_IN_TABLE Y --

SQL_MAX_CURSOR_NAME_LEN Y --

SQL_MAX_IDENTIFIER_LEN Y --

SQL_MAX_INDEX_SIZE Y --

SQL_MAX_PROCEDURE_NAME_LEN Y --

Option value Whether
specifiable

Remarks

14. HiRDB Access from ODBC Application Programs

1087

Legend:

Y: Can be specified

--: Not applicable

(f) Scalar function information
The SQLGetInfo function returns information about the scalar functions supported by
the data source or driver. The following table lists the scalar function information items
that can be specified in SQLGetInfo.

Table 14-20: Scalar function information items that can be specified in
SQLGetInfo

Legend:

Y: Can be specified

--: Not applicable

SQL_MAX_ROW_SIZE Y --

SQL_MAX_ROW_SIZE_INCLUDES_LONG Y --

SQL_MAX_SCHEMA_NAME_LEN Y --

SQL_MAX_STATEMENT_LEN Y --

SQL_MAX_TABLE_NAME_LEN Y --

SQL_MAX_TABLES_IN_SELECT Y --

SQL_MAX_USER_NAME_LEN Y --

Option value Whether specifiable Remarks

SQL_CONVERT_FUNCTIONS Y --

SQL_NUMERIC_FUNCTIONS Y --

SQL_STRING_FUNCTIONS Y --

SQL_SYSTEM_FUNCTIONS Y --

SQL_TIMEDATE_ADD_INTERVALS Y --

SQL_TIMEDATE_DIFF_INTERVALS Y --

SQL_TIMEDATE_FUNCTIONS Y --

Option value Whether
specifiable

Remarks

14. HiRDB Access from ODBC Application Programs

1088

(g) Information about the target SQL data type
The SQLGetInfo function returns information about the target SQL data type when
an SQL data type for which a data source is specified is converted by the CONVERT
scalar function. The following table lists information items related to the target SQL
data type that can be specified in SQLGetInfo.

Table 14-21: Information items related to the target SQL data type that can be
specified in SQLGetInfo

Option value Whether
specifiable

Remarks

SQL_CONVERT_BIGINT Y --

SQL_CONVERT_BINARY Y --

SQL_CONVERT_BIT Y --

SQL_CONVERT_CHAR Y --

SQL_CONVERT_DATE Y --

SQL_CONVERT_DECIMAL Y --

SQL_CONVERT_DOUBLE Y --

SQL_CONVERT_FLOAT Y --

SQL_CONVERT_INTEGER Y --

SQL_CONVERT_INTERVAL_YEAR_MONTH Y --

SQL_CONVERT_INTERVAL_DAY_TIME Y --

SQL_CONVERT_LONGVARBINARY Y --

SQL_CONVERT_LONGVARCHAR Y --

SQL_CONVERT_NUMERIC Y --

SQL_CONVERT_REAL Y --

SQL_CONVERT_SMALLINT Y --

SQL_CONVERT_TIME Y --

SQL_CONVERT_TIMESTAMP Y --

SQL_CONVERT_TINYINT Y --

SQL_CONVERT_VARBINARY Y --

SQL_CONVERT_VARCHAR Y --

14. HiRDB Access from ODBC Application Programs

1089

Legend:

Y: Can be specified

--: Not applicable

(h) Information types added for ODBC 3.0 or later
The following table lists the information types that have been added for ODBC 3.0 or
later.

Table 14-22: Information types added for ODBC 3.0 or later

Option value Whether
specifiable

Remarks

SQL_ACTIVE_ENVIRONMENTS Y --

SQL_AGGREGATE_FUNCTIONS Y --

SQL_ALTER_DOMAIN Y --

SQL_ALTER_SCHEMA N --

SQL_ANSI_SQL_DATETIME_LITERALS Y --

SQL_ASYNC_MODE Y --

SQL_BATCH_ROW_COUNT Y --

SQL_BATCH_SUPPORT Y --

SQL_CATALOG_NAME Y --

SQL_COLLATION_SEQ Y --

SQL_CONVERT_INTERVAL_YEAR_MONTH Y --

SQL_CONVERT_INTERVAL_DAY_TIME Y --

SQL_CREATE_ASSERTION Y --

SQL_CREATE_CHARACTER_SET Y --

SQL_CREATE_COLLATION Y --

SQL_CREATE_DOMAIN Y --

SQL_CREATE_SCHEMA Y --

SQL_CREATE_TABLE Y --

SQL_CREATE_TRANSLATION Y --

SQL_CURSOR_SENSITIVITY Y --

14. HiRDB Access from ODBC Application Programs

1090

SQL_DDL_INDEX Y --

SQL_DESCRIBE_PARAMETER Y --

SQL_DM_VER Y Returned by the
driver manager

SQL_DRIVER_HDESC Y --

SQL_DROP_ASSERTION Y --

SQL_DROP_CHARACTER_SET Y --

SQL_DROP_COLLATION Y --

SQL_DROP_DOMAIN Y --

SQL_DROP_SCHEMA Y --

SQL_DROP_TABLE Y --

SQL_DROP_TRANSLATION Y --

SQL_DROP_VIEW Y --

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 Y --

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 Y --

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 Y --

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 Y --

SQL_INFO_SCHEMA_VIEWS Y --

SQL_INSERT_STATEMENT Y --

SQL_KEYSET_CURSOR_ATTRIBUTES1 Y --

SQL_KEYSET_CURSOR_ATTRIBUTES2 Y --

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS Y --

SQL_MAX_IDENTIFIER_LEN Y --

SQL_PARAM_ARRAY_ROW_COUNTS Y --

SQL_PARAM_ARRAY_SELECTS Y --

SQL_STATIC_CURSOR_ATTRIBUTES1 Y --

SQL_STATIC_CURSOR_ATTRIBUTES2 Y --

Option value Whether
specifiable

Remarks

14. HiRDB Access from ODBC Application Programs

1091

Legend:

Y: Can be specified

N: Cannot be specified

--: Not applicable

(10) SQLColAttribute
The following table lists the ODBC descriptor attributes that can be specified in
SQLColAttribute.

Table 14-23: ODBC descriptor attributes that can be specified in
SQLColAttribute

SQL_SQL92_DATETIME_FUNCTIONS Y --

SQL_SQL92_FOREIGN_KEY_DELETE_RULE Y --

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE Y --

SQL_SQL92_GRANT Y --

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS Y --

SQL_SQL92_PREDICATES Y --

SQL_SQL92_RELATIONAL_JOIN_OPERATORS Y --

SQL_SQL92_REVOKE Y --

SQL_SQL92_ROW_VALUE_CONSTRUCTOR Y --

SQL_SQL92_STRING_FUNCTIONS Y --

SQL_SQL92_VALUE_EXPRESSIONS Y --

SQL_STANDARD_CLI_CONFORMANCE Y --

SQL_XOPEN_CLI_YEAR Y --

Attribute Whether
specifiab

le

Complianc
e level

Remarks

SQL_DESC_AUTO_UNIQUE_VALUE Y Level 2 --

Option value Whether
specifiable

Remarks

14. HiRDB Access from ODBC Application Programs

1092

SQL_DESC_BASE_COLUMN_NAME Y Core The column name
that can be acquired
by the DESCRIBE
SQL statement, not
the base column
name, is returned.
Therefore, the same
column name as in
SQL_DESC_NAME is
returned.

SQL_DESC_BASE_TABLE_NAME Y Level 1 --

SQL_DESC_CASE_SENSITIVE Y Core --

SQL_DESC_CATALOG_NAME Y Level 2 --

SQL_DESC_CONCISE_TYPE Y Core --

SQL_DESC_DATA_PTR Y Core --

SQL_DESC_DATETIME_INTERVAL_CODE Y Core --

SQL_DESC_DATETIME_INTERVAL_PRECISION Y Core --

SQL_DESC_SQL_DESC_DISPLAY_SIZE Y Core --

SQL_DESC_FIXED_PREC_SCALE Y Core --

SQL_DESC_INDICATOR_PTR Y Core --

SQL_DESC_LABEL Y Level 2 --

SQL_DESC_LENGTH Y Core --

SQL_DESC_LITERAL_PREFIX Y Core --

SQL_DESC_LITERAL_SUFFIX Y Core --

SQL_DESC_LOCAL_TYPE_NAME Y Core --

SQL_DESC_NAME Y Core --

SQL_DESC_NULLABLE Y Core --

SQL_DESC_NUM_PREC_RADIX Y -- --

SQL_DESC_OCTET_LENGTH Y Core --

SQL_DESC_OCTET_LENGTH_PTR Y Core --

Attribute Whether
specifiab

le

Complianc
e level

Remarks

14. HiRDB Access from ODBC Application Programs

1093

Legend:

Y: Can be specified

--: Not applicable

SQL_DESC_PARAMETER_TYPE Y Core --

SQL_DESC_PRECISION Y Core --

SQL_DESC_SCALE Y Core --

SQL_DESC_SCHEMA_NAME Y Level 1 --

SQL_DESC_SEARCHABLE Y Core --

SQL_DESC_TABLE_NAME Y Level 1 --

SQL_DESC_TYPE Y Core --

SQL_DESC_TYPE_NAME Y Core --

SQL_DESC_UNNAMED Y Core --

SQL_DESC_UNSIGNED Y Core --

SQL_DESC_UPDATABLE Y Core --

Attribute Whether
specifiab

le

Complianc
e level

Remarks

14. HiRDB Access from ODBC Application Programs

1094

14.7 Asynchronous execution of ODBC functions

(1) About asynchronous execution of ODBC functions
When an ODBC application program accesses HiRDB, the program can execute the
ODBC functions asynchronously.

When ODBC functions are executed simultaneously, the ODBC driver does not return
control to the application until function calling ends. However, when ODBC functions
are executed asynchronously, the ODBC driver can return control to the application
program at any time. The application program can therefore execute other processes
when the ODBC functions are being executed asynchronously.

The following ODBC functions can be executed asynchronously:

• SQLColumnPrivileges

• SQLColumns

• SQLExecute

• SQLExecDirect

• SQLParamData

• SQLProcedureColumns

• SQLFetch

• SQLStatistics

• SQLTablePrivileges

• SQLTables

• SQLProcedures

(2) Procedure for asynchronous execution of ODBC functions
To execute asynchronous ODBC functions:

1. To enable asynchronous execution in a specific hstmt (statement handle) only,
use the SQL_ASYNC_ENABLE option to call SQLSetStmtOption.#1 To enable
asynchronous execution in all hstmt handles related to hdbc (connection
handle), use the SQL_ASYNC_ENABLE option to call SQLSetConnectOption.#2

2. When an ODBC function that can be executed asynchronously#1 is called with an
hstmt for which asynchronous execution has been enabled, the ODBC driver
starts asynchronous execution of that function and returns
SQL_STILL_EXECUTING. (If asynchronous execution is not set or if an error
occurs, the ODBC driver returns a synchronous execution code, such as

14. HiRDB Access from ODBC Application Programs

1095

SQL_SUCCESS or SQL_ERROR.)

3. The application program can execute another process while an ODBC function is
being executed asynchronously. An application program can call only the
SQLAllocStmt, SQLCancel, and SQLGetFunctions with the hstmt that is
executing the function asynchronously. If any other function is called (except the
function being executed asynchronously), the driver manager returns a sequence
error.

4. The application program calls the ODBC function that was being executed
asynchronously to check whether execution of that function terminated. If the
function is still executing, SQL_STILL_EXECUTING is returned. If the process
has terminated, a return code such as SQL_SUCCESS or SQL_ERROR is returned.

When an application program calls a function to check the execution status, all
specified arguments, except hstmt, are ignored. (However, the specified
argument values must be effective; otherwise, an error can occur if an incorrect
address or value is specified.) For example, if SQLExecDirect is executed
asynchronously with the INSERT statement function, and SQLExecDirect is
called again, the execution status of the INSERT statement is returned, even if the
UPDATE statement is specified.

Note

To disable asynchronous execution in a specific hstmt only, use the
SQL_ASYNC_ENABLE option to call SQLSetStmtOption. To disable
asynchronous execution in all hstmt handles related to hdbc, use the
SQL_ASYNC_ENABLE option to call SQLSetConnectOption.

#1: The settings for SQLSetStmtOption are shown as follows.

#2: The settings for SQLSetConnectOption are shown as follows.

Option Setting

SQL_ASYNC_ENABLE SQL_ASYNC_ENABLE_OFF or SQL_ASYNC_ENABLE_ON

SQL_BIND_TYPE Cannot be set.

SQL_MAX_LENGTH Limit specified by server or value specified by user

SQL_NOSCAN (Default=FALSE) SQL_NOSCAN_OFF or SQL_NOSCAN_ON

SQL_QUERRY_TIMEOUT Cannot be set.

SQL_MAX_ROWS Limit specified by server or value specified by user

Option Setting

SQL_ACCESS_MODE Fixed to SQL_MODE_READ_WRITE

14. HiRDB Access from ODBC Application Programs

1096

(3) Cancelling asynchronous execution for an ODBC function
(a) Cancelling asynchronous execution of an ODBC function

To cancel an ODBC function during asynchronous execution, call SQLCancel.

SQLCancel issues a process cancellation request to the server as soon as it confirms
that the specified hstmt is currently undergoing asynchronous execution.

The return value for SQLCancel only reports whether the cancel request was
completed. To find out whether asynchronous execution of the function was actually
cancelled, call the function that was being processed asynchronously and check the
return value. If the function is still executing, SQL_STILL_EXECUTING is returned. If
cancel processing was completed, SQL_ERROR and SQLSTATE S1008 (process
cancellation) are returned. If the function has already terminated normally, or if an
error occurred, a code such as SQL_SUCCESS or SQL_ERROR is returned.

(b) Cancelling asynchronous execution in a multi-thread application
program
A multi-thread application program can cancel an ODBC function that is being
executed asynchronously with hstmt. To cancel the function, the application program
calls SQLCancel from a different thread and uses the same hstmt as that used by the
function being cancelled.

The return value of SQLCancel indicates whether the driver received the request
correctly. The return values of the original function are SQL_SUCCESS, or SQL_ERROR
and SQLSTATE S1008 (process cancellation).

Note

The HiRDB cancel process is executed for an individual connection, and the

SQL_AUTOCOMMIT SQL_AUTOCOMMIT_OFF or SQL_AUTOCOMMIT_ON

SQL_LOGON_TIMEOUT Cannot be set.

SQL_OPT_TRACE Fixed to 0 (Off). This option is returned from the ODBC
driver manager.

SQL_OPT_TRACEFILE Fixed to NULL. This option is returned from the ODBC
driver manager.

SQL_TRANSLATE_DLL Cannot be set.

SQL_TRANSLATE_OPTION Cannot be set.

SQL_TXN_ISOLATION SQL_TXN_READ_UNCOMMITED

SQL_ASYNC_ENABLE SQL_ASYNC_ENABLE_OFF or SQL_ASYNC_ENABLE_ON

Option Setting

14. HiRDB Access from ODBC Application Programs

1097

connection with the server is forcibly disconnected. (The server outputs
KFPS00993-I: Server process termination
REQUEST=clt_attention). Consequently, all statements of the hstmt
handlers related to the specified hstmt are cancelled (the transaction is rolled
back). Carefully consider any data being updated before cancelling an ODBC
function that is being executed asynchronously.

(4) Coding example
The following is an example of coding for asynchronous execution:
SQLSetStmtOption(hstmst, SQL_ASYNC_ENABLE,
SQL_ASYNC_ENABLE_ON);
 ...
 Retrieval processing with SQLFetch
rc=SQLFetch(hstmt);
while(rc==SQL_STILL_EXECUTING)
{
 ...
 Continue processing of UAP being executed asynchronously
 ...
 if(process cancel request was issued)
 {
 rc=SQL_Cancel(hstmt);
 if(rc==SQL_ERROR){ To error processing for cancel
 request failure }
 }
 rc=SQLFetch(hstmt);
}
if(rc == SQL_ERROR){ To error processing }
 To retrieval data manipulation processing
 ...

14. HiRDB Access from ODBC Application Programs

1098

14.8 Setting cursor libraries

A cursor library must be set before SQLExtendedFetch can be used in an ODBC
UAP. A cursor library can be set in two ways:

When the SetConnectOption ODBC function is used:
Use the SetConnectOption ODBC function and specify SQL_ODBC_CURSORS
in the fOption argument and SQL_CUR_USE_ODBC in the vParam argument.

When RDO of Visual Basic is used:
Specify rdUseOdbc in the CursorDriver property of the rdoEnvironment
object. The following is an example of coding when RDO of Visual Basic is used:
Dim mrdoEnv as rdoEnvironment
Set mrdoEnv = rdoEngine.rdoCreateEnvironment("","","")
 mrdoEnv.CursorDriver = rdUseOdbc
 Src = "DSN=host1; UID=USER_A;PWD=USER_A"
 Set mrdoConn = mrdoEnv.OpenConnection
 ("", rdDriverComplete, False, Src)
 ...
 ...

See the simple sample UAPs found in the Sampleap directory of the installation
floppy disk for the ODBC driver.

14. HiRDB Access from ODBC Application Programs

1099

14.9 File DSNs

When an application program uses a file DSN, it can connect to a data source without
obtaining information from ODBC.INI or the registry because the DSN file stores
information for connecting to the data source.

By sharing the file, multiple users can connect to the HiRDB system without having to
register the data source (formerly the machine data source) to each machine. A file
DSN can be used when the ODBC component version is 3.0 or higher.

File DSNs can be created by the ODBC data source administrator.

Creating file DSNs
To create a file DSN, select a file DSN, add the file DSN, select a driver (HiRDB
32-bit driver), and then specify the storage file name. A connection request is then
issued to the HiRDB system, and the driver manager creates the file based on the
complete connection character string returned by SQLDriverConnect.
However, in this case, the password is not stored in the file DSN. If the password
is to be shared, add the line PWD=password to the created file.

14. HiRDB Access from ODBC Application Programs

1100

14.10 Executing a UAP in Unicode

This section explains the ODBC functions that can be used by a UAP in Unicode.

(1) ODBC functions that can be used by a UAP in Unicode
The following table shows the ODBC functions that can be used by a UAP in Unicode.

Table 14-24: ODBC functions that can be used by a UAP in Unicode

Classification Function name Function

Connection with data
source

SQLConnectW Connects to a specific driver based on the
data source name, authorization identifier,
and password.

SQLDriverConnectW Connects to a specific driver based on the
connection character string. Also, requests
to the driver manager and driver that a
connection dialog box be displayed for the
user.

SQLBrowseConnectW Returns the continuous level connection
attributes and valid attribute values. If a
value is specified for each connection
attribute, connects to the data source.

SQLDriversW Returns the installed driver and a list of its
attributes.

Driver and data source
information

SQLDataSources Returns a list of data sources that can be
used.

SQLGetInfoW Returns a specific driver and data source
information.

Setting and acquisition of
driver options

SQLSetConnectAttrW Sets the connection attributes.

SQLGetConnectAttrW Returns the connection attribute values.

SQLSetStmtAttrW Sets the statement attribute.

SQLGetStmtAttrW Returns the statement attribute value.

Descriptor setting and
acquisition

SQLSetDescFieldW Sets one descriptor field.

SQLGetDescFieldW Returns one descriptor field value.

SQLSetDescRecW Sets multiple descriptor fields.

14. HiRDB Access from ODBC Application Programs

1101

SQLGetDescRecW Returns multiple descriptor field values.

SQLPrepareW Prepares an SQL statement to be executed
later.

SQL request creation SQLSetCursorNameW Specifies a cursor name.

SQLGetCursorNameW Returns the cursor name related to the
statement handle.

SQL execution SQLExecDirectW Executes a statement.

SQLNativeSqlW Returns the text of the SQL statement that
the driver converted.

Acquisition of execution
results and execution
results information

SQLDescribeColW Describes the results set columns.

SQLColAttributeW Describes the attributes of the results set
columns.

SQLGetDiagFieldW Returns additional diagnosis information
(one field of the diagnosis data structure).

SQLGetDiagRecW Returns additional diagnosis information
(multiple fields of the diagnosis data
structure).

SQLColumnPrivilegesW Returns a list of columns and privileges
related to one or more tables.

Acquisition of data source
system information

SQLColumnsW Returns a list of column names of specified
tables.

SQLForeignKeysW Returns a list of column names that
compose an external key when there is an
external key in a specified table.

SQLPrimaryKeysW Returns a list of column names that
compose a main key of a specified table.

SQLProcedureColumnsW Returns a list of input or output parameters
and columns that compose the results set of
a specified procedure.

SQLProceduresW Returns a list of procedure names in a
specified data source.

Classification Function name Function

14. HiRDB Access from ODBC Application Programs

1102

(2) Notes
The following notes apply when UCS2_UJIS or UCS2_UTF8 is set in PDCLTCNVMODE
of the client environment definition:

• The SQL data type returned when the column attribute is acquired is as follows:

When the HiRDB data type is CHAR, MCHAR, or NCHAR: SQL_WCHAR

When the HiRDB data type is VARCHAR, MVARCHAR, or NVARCHAR:
SQL_WVARCHAR

• When the column attribute is acquired, if the HiRDB data type is character string
system data type, the column definition length x 2 is set for the column length.
For example, in case of char(10), 20 is returned for the column length.

SQLSpecialColumnsW Returns the optimum column for
identifying lines in a specified table or the
column information that is corrected
automatically when line values are changed
by a transaction.

SQLStatisticsW Returns statistical information related to a
single table and a list of indexes related to
the table.

SQLTablePrivilegesW Returns a list of tables and the privileges
related to each table.

SQLTablesW Returns a list of table names in the specified
data source.

Classification Function name Function

14. HiRDB Access from ODBC Application Programs

1103

14.11 Tuning and troubleshooting

This section explains how to tune and troubleshoot ODBC UAPs.

(1) Poor performance in a UAP that retrieves multiple rows
Use the block transfer facility. To use this facility, specify the PDBLKF operand in the
client environment definition. A specification value between 40 and 50 is
recommended. Specifying a larger value has little effect in reducing the number of
communications and instead may delay processing because of the increased
processing overhead. For details about the block transfer facility, see 4.7 Block transfer
facility.

(2) If a UAP executes connect and disconnect processing frequently
Use the high-speed connection facility. To use this facility, specify the PDFESHOST,
PDSERVICEPORT, and PDSERVICEGRP operands in the client environment definition.
The high-speed connection facility shortens the time for connection to HiRDB. For
details about the PDFESHOST, PDSERVICEPORT, and PDSERVICEGRP operands of the
client environment definition, see 6.6.4 Environment definition information.

(3) Checking SQL statements requested of HiRDB
If a UAP accesses the HiRDB system via ODBC, the SQL statements specified in the
UAP may differ from the SQL statements requested of the HiRDB system, depending
on the environment in which the UAP was created. To check what kind of SQL
statements are issued to the HiRDB system, use the SQL trace facility. To use this
facility, specify the PDSQLTRACE operand in the client environment definition. It is
recommended to also specify the trace output destination directory in the PDCLTPATH
operand at this time. For details about the SQL trace facility, see 11.1.1 SQL tracing.

(4) Other
If an application program, such as Microsoft Access, specifies the lock option in
a retrieval SQL statement, a syntax error may occur in that application program.
If this happens, examine whether the problem can be corrected by specifying the
PDISLLVL operand of the client environment definition.

If you use Microsoft Access to access HiRDB, a lock error might occur in HiRDB
during updating, depending on how the UAP is written. This occurs when
Microsoft Access establishes multiple connections to HiRDB, and referencing or
updating is executed on the same line from different connections. To avoid this,
specify 0 or 1 for the PDISLLVL operand in the client environment definition. In
the Sampleap directory on the installation floppy disk for the ODBC driver, there
is a sample UAP that uses DAO (Data Access Object) of Visual Basic and no lock
error occurs during access; refer to this UAP.

14. HiRDB Access from ODBC Application Programs

1104

14.12 Facilities that cannot be used when HiRDB is accessed with
ODBC

When an application program accesses the HiRDB system with ODBC, some of the
facilities cannot be used.

Access using the row interface

Queries with ROW specifications, UPDATE statements, and INSERT statements
cannot be executed.

Update and deletion using a cursor

Update and deletion using CURRENT OF cursor-name cannot be executed.
However, if the cursor library facility is used, the cursor library can sometimes
execute such operations to change CURRENT OF cursor-name to a WHERE
condition.

Portable cursors

Portable cursors (cursors with the WITH HOLD specification or cursors defined by
queries with the UNTIL DISCONNECT specification) cannot be used.

14. HiRDB Access from ODBC Application Programs

1105

14.13 Notes about using the Linux edition of the HiRDB ODBC 3.5
driver

• The Linux edition of the HiRDB ODBC 3.5 driver processes one character of the
SQL_C_WCHAR type as two bytes in the UTF-16LE format. Therefore, when you
pass data of the SQL_C_WCHAR type to a Linux edition of the HiRDB ODBC 3.5
driver, make sure that the data is in UTF-16LE format.

• When an ODBC function supporting Unicode is used, the Linux edition of the
HiRDB ODBC 3.5 driver checks the character codes of the connection-target
HiRDB server, and converts a character string received from the driver manager
from UTF-16LE format to the HiRDB server's character codes. This driver
converts data received from the HiRDB server from the HiRDB server's codes to
UTF-16LE format and then returns the data to the driver manager. However, if the
PDCLTCNVMODE client environment definition is specified, the Linux edition of
the HiRDB ODBC 3.5 driver converts character codes according to the
PDCLTCNVMODE specification regardless of the character codes of the
connection-target HiRDB server. The following table shows the combinations of
character codes that can be used when ODBC functions supporting Unicode are
used, and the character code conversion methods.

Table 14-25: Combinations of character codes that can be used when ODBC
functions supporting Unicode are used and the character code conversion
methods

PDCLTCNVMODE
specification

ODBC driver Client library HiRDB
server

UCS2_UTF8 UTF-16LE UTF-16LE UTF-16LE UTF-8 UTF-8

UCS2_UJIS UTF-16LE UTF-16LE UTF-16LE EUC EUC

UCS2_HJ UTF-16LE UTF-16LE UTF-16LE EUC-HJ EUC-H
J

UTF8 UTF-16LE SJIS SJIS UTF-8 UTF-8

UJIS UTF-16LE SJIS SJIS EUC EUC

EUCHJ UTF-16LE SJIS SJIS EUC-HJ EUC-H
J

Omitted UTF-16LE SJIS SJIS SJIS SJIS

UTF-16LE UTF-8 UTF-8 UTF-8 UTF-8

UTF-16LE EUC EUC EUC EUC

14. HiRDB Access from ODBC Application Programs

1106

• When an ODBC function that does not support Unicode is used, the Linux edition
of the HiRDB ODBC 3.5 driver does not convert character strings passed as
arguments. In such a case, you must ensure that the character codes used in the
UAP execution environment match the character codes used on the
connection-target HiRDB server. If the PDCLTCNVMODE client environment
definition is specified, character codes are converted according to the
PDCLTCNVMODE specification.

• When a connection function of an ODBC function that supports Unicode is used,
the Linux edition of the HiRDB ODBC 3.5 driver converts a data source name to
the character codes specified in the LANG environment variable in the execution
environment. Therefore, if the character codes in the execution environment's
LANG environment variable do not match the character codes for the registered
data source name, the driver might not be able to read a data source name that is
not in ASCII characters.

• The Linux edition of the HiRDB ODBC 3.5 driver does not support display of
dialog boxes. Therefore, if SQLDriverConnect is called with a value other than
SQL_DRIVER_NOPROMPT specified when connection is established with the
HiRDB server, the driver returns SQL_ERROR.

• The Linux edition of the HiRDB ODBC 3.5 driver does not support registration
of data sources that use the unixODBC-provided GUI tool ODBC Config. When
you register data sources, you must follow the procedure described in 14.3.1(4)
Installation procedure (in the Linux edition).

14. HiRDB Access from ODBC Application Programs

1107

14.14 Automatic SQL statement generation by using .NET
Framework Data Provider for ODBC

.NET Framework Data Provider for ODBC is one of the .NET Framework class
libraries provided by Microsoft. .NET Framework Data Provider for ODBC enables
you to automatically generate SQL statements for updating a data source by using the
OdbcCommandBuilder class.

The following limitations apply when the HiRDB ODBC 3.5 driver is used with .NET
Framework Data Provider for ODBC to automatically generate SQL statements:

• Automatic generation of SQL statements via .NET Framework Data Provider for
ODBC is supported by HiRDB version 08-04 or later. If a HiRDB version earlier
than 08-04 is used, operation is not guaranteed.

• If you specify a correlation name as a table name in the SELECT statement that is
specified in the SelectCommand property of the OdbcDataAdapter class,
which is the base of automatic generation of SQL statements, the HiRDB server
returns the base table name to the HiRDB ODBC 3.5 driver. Therefore, a valid
SQL statement is generated for the HiRDB server. However, if an alias is
specified as a table name, the HiRDB server does not return a table name to the
HiRDB ODBC 3.5 driver. As a result, no table name can be returned to .NET
Framework Data Provider for ODBC that requires the value of
SQL_DESC_BASE_TABLE_NAM for the SQLColAttribute function of the
HiRDB ODBC 3.5 driver. In such a case, automatic generation of SQL statements
is not guaranteed.

• If you specify an alias as a column name in a SELECT statement that is specified
in the SelectCommand property of the OdbcDataAdapter class, which is the
base of automatic generation of SQL statements, the HiRDB server returns the
alias of the column to the HiRDB ODBC 3.5 driver. Therefore, the alias of the
column is used in the automatically generated SQL statement. If an SQL
statement containing an alias of a column is executed, the HiRDB server returns
an error because no such column actually exists.

1109

Chapter

15. HiRDB Access from OLE DB
Application Programs

This chapter provides an overview of the OLE DB and discusses its connection
interface, schema information, and error handling procedures.

This chapter contains the following sections:

15.1 Overview
15.2 Connection interface
15.3 Schema information
15.4 Data type correspondences
15.5 Error handling procedures
15.6 Notes

15. HiRDB Access from OLE DB Application Programs

1110

15.1 Overview

(1) What is OLE DB?
OLE DB is an API, like ODBC, for accessing a wide range of data sources. Unlike
ODBC, OLE DB contains interface definitions suitable for accessing data other than
SQL data.

(2) HiRDB OLE DB Provider
To access HiRDB from an OLE DB-supported application program, you need a
HiRDB OLE DB provider. The HiRDB OLE DB provider is included in HiRDB/Run
Time and HiRDB/Developer's Kit.

(3) Installing the HiRDB OLE DB provider
To install the HiRDB OLE DB provider when installing HiRDB/Run Time or HiRDB/
Developer's Kit, in the Setup Type dialog box, choose Custom, and in the Select
Components dialog box, select OLE DB provider for HiRDB.

When you install the HiRDB OLE DB provider, the following files are created:

• PDOLEDB.DLL

• PDCLTM32.DLL

(4) HiRDB OLE DB provider name
The name of the HiRDB OLE DB provider (provider program ID) is
HiRDBProvider. When using an interface that requires the provider name (such as
ActiveX Data Object (ADO)), you can use the HiRDB OLE DB provider by specifying
this provider name in the connection object's Provider property.

15. HiRDB Access from OLE DB Application Programs

1111

15.2 Connection interface

This section explains the registry information and connection property.

15.2.1 Registry information
(1) Adding to the HKEY_CLASSES_ROOT key

(a) Provider program ID = provider name
"HiRDBProvider"="Hitachi HiRDB OLE DB Provider"

(b) Provider class ID
"HiRDBProvider\\ClSID"
 ="{6A708561-748A-11d3-B810-0000E2212E58}"

(2) Adding to the HKEY_CLASSES_ROOT\CLSID subkey
(a) Provider program ID

{"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}"
 ="HiRDBProvider"

(b) Provider name
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}\\ProgID"
 ="HiRDBProvider"

(c) Program ID by version
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\VersionIndependentProgID"="HiRDBProvider"

(d) Provider DLL name
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\InprocServer32"="pdoledb.dll"
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\InprocServer32\\ThreadingModel"="Both"

(e) Comment
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\OLE DB Provider"="Hitachi HiRDB OLE DB Provider"

(f) Extended error name
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\ExtendedErrors"="Hitachi HiRDB OLE DB Provider"

(g) Extended error comment
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\ExtendedErrors\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}"
 = "Hitachi HiRDB OLE DB Provider"

15. HiRDB Access from OLE DB Application Programs

1112

(3) Adding to the HKEY_CLASSES_ROOT key
(a) Provider error program ID

" HiRDBProviderErrors"="Hitachi HiRDB OLE DB Provider"

(b) Provider error class ID
"HiRDBProviderErrors\\ClSID"
 ="{5F6D492E-40BA-11D3-BD66-0000E21F878E}"

(4) Adding to the HKEY_CLASSES_ROOT\CLSID subkey
(a) Provider error program ID

"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}"
 ="HiRDBProvider Error Lookup"

(b) Provider error lookup name
"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}\\ProgID"
 ="HiRDBProvider Error Lookup"

(c) Error lookup program ID by version
"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}
 \\VersionIndependentProgID"="HiRDBProvider Error Lookup"

(d) Provider error lookup DLL name
"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}
 \\InprocServer32"="pdoledb.dll"
"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}
 \\InprocServer32\\ThreadingModel"="Both"

15.2.2 Connection properties
Three Initialization properties are used for connection. These three properties
are optional.

(1) DBPROP_INIT_DATASOURCE
This is the client's environment variable group name. If this property is omitted, the
system assumes HiRDB.INI. For details about the client's environment variable
group, see 6.7 Registering an environment variable group.

(2) DBPROP_AUTH_USERID
This is the authorization identifier used for connection.

If this property is omitted, the authorization identifier is acquired from PDUSER of the
applicable client environment variables group. If there is no
DBPROP_INIT_DATASOURCE specification, the authorization identifier is acquired
from HiRDB.INI.

15. HiRDB Access from OLE DB Application Programs

1113

(3) DBPROP_AUTH_PASSWORD
This is the password to be used for connection. If this property is omitted, but
DBPROP_INIT_DATASOURCE is specified, the system obtains the password from
PDUSER in the corresponding client environment variable group. If
DBPROP_INIT_DATASOURCE is also omitted, the system obtains the password from
HiRDB.INI.

15. HiRDB Access from OLE DB Application Programs

1114

15.3 Schema information

The following table lists the schema information provided by the HiRDB OLE DB
provider.

Table 15-1: Schema information provided by the HiRDB OLE DB provider

Type of OLE DB schema
information

Description Provided

ASSERTIONS Assertion information --

CATALOGS Catalog information --

CHARACTER_SETS Character set identification --

CHECK_CONSTRAINTS CHECK constraint identification --

COLLATIONS Character collation identification --

COLUMN_DOMAIN_USAGE Domain-dependent column information --

COLUMN_PRIVILEGES Column privilege information --

COLUMNS Column information P
(required)

CONSTRAINT_COLUMN_USAGE Various constraint (reference, UNIQUE, CHECK)
column information

--

CONSTRAINT_TABLE_USAGE Various constraint (reference, UNIQUE, CHECK) table
information

--

FOREIGN_KEYS External key information --

INDEXES Index information P

KEY_COLUMN_USAGE Key column information --

PRIMARY_KEYS Primary key information --

PROCEDURE_COLUMNS Column information for row set returned by
procedure

--

PROCEDURE_PARAMETERS Procedure parameter information P

PROCEDURES Procedure information P

PROVIDER_TYPES Provider data type identification P
(required)

REFERENTIAL_CONSTRAINTS Reference constraints --

15. HiRDB Access from OLE DB Application Programs

1115

P: Provided.

--: Not provided.

SCHEMATA Schema information P

SQL_LANGUAGES Match level for processing SQL installation and
language type

--

STATISTICS Statistical information --

TABLE_CONSTRAINTS Table constraints --

TABLE_PRIVILEGES Table privilege information P

TABLES Table information P
(required)

TRANSLATIONS Character conversion identification --

USAGE_PRIVILEGES User privilege information --

VIEW_COLUMN_USAGE View column information --

VIEWS View information --

Type of OLE DB schema
information

Description Provided

15. HiRDB Access from OLE DB Application Programs

1116

15.4 Data type correspondences

The following table shows the correspondences between the HiRDB data types and the
OLE DB type indicators.

Table 15-2: Correspondences between the HiRDB data types and the OLE DB
type indicators

HiRDB data types OLE DB type indicators

CHAR, MCHAR, and NCHAR DBTYPE_STR

VARCHAR, MVARCHAR, and NVARCHAR

DECIMAL(p,s) DBTYPE_NUMERIC

SMALLINT (signed) DBTYPE_I2

INTEGER (signed) DBTYPE_I4

REAL DBTYPE_R4

SMALLFLT

FLOAT DBTYPE_R8

DOUBLE PRECISION

BLOB DBTYPE_BYTES

BINARY

DATE DBTYPE_DBDATE

TIME DBTYPE_DBTIME

TIMESTAMP DBTYPE_DBTIMESTAMP

INTERVAL YEAR TO DAY DBTYPE_DECIMAL

INTERVAL HOUR TO SECOND DBTYPE_DECIMAL

15. HiRDB Access from OLE DB Application Programs

1117

15.5 Error handling procedures

15.5.1 Troubleshooting facility
This facility collects trace information about the OLE DB interface (for each method)
issued by consumers.

(1) Collection method
Specify appropriate values in the following registry keys:
HKEY_LOCAL_MACHINE

Trace information is collected only when the value of
Software\HITACHI\HiRDB\oleprovtrc is 1.

Specify the absolute path of the output file name in
Software\HITACHI\HiRDB\oletrcfile. (If oletrcfile is omitted, the system
outputs trace information to c:\temp\pdoletrc.txt.)

Trace information is output to Software\HITACHI\HiRDB\oletrcdumpsize with
GetData() and input with Execute(). Specify the void* type data dump output
size in bytes. (If oletrcdumpsize is omitted, the system assumes 256.)

15. HiRDB Access from OLE DB Application Programs

1118

15.6 Notes

(1) About a cursor in ADO
In HiRDB, you use the client cursor (adUseClient specified in the
CursorLocation property of the RecordSet object) to scroll the cursor down and
to update rows in ADO.

You use the server cursor (adUseServer specified in the CursorLocation property
of the Recordset object) for all other purposes.

When you execute CALL statements, you must use the server cursor because result sets
from procedures are not supported.

1119

Chapter

16. HiRDB Access from
ADO.NET-compatible Application
Programs

This chapter describes the installation and functions of HiRDB.NET Data Provider,
which is required in order to access HiRDB from ADO.NET-compatible application
programs. It also provides examples of a UAP.

Although HiRDB.NET Data Provider for ADO.NET 1.1 has become obsolete, it is still
supported in order to maintain compatibility with applications; however, this support
will be discontinued in the future. Please use HiRDB.NET Data Provider that supports
ADO.NET 2.0.

16.1 Overview
16.2 Installing HiRDB.NET Data Provider
16.3 List of classes provided by HiRDB.NET Data Provider
16.4 List of members provided by HiRDB.NET Data Provider
16.5 Interfaces of HiRDB.NET Data Provider
16.6 Notes about HiRDB.NET Data Provider
16.7 Data types of HiRDB.NET Data Provider
16.8 Connection pooling function
16.9 Provider-independent codes using DbProviderFactory
16.10 Troubleshooting function of HiRDB.NET Data Provider
16.11 Example of a UAP using HiRDB.NET Data Provider

16. HiRDB Access from ADO.NET-compatible Application Programs

1120

16.1 Overview

16.1.1 HiRDB.NET Data Provider
.NET Framework provides a common-language runtime that does not depend on the
platform or development language being used. It also provides the .NET Framework
class libraries. ADO.NET is a library that can be used when .NET Framework
applications that access databases are created.

HiRDB provides HiRDB.NET Data Provider, which is required to access HiRDB
using ADO.NET. HiRDB.NET Data Provider complies with ADO.NET
specifications.

HiRDB.NET Data Provider provides the common basic interface group that is
provided in .NET Framework's System.Data address space. It also provides the
INSERT facility using arrays and accesses to repetition columns as unique extended
functions.

16.1.2 Prerequisite programs for HiRDB.NET Data Provider
(1) Supported platforms

ADO.NET 1.1 support (32-bit mode)

• Windows 2000

• Windows XP

• Windows Server 2003

• Windows Server 2003 R2

• Windows Server 2008

• Windows Vista

• Windows 7

ADO.NET 2.0 support (32-bit mode)

• Windows 2000 SP3 or later

• Windows XP SP2 or later

• Windows Server 2003 SP1 or later

• Windows Server 2003 R2

• Windows Server 2008

• Windows Vista

• Windows 7

16. HiRDB Access from ADO.NET-compatible Application Programs

1121

ADO.NET 2.0 support (64-bit mode)

• Windows XP

• Windows Server 2003

• Windows Server 2003 R2

• Windows Server 2008

• Windows Server 2008 R2

• Windows Vista

• Windows 7

(2) Required programs
The environment requirements in order to develop and execute application programs
are explained in this subsection.

To develop ADO.NET 1.1-compatible UAPs:

Development environment

• Microsoft Visual Studio .NET 2003

• Microsoft Visual Studio 2005

Execution environment

• Microsoft Internet Explorer 5.01 or later

• Redistributable package of .NET Framework Version 1.1 or later

To develop ADO.NET 2.0-compatible UAPs:

Development environment

Select one of the following:

• Microsoft Visual Studio 2005

• Microsoft Visual Studio 2008

Execution environment

• Microsoft Internet Explorer 5.01 or later

Select one of the following:

• Redistributable package of .NET Framework Version 2.0

• Redistributable package of .NET Framework Version 3.0

• Redistributable package of .NET Framework 3.5

• Redistributable package of .NET Framework 4

16. HiRDB Access from ADO.NET-compatible Application Programs

1122

If you use an ADO.NET2.0-compatible HiRDB.NET Data Provider in an
environment where only .NET Framework 4 is installed, set the
useLegacyV2RuntimeActivationPolicy attribute to true in the
<startup> element in the application configuration file.

To develop ADO.NET2.0-compatible UAPs (64-bit mode):

Development environment

Select one of the following:

• Microsoft Visual Studio 2005

• Microsoft Visual Studio 2008

Execution environment

Microsoft Internet Explorer 5.01 or later

Select one of the following:

• Redistributable package of .NET Framework Version 2.0

• Redistributable package of .NET Framework Version 3.0

• Redistributable package of .NET Framework 3.5

• Redistributable package of .NET Framework 4

If you use an ADO.NET2.0-compatible HiRDB.NET Data Provider in an
environment where only .NET Framework 4 is installed, set the
useLegacyV2RuntimeActivationPolicy attribute to true in the
<startup> element in the application configuration file.

You can install a redistributable package of .NET Framework as a Windows update.
Its operation is not guaranteed in Microsoft Visual Studio .NET 2002 + .NET
Framework SDK Version 1.1.

16. HiRDB Access from ADO.NET-compatible Application Programs

1123

16.2 Installing HiRDB.NET Data Provider

16.2.1 Installation procedure
When you install HiRDB/Run Time or HiRDB/Developer's Kit, you can install
HiRDB.NET Data Provider by choosing Typical or Custom in the Setup Type dialog
box, and then selecting HiRDB Data Provider in the Select Features dialog box.

A group of DLLs and publisher policies for HiRDB.NET Data Provider are placed in
the global assembly cache. Because the most recent HiRDB.NET Data Provider that
has been installed is used based on the publisher policies, there is no need to re-build
UAPs when you upgrade HiRDB.NET Data Provider.

For details about placing HiRDB.NET Data Provider in the global assembly cache, see
16.6.1 Placing in global assembly cache.

16.2.2 Files that are installed
When HiRDB.NET Data Provider is installed, the following files are created:

For ADO.NET version 1.1:

• pddndp.dll

• pddndpcore.dll

For ADO.NET version 2.0:

• pddndp20.dll

• pddndpcore20.dll

• pddndp20x.dll

• pddndpcore20x.dll

If you use HiRDB.NET Data Provider, make the above files accessible.

16.2.3 Checking the version information
You can check the version information of HiRDB.NET Data Provider by displaying
the DLL properties provided by HiRDB.NET Data Provider.

16. HiRDB Access from ADO.NET-compatible Application Programs

1124

16.3 List of classes provided by HiRDB.NET Data Provider

HiRDB.NET Data Provider complies with ADO.NET specifications.

The following table lists and describes the classes provided by HiRDB.NET Data
Provider.

Table 16-1: List of HiRDB.NET Data Provider classes

Class Function Supported
ADO.NET version

HiRDBCommand Represents an SQL statement or
stored procedure that is executed on a
database.

1.1 or later

HiRDBCommandBuilder Automatically creates a single table
command to make a change to
DataSet that has been associated
with a database.

1.1 or later

HiRDBConnection Represents an open connection to a
database.

1.1 or later

HiRDBDataAdapter Represents a series of data commands
and database connections that are
used to store data in DataSet and
update a database.

1.1 or later

HiRDBDataReader Provides a method for reading a
forward stream in data rows from a
database.

1.1 or later

HiRDBException Represents an exception that is
created when a warning or error is
returned from HiRDB.NET Data
Provider.

1.1 or later

HiRDBParameter Represents a HiRDBCommand
parameter and a map for DataColumn
as an option.

1.1 or later

HiRDBParameterCollection Represents a parameter collection
associated with HiRDBCommand and a
map of each parameter for DataSet
columns.

1.1 or later

HiRDBProviderFactory Creates an instance of each class
provided by HiRDB.NET Data
Provider

2.0 or later

16. HiRDB Access from ADO.NET-compatible Application Programs

1125

HiRDBRowUpdatedEventArgs Provides data for a RowUpdated
event.

1.1 or later

HiRDBRowUpdatingEventArgs Provides data for a RowUpdating
event.

1.1 or later

HiRDBTransaction Represents a transaction that is
executed on a database.

1.1 or later

Class Function Supported
ADO.NET version

16. HiRDB Access from ADO.NET-compatible Application Programs

1126

16.4 List of members provided by HiRDB.NET Data Provider

This section presents a list of interface members provided by HiRDB.NET Data
Provider.

16.4.1 List of HiRDBCommand members
(1) Constructor

HiRDBCommand

(2) Inheritance classes
When the supported ADO.NET version is 1.1:

Component, IDbCommand, ICloneable

When the supported ADO.NET version is 2.0:

DbCommand

(3) Properties
Member Function Supported ADO.NET

version

CommandText Acquires or sets the text command that is executed on
a database.

1.1 or later

CommandTimeout Acquires or sets the SQL execution timeout value
(seconds).

1.1 or later

CommandType Acquires or sets a value that indicates how to interpret
the CommandText property.

1.1 or later

Connection Acquires or sets the HiRDBConnection that is used
by this HiRDBCommand.

1.1 or later

DesignTimeVisible Acquires or sets a value indicating whether a
HiRDBCommand object is to be displayed on the
control when the HiRDBCommand object is linked to
the interface control.

2.0 or later

Parameters Acquires HiRDBParameterCollection. 1.1 or later

Transaction Acquires or sets the HiRDBTransaction on which
this HiRDBCommand is executed.

1.1 or later

UpdatedRowSource Acquires or sets how to apply the command result to
DataRow when HiRDBDataAdapter's Update
method uses the command result.

1.1 or later

16. HiRDB Access from ADO.NET-compatible Application Programs

1127

(4) Methods

16.4.2 List of HiRDBCommandBuilder members
(1) Constructor

HiRDBCommandBuilder

(2) Inheritance class
When the supported ADO.NET version is 1.1:

Component

When the supported ADO.NET version is 2.0:

DbCommandBuilder

Member Function Supported ADO.NET
version

Cancel () Cancels an SQL statement during HiRDBCommand
execution.

1.1 or later

Clone () Creates a new object which is a copy of the current
instance.

1.1 or later

CreateParameter () Creates a new instance of the HiRDBParameter
object.

1.1 or later

ExecuteNonQuery () Executes an SQL statement on the
HiRDBConnection object and returns the number
of affected rows.

1.1 or later

ExecuteNonQuery
(int)

1.1 or later

ExecuteReader () Executes CommandText on HiRDBConnection
and creates HiRDBDataReader.

1.1 or later

ExecuteReader
(CommandBrhavior)

1.1 or later

ExecuteScalar () Executes a query and returns the first column of the
first row in the result set returned by the query. Any
excess column or row will be ignored.

1.1 or later

Prepare () Creates a prepared version of a command
(compiled) in a database.

1.1 or later

16. HiRDB Access from ADO.NET-compatible Application Programs

1128

(3) Properties

(4) Methods

Member Function Supported ADO.NET
version

CatalogLocation Indicates the location of the catalog name when a
server name, catalog name, schema name, and table
name are used to express a qualified table name.

2.0 or later

CatalogSeparator Sets or acquires the character string used as the
catalog delimiter for the HiRDBCommandBuilder
object.

2.0 or later

ConflictOption Sets or acquires a combination of columns
(concurrent execution check type) that are to be
added to the WHERE clause of UpdateCommand or
DeleteCommand that is created by the
corresponding object.

2.0 or later

DataAdapter Acquires or sets the HiRDBDataAdapter object for
which an SQL statement is to be created
automatically.

1.1 or later

QuotePrefix Acquires or sets the start character used for
specifying a column or table identifier.

2.0 or later

QuoteSuffix Acquires or sets the end character used for
specifying a column or table identifier.

2.0 or later

SchemaSeparator Acquires or sets the character used as the delimiter
between an authorization identifier and another
identifier.

2.0 or later

SetAllValues Acquires or sets a value indicating whether all
columns are to be subject to updating of their values
by the UPDATE statement.

2.0 or later

Member Function Supported ADO.NET
version

GetDeleteCommand () Acquires the automatically created HiRDBCommand
object for executing deletion processing on the
database.

2.0 or later

GetDeleteCommand
(bool)

2.0 or later

GetDeleteCommand
(string)

1.1 or later

16. HiRDB Access from ADO.NET-compatible Application Programs

1129

16.4.3 List of HiRDBConnection members
(1) Constructor

HiRDBConnection

(2) Inheritance classes
When the supported ADO.NET version is 1.1:

Component, IDbConnection, ICloneable

When the supported ADO.NET version is 2.0:

GetInsertCommand () Acquires the automatically created HiRDBCommand
object for executing insertion processing on the
database.

2.0 or later

GetInsertCommand
(bool)

2.0 or later

GetInsertCommand
(string)

1.1 or later

GetUpdateCommand () Acquires the automatically created HiRDBCommand
object for executing update processing on the
database.

2.0 or later

GetUpdateCommand
(bool)

2.0 or later

GetUpdateCommand
(string)

1.1 or later

QuoteIdentifier
(string)

Returns a specified character string enclosed by the
HiRDBCommandBuilder#QuotePrefix and
HiRDBCommandBuilder#QuoteSuffix property
values.

2.0 or later

RefreshSchema () Updates database schema information to create the
INSERT, UPDATE, or DELETE statement.

2.0 or later

RefreshSchema
(string)

1.1 or later

UnquoteIdentifier
(string)

Returns the value obtained by removing the
HiRDBCommandBuilder#QuotePrefix property
value at the beginning and the
HiRDBCommandBuilder#QuoteSuffix property
value at the end of a specified character string.

2.0 or later

Member Function Supported ADO.NET
version

16. HiRDB Access from ADO.NET-compatible Application Programs

1130

DbConnection

(3) Properties

(4) Methods

Member Function Supported ADO.NET
version

ConnectionString Acquires or sets the character string that is used to
open a database.

1.1 or later

ConnectionTimeout Acquires the wait time for establishing a connection
before retries are cancelled and an error is generated.

1.1 or later

Database Acquires the name of the current database or the
database that is used when a connection is
established.

1.1 or later

DataSource Acquires the name of the connected database server. 2.0 or later

LifeTime Acquires or sets the time remaining before actual
disconnection occurs.

1.1 or later

Pooling Acquires or sets whether or not pooling is to be
performed.

1.1 or later

ServerVersion Acquires the version of the connected server. 2.0 or later

State Acquires the current connection status. 1.1 or later

Member Function Supported ADO.NET
version

BeginTransaction () Starts the database transaction using the specified
IsolationLevel value.

1.1 or later

BeginTransaction
(IsolationLevel)

1.1 or later

ChangeDatabase
(string)

Changes the current database for the open
HiRDBConnection object.

1.1 or later

Clone () Creates a new object which is a copy of the current
instance.

1.1 or later

Close () Closes the connection to the database. 1.1 or later

CreateCommand () Creates and returns the HiRDBCommand object
associated with the connection.

1.1 or later

EnlistTransaction
(Transaction)

Registers in the specified transaction. 2.0 or later

16. HiRDB Access from ADO.NET-compatible Application Programs

1131

16.4.4 List of HiRDBDataAdapter members
(1) Constructor

HiRDBDataAdapter

(2) Inheritance classes
When the supported ADO.NET version is 1.1:

DbDataAdapter, IDbDataAdapter

When the supported ADO.NET version is 2.0:

DbDataAdapter

(3) Properties

GetSchema () Returns schema information. 2.0 or later

GetSchema (string) 2.0 or later

GetSchema (string,
string[])

2.0 or later

Open () Opens the database connection with the settings
specified in the ConnectionString property of the
HiRDBConnection object.

1.1 or later

Member Function Supported ADO.NET
version

DeleteCommand Acquires or sets the SQL statement for deleting
records from a data set.

1.1 or later

InsertCommand Acquires or sets the SQL statement for inserting new
records in a database.

1.1 or later

SelectCommand Acquires or sets the SQL statement for selecting
records in a database.

1.1 or later

UpdateCommand Acquires or sets the SQL statement for updating
records in a database.

1.1 or later

Member Function Supported ADO.NET
version

16. HiRDB Access from ADO.NET-compatible Application Programs

1132

(4) Events

16.4.5 List of HiRDBDataReader members
(1) Constructor

HiRDBDataReader

(2) Inheritance classes
When the supported ADO.NET version is 1.1:

MarshalByRefObject, IEnumerable, IDataReader, IDisposable,
IDataRecord

When the supported ADO.NET version is 2.0:

DbDataReader

(3) Properties

Member Function Supported ADO.NET
version

RowUpdated Event occurring after a command has been executed
on the data source during update processing.

1.1 or later

RowUpdating Event occurring before a command is executed on
the data source during update processing.

1.1 or later

Member Function Supported ADO.NET
version

Depth Acquires the value indicating the nesting level of the
current row.

1.1 or later

FieldCount Acquires the number of columns in the current row. 1.1 or later

HasRows Acquires a value indicating whether the
corresponding HiRDBDataReader contains at least
one row.

2.0 or later

IsClosed Acquires the value indicating whether or not the data
reader is closed.

1.1 or later

Item[int] Acquires data by treating the HiRDBDataReader
object as an array.

1.1 or later

Item[int,int] 1.1 or later

Item[string] 1.1 or later

RecordsAffected Acquires the number of rows changed, inserted, or
deleted by execution of the SQL statement.

1.1 or later

16. HiRDB Access from ADO.NET-compatible Application Programs

1133

(4) Methods

VisibleFieldCount Acquires the number of hidden rows for
HiRDBDataReader.

2.0 or later

Member Function Supported ADO.NET
version

Close () Closes the HiRDBDataReader object. 1.1 or later

GetBoolean (int) Acquires the value of the specified column as a
Boolean value.

1.1 or later

GetByte (int) Acquires an unsigned 8-bit integer value in the
specified column.

1.1 or later

GetBytes (int,
long, byte[], int,
int)

Reads a byte stream as array into the buffer starting
at the specified column offset relative to the
specified buffer offset, which is the start position.

1.1 or later

GetChar (int) Acquires the character string value in the specified
column.

1.1 or later

GetChars (int,
long, byte[], int,
int)

Reads a character stream as array into the buffer
starting at the specified column offset relative to the
specified buffer offset, which is the start position.

1.1 or later

GetData (int) The purpose of this member is to support the .NET
Framework infrastructure. It cannot be used directly
in a unique coding that has been created.

1.1 or later

GetDataTypeName
(int)

Acquires data-type information for the specified
field.

1.1 or later

GetDateTime (int) Acquires or sets the date and time data value in the
specified field.

1.1 or later

GetDecimal (int) Acquires the fixed position value in the specified
field.

1.1 or later

GetDouble (int) Acquires the double-precision floating-point number
in the specified field.

1.1 or later

GetEnumerator () Returns the enumerator that can perform iterative
operation on a collection.

1.1 or later

GetFieldArrayCount
(int)

Acquires the size of field array. 1.1 or later

Member Function Supported ADO.NET
version

16. HiRDB Access from ADO.NET-compatible Application Programs

1134

GetFieldType (int) Acquires Type information corresponding to the
type of Object that is returned from GetValue.

1.1 or later

GetFloat (int) Acquires the single-precision floating-point number
in the specified field.

1.1 or later

GetGuid (int) Returns the GUID value of the specified field. 1.1 or later

GetInt16 (int) Acquires a signed 16-bit integer value in the
specified field.

1.1 or later

GetInt32 (int) Acquires a signed 32-bit integer value in the
specified field.

1.1 or later

GetInt64 (int) Acquires a signed 64-bit integer value in the
specified field.

1.1 or later

GetName (int) Acquires the name of the field to be searched. 1.1 or later

GetOrdinal (string) Returns the index of the specified field. 1.1 or later

GetProviderSpecifi
cFieldType (int)

Acquires the data type of a specified column. 2.0 or later

GetProviderSpecifi
cValue (int)

Acquires the value of a specified column as an
instance of Object.

2.0 or later

GetProviderSpecifi
cValues (Object[])

Acquires all attribute columns in the current
collection of rows.

2.0 or later

GetSchemaTable () Returns the DataTable that describes
HiRDBDataReader's column metadata.

1.1 or later

GetString (int) Acquires a character string in the specified field. 1.1 or later

GetValue (int) Returns a value in the specified field. 1.1 or later

GetValue (int, int) Acquires the value of a specified element in a
specified column as an Object-type object.

1.1 or later

GetValues
(object[])

Acquires all attribute fields in the current record
collection.

1.1 or later

IsDBNull (int) Returns a value indicating whether or not the
specified field is set to null.

1.1 or later

NextResult () Advances the data reader to the next result when the
result of a batch SQL statement is read.

1.1 or later

Read () Advances HiRDBDataReader to the next record. 1.1 or later

Member Function Supported ADO.NET
version

16. HiRDB Access from ADO.NET-compatible Application Programs

1135

16.4.6 List of HiRDBException members
(1) Constructor

HiRDBException

(2) Inheritance class
When the supported ADO.NET version is 1.1:

Exception

When the supported ADO.NET version is 2.0:

DbException

(3) Properties

16.4.7 List of HiRDBParameter members
(1) Constructor

HiRDBParameter

(2) Inheritance classes
When the supported ADO.NET version is 1.1:

MarshalByRefObject, IDbDataParameter, IDataParameter,
ICloneable

When the supported ADO.NET version is 2.0:

DbParameter

(3) Properties

Member Function Supported ADO.NET
version

ErrorCode Acquires the error code part as an int. 1.1 or later

Message Acquires text with a complete error. 1.1 or later

Member Function Supported ADO.NET
version

DbType Acquires or sets DbType for a parameter. When
DbType is to be set, this member sets the
corresponding data type in the HiRDBType property
according to Table 16-3.

1.1 or later

Direction Acquires or sets a value indicating whether the
parameter is input only, output only, bidirectional, or
the stored procedure's return value.

1.1 or later

16. HiRDB Access from ADO.NET-compatible Application Programs

1136

HiRDBType Acquires or sets an enumeration indicating the data
type in HiRDB. When an enumeration is to be set,
this member sets the corresponding data type in the
DbType property according to Table 16-4.
HiRDBType enumeration:

Integer, SmallInt, Decimal, Float,
SmallFlt, Char, VarChar, NChar, NVarChar,
MChar, MVarChar, Date, Time, TimeStamp,
IntervalYearToDay,
IntervalHourToSecond, Blob, Binary

1.1 or later

IsNullable Acquires a value indicating whether or not the
parameter accepts the null value.

1.1 or later

ParameterName Acquires or sets the name of HiRDBParameter. 1.1 or later

Precision Acquires or sets the number of significant digits
(including decimal places) in the definition length of
a DECIMAL-type parameter. Specification of this
member is mandatory when the HiRDBType
property value is HiRDBType.Decimal.

1.1 or later

Repetition Acquires or sets an array structure in HiRDB. 1.1 or later

Scale Acquires or sets the number of decimal places in the
definition length of a DECIMAL-type parameter.
Specification of this member is mandatory when the
HiRDBType property value is
HiRDBType.Decimal.

1.1 or later

Size Acquires or sets a parameter definition length. If the
length is fixed (such as numeric type or date/time
type), specify 0. If the length is variable (such as
character string type), specify the number of bytes to
be stored in the table or the maximum column length.
For TIMESTAMP (DateTime), this value is the
number of digits in the fractional part.
Note that if the entered character string is longer than
the size specified for the Size property, only up to
the specified number of characters are stored. No
exception occurs.

1.1 or later

SourceColumn Acquires or sets the name of the source column that
has been assigned to DataSet and is used to read or
return Value.

1.1 or later

SourceColumnNullMa
pping

Acquires or sets a value that indicates whether the
column of the DataTable object corresponding to
the parameter permits the NULL value.

1.1 or later

Member Function Supported ADO.NET
version

16. HiRDB Access from ADO.NET-compatible Application Programs

1137

(4) Method

16.4.8 List of HiRDBParameterCollection members
(1) Constructor

HiRDBParameterCollection

(2) Inheritance classes
When the supported ADO.NET version is 1.1:

MarshalByRefObject, IDataParameterCollection, IList,
ICollection, IEnumerable

When the supported ADO.NET version is 2.0:

DbParameterCollection

(3) Properties

SourceVersion Acquires or sets the DataRowVersion that is used
to read Value.

1.1 or later

Value Acquires or sets a parameter value. 1.1 or later

Member Function Supported ADO.NET
version

Clone Creates a new object which is a copy of the current
instance.

1.1 or later

ResetDbType () Resets the DbType property to its initial value. 2.0 or later

Member Function Supported ADO.NET
version

Count Acquires the number of HiRDBParameter objects
stored in HiRDBParameterCollection.

1.1 or later

IsFixedSize Acquires a value indicating whether the size of
HiRDBParameterCollection is fixed.

1.1 or later

IsReadOnly Acquires a value indicating whether or not
HiRDBParameterCollection is read only.

1.1 or later

IsSynchronized Acquires a value indicating whether or not an access
to HiRDBParameterCollection is synchronized
(thread-safe).

1.1 or later

Member Function Supported ADO.NET
version

16. HiRDB Access from ADO.NET-compatible Application Programs

1138

(4) Methods

Item[int] Acquires the HiRDBParameter object for a
specified index or sets the HiRDBParameter object
in a specified index.

1.1 or later

Item[string] 1.1 or later

SyncRoot Acquires an object that can be used to synchronize an
access to HiRDBParameterCollection.

1.1 or later

Member Function Supported ADO.NET
version

Add (object) Adds items to HiRDBParameterCollection. 1.1 or later

Add
(HiRDBParameter)

1.1 or later

Add (string, object) 1.1 or later

Add (string,
HiRDBType)

1.1 or later

Add (string,
HiRDBType, int)

1.1 or later

Add (string,
HiRDBType, int,
string)

1.1 or later

AddRange (Array) Adds an array in the HiRDBParameter object to
HiRDBParameterCollection.

1.1 or later

AddRange
(HiRDBParameter[])

1.1 or later

Clear () Deletes all items from
HiRDBParameterCollection.

1.1 or later

Contains (object) Acquires a value indicating whether or not
HiRDBParameter is in the collection.

1.1 or later

Contains
(HiRDBParameter)

1.1 or later

Contains (string) 1.1 or later

Member Function Supported ADO.NET
version

16. HiRDB Access from ADO.NET-compatible Application Programs

1139

16.4.9 List of HiRDBProviderFactory members
(1) Constructor

HiRDBProviderFactory

(2) Inheritance classes
DbProviderFactory

(3) Field
Instance

(4) Properties

CopyTo (Array, int) Copies the elements of
HiRDBParameterCollection to Array using
Array's specific index as the start position.

1.1 or later

GetEnumerator () Returns an enumerator that can perform iterative
operation on a collection.

1.1 or later

IndexOf (object) Acquires the location of HiRDBParameter in a
collection.

1.1 or later

IndexOf (string) 1.1 or later

Insert (int, object) Inserts an item at the specified location in
HiRDBParameterCollection.

1.1 or later

Insert (int,
HiRDBParameter)

1.1 or later

Remove Deletes the first occurrence of the specified object in
HiRDBParameterCollection.

1.1 or later

RemoveAt (int) Deletes HiRDBParameter from the collection. 1.1 or later

RemoveAt (string) 1.1 or later

Member Function Supported ADO.NET
version

CanCreateDataSourceE
numerator

Indicates whether a class derived from the
DbDataSourceEnumerator class is to be
supported.

2.0 or later

Member Function Supported ADO.NET
version

16. HiRDB Access from ADO.NET-compatible Application Programs

1140

(5) Methods

16.4.10 List of HiRDBRowUpdatedEventArgs members
(1) Constructor

HiRDBRowUpdatedEventArgs

(2) Inheritance class
RowUpdatedEventArgs

(3) Property

16.4.11 List of HiRDBRowUpdatingEventArgs members
(1) Constructor

HiRDBRowUpdatingEventArgs

(2) Inheritance class
RowUpdatingEventArgss

Member Function Supported ADO.NET
version

CreateCommand () Creates and returns the HiRDBCommand object. 2.0 or later

CreateCommandBuilder
()

Creates and returns a HiRDBCommandBuilder
object.

2.0 or later

CreateConnection () Creates and returns a HiRDBConnection object. 2.0 or later

CreateConnectionStri
ngBuilder ()

Creates and returns a
DbConnectionStringBuilder object.

2.0 or later

CreateDataAdapter () Creates and returns a HiRDBDataAdapter object. 2.0 or later

CreateDataSourceEnum
erator ()

Returns System.NotSupportedException. 2.0 or later

CreateParameter () Creates and returns a HiRDBParameter object. 2.0 or later

Member Function Supported ADO.NET
version

Command Acquires the HiRDBCommand that is executed
when Update is called.

1.1 or later

16. HiRDB Access from ADO.NET-compatible Application Programs

1141

(3) Property

16.4.12 List of HiRDBTransaction members
(1) Constructor

HiRDBTransaction

(2) Inheritance classes
When the supported ADO.NET version is 1.1:

MarshalByRefObject, IDbTransaction, IDisposable

When the supported ADO.NET version is 2.0:

DbTransaction

(3) Properties

(4) Methods

Member Function Supported ADO.NET
version

Command Acquires or sets the HiRDBCommand that is
executed during Update processing.

1.1 or later

Member Function Supported ADO.NET
version

Connection Acquires the HiRDBConnection object used to
associate a transaction.

1.1 or later

IsCompleted Acquires a value indicating whether or not the
transaction is completed.

1.1 or later

IsolationLevel Specifies this transaction's IsolationLevel. 1.1 or later

Member Function Supported ADO.NET
version

Commit () Commits a database transaction. 1.1 or later

Rollback () Rolls back a database transaction from the hold
status.

1.1 or later

16. HiRDB Access from ADO.NET-compatible Application Programs

1142

16.5 Interfaces of HiRDB.NET Data Provider

16.5.1 HiRDBCommand
(1) Constructor

(a) HiRDBCommand
void HiRDBCommand ()

Description: Initializes a new instance of HiRDBCommand.

void HiRDBCommand (string)

Argument

string cmdText: SQL text (CommandText property)

Description: Specifies an SQL text to initialize a new instance of the
HiRDBCommand class.

void HiRDBCommand (string, Hitachi.HiRDB.HiRDBConnection)

Arguments

string cmdText: SQL text (CommandText property)

HiRDBConnection rConnection: HiRDBConnection object
representing the connection to the database (Connection property)

Description: Uses an SQL text and HiRDBConnection object to initialize a new
instance of the HiRDBCommand class.

void HiRDBCommand (string, Hitachi.HiRDB.HiRDBConnection,
Hitachi.HiRDB.HiRDBTransaction)

Arguments

string cmdText: SQL text (CommandText property)

HiRDBConnection rConnection: HiRDBConnection object
representing the connection to the database (CommandText property)

HiRDBTransaction rTransaction: HiRDBTransaction object that
executes HiRDBCommand (Transaction property)

Description: Uses an SQL text and the HiRDBConnection and
HiRDBTransaction objects to initialize a new instance of the HiRDBCommand
class.

16. HiRDB Access from ADO.NET-compatible Application Programs

1143

(2) Properties
(a) CommandText

Type: string

Default value: ""

Description: Acquires or sets the text command that is executed on a database.

(b) CommandTimeout
Type: int

Default value: 30

Description: Acquires or sets the SQL execution timeout value (seconds).

Exception: HiRDBException

(c) CommandType
Type: System.Data.CommandType

Default value: CommandType.Text

Description: Acquires or sets how to interpret the CommandText property.

(d) Connection
Type: HiRDBConnection

Default value: null

Description: Acquires or sets the HiRDBConnection that is used by this
HiRDBCommand.

Exception: HiRDBException

(e) DesignTimeVisible
Type: bool

Default value: true

Description: Acquires or sets a value indicating whether a HiRDBCommand object is to
be displayed on the control when the HiRDBCommand object is linked to the interface
control.

(f) Parameters
Type: HiRDBParameterCollection

Description: Acquires HiRDBParameterCollection (read only).

(g) Transaction
Type: HiRDBTransaction

16. HiRDB Access from ADO.NET-compatible Application Programs

1144

Default value: null

Description: Acquires or sets the HiRDBTransaction on which this HiRDBCommand
is executed.

(h) UpdatedRowSource
Type: System.Data.UpdateRowSource

Default value: UpdatedRowSource.None

Description: Acquires or sets how to apply the command result to DataRow when
HiRDBDataAdapter's Update method uses the command result.

Exception: HiRDBException

(3) Methods
(a) Cancel

void Cancel ()

Return: void

Description: Cancels an SQL statement during HiRDBCommand execution.

(b) Clone
object Clone ()

Return

object: New object which is a copy of this instance

Description: Creates a new object which is a copy of the current instance.

(c) CreateParameter
Hitachi.HiRDB.HiRDBParameter CreateParameter ()

Return

HiRDBParameter: HiRDBParameter object

Description: Creates a new instance of the HiRDBParameter object.

(d) ExecuteNonQuery
int ExecuteNonQuery ()

Return

int: Number of affected rows

Description: Executes an SQL statement on the HiRDBConnection object and
returns the number of affected rows.

Exception: HiRDBException

16. HiRDB Access from ADO.NET-compatible Application Programs

1145

int ExecuteNonQuery (int)

Argument

int nArraySize: Number of array elements

Return

int: Number of affected rows

Description: Uses the INSERT facility using arrays to execute an SQL statement
on the HiRDBConnection object and returns the number of affected rows.

Exception: HiRDBException

(e) ExecuteReader
Hitachi.HiRDB.HiRDBDataReader ExecuteReader ()

Return

HiRDBDataReader: HiRDBDataReader object

Description: Executes CommandText on HiRDBConnection to create
HiRDBDataReader.

Exception: HiRDBException

ExecuteReader (System.Data.CommandBehavior)

Argument

System.DataCommandBehavior behavior: One of the
CommandBehavior values

Return

HiRDBDataReader: HiRDBDataReader object

Description: Executes CommandText on HiRDBConnection and creates
HiRDBDataReader using one of the CommandBehavior values.

Exception: HiRDBException

(f) ExecuteScalar
object ExecuteScalar ()

Return

object: First column of the first row in the result set

Description: Executes a query and returns the first column of the first row in the result
set returned as .NET Framework's data type by that query. Any remaining column or
row will be ignored.

Exception: HiRDBException

16. HiRDB Access from ADO.NET-compatible Application Programs

1146

(g) Prepare
void Prepare ()

Return: void

Description: Creates a prepared version of a command (compiled) in a database.

Exception: HiRDBException

16.5.2 HiRDBCommandBuilder
(1) Constructor

(a) HiRDBCommandBuilder
void HiRDBCommandBuilder ()

Description: Initializes a new instance of HiRDBCommandBuilder.

void HiRDBCommandBuilder (HiRDBDataAdapter adapter)

Argument

HiRDBDataAdapter adapter: HiRDBDataAdapter object
(DataAdapter property)

Description: Specifies the HiRDBDataAdapter object and initializes a new
instance of HiRDBCommandBuilder.

(2) Properties
(a) CatalogLocation

Type: CatalogLocation

Default value: CatalogLocation.Start

Description: Indicates the location of the catalog name when a server name, catalog
name, schema name, and table name are used to express a qualified table name.

Exception: HiRDBException

(b) CatalogSeparator
Type: string

Default value: ""

Description: Sets or acquires the character string used as the catalog delimiter for the
HiRDBCommandBuilder object.

Exception: HiRDBException

(c) ConflictOption
Type: ConflictOption

16. HiRDB Access from ADO.NET-compatible Application Programs

1147

Default value: ConflictOption.CompareAllSearchableValues

Description: Sets or acquires a combination of columns (concurrent execution check
type) that are to be added to the WHERE clause of UpdateCommand or
DeleteCommand that is created by the corresponding object.

Exception: HiRDBException

(d) DataAdapter
Type: HiRDBDataAdapter

Default value: null

Description: Acquires or sets the HiRDBDataAdapter object for which an SQL
statement is to be created automatically.

(e) QuotePrefix
Type: string

Default value: " (double-quotation mark)

Description: Acquires or sets the start character used for specifying a column or table
identifier.

Exception: HiRDBException

(f) QuoteSuffix
Type: string

Default value: " (double-quotation mark)

Description: Acquires or sets the end character used for specifying a column or table
identifier.

Exception: HiRDBException

(g) SchemaSeparator
Type: HiRDBDataAdapter

Default value: . (period)

Description: Acquires or sets the character used as the delimiter between an
authorization identifier and another identifier.

Exception: HiRDBException

(h) SetAllValues
Type: bool

Default value: true

Description: Acquires or sets a value that indicates whether all columns are to be

16. HiRDB Access from ADO.NET-compatible Application Programs

1148

subject to updating of their values by the UPDATE statement.

(3) Methods
(a) GetDeleteCommand

HiRDBCommand GetDeleteCommand()

Return

HiRDBCommand: Automatically created HiRDBCommand object for
executing deletion processing

Description: Acquires the automatically created HiRDBCommand object for
executing deletion processing on the database. If the retrieval SQL statement
specified in SelectCommand of the DataAdapter property satisfies either of
the following conditions, the deletion SQL statement cannot be created:

• This is not a retrieval on a single table.

• An alias is specified for the table.

Exception: HiRDBException

HiRDBCommand GetDeleteCommand(bool)

Argument

useColumnsForParameterNames

true: Parameter name based on a column name (such as @ID)

false: Parameter name in the @pX format (X: ordinal number beginning at
1)

Return

HiRDBCommand: Automatically created HiRDBCommand object for
executing deletion processing

Description: Acquires the automatically created HiRDBCommand object for
executing deletion processing on the database. If the retrieval SQL statement
specified in SelectCommand of the DataAdapter property satisfies either of
the following conditions, the deletion SQL statement cannot be created:

• This is not a retrieval on a single table.

• An alias is specified for the table.

Exception: HiRDBException

HiRDBCommand GetDeleteCommand (string)

Argument

string s TableName: Table name

16. HiRDB Access from ADO.NET-compatible Application Programs

1149

Return

HiRDBCommand: HiRDBCommand object that was automatically created to
execute deletion processing

Description: Acquires the automatically created HiRDBCommand object for
executing deletion processing on the database.

Exception: HiRDBException

(b) GetInsertCommand
HiRDBCommand GetInsertCommand ()

Return

HiRDBCommand: HiRDBCommand object that was automatically created to
execute insertion processing

Description: Acquires the automatically created HiRDBCommand object for
executing insertion processing on the database. If the retrieval SQL statement
specified in SelectCommand of the DataAdapter property satisfies either of
the following conditions, the insertion SQL statement cannot be created:

• This is not a retrieval on a single table.

• An alias is specified for the table.

Exception: HiRDBException

HiRDBCommand GetInsertCommand (bool)

Argument

useColumnsForParameterNames

true: Parameter name based on a column name (such as @ID)

false: Parameter name in the @pX format (X: ordinal number beginning at
1)

Return

HiRDBCommand: Automatically created HiRDBCommand object for
executing insertion processing

Description: Acquires the automatically created HiRDBCommand object for
executing insertion processing on the database. If the retrieval SQL statement
specified in SelectCommand of the DataAdapter property satisfies either of
the following conditions, the insertion SQL statement cannot be created:

• This is not a retrieval on a single table.

• An alias is specified for the table.

16. HiRDB Access from ADO.NET-compatible Application Programs

1150

Exception: HiRDBException

HiRDBCommand GetInsertCommand (string)

Argument

string sTableName: Table name

Return

HiRDBCommand: Automatically created HiRDBCommand object for
executing insertion processing

Description: Acquires the automatically created HiRDBCommand object for
executing insertion processing on the database.

Exception: HiRDBException

(c) GetUpdateCommand
HiRDBCommand GetUpdateCommand ()

Return

HiRDBCommand: Automatically created HiRDBCommand object for
executing update processing

Description: Acquires the automatically created HiRDBCommand object for
executing update processing on the database. If the retrieval SQL statement
specified in SelectCommand of the DataAdapter property satisfies either of
the following conditions, the updating SQL statement cannot be created:

• This is not a retrieval on a single table.

• An alias is specified for the table.

Exception: HiRDBException

HiRDBCommand GetUpdateCommand (bool)

Argument

useColumnsForParameterNames

true: Parameter name based on a column name (such as @ID)

false: Parameter name in the @pX format (X: ordinal number beginning at
1)

Return

HiRDBCommand: Automatically created HiRDBCommand object for
executing update processing

Description: Acquires the automatically created HiRDBCommand object for
executing update processing on the database. If the retrieval SQL statement

16. HiRDB Access from ADO.NET-compatible Application Programs

1151

specified in SelectCommand of the DataAdapter property satisfies either of
the following conditions, the updating SQL statement cannot be created:

• This is not a retrieval on a single table.

• An alias is specified for the table.

Exception: HiRDBException

HiRDBCommand GetUpdateCommand (string)

Argument

string s TableName: Table name

Return

HiRDBCommand: HiRDBCommand object that was automatically created to
execute update processing

Description: Acquires the automatically created HiRDBCommand object for
executing update processing on the database.

Exception: HiRDBException

(d) QuoteIdentifier
string QuoteIdentifier(string)

Argument

string unquotedIdentifier: Character string enclosed by the
HiRDBCommandBuilder#QuotePrefix and
HiRDBCommandBuilder#QuoteSuffix property values

Return

string: Character string enclosed by the
HiRDBCommandBuilder#QuotePrefix and
HiRDBCommandBuilder#QuoteSuffix property values

Description: Returns a specified character string enclosed by the
HiRDBCommandBuilder#QuotePrefix value and the
HiRDBCommandBuilder#QuoteSuffix property value.

Exception: HiRDBException

(e) RefreshSchema
void RefreshSchema ()

Return: void

Description: Updates database schema information to create an INSERT, UPDATE,
or DELETE statement.

16. HiRDB Access from ADO.NET-compatible Application Programs

1152

void RefreshSchema (string)

Argument

string s TableName: Table name

Return: void

Description: Updates database schema information to create the INSERT,
UPDATE, or DELETE statement.

Exception: HiRDBException

(f) UnquoteIdentifier
string UnquoteIdentifier (string)

Argument

string quotedIdentifier: Character string enclosed by the
HiRDBCommandBuilder#QuotePrefix and
HiRDBCommandBuilder#QuoteSuffix property values

Return

string: Value obtained by removing the
HiRDBCommandBuilder#QuotePrefix property value at the beginning
and the HiRDBCommandBuilder#QuoteSuffix property value at the end
of a character string

Description: Returns the value obtained by removing the
HiRDBCommandBuilder#QuotePrefix property value at the beginning and
the HiRDBCommandBuilder#QuoteSuffix property value at the end of a
specified character string.

Exception: HiRDBException

16.5.3 HiRDBConnection
(1) Constructor

(a) HiRDBConnection
void HiRDBConnection ()

Description: Initializes a new instance of HiRDBConnection.

void HiRDBConnection (string)

Argument

string ConnectionString: Character string storing the connection
settings (ConnectionString property)

Description: Specifies a connection character string and initializes a new instance

16. HiRDB Access from ADO.NET-compatible Application Programs

1153

of the HiRDBConnection class.

(2) Properties
(a) ConnectionString

Type: string

Default value: ""

Description: Acquires or sets the character string that is used to open a database.

Exception: HiRDBException

For this property, you must specify one string-type argument. The character string
to be specified is called a connection character string. This is the same type of
connection character string as those used for Connection in ADO and ADO.NET.
The following table lists and describes the character strings that can be specified:

If nothing is specified, the default setting (HiRDB.ini) is used to establish the
connection. If a client environment variable group name is available, this name is used.
If the authorization identifier, password, and client environment definition are
specified, their use takes precedence. This character string is not case sensitive. To
distinguish upper-case letters from lower-case letters, enclose the applicable part in
quotation marks. All spaces and tabs are ignored (except those enclosed in quotation
marks).

If the specified character string is not one of the connection character strings listed
above, an exception occurs. However, for Provider, the specified invalid character
string is ignored; no exception occurs. This maintains compatibility with OleDb Data
Provider in the DataProvider layer.

(b) ConnectionTimeout
Type: int

Default value:

Character string Description

• datasource

• dsn

• env

Settings for the registry to be used. Specify the name of the environment variable
group that was created using the tool for registering HiRDB client environment
variables.

• uid

• userid

Authorization identifier used for DB connection

• password

• Pwd

Password to be used for the database connection

• PD* Settings in the client environment definition

16. HiRDB Access from ADO.NET-compatible Application Programs

1154

When the supported ADO.NET version is 1.1: 15

When the supported ADO.NET version is 2.0: 0

Description: Acquires the wait time for establishing a connection before retries are
cancelled and an error is generated (read only).

(c) Database
Type: string

Default value: ""

Description: Acquires the name of the current database or the database that is used
when a connection is established (read only).

(d) DataSource
Type: string

Default value: ""

Description: Acquires the name of the connected database server (read only).

(e) ServerVersion
Type: string

Default value: ""

Description: Acquires the version of the connected server (read only).

This member returns the version in the normalized format that allows comparison
by using String.Compare(). The format of the version is as follows:

XX.YY.ZZZZ

XX: Major version

YY: Minor version

ZZZZ: Always 0000

(f) LifeTime
Type: int

Default value: 60

Description: Acquires or sets the time remaining before actual disconnection occurs.

Exception: HiRDBException

(g) Pooling
Type: bool

Default value: true

16. HiRDB Access from ADO.NET-compatible Application Programs

1155

Description: Acquires or sets whether or not pooling is to be performed. If pooling is
performed, the value is true; if not, the value is false.

Exception: HiRDBException

(h) State
Type: System.Data.ConnectionState

Default value: ConnectionState.Closed

Description: Acquires the current connection status (read only).

(3) Methods
(a) BeginTransaction

BeginTransaction ()

Return

HiRDBTransaction: Object representing a new transaction

Description: Starts the database transaction.

Exception: HiRDBException

BeginTransaction (System.Data.IsolationLevel)

Argument

System.Data.IsolationLevel: One of the IsolationLevel values

Return

HiRDBTransaction: Object representing a new transaction

Description: Starts the database transaction using the specified
IsolationLevel value.

Exception: HiRDBException

(b) ChangeDatabase
void ChangeDatabase (string)

Argument

string databaseName: Name of the database to be changed

Return: void

Description: Changes the current database for the open HiRDBConnection object.

Exception: HiRDBException

16. HiRDB Access from ADO.NET-compatible Application Programs

1156

(c) Clone
HiRDBConnection Clone ()

Return: Returns null unconditionally.

Description: Returns null unconditionally.

(d) Close
void Close ()

Return: void

Description: Closes the connection to the database.

(e) CreateCommand
Hitachi.HiRDB.HiRDBCommand CreateCommand ()

Return

HiRDBCommand: HiRDBCommand object

Description: Creates and returns the HiRDBCommand object associated with the
connection.

(f) EnlistTransaction
void EnlistTransaction (Transaction)

Argument

transaction: Existing target Transaction object

Return: void

Description: Registers in the specified transaction.

Exception: HiRDBException

(g) GetSchema
DataTable GetSchema ()

Return: DataTable object

Description: Returns schema information.

DataTable GetSchema (string)

Argument

collectionName: Name of the schema to be returned

Return: DataTable object

Description: Returns schema information.

16. HiRDB Access from ADO.NET-compatible Application Programs

1157

DataTable GetSchema (string, string[])

Argument

collectionName: Name of the schema to be returned

restrictionValues: Restriction value for the requested schema

Return: DataTable object

Description: Returns schema information.

(h) Open
void Open ()

Return: void

Description: Opens the database connection with the settings specified in the
ConnectionString property of the HiRDBConnection object.

Exception: HiRDBException

16.5.4 HiRDBDataAdapter
(1) Constructor

(a) HiRDBDataAdapter
void HiRDBDataAdapter ()

Description: Initializes a new instance of the HiRDBDataAdapter class.

void HiRDBDataAdapter (Hitachi.HiRDB.HiRDBCommand)

Argument

HiRDBCommand selectCommand: HiRDBCommand object representing the
SQL SELECT statement (SelectCommand property)

Description: Uses the specified HiRDBCommand to initialize a new instance of the
HiRDBDataAdapter class.

void HiRDBDataAdapter (string, Hitachi.HiRDB.HiRDBConnection)

Arguments

string selectCommandText: SQL SELECT statement

HiRDBConnection selectConnection: HiRDBConnection object
representing the connection

Description: Uses the HiRDBConnection specifying the SQL SELECT statement
to create HiRDBCommand (SelectCommand property). This constructor
initializes a new instance of the HiRDBDataAdapter class.

16. HiRDB Access from ADO.NET-compatible Application Programs

1158

void HiRDBDataAdapter (string, string)

Arguments

string selectCommandText: SQL SELECT statement

string selectConnectionString: connection character string

Description: Uses a connection character string to create HiRDBConnection.
The constructor then uses the created HiRDBConnection to create
HiRDBCommand (SelectCommand property). This constructor initializes a new
instance of the HiRDBDataAdapter class.

(2) Properties
(a) DeleteCommand

Type: HiRDBCommand

Default value: null

Description: Acquires or sets the SQL statement for deleting records from a data set.

(b) InsertCommand
Type: HiRDBCommand

Default value: null

Description: Acquires or sets the SQL statement for inserting new records in a
database.

(c) SelectCommand
Type: HiRDBCommand

Default value: null

Description: Acquires or sets the SQL statement for selecting records in a database.

(d) UpDateCommand
Type: HiRDBCommand

Default value: null

Description: Acquires or sets the SQL statement for updating records in a database.

(3) Events
(a) RowUpdated

Type: HiRDBRowUpdatedEventHandler

Description: This event occurs after a command has been executed on the data source
during update processing.

16. HiRDB Access from ADO.NET-compatible Application Programs

1159

(b) RowUpdating
Type: HiRDBRowUpdatingEventHandler

Description: This event occurs before a command is executed on the data source
during update processing.

16.5.5 HiRDBDataReader
(1) Constructor

HiRDBDataReader

Description: To create HiRDBDataReader, you must call the ExecuteReader
method of the HiRDBCommand object without directly using the constructor.

(2) Properties
(a) Depth

Type: int

Default value: 0

Description: Acquires the value indicating the nesting level of the current row.

(b) FieldCount
Type: int

Description: Acquires the number of columns in the current row.

(c) HasRows
Type: bool

Default value: false

Description: Acquires a value indicating whether the corresponding
HiRDBDataReader contains at least one row. If HiRDBDataReader contains any
rows at all, the value is true; if it doesn't, the value is false.

(d) IsClosed
Type: bool

Default value: false

Description: Acquires the value indicating whether or not the data reader is closed. If
the data reader is closed, the value is true; if not, the value is false.

(e) Item
Item[string]

Type: Object this[string name]

16. HiRDB Access from ADO.NET-compatible Application Programs

1160

Description: Acquires data by treating the HiRDBDataReader object as an array.

Item[int]

Type: Object this[int ordinal]

Description: Acquires data by treating the HiRDBDataReader object as an array.

Item[int, int]

Type: Object this[int colIdx, int elmIdx]

Description: Acquires data by treating the HiRDBDataReader object as an array.

(f) RecordsAffected
Type: int

Default value: 0

Description: Acquires the number of rows changed, inserted, or deleted by execution
of an SQL statement.

(g) VisibleFieldCount
Type: int

Description: Acquires the number of hidden rows for HiRDBDataReader.

(3) Methods
(a) Close

void Cancel ()

Return: void

Description: Closes the HiRDBDataReader object.

(b) GetBoolean
bool GetBoolean (int)

Argument

int i: Ordinal number of the column that begins at 0

Return

bool: Column value

Description: Acquires the value of the specified column as a Boolean value.

Exception: HiRDBException

(c) GetByte
byte GetByte (int)

16. HiRDB Access from ADO.NET-compatible Application Programs

1161

Argument

int i: Ordinal number of the column that begins at 0

Return

byte: Unsigned 8-bit integer value in the specified column

Description: Acquires an unsigned 8-bit integer value in the specified column.

Exception: HiRDBException

(d) GetBytes
long GetBytes (int, long, byte[], int,int)

Arguments

int i: Ordinal number of the column that begins at 0

long fieldOffset: Index of the row where the read operation begins

byte[] buffer: Buffer for reading byte streams

int bufferoffset: Index of buffer where the read operation begins

int length: Number of bytes to be read

Return

long: Number of bytes actually read

Description: Reads a byte stream as array into the buffer starting at the specified
column offset relative to the specified buffer offset, which is the start position.

Exception: HiRDBException

(e) GetChar
char GetChar (int)

Argument

int i: Ordinal number of the column that begins at 0

Return

char: Character value in the specified column

Description: Acquires the character string value in the specified column.

Exception: HiRDBException

(f) GetChars
long GetChars (int, long,char[], int, int)

Arguments

16. HiRDB Access from ADO.NET-compatible Application Programs

1162

int i: Ordinal number of the column that begins at 0

long fieldOffset: Index of the row where the read operation begins

char[] buffer: Buffer for reading byte streams

int bufferoffset: Index of buffer where the read operation begins

int length: Number of bytes to be read

Return

long: Number of characters actually read

Description: Reads a character stream as array into the buffer starting at the specified
column offset relative to the specified buffer offset, which is the start position.

Exception: HiRDBException

(g) GetData
GetData (int)

Argument

int i: Ordinal number of the column that begins at 0

Return: Currently not supported.

Description: The purpose of this member is to support the .NET Framework
infrastructure. It cannot be used directly in a unique coding that has been created.

(h) GetDataTypeName
string GetDataTypeName (int)

Argument

int i: Index of the field to be searched

Return

string: Data-type information for the specified field

Description: Acquires data-type information for the specified field.

Exception: HiRDBException

(i) GetDateTime
System.DateTime GetDateTime (int)

Argument

int i: Index of the field to be searched

Return

16. HiRDB Access from ADO.NET-compatible Application Programs

1163

System.DateTime: Date and time data value in the specified field

Description: Acquires or sets the date and time data value in the specified field.

Exception: HiRDBException

(j) GetDecimal
decimal GetDecimal (int)

Argument

int i: Index of the field to be searched

Return

decimal: Fixed position value in the specified field

Description: Acquires the fixed position value in the specified field.

Exception: HiRDBException

(k) GetDouble
double GetDouble (int)

Argument

int i: Index of the field to be searched

Return

double: Double-precision floating-point number in the specified field

Description: Acquires the double-precision floating-point number in the specified
field.

Exception: HiRDBException

(l) GetEnumerator
System.Collections.IEnumerator GetEnumerator ()

Return

System.Collections.IEnumerator: IEnumerator that can be used to
perform iterative operation on a collection

Description: Returns the enumerator that can perform iterative operation on a
collection.

(m) GetFieldArrayCount
int GetFieldArrayCount (int)

Argument

int i: Index of the field to be searched

16. HiRDB Access from ADO.NET-compatible Application Programs

1164

Return

int: Size of field array

Description: Acquires the size of field array.

Exception: HiRDBException

(n) GetFieldType
System.Type GetFieldType (int)

Argument

int i: Index of the field to be searched

Return

System.Type: Type information corresponding to the type of object that is
returned from GetValue

Description: Acquires Type information corresponding to the type of Object that is
returned from GetValue.

Exception: HiRDBException

(o) GetFloat
float GetFloat (int)

Argument

int i: Index of the field to be searched

Return

float: Single-precision floating-point number in the specified field

Description: Acquires the single-precision floating-point number in the specified field.

Exception: HiRDBException

(p) GetGuid
System.Guid GetGuid (int)

Argument

int i: Index of the field to be searched

Return

System.Guid: GUID value of the specified field

Description: Returns the GUID value of the specified field.

16. HiRDB Access from ADO.NET-compatible Application Programs

1165

(q) GetInt16
short GetInt16 (int)

Argument

int i: Index of the field to be searched

Return

short: Signed 16-bit integer value in the specified field

Description: Acquires a signed 16-bit integer value in the specified field.

Exception: HiRDBException

(r) GetInt32
int GetInt32 (int)

Argument

int i: Index of the field to be searched

Return

int: Signed 32-bit integer value in the specified field

Description: Acquires a signed 32-bit integer value in the specified field.

Exception: HiRDBException

(s) GetInt64
long GetInt64 (int)

Argument

int i: Index of the field to be searched

Return

long: Signed 64-bit integer value in the specified field

Description: Acquires a signed 64-bit integer value in the specified field.

Exception: HiRDBException

(t) GetName
string GetName (int)

Argument

int i: Index of the field to be searched

Return

string: Field name (if there is no value to be returned, returns the null

16. HiRDB Access from ADO.NET-compatible Application Programs

1166

character string (""))

Description: Acquires the name of the field to be searched.

Exception: HiRDBException

(u) GetOrdinal
int GetOrdinal (string)

Argument

string name: Name of the field to be searched

Return

int: Index of the specified field

Description: Returns the index of the specified field.

Exception: HiRDBException

(v) GetProviderSpecificFieldType
Object GetProviderSpecificFieldType (int)

Argument

int ordinal: Ordinal number of the column, beginning at 0

Return

Object: Data type of the specified column

Description: Acquires the data type of a specified column. Because HiRDB.NET Data
Provider does not support any unique data types, it returns the Type object of the data
type provided by the common language runtime of .NET Framework. Its operation is
the same as for the HiRDBDataReader#GetFieldType method.

Exception: HiRDBException

(w) GetProviderSpecificValue
Object GetProviderSpecificValue (int)

Argument

int ordinal: Ordinal number of the column, beginning at 0

Return

Object: Object that has the value of the specified column

Description: Acquires the value of a specified column as an instance of Object.

Exception: HiRDBException

16. HiRDB Access from ADO.NET-compatible Application Programs

1167

(x) GetProviderSpecificValues
int GetProviderSpecificValues (Object[])

Argument

values: Object array that is the target of a copy operation on attribute columns
(Object-type array that stores the column data for the current rows)

Return

int: Number of Object instances in the array

Description: Acquires all attribute columns in the current collection of rows.

Exception: HiRDBException

(y) GetSchemaTable
System.Data.DataTable GetSchemaTable ()

Return

System.Data.DataTable: DataTable that describes column metadata

Description: Returns the DataTable that describes HiRDBDataReader's column
metadata.

Exception: HiRDBException

(z) GetString
string GetString (int)

Argument

int i: Index of the field to be searched

Return

string: Character string in the specified field

Description: Acquires a character string in the specified field.

Exception: HiRDBException

(aa) GetValue
object GetValue (int)

Argument

int i: Index of the field to be searched

Return

object: Object for storing the returned field value, if any

16. HiRDB Access from ADO.NET-compatible Application Programs

1168

Description: Returns a value in the specified field.

Exception: HiRDBException

object GetValue (int, int)

Arguments

int i: Index of the field to be searched

int j: Index of the field to be searched

Return

object: Object for storing the returned field value, if any

Description: Returns a value in the specified field (for array).

Exception: HiRDBException

(ab)GetValues
int GetValues (object[])

Argument

object values: Object array which is the target of a copy operation on the
attribute field

Return

int: Number of Object instances in array

Description: Acquires all attribute fields in the current record collection.

(ac) IsDBNull
bool IsDBNull (int)

Argument

int i: Index of the field to be searched

Return

bool: If the specified field is set to null, the value is true; if not, the value is
false.

Description: Returns a value indicating whether or not the specified field is set to
null.

Exception: HiRDBException

(ad)NextResult
bool NextResult ()

Return

16. HiRDB Access from ADO.NET-compatible Application Programs

1169

bool: If there are further rows, the value is true; if not, the value is false.

Description: Advances the data reader to the next result when the result of a batch SQL
statement is read.

Exception: HiRDBException

(ae) Read
bool Read ()

Return

bool: If there are further rows, the value is true; if not, the value is false.

Description: Advances HiRDBDataReader to the next record.

Exception: HiRDBException

16.5.6 HiRDBException
(1) Properties

(a) ErrorCode
Type: int

Default value: 0

Description: Acquires an error code as an int.

(b) Message
Type: String

Default value: ""

Description: Acquires text with a complete error.

16.5.7 HiRDBParameter
(1) Constructor

(a) HiRDBParameter
void HiRDBParameter ()

Description: Initializes a new instance of the HiRDBParameter class.

void HiRDBParameter (string, object)

Arguments

string name: Name of the parameter to be allocated (ParameterName
property)

object value: Value of the new HiRDBParameter object (Value

16. HiRDB Access from ADO.NET-compatible Application Programs

1170

property)

Description: Specifies the parameter name and HiRDBParameter object to
initialize a new instance of the HiRDBParameter class.

void HiRDBParameter (string, Hitachi.HiRDB.HiRDBType)

Arguments

string name: Name of the parameter to be allocated (ParameterName
property)

Hitachi.HiRDB.HiRDBType dataType: One of the HiRDBType values
(HiRDBType property)

Description: Specifies a parameter name and data type to initialize a new instance
of the HiRDBParameter class.

void HiRDBParameter (string, Hitachi.HiRDB.HiRDBType, int)

Arguments

string name: Name of the parameter to be allocated (ParameterName
property)

Hitachi.HiRDB.HiRDBType dataType: One of the HiRDBType values
(HiRDBType property)

int size: Parameter definition length (Size property)

Description: Uses a parameter name, data type, and length to initialize a new
instance of the HiRDBParameter class.

void HiRDBParameter (string, Hitachi.HiRDB.HiRDBType, int,
string)

Arguments

string name: Name of the parameter to be allocated (ParameterName
property)

Hitachi.HiRDB.HiRDBType dataType: One of the HiRDBType values
(HiRDBType property)

int size: Parameter definition length (Size property)

string srcColumn: Name of the source column (SourceColumn
property)

Description: Specifies a parameter name, data type, length, and source column
name to initialize a new instance of the HiRDBParameter class.

void HiRDBParameter (string, Hitachi.HiRDB.HiRDBType, int,
System.Data.ParameterDirection, byte, byte, string,

16. HiRDB Access from ADO.NET-compatible Application Programs

1171

System.Data.DataRowVersion, object)

Arguments

string parameterName: Parameter name (ParameterName property)

Hitachi.HiRDB.HiRDBType dataType: One of the HiRDBType values
(HiRDBType property)

int size: Parameter definition length (Size property)

System.Data.ParameterDirection direction: One of the
ParameterDirection values (Direction property)

byte precision: Total length in digits used to resolve Value
(Precision property)

byte scale: Length of the fractional part in digits used to resolve Value
(Scale property)

string srcColumn: Name of the source column (SourceColumn
property)

System.Data.DataRowVersion srcVersion: One of the
DataRowVersion values (SourceVersion property)

object value: Object which is the value of HiRDBParameter (Value
property)

Description: Specifies a parameter name, data type, length, source column name,
parameter direction, precision of numeric value, and other properties to initialize
a new instance of the HiRDBParameter class.

(2) Properties
(a) DbType

Type: System.Data.DbType

Default value: DbType.String

Description: Acquires or sets DbType for a parameter. When DbType is to be set, this
member sets the corresponding data type in the HiRDBType property according to
Table 16-3.

(b) Direction
Type: System.Data.ParameterDirection

Default value: ParameterDirection.Input

Description: Acquires or sets a value indicating whether the parameter is input only,
output only, bidirectional, or the stored procedure's return value.

16. HiRDB Access from ADO.NET-compatible Application Programs

1172

(c) HiRDBType
Type: Hitachi.HiRDB.HiRDBType

Default value: HiRDBType.MVarChar

Description: Acquires or sets an enumeration indicating the data type in HiRDB. When
the enumeration is to be set, this member sets the corresponding data type in the
DbType property according to Table 16-4.

HiRDBType enumeration:

Integer, SmallInt, Decimal, Float, SmallFlt, Char, VarChar, NChar,
NVarChar, MChar, MVarChar, Date, Time, TimeStamp,
IntervalYearToDay, IntervalHourToSecond, Blob, Binary

(d) IsNullable
Type: bool

Default value: true (fixed)

Description: Acquires a value indicating whether or not the parameter accepts the
null value (read only). If the null value is accepted, the value is true; if not, the
value is false.

(e) ParameterName
Type: string

Default value: ""

Description: Acquires or sets the name of the HiRDBParameter.

(f) Precision
Type: byte

Default value: 0

Description: Acquires or sets the number of significant digits (including decimal
places) in the definition length of a DECIMAL-type parameter.

If the HiRDBType property value is HiRDBType.Decimal:

Specify the precision for a DECIMAL-type column on the server that
corresponds to the parameter.

If the HiRDBType property value is not HiRDBType.Decimal:

The specified setting is ignored.

(g) Repetition
Type: short

16. HiRDB Access from ADO.NET-compatible Application Programs

1173

Default value: 1

Description: Acquires or sets an array structure in HiRDB. The value 1 indicates that
the target column is a non-repetition column, and 2 or greater is the maximum number
of elements in the repetition column.

(h) Scale
Type: byte

Default value: 0

Description: Acquires or sets the number of decimal places in the definition length of
a DECIMAL-type parameter.

If the HiRDBType property value is HiRDBType.Decimal:

Specify the decimal places for a DECIMAL-type column on the server that
corresponds to the parameter.

If the HiRDBType property value is not HiRDBType.Decimal:

The specified setting is ignored.

(i) Size
Type: int

Default value: 0

Description: Acquires or sets a parameter definition length. If the length is fixed (such
as numeric type or date/time type), specify 0. If the length is variable (such as character
string type), specify the number of bytes to be stored in the table or the maximum
column length.

For TIMESTAMP (DateTime), this value is the number of digits in the fractional part.

Note
Note that if the entered character string is longer than the size specified for
the Size property, only up to the specified number of characters are stored.
No exception occurs.

(j) SourceColumn
Type: string

Default value: ""

Description: Acquires or sets the name of the source column that has been assigned to
DataSet and is used to read or return Value.

(k) SourceColumnNullMapping
Type: bool

16. HiRDB Access from ADO.NET-compatible Application Programs

1174

Default value: true

Description: Acquires or sets a value that indicates whether the column of DataTable
object corresponding to the parameter permits the NULL value.

(l) SourceVersion
Type: System.Data.DataRowVersion

Default value: DataRowVersion.Default

Description: Acquires or sets the DataRowVersion that is used to read Value.

(m) Value
Type: object

Default value: null

Description: Acquires or sets a parameter value.

(3) Methods
(a) Clone

object Clone ()

Return

object: New object which is a copy of this instance

Description: Creates a new object which is a copy of the current instance.

(b) ResetDbType
void ResetDbType ()

Return: void

Description: Resets the DbType property to its initial value.

16.5.8 HiRDBParameterCollection
(1) Constructor

(a) HiRDBParameterCollection
void HiRDBParameterCollection ()

Description: Initializes a new instance of the HiRDBParameterCollection class.

(2) Properties
(a) Count

Type: int

Default value: 0

16. HiRDB Access from ADO.NET-compatible Application Programs

1175

Description: Acquires the number of HiRDBParameter objects stored in
HiRDBParameterCollection (read only).

(b) IsFixedSize
Type: bool

Default value: false

Description: Acquires a value indicating whether the size of
HiRDBParameterCollection is fixed (read only). The value is always false.

(c) IsReadOnly
Type: bool

Default value: false

Description: Acquires a value indicating whether or not
HiRDBParameterCollection is read only (read only). The value is always false.

(d) IsSynchronized
Type: bool

Default value: false

Description: Acquires a value indicating whether or not an access to
HiRDBParameterCollection is synchronized (thread-safe) (read only). The value
is always false.

(e) Item
Item[int]

Type: HiRDBParameter this[int index]

Description: Acquires the HiRDBParameter object for a specified index or sets
the HiRDBParameter object in a specified index.

Item[string]

Type: HiRDBParameter this[string parameterName]

Description: Acquires the HiRDBParameter object that has the parameter name
specified in the argument, or sets a new HiRDBParameter object in the index of
the HiRDBParameter object that has the parameter name specified in the
argument.

(f) SyncRoot
Type: object

Default value: null

Description: Acquires an object that can be used to synchronize an access to

16. HiRDB Access from ADO.NET-compatible Application Programs

1176

HiRDBParameterCollection (read only).

(3) Methods
(a) Add

int Add (object)

Argument

object value: HiRDBParameter object to be added to
HiRDBParameterCollection

Return

int: Index in the new HiRDBParameter object's collection

Description: Adds items to HiRDBParameterCollection.

int Add (Hitachi.HiRDB.HiRDBParameter)

Argument

HiRDBParameter value: HiRDBParameter to be added to
HiRDBParameterCollection

Return

int: Index of the new HiRDBParameter

Description: Adds items to HiRDBParameterCollection.

int Add (string, object)

Arguments

string parameterName: Parameter name

object parameterValue: Parameter value

Return

int: Index of the new HiRDBParameter

Description: Specifies the name and value of the parameter to add items to
HiRDBParameterCollection.

int Add (string, HiRDBType)

Arguments

string parameterName: Parameter name

HiRDBType dataType: One of the HiRDBType values

Return

int: Index of the new HiRDBParameter

16. HiRDB Access from ADO.NET-compatible Application Programs

1177

Description: Specifies the name and data type of the parameter to add items to
HiRDBParameterCollection.

int Add (string, HiRDBType, int)

Arguments

string parameterName: Parameter name

HiRDBType dataType: One of the HiRDBType values

int size: Parameter size

Return

int: Index of the new HiRDBParameter

Description: Specifies the name, data type, and size of the parameter to add items
to HiRDBParameterCollection.

int Add (string, HiRDBType, int, string)

Arguments

string parameterName: Parameter name

HiRDBType dataType: One of the HiRDBType values

int size: Parameter size

string srcColumn: Name of the source column

Return

int: Index of the new HiRDBParameter

Description: Specifies the name, data type, size, and source column of the
parameter to add items to HiRDBParameterCollection.

(b) AddRange
void AddRange(Array)

Argument

values: Array in the HiRDBParameter object to be added to
HiRDBParameterCollection

Return: void

Description: Adds an array in the specified HiRDBParameter object to
HiRDBParameterCollection.

Exception: HiRDBException

void AddRange(HiRDBParameter[])

16. HiRDB Access from ADO.NET-compatible Application Programs

1178

Argument

value: Array in the HiRDBParameter object to be added to
HiRDBParameterCollection

Return: void

Description: Adds an array in the specified HiRDBParameter object to
HiRDBParameterCollection.

Exception: HiRDBException

(c) Clear
void Clear ()

Return: void

Description: Deletes all items from HiRDBParameterCollection.

(d) Contains
bool Contains (object)

Argument

object value: Object that is searched for in
HiRDBParameterCollection

Return

bool: If Object is in HiRDBParameterCollection, the value is true;
if not, the value is false.

Description: Acquires a value indicating whether or not HiRDBParameter is in
the collection.

Exception: HiRDBException

bool Contains (HiRDBParameter)

Argument

HiRDBParameter value: HiRDBParameter object to be searched for in
HiRDBParameterCollection

Return

bool: If Object is in HiRDBParameterCollection, the value is true;
if not, the value is false.

Description: Acquires a value indicating whether HiRDBParameter is in the
collection.

Exception: HiRDBException

16. HiRDB Access from ADO.NET-compatible Application Programs

1179

bool Contains (string)

Argument

string parameterName: Parameter name

Return

bool: If the parameter is stored in the collection, the value is true; if not,
the value is false.

Description: Acquires a value indicating whether or not HiRDBParameter is in
the collection.

Exception: HiRDBException

(e) CopyTo
void CopyTo (System.Array, int)

Arguments

System.Array array: One-dimensional Array to which elements are copied
from HiRDBParameterCollection

int index: Index number, beginning at 0, at the location where value is
inserted

Return: void

Description: Copies the elements of HiRDBParameterCollection to Array using
Array's specific index as the start position.

(f) GetEnumerator
System.Collections.IEnumerator GetEnumerator ()

Return

System.Collections.Ienumerator: IEnumerator that can be used to
perform iteration processing on a collection

Description: Returns the enumerator that can perform iterative operation on a
collection.

(g) IndexOf: overload
int IndexOf (string)

Argument

string parameterName: Parameter name

Return

int: Location of HiRDBParameterCollection in the collection that

16. HiRDB Access from ADO.NET-compatible Application Programs

1180

begins at 0

Description: Acquires the location of HiRDBParameter in a collection.

Exception: HiRDBException

int IndexOf (object)

Argument

object value: Object that is searched for in
HiRDBParameterCollection

Return

int: If the object is in the list, the value is the index of value; if not, the
value is -1.

Description: Acquires the location of HiRDBParameter in a collection.

(h) Insert
void Insert(int, object)

Arguments

int index: Index number, beginning at 0, at the location where value is
inserted

object value: HiRDBParameter to be added to
HiRDBParameterCollection

Return: void

Description: Inserts an item at the specified location in
HiRDBParameterCollection.

Exception: HiRDBException

void Insert (int, Hitachi.HiRDB.HiRDBParameter)

Arguments

int index: Index number, which begins at 0, at the location where value
is inserted

HiRDBParameter value: HiRDBParameter to be added to
HiRDBParameterCollection

Return: void

Description: Inserts an item at the specified location in
HiRDBParameterCollection.

Exception: HiRDBException

16. HiRDB Access from ADO.NET-compatible Application Programs

1181

(i) Remove
void Remove (object)

Argument

object value: HiRDBParameter to be deleted from
HiRDBParameterCollection

Return: void

Description: Deletes the first occurrence of the specified object in
HiRDBParameterCollection.

(j) RemoveAt
void RemoveAt (string)

Argument

string parameterName: Parameter name

Return: void

Description: Deletes HiRDBParameter from a collection.

Exception: HiRDBException

void RemoveAt (int)

Argument

int index: Index of the item to be deleted that begins at 0

Return: void

Description: Deletes HiRDBParameter from a collection.

16.5.9 HiRDBProviderFactory
(1) Constructor

(a) HiRDBProviderFactory
HiRDBProviderFactory()

Description: Initializes a new instance of the HiRDBProviderFactory class.

(2) Fields
(a) Instance

Type: HiRDBProviderFactory

Description: Holds an instance of HiRDBProviderFactory (read only).

16. HiRDB Access from ADO.NET-compatible Application Programs

1182

(3) Properties
(a) CanCreateDataSourceEnumerator

Type: bool

Description: Indicates whether a class derived from the DbDataSourceEnumerator
class is to be supported (read only). If it is supported, the value is true; if not, the
value is false.

(4) Methods
(a) CreateCommand

DbCommand CreateCommand ()

Return: HiRDBCommand object

Description: Creates and returns the HiRDBCommand object.

(b) CreateCommandBuilder
DbCommandBuilder CreateCommandBuilder ()

Return: HiRDBCommandBuilder object

Description: Creates and returns a HiRDBCommandBuilder object.

(c) CreateConnection
DbConnection CreateConnection ()

Return: HiRDBConnection object

Description: Creates and returns a HiRDBConnection object.

(d) CreateConnectionStringBuilder
DbConnectionStringBuilder CreateConnectionStringBuilder ()

Return: DbConnectionStringBuilder object

Description: Creates and returns a DbConnectionStringBuilder object.

(e) CreateDataAdapter
DbDataAdapter CreateDataAdapter ()

Return: HiRDBDataAdapter object

Description: Creates and returns a HiRDBDataAdapter object.

(f) CreateDataSourceEnumerator
DbDataSourceEnumerator CreateDataSourceEnumerator ()

Return: There is no return value because an exception always occurs.

16. HiRDB Access from ADO.NET-compatible Application Programs

1183

Description: This member is not supported because no HiRDB enumeration type is
provided. It returns NotSupportedException unconditionally.

Exception: System.NotSupportedException

(g) CreateParameter
DbParameter CreateParameter ()

Return: HiRDBParameter object

Description: Creates and returns a HiRDBParameter object.

16.5.10 HiRDBRowUpdatedEventArgs
(1) Constructor

(a) HiRDBRowUpdatedEventArgs
void HiRDBRowUpdatedEventArgs (System.Data.DataRow,
System.Data.IdbCommand, System.Data.StatementType,
System.Data.Common.DataTableMapping)

Arguments

System.Data.DataRow dataRow: DataRow that was sent through Update

System.Data.IDbCommand command: IDbCommand that was executed when
Update was called

System.Data.StatementType statementType: Type of SQL statement
that was executed

System.Data.Common.DataTableMapping tableMapping:
DataTableMapping that was sent through Update

Description: Initializes a new instance of the HiRDBRowUpdatedEventArgs class.

(2) Properties
(a) Command

Type: HiRDBCommand

Default value: null

Description: Acquires the HiRDBCommand that is executed when Update is called
(read only).

16.5.11 HiRDBRowUpdatingEventArgs
(1) Constructor

(a) HiRDBRowUpdatingEventArgs
void HiRDBRowUpdatingEventArgs (System.Data.DataRow,

16. HiRDB Access from ADO.NET-compatible Application Programs

1184

System.Data.IDbCommand, System.Data.StatementType,
System.Data.Common.DataTableMapping)

Arguments

System.Data.DataRow dataRow: DataRow that executes Update

System.Data.IDbCommand command: IDbCommand that is executed when
Update is called

System.Data.StatementType statementType: Type of SQL statement to
be executed

System.Data.Common.DataTableMapping tableMapping:
DataTableMapping that is sent through Update

Description: Initializes a new instance of the HiRDBRowUpdatingEventArgs class.

(2) Properties
(a) Command

Type: HiRDBCommand

Default value: null

Description: Acquires or sets the HiRDBCommand that is executed during Update
processing.

16.5.12 HiRDBTransaction
(1) Properties

(a) Connection
Type: HiRDBConnection

Default value: null

Description: Specifies the HiRDBConnection object used to associate a transaction
(read only).

(b) IsCompleted
Type: bool

Default value: false

Description: Acquires a value indicating whether or not the transaction is completed
(read only). If the transaction is completed, the value is true; if not, the value is
false.

(c) IsolationLevel
Type: System.Data.IsolationLevel

16. HiRDB Access from ADO.NET-compatible Application Programs

1185

Default value:

When the supported ADO.NET version is 1.1:
IsolationLevel.ReadCommitted

When the supported ADO.NET version is 2.0:
IsolationLevel.RepeatableRead

Description: Specifies this transaction's IsolationLevel (read only).

(2) Methods
(a) Commit

void Commit ()

Return: void

Description: Commits a database transaction.

Exception: HiRDBException

(b) Rollback
void Rollback ()

Return: void

Description: Rolls back a database transaction from the hold status.

Exception: HiRDBException

16. HiRDB Access from ADO.NET-compatible Application Programs

1186

16.6 Notes about HiRDB.NET Data Provider

16.6.1 Placing in global assembly cache
(1) Notes about building and executing UAPs

When a UAP is built, HiRDB.NET Data Provider's DLL files are not copied to the
executable file storage directory. Instead, when a UAP is executed, the DLL files in the
global assembly cache are referenced. For this reason, there is no need to have
HiRDB.NET Data Provider's DLL files in the same directory as the UAP when the
UAP executes.

Publisher policies for HiRDB.NET Data Provider's DLL files are also placed in the
global assembly cache. These publisher policies contain rules used during UAP
execution for redirecting the version of HiRDB.NET Data Provider's DLL files for the
installed version of HiRDB client. Therefore, when a UAP executes, it references the
current version of HiRDB.NET Data Provider and there is no need to rebuild existing
UAPs.

The following HiRDB.NET Data Provider version is referenced during UAP
execution:

• 09-00 or earlier

UAPs reference the version of HiRDB.NET Data Provider that has been built. To
use a newer version of HiRDB.NET Data Provider, you must first install the
newer version of HiRDB client and then rebuild the UAPs.

• 09-01 or later

UAPs always reference the HiRDB.NET Data Provider on the installed HiRDB
client.

(2) How to avoid applying the publisher policies
The Windows default settings provide that the publisher policies will be applied. The
user can add a setting that will prevent redirecting of the version based on the publisher
policies that have been placed on the HiRDB client.

This subsection describes how to avoid applying the publisher policies. For details, see
the documentation provided by Microsoft.

(a) Using an application configuration file
When you develop a UAP, you can create an application configuration file
({executable-file-name}.config) and place it together with the application. By
adding the setting for disabling publisher policies in the application configuration file
(<publisherPolicy apply=no/>element), you can avoid the application of
publisher policies for each application.

16. HiRDB Access from ADO.NET-compatible Application Programs

1187

(b) Using the Control Panel
From Control Panel, choose Administrative Tools, then Microsoft .NET
Framework 1.1 Configuration or Microsoft .NET Framework 2.0 Configuration.
You can avoid application of publisher policies for each application by changing an
application property.

16.6.2 Notes about individual methods and properties
The following table provides notes about individual methods and properties of
HiRDB.NET Data Provider.

Table 16-2: Notes about individual methods and properties

Object Method or property Details

HiRDBCommand CommandTimeout property The setting is ignored because the timeout value during
execution depends on the settings in the client environment
definition (PDCWAITTIME, PDSWAITTIME,
PDSWATCHTIME).

Cancel method System.NotSupportedException is returned because
there is no cancellation function.

ExecuteReader method When the CommandBehavior.KeyInfo,
CommandBehavior.SchemaOnly, or
CommandBehavior.SequentialAccess argument is
specified, it is treated as CommandBehavior.Default
because a function for acquiring only column or primary key
information is not available.

UpdatedRowSource
property

When UpdatedRowSource.Both or
UpdatedRowSource.FirstReturnedRecord is
specified, HiRDBException is returned because there is no
batch query function that returns rows.

HiRDBCommandB
uilder

CatalogLocation
property

No function is affected by this property value because a
cataloging function is not available.

CatalogSeparator
property

No function is affected by this property value because a
cataloging function is not available.

SetAllValues property This property value is always true and the UPDATE
statement includes all column information.

HiRDBConnecti
on

ConnectionTimeout
property

The following value is always returned:
• When the supported ADO.NET version is 1.1: 15
• When the supported ADO.NET version is 2.0: 0

Database property The null character always results because there is no
function for acquiring database names.

16. HiRDB Access from ADO.NET-compatible Application Programs

1188

State property ConnectionState.Connecting,
ConnectionState.Executing,
ConnectionState.Fetching, or
ConnectionState.Broken will never result because this
property is a reserved value for future product versions.

BeginTransaction
method

IsolationLevel is ignored, if specified, because this
method is set for each SQL statement or acquired from
HiRDB environment variables.
No more than one transaction can be executed using a single
connection.

ChangeDatabase method System.NotSupportedException is returned because a
function for changing the connected database is not
available.

EnlistTransaction
method

System.NotSupportedException is returned because a
distributed transaction function is not available.

GetSchema method Schema information is not returned. An empty DataTable
object is always returned.

HiRDBDataRead
er

Depth property Always 0 because there is no hierarchy concept.

VisibleFieldCount
property

The value is the same as for FieldCount because a column
specified in the retrieval SQL statement is always acquired.

GetBoolean method NotSupportedException is returned because there is no
corresponding type.

GetByte method NotSupportedException is returned because there is no
corresponding type.

GetChar method NotSupportedException is returned because there is no
corresponding type.

GetData method NotSupportedException is returned because there is no
corresponding type.

GetGuid method NotSupportedException is returned because there is no
corresponding type.

GetProviderSpecificFi
eldType

An object with the data type provided in .NET Framework's
common language runtime is returned because no unique
data types are supported.

GetProviderSpecificVa
lue

An object with the data type provided in .NET Framework's
common language runtime is returned because no unique
data types are supported.

Object Method or property Details

16. HiRDB Access from ADO.NET-compatible Application Programs

1189

GetProviderSpecificVa
lues

An object with the data type provided in .NET Framework's
common language runtime is returned because no unique
data types are supported.

NextResult method false is returned because there is no multiple record set
function.

HiRDBParamete
r

DbType property If DbType.Boolean, DbType.Currency, DbType.Guid,
or DbType.VarNumeric is specified, HiRDBException is
returned because there is no corresponding type.

Direction property If HiRDBCommand class's ExecuteNonQuery,
ExecuteReader, ExecuteScalar, or Prepare method is
executed while Direction.ReturnValue is specified,
HiRDBException is returned because there is no function
for acquiring the stored procedure's return value.

IsNullable property Acquisition only; setting is not available. (The null value
can always be specified.)

HiRDBProvider
Factory

CreateDataSourceEnume
rator method

NotSupportedException is returned because no HiRDB
enumeration type is provided.

HiRDBTransact
ion

IsolationLevel property The following value is always returned:
• When the supported ADO.NET version is 1.1:

IsolationLevel.ReadCommitted

• When the supported ADO.NET version is 2.0:
IsolationLevel.RepeatableRead

Object Method or property Details

16. HiRDB Access from ADO.NET-compatible Application Programs

1190

16.7 Data types of HiRDB.NET Data Provider

16.7.1 DbType and HiRDBType properties
When the DbType property of the HiRDBParameter class is set, the HiRDBType
property of the same class is automatically set. When the HiRDBType property is set,
the DbType property is automatically set. Table 16-3 lists the HiRDBType property
values that are automatically set when the DbType property is set, and Table 16-4 lists
the DbType property values that are automatically set when the HiRDBType property
is set.

Table 16-3: HiRDBType property values that are automatically set when the
DbType property is set

DbType property HiRDBType property

AnsiString VarChar

AnsiStringFixedLength Char

Binary Binary

Boolean [NotSupportedException exception]

Byte SmallInt

Currency [NotSupportedException exception]

Date Date

DateTime TimeStamp

Decimal Decimal

Double Float

Guid [NotSupportedException exception]

Int16 SmallInt

Int32 Integer

Int64 Decimal

Object Binary

SByte SmallInt

Single SmallFlt

String MvarChar

16. HiRDB Access from ADO.NET-compatible Application Programs

1191

Table 16-4: DbType property values that are automatically set when the
HiRDBType property is set

StringFixedLength Mchar

Time Time

UInt16 Integer

UInt32 Decimal

UInt64 Decimal

VarNumeric [NotSupportedException exception]

HiRDBType property DbType property

Binary Object

Blob Object

Char AnsiStringFixedLength

Date Date

Decimal Decimal

Float Double

Integer Int32

IntervalYearToDay String

IntervalHourToSecond String

MChar StringFixedLength

MVarChar String

NChar StringFixedLength

NVarChar String

SmallFlt Single

SmallInt Int16

Time Time

TimeStamp DateTime

VarChar AnsiString

DbType property HiRDBType property

16. HiRDB Access from ADO.NET-compatible Application Programs

1192

16.7.2 Data types and accessories used by a UAP
The table below lists the data types that are set in the Value property of the
HiRDBParameter class, for example, during execution of the INSERT and GetXXXX
methods of the HiRDBDataReader class that are used during execution of SELECT.
Note that HiRDB's NULL is represented by DBNull.Value of the .NET Framework
type.

Table 16-5: Data types and accessories for HiRDB-type UAPs

Classification HiRDB data type .NET Framework
type used by

UAPs, for example
in INSERT

Accessory used
by UAP for

SELECT

Character CHAR[ACTER] String GetString()

VARCHAR/CHAR[ACTER]VARYING String GetString()

NCHAR/NATIONAL CHAR[ACTER] String GetString()

NVARCHAR/NCHAR VARYING String GetString()

MCHAR String GetString()

MVARCHAR String GetString()

Numeric value [LARGE]DEC[IMAL]/NUMERIC Decimal GetDecimal()

SMALLINT Int16 GetInt16()

INT[EGER] Int32 GetInt32()

SMALLFLT/REAL Single GetFloat()

FLOAT/DOUBLE PRECISION Double GetDouble()

Date and time DATE DateTime GetDateTime()

TIME DateTime GetDateTime()

TIMESTAMP DateTime GetDateTime()

Other BINARY Byte[] GetBytes()

BLOB Byte[] GetBytes()

INTERVAL YEAR TO DAY String GetString()

INTERVAL HOUR TO SECOND TimeSpan GetString()

16. HiRDB Access from ADO.NET-compatible Application Programs

1193

16.7.3 Type conversion by HiRDB.NET Data Provider
When no .NET Framework type or accessory listed in Table 16-5 is used, type
conversion takes place automatically within the HiRDB data provider. No .NET
Framework type or accessory is used when Int32-type data is inserted in a table that
contains items with the CHAR attribute or the GetInt32 method is used for acquisition.

Tables 16-6 and 16-7 list the type conversions for INSERT, and Tables 16-8 and 16-9
list the type conversions for SELECT.

For the definition of symbols used in Tables 16-6 through 16-9, see 16.7.3(1)
Definition of symbols.

Table 16-6: List of type conversions for INSERT (1/2)

.NET Framework
type

HiRDB data type

I SI DE F SF C VC NC NVC

Boolean E1 E1 E1 E1 E1 E1 E1 E1 E1

Int16 N N N N N N N E1 E1

Int32 N C1 N N N N N E1 E1

Int64 C2 C1 N N N N N E1 E1

UInt16 N C1 N N N N N E1 E1

UInt32 C2 C1 N N N N N E1 E1

UInt64 C2 C1 N N N N N E1 E1

Single data with
fractional part

C4 C3 N N N N N E1 E1

Single data with no
fractional part

C2 C1 N N N N N E1 E1

Double data with
fractional part

C4 C3 N N N N N E1 E1

Double data with no
fractional part

C2 C1 N N N N N E1 E1

Decimal data with
fractional part

C4 C3 N N N N N E1 E1

Decimal data with no
fractional part

C2 C1 N N N N N E1 E1

Char N1 N1 E1 E1 E1 N N N N

Char[] E1 E1 E1 E1 E1 E1 E1 E1 E1

16. HiRDB Access from ADO.NET-compatible Application Programs

1194

Table 16-7: List of type conversions for INSERT (2/2)

String C2 C1 N N N N N N N

DateTime E1 E1 E1 E1 E1 N N E1 E1

TimeSpan E1 E1 E1 E1 E1 N N E1 E1

Guid E1 E1 E1 E1 E1 N N E1 E1

Byte N N N N N N N E1 E1

Byte[] E1 E1 E1 E1 E1 E1 E1 E1 E1

Sbyte N N N N N N N E1 E1

SByte[] E1 E1 E1 E1 E1 E1 E1 E1 E1

.NET Framework
type

HiRDB data type

MC MVC DA T TS IY IHS BI BL

Boolean E1 E1 E1 E1 E1 E1 E1 E1 E1

Int16 N N E1 E1 E1 E2 E2 E1 E1

Int32 N N E1 E1 E1 E2 E2 E1 E1

Int64 N N E1 E1 E1 E2 E2 E1 E1

UInt16 N N E1 E1 E1 E2 E2 E1 E1

UInt32 N N E1 E1 E1 E2 E2 E1 E1

UInt64 N N E1 E1 E1 E2 E2 E1 E1

Single data with
fractional part

N N E1 E1 E1 E2 E2 E1 E1

Single data with no
fractional part

N N E1 E1 E1 E2 E2 E1 E1

Double data with
fractional part

N N E1 E1 E1 E2 E2 E1 E1

Double data with no
fractional part

N N E1 E1 E1 E2 E2 E1 E1

Decimal data with
fractional part

N N E1 E1 E1 E2 E2 E1 E1

.NET Framework
type

HiRDB data type

I SI DE F SF C VC NC NVC

16. HiRDB Access from ADO.NET-compatible Application Programs

1195

Note 1: INSERT operation on NCHAR/NVARCHAR

If the size of data obtained after S-JIS conversion consists of an odd number of
bytes, the [Hitachi.HiRDB.HiRDBException]KFPZ24026-E format
conversion error occurs.

Note 2: During array INSERT

If the type is not an Object array type, the
[Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion
error occurs. Because no array can be inserted in BLOB, the same error occurs if
an attempt is made.

Table 16-8: List of type conversions for SELECT (1/2)

Decimal data with no
fractional part

N N E1 E1 E1 E2 E2 E1 E1

Char N N E1 E1 E1 E2 E2 E1 E1

Char[] E1 E1 E1 E1 E1 E2 E2 E1 E1

String N N N N N N N E1 E1

DateTime N N N N N E2 E2 E1 E1

TimeSpan N N E1 E1 E1 E2 N E1 E1

Guid N N E1 E1 E1 E2 E2 E1 E1

Byte N N E1 E1 E1 E2 E2 N N

Byte[] E1 E1 E1 E1 E1 E2 E2 N N

Sbyte N N E1 E1 E1 E2 E2 N N

SByte[] E1 E1 E1 E1 E1 E2 E2 N N

Accessory HiRDB data type

I SI DE F SF C VC NC NVC

GetBoolean E3 E3 E3 E3 E3 E3 E3 E3 E3

GetByte E3 E3 E3 E3 E3 E3 E3 E3 E3

GetBytes N N E1 N N N N N N

GetChar E3 E3 E3 E3 E3 E3 E3 E3 E3

.NET Framework
type

HiRDB data type

MC MVC DA T TS IY IHS BI BL

16. HiRDB Access from ADO.NET-compatible Application Programs

1196

Table 16-9: List of type conversions for SELECT (2/2)

GetChars E1 E1 E1 E1 E1 N N N N

GetData E3 E3 E3 E3 E3 E3 E3 E3 E3

GetDateTime E1 E1 E1 E1 E1 C6 C6 C6 C6

GetDecimal N N N N N C7 C7 C7 C7

GetDouble N N N N N C8 C8 C8 C8

GetFloat N N N N N C9 C9 C9 C9

GetGuid E3 E3 E3 E3 E3 E3 E3 E3 E3

GetInt16 C1 N C1 C1 C1 C1 C1 C1 C1

GetInt32 N N C2 C2 C2 C2 C2 C2 C2

GetInt64 N N C10 C10 C10 C10 C10 C10 C10

GetString N N N N N N N N N

GetValue N N N N N N N N N

GetValues N N N N N N N N N

Accessory HiRDB data type

MC MVC DA T TS IY IHS BI BL

GetBoolean E3 E3 E3 E3 E3 E3 E3 E3 E3

GetByte E3 E3 E3 E3 E3 E3 E3 E3 E3

GetBytes N N E1 E1 E1 E1 E1 N N

GetChar E3 E3 E3 E3 E3 E3 E3 E3 E3

GetChars N N E1 E1 E1 E1 E1 E1 E1

GetData E3 E3 E3 E3 E3 E3 E3 E3 E3

GetDateTime C6 C6 N N N E1 E1 E1 E1

GetDecimal C7 C7 E1 E1 E1 E1 E1 E1 E1

GetDouble C8 C8 E1 E1 E1 E1 E1 E1 E1

Accessory HiRDB data type

I SI DE F SF C VC NC NVC

16. HiRDB Access from ADO.NET-compatible Application Programs

1197

Note 1: During DATE acquisition

When the GetDateTime method is used, 00:00:00 is set in the time field. When
the GetString method is used, the value is set in the format YYYY/MM/DD.

Note 2: During TIME/TIMESTAMP acquisition

When the GetDateTime method is used, the current date is set in the date field.
When the GetString method is used, the value is set in the following format:

TIME: hh:mm:ss
TIMESTAMP(0): YYYY/MM/DD hh:mm:ss
TIMESTAMP(2): YYYY/MM/DD hh:mm:ss.nn
TIMESTAMP(4): YYYY/MM/DD hh:mm:ss.nnnn
TIMESTAMP(6): YYYY/MM/DD hh:mm:ss.nnnnnn

Note 3: During INTERVALYEARTODAY acquisition

When the GetString method is used, the value is set in the format YYYY/
MM/DD.

Note 4: During INTERVALHOURTOSECOND acquisition

When the GetString method is used, the value is set in the format hh:mm:ss.

(1) Definition of symbols
(a) HiRDB data types

The following table defines the symbols used for the HiRDB data types:

GetFloat C9 C9 E1 E1 E1 E1 E1 E1 E1

GetGuid E3 E3 E3 E3 E3 E3 E3 E3 E3

GetInt16 C1 C1 E1 E1 E1 E1 E1 E1 E1

GetInt32 C2 C2 E1 E1 E1 E1 E1 E1 E1

GetInt64 C10 C10 E1 E1 E1 E1 E1 E1 E1

GetString N N N N N N N N N

GetValue N N N N N N N N N

GetValues N N N N N N N N N

Accessory HiRDB data type

MC MVC DA T TS IY IHS BI BL

16. HiRDB Access from ADO.NET-compatible Application Programs

1198

(b) Whether or not type conversion is supported
N indicates normal; C indicates a conditional; and E indicates error. Some of these
letters are followed by a number; they are defined as follows:

Symbol Definition

I INTEGER

SI SMALLINT

DE DECIMAL and LARGE DECIMAL

F FLOAT/DOUBLE PRECISION

SF SMALLFLT and REAL

C CHARACTER

VC VARCHAR

NC NCHAR and NATIONAL CHARACTER

NVC NVARCHAR

MC MCHAR

MVC MVARCHAR

DA DATE

T TIME

TS TIMESTAMP

IY INTERVAL YEAR TO DAY

IHS INTERVAL HOUR TO SECOND

BI BINARY

BL BLOB

Symbol Definition

N Numeric character code is set.

C1 For Int32 type, Int64 type, Single data type with no fraction part, Double data type with no
fraction part, Decimal data type with no fraction part, and String data type with no fraction part:

-32768 to 32767: Normal
For UInt16, UInt32, and UInt64 types:

0 to 32767: Normal
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

16. HiRDB Access from ADO.NET-compatible Application Programs

1199

C2 For Int64 type, Single data type with no fraction part, Double data type with no fraction part,
Decimal data type with no fraction part, and String data type with no fraction part:

-2147483648 to 2147483647: Normal
For UInt32 and UInt64 types:

0 to 2147483647: Normal
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C3 -32768 to 32767: Normal (rounded)
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C4 -2147483648 to 2147483647: Normal (rounded)
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C5 0 to 255: Normal
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C6 DateTime format data: Normal
Other: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C7 Decimal format data: Normal
Other: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C8 Double format data: Normal
Other: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C9 Float format data: Normal
Other: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C10 -9223372036854775808 to 9223372036854775807: Normal
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

E1 [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

E2 [Hitachi.HiRDB.HiRDBException] KFPZ24107-E Decimal, date and time, time interval type
overflow
[Hitachi.HiRDB.HiRDBException] KFPZ24106-E Date and time, time interval type format error

E3 [System.NotSupportedException] unsupported error

Symbol Definition

16. HiRDB Access from ADO.NET-compatible Application Programs

1200

16.8 Connection pooling function

(1) About the connection pooling function
The connection pooling function reduces the number of new connections by keeping
reusable connections in effect.

When a UAP calls the Open method of the Connection object, HiRDB.NET Data
Provider checks the connection pool for a reusable connection. If there is an available
connection in the pool, HiRDB.NET Data Provider returns that connection to the
calling program without opening a new connection. If there is no available connection
in the pool, HiRDB.NET Data Provider opens a new connection. When a UAP calls
the Close method of the Connection object, HiRDB.NET Data Provider does not
actually close the connection. Instead, the next time the Open method is called,
HiRDB.NET Data Provider reuses the connection kept in the connection pool without
opening a new connection.

A connection is kept in the connection pool for a specified period of time. If the
connection is not reused within that period, it is discarded from the pool.

Hint:

If you make frequent use of the Open and Close methods of the Connection
object, you might be able to significantly improve UAP performance and
scalability by using connection pooling.

(2) How to use the function
You specify the following settings to use the connection pooling function:

• Set true (default value) in the HiRDBConnection.Pooling property.

• Set in the HiRDBConnection.LifeTime property the amount of time a
connection is to be kept in the connection pool.

When these settings have been specified, a connection in the pool that satisfies both
the following conditions is reused:

• The connection is not being used currently.

• The connection character string matches perfectly.

16. HiRDB Access from ADO.NET-compatible Application Programs

1201

16.9 Provider-independent codes using DbProviderFactory

ADO.NET2.0 can now create instances of other classes, such as Command and
Parameter, by using the DbProviderFactory instance. You can create an instance
specific to a provider based on the provided information by creating a
DbProviderFactory instance with a character string indicating the specified
provider's namespace (referred to hereafter as the provider name). You can register a
provider name in a configuration file for later acquisition. This enables you to create
provider-independent codes and select a desired provider during execution.

(1) Adding provider information
You create a DbProviderFactory instance by calling the GetFactory method of
the DbProviderFactories class. When you install .NET Framework version 2.0 or
3.0, you can specify the following four types of provider names with this method:

• System.Data.Odbc

• System.Data.OleDb

• System.Data.OracleClient

• System.Data.SqlClient

You can specify provider names in the GetFactory method if you add provider
information to the DbProviderFactories element of the system.data section in
the machine.config file that is installed when you install .NET Framework version
2.0 or 3.0.

For HiRDB.NET Data Provider, the invariant value to be specified is
Hitachi.HiRDB.

The following shows an example that adds information about HiRDB.NET Data
Provider.

Adding provider information

<system.data>
 <DbProviderFactories>
 :
 :
 :
 <add name="HiRDB Data Provider" invariant="Hitachi.HiRDB"
 description=".NET Framework Data Provider for HiRDB"
 type="Hitachi.HiRDB.HiRDBProviderFactory, pddndp20,
 Version=X.X.X.X, Culture=neutral,
 PublicKeyToken=YYYYYYYYYYYYYYYY" />
 </DbProviderFactories>
</system.data>

16. HiRDB Access from ADO.NET-compatible Application Programs

1202

Legend:

X.X.X.X: Assembly version. You can determine the assembly version by
checking the properties of pddndp20.dll.

YYYYYYYYYYYYYYYY: Assembly public key token. You can determine the
assembly public key token by entering the following command at the
command prompt or MS-DOS prompt:

sn -T pddndp20.dll

(2) Specifying provider names by using a configuration file
You can register provider names in a configuration file for later acquisition when you
create a DbProviderFactory instance. For details about the configuration file, see
the documentation of .NET Framework.

For HiRDB.NET Data Provider, the provider name (value) to be specified is
Hitachi.HiRDB. Note that a configuration file is not required if you specify a
provider name directly in the argument of the GetFactory method of the
DbProviderFactories class.

The following shows an example of a configuration file. The key name (provider)
can be any character string.

Example of configuration file

(3) Creating a DbProviderFactory instance
(a) When a configuration file is not used

This example specifies the provider name (Hitachi.HiRDB) directly in the argument
of the GetFactory of the DbProviderFactories class and then creates a
DbProviderFactory instance. The following shows sample coding:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="provider" value="Hitachi.HiRDB" /> ...HiRDB.NET Provider
 </appSettings>
</configuration>

DbProviderFactory dataFactory =
 DbProviderFactories.GetFactory("Hitachi.HiRDB");

16. HiRDB Access from ADO.NET-compatible Application Programs

1203

(b) When a configuration file is used
This example acquires the value of the key name (provider) from the configuration
file and then creates a DbProviderFactory instance by specifying that value in the
argument of the GetFactory method of the DbProviderFactories class. The
following shows sample coding:

(4) Sample coding
By acquiring the provider name and connection character string that depend on the
provider from the configuration file, you can use different providers without having to
change the program.

The following shows sample coding for using a configuration file:

DbProviderFactory dataFactory =

DbProviderFactories.GetFactory(ConfigurationManager.AppSettings["provider"]);

16. HiRDB Access from ADO.NET-compatible Application Programs

1204

16. HiRDB Access from ADO.NET-compatible Application Programs

1205

16.10 Troubleshooting function of HiRDB.NET Data Provider

ADO.NET 2.0-compatible HiRDB.NET Data Provider can collect method traces as
troubleshooting information.

(1) How to collect method traces
You can collect method trace information by specifying appropriate values in the
PDCLTPATH and PDDNDPTRACE client environment definitions. For details about the
client environment definitions, see 6.6 Client environment definitions (setting
environment variables).

(2) Method trace output rules
The following rules apply to method trace output:

Two method trace files for collecting information are created in a specified
directory.

A method trace is output at the following times:

• When a method is called

• When a method returns control

• When a property is specified

• When a property is acquired

UTF-8 character encoding is used.

The names of the created files are pddndpxxxxx_yyyy_1.trc and
pddndpxxxxx_yyyy_2.trc, where xxxxx is the process ID and yyyy is the
connection number.

(3) How to interpret the method trace information
This subsection shows and explains an example of method trace output.

Header

Explanation:

The header is output at the beginning of the file.

1. Connection number

2. Connection-target server's process ID

[1][1742][sds01][12345678][HiRDB_Data_Provider20][08.04.0.0]
 1 2 3 4 5 6

16. HiRDB Access from ADO.NET-compatible Application Programs

1206

3. Name of single server or front-end server

4. UAP's process ID

5. Trace ID information

6. HiRDB.NET Data Provider's assembly version

Method trace information

Explanation:

Method trace information is output each time a method is called, a method returns
control, a property is set, or a property is acquired.

1. Thread ID

2. Access type:

E: Method call

R: Return from method

S: Value setting in property

G: Acquisition of property value

The output information depends on the access type, as shown in the
following table:

[0000000001][E][HiRDBCommand@12345678 ExecuteNonQuery][SID(2)][2008/08/27
1:29:10.123]
 1 2 3 4 5 6 7

 [Return=0]
 8
 [nArraySize=10] -|
 |
 : |-9
 |
 [CommandText=INSERT INTO T1 VALUES(100)] -|

 [MessageText=KFPA11117-E Number of insert values not equal to number of insert
columns] 10
 [SQLCODE=-117] 11
 [SQLWARN=0000] 12
 location Hitachi.HiRDB.native.HiRDBcore.ClearSectionItems() -|
 location Hitachi.HiRDB.HiRDBConnection.Close() |
 location Hitachi.HiRDB.HiRDBConnection.Dispose(Boolean disposing) |-13
 location Hitachi.HiRDB.HiRDBConnection.Finalize() -|

16. HiRDB Access from ADO.NET-compatible Application Programs

1207

Legend:

 Y: Output

 --: Not output

3. Class name. In this example, the provider name is omitted.

4. Hash code. In this example, an at mark (@) separates the hash code from the
class name.

5. Method name or property name

6. Section number. For a method or property that has no effect on SQL
execution, an asterisk (*) is output because the section number cannot be
identified.

7. Trace collection date and time

8. Return value. In the event of an exception, the Exception class name is
output.

9. Argument names and values or property names and values. A name and a
value are separated by an equal sign (=).

10. Error message

11. SQLCODE that resulted from the SQL statement execution.

12. SQLWARN. This is warning information (displayed in hexadecimal). For
details, see 11.1.1(2) Examining SQL trace information.

13. Stack trace

For some methods, property information is output. The following table shows the
output format for each access type:

Access type Call type Argument or
property value

Return
value

Error
information

Method E Call Y -- --

R Return (normal) -- Y --

Return (error) -- -- Y

Property S Setting (normal) Y -- --

Setting (error) Y -- Y

G Acquisition (normal) -- Y --

Acquisition (error) -- -- Y

16. HiRDB Access from ADO.NET-compatible Application Programs

1208

Legend:

--: Not applicable

#1

VALUE indicates the property value, argument value, or return value that was set
or acquired.

#2

PARAMETER_VALUE indicates information about each parameter that has been
registered in HiRDBParameterCollection. The information consists of the
following:

ParameterName,HiRDBType,Value,Precision,Scale,Repetition

#3

ARGUMENT indicates an argument name.

#4

PROPERTY indicates a property name.

(4) Making a backup of a method trace file
When the capacity of the current method trace file reaches a specified size, the system
starts using the other method trace file for output of method trace information. When
this occurs, the oldest method trace information in the switched-in method trace file is
overwritten by new method trace information. For this reason, you should back up the

Access
type

Caller Format Remarks

Method E HiRDBCommand.Execute
HiRDBCommand.ExecuteDbDataRead
er
HiRDBCommand.ExecuteNonQuery
HiRDBCommand.ExecuteReader
HiRDBCommand.ExecuteScalar

CommandText=VALUE#1

Parameters.Count=VALUE

 PARAMETER_VALUE#2

If there are
arguments, the
argument
information is
output.

Other ARGUMENT#3=VALUE --

R HiRDBConnection.Open ConnectionString=VALUE
ServerVersion=VALUE

--

Other Return=VALUE --

Property S -- PROPERTY#4=VALUE --

G -- Return=VALUE --

16. HiRDB Access from ADO.NET-compatible Application Programs

1209

contents of the method trace file upon termination of a UAP.

To determine which method trace file is being used currently, check the two files' last
update dates and times. The file with the most recent update date and time is the current
method trace file. Use the dir command or Explorer to check the update dates and
times.

16. HiRDB Access from ADO.NET-compatible Application Programs

1210

16.11 Example of a UAP using HiRDB.NET Data Provider

This section describes an example of a UAP using HiRDB.NET Data Provider.

16.11.1 Connecting to the database
The following example connects to HiRDB and then disconnects from HiRDB:

Example of Visual C# .NET code

Example of Visual Basic.NET code

using System;
using Hitachi.HiRDB;

namespace test_C
{
 class Sample
 {
 [STAThread]
 static void Main(string[] args)
 {

 try
 {
 // Create a Connection object
 HiRDBConnection cn = new HiRDBConnection("dsn=pc;"); ...1

 // Connect to the database
 cn.Open(); ...2

 // Disconnect from the database
 cn.Close(); ..3
 }

 catch (HiRDBException ex)
 {
 Console.WriteLine(ex);
 }
 catch (System.Exception ex)
 {
 Console.WriteLine(ex);
 } ..4
 }
 }
}

16. HiRDB Access from ADO.NET-compatible Application Programs

1211

Explanation
1. First, create a HiRDBConnection object. This object manages all

communications with HiRDB. Because Disconnect is called from within
the HiRDBConnection: Dispose method, when this object disappears,
the database is automatically disconnected.

For this method, you must specify one string-type argument. The character
string to be specified is called a connection character string. This is the same
type of connection character string as those used for Connection in ADO
and ADO.NET. For details about the character strings that can be specified,
see 16.5.3(2)(a) ConnectionString.

2. To connect to the database, use the Open method.

3. To disconnect from the database, use the Close method. Using the Close
method while a connection is not established does not result in an exception.

Imports System
Imports System.Data
Imports Hitachi.HiRDB

Module Module1

 Sub Main()

 Dim cn As HiRDBConnection
 Dim cm As HiRDBCommand

 Try
 ' Create a Connection object
 cn = New HiRDBConnection("dsn=pc;") 1

 ' Connect to the database
 cn.Open() ..2

 ' Disconnect from the database
 cn.Close() ...3

 Catch ex As HiRDBException
 Console.WriteLine(ex)

 Catch ex As System.Exception

 Console.WriteLine(ex)

 End Try ..4

 End Sub

End Module

16. HiRDB Access from ADO.NET-compatible Application Programs

1212

4. An exception occurs if the server is not running, communication is disabled,
the SQL statement is invalid, or in similar cases. Basically, a block using
HiRDB.NET Data Provider detects exceptions by try through catch, and
then displays an exception message.

In the case of an overall HiRDB error, System.Exception occurs, and in
the case of a HiRDB.NET Data Provider-specific error, HiRDBException
occurs. Make sure that System.Exception is not abbreviated as
Exception.

A HiRDB Client Library or HiRDB.NET Data Provider-specific error code
is stored in the ErrorCode property of the exception object that is created
by HiRDB.NET Data Provider.

A 3-digit (-XXX) or 4-digit (-XXXX) error code indicates KFPA1XXXX and
a 5-digit error code (-24XXX) indicates KFPZ24XXX.

16.11.2 Executing the SQL statement
This example creates a table named ex:

Example of Visual C# .NET code

using System;
using Hitachi.HiRDB;

namespace test_C
{
 class Sample
 {
 [STAThread]
 static void Main(string[] args)
 {
 try

 {
 // Create a Connection object
 HiRDBConnection cn = new HiRDBConnection("dsn=pc;");

 // Connect to the database
 cn.Open();

 // Create a Command object
 HiRDBCommand cm = new HiRDBCommand();

16. HiRDB Access from ADO.NET-compatible Application Programs

1213

Example of Visual Basic.NET code

 // Create a table
 cm.Connection = cn;
 cm.CommandText = "create table ex (a int)";
 cm.ExecuteNonQuery(); 1

 // Disconnect from the database
 cn.Close();
 }
 catch (HiRDBException ex)

 {
 Console.WriteLine(ex);
 }
 catch (System.Exception ex)
 {
 Console.WriteLine(ex);
 }
 }
 }
}

Imports System
Imports System.Data
Imports Hitachi.HiRDB

Module Module1

 Sub Main()

 Dim cn As HiRDBConnection
 Dim cm As HiRDBCommand

 Try
 ' Create a Connection object
 cn = New HiRDBConnection("dsn=pc;")

 ' Connect to the database
 cn.Open()

 ' Create in the Command object
 cm = New HiRDBCommand()

 ' Create a table
 cm.Connection = cn
 cm.CommandText = "create table ex (a int)"
 cm.ExecuteNonQuery() 1

 ' Disconnect from the database
 cn.Close()

16. HiRDB Access from ADO.NET-compatible Application Programs

1214

Explanation
1. To execute an SQL statement, use the Execute method. Specify a

string-type SQL statement as is in the CommandText property of
HiRDBCommand. This method can execute most SQL statements. Special
SQL statements such as commit cannot be executed by this method, as well
as statements such as select that must receive a result set. To execute these
SQL statements, use dedicated methods.

16.11.3 Executing a transaction
This example inserts data 1 to the ex table:

Example of Visual C# .NET code

 Catch ex As HiRDBException
 Console.WriteLine(ex)

 Catch ex As System.Exception

 Console.WriteLine(ex)

 End Try

 End Sub

End Module

using System;
using System.Data;
using Hitachi.HiRDB;

namespace test_C
{
 class Sample
 {
 [STAThread]
 static void Main(string[] args)

16. HiRDB Access from ADO.NET-compatible Application Programs

1215

Example of Visual Basic.NET code

 {
 // Create a Connection object
 HiRDBConnection cn = new HiRDBConnection("dsn=pc;");

 // Connect to the database
 cn.Open();

 // Create a Transaction object
 HiRDBTransaction tran;
 // Start of transaction
 tran = cn.BeginTransaction(IsolationLevel.ReadCommitted); ..1
 // Create a Command object
 HiRDBCommand cm = new HiRDBCommand();
 cm.Connection = cn;
 cm.Transaction = tran;
 try

 {
 // Insert data in the table
 cm.CommandText = "insert into ex values (1)";
 cm.ExecuteNonQuery();

 // Transaction was successful
 tran.Commit(); ...2

 // Disconnect from the database
 cn.Close();
 }
 catch (HiRDBException ex)
 {
 // Transaction failed
 tran.Rollback(); 3

 Console.WriteLine(ex);
 }
 catch (System.Exception ex)
 {
 // Transaction failed
 tran.Rollback(); 3

 Console.WriteLine(ex);
 }
 }
 }
}

16. HiRDB Access from ADO.NET-compatible Application Programs

1216

Imports System
Imports System.Data
Imports Hitachi.HiRDB

Module Module1

 Sub Main()

 Dim cn As HiRDBConnection
 Dim tran As HiRDBTransaction
 Dim cm As HiRDBCommand

 ' Create a Connection object
 cn = New HiRDBConnection("dsn=pc;")

 ' Connect to the database
 cn.Open()

 ' Start a transaction
 tran = cn.BeginTransaction(IsolationLevel.ReadCommitted) 1
 ' Create a Command object
 cm = New HiRDBCommand()
 cm.Connection = cn
 cm.Transaction = tran

 Try

 ' Insert data in the table
 cm.CommandText = "insert into ex values (1)"
 cm.ExecuteNonQuery()

 ' Transaction is successful
 tran.Commit() ..2

 ' Disconnect from the database
 cn.Close()

 Catch ex As HiRDBException

 ' Transaction fails
 tran.Rollback() ..3
 Console.WriteLine(ex)

 Catch ex As System.Exception

 ' Transaction fails
 tran.Rollback() ..3
 Console.WriteLine(ex)

 End Try

 End Sub

End Module

16. HiRDB Access from ADO.NET-compatible Application Programs

1217

Explanation
1. To start a transaction, use the BeginTransaction method.

2. To complete the transaction, call the Commit method.

3. To restore, call the Rollback method.

16.11.4 Executing a search statement
This example displays all table data:

Although the sample program is coded in Visual C# .NET, the program in Visual
Basic.NET would be almost the same (if necessary, change information as
appropriate).

using System;
using System.Data;
using Hitachi.HiRDB;

namespace test_C
{
 class Sample
 {
 [STAThread]
 static void Main(string[] args)

 {
 try
 {
 // Create a Connection object
 HiRDBConnection cn = new HiRDBConnection("dsn=pc;");

 // Connect to the database
 cn.Open();

 // Create a Command object
 HiRDBCommand cm = new HiRDBCommand();
 cm.Connection = cn;
 cm.CommandText = "select a from ex";

 // Create a DataReader object
 HiRDBDataReader rd = cm.ExecuteReader(); 1
 int i;
 while(rd.Read())
 {
 for (i = 0 ; i < rd.FieldCount ; i++)
 {
 Console.WriteLine(rd.GetName(i) + " - " +rd.GetValue(i));
 }
 } ..2

16. HiRDB Access from ADO.NET-compatible Application Programs

1218

Explanation
1. To execute a search, use the ExecuteReader method to create a

HiRDBDataReader.

2. Use the Read method to move on to the next row. Use the GetName method
to acquire a column name, and use the GetValue method to acquire a
column value.

16.11.5 Executing the INSERT facility using arrays
This example inserts 123, 200, and null in the ex table:

Although the sample program is coded in Visual C# .NET, the program in Visual
Basic.NET would be almost the same (if necessary, change information as
appropriate).

 // Disconnect from the database
 cn.Close();
 }
 catch (HiRDBException ex)
 {
 Console.WriteLine(ex);
 }
 catch (System.Exception ex)
 {
 Console.WriteLine(ex);
 }
 }
 }
}

 // Create objects such as a connection object
 HiRDBConnection pConn = new HiRDBConnection("connection-character-string");
 HiRDBCommand pCom = pConn.CreateCommand();

 // Connect to the database
 pConn.Open();

 // Create a parameter object
 HiRDBParameter pPar = pCom.CreateParameter();

 // Set parameters
 pPar.Direction = ParameterDirection.Input;
 pPar.HiRDBType = HiRDBType.Integer;
 object [] aValue = new object[3];
 aValue[0] = 123;
 aValue[1] = 200;
 aValue[2] = null;
 pPar.Value = aValue;
 pCom.Parameters.Add(pPar); ...1

16. HiRDB Access from ADO.NET-compatible Application Programs

1219

Explanation
1. Set the parameter value in the value parameter. Because value is the

object type, it can reference all types. The Int32 type is specified in
normal INSERT statements, but in the INSERT statement using an array, the
array of object is set in value, and each element of the object array is
set to point to the Int32 type. The same applies when other types are used;
always set an array of object in value.

2. To execute the SQL statement, use :overload of ExecuteNonQuery. The
normal ExecuteNonQuery has no argument, but when the INSERT
statement using an array is used, specify the size of the array.

Note

The codes for setting value for parameters and for executing SQL statements
vary depending on whether or not an array is used.

16.11.6 Executing a repetition column
This example inserts 123 and 456 in the first column of the ex table:

Although the sample program is coded in Visual C# .NET, the program in Visual
Basic.NET would be almost the same (if necessary, change information as
appropriate).

 // Use parameters to execute SQL statement
 pCom.CommandText = "insert into ex values(?)";
 pCom.ExecuteNonQuery(aValue.Length); 2

 // Disconnect from the database
 pConn.Close();

 // Create objects such as a connection object
 HiRDBConnection pConn = new HiRDBConnection("connection-character-string");
 HiRDBCommand pCom = pConn.CreateCommand();

 // Connect to the database
 pConn.Open();

 // Create a table
 pCom.Connection = pConn;
 pCom.CommandText = "create table ex(a int array[3])";
 pCom.ExecuteNonQuery();

16. HiRDB Access from ADO.NET-compatible Application Programs

1220

Explanation
1. The object array is set in value for the same reason as for the INSERT

statement using an array. For a repetition column, also set the Repetition
extended property. This property specifies the number of repetition columns.
There is no argument during the execution of the SQL statement.

2. For FETCH, an extended method for repetition columns is also provided with
DataReader. First, use GetFieldArrayCount to acquire the number of
repetition columns for the data obtained by FETCH. To acquire the value of
the data obtained by FETCH, use :overload of GetValue. In the second
argument, specify the number of the repetition column. An indexer
[int,int] equivalent to this method is also provided.

Note

The usage of repetition columns is similar to that of the INSERT facility using
arrays. The differences occur in the part that specifies the repetition count in the

 // Create a parameter object
 HiRDBParameter pPar = pCom.CreateParameter();

 // Set parameters
 pPar.Direction = ParameterDirection.Input;
 pPar.HiRDBType = HiRDBType.Integer;
 object [] aValue = new object[2];
 aValue[0] = 123;
 aValue[1] = 456;
 pPar.Value = aValue;
 // Set the maximum number of elements for column a of table ex
 pPar.Repetition =3;
 pCom.Parameters.Add(pPar); ..1

 // Use parameters to execute SQL statement
 pCom.CommandText = "insert into ex values(?)";
 pCom.ExecuteNonQuery();

 // Execute the select statement
 pCom.CommandText = "select * from ex";
 HiRDBDataReader pReader = pCom.ExecuteReader();

 // Fetch until there is no more data
 while (pReader.Read())
 {
 for (int i = 0; i < pReader.FieldCount; ++ i)
 for (int j = 0; j < pReader.GetFieldArrayCount(i); ++ j)
 Console.WriteLine(pReader.GetValue(i, j));
 } ...2

 // Disconnect from the database
 pConn.Close();

16. HiRDB Access from ADO.NET-compatible Application Programs

1221

parameter and the part that executes the SQL statement.

16.11.7 Checking for an error in SQL statements and acquiring error
information

This example checks for an error in the SQL statements and acquires error information.

Although the sample program is coded in Visual C# .NET, the program in Visual
Basic.NET would be almost the same (if necessary, change information as
appropriate).

using System;
using System.IO;
using System.Data;
using System.Windows.Forms;
using Hitachi.HiRDB; // .NET Framework Data Provider for HiRDB

namespace SAMPLE
{
 public class SAMPLE
 {
 static void Main()
 {

 HiRDBConnection connection1 = new HiRDBConnection
 ("datasource=C:\\Windows\\HiRDB.ini;UID=USER1;PWD=USER1;");
 HiRDBCommand cm = new HiRDBCommand();

 try
 {
 // Connect ..1
 connection1.Open();
 cm.Connection = connection1;

 // ***
 // Example of retrieval by SAMPLE1 (C1 INT, C2 INT, C3 VARCHAR(30)) ...2
 // ***
 // Create a parameter object
 HiRDBParameter par = cm.CreateParameter();
 // Set parameter attributes
 // Input parameter
 par.Direction = ParameterDirection.Input;
 // INTEGER type
 par.HiRDBType = HiRDBType.Integer;
 int aValue;
 aValue = 200;
 // Set parameter value
 par.Value = aValue;

16. HiRDB Access from ADO.NET-compatible Application Programs

1222

Explanation:

1. Uses the Open method to connect to HiRDB.

2. Executes the SQL statement that displays a row that satisfies a specified
condition.

3. Uses the Close method to disconnect from HiRDB.

4. Returns SQLException and outputs error information in the event of an
error.

 // Set SQL statement
 cm.CommandText = "SELECT C2,C3 FROM SAMPLE1 WHERE C1=?
 WITH EXCLUSIVE LOCK NO WAIT";
 // Assign parameter object
 cm.Parameters.Add(par);
 // Acquire DataReader object
 HiRDBDataReader dr = cm.ExecuteReader();
 int cnt=1;
 Console.WriteLine("**** Searching ****");
 while(dr.Read())
 {
 Console.WriteLine("**** "+cnt+"Searching row ***");
 // Display data in C2
 Console.WriteLine("C2="+dr.GetInt32(0));
 // Display data in C3
 Console.WriteLine("C3="+dr.GetString(1));
 cnt ++;
 }
 // Free DataReader
 dr.Close();
 // Disconnect 3
 connection1.Close();
 connection1.Dispose();

 }
 catch (HiRDBException ex) 4
 {
 // Output error information
 Console.WriteLine(ex);
 // Acquire individual information by the following process
 // Output SQLCODE
 Console.WriteLine("SQLCODE="+ex.ErrorCode);
 // Output SQLERRM (SQL message)
 Console.WriteLine("SQLERRM=" + ex.Message);
 }
 }
 }
}

1223

Chapter

17. Type2 JDBC Driver

This chapter explains the JDBC driver installation, environment setup, and JDBC
functions. Note that the JDBC driver cannot be used in the Linux for AP8000 edition
client.

Hereafter in this chapter, the Type2 JDBC driver is referred to as JDBC driver.

The Type2 JDBC driver has become obsolete. It is still supported in order to maintain
compatibility with applications, but this support will be discontinued in the future.
Please use the Type4 JDBC driver.

17.1 Installation and environment setup
17.2 JDBC1.0 facility
17.3 JDBC2.0 basic facility
17.4 JDBC2.0 Optional Package
17.5 JAR file access facility
17.6 Array class
17.7 Specifying a value when using a repetition column as the ? parameter
17.8 Functions provided by the HiRDB JDBC driver
17.9 Notes on using the BLOB type
17.10 Setting system properties
17.11 Connection information setup/acquisition interface
17.12 Data types and character codes
17.13 Classes and methods with limitations

17. Type2 JDBC Driver

1224

17.1 Installation and environment setup

17.1.1 Installing
You can select the installation of a JDBC driver when installing HiRDB.

The following table shows the JDBC driver's installation directories and files.

Table 17-1: JDBC driver's installation directory and file

Note

The underline indicates the HiRDB client's installation directory.

#1: For the 32-bit mode HP-UX (IPF) edition, the file is pdjdbc32.jar.

#2: For the 32-bit mode HP-UX (IPF) edition, the file is libjjdbc32.so.

#3: For the Windows (x64) and Linux (EM64T) editions, run in 32-bit mode.

To use the JDBC driver in an HP-UX (IPF), Linux (IPF), or Windows Server 2003
(IPF) environment, you need J2SDK v1.4.2. Note that J2SDK v1.4.2 must be run on
an IPF-compliant Java Virtual Machine.

17.1.2 Environment setup
The following shows the environment variable definition required for JDBC driver
operation.

(1) UNIX environment
Specify the following information in the environment variable for the execution
environment:
CLASSPATH=$CLASSPATH:[installation-directory]/pdjdbc.jar#

Platform Type Installation directory File

UNIX HiRDB server $PDDIR/client/lib/ pdjdbc.jar#1, #3

libjjdbc.sl(libjjdbc.so)#2, #3

HiRDB client /HiRDB/client/lib/ pdjdbc.jar#1, #3

libjjdbc.sl(libjjdbc.so)#2, #3

Windows HiRDB server %PDDIR%\CLIENT\UTL\ pdjdbc.jar#3

jjdbc.dll#3

HiRDB client \HiRDB\CLIENT\UTL\ pdjdbc.jar#3

jjdbc.dll#3

17. Type2 JDBC Driver

1225

#: For the 32-bit mode HP-UX (IPF) edition, the file is pdjdbc32.jar. Do not set
pdjdbc.jar and pdjdbc32.jar at the same time.

(2) Windows environment
From Control Panel, choose System, then in the System Properties dialog box,
choose Advanced, and specify the following information as the environment variable:
CLASSPATH=%CLASSPATH%;[installation-directory]\pdjdbc.jar

17.1.3 Abbreviation of methods
• Methods that begins with get are referred to collectively as getXXX methods.

• Methods that begins with set are referred to collectively as setXXX methods.

17. Type2 JDBC Driver

1226

17.2 JDBC1.0 facility

17.2.1 Driver class
(1) Overview

The Driver class provides the following functions:

• Database connection

• Validity checking on a specified URL

• Acquisition of the connection properties specified with the
DriverManager.getConnection method

• Acquisition of driver version information

For details about and usage of each method provided with the Driver class, see the
applicable JDBC manual. This section explains the database connection procedure and
the URL syntax unique to this JDBC driver.

(2) Database connection using the DriverManager
To execute DB connection using the DriverManager class provided by the Java
execution environment:

1. Register the Driver class in the Java Virtual Machine.

2. Call the DriverManager.getConnection method using the connection
information as the argument.

(a) Registering in Java Virtual Machine with the Driver class
Register the Driver class in the Java Virtual Machine by using the Class.forName
method or by registering in the system properties. The package name and Driver
class name of the JDBC driver specified for registration are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Driver class name: PrdbDriver

• Using the Class.forName method
Call the Class.forName method from within the application as follows:

• Registering in the system properties
Call the System.setProperty method from within the application as follows:

Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDriver");

System.setProperty("jdbc.drivers","JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDriver");

17. Type2 JDBC Driver

1227

(b) Defining the connection information and establishing a database
connection
To connect to the database, use one of the following methods:

• Using the DriverManager.getConnection method

• Specification with an internal driver
When an internal driver is used, the information called by the routine at the
HiRDB side is assumed as the connection information (such as the authorization
identifier). However, when a trace is acquired within the JDBC driver, INNER is
assumed as the authorization identifier.

• Directly calling the connect method in the Driver class

In the arguments of the previous methods, specify the information required for
database connection.

If a database connection is successful, the JDBC driver returns a Connection object
as a result of the method call. If required information is not specified in each argument,
or invalid information is specified, the JDBC driver throws an SQLException as a
result of the method call.

Table 17-2 lists the arguments of the getConnection method, and Table 17-3 lists
the information to be specified for Properties info.

Table 17-2: Arguments of the getConnection method

Legend:

Connection con = DriverManager.getConnection(String url, String user, String password)
;
or
Connection con = DriverManager.getConnection(String url, Properties info) ;

Specification for internal driver only:
Connection con = DriverManager.getConnection(String url) ;

Driver drv = new JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDriver();
Connection con = drv.connect(String url, Properties info) ;

Argument Description Specification

String url URL; For URL, see (3) URL syntax. R

String user Authorization identifier#1 R#2

String password Password O

Properties info See Table 17-3. --

17. Type2 JDBC Driver

1228

R: Required.

O: Optional.

--: Not applicable.

#1: If null or space characters are specified for the authorization identifier, this method
throws an SQLException. The method also throws an SQLException if the
driver-converted character codes and, as a result, the size of the character string
specified for the authorization identifier exceed 30 bytes. For details about character
code conversion, see 17.12.2 Character code conversion facility.

#2: The argument can be omitted, if specified with the internal driver.

Table 17-3: Information to be specified for Properties info

Key Description Specification

user Authorization identifier#1 R#2

password Password O

ENCODELANG In a Java program, Unicode is used for the character codes. Therefore,
during character data processing with HiRDB, the JDBC driver
performs mutual character code conversion between HiRDB's
character data and Unicodes. For this character code conversion
processing, the JDBC driver uses the encoder and decoder provided by
the Java Virtual Machine. You must specify the character set names
specified by the JDBC driver for the provided encoder and decoder.
The settings can be for any character set (such as MS932) supported by
Java. For details about this operation if you specify OFF or have not
specified anything in Properties info (including the settings using
the DataSource.setEncodeLang method and ENCODELANG of the
URL), see 17.11.5 setEncodeLang.

O

COMMIT_BEHAVIO
R

When HiRDB commits, this key specifies whether or not the following
classes are to remain valid after commit has executed:
• ResultSet class
• Statement class, PreparedStatement class, and

CallableStatement class
For details about the specification values, see 17.11.19
setCommit_Behavior.

O

Note:
See Notes on COMMIT_BEHAVIOR following this table.

17. Type2 JDBC Driver

1229

BLOCK_UPDATE Specifies whether or not multiple parameters are to be processed at one
time when the ? parameter is used to update databases. When this
information is omitted, FALSE is assumed.
TRUE:

Processes multiple parameters at one time.
FALSE:

Processes parameter sets individually.
Other:

Assumes that FALSE is specified.
Notes:
• When TRUE is set, the batch update function supports HiRDB

facilities using arrays.
• Only INSERT, UPDATE, and DELETE SQL statements can use

facilities using arrays. All other SQL statements are processed
sequentially, not in batch mode.

• Even the SQL statements that can use facilities using arrays are
processed sequentially, not in batch mode, if they do not satisfy the
conditions for facilities using arrays.

• To use facilities using arrays, see 17.3.2 Batch updating.
• For details about the facilities using arrays, see 4.8 Facilities using

arrays.
• This function can also be specified using the

HiRDB_for_Java_BLOCK_UPDATE system property. However,
when BLOCK_UPDATE is set, the
HiRDB_for_Java_BLOCK_UPDATE system property setting is
ignored.

O

LONGVARBINARY_
ACCESS

Specifies the access method for a LONGVARBINARY database (column
attribute is BLOB or BINARY). When this key is omitted, REAL is
assumed.
REAL:

Accesses real data from HiRDB.
LOCATOR:

Uses the HiRDB locator.
Other:

Assumes that REAL is specified.

O

Key Description Specification

17. Type2 JDBC Driver

1230

HiRDB_for_Java
_SQL_IN_NUM

Specifies the maximum number of input or input/output ? parameters
in the SQL statements to be executed. This is the number of input or
input/output ? parameter information items that is acquired during SQL
preprocessing.
If the actual number of input or input/output ? parameters is greater
than this property value, the input or input/output ? parameter
information is acquired after the SQL preprocessing.
The permitted value range is from 1 to 30,000 (default is 64).
Specifying any other value or non-numeric value results in an error.
Notes:
• This item can also be specified using the

HiRDB_for_Java_SQL_IN_NUM system property. However, when
HiRDB_for_Java_SQL_IN_NUM is specified for Properties
info, the system property setting is ignored.

• If you do not execute any SQL statement that uses input or input/
output ? parameters, we recommend that you specify a value of 1.

• This property value is applicable only when the version of the
connected HiRDB server is 07-02 or later.

O

HiRDB_for_Java
_SQL_OUT_NUM

Specifies the maximum number of output items for the SQL statement
to be executed. This is the number of output items that is acquired
during SQL preprocessing.
If the actual number of output items is greater than this property value,
the output items are acquired after the SQL preprocessing.
The permitted value range is from 1 to 30,000 (default is 64).
Specifying any other value or non-numeric value results in an error.
Note:
• This item can also be specified using the

HiRDB_for_Java_SQL_OUT_NUM system property. However,
when HiRDB_for_Java_SQL_OUT_NUM is specified for
Properties info, the system property setting is ignored.

• If you do not execute any SQL statement that contains a search item
or output or input/output ? parameter, we recommend that you
specify a value of 1.

• This property value is applicable only when the version of the
connected HiRDB server is 07-02 or later.

O

HiRDB_for_Java
_SQLWARNING_LE
VEL

Specifies the retention level of warning information that has been
issued during execution of the SQL statement. The permitted warning
retention levels are as follows:
• IGNORE

• SQLWARN (default)
• ALLWARN

In this method, information specified in the arguments is not case
sensitive.
For details about the above values, see 17.2.9 SQLWarning class.

O

Key Description Specification

17. Type2 JDBC Driver

1231

Legend:

R: Required.

O: Optional.

#1: If null or space characters are specified for the authorization identifier, this method
throws an SQLException. This method also throws an SQLException if the
driver-converted character codes and, as a result, the size of the character string
specified for the authorization identifier exceed 30 bytes. For details about character
code conversion, see 17.12.2 Character code conversion facility
#2: The key can be omitted, if specified with the internal driver.

Notes on COMMIT_BEHAVIOR

• If another user specifies CLOSE or PRESERVE to execute a definition SQL
statement on a resource (such as a table or index) that is being accessed by
SELECT, INSERT, DELETE, UPDATE, PURGE TABLE, or CALL, and the
PDDDLDEAPRPEXE and PDDDLDEAPRP client environment definitions are
both set to NO, the definition SQL statement is placed on lock-release wait
status until the resource is disconnected.

If YES is set in the PDDDLDEAPRPEXE or the PDDDLDEAPRP client

HiRDB_for_Java
_CLEAR_ENV

Specifies whether or not the HiRDB client environment definition set
as OS environment variables is to be ignored during database
connection.
TRUE:

Ignores the HiRDB client environment definition registered as OS
environment variables when the database is connected for the first
time after the process has started. When TRUE is specified, you can
apply the value of the HiRDB client environment definition that has
been set by a method other than the OS environment variables
(such as environment variable groups).

FALSE (default):
Does not ignore the HiRDB client environment definition
registered as OS environment variables.

Notes:
• In this method, information specified in the arguments is not case

sensitive.
• Once the database is connected, the HiRDB client environment

definition set as OS environment variables is not ignored even if an
attempt is made to specify TRUE within a native method installed by
a method such as C language.

• Once the database is connected with TRUE specified, the client
environment definition value remains ignored even if FALSE is
specified the next time the database is connected.

O

Key Description Specification

17. Type2 JDBC Driver

1232

environment definition, the preprocessing result becomes invalid. If an SQL
for which the preprocessing result has been invalidated in this manner is
executed, an SQLException exception occurs (the value acquired by the
getErrorCode method is -1542).

• When PRESERVE is specified, the JDBC driver uses HiRDB's holdable
cursor.

• By specifying#1 CLOSE or PRESERVE, the only precompiled SQL statements
that are valid after commit#2 are SELECT, INSERT, DELETE, UPDATE,
PURGE TABLE, and CALL (SQL statements can be precompiled by executing
the Connection.prepareStatement method or the
Connection.prepareCall method).

Other precompiled SQL statements become invalid during commit even
though you specify CLOSE or PRESERVE for COMMIT_BEHAVIOR.

When SQL statements that include these invalid SQL statements are
executed with the PreparedStatement class object or
CallableStatement object, an error occurs. An example of such an error
is shown below:

Example

Explanation

Because the SQL statement to be executed is a LOCK statement, even though
COMMIT_BEHAVIOR specifies CLOSE, PreparedStatement becomes invalid
after commit and an error occurs.

#1: Refers to specification of one of the following:

 COMMIT_BEHAVIOR=CLOSE specified for the URL specified by the
getConnection method.

 COMMIT_BEHAVIOR=PRESERVE specified for the URL specified by the
getConnection method.

 setCommit_Behavior method of the JdbhDataSource,

PreparedStatement pstmt1 = con.prepareStatement("lock table tb1");
PreparedStatement pstmt2 = con.prepareStatement("lock table tb2");
pstmt1.execute(); //No error occurs.
con.commit();
pstmt2.execute(); //An error occurs.
pstmt1.close();
pstmt2.close();

17. Type2 JDBC Driver

1233

JdbhConnectionPoolDataSource, or JdbhXADataSource class used to
specify CLOSE.

 setCommit_Behavior method of the JdbhDataSource,
JdbhConnectionPoolDataSource, or JdbhXADataSource class used to
specify PRESERVE.

#2: Means one of the following:

 Explicit commit using the commit method

 Implicit commit by automatic commit

 Execution of a definition SQL statement

 Execution of a PURGE TABLE statement

 Explicit rollback by rollback method

 Implicit rollback by an SQL execution error

(3) URL syntax
This section explains the URL syntax supported by the JDBC driver. Do not place any
space inside each item or between items in a URL. To specify both an additional
connection information item and a database host name item, separate them by a comma
(,).

(a) URL syntax

(b) URL items
jdbc:hitachi:PrdbDrive

This is the protocol name and the subprotocol name. This item is required.

additional-connection-information
Specify HiRDB's port number (this corresponds to PDNAMEPORT in the client
definitions). Alternatively, specify a HiRDB environment variable group.

If this item is omitted, the default value for PDNAMEPORT is assumed.

Notes about specifying a HiRDB environment variable group in additional
connection information

• When you specify the name of a HiRDB environment variable group,

 jdbc:hitachi:PrdbDrive[://[DBID=additional-connection-information]
 [[{://|,}]DBHOST=database-host-name]
 [[{://|,}]ENCODELANG=conversion-character-set]
 [[{://|,}]COMMIT_BEHAVIOR=cursor-operation-mode]
 [[{://|,}]CLEAR_ENV=environment-variable-invalidation-setting]]

17. Type2 JDBC Driver

1234

place @ at the beginning of the group name.

• If the environment variable name contains single-byte spaces or
single-byte @ characters, enclose the name in single-byte quotation
marks ("). When an environment variable group name is enclosed in
single-byte quotation marks, all characters following the last
single-byte quotation mark up to the next item or all characters through
the end of the character string are ignored. An environment variable
group name containing single-byte quotation marks or single-byte
commas cannot be specified.

• The environment variables registered in an environment variable group
have precedence over the user environment variables and the
environment variables registered by HiRDB.INI.

• The following priority applies to the specification of additional
connection information and database host name:

1. HiRDB environment variable group specified in the additional
connection information

2. Database host name or the port number specified in the additional
connection information

For example, if a HiRDB environment variable group name has been
specified in DBID, information about the HiRDB environment variable
group takes effect. A database host name does not take effect even if it
is specified in DBHOST in the URL. In this case, if PDHOST is omitted in
the HiRDB environment variable group, a connection error results.

database-host-name
Specify HiRDB's host name. This corresponds to PDHOST in the client definitions.

If this item is omitted, the default value for PDHOST is assumed.

conversion-character-set
Specify the conversion character set to be used for character type conversion.

cursor-operation-mode
Specify whether the cursor is valid following COMMIT.

environment-variable-invalidation-setting
Specifies whether or not the HiRDB client environment definition set as OS
environment variables is to be ignored during database connection. For details
about the specification value and notes, see HiRDB_for_Java_CLEAR_ENV in
Table 17-3.

17. Type2 JDBC Driver

1235

(c) Example of specifying a HiRDB environment variable group name in
additional connection information

In UNIX

In this example, the path of the HiRDB environment variable group name is /
HiRDB_P/Client/HiRDB.ini:

In Windows

1. In this example, the environment variable group name registered using the tool for
registering HiRDB client environment variables is HiRDB_ENV_GROUP:

2. In this example, the path of the HiRDB environment variable group name is
C:\HiRDB_P\Client\HiRDB.ini:

3. In this example, the path of the HiRDB environment variable group name is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini (: single-byte space
character):

17.2.2 Connection class
(1) Overview

The Connection class provides the following functions:

• Creation of objects in the Statement, PreparedStatement, and
CallableStatement classes

• Transaction settlement (COMMIT or ROLLBACK)

• Specification of AUTO commit mode

For details about and usage of each method provided with the Connection class, see

String url = "jdbc:hitachi:PrdbDrive://DBID=@HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini";

String url = "jdbc:hitachi:PrdbDrive://DBID=@HIRDBENVGRP=HiRDB_ENV_GROUP";

String url = "jdbc:hitachi:PrdbDrive://
DBID=@HIRDBENVGRP=C:\\HiRDB_P\\Client\\HiRDB.ini";

String url = "jdbc:hitachi:PrdbDrive://DBID=@HIRDBENVGRP=" +
 "\"C:\Program Files\\HITACHI\\HiRDB\\HiRDB.ini\"";

17. Type2 JDBC Driver

1236

the applicable JDBC manual.

(2) Notes
(a) Catalog

The JDBC driver does not use a catalog regardless of the connected database type.
Therefore, the getCatalog method unconditionally returns the null value, and the
setCatalog method does nothing.

(b) Access mode
The JDBC driver does not allow the access mode to be changed. Therefore, the
isReadOnly method unconditionally returns false, and the setReadOnly method
processes nothing.

(c) Transaction isolation mode
The JDBC driver does not allow the transaction mode to be changed. Therefore, the
getTransactionIsolation method unconditionally returns
TRANSACTION_READ_COMMITTED, and the setTransactionIsolation method
does nothing.

17.2.3 Statement class
(1) Overview

The Statement class provides the following functions:

• SQL execution

• Creation of a result set (ResultSet object) as a retrieval result

• Return of the number of updated rows as an updating result

For details about and usage of each method provided with the Statement class, see
the applicable JDBC manual.

(2) Notes
(a) Multi-thread

To use a single Statement object with multiple threads, a series of processing, such
as SQL execution, acquisition of result set, and closing of the result set, needs to be
serialized per thread. If they are processed in parallel, operation cannot be guaranteed.
Therefore, you should allocate a separate Statement object for each thread.

(b) Cursor name
The JDBC driver does not support positioned updating or deletion. Therefore, the
setCursorName method does nothing.

17. Type2 JDBC Driver

1237

(c) Limitation of retrieval time
The JDBC driver does not support the monitoring of a retrieval time. Therefore, the
setQueryTimeout method, if specified, is ignored.

(d) Specification of the maximum number of rows to be retrieved
The maximum number of rows to be retrieved cannot be specified in the JDBC driver.

17.2.4 PreparedStatement class
(1) Overview

The PreparedStatement class provides the following functions:

• Execution of SQL specifying the ? parameter

• Specification of the ? parameter

• Generation and return of the ResultSet object as a search result

• Return of the number of updated rows as an updating result

Because the PreparedStatement class is a subclass of the Statement class, it
inherits all of the Statement class functions.

For details about and usage of each method provided with the PreparedStatement
class, see the applicable JDBC manual.

(2) Notes
All of the notes about the Statement class are applicable to the
PreparedStatement class, because the PreparedStatement class is a subclass of
the Statement class. The following describes the other notes about the
PreparedStatement class.

(a) Specification of the ? parameter
For details about the setXXX method used to set the ? parameter, see 17.3.3(2) Data
mapping when the ? parameter is specified. For details about the JDBC SQL types
supported by the connected database, see 17.12 Data types and character codes.

(b) Multiple result sets
The function for returning multiple result sets is not available. Therefore, the
getMoreResults method unconditionally returns false and closes any currently
open result set.

17.2.5 CallableStatement class
(1) Overview

The CallableStatement class provides the following functions:

• Execution of Java stored routines

17. Type2 JDBC Driver

1238

• Specification of IN and INOUT parameters (a setXXX method of the
PreparedStatement class is used)

• Registration of OUT and INOUT parameters

• Acquisition of OUT and INOUT parameters

• Acquisition of a result set

Because the CallableStatement class is a subclass of the PreparedStatement
class, it inherits all of the PreparedStatement class functions and the Statement
class functions. Note that the result set obtained with the DatabaseMetaData class
within a Java stored routine can be used only within the Java stored routine. The
CallableStatement class's getResultSet cannot acquire it as a dynamic result
set.

For details about and usage of each method provided with the CallableStatement
class, see the applicable JDBC manual.

(2) Notes
1. All of the notes about the PreparedStatement and Statement classes

applicable to the CallableStatement class, because the
CallableStatement class is a subclass of the PreparedStatement class.

2. Parameter information is erased when the clearParameters method is
executed. If the clearParameters method is executed after execution of the
execute method but before execution of the getXXX method, the
KFPJ20506-E message is output when the getXXX method is executed.

3. If you use the INOUT parameter of a Java stored routine, the java.sql.Types
specified using the registerOutParameter method and the data type set using
the setXXX method must be the same.

17.2.6 ResultSet class
(1) Overview

The ResultSet class provides the following functions:

• Moving within a result set in units of rows

• Returning resulting data

• Issuing a message indicating whether or not the retrieval result data is the NULL
value

For details about and usage of each method provided with the ResultSet class, see
the applicable JDBC manual.

17. Type2 JDBC Driver

1239

(2) Notes
(a) Multi-thread

If a single ResultSet object is used with multiple threads in parallel, operation
cannot be guaranteed. Therefore, you should process a single ResultSet object by a
single thread.

(b) Data mapping (conversion)
For details about the getXXX method used during the acquisition of results, see
17.3.3(1) Data mapping during retrieval data acquisition. For details about the JDBC
SQL types supported by the connected database, see 17.12 Data types and character
codes.

17.2.7 ResultSetMetaData class
(1) Overview

The ResultSetMetaData class provides the following functions:

• Returning meta-information, such as data type and length of each column, in
ResultSet (result set)

(2) Details of method
(a) isSearchable (int column) method

true is returned if the column specified by the column parameter can be used for the
WHERE clause; otherwise, false is returned as the return value. For the WHERE clause,
true is always returned to enable use of all data type columns. However, for the first
column of ResultSet, which is the return value of the Array.getResultSet
method, false is returned. For details about getResultSet, see 17.6 Array class.

Example:

Column C1 is in table T1. Regardless of its data type, C1 can be used in the WHERE
clause as shown below:
SELECT * FROM T1 WHERE LENGTH (C1) > 5

(b) getColumnDisplaySize (int column) method
The return value is the maximum number of characters when the column specified by
the column parameter is expressed in a character string. However, for the first column
of ResultSet, which is the return value of the Array.getResultSet method, 10
is returned. The following table lists the return values for this method for each SQL
data type in HiRDB.

17. Type2 JDBC Driver

1240

Table 17-4: Return values of the getColumnDisplaySize method for each SQL
data type in HiRDB

SQL data type in HiRDB Return value (int) Return value format

INTEGER 11 1 sign character + 10 digits,
which is the maximum
number of digits

SMALLINT 6 1 sign character + 5 digits,
which is the maximum
number of digits

DECIMAL(m,n)
NUMERIC(m,n)
• m: Accuracy (total number of digits)
• n: Decimal scaling position (number

of digits after decimal point)

m + 2 1 sign character + accuracy m
+ 1 decimal point digit

FLOAT

DOUBLE PRECISION
23 1 sign character + 17 digits,

which is the maximum
number of significant digits +
1 decimal point character + 4,
which is the maximum
number of characters in the
index area

SMALLFLT

REAL

13 1 sign character + 8 digits,
which is the maximum
number of significant digits +
1 decimal point character + 3,
which is the maximum
number of characters in the
index area

CHAR(n)
• n: Number of bytes of the definition

length

n NA

VARCHAR(n)
CHAR VARYING(n)
• n: Number of bytes of the maximum

length

n NA

NCHAR(n)
NATIONAL CHAR(n)
• n: Number of characters of the

definition length

n NA

17. Type2 JDBC Driver

1241

Legend:

NA: Not applicable.

#: 2147483648 is assumed for any calculation result greater than 2147483648.

NVARCHAR(n)
NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)
• n: Number of characters of the

maximum length

n NA

MCHAR(n)
• n: Number of bytes of the maximum

length

n NA

MVARCHAR(n)
• n: Number of bytes of the maximum

length

n NA

DATE 10 yyyy-mm-dd, which is 10
characters

TIME 8 hh:mm:ss, which is 8
characters

TIMESTAMP(p)
• p: Number of digits of the fractional

part of the second

(1) When p is 0:
19

(2) When p is 2, 4, or 6:
20 + p

(1) yyyy-mm-dd hh:mm:ss,
which is 19 characters
(2) 19 characters shown
above + 1 decimal point
character + p, which is the
number of digits of the
decimal part

BLOB(n[K|M|G])
• n: Maximum length
• K: Kilobytes
• M: Megabytes
• G: Gigabytes

If the unit is omitted, bytes is assumed.

When the unit specification is
omitted:

n
When K is specified for the unit:

n x 1024#

When M is specified for the unit:
n x 1024 x 1024#

When M is specified for the unit:
n x 1024 x 1024 x 1024#

NA

BINARY(n)
• n: Number of bytes of the maximum

length.

N NA

SQL data type in HiRDB Return value (int) Return value format

17. Type2 JDBC Driver

1242

17.2.8 DatabaseMetaData class
The DatabaseMetaData class provides the following functions:

• Returning various information about a connected database

• Storing or returning listing information (such as a list of tables or columns) in
ResultSet (result set)

Note that the result set obtained with the DatabaseMetaData class within a Java
stored routine can be used only within the Java stored routine.

For details about the methods provided by the DatabaseMetaData class and how to
use them, see the applicable JDBC documentation. For details about the values that are
actually returned, see 17.13 Classes and methods with limitations. Note that the value
returned by each method is information related to the HiRDB server, whose version
has to be the same as that of the JDBC driver being used.

17.2.9 SQLWarning class
(1) Overview

The SQLWarning class provides the following function:

• Providing information about database access warnings

The SQLWarning object is accumulated without an issuance of exception in the
method object that caused the warning.

(2) Notes
(a) Releasing the accumulated SQLWarning object

The SQLWarning object is accumulated by chain from the method object that caused
the warning (Connection, Statement, PreparedStatement,
CallableStatement, or ResultSet).

To explicitly release the accumulated SQLWarning object, you must execute
clearWarnings from the object connecting the chain.

(b) SQLWarning object generation conditions
If the warnings caused by execution of SQL statements are to be retained in the JDBC
driver according to the warning retention level specification, the SQLWarning objects
are generated and the warning information is retained. The following table describes
the SQLWarning generation conditions:

Execution result of SQL statement Warning retention level

IGNORE SQLWARN ALLWARN

SQLCODE is greater than 0 and is not 100,
nor 110, nor 120

N N Y

17. Type2 JDBC Driver

1243

Legend:

Y: Generated

N: Not generated

Note

You can specify the warning retention level using the
HiRDB_for_Java_SQLWARNING_LEVEL property or the
setSQLWarningLevel method. The default is SQLWARN.

(c) Warning message
The following table presents the messages that can be acquired from SQLWarning:

(d) Batch updating
When warning occurs during updating of multiple rows during batch updating, only
one SQLWarning is generated.

SQLWARN0 in the SQL Communications
Area is W (except when SQLWARN6 is W)

N Y Y

Warning occurred in the JDBC driver N Y Y

Condition Message acquired by getMessage

SQLWARN0 is W KFPJ01074-W

SQLWARN0 is ' ' and SQLCODE is greater than 0 (except when
SQLCODE=100, 110, or 120)

KFPAXXXXX-X

Warning occurred in the JDBC driver KFPJXXXXX-W

Execution result of SQL statement Warning retention level

IGNORE SQLWARN ALLWARN

17. Type2 JDBC Driver

1244

17.3 JDBC2.0 basic facility

17.3.1 Result set enhancements
The JDBC2.0 basic standard has added scroll and parallel processing as the extended
features of result sets (ResultSet class).

(1) Scroll types
There are three different scroll types for result sets:

(a) Forward-only type
This is the standard scroll type from JDBC1.0. It allows a result set to be scrolled in
the forward direction only (from top to bottom).

(b) Scroll-insensitive type
This is a new scroll type added with JDBC2.0. It allows a result set to be scrolled in a
forward or backward direction. It also allows a movement specifying a location
relative to the current location or a movement to an absolute location.

Scroll-insensitive means that a change made while a result set is open does not take
effect on the result set. In other words, the scroll-insensitive type provides a static view
of base data. The rows contained in a result set, their order, and column values are all
fixed when the result set is created.

(c) Scroll-sensitive type
This is a new scroll type added with JDBC2.0. While a result set is open, any change
made takes effect on the result set.

Changes that take effect may be made directly to the current result set, or made by
another result set within the same transaction, or made by another transaction. The
number of changes applied depends on the driver's implementation level and DBMS
transaction cut-off level.

(2) Parallel processing type
There are two different parallel processing types for result sets:

(a) Read-only type
This is the standard parallel processing type from JDBC1.0. It does not allow data to
be updated from its result set.

(b) Updatable type
This is a new parallel processing type added with JDBC2.0. It allows data to be
updated (UPDATE, INSERT, and DELETE) from its result set.

17. Type2 JDBC Driver

1245

(3) Types of result set
When the scroll type and parallel processing type are combined, there are six result set
types. Specify the result set type to acquire an instance of the Statement class (or its
subclass) using the createStatement method, prepareStatement method, or
prepareCall method of the Connection class.

The following table shows the availability of the result set type when you use the
JDBC driver.

Table 17-5: Availability of result set types with JDBC driver

Legend:

A: Available.

NA: Not available.

Notes

1. An error occurs if an unavailable result set is specified. In this case, the
JDBC driver creates an instance of the Statement class (or its subclass)
using the result set that is closest to the specified type, then stores a warning
message in SQLWarning of the Connection class.

2. Some of the methods in the ResultSet class are not available because the
JDBC driver does not provide the updatable parallel processing type. If such
an unavailable method is called, the JDBC driver unconditionally throws an
SQLException. For details about the unavailable methods, see 17.13
Classes and methods with limitations.

(4) Notes about using scroll-type result sets
A scroll-type result set caches all retrieval data in the JDBC driver. If there is a large
amount of data, a memory shortage or performance reduction may occur. Therefore, to
use a scroll-type result set, you must suppress the retrieval data volume in advance by

Result set type Availability with JDBC driver

Scroll type Parallel processing type

Forward-only Read-only A

Updatable NA

Scroll-insensitive Read-only A

Updatable NA

Scroll-sensitive Read-only NA

Updatable NA

17. Type2 JDBC Driver

1246

adding a condition to an SQL statement, for example.

17.3.2 Batch updating
The JDBC2.0 basic standard adds the batch updating feature to the Statement,
PreparedStatement, and CallableStatement classes. The batch update facility
enables multiple SQL statements or multiple parameter values to be registered for
batch execution.

To use the batch update facility, you need to set the Connection class's AUTO commit
mode to off. This is because, if an error occurs during the batch updating, the
application needs to control the transaction's validity. If the AUTO commit mode is on
(initial status) and an error occurs during the batch updating, the SQL execution
immediately preceding the error takes effect.

When you execute batch updating, you can use HiRDB facilities using arrays.

The facilities using arrays are useful for updating a large amount of HiRDB data at
high speed. For details about the facilities using arrays, see 4.8 Facilities using arrays.

Notes about using the facilities using arrays

1. The facilities using arrays are supported by HiRDB version 07-01 or later.

2. During Connect, you must specify the BLOCK_UPDATE=TRUE property (if
DataSource is used, specify setBlockUpdate(true)) or
setBlockUpdate(true) in JdbcDbpsvPreparedStatement.

3. If you specify the HiRDB_for_Java_BLOCK_UPDATE=TRUE system
property, you can enable the array facilities. For details about
HiRDB_for_Java_BLOCK_UPDATE, see BLOCK_UPDATE in Table 17-3.

4. The SQL statement to be executed must contain at least one ? parameter (this
does not apply to stored procedures). Additionally, you must use the
addBatch() method of the CallableStatement class or the
PreparedStatement class (using the addBatch(String sql) method
of the Statement class results in a HiRDB error).

Executable SQL statements include INSERT, UPDATE, and DELETE. All
other SQL statements are executed sequentially, not in batch mode.

5. There must be two or more parameter sets that have been registered by the
addBatch() method. If there is only one parameter set, it is processed
normally, not in batch mode. If there are more than 30,000 parameter sets,
each group of 30,000 parameter sets is executed at one time.

6. If the length of BINARY data specified in the ? parameter is 32,001 bytes or
greater, sequential execution takes place because facilities using arrays are
not applied.

7. If the length of data specified for HiRDB BLOB-type columns is 32,001 bytes

17. Type2 JDBC Driver

1247

or greater, sequential execution takes place because facilities using arrays are
not applied.#2

8. Make sure that the same data type is specified for each and every column.#1

9. When DECIMAL-type data is inserted, the precision and scaling of the
DECIMAL-type data specified for array are replaced by HiRDB's table
definition attributes. If the length of integer part of the DECIMAL-type data
specified for array is greater than that of the HiRDB table definition attribute,
an overflow occurs, resulting in an error.

10. If you specify HiRDB's repetition column in the ? parameter, you cannot use
the facilities using arrays.

11. If an error occurs during batch updating with facilities using arrays, the
execution results immediately preceding the error are ignored.

12. Facilities using arrays cannot be used from the basic Cosminexus J2EE
server mode.

13. When facilities using arrays are used from Cosminexus, the
setBlockUpdate method of PreparedStatement is not available.

14. When a large amount of data is updated using the addBatch function, a
large amount of Java memory is used. Depending on the performance of Java
memory, the advantages of batch updating may not be obtained. When you
use a large amount of data, specify a heap size at the start of Java (java
-Xms32m JavaUP: set the Java heap at the start of Java to 32 megabytes).

#1: For example, if you use setInt() to specify the first addBatch for the
column 1 data, you must also use setInt() for the subsequent addBatch.

#2: If you use facilities using arrays and specify the ? parameter for HiRDB's
BLOB-type columns, note the following:

• If the length of data specified in the ? parameter is less than 32,001
bytes, the data is treated as BINARY-type data in the JDBC driver,
thereby executing facilities using arrays. If the length is 32,001 bytes or
greater, facilities using arrays are not executed.

(1) Batch updating with the Statement class
Following are notes about batch updating with the Statement class:

• Use the addBatch method to register multiple updating SQL statements.

• Use the executeBatch method to execute the registered updating SQL
statements in batch mode.

• An array of the number of rows updated by each updating SQL statement is
returned as the batch execution result.

17. Type2 JDBC Driver

1248

• If an error occurs during batch execution, the JDBC driver throws a
BatchUpdateException.

• If a retrieval SQL statement is registered, the JDBC driver throws a
BatchUpdateException when calling the executeBatch method.

The JDBC driver executes registered SQL statements sequentially because it cannot
execute them in batch mode.

(2) Batch updating with the PreparedStatement class
Following are notes about batch updating with the PreparedStatement class:

• Use a normal procedure (setXXX method) to specify the ? parameter for an
updating SQL statement that is specified during the creation of a
PreparedStatement instance.

• Use the addBatch method to register ? parameter sets.

• Use the executeBatch method to execute the registered multiple? parameter
sets in batch mode.

• An array of the number of rows updated by each ? parameter set is returned as the
batch execution result.

• If an error occurs during batch execution, the JDBC driver throws a
BatchUpdateException.

• If a retrieval SQL statement is specified during the creation of a
PreparedStatement instance, the JDBC driver throws a
BatchUpdateException when calling the executeBatch method.

When facilities using arrays are used, the JDBC driver can execute multiple lines of ?
parameters in batch mode. When facilities using arrays are not used, multiple lines of
? parameters are executed sequentially.

Notes

• If you use HiRDB facilities using arrays, see the notes in 17.3.2 Batch
updating.

• In the second or subsequent addBatch, if there are not enough parameters
to be specified in the setXXX method, the previous values are inherited. The
following shows an example.

Example: When there are 2 INTEGER-type columns (columns 1 and 2)

prepstmt.setInt(1,100);
prepstmt.setInt(2,100);
prepstmt.addBatch();
prepstmt.setInt(1,200);
prepstmt.addBatch();

17. Type2 JDBC Driver

1249

prepstmt.executeBatch();

Explanation
• The values that are set in the first addBatch are 100 for both columns

1 and 2.

If there are not enough parameters in the first addBatch, an error
occurs.

• The values that are set in the second addBatch are 200 for column 1
and 100 for column 2.

Because information for column 2 has not been updated by the second
addBatch, information for the first addBatch is inherited.

(3) Batch updating with the CallableStatement class
Following are notes about batch updating with the CallableStatement class:

• Use a normal procedure (setXXX method) to specify input parameters for the
Java stored routine that is specified during the creation of a
CallableStatement instance.

• Use the addBatch method to register input parameter sets.

• Use the executeBatch method to execute the registered multiple input
parameter sets in batch mode.

• An array of the values (number of updated rows) that are returned by the Java
stored routine executed by each input parameter set is returned as the batch
execution result.

• If an error occurs during batch execution, the JDBC driver throws a
BatchUpdateException.

• If the Java stored routine specified during the creation of a CallableStatement
instance does not return the number of updated rows, the JDBC driver throws a
BatchUpdateException when calling the executeBatch method.

• If the Java stored routine specified during the creation of a CallableStatement
instance has an output parameter or input/output parameter, the JDBC driver
throws a BatchUpdateException when calling the addBatch method.

The JDBC driver cannot execute multiple lines of ? parameters in stored procedures;
therefore, multiple lines of ? parameters in stored procedures are executed
sequentially.

Notes

• Batch updating of stored procedures is supported only for the IN parameter.
If an OUT parameter, INOUT parameter, or result set (ResultSet) is used, an

17. Type2 JDBC Driver

1250

error results.

• For a stored procedure that returns a result set (ResultSet), whether or not
it returns a result set is unknown until the stored procedure is executed during
batch updating. Therefore, if data is updated within the stored procedure,
updated information may be applied.#1

• Facilities using arrays are not supported in stored procedures. They are
supported only in the SQL statements with ? parameters.

• In the second or subsequent addBatch, if there are not enough parameters
to be specified in the setXXX method, the previous values are inherited.#2

• If you use the facilities using arrays, see the notes in 17.3.2 Batch updating.

#1: For example, if a stored procedure that searches and acquires the result of
updating is executed during batch updating, BatchUpdateException occurs,
but updated information may still be applied.

#2: Example: When there are 2 INTEGER-type columns (columns 1 and 2)

callstmt.setInt(1,100);
callstmt.setInt(2,100);
callstmt.addBatch();
callstmt.setInt(1,200);
callstmt.addBatch();
callstmt.executeBatch();

Explanation
• The values that are set in the first addBatch are 100 for both columns

1 and 2.

If there are not enough parameters in the first addBatch, an error
occurs.

• The values that are set in the second addBatch are 200 for column 1
and 100 for column 2.

Because information for column 2 has not been updated by the second
addBatch, information for the first addBatch is inherited.

17.3.3 Added data types
Several new JDBC SQL types have been added to JDBC2.0 basic standard. They are
as follows:

• BLOB

• CLOB

• ARRAY

17. Type2 JDBC Driver

1251

• REF

• DISTINCT

• STRUCT

• JAVA OBJECT

Note that the JDBC driver can use only the ARRAY JDBC SQL type.

(1) Data mapping during retrieval data acquisition
Tables 17-6 and 17-7 show the mapping between the getXXX methods and JDBC SQL
types of ResultSet and CallableStatement.

If a getXXX method is called for an unsupported JDBC SQL type, the JDBC driver
throws an SQLException. For details about the JDBC SQL types supported by the
connected database, see 17.12 Data types and character codes.

Note that the getCharacterStream method has been added because the
getUnicodeStream method is no longer recommended in the JDBC2.0 basic
standard.

Table 17-6: Mapping between the getXXX methods and JDBC SQL types of
ResultSet and CallableStatement (1/2)

getXXX method JDBC SQL type

SMALLINT INTEGER FLOAT REAL DECIMAL CHAR

getByte M M M M M M#2

getShort R M M M M M#2

getInt M R M M M M#2

getLong M M M M M M#2

getFloat M M M R M M#2

getDouble M M R M M M#2

getBigDecimal M M M M R M#2

getBoolean M M M M M M

getString M M M M M R

getBytes -- -- -- -- -- --

getDate -- -- -- -- -- M#2

17. Type2 JDBC Driver

1252

Legend:

R: Mapping is recommended.

M: Can be mapped.

--: Cannot be mapped.

#1: Not supported by the JDBC driver.

#2: When the data from the character string is converted, any single-byte spaces that
precede or follow the character string data acquired from the database are stripped,
before the data is converted to the Java data type that is to be returned by the getXXX
method.

Note the following when you convert data to a Java data type:

• If there is an expression following the decimal point in text string data and
the getByte, getInt, getShort, or getLong method is executed, the
data following the decimal point is truncated and only the integer digits are
converted and returned.

• If character string data contains double-byte characters, the method throws
an SQLException. Double-byte characters include double-byte spaces
filled when a character string shorter than the definition length of a column
is stored in an NCHAR column.

getTime -- -- -- -- -- M#2

getTimestamp -- -- -- -- -- M#2

getAsciiStream -- -- -- -- -- M

getUnicodeStream -- -- -- -- -- M

getBinaryStream -- -- -- -- -- --

getObject M M M M M M

getCharacterStream -- -- -- -- -- M

getArray -- -- -- -- -- --

getBlob -- -- -- -- -- --

getClob#1 -- -- -- -- -- --

getRef#1 -- -- -- -- -- --

getXXX method JDBC SQL type

SMALLINT INTEGER FLOAT REAL DECIMAL CHAR

17. Type2 JDBC Driver

1253

• If overflow occurs when character string data is converted to the Java data
type, the method throws an SQLException.

• If the execution environment of the UAP is JDK or JRE 1.2 and the character
string data uses exponential notation (such as 1.23E-23) and the getLong
method or getBigDecimal method is executed, the method throws an
SQLException.

Table 17-7: Mapping between the getXXX methods and JDBC SQL types of
ResultSet and CallableStatement (2/2)

getXXX method JDBC SQL type

VARCHA
R

DATE TIME TIMESTAMP LONGVARBI
NARY

ARRAY

getByte M#2 -- -- -- -- --

getShort M#2 -- -- -- -- --

getInt M#2 -- -- -- -- --

getLong M#2 -- -- -- -- --

getFloat M#2 -- -- -- -- --

getDouble M#2 -- -- -- -- --

getBigDecimal M#2 -- -- -- -- --

getBoolean M#2 -- -- -- -- --

getString R M M M M --

getBytes -- -- -- -- M --

getDate M#2 R#3 -- M -- --

getTime M#2 -- R M -- --

getTimestamp M#2 M -- R -- --

getAsciiStream M -- -- -- M --

getUnicodeStream M -- -- -- M --

getBinaryStream -- -- -- -- R --

getObject M M M M M M

getCharacterStream M -- -- -- M --

17. Type2 JDBC Driver

1254

Legend:

R: Mapping is recommended.

M: Can be mapped.

--: Cannot be mapped.

#1: Not supported by the JDBC driver.

#2: In data conversion from character string data, any single-byte spaces that exist
before and after the character string data is acquired from the database are removed,
and then the data is converted to the Java data type returned by the getXXX method.

Note the following when you convert data to a Java data type:

• If there is an expression following the decimal point in text string data and
the getByte, getInt, getShort, or getLong method is executed, the
data following the decimal point is truncated and only the integer digits are
converted and returned.

• If character string data contains double-byte characters, the method throws
an SQLException. Double-byte characters include double-byte spaces
filled when a character string shorter than the definition length of a column
is stored in an NCHAR column.

• If overflow occurs when character string data is converted to the Java data
type, the method throws an SQLException.

• If the execution environment of the UAP is JDK or JRE 1.2 and the character
string data uses exponential notation (such as 1.23E-23) and the getLong
method or getBigDecimal method is executed, the method throws an
SQLException.

#3: When the JDBC SQL type is the DATA type and conversion is executed by
specifying a java.util.Calendar object for the setDate method, the specified
java.util.Calendar object is used for data conversion, time data is truncated, and
only date data is stored in the database. In such a case, even if you specify the

getArray -- -- -- -- -- R

getBlob -- -- -- -- M --

getClob#1 -- -- -- -- -- --

getRef#1 -- -- -- -- -- --

getXXX method JDBC SQL type

VARCHA
R

DATE TIME TIMESTAMP LONGVARBI
NARY

ARRAY

17. Type2 JDBC Driver

1255

java.util.Calendar object for the getDate method to acquire the data stored
using the setDate method, a different date than the date specified for the setDate
method may be acquired.

Example:

The following is an example of when a java.util.Calendar object using
Universal Time (UTC) is specified for the setDate and getDate methods in a
UAP that uses Japanese standard time as the default time zone.

When you specify a java.sql.Date object that represents 2005-10-03 for the
setDate method and then execute it, the JDBC driver adds 00:00:00 in the
time part, and then stores the date part as 2005-10-02 in the database by
delaying 9 hours because of the time zone difference. If this data is acquired using
the getDate method, the date part 2005-10-02 is acquired from the database
and 00:00:00 is added for the time part, and then 2005-10-02 09:00:00 is set
by advancing 9 hours because of the time zone difference. Because of this,
2005-10-02 is set in the java.sql.Date object return value of the getDate
method, which is different from the 2005-10-03 date specified for the setDate
method.

(2) Data mapping when the ? parameter is specified
The table below shows the setXXX methods of the PreparedStatement and
CallableStatement classes and the JDBC SQL types to be mapped. For an
unsupported JDBC SQL type, the setXXX method throws an SQLException. For
details about the JDBC SQL types supported by the connected database, see 17.12
Data types and character codes.

Note that the setCharacterStream method has been added because the
setUnicodeStream method is no longer recommended in the JDBC2.0 basic
standard.

Table 17-8: setXXX methods and JDBC SQL types to be mapped for
PreparedStatement class

#: Not supported by the JDBC driver.

PreparedStatement class's setXXX method JDBC SQL type to be mapped

setCharacterStream CHAR, VARCHAR, or LONGVARCHAR

SetRef# REF

setBlob LONGVARBINARY

setClob# CLOB

setArray ARRAY

17. Type2 JDBC Driver

1256

Tables 17-9 and 17-10 show the mapping between the setXXX methods and JDBC
SQL types of PreparedStatement and CallableStatement.

Table 17-9: Mapping between the setXXX methods and JDBC SQL types of
PreparedStatement and CallableStatement (1/2)

setXXX method JDBC SQL type

SMALLINT INTEGER FLOAT REAL DECIMAL CHAR

setByte M M M M M M

setShort R M M M M M

setInt M R M M M M

setLong M M M M M M

setFloat M M M R M M

setDouble M M R M M M

setBigDecimal M M M M R M

setBoolean M M M M M M

setString M M M M M R

setBytes -- -- -- -- -- --

setDate -- -- -- -- -- M

setTime -- -- -- -- -- M

setTimestamp -- -- -- -- -- M

setAsciiStream -- -- -- -- -- M

setUnicodeStream -- -- -- -- -- M

setBinaryStream -- -- -- -- -- --

setObject M M M M M M

setCharacterStream -- -- -- -- -- M

setArray -- -- -- -- -- --

setBlob -- -- -- -- -- --

setClob# -- -- -- -- -- --

setRef# -- -- -- -- -- --

17. Type2 JDBC Driver

1257

Legend:

R: Mapping is recommended.

M: Can be mapped. Note that data may be missing or a conversion error may
occur depending on the format of source data.

--: Cannot be mapped.

#: Not supported by the JDBC driver.

Table 17-10: Mapping between the setXXX methods and JDBC SQL types of
PreparedStatement and CallableStatement (2/2)

setXXX method JDBC SQL type

VARCHAR DATE TIME TIMESTAMP LONGVARBINARY ARRAY

setByte M -- -- -- -- --

setShort M -- -- -- -- --

setInt M -- -- -- -- --

setLong M -- -- -- -- --

setFloat M -- -- -- -- --

setDouble M -- -- -- -- --

setBigDecimal M -- -- -- -- --

setBoolean M -- -- -- -- --

setString R M M M M --

setBytes -- -- -- -- M --

setDate M R#2 -- M -- --

setTime M -- R M -- --

setTimestamp M M -- R -- --

setAsciiStream M -- -- -- M --

setUnicodeStre
am

M -- -- -- M --

setBinaryStrea
m

-- -- -- -- R --

setObject M M M M M M

17. Type2 JDBC Driver

1258

Legend:

R: Mapping is recommended.

M: Can be mapped. Note that data may be missing or a conversion error may
occur depending on the format of source data.

--: Cannot be mapped.

#1: Not supported by the JDBC driver.

#2: When the JDBC SQL type is the DATA type and conversion is executed by
specifying a java.util.Calendar object for the setDate method, the specified
java.util.Calendar object is used for data conversion, time data is truncated, and
only date data is stored in the database. In such a case, even if you specify the
java.util.Calendar object for the getDate method to acquire the data stored
using the setDate method, a different date than the date specified for the setDate
method may be acquired.

Example:

The following is an example of what happens when a java.util.Calendar
object using Universal Time (UTC) is specified for the setDate and getDate
methods in a UAP that uses Japanese standard time as the default time zone.

When you specify a java.sql.Date object that represents 2005-10-03 for the
setDate method, and then execute it, the JDBC driver adds 00:00:00 in the
time part and then stores the date part as 2005-10-02 in the database by delaying
9 hours because of the time zone difference. If this data is acquired using the
getDate method, the date part 2005-10-02 is acquired from the database and
00:00:00 is added for the time part, and then 2005-10-02 09:00:00 is set by
advancing 9 hours because of the time zone difference. Because of this,
2005-10-02 is set in the java.sql.Date object return value of the getDate
method, which is different from the 2005-10-03 date specified for the setDate
method.

setCharacterSt
ream

M -- -- -- M --

setArray -- -- -- -- -- R

setBlob -- -- -- -- M --

setClob#1 -- -- -- -- -- --

setRef#1 -- -- -- -- -- --

setXXX method JDBC SQL type

VARCHAR DATE TIME TIMESTAMP LONGVARBINARY ARRAY

17. Type2 JDBC Driver

1259

17.4 JDBC2.0 Optional Package

17.4.1 Database connection using DataSource and JNDI
Database connection using DataSource and JNDI can now be used by the JDBC2.0
Optional Package.

Although it is not essential to use JNDI, using it offers a benefit in that you need to
specify the connection information only once. Because DataSource class interface
definition and JNDI are not included in JDK as standard features, you need to obtain
them from the JavaSoft web site when developing application programs.

To connect to a database using DataSource and JNDI:

1. Create a DataSource object.

2. Set up connection information.

3. Register DataSource in JNDI.

4. Obtain DataSource from JNDI.

5. Connect to the database.

If you do not use JNDI, the operations in Steps 3 and 4 are unnecessary.

If you use JNDI, execute the operations in Steps 1 through 3 only once. Afterwards,
you can connect to the database by performing the operations in Steps 4 and 5 only.
Furthermore, after the operation in Step 4, you can modify the connection information
as needed.

(1) Creating a DataSource object
Generate the DataSource class objects provided by the JDBC driver.

The DataSource class name of the JDBC driver required to generate the
DataSource class objects is JdbhDataSource.

A DataSource class object creation example follows:

(2) Setting up connection information
Call up a connection information setup method for the DataSource object and set up
connection information. Because a connection information acquisition method can
also be used, you can also check the current connection information. For details on the
connection information setup/acquisition method, see 17.11 Connection information
setup/acquisition interface.

 JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource ds = null ;
 ds = new JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource() ;

17. Type2 JDBC Driver

1260

(3) Registering DataSource in JNDI
Register the DataSource object in JNDI.

In JNDI, you can select a service provider from several that are available.

An example of obtaining a DataSource object in JNDI is shown as follows (for
Windows). Note that this obtaining example uses File System, which is one of the
service providers. For information on other service providers, see the JNDI
documentation.

Note that the JDBC2.0 specification recommends that the logical name to be registered
in JNDI be registered under a subcontext called jdbc (jdbc/TestDataSource in
the registration example).

(4) Obtaining DataSource from JNDI
Obtain the DataSource object from JNDI.

An example of obtaining a DataSource object from JNDI is shown as follows (for
Windows). Note that this obtaining example uses File System, which is one of service
providers. For information on other service providers, see the JNDI documentation.

 // Generate a DataSource class object provided by the JDBC driver.
JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource ds;
ds = new JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource();

 // Specify connection information.
 ...

 // Obtain system properties.
 Properties sys_prop = System.getProperties() ;

 // Set up properties for the File System service provider.
 sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

 // Set up the directory to be used by the File System service provider.
 // (In this case, the directory is registered under c:\JNDI_DIR.)
 sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

 // Update the system properties.
 System.setProperties(sys_prop) ;

 // Initialize JNDI.
 Context ctx = new InitialContext();

 // Register a DataSource class object provided by the HiRDB driver in JNDI
 // under a logical name called jdbc/TestDataSource.
 ctx.bind("jdbc" + "\\" + "TestDataSource", ds);
 ...

17. Type2 JDBC Driver

1261

(5) Connecting to the database
Invoke the getConnection method for the DataSource object.

An example of calling the getConnection method follows:

#: The method's arguments (authorization identifier and password) take precedence
over the connection information set for the DataSource objects. If the necessary
connection information is not set for the DataSource object and the connection
information is invalid or connection with the HiRDB server fails, the
getConnection method throws an SQLException.

You can set connection information again as necessary after the Datasource object
is obtained from JNDI. In such a case, you must cast the Datasource object to the
DataSource class type provided by the JDBC driver and then set the connection

 // Obtain system properties.
 Properties sys_prop = System.getProperties() ;

 // Set up properties for the File System service provider.
 sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

 // Set up the directory to be used by the File System service provider.
 // (In this case, the directory is registered under c:\JNDI_DIR.)
 sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

 // Update the system properties.
 System.setProperties(sys_prop) ;

 // Initialize JNDI.
 Context ctx = new InitialContext();

 // Obtain an object with a logical name jdbc/TestDataSource from JNDI.
 Object obj = ctx.lookup("jdbc" + "\\" + "TestDataSource") ;

 // Cast the extracted object into the DataSource class type.
 DataSource ds = (DataSource)obj;
 ...

 DataSource ds

 // Obtain a DataSource object from JNDI.
 ...

 // Issue the getConnection method.
 Connection con = ds.getConnection();
 or
 Connection con = ds.getConnection("USERID", "PASSWORD");#

17. Type2 JDBC Driver

1262

information.

17.4.2 Connection pooling
A function is provided in the JDBC2.0 Optional Package for pooling connections to a
database. An overview of connection pooling is provided below:

• Connection pooling has no effect on existing applications. This means that
applications do not need to be aware of connection pooling. However, this
assumes that the database is not connected by DriverManager, but rather by
DataSource and JNDI provided by the JDBC2.0 Optional Package.

• The connection pooling function itself is outside the functional scope of the JDBC
specifications. This is intended to allow the user to select a desired connection
pooling function when building a system (the user can create one, use one
provided by an APServer vendor, or use one provided by a JDBC vendor).

• With the connection pooling function, the Datasource class can be used as an
interface with applications. This DataSource class is different from the
DataSource class provided by the JDBC driver.

• With the JDBC driver, the ConnectionPoolDataSource class and
PooledConnection class can be used as an interface with the connection
pooling function.

• The ConnectionPoolDataSource class provided by the JDBC driver can use
the connection information setting and acquisition methods in the same way as the
Datasource class provided by the JDBC driver.

The following table lists and describes the classes related to connection pools.

 DataSource ds
 JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource hirdb_ds;

 // Obtain a DataSource object from JNDI.
 ...

 // Cast the DataSource object to the DataSource class type provided by the JDBC driver.
 dbp_ds = (JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource)ds;

 // Reset the connection information.
 ...

17. Type2 JDBC Driver

1263

Table 17-11: Classes related to connection pools

Depending on the JDK version, the interface definition of the classes shown in Table
17-11 might not be included in the JDK standard; you will need to check the JavaSoft
website if you intend to use the connection pooling function.

The following are the package name and class names of the classes provided by the
JDBC driver and shown in Table 17-11.

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

ConnectionPoolDataSource class name: JdbhConnectionPoolDataSource

PooledConnection class name: JdbhPooledConnection

Note that the setting of the connection information of the
ConnectionPoolDataSource class provided by the JDBC driver is the same as the
setting of the connection information of the DataSource class provided by the JDBC
driver.

Class Overview

javax.sql.DataSource • Provided by a connection pooling function.
• Used as the interface to applications during database

connection.
• Normally, connection pools are controlled in this class.
• Normally, registered in JNDI for use.
• Different from the DataSource class provided by the

JDBC driver.

javax.sql.ConnectionPoolDataSource • Provided by the JDBC driver.
• Can use a method for setting/acquiring connection

information necessary for database connection.
• Normally not used directly from an application, and is used

by a connection pooling function.
• Normally, registered in JNDI for use.
• A connection pooling function acquires a

PooledConnection object from this class of objects.

javax.sql.PooledConnection • Provided by the JDBC driver.
• Normally not used directly from an application, and is used

by a connection pooling function.
• A connection pooling function targets this class of objects

for pooling.
• A connection pooling function acquires a Connection

object to be used by an application from this class of objects.

javax.sql.ConnectionEventListener • Provided by a connection pooling function.
• A connection pooling function senses a connection pooling

trigger by detecting a disconnection or SQL error through
this class of objects.

17. Type2 JDBC Driver

1264

17.4.3 Distributed transactions
In the JDBC2.0 Optional Package, distributed transactions in cooperation with the
transaction manager (TM) based on the XA standard of X/Open are defined as an
extension of the connection pooling function. The following provides an overview of
distributed transactions:

• Connection pooling has almost no effect on existing applications. However, there
are certain restrictions, such as that direct commit is not allowed. Also, as with
connection pooling, it is a precondition that database connection is not performed
by using DriverManager, but rather by using DataSource and JNDI
introduced by the JDBC2.0 Optional Package.

• As with connection pooling, the transaction linkage function for linking with a
TM is outside the functional scope of the JDBC specifications.

• Normally, a transaction linkage function is installed as an extension of a
connection pooling function, and uses TM-provided JTA and JTS as the interface
with the TM. Note that operations complying with JTA standard 1.0 are not
guaranteed.

• In the transaction linkage facility, as with connection pooling, the DataSource
class can be used as the interface with applications. This DataSource class is
different from the one provided by the JDBC driver.

• The JDBC driver can use the XADataSource class and XAConnection class as
an interface with the transaction linkage facility. Also, the JDBC driver can use
XAResource class as an interface with TM.

• As with the DataSource class provided by the JDBC driver, the XADataSource
class provided by the JDBC driver can use the connection information setting/
acquisition methods.

As with connection pooling, Connection objects used by applications are generated
by the XAConnection class. However, there are certain differences compared with
the Connection objects generated by the DataSource class provided by the
PooledConnection class or JDBC driver.

• The method of invoking a commit method or rollback method for the
Connection class is based on an SQLException. That is, an application cannot
directly complete a transaction.

• The default mode for AutoCommit is OFF.

• Issuance of a Connection class's setAutoCommit (true) method that turns
on the AutoCommit mode results in an SQLException.

The following table lists and describes the classes related to distributed transactions.

17. Type2 JDBC Driver

1265

Table 17-12: Classes related to distributed transactions

Because the interface definition of the classes listed in Table 17-12 is not included in
JDK as a standard feature, you must acquire them from the JavaSoft website when you
develop a transaction linkage facility.

The following are the package names and class names of the classes provided by the
JDBC driver and shown in Table 17-12.

Class Overview

javax.sql.DataSource • Provided by a transaction linkage function.
• Used as the interface to applications during database

connection.
• Normally, linkage to a TM and connection pools are controlled

in this class.
• Normally, registered in JNDI for use.
• Different from the DataSource class provided by the JDBC

driver.

javax.sql.XADataSource • Provided by the JDBC driver.
• Can use a method for setting/acquiring connection information

necessary for database connection.
• Normally not used directly from an application, and is used by

a transaction linkage function.
• Normally, registered in JNDI for use.
• A transaction linkage function acquires an XAConnection

object from this class of objects.

javax.sql.XAConnection • Provided by the JDBC driver.
• This is a subclass of the PooledConnection class. That is, it

inherits all methods related to connection pooling.
• Normally not used directly from an application, and is used by

a transaction linkage function.
• A transaction linkage function targets this class of objects for

pooling.
• A transaction linkage function acquires a Connection object

to be used by an application from this class of objects.

javax.sql.ConnectionEventListene
r

• Provided by a transaction linkage function.
• A transaction linkage function senses a connection pooling

trigger by detecting a disconnection or SQL error through this
class of objects.

javax.transaction.xa.XAResource • Provided by the JDBC driver.
• Can use the XA-related methods used by a TM.

javax.transaction.xa.Xid • Provided by the JDBC driver and TM.
• Used as the argument/return value of an XAResource class

method.

17. Type2 JDBC Driver

1266

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

XADataSource class name: JdbhXADataSource

XAConnection class name: JdbhXAConnection

XAResource class name: JdbhXAResource

Xid class name: JdbhXid

Note that the setting of the connection information of the XADataSource class
provided by the JDBC driver is the same as the setting of the connection information
of the DataSource class provided by the JDBC driver.

17. Type2 JDBC Driver

1267

17.5 JAR file access facility

To use a Java stored routine, you need to register the JAR file in HiRDB. This
processing takes place via the JDBC driver.

This section explains the class and method names used to register, delete, and
re-register JAR files.

17.5.1 Class name
The class name follows:
JP.co.Hitachi.soft.HiRDB.JDBC.Jdbh_JARAccess

17.5.2 Method name
(1) Registering a JAR file in HiRDB

(a) Format

(b) Arguments
con

Specifies a Java.sql.Connection object to register the JAR file.

JarName
Specifies the name of the JAR file.

Specify either the absolute path name or relative path name. You cannot specify
a file located in another server machine, nor a wildcard.

(c) Return value
None.

(d) Exception
SQLException

A database access error occurred.

(e) Function
This method registers the specified JAR file in HiRDB using the
Java.sql.Connection object. If HiRDB already contains a file with the same
name, an error occurs.

public void Jdbh_JARInstall(java.sql.Connection con,
 String JarName)

17. Type2 JDBC Driver

1268

(2) Deleting a JAR file from HiRDB
(a) Format

(b) Arguments
con

Specifies a Java.sql.Connection object to delete the JAR file.

JarName
Specifies the name of the JAR file.

You cannot specify an absolute path name, nor a relative path name, nor a
wildcard.

(c) Return value
None.

(d) Exception
SQLException

A database access error occurred.

(e) Function
This method deletes the specified JAR file from HiRDB using the
Java.sql.Connection object.

(3) Re-registering a JAR file in HiRDB
(a) Format

(b) Arguments
con

Specifies a Java.sql.Connection object to re-register the JAR file.

JarName
Specifies the name of the JAR file.

You cannot specify an absolute path name, nor a relative path name, nor a
wildcard.

public void Jdbh_JARUnInstall(java.sql.Connection con,
 String JarName)

public void Jdbh_JARReInstall(java.sql.Connection con,
 String JarName)

17. Type2 JDBC Driver

1269

(c) Return value
None.

(d) Exception
SQLException

A database access error occurred.

(e) Function
This method re-registers the specified JAR file in HiRDB using the
Java.sql.Connection object. If HiRDB already contains a file with the same
name, it is overwritten (an error does not occur).

17. Type2 JDBC Driver

1270

17.6 Array class

The JDBC driver can access repetition columns using the Array class. Note the
following when using each method:

(1) getArray
• MAP cannot be used.

• The following table lists the object types returned by this method.

Table 17-13: Object types returned by getArray

(2) getResultSet
• MAP cannot be used.

• The result set returned by this method includes one row in each array element, and
each row has two columns. The second column stores the value of the element,
while the first column stores the index of the corresponding element inside the
array (the index of the first array element is 1). Rows are arranged in ascending
order based on the indexes.

HiRDB data type Object type

INTEGER java.lang.Integer[]

SMALLINT java.lang.Short[]

DECIMAL java.math.BigDecimal[]

FLOAT, DOUBLE PRECISION java.lang.Double[]

SMALLFLT, REAL java.lang.Float[]

CHAR java.lang.String[]

VARCHAR java.lang.String[]

NCHAR java.lang.String[]

NVARCHAR java.lang.String[]

MCHAR java.lang.String[]

MVARCHAR java.lang.String[]

DATE java.sql.Date[]

TIME java.sql.Time[]

TIMESTAMP java.sql.Timestamp[]

17. Type2 JDBC Driver

1271

• Closing a statement also closes the result returned by this method.

• The following table shows the attribute values of the result sets returned by this
method.

Table 17-14: Attribute values of the result sets returned by getResultSet

ResultSetMetaData class
method name

Values returned by the method

First column Second column

getCatalogName null null

getColumnClassName java.lang.Integer Depends on the database column
attribute.

getColumnDisplaySize 10 Depends on the database column
length.

getColumnLabel JDBC_Array_Index Depends on the database column
name.

getColumnName

getColumnType java.sql.Types.INTEGER Depends on the database column
attribute.

getColumnTypeName INTEGER

getPrecision 10 Depends on the database column
attribute and column length.

getScale 0

getSchemaName null null

getTableName

isAutoIncrement true false

isCaseSensitive false Depends on the database column
attribute.

isCurrency false

isDefinitelyWritable

isNullable java.sql.ResultSetMetaData.
columnNoNulls

Depends on the database column
attribute.

isReadOnly true false

isSearchable false true

isSigned Depends on the database column
attribute.

isWritable false

17. Type2 JDBC Driver

1272

17.7 Specifying a value when using a repetition column as the ?
parameter

This section explains how to specify a value when using a repetition column as the ?
parameter.

To specify a value for the ? parameter, use the setObject method to specify an object
in the class in which the Array interface was installed or a column object.

(1) Specifying an object in the class in which the Array interface was installed
• Create an object in the class in which the Array interface was installed, and use

the setArray or setObject method to specify that object.

• The JDBC driver uses the Array.getBaseType method to check the data type
of that object. If the data type of the database turns out to be different from the
data type of the object, the JDBC driver throws an SQLException. For details
on database and object data types, see 17.12.1 Data types.

• The actual data is acquired using the Array.getArray() method without any
argument. The table below shows the object types that must be returned during
this data acquisition. If an object type that is returned is not one that is shown in
the table, the JDBC driver throws an SQLException.

Table 17-15: Object types returned during data acquisition using the
Array.getArray() method without any argument

Data type returned by the
Array.getBaseType method

Object types returned during data acquisition
using the Array.getArray() method without any

argument

java.sql.Types.INTEGER int[] or java.lang.Integer[]

java.sql.Types.SMALLINT short[] or java.lang.Short[]

java.sql.Types.DECIMAL java.math.BigDecimal[]

java.sql.Types.FLOAT double[] or java.lang.Double[]

java.sql.Types.REAL float[] or java.lang.Float[]

java.sql.Types.CHAR java.lang.String[]

java.sql.Types.VARCHAR java.lang.String[]

java.sql.Types.DATE java.sql.Date[]

java.sql.Types.TIME java.sql.Time[]

java.sql.Types.LONGVARBINARY java.io.DataInputStream[]

17. Type2 JDBC Driver

1273

(2) Using the setObject method to specify an array object
• If the database data type is different from the array object data type, the JDBC

driver throws an SQLException.

• If the data type of the SQL statement specified by the setObject method and the
data type of the array object differ from those shown in the following table, the
JDBC driver throws an SQLException.

Table 17-16: Data type of the SQL statement specified by the setObject method
and the data type of the array object

(3) Relationship between repetition column elements and the object specified as
the ? parameter

The sequence of the array objects obtained by the Array.getArray() method from
the objects in the class in which the Array interface was installed is the same as the
sequence of the repetition columns. Consequently, the first element of the array object
becomes the first element of the repetition column, and the second element of the array
object becomes the second element of the repetition column.

java.sql.Types.TIMESTAMP java.sql.Timestamp[]

Data type of the SQL statement specified
by the setObject method

Data type of the array object

java.sql.Types.INTEGER int[] or java.lang.Integer[]

java.sql.Types.SMALLINT short[] or java.lang.Short[]

java.sql.Types.DECIMAL java.math.BigDecimal[]

java.sql.Types.FLOAT double[] or java.lang.Double[]

java.sql.Types.REAL float[] or java.lang.Float[]

java.sql.Types.CHAR java.lang.String[]

java.sql.Types.VARCHAR java.lang.String[]

java.sql.Types.DATE java.sql.Date[]

java.sql.Types.TIME java.sql.Time[]

java.sql.Types.LONGVARBINARY java.io.DataInputStream[]

java.sql.Types.TIMESTAMP java.sql.Timestamp[]

Data type returned by the
Array.getBaseType method

Object types returned during data acquisition
using the Array.getArray() method without any

argument

17. Type2 JDBC Driver

1274

The same also holds true for the array objects specified by the setObject method.
You can also specify an array object consisting of only one element.

(4) Specifying a null value for an element in the middle of a repetition column
Regardless of whether an object is in the class in which the Array interface was
installed or an array object, if you specify a null value for an element in the middle of
an element, the element of the applicable array becomes null. Therefore, to set a null
value for the second element of a repetition column, specify a null value for the second
element of the array object obtained by the Array.getArray() method from the
objects in the class in which the Array interface was installed.

The same also holds true for the array objects specified by the setObject method.

17. Type2 JDBC Driver

1275

17.8 Functions provided by the HiRDB JDBC driver

This section describes the HiRDB JDBC driver functions that are not standardized by
JDBC2.0.

17.8.1 Provided class
To use the functions provided only by the HiRDB JDBC driver, you must use the
following class:

17.8.2 setBlockUpdate
(a) Function

setBlockUpdate specifies whether or not multiple parameters are to be processed at
one time when the ? parameter is used to update databases.

(b) Format

public void setBlockUpdate(boolean Mode)

(c) Arguments
boolean Mode

Specifies whether or not multiple parameter sets are to be processed at one time.
When this argument is omitted, false is assumed.

true

Processes multiple parameter sets at one time.

false

Processes one parameter set at a time.#

#: During database connection, if BLOCK_UPDATE=TRUE is specified in the
argument of the getConnection method of the DriverManager class, the

Interface name Main function Class name

PreparedStatement • Executing SQL statements
with the ? parameter

• Setting values for the ?
parameter

• Statement functions (all
functions are inherited
because this is Statement's
subclass)

JdbcDbpsvPreparedStatement

17. Type2 JDBC Driver

1276

default for this function is true. Also, when
HiRDB_for_Java_BLOCK_UPDATE=TRUE is specified in the system property,
the default for this function is true.

(d) Return value
None.

(e) Functional detail
This function sets whether or not multiple parameter sets are to be processed at one
time during database updating using the ? parameter (INSERT, UPDATE, or DELETE).

Whether or not the parameter sets are actually processed at one time depends on the
method for using the facilities using arrays. For details about how to use the facilities
using arrays, see 4.8 Facilities using arrays.

(f) Exception
None.

(g) Notes
For details about how to process multiple lines of ? parameters in batch mode, see
Table 17-3 Information to be specified for Properties info and 17.3.2 Batch updating.

17.8.3 getBlockUpdate
(a) Function

This function acquires a value indicating whether or not multiple parameter sets are to
be processed at one time during database updating using the ? parameter.

(b) Format

public boolean getBlockUpdate()

(c) Arguments
None.

(d) Return value
boolean

Specifies whether or not multiple parameter sets are to be processed at one time.
When this information is omitted, false is assumed.

true

Processes multiple parameter sets at one time.

false

17. Type2 JDBC Driver

1277

Processes one parameter set at a time.#

#: During database connection, if BLOCK_UPDATE=TRUE is specified in the
argument of the getConnection method of the DriverManager class, the
default for this function is true.

(e) Functional detail
This function acquires a value indicating whether or not multiple parameter sets are to
be processed at one time during database updating using the ? parameter (INSERT,
UPDATE, or DELETE).

(f) Exception
None.

17. Type2 JDBC Driver

1278

17.9 Notes on using the BLOB type

This section provides notes about the processing of methods when the BLOB type is
used.

(1) Method processing and notes
The following table describes each method's processing.

Table 17-17: Method processing and notes

Note

If you have acquired data using the locator facility and execute
ResultSet.close() or Statement.close(), you can no longer acquire
data.

Method name of Blob interface
class

Processing and notes

getBinaryStream Returns the InputStream class equipped with JdbhInputStream.
The maximum length of data that can be acquired is 2,147,483,639.

getBytes(long pos, int length) Returns the maximum length of data from the specified pos location
using the byte[] object. If the database contents are the null value, no
data can be acquired from the specified location; or if the data length
is 0 bytes, the method returns null. The maximum value is
2,147,483,639. If this length is exceeded, the method throws an
SQLException.

length() Returns the actual data length.

position(Blob pattern,long
start)

Executes position(pattern.getBytes(1,
(int)(pattern.length())), start). If null is specified in
pattern, the method throws a NullPointerException.

position(byte[] pattern,long
start)

Returns the position corresponding to pattern from the specified
start location. The return value is >=start. If there is no location
that corresponds to pattern, the method returns -1. The maximum
value of pattern.length is 2,147,483,639. If this value is exceeded,
the method throws an SQLException. If null is specified in
pattern, the method throws a NullPointerException.

setBinaryStream(long pos) Unconditionally throws an SQLException.

setBytes(long pos,byte[] bytes)

setBytes(long pos,byte[]
bytes,int offset,int len)

truncate(long len)

17. Type2 JDBC Driver

1279

(2) Specification method using the ? parameter
To specify a value in the ? parameter, you can use the
PreparedStatement.setBlob() and CallableStatement.setBlob()
methods. This subsection provides notes about using these methods.

(a) When using objects equipped with the Blob interface
When using the setBlob() method, you must specify an object equipped with the
Blob interface. Additionally, the UAP must create the object equipped with the Blob
interface.

JDBC uses the Blob.getBytes() method to acquire the value to be set in the
byte[] format. The following method is used to acquire the value to be used:

Blob.getBytes(1, (int)(Blob.length()))

In the UAP, the getBytes() and length() methods must return normal values.
JDBC assumes that the values returned by these methods are correct.

(b) When using the Blob object acquired by the ResultSet.getBlob() or
CallableStatement.getBlob() method
When the Blob object acquired by the ResultSet.getBlob() or
CallableStatement.getBlob() method as the execution result from JDBC is to
be used as is, operation depends on whether or not the object was acquired by using
the locator facility for access.

• When the locator facility was not used for access

The data acquired by the ResultSet.getBlob() or
CallableStatement.getBlob() method is used as the value of the ?
parameter.

• When the locator facility was used for access

When the setBlob() method is called, Blob.getBytes(1,
(int)(Blob.length())) is executed internally. The data acquired by
Blob.getBytes(1, (int)(Blob.length())) is used as the value of the ?
parameter.

17. Type2 JDBC Driver

1280

17.10 Setting system properties

17.10.1 Setting the array facility
(1) Overview

If you set the HiRDB_for_Java_BLOCK_UPDATE system property during program
execution, you can specify whether or not to process multiple parameter sets at one
time during database updating using the ? parameter (INSERT, UPDATE, or DELETE).

(2) Setting method
During program execution, use the -D option of the java command to set the
HiRDB_for_Java_BLOCK_UPDATE system property.

(a) Function
This function sets whether or not multiple parameter sets are to be processed at one
time during database updating using the ? parameter (INSERT, UPDATE, or DELETE).

(b) Format

java -D<name>=<value> class-name

(c) Description
name

HiRDB_for_Java_BLOCK_UPDATE

value

TRUE: Processes multiple parameter sets at one time.

FALSE: Processes one parameter set at a time.

Other: Processes one parameter set at a time.

(d) Functional detail
This function sets whether or not multiple parameter sets are to be processed at one
time during database updating using the ? parameter.

Whether or not the parameter sets are actually processed at one time depends on the
method for using the facilities using arrays. For details about how to use the facilities
using arrays, see 4.8 Facilities using arrays.

(e) Notes
• When you specify -D<name>=<value>, make sure that there is no space in the

specified information. The specified information cannot be set correctly if it has

17. Type2 JDBC Driver

1281

any of the following formats, where indicates a space:

• -D <name>=<value>

• -D<name> =<value>

• -D<name>= <value>

• If BLOCK_UPDATE is set during database connection (setBlockUpdate method
during data source connection), BLOCK_UPDATE or the value set in the
setBlockUpdate method takes effect.

• If you used the PreparedStatement class's setBlockUpdate method, you
can change the setting as to whether or not multiple parameter sets are to be
processed at one time.

• For details about how to process multiple lines of ? parameters in batch mode, see
Table 17-3 Information to be specified for Properties info and 17.3.2 Batch
updating.

(f) Example
The following shows an example of setting the HiRDB_for_Java_BLOCK_UPDATE
system property:

java -DHiRDB_for_Java_BLOCK_UPDATE=TRUE TestUP

17.10.2 Setting the maximum number of SQL search items or ?
parameters
(1) Overview

If you set the HiRDB_for_Java_SQL_IN_NUM or
HiRDB_for_Java_SQL_OUT_NUM system property during program execution, you
can specify the maximum number of search items, output ? parameters, input ?
parameters, or input/output ? parameters that are to be acquired during SQL
preprocessing.

(2) Setting method
During program execution, set the system property
HiRDB_for_Java_SQL_OUT_NUM or HiRDB_for_Java_SQL_IN_NUM or both in
the -D option of the java command.

(a) Function
This function specifies the maximum number of search items, output ? parameters,
input ? parameters, or input/output ? parameters that are to be acquired during SQL
preprocessing.

17. Type2 JDBC Driver

1282

(b) Format

java -D<name>=<value> class-name

(c) Description
The following table describes the information that can be specified in <name> and
<value>:

(d) Functional detail
This function specifies the maximum number of search items, output ? parameters,
input ? parameters, or input/output ? parameters that are to be acquired during SQL
preprocessing. A sufficient value enables you to acquire search item, output ?
parameter, input ? parameter, or input/output parameter information during SQL
preprocessing, thereby improving performance compared to when this information is
acquired after preprocessing.

(e) Notes
• When you specify -D<name>=<value>, make sure that there is no space in the

specified information. The specified information cannot be set correctly if it has
any of the following formats, where indicates a space:

• -D <name>=<value>

• -D<name> =<value>

• -D<name>= <value>

<name> <value>

HiRDB_for_Java_SQL_IN_NUM Specifies the maximum number of input or input/output ? parameters
in the SQL statements to be executed. This is the number of input or
input/output ? parameter information items acquired during SQL
preprocessing. If the actual number of input or input/output ?
parameters is greater than this property value, the input or input/output
? parameter information is acquired after the SQL preprocessing.
The permitted value range is from 1 to 30,000 (default is 64).
Specifying any other value or a non-numeric value results in an error
during database connection.

HiRDB_for_Java_SQL_OUT_NUM Specifies the maximum number of output items for the SQL statement
to be executed. This is the number of output items acquired during SQL
preprocessing. If the actual number of output items is greater than this
property value, the output items are acquired after the SQL
preprocessing.
The permitted value range is from 1 to 30,000 (default is 64).
Specifying any other value or a non-numeric value results in an error
during database connection.

17. Type2 JDBC Driver

1283

• If HiRDB_for_Java_SQL_IN_NUM is set during database connection
(setSQLInNum method during data source connection),
HiRDB_for_Java_SQL_IN_NUM or the value set in the setSQLInNum method
takes effect.

• If HiRDB_for_Java_SQL_OUT_NUM is set during database connection
(setSQLOutNum method during data source connection),
HiRDB_for_Java_SQL_OUT_NUM or the value set in the setSQLOutNum
method takes effect.

• To acquire search item, output ? parameter, input ? parameter, or input/output
parameter information during SQL preprocessing, the version of the connected
HiRDB server must be 07-02 or later.

(f) Example
The following shows an example of setting the HiRDB_for_Java_SQL_IN_NUM and
HiRDB_for_Java_SQL_OUT_NUM system properties:

java -DHiRDB_for_Java_SQL_IN_NUM=128
-DHiRDB_for_Java_SQL_OUT_NUM=128 TestUP

17. Type2 JDBC Driver

1284

17.11 Connection information setup/acquisition interface

The JdbhDataSource, JdbhConnectionPoolDataSource, and
JdbhXADataSource classes, which are provided by the JDBC driver, provide
methods of setting/acquiring the connection information necessary for database
connection, besides the methods specified by the JDBC2.0 Optional Package
specification.

The following table lists and describes the methods that set and acquire connection
information.

Table 17-18: Methods of setting/acquiring connection information

Subsection Method Function

17.11.1 setDescription Sets the additional connection information needed by
the database to be connected.

17.11.2 getDescription Acquires the additional connection information needed
by the database to be connected.

17.11.3 setDBHostName Sets the host name of the HiRDB to be connected.

17.11.4 getDBHostName Acquires the host name of the HiRDB to be connected.

17.11.5 setEncodeLang Uses the specified encoding character code to convert
data.

17.11.6 getEncodeLang Returns the encoding characters to be used for data
conversion.

17.11.7 setUser Sets the authorization identifier.

17.11.8 getUser Acquires the authorization identifier.

17.11.9 setPassword Sets a password.

17.11.10 getPassword Acquires a password.

17.11.11 setXAOpenString# Sets an XA_OPEN character string.

17.11.12 getXAOpenString# Acquires an XA_OPEN character string.

17.11.13 setXACloseString# Sets an XA_CLOSE character string.

17.11.14 getXACloseString# Acquires an XA_CLOSE character string.

17.11.15 setRMID# Sets a resource manager identifier.

17.11.16 getRMID# Acquires a resource manager identifier.

17. Type2 JDBC Driver

1285

#: These methods are provided by the JdbhXADataSource class only.

17.11.17 setXAThreadMode# Sets a thread mode for using XA.

17.11.18 getXAThreadMode# Acquires a thread mode for using XA.

17.11.19 setCommit_Behavior Sets whether a cursor remains valid following COMMIT.

17.11.20 getCommit_Behavior Acquires whether a cursor remains valid following
COMMIT.

17.11.21 setBlockUpdate Specifies whether or not multiple parameter sets are to
be processed at one time.

17.11.22 getBlockUpdate Acquires a value indicating whether or not multiple
parameter sets are to be processed at one time.

17.11.23 setLONGVARBINARY_Access Specifies the access method for a LONGVARBINARY
database (column attribute is BLOB or BINARY).

17.11.24 getLONGVARBINARY_Access Acquires the access method for a LONGVARBINARY
database (column attribute is BLOB or BINARY).

17.11.25 setSQLInNum Specifies the maximum number of input or input/output
? parameters in the SQL statements to be executed.

17.11.26 getSQLInNum Acquires the maximum number of input or input/output
? parameters in the SQL statements to be executed that
has been set by setSQLInNum.

17.11.27 setSQLOutNum Specifies the maximum number of search items, output
? parameters, or input/output ? parameters in the SQL
statements to be executed.

17.11.28 getSQLOutNum Acquires the maximum number of search items, output
? parameters, or input/output ? parameters in the SQL
statements to be executed that has been set by
setSQLOutNum.

17.11.29 setSQLWarningLevel Specifies the warning retention level that occurred
during execution of SQL statements.

17.11.30 getSQLWarningLevel Acquires the warning retention level specified in
setSQLWarningLevel.

17.11.31 setClear_Env Specifies whether or not the HiRDB client environment
definition set as OS environment variables is to be
ignored during database connection.

17.11.32 getClear_Env Acquires the environment variable invalidation setting
specified by setClear_Env.

Subsection Method Function

17. Type2 JDBC Driver

1286

17.11.1 setDescription
(a) Function

Sets the additional connection information needed by the database to be connected.

(b) Format

public void setDescription (String description)

(c) Argument
String description

Specifies additional connection information.

(d) Return value
None.

(e) Functional detail
Sets the additional connection information needed by the database to be connected.
Setting details and whether setting is required are shown as follows.

Note 1

The environment variables registered in an environment variable group have
precedence over the user environment variables and the environment variables
registered by HiRDB.INI.

Note 2

Setting Setting details Setting required?

HiRDB port number Sets the HiRDB port number expressed as a character
string.

Optional

HiRDB environment
variable group name

Sets the HiRDB environment variable group name
following @HIRDBENVGRP=, expressed as a character
string. If the environment variable name contains
single-byte spaces or single-byte @ characters, enclose the
name in single-byte quotation marks ("). When an
environment variable group name is enclosed in
single-byte quotation marks, all characters following the
last single-byte quotation mark through the end of the
character string are ignored. An environment variable
group name containing single-byte quotation marks or
single-byte commas cannot be specified.

Optional

HiRDB environment
variable group identifier

Sets the HiRDB environment variable group identifier
expressed as four alphanumeric characters.

Required during XA
connection

17. Type2 JDBC Driver

1287

Specification examples are shown below. In these examples, ds represents the
name of a variable that has reference to the JdbhDataSource class's instance.

In UNIX:

Example 1: When the path of the HiRDB environment variable group name is /
HiRDB_P/Client/HiRDB.ini

ds.setDescription("@HIRDBENVGRP=/HiRDB_P/Client/
HiRDB.ini");

In Windows

Example 1: When specifying the HiRDB port number

ds.setDescription("22200");

Example 2: When specifying the environment variable group name
HiRDB_ENV_GROUP that has been registered using the tool for registering
HiRDB client environment variables

ds.setDescription("@HIRDBENVGRP=HiRDB_ENV_GROUP");

Example 3: When the path of the HiRDB environment variable group name is
C:\HiRDB_P\Client\HiRDB.ini

ds.setDescription("@HIRDBENVGRP=C:\\HiRDB_P\\Client\\Hi
RDB.ini");

Example 4: When the path of the HiRDB environment variable group name is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini (: single-byte space)

ds.setDescription("@HIRDBENVGRP=\"C:\\Program Files\\H
ITACHI\\HiRDB\HiRDB.ini\"");

Example 5: When the HiRDB environment variable group identifier is HDB1

ds.setDescription("HDB1");

(f) Exception that occurs
If an environment variable group name beginning with @ is specified during a
connection other than the XA connection, and the specified information following @

17. Type2 JDBC Driver

1288

contains a single-byte space, this method throws an SQLException.

17.11.2 getDescription
(a) Function

Acquires the additional connection information that was specified by the
setDescription method and that is needed for the database to be connected.

(b) Format

public String getDescription()

(c) Argument
None.

(d) Return value
String

This is the additional connection information. If none is set, null is returned.

(e) Exception that occurs
None.

17.11.3 setDBHostName
(a) Function

Sets the host name of the HiRDB to be connected (host name set in the PDHOST client
environment definition).

If the connection is not XA and the environment variable group name of a HiRDB
client is specified in the additional connection information, the value specified by this
method will be ignored.

(b) Format

public void setDBHostName (String db_host_name)

(c) Argument
String db_host_name

Sets a HiRDB host name.

(d) Return value
None.

17. Type2 JDBC Driver

1289

(e) Exception that occurs
None.

17.11.4 getDBHostName
(a) Function

Acquires the host name of the HiRDB to be connected that was specified by the
setDBHostName method.

(b) Format

public String getDBHostName()

(c) Argument
None.

(d) Return value
String

This is the HiRDB host name. If none is set, null is returned.

(e) Exception that occurs
None.

17.11.5 setEncodeLang
(a) Function

Specifies the character set used for character code conversion in the JDBC driver.

(b) Format

public void setEncodeLang (String encode_lang)

(c) Argument
String encode_lang

Specifies a character set supported by Java (such as MS932).

If OFF is specified with this method or if nothing is specified (including in the
ENCODELANG settings of Properties info and the URL), the following
operation takes place.

OFF:

The JDBC driver determines the character set that corresponds to the

17. Type2 JDBC Driver

1290

character codes type of the connected HiRDB. The following table shows the
correspondence between the connected HiRDB character codes type and the
character encoding used by the JDBC driver:

#: The specification value is in the -c option of the pdsetup command for
UNIX and the -c option of the pdntenv command for Windows. For the
character codes types when the pdntenv command is not executed, see the
HiRDB Version 9 Installation and Design Guide.

None:

For UNIX:

The JDBC driver determines the character set that corresponds to the HiRDB
character codes type.

For Windows:

The JDBC driver uses the following rules to determine the character set:

(d) Return value
None.

(e) Functional detail
In a Java program, Unicode is used for the character codes. Therefore, during character
data processing with HiRDB, the JDBC driver performs mutual character code
conversion between the HiRDB character data and Unicodes. For this character code
conversion processing, the JDBC driver uses the encoder and decoder provided by the

HiRDB character codes type# Character encoding used

lang-c 8859_1

sjis Java Virtual Machine standard encoding

ujis EUCJIS

utf-8 UTF-8

chinese GB2312

chinese-gb18030 GB18030

Java Virtual Machine standard
encoding

HiRDB character codes type

SJIS Other than SJIS

MS932 MS932 Character set corresponding to the
HiRDB character codes type

Other than MS932 SJIS

17. Type2 JDBC Driver

1291

Java Virtual Machine. This method specifies the character set names specified by the
JDBC driver for the encoder and decoder that are provided by the Java Virtual
Machine.

(f) Exception that occurs
None.

17.11.6 getEncodeLang
(a) Function

Acquires the character set that was specified by the setEncodeLang method.

(b) Format

public String getEncodeLang()

(c) Argument
None.

(d) Return value
String

Returns the character set. If no character set is specified, null is returned.

(e) Exception that occurs
None.

17.11.7 setUser
(a) Function

Sets the authorization identifier.

(b) Format

public void setUser (String user)

(c) Argument
String user

Sets the authorization identifier.

(d) Return value
None.

17. Type2 JDBC Driver

1292

(e) Functional detail
Sets the authorization identifier.

You can specify the authorization identifier using an argument of the
DataSource.getConnection method,
ConnectionPoolDataSource.getPooledConnection method, or
XADataSource.getXAConnection method (which are referred to generically as
the DB connection methods).

If this method is used to set an authorization identifier, and if a DB connection method
that has an authorization identifier and a password set as arguments is also called, the
authorization identifier setting specified by the DB connection method takes
precedence.

For details about specifying an authorization identifier, see Table 17-2 Arguments of
the getConnection method.

(f) Exception that occurs
None.

17.11.8 getUser
(a) Function

Acquires the authorization identifier.

(b) Format

public String getUser()

(c) Argument
None.

(d) Return value
String

Sets the authorization identifier. If no authorization identifier has been set, null
is returned.

(e) Functional detail
Returns the authorization identifier specified by the setUser method.

If the setUser method is used to set a password, and if a DB connection method
(DataSource.getConnection method,
ConnectionPoolDataSource.getPooledConnection method, or
XADataSource.getXAConnection method) that has an authorization identifier and
a password set as arguments is also called, the authorization identifier setting specified

17. Type2 JDBC Driver

1293

by the DB connection method is returned.

(f) Exception that occurs
None.

17.11.9 setPassword
(a) Function

Sets a password.

(b) Format

public void setPassword (String password)

(c) Argument
String password

Specifies a password.

(d) Return value
None.

(e) Functional detail
Sets a password.

You can specify the password using an argument of the
DataSource.getConnection method,
ConnectionPoolDataSource.getPooledConnection method, or
XADataSource.getXAConnection method (which are referred to generically as
the DB connection methods).

If this method is used to set a password, and if a DB connection method that has an
authorization identifier and a password set as arguments is also called, the password
setting specified by the DB connection method takes precedence.

(f) Exception that occurs
None.

17.11.10 getPassword
(a) Function

Acquires a password.

(b) Format

public String getPassword()

17. Type2 JDBC Driver

1294

(c) Argument
None.

(d) Return value
String

This is a password. If none is set, null is returned.

(e) Functional detail
Returns the password specified by the setPassword method.

If the setPassword method is used to set a password, and if a DB connection method
(DataSource.getConnection method,
ConnectionPoolDataSource.getPooledConnection method, or
XADataSource.getXAConnection method) that has an authorization identifier and
a password set as arguments is also called, the password setting specified by the DB
connection method is returned.

(f) Exception that occurs
None.

17.11.11 setXAOpenString
(a) Function

Sets an XA open character string.

(b) Format

public void setXAOpenString (String xa_string)

(c) Argument
String xa_string

Specifies an XA open character string.

(d) Return value
None.

(e) Functional detail
Sets an XA open character string.

This method is provided by the JdbhDbpsvXADataSource class only.

Specify the XA open character string in the format

17. Type2 JDBC Driver

1295

HiRDB-environment-variable-group-identifier+HiRDB-environment-variable-group-
name. This HiRDB environment variable group identifier must be the one set in the
setDescription method. The following shows examples.

Example 1

When setting the environment variable group name HiRDB_ENV_GROUP that has
been registered by the tool for registering HiRDB client environment variables

ds.setDescription("HDB1");
ds.setXAOpenString("HDB1+HiRDB_ENV_GROUP");

Example 2

When the path of the HiRDB environment variable group name is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini (: single-byte space)

ds.setDescription("HDB1");
ds.setXAOpenString("HDB1+C:\\Program Files\\HITACHI\\HiRDB
\\HiRDB.ini");

(f) Exception that occurs
None.

17.11.12 getXAOpenString
(a) Function

Acquires the XA open character string that was specified by the setXAOpenString
method. This method is provided by the JdbhDbpsvXADataSource class only.

(b) Format

public String getXAOpenString()

(c) Argument
None.

(d) Return value
String

This is an XA open character string. If none is set, null is returned.

(e) Exception that occurs
None.

17. Type2 JDBC Driver

1296

17.11.13 setXACloseString
(a) Function

Sets an XA close character string. This method is provided by the
JdbhDbpsvXADataSource class only.

(b) Format

public void setXACloseString (String xa_string)

(c) Argument
String xa_string

Sets an XA close character string.

(d) Return value
None.

(e) Exception that occurs
None.

17.11.14 getXACloseString
(a) Function

Acquires the XA close character string that was specified by the setXACloseString
method. This method is provided by the JdbhDbpsvXADataSource class only.

(b) Format

public String getXACloseString()

(c) Argument
None.

(d) Return value
String

This is an XA close character string. If none is set, null is returned.

(e) Exception that occurs
None.

17. Type2 JDBC Driver

1297

17.11.15 setRMID
(a) Function

Sets an identifier for the Resource Manager.

(b) Format

public void setRMID (int rmid)

(c) Argument
int rmid

Specifies an identifier for the Resource Manager.

(d) Return value
None.

(e) Functional detail
Sets a positive numeric value of 1 or greater as the identifier for the Resource Manager.

If multiple Resource Managers are used, a unique identifier must be set for each
Resource Manager.

If this method is not invoked, the default identifier of 1 is used.

This method is provided by the JdbhDbpsvXADataSource class only.

(f) Exception that occurs
If the argument value is smaller than 1, the method throws an SQLException.

17.11.16 getRMID
(a) Function

Acquires the identifier for the Resource Manager that was specified by the setRMID
method. This method is provided by the JdbhDbpsvXADataSource class only.

(b) Format

public int getRMID()

(c) Argument
None.

(d) Return value
int

17. Type2 JDBC Driver

1298

This is an identifier for the Resource Manager. If none is set, 1 is returned.

(e) Exception that occurs
None.

17.11.17 setXAThreadMode
(a) Function

Sets a thread mode for using XA.

(b) Format

public void setXAThreadMode (boolean mode)

(c) Argument
boolean mode

Specifies a thread mode for using XA.

true: Multi-thread mode

false: Single-thread mode

(d) Return value
None.

(e) Functional detail
Sets a thread mode for using XA. If this method is not invoked, the default value is
false (single-thread mode).

This method is provided by the JdbhDbpsvXADataSource class only.

If the XA library provided by the RM (Resource Manager) supports multi-thread and
if the application operates in the multi-thread mode, this method must be invoked in
the true setting (multi-thread mode).

(f) Exception that occurs
None.

17.11.18 getXAThreadMode
(a) Function

Acquires the thread mode for using XA that was specified by the setXAThreadMode
method. This method is provided by the JdbhDbpsvXADataSource class only.

(b) Format

17. Type2 JDBC Driver

1299

public boolean getXAThreadMode()

(c) Argument
None.

(d) Return value
boolean

Specifies a thread mode for using XA.

true: Multi-thread mode

false: Single-thread mode

(e) Exception that occurs
None.

17.11.19 setCommit_Behavior
(a) Function

Sets whether or not the following classes are to be valid after commit execution when
HiRDB commits:

• ResultSet class

• Statement class, PreparedStatement class, and CallableStatement
class

(b) Format

public void setCommit_Behavior (String type)

(c) Argument
String type

Sets whether or not the objects of the Statement class, PreparedStatement
class, CallableStatement class, and ResultSet class remain valid even after
a transaction terminates.

Specification value ResultSet class Statement class,
PreparedStatement class,
CallableStatement class

DELETE (default value) Invalid#1 Invalid#2

CLOSE Invalid#1 Valid

17. Type2 JDBC Driver

1300

#1: The condition that invalidates objects of the ResultSet class after commit
execution is that the getXXX method of the ResultSet class can be executed by
executing the following methods of the ResultSet class:

• next method

• first method

• last method

• absolute method

• relative method

Correct execution of a method using objects of a ResultSet class that was
invalidated is not guaranteed.

#2: Objects that are invalid after commit execution include the following:

• SQL statements precompiled by the
Connection.prepareStatement method

• SQL statements precompiled by the Connection.prepareCall
method

• ResultSet class objects acquired by the executeQuery method of
the Statement class, PreparedStatement class. or
CallableStatement class.

#3: If the version of the connected HiRDB is earlier than 07-01, using LOCK
TABLE to lock the table is required.

(d) Return value
None.

(e) Functional detail
Sets whether or not the objects of the Statement class, PreparedStatement class,
CallableStatement class, and ResultSet class remain valid even after the
transaction terminates. If this method is not called, the default is DELETE.

Executing this method is equivalent to setting the COMMIT_BEHAVIOR property that is
performed when a database is connected using DriverManager.

PRESERVE Valid#3 Valid#3

Specification value ResultSet class Statement class,
PreparedStatement class,
CallableStatement class

17. Type2 JDBC Driver

1301

(f) Exception that occurs
When XADataSource is used for the connection, DELETE always results, regardless
of the specified value. However, getCommit_Behavior returns the value specified
in the type argument.

(g) Notes
For notes, see Notes on COMMIT_BEHAVIOR following Table 17-3.

17.11.20 getCommit_Behavior
(a) Function

Sets whether or not objects of the Statement class, PreparedStatement class,
CallableStatement class, and ResultSet class are to be valid even after the
transaction terminates.

(b) Format

public String getCommit_Behavior()

(c) Argument
None.

(d) Return value
String

Returns Delete if there is no setting of the type that determines whether or not
objects of the Statement class, PreparedStatement class,
CallableStatement class and ResultSet class remain valid even after the
transaction ends.

(e) Functional detail
The information specified by the setCommit_Behavior method is returned.

(f) Exception that occurs
None.

17.11.21 setBlockUpdate
(a) Function

Sets whether or not multiple parameter sets are to be processed at one time during
database updating using the ? parameter (INSERT, UPDATE, and DELETE).

Whether or not the parameter sets are actually processed at one time depends on the
method for using the facilities using arrays. For details about how to use the facilities
using arrays, see 4.8 Facilities using arrays.

17. Type2 JDBC Driver

1302

(b) Format

public void setBlockUpdate(boolean Mode)

(c) Argument
boolean Mode

Specifies whether or not multiple parameter sets are to be processed at one time.
When this information is omitted, false is assumed.

true

Processes multiple parameter sets at one time.

false

Processes one parameter set at a time.

(d) Return value
None.

(e) Exception that occurs
None.

(f) Notes
For details about how to process multiple lines of ? parameters in batch mode, see
Table 17-3 Information to be specified for Properties info and 17.3.2 Batch updating.

This function can also be specified by the HiRDB_for_Java_BLOCK_UPDATE system
property. If the setBlockUpdate method has been set, the
HiRDB_for_Java_BLOCK_UPDATE system property setting is ignored.

17.11.22 getBlockUpdate
(a) Function

Acquires a value indicating whether or not multiple parameter sets are to be processed
at one time during database updating using the ? parameter (INSERT, UPDATE, and
DELETE).

(b) Format

public boolean getBlockUpdate()

(c) Argument
None.

17. Type2 JDBC Driver

1303

(d) Return value
boolean

Specifies whether or not multiple parameter sets are to be processed at one time.
When this information is omitted, false is assumed.

true

Processes multiple parameter sets at one time.

false

Processes one parameter set at a time.

(e) Exception that occurs
None.

(f) Notes
None.

17.11.23 setLONGVARBINARY_Access
(a) Function

Specifies the database access method for LONGVARBINARY (column attribute is BLOB
or BINARY).

(b) Format

public void setLONGVARBINARY_Access(String Mode)

(c) Argument
String Mode

Specifies the database access method for LONGVARBINARY (column attribute is
BLOB or BINARY). When this argument is omitted, "REAL" is assumed.

"REAL"

Accesses real data.

"LOCATOR"

Uses HiRDB's locator facility to access data.

Other:

Assumes that "REAL" has been specified.

17. Type2 JDBC Driver

1304

(d) Return value
None.

(e) Exception that occurs
None.

17.11.24 getLONGVARBINARY_Access
(a) Function

Acquires the database access method for LONGVARBINARY (column attribute is BLOB
or BINARY).

(b) Format

public String getLONGVARBINARY_Access()

(c) Argument
None.

(d) Return value
String

Indicates the information set as the database access method for LONGVARBINARY
(column attribute is BLOB or BINARY). When no information has been set,
"REAL" is assumed.

"REAL"

Accesses real data.

"LOCATOR"

Uses HiRDB's locator facility to access data.

(e) Functional detail
Returns the information specified by the setLONGVARBINARY_Access method.

(f) Exception that occurs
None.

17.11.25 setSQLInNum
(a) Function

Specifies the maximum number of input or input/output ? parameters in the SQL
statements to be executed.

17. Type2 JDBC Driver

1305

(b) Format

public void setSQLInNum(int inNum)

(c) Argument
int inNum:

Specifies the maximum number of input or input/output ? parameters in the SQL
statements to be executed. The permitted value range is from 1 to 30,000
(default is 64).

(d) Return value
None.

(e) Functional detail
Specifies the maximum number of input or input/output ? parameters to be acquired
during SQL preprocessing.

If the actual number of ? parameters is greater than this property value, this method
acquires information about the input or input/output ? parameters after SQL
preprocessing.

The value specified in this method is used as the value of
HiRDB_for_Java_SQL_IN_NUM property during database connection.

(f) Exception that occurs
If the specified argument value falls beyond the permitted range, the method throws an
SQLException.

(g) Notes
• This function can also be specified by the HiRDB_for_Java_SQL_IN_NUM

system property. If the setSQLInNum method has been set, the
HiRDB_for_Java_SQL_IN_NUM system property setting is ignored.

• If you do not execute any SQL statement that uses input or input/output ?
parameters, we recommend that you specify a value of 1.

17.11.26 getSQLInNum
(a) Function

Specifies the maximum number of input or input/output ? parameters in the SQL
statements to be executed that has been set by setSQLInNum.

(b) Format

public int getSQLInNum()

17. Type2 JDBC Driver

1306

(c) Argument
None.

(d) Return value
int

This is the maximum number of input or input/output ? parameters in the SQL
statements to be executed that has been set by setSQLInNum. If no value has
been set, the method returns the default value (64).

(e) Exception that occurs
None.

17.11.27 setSQLOutNum
(a) Function

Specifies the maximum number of search items, output ? parameters, or input/output
? parameters in the SQL statements to be executed.

(b) Format

public void setSQLOutNum(int outNum)

(c) Argument
int outNum

Specifies the maximum number of search items, output ? parameters, or input/
output ? parameters in the SQL statements to be executed. The permitted value
range is from 1 to 30,000 (default is 64).

(d) Return value
None.

(e) Functional detail
Specifies the maximum number of search items, output ? parameters, or input/output
? parameters in the SQL statements to be executed.

This specification is used as the number of output items that are to be acquired during
SQL preprocessing.

If the number of actual output items is greater than the value of this property, the
method acquires information about the output items after SQL preprocessing.

The value specified in this method is used as the value of the

17. Type2 JDBC Driver

1307

HiRDB_for_Java_SQL_OUT_NUM property during database connection.

(f) Exception that occurs
If the specified argument value falls beyond the permitted range, the method throws an
SQLException.

(g) Notes
• This function can also be specified by the HiRDB_for_Java_SQL_OUT_NUM

system property. If the setSQLOutNum method has been set, the
HiRDB_for_Java_SQL_OUT_NUM system property setting is ignored.

• If there is no search item, output ? parameter, or input/output ? parameter, we
recommend that you specify a value of 1.

17.11.28 getSQLOutNum
(a) Function

Acquires the maximum number of search items, output ? parameters, or input/output
? parameters in the SQL statements to be executed that has been set by
setSQLOutNum.

(b) Format

public int getSQLOutNum()

(c) Argument
None.

(d) Return value
int

This is the maximum number of search items, output ? parameters, or input/
output ? parameters in the SQL statements to be executed that has been set by
setSQLOutNum. If this value has not been set, the method returns the default
value (64).

(e) Exception that occurs
None.

17.11.29 setSQLWarningLevel
(a) Function

Specifies the warning retention level that occurred during execution of SQL
statements. The value specified in this method is used as the value of the
HiRDB_for_Java_SQLWARNING_LEVEL property during database connection.

17. Type2 JDBC Driver

1308

(b) Format

public void setSQLWarningLevel (String warningLevel)

(c) Argument
String warningLevel

Specifies the retention level of warning information that has been issued during
execution of SQL statements. The permitted warning retention levels are listed
below. For details about the relationship between the specified value and the
retained warning, see 17.2.9 SQLWarning class.

• IGNORE

• SQLWARN (default)

• ALLWARN

The value specified in the argument of this method is not case sensitive.

(d) Return value
None.

(e) Exception that occurs
If the specified argument value is invalid, the method throws an SQLException.

17.11.30 getSQLWarningLevel
(a) Function

Acquires the warning retention level specified in setSQLWarningLevel.

(b) Format

public String getSQLWarningLevel ()

(c) Argument
None.

(d) Return value
String

Returns the warning retention level set by setSQLWarningLevel (IGNORE,
SQLWARN, or ALLWARN). If no warning retention level is specified, the method
returns the default value (SQLWARN). For details about the relationship between
the returned value and the retained warning, see 17.2.9 SQLWarning class.

17. Type2 JDBC Driver

1309

(e) Exception that occurs
None.

17.11.31 setClear_Env
(a) Function

Specifies whether or not the HiRDB client environment definition set as OS
environment variables is to be ignored during database connection. The value
specified in this method is equivalent to the HiRDB_for_Java_CLEAR_ENV property
setting that is specified during database connection.

(b) Format

public void setClear_Env(boolean Mode)

(c) Argument
boolean Mode

Specifies whether or not the HiRDB client environment definition is to be
ignored.

true: Ignores.

false: Does not ignore.

(d) Return value
None.

(e) Exception that occurs
None.

(f) Notes
For details, see HiRDB_for_Java_CLEAR_ENV in Table 17-3 Information to be
specified for Properties info.

17.11.32 getClear_Env
(a) Function

Acquires the environment variable invalidation setting specified by setClear_Env.

(b) Format

public boolean getClear_Env()

17. Type2 JDBC Driver

1310

(c) Argument
None.

(d) Return value
String

Returns the environment variable invalidation setting specified by
setClear_Env. If no environment variable invalidation setting is specified, the
method returns the default value (false).

true

Ignores the HiRDB client environment definition set as OS environment
variables during database connection.

false

Does not ignore the HiRDB client environment definition set as OS
environment variables during database connection.

(e) Exception that occurs
None.

17. Type2 JDBC Driver

1311

17.12 Data types and character codes

17.12.1 Data types
JDBC's SQL data types and the SQL data types connected via a HiRDB client library
do not match perfectly. The JDBC driver maps JDBC's SQL data types and HiRDB's
SQL data types. If an unmappable SQL data type is used for data access, the JDBC
driver throws an SQLException.

The SQL data types are mapped with the getXXX and setXXX methods in the
ResultSet, PreparedStatement, and CallableStatement classes. For the
SQL data types and the getXXX and setXXX method mapping rules, see the
documentation for the JDBC1.0 standard.

The following table shows the correspondence of SQL data types between HiRDB and
JDBC.

Table 17-19: Correspondence of SQL data types between HiRDB and JDBC

HiRDB's SQL data type JDBC's SQL data type

INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL DECIMAL

FLOAT, DOUBLE PRECISION FLOAT

SMALLFLT, REAL REAL

CHAR CHAR

VARCHAR VARCHAR

NCHAR CHAR

NVARCHAR VARCHAR

MCHAR CHAR

MVARCHAR VARCHAR

DATE DATE

TIME TIME

BLOB LONGVARBINARY

TIMESTAMP TIMESTAMP

17. Type2 JDBC Driver

1312

#: Data is handled in the same way as BLOB.

17.12.2 Character code conversion facility
In a Java program, Unicode is used for the character codes. Therefore, the JDBC driver
performs mutual character code conversion between the HiRDB character data and the
Unicodes. For this character code conversion processing, the JDBC driver uses the
encoder and decoder provided by the Java Virtual Machine. At this time, ENCODELANG
of Properties info specifies the character set names specified by the JDBC driver
for the encoder and decoder that are provided by the Java Virtual Machine.

Tables 17-20 and 17-21 show the correspondences between the HiRDB character
codes and the Java character sets.

Table 17-20: Correspondence between HiRDB character codes and Java
character sets (UNIX)

Note

If ENCODELANG of Properties info is set using the following methods, this
setting takes precedence for encoding.

• Set using Properties info passed as the argument of the
DriverManager.getConnection method

• Set using the JdbhDataSource.setEncodLang method,

BINARY# LONGVARBINARY

HiRDB character codes Character set Remarks

sjis

(Shift JIS kanji)
"SJIS" Double-byte characters include external

characters.

ujis

(EUC Japanese kanji)
"EUC_JP"

(Japanese EUC)
Double-byte characters do not include
external characters#

chinese

(EUC Chinese kanji)
"EUC_CN"

(Simplified Chinese)
Double-byte characters do not include
external characters#

lang-c

(8-bit codes)
"ISO-8859-1"

(ISO Latin-1)
Can be used with US ASCII and 8-bit
codes.

UTF-8 UTF-8 None

chinese-gb18030

(Chinese kanji codes
(GB18030))

GB18030 None

HiRDB's SQL data type JDBC's SQL data type

17. Type2 JDBC Driver

1313

rce.setEncodLang method, or JdbhXADataSource method

For details about operation when ENCODELANG is not set using the above methods
or when OFF is set, see 17.11.5 setEncodeLang.

#: You cannot use external character codes assigned to EUC code set 3 (character codes
expressed by three bytes in the range of (8F)16 to (XXXX)16.

Table 17-21: Correspondence between HiRDB character codes and Java
Character sets (Windows)

Note

If ENCODELANG of Properties info is set using the following methods, this
setting takes precedence for encoding:

• Set using Properties info passed as the argument of the
DriverManager.getConnection method

• Set using the JdbhDataSource.setEncodLang method,
JdbhDataSource.setEncodLang method, or JdbhXADataSource
method.

For details about operation when ENCODELANG is not set using the above methods
or when OFF is set, see 17.11.5 setEncodeLang.

HiRDB character codes Character set Remarks

sjis

(Shift JIS kanji)
MS932 when the Java Virtual
Machine standard encoding is
MS932; otherwise, it is SJIS.

Double-byte characters include external
characters.

UTF-8 UTF-8 None

17. Type2 JDBC Driver

1314

17.13 Classes and methods with limitations

This section explains the classes defined in the JDBC1.0 standard.

The JDBC driver does not support the following classes that are defined in the
JDBC2.0 basic standard:

• Clob class

• Struct class

• Ref class

• SQLData class

• SQLInput class

• SQLOutput class

17.13.1 Driver class
There is no limitation to this class.

17.13.2 Connection class
Table 17-22 lists limitations to the methods in the Connection class that are defined
in the JDBC1.0 standard, while Table 17-23 lists limitations to the methods added in
the JDBC2.0 basic standard.

Table 17-22: Limitations to the methods in the Connection class that are defined
in the JDBC1.0 standard

Method defined in JDBC1.0
standard

Limitation

setReadOnly Not usable.

isReadOnly Unconditionally returns false.

setCatalog Not usable.

getCatalog Returns null unconditionally.

setTransactionIsolation Not usable.

getTransactionIsolation Returns TRANSACTION_REPEATABLE_READ unconditionally.

17. Type2 JDBC Driver

1315

Table 17-23: Limitations to the methods in the Connection class that are added
in the JDBC2.0 basic standard

17.13.3 Statement class
Table 17-24 lists limitations to the methods in the Connection class that are defined
in the JDBC1.0 standard, while Table 17-25 lists limitations to the methods added in
the JDBC2.0 basic standard.

Table 17-24: Limitations to the methods in the Statement class that are defined
in the JDBC1.0 standard

Table 17-25: Limitations to the methods in the Statement class that are added in
the JDBC2.0 basic standard

Method added in JDBC2.0 basic
standard

Limitation

createStatement A result set reflecting updating results is not usable. Therefore, if
TYPE_SCROLL_SENSITIVE is specified for the result set type, the
method changes it to TYPE_SCROLL_INSENSITIVE and sets an
SQLWarning.

prepareStatement

prepareCall

getTypeMap Unconditionally throws SQLException because a user-defined type
is not usable.

setTypeMap

Method defined in JDBC1.0
standard

Limitation

setCursorName Not usable (because positioned updating or deletion is not available).

getMaxFieldSize Returns the value specified with setMaxFieldSize.

getMoreResults Unconditionally returns false.

setMaxRows Not usable.

setQueryTimeout

Method added in JDBC2.0 basic
standard

Limitation

setFetchDirection Throws SQLException if anything other than FETCH_FORWARD is
specified.

getFetchSize Returns the value specified with the setFetchSize method.

17. Type2 JDBC Driver

1316

17.13.4 PreparedStatement class
The following table lists limitations to the methods in the PreparedStatement class
that are added in the JDBC2.0 basic standard.

Table 17-26: Limitations to the methods in the PreparedStatement class that are
added in the JDBC2.0 basic standard

17.13.5 CallableStatement class
The following table lists limitations to the methods in the CallableStatement class
that are added in the JDBC2.0 basic standard.

Table 17-27: Limitations to the methods in the CallableStatement class that are
added in the JDBC2.0 basic standard

Method added in JDBC2.0 basic
standard

Limitation

setBlob For the JDBC driver, the method treats the JDBC SQL type as
LONGVARBINARY.

setClob Unconditionally throws SQLException because the SQL CLOB type is
not available.

setRef Unconditionally throws SQLException because the SQL structured
type is not available.

setNull If the complete name of an SQL user-defined type is specified, the
method unconditionally throws SQLException because the SQL
structured type or the SQL array type is not available.

setObject Ignores the specified scale and obtains the value of scale from the
actual value specified.

Method added in JDBC2.0 basic
standard

Limitation

getObject If Map is specified, the method throws SQLException because the Map
specification is not available.

getBlob For the JDBC driver, the method treats the JDBC SQL type as
LONGVARBINARY.

getClob Unconditionally throws SQLException because the SQL CLOB type is
not available.

getRef Unconditionally throws SQLException because the SQL structured
type is not available.

17. Type2 JDBC Driver

1317

17.13.6 ResultSet class
The following table lists limitations to the methods in the ResultSet class that are
added in the JDBC2.0 basic standard.

Table 17-28: Limitations to the methods in the ResultSet class that are added in
the JDBC2.0 basic standard

Method added in JDBC2.0 basic
standard

Limitation

setFetchDirection Throws SQLException if anything other than FETCH_FORWARD is
specified.

rowUpdated Unconditionally throws SQLException because an updatable result
set is not available.

rowInserted

rowDeleted

updateNull

updateBoolean

updateByte

updateShort

updateInt

updateLong

updateFloat

updateDouble

updateBigDecimal

updateString

updateBytes

updateDate

updateTime

updateTimestamp

updateAsciiStream

updateBinaryStream

updateCharacterStream

17. Type2 JDBC Driver

1318

17.13.7 ResultSetMetaData class
The table below lists limitations to the methods in the ResutlSetMetaData class
that are defined in the JDBC1.0 standard. However, for details about the return value
of each method of the MetaData class acquired from the result set generated by the
getResultSet method of the Array class, see Table 17-14.

Table 17-29: Limitations to the methods in the ResultSetMetaData class that are
defined in the JDBC1.0 standard

updateObject

insertRow

updateRow

deleteRow

refreshRow

cancelRowUpdates

moveToInsertRow

moveToCurrentRow

getObject If Map is specified, the method throws SQLException because the
Map specification is not available.

getBlob For the JDBC driver, the method treats the JDBC SQL type as
LONGVARBINARY.

getClob Unconditionally throws SQLException because the SQL CLOB type is
not available.

getRef Unconditionally throws SQLException because the SQL structured
type is not available.

Method defined in JDBC1.0
standard

Limitation

isAutoIncrement Unconditionally returns false.

isCaseSensitive Unconditionally returns true.

isCurrency Unconditionally returns false.

getColumnLabel Returns a column name because the column label (column header) is
not available.

Method added in JDBC2.0 basic
standard

Limitation

17. Type2 JDBC Driver

1319

17.13.8 DatabaseMetaData class
Table 17-30 lists limitations to the returned contents of methods in the
DatabaseMetaData class that are defined in the JDBC1.0 standard, while Table
17-31 lists limitations to the returned contents of the methods added by the JDBC2.0
basic standard. Note that the value returned by each method is information related to
the HiRDB server, whose version has to be the same as the JDBC driver being used.

Table 17-30: Limitations to the methods in the DatabaseMetaData class that are
defined in the JDBC1.0 standard

getSchemaName Unconditionally returns null.

getTableName

getCatalogName

isReadOnly Unconditionally returns false.

isWritable

isDefinitelyWritable

Method defined in JDBC1.0 standard Limitation or return value

allProceduresAreCallable Returns false.

allTablesAreSelectable Returns false.

getURL Returns the JDBC URL of the connected database.

getUserName Returns the authorization identifier used when
connecting to the database.

isReadOnly Unconditionally returns false because the access
mode cannot be changed.

nullsAreSortedHigh Returns true.

nullsAreSortedLow Returns false.

nullsAreSortedAtStart Returns false.

nullsAreSortedAtEnd Unconditionally returns false.

getDatabaseProductName Returns HiRDB.

getDatabaseProductVersion Returns null.

getDriverName Returns HiRDB_for_JDBC.

Method defined in JDBC1.0
standard

Limitation

17. Type2 JDBC Driver

1320

getDriverVersion Returns 08.02.0000.

getDriverMajorVersion 8

getDriverMinorVersion 2

usesLocalFiles Unconditionally returns false.

usesLocalFilePerTable Unconditionally returns false.

supportsMixedCaseIdentifiers Unconditionally returns false.

storesUpperCaseIdentifiers Returns true.

storesLowerCaseIdentifiers Unconditionally returns false.

storesMixedCaseIdentifiers Returns false.

supportsMixedCaseQuotedIdentifiers Returns true.

storesUpperCaseQuotedIdentifiers Returns false.

storesLowerCaseQuotedIdentifiers Unconditionally returns false.

storesMixedCaseQuotedIdentifiers Returns true.

getIdentifierQuoteString Unconditionally returns a quotation mark.

getSQLKeywords Returns a HiRDB-specific SQL keyword.

getNumericFunctions Returns a list of mathematical functions.

getStringFunctions Returns a list of character string functions.

getSystemFunctions Returns a list of system functions.

getTimeDateFunctions Returns a list of time and date functions.

getSearchStringEscape Returns \.

getExtraNameCharacters Returns a special character that can be used as an SQL
identification name.

supportsAlterTableWithAddColumn Returns true.

supportsAlterTableWithDropColumn

supportsColumnAliasing

nullPlusNonNullIsNull

supportsConvert (no argument) Returns true.

Method defined in JDBC1.0 standard Limitation or return value

17. Type2 JDBC Driver

1321

supportsConvert (with arguments) Returns either true or false depending on the
combination of data types specified in arguments.

supportsTableCorrelationNames Returns true.

supportsDifferentTableCorrelationNames

supportsExpressionsInOrderBy Returns false.

supportsOrderByUnrelated Returns true.

supportsGroupBy

supportsGroupByUnrelated

supportsGroupByBeyondSelect

supportsLikeEscapeClause

supportsMultipleResultSets Unconditionally returns true.

supportsMultipleTransactions

supportsNonNullableColumns Returns true.

supportsMinimumSQLGrammar Unconditionally returns true.

supportsCoreSQLGrammar

supportsExtendedSQLGrammar Returns false.

supportsANSI92EntryLevelSQL Unconditionally returns true.

supportsANSI92IntermediateSQL Unconditionally returns false.

supportsANSI92FullSQL

supportsIntegrityEnhancementFacility Returns false.

supportsOuterJoins Returns true.

supportsFullOuterJoins Returns false.

supportsLimitedOuterJoins Returns true.

getSchemaTerm Returns schema.

getProcedureTerm Returns procedure.

getCatalogTerm Returns null.

isCatalogAtStart Returns false.

Method defined in JDBC1.0 standard Limitation or return value

17. Type2 JDBC Driver

1322

getCatalogSeparator Returns null.

supportsSchemasInDataManipulation Unconditionally returns true.

supportsSchemasInProcedureCalls Returns true.

supportsSchemasInTableDefinitions

supportsSchemasInIndexDefinitions

supportsSchemasInPrivilegeDefinitions

supportsCatalogsInDataManipulation Returns false.

supportsCatalogsInProcedureCalls

supportsCatalogsInTableDefinitions

supportsCatalogsInIndexDefinitions Unconditionally returns false.

supportsCatalogsInPrivilegeDefinitions

supportsPositionedDelete

supportsPositionedUpdate

supportsSelectForUpdate

supportsStoredProcedures Returns true.

supportsSubqueriesInComparisons

supportsSubqueriesInExists

supportsSubqueriesInIns

supportsSubqueriesInQuantifieds

supportsCorrelatedSubqueries

supportsUnion

supportsUnionAll

supportsOpenCursorsAcrossCommit Returns true if any of the following values is
PRESERVE:
• Setting of COMMIT_BEHAVIOR in URL
• Setting of COMMIT_BEHAVIOR in Properties

info

• Argument when the setCommit_Behavior
method is executed

Method defined in JDBC1.0 standard Limitation or return value

17. Type2 JDBC Driver

1323

supportsOpenCursorsAcrossRollback Unconditionally returns false.

supportsOpenStatementsAcrossCommit Returns true if any of the following values is
PRESERVE or CLOSE:
• Setting of COMMIT_BEHAVIOR in URL
• Setting of COMMIT_BEHAVIOR in Properties

info

• Argument when the setCommit_Behavior
method is executed

supportsOpenStatementsAcrossRollback Unconditionally returns false.

getMaxBinaryLiteralLength Returns a value of 64000.

getMaxCharLiteralLength Returns a value of 32000.

getMaxColumnNameLength Returns a value of 30.

getMaxColumnsInGroupBy Returns a value of 255.

getMaxColumnsInIndex Returns a value of 16.

getMaxColumnsInOrderBy Returns a value of 255.

getMaxColumnsInSelect Returns a value of 30000.

getMaxColumnsInTable

getMaxConnections Returns a value of 0.

getMaxCursorNameLength Returns a value of 30.

getMaxIndexLength Returns a value of 4036.

getMaxSchemaNameLength Returns a value of 8.

getMaxProcedureNameLength Returns a value of 30.

getMaxCatalogNameLength Returns a value of 0.

getMaxRowSize

doesMaxRowSizeIncludeBlobs Returns false.

getMaxStatementLength Returns a value of 2000000.

getMaxStatements Returns a value of 64.

getMaxTableNameLength Returns a value of 30.

getMaxTablesInSelect Returns a value of 64.

Method defined in JDBC1.0 standard Limitation or return value

17. Type2 JDBC Driver

1324

getMaxUserNameLength Returns a value of 8.

getDefaultTransactionIsolation Unconditionally returns
TRANSACTION_REPEATABLE_READ.

supportsTransactions Unconditionally returns true.

supportsTransactionIsolationLevel Returns true when the given transaction isolation
level is any of the following:
• TRANSACTION_READ_COMMITTED

• TRANSACTION_READ_UNCOMMITTED

• TRANSACTION_REPEATABLE_READ

SupportsDataDefinitionAndDataManipulation

Transactions

Returns false.

supportsDataManipulationTransactionsOnly Returns false.

dataDefinitionCausesTransactionCommit Returns true.

dataDefinitionIgnoredInTransactions Unconditionally returns false.

getProcedures Returns information about the Java stored routines.

getProcedureColumns Returns information about the parameters of the Java
stored routines.

getTables Returns information about tables. Only the table types
returned by getTableTypes can be specified in the
list of table types to be obtained (types).

getSchemas Returns information about schemas.

getCatalogs Always returns a 0 result.

getTableTypes Returns information about table types. The following
values are returned:
"SYSTEM TABLE": System table
"BASE TABLE": Base table
"VIEW": View table
"READ ONLY VIEW": Read-only view table
"ALIAS": Another table

getColumns Returns information about columns.

getColumnPrivileges Returns information about column privileges.

getTablePrivileges Returns information about table privileges.

Method defined in JDBC1.0 standard Limitation or return value

17. Type2 JDBC Driver

1325

Table 17-31: Limitations to the methods in the DatabaseMetaData class that are
added in the JDBC2.0 basic standard

getBestRowIdentifier Always returns a 0 result.

getVersionColumns

getPrimaryKeys Returns information about primary key columns
(always returns a 0 result).

getImportedKeys Always returns a 0 result.

getExportedKeys Returns information about external key columns that
reference the primary key columns (always returns a 0
result).

getCrossReference Returns information about the external key columns in
the table with external keys that reference the primary
key columns in the table with the primary key (always
returns a 0 result).

getTypeInfo Returns information about the standard SQL types
supported for the database.

getIndexInfo Returns information about indexes.

Method added in JDBC2.0 basic
standard

Limitation or return value

supportsResultSetType Returns true if the result set type is TYPE_FORWARD_ONLY or
TYPE_SCROLL_INSENSITIVE.

SupportsResultSet

Concurrency

Returns true if the result set type is TYPE_FORWARD_ONLY or
TYPE_SCROLL_INSENSITIVE and the parallel processing type is
CONCUR_READ_ONLY.

ownUpdatesAreVisible Unconditionally returns false.

ownDeletesAreVisible

ownInsertsAreVisible

othersUpdatesAreVisible

othersDeletesAreVisible

othersInsertsAreVisible

updatesAreDetected

deletesAreDetected

Method defined in JDBC1.0 standard Limitation or return value

17. Type2 JDBC Driver

1326

17.13.9 Blob class
The following table lists limitations to the methods in the Blob class that are added in
the JDBC2.0 basic standard.

Table 17-32: Limitations to the methods added by JDBC2.0 basic standards for
Blob class

17.13.10 Array class
The following table lists limitations to the methods in the Array class that are added
by the JDBC2.0 basic standard.

Table 17-33: Restrictions on the methods added by the JDBC2.0 basic
specification for the Array class

insertsAreDetected

supportsBatchUpdates Unconditionally returns true.

getUDTs Always returns a 0 result.

getConnection Returns the Connection instance that is the DatabaseMetaData
instance generation source.

Method added by JDBC2.0 basic
standard

Limitation

setBinaryStream Cannot be used for JDBC1.4 methods. If used, the method
unconditionally throws an SQLException.

setBytes

truncate

Methods added in the JDBC2.0 basic
specification

Restrictions

getArray Because MAP cannot be used, the method throws an
SQLException if MAP is specified for the argument.

getResultSet

Method added in JDBC2.0 basic
standard

Limitation or return value

1327

Chapter

18. Type4 JDBC Driver

This chapter explains the Type4 JDBC driver installation, environment setup, and
JDBC functions. Note that the Type4 JDBC driver cannot be used in the Linux for
AP8000 edition client.

Hereafter in this chapter, the Type4 JDBC driver is referred to as the JDBC driver.

18.1 Installation and environment setup
18.2 Database connection using the DriverManager class
18.3 Database connection using a DataSource object and JNDI
18.4 JDBC1.2 core API
18.5 JDBC2.1 Core API
18.6 JDBC2.0 Optional Package
18.7 Connection information setup and acquisition interface
18.8 Data types
18.9 Character conversion facility
18.10 Supported client environment definitions
18.11 Connection information priorities
18.12 Migration from a Type2 JDBC driver
18.13 Migration from DABroker for Java
18.14 JDBC interface method trace
18.15 Exception trace log
18.16 Example UAP that uses a JDBC driver
18.17 Estimating the memory requirements for using a JDBC driver

18. Type4 JDBC Driver

1328

18.1 Installation and environment setup

18.1.1 Installation
The JDBC driver can be installed when you install HiRDB. After the driver is installed,
the file configuration is as follows:

For UNIX

For Windows (server product)

For Windows (client product)

Note

The underlined portion indicates the HiRDB installation directory.

18.1.2 Environment setup
Before you use the JDBC driver to execute UAPs, you must specify the installed file
in the OS's CLASSPATH environment variable. Also, before you compile a UAP you
must set up the CLASSPATH environment variable in order to directly manipulate the
classes provided by the JDBC driver, which is necessary for the methods provided by
the JDBC driver that do not comply with the JDBC standards.

If you are using the JDBC driver from an application server, such as Cosminexus, the
environment setup depends on the environment setup for the application server. Refer
to the documentation for the particular application server, and check the specifications.

(1) UNIX environment
(a) Bourne shell

HiRDB/client/lib/pdjdbc2.jar

HiRDB\client\utl\pdjdbc2.jar

HiRDB\utl\pdjdbc2.jar

CLASSPATH=${CLASSPATH}:/HiRDB/client/lib/pdjdbc2.jar
export CLASSPATH

18. Type4 JDBC Driver

1329

Note

The underlined portion indicates the HiRDB installation directory.

(b) C shell

Note

The underlined portion indicates the HiRDB installation directory.

(2) Windows environment (executing the program from the command prompt)

Note

The underlined portion indicates the HiRDB installation directory.

18.1.3 Abbreviation of methods
• Methods that begin with get are referred to collectively as getXXX methods.

• Methods that begin with set are referred to collectively as setXXX methods.

• Methods that begin with execute are referred to collectively as executeXXX
methods.

• This manual uses the notation DataSource-type interface to represent the
following interfaces generically:

• DataSource

• ConnectionPoolDataSource

• XADataSource

setenv CLASSPATH ${CLASSPATH}:/HiRDB/client/lib/pdjdbc2.jar

set CLASSPATH=%CLASSPATH%;C:\Program Files\HITACHI\HiRDB\client\utl\pdjdbc2.jar

18. Type4 JDBC Driver

1330

18.2 Database connection using the DriverManager class

The procedure for connecting from the DriverManager class to HiRDB and
generating an instance of the Connection class is as follows:

1. Register the Driver class into the Java Virtual Machine.

2. Set the connection information in the arguments, and use the getConnection
method of the DriverManager class to connect to HiRDB.

18.2.1 Registering the Driver class
The procedure for registering the JDBC driver into the Java Virtual Machine is
described below.

The driver name that must be used to register the Driver class into the Java Virtual
Machine is package-name.class-name. The package and class names of the JDBC
driver are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: HiRDBDriver

(1) Registering using the forName method of the Class class
Call the forName method of the Class class from within the application as follows:

(2) Registering in the system properties
Set the following value in the jdbc.drivers system property of the Java Virtual
Machine:

(3) Registering into the operation setup file of the Java Virtual machine (Applet)
Specify in the [JAVA_HOME]\.hotjava\properties file the information shown
below (the value of [JAVA_HOME] depends on the Java execution environment). If
you register multiple JDBC drivers, delimit them with colons (:).

 Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver");

 System.setProperty("jdbc.drivers", "JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver");

 jdbc.drivers="JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver"

18. Type4 JDBC Driver

1331

18.2.2 Connecting to HiRDB with the getConnection method
The getConnection method of the DriverManager class is provided in the
following three formats, each with its own set of arguments:

• public static Connection getConnection(String url)

• public static Connection getConnection(String url, String user,
String password)

• public static Connection getConnection(String url, Properties
info)

The arguments (url, user, password, and info) in these method formats specify
connection information that is needed in order to connect to HiRDB.

When connection to HiRDB is established successfully, the JDBC driver returns a
reference to a Connection class instance as the result of calling the method.
However, the method throws an SQLException in the following cases:

• The required connection information is not specified in an argument.

• Specified connection information is invalid.

• Connection cannot be established (for example, because HiRDB has not been
started at the connection destination).

The following table describes the information to be specified in the getConnection
method arguments.

Table 18-1: Specification details of the getConnection method arguments

Argument Specification details External driver#1 Internal driver#2

String url Specifies the URL. For details,
see (1) URL syntax.

Y Y

String user Specifies the authorization
identifier.
If the null value is specified, the
JDBC driver assumes that no
authorization identifier has been
specified. If the character string
has a length of 0, the method
throws an SQLException and
user is set to aa....aaa, which
are characters embedded in the
KFPJ20212-E message.
For details about the
specification priorities, see 18.11
Connection information
priorities.

Y N

18. Type4 JDBC Driver

1332

Legend:

Y: Specification takes effect

N: Specification is ignored

#1

JDBC driver used by Java applications

#2

JDBC driver used by Java stored procedures

(1) URL syntax
This section explains the URL syntax supported by the JDBC driver.

You must not specify any spaces within an item or between items in a URL. Note that
the item names are case sensitive.

String password Specifies the password. For
details about the specification
priorities, see 18.11 Connection
information priorities.
If the null value is specified, or if
a character string of length 0 is
specified, the JDBC driver
assumes that no password was
specified.

Y N

Properties info Specifies various connection
information items. For details,
see (2) User properties.

Y Y

Argument Specification details External driver#1 Internal driver#2

18. Type4 JDBC Driver

1333

(a) URL syntax

(b) Explanation of URL items
jdbc:hitachi:hirdb

This item consists of the protocol name, subprotocol name, and subname. You
must specify this item. This item is case sensitive.

DBID=additional-connection-information
Specifies the port number of the HiRDB server (corresponds to the PDNAMEPORT
value in the client environment definitions). You can also specify a HiRDB
environment variable group for this item.

If no port number is specified for the HiRDB server, the value specified by
another method takes effect. For details about how to specify the HiRDB port
number and specification priorities, see 18.11 Connection information priorities.

If neither value is specified, the getConnection method throws an
SQLException when it executes.

Note that the HiRDB port number specification is ignored for an internal driver.

Notes

You should note the following points about specifying an HiRDB
environment variable group for the additional connection information:

 jdbc:hitachi:hirdb[://[DBID=additional-connection-information]
 [,DBHOST=database-host-name]
 [,ENCODELANG=conversion-character-set]
 [,HIRDB_CURSOR=cursor-operation-mode]
 [,STATEMENT_COMMIT_BEHAVIOR=Statement-object-status-after-commit-execution]
 [,JDBC_IF=whether-to-obtain-JDBC-interface-method-traces]
 [,TRC_NO=trace-entries-count]
 [,SQLWARNING_IGNORE=whether-to-return-warning-information]
 [,LONGVARBINARY_ACCESS=method-of-accessing-BLOB-and-BINARY-types]
 [,SQL_IN_NUM=?-parameters-count]
 [,SQL_OUT_NUM=output-parameters-count]
 [,SQLWARNING_LEVEL=warning-retention-level]
 [,LONGVARBINARY_ACCESS_SIZE=LONGVARBINARY-data-access-size]
 [,MAXBINARYSIZE=maximum-size-of-LONGVARBINARY-data]
 [,LONGVARBINARY_TRUNCERROR=whether-to-throw-exceptions]
 [,STATEMENT_CLOSE_BEHAVIOR=whether-to-ignore-preprocessing-results]
 [,HiRDB_INI=directory-path-of-HiRDB.INI-file]
 [,USER=user-name]
 [,PASSWORD=password]
 [,UAPNAME=application-name]
 [,BATCHEXCEPTION_BEHAVIOR=whether-to-set-JDBC-standard-compliant-update-count]
]

18. Type4 JDBC Driver

1334

• When you specify the name of the HiRDB environment variable group,
specify @HIRDBENVGRP= followed by the absolute path name. If no
value is specified after the equal sign, such as @HIRDBENVGRP=,, the
JDBC driver assumes that no value is specified for this item.

• Note that an environment variable group name is case sensitive. Also,
the environment variable group name depends on the OS.

• If the environment variable group name contains any single-byte space
or single-byte @ characters, you must enclose the name in single-byte
double quotation marks ("). When an environment variable group name
is enclosed in single-byte double quotation marks, the characters from
the closing single-byte quotation mark to the next setting item or to the
final character are ignored. Note that an environment variable group
that includes a single-byte quotation mark or a single-byte comma
cannot be specified.

Below are examples of specifications that trigger an error:

Note: represents a single-byte space character.

DBHOST=database-host-name
Specifies the name of the HiRDB host.

If this specification is omitted, the value set by another method takes effect. For
details about how to specify the HiRDB host name and specification priorities,
see 18.11 Connection information priorities.

If neither value is specified, the getConnection method throws an
SQLException when it executes.

Note that this specification is ignored for an internal driver.

ENCODELANG=conversion-character-set
Specifies the conversion character set for the HiRDB character codes of the
connection destination when the JDBC driver uses the String class to exchange
data with HiRDB. Select a specifiable conversion character set from the encoding
list shown under Internationalization in the JavaTM 2 SDK, Standard Edition
documentation.

The following table lists the character codes of HiRDB and their corresponding

@ HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP =/HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP= /HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini

18. Type4 JDBC Driver

1335

conversion character sets.

Table 18-2: HiRDB character codes and corresponding conversion character
sets

#

The specification of SJIS or MS932 depends on the handling of Windows
special characters in the application.

When OFF is specified, the JDBC driver operates assuming that the conversion
character set for the HiRDB character codes shown in Table 18-2 was specified.
If the HiRDB character code set is sjis, the conversion character set determined
by the OS running the JDBC driver is as follows:

For UNIX: SJIS

For Windows: MS932

Note that the specification is case sensitive (except for OFF).

If a conversion character set that is not supported by the Java Virtual Machine is
specified, the JDBC driver throws an SQLException during connection with the
HiRDB server.

If this specification is omitted, the JDBC driver converts characters using the
applicable conversion character set shown in Table 18-2. However, if one of the
following is specified, the JDBC driver converts characters by using the default
conversion character set of the Java Virtual Machine:

• Specification value for the UAP name (value specified by the UAPNAME
property)

• Authorization identifier or password (value specified by the

HiRDB character codes
(character code set with pdntenv or pdsetup

command)

Conversion character set to be specified

lang-c ISO8859_1

sjis SJIS or MS932#

ujis EUC_JP

utf-8 UTF-8

chinese EUC_CN

chinese-gb18030 GB18030

18. Type4 JDBC Driver

1336

getConnection method)

• Specification value for the client environment definition specified by
EnvironmentVariables

• Specification value for an environment variable specified by the
environment variable group name of the HiRDB client

HIRDB_CURSOR=cursor-operation-mode
Specifies whether objects of the ResultSet class are to be validated or
invalidated after HiRDB executes commit processing.

TRUE: Validate objects of the ResultSet class even after commit processing.

FALSE: Invalidate objects of the ResultSet class after commit processing.

If this specification is omitted, FALSE is assumed.

If a value other than TRUE or FALSE is specified, the JDBC driver throws an
SQLException.

If an invalidated ResultSet object executes an operation other than calling the
close method, the JDBC driver throws an SQLException.

Note

For notes about specifying HIRDB_CURSOR, see (c) Notes about
specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

STATEMENT_COMMIT_BEHAVIOR=Statement-object-status-after-commit-execution
Specifies whether objects of the Statement, PreparedStatement, and
CallableStatement classes (referred to hereafter collectively as Statement)
are to remain in effect even after HiRDB executes commit processing.

TRUE: Validate Statement objects even after HiRDB executes commit
processing.

FALSE: Invalidate Statement objects after HiRDB executes commit processing.

The objects that become invalid after commit execution are SQL statements
that were precompiled by the prepareStatement or prepareCall
method of the Connection class, and ResultSet class objects obtained by
the executeQuery method of Statement.

If this specification is omitted, TRUE is assumed.

Note

For notes about specifying STATEMENT_COMMIT_BEHAVIOR, see (c) Notes
about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

18. Type4 JDBC Driver

1337

JDBC_IF=whether-to-obtain-JDBC-interface-method-traces
Specifies whether JDBC interface method traces are to be obtained.

ON: Obtain JDBC interface method traces.

OFF: Do not obtain JDBC interface method traces.

If this specification is omitted, OFF is assumed. If any other value is specified, the
JDBC driver throws an SQLException.

For details about the specification, see 18.2.2(2)(d) JDBC_IF.

TRC_NO=trace-entries-count
Specifies the number of JDBC interface method trace entries.

For details about the specification, see 18.2.2(2)(e) TRC_NO.

SQLWARNING_IGNORE=whether-to-retain-warning-information
Specifies whether warnings returned from the database are to be retained by the
Connection object.

TRUE: Do not retain warnings.

FALSE: Retain warnings.

If this specification is omitted, FALSE is assumed

If any other value is specified, the JDBC driver throws an SQLException.

For details about the specification, see 18.2.2(2)(g) SQLWARNING_IGNORE.

LONGVARBINARY_ACCESS=method-of-accessing-BLOB-and-BINARY-types
Specifies the method of accessing a JDBC SQL-type LONGVARBINARY (BLOB
and BINARY types in HiRDB) database.

REAL: Access the database using real data.

LOCATOR: Access the database using HiRDB's locator facility.

If any other value is specified, the JDBC driver throws an SQLException.

For details about the specification, see 18.2.2(2)(i) LONGVARBINARY_ACCESS.

SQL_IN_NUM=?-parameters-count
Specifies the maximum number of input ? parameters in the SQL statements to
be executed.

For details about the specification, see 18.2.2(2)(j)
HiRDB_for_Java_SQL_IN_NUM.

SQL_OUT_NUM=output-parameters-count

18. Type4 JDBC Driver

1338

Specifies the maximum number of output items for the SQL statements to be
executed.

For details about the specification, see 18.2.2(2)(k)
HiRDB_for_Java_SQL_OUT_NUM.

SQLWARNING_LEVEL=warning-retention-level
Specifies the retention level for warning information that is issued during
execution of SQL statements. For details about the warning information retention
level, see 18.4.12(2)(b) Issuing conditions for SQLWarning objects.

IGNORE: Retain warning information at the IGNORE level.

SQLWARN: Retain warning information at the SQLWARN level.

ALLWARN: Retain warning information at the ALLWARN level.

If this specification is omitted, SQLWARN is assumed.

If the specified value is invalid, the JDBC driver throws an SQLException.

LONGVARBINARY_ACCESS_SIZE=LONGVARBINARY-data-access-size
Specifies the length (in kilobytes) of JDBC SQL-type LONGVARBINARY data that
can be requested at one time at the HiRDB server.

For details about the specification, see 18.2.2(2)(o)
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE.

MAXBINARYSIZE=maximum-size-of-LONGVARBINARY-data
Specifies the maximum data size (in bytes) during acquisition of JDBC SQL-type
LONGVARBINARY data.

For details about the specification, see 18.2.2(2)(p)
HiRDB_for_Java_MAXBINARYSIZE.

LONGVARBINARY_TRUNCERROR=whether-to-throw-exceptions
Specifies whether exceptions are to be thrown when truncation occurs during
acquisition of JDBC SQL-type LONGVARBINARY data.

TRUE: Throw exceptions.

FALSE: Do not throw exceptions.

For details about the specification, see 18.2.2(2)(q)
HiRDB_for_Java_LONGVARBINARY_TRUNCERROR.

STATEMENT_CLOSE_BEHAVIOR=whether-to-ignore-preprocessing-results
Specifies whether preprocessing results are to be ignored during execution of the
close method of Statement (the Statement, PreparedStatement, and
CallableStatement classes).

18. Type4 JDBC Driver

1339

TRUE: Ignore preprocessing results.

FALSE: Do not ignore preprocessing results.

If any other value is specified, the JDBC driver throws an SQLException.

For details about the specification, see 18.2.2(2)(r)
HiRDB_for_Java_STATEMENT_CLOSE_BEHAVIOR.

HiRDB_INI=directory-path-of-HiRDB.INI-file
Specifies the absolute path of the directory that contains the HiRDB.INI file. This
item is applicable when the HiRDB client environment variables specified in the
HiRDB.INI file are to be in effect, in which case the HiRDB client environment
variables in the HiRDB.ini file located in the directory specified here will take
effect. If the specified directory does not contain a HiRDB.ini file and this is an
interval driver, this specification is ignored.

If this specification is omitted, the contents of the HiRDB.ini file are ignored.

USER=user-name
Specifies the user name.

For details about the specification, see 18.2.2(2)(a) user.

PASSWORD=password
Specifies the password.

For details about the specification, see 18.2.2(2)(b) password.

UAPNAME=application-name
Specifies identification information (UAP identifier) for the UAP that is to access
the HiRDB server.

For details about the specification, see 18.2.2(2)(c) UAPNAME.

BATCHEXCEPTION_BEHAVIOR=whether-to-set-JDBC-standard-compliant-updat
e-count

Specifies whether an update count that is compliant with the JDBC standard is to
be set for the return value of the getUpdateCounts method of
java.sql.BatchUpdateException.

For details about the specification, see 18.2.2(2)(v)
HiRDB_for_Java_BATCHEXCEPTION_BEHAVIOR.

(c) Notes about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR
The notes that follow apply to specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

18. Type4 JDBC Driver

1340

When TRUE is specified in HIRDB_CURSOR or
STATEMENT_COMMIT_BEHAVIOR

• If the PDDDLDEAPRPEXE and PDDDLDEAPRP client environment definitions
are both set to NO and another user executes a definition SQL statement for
a schema resource (table or index) to be accessed by a SELECT, INSERT,
DELETE, UPDATE, PURGE TABLE, or CALL statement, the definition SQL
statement remains on lock-release wait status until the connection that was
accessing the schema resource is disconnected or until the Statement
object that was accessing the schema resource is closed and committed
(applicable when TRUE is specified in STATEMENT_CLOSE_BEHAVIOR).

• If YES is set in either the PDDDLDEAPRPEXE or the PDDDLDEAPRP client
environment definition and another user executes a definition SQL statement
for a schema resource (table or index) to be accessed by a SELECT, INSERT,
DELETE, UPDATE, PURGE TABLE, or CALL statement, the preprocessing
results of the SELECT, INSERT, DELETE, UPDATE, PURGE TABLE, or CALL
statement are ignored. If an SQL statement with an invalid preprocessing
result is executed, an SQLException occurs (the value obtained by the
getErrorCode method is -1542).

• When TRUE is specified for HIRDB_CURSOR or
STATEMENT_COMMIT_BEHAVIOR,#1 the only precompiled SQL
statements#2 that are valid after execution of commit processing#3 are the
SELECT, INSERT, DELETE, UPDATE, PURGE TABLE, and CALL statements.

#1

This also applies to either of the following specifications:

• TRUE is set for the following items in the properties specified by the
getConnection method:

 HIRDB_CURSOR

 HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR

• true is specified by the following methods of the PrdbDataSource,
PrdbConnectionPoolDataSource, or PrdbXADataSource class:

 setHiRDBCursorMode

 setStatementCommitBehavior

#2

You precompile an SQL statement by executing a prepareStatement or
prepareCall method of the Connection class.

#3

18. Type4 JDBC Driver

1341

In addition to explicit commit processing by the commit method, the
following cases also apply:

• Implicit commit processing by the AUTO commit mode

• Execution of a definition SQL statement

• Execution of the PURGE TABLE statement

• Implicit rollback processing by the rollback method

• Implicit rollback processing because of an SQL execution error

For SQL statements other than SELECT, INSERT, DELETE, UPDATE, PURGE
TABLE, and CALL, precompiled SQL statements become invalid during commit
processing.

An error will occur if a PreparedStatement or CallableStatement class
object that stores a precompiled SQL statement that has become invalid is used to
execute the SQL statement. The following shows an example that results in an
error:

Because the SQL statements to be executed in this example are LOCK statements,
after commit processing is executed, PreparedStatement becomes invalid and
an error occurs, even if TRUE is specified for STATEMENT_COMMIT_BEHAVIOR.

• When TRUE is specified for HIRDB_CURSOR, the JDBC driver uses the holdable
cursor facility of HiRDB.

• When TRUE is specified for HIRDB_CURSOR, the cursor operation mode for the
result set that is returned by a procedure by using the results-set return facility is
determined by the procedure's definition. Note that because the JDBC driver
cannot detect a procedure's cursor operation mode, it assumes the operation mode
specified for HIRDB_CURSOR. Therefore, if TRUE is specified for
HIRDB_CURSOR, but the cursor operation mode for the result set returned by the
procedure is not a holdable cursor, a database access performed after commit
processing will result in SQLException. The following shows the status of the
ResultSet object after commit processing:

 PreparedStatement pstmt1 = con.prepareStatement("lock table tb1");
 PreparedStatement pstmt2 = con.prepareStatement("lock table tb2");
 pstmt1.execute(); //Does not trigger an error.
 con.commit();
 pstmt2.execute(); //Triggers an error.
 pstmt1.close();
 pstmt2.close();

18. Type4 JDBC Driver

1342

#

Because the cursor is not closed during commit processing, it remains open until
the ResultSet object is closed or the CallableStatement or Connection
object that created the ResultSet object closes.

Combinations of HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR
specification values

The following table shows specification values for the combinations of
HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR whether ResultSet and
Statement objects become valid after commit processing is executed.

Table 18-3: Status of ResultSet objects and Statement objects after commit
execution

The following table shows the return value of the DatabaseMetaData method
depending on the HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR
specification values.

Result set returned by procedure HIRDB_CURSOR setting

TRUE FALSE

Holdable cursor Usable after commit processing. If an operation performed after
commit processing involves a
database access, an error will
result.#

Non-holdable cursor If an operation performed after
commit processing involves a
database access, an error will
result.

If an operation performed after
commit processing involves a
database access, an error will
result.

STATEMENT_COM
MIT_BEHAVIOR

specification value

HIRDB_CURSOR specification value

TRUE FALSE

TRUE ResultSet object:
Valid

Statement object:
Valid

ResultSet object:
Invalid

Statement object:
Valid

FALSE ResultSet object:
Invalid

Statement object:
Invalid

18. Type4 JDBC Driver

1343

Table 18-4: Return values of the DatabaseMetaData method

Examples of JDBC driver operation during COMMIT execution

The operation of the JDBC driver during COMMIT execution depends on the
specification values of HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR.

Specification examples

Driver operation at COMMIT execution

STATEMENT_COM
MIT_BEHAVIOR

specification value

HIRDB_CURSOR specification value

TRUE FALSE

TRUE supportsOpenStatementsAcrossCom
mit:

true

supportsOpenCursorsAcrossCommit
:

true

supportsOpenStatementsAcrossCo
mmit:

true

supportsOpenCursorsAcrossCommi
t:

false

FALSE supportsOpenStatementsAcrossCo
mmit:

false

supportsOpenCursorsAcrossCommi
t:

false

[A]
pstmt1=con.prepareStatement("select c1 from tb1"); [1]
[B]
rs1=pstmt1.executeQuery(); [2]
[C]
rs1.next() [3]
[D]
v1=rs1.getInt(1) [4]
[E]
rs1.next() [5]
[F]
v1=rs1.getInt(1) [6]
[G]
rs1.close() [7]

COMMIT
timing

H=T and S=T#1 H=F and S=T#2 H=F and S=F#3

[A] [1]-[7]: Operates normally.

18. Type4 JDBC Driver

1344

#1: This represents the case when TRUE is specified for both HIRDB_CURSOR
and STATEMENT_COMMIT_BEHAVIOR.

#2: This represents the case when FALSE is specified for HIRDB_CURSOR
and TRUE is specified for STATEMENT_COMMIT_BEHAVIOR.

#3: This represents the case when FALSE is specified for both
HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR.

Other notes

For notes about the PDDDLDEAPRP client environment definition, see 6.6.4
Environment definition information.

For details about the rules for the DECLARE CURSOR holdable cursor, see the
manual HiRDB Version 9 SQL Reference.

(2) User properties
The table below shows the properties that you can specify in the getConnection
method of the DriverManager class. If the null value is specified for a property, the
JDBC driver assumes that specification was omitted.

Table 18-5: Properties that can be specified in the getConnection method

[B] [1]-[7]: Operates normally. [1], [2], and [7]: Operates
normally.
[3]-[6]: Throws an
SQLException.

[C] [1]-[7]: Operates normally. [1], [2], and [7]: Operates normally.
[3]-[6]: Throws an SQLException.

[D] [1]-[7]: Operates normally. [1]-[3] and [7]: Operates normally.
[4]-[6]: Throws an SQLException.

[E] [1]-[7]: Operates normally. [1]-[4] and [7]: Operates normally.
[5] and [6]: Throws an SQLException.

[F] [1]-[7]: Operates normally. [1]-[5] and [7]: Operates normally.
[6]: Throws an SQLException.

[G] [1]-[7]: Operates normally.

Item Property Specified information

(a) user Authorization identifier

(b) password Password

COMMIT
timing

H=T and S=T#1 H=F and S=T#2 H=F and S=F#3

18. Type4 JDBC Driver

1345

(c) UAPNAME UAP identifier

(d) JDBC_IF Whether or not a JDBC interface method trace is to be
obtained

(e) TRC_NO Number of entries in the JDBC interface method trace

(f) ENCODELANG Conversion character set for the HiRDB character codes
of the connection destination

(g) SQLWARNING_IGNORE Whether a warning returned from the database is to be
retained by the Connection object

(h) HIRDB_CURSOR Cursor operation mode

(i) LONGVARBINARY_ACCESS Method of accessing a JDBC SQL-type
LONGVARBINARY (BLOB and BINARY types, which are
HiRDB data types) database

(j) HiRDB_for_Java_SQL_IN_NUM Maximum number of input ? parameters in the SQL
statements to be executed

(k) HiRDB_for_Java_SQL_OUT_NUM Maximum number of output items for the SQL
statements to be executed

(l) HiRDB_for_Java_SQLWARNING_LEVEL Retention level for warning information that is issued
during execution of SQL statements

(m) HiRDB_for_Java_ENV_VARIABLES HiRDB client environment variables

(n) HiRDB_for_Java_STATEMENT_COMMIT_
BEHAVIOR

Statement object status after commit execution

(o) HiRDB_for_Java_LONGVARBINARY_ACC
ESS_SIZE

Length of JDBC SQL-type LONGVARBINARY data to be
requested at one time to the HiRDB server

(p) HiRDB_for_Java_MAXBINARYSIZE Maximum data size during acquisition of JDBC
SQL-type LONGVARBINARY data

(q) HiRDB_for_Java_LONGVARBINARY_TRU
NCERROR

Whether or not an exception is to be thrown if truncation
occurs during acquisition of JDBC SQL-type
LONGVARBINARY data

(r) HiRDB_for_Java_STATEMENT_CLOSE_B
EHAVIOR

Whether preprocessing results are to be ignored during
execution of the close method of the Statement
(Statement, PreparedStatement, and
CallableStatement classes)

(s) HiRDB_for_Java_DBID Additional connection information

(t) HiRDB_for_Java_DBHOST Host name

Item Property Specified information

18. Type4 JDBC Driver

1346

(a) user
Specifies the authorization identifier.

If the null value is specified, the JDBC driver assumes that no authorization identifier
was specified. If the character string has a length of 0, the JDBC driver throws an
SQLException.

If this specification is omitted, either the PDNAMEPORT HiRDB client environment
definition specified by HiRDB_for_Java_ENV_VARIABLES in the Properties
argument of the getConnection method, or the PDUSER value in the HiRDB
environment variable group specified for DBID in the URL takes effect. For details
about the specification priorities, see 18.11 Connection information priorities.

If neither value is specified, the JDBC driver throws an SQLException when the
getConnection method is executed.

Note that this property specification is ignored for an internal driver.

(b) password
Specifies the password.

If the specification value is the null or has a length of 0, the JDBC driver assumes that
no password was specified.

For details about when this specification is omitted, see 18.11 Connection information
priorities.

Note that this property specification is ignored for an internal driver.

(c) UAPNAME
Specifies UAP identification information (UAP identifier) for accessing the HiRDB
server.

In the following cases, the JDBC driver assumes that no authorization identifier was
specified:

• The null value is specified.

• A character string with a length of 0 or a character string of only single-byte space
characters is specified.

For details about character strings that can be specified, see the description of the
PDCLTAPNAME client environment definition in 6.6.4 Environment definition

(u) HiRDB_for_Java_HiRDB_INI Directory path of the HiRDB.INI file

(v) HiRDB_for_Java_BATCHEXCEPTION_BE
HAVIOR

Whether an update count that is compliant with the
JDBC standard is to be set

Item Property Specified information

18. Type4 JDBC Driver

1347

information.

For details about when this specification is omitted, see 18.11 Connection information
priorities.

Note that this property specification is ignored for an internal driver.

Note

The UAP specified by this property is encoded in the conversion character set
specified by ENCODELANG, and the first 30 bytes of the encoded UAP identifier
are transferred to the HiRDB server (if the UAP identifier consists of more than
30 bytes, it is truncated to the first 30 bytes). Therefore, the UAP identifier that
the HiRDB server can obtain is up to the first 30 bytes after the identifier has been
encoded.

(d) JDBC_IF
Specifies whether or not a JDBC interface method trace is to be obtained.

ON: Obtain a JDBC interface method trace.

OFF: Do not obtain a JDBC interface method trace.

If this specification is omitted, OFF is assumed.

If any other value is specified, the JDBC driver throws an SQLException.

This property is ignored in the following cases:

• A valid log writer is not specified in the setLogWriter method.

• This is an internal driver.

For details about the JDBC interface method trace, see 18.14 JDBC interface method
trace.

(e) TRC_NO
~<unsigned integer>((10-1000))<<500>>

Specifies the number of entries in the JDBC interface method trace.

The specification of this property is enabled when both of the following conditions are
satisfied:

• The setLogWriter method has set valid log data.

• ON is specified for JDBC_IF.

Note that this property specification is ignored for an internal driver.

If the specification of this property is enabled but the specification value is invalid, the
JDBC driver throws an SQLException.

For details about a JDBC interface method trace, see 18.14 JDBC interface method

18. Type4 JDBC Driver

1348

trace.

(f) ENCODELANG
Specifies the conversion character set for the HiRDB character codes of the connection
destination when the JDBC driver uses the String class to exchange data with
HiRDB.

Select a specifiable conversion character set from the encoding list shown under
Internationalization in the JavaTM 2 SDK, Standard Edition documentation.

For the character codes of HiRDB and their corresponding conversion character sets,
see Table 18-2 HiRDB character codes and corresponding conversion character sets.

If OFF is specified, the JDBC driver operates assuming that the applicable conversion
character set for the HiRDB character codes, as shown in Table 18-2 HiRDB character
codes and corresponding conversion character sets, was specified. If the HiRDB
character codes are sjis, the conversion characters determined by the OS running the
JDBC driver are as follows:

For UNIX: SJIS

For Windows: MS932

Note that the specification is case sensitive (except for OFF).

If a conversion character set that the Java Virtual Machine does not support is
specified, the JDBC driver throws an SQLException during connection with the
HiRDB server.

If this specification is omitted, the JDBC driver converts characters using the
conversion character set specified by ENCODELANG in the URL.

(g) SQLWARNING_IGNORE
Specifies whether warnings returned from the database are to be retained by the
Connection object.

TRUE: Do not retain warnings.

FALSE: Retain warnings.

If this specification is omitted, the value specified for SQLWARNING_IGNORE in the
URL takes effect. If the specified value is neither TRUE nor FALSE, the JDBC driver
throws an SQLException.

Retention of warnings for the Connection object is determined by the value of
HiRDB_for_Java_SQLWARNING_LEVEL. For details about the warning retention
levels, see 18.4.12(2)(b) Issuing conditions for SQLWarning objects. Note that the
value of this property is not case sensitive.

18. Type4 JDBC Driver

1349

(h) HIRDB_CURSOR
Specifies whether objects of the ResultSet class are to be validated or invalidated
after HiRDB executes commit processing.

TRUE: Validate objects of the ResultSet class even after commit processing.

FALSE: Invalidate objects of the ResultSet class after commit processing.

If this specification is omitted, the value specified by HIRDB_CURSOR in the URL
becomes valid. If a value other than TRUE or FALSE is specified, the JDBC driver
throws an SQLException.

If an invalidated ResultSet object executes an operation other than calling the
close method, the JDBC driver throws an SQLException.

Note

For notes about specifying this property, see (1)(c) Notes about specification of
HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR.

(i) LONGVARBINARY_ACCESS
Specifies the method of accessing a JDBC SQL-type LONGVARBINARY (BLOB and
BINARY types, which are HiRDB data types) database.

REAL: Access the database using real data.

LOCATOR: Access the database using the locator facility of HiRDB.

Note that real data is assumed for an access to a BINARY column with a definition
length of 1,024 bytes or less.

If this specification is omitted, REAL is assumed.

If any other value is specified, the JDBC driver throws an SQLException.

Note

The following notes apply to specification of LONGVARBINARY_ACCESS:

When LONGVARBINARY_ACCESS is specified together with
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE

The following table describes the differences in how the JDBC driver gets
BLOB and BINARY data (HiRDB data types) based on the specifications of
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE and
LONGVARBINARY_ACCESS.

18. Type4 JDBC Driver

1350

Table 18-6: Differences in how the HiRDB driver gets BLOB and BINARY data
(HiRDB data types)

Execution method LONGVARBINARY_ACCESS specification value#

REAL LOCATOR

CallableStatment.execute
ResultSet.next

Acquires all the BLOB or BINARY
data from the connected database.

Acquires the locator that indicates
the BLOB or BINARY data in the
connected database, instead of the
actual BLOB or BINARY data.

CallableStatement.getBytes
CallableStatement.getString
CallableStatement.getObject
ResultSet.getBytes
ResultSet.getString
ResultSet.getObject

Uses the BLOB or BINARY data
obtained by ResultSet.next.

Acquires from the connected
database all BLOB or BINARY data
in segments of ACCESSSIZE x
1024 bytes.

Blob.getBytes Extracts the range of data
specified by the argument from
the BLOB or BINARY data obtained
by ResultSet.next.

Acquires from the connected
database the range of BLOB or
BINARY data specified by the
argument in segments of
ACCESSSIZE x 1024 bytes.

CallableStatement.getBinaryStream
ResultSet.getBinaryStream
ResultSet.getAsciiStream
ResultSet.getUnicodeStream
Blob.getBinaryStream

When the InputStream read
method obtained by the executed
method is executed, the JDBC
driver extracts data from the BLOB
or BINARY data obtained by
ResultSet.next.

When the InputStream read
method obtained by the executed
method is executed, the JDBC
driver acquires data from the
connected database.

Blob.length Acquires the data length from the
BLOB or BINARY data obtained by
ResultSet.next.

Acquires the data length from the
connected database.

Blob.position Acquires the position of the data
matching the search pattern from
the BLOB or BINARY data obtained
by ResultSet.next.

Acquires the position of the data
matching the search pattern from
the connected database.

InputStream
obtained by
CallableStatemen
t.getBinaryStrea
m,
ResultSet.getBin
aryStream, or
Blob.getBinarySt
ream

InputStream.
available

Returns a value equal to or less
than the length of the actual data
indicated by the locator.

Returns a value equal to or less
than ACCESSSIZE x 1024 bytes.

InputStream.
skip

Skips reading data up to the range
equal to or less than the length of
the actual data indicated by the
locator.

Skips reading data up to the
maximum range of ACCESSSIZE
x 1024 bytes.

18. Type4 JDBC Driver

1351

Legend:

ACCESSSIZE: Specification value of
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE

InputStream and Reader: Classes of objects returned by getBinaryStream,
getAsciiStream, or getCharacterStream of the JDBC driver

#: Note that REAL is assumed for an access to a BINARY column with a definition
length of 1,024 bytes or less.

Notes about execution performance

When LOCATOR is specified for LONGVARBINARY_ACCESS, execution
performance might drop compared to when REAL is specified.

When REAL is specified, the JDBC driver accesses the connected database
once during processing of ResultSet.next or
CallableStatment.execute to obtain the locator. On the other hand,
when LOCATOR is specified, in addition to the one access during processing
of ResultSet.next or CallableStatment.execute, the JDBC driver
accesses the connected database once to obtain the data length and once to
obtain the data during execution of a data acquisition method (such as
getBytes).

Notes about auto-commit

Even when auto-commit is enabled, commit processing does not occur in the
following cases:

• Execution of a stored procedure in which LOCATOR is specified for
LONGVARBINARY_ACCESS and an output parameter that satisfies either
of the following conditions is specified:

 Output parameter is BINARY type with a size greater than 1,024 bytes

 Output parameter is BLOB type

• Execution of a stored procedure using the results-set return facility

CallableStatement.getCharcterStream
ResultSet.getCharcterStream

When the Reader read method
obtained by
getCharcterStream is
executed, the JDBC driver
extracts data from the BLOB or
BINARY data obtained by
ResultSet.next.

When the Reader read method
obtained by
getCharcterStream is
executed, the JDBC driver
acquires data from the connected
database.

Execution method LONGVARBINARY_ACCESS specification value#

REAL LOCATOR

18. Type4 JDBC Driver

1352

Notes about data manipulation after the transaction terminates

When LOCATOR is specified for LONGVARBINARY_ACCESS, data
manipulation cannot be performed if the transaction terminates during the
period between acquisition of the SQL execution results (ResultSet.next
or CallableStatement.execute) and the data manipulation (such as
Blob.getBytes or InputStream.read). Data manipulation cannot be
executed after the transaction terminates even if the HIRDB_CURSOR
specification is TRUE.

Thus, you must ensure that all data manipulation will be performed before
the transaction terminates.

(j) HiRDB_for_Java_SQL_IN_NUM
~<unsigned integer>((1-30000))<<300>>

Specifies the maximum number of input ? parameters in the SQL statements to be
executed.

This specification becomes the number of input ? parameters that are obtained during
SQL preprocessing. If the actual number of input ? parameters is greater than the
specification value of this property, the JDBC driver gets the input ? parameter
information from the HiRDB server after SQL preprocessing.

If the specification value is invalid, the JDBC driver throws an SQLException.

Note

If you will not be executing SQL statements that have input ? parameters, you
should specify 1.

(k) HiRDB_for_Java_SQL_OUT_NUM
~<unsigned integer>((1-30000))<<300>>

Specifies the maximum number of output items for the SQL statements that are to be
executed.

This specification becomes the number of output items obtained during SQL
preprocessing. If the actual number of output items is greater than the specification
value of this property, the JDBC driver gets output item information from the HiRDB
server after SQL preprocessing.

If the specification value is invalid, the JDBC driver throws an SQLException.

Note

If you will not be executing SQL statements that have output items, you should
specify 1.

18. Type4 JDBC Driver

1353

(l) HiRDB_for_Java_SQLWARNING_LEVEL
Specifies the retention level for warning information that is issued during execution of
SQL statements. For details about the retention levels for warning information, see
18.4.12(2)(b) Issuing conditions for SQLWarning objects.

IGNORE: Retain warning information at the IGNORE level.

SQLWARN: Retain warning information at the SQLWARN level.

ALLWARN: Retain warning information at the ALLWARN level.

If this specification is omitted, SQLWARN is assumed.

If the specification value is invalid, the JDBC driver throws an SQLException.

(m) HiRDB_for_Java_ENV_VARIABLES
Specifies HiRDB client environment definitions in the following format:

For details about client environment definitions supported by the JDBC driver, see
18.10 Supported client environment definitions. If a client environment definition that
is not supported by the JDBC driver is specified in a variable name, the JDBC driver
ignores the specification. Note that variable names are case sensitive.

For details about the priorities for connection information that can be specified in
multiple ways, see 18.11 Connection information priorities.

Specification example
java.util.Properties prop;
prop=new java.util.Properties();
prop.setProperty("HiRDB_for_Java_ENV_VARIABLES",
 "PDFESHOST=FES1;PDCWAITTIME=0");

(n) HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR
Specifies whether Statement objects are to be validated or invalidated after HiRDB
executes commit processing.

TRUE: Validate Statement objects after commit processing.

FALSE: Invalidate Statement objects after commit processing.

The objects that become invalid after commit execution are SQL statements that
were precompiled by the prepareStatement or prepareCall method of the
Connection class, and ResultSet class objects obtained by the
executeQuery method of Statement.

 variable-name=value;variable-name=value;...;variable-name=value

18. Type4 JDBC Driver

1354

If this specification is omitted, the value specified for
STATEMENT_COMMIT_BEHAVIOR in the URL becomes effective.

Note

For notes about specification of this property, see (1)(c) Notes about specification
of HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR.

(o) HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE
~<unsigned integer>((0-2097151))<<0>> (kilobytes)

Specifies the length of JDBC SQL-type LONGVARBINARY data to be requested at one
time to the HiRDB server. If LONGVARBINARY_ACCESS specifies data other than
LOCATOR data, this specification is invalid.

For example, suppose that 20 is specified for this property and the getBytes method
of ResultSet attempts to get 100 kilobytes of JDBC SQL-type LONGVARBINARY
data stored in the database. In such a case, the JDBC driver gets and returns the data
by dividing the operation into five executions of 20 kilobytes each. If 0 is specified,
the JDBC driver requests the data all at once.

If the specification value is invalid, the JDBC driver throws an SQLException.

Note

For notes about specification of this property, see (i)
LONGVARBINARY_ACCESS.

(p) HiRDB_for_Java_MAXBINARYSIZE
~<unsigned integer>((0-2147483647)) (bytes)

Specifies the maximum data size during acquisition of JDBC SQL-type
LONGVARBINARY data.

When the JDBC driver is getting JDBC SQL-type LONGVARBINARY data, it allocates
memory of the defined length because it cannot determine the actual data length until
it actually gets the data. Therefore, to get the value of a string for which the specified
size is large (for example, 2,147,483,647 bytes, which is the maximum length for
HiRDB's BINARY and BLOB data types), the JDBC driver attempts to allocate
2,147,483,647 bytes of memory, because that is the defined length. Consequently, a
memory shortage may occur, depending on the execution environment.

You should specify for this property the maximum length of the data that is actually
stored. If the data length of the BINARY or BLOB data to be acquired is larger than the
size specified by this property, the JDBC driver truncates the acquired data to the
specified size. When the JDBC driver does truncate data, it receives a warning from
the HiRDB server when it executes the next method of ResultSet. In response to
the received warning, the JDBC driver throws an SQLException or generates (or
ignores) an SQLWarning, as determined by the specification of

18. Type4 JDBC Driver

1355

setLONGVARBINARY_TruncError.

If no upper limit is set by this property, the defined length of the target acquisition data
becomes the upper limit.

If the specification value is invalid, the JDBC driver throws an SQLException.

Note

This property value is ignored when a BLOB column or a BINARY column whose
definition length is greater than 1,024 bytes is accessed with LOCATOR specified
for LONGVARBINARY_ACCESS. The JDBC driver allocates an area based on the
actual data length and gets the entire data.

(q) HiRDB_for_Java_LONGVARBINARY_TRUNCERROR
Specifies whether an exception is or is not to be thrown if truncation occurs during
acquisition of JDBC SQL-type LONGVARBINARY data.

TRUE: Throw an exception if truncation occurs.

FALSE: Do not throw an exception if truncation occurs.

If this specification is omitted, TRUE is assumed.

If IGNORE is specified for HiRDB_for_Java_SQLWARNING_LEVEL, the JDBC driver
operates as if FALSE were specified for this property.

Any truncation that occurs during acquisition of JDBC SQL-type LONGVARBINARY
data indicates that the following condition is satisfied:

(r) HiRDB_for_Java_STATEMENT_CLOSE_BEHAVIOR
Specifies whether preprocessing results are to be ignored during execution of the
close method of Statement (Statement, PreparedStatement, and
CallableStatement classes) when the Statement or ResultSet object is
specified to remain valid after commit processing.#1

This specification can be made by using the
HiRDB_for_Java_STATEMENT_CLOSE_BEHAVIOR system property.

If the server is XDM/RD E2, this specification is ignored.

TRUE: Ignore preprocessing results.

FALSE: Do not ignore preprocessing results.

If the specified value is invalid, the JDBC driver throws an SQLException.

Actual length of JDBC SQL-type LONGVARBINARY data obtained during SQL execution > data length specified by
HiRDB_for_Java_MAXBINARYSIZE

18. Type4 JDBC Driver

1356

The value of this property is not case sensitive.

If this specification is omitted, the value of the STATEMENT_CLOSE_BEHAVIOR item
in the URL takes effect. If this item is omitted in the URL, FALSE is assumed as the
value of the property.

If NO is set in both the PDDDLDEAPRP and the PDDDLDEAPRPEXE client environment
definitions and another user executes a definition SQL statement for a schema resource
(table or index) to be accessed by an SQL statement (SELECT, INSERT, DELETE,
UPDATE, PURGE TABLE, or CALL statement), the definition SQL statement is placed on
lock-release wait status. This lock-release wait status is released at the times described
below. Note that if you specify TRUE, you can release this status during commit
processing.

• If Statement or ResultSet object is specified to remain valid after commit
processing

• If TRUE is specified

When commit processing is performed after Statement close#2 or when
the connection is closed.

• If FALSE is specified

When the connection is closed.

• Other

When commit processing is performed#2 or when the connection is closed.

#1

One of the following applies:

1. TRUE is specified for the following items in the properties that are specified
by the getConnection method:

HIRDB_CURSOR

HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR

2. TRUE is specified for the following items in the URL that is specified by the
getConnection method:

HIRDB_CURSOR

STATEMENT_COMMIT_BEHAVIOR

3. true is specified in the following methods of the PrdbDataSource,
PrdbConnectionPoolDataSource, or PrdbXADataSource class:

setHiRDBCursorMode

setStatementCommitBehavior

18. Type4 JDBC Driver

1357

4. The Connection.setHoldability method (with
ResultSet.HOLD_CURSORS_OVER_COMMIT specified in the argument) is
executed.

5. The following methods of the Connection class (with
ResultSet.HOLD_CURSORS_OVER_COMMIT specified in the
resultSetHoldability argument) are executed:

createStatement(int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

prepareCall(String sql, int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

prepareStatement(String sql, int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

#2

In addition to explicit commit using the commit method, the following also
apply:

• Implicit commit by automatic commit

• Execution of a definition SQL statement

• Execution of a PURGE TABLE statement

• Explicit rollback by rollback method

• Implicit rollback by an SQL execution error

If TRUE is specified and the Statement or ResultSet object is specified to remain
valid after commit processing, HiRDB creates a transaction and executes
DEALLOCATE PREPARE processing when the Statement is closed. Therefore, if the
PDSWAITTIME client environment variable is specified, the interval monitoring
specified in PDSWAITTIME begins. If automatic commit is disabled and neither an
SQL execution, nor commit, nor disconnection is performed by another statement for
an extended period after the Statement was closed, HiRDB closes the connection
based on the interval monitoring.

If Cosminexus is connected and the connection pooling function is used by using the
Type4 JDBC driver from DB Connector, you must specify FALSE. When the
connection pooling function is used, connection returns to the pool and the transaction
remains even if a close method for connection is called from the application.
Therefore, you must execute commit processing after Statement is closed.

If you use the statement pooling facility, you must either omit this specification or
specify FALSE.

18. Type4 JDBC Driver

1358

(s) HiRDB_for_Java_DBID
Specifies the port number of HiRDB (information corresponding to PDNAMEPORT) or
the HiRDB client's environment variable group file name. For details about the
specification, see the explanation about DBID in 18.2.2(1)(b) Explanation of URL
items.

(t) HiRDB_for_Java_DBHOST
Specifies the host name of HiRDB. For details about the specification, see the
explanation about DBHOST in 18.2.2(1)(b) Explanation of URL items.

(u) HiRDB_for_Java_HiRDB_INI
Specifies the absolute path of the directory that contains the HiRDB.INI file. This
property is applicable when the HiRDB client environment variables specified in the
HiRDB.INI file are to be in effect, in which case the HiRDB client environment
variables in the HiRDB.ini file located in the specified directory will take effect. If
the specified directory does not contain a HiRDB.ini file and this is an interval driver,
this specification is ignored.

If this specification is omitted, the value specified for the HiRDB_INI item in the URL
is assumed. If the HiRDB_INI item is omitted in the URL, the contents of this file are
ignored.

(v) HiRDB_for_Java_BATCHEXCEPTION_BEHAVIOR
Specifies whether an update count that is compliant with the JDBC standard is to be
set for the return value of the getUpdateCounts method of
java.sql.BatchUpdateException.

This property is applicable when the version of the connection-target HiRDB is 08-02
or later.

TRUE: Set an update count that is compliant with the JDBC standard.

FALSE: Set a HiRDB-specific update count.

The value of this property is not case sensitive.

If this specification is omitted, the BATCHEXCEPTION_BEHAVIOR value in the URL
items takes effect. If this specification is omitted in the URL, the JDBC driver assumes
that TRUE is specified.

18. Type4 JDBC Driver

1359

18.3 Database connection using a DataSource object and JNDI

The JDBC2.0 Optional Package can now use database connections that use a
DataSource object and JNDI.

Although use of JNDI is not required, the advantage of using it is that you only have
to set up the connection information once. The standard JDK package does not include
interface definitions for the DataSource class or JNDI, so you have to download
these items from the JavaSoft Web site when you develop an AP.

To connect a database by using a DataSource object and JNDI:

1. Generate the DataSource object.

2. Set up the connection information.

3. Register the DataSource object into JNDI.

4. Get the DataSource object from JNDI.

5. Connect to the database.

If you are not using JNDI, steps 3 and 4 are not necessary.

If you are using JNDI, steps 1 to 3 need to be executed only once. Thereafter, you can
connect to the database by performing only steps 4 and 5. Once you have performed
step 4, you can change the connection information as necessary.

(1) Generating the DataSource object
Generate the DataSource class object to be provided by the JDBC driver.

The DataSource class name of the JDBC driver, which is necessary for generating
the DataSource class object, is PrdbDataSource.

Below is an example of generating the DataSource class object:

(2) Setting up connection information
Call the method for setting up connection information for the DataSource object, and
set up the connection information. Because there is also a method for acquiring
connection information, you can use it to check the current connection information.
For details about the connection information setup and acquisition methods, see 18.7
Connection information setup and acquisition interface.

 JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource ds = null ;
 ds = new JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource() ;

18. Type4 JDBC Driver

1360

(3) Registering the DataSource object into JNDI
Register the DataSource object into JNDI.

JNDI can select from among several service providers, depending on the execution
environment.

Shown below is an example of registering the DataSource object into JNDI (this
example is for Windows). In the registration example, the File System service
provider, which is one of the service providers, is used. For details about other service
providers, see the JNDI documentation.

When you register the logical name to be registered into JNDI, the JDBC2.0
specifications recommend that you register the logical name under a subcontext called
jdbc (jdbc/TestDataSource in the registration example).

(4) Getting the DataSource object from JNDI
Get the DataSource object from JNDI.

Shown below is a registration example for the DataSource object (this is an example

 // Generate DataSource class object to be provided by JDBC driver.
 JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource ds;
 ds = new JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource();

 // Set connection information.
 :

 // Get system properties.
 Properties sys_prop = System.getProperties() ;

 // Set properties of File System service provider.
 sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

 // Set directory to be used by File System service provider.
 // (Register under c:\JNDI_DIR.)
 sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

 // Update system properties.
 System.setProperties(sys_prop) ;

 // Initialize JNDI.
 Context ctx = new InitialContext();

 // Register DataSource class object to be provided by HiRDB driver
 // into JNDI. Use logical name jdbc/TestDataSource.
 ctx.bind("jdbc" + "\\" + "TestDataSource", ds);
 :

18. Type4 JDBC Driver

1361

for Windows). This registration example uses the File System service provider, which
is one of the service providers. For details about other service providers, see the JNDI
documentation.

(5) Connecting to the database
Call the getConnection method for the DataSource object.

Shown below is an example of calling the getConnection method.

#

The method's arguments (authorization identifier and password) take priority over

 // Get system properties.
 Properties sys_prop = System.getProperties() ;

 // Set properties of File System service provider.
 sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

 // Set directory to be used by File System service provider.
 // (Register under c:\JNDI_DIR.)
 sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

 // Update system properties.
 System.setProperties(sys_prop) ;

 // Initialize JNDI.
 Context ctx = new InitialContext();

 // Get object of local name jdbc/TestDataSource from JNDI.
 Object obj = ctx.lookup("jdbc" + "\\" + "TestDataSource") ;

 // Cast retrieved object to DataSource class type.
 DataSource ds = (DataSource)obj;
 :

 DataSource ds

 // Get DataSource object from JNDI.
 :

 // Issue getConnection method.
 Connection con = ds.getConnection();
 or

 Connection con = ds.getConnection("USERID", "PASSWORD");#

18. Type4 JDBC Driver

1362

the connection information that was set for the DataSource object. If needed
connection information has not been set for the DataSource object, or if the
contents of the connection information are invalid, or if connection with the
HiRDB server fails, the getConnection method throws an SQLException.

After getting the DataSource object from JNDI, set up the connection information
again, as necessary. In this case, you must cast the DataSource object to the
DataSource class type provided by the JDBC driver before you set up the
information. An example is shown below:

 DataSource ds
 JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource hirdb_ds;

 // Get DataSource object from JNDI.
 :

 // Cast DataSource object to DataSource class type provided
 // by JDBC driver.
 dbp_ds = (JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource)ds;

 // Set up connection information again.
 :

18. Type4 JDBC Driver

1363

18.4 JDBC1.2 core API

18.4.1 Driver interface
(1) Overview

The Driver interface provides the following principal functions:

• Database checking

• Validity check on a specified URL

• Acquisition of connection properties specified with the
DriverManager.getConnection method

• Return of the driver version

(2) Methods
The table below lists the methods of the Driver interface. The interface does not
support methods that are not listed in the table. If an unsupported method is specified,
the interface throws an SQLException.

Table 18-7: Driver interface methods

(a) acceptsURL(String url)
Function

This method checks whether the driver can connect to the specified URL.

Format

public boolean acceptsURL(String url) throws SQLException

Subsection Method Function

(a) acceptsURL(String url) Checks whether the driver can connect to
the specified URL.

(b) connect(String url, Properties info) Attempts database connection to the
specified URL.

(c) getMajorVersion() Acquires the driver's major version.

(d) getMinorVersion() Acquires the driver's minor version.

(e) getPropertyInfo(String url, Properties
info)

Acquires information about the driver's
valid properties.

(f) jdbcCompliant() Reports whether the driver is JDBC
CompliantTM.

18. Type4 JDBC Driver

1364

Arguments

String url

URL of the database

Return value

The method returns true if the driver recognizes the specified URL; if not, the
method returns false.

Exceptions

None.

(b) connect(String url, Properties info)
Function

This method attempts database connection to the specified URL.

Format

public Connection connect(String url, Properties info)
throws SQLException

Arguments

String url

Specifies the URL of the connected database. For details, see 18.2.2(1) URL
syntax.

Properties info

Specifies a list of property name and value pairs as the connection
arguments. For details, see 18.2.2(2) User properties.

Return value

Connection object indicating connection to the URL

Functional detail

Connects to the database indicated by the URL.

This method uses the value returned by DriverManager.getLoginTimeout
as the maximum wait time for communication.

If getLoginTimeout returns 0, the value specified in the PDCONNECTTIME
client environment definition is used as the maximum wait time.

18. Type4 JDBC Driver

1365

You can use DriverManager.setLoginTimeout to specify the wait time.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• A database access error occurs.

• The specified connection information is invalid.

• The return value of DriverManager.getLoginTimeout is not within the
range from 0 to 300.

(c) getMajorVersion()
Function

This method acquires the driver's major version.

Format

public synchronized int getMajorVersion()

Arguments

None.

Return value

This method returns this driver's major version number.

Exceptions

None.

(d) getMinorVersion()
Function

This method acquires the driver's minor version.

Format

public synchronized int getMinorVersion()

Arguments

None.

Return value

This method returns this driver's minor version number.

Exceptions

18. Type4 JDBC Driver

1366

None.

(e) getPropertyInfo(String url, Properties info)
Function

This method acquires information about this driver's valid properties.

Format

public synchronized DriverPropertyInfo[]
getPropertyInfo(String url, Properties info) throws
SQLException

Arguments

String url

Specifies the URL of the connected database.

Properties info

Specifies a list of property name and value pairs as the connection
arguments.

Return value

This method returns the array of the DriverPropertyInfo object for
specifying valid properties (if properties are not needed, this array might be
empty).

The following table lists the settings for the fields of DriverPropertyInfo.

Table 18-8: Settings for fields of DriverPropertyInfo

Property name DriverPropertyInfo field

name value description required choices

user Same as the
property
name

null "UserID" false null

password ditto "" "Password" false null

UAPNAME ditto "" "UAPNAME" false null

JDBC_IF ditto "OFF" "JDBC Interface
Trace"

false {"ON","OFF"
}

TRC_NO ditto "500" "Trace Entry
Number"

false null

18. Type4 JDBC Driver

1367

ENCODELANG ditto null "Encode Lang" false null

HIRDB_CURSOR ditto "FALSE" "HiRDB Cursor
across commit"

false null

LONGVARBINARY_AC
CESS

ditto "REAL" "Longvarbinary
locator access"

false null

HiRDB_for_Java_SQL_IN
_NUM

ditto "300" "SQL In Number" false null

HiRDB_for_Java_SQL_O
UT_NUM

ditto "300" "SQL Out Number" false null

HiRDB_for_Java_SQLWA
RNING_LEVEL

ditto "SQLWA
RN"

"SQL Warning
Level"

false null

HiRDB_for_Java_ENV_V
ARIABLES

ditto null "HiRDB
Environment
Variables"

false null

HiRDB_for_Java_STATE
MENT_COMMIT_BEHA
VIOR

ditto "TRUE" "HiRDB Statement
across commit"

false {"TRUE","F
ALSE"}

HiRDB_for_Java_LONGV
ARBINARY_ACCESS_SI
ZE

ditto 0 "Longvarbinary
locator access size"

false null

HiRDB_for_Java_MAXBI
NARYSIZE

ditto null "Longvarbinary
maximum binary
size"

false null

HiRDB_for_Java_LONGV
ARBINARY_TRUNCERR
OR

ditto "TRUE" "Longvarbinary
truncate error"

false {"TRUE","F
ALSE"}

HiRDB_for_Java_DBID ditto null "Port number of
HiRDB server or
Environment
variable group of
HiRDB"

false null

HiRDB_for_Java_DBHOS
T

ditto null "Host name with
HiRDB"

false null

HiRDB_for_Java_HiRDB
_INI

ditto null "HiRDB.ini file " false null

Property name DriverPropertyInfo field

name value description required choices

18. Type4 JDBC Driver

1368

Functional detail

This method analyzes the information specified in the url and info argument
and returns information needed for connecting to the database.

If acceptsURL(String url) is false, this method returns null.

Exceptions

None.

(f) jdbcCompliant()
Function

This method reports whether this driver is JDBC CompliantTM.

Format

public synchronized boolean jdbcCompliant()

Arguments

None.

HiRDB_for_Java_BATCH
EXCEPTION_BEHAVIOR

ditto "TRUE" "BatchUpdateExcep
tion UpdateCounts
that conforms to
JDBC standard"

false {"TRUE","F
ALSE"}

SQLWARNING_IGNORE ditto "FALSE" "Warning generated
by the Connection
object is not
maintained with the
Connection object"

false {"TRUE","F
ALSE"}

XDSHOST ditto null "Host name of XDS" false null

XDSPORT ditto null "Port number of
XDS"

false null

XDSSRVTYPE ditto "WS" "Server type of
XDS"

false {"PC","WS"}

HiRDB_for_Java_STATE
MENT_CLOSE_BEHAVI
OR

ditto "FALSE" "HiRDB Statement
close behavior"

false {"TRUE","F
ALSE"}

Property name DriverPropertyInfo field

name value description required choices

18. Type4 JDBC Driver

1369

Return value

If the driver is JDBC-compliant, this method returns true; if not, the method
returns false.

Exceptions

None.

(3) Package and class names
The names of the package and class for installing this interface are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: HiRDBDriver

(4) Escape clause
The part enclosed in curly brackets ({ }) in SQL statements is called the escape clause.
An escape clause consists of a keyword and parameters. The keyword is not case
sensitive.

The following table lists the escape clauses.

Table 18-9: List of escape clauses

For details about the scalar functions that can be specified in an escape clause, see
Appendix I. Scalar Functions That Can Be Specified in the Escape Clause.

Analysis of escape syntax

You can use the setEscapeProcessing method of the Statement class to
specify whether analysis of the escape syntax is to be enabled. When this
specification is omitted, analysis of escape syntax is enabled. Analysis of escape
syntax means that the JDBC driver checks each SQL statement for an escape
clause. If an SQL statement contains an escape clause, the JDBC driver converts
the SQL statement so that the statement can be executed by HiRDB.

Type of escape clause Keyword

Date, time, timestamp d, t, ts

LIKE escape character escape

Outer join oj

Procedure call call

Scalar function fn

Assignment set

18. Type4 JDBC Driver

1370

18.4.2 Connection interface
(1) Overview

The Connection interface provides the following principal functions:

• Creation of the Statement, PreparedStatement, and CallableStatement
class objects

• Transaction settlement (COMMIT or ROLLBACK)

• Specification of the AUTO commit mode

(2) Methods
The table below lists the methods of the Connection interface. This interface does
not support methods that are not listed in the table. If an unsupported method is
specified, the interface throws an SQLException.

Table 18-10: Connection interface methods

Subsectio
n

Method Function

(a) clearWarnings() Clears all warnings reported for this Connection
object.

(b) close() Closes the connection with HiRDB.

(c) commit() Applies all changes made since the most recent
commit or rollback.

(d) createStatement() Creates a Statement object for sending an SQL
statement to the database.

(e) createStatement(int resultSetType, int
resultSetConcurrency)

Creates a Statement object for sending an SQL
statement to the database.

(f) createStatement(int resultSetType, int
resultSetConcurrency, int
resultSetHoldability)

Creates a Statement object for sending an SQL
statement to the database.

(g) getAutoCommit() Acquires the current automatic commit mode for
this Connection object.

(h) getCatalog() Acquires the current catalog name for this
Connection object.

(i) getHoldability() Acquires the current holding facility for
ResultSet objects that are created by using this
Connection object.

(j) getMetaData() Creates a DatabaseMetaData object.

18. Type4 JDBC Driver

1371

(k) getTransactionIsolation() Acquires this Connection object's current
transaction cut-off level.

(l) getTypeMap() Acquires the Map object related to this
Connection object.

(m) getWarnings() Acquires as an SQLWarning object the warnings
reported by calls related to this Connection
object.

(n) isClosed() Acquires a value indicating whether this
Connection object is closed.

(o) isReadOnly() Acquires a value indicating whether this
Connection object is in read-only mode.

(p) nativeSQL(String sql) Converts any escape clause in a specified SQL
statement to a format that can be executed by
HiRDB, and then returns the SQL statement.

(q) prepareCall(String sql) Creates a CallableStatement object for
executing a CALL statement.

(r) prepareCall(String sql, int resultSetType,
int resultSetConcurrency)

Creates a CallableStatement object for
executing a CALL statement.

(s) prepareCall(String sql, int resultSetType,
int resultSetConcurrency, int
resultSetHoldability)

Creates a CallableStatement object for
executing a CALL statement.

(t) prepareStatement(String sql) Creates a PreparedStatement object for sending
an SQL statement with parameters to the database.

(u) prepareStatement(String sql, int
resultSetType, int resultSetConcurrency)

Creates a PreparedStatement object for sending
an SQL statement with parameters to the database.

(v) prepareStatement(String sql, int
resultSetType, int resultSetConcurrency,
int resultSetHoldability)

Creates a PreparedStatement object for sending
an SQL statement with parameters to the database.

(w) rollback() Undoes all changes made by the current transaction
and releases all database locks currently held by
this Connection object.

(x) setAutoCommit(boolean autoCommit) Sets the automatic commit mode status for this
connection.

(y) setCatalog(String catalog) This driver ignores this method's specification
because HiRDB does not support catalogs.

Subsectio
n

Method Function

18. Type4 JDBC Driver

1372

(a) clearWarnings()
Function

Clears all warnings reported for this Connection object.

Once this method has been called, getWarnings() returns null until a new
warning is issued for this Connection object.

Format

public void clearWarnings() throws SQLException

Arguments

None.

Return value

None.

Exceptions

If this Connection object is closed (close), the JDBC driver throws an
SQLException.

(b) close()
Function

Closes the connection with HiRDB.

Format

(z) setHoldability(int holdability) Changes the holding facility for a ResultSet
object that is created by using this Connection
object.

(aa) setReadOnly(boolean readOnly) This method's value is ignored because HiRDB
does not have a dedicated mode.

(ab) setTransactionIsolation(int level) This method's value is ignored because the value is
always TRANSACTION_REPEATABLE_READ in
HiRDB.

(ac) checkSession(int waittime) Checks the current connection status.

(ad) setHiRDB_Audit_Info(int pos, String
userinf)

Specifies user-specific connection information
(user-added information).

Subsectio
n

Method Function

18. Type4 JDBC Driver

1373

public void close() throws SQLException

Arguments

None.

Return value

None.

Functional detail

During a normal connection, this method disconnects HiRDB, disables the
corresponding objects, and releases any unneeded resources.

In a pooling or XA environment, the physical connection is not closed; instead,
PooledConnection.close() is used to close the physical connection.

If execution of Connection.close() results in an error, the method does not
throw an SQLException.

If execution of Connection.close() in a pooling or XA environment results
in a fatal error and connection pooling becomes unavailable,
ConnectionEventListener.connectionErrorOccurred() does not
occur.

If the close method is called by a Connection object that is already closed, this
method does nothing.

Exceptions

None.

(c) commit()
Function

Applies all changes made since the most recent commit or rollback.

If this method is called while the automatic commit mode is enabled, the method
performs commit processing without throwing an exception.

Format

public void commit() throws SQLException

Arguments

None.

Return value

18. Type4 JDBC Driver

1374

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• A database access error occurs.

• close() has already been issued to the Connection object.

(d) createStatement()
Function

Creates a Statement object for sending an SQL statement to the database.

Format

public synchronized Statement createStatement() throws
SQLException

Arguments

None.

Return value

Statement object

Functional detail

This method creates a Statement object for sending an SQL statement to the
database.

The holding facility for the ResultSet that is created from the Statement
object created by this method is set to the value specified by
Connection.setHoldability. If Connection.setHoldability has
never been executed, the HIRDB_CURSOR property setting is used.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to the Connection object.

• Creation of the Statement object resulted in an error.

(e) createStatement(int resultSetType, int resultSetConcurrency)
Function

Creates a Statement object for sending an SQL statement to the database.

Format

18. Type4 JDBC Driver

1375

public synchronized Statement createStatement(int
resultSetType, int resultSetConcurrency) throws SQLException

Arguments

int resultSetType

Type of result set

int resultSetConcurrency

Parallel processing mode

Return value

Statement object

Functional detail

This method creates a Statement object for sending an SQL statement to the
database.

If TYPE_SCROLL_SENSITIVE is specified for the type of the result set, this driver
changes it to TYPE_SCROLL_INSENSITIVE and then sets an SQLWarning.

For parallel processing mode, the driver supports only CONCUR_READ_ONLY. If
CONCUR_UPDATABLE is specified, the driver changes it to CONCUR_READ_ONLY
and then sets an SQLWarning.

The holding facility for the ResultSet that is created from the Statement
object created by this method is set to the value specified by
Connection.setHoldability. If Connection.setHoldability has
never been executed, the HIRDB_CURSOR property setting is used.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to the Connection object.

• Creation of the Statement object resulted in an error.

• A value other than a ResultSet literal is specified for the type of the result
set.

• A value other than a ResultSet literal is specified for parallel processing
mode.

(f) createStatement(int resultSetType, int resultSetConcurrency, int
resultSetHoldability)
Function

Creates a Statement object for sending an SQL statement to the database.

18. Type4 JDBC Driver

1376

Format

public synchronized Statement createStatement(int
resultSetType, int resultSetConcurrency, int
resultSetHoldability) throws SQLException

Arguments

int resultSetType

Type of result set

int resultSetConcurrency

Parallel processing mode

int resultSetHoldability

Holding facility for ResultSet

Return value

Statement object

Functional detail

This method creates a Statement object for sending an SQL statement to the
database.

If TYPE_SCROLL_SENSITIVE is specified for the type of the result set, this driver
changes it to TYPE_SCROLL_INSENSITIVE and then sets an SQLWarning.

For parallel processing mode, the driver supports only CONCUR_READ_ONLY. If
CONCUR_UPDATABLE is specified, the driver changes it to CONCUR_READ_ONLY
and then sets an SQLWarning.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to the Connection object.

• Creation of the Statement object resulted in an error.

• A value other than a ResultSet literal is specified for the type of the result
set.

• A value other than a ResultSet literal is specified for parallel processing
mode.

• A value other than a ResultSet literal is specified for the holding facility
for the ResultSet.

18. Type4 JDBC Driver

1377

(g) getAutoCommit()
Function

Acquires the current automatic commit mode for this Connection object.

Format

public boolean getAutoCommit() throws SQLException

Arguments

None.

Return value

Current automatic commit mode for the Connection object

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

(h) getCatalog()
Function

Acquires the current catalog name for this Connection object.

This method always returns null.

Format

public synchronized String getCatalog() throws SQLException

Arguments

None.

Return value

This method always returns null because there is no catalog in HiRDB.

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

(i) getHoldability()
Function

Acquires the current holding facility for ResultSet objects that are created by

18. Type4 JDBC Driver

1378

using this Connection object.

This method's return value will be the holding facility for a ResultSet object if
no holding facility was specified when the Statement (PreparedStatement)
object was created.

Format

public synchronized int getHoldability() throws SQLException

Arguments

None.

Return value

One of the following ResultSet types:

• ResultSet.HOLD_CURSORS_OVER_COMMIT

• ResultSet.CLOSE_CURSORS_AT_COMMIT

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

(j) getMetaData()
Function

Creates a DatabaseMetaData object.

Format

public synchronized DatabaseMetaData getMetaData() throws
SQLException

Arguments

None.

Return value

DatabaseMetaData object

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

18. Type4 JDBC Driver

1379

(k) getTransactionIsolation()
Function

Acquires this Connection object's current transaction cut-off level.

This method always returns TRANSACTION_REPEATABLE_READ.

Format

public int getTransactionIsolation() throws SQLException

Arguments

None.

Return value

This method always returns TRANSACTION_REPEATABLE_READ.

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

(l) getTypeMap()
Function

Acquires the Map object related to this Connection object.

This driver returns an empty java.util.HashMap object that contains no
information.

Format

public synchronized java.util.Map getTypeMap() throws
SQLException

Arguments

None.

Return value

Empty java.util.HashMap object

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

18. Type4 JDBC Driver

1380

(m) getWarnings()
Function

Acquires as an SQLWarning object the warnings reported by calls related to this
Connection object.

Format

public SQLWarning getWarnings() throws SQLException

Arguments

None.

Return value

First SQLWarning object (if there is no such SQLWarning object, the method
returns null)

Functional detail

This method acquires the SQLWarning object held by the corresponding
Connection object.

By executing the getNextWarning method of the acquired SQLWarning
object, you can acquire the next warning.

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

(n) isClosed()
Function

Acquires a value indicating whether this Connection object is closed.

Format

public boolean isClosed()

Arguments

None.

Return value

If this Connection object is closed, the method returns true; if not, the method
returns false.

18. Type4 JDBC Driver

1381

Functional detail

This method acquires a value indicating whether this Connection object is
closed. The database connection is closed when the close method is called or
when a specific fatal error has occurred. This method is guaranteed to return true
only when this method is called after the Connection.close method. This
method cannot be used to determine whether the database connection is valid.

Exceptions

None.

(o) isReadOnly()
Function

Acquires a value indicating whether this Connection object is in the read-only
mode.

This driver always returns false.

Format

public synchronized boolean isReadOnly() throws SQLException

Arguments

None.

Return value

This method always returns false.

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

(p) nativeSQL(String sql)
Function

Converts any escape clause in a specified SQL statement to a format that can be
executed by HiRDB, and then returns the SQL statement.

Format

public String nativeSQL(String sql) throws SQLException

Arguments

String sql

18. Type4 JDBC Driver

1382

SQL statement that has not been converted

Return value

SQL statement that can be executed by HiRDB (if the sql argument is NULL, the
method returns NULL; if it is the null character, the method returns the null
character)

Functional detail

This method converts any escape clause in a specified SQL statement to a format
that can be executed by HiRDB, and then returns the SQL statement.

The following are the syntax rules for escape clauses:

#

escape-clause ::= escape-sequence-for-date-or-time-or-timestamp
 | LIKE-escape-sequence
 | outer-join-escape-sequence
 | procedure-call-escape-sequence
 | scalar-function-escape-sequence
 | assignment-escape-sequence

escape-sequence-for-date-or-time-or-timestamp ::= date-escape-sequence
 | time-escape-sequence
 | timestamp-escape-sequence

date-escape-sequence ::=
 escape-start-code d default-character-string-representation-of-date-data escape-end-code

time-escape-sequence ::=
 escape-start-code t default-character-string-representation-of-time-data escape-end-code

timestamp-escape-sequence ::=
 escape-start-code ts default-character-string-representation-of-timestamp-data escape-end-code

LIKE-escape-sequence ::=
 escape-start-code escape escape-character escape-end-code

outer-join-escape-sequence ::= escape-start-code oj joined-table escape-end-code

procedure-call-escape-sequence ::=
 escape-start-code call [authorization identifier.]routine-identifier
 [([argument[,argument]...])] escape-end-code

assignment-escape-sequence ::= escape-start-code set assignment-statement escape-end-code

scalar-function-escape-sequence ::= escape-start-code fn scalar-function escape-end-code
scalar-function ::= scalar-function-in-default-format#

escape-start-code ::= '{'
escape-end-code ::= '}'

18. Type4 JDBC Driver

1383

For details about the scalar function in the default format, see Appendix I. Scalar
Functions That Can Be Specified in the Escape Clause.

For details about the underlined parts, see the manual HiRDB Version 9 SQL
Reference. Note that an escape clause cannot be specified in an underlined part.
Because the JDBC driver does not perform syntax analysis on the underlined
parts, they will remain the same after conversion and will be subject to syntax
analysis by the HiRDB server.

The following keywords can be used in escape sequences (these keywords are not case
sensitive):

1. d in a date escape sequence

2. t in a time escape sequence

3. ts in a timestamp escape sequence

4. escape in a LIKE escape sequence

5. oj in an outer join escape sequence

6. call in a procedure call escape sequence

7. fn in a scalar function escape sequence

8. set in an assignment escape sequence

The escape clause entry rules are as follows:

• The single-byte space is used as the delimiter character in an escape clause.

• Delimiters can be inserted following an escape start code, following a keyword,
and before an escape end code.

• In a procedure call escape sequence, insert delimiters immediately after call.

• You can specify multiple escape clauses in a single SQL statement.

• Curly brackets ({}) in a comment (a character string enclosed by/* and */) and
curly brackets enclosed in single (') or double (") quotation marks are not treated
as part of an escape clause.

• The driver converts the escape clauses in an SQL statement to a format that can
be executed by HiRDB. Note that only the part of each escape clause that is
bracketed by the curly brackets is converted. The driver converts nothing outside
the escape clauses.

18. Type4 JDBC Driver

1384

The following table shows the escape clause conversion rules.

Table 18-11: Escape clause conversion rules

#1

If the parentheses following the routine identifier are missing, the driver adds
them.

#2

For details about the conversion processing, see conversion processing for the
scalar function escape clause below.

The driver converts a scalar function in the default format to the HiRDB format. For
an XDM/RD E2 connection, the driver converts it to the XDM/RD E2 format.

Escape clause Before conversion After conversion

Date escape-start-code d
default-character-string-representatio
n-of-date-data escape-end-code

default-character-string-representation-o
f-date-data

Time escape-start-code t
default-character-string-representatio
n-of-time-data escape-end-code

default-character-string-representation-o
f-time-data

Timestamp escape-start-code ts
default-character-string-representatio
n-of-timestamp-data escape-end-code

default-character-string-representation-o
f-timestamp-data

LIKE escape-start-code escape
escape-character escape-end-code

escape escape-character

Outer join escape-start-code oj joined-table
escape-end-code

joined-table

Procedure call escape-start-code call
[authorization
identifier.]routine-identifier[([argu
ment[,argument]...])]
escape-end-code

For HiRDB connection:
call[authorization
identifier.]routine-identifier([argu
ment[,argument]...])#1

For XDM/RD E2 connection:
call[authorization
identifier.]routine-identifier[([argu
ment[,argument]...])]

Scalar function escape-start-code fn scalar-function
escape-end-code

scalar-function-in-HiRDB-format#2

Assignment escape-start-code set
assignment-statement
escape-end-code

set assignment-statement

18. Type4 JDBC Driver

1385

If a HiRDB scalar function corresponding to the default format is HiRDB's
system-defined scalar function, the driver adds MASTER at the beginning of the
function name.

Table 18-12 shows the conversion formats of scalar functions whose default format
differs from the HiRDB format of scalar functions, and Table 18-13 shows the
conversion formats of scalar functions whose default format differs from the XDM/RD
E2 format.

In general, the driver does not check the number of arguments in scalar functions.
However, if the scalar function name is LOCATE, the driver converts a comma
indicating an argument delimiter to IN or FROM, thereby checking the number of
arguments.

Table 18-12: Conversion formats of scalar functions whose default format
differs from the HiRDB format

Scalar function Format before
conversion

Format after conversion
(HiRDB format)

Mathematical function CEILING(number) MASTER.CEIL(number)

LOG(float) MASTER.LN(float)

TRUNCATE(number,
places)

MASTER.TRUNC(number,
places)

String functions CHAR(code) MASTER.CHR(code)

INSERT(string1, start,
length, string2)

MASTER.INSERTSTR(string
1, start, length, string2)

LCASE(string) LOWER(string)

LEFT(string, count) MASTER.LEFTSTR(string,
count)

LOCATE(string1,
string2[, start])

POSITION(string1 IN string2
[FROM start])

RIGHT(string, count) MASTER.RIGHTSTR(string,
count)

SUBSTRING(string,
start, length)

SUBSTR(string, start, length)

UCASE(string) UPPER(string)

Time and date functions CURDATE() CURRENT DATE

CURRENT_DATE() CURRENT DATE

CURTIME() CURRENT TIME

18. Type4 JDBC Driver

1386

Table 18-13: Conversion formats of scalar functions whose default format
differs from the XDM/RD E2 format

The following shows examples of conversion for HiRDB connection:

CURRENT_TIME() CURRENT TIME

CURRENT_TIME(time-
precision)

CURRENT TIME

NOW() CURRENT TIMESTAMP(6)

System function USER() USER

Scalar function Format before
conversion

Format after conversion
(XDM/RD E2 format)

Mathematical function LOG(float) LN(float)

String functions LCASE(string) LOWER(string)

LOCATE(string1,
string2[, start])

POSITION(string1 IN string2
[FROM start])

LTRIM(string) TRIM(LEADING FROM
string)

RTRIM(string) TRIM(TRAILING FROM
string)

SUBSTRING(string,
start, length)

SUBSTR(string, start, length)

UCASE(string) UPPER(string)

Time and date functions CURDATE() CURRENT DATE

CURRENT_DATE() CURRENT DATE

CURTIME() CURRENT TIME

CURRENT_TIME() CURRENT TIME

NOW() CURRENT TIMESTAMP(6)

System function USER() USER

Scalar function Format before
conversion

Format after conversion
(HiRDB format)

18. Type4 JDBC Driver

1387

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to this Connection object.

• The format of an escape clause in the specified SQL statement is invalid:

 { and a keyword are specified, but } is missing.

 There is no procedure name after {call.

 There is no space between {call and the procedure name.

 {call procedure-name(is not followed by).

 {? = call is specified.

 The LOCATE function is specified in an escape clause, but no argument is
specified.

 The LOCATE function is specified in an escape clause, but the number of
arguments within the parentheses is invalid.

 For XDM/RD E2 connection, the LTRIM or RTRIM function is specified in
an escape clause, but no argument is specified.

(q) prepareCall(String sql)
Function

Creates a CallableStatement object for executing a CALL statement.

Format

public synchronized CallableStatement prepareCall(String
sql) throws SQLException

Scalar function Before conversion After
conversion

Scalar function whose default format is
the same as the HiRDB format

System built-in
scalar function

{fn ABS(number)} ABS(number)

System-defined
scalar function

{fn ASCII(string)} MASTER.ASCII(
string)

Scalar function whose default format
differs from the HiRDB format

System built-in
scalar function

{fn UCASE(string)} UPPER(string)

System-defined
scalar function

{fn CEILING(number)} MASTER.CEIL(
number)

18. Type4 JDBC Driver

1388

Arguments

String sql

SQL statement to be executed (you can specify a statement other than the
CALL statement)

Return value

CallableStatement object

Functional detail

This method creates a CallableStatement object for executing a CALL
statement.

The holding facility for the ResultSet that is created from the
CallableStatement object created by this method is set to the value specified
by Connection.setHoldability. If Connection.setHoldability has
never been executed, the HIRDB_CURSOR property setting is used.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to this Connection object.

• Creation of the CallableStatement object resulted in an error.

(r) prepareCall(String sql, int resultSetType, int resultSetConcurrency)
Function

Creates a CallableStatement object for executing a CALL statement.

Format

public synchronized CallableStatement prepareCall(String
sql, int resultSetType, int resultSetConcurrency) throws
SQLException

Arguments

String sql

SQL statement to be executed (you can specify a statement other than the
CALL statement)

int resultSetType

Type of result set

int resultSetConcurrency

18. Type4 JDBC Driver

1389

Parallel processing mode

Return value

CallableStatement object

Functional detail

This method creates a CallableStatement object for executing a CALL
statement.

If TYPE_SCROLL_SENSITIVE is specified for the type of the result set, this driver
changes it to TYPE_SCROLL_INSENSITIVE and then sets an SQLWarning.

For parallel processing mode, the driver supports only CONCUR_READ_ONLY. If
CONCUR_UPDATABLE is specified, the driver changes it to CONCUR_READ_ONLY
and then sets an SQLWarning.

The holding facility for the ResultSet that is created from the
CallableStatement object created by this method is set to the value specified
by Connection.setHoldability. If Connection.setHoldability has
never been executed, the HIRDB_CURSOR property setting is used.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to this Connection object.

• Creation of the CallableStatement object resulted in an error.

• A value other than a ResultSet literal is specified for the type of the result
set.

• A value other than a ResultSet literal is specified for parallel processing
mode.

(s) prepareCall(String sql, int resultSetType, int resultSetConcurrency, int
resultSetHoldability)
Function

Creates a CallableStatement object for executing a CALL statement.

Format

public synchronized CallableStatement prepareCall(String
sql, int resultSetType, int resultSetConcurrency, int
resultSetHoldability) throws SQLException

Arguments

String sql

18. Type4 JDBC Driver

1390

SQL statement to be executed (you can specify a statement other than the
CALL statement)

int resultSetType

Type of result set

int resultSetConcurrency

Parallel processing mode

int resultSetHoldability

Holding facility for ResultSet

Return value

CallableStatement object

Functional detail

This method creates a CallableStatement object for executing a CALL
statement.

If TYPE_SCROLL_SENSITIVE is specified for the type of the result set, this driver
changes it to TYPE_SCROLL_INSENSITIVE and then sets an SQLWarning.

For parallel processing mode, the driver supports only CONCUR_READ_ONLY. If
CONCUR_UPDATABLE is specified, the driver changes it to CONCUR_READ_ONLY
and then sets an SQLWarning.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to this Connection object.

• Creation of the CallableStatement object resulted in an error.

• A value other than a ResultSet literal is specified for the type of the result
set.

• A value other than a ResultSet literal is specified for parallel processing
mode.

• A value other than a ResultSet literal is specified for the holding facility
for the ResultSet.

(t) prepareStatement(String sql)
Function

Creates a PreparedStatement object for sending an SQL statement with
parameters to the database.

Format

18. Type4 JDBC Driver

1391

public synchronized PreparedStatement
prepareStatement(String sql) throws SQLException

Arguments

String sql

SQL statement to be executed

Return value

PreparedStatement object

Functional detail

This method creates a PreparedStatement object for sending an SQL
statement with parameters to the database.

The holding facility for the ResultSet that is created from the
PreparedStatement object created by this method is set to the value specified
by Connection.setHoldability. If Connection.setHoldability has
never been executed, the HIRDB_CURSOR property setting is used.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to this Connection object.

• Creation of the PreparedStatement object resulted in an error.

(u) prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)
Function

Creates a PreparedStatement object for sending an SQL statement with
parameters to the database.

Format

public synchronized PreparedStatement
prepareStatement(String sql, int resultSetType, int
resultSetConcurrency) throws SQLException

Arguments

String sql

SQL statement to be executed (you can specify a statement other than the
CALL statement)

18. Type4 JDBC Driver

1392

int resultSetType

Type of result set

int resultSetConcurrency

Parallel processing mode

Return value

PreparedStatement object

Functional detail

This method creates a PreparedStatement object for sending an SQL
statement with parameters to the database.

If TYPE_SCROLL_SENSITIVE is specified for the type of the result set, this driver
changes it to TYPE_SCROLL_INSENSITIVE and then sets an SQLWarning.

For parallel processing mode, the driver supports only CONCUR_READ_ONLY. If
CONCUR_UPDATABLE is specified, the driver changes it to CONCUR_READ_ONLY
and then sets an SQLWarning.

The holding facility for the ResultSet that is created from the
PreparedStatement object created by this method is set to the value specified
by Connection.setHoldability. If Connection.setHoldability has
never been executed, the HIRDB_CURSOR property setting is used.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to this Connection object.

• Creation of the PreparedStatement object resulted in an error.

• A value other than a ResultSet literal is specified for the type of the result
set.

• A value other than a ResultSet literal is specified for parallel processing
mode.

(v) prepareStatement(String sql, int resultSetType, int
resultSetConcurrency, int resultSetHoldability)
Function

Creates a PreparedStatement object for sending an SQL statement with
parameters to the database.

Format

public synchronized PreparedStatement

18. Type4 JDBC Driver

1393

prepareStatement(String sql, int resultSetType, int
resultSetConcurrency, int resultSetHoldability) throws
SQLException

Arguments

String sql

SQL statement to be executed (you can specify a statement other than the
CALL statement)

int resultSetType

Type of result set

int resultSetConcurrency

Parallel processing mode

int resultSetHoldability

Holding facility for ResultSet

Return value

PreparedStatement object

Functional detail

This method creates a PreparedStatement object for sending an SQL
statement with parameters to the database.

If TYPE_SCROLL_SENSITIVE is specified for the type of the result set, this driver
changes it to TYPE_SCROLL_INSENSITIVE and then sets an SQLWarning.

For parallel processing mode, the driver supports only CONCUR_READ_ONLY. If
CONCUR_UPDATABLE is specified, the driver changes it to CONCUR_READ_ONLY
and then sets an SQLWarning.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to this Connection object.

• Creation of the PreparedStatement object resulted in an error.

• A value other than a ResultSet literal is specified for the type of the result
set.

• A value other than a ResultSet literal is specified for parallel processing
mode.

• A value other than a ResultSet literal is specified for the holding facility

18. Type4 JDBC Driver

1394

for the ResultSet.

(w) rollback()
Function

Undoes all changes made by the current transaction and releases all database
locks currently held by this Connection object.

If you call this method while the automatic commit mode is enabled, the method
performs rollback processing without throwing an exception.

Format

public void rollback() throws SQLException

Arguments

None.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• A database access error has occurred.

• close() has already been issued to the Connection object.

(x) setAutoCommit(boolean autoCommit)
Function

Sets the automatic commit mode status for this connection.

Format

public void setAutoCommit(boolean autoCommit) throws
SQLException

Arguments

boolean autoCommit

Specifies true to enable the automatic commit mode and false to disable
it.

Return value

None.

18. Type4 JDBC Driver

1395

Functional detail

This method sets the automatic commit mode status for this connection. When a
connection is in automatic commit mode, each of its SQL statements is committed
as a separate transaction after it has executed. When a connection is not in
automatic commit mode, its SQL statements are grouped as transactions to be
terminated by a call to the commit method or as transactions to be terminated by
a call to the rollback method. The default mode for a new connection is
automatic commit mode.

Automatic commit is performed upon completion of an SQL statement. If the
SQL statement returns a ResultSet object, the SQL statement is completed
when the ResultSet object is closed.

A transaction that is executing when this method is called will not be committed.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This Connection object is running under a distributed transaction.

• close() has already been issued to this Connection object.

(y) setCatalog(String catalog)
Function

This driver ignores this method's specification because HiRDB does not support
catalogs.

Format

public synchronized void setCatalog(String catalog) throws
SQLException

Arguments

String catalog

Ignores the specified value because there is no catalog in HiRDB.

Return value

This method always returns false.

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

18. Type4 JDBC Driver

1396

(z) setHoldability(int holdability)
Function

Changes the holding facility for a ResultSet object that is created by using this
Connection object.

Format

public synchronized void setHoldability(int holdability)
throws SQLException

Arguments

int holdability

Holding facility literals for ResultSet
(ResultSet.HOLD_CURSORS_OVER_COMMIT or
ResultSet.CLOSE_CURSORS_AT_COMMIT)

Return value

None.

Functional detail

This method changes the holding facility for a ResultSet object that is created
by using this Connection object.

The value of this method is the setting for createStatement
(prepareStatement, prepareCall) that is called without the holding facility
specified. It has no effect on an existing Statement or a ResultSet that is
created (has been created) by that Statement.

The following table shows the default value for the holding facility.

Table 18-14: Default value for holding facility

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued to this Connection object.

• A value other than ResultSet.HOLD_CURSORS_OVER_COMMIT or

HiRDB_CURSOR property value Default value

TRUE ResultSet.HOLD_CURSORS_OVER_COMMIT

FALSE ResultSet.CLOSE_CURSORS_AT_COMMIT

Not specified ResultSet.CLOSE_CURSORS_AT_COMMIT

18. Type4 JDBC Driver

1397

ResultSet.CLOSE_CURSORS_AT_COMMIT is specified in the
holdability argument.

(aa) setReadOnly(boolean readOnly)
Function

This method's value is ignored because HiRDB does not have a dedicated mode.

Format

public synchronized void setReadOnly(boolean readOnly)
throws SQLException

Arguments

boolean readOnly

The specified value is ignored because there is no dedicated mode in HiRDB.

Return value

None.

Exceptions

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

(ab)setTransactionIsolation(int level)
Function

This method's value is ignored because the value is always
TRANSACTION_REPEATABLE_READ in HiRDB.

Format

public void setTransactionIsolation(int level) throws
SQLException

Arguments

int level

Transaction cut-off level

Return value

None.

Exceptions

18. Type4 JDBC Driver

1398

If close() has already been issued to this Connection object, the JDBC driver
throws an SQLException.

(ac) checkSession(int waittime)
Function

Checks the current connection status.

Format

public int checkSession (int waittime) throws SQLException

Arguments

int waittime:

Specifies the wait time (in seconds). If 0 is specified, the JDBC driver waits
until the time specified by the PDCWAITTIME client environment definition.

Return value

PrdbConnection.SESSION_ALIVE:

The method was able to confirm that a connection is currently established.

PrdbConnection.SESSION_NOT_ALIVE:

Because of a cause other than a timeout within the time specified in the
argument, the method was unable to confirm that a connection is currently
established.

PrdbConnection.SESSION_CHECK_TIMEOUT:

Because of a timeout within the time specified in the argument, the method
was unable to confirm that a connection is currently established.

Exceptions

If the waittime argument is a negative value, the driver throws a
java.sql.SQLException.

(ad)setHiRDB_Audit_Info(int pos, String userinf)
Function

Specifies user-specific connection information (user-added information).

Format

public void setHiRDB_Audit_Info(int pos, String userinf)
throws SQLException

18. Type4 JDBC Driver

1399

Arguments

int pos

Item number of the user-added information:

1: User-added information 1

2: User-added information 2

3: User-added information 3

String userinf

User-added information. The data specified for user-added information is
converted to the character set specified in the ENCODELANG property during
connection establishment, or the setEncodeLang method, or the HiRDB
server's character codes during HiRDB character data processing. Specify
data whose length will not exceed 100 bytes after code conversion. To cancel
an existing setting, specify the NULL value.

Return value

None.

Functional detail

This method specifies user-added information, such as the account information
for an application that accesses the HiRDB server. The specified user-added
information remains in effect until it is canceled. The specified user-added
information is output to the audit trail when an SQL statement that uses the
Statement, PreparedStatement, or CallableStatement object created
by using the corresponding Connection object is executed.

This method corresponds to the specification of user-specific connection
information (DECLARE AUDIT INFO SET) in an embedded SQL statement.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• The corresponding Connection object is closed.

• Code conversion of user-added information fails.

• A value other than 1, 2, or 3 is specified in pos.

• The length of the data obtained after code conversion of the user-added
information exceeds 100 bytes.

(3) Package and class names
The names of the package and class for installing this interface are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

18. Type4 JDBC Driver

1400

Class name: PrdbConnection

(4) Notes
(a) Holdability specification

If holdability is specified with one of the methods shown below, the HIRDB_CURSOR
specification value in either the URL syntax or the properties can be overwritten for
each Statement object (Statement, PreparedStatement or
CallableStatement object) and Connection object:

• resultSetHoldability argument of the createStatement,
preparedStatement or prepareCall method

• holdability argument of the setHoldability method

• Whether or not UNTIL DISCONNECT is specified in the SQL statement (SELECT
statement) to be executed

For ResultSet and DatabaseMetaData objects (when the setHoldability
method is used) generated by the applicable method, the holdability specifications that
become effective change depending on the combinations of these specifications and
the HIRDB_CURSOR specifications.

Table 18-5 shows the holdability specifications that become effective for Statement
objects generated by the following methods:

• createStatement(int resultSetType,int resultSetConcurrency,
int resultSetHoldability)

• prepareStatement(int resultSetType,int resultSetConcurrency,
int resultSetHoldability)

• prepareCall(int resultSetType,int resultSetConcurrency, int
resultSetHoldability)

18. Type4 JDBC Driver

1401

Table 18-15: Effective holdability specifications (1/2)

Legend:

T: The JDBC driver operates as if TRUE were specified for HIRDB_CURSOR.

F: The JDBC driver operates as if FALSE were specified for HIRDB_CURSOR.

Table 18-16 shows the holdability specifications that become effective for Statement
or DatabaseMetaData objects generated by methods other than the Table 18-15
methods.

HIRDB_CURSOR or
setHiRDBCursorMode

specification

Specification value of resultSetHoldability argument

ResultSet.
HOLD_CURSOR
S_OVER_COMMI

T

ResultSet.
CLOSE_CURSORS_AT_COMMIT

Execution of
SELECT

statement with
UNTIL

DISCONNECT
specified

Execution of other
SQL statement

TRUE specified for
HIRDB_CURSOR in
properties

TRUE specified for
HIRDB_CURSOR in
URL syntax

T T F

FALSE specified
for
HIRDB_CURSOR in
URL syntax

T T F

FALSE specified
for
HIRDB_CURSOR in
properties

TRUE specified for
HIRDB_CURSOR in
URL syntax

T T F

FALSE specified
for
HIRDB_CURSOR in
URL syntax

T T F

true specified for
setHiRDBCursorMode

T T F

false specified for
setHiRDBCursorMode

T T F

18. Type4 JDBC Driver

1402

Table 18-16: Effective holdability specifications (2/2)

Legend:

T: The JDBC driver operates as if TRUE were specified for HIRDB_CURSOR.

F: The JDBC driver operates as if FALSE were specified for HIRDB_CURSOR.

For details about HIRDB_CURSOR, see 18.2.2 Connecting to HiRDB with the

HIRDB_CURSOR or
setHiRDBCursorMode

specification

Specification value of setHoldability
method

No execution of
setHoldability method

ResultSet.
HOLD_CURS
ORS_OVER_

COMMIT

ResultSet.
CLOSE_CURSORS_AT_

COMMIT

Execution
of SELECT
statement
with UNTIL
DISCONNE

CT specified

Execution
of other

SQL
statement

Execution
of SELECT
statement
with UNTIL
DISCONNE

CT specified

Execution
of other

SQL
statement

TRUE
specified
for
HIRDB_CU
RSOR in
properties

TRUE
specified for
HIRDB_CUR
SOR in URL
syntax

T T F T T

FALSE
specified for
HIRDB_CUR
SOR in URL
syntax

T T F T F

FALSE
specified
for
HIRDB_CU
RSOR in
properties

TRUE
specified for
HIRDB_CUR
SOR in URL
syntax

T T F T T

FALSE
specified for
HIRDB_CUR
SOR in URL
syntax

T T F T F

true specified for
setHiRDBCursorMode

T T F T T

false specified for
setHiRDBCursorMode

T T F T F

18. Type4 JDBC Driver

1403

getConnection method.

18.4.3 Statement interface
(1) Overview

The Statement interface provides the following principal functions:

• SQL execution

• Creation of a result set (ResultSet object) as a retrieval result

• Return of the number of updated rows as an updating result

• Specification of the maximum number of rows to be retrieved

• Specification of the maximum query wait time

(2) Methods
The table below lists the methods of the Statement interface. This interface does not
support methods that are not listed in the table. If an unsupported method is specified,
the interface throws an SQLException.

Table 18-17: Statement interface methods

Subsection Method Function

(a) addBatch(String sql) Adds specified SQL statements to this
Statement object's batch.

(b) cancel() Cancels the SQL statements executing in the
corresponding object and in objects using the
same connection as the corresponding object.

(c) clearBatch() Clears all SQL statements registered in this
Statement object's batch.

(d) clearWarnings() Clears all warnings that have been reported for
this Statement object.

(e) close() Closes the Statement object and any
ResultSet object created from this
Statement object.

(f) execute(String sql) Executes a specified SQL statement.

(g) executeBatch() Executes the SQL statements registered in a
batch and returns an array of the numbers of
updated rows.

(h) executeQuery(String sql) Executes a specified retrieval SQL statement
and returns a ResultSet object as the result.

18. Type4 JDBC Driver

1404

(i) executeUpdate(String sql) Executes a specified non-retrieval SQL
statement and returns the number of updated
rows.

(j) getConnection() Returns the Connection object that created
this Statement object.

(k) getFetchDirection() Acquires the default fetch direction for a result
set that is created from this Statement object.

(l) getFetchSize() Acquires the default fetch size for a ResultSet
object that is created from this Statement
object.

(m) getMaxFieldSize() Acquires the maximum number of bytes for the
character columns or binary columns of a
ResultSet object that is created by this
Statement object.

(n) getMaxRows() Acquires the maximum number of rows that can
be stored in a ResultSet object created by this
Statement object.

(o) getMoreResults() Moves to the next result set.

(p) getQueryTimeout() Returns the SQL execution timeout value (in
seconds).

(q) getResultSet() Acquires the current results as a ResultSet
object.

(r) getResultSetConcurrency() Acquires the parallel processing mode for a
ResultSet object that is created from this
Statement object.

(s) getResultSetHoldability() Acquires the holding facility for a ResultSet
object that is created from this Statement
object.

(t) getResultSetType() Acquires the type of the result set of a
ResultSet object that is created from this
Statement object.

(u) getUpdateCount() Returns the number of updated rows.

(v) getWarnings() Acquires the first warning that is reported by a
call related to this Statement object.

(w) setCursorName(String name) This method ignores the specified value because
the driver does not support positioned updating
or deletion processing.

Subsection Method Function

18. Type4 JDBC Driver

1405

(a) addBatch(String sql)
Function

Adds specified SQL statements to this Statement object's batch.

You can register a maximum of 2,147,483,647 SQL statements to be executed.

Format

public synchronized void addBatch(String sql) throws
SQLException

Arguments

String sql

SQL statements to be executed

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

(x) setEscapeProcessing(boolean enable) Enables or disables escape syntax analysis by
this Statement object.

(y) setFetchDirection(int direction) Specifies the default fetch direction for a result
set that is created from this Statement object.

(z) setFetchSize(int rows) Specifies the default fetch size for a ResultSet
object that is created from this Statement
object.

(aa) setMaxFieldSize(int max) Sets a maximum number of bytes for each
character column or binary column in a
ResultSet object that is created from this
Statement object.

(ab) setMaxRows(int max) Specifies the maximum number of rows that can
be stored in a ResultSet object that is created
from this Statement object.

(ac) setQueryTimeout(int seconds) Specifies an SQL execution timeout value (in
seconds).

Subsection Method Function

18. Type4 JDBC Driver

1406

• close() has already been issued for the Connection object that created
this Statement object.

• An attempt was made to register more than 2,147,483,647 SQL statements.

• null or a character string with a length of 0 is specified for the SQL
statements.

(b) cancel()
Function

Cancels the SQL statements executing in the corresponding object and in objects
using the same connection as the corresponding object.

Format

public void cancel() throws SQLException

Arguments

None.

Return value

None.

Functional detail

You can use the cancel method to cancel executing SQL statements#
asynchronously.

If the corresponding Statement object is not executing any SQL statements, but
another object is executing SQL statements on the same connection object, this
method performs asynchronous cancellation.

When cancellation processing is performed on the HiRDB server, any
ResultSet, PreparedStatement, and CallableStatement objects created
prior to the cancellation are ignored regardless of the following settings:

• HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR property in the
Properties argument of DriverManager.getConnection

• STATEMENT_COMMIT_BEHAVIOR in URL

• setStatementCommitBehavior of the DataSource interface

• HIRDB_CURSOR property in the Properties argument of
DriverManager.getConnection

• HIRDB_CURSOR in URL

• setHiRDBCursorMode of the DataSource interface

18. Type4 JDBC Driver

1407

• setHoldability method of the Connection interface

• resultSetHoldability argument in the createStatement and
prepareStatement methods of the Connection interface

• SQL statement (until disconnect specification)

If the corresponding Statement object is not executing any SQL statements and
no other object is executing SQL statements on the same connection object, this
method does not perform cancellation processing on HiRDB.

For a connection that uses XADataSource, an asynchronous cancellation request
is ignored.

#

SQL statements being processed by the server when the HiRDB server has
control (this JDBC driver is waiting for a response).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(c) clearBatch()
Function

Clears all SQL statements registered in this Statement object's batch.

Format

public synchronized void clearBatch() throws SQLException

Arguments

None.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

18. Type4 JDBC Driver

1408

(d) clearWarnings()
Function

Clears all warnings that have been reported for this Statement object.

Format

public synchronized void clearWarnings() throws SQLException

Arguments

None.

Return value

None.

Exceptions

None.

(e) close()
Function

Closes the Statement object and any ResultSet object created from this
Statement object.

Format

public void close() throws SQLException

Arguments

None.

Return value

None.

Functional detail

This method closes the Statement object and any ResultSet object created
from this Statement object.

If the close method of Statement results in an error while a pooling connection
is being used, this method does not throw an SQLException.

In a pooling environment or an XA environment, if the close method of
Statement results in an error because of physical disconnection from the
database, thereby disabling connection pooling,

18. Type4 JDBC Driver

1409

ConnectionEventListener.connectionErrorOccurred() does not
occur.

Exceptions

If a database access error occurs, the JDBC driver throws an SQLException.

(f) execute(String sql)
Function

Executes a specified SQL statement. You can use Statement.getResultSet
and Statement.getUpdateCount to acquire the ResultSet object and the
number of updated rows.

Format

public synchronized boolean execute(String sql) throws
SQLException

Arguments

String sql

SQL statement to be executed

Return value

If a retrieval SQL statement was executed, this method returns true; if not, the
method returns false.

Functional detail

This method executes the specified SQL statement. You can use
Statement.getResultSet and Statement.getUpdateCount to acquire
the ResultSet object and the number of updated rows.

The following table shows the return values of Statement.getResultSet and
Statement.getUpdateCount after execution of this method.

Table 18-18: Relationship between the executed SQL statement and the return
values of Statement.getResultSet and Statement.getUpdateCount

Type of
executed SQL

statement

Return value of Statement.getResultSet Return value of
Statement.getU

pdateCountHiRDB_for_Java_DAB_EXECUTESQL_NOCHK system
property setting

Other than TRUE TRUE

Retrieval SQL
statement

ResultSet object obtained as the execution result -1

18. Type4 JDBC Driver

1410

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

• null or a character string with a length of 0 was specified in the sql
argument.

• A database access error occurred.

(g) executeBatch()
Function

Executes the SQL statements registered in a batch and returns an array of the
numbers of updated rows.

If an error occurs while the SQL statements registered in the batch are executing,
or after they have all executed, the method calls Statement.clearBatch()
and clears the batch registration information.

Format

public synchronized int[] executeBatch() throws SQLException

Arguments

None.

Return value

This method returns as an array the numbers of updated rows for all the executed
SQL statements. The elements of the array are in the order the SQL statements
were registered in the batch. If no SQL statements were registered in the batch, or

Non-retrieval SQL
statement

null ResultSet object of 0
columns

0 or a greater value

SQL execution
resulting in an
error

null null -1

Type of
executed SQL

statement

Return value of Statement.getResultSet Return value of
Statement.getU

pdateCountHiRDB_for_Java_DAB_EXECUTESQL_NOCHK system
property setting

Other than TRUE TRUE

18. Type4 JDBC Driver

1411

the first SQL statement in the batch resulted in an error, the method returns an
array containing no elements.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

The method throws a BatchUpdateException (subclass of SQLException)
in the following cases:

• A retrieval SQL statement was executed in the batch.

• A database access error occurred.

(h) executeQuery(String sql)
Function

Executes a specified retrieval SQL statement and returns a ResultSet object as
the result.

Format

public synchronized ResultSet executeQuery(String sql)
throws SQLException

Arguments

String sql

SQL statement to be executed

Return value

ResultSet object for the execution result

Functional detail

• When TRUE is not specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

The method executes the specified non-retrieval SQL statement and returns
the number of updated rows. For an SQL statement that has no retrieval
result (such as an INSERT statement), the JDBC driver throws an
SQLException.

• When TRUE is specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

18. Type4 JDBC Driver

1412

The method executes the specified SQL statement and returns the resulting
ResultSet object.

For an SQL statement that has no retrieval result (such as an INSERT
statement), the method returns a ResultSet object containing no columns.
You can also use the Statement.getUpdateCount method to acquire the
number of updated rows. The following table shows the return values of the
executeQuery method and the Statement.getUpdateCount method
that is executed after the executeQuery method.

Table 18-19: Return values of the executeQuery method and the
Statement.getUpdateCount method that is executed after the executeQuery
method

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

• A non-retrieval SQL statement was specified (other than when TRUE is
specified for the HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system
property).

• null or a character string with a length of 0 was specified in the sql
argument.

• A database access error occurred.

(i) executeUpdate(String sql)
Function

Executes a specified non-retrieval SQL statement and returns the number of

Executed SQL statement type executeQuery method's
return value

Statement.getUpdateCount
method's return value

Retrieval SQL statement ResultSet object for the
execution result

-1

Non-retrieval SQL
statement

INSERT,
UPDATE,
DELETE

ResultSet object containing
no columns

Number of updated rows

Other ResultSet object containing
no columns

0

SQL statement resulting in an error -- -1

18. Type4 JDBC Driver

1413

updated rows.

Format

public synchronized int executeUpdate(String sql) throws
SQLException

Arguments

String sql

SQL statement to be executed

Return value

The following table shows the return values:

Functional detail

• When TRUE is not specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

The method executes the specified non-retrieval SQL statement and returns
the number of updated rows.

For an SQL statement that returns retrieval results (such as a SELECT
statement), the JDBC driver throws an SQLException.

• When TRUE is specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

The method executes the specified SQL statement.

If the return value is -1, you can use the Statement.getResultSet
method to acquire the ResultSet object. The following table shows the
return value of the Statement.getResultSet method that is executed
after the executeUpdate method.

Executed SQL
statement type

HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property
setting

Other than TRUE TRUE

Retrieval SQL statement -- -1

Non-retr
ieval
SQL
stateme
nt

INSERT,
UPDATE,
DELETE

Number of updated rows Number of updated rows

Other 0 0

18. Type4 JDBC Driver

1414

Table 18-20: Return value of the Statement.getResultSet method that is
executed after the executeUpdate method

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

• A retrieval SQL statement was specified (other than when TRUE is specified
for the HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property).

• null or a character string with a length of 0 was specified in the sql
argument.

• A database access error occurred.

(j) getConnection()
Function

Returns the Connection object that created this Statement object.

Format

public synchronized Connection getConnection() throws
SQLException

Arguments

None.

Return value

Connection object

Exceptions

Executed SQL statement type Statement.getResultSet method's return value

Retrieval SQL statement ResultSet object for the execution result

Non-retrieval SQL
statement

INSERT,
UPDATE,
DELETE

ResultSet object containing no columns

Other ResultSet object containing no columns

SQL statement resulting in an error null

18. Type4 JDBC Driver

1415

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(k) getFetchDirection()
Function

Acquires the default fetch direction for a result set that is created from this
Statement object.

This method's return value is always ResultSet.FETCH_FORWARD because
only the forward fetch direction is supported in HiRDB.

Format

public synchronized int getFetchDirection() throws
SQLException

Arguments

None.

Return value

This method always returns ResultSet.FETCH_FORWARD.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(l) getFetchSize()
Function

Acquires the default fetch size for a ResultSet object that is created from this
Statement object.

Format

public synchronized int getFetchSize() throws SQLException

Arguments

None.

18. Type4 JDBC Driver

1416

Return value

Default fetch size for a ResultSet object that is created from this Statement
object.

Functional detail

This method acquires the default fetch size for a ResultSet object that is created
from this Statement object.

If 0 is specified for setFetchSize, this method returns 0 even though the actual
fetch size depends on the client environment definition. The following table
shows the relationship between the fetch size and the return value.

Table 18-21: Relationship between fetch size and return value

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(m) getMaxFieldSize()
Function

Acquires the maximum number of bytes for the character columns or binary
columns of a ResultSet object that is created by this Statement object. Such
a maximum size is applicable only to [M|N][VAR]CHAR, BINARY, and BLOB
columns. Any excess bytes are discarded.

This method returns the value set by setMaxFieldSize.

Format

public synchronized int getMaxFieldSize() throws
SQLException

Arguments

None.

Return value

setFetchSize setting (m) Return value

0 0

1 m 4096 m

18. Type4 JDBC Driver

1417

Current maximum size (in bytes) for [M|N][VAR]CHAR, BINARY, and BLOB
columns. A value of 0 means that there is no size limit.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(n) getMaxRows()
Function

Acquires the maximum number of rows that can be stored in a ResultSet object
created by this Statement object. Any excess rows are excluded without
notification.

This method returns the value set by setMaxRows.

Format

public synchronized int getMaxRows() throws SQLException

Arguments

None.

Return value

Maximum number of rows that can be stored in a ResultSet object that is
created by this Statement object (a value of 0 means that there is no limit to the
number of rows).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(o) getMoreResults()
Function

Moves to the next result set.

Format

public synchronized boolean getMoreResults() throws

18. Type4 JDBC Driver

1418

SQLException

Arguments

None.

Return value

true

There is another result set.

false

There are no more result sets.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

• A database access error occurred.

(p) getQueryTimeout()
Function

Returns the SQL execution timeout value (in seconds).

This method returns the value set by setQueryTimeout.

If setQueryTimeout has not been executed, the method returns 0.

Format

public synchronized int getQueryTimeout() throws
SQLException

Arguments

None.

Return value

Timeout value in seconds

Exceptions

The JDBC driver throws an SQLException in the following cases:

18. Type4 JDBC Driver

1419

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(q) getResultSet()
Function

Acquires the current results as a ResultSet object.

Format

public synchronized ResultSet getResultSet() throws
SQLException

Arguments

None.

Return value

ResultSet object held by the Statement object (if there are no results, the
method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(r) getResultSetConcurrency()
Function

Acquires the parallel processing mode for a ResultSet object that is created
from this Statement object.

The method always returns ResultSet.CONCUR_READ_ONLY because the
JDBC driver does not support an update cursor.

Format

public synchronized int getResultSetConcurrency() throws
SQLException

Arguments

None.

18. Type4 JDBC Driver

1420

Return value

This method always returns ResultSet.CONCUR_READ_ONLY.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(s) getResultSetHoldability()
Function

Acquires the holding facility for a ResultSet object that is created from this
Statement object.

The holding facility is determined when the Statement object is created and
cannot be changed subsequently.

Format

public synchronized int getResultSetHoldability() throws
SQLException

Arguments

None.

Return value

ResultSet.HOLD_CURSORS_OVER_COMMIT

The ResultSet object may be manipulated even after commit or rollback
processing.

ResultSet.CLOSE_CURSORS_AT_COMMIT

Any attempt after commit or rollback processing to manipulate the
ResultSet object by a method other than close will result in an
SQLException.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

18. Type4 JDBC Driver

1421

(t) getResultSetType()
Function

Acquires the type of the result set of a ResultSet object that is created from this
Statement object.

This method returns ResultSet.TYPE_FORWARD_ONLY or
ResultSet.TYPE_SCROLL_INSENSITIVE because the JDBC driver does not
support an update cursor.

Format

public synchronized int getResultSetType() throws
SQLException

Arguments

None.

Return value

ResultSet.TYPE_FORWARD_ONLY

The cursor can move only forward.

ResultSet.TYPE_SCROLL_INSENSITIVE

The cursor can be scrolled, but a value change does not take effect.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(u) getUpdateCount()
Function

Returns the number of updated rows.

Format

public synchronized int getUpdateCount() throws SQLException

Arguments

None.

18. Type4 JDBC Driver

1422

Return value

The following table shows the return values:

Functional detail

This method returns the number of updated rows.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(v) getWarnings()
Function

Acquires the first warning that is reported by a call related to this Statement
object. If there is more than one warning, each subsequent warning is changed to
the first warning and can be acquired by calling the
SQLWarning.getNextWarning method for the immediately preceding
warning that was acquired.

Format

public synchronized SQLWarning getWarnings() throws
SQLException

Statement object's method execution status Return value of
getUpdateCount

executeXXX method has not been executed. -1

executeXXX method
has been executed.

getMoreResults method was executed after the last
executeXXX method was executed.

-1

The last executeXXX method executed resulted in an error. -1

executeBatch method was executed at the end. -1

An executeXXX
method other than
executeBatch was
executed at the end.

A retrieval SQL statement was
executed at the end.

-1

A
non-retrieval
SQL statement
was executed
at the end.

INSERT,
UPDATE,
DELETE

Number of updated
rows

Other 0

18. Type4 JDBC Driver

1423

Arguments

None.

Return value

First SQLWarning object (if there is no such SQLWarning object, the method
returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(w) setCursorName(String name)
Function

This method ignores the specified value because the driver does not support
positioned updating or deletion processing.

Format

public synchronized void setCursorName(String name) throws
SQLException

Arguments

String name

Cursor name

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(x) setEscapeProcessing(boolean enable)
Function

Enables or disables escape syntax analysis by this Statement object.

18. Type4 JDBC Driver

1424

The default is that escape syntax analysis is enabled.

Format

public synchronized void setEscapeProcessing(boolean enable)
throws SQLException

Arguments

boolean enable

Specifies true to enable escape syntax analysis and false to disable it.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

(y) setFetchDirection(int direction)
Function

Specifies the default fetch direction for a result set that is created from this
Statement object.

The default value is ResultSet.FETCH_FORWARD.

Format

public synchronized void setFetchDirection(int direction)
throws SQLException

Arguments

int direction

Only ResultSet.FETCH_FORWARD, which is the default fetch direction,
can be specified.

Return value

None.

Exceptions

18. Type4 JDBC Driver

1425

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

• A value other than ResultSet.FETCH_FORWARD is specified for
direction.

(z) setFetchSize(int rows)
Function

Specifies the default fetch size for a ResultSet object that is created from this
Statement object. If 0 is specified, the default fetch size depends on the client
environment definition.

Format

public synchronized void setFetchSize(int rows) throws
SQLException

Arguments

int rows

Number of rows to be fetched, in the range from 0 to 4096.

Return value

None.

Functional detail

This method specifies the default fetch size for a ResultSet object that is
created from this Statement object. If 0 is specified, the default fetch size
depends on the client environment definition.

The default value is 0. When a nonzero value is specified, the JDBC driver uses
the block transfer facility by applying the specified value as the value of the
PDBLKF client environment definition. For details about the block transfer
facility, see 4.7 Block transfer facility.

The following table shows the relationship between this setting and the actual
PDBLKF value that is used.

18. Type4 JDBC Driver

1426

Table 18-22: Setting and actual PDBLKF value that is used

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

• The condition rows < 0, maximum number of rows (value of
getMaxRows()) < rows, or 4096 (maximum value of block fetch) < rows
is true.

(aa) setMaxFieldSize(int max)
Function

Sets a maximum number of bytes for each character column or binary column in
a ResultSet object that is created from this Statement object. This maximum
size is applicable to [M|N][VAR]CHAR, BINARY, and BLOB columns. Any excess
bytes are discarded.

The default value is 0.

This setting has no effect on ResultSet objects that have already been created.

Format

public synchronized void setMaxFieldSize(int max) throws
SQLException

Arguments

int max

New maximum number of bytes. A value of 0 means that there is no size
limit. If the maximum number of bytes is an odd number, that value minus 1
is used as the maximum number of bytes for NCHAR and NVARCHAR columns.
As a result of this calculation, if the specified value is 1, the maximum

setFetchSize setting (m) Value of PDBLKF client
environment definition (n)

PDBLKF value used by block
transfer facility

0 1 n 4096 n

Not specified Not specified

1 m 4096 1 n 4096 m

Not specified m

18. Type4 JDBC Driver

1427

number of bytes will become 0 for NCHAR or NVARCHAR columns, in which
case the JDBC driver will assume that there is no size limit.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

• A value less than 0 is specified for max.

(ab)setMaxRows(int max)
Function

Specifies the maximum number of rows that can be stored in a ResultSet object
that is created from this Statement object. Any excess rows are excluded
without notification.

The default value is 0.

This setting has no effect on ResultSet objects that have already been created.

Format

public synchronized void setMaxRows(int max) throws
SQLException

Arguments

int max

New maximum number of rows that can be stored. A value of 0 means that
there is no limit to the number of rows. If 0 is specified when the type of the
result set is ResultSet.TYPE_SCROLL_INSENSITIVE, the maximum
number of rows that can be stored becomes Integer.MAX_VALUE.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

18. Type4 JDBC Driver

1428

• close() has already been issued for the Connection object that created
this Statement object.

• A value less than 0 is specified for max.

(ac) setQueryTimeout(int seconds)
Function

Specifies an SQL execution timeout value (in seconds).

Format

public synchronized void setQueryTimeout(int seconds) throws
SQLException

Arguments

int seconds

Timeout value in seconds

Return value

None.

Functional detail

This method specifies the maximum wait time (in seconds) for communication
with the HiRDB server during SQL statement execution.

If 0 is specified, the value depends on the setting of the PDCWAITTIME client
environment definition.

The default value is 0.

This method ignores the specified value if it is greater than 65535.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the Statement object.

• close() has already been issued for the Connection object that created
this Statement object.

• A value less than 0 is specified for seconds.

(3) Package and class names
The names of the package and class for installing this interface are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

18. Type4 JDBC Driver

1429

Class name: PrdbStatement

(4) Notes
(a) Using the block transfer facility by specifying the setFetchSize method

If the value 1 or greater is specified for the setFetchSize method, the JDBC driver
uses the block transfer facility and requests the HiRDB server to transfer all at once the
retrieval results for the number of rows specified in the argument. For details about the
block transfer facility, see 4.7 Block transfer facility.

Although there is no maximum specification value for the setFetchSize method,
the block transfer facility can transfer only up to 4,096 rows at a time. Therefore, when
a value greater than 4,096 is specified, the number of rows actually transferred at once
will not exceed 4,096.

The following table shows the priorities that determine the number of rows that the
JDBC driver requests the HiRDB server to transfer in a single transmission.

Table 18-23: Priorities for number of rows that the JDBC driver requests the
HiRDB server to transfer in one transmission

For details about the number of rows that the JDBC driver actually receives from the
HiRDB server in one communication when the driver requests the number of rows
indicated in Table 18-23, see 4.7(4) Number of rows transferred in one transmission.
However, when reading this section, replace PDBLKF with number of rows requested
for transfer as determined by the priorities shown in Table 18-23, and replace FETCH
statement with next method of the ResultSet class.

If the retrieval result is larger than the number of transfer rows shown in Table 18-23,
the JDBC driver requests transfer to the HiRDB server as many times as necessary
until retrieval is completed (or until all retrieval requests from the UAP are processed).

If one of the following conditions is satisfied, the number of rows that the JDBC driver
receives from the HiRDB server in one transmission is 1:

• A projection column of the result set contains HiRDB BLOB type data.

• A projection column of the result set contains HiRDB BINARY type data with a
defined length greater than 32,000, and the specification of the PDBINARYBLKF
client environment definition is NO.

Priority Specification value

1 Value specified in the argument of the setFetchSize method of the
ResultSet class

2 Value specified in the argument of the setFetchSize method of the
Statement class

3 Value specified in the PDBLKF client environment definition

18. Type4 JDBC Driver

1430

• All of the following conditions are satisfied:

• During connection setup, LOCATOR is specified for the
LONGVARBINARY_ACCESS property or the setLONGVARBINARY_Access
argument of the DataSource class.

• One of the following is specified:

- UNTIL DISCONNECT is specified in a SELECT statement.

- ResultSet.HOLD_CURSORS_OVER_COMMIT is specified in the
resultSetHoldability argument of the createStatement or
prepareStatement method of the Connection class.

- During connection setup, TRUE is specified for the HIRDB_CURSOR setup
item in the properties or the URL.

- true is specified for the setHiRDBCursorMode argument of the
DataSource class.

(b) Asynchronous cancellation by the cancel method
You can use the cancel method to execute asynchronous cancellation of SQL
statements being processed by the HiRDB server. Even if the target Statement object
is not executing an SQL statement, asynchronous cancellation is executed if another
object is executing an SQL statement for the same connected object.

When asynchronous cancellation is executed at the HiRDB server, all
PreparedStatement and ResultSet objects that were created before the
asynchronous cancellation become invalid, regardless of the specification for
validating or invalidating Statement and ResultSet objects after commit
execution.

The following methods specify whether or not objects are to remain valid after commit
execution:

• HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR property in the
Properties argument of the getConnection method of the DriverManager
class

• STATEMENT_COMMIT_BEHAVIOR in the URL

• setStatementCommitBehavior of the DataSource system interface

• HIRDB_CURSOR property in the Properties argument of the getConnection
method of the DriverManager class

• HIRDB_CURSOR in the URL

• setHiRDBCursorMode of a DataSource-type interface

• setHoldability method of the Connection interface

18. Type4 JDBC Driver

1431

• resultSetHoldability argument of the createStatement or
prepareStatement method of the Connection interface

• SQL statement (with UNTIL DISCONNECT specification)

Asynchronous cancellation is not executed for the HiRDB server if the target
Statement object is not executing an SQL statement, and if no other object is
executing an SQL statement for that same connection object.

If XADataSource was used for the connection, an asynchronous cancellation request
is not valid.

(c) Closing the ResultSet object during execution of an executeXXX method
If you execute an executeXXX method before the ResultSet object created by the
corresponding Statement object has been closed, the JDBC driver closes the
previous ResultSet object that was created. If an attempt is made to use the
previously created ResultSet object to acquire search results after the executeXXX
method has been executed, the JDBC driver will throw an SQLException. The
following shows an example that results in an SQLException:

18.4.4 PreparedStatement interface
(1) Overview

The PreparedStatement interface provides the following principal functions:

• Execution of SQL statements in which the ? parameter is specified

• Specification of the ? parameter

• Generation and return of a ResultSet object as a retrieval result

• Return of the number of updated rows as an updating result

Because the PreparedStatement interface is a subinterface of the Statement
interface, it inherits all of the Statement interface functions.

(2) Methods
The table below lists the methods of the PreparedStatement interface. This
interface does not support methods that are not listed in the table. If an unsupported
method is specified, the interface throws an SQLException.

 Statement st = con.createStatement();
 ResultSet rs1 = st.executeQuery("select * from tb1");
 ResultSet rs2 = st.executeQuery("select * from tb2");
 rs1.next(); // Throw SQLException
 rs2.next();

18. Type4 JDBC Driver

1432

Table 18-24: PreparedStatement interface methods

Subsection Method Function

(a) addBatch() Adds the current parameter set to this
PreparedStatement object's batch.

(b) clearParameters() Clears all values from the current parameter
set that is specified.

(c) execute() Executes the preprocessed SQL statement.

(d) execute(String sql) Executes a specified SQL statement.

(e) executeQuery() Executes the preprocessed retrieval SQL
statement and returns the resulting
ResultSet object.

(f) executeQuery(String sql) Executes a specified retrieval SQL statement
and returns a ResultSet object as the result.

(g) executeUpdate() Executes the preprocessed non-retrieval SQL
statement and returns the number of updated
rows.

(h) executeUpdate(String sql) Executes a specified non-retrieval SQL
statement and returns the number of updated
rows.

(i) setArray(int i, Array x) Sets an Array object in a specified parameter.

(j) setAsciiStream(int parameterIndex,
java.io.InputStream x, int length)

Sets the value of a specified InputStream
object as a ? parameter value.

(k) setBigDecimal(int
parameterIndex,BigDecimal x)

Sets a specified BigDecimal object as a ?
parameter value.

(l) setBinaryStream(int
parameterIndex, java.io.InputStream
x, int length)

Sets the value of a specified InputStream
object as a ? parameter value.

(m) setBlob(int parameterIndex, Blob x) Sets the value of a specified Blob object as a
? parameter value.

(n) setBoolean(int
parameterIndex,boolean x)

Sets a specified boolean value as a ?
parameter value.

(o) setByte(int parameterIndex,byte x) Sets a specified byte value as a ? parameter
value.

(p) setBytes(int parameterIndex,byte
x[])

Sets a specified byte array as a ? parameter
value.

18. Type4 JDBC Driver

1433

(q) setCharacterStream(int
parameterIndex,Reader reader,int
length)

Sets the value of a specified Reader object as
a ? parameter value.

(r) setDate(int parameterIndex,
java.sql.Date x)

Sets a specified java.sql.Date object as a ?
parameter value.

(s) setDate(int parameterIndex,
java.sql.Date x,Calendar cal)

Converts a java.sql.Date object specified
in local time to the equivalent value in a
specified calendar's time zone, and then sets
the resulting value as a ? parameter value.

(t) setDouble(int
parameterIndex,double x)

Sets a specified double value as a ?
parameter value.

(u) setFloat(int parameterIndex,float x) Sets a specified float value as a ? parameter
value.

(v) setInt(int parameterIndex,int x) Sets a specified int value as a ? parameter
value.

(w) setLong(int parameterIndex,long x) Sets a specified long value as a ? parameter
value.

(x) setNull(int parameterIndex,int
sqlType)

Sets the NULL value in a specified ? parameter.

(y) setObject(int parameterIndex,Object
x)

Sets the value of a specified object as a ?
parameter value.

(z) setObject(int parameterIndex,Object
x,int targetSqlType)

Sets the value of a specified object as a ?
parameter value.

(aa) setObject(int parameterIndex,Object
x,int targetSqlType,int scale)

Sets the value of a specified object as a ?
parameter value.

(ab) setShort(int parameterIndex,short x) Sets a specified short value as a ? parameter
value.

(ac) setString(int parameterIndex,String
x)

Sets a specified String object as a ?
parameter value.

(ad) setTime(int parameterIndex,
java.sql.Time x)

Sets a specified java.sql.Time object as a ?
parameter value.

(ae) setTime(int parameterIndex,
java.sql.Time x,Calendar cal)

Converts a java.sql.Time object specified
in local time to the equivalent value in a
specified calendar's time zone, and then sets
the resulting value as a ? parameter value.

(af) setTimestamp(int parameterIndex,
java.sql.Timestamp x)

Sets a specified java.sql.Timestamp
object as a ? parameter value.

Subsection Method Function

18. Type4 JDBC Driver

1434

(a) addBatch()
Function

Adds the current parameter set to the this PreparedStatement object's batch.

You can register a maximum of 2,147,483,647 parameter sets.

Format

public synchronized void addBatch() throws SQLException

Arguments

None.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued for the Connection object that created
this PreparedStatement object.

• No value is set for some ? parameters.

• More than 2,147,483,647 items have been registered in the batch.

(b) clearParameters()
Function

Clears all values from the current parameter set that is specified.

Format

public synchronized void clearParameters() throws
SQLException

Arguments

(ag) setTimestamp(int parameterIndex,
java.sql.Timestamp x,Calendar cal)

Converts a java.sql.Timestamp object
specified in local time to the equivalent value
in a specified calendar's time zone, and then
sets the resulting value as a ? parameter value.

Subsection Method Function

18. Type4 JDBC Driver

1435

None.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued for the Connection object that created
this PreparedStatement object.

(c) execute()
Function

Executes the preprocessed SQL statement.

You can use PreparedStatement.getResultSet and
PreparedStatement.getUpdateCount to obtain the ResultSet object and
the number of updated rows as execution results.

Format

public synchronized boolean execute() throws SQLException

Arguments

None.

Return value

If a retrieval SQL statement was executed, this method returns true; if not, the
method returns false.

Functional detail

This method executes the preprocessed SQL statement.

You can use PreparedStatement.getResultSet and
PreparedStatement.getUpdateCount to obtain the ResultSet object and
the number of updated rows. For the return values of
Statement.getResultSet and Statement.getUpdateCount after method
execution, see 18.4.3(2)(f) execute(String sql).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

18. Type4 JDBC Driver

1436

• close() has already been issued for the Connection object that created
this PreparedStatement object.

• No value is set in at least one ? parameter.

• A database access error occurred.

(d) execute(String sql)
Function

Executes a specified SQL statement. You can use
PreparedStatement.getResultSet and
PreparedStatement.getUpdateCount to obtain the ResultSet object and
the number of updated rows.

Format

public synchronized boolean execute(String sql) throws
SQLException

Arguments

String sql

SQL statement to be executed

Return value

If a retrieval SQL statement was executed, this method returns true; if not, the
method returns false.

Functional detail

This method executes the specified SQL statement. You can use
PreparedStatement.getResultSet and
PreparedStatement.getUpdateCount to obtain the ResultSet object and
the number of updated rows.

For the return values of PreparedStatement.getResultSet and
PreparedStatement.getUpdateCount after execution of this method, see
Table 18-18 Relationship between the executed SQL statement and the return
values of Statement.getResultSet and Statement.getUpdateCount.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued for the Connection object that created
this PreparedStatement object.

18. Type4 JDBC Driver

1437

• null or a character string with a length of 0 was specified in the sql
argument.

• A database access error occurred.

(e) executeQuery()
Function

Executes the preprocessed retrieval SQL statement and returns the resulting
ResultSet object.

Format

public synchronized ResultSet executeQuery() throws
SQLException

Arguments

None.

Return value

ResultSet object for the execution result

Functional detail

• When TRUE is not specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

This method executes the preprocessed retrieval SQL statement and returns
the resulting ResultSet object. If a non-retrieval SQL statement is
executed, the JDBC driver throws an SQLException.

• When TRUE is specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

This method executes the preprocessed SQL statement and returns the
resulting ResultSet object. If a non-retrieval SQL statement is executed,
the method returns a ResultSet object containing no columns.

You can use the Statement.getUpdateCount method to acquire the
number of updated rows.

For the return values of the executeQuery method and the
Statement.getUpdateCount method that is executed after the
executeQuery method, see 18.4.3(2)(h) executeQuery(String sql).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

18. Type4 JDBC Driver

1438

• close() has already been issued for the Connection object that created
this PreparedStatement object.

• A non-retrieval SQL statement was specified (other than when TRUE is
specified for the HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system
property).

• No value is set in at least one ? parameter.

• A database access error occurred.

(f) executeQuery(String sql)
Function

Executes a specified retrieval SQL statement and returns a ResultSet object as
the result.

Format

public synchronized ResultSet executeQuery(String sql)
throws SQLException

Arguments

String sql

SQL statement to be executed

Return value

ResultSet object for the execution result

Functional detail

• When TRUE is not specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

This method executes a specified non-retrieval SQL statement and returns
the number of updated rows. For an SQL statement that has no retrieval
results (such as an INSERT statement), the JDBC driver throws an
SQLException.

• When TRUE is specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

The method executes a specified SQL statement and returns the resulting
ResultSet object. If a non-retrieval SQL statement is executed, the method
returns a ResultSet object containing no columns. You can use the
Statement.getUpdateCount method to acquire the number of updated
rows.

18. Type4 JDBC Driver

1439

For the return values of the executeQuery method and the
Statement.getUpdateCount method that is executed after the
executeQuery method, see 18.4.3(2)(h) executeQuery(String sql).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued for the Connection object that created
this PreparedStatement object.

• A non-retrieval SQL statement was specified (other than when TRUE is
specified for the HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system
property).

• null or a character string with a length of 0 was specified in the sql
argument.

• A database access error occurred.

(g) executeUpdate()
Function

Executes the preprocessed non-retrieval SQL statement and returns the number of
updated rows.

Format

public synchronized int executeUpdate() throws SQLException

Arguments

None.

Return value

The following table shows the return values:

Executed SQL
statement type

HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property
setting

Other than TRUE TRUE

Retrieval SQL statement -- -1

Non-retr
ieval
SQL
stateme
nt

INSERT,
UPDATE,
DELETE

Number of updated rows Number of updated rows

Other 0 0

18. Type4 JDBC Driver

1440

Functional detail

• When TRUE is not specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

This method executes the preprocessed non-retrieval SQL statement and
returns the number of updated rows.

If a retrieval SQL statement is executed, the JDBC driver throws an
SQLException.

• When TRUE is specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

The method executes the preprocessed SQL statement.

If the return value is -1, you can use the Statement.getResultSet
method to acquire the ResultSet object. For the return value of the
Statement.getResultSet method that is executed after the
executeUpdate method was executed, see 18.4.3(2)(i)
executeUpdate(String sql).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has been issued for the object.

• close() has already been issued for the Connection object that created
this object.

• A retrieval SQL statement was executed (other than when TRUE is specified
for the HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property).

• No value is set in at least one ? parameter.

• A database access error occurred.

(h) executeUpdate(String sql)
Function

Executes a specified non-retrieval SQL statement and returns the number of
updated rows.

Format

public synchronized int executeUpdate(String sql) throws
SQLException

Arguments

String sql

18. Type4 JDBC Driver

1441

SQL statement to be executed

Return value

The following table shows the return values:

Functional detail

• When TRUE is not specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

This method executes a specified non-retrieval SQL statement and returns
the number of updated rows.

For an SQL statement that returns retrieval results (such as a SELECT
statement), the JDBC driver throws an SQLException.

• When TRUE is specified for the
HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property

The method executes a specified SQL statement.

If the return value is -1, you can use the Statement.getResultSet
method to acquire the ResultSet object. For the return value of the
Statement.getResultSet method that is executed after the
executeUpdate method was executed, see 18.4.3(2)(i)
executeUpdate(String sql).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued for the Connection object that created
this PreparedStatement object.

• A retrieval SQL statement was specified (other than when TRUE is specified
for the HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property).

Executed SQL
statement type

HiRDB_for_Java_DAB_EXECUTESQL_NOCHK system property
setting

Other than TRUE TRUE

Retrieval SQL statement -- -1

Non-retr
ieval
SQL
stateme
nt

INSERT,
UPDATE,
DELETE

Number of updated rows Number of updated rows

Other 0 0

18. Type4 JDBC Driver

1442

• null or a character string with a length of 0 was specified in the sql
argument.

• A database access error occurred.

(i) setArray(int i,Array x)
Function

Sets an Array object in a specified parameter.

Format

public void setArray(int i,Array x) throws SQLException

Arguments

int i

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Array x

Array object that is to be set in the ? parameter.

Return value

None.

Functional detail

This method sets an Array object in the parameter with a specified parameter
number.

If the data type of the Object array acquired by the Array object's getArray()
does not correspond to the data type acquired by the Array object's
getBaseType(), an SQLException occurs.

The following table shows the correspondence between the data type of the
Object array acquired by the Array object's getArray() and the data type
acquired by the Array object's getBaseType():

Data type acquired by getBaseType() Data type of Object array acquired by
getArray()

java.sql.Types.SMALLINT short[],java.lang.Short[]

java.sql.Types.INTEGER int[],java.lang.Integer[]

java.sql.Types.REAL float[],java.lang.Float[]

java.sql.Types.FLOAT double[],java.lang.Double[]

18. Type4 JDBC Driver

1443

The following table shows the relationships among the i and x arguments and
their values:

Legend:

-- Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

java.sql.Types.Decimal java.math.BigDecimal[]

java.sql.Types.CHAR java.lang.String[]

java.sql.Types.VARCHAR java.lang.String[]

java.sql.Types.DATE java.sql.Date

java.sql.Types.TIME java.sql.Time

java.sql.Types.TIMESTAMP java.sql.Timestamp

Argument i Argume
nt x

Number of
elements in Object
array acquired by

getArray()

Each element
of Object array

Element of repetition
column set in HiRDB

Number of an existing
? parameter

!=null 0 < number of
elements 30000

All elements are
null

Repetition column whose
elements are all null

Other than the
above

Repetition column other
than the above

Number of elements >
30000

-- SQLException

0 -- Repetition column that
contain no element

null -- -- Entire column is null

Number of an existing
? parameter that is not
a repetition column

-- -- -- SQLException

Number of a
nonexistent ?
parameter

SQLException

Data type acquired by getBaseType() Data type of Object array acquired by
getArray()

18. Type4 JDBC Driver

1444

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified for the i argument.

• The column for the parameter number specified in the i argument is not an
HiRDB repetition column.

• The data type of the Object array acquired from the Array object specified
in the x argument cannot be converted to the data type of the column of the
? parameter.

• The length of the Object array acquired from the Array object specified in
the x argument exceeds 30000 (the number of array elements exceeds
30000).

(j) setAsciiStream(int parameterIndex, java.io.InputStream x, int length)
Function

Sets the value of a specified InputStream object as a ? parameter value.

Format

public synchronized void setAsciiStream(int parameterIndex,
java.io.InputStream x, int length) throws SQLException

Arguments

int parameterIndex

? parameter number

java.io.InputStream x

InputStream object that contains the value to be set in the ? parameter

int length

Number of bytes to be set

Return value

None.

Functional detail

This method sets the value of a specified InputStream object as a ? parameter
value.

This method does not execute the close() method on x even after input from x
has been completed.

18. Type4 JDBC Driver

1445

If the HiRDB data type of the ? parameter is not [M|N][VAR]CHAR or BINARY
or BLOB, the JDBC driver throws an SQLException result.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A value less than 0 was specified for length.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(k) setBigDecimal(int parameterIndex, BigDecimal x)
Function

Sets a specified BigDecimal object as a ? parameter value.

Format

public synchronized void setBigDecimal(int parameterIndex,
BigDecimal x) throws SQLException

Arguments

int parameterIndex

? parameter number

BigDecimal x

BigDecimal object to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

18. Type4 JDBC Driver

1446

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(l) setBinaryStream(int parameterIndex, java.io.InputStream x, int length)
Function

Sets the value of a specified InputStream object as a ? parameter value.

Format

public synchronized void setBinaryStream(int parameterIndex,
java.io.InputStream x, int length) throws SQLException

Arguments

int parameterIndex

? parameter number

java.io.InputStream x

InputStream object that contains the value to be set in the ? parameter

int length

Number of bytes to be set

Return value

None.

Functional detail

This method sets the value of a specified InputStream object as a ? parameter
value.

This method does not execute the close() method on x even after input from x
has been completed.

If the HiRDB data type of the ? parameter is not BINARY or BLOB, the JDBC
driver throws an SQLException result.

Exceptions

18. Type4 JDBC Driver

1447

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A value less than 0 was specified for length.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(m) setBlob(int parameterIndex, Blob x)
Function

Sets the value of a specified Blob object as a ? parameter value.

Format

public synchronized void setBlob(int parameterIndex, Blob x)
throws SQLException

Arguments

int parameterIndex

? parameter number

Blob x

Blob object that contains the value to be set in the ? parameter

Return value

None.

Functional detail

This method sets the value of a specified InputStream object as a ? parameter
value.

If the HiRDB data type of the ? parameter is not BINARY or BLOB, the JDBC
driver throws an SQLException result.

Exceptions

The JDBC driver throws an SQLException in the following cases:

18. Type4 JDBC Driver

1448

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(n) setBoolean(int parameterIndex, boolean x)
Function

Sets a specified boolean value as a ? parameter value.

Format

public synchronized void setBoolean(int parameterIndex,
boolean x) throws SQLException

Arguments

int parameterIndex

? parameter number

boolean x

Value to be set in the ? parameter

Return value

None.

Functional detail

This method sets a specified boolean value as a ? parameter value.

If the HiRDB data type of the ? parameter specified by parameterIndex is
CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, or NVARHAR and x is true, then the
? parameter value is true. If the HiRDB data type of the ? parameter specified
by parameterIndex is CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, or
NVARHAR and x is false, then the ? parameter value is false (: single-byte
space).

Exceptions

The JDBC driver throws an SQLException in the following cases:

18. Type4 JDBC Driver

1449

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified ? parameter is the OUT parameter.

(o) setByte(int parameterIndex, byte x)
Function

Sets a specified byte value as a ? parameter value.

Format

public synchronized void setByte(int parameterIndex, byte x)
throws SQLException

Arguments

int parameterIndex

? parameter number

byte x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified ? parameter is the OUT parameter.

18. Type4 JDBC Driver

1450

(p) setBytes(int parameterIndex, byte x[])
Function

Sets a specified byte array as a ? parameter value.

Format

public synchronized void setBytes(int parameterIndex, byte
x[]) throws SQLException

Arguments

int parameterIndex

? parameter number

byte x[]

byte array that contains the values to be set in the ? parameter

Return value

None.

Functional detail

This method provides only referencing without copying the byte array.
Therefore, if you change a value in the byte array before executing the
executeXXX method, this method will use the new value after the change.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• The HiRDB data type of the ? parameter cannot be set by this method (the
data type is not BINARY or BLOB).

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(q) setCharacterStream(int parameterIndex, Reader reader, int length)
Function

Sets the value of a specified Reader object as a ? parameter value.

18. Type4 JDBC Driver

1451

Format

public synchronized void setCharacterStream(int
parameterIndex, Reader reader, int length) throws
SQLException

Arguments

int parameterIndex

? parameter number

Reader reader

Reader object that contains the value to be set in the ? parameter

int length

Number of characters

Return value

None.

Functional detail

This method sets the value of a specified Reader object as a ? parameter value.

If the HiRDB data type of the ? parameter is not [M|N][VAR]CHAR or BINARY
or BLOB, the JDBC driver throws an SQLException.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A value less than 0 was specified for length.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• Encoding failed.

• The specified ? parameter is the OUT parameter.

18. Type4 JDBC Driver

1452

(r) setDate(int parameterIndex, java.sql.Date x)
Function

Sets a specified java.sql.Date object as a ? parameter value.

Format

public synchronized void setDate(int parameterIndex,
java.sql.Date x) throws SQLException

Arguments

int parameterIndex

? parameter number

java.sql.Date x

java.sql.Date object that contains the value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(s) setDate(int parameterIndex, java.sql.Date x,Calendar cal)
Function

Converts a java.sql.Date object specified in local time to the equivalent value
in a specified calendar's time zone, and then sets the resulting value as a ?
parameter value.

Format

18. Type4 JDBC Driver

1453

public synchronized void setDate(int parameterIndex,
java.sql.Date x,Calendar cal) throws SQLException

Arguments

int parameterIndex

? parameter number

java.sql.Date x

java.sql.Date object that contains the value to be set in the ? parameter

Calendar cal

Calendar in which the time zone for the value to be stored in the database has
been set. If null is specified, the JavaVM default calendar's time zone is
assumed.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(t) setDouble(int parameterIndex, double x)
Function

Sets a specified double value as a ? parameter value.

Format

public synchronized void setDouble(int parameterIndex,
double x) throws SQLException

18. Type4 JDBC Driver

1454

Arguments

int parameterIndex

? parameter number

double x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(u) setFloat(int parameterIndex, float x)
Function

Sets a specified float value as a ? parameter value.

Format

public synchronized void setFloat(int parameterIndex, float
x) throws SQLException

Arguments

int parameterIndex

? parameter number

float x

Value to be set in the ? parameter

Return value

18. Type4 JDBC Driver

1455

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(v) setInt(int parameterIndex, int x)
Function

Sets a specified int value as a ? parameter value.

Format

public synchronized void setInt(int parameterIndex, int x)
throws SQLException

Arguments

int parameterIndex

? parameter number

int x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

18. Type4 JDBC Driver

1456

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(w) setLong(int parameterIndex, long x)
Function

Sets a specified long value as a ? parameter value.

Format

public synchronized void setLong(int parameterIndex, long x)
throws SQLException

Arguments

int parameterIndex

? parameter number

long x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

18. Type4 JDBC Driver

1457

(x) setNull(int parameterIndex,int sqlType)
Function

Sets the NULL value in a specified ? parameter.

This driver ignores the sqlType argument.

Format

public synchronized void setNull(int parameterIndex,int
sqlType) throws SQLException

Arguments

int parameterIndex

? parameter number

int sqlType

JDBC's SQL data type

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the OUT parameter.

(y) setObject(int parameterIndex, Object x)
Function

Sets the value of a specified object as a ? parameter value.

Format

public synchronized void setObject(int parameterIndex,
Object x) throws SQLException

Arguments

int parameterIndex

18. Type4 JDBC Driver

1458

? parameter number

Object x

Object that contains the value to be set in the ? parameter

Return value

None.

Functional detail

This method sets the value of a specified object as a ? parameter value.

If the type of the ? parameter specified by parameterIndex is HiRDB's CHAR,
MCHAR, NCHAR, VARCHAR, MVARCHAR, or NVARHAR, x is a Boolean object, and
x is true, then the ? parameter value is true. If the type of the ? parameter
specified by parameterIndex is HiRDB's CHAR, MCHAR, NCHAR, VARCHAR,
MVARCHAR, or NVARHAR, x is a Boolean object, and x is false, then the ?
parameter value is false (: single-byte space).

If x is a byte array, this method provides only referencing without copying the
byte array. Therefore, if you change a value in the byte array before executing
the executeXXX method, this method uses the new value after the change.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(z) setObject(int parameterIndex, Object x, int targetSqlType)
Function

Sets the value of a specified object as a ? parameter value.

Format

public synchronized void setObject(int parameterIndex,
Object x, int targetSqlType) throws SQLException

18. Type4 JDBC Driver

1459

Arguments

int parameterIndex

? parameter number

Object x

Object that contains the value to be set in the ? parameter

int targetSqlType

JDBC's SQL data type

Return value

None.

Functional detail

This method sets the value of a specified object as a ? parameter value.

If targetSqlType is java.sql.Types.CHAR, java.sql.Types.VARCHAR,
or java.sql.Types.LONGVARCHAR, x is a Boolean object, and x is true,
then the ? parameter value is 1,0.

If the ? parameter's data type is NCHAR or NVARCHAR (which are HiRDB data
types) and its value is 1,0, the JDBC driver throws an SQLException.

If x is a byte array, this method provides only referencing without copying the
byte array. Therefore, if you change a value in the byte array before executing
the executeXXX method, this method uses the new value after the change.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• targetSqlType is one of the following:

Types.ARRAY, Types.CLOB, Types.REF, or Types.STRUCT

18. Type4 JDBC Driver

1460

• The specified ? parameter is the OUT parameter.

(aa) setObject(int parameterIndex, Object x, int targetSqlType, int scale)
Function

Sets the value of a specified object as a ? parameter value.

Format

public synchronized void setObject(int parameterIndex,
Object x, int targetSqlType, int scale) throws SQLException

Arguments

int parameterIndex

? parameter number

Object x

Object that contains the value to be set in the ? parameter

int targetSqlType

JDBC's SQL data type

int scale

Scaling (ignored, if specified)

Return value

None.

Functional detail

This method sets the value of a specified object as a ? parameter value.

If targetSqlType is java.sql.Types.CHAR, java.sql.Types.VARCHAR,
or java.sql.Types.LONGVARCHAR, x is a Boolean object, and x is true,
then the ? parameter value is 1,0.

If the ? parameter's data type is NCHAR or NVARCHAR type (which are HiRDB data
types) and its value is 1,0, the JDBC driver throws an SQLException.

If x is a byte array, this method provides only referencing without copying the
byte array. Therefore, if you change a value in the byte array before executing
the executeXXX method, this method uses the new value after the change.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

18. Type4 JDBC Driver

1461

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• targetSqlType is one of the following:

Types.ARRAY, Types.CLOB, Types.REF, or Types.STRUCT

• The specified ? parameter is the OUT parameter.

(ab)setShort(int parameterIndex, short x)
Function

Sets a specified short value as a ? parameter value.

Format

public synchronized void setShort(int parameterIndex, short
x) throws SQLException

Arguments

int parameterIndex

? parameter number

short x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

18. Type4 JDBC Driver

1462

• The specified ? parameter is the OUT parameter.

(ac) setString(int parameterIndex, String x)
Function

Sets a specified String object as a ? parameter value.

Format

public synchronized void setString(int parameterIndex,
String x) throws SQLException

Arguments

int parameterIndex

? parameter number

String x

String object that contains the value to be set in the ? parameter

Return value

None.

Functional detail

This method sets in a ? parameter the String object specified in the x argument.

The following table shows the value of the ? parameter when the corresponding
instance is CallableStatement and the x argument value is a character string
with a length of 0:

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

Data type of ? parameter Value of ? parameter

[M|N][VAR]CHAR • When the HiRDB_for_Java_DAB_CONVERT_NULL system
property is set to TRUE
null

• Otherwise
Character string with a length of 0

BINARY or BLOB Character string with a length of 0

Other null

18. Type4 JDBC Driver

1463

• CLOSE() has already been issued to the CONNECTION object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• Encoding failed.

• The specified ? parameter is the OUT parameter.

(ad)setTime(int parameterIndex, java.sql.Time x)
Function

Sets a specified java.sql.Time object as a ? parameter value.

Format

public synchronized void setTime(int parameterIndex,
java.sql.Time x) throws SQLException

Arguments

int parameterIndex

? parameter number

java.sql.Time x

java.sql.Time object that contains the value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified ? parameter is the OUT parameter.

18. Type4 JDBC Driver

1464

(ae) setTime(int parameterIndex, java.sql.Time x,Calendar cal)
Function

Converts a java.sql.Time object specified in local time to the equivalent value
in a specified calendar's time zone, and then sets the resulting value as a ?
parameter value.

Format

public synchronized void setTime(int parameterIndex,
java.sql.Time x,Calendar cal) throws SQLException

Arguments

int parameterIndex

? parameter number

java.sql.Time x

java.sql.Time object that contains the value to be set in the ? parameter

Calendar cal

Calendar in which the time zone for the value to be stored in the database has
been set. If null is specified, the JavaVM default calendar's time zone is
assumed.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified ? parameter is the OUT parameter.

(af) setTimestamp(int parameterIndex, java.sql.Timestamp x)
Function

Sets a specified java.sql.Timestamp object as a ? parameter value.

18. Type4 JDBC Driver

1465

Format

public synchronized void setTimestamp(int parameterIndex,
java.sql.Timestamp x) throws SQLException

Arguments

int parameterIndex

? parameter number

java.sql.Timestamp x

java.sql.Timestamp object that contains the value to be set in the ?
parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(ag)setTimestamp(int parameterIndex, java.sql.Timestamp x,Calendar cal)
Function

Converts a java.sql.Timestamp object specified in local time to the
equivalent value in a specified calendar's time zone, and then sets the resulting
value as a ? parameter value.

Format

public synchronized void setTimestamp(int parameterIndex,
java.sql.Timestamp x,Calendar cal) throws SQLException

18. Type4 JDBC Driver

1466

Arguments

int parameterIndex

? parameter number

java.sql.Timestamp x

java.sql.Timestamp object that contains the value to be set in the ?
parameter

Calendar cal

Calendar in which the time zone for the value to be stored in the database has
been set. If null is specified, the JavaVM default calendar's time zone is
assumed.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the PreparedStatement object.

• close() has already been issued to the Connection object that created this
PreparedStatement object.

• A nonexistent ? parameter number was specified.

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(3) Package and class names
The names of the package and class for installing this interface are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbPreparedStatement

(4) Notes
Because the PreparedStatement interface is a subinterface of the Statement
interface, all notes for the Statement interface also apply to the
PreparedStatement interface.

This section describes additional notes that apply to the PreparedStatement
interface.

18. Type4 JDBC Driver

1467

(a) ? parameter setup
• For details about whether mapping is possible with a setXXX method, see 18.8.3

Mapping when a ? parameter is set.
• If the column number or name specified in a setXXX method does not exist, the

JDBC driver throws an SQLException.

• If a value specified in a setXXX method exceeds the value range that can be
represented by the data type of the corresponding ? parameter, an overflow
occurs, resulting in an SQLException. For details about the combinations of
setXXX methods for which overflow can occur and the HiRDB data types, see
18.8.5 Overflow handling.

• The values specified by a setXXX method remain effective until one of the
following operations is executed:

• The clearParameters method is executed for the target
PreparedStatement object.

• A setXXX method is executed for the target PreparedStatement object,
and the ? parameters to be specified are the same.

• The close method is executed for the target PreparedStatement object.

(b) Retaining SQL preprocessing results beyond commit or rollback
processing
For details about retaining SQL preprocessing results beyond commit or rollback
processing, see 18.2.2(1)(c) Notes about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

(c) Specification values for ? parameters of HiRDB's DECIMAL type
Described below are operations that are executed when a setXXX method is used to
specify a value for a ? parameter of HiRDB's DECIMAL type, and when the precision
and decimal scaling position of the ? parameter do not match those of the specification
value.

When the precision of the specification value is greater than the actual precision: the
HiRDB driver throws an SQLException.

When the precision of the specification value is smaller than the actual precision: the
HiRDB driver expands the precision of the specification value.

When the decimal scaling position of the specification value is greater than the actual
decimal scaling position: the HiRDB driver truncates the actual decimal scaling
position.

When the decimal scaling position of the specification value is smaller than the actual
decimal scaling position: the HiRDB driver expands the decimal scaling position by
adding zeros.

18. Type4 JDBC Driver

1468

(d) Specification values for ? parameters of HiRDB's TIMESTAMP type
When a setXXX method is used to specify a value for a ? parameter of HiRDB's
TIMESTAMP type, and the fraction-of-a-second precision of the value is greater than
the fraction-of-a-second precision of the ? parameter, the JDBC driver truncates the
fraction-of-a-second precision to match that of the ? parameter.

(e) Specification values for ? parameters of HiRDB's CHAR, VARCHAR,
NCHAR, NVARCHAR, MCHAR, or MVARCHAR type
When a setXXX method is used to specify a value for a ? parameter of HiRDB's CHAR,
VARCHAR, NCHAR, NVARCHAR, MCHAR, or MVARCHAR type, and when the length of the
value after conversion to a character string expression is greater that the defined length
of the ? parameter, the JDBC driver throws an SQLException.

(f) Objects that can be specified with setObject
The objects that can be specified for the x argument of setObject are objects of the
following types:

• byte[]

• java.lang.Byte

• java.lang.Double

• java.lang.Float

• java.lang.Integer

• java.lang.Long

• java.lang.Short

• java.lang.String

• java.math.BigDecimal

• java.sql.Blob

• java.sql.Boolean

• java.sql.Date

• java.sql.Time

• java.sql.Timestamp

• java.sql.Array

18.4.5 CallableStatement interface
(1) Overview

The CallableStatement interface provides the following main functions:

18. Type4 JDBC Driver

1469

• Execution of stored procedures

• Setting IN and INOUT parameters (by using a setXXX method of the
PreparedStatement class)

• Registering INOUT and OUT parameters

• Acquiring the values of INOUT and OUT parameters

The CallableStatement class inherits all the functions of the
PreparedStatement and Statement classes because the CallableStatement
class is a subclass of the PreparedStatement class.

(2) Methods
The table below lists the methods of the CallableStatement interface. The
interface does not support methods that are not listed in the table. If an unsupported
method is specified, the interface throws an SQLException.

Table 18-25: CallableStatement interface methods

Subsectio
n

Method Function

(a) getBigDecimal(int parameterIndex) Acquires the value of a specified ?
parameter as a
java.math.BigDecimal object in
Java programming language.

(b) getBigDecimal(int parameterIndex,int scale) Acquires the value of a specified ?
parameter as a
java.math.BigDecimal object in
Java programming language, with as
many decimal places as are specified
in scale.

(c) getBlob(int parameterIndex) Acquires the value of a specified ?
parameter as a java.sql.Blob
object in Java programming language.

(d) getBlob(String parameterName) Acquires the value of a specified ?
parameter as a java.sql.Blob
object in Java programming language.

(e) getBoolean(int parameterIndex) Acquires the value of a specified ?
parameter as boolean in Java
programming language.

(f) getBoolean(String parameterName) Acquires the value of a specified ?
parameter as boolean in Java
programming language.

18. Type4 JDBC Driver

1470

(g) getByte(int parameterIndex) Acquires the value of a specified ?
parameter as byte in Java
programming language.

(h) getByte(String parameterName) Acquires the value of a specified ?
parameter as byte in Java
programming language.

(i) getBytes(int parameterIndex) Acquires the value of a specified ?
parameter as a byte array in Java
programming language.

(j) getBytes(String parameterName) Acquires the value of a specified ?
parameter as a byte array in Java
programming language.

(k) getDate(int parameterIndex) Acquires the value of a specified ?
parameter as a java.sql.Date
object in Java programming language.

(l) getDate(int parameterIndex, java.util.Calendar cal) Acquires the value of a specified ?
parameter as a java.sql.Date
object in Java programming language.

(m) getDate(String parameterName) Acquires the value of a specified ?
parameter as a java.sql.Date
object in Java programming language.

(n) getDate(String parameterName, java.util.Calendar cal) Acquires the value of a specified ?
parameter as a java.sql.Date
object in Java programming language.

(o) getDouble(int parameterIndex) Acquires the value of a specified ?
parameter as double in Java
programming language.

(p) getDouble(String parameterName) Acquires the value of a specified ?
parameter as double in Java
programming language.

(q) getFloat(int parameterIndex) Acquires the value of a specified ?
parameter as float in Java
programming language.

(r) getFloat(String parameterName) Acquires the value of a specified ?
parameter as float in Java
programming language.

Subsectio
n

Method Function

18. Type4 JDBC Driver

1471

(s) getInt(int parameterIndex) Acquires the value of a specified ?
parameter as int in Java
programming language.

(t) getInt(String parameterName) Acquires the value of a specified ?
parameter as int in Java
programming language.

(u) getLong(int parameterIndex) Acquires the value of a specified ?
parameter as long in Java
programming language.

(v) getLong(String parameterName) Acquires the value of a specified ?
parameter as long in Java
programming language.

(w) getObject(int parameterIndex) Acquires the value of a specified ?
parameter as java.lang.Object in
Java programming language.

(x) getObject(String parameterName) Acquires the value of a specified ?
parameter as java.lang.Object in
Java programming language.

(y) getShort(int parameterIndex) Acquires the value of a specified ?
parameter as short in Java
programming language.

(z) getShort(String parameterName) Acquires the value of a specified ?
parameter as short in Java
programming language.

(aa) getString(int parameterIndex) Acquires the value of a specified ?
parameter as a java.lang.String
object in Java programming language.

(ab) getString(String parameterName) Acquires the value of a specified ?
parameter as a java.lang.String
object in Java programming language.

(ac) getTime(int parameterIndex) Acquires the value of a specified ?
parameter as a java.sql.Time
object in Java programming language.

(ad) getTime(int parameterIndex, java.util.Calendar cal) Acquires the value of a specified ?
parameter as a java.sql.Time
object in Java programming language.

Subsectio
n

Method Function

18. Type4 JDBC Driver

1472

(ae) getTime (String parameterName) Acquires the value of a specified ?
parameter as a java.sql.Time
object in Java programming language.

(af) getTime(String parameterName, java.util.Calendar cal) Acquires the value of a specified ?
parameter as a java.sql.Time
object in Java programming language.

(ag) getTimestamp(int parameterIndex) Acquires the value of a specified ?
parameter as a
java.sql.Timestamp object in Java
programming language.

(ah) getTimestamp(int parameterIndex, java.util.Calendar
cal)

Acquires the value of a specified ?
parameter as a
java.sql.Timestamp object in Java
programming language.

(ai) getTimestamp (String parameterName) Acquires the value of specified ?
parameter as a
java.sql.Timestamp object in Java
programming language.

(aj) getTimestamp(String parameterName,
java.util.Calendar cal)

Acquires the value of a specified ?
parameter as a
java.sql.Timestamp object in Java
programming language.

(ak) registerOutParameter(int parameterIndex,int sqlType) Registers the data type of a specified
OUT parameter as a specified JDBC
type.

(al) registerOutParameter(int parameterIndex,int
sqlType,int scale)

Registers the data type of a specified
OUT parameter as a specified JDBC
type.

(am) registerOutParameter(String parameterName,int
sqlType)

Registers the data type of a specified
OUT parameter as a specified JDBC
type.

(an) registerOutParameter(String parameterName,int
sqlType,int scale)

Registers the data type of a specified
OUT parameter as a specified JDBC
type.

(ao) setAsciiStream(String parameterName,
java.io.InputStream x, int length)

Sets the value of a
java.io.InputStream object as a ?
parameter value with a length no more
than the length specified by length.

Subsectio
n

Method Function

18. Type4 JDBC Driver

1473

(ap) setBigDecimal(String parameterName,
java.math.BigDecimal x)

Sets a specified
java.math.BigDecimal value as a
? parameter value.

(aq) setBinaryStream(String parameterName,
java.io.InputStream x, int length)

Acquires the value of a specified ?
parameter as a
java.math.BigDecimal object in
Java programming language.

(ar) setBoolean(String parameterName,boolean x) Sets a specified boolean value as a ?
parameter value.

(as) setByte(String parameterName,byte x) Sets a specified byte value as a ?
parameter value.

(at) setBytes(String parameterName,byte[] x) Sets a specified byte array as a ?
parameter value.

(au) setCharacterStream(String parameterName,Reader
x,int length)

Sets the value of a specified Reader
object as a ? parameter value.

(av) setDate(String parameterName, java.sql.Date x) Sets the value of a java.sql.Date
object as a ? parameter value.

(aw) setDate(String parameterName, java.sql.Date
x,Calendar cal)

Converts a java.sql.Date object
specified in local time to the
equivalent time value in a specified
calendar's time zone, and then sets it as
a ? parameter value.

(ax) setDouble(String parameterName,double x) Sets a specified double value as a ?
parameter value.

(ay) setFloat(String parameterName,float x) Sets a specified float value as a ?
parameter value.

(az) setInt(String parameterName,int x) Sets a specified int value as a ?
parameter value.

(ba) setLong(String parameterName,long x) Sets a specified long value as a ?
parameter value.

(bb) setNull(String parameterName,int sqlType) Sets the NULL value in a specified ?
parameter.

(bc) setObject(String parameterName,Object x) Sets the value of a specified object as a
? parameter value.

(bd) setObject(String parameterName,Object x,int
targetSqlType)

Sets the value of a specified object as a
? parameter value.

Subsectio
n

Method Function

18. Type4 JDBC Driver

1474

(a) getBigDecimal(int parameterIndex)
Function

Acquires the value of a specified ? parameter as a java.math.BigDecimal
object in Java programming language.

Format

public synchronized java.math.BigDecimal getBigDecimal(int
parameterIndex) throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second

(be) setObject(String parameterName,Object x,int
targetSqlType,int scale)

Sets the value of a specified object as a
? parameter value.

(bf) setShort(String parameterName,short x) Sets a specified short value as a ?
parameter value.

(bg) setString(String parameterName,String x) Sets a specified String object as a ?
parameter value.

(bh) setTime(String parameterName,Time x) Sets a specified java.sql.Time
object as a ? parameter value.

(bi) setTime(String parameterName, java.sql.Time
x,Calendar cal)

Converts a java.sql.Time object
specified in local time to the
equivalent time value in a specified
calendar's time zone, and then sets it as
a ? parameter value.

(bj) setTimestamp(String parameterName,
java.sql.Timestamp x)

Sets a specified
java.sql.Timestamp object as a ?
parameter value.

(bk) setTimestamp(String parameterName,
java.sql.Timestamp x,Calendar cal)

Converts a java.sql.Timestamp
object specified in local time to the
equivalent time value in a specified
calendar's time zone, and then sets it as
a ? parameter value.

(bl) wasNull() Acquires a value indicating whether
the value of the last OUT or INOUT
parameter read was NULL.

Subsectio
n

Method Function

18. Type4 JDBC Driver

1475

parameter, etc.

Return value

java.math.BigDecimal object containing the value of the specified ?
parameter (if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified ? parameter as a
java.math.BigDecimal object in Java programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter's value, and the return value:

HiRDB data
type

? parameter's value Return
value

[M|N][VAR]C
HAR

NULL null

[single-byte-space]integer-in-character-string-representation[single-byte-sp
ace],
[single-byte-space]decimal-number-in-character-string-representation[sing
le-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation
[single-byte-space]

BigDecimal
object
containing
the ?
parameter
value. The
value without
the
single-byte
spaces at the
beginning
and end of the
character
string is used
as the
BigDecimal
object.

Other than the above SQLExcepti
on is thrown

SMALLINT NULL null

Non-NULL BigDecimal
object
containing
the ?
parameter
value

INTEGER NULL null

18. Type4 JDBC Driver

1476

Non-NULL BigDecimal
object
containing
the ?
parameter
value

REAL NULL null

Infinity SQLExcepti
on is thrown

-Infinity SQLExcepti
on is thrown

NaN SQLExcepti
on is thrown

Other than the above BigDecimal
object
containing
the ?
parameter
value

FLOAT NULL null

Infinity SQLExcepti
on is thrown

-Infinity SQLExcepti
on is thrown

NaN SQLExcepti
on is thrown

Other than the above BigDecimal
object
containing
the ?
parameter
value

DECIMAL NULL null

HiRDB data
type

? parameter's value Return
value

18. Type4 JDBC Driver

1477

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(b) getBigDecimal(int parameterIndex, int scale)
Function

Acquires the value of a specified ? parameter as a java.math.BigDecimal
object in Java programming language, with as many decimal places as are

Non-NULL BigDecimal
object
containing
the ?
parameter
value.

BOOLEAN NULL null

true BigDecimal
object
obtained
based on
BigDecimal
(1)

false BigDecimal
object
obtained
based on
BigDecimal
(0)

Other -- SQLExcepti
on is thrown

HiRDB data
type

? parameter's value Return
value

18. Type4 JDBC Driver

1478

specified in scale.

Format

public synchronized java.math.BigDecimal getBigDecimal(int
parameterIndex, int scale) throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

int scale

Scaling. The permitted range is scale 2147483647.

Return value

java.math.BigDecimal object value with the number of decimal places
specified in the scale argument of the specified ? parameter value (if the value
is NULL, the method returns null)

Functional detail

This method acquires the value of a specified ? parameter as a
java.math.BigDecimal object in Java programming language, with as many
decimal places as are specified in scale.

If the scale argument value is smaller than the number of decimal places in the
? parameter's value, the method discards the excess decimal places from the ?
parameter's value. If the scale argument value is greater than the number of
decimal places in the ? parameter's value, the method pads the ? parameter's value
with 0s so that the number of decimal places match the scale value.

For details about the relationships among the HiRDB data type, the ? parameter's
value, and the return value, see Functional detail in (a) getBigDecimal(int
parameterIndex).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

18. Type4 JDBC Driver

1479

• A value less than 0 was specified for scale.

• The specified ? parameter's data type cannot be acquired by this method.

(c) getBlob(int parameterIndex)
Function

Acquires the value of a specified ? parameter as a java.sql.Blob object in Java
programming language.

Format

public synchronized java.sql.Blob getBlob(int
parameterIndex) throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

java.sql.Blob object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified ? parameter as a java.sql.Blob
object in Java programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter's value, and the return value:

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

HiRDB data type ? parameter value Return value

BINARY
BLOB

NULL null

Non-NULL java.sql.Blob object containing
the ? parameter's value

Other -- SQLException is thrown

18. Type4 JDBC Driver

1480

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(d) getBlob(String parameterName)
Function

Acquires the value of a specified ? parameter as a java.sql.Blob object in Java
programming language.

For details about the relationships among the HiRDB data type, the ? parameter's
value, and the return value, see Functional detail in (c) getBlob(int
parameterIndex).

Format

public synchronized java.sql.Blob getBlob (String
parameterName) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is assumed to be
part of the ? parameter's name.

Return value

java.sql.Blob object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

18. Type4 JDBC Driver

1481

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(e) getBoolean(int parameterIndex)
Function

Acquires the value of a specified ? parameter as boolean in Java programming
language.

Format

public synchronized boolean getBoolean(int parameterIndex)
throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns
false)

Functional detail

This method acquires the value of a specified ? parameter as boolean in Java
programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data type ? parameter value Return value

[M][VAR]CHAR
NVARCHAR

NULL false

[single-byte-space]true (in single-byte
characters; not
case-sensitive)[single-byte-space]

true

[single-byte-space]1 (single-byte
character)[single-byte-space]

true

Other than the above false

NCHAR NULL false

18. Type4 JDBC Driver

1482

Value beginning with
[single-byte-space]true (in single-byte
characters; not case-sensitive)

true

Other than the above false

SMALLINT NULL false

0 false

Non-zero value true

INTEGER NULL false

0 false

Non-zero value true

REAL NULL false

Infinity true

-Inifnity true

NaN true

0.0 or -0.0 false

Other than the above true

FLOAT NULL false

Infinity true

-Inifnity true

NaN true

0.0 or -0.0 false

Other than the above true

DECIMAL NULL false

0[.00...0] false

Other than the above true

BOOLEAN NULL false

Non-NULL ? parameter value

Other -- SQLException is thrown

HiRDB data type ? parameter value Return value

18. Type4 JDBC Driver

1483

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(f) getBoolean(String parameterName)
Function

Acquires the value of a specified ? parameter as boolean in Java programming
language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (e) getBoolean(int
parameterIndex).

Format

public synchronized boolean getBoolean (String
parameterName) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns
false)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

18. Type4 JDBC Driver

1484

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(g) getByte(int parameterIndex)
Function

Acquires the value of a specified ? parameter as byte in Java programming
language.

Format

public synchronized byte getByte(int parameterIndex) throws
SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Functional detail

This method acquires the value of a specified ? parameter as byte in Java
programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data
type

? parameter value Return
value

[M|N][VAR]
CHAR

NULL 0

18. Type4 JDBC Driver

1485

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and Byte.MIN_VALUE or greater, and Byte.MAX_VALUE or
less

? parameter
value
converted to
a byte
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Byte.MAX_VALUE or less than
Byte.MIN_VALUE

SQLExcept
ion is
thrown

[single-byte-space][+]Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space]-Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+|-]NaN[single-byte-space] SQLExcept
ion is
thrown

Other than the above (double value cannot be obtained) SQLExcept
ion is
thrown

SMALLINT NULL 0

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less ? parameter
value
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

INTEGER NULL 0

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1486

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less ? parameter
value
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

REAL NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less Integer part
of the ?
parameter
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

FLOAT NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1487

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less Integer part
of the ?
parameter
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

DECIMAL NULL 0

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less Integer part
of the ?
parameter
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

BOOLEAN NULL 0

true 1

false 0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1488

• The specified ? parameter's data type cannot be acquired by this method.

(h) getByte(String parameterName)
Function

Acquires the value of a specified ? parameter as byte in Java programming
language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (g) getByte(int
parameterIndex).

Format

public synchronized byte getByte (String parameterName)
throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(i) getBytes(int parameterIndex)
Function

Acquires the value of a specified ? parameter as a byte array in Java

18. Type4 JDBC Driver

1489

programming language.

Format

public synchronized byte[] getBytes(int parameterIndex)
throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

byte array containing the value of the specified ? parameter (if the value is NULL,
the method returns null)

Functional detail

This method acquires the value of a specified ? parameter as a byte array in Java
programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

HiRDB data type ? parameter value Return value

[M|N][VAR]CHAR
BINARY
BLOB

NULL null

Non-NULL ? parameter value converted to a
byte array

Other -- SQLException is thrown

18. Type4 JDBC Driver

1490

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• A database access error occurred.

(j) getBytes(String parameterName)
Function

Acquires the value of a specified ? parameter as a byte array in Java
programming language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (i) getBytes(int
parameterIndex).

Format

public synchronized byte[] getBytes(String parameterName)
throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

byte array containing the value of the specified ? parameter (if the value is NULL,
the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

18. Type4 JDBC Driver

1491

• A database access error occurred.

(k) getDate(int parameterIndex)
Function

Acquires the value of a specified ? parameter as a java.sql.Date object in Java
programming language.

Format

public synchronized java.sql.Date getDate(int
parameterIndex) throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

java.sql.Date object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified ? parameter as a java.sql.Date
object in Java programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data type ? parameter value Return value

[M|N][VAR]CHAR NULL null

[single-byte-space]date-format[single-byte-space] Value obtained by
removing single-byte
spaces at the
beginning and end of
the ? parameter value
and then converting to
the java.sql.Date
object

Other than the above SQLException is
thrown

DATE NULL null

18. Type4 JDBC Driver

1492

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Date.

(l) getDate(int parameterIndex, java.util.Calendar cal)
Function

Acquires the value of a specified ? parameter as a java.sql.Date object in Java
programming language. This method creates the date value from the appropriate
millisecond value obtained by using a specified calendar.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (k) getDate(int
parameterIndex).

Format

public synchronized java.sql.Date getDate (int
parameterIndex, java.util.Calendar cal) throws SQLException

Non-NULL ? parameter value
converted to a
java.sql.Date
object

TIMESTAMP NULL null

Non-NULL ? parameter value
converted to a
java.sql.Date
object

Other -- SQLException is
thrown

HiRDB data type ? parameter value Return value

18. Type4 JDBC Driver

1493

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

java.util.Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

java.sql.Date object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Date.

(m) getDate(String parameterName)
Function

Acquires the value of a specified ? parameter as a java.sql.Date object in Java
programming language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (k) getDate(int
parameterIndex).

Format

public synchronized java.sql.Date getDate (String
parameterName) throws SQLException

Arguments

18. Type4 JDBC Driver

1494

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

java.sql.Date object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Date.

(n) getDate(String parameterName, java.util.Calendar cal)
Function

Acquires the value of a specified ? parameter as a java.sql.Date object in Java
programming language. This method creates the date value from the appropriate
millisecond value obtained by using a specified calendar.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (k) getDate(int
parameterIndex).

Format

public synchronized java.sql.Date getDate (String
parameterName, java.util.Calendar cal) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character

18. Type4 JDBC Driver

1495

string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.util.Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

java.sql.Date object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Date.

(o) getDouble(int parameterIndex)
Function

Acquires the value of a specified ? parameter as double in Java programming
language.

Format

public synchronized double getDouble(int parameterIndex)
throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

18. Type4 JDBC Driver

1496

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Functional detail

This method acquires the value of a specified ? parameter as double in Java
programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data
type

? parameter value Return
value

[M|N][VAR]
CHAR

NULL 0.0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and -Double.MAX_VALUE or greater, and
-Double.MAX_VALUE or greater, and Double.MIN_VALUE or less, and
Double.MIN_VALUE or greater, and Double.MAX_VALUE or less

? parameter
value
converted to
a double
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Double.MAX_VALUE

Infinity

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and less than -Double.MAX_VALUE

-Infinity

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and less than Double.MIN_VALUE, and greater than 0

0.0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than -Double.MIN_VALUE, and less than 0

-0.0

18. Type4 JDBC Driver

1497

[single-byte-space]-Infinity[single-byte-space] -Infinity

[single-byte-space][+]Infinity[single-byte-space] Infinity

[single-byte-space][+|-]NaN[single-byte-space] NaN

Other than the above (double value cannot be obtained) SQLExcept
ion is
thrown

SMALLINT NULL 0.0

Non-NULL ? parameter
value
converted to
a double
value

INTEGER NULL 0

Non-NULL ? parameter
value
converted to
a double
value

REAL NULL 0.0

Infinity Infinity

-Infinity -Infinity

NaN NaN

Other than the above ? parameter
value
converted to
a double
value

FLOAT NULL 0.0

Infinity Infinity

-Infinity -Infinity

NaN NaN

Other than the above ? parameter
value

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1498

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(p) getDouble(String parameterName)
Function

Acquires the value of a specified ? parameter as double in Java programming
language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (o) getDouble(int
parameterIndex).

Format

public synchronized double getDouble (String parameterName)

DECIMAL NULL 0

Non-NULL ? parameter
value
converted to
a double
value

BOOLEAN NULL 0.0

true 1.0

false 0.0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1499

throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(q) getFloat(int parameterIndex)
Function

Acquires the value of a specified ? parameter as float in Java programming
language.

Format

public synchronized float getFloat(int parameterIndex)
throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

18. Type4 JDBC Driver

1500

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Functional detail

This method acquires the value of a specified ? parameter as float in Java
programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data
type

? parameter value Return
value

[M|N][VAR]
CHAR

NULL 0.0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and one of the following:
• -Float.MAX_VALUE or greater and -Float.MIN_VALUE or less
• Float.MIN_VALUE or greater and Float.MAX_VALUE or less

? parameter
value
converted to
a float
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Float.MAX_VALUE

Infinity

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and less than -Float.MAX_VALUE

-Infinity

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and less than Float.MIN_VALUE, and greater than 0

0.0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than -Float.MIN_VALUE, and less than 0

-0.0

18. Type4 JDBC Driver

1501

[single-byte-space]-Infinity[single-byte-space] -Infinity

[single-byte-space][+]Infinity[single-byte-space] Infinity

[single-byte-space][+|-]NaN[single-byte-space] NaN

Other than the above (cannot be converted to a float value) SQLExcept
ion is
thrown

SMALLINT NULL 0.0

Non-NULL ? parameter
value
converted to
a float
value

INTEGER NULL 0.0

Non-NULL ? parameter
value
converted to
a float
value

REAL NULL 0.0

Infinity Infinity

-Infinity -Infinity

NaN NaN

Other than the above ? parameter
value

FLOAT NULL 0.0

Infinity Infinity

-Infinity -Infinity

NaN NaN

-Float.MAX_VALUE or greater and -Float.MIN_VALUE or less, or
Float.MIN_VALUE or greater and Float.MAX_VALUE or less

? parameter
value
converted to
a float
value

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1502

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(r) getFloat(String parameterName)
Function

Acquires the value of a specified ? parameter as float in Java programming
language.

Greater than Float.MAX_VALUE Infinity

Less than -Float.MAX_VALUE -Infinity

Less than Float.MIN_VALUE and greater than 0 0.0

Greater than -Float.MIN_VALUE and less than 0 -0.0

DECIMAL NULL 0.0

Non-NULL ? parameter
value
converted to
a float
value

BOOLEAN NULL 0.0

true 1.0

false 0.0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1503

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (q) getFloat(int
parameterIndex).

Format

public synchronized float getFloat (String parameterName)
throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(s) getInt(int parameterIndex)
Function

Acquires the value of a specified ? parameter as int in Java programming
language.

Format

public synchronized int getInt(int parameterIndex) throws
SQLException

18. Type4 JDBC Driver

1504

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Functional detail

This method acquires the value of a specified ? parameter as int in Java
programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data
type

? parameter value Return
value

[M|N][VAR]
CHAR

NULL 0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and Integer.MIN_VALUE or greater, and
Integer.MAX_VALUE or less

Integer part
of the ?
parameter
converted to
an int
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Integer.MAX_VALUE or less than
Integer.MIN_VALUE

SQLExcept
ion is
thrown

[single-byte-space]-Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+]Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+|-]NaN[single-byte-space] SQLExcept
ion is
thrown

18. Type4 JDBC Driver

1505

Other than the above (double value cannot be obtained) SQLExcept
ion is
thrown

SMALLINT NULL 0

Non-NULL ? parameter
value
converted to
an int
value

INTEGER NULL 0

Non-NULL ? parameter
value

REAL NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Integer.MIN_VALUE or greater and Integer.MAX_VALUE or less Integer part
of the ?
parameter
converted to
an int
value

Other than the above SQLExcept
ion is
thrown

FLOAT NULL 0

Infinity SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1506

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Integer.MIN_VALUE or greater and Integer.MAX_VALUE or less Integer part
of the ?
parameter
converted to
an int
value

Other than the above SQLExcept
ion is
thrown

DECIMAL NULL 0

Integer.MIN_VALUE or greater and Integer.MAX_VALUE or less Integer part
of the ?
parameter
converted to
an int
value

Other than the above SQLExcept
ion is
thrown

BOOLEAN NULL 0

true 1

false 0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1507

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(t) getInt(String parameterName)
Function

Acquires the value of a specified ? parameter as int in Java programming
language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (s) getInt(int
parameterIndex).

Format

public synchronized int getInt (String parameterName) throws
SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

18. Type4 JDBC Driver

1508

• The specified ? parameter's data type cannot be acquired by this method.

(u) getLong(int parameterIndex)
Function

Acquires the value of a specified ? parameter as long in Java programming
language.

Format

public synchronized long getlong(int parameterIndex) throws
SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Functional detail

This method acquires the value of a specified ? parameter as long in Java
programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data
type

? parameter value Return
value

[M|N][VAR]
CHAR

NULL 0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce] and 15 characters or less, or
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space] and 15 characters or less

Integer part
of the ?
parameter
converted to
a long
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce] and 16 characters or more, or
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space] and characters or more, or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and Long.MIN_VALUE or greater, and Long.MAX_VALUE or
less

Integer part
of the ?
parameter
converted to
a long
value

18. Type4 JDBC Driver

1509

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce] and 16 characters or more, or
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space] and 16 characters or more, or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], greater than Long.MAX_VALUE or less than
Long.MIN_VALUE

SQLExcept
ion is
thrown

[single-byte-space]-Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+]Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+|-]NaN[single-byte-space] SQLExcept
ion is
thrown

Other than the above (cannot be converted to a double value or BigDecimal
object)

SQLExcept
ion is
thrown

SMALLINT NULL 0

Non-NULL ? parameter
value
converted to
a long
value

INTEGER NULL 0

Non-NULL ? parameter
value
converted to
a long
value

REAL NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1510

NaN SQLExcept
ion is
thrown

Long.MIN_VALUE or greater and Long.MAX_VALUE or less Integer part
of the ?
parameter
converted to
a long
value

Other than the above SQLExcept
ion is
thrown

FLOAT NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Long.MIN_VALUE or greater and Long.MAX_VALUE or less Integer part
of the ?
parameter
converted to
a long
value

Other than the above SQLExcept
ion is
thrown

DECIMAL NULL 0

Long.MIN_VALUE and greater and Long.MAX_VALUE and less Integer part
of the ?
parameter
converted to
a long
value

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1511

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(v) getLong(String parameterName)
Function

Acquires the value of a specified ? parameter as long in Java programming

Other than the above SQLExcept
ion is
thrown

BINARY
BLOB

NULL 0

Data with a length of 0 0

1 byte or more Maximum
of 8 bytes
converted to
a long
value in
little endian
format

BOOLEAN NULL 0

true 1

false 0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1512

language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (u) getLong(int
parameterIndex).

Format

public synchronized long getLong (String parameterName)
throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(w) getObject(int parameterIndex)
Function

Acquires the value of a specified ? parameter as java.lang.Object in Java
programming language.

Format

public synchronized Object getObject (int parameterIndex)
throws SQLException

18. Type4 JDBC Driver

1513

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

java.lang.Object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified ? parameter as
java.lang.Object in Java programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data type ? parameter value Return value

[M|N][VAR]CHAR NULL null

Non-NULL ? parameter value

SMALLINT NULL null

Non-NULL Integer object created by the ?
parameter value

INTEGER NULL null

Non-NULL Integer object created by the ?
parameter value

REAL NULL null

Non-NULL Float object created by the ?
parameter value

FLOAT NULL null

Non-NULL Double object created by the ?
parameter value

DECIMAL NULL null

Non-NULL ? parameter value

DATE NULL null

18. Type4 JDBC Driver

1514

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• A database access error occurred.

(x) getObject(String parameterName)
Function

Acquires the value of a specified ? parameter as java.lang.Object in Java
programming language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (w) getObject(int
parameterIndex).

Format

public synchronized Object getObject (String parameterName)

Non-NULL java.sql.Date object created by
the ? parameter value

TIME NULL null

Non-NULL java.sql.Time object created by
the ? parameter value

TIMESTAMP NULL null

Non-NULL java.sql.Timestamp object
created by the ? parameter value

BINARY
BLOB

NULL null

Non-NULL ? parameter value

BOOLEAN NULL null

Non-NULL Boolean object created by the ?
parameter value

HiRDB data type ? parameter value Return value

18. Type4 JDBC Driver

1515

throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

java.lang.Object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(y) getShort(int parameterIndex)
Function

Acquires the value of a specified ? parameter as short in Java programming
language.

Format

public synchronized short getShort(int parameterIndex)
throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

18. Type4 JDBC Driver

1516

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Functional detail

This method acquires the value of a specified ? parameter as short in Java
programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data
type

? parameter value Return
value

[M|N][VAR]
CHAR

NULL 0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and Short.MIN_VALUE or greater, and Short.MAX_VALUE
or less

Integer part
of the ?
parameter
converted to
a short
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Short.MAX_VALUE or less than
Short.MIN_VALUE

SQLExcept
ion is
thrown

[single-byte-space]-Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+]Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+|-]NaN[single-byte-space] SQLExcept
ion is
thrown

Other than the above (double value cannot be obtained) SQLExcept
ion is
thrown

SMALLINT NULL 0

Non-NULL ? parameter
value

18. Type4 JDBC Driver

1517

INTEGER NULL 0

Short.MIN_VALUE or greater and Short.MAX_VALUE or less ? parameter
value
converted to
a short
value

Other than the above SQLExcept
ion is
thrown

REAL NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Short.MIN_VALUE or greater and Short.MAX_VALUE or less Integer part
of the ?
parameter
converted to
a short
value

Other than the above SQLExcept
ion is
thrown

FLOAT NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1518

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

Short.MIN_VALUE or greater and Short.MAX_VALUE or less Integer part
of the ?
parameter
converted to
a short
value

Other than the above SQLExcept
ion is
thrown

DECIMAL NULL 0

Short.MIN_VALUE and greater and Short.MAX_VALUE or less Integer part
of the ?
parameter
converted to
a short
value

Other than the above SQLExcept
ion is
thrown

BOOLEAN NULL 0

true 1

false 0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

? parameter value Return
value

18. Type4 JDBC Driver

1519

• The specified ? parameter's data type cannot be acquired by this method.

(z) getShort(String parameterName)
Function

Acquires the value of a specified ? parameter as short in Java programming
language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (y) getShort(int
parameterIndex).

Format

public synchronized short getShort (String parameterName)
throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

Value of the specified ? parameter (if the value is NULL, the method returns 0)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(aa) getString(int parameterIndex)
Function

Acquires the value of a specified ? parameter as a java.lang.String object in

18. Type4 JDBC Driver

1520

Java programming language.

Format

public synchronized String getString(int parameterIndex)
throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

java.lang.String object containing the value of the specified ? parameter (if
the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified ? parameter as a
java.lang.String object in Java programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data type ? parameter value Return value

[M|N][VAR]CHAR NULL null

Non-NULL ? parameter value.
If the HiRDB_for_Java_DAB_CONVERT_NULL system
property is set to TRUE and the ? parameter value is a
character string with a length of 0, the return value is
null.

SMALLINT NULL null

Non-NULL String object with the ? parameter value in character
string representation

INTEGER NULL null

Non-NULL String object with the ? parameter value in character
string representation

REAL NULL null

Infinity String object of the character string "Infinity"

-Infinity String object of the character string "-Infinity"

18. Type4 JDBC Driver

1521

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

NaN String object of the character string "NaN"

Other than the above String object with the ? parameter value in character
string representation

FLOAT NULL null

Infinity String object of the character string "Infinity"

-Infinity String object of the character string "-Infinity"

NaN String object of the character string "NaN"

Other than the above String object with the ? parameter value in character
string representation

DECIMAL NULL null

Non-NULL String object with the ? parameter value in character
string representation

DATE NULL null

Non-NULL String object of a character string in yyyy-MM-DD
format acquired by JdbConvert.convertDate()

TIME NULL null

Non-NULL String object of a character string in hh:mm:ss format

TIMESTAMP NULL null

Non-NULL String object of a character string in
yyyy-MM-DD hh:mm:ss[.ffffff] format

BINARY
BLOB

NULL null

Non-NULL String object of the ? parameter value

BOOLEAN NULL null

true String object of the character string "true"

false String object of the character string "false"

HiRDB data type ? parameter value Return value

18. Type4 JDBC Driver

1522

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

(ab)getString(String parameterName)
Function

Acquires the value of a specified ? parameter as a java.lang.String object in
Java programming language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (aa) getString(int
parameterIndex).

Format

public synchronized String getString(String parameterName)
throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

java.lang.String object containing the value of the specified ? parameter (if
the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

18. Type4 JDBC Driver

1523

• The specified ? parameter's data type cannot be acquired by this method.

(ac) getTime(int parameterIndex)
Function

Acquires the value of a specified ? parameter as a java.sql.Time object in Java
programming language.

Format

public synchronized java.sql.Time getTime(int
parameterIndex) throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

java.sql.Time object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified ? parameter as a java.sql.Time
object in Java programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

HiRDB data type ? parameter value Return value

[M|N][VAR]CHAR NULL null

[single-byte-space]time-format[single-byte-space] Value obtained by
removing single-byte
spaces at the
beginning and end of
the ? parameter value
and then converting to
a java.sql.Time
object

Other than the above SQLException

TIME NULL null

18. Type4 JDBC Driver

1524

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Time.

(ad)getTime(int parameterIndex, java.util.Calendar cal)
Function

Acquires the value of a specified ? parameter as a java.sql.Time object in Java
programming language. This method creates the time value from the appropriate
millisecond value obtained by using a specified calendar.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (ac) getTime(int
parameterIndex).

Format

public synchronized java.sql.Time getTime (int
parameterIndex, java.util.Calendar cal) throws SQLException

Non-NULL ? parameter value
converted to a
java.sql.Time
object

TIMESTAMP NULL null

Non-NULL ? parameter value
converted to a
java.sql.Time
object

Other -- SQLException

HiRDB data type ? parameter value Return value

18. Type4 JDBC Driver

1525

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

java.util.Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

java.sql.Time object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Time.

(ae) getTime(String parameterName)
Function

Acquires the value of a specified ? parameter as a java.sql.Time object in Java
programming language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (ac) getTime(int
parameterIndex).

Format

public synchronized java.sql.Time getTime (String
parameterName) throws SQLException

Arguments

String parameterName

18. Type4 JDBC Driver

1526

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

java.sql.Time object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Time.

(af) getTime(String parameterName, java.util.Calendar cal)
Function

Acquires the value of a specified ? parameter as a java.sql.Time object in Java
programming language. This method creates the time value from the appropriate
millisecond value obtained by using a specified calendar.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (ac) getTime(int
parameterIndex).

Format

public synchronized java.sql.Time getTime (String
parameterName, java.util.Calendar cal) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any

18. Type4 JDBC Driver

1527

double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.util.Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

java.sql.Time object containing the value of the specified ? parameter (if the
value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Time.

(ag)getTimestamp(int parameterIndex)
Function

Acquires the value of a specified ? parameter as a java.sql.Timestamp object
in Java programming language.

Format

public synchronized java.sql.Timestamp getTimestamp (int
parameterIndex) throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

Return value

java.sql.Timestamp object containing the value of the specified ? parameter

18. Type4 JDBC Driver

1528

(if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified ? parameter as a
java.sql.Timestamp object in Java programming language.

The following table shows the relationships among the HiRDB data type, the ?
parameter value, and the return value:

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

HiRDB data type ? parameter value Return value

[M|N][VAR]CHA
R

NULL null

[single-byte-space]timestamp-format[single-byte-space] Value obtained by
removing single-byte
spaces at the beginning
and end of the ? parameter
value and converting to a
java.sql.Timestamp
object

Other than the above SQLException is thrown

DATE NULL null

Non-NULL ? parameter value
converted to a
java.sql.Timestamp
object

TIMESTAMP NULL null

Non-NULL ? parameter value
converted to a
java.sql.Timestamp
object

Other -- SQLException is thrown

18. Type4 JDBC Driver

1529

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Timestamp.

(ah)getTimestamp(int parameterIndex, java.util.Calendar cal)
Function

Acquires the value of a specified ? parameter as a java.sql.Timestamp object
in Java programming language. This method creates the timestamp value from the
appropriate millisecond value obtained by using a specified calendar.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (ag) getTimestamp(int
parameterIndex).

Format

public synchronized java.sql.Timestamp getTimestamp (int
parameterIndex, java.util.Calendar cal) throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

java.util.Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

java.sql.Timestamp object containing the value of the specified ? parameter
(if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

18. Type4 JDBC Driver

1530

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Timestamp.

(ai) getTimestamp(String parameterName)
Function

Acquires the value of a specified ? parameter as a java.sql.Timestamp object
in Java programming language.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (ag) getTimestamp(int
parameterIndex).

Format

public synchronized java.sql.Timestamp getTimestamp (String
parameterName) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Return value

java.sql.Timestamp object containing the value of the specified ? parameter
(if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

• The ? parameter value cannot be acquired as java.sql.Timestamp.

18. Type4 JDBC Driver

1531

(aj) getTimestamp(String parameterName, java.util.Calendar cal)
Function

Acquires the value of a specified ? parameter as a java.sql.Timestamp object
in Java programming language. This method creates the timestamp value from the
appropriate millisecond value obtained from a specified calendar.

For details about the relationships among the HiRDB data type, the ? parameter
value, and the return value, see Functional detail in (ag) getTimestamp(int
parameterIndex).

Format

public synchronized java.sql.Timestamp getTimestamp (String
parameterName, java.util.Calendar cal) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.util.Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

java.sql.Timestamp object containing the value of the specified ? parameter
(if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified ? parameter's data type cannot be acquired by this method.

18. Type4 JDBC Driver

1532

• The ? parameter value cannot be acquired as java.sql.Timestamp.

(ak) registerOutParameter(int parameterIndex, int sqlType)
Function

Registers the data type of a specified OUT parameter as a specified JDBC type.

If this method is used to set a DECIMAL-type OUT or INOUT parameter, 0 is
assumed as the scale value.

Format

public synchronized void registerOutParameter(int
parameterIndex, int sqlType) throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

int sqlType

JDBC type to be registered

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued for the Connection object that created
this CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• The specified JDBC type cannot be mapped to an HiRDB data type.

(al) registerOutParameter(int parameterIndex, int sqlType, int scale)
Function

Registers the data type of a specified OUT parameter as a specified JDBC type.

Format

public synchronized void registerOutParameter(int

18. Type4 JDBC Driver

1533

parameterIndex, int sqlType, int scale) throws SQLException

Arguments

int parameterIndex

? parameter number, such as 1 for the first parameter, 2 for the second
parameter, etc.

int sqlType

JDBC type to be registered

int scale

Scaling. The permitted value range is 0 scale 29.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued for the Connection object that created
this CallableStatement object.

• A nonexistent ? parameter number was specified.

• The specified ? parameter is the IN parameter.

• Specified JDBC type cannot be mapped to an HiRDB data type.

• The value specified for scale is less than 0 or greater than 29.

(am)registerOutParameter(String parameterName, int sqlType)
Function

Registers the data type of a specified OUT parameter as a specified JDBC type.

If this method is used to set a DECIMAL-type OUT or INOUT parameter, 0 is
assumed as the scale value.

Format

public synchronized void registerOutParameter(String
parameterName, int sqlType) throws SQLException

Arguments

18. Type4 JDBC Driver

1534

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

int sqlType

JDBC type to be registered

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued for the Connection object that created
this CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified JDBC type cannot be mapped to an HiRDB data type.

(an)registerOutParameter(String parameterName, int sqlType, int scale)
Function

Registers the data type of a specified OUT parameter as a specified JDBC type.

Format

public synchronized void registerOutParameter(String
parameterName, int sqlType, int scale) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

int sqlType

18. Type4 JDBC Driver

1535

JDBC type to be registered

int scale

Scaling. The permitted value range is 0 scale 29.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued for the Connection object that created
this CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the IN parameter.

• The specified JDBC type cannot be mapped to an HiRDB data type.

• The value specified for scale is less than 0 or greater than 29.

(ao)setAsciiStream(String parameterName, java.io.InputStream x, int length)
Function

Sets the value of a java.io.InputStream object as a ? parameter value with
a length no more than the length specified by length.

Format

public synchronized void setAsciiStream(String
parameterName, java.io.InputStream x, int length) throws
SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.io.InputStream x

InputStream object that contains the value to be set in the ? parameter

18. Type4 JDBC Driver

1536

int length

Length of the stream to be set in bytes

Return value

None.

Functional detail

This method sets the value of a specified InputStream object in a ? parameter.

After entry from x is completed, this method does not execute the close()
method on x.

If the ? parameter's HiRDB data type is not [M|N][VAR]CHAR, or BINARY, or
BLOB, the JDBC driver throws an SQLException.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the OUT parameter.

• A value less than 0 was specified for length.

• The ? parameter's data type cannot be set by this method.

• The specified value is outside the range of data types for the ? parameter or
is in a format that cannot be converted.

• Data loading from the stream failed.

(ap)setBigDecimal(String parameterName, java.math.BigDecimal x)
Function

Sets a specified java.math.BigDecimal value as a ? parameter value.

Format

public synchronized void setBigDecimal(String parameterName,
java.math.BigDecimal x) throws SQLException

Arguments

18. Type4 JDBC Driver

1537

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.math.BigDecimal x

BigDecimal object that contains the value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the OUT parameter.

• The specified data cannot be converted to the data type of the table definition
because its integer part is longer than the integer part for the table definition.

• The ? parameter's data type cannot be set by this method.

• The specified value is outside the range of data types for the ? parameter or
is in a format that cannot be converted.

(aq)setBinaryStream(String parameterName, java.io.InputStream x, int
length)
Function

Acquires the value of a specified ? parameter as a java.math.BigDecimal
object in Java programming language.

Format

public synchronized void setBinaryStream(String
parameterName, java.io.InputStream x, int length) throws
SQLException

Arguments

18. Type4 JDBC Driver

1538

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.io.InputStream x

InputStream object that contains the value to be set in the ? parameter

int length

Length of the stream to be set in bytes

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the OUT parameter.

• A value less than 0 was specified for length.

• The ? parameter's data type cannot be set by this method.

• The specified value is outside the range of data types for the ? parameter or
is in a format that cannot be converted.

• Data loading from the stream has failed.

(ar) setBoolean(String parameterName, boolean x)
Function

Sets a specified boolean value as a ? parameter value.

If the HiRDB data type of the specified ? parameter is CHAR, MCHAR, NCHAR,
VARCHAR, MVARCHAR, or NVARHAR and x is true, then the ? parameter value is
true. If the HiRDB data type of the specified ? parameter is CHAR, MCHAR,
NCHAR, VARCHAR, MVARCHAR, or NVARHAR and x is false, then the ? parameter
value is false (: single-byte space).

18. Type4 JDBC Driver

1539

Format

public synchronized void setBoolean(String parameterName,
boolean x) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

boolean x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified ? parameter is the OUT parameter.

(as) setByte(String parameterName, byte x)
Function

Sets a specified byte value as a ? parameter value.

Format

public synchronized void setByte(String parameterName, byte
x) throws SQLException

Arguments

18. Type4 JDBC Driver

1540

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

byte x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified ? parameter is the OUT parameter.

(at) setBytes(String parameterName,byte[] x)
Function

Sets a specified byte array as a ? parameter value.

Format

public synchronized void setBytes(String parameterName,
byte[] x) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

18. Type4 JDBC Driver

1541

byte[] x

byte array that contains the values to be set in the ? parameter

Return value

None.

Functional detail

If the ? parameter's HiRDB data type is neither BINARY nor BLOB, this method
results in an SQLException.

This method does not reference the settings in the byte array; instead, they are
referenced when the executeXXX() method is executed. Therefore, if settings
in the byte array are changed between when this method executes and when the
executeXXX() method executes, the new settings become the ? parameter
values.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• A specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(au)setCharacterStream(String parameterName, Reader x, int length)
Function

Sets the value of a specified Reader object as a ? parameter value.

If the ? parameter's HiRDB data type is not [M|N][VAR]CHAR, or BINARY, or
BLOB, the JDBC driver throws an SQLException.

Format

public synchronized void setCharacterStream(String
parameterName, Reader x, int length) throws SQLException

18. Type4 JDBC Driver

1542

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Reader x

Reader object that contains the value to be set in the ? parameter

int length

Number of characters

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A value less than 0 was specified for length.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• Encoding failed.

• The specified ? parameter is the OUT parameter.

(av) setDate(String parameterName, java.sql.Date x)
Function

Sets the value of a java.sql.Date object as a ? parameter value

Format

public synchronized void setDate(String parameterName,
java.sql.Date x) throws SQLException

18. Type4 JDBC Driver

1543

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.sql.Date x

java.sql.Date object that contains the value to be set in the ? parameter

Return value

None.

Functional detail

This method converts a java.sql.Date object specified in local time to the
equivalent time value in a specified calendar's time zone, and then sets it as a ?
parameter value.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(aw)setDate(String parameterName, java.sql.Date x,Calendar cal)
Function

Converts a java.sql.Date object specified in local time to the equivalent time
value in a specified calendar's time zone, and then sets it as a ? parameter value.

Format

public synchronized void setDate(String parameterName,

18. Type4 JDBC Driver

1544

java.sql.Date x,Calendar cal) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.sql.Date x

java.sql.Date object that contains the value to be set in the ? parameter

Calendar cal

Calendar in which the time zone for the value to be stored in the database has
been set. If null is specified, the JavaVM default calendar's time zone is
assumed.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(ax) setDouble(String parameterName, double x)
Function

Sets a specified double value as a ? parameter value.

Format

18. Type4 JDBC Driver

1545

public synchronized void setDouble(String parameterName,
double x) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

double x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(ay) setFloat(String parameterName, float x)
Function

Sets a specified float value as a ? parameter value.

Format

public synchronized void setFloat(String parameterName,
float x) throws SQLException

18. Type4 JDBC Driver

1546

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

float x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(az) setInt(String parameterName, int x)
Function

Sets a specified int value as a ? parameter value.

Format

public synchronized void setInt(String parameterName, int x)
throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character

18. Type4 JDBC Driver

1547

string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

int x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(ba)setLong(String parameterName, long x)
Function

Sets a specified long value as a ? parameter value.

Format

public synchronized void setLong(String parameterName, long
x) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

18. Type4 JDBC Driver

1548

long x

Value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(bb)setNull(String parameterName,int sqlType)
Function

Sets the NULL value in a specified ? parameter.

This driver ignores the sqlType argument.

Format

public synchronized void setNull(String parameterName,int
sqlType) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

int sqlType

JDBC's SQL data type

18. Type4 JDBC Driver

1549

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified ? parameter is the OUT parameter.

(bc)setObject(String parameterName, Object x)
Function

Sets the value of a specified object as a ? parameter value.

Format

public synchronized void setObject(String parameterName,
Object x) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Object x

Object that contains the value to be set in the ? parameter

Return value

None.

Functional detail

This method sets the value of a specified object as a ? parameter value.

If the type of the ? parameter specified by parameterName is HiRDB's CHAR,
MCHAR, NCHAR, VARCHAR, MVARCHAR, or NVARHAR, x is a Boolean object, and
x is true, then the ? parameter value is true. If the type of the ? parameter

18. Type4 JDBC Driver

1550

specified by parameterName is HiRDB's CHAR, MCHAR, NCHAR, VARCHAR,
MVARCHAR, or NVARHAR, x is a Boolean object, and x is false, then the ?
parameter value is false (: single-byte space).

If x is a byte array, this method does not reference settings in the byte array;
instead, the byte array settings are referenced when an executeXXX() method
is executed. Therefore, if settings in the byte array are changed between when
this method executes and when the executeXXX() method executes, the new
settings become the ? parameter values.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(bd)setObject(String parameterName, Object x, int targetSqlType)
Function

Sets the value of a specified object as a ? parameter value.

Format

public synchronized void setObject(String parameterName,
Object x, int targetSqlType) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Object x

18. Type4 JDBC Driver

1551

Object that contains the value to be set in the ? parameter

int targetSqlType

JDBC's SQL data type

Return value

None.

Functional detail

This method sets the value of a specified object as a ? parameter value.

If targetSqlType is java.sql.Types.CHAR, java.sql.Types.VARCHAR,
or java.sql.Types.LONGVARCHAR, x is a Boolean object, and x is true,
then the ? parameter value is 1,0.

If the ? parameter's data type is NCHAR or NVARCHAR type (which are HiRDB data
types) and its value is 1,0, the JDBC driver throws an SQLException.

If x is a byte array, this method does not reference settings in the byte array;
instead, the byte array's settings are referenced when an executeXXX()
method is executed. Therefore, if settings in the byte array are changed between
when this method executes and when the executeXXX() method executes, the
new settings become the ? parameter's values.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• targetSqlType is one of the following:

Types.ARRAY, Types.CLOB, Types.REF, or Types.STRUCT

• The specified ? parameter is the OUT parameter.

18. Type4 JDBC Driver

1552

(be)setObject(String parameterName, Object x, int targetSqlType, int scale)
Function

Sets the value of a specified object as a ? parameter value.

Format

public synchronized void setObject(String parameterName,
Object x, int targetSqlType, int scale) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Object x

Object that contains the value to be set in the ? parameter

int targetSqlType

JDBC's SQL data type

int scale

Scaling (ignored, if specified)

Return value

None.

Functional detail

This method sets the value of a specified object as a ? parameter value.

If targetSqlType is java.sql.Types.CHAR, java.sql.Types.VARCHAR,
or java.sql.Types.LONGVARCHAR, x is a Boolean object, and x is true,
then the ? parameter value is 1,0.

If the ? parameter's data type is NCHAR or NVARCHAR (which are HiRDB data
types) and its value is 1,0, the JDBC driver throws an SQLException.

If x is a byte array, this method does not reference settings in the byte array;
instead the byte array's settings are referenced when an executeXXX() method
is executed. Therefore, if settings in the byte array are changed between when
this method executes and when the executeXXX() method executes, the new
settings become the ? parameter's values.

18. Type4 JDBC Driver

1553

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• targetSqlType is one of the following:

Types.ARRAY, Types.CLOB, Types.REF, or Types.STRUCT

• The specified ? parameter is the OUT parameter.

(bf) setShort(String parameterName, short x)
Function

Sets a specified short value as a ? parameter value.

Format

public synchronized void setShort(String parameterName,
short x) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

short x

Value to be set in the ? parameter

Return value

None.

Exceptions

18. Type4 JDBC Driver

1554

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified ? parameter is the OUT parameter.

(bg)setString(String parameterName, String x)
Function

Sets a specified String object as a ? parameter value.

Format

public synchronized void setString(String parameterName,
String x) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

String x

String object that contains the value to be set in the ? parameter

Return value

None.

Functional detail

This method sets in the ? parameter the String object specified in the x
argument.

The following table shows the value of the ? parameter when the x argument's
value is a character string with a length of 0:

18. Type4 JDBC Driver

1555

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• Encoding failed.

• The specified ? parameter is the OUT parameter.

(bh)setTime(String parameterName, Time x)
Function

Sets a specified java.sql.Time object as a ? parameter value.

Format

public synchronized void setTime(String parameterName, Time
x) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

Data type of ? parameter Value of ? parameter

[M|N][VAR]CHAR • When the HiRDB_for_Java_DAB_CONVERT_NULL system
property is set to TRUE
null

• Otherwise
Character string with a length of 0

BINARY or BLOB Character string with a length of 0

Other null

18. Type4 JDBC Driver

1556

java.sql.Time x

java.sql.Time object that contains the value to be set in the ? parameter

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified ? parameter is the OUT parameter.

(bi) setTime(String parameterName, java.sql.Time x,Calendar cal)
Function

Converts a java.sql.Time object specified in local time to the equivalent time
value in a specified calendar's time zone, and then sets it as a ? parameter value.

Format

public synchronized void setTime(String parameterName,
java.sql.Time x,Calendar cal) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.sql.Time x

java.sql.Time object that contains the value to be set in the ? parameter

Calendar cal

Calendar in which the time zone for the value to be stored in the database has

18. Type4 JDBC Driver

1557

been set. If null is specified, the JavaVM default calendar's time zone is
assumed.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified ? parameter is the OUT parameter.

(bj) setTimestamp(String parameterName, java.sql.Timestamp x)
Function

Sets a specified java.sql.Timestamp object as a ? parameter value.

Format

public synchronized void setTimestamp(String parameterName,
java.sql.Timestamp x) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.sql.Timestamp x

java.sql.Timestamp object that contains the value to be set in the ?
parameter

Return value

None.

18. Type4 JDBC Driver

1558

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(bk)setTimestamp(String parameterName, java.sql.Timestamp x,Calendar
cal)
Function

Converts a java.sql.Timestamp object specified in local time to the
equivalent time value in a specified calendar's time zone, and then sets it as a ?
parameter value.

Format

public synchronized void setTimestamp(String parameterName,
java.sql.Timestamp x,Calendar cal) throws SQLException

Arguments

String parameterName

Parameter name (which is not case sensitive). Because the entire character
string in parameterName is assumed to be the ? parameter's name, any
double-quotation mark (") contained in the character string is treated as part
of the ? parameter's name.

java.sql.Timestamp x

java.sql.Timestamp object that contains the value to be set in the ?
parameter

Calendar cal

Calendar in which the time zone for the value to be stored in the database has

18. Type4 JDBC Driver

1559

been set. If null is specified, the JavaVM default calendar's time zone is
assumed.

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued to the Connection object that created this
CallableStatement object.

• A nonexistent parameter name was specified (including the case where the
specified parameterName value is null or a character string with a length
of 0).

• This method does not support the HiRDB data type specified in the ?
parameter.

• The specified value is outside the range of data types for the column or in a
format that cannot be converted.

• The specified ? parameter is the OUT parameter.

(bl) wasNull()
Function

Acquires a value indicating whether the value of the last OUT or INOUT parameter
read was NULL.

Format

public synchronized boolean wasNull() throws SQLException

Arguments

None.

Return value

If the value of the last parameter read was NULL, the method returns true; if not,
the method returns false.

The following table shows the return values.

18. Type4 JDBC Driver

1560

Table 18-26: Return values

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() has already been issued for the CallableStatement object.

• close() has already been issued for the Connection object that created
this CallableStatement object.

(3) Package and class names
The following are the package and class names for installing this interface:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbCallableStatement

(4) Notes
(a) Attributes of OUT parameter in stored procedures

• The JDBC standards stipulate that you must register the attributes of OUT and
INOUT parameters by executing the registerOutParameter method before
you execute an executeXXX method. However, for a Type4 JDBC driver,
execution of the registerOutParameter method is optional because the
driver uses the attributes of OUT and INOUT parameters that were acquired by the
CALL statement preprocessing.

• The information set by the registerOutParameter method takes effect when
an executeXXX method is executed. This means that setting information with a
registerOutParameter method after execution of an executeXXX method
will not affect the execution results. Similarly, clearing the settings with
clearParameters after execution of an executeXXX method will not affect
the execution results.

Condition Return value

Last parameter read was NULL. true

Last parameter read was not NULL. false

Before an execute-related method has executed (ResultSet for
OUT parameter is null).

false

No get operation (getXXX) has been performed. false

After clearParameters has executed. Same value as before clearParameters
executed

After an execute-related method has re-executed (spanning a
close of ResultSet for an OUT parameter).

false

18. Type4 JDBC Driver

1561

(b) Notes about using the DECIMAL type
If you use a registerOutParameter(int parameterIndex, int sqlType)
method that does not accept decimal places to set a DECIMAL-type OUT or INOUT
parameter, the number of digits will be assumed to be 0.

(c) Specifying a value for a DECIMAL-type ? parameter
The following should be noted when a setXXX method is used to set a value in a ?
parameter of HiRDB's DECIMAL type and the precision and scaling acquired by the
CALL statement's preprocessing do not match the precision and scaling of the value:

When the value's precision is higher than the precision acquired by the CALL
statement's preprocessing: An SQLException is thrown.

When the value's precision is lower than the precision acquired by the CALL
statement's preprocessing: The value is expanded.

When the value's scaling is greater than the scaling acquired by the CALL statement's
preprocessing: The value is truncated based on the scaling acquired by the CALL
statement's preprocessing.

When the value's scaling is less than the scaling acquired by the CALL statement's
preprocessing: The value is padded with 0s.

18.4.6 ResultSet interface
(1) Overview

The ResultSet interface provides the following principal functions:

• Movement of data within a result set in units of rows

• Return of result data

• Notification of whether the retrieval result data is the null value

(2) Methods
The table below lists the methods of the ResultSet interface. The interface does not
support methods that are not listed in the table. If an unsupported method is specified,
the interface throws an SQLException.

Table 18-27: ResultSet interface methods

Subsection Method Function

(a) absolute(int row) Moves the cursor to a specified row
in this ResultSet object.

(b) afterLast() Moves the cursor to the location
immediately following the last row
in this ResultSet object.

18. Type4 JDBC Driver

1562

(c) beforeFirst() Moves the cursor to the location
immediately preceding the first row
in this ResultSet object.

(d) clearWarnings() Clears all warnings reported about
this ResultSet object.

(e) close() Closes the database cursor that has
been opened for this ResultSet
object and releases JDBC resources.

(f) findColumn(String columnName) Maps a specified column name to its
column number.

(g) first() Moves the cursor to the first row in
this ResultSet object.

(h) getArray(int i) Acquires as an Array object the
elements of the repetition column
with a specified column number
located in the current row of this
ResultSet object.

(i) getArray(String colName) Acquires as an Array object the
elements of the repetition column
with a specified column name
located in the current row of the
ResultSet object.

(j) getAsciiStream(int columnIndex) Acquires as a PrdbDataStream
object the value of a specified
column in the current row of this
ResultSet object.

(k) getAsciiStream(String columnName) Acquires as a PrdbDataStream
object the value of a specified
column in the current row of this
ResultSet object.

(l) getBigDecimal(int columnIndex) Acquires as a
java.math.BigDecimal object
the value of a specified column in the
current row of this ResultSet
object.

(m) getBigDecimal(int columnIndex, int scale) Acquires the value of a specified
column in the current row of this
ResultSet object as a
java.math.BigDecimal object
with the number of decimal places
specified in scale.

Subsection Method Function

18. Type4 JDBC Driver

1563

(n) getBigDecimal(String columnName) Acquires as a
java.math.BigDecimal object
the value of a specified column in the
current row of this ResultSet
object.

(o) getBigDecimal(String columnName, int scale) Acquires the value of a specified
column in the current row of this
ResultSet object as a
java.math.BigDecimal object
with the number of decimal places
specified in scale.

(p) getBinaryStream(int columnIndex) Acquires as a binary stream the value
of the column with a specified
column number located in the
current row of this ResultSet
object.

(q) getBinaryStream(String columnName) Acquires as a binary stream the value
of a specified column in the current
row of this ResultSet object.

(r) getBlob(int i) Acquires as a java.sql.Blob
object the value of the column with a
specified column number located in
the current row of this ResultSet
object.

(s) getBlob(String colName) Acquires as a java.sql.Blob
object the value of a specified
column in the current row of this
ResultSet object

(t) getBoolean(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as boolean in
Java programming language.

(u) getBoolean(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as boolean in
Java programming language.

(v) getByte(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as byte in Java
programming language.

Subsection Method Function

18. Type4 JDBC Driver

1564

(w) getByte(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as byte in Java
programming language.

(x) getBytes(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as a byte array in
Java programming language.

(y) getBytes(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as a byte array in
Java programming language.

(z) getCharacterStream(int columnIndex) Acquires as a java.io.Reader
object the value of a specified
column in the current row of this
ResultSet object.

(aa) getCharacterStream(String columnName) Acquires as a java.io.Reader
object the value of a specified
column in the current row of this
ResultSet object.

(ab) getConcurrency() Returns the parallel processing mode
of this ResultSet object.

(ac) getCursorName() Acquires the name of the SQL cursor
used by this ResultSet object.

(ad) getDate(int columnIndex) Acquires as a java.sql.Date
object the value of a specified
column in the current row of this
ResultSet object.

(ae) getDate(int columnIndex,Calendar cal) Acquires as a java.sql.Date
object the value of a specified
column in the current row of this
ResultSet object.

(af) getDate(String columnName) Acquires as a java.sql.Date
object the value of a specified
column in the current row of this
ResultSet object.

(ag) getDate(String columnName,Calendar cal) Acquires as a java.sql.Date
object the value of a specified
column in the current row of this
ResultSet object.

Subsection Method Function

18. Type4 JDBC Driver

1565

(ah) getDouble(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as double in
Java programming language.

(ai) getDouble(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as double in
Java programming language.

(aj) getFetchDirection() Acquires the fetch direction of this
ResultSet object.

(ak) getFetchSize() Acquires the fetch size of this
ResultSet object.

(al) getFloat(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as float in Java
programming language.

(am) getFloat(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as float in Java
programming language.

(an) getInt(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as int in Java
programming language.

(ao) getInt(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as int in Java
programming language.

(ap) getLong(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as long in Java
programming language.

(aq) getLong(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as long in Java
programming language.

(ar) getMetaData() Returns ResultSetMetaData that
represents this ResultSet object's
meta information.

Subsection Method Function

18. Type4 JDBC Driver

1566

(as) getObject(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as Object in
Java programming language.

(at) getObject(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as Object in
Java programming language.

(au) getRow() Acquires the current row number.

(av) getShort(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as short in Java
programming language.

(aw) getShort(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as short in Java
programming language.

(ax) getStatement() Acquires the Statement object that
created this ResultSet object.

(ay) getString(int columnIndex) Acquires the value of a specified
column in the current row of this
ResultSet object as String in
Java programming language.

(az) getString(String columnName) Acquires the value of a specified
column in the current row of this
ResultSet object as String in
Java programming language.

(ba) getTime(int columnIndex) Acquires as java.sql.Time the
value of a specified column in the
current row of this ResultSet
object.

(bb) getTime(int columnIndex,Calendar cal) Acquires as a java.sql.Time
object the value of a specified
column in the current row of this
ResultSet object.

(bc) getTime(String columnName) Acquires as a java.sql.Time
object the value of a specified
column in the current row of this
ResultSet object.

Subsection Method Function

18. Type4 JDBC Driver

1567

(bd) getTime(String columnName,Calendar cal) Acquires as a java.sql.Time
object the value of a specified
column in the current row of this
ResultSet object.

(be) getTimestamp(int columnIndex) Acquires as a
java.sql.Timestamp object the
value of a specified column in the
current row of this ResultSet
object.

(bf) getTimestamp(int columnIndex, Calendar cal) Acquires as a
java.sql.Timestamp object the
value of a specified column in the
current row of this ResultSet
object.

(bg) getTimestamp(String columnName) Acquires as a
java.sql.Timestamp object the
value of a specified column in the
current row of this ResultSet
object.

(bh) getTimestamp(String columnName, Calendar cal) Acquires as a
java.sql.Timestamp object the
value of a specified column in the
current row of this ResultSet
object.

(bi) getType() Returns the type of this ResultSet
object.

(bj) getWarnings() Acquires the first warning reported
by a call related to this ResultSet
object.

(bk) isAfterLast() Acquires a value indicating whether
the cursor is located after the last row
in this ResultSet object.

(bl) isBeforeFirst() Acquires a value indicating whether
the cursor is located before the first
row in this ResultSet object.

(bm) isFirst() Acquires a value indicating whether
the cursor is located on the first row
in this ResultSet object.

(bn) isLast() Acquires a value indicating whether
the cursor is located on the last row
in this ResultSet object.

Subsection Method Function

18. Type4 JDBC Driver

1568

(a) absolute(int row)
Function

Moves the cursor to a specified row in this ResultSet object.

Format

public synchronized boolean absolute(int row) throws
SQLException

Arguments

int row

Row number to which the cursor is to be moved. A positive number indicates
that the rows in the result set are to be counted from the beginning, and a
negative number indicates that the rows are to be counted from the end.

Return value

If the cursor position resulting from this method call is before the first row or after
the last row, the method returns false; otherwise, the method returns true.

(bo) last() Moves the cursor to the last row of
this ResultSet object.

(bp) next() Moves the cursor from the current
position to the next row.

(bq) previous() Moves the cursor to the immediately
preceding row in this ResultSet
object.

(br) relative(int rows) Moves the cursor by the specified
number of rows in the forward or
reverse direction relative to the
current position.

(bs) setFetchDirection(int direction) Sets the default fetch direction for
the result set that is created from this
Statement object.

(bt) setFetchSize(int rows) Sets the fetch size of this ResultSet
object.

(bu) wasNull() Reports whether the last column
value acquired is the NULL value.

Subsection Method Function

18. Type4 JDBC Driver

1569

Functional detail

This method moves the cursor to a specified row in this ResultSet object.

The following table shows the cursor position after this method call and the return
value.

Table 18-28: Destination of absolute and the return value

#

If the actual number of rows is greater than the setMaxRows value, the
setMaxRows value takes effect.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• The type of this ResultSet object is TYPE_FORWARD_ONLY.

• row=0 was specified.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(b) afterLast()
Function

Moves the cursor to the location immediately following the last row in this
ResultSet object.

Format

Number of rows in result
set#

Specified row value Destination Return
value

0 Non-zero value Remains before the first row false

n n < row After the last row false

1 row n row true

-n row -1 (n + 1) + row true

row < -n Before the first row false

18. Type4 JDBC Driver

1570

public synchronized void afterLast() throws SQLException

Arguments

None.

Return value

None.

Functional detail

This method moves the cursor to the location immediately following the last row
in this ResultSet object.

The following table shows the location to which the cursor is moved when this
method is called.

Table 18-29: Destination of afterLast

#

If the actual number of rows is greater than the setMaxRows value, the
setMaxRows value takes effect.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• The type of this ResultSet object is TYPE_FORWARD_ONLY.

• ResultSet has become invalid due to transaction settlement.

Number of rows in
result set#

Current row Row after afterLast() is called

0 Before the first row Remains before the first row

n Before the first row After the last row

1 current row n After the last row

After the last row Remains after the last row

18. Type4 JDBC Driver

1571

• A database access error occurred.

(c) beforeFirst()
Function

Moves the cursor to the location immediately preceding the first row in this
ResultSet object.

Format

public synchronized void beforeFirst() throws SQLException

Arguments

None.

Return value

None.

Functional detail

This method moves the cursor to the location immediately preceding the first row
in this ResultSet object.

The following table shows the location to which the cursor is moved when this
method is called.

Table 18-30: Destination of beforeFirst

#

If the actual number of rows is greater than the setMaxRows value, the
setMaxRows value takes effect.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

Number of rows in
result set#

Current row Row after beforeFirst() is called

0 Before the first row Remains before the first row

n Before the first row Remains before the first row

1 current row n Before the first row

After the last row Before the first row

18. Type4 JDBC Driver

1572

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• The type of this ResultSet object is TYPE_FORWARD_ONLY.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(d) clearWarnings()
Function

Clears all warnings reported about this ResultSet object.

Format

public synchronized void clearWarnings() throws SQLException

Arguments

None.

Return value

None.

Exceptions

If ResultSet has become invalid due to transaction settlement, the JDBC driver
throws an SQLException.

(e) close()
Function

Closes the database cursor that has been opened for this ResultSet object and
releases JDBC resources.

Format

public synchronized void close() throws SQLException

Arguments

None.

Return value

None.

18. Type4 JDBC Driver

1573

Exceptions

If a database access error occurs, the JDBC driver throws an SQLException.

(f) findColumn(String columnName)
Function

Maps a specified column name to its column number.

Format

public synchronized int findColumn(String columnName) throws
SQLException

Arguments

String columnName

Column name (not case sensitive). Because the entire character string in
columnName is assumed to be the column name, any double-quotation mark
(") contained in the character string is treated as part of the column name. If
the specified columnName value is null or a character string with a length
of 0, a nonexistent column error occurs.

If multiple columns have the same columnName value, the column with the
smallest column number takes precedence. If the column name is truncated
based on the HiRDB server specifications because it is too long, but the
truncated column name is specified, the method treats the column name as
matching the value.

Return value

Column number corresponding to the specified column name

Functional detail

This method acquires and returns the column number that corresponds to the
column name specified in the columnName argument.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

18. Type4 JDBC Driver

1574

• The specified column does not exist.

• A database access error occurred.

(g) first()
Function

Moves the cursor to the first row in this ResultSet object.

Format

public synchronized boolean first() throws SQLException

Arguments

None.

Return value

If the number of rows in the result set is 0, the method returns false; otherwise,
the method returns true.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• The type of this ResultSet object is TYPE_FORWARD_ONLY.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(h) getArray(int i)
Function

Acquires as an Array object the elements of the repetition column with a
specified column number located in the current row of this ResultSet object.

Format

public Array getArray(int i) throws SQLException

Arguments

18. Type4 JDBC Driver

1575

int i

Column number

Return value

This method returns an Array object corresponding to the specified column. If
all elements in the repetition column are the null value, the method returns null.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where the ResultSet object is closed by this driver
because the Statement object that created this ResultSet object was
closed.

• The Connection object used to create the Statement object that created
this ResultSet object is closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number is specified in the i argument.

• The column indicated by the column number specified in the i argument is
not a repetition column.

• An error occurred in the JDBC driver.

(i) getArray(String colName)
Function

Acquires as an Array object the elements of the repetition column with a
specified column name located in the current row of the ResultSet object.

Format

public Array getArray(String colName) throws SQLException

Arguments

String colName

Column name

Return value

Array object that corresponds to the specified column name (if all elements in
the repetition column are the null value, the method returns null)

Exceptions

18. Type4 JDBC Driver

1576

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection object used to create the Statement object that created
this ResultSet object is closed.

• The ResultSet object has become invalid due to transaction settlement.

• The column specified in the colName argument does not exist or is null.

• An internal JDBC driver error occurred.

(j) getAsciiStream(int columnIndex)
Function

Acquires as a PrdbDataStream object the value of a specified column in the
current row of this ResultSet object.

Format

public synchronized InputStream getAsciiStream (int
columnIndex) throws SQLException

Arguments

int columnIndex

Column number

Return value

PrdbDataStream object with the column value set (if the value is NULL, the
method returns null)

Functional detail

This method acquires as a PrdbDataStream object the value of a specified
column in the current row of this ResultSet object. The method does not
convert the value to ASCII characters.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data type Retrieval result Return value

[M|N][VAR]CHARBINARYBLOB NULL null

18. Type4 JDBC Driver

1577

Legend:

-- Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(k) getAsciiStream(String columnName)
Function

Acquires as a PrdbDataStream object the value of a specified column in the
current row of this ResultSet object. The method does not convert the value to
ASCII characters.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (j) getAsciiStream(int columnIndex).

Format

public synchronized InputStream getAsciiStream (String
columnName) throws SQLException

Arguments

String columnName

Column name

Other than the above InputStream object containing
the retrieval result

Other -- SQLException is thrown

HiRDB data type Retrieval result Return value

18. Type4 JDBC Driver

1578

Return value

PrdbDataStream object with the column value set (if the value is NULL, the
method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(l) getBigDecimal(int columnIndex)
Function

Acquires as a java.math.BigDecimal object the value of a specified column
in the current row of this ResultSet object.

Format

public synchronized BigDecimal getBigDecimal (int
columnIndex) throws SQLException

Arguments

int columnIndex

Column number

Return value

Column value that corresponds to the specified column number (if the value is
NULL, the method returns null)

Functional detail

This method acquires as a java.math.BigDecimal object the value of a
specified column in the current row of this ResultSet object.

The following table shows the relationships among the HiRDB data type, the

18. Type4 JDBC Driver

1579

retrieval results, and the return value:

HiRDB data
type

Retrieval result Return
value

[M|N][VAR]C
HAR

NULL null

[single-byte-space]integer-in-character-string-representation[single-byte-sp
ace],
[single-byte-space]decimal-number-in-character-string-representation[sing
le-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation
[single-byte-space]

BigDecimal
object
containing
the retrieval
results.
The value
without the
single-byte
spaces at the
beginning
and end of the
character
string is used
as the
BigDecimal
object.

Other than the above SQLExcepti
on is thrown

SMALLINT NULL null

Other than the above BigDecimal
object
containing
the retrieval
results

INTEGER NULL null

Other than the above BigDecimal
object
containing
the retrieval
results

REAL NULL null

Infinity SQLExcepti
on is thrown

-Infinity SQLExcepti
on is thrown

NaN SQLExcepti
on is thrown

18. Type4 JDBC Driver

1580

Other than the above BigDecimal
object
containing
the retrieval
results

FLOAT NULL null

Infinity SQLExcepti
on is thrown

-Infinity SQLExcepti
on is thrown

NaN SQLExcepti
on is thrown

Other than the above BigDecimal
object
containing
the retrieval
results

DECIMAL NULL null

Other than the above BigDecimal
object
containing
the retrieval
results

BOOLEAN# NULL null

true BigDecimal
object
obtained
based on
BigDecimal
(1)

false BigDecimal
object
obtained
based on
BigDecimal
(0)

Other -- SQLExcepti
on is thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1581

Legend:
--: Not applicable
#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as BigDecimal.

• An error occurred in the JDBC driver.

(m) getBigDecimal(int columnIndex,int scale)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as a java.math.BigDecimal object with the number of decimal places
specified in scale.

Format

public synchronized BigDecimal getBigDecimal(int
columnIndex,int scale) throws SQLException

Arguments

int columnIndex

Column number

int scale

Scaling

Return value

Column value corresponding to the specified column number with the number of

18. Type4 JDBC Driver

1582

decimal places specified in the scale argument (if the value is NULL, the method
returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as a java.math.BigDecimal object with the number of
decimal places specified in scale.

If the number of decimal places in the column value is greater than the scale
argument value, the method truncates the value based on the scale value. If the
number of decimal places in the column value is less than the scale argument
value, the method pads the value with 0s.

If the scale argument value is smaller than the number of decimal places in the
retrieval result, the method discards the excess decimal places from the retrieval
result. If the scale argument value is greater than the number of decimal places
in the retrieval result, the method pads the retrieval result with 0s so that the
number of decimal places matches the scale value.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (l) getBigDecimal(int columnIndex).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as BigDecimal.

• A value less than 0 was specified for scale.

• An error occurred in the JDBC driver.

(n) getBigDecimal(String columnName)
Function

Acquires as a java.math.BigDecimal object the value of a specified column
in the current row of this ResultSet object.

18. Type4 JDBC Driver

1583

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (l) getBigDecimal(int columnIndex).

Format

public synchronized BigDecimal getBigDecimal (String
columnName) throws SQLException

Arguments

String columnName

Column name

Return value

Column value corresponding to the specified column name (if the value is NULL,
the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as BigDecimal.

• An error occurred in the JDBC driver.

(o) getBigDecimal(String columnName,int scale)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as a java.math.BigDecimal object with the number of decimal places
specified in scale.

Format

public synchronized BigDecimal getBigDecimal(String
columnName,int scale) throws SQLException

18. Type4 JDBC Driver

1584

Arguments

String columnName

Column name

int scale

Scaling

Return value

Column value corresponding to the specified column name with the number of
decimal places specified in the scale argument (if the value is NULL, the method
returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as a java.math.BigDecimal object with the number of
decimal places specified in scale.

If the scale argument value is smaller than the number of decimal places in the
retrieval result, the method discards the excess decimal places from the retrieval
result. If the scale argument value is greater than the number of decimal places
in the retrieval result, the method pads the retrieval result with 0s so that the
number of decimal places matches the scale value.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (l) getBigDecimal(int columnIndex).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as BigDecimal.

• A value less than 0 was specified for scale.

18. Type4 JDBC Driver

1585

• An error occurred in the JDBC driver.

(p) getBinaryStream(int columnIndex)
Function

Acquires as a binary stream the value of the column with a specified column
number located in the current row of this ResultSet object.

Format

public synchronized InputStream getBinaryStream(int
columnIndex) throws SQLException

Arguments

int columnIndex

Column number

Return value

Java input stream in which the column value is sent as an uninterpreted byte
stream (if the value is NULL, the method returns null)

Functional detail

This method acquires as a binary stream the value of the column with a specified
column number located in the current row of this ResultSet object.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

Legend:

-- Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the

HiRDB data type Retrieval result Return value

BINARYBLOB NULL null

Other than the
above

InputStream object containing the retrieval result

Other -- SQLException is thrown

18. Type4 JDBC Driver

1586

Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(q) getBinaryStream(String columnName)
Function

Acquires as a binary stream the value of a specified column in the current row of
this ResultSet object.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (p) getBinaryStream(int columnIndex).

Format

public synchronized InputStream getBinaryStream (String
columnName) throws SQLException

Arguments

String columnName

Column name

Return value

Java input stream in which the column value is sent as an uninterpreted byte
stream (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

18. Type4 JDBC Driver

1587

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(r) getBlob(int i)
Function

Acquires as a java.sql.Blob object the value of the column with a specified
column number located in the current row of this ResultSet object.

Format

public synchronized Blob getBlob(int i) throws SQLException

Arguments

int i

Column number

Return value

Blob object representing the value of the specified column (if the value is NULL,
the method returns null)

Functional detail

This method acquires as a java.sql.Blob object the value of the column with
a specified column number located in the current row of this ResultSet object.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

Legend:

-- Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

HiRDB data type Retrieval
result

Return value

BINARYBLOB NULL null

Other than the
above

java.sql.Blob object containing the retrieval results

Other -- SQLException is thrown

18. Type4 JDBC Driver

1588

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(s) getBlob(String colName)
Function

Acquires as a java.sql.Blob object the value of a specified column in the
current row of this ResultSet object.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (r) getBlob(int i).

Format

public synchronized Blob getBlob(String colName) throws
SQLException

Arguments

String colName

Column name

Return value

Blob object representing the value of the specified column (if the value is NULL,
the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

18. Type4 JDBC Driver

1589

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(t) getBoolean(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as boolean in Java programming language.

Format

public synchronized boolean getBoolean(int columnIndex)
throws SQLException

Arguments

int columnIndex

Column number

Return value

true or false (if the value is NULL, the method returns false)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as boolean in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data type Retrieval result Return value

[M][VAR]CHARNVARCHA
R

NULL false

[single-byte-space]true (single-byte characters; not
case-sensitive)[single-byte-space]

true

[single-byte-space]1 (single-byte
character)[single-byte-space]

true

Other than the above false

NCHAR NULL false

Value beginning with [single-byte-space]true
(single-byte characters; not case-sensitive)

true

18. Type4 JDBC Driver

1590

Legend:

Other than the above false

SMALLINT NULL false

0 false

Non-zero value true

INTEGER NULL false

0 false

Non-zero value true

REAL NULL false

Infinity true

-Infinity true

NaN true

0.0 or -0.0 false

Other than the above true

FLOAT NULL false

Infinity true

-Infinity true

NaN true

0.0 or -0.0 false

Other than the above true

DECIMAL NULL false

0[.00...0] false

Other than the above true

BOOLEAN# NULL false

Non-NULL Retrieval result

Other -- SQLException is
thrown

HiRDB data type Retrieval result Return value

18. Type4 JDBC Driver

1591

--: Not applicable
#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(u) getBoolean(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as boolean in Java programming language.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (t) getBoolean(int columnIndex).

Format

public synchronized boolean getBoolean(String columnName)
throws SQLException

Arguments

String columnName

Column name

Return value

true or false (if the value is NULL, the method returns false)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

18. Type4 JDBC Driver

1592

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(v) getByte(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as byte in Java programming language.

Format

public synchronized byte getByte(int columnIndex) throws
SQLException

Arguments

int columnIndex

Column number

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as byte in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data
type

Retrieval result Return
value

[M|N][VAR]
CHAR

NULL 0

18. Type4 JDBC Driver

1593

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and Byte.MIN_VALUE or greater, and Byte.MAX_VALUE or
less

Retrieval
result
converted to
a byte
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Byte.MAX_VALUE or less than
Byte.MIN_VALUE

SQLExcept
ion is
thrown

[single-byte-space][+]Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space]-Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+|-]NaN[single-byte-space] SQLExcept
ion is
thrown

Other than the above (double value cannot be obtained) SQLExcept
ion is
thrown

SMALLINT NULL 0

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less Retrieval
result
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

INTEGER NULL 0

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1594

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less Retrieval
result
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

REAL NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

FLOAT NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1595

Legend:
--: Not applicable
#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

DECIMAL NULL 0

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
a byte
value

Other than the above SQLExcept
ion is
thrown

BOOLEAN# NULL 0

true 1

false 0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1596

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as byte.

• An error occurred in the JDBC driver.

(w) getByte(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as byte in Java programming language. For the relationships among the
HiRDB data type, the retrieval results, and the return value, see Functional detail
in (v) getByte(int columnIndex).

Format

public synchronized byte getByte(String columnName) throws
SQLException

Arguments

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as byte.

18. Type4 JDBC Driver

1597

• An error occurred in the JDBC driver.

(x) getBytes(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet
as a byte array in Java programming language.

Format

public synchronized byte[] getBytes(int columnIndex) throws
SQLException

Arguments

int columnIndex

Column number

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as a byte array in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

Legend:

-- Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

HiRDB data type Retrieval result Return value

[M|N][VAR]CHARBINARYBLOB NULL null

Other than the above Retrieval result converted to a
byte array

Other -- SQLException is thrown

18. Type4 JDBC Driver

1598

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(y) getBytes(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as a byte array in Java programming language. The byte value indicates
the row value returned by the driver.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (x) getBytes(int columnIndex).

Format

public synchronized byte[] getBytes (String columnName)
throws SQLException

Arguments

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

18. Type4 JDBC Driver

1599

• An error occurred in the JDBC driver.

(z) getCharacterStream(int columnIndex)
Function

Acquires as a java.io.Reader object the value of a specified column in the
current row of this ResultSet object.

Format

public synchronized Reader getCharacterStream (int
columnIndex) throws SQLException

Arguments

int columnIndex

Column number

Return value

java.io.Reader object containing the column value (if the value is NULL, the
method returns null)

Functional detail

This method acquires as a java.io.Reader object the value of a specified
column in the current row of this ResultSet object.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

Legend:

-- Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the

HiRDB data type Retrieval result Return value

[M|N][VAR]CHARBINARYBLOB NULL null

Other than the above Reader object containing the
retrieval result

Other -- SQLException is thrown

18. Type4 JDBC Driver

1600

Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• Encoding failed.

• An error occurred in the JDBC driver.

(aa) getCharacterStream(String columnName)
Function

Acquires as a java.io.Reader object the value of a specified column in the
current row of this ResultSet object.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (z) getCharacterStream(int columnIndex).

Format

public synchronized Reader getCharacterStream (String
columnName) throws SQLException

Arguments

String columnName

Column name

Return value

Java input stream that sends the column value as a stream of one-byte ASCII
characters (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

18. Type4 JDBC Driver

1601

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• Encoding failed.

• An error occurred in the JDBC driver.

(ab)getConcurrency()
Function

Returns the parallel processing mode of this ResultSet object. The method
always returns ResultSet.CONCUR_READ_ONLY because the JDBC driver does
not support an update cursor.

Format

public synchronized int getConcurrency() throws SQLException

Arguments

None.

Return value

ResultSet.CONCUR_READ_ONLY

The column value cannot be updated.

ResultSet.CONCUR_UPDATABLE

The column value can be updated.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

(ac) getCursorName()
Function

Acquires the name of the SQL cursor used by this ResultSet object.

In a HiRDB system, the JDBC driver always returns null.

18. Type4 JDBC Driver

1602

Format

public synchronized String getCursorName() throws
SQLException

Arguments

None.

Return value

null

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

(ad)getDate(int columnIndex)
Function

Acquires as a java.sql.Date object the value of a specified column in the
current row of this ResultSet object.

Format

public synchronized java.sql.Date getDate(int columnIndex)
throws SQLException

Arguments

int columnIndex

Column number

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires as a java.sql.Date object the value of a specified
column in the current row of this ResultSet object.

18. Type4 JDBC Driver

1603

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

Legend:

-- Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

HiRDB data type Retrieval result Return value

[M|N][VAR]CHAR NULL null

[single-byte-space]date-format[single-byte-space] Retrieval result
converted to a
java.sql.Date
object without the
single-byte spaces at
the beginning and end
of the retrieval result

Other than the above SQLException is
thrown

DATE NULL null

Other than the above Retrieval result
converted to a
java.sql.Date
object

TIMESTAMP NULL null

Other than the above Retrieval result
converted to a
java.sql.Date
object

Other -- SQLException is
thrown

18. Type4 JDBC Driver

1604

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Date.

• An error occurred in the JDBC driver.

(ae) getDate(int columnIndex, Calendar cal)
Function

Acquires as a java.sql.Date object the value of a specified column in the
current row of this ResultSet object. This method uses a specified calendar to
create the appropriate date as a millisecond value.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (ad) getDate(int columnIndex).

Format

public synchronized java.sql.Date getDate(int columnIndex,
Calendar cal) throws SQLException

Arguments

int columnIndex

Column number

Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

18. Type4 JDBC Driver

1605

• The column value cannot be acquired as java.sql.Date.

• An error occurred in the JDBC driver.

(af) getDate(String columnName)
Function

Acquires as a java.sql.Date object the value of a specified column in the
current row of this ResultSet object as a java.sql.Date object.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (ad) getDate(int columnIndex).

Format

public synchronized java.sql.Date getDate (String
columnName) throws SQLException

Arguments

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Date.

• An error occurred in the JDBC driver.

18. Type4 JDBC Driver

1606

(ag)getDate(String columnName, Calendar cal)
Function

Acquires as a java.sql.Date object the value of a specified column in the
current row of this ResultSet object. This method uses a specified calendar to
create the appropriate date as a millisecond value.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (ad) getDate(int columnIndex).

Format

public synchronized java.sql.Date getDate(String columnName,
Calendar cal) throws SQLException

Arguments

String columnName

Column name

Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Date.

• An error occurred in the JDBC driver.

18. Type4 JDBC Driver

1607

(ah)getDouble(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as double in Java programming language.

Format

public synchronized double getDouble (int columnIndex)
throws SQLException

Arguments

int columnIndex

Column number

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as double in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data
type

Retrieval result Return
value

[M|N][VAR]
CHAR

NULL 0.0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and -Double.MAX_VALUE or greater, and
-Double.MAX_VALUE or greater, and Double.MIN_VALUE or less, and
Double.MIN_VALUE or greater, and Double.MAX_VALUE or less

Retrieval
result
converted to
a double
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Double.MAX_VALUE

Infinity

18. Type4 JDBC Driver

1608

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and less than -Double.MAX_VALUE

-Infinity

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and less than Double.MIN_VALUE, and greater than 0

0.0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than -Double.MIN_VALUE, and less than 0

-0.0

[single-byte-space]-Infinity[single-byte-space] -Infinity

[single-byte-space][+]Infinity[single-byte-space] Infinity

[single-byte-space][+|-]NaN[single-byte-space] NaN

Other than the above (double value cannot be obtained) SQLExcept
ion is
thrown

SMALLINT NULL 0.0

Other than the above Retrieval
result
converted to
a double
value

INTEGER NULL 0

Other than the above Retrieval
result
converted to
a double
value

REAL NULL 0.0

Infinity Infinity

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1609

Legend:
--: Not applicable
#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

Exceptions

-Infinity -Infinity

NaN NaN

Other than the above Retrieval
result
converted to
a double
value

FLOAT NULL 0.0

Infinity Infinity

-Infinity -Infinity

NaN NaN

Other than the above Retrieval
result
converted to
a double
value

DECIMAL NULL 0

Other than the above Retrieval
result
converted to
a double
value

BOOLEAN# NULL 0.0

true 1.0

false 0.0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1610

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as double.

• An error occurred in the JDBC driver.

(ai) getDouble(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as double in Java programming language.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (ah) getDouble(int columnIndex).

Format

public synchronized double getDouble (String columnName)
throws SQLException

Arguments

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this

18. Type4 JDBC Driver

1611

ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as double.

• An error occurred in the JDBC driver.

(aj) getFetchDirection()
Function

Acquires the fetch direction of this ResultSet object. In HiRDB, this method
always returns ResultSet.FETCH_FORWARD.

Format

public synchronized int getFetchDirection() throws
SQLException

Arguments

None.

Return value

ResultSet.FETCH_FORWARD

The result set is processed in the forward direction.

ResultSet.FETCH_REVERSE

The result set is processed in the reverse direction.

ResultSet.FETCH_UNKNOWN

The direction in which the result set is processed is unknown.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

18. Type4 JDBC Driver

1612

(ak) getFetchSize()
Function

Acquires the fetch size of this ResultSet object.

The method returns the value set by setFetchSize.

If no value has been set by setFetchSize, the method returns 0.

Format

public synchronized int getFetchSize() throws SQLException

Arguments

None.

Return value

Current fetch size for this ResultSet object

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

(al) getFloat(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as float in Java programming language.

Format

public synchronized float getFloat (int columnIndex) throws
SQLException

Arguments

int columnIndex

Column number

18. Type4 JDBC Driver

1613

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as float in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data
type

Retrieval result Return
value

[M|N][VAR]
CHAR

NULL 0.0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and one of the following:
• -Float.MAX_VALUE or greater and -Float.MIN_VALUE or less
• Float.MIN_VALUE or greater and Float.MAX_VALUE or less

Retrieval
result
converted to
a float
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Float.MAX_VALUE

Infinity

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and less than -Float.MAX_VALUE

-Infinity

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and less than Float.MIN_VALUE, and greater than 0

0.0

18. Type4 JDBC Driver

1614

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than -Float.MIN_VALUE, and less than 0

-0.0

[single-byte-space]-Infinity[single-byte-space] -Infinity

[single-byte-space][+]Infinity[single-byte-space] Infinity

[single-byte-space][+|-]NaN[single-byte-space] NaN

Other than the above (cannot be converted to a float value) SQLExcept
ion is
thrown

SMALLINT NULL 0.0

Other than the above Retrieval
result
converted to
a float
value

INTEGER NULL 0.0

Other than the above Retrieval
result
converted to
a float
value

REAL NULL 0.0

Infinity Infinity

-Infinity -Infinity

NaN NaN

Other than the above Retrieval
result

FLOAT NULL 0.0

Infinity Infinity

-Infinity -Infinity

NaN NaN

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1615

Legend:
--: Not applicable
#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

-Float.MAX_VALUE or greater and -Float.MIN_VALUE or less, or
Float.MIN_VALUE or greater and Float.MAX_VALUE or less

Retrieval
result
converted to
a float
value

Greater than Float.MAX_VALUE Infinity

Less than -Float.MAX_VALUE -Infinity

Less than Float.MIN_VALUE and greater than 0 0.0

Greater than -Float.MIN_VALUE and less than 0 -0.0

DECIMAL NULL 0.0

Other than the above Retrieval
result
converted to
a float
value

BOOLEAN# NULL 0.0

true 1.0

false 0.0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1616

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as float.

• An error occurred in the JDBC driver.

(am)getFloat(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as float in Java programming language.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (al) getFloat(int columnIndex).

Format

public synchronized float getFloat (String columnName)
throws SQLException

Arguments

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as float.

18. Type4 JDBC Driver

1617

• An error occurred in the JDBC driver.

(an)getInt(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as int in Java programming language.

Format

public synchronized int getInt(int columnIndex) throws
SQLException

Arguments

int columnIndex

Column number

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as int in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data
type

Retrieval result Return
value

[M|N][VAR]
CHAR

NULL 0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and Integer.MIN_VALUE or greater, and
Integer.MAX_VALUE or less

Integer part
of the
retrieval
result
converted to
an int
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Integer.MAX_VALUE or less than
Integer.MIN_VALUE

SQLExcept
ion is
thrown

18. Type4 JDBC Driver

1618

[single-byte-space]-Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+]Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+|-]NaN[single-byte-space] SQLExcept
ion is
thrown

Other than the above (double value cannot be obtained) SQLExcept
ion is
thrown

SMALLINT NULL 0

Other than the above Retrieval
result
converted to
an int
value

INTEGER NULL 0

Other than the above Retrieval
result
converted to
an int
value

REAL NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1619

Integer.MIN_VALUE or greater and Integer.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
an int
value

Other than the above SQLExcept
ion is
thrown

FLOAT NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Integer.MIN_VALUE or greater and Integer.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
an int
value

Other than the above SQLExcept
ion is
thrown

DECIMAL NULL 0

Integer.MIN_VALUE or greater and Integer.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
an int
value

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1620

Legend:
--: Not applicable
#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as int.

• An error occurred in the JDBC driver.

(ao)getInt(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as int in Java programming language.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (an) getInt(int columnIndex).

Other than the above SQLExcept
ion is
thrown

BOOLEAN# NULL 0

true 1

false 0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1621

Format

public synchronized int getInt(String columnName) throws
SQLException

Arguments

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as int.

• An error occurred in the JDBC driver.

(ap)getLong(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as long in Java programming language.

Format

public synchronized double getLong (int columnIndex) throws
SQLException

Arguments

int columnIndex

18. Type4 JDBC Driver

1622

Column number

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as long in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data
type

Retrieval result Return
value

[M|N][VAR]
CHAR

NULL 0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce] and 15 characters or less, or
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space] and 15 characters or less

Integer part
of the
retrieval
result
converted to
a long
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce] and 16 characters or more, or
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space] and 16 characters or more, or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and Long.MIN_VALUE or greater, and Long.MAX_VALUE or
less

Integer part
of the
retrieval
result
converted to
a long
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce] and 16 characters or more, or
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space] and 16 characters or more, or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], greater than Long.MAX_VALUE or less than
Long.MIN_VALUE

SQLExcept
ion is
thrown

[single-byte-space]-Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+]Infinity[single-byte-space] SQLExcept
ion is
thrown

18. Type4 JDBC Driver

1623

[single-byte-space][+|-]NaN[single-byte-space] SQLExcept
ion is
thrown

Other than the above (cannot be converted to a double value or BigDecimal
object)

SQLExcept
ion is
thrown

SMALLINT NULL 0

Other than the above Retrieval
result
converted to
a long
value

INTEGER NULL 0

Other than the above Retrieval
result
converted to
a long
value

REAL NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Long.MIN_VALUE or greater and Long.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
a long
value

Other than the above SQLExcept
ion is
thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1624

FLOAT NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Long.MIN_VALUE or greater and Long.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
a long
value

Other than the above SQLExcept
ion is
thrown

DECIMAL NULL 0

Long.MIN_VALUE and greater and Long.MAX_VALUE and less Integer part
of the
retrieval
result
converted to
a long
value

BINARYBL
OB

NULL 0

Data with a length of 0 0

1 byte or more Maximum
of 8 bytes
converted to
a long
value in
little endian
format

BOOLEAN# NULL 0

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1625

Legend:
--: Not applicable
#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as long.

• An error occurred in the JDBC driver.

(aq)getLong(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as long in Java programming language.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (ap) getLong(int columnIndex).

Format

public synchronized double getLong (String columnName)
throws SQLException

true 1

false 0

Other -- SQLExcept
ion is
thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1626

Arguments

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as long.

• An error occurred in the JDBC driver.

(ar) getMetaData()
Function

Returns ResultSetMetaData that represents this ResultSet object's meta
information.

Format

public synchronized ResultSetMetaData getMetaData() throws
SQLException

Arguments

None.

Return value

This method returns meta information for this ResultSet object as a
ResultSetMetaData object.

Exceptions

18. Type4 JDBC Driver

1627

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

(as) getObject(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as Object in Java programming language.

Format

public synchronized Object getObject (int columnIndex)
throws SQLException

Arguments

int columnIndex

Column number

Return value

This method returns a column value as a Java object.

This Java object has the default Java object type that corresponds to the column's
SQL type based on the mapping of built-in types specified in the JDBC
specifications. If the value is NULL, the method returns null.

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as Object in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data type Retrieval result Return value

[M|N][VAR]CHAR NULL null

Other than the
above

Retrieval result

18. Type4 JDBC Driver

1628

#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

SMALLINT NULL null

Other than the
above

Integer object created by using the retrieval result

INTEGER NULL null

Other than the
above

Integer object created by using the retrieval result

REAL NULL null

Other than the
above

Float object created by using the retrieval result

FLOAT NULL null

Other than the
above

Double object created by using the retrieval result

DECIMAL NULL null

Other than the
above

Retrieval result

DATE NULL null

Other than the
above

java.sql.Date object created by using the retrieval
result

TIME NULL null

Other than the
above

java.sql.Time object created by using the retrieval
result

TIMESTAMP NULL null

Other than the
above

java.sql.Timestamp object created by using the
retrieval result

BINARYBLOB NULL null

Other than the
above

Retrieval result

BOOLEAN# NULL null

Non-NULL Boolean object created by using the retrieval result

HiRDB data type Retrieval result Return value

18. Type4 JDBC Driver

1629

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• An error occurred in the JDBC driver.

(at) getObject(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as Object in Java programming language.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (as) getObject(int columnIndex).

Format

public synchronized Object getObject (String columnName)
throws SQLException

Arguments

String columnName

Column name

Return value

This method returns a column value as a Java object.

This Java object has the default Java object type that corresponds to the column's
SQL type based on the mapping of built-in types specified in the JDBC
specifications. If the value is NULL, the method returns null.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the

18. Type4 JDBC Driver

1630

Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• An error occurred in the JDBC driver.

(au)getRow()
Function

Acquires the current row number, such as 1 for the first row, 2 for the second row,
etc. If the row is before the first row or after the last row, the row number is 0.

If the number of retrieved rows exceeds 2147483647, the method returns
2147483647.

Format

public synchronized int getRow() throws SQLException

Arguments

None.

Return value

Current row number (if the current row number is greater than
Integer.MAX_VALUE, the method returns Integer.MAX_VALUE)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(av) getShort(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet

18. Type4 JDBC Driver

1631

object as short in Java programming language.

Format

public synchronized short getShort(int columnIndex) throws
SQLException

Arguments

int columnIndex

Column number

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as short in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data
type

Retrieval result Return
value

[M|N][VAR]
CHAR

NULL 0

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and Short.MIN_VALUE or greater, and Short.MAX_VALUE
or less

Integer part
of the
retrieval
result
converted to
a short
value

[single-byte-space]integer-in-character-string-representation[single-byte-spa
ce],
[single-byte-space]decimal-number-in-character-string-representation[single
-byte-space], or
[single-byte-space]floating-point-number-in-character-string-representation[
single-byte-space], and greater than Short.MAX_VALUE or less than
Short.MIN_VALUE

SQLExcept
ion is
thrown

[single-byte-space]-Infinity[single-byte-space] SQLExcept
ion is
thrown

18. Type4 JDBC Driver

1632

[single-byte-space][+]Infinity[single-byte-space] SQLExcept
ion is
thrown

[single-byte-space][+|-]NaN[single-byte-space] SQLExcept
ion is
thrown

Other than the above (double value cannot be obtained) SQLExcept
ion is
thrown

SMALLINT NULL 0

Other than the above Retrieval
result

INTEGER NULL 0

Short.MIN_VALUE or greater and Short.MAX_VALUE or less Retrieval
result
converted to
a short
value

Other than the above SQLExcept
ion is
thrown

REAL NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Short.MIN_VALUE or greater and Short.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
a short
value

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1633

Other than the above SQLExcept
ion is
thrown

FLOAT NULL 0

Infinity SQLExcept
ion is
thrown

-Infinity SQLExcept
ion is
thrown

NaN SQLExcept
ion is
thrown

Short.MIN_VALUE or greater and Short.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
a short
value

Other than the above SQLExcept
ion is
thrown

DECIMAL NULL 0

Short.MIN_VALUE and greater and Short.MAX_VALUE or less Integer part
of the
retrieval
result
converted to
a short
value

Other than the above SQLExcept
ion is
thrown

BOOLEAN# NULL 0

true 1

false 0

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1634

Legend:
--: Not applicable
#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as short.

• An error occurred in the JDBC driver.

(aw)getShort(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as short in Java programming language.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (av) getShort(int columnIndex).

Format

public synchronized short getShort (String columnName)
throws SQLException

Arguments

Other -- SQLExcept
ion is
thrown

HiRDB data
type

Retrieval result Return
value

18. Type4 JDBC Driver

1635

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as short.

• An error occurred in the JDBC driver.

(ax) getStatement()
Function

Acquires the Statement object that created this ResultSet object.

If the result set was created by a method of DatabaseMetaData, this method
returns null.

Format

public synchronized Statement getStatement() throws
SQLException

Arguments

None.

Return value

Statement object that created this ResultSet object (if the result set was
created by a method of DatabaseMetaData, this method returns null)

Exceptions

18. Type4 JDBC Driver

1636

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

(ay) getString(int columnIndex)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as String in Java programming language.

Format

public synchronized String getString(int columnIndex) throws
SQLException

Arguments

int columnIndex

Column number

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires the value of a specified column in the current row of this
ResultSet object as String in Java programming language.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data type Retrieval
result

Return value

[M|N][VAR]CHAR NULL null

Other than the
above

Retrieval result

SMALLINT NULL null

18. Type4 JDBC Driver

1637

Other than the
above

String object containing the retrieval result in character string
representation

INTEGER NULL null

Other than the
above

String object containing the retrieval result in character string
representation

REAL NULL null

Infinity String object of the character string "Infinity"

-Infinity String object of the character string "-Infinity"

NaN String object of the character string "NaN"

Other than the
above

String object containing the retrieval result in character string
representation

FLOAT NULL null

Infinity String object of the character string "Infinity"

-Infinity String object of the character string "-Infinity"

NaN String object of the character string "NaN"

Other than the
above

String object containing the retrieval result in character string
representation

DECIMAL NULL null

Other than the
above

String object containing the retrieval result in character string
representation

DATE NULL null

Other than the
above

String object of a character string in yyyy-MM-DD format
acquired by JdbConvert.convertDate()

TIME NULL null

Other than the
above

String object of a character string in hh:mm:ss format

TIMESTAMP NULL null

Other than the
above

String object of a character string in
yyyy-MM-DD hh:mm:ss[.ffffff] format

BINARYBLOB NULL null

HiRDB data type Retrieval
result

Return value

18. Type4 JDBC Driver

1638

#: There is BOOLEAN-type data when the Resultset was created from
DatabaseMetadata.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• Encoding failed.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(az) getString(String columnName)
Function

Acquires the value of a specified column in the current row of this ResultSet
object as String in Java programming language.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (ay) getString(int columnIndex).

Format

public synchronized String getString(String columnName)
throws SQLException

Other than the
above

String object obtained as the retrieval result

BOOLEAN# NULL null

true String object of the character string "true"

false String object of the character string "false"

HiRDB data type Retrieval
result

Return value

18. Type4 JDBC Driver

1639

Arguments

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• Encoding failed.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

(ba)getTime(int columnIndex)
Function

Acquires as java.sql.Time the value of a specified column in the current row
of this ResultSet object.

Format

public synchronized java.sql.Time getTime(int columnIndex)
throws SQLException

Arguments

int columnIndex

Column number

Return value

Column value (if the value is NULL, the method returns null)

18. Type4 JDBC Driver

1640

Functional detail

This method acquires as java.sql.Time the value of a specified column in the
current row of this ResultSet object.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

Legend:

-- Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

HiRDB data type Retrieval result Return value

[M|N][VAR]CHAR NULL null

[single-byte-space]time-format[single-byte-space] Value obtained by
removing single-byte
spaces at the
beginning and end of
the retrieval result and
then converting to a
java.sql.Time
object

Other than the above SQLException

TIME NULL null

Other than the above Retrieval result
converted to a
java.sql.Time
object

TIMESTAMP NULL null

Other than the above Retrieval result
converted to a
java.sql.Time
object

Other -- SQLException

18. Type4 JDBC Driver

1641

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Time.

• An error occurred in the JDBC driver.

(bb)getTime(int columnIndex, Calendar cal)
Function

Acquires as a java.sql.Time object the value of a specified column in the
current row of this ResultSet object. This method uses a specified calendar to
create the appropriate time as a millisecond value.

Format

public synchronized java.sql.Time getTime (int columnIndex,
Calendar cal) throws SQLException

Arguments

int columnIndex

Column number

Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

Column value (if the value is NULL, the method returns null)

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (ba) getTime(int columnIndex).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

18. Type4 JDBC Driver

1642

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Time.

• An error occurred in the JDBC driver.

(bc)getTime(String columnName)
Function

Acquires as a java.sql.Time object the value of a specified column in the
current row of this ResultSet object.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (ba) getTime(int columnIndex).

Format

public synchronized java.sql.Time getTime (String
columnName) throws SQLException

Arguments

String columnName

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Time.

• An error occurred in the JDBC driver.

18. Type4 JDBC Driver

1643

(bd)getTime(String columnName, Calendar cal)
Function

Acquires as a java.sql.Time object the value of a specified column in the
current row of this ResultSet object. This method uses a specified calendar to
create the appropriate time as a millisecond value.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (ba) getTime(int columnIndex).

Format

public synchronized java.sql.Time getTime (String
columnName, Calendar cal) throws SQLException

Arguments

String columnName

Column name

Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Time.

• An error occurred in the JDBC driver.

18. Type4 JDBC Driver

1644

(be)getTimestamp(int columnIndex)
Function

Acquires as a java.sql.Timestamp object the value of a specified column in
the current row of this ResultSet object.

Format

public synchronized java.sql.Timestamp getTimestamp (int
columnIndex) throws SQLException

Arguments

int columnIndex

Column number

Return value

Column value (if the value is NULL, the method returns null)

Functional detail

This method acquires as a java.sql.Timestamp object the value of a specified
column in the current row of this ResultSet object.

The following table shows the relationships among the HiRDB data type, the
retrieval results, and the return value:

HiRDB data type Retrieval result Return value

[M|N][VAR]CHA
R

NULL null

[single-byte-space]timestamp-format[single-byte-space] Value obtained by
removing single-byte
spaces at the beginning
and end of the retrieval
result and then converting
to a
java.sql.Timestamp
object

Other than the above SQLException is thrown

DATE NULL null

Other than the above Retrieval result converted
to a
java.sql.Timestamp
object

18. Type4 JDBC Driver

1645

Legend:

-- Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Timestamp.

• An error occurred in the JDBC driver.

(bf) getTimestamp(int columnIndex, Calendar cal)
Function

Acquires as a java.sql.Timestamp object the value of a specified column in
the current row of this ResultSet object. This method uses a specified calendar
to create the appropriate timestamp as a millisecond value.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (be) getTimestamp(int columnIndex).

Format

public synchronized java.sql.Timestamp getTimestamp (int
columnIndex, Calendar cal) throws SQLException

TIMESTAMP NULL null

Other than the above Retrieval result converted
to a
java.sql.Timestamp
object

Other -- SQLException is thrown

HiRDB data type Retrieval result Return value

18. Type4 JDBC Driver

1646

Arguments

int columnIndex

Column number

Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column number is specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Timestamp.

• An error occurred in the JDBC driver.

(bg)getTimestamp(String columnName)
Function

Acquires as a java.sql.Timestamp object the value of a specified column in
the current row of this ResultSet object.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (be) getTimestamp(int columnIndex).

Format

public synchronized java.sql.Timestamp getTimestamp (String
columnName) throws SQLException

Arguments

String columnName

18. Type4 JDBC Driver

1647

Column name

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Timestamp.

• An error occurred in the JDBC driver.

(bh)getTimestamp(String columnName, Calendar cal)
Function

Acquires as a java.sql.Timestamp object the value of a specified column in
the current row of this ResultSet object. This method uses a specified calendar
to create the appropriate timestamp as a millisecond value.

For the relationships among the HiRDB data type, the retrieval results, and the
return value, see Functional detail in (be) getTimestamp(int columnIndex).

Format

public synchronized java.sql.Timestamp getTimestamp (String
columnName, Calendar cal) throws SQLException

Arguments

String columnName

Column name

Calendar cal

Calendar in which the time zone for the values stored in the database has
been set

18. Type4 JDBC Driver

1648

Return value

Column value (if the value is NULL, the method returns null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Timestamp.

• An error occurred in the JDBC driver.

(bi) getType()
Function

Returns the type of this ResultSet object. This method returns
ResultSet.TYPE_FORWARD_ONLY or
ResultSet.TYPE_SCROLL_INSENSITIVE.

Format

public synchronized int getType() throws SQLException

Arguments

None.

Return value

ResultSet.TYPE_FORWARD_ONLY

The cursor can move only forward.

ResultSet.TYPE_SCROLL_INSENSITIVE

The cursor can be scrolled, but a value change does not take effect.

ResultSet.TYPE_SCROLL_SENSITIVE

The cursor can be scrolled, and a value change takes effect.

18. Type4 JDBC Driver

1649

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

(bj) getWarnings()
Function

Acquires the first warning reported by a call related to this ResultSet object. If
there is more than one warning, the subsequent warnings are chained to the first
warning and can be acquired by calling the SQLWarning.getNextWarning
method for the immediately preceding warning that was acquired.

Format

public synchronized SQLWarning getWarnings() throws
SQLException

Arguments

None.

Return value

First SQLWarning object (if there is no SQLWarning object, the method returns
null)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

18. Type4 JDBC Driver

1650

(bk) isAfterLast()
Function

Acquires a value indicating whether the cursor is located after the last row in this
ResultSet object.

Format

public synchronized boolean isAfterLast() throws
SQLException

Arguments

None.

Return value

If the cursor is located after the last row, the method returns true; if not, or the
result set contains no rows, the method returns false.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(bl) isBeforeFirst()
Function

Acquires a value indicating whether the cursor is located before the first row in
this ResultSet object.

Format

public synchronized boolean isBeforeFirst() throws
SQLException

Arguments

None.

18. Type4 JDBC Driver

1651

Return value

If the cursor is located before the first row, the method returns true; if not, or the
result set contains no rows, the method returns false.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(bm)isFirst()
Function

Acquires a value indicating whether the cursor is located on the first row in this
ResultSet object.

Format

public synchronized boolean isFirst() throws SQLException

Arguments

None.

Return value

If the cursor is located on the first row, the method returns true; if not, the
method returns false.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

18. Type4 JDBC Driver

1652

• A database access error occurred.

(bn)isLast()
Function

Acquires a value indicating whether the cursor is located on the last row in this
ResultSet object.

Format

public synchronized boolean isLast() throws SQLException

Arguments

None.

Return value

If the cursor is located on the last row, the method returns true; if not, the method
returns false.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(bo)last()
Function

Moves the cursor to the last row of this ResultSet object.

Format

public synchronized boolean last() throws SQLException

Arguments

None.

Return value

18. Type4 JDBC Driver

1653

If the cursor has moved to the last row, the method returns true; if the result set
contains no rows, the method returns false.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• The type of this ResultSet object is TYPE_FORWARD_ONLY.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(bp)next()
Function

Moves the cursor from the current position to the next row. If the current cursor
position is before the first row, the method moves the cursor to the first row; if it
is on the last row, the method moves the cursor to a location after the last row.

The first time the next method is called, the cursor is opened.

Format

public synchronized boolean next() throws SQLException

Arguments

None.

Return value

If the cursor position resulting from this method call is before the first row or after
the last row, the method returns false; otherwise, the method returns true.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this

18. Type4 JDBC Driver

1654

ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(bq)previous()
Function

Moves the cursor to the immediately preceding row in this ResultSet object.

Format

public synchronized boolean previous() throws SQLException

Arguments

None.

Return value

If the cursor position resulting from this method call is before the first row, the
method returns false; otherwise, the method returns true.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• The type of this ResultSet object is TYPE_FORWARD_ONLY.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(br) relative(int rows)
Function

Moves the cursor by the specified number of rows in the forward or reverse
direction relative to the current position.

A positive number means that the cursor is to move in the forward direction, and
a negative number that the cursor is to move in the reverse direction.

Format

18. Type4 JDBC Driver

1655

public synchronized boolean relative(int rows) throws
SQLException

Arguments

int rows

Number of rows to be moved relative to the current row

Return value

If the cursor position resulting from this method call is before the first row or after
the last row, the method returns false; otherwise, the method returns true.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• The type of this ResultSet object is TYPE_FORWARD_ONLY.

• The current position cannot be acquired.

• The current cursor position is not on a valid row.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(bs)setFetchDirection(int direction)
Function

Sets the default fetch direction for the result set that is created from this
Statement object.

Only ResultSet.FETCH_FORWARD can be specified.

Format

public synchronized void setFetchDirection(int direction)
throws SQLException

Arguments

int direction

18. Type4 JDBC Driver

1656

Default fetch direction

Return value

None.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This Statement object is closed.

• The Connection used to create this Statement object is closed.

• A value other than ResultSet.FETCH_FORWARD is specified for
direction.

(bt) setFetchSize(int rows)
Function

Sets the fetch size of this ResultSet object. If 0 is specified, the fetch size
depends on the client environment definition.

Format

public synchronized void setFetchSize(int rows) throws
SQLException

Arguments

int rows

Number of rows to be fetched, in the range from 0 to 4096.

Return value

None.

Functional detail

This method sets the fetch size of this ResultSet object. When 0 is specified,
the fetch size depends on the client environment definition.

If this method is omitted, the JDBC driver uses the number of rows specified in
the Statement object for retrieval. If no number of rows is specified in the
Statement object, or this ResultSet object has not been created from the
Statement object, the JDBC driver uses the value of the PDBLKF client
environment definition for retrieval. If 0 is specified in this method, the JDBC
driver uses the value of the PDBLKFclient environment definition for retrieval. For
other notes, see 18.4.3(2)(z) setFetchSize(int rows).

Exceptions

18. Type4 JDBC Driver

1657

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• The type of this ResultSet object is TYPE_FORWARD_ONLY.

• The current position cannot be acquired.

• The current cursor position is not on a valid row.

• ResultSet has become invalid due to transaction settlement.

• A database access error occurred.

(bu)wasNull()
Function

Reports whether the last column value acquired is the NULL value.

This method returns false before any value has been acquired by a getXXX
method.

Format

public synchronized boolean wasNull() throws SQLException

Arguments

None.

Return value

If the last column value acquired is NULL, the method returns true; otherwise, the
method returns false.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

This includes the case where this driver closed ResultSet because the
Statement that created this ResultSet object was closed.

• The Connection used to create the Statement that created this
ResultSet object has been closed.

• ResultSet has become invalid due to transaction settlement.

18. Type4 JDBC Driver

1658

(3) Package and class names
The names of the package and class for installing this interface are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbResultSet

(4) Fields
The following table lists the fields supported by the ResultSet interface.

Table 18-31: Fields supported by the ResultSet interface

Legend:

--: None

(5) Notes
(a) Value acquisition using a getXXX method

• For details about whether mapping is possible with a getXXX method, see 18.8.2
Mapping during retrieval data acquisition.

• If the column number or name specified in a setXXX method does not exist, the

Field Remarks

public static final int FETCH_FORWARD --

public static final int FETCH_REVERSE --

public static final int FETCH_UNKNOWN --

public static final int
TYPE_FORWARD_ONLY

--

public static final int
TYPE_SCROLL_INSENSITIVE

--

public static final int
TYPE_SCROLL_SENSITIVE

When this value is specified, the JDBC driver assumes that
TYPE_SCROLL_INSENSITIVE was specified.

public static final int
CONCUR_READ_ONLY

--

public static final int
CONCUR_UPDATABLE

When this value is specified, the JDBC driver assumes that
CONCUR_READ_ONLY was specified.

public static final int
HOLD_CURSORS_OVER_COMMIT

--

public static final int
CLOSE_CURSORS_AT_COMMIT

--

18. Type4 JDBC Driver

1659

JDBC driver throws an SQLException.

• If a value specified in a setXXX method exceeds the value range that can be
represented by the data type of the corresponding ? parameter (for example, if
getShort is used to get an INTEGER-type value of 40,000), an overflow occurs
and results in an SQLException. For details about the combinations of setXXX
methods for which overflow can occur and the HiRDB data types, see 18.8.5
Overflow handling.

(b) Mapping (conversion)
For details about whether mapping is possible with a getXXX method to be used in
getting retrieval data, see 18.8.2 Mapping during retrieval data acquisition. If a
getXXX method is called for a JDBC SQL type that cannot be mapped, the JDBC
driver throws an SQLException.

(c) Using the block transfer facility by specifying the setFetchSize method
For details, see 18.4.3(4)(a) Using the block transfer facility by specifying the
setFetchSize method.

(d) Memory size used when the result set type is
ResultSet.TYPE_SCROLL_INSENSITIVE or
ResultSet.TYPE_SCROLL_SENSITIVE
When the result set type is ResultSet.TYPE_SCROLL_INSENSITIVE or
ResultSet.TYPE_SCROLL_SENSITIVE, the JDBC driver allocates memory for
accumulating the retrieval results when the following methods of the ResultSet
interface are executed:

• ResultSet.next method

• ResultSet.last method

• ResultSet.absolute method

• ResultSet.relative method

• ResultSet.afterLast method

The JDBC driver assigns and accumulates memory objects to all values in the retrieval
results. If a value has a variable length, the memory object is set to the actual size of
the retrieved data.

(e) next, absolute, relative, last, and afterLast methods
When the next method is executed, the JDBC driver retrieves and accumulates data
from the database as described in the following table.

18. Type4 JDBC Driver

1660

Table 18-32: Data retrieved and accumulated from the database during
execution of the next method

When the absolute, relative, last, or afterLast method is executed, the
JDBC driver retrieves and accumulates data from the database as described in the
following table.

Table 18-33: Data retrieved and accumulated from the database during
execution of the absolute, relative, last, or afterLast method

Note

If the data type of the result set is TYPE_FORWARD_ONLY, the JDBC driver throws
an SQLException.

#

If the last or afterLast method is used, the range is from the first row to the
last row.

Condition Result set type

TYPE_FORWARD_ONLY TYPE_SCROLL_INSENSITIVE or
TYPE_SCROLL_SENSITIVE

The data of the current row,
which was moved by the
next method, has not been
read into the JDBC driver.

The JDBC driver gets the moved
current row from the connected
database.

The JDBC driver gets the moved current
row from the connected database, then
reads and stores the row in its memory.

The data of the current row,
which was moved by the
next method, has been read
into the JDBC driver.

The JDBC driver does not retrieve data
from the connected database.

Condition Result set type is TYPE_SCROLL_INSENSITIVE or
TYPE_SCROLL_SENSITIVE

The first row to the specified
row# of the retrieval results
contain data that the JDBC
driver has not read.

The JDBC driver retrieves the rows that were not read from the connected
database and stores them in its memory.

The first row to the specified
row# of the retrieval results
do not contain data that the
JDBC driver has not read.

The JDBC driver does not retrieve data from the connected database.

18. Type4 JDBC Driver

1661

(f) getAsciiStream, getBinaryStream, getCharacterStream, and
getUnicodeStream methods
The JDBC driver does not implicitly close objects returned by the getAsciiStream,
getBinaryStream, getCharacterStream, and getUnicodeStream methods.
You must make provision for the method-calling side to execute the close method.

(g) Number of retrieved rows
The following table shows the number of retrieved rows that ResultSet objects can
obtain from the HiRDB server. The JDBC driver discards retrieval results that exceed
the applicable number of rows shown in the following table.

Table 18-34: Number of retrieved rows that ResultSet objects can obtain from
the HiRDB server

(h) About the default null value
Tables 18-35 and 18-36 show the return values of a getXXXX method for HiRDB data
types when the default null value setting facility is used (by specifying USE in the
PDDFLNVAL client environment definition) and the retrieval result is the default null
value.

For details about the default null value setting facility, see the manual HiRDB Version
9 SQL Reference.

When the default null value setting facility is used, the wasNull method returns
FALSE.

Note that the default null value setting facility is not applicable to a ResultSet object
that has been acquired by a method of the DatabaseMetaData class. Therefore, the
JDBC driver sets NULL as the getXXXX method's return value even if the default null
value setting facility is used.

ResultSet object Result set type

TYPE_SCROLL_INSENSITIVE or
TYPE_SCROLL_SENSITIVE

Other type

ResultSet object
generated by Statement
object that executed
setMaxRows method

The number of retrieved rows is the number of rows specified by setMaxRows
method.

Other ResultSet object The number of retrieved rows is the
upper limit for setMaxRows
(2,147,483,647).

No upper limit

18. Type4 JDBC Driver

1662

Table 18-35: Return value of a getXXXX method for HiRDB data types when
the retrieval result is the default null value (1/2)

getXXX method HiRDB data type

[M|N][VAR]
CHAR

BINARY
BLOB

DATE TIME TIMESTAMP

getByte -- -- -- -- --

getShort -- -- -- -- --

getInt -- -- -- -- --

getLong -- -- -- -- --

getFloat -- -- -- -- --

getDouble -- -- -- -- --

getBigDecimal -- -- -- -- --

getBoolean FALSE -- -- -- --

getString Default
NULL value

String
object of
the default
NULL
value

String
object of a
character
string in
yyyy-MM-D
D format
obtained by
converting
the default
NULL value

String object of
a character string
in hh:mm:ss
format obtained
by converting the
default NULL
value

String object
of a character
string in
yyyy-MM-DD

hh:mm:ss[
.ffffff] format
obtained by
converting the
default NULL
value

getBytes Default
NULL value
converted to a
byte array

Same as
left

-- -- --

getDate -- -- Default
NULL value
converted to
a
java.sql.D
ate object

-- Default NULL
value
converted to a
java.sql.Da
te object

getTime -- -- -- Default NULL
value converted
to a
java.sql.Time
object

Same as left

18. Type4 JDBC Driver

1663

Legend:

-- An SQLException is thrown.

getTimestamp -- -- Default
NULL value
converted to
a
java.sql.T
imestamp
object

-- Default NULL
value
converted to a
java.sql.Ti
mestamp
object

getAsciiStream InputStrea
m object
containing the
default NULL
value

Same as
left

-- -- --

getBinaryStream -- InputStr
eam object
containing
the default
NULL
value

-- -- --

getObject Default
NULL value

Same as
left

java.sql.D
ate object
created by
the default
NULL value

java.sql.Time
object created by
the default NULL
value

java.sql.Ti
mestamp
object created
by the default
NULL value

getCharacterStream Reader
object
containing the
default NULL
value

Same as
left

-- -- --

getArray -- -- -- -- --

getBlob -- java.sql
.Blob
object that
has the
default
NULL
value

-- -- --

getXXX method HiRDB data type

[M|N][VAR]
CHAR

BINARY
BLOB

DATE TIME TIMESTAMP

18. Type4 JDBC Driver

1664

Table 18-36: Return value of a getXXXX method for HiRDB data types when
the retrieval result is the default null value (2/2)

getXXX method JDBC SQL type

SMALLINT INTEGE
R

REAL FLOAT DECIMA
L

ARRAY

getByte Default
NULL value
converted to a
byte value

Same as
left

Same as
left

Same as
left

Same as
left

--

getShort Default
NULL value

Default
NULL
value
converted
to a
short
value

Integer
part of
the
default
NULL
value
converte
d to a
short
value

Same as
left

Same as
left

--

getInt Default
NULL value
converted to
an int value

Same as
left

Integer
part of
the
default
NULL
value
converte
d to an
int
value

Same as
left

Same as
left

--

getLong Default
NULL value
converted to a
long value

Same as
left

Integer
part of
the
default
NULL
value
converte
d to a
long
value

Same as
left

Same as
left

--

getFloat Default
NULL value
converted to a
float value

Same as
left

Same as
left

Same as
left

Same as
left

--

18. Type4 JDBC Driver

1665

getDouble Default
NULL value
converted to a
double value

Same as
left

Same as
left

Same as
left

Same as
left

--

getBigDecimal BigDecimal
object that
has the
default
NULL value

Same as
left

Same as
left

Same as
left

Same as
left

--

getBoolean FALSE Same as
left

Same as
left

Same as
left

Same as
left

--

getString String
object
containing
the default
NULL value
in character
string
representatio
n

Same as
left

Same as
left

Same as
left

Same as
left

--

getBytes -- -- -- -- -- --

getDate -- -- -- -- -- --

getTime -- -- -- -- -- --

getTimestamp -- -- -- -- -- --

getAsciiStream -- -- -- -- -- --

getBinaryStream -- -- -- -- -- --

getObject Integer
object created
by the default
NULL value

Same as
left

Float
object
created
by the
default
NULL
value

Double
object
created
by the
default
NULL
value

Default
NULL
value

Array object
created by the
default NULL
value

getCharacterStream -- -- -- -- -- --

getXXX method JDBC SQL type

SMALLINT INTEGE
R

REAL FLOAT DECIMA
L

ARRAY

18. Type4 JDBC Driver

1666

Legend:

-- An SQLException is thrown.

18.4.7 DatabaseMetaData interface
(1) Overview

The DatabaseMetaData interface provides the following principal functions:

• Return of various information related to the connected database

• Return of listing information, such as a list of tables or columns (the information
is stored in a result set)

Some methods of the DatabaseMetaData class use a String pattern character
string as an argument. The following table shows the special characters that can be
specified in such a pattern character string.

(2) Methods
The table below lists the methods of the DatabaseMetaData interface. The interface
does not support methods that are not listed in the table. If an unsupported method is
specified, the interface throws an SQLException.

getArray -- -- -- -- -- java.sql.Array
object containing
no element

getBlob -- -- -- -- -- --

Special character Description

_ (underscore) Any single character

% A character string of any length, including no characters (as
well as any number of characters)

\ Escape character (enables a special character immediately
following this escape character in a pattern character string to
be treated as a regular character)

getXXX method JDBC SQL type

SMALLINT INTEGE
R

REAL FLOAT DECIMA
L

ARRAY

18. Type4 JDBC Driver

1667

Table 18-37: DatabaseMetaData interface methods

Subs
ectio

n

Method Function

(a) allProceduresAreCallable() Returns a value indicating whether all the
procedures returned by the getProcedures()
method can be called by the current user.

(b) allTablesAreSelectable() Returns a value indicating whether all the tables
returned by the getTables() method can be
used by the current user.

(c) dataDefinitionCausesTransactionCommit() Returns a value indicating whether a data
definition statement in a transaction is to forcibly
commit the transaction.

(d) dataDefinitionIgnoredInTransactions() Returns a value indicating whether data definition
statements are ignored in transactions.

(e) deletesAreDetected(int type) Returns a value indicating whether deletions of
visible rows can be detected by calling the
ResultSet.rowDeleted() method.

(f) doesMaxRowSizeIncludeBlobs() Returns a value indicating whether the
getMaxRowSize() method contains the
LONGVARCHAR and LONGVARBINARY SQL data
types.

(g) getAttributes(String catalog,String
schemaPattern,String typeNamePattern,String
attributeNamePattern)

Returns attribute-related information for
user-defined types that can be used in catalogs and
specified schemas.

(h) getBestRowIdentifier(String catalog,String
schema,String table,int scope,boolean nullable)

Returns information about the optimum column
set for a table in which rows are identified
uniquely.

(i) getCatalogs() Returns the available catalog names.

(j) getCatalogSeparator() Returns the separator between the catalog name
and the table name.

(k) getCatalogTerm() Returns a word recommended for catalog.

(l) getColumnPrivileges (String catalog,String
schema,String table,String columnNamePattern)

Returns information about table column access
permissions.

(m) getColumns(String catalog,String
schemaPattern,String tableNamePattern,String
columnNamePattern)

Returns information about specified table
columns.

(n) getConnection() Returns the Connection instance that created
this DatabaseMetaData instance.

18. Type4 JDBC Driver

1668

(o) getCrossReference (String primaryCatalog,String
primarySchema,String primaryTable,String
foreignCatalog,1String foreignSchema)

Returns cross-reference information between a
specified referencing table and referenced table.

(p) getDatabaseMajorVersion() Returns the database's major version information.

(q) getDatabaseMinorVersion() Returns the database's minor version information.

(r) getDatabaseProductName() Returns the connected database's product name.

(s) getDatabaseProductVersion() Returns the connected database's version.

(t) getDefaultTransactionIsolation() Returns the default transaction cut-off level.

(u) getDriverMajorVersion() Returns this JDBC driver's major version as int
type.

(v) getDriverMinorVersion() Returns this JDBC driver's minor version as int
type.

(w) getDriverName() Returns the JDBC driver name
HiRDB_Type4_JDBC_Driver.

(x) getDriverVersion() Returns the version of this JDBC driver as
String.

(y) getExportedKeys (String catalog,String
schema,String table)

Returns information about a specified table's
foreign keys.

(z) getExtraNameCharacters() Returns the special characters (characters other
than a to z, A to Z, 0 to 9, and the underscore (_))
that can be used in an SQL ID name that is not
enclosed in double quotation marks.

(aa) getIdentifierQuoteString() Returns the character string used to enclose SQL
identifiers.

(ab) getImportedKeys (String catalog,String
schema,String table)

Returns information about a specified table's
primary key.

(ac) getIndexInfo(String catalog,String schema,String
table,boolean unique,boolean approximate)

Returns information about the indexes of a
specified table.

(ad) getJDBCMajorVersion() Returns the driver's JDBC major version.

(ae) getJDBCMinorVersion() Returns the driver's JDBC minor version.

(af) getMaxBinaryLiteralLength() Returns the maximum number of hexadecimal
characters that can be used in a binary literal.

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1669

(ag) getMaxCatalogNameLength() Returns the maximum length of a catalog name
(number of characters).

(ah) getMaxCharLiteralLength() Returns the maximum length of a character literal
(number of characters).

(ai) getMaxColumnNameLength() Returns the maximum length of a column name
(number of characters).

(aj) getMaxColumnsInGroupBy() Returns the maximum number of columns in a
GROUP BY clause.

(ak) getMaxColumnsInIndex() Returns the maximum number of columns
permitted for an index.

(al) getMaxColumnsInOrderBy() Returns the maximum number of columns in an
ORDER BY clause.

(am) getMaxColumnsInSelect() Returns the maximum number of columns in a
SELECT list.

(an) getMaxColumnsInTable() Returns the maximum number of columns in a
table.

(ao) getMaxConnections() Returns the maximum number of concurrent
connections.

(ap) getMaxCursorNameLength() Returns the maximum length of a cursor name
(number of characters).

(aq) getMaxIndexLength() Returns the maximum length of an index,
including all parts of the index.

(ar) getMaxProcedureNameLength() Returns the maximum length of a procedure name
(number of characters).

(as) getMaxRowSize() Returns the maximum length of a row (in bytes).

(at) getMaxSchemaNameLength() Returns the maximum length of a schema name
(number of characters).

(au) getMaxStatementLength() Returns the maximum length of an SQL
statement.

(av) getMaxStatements() Returns the maximum number of SQL statements
that can be active.

(aw) getMaxTableNameLength() Returns the maximum length of a table name
(number of characters).

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1670

(ax) getMaxTablesInSelect() Returns the maximum number of tables in a
SELECT statement.

(ay) getMaxUserNameLength() Returns the maximum length of a user name
(number of characters).

(az) getNumericFunctions() Returns a list of the available mathematical
functions (delimited by a comma).

(ba) getPrimaryKeys(String catalog, String schema,
String table)

Returns information about a specified table's
primary key columns.

(bb) getProcedureColumns(String catalog,String
schemaPattern,String procedureNamePattern,
String columnNamePattern)

Returns information about stored procedure
parameters.

(bc) getProcedures(String catalog,String
schemaPattern,String procedureNamePattern)

Returns information about stored procedures.

(bd) getProcedureTerm() Returns a word recommended for procedure.

(be) getResultSetHoldability() Returns the holding facility for ResultSet
objects.

(bf) getSchemas() Returns the available schema names.

(bg) getSchemaTerm() Returns a word recommended for schema.

(bh) getSearchStringEscape() Returns the character string used as the escape
sequence for wildcard characters.

(bi) getSQLKeywords() Returns a list (delimited by a comma) of all
database-specific SQL keywords that are not
SQL92 keywords.

(bj) getSQLStateType() Returns a value indicating whether SQLSTATE
returned by SQLException.getSQLState is an
X/Open SQL CLI or SQL99.

(bk) getStringFunctions() Returns a list of string functions (delimited by a
comma).

(bl) getSuperTables(String catalog,String
schemaPattern,String tableNamePattern)

Returns a description of table hierarchies defined
in a specified schema.

(bm) getSuperTypes(String catalog,String
schemaPattern,String typeNamePattern)

Returns a description of user-defined-type
hierarchies that are defined in a specified schema.

(bn) getSystemFunctions() Returns the available system functions.

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1671

(bo) getTablePrivileges(String catalog,String
schemaPattern,String tableNamePattern)

Returns information about table access privileges.

(bp) getTables(String catalog,String
schemaPattern,String tableNamePattern,String[]
types)

Returns information about tables.

(bq) getTableTypes() Returns the available table types.

(br) getTimeDateFunctions() Returns a list of the available time and date
functions (delimited by a comma).

(bs) getTypeInfo() Returns information about the default SQL types.

(bt) getUDTs(String catalog,String
schemaPattern,String typeNamePattern,int[]
types)

Returns information about the user-defined types.

(bu) getURL() Returns the URL used for the connection to
HiRDB or XDM/RD E2.

(bv) getUserName() Returns the user name used to connect to HiRDB
or XDM/RD E2.

(bw) getVersionColumns(String catalog,String
schema,String table)

Returns information about the table columns that
are updated automatically when rows in the table
are updated.

(bx) insertsAreDetected(int type) Returns a value indicating whether insertion of a
visible row can be detected by calling the
ResultSet.rowInserted() method.

(by) isCatalogAtStart() Returns a value indicating whether a catalog
appears at the leading (or trailing) end of a fully
qualified table name.

(bz) isReadOnly() Returns a value indicating whether the database is
in read-only mode.

(ca) locatorsUpdateCopy() Indicates whether a change was made to a LOB
copy or directly to the LOB.

(cb) nullPlusNonNullIsNull() Returns a value indicating whether a join of a
NULL value and a non-NULL value is treated as
being NULL.

(cc) nullsAreSortedAtEnd() Returns a value indicating whether the NULL value
is sorted during termination processing
(regardless of the sort order).

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1672

(cd) nullsAreSortedAtStart() Returns a value indicating whether the NULL value
is sorted during startup processing (regardless of
the sort order).

(ce) nullsAreSortedHigh() Returns a value indicating whether the NULL value
is sorted in ascending order.

(cf) nullsAreSortedLow() Returns a value indicating whether the NULL value
is sorted in descending order.

(cg) othersDeletesAreVisible(int type) Returns a value indicating whether a deletion
performed externally is visible.

(ch) othersInsertsAreVisible(int type) Returns a value indicating whether an insertion
performed externally is visible.

(ci) othersUpdatesAreVisible(int type) Returns a value indicating whether a deletion
performed externally is visible.

(cj) ownDeletesAreVisible(int type) Returns a value indicating whether a deletion of a
result set itself is visible.

(ck) ownInsertsAreVisible(int type) Returns a value indicating whether an insertion of
a result set itself is visible.

(cl) ownUpdatesAreVisible(int type) Returns a value indicating whether an updating of
a result set itself is visible.

(cm) storesLowerCaseIdentifiers() Returns a value indicating whether an SQL
identifier containing upper-case and lower-case
letters that is not enclosed in quotation marks is
processed as being not case sensitive, and then the
results are stored in all lower-case letters.

(cn) storesLowerCaseQuotedIdentifiers() Returns a value indicating whether an SQL
identifier containing upper-case and lower-case
letters that is enclosed in quotation marks is
processed as being not case sensitive, and then the
results are stored in all lower-case letters.

(co) storesMixedCaseIdentifiers() Returns a value indicating whether an SQL
identifier containing upper-case and lower-case
letters that is not enclosed in quotation marks is
processed as being not case sensitive, and then the
results are stored in upper-case and lower-case
letters.

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1673

(cp) storesMixedCaseQuotedIdentifiers() Returns a value indicating whether an SQL
identifier containing upper-case and lower-case
letters that is enclosed in quotation marks is
processed as being not case sensitive, and then the
results are stored in upper-case and lower-case
letters.

(cq) storesUpperCaseIdentifiers() Returns a value indicating whether an SQL
identifier containing upper-case and lower-case
letters that is not enclosed in quotation marks is
processed as being not case sensitive, and then the
results are stored in all upper-case letters.

(cr) storesUpperCaseQuotedIdentifiers() Returns a value indicating whether an SQL
identifier containing upper-case and lower-case
letters that is enclosed in quotation marks is
processed as being not case sensitive, and then the
results are stored in all upper-case letters.

(cs) supportsAlterTableWithAddColumn() Returns a value indicating whether ALTER TABLE
with added columns is supported.

(ct) supportsAlterTableWithDropColumn() Returns a value indicating whether ALTER TABLE
with dropped columns is supported.

(cu) supportsANSI92EntryLevelSQL() Returns a value indicating whether the ANSI92
entry-level SQL grammar is supported.

(cv) supportsANSI92FullSQL() Returns a value indicating whether the ANSI92
full-level SQL grammar is supported.

(cw) supportsANSI92IntermediateSQL() Returns a value indicating whether the ANSI92
intermediate-level SQL grammar is supported.

(cx) supportsBatchUpdates() Returns a value indicating whether batch updating
is supported.

(cy) supportsCatalogsInDataManipulation() Returns a value indicating whether catalog names
can be used in data manipulation statements.

(cz) supportsCatalogsInIndexDefinitions() Returns a value indicating whether catalog names
can be used in index definition statements.

(da) supportsCatalogsInPrivilegeDefinitions() Returns a value indicating whether catalog names
can be used in privilege definition statements.

(db) supportsCatalogsInProcedureCalls() Returns a value indicating whether catalog names
can be used in procedure call statements.

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1674

(dc) supportsCatalogsInTableDefinitions() Returns a value indicating whether catalog names
can be used in table definition statements.

(dd) supportsColumnAliasing() Returns a value indicating whether aliases are
supported for columns.

(de) supportsConvert() Returns a value indicating whether the CONVERT
function is supported for SQL types.

(df) supportsConvert(int fromType,int toType) Returns a value indicating whether the CONVERT
function is supported for given SQL types.

(dg) supportsCoreSQLGrammar() Returns a value indicating whether the ODBC
Core SQL grammar is supported.

(dh) supportsCorrelatedSubqueries() Returns a value indicating whether correlated
subqueries are supported.

(di) supportsDataDefinitionAndDataManipulationTra
nsactions()

Returns a value indicating whether data definition
statements and data manipulation statements are
both supported in transactions.

(dj) supportsDataManipulationTransactionsOnly() Returns a value indicating whether only data
manipulation statements are supported in
transactions.

(dk) supportsDifferentTableCorrelationNames() Returns a value indicating whether the table
names must be different from the correlation
names when table correlation names are
supported.

(dl) supportsExpressionsInOrderBy() Returns a value indicating whether expressions
are supported in an ORDER BY list.

(dm) supportsExtendedSQLGrammar() Returns a value indicating whether the ODBC
Extended SQL grammar is supported.

(dn) supportsFullOuterJoins() Returns a value indicating whether full outer joins
are supported.

(do) supportsGetGeneratedKeys() Returns a value indicating whether automatic
generation keys can be acquired after statements
have executed.

(dp) supportsGroupBy() Returns a value indicating whether the GROUP BY
clause form is supported.

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1675

(dq) supportsGroupByBeyondSelect() Returns a value indicating whether a column for
which the GROUP BY clause is not specified in
SELECT can be used when all columns in SELECT
must be specified.

(dr) supportsGroupByUnrelated() Returns a value indicating whether a column for
which the GROUP BY clause is not specified in
SELECT can be used.

(ds) supportsIntegrityEnhancementFacility() Returns a value indicating whether the SQL
Integrity Enhancement Facility is supported.

(dt) supportsLikeEscapeClause() Returns a value indicating whether escape
characters are supported in the LIKE clause.

(du) supportsLimitedOuterJoins() Returns a value indicating whether limited
support is provided for outer joins.

(dv) supportsMinimumSQLGrammar() Returns a value indicating whether the ODBC
Minimum SQL grammar is supported.

(dw) supportsMixedCaseIdentifiers() Returns a value indicating whether an SQL
identifier containing upper-case and lower-case
letters that is not enclosed in quotation marks is
processed as being case sensitive, and then the
results are stored in upper-case and lower-case
letters.

(dx) supportsMixedCaseQuotedIdentifiers() Returns a value indicating whether an SQL
identifier containing upper-case and lower-case
letters that is enclosed in quotation marks is
processed as being case sensitive, and then the
results are stored in upper-case and lower-case
letters.

(dy) supportsMultipleOpenResults() Returns a value indicating whether it is possible
for multiple ResultSet objects to be returned
simultaneously by a CallableStatement
object.

(dz) supportsMultipleResultSets() Returns a value indicating whether multiple
ResultSet objects can be acquired from
execution of a single execute method.

(ea) supportsMultipleTransactions() Returns a value indicating whether multiple
transactions can be open at the same time (for
different connections).

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1676

(eb) supportsNamedParameters() Returns a value indicating whether named
parameters are supported for the callable
statement.

(ec) supportsNonNullableColumns() Returns a value indicating whether columns can
be defined as non-null columns.

(ed) supportsOpenCursorsAcrossCommit() Returns a value indicating whether the cursor can
remain open between commit operations.

(ee) supportsOpenCursorsAcrossRollback() Returns a value indicating whether the cursor can
remain open between rollback operations.

(ef) supportsOpenStatementsAcrossCommit() Returns a value indicating whether statements can
remain open between commit operations.

(eg) supportsOpenStatementsAcrossRollback() Returns a value indicating whether statements can
remain open between rollback operations.

(eh) supportsOrderByUnrelated() Returns a value indicating whether a column for
which the ORDER BY clause is not in SELECT can
be used.

(ei) supportsOuterJoins() Returns a value indicating whether some form of
outer join is supported.

(ej) supportsPositionedDelete() Returns a value indicating whether positioned
DELETE is supported.

(ek) supportsPositionedUpdate() Returns a value indicating whether positioned
UPDATE is supported.

(el) supportsResultSetConcurrency(int type, int
concurrency)

Returns a value indicating whether the
combination of a specified type of ResultSet
and a specified parallel processing type is
supported.

(em) supportsResultSetHoldability(int holdability) Returns a value indicating whether the holding
facility is supported for a specified ResultSet
object.

(en) supportsResultSetType(int type) Returns a value indicating whether a specified
type of ResultSet is supported.

(eo) supportsSavepoints() Returns a value indicating whether save points are
supported.

(ep) supportsStatementPooling() Returns a value indicating whether statement
pooling is supported.

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1677

(eq) supportsSchemasInDataManipulation() Returns a value indicating whether schema names
can be used in data manipulation statements.

(er) supportsSchemasInIndexDefinitions() Returns a value indicating whether schema names
can be used in index definition statements.

(es) supportsSchemasInPrivilegeDefinitions() Returns a value indicating whether schema names
can be used in privilege definition statements.

(et) supportsSchemasInProcedureCalls() Returns a value indicating whether schema names
can be used in procedure calls.

(eu) supportsSchemasInTableDefinitions() Returns a value indicating whether schema names
can be used in table definition statements.

(ev) supportsSelectForUpdate() Returns a value indicating whether SELECT is
supported for updating.

(ew) supportsStoredProcedures() Returns a value indicating whether stored
procedure calls are supported.

(ex) supportsSubqueriesInComparisons() Returns a value indicating whether subqueries are
supported in comparison expressions.

(ey) supportsSubqueriesInExists() Returns a value indicating whether subqueries are
supported in exists expressions.

(ez) supportsSubqueriesInIns() Returns a value indicating whether subqueries are
supported in in statements.

(fa) supportsSubqueriesInQuantifieds() Returns a value indicating whether subqueries are
supported in quantified expressions.

(fb) supportsTableCorrelationNames() Returns a value indicating whether table
correlation names are supported.

(fc) supportsTransactionIsolationLevel(int level) Returns a value indicating whether a specified
transaction isolation level is supported.

(fd) supportsTransactions() Returns a value indicating whether transactions
are supported.

(fe) supportsUnion() Returns a value indicating whether SQL UNION is
supported.

(ff) supportsUnionAll() Returns a value indicating whether SQL UNION
ALL is supported.

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1678

(a) allProceduresAreCallable()
Function

Returns a value indicating whether all the procedures returned by the
getProcedures() method can be called by the current user.

Format

public boolean allProceduresAreCallable() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Can be called.

false: Cannot be called.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(b) allTablesAreSelectable()
Function

Returns a value indicating whether all the tables returned by the getTables()

(fg) updatesAreDetected(int type) Returns a value indicating whether updating
performed on a ResultSet of a specified
ResultSet type can be detected by the
ResultSet.rowUpdated method.

(fh) usesLocalFilePerTable() Returns a value indicating whether a file is to be
used for each table.

(fi) usesLocalFiles() Returns a value indicating whether tables are to be
stored in local files.

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1679

method can be used by the current user.

Format

public boolean allTablesAreSelectable() throws SQLException

Arguments

None.

Return value

boolean type:

true: Can be used.

false: Cannot be used.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(c) dataDefinitionCausesTransactionCommit()
Function

Returns a value indicating whether a data definition statement in a transaction is
to forcibly commit the transaction.

Format

public boolean dataDefinitionCausesTransactionCommit()
throws SQLException

Arguments

None.

Return value

boolean type:

true: Commit

false: Not commit

Functional detail

This method always returns true.

18. Type4 JDBC Driver

1680

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(d) dataDefinitionIgnoredInTransactions()
Function

Returns a value indicating whether data definition statements are ignored in
transactions.

Format

public boolean dataDefinitionIgnoredInTransactions() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Ignored

false: Not ignored

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(e) deletesAreDetected(int type)
Function

Returns a value indicating whether deletions of visible rows can be detected by
calling the ResultSet.rowDeleted() method.

Format

public boolean deletesAreDetected(int type) throws
SQLException

Arguments

int type

18. Type4 JDBC Driver

1681

One of the following ResultSet types:

• ResultSet.TYPE_FORWARD_ONLY

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

Return value

boolean type:

true: Deletions are detected.

false: Deletions are not detected.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(f) doesMaxRowSizeIncludeBlobs()
Function

Returns a value indicating whether the getMaxRowSize() method contains the
LONGVARCHAR and LONGVARBINARY SQL data types.

Format

public boolean doesMaxRowSizeIncludeBlobs() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Contains the LONGVARCHAR and LONGVARBINARY SQL data types.

false: Does not contain the LONGVARCHAR and LONGVARBINARY SQL data
types.

Functional detail

This method always returns false.

Exceptions

18. Type4 JDBC Driver

1682

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(g) getAttributes (String catalog,String schemaPattern,String
typeNamePattern,String attributeNamePattern)
Function

Returns attribute-related information for user-defined types that can be used in
catalogs and specified schemas.

Format

public ResultSet getAttributes(String catalog, String
schemaPattern, String typeNamePattern, String
attributeNamePattern) throws SQLException

Arguments

String catalog

Catalog name

String schemaPattern

Schema name pattern

String typeNamePattern

Type name pattern

String attributeNamePattern

Attribute name pattern

Return value

ResultSet object

Functional detail

This method always returns a ResultSet in which the number of rows resulting
from the retrieval is 0 because the Type4 JDBC driver does not support
user-defined types. The method does not perform a validity check on any of the
arguments. The following table shows the format of the ResultSet that is
returned:

Column
No.

Type SQL type
(Types)

Column name Description

1 String CHAR TYPE_CAT Catalog name

2 String VARCHAR TYPE_SCHEM Authorization identifier

18. Type4 JDBC Driver

1683

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

3 String VARCHAR TYPE_NAME Type name

4 String VARCHAR ATTR_NAME Attribute name

5 int INTEGER DATA_TYPE Attribute type

6 String VARCHAR ATTR_TYPE_NAME Type name

7 int INTEGER ATTR_SIZE Column size

8 int INTEGER DECIMAL_DIGITS Decimal places

9 int INTEGER NUM_PREC_RADIX Radix

10 int INTEGER NULLABLE Whether the NULL value is
permitted

11 String VARCHAR REMARKS Comments

12 String VARCHAR ATTR_DEF Default value

13 int INTEGER SQL_DATA_TYPE Not used

14 int INTEGER SQL_DATETIME_SUB Not used

15 int INTEGER CHAR_OCTET_LENGTH Maximum length (in bytes)
of a char-type column

16 int INTEGER ORDINAL_POSITION Column index in table

17 String VARCHAR IS_NULLABLE Whether the NULL value is
permitted

18 String VARCHAR SCOPE_CATALOG Catalog for a table in the
scope of reference attribute

19 String VARCHAR SCOPE_SCHEMA Schema for a table in the
scope of reference attribute

20 String VARCHAR SCOPE_TABLE Table name in the scope of
reference attribute

21 short SMALLINT SOURCE_DATA_TYPE Source data type for
individual types,
user-defined Ref type, or
java.sql.Types SQL type

Column
No.

Type SQL type
(Types)

Column name Description

18. Type4 JDBC Driver

1684

(h) getBestRowIdentifier(String catalog, String schema, String table, int
scope, boolean nullable)
Function

Returns information about the optimum column set for a table in which rows are
identified uniquely.

Format

public ResultSet getBestRowIdentifier(String catalog, String
schema, String table, int scope, boolean nullable) throws
SQLException

Arguments

String catalog

Catalog name

String schema

Schema name

String table

Table name

int scope

Target scale

boolean nullable

NULL value specification

Return value

ResultSet object

Functional detail

This method does not perform a validity check on any of the arguments. It always
returns a ResultSet in which the number of rows resulting from retrieval is 0.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(i) getCatalogs()
Function

Returns the available catalog names.

18. Type4 JDBC Driver

1685

Format

public ResultSet getCatalogs() throws SQLException

Arguments

None.

Return value

ResultSet object

Functional detail

This method always returns a ResultSet in which the number of rows resulting
from the retrieval is 0.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(j) getCatalogSeparator()
Function

Returns the separator between the catalog name and the table name.

Format

public String getCatalogSeparator() throws SQLException

Arguments

None.

Return value

String object

Functional detail

This method always returns null.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

18. Type4 JDBC Driver

1686

(k) getCatalogTerm()
Function

Returns a word recommended for catalog.

Format

public String getCatalogTerm() throws SQLException

Arguments

None.

Return value

String object

Functional detail

This method always returns null.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(l) getColumnPrivileges (String catalog,String schema,String table,String
columnNamePattern)
Function

Returns information about table column access permissions.

Format

public ResultSet getColumnPrivileges(String catalog, String
schema, String table, String columnNamePattern) throws
SQLException

Arguments

String catalog

Catalog name (this driver ignores this argument)

String schema

Schema name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a schema name is not used to narrow down the
search.

String table

18. Type4 JDBC Driver

1687

Table name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a table name is not used to narrow down the search.

String columnNamePattern

Column name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a column name is not used to narrow down the
search.

Return value

ResultSet object

Functional detail

This method returns information about the access permissions for the table to
which the specified table column belongs. The following table shows the format
of the ResultSet that is returned:

Column
No.

Type SQL type
(Types)

Column name Sorting# Description

1 String CHAR TABLE_CAT -- Catalog name
(NULL value is always
returned)

2 String VARCHAR TABLE_SCHEM 1 (ascending
order)

Authorization identifier

3 String VARCHAR TABLE_NAME 2 (ascending
order)

Table name

4 String VARCHAR COLUMN_NAME 3 (ascending
order)

Column name

5 String VARCHAR GRANTOR -- User who grants access
privileges

6 String VARCHAR GRANTEE -- User who receives access
privileges

7 String VARCHAR PRIVILEGE 4 (ascending
order)

Names of granted access
privileges (multiple
access privilege names are
delimited by the comma):
SELECT: SELECT
privilege
INSERT: INSERT
privilege
UPDATE: UPDATE
privilege
DELETE: DELETE
privilege

18. Type4 JDBC Driver

1688

Legend:

--: Not applicable

#

Priority level of the sort key column

Exceptions

If one of the following is true, the JDBC driver throws an SQLException:

• close() was executed on the Connection object before this method
executed.

• A database access error occurred.

(m) getColumns(String catalog, String schemaPattern, String
tableNamePattern, String columnNamePattern)
Function

Returns information about specified table columns.

Format

public ResultSet getColumns(String catalog, String
schemaPattern, String tableNamePattern, String
columnNamePattern) throws SQLException

8 String VARCHAR IS_GRANTABLE -- Whether a user who has
received access privileges
can grant access privileges
to other users:
YES: Can grant privileges
to other users.
NO: Cannot grant
privileges to other users.
null: Whether the user
can grant privileges to
other users is unknown.
If multiple access
privileges are set in
PRIVILEGE and at least
one of the privileges can
be granted to other users,
the method sets YES. null
is not returned in either
HiRDB or XDM/RD E2.

Column
No.

Type SQL type
(Types)

Column name Sorting# Description

18. Type4 JDBC Driver

1689

Arguments

String catalog

Catalog name (this driver ignores this argument)

String schemaPattern

Schema name pattern (case sensitive)

String tableNamePattern

Table name pattern (case sensitive)

String columnNamePattern

Column name pattern (case sensitive)

Return value

ResultSet object

Functional detail

Returns information about the specified table columns. The following table shows
the format of the ResultSet that is returned.

Table 18-38: Format of ResultSet returned by getColumns

Colum
n No.

Type SQL type
(Types)

Column name Description

1 String CHAR TABLE_CAT NULL value is always returned

2 String VARCHAR TABLE_SCHEM Authorization identifier

3 String VARCHAR TABLE_NAME Table name

4 String VARCHAR COLUMN_NAME Column name

5 int INTEGER DATA_TYPE SQL type

6 String CHAR TYPE_NAME Type name

7 int INTEGER COLUMN_SIZE Column size

8 int INTEGER BUFFER_LENGTH NULL value is always returned

9 int INTEGER DECIMAL_DIGITS Decimal places

10 int INTEGER NUM_PREC_RADIX Radix
• Approximate value: 2
• Exact value: 10
• Non-numeric value: 0

18. Type4 JDBC Driver

1690

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(n) getConnection()
Function

Returns the Connection instance that created this DatabaseMetaData
instance.

11 int INTEGER NULLABLE Whether the NULL value can be used for
this type:
• columnNoNulls: NULL value

might not be permitted.
• columnNullable: NULL value can

be used.
• columnNullableUnknown:

Whether the NULL value can be
used is unknown.

12 String VARCHAR REMARKS Comment column

13 String VARCHAR COLUMN_DEF Default value

14 int INTEGER SQL_DATA_TYPE NULL value is always returned

15 int INTEGER SQL_DATETIME_SUB NULL value is always returned

16 int INTEGER CHAR_OCTET_LENGTH Maximum length in bytes of char-type
column (same
as COLUMN_SIZE)

17 int SMALLINT ORDINAL_POSITION Column number (beginning with 1)

18 String CHAR IS_NULLABLE Whether the NULL value can be used for
this type:
• NO: NULL value cannot be used.
• YES: NULL value might be

permitted.

19 String CHAR SCOPE_CATLOG NULL value is always returned

20 String CHAR SCOPE_SCHEMA NULL value is always returned

21 String CHAR SCOPE_TABLE NULL value is always returned

22 short SMALLINT SOURCE_DATA_TYPE NULL value is always returned

Colum
n No.

Type SQL type
(Types)

Column name Description

18. Type4 JDBC Driver

1691

Format

public Connection getConnection() throws SQLException

Arguments

None.

Return value

Connection object

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(o) getCrossReference (String primaryCatalog,String primarySchema,String
primaryTable,String foreignCatalog,1String foreignSchema)
Function

Returns cross-reference information between a specified referencing table and
referenced table.

Format

public ResultSet getCrossReference(String primaryCatalog,
String primarySchema, String primaryTable, String
foreignCatalog, String foreignSchema) throws SQLException

Arguments

String primaryCatalog

Catalog name of the referenced table (this driver ignores this argument)

String primarySchema

Schema name pattern of the referenced table (case sensitive). If null or a
character string with a length of 0 is specified, a schema name is not used to
narrow down the search.

String primaryTable

Table name pattern of the referenced table (case sensitive). If null or a
character string with a length of 0 is specified, a table name is not used to
narrow down the search.

String foreignCatalog

Catalog name of the referencing table (this driver ignores this argument)

18. Type4 JDBC Driver

1692

String foreignSchema

Schema name pattern of the referencing table (case sensitive). If null or a
character string with a length of 0 is specified, a schema name is not used to
narrow down the search.

Return value

ResultSet object

Functional detail

This method returns cross-reference information between a specified referencing
table and referenced table. The following table shows the format of the
ResultSet that is returned:

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting# Description

1 String CHAR PKTABLE_CAT -- Catalog name of the referenced table
(NULL value is always returned)

2 String VARCHAR PKTABLE_SCHEM -- Authorization identifier of the
referenced table

3 String VARCHAR PKTABLE_NAME -- Table name of the referenced table

4 String VARCHAR PKCOLUMN_NAM
E

-- Column name of primary key

5 String CHAR FKTABLE_CAT -- Catalog name of the referencing table
(NULL value is always returned)

6 String VARCHAR FKTABLE_SCHEM 1
(ascendin
g order)

Authorization identifier of the
referencing table

7 String VARCHAR FKTABLE_NAME 2
(ascendin
g order)

Table name of the referencing table

8 String VARCHAR FKCOLUMN_NAM
E

-- Column name of foreign key

9 short SMALLINT KEY_SEQ 3
(ascendin
g order)

Sequence number of foreign key

18. Type4 JDBC Driver

1693

1
0

short SMALLINT UPDATE_RULE -- Updating rules.
This indicates how a foreign key is
affected when the foreign key is
referencing the primary key and the
primary key is updated.
• importedKeyNoAction

The primary key cannot be updated.
• importedKeyCascade

The foreign key is updated by the
same value as for the primary key.

• importedKeySetNull

The value of the foreign key is set to
NULL.

• importedKeySetDefault

The value of the foreign key is set to
the default value.

• importedKeyRestrict

The primary key cannot be updated.

11 short SMALLINT DELETE_RULE -- Deletion rules.
This indicates how a foreign key is
affected when the foreign key is
referencing the primary key and the
primary key is deleted.
• importedKeyNoAction

The primary key cannot be deleted.
• importedKeyCascade

The row containing the foreign key
is deleted.

• importedKeySetNull

The value of the foreign key is set to
NULL.

• importedKeySetDefault

The value of the foreign key is set to
the default value.

• importedKeyRestrict

The primary key cannot be deleted.

1
2

String VARCHAR FK_NAME -- Constraint name of referential
constraints

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting# Description

18. Type4 JDBC Driver

1694

Legend:

--: Not applicable

#

Priority level of the sort key column

Exceptions

If one of the following is true, the JDBC driver throws an SQLException:

• close() was executed on the Connection object before this method
executed.

• A database access error occurred.

(p) getDatabaseMajorVersion()
Function

Returns the database's major version information.

Format

public int getDatabaseMajorVersion() throws SQLException

Arguments

1
3

String VARCHAR PK_NAME -- Index name of the primary key

1
4

short SMALLINT DEFERRABILITY -- Whether evaluation of constraints on the
foreign key can be postponed until the
transaction is committed:
• importedKeyInitiallyDeferred

Can be postponed.
• importedKeyInitiallyImmediate

Currently set for immediate
evaluation, but the setting can be
changed to postpone evaluation.

• importedKeyNotDeferrable

Cannot be postponed.

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting# Description

18. Type4 JDBC Driver

1695

None.

Return value

int type:

Database's major version

Functional detail

When a HiRDB server is used, this method returns the HiRDB server's major
version. For example, if the HiRDB server's version is 08-02, the method returns
8 of the int type.

When an XDM/RD E2 server is used, this method returns the value obtained by
adding 20 to the XDM/RD E2 server's major version. This return value is the
same as the server's major version displayed in the header of SQL traces output
by the JDBC driver.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(q) getDatabaseMinorVersion()
Function

Returns the database's minor version information.

Format

public int getDatabaseMinorVersion() throws SQLException

Arguments

None.

Return value

int type:

Database's minor version

Functional detail

When a HiRDB server is used, this method returns the HiRDB server's minor
version. For example, if the HiRDB server's version is 08-02, the method returns
2 of the int type.

When an XDM/RD E2 server is used, this method returns the XDM/RD E2
server's minor version. For example, if the XDM/RD E2 server's version is 11-03,
the method returns 3 of the int type.

18. Type4 JDBC Driver

1696

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(r) getDatabaseProductName()
Function

Returns the connected database's product name.

When a HiRDB server is used, this method returns HiRDB. When an XDM/RD
E2 server is used, this method returns XDM/RD E2.

Format

public String getDatabaseProductName() throws SQLException

Arguments

None.

Return value

String object

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(s) getDatabaseProductVersion()
Function

Returns the connected database's version.

Format

public String getDatabaseProductVersion() throws
SQLException

Arguments

None.

Return value

String object

Functional detail

When a HiRDB server is used, this method returns the HiRDB server's version in

18. Type4 JDBC Driver

1697

the format vv-rr (for example: 08-00).

When an XDM/RD E2 server is used, this method returns the value obtained by
adding 20 to the XDM/RD E2 server's version, in the format vv-rr. For example,
if the XDM/RD E2 server's version is 11-03, the method returns 31-03.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(t) getDefaultTransactionIsolation()
Function

Returns the default transaction cut-off level.

Format

public int getDefaultTransactionIsolation() throws
SQLException

Arguments

None.

Return value

int type:

Cut-off level

Functional detail

This method always returns TRANSACTION_REPEATABLE_READ.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(u) getDriverMajorVersion()
Function

Returns this JDBC driver's major version as int type. For example, if the version
is 08-00, the method returns 8 of the int type.

Format

public int getDriverMajorVersion() throws SQLException

Arguments

18. Type4 JDBC Driver

1698

None.

Return value

int type:

JDBC driver's major version

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(v) getDriverMinorVersion()
Function

Returns this JDBC driver's minor version as int type. For example, if the version
is 08-00, the method returns 0 of the int type.

Format

public int getDriverMinorVersion() throws SQLException

Arguments

None.

Return value

int type:

JDBC driver's minor version

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(w) getDriverName()
Function

Returns the JDBC driver name HiRDB_Type4_JDBC_Driver.

Format

public String getDriverName() throws SQLException

Arguments

None.

18. Type4 JDBC Driver

1699

Return value

String object

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(x) getDriverVersion()
Function

Returns the version of this JDBC driver as String. For example, if the version
is 08-00, the method returns 08-00 of the String type.

Format

public String getDriverVersion() throws SQLException

Arguments

None.

Return value

String object

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(y) getExportedKeys (String catalog,String schema,String table)
Function

Returns information about a specified table's foreign keys.

Format

public ResultSet getExportedKeys(String catalog,String
schema,String table) throws SQLException

Arguments

String catalog

Catalog name of the referencing table (this driver ignores this argument)

String schema

Schema name pattern of the referencing table (case sensitive). If null or a

18. Type4 JDBC Driver

1700

character string with a length of 0 is specified, a schema name is not used to
narrow down the search.

String table

Table name pattern of the referencing table (case sensitive). If null or a
character string with a length of 0 is specified, a table name is not used to
narrow down the search.

Return value

ResultSet object

Functional detail

This method returns information about the specified table's foreign keys. The
following table shows the format of the ResultSet that is returned:

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting
#

Description

1 String CHAR PKTABLE_CAT -- Catalog name of the referenced table
(NULL value is always returned)

2 String VARCHAR PKTABLE_SCHE
M

-- Authorization identifier of the referenced
table

3 String VARCHAR PKTABLE_NAME -- Table name of the referenced table

4 String VARCHAR PKCOLUMN_NA
ME

-- Column name of primary key

5 String CHAR FKTABLE_CAT -- Catalog name of the referencing table
(NULL value is always returned)

6 String VARCHAR FKTABLE_SCHE
M

1
(ascendi
ng
order)

Authorization identifier of the referencing
table

7 String VARCHAR FKTABLE_NAME 2
(ascendi
ng
order)

Table name of the referencing table

8 String VARCHAR FKCOLUMN_NA
ME

-- Column name of foreign key

18. Type4 JDBC Driver

1701

9 short SMALLINT KEY_SEQ 3
(ascendi
ng
order)

Sequence number of foreign key

10 short SMALLINT UPDATE_RULE -- Updating rules.
This indicates how a foreign key is
affected when the foreign key is
referencing the primary key and the
primary key is updated.
• importedKeyNoAction

The primary key cannot be updated.
• importedKeyCascade

The foreign key is updated by the
same value as for the primary key.

• importedKeySetNull

The value of the foreign key is set to
NULL.

• importedKeySetDefault

The value of the foreign key is set to
the default value.

• importedKeyRestrict

The primary key cannot be updated.

11 short SMALLINT DELETE_RULE -- Deletion rules.
This indicates how a foreign key is
affected when the foreign key is
referencing the primary key and the
primary key is deleted.
• importedKeyNoAction

The primary key cannot be deleted.
• importedKeyCascade

The row containing the foreign key is
deleted.

• importedKeySetNull

The value of the foreign key is set to
NULL.

• importedKeySetDefault

The value of the foreign key is set to
the default value.

• importedKeyRestrict

The primary key cannot be deleted.

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting
#

Description

18. Type4 JDBC Driver

1702

Legend:

--: Not applicable

#

Priority level of the sort key column

Exceptions

If one of the following is true, the JDBC driver throws an SQLException:

• close() was executed on the Connection object before this method
executed.

• A database access error occurred.

(z) getExtraNameCharacters()
Function

Returns the special characters that can be used in an SQL ID name that is not
enclosed in double quotation marks. The characters a to z, A to Z, 0 to 9, and the
underscore (_) are not included.

Format

public String getExtraNameCharacters() throws SQLException

12 String VARCHAR FK_NAME -- Constraint name of referential constraints

13 String VARCHAR PK_NAME -- Index name of the primary key

14 short SMALLINT DEFERRABILITY -- Whether evaluation of constraints on the
foreign key can be postponed until the
transaction is committed:
• importedKeyInitiallyDeferred

Can be postponed.
• importedKeyInitiallyImmediate

Currently set for immediate
evaluation, but the setting can be
changed to postpone the evaluation.

• importedKeyNotDeferrable

Cannot be postponed.

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting
#

Description

18. Type4 JDBC Driver

1703

Arguments

None.

Return value

String object

Functional detail

This method always returns \, @, and #.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(aa) getIdentifierQuoteString()
Function

Returns the character string used to enclose SQL identifiers.

Format

public String getIdentifierQuoteString() throws SQLException

Arguments

None.

Return value

String object

Functional detail

This method always returns a double-quotation mark (").

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ab)getImportedKeys (String catalog,String schema,String table)
Function

Returns information about a specified table's primary key.

Format

public ResultSet getImportedKeys(String catalog,String
schema,String table) throws SQLException

18. Type4 JDBC Driver

1704

Arguments

String catalog

Catalog name of the referenced table (this driver ignores this argument)

String schema

Schema name pattern of the referenced table (case sensitive). If null or a
character string with a length of 0 is specified, a schema name is not used to
narrow down the search.

String table

Table name pattern of the referenced table (case sensitive). If null or a
character string with a length of 0 is specified, a table name is not used to
narrow down the search.

Return value

ResultSet object

Functional detail

This method returns information about the primary key of a specified referenced
table. The following table shows the format of ResultSet that is returned:

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sortin
g#

Description

1 String CHAR PKTABLE_CAT -- Catalog name of the referenced table
(NULL value is always returned)

2 String VARCHAR PKTABLE_SCHE
M

1
(ascend
ing
order)

Authorization identifier of the referenced
table

3 String VARCHAR PKTABLE_NAME 2
(ascend
ing
order)

Table name of the referenced table

4 String VARCHAR PKCOLUMN_NA
ME

-- Column name of primary key

5 String CHAR FKTABLE_CAT -- Catalog name of the referencing table
(NULL value is always returned)

18. Type4 JDBC Driver

1705

6 String VARCHAR FKTABLE_SCHE
M

-- Authorization identifier of the referencing
table

7 String VARCHAR FKTABLE_NAME -- Table name of the referencing table

8 String VARCHAR FKCOLUMN_NA
ME

-- Column name of foreign key

9 short SMALLINT KEY_SEQ 3
(ascend
ing
order)

Sequence number of foreign key

10 short SMALLINT UPDATE_RULE -- Updating rules.
This indicates how a foreign key is affected
when the foreign key is referencing the
primary key and the primary key is
updated.
• importedKeyNoAction

The primary key cannot be updated.
• importedKeyCascade

The foreign key is updated by the same
value as for the primary key.

• importedKeySetNull

The value of the foreign key is set to
NULL.

• importedKeySetDefault

The value of the foreign key is set to
the default value.

• importedKeyRestrict

The primary key cannot be updated.

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sortin
g#

Description

18. Type4 JDBC Driver

1706

Legend:

--: Not applicable

#

Priority level of the sort key column

Exceptions

11 short SMALLINT DELETE_RULE -- Deletion rules.
This indicates how a foreign key is affected
when the foreign key is referencing the
primary key and the primary key is deleted.
• importedKeyNoAction

The primary key cannot be deleted.
• importedKeyCascade

The row containing the foreign key is
deleted.

• importedKeySetNull

The value of the foreign key is set to
NULL.

• importedKeySetDefault

The value of the foreign key is set to
the default value.

• importedKeyRestrict

The primary key cannot be deleted.

12 String VARCHAR FK_NAME -- Constraint name of referential constraints

13 String VARCHAR PK_NAME -- Index name of the primary key

14 short SMALLINT DEFERRABILITY -- Whether evaluation of constraints on the
foreign key can be postponed until the
transaction is committed.
• importedKeyInitiallyDeferred

Can be postponed.
• importedKeyInitiallyImmediate

Currently set for immediate
evaluation, but the setting can be
changed to postpone the evaluation.

• importedKeyNotDeferrable

Cannot be postponed.

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sortin
g#

Description

18. Type4 JDBC Driver

1707

If one of the following is true, the JDBC driver throws an SQLException:

• close() was executed on the Connection object before this method
executed.

• A database access error occurred.

(ac) getIndexInfo(String catalog, String schema, String table, boolean unique,
boolean approximate)
Function

Returns information about the indexes of a specified table.

Format

public ResultSet getIndexInfo(String catalog, String schema,
String table, boolean unique, boolean approximate) throws
SQLException

Arguments

String catalog

Catalog name (this value is not used)

String schema

Schema name pattern (case sensitive)

String table

Table name pattern (case sensitive)

boolean unique

Uniqueness attribute:

true: Returns information for unique indexes only.

false: Returns all index information, whether or not the indexes are unique.

boolean approximate

Result attribute (this value is not used)

Return value

ResultSet object

Functional detail

This method returns information about the indexes of a specified table. The
following table shows the format of the ResultSet that is returned.

18. Type4 JDBC Driver

1708

Table 18-39: Format of ResultSet returned by getIndexInf

Colu
mn
No.

Type SQL
type

Column name Description

1 Strin
g

CHAR TABLE_CAT Catalog name (NULL value is always returned)

2 Strin
g

VARCHA
R

TABLE_SCHEM Authorization identifier

3 Strin
g

VARCHA
R

TABLE_NAME Table name

4 boole
an

BIT NON_UNIQUE If the key values for which the index is defined (total
value of a single or multiple columns defined as index
columns) are different in every row, the method returns
false; otherwise, the method returns true.

5 Strin
g

CHAR INDEX_QUALIFIE
R

Index's catalog name (NULL value is always returned)

6 Strin
g

VARCHA
R

INDEX_NAME Index identifier

7 short SMALLI
NT

TYPE Index type:
• For cluster keys:

DatabaseMetaData.tableIndexClustered(
1)

• For hash indexes:
DatabaseMetaData.tableIndexHashed(2)

• For other indexes:
DatabaseMetaData.tableIndexOther(3)

8 short SMALLI
NT

ORDINAL_POSITI
ON

For a single-column index, the method returns 1. For a
multicolumn index, the method returns the sequence
number of a column that composes the index (integers
beginning with 1 that identify in sequence the column
names that constitute the index).

9 Strin
g

VARCHA
R

COLUMN_NAME Column name

10 Strin
g

VARCHA
R

ASC_OR_DESC For an index defined in ascending order, the method
returns A; for an index defined in descending order, the
method returns D. For a plug-in index, the method
returns the NULL value.

11 int INTEGER CARDINALITY Number of unique values in the index (NULL value is
always returned)

12 int INTEGER PAGES Number of pages used for the index (NULL value is
always returned)

18. Type4 JDBC Driver

1709

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ad)getJDBCMajorVersion ()
Function

Returns the driver's JDBC major version.

Format

public int getJDBCMajorVersion() throws SQLException

Arguments

None.

Return value

int type:

JDBC driver's major version

Functional detail

This method returns the driver's JDBC major version, which is 2.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ae) getJDBCMinorVersion ()
Function

Returns the driver's JDBC minor version.

Format

public int getJDBCMinorVersion () throws SQLException

Arguments

13 Strin
g

CHAR FILTER_CONDITI
ON

Filter condition (NULL value is always returned.

Colu
mn
No.

Type SQL
type

Column name Description

18. Type4 JDBC Driver

1710

None.

Return value

int type:

JDBC minor version

Functional detail

This method returns the driver's JDBC minor version, which is 1.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(af) getMaxBinaryLiteralLength()
Function

Returns the maximum number of hexadecimal characters that can be used in a
binary literal.

Format

public int getMaxBinaryLiteralLength() throws SQLException

Arguments

None.

Return value

int type:

Maximum number of characters

Functional detail

This method always returns 64000.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ag)getMaxCatalogNameLength()
Function

Returns the maximum length of a catalog name (number of characters).

Format

18. Type4 JDBC Driver

1711

public int getMaxCatalogNameLength() throws SQLException

Arguments

None.

Return value

int type:

Maximum number of characters permitted for a catalog name. A value of 0
means there is no limit or the limit is not known.

Functional detail

This method always returns 0.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ah)getMaxCharLiteralLength()
Function

Returns the maximum length of a character literal (number of characters).

Format

public int getMaxCharLiteralLength() throws SQLException

Arguments

None.

Return value

int type:

Maximum number of characters permitted for a character literal. A value of
0 means there is no limit or the limit is not known.

Functional detail

This method always returns 32000.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

18. Type4 JDBC Driver

1712

(ai) getMaxColumnNameLength()
Function

Returns the maximum length of a column name (number of characters).

Format

public int getMaxColumnNameLength() throws SQLException

Arguments

None.

Return value

int type:

Maximum number of characters permitted for a column name

Functional detail

This method always returns 30.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(aj) getMaxColumnsInGroupBy()
Function

Returns the maximum number of columns in a GROUP BY clause.

Format

public int getMaxColumnsInGroupBy() throws SQLException

Arguments

None.

Return value

int type:

Permitted maximum number of columns

Functional detail

This method always returns 255.

Exceptions

18. Type4 JDBC Driver

1713

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ak) getMaxColumnsInIndex()
Function

Returns the maximum number of columns permitted for an index.

Format

public int getMaxColumnsInIndex() throws SQLException

Arguments

None.

Return value

int type:

Permitted maximum number of columns

Functional detail

This method always returns 16.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(al) getMaxColumnsInOrderBy()
Function

Returns the maximum number of columns in an ORDER BY clause.

Format

public int getMaxColumnsInOrderBy() throws SQLException

Arguments

None.

Return value

int type:

Permitted maximum number of columns

18. Type4 JDBC Driver

1714

Functional detail

This method always returns 255.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(am)getMaxColumnsInSelect()
Function

Returns the maximum number of columns in a SELECT list.

Format

public int getMaxColumnsInSelect() throws SQLException

Arguments

None.

Return value

int type:

Permitted maximum number of columns

Functional detail

This method always returns 30000.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(an)getMaxColumnsInTable()
Function

Returns the maximum number of columns in a table.

Format

public int getMaxColumnsInTable() throws SQLException

Arguments

None.

Return value

18. Type4 JDBC Driver

1715

int type:

Permitted maximum number of columns

Functional detail

This method always returns 30000.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ao)getMaxConnections()
Function

Returns the maximum number of concurrent connections.

Format

public int getMaxConnections() throws SQLException

Arguments

None.

Return value

int type:

Maximum number of connections that can be active at the same time. A
value of 0 means there is no limit or the limit is not known.

Functional detail

This method always returns 0.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ap)getMaxCursorNameLength()
Function

Returns the maximum length of a cursor name (number of characters).

Format

public int getMaxCursorNameLength() throws SQLException

18. Type4 JDBC Driver

1716

Arguments

None.

Return value

int type:

Maximum number of characters permitted for a cursor name

Functional detail

This method always returns 30.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(aq)getMaxIndexLength()
Function

Returns the maximum length of an index, including all parts of the index.

Format

public int getMaxIndexLength() throws SQLException

Arguments

None.

Return value

int type:

Permitted maximum length of an index

Functional detail

This method always returns 4036.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ar) getMaxProcedureNameLength()
Function

Returns the maximum length of a procedure name (number of characters).

Format

18. Type4 JDBC Driver

1717

public int getMaxProcedureNameLength() throws SQLException

Arguments

None.

Return value

int type:

Maximum length of a procedure name

Functional detail

This method always returns 30.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(as) getMaxRowSize()
Function

Returns the maximum length of a row (in bytes).

Format

public int getMaxRowSize() throws SQLException

Arguments

None.

Return value

int type:

Maximum number of bytes permitted for one row. A value of 0 means there
is no limit or the limit is not known.

Functional detail

This method always returns 0.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(at) getMaxSchemaNameLength()
Function

18. Type4 JDBC Driver

1718

Returns the maximum length of a schema name (number of characters).

Format

public int getMaxSchemaNameLength() throws SQLException

Arguments

None.

Return value

int type:

Maximum length of a schema name

Functional detail

When a HiRDB server is used, this method returns 8.

When an XDM/RD E2 server is used, this method returns 30.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(au)getMaxStatementLength()
Function

Returns the maximum length of an SQL statement.

Format

public int getMaxStatementLength() throws SQLException

Arguments

None.

Return value

int type:

Maximum length of an SQL statement

Functional detail

When a HiRDB server is used, this method returns 2,000,000.

When an XDM/RD E2 server is used, this method returns 30,000.

Note

18. Type4 JDBC Driver

1719

When you are using an XDM/RD E2 server and you specify MAX SQL
LENGTH in the RDB clause of a server space start control statement for
Database Connection Server, you can extend the maximum SQL statement
length to up to 2,000,000 bytes. However, this method will still return the
default value (30,000), as if MAX SQL LENGTH had not been specified; this
is because the JDBC driver does not acquire the MAX SQL LENGTH
specification information from the server. However, the JDBC driver will be
able to process the set maximum SQL statement length (up to 2,000,000
bytes).

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(av) getMaxStatements()
Function

Returns the maximum number of SQL statements that can be active.

Format

public int getMaxStatements() throws SQLException

Arguments

None.

Return value

int type:

Maximum number of SQL statements

Functional detail

This method always returns 4095.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(aw)getMaxTableNameLength()
Function

Returns the maximum length of a table name (number of characters).

Format

public int getMaxTableNameLength() throws SQLException

18. Type4 JDBC Driver

1720

Arguments

None.

Return value

int type:

Maximum length of a table name

Functional detail

This method always returns 30.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ax) getMaxTablesInSelect()
Function

Returns the maximum number of tables in a SELECT statement.

Format

public int getMaxTablesInSelect() throws SQLException

Arguments

None.

Return value

int type:

Maximum number of tables permitted in a SELECT statement

Functional detail

When a HiRDB server is used, this method returns 64.

When an XDM/RD E2 server is used, this method returns 256.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ay) getMaxUserNameLength()
Function

18. Type4 JDBC Driver

1721

Returns the maximum length of a user name (number of characters).

Format

public int getMaxUserNameLength() throws SQLException

Arguments

None.

Return value

int type:

Permitted maximum length of a user name

Functional detail

When a HiRDB server is used, this method returns 8.

When an XDM/RD E2 server is used, this method returns 7.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(az) getNumericFunctions()
Function

Returns a list of the available mathematical functions (delimited by a comma).

Format

public String getNumericFunctions() throws SQLException

Arguments

None.

Return value

String object

Functional detail

When a HiRDB server is used, this method returns the following list:

ABS,ACOS,ASIN,ATAN,ATAN2,CEILING,COS,DEGREES,EXP,FLOOR,LOG,
LOG10,MOD,PI,POWER,RADIANS,ROUND,SIGN,SIN,SQRT,TAN,TRUNCATE

When an XDM/RD E2 server is used, this method returns the following list:

18. Type4 JDBC Driver

1722

ABS,CEILING,EXP,FLOOR,LOG,MOD,POWER,SQRT

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ba)getPrimaryKeys(String catalog, String schema, String table)
Function

Returns information about a specified table's primary key columns.

Format

public ResultSet getPrimaryKeys(String catalog, String
schema, String table) throws SQLException

Arguments

String catalog

Catalog name (this value is not used)

String schema

Schema name pattern (case sensitive)

String table

Table name pattern (case sensitive)

Return value

ResultSet object

Functional detail

This method returns information about a specified table's primary key columns.
The following table shows the format of the ResultSet that is returned.

Table 18-40: Format of ResultSet returned by getPrimaryKeys

Column
No.

Type SQL type Column name Description

1 String CHAR TABLE_CAT Catalog name (NULL value is
always returned)

2 String VARCHAR TABLE_SCHEM Authorization identifier

3 String VARCHAR TABLE_NAME Table name

4 String VARCHAR COLUMN_NAME Column name

18. Type4 JDBC Driver

1723

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bb)getProcedureColumns (String catalog,String schemaPattern,String
procedureNamePattern, String columnNamePattern)
Function

Returns information about stored procedure parameters.

Format

public ResultSet getProcedureColumns(String catalog, String
schemaPattern, String procedureNamePattern, String
columnNamePattern) throws SQLException

Arguments

String catalog

Catalog name (this driver ignores this argument)

String schemaPattern

Schema name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a schema name is not used to narrow down the
search.

String procedureNamePattern

Procedure name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a procedure name is not used to narrow down the
search.

String columnNamePattern

Parameter name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a parameter name is not used to narrow down the

5 short SMALLINT KEY_SEQ Sequence number of a column that
composes the index (an integer
beginning with 1 that identifies in
sequence the column names that
constitute the index)

6 String VARCHAR PK_NAME Primary index identifier

Column
No.

Type SQL type Column name Description

18. Type4 JDBC Driver

1724

search.

Return value

ResultSet object

Functional detail

This method returns information about the parameters of a specified stored
procedure. The following table shows the format of the ResultSet that is
returned:

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting# Description

1 String CHAR PROCEDURE_CAT -- Catalog name (NULL value is always
returned)

2 String VARCHAR PROCEDURE_SCHE
M

1
(ascendin
g order)

Authorization identifier

3 String VARCHAR PROCEDURE_NAM
E

2
(ascendin
g order)

Procedure name

4 String VARCHAR COLUMN_NAME 3
(ascendin
g order)

Parameter name

18. Type4 JDBC Driver

1725

5 short SMALLINT COLUMN_TYPE -- Parameter type:
• procedureColumnUnknown

Unknown
• procedureColumnIn

IN parameter
• procedureColumnInOut

INOUT parameter
• procedureColumnOut

OUT parameter
• procedureColumnReturn

Procedure return value
• procedureColumnResult

Result column of ResultSet
In HiRDB and XDM/RD E2, neither
procedureColumnReturn nor
procedureColumnResult will be
set. In HiRDB,
procedureColumnUnknown will not
be set.

6 int INTEGER DATA_TYPE -- Parameter's SQL type
(value defined in java.sql.Types)

7 String VARCHAR TYPE_NAME -- Parameter's SQL type name
(type name expressed as a character
string)

8 int INTEGER PRECISION -- Parameter's precision
If the parameter's SQL type name is
not DECIMAL, the method returns 0.

9 int INTEGER LENGTH -- Parameter size

10 short SMALLINT SCALE -- Parameter scaling (number of digits in
the fraction part)
If the parameter's SQL type name is
neither DECIMAL nor TIMESTAMP, the
method returns 0.

11 short SMALLINT RADIX -- Radix of parameter
• Approximate value: 2
• Exact value: 10
• Non-numeric value: 0

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting# Description

18. Type4 JDBC Driver

1726

Legend:

--: Not applicable

#

Priority level of the sort key column

Exceptions

If one of the following is true, the JDBC driver throws an SQLException:

• close() was executed on the Connection object before this method
executed.

• A database access error occurred.

(bc)getProcedures (String catalog,String schemaPattern,String
procedureNamePattern)
Function

Returns information about stored procedures.

Format

public ResultSet getProcedures(String catalog, String
schemaPattern, String procedureNamePattern) throws
SQLException

12 short SMALLINT NULLABLE -- Whether the NULL value is permitted:
• procedureNoNulls

NULL value is not permitted.
• procedureNullable

NULL value is permitted.
• procedureNullableUnknown

Whether NULL value is permitted
is unknown.

The method always returns
procedureNullable.

13 String VARCHAR REMARKS -- Comment related to the parameter
(NULL value is always returned)

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting# Description

18. Type4 JDBC Driver

1727

Arguments

String catalog

Catalog name (this driver ignores this argument)

String schemaPattern

Schema name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a schema name is not used to narrow down the
search.

String procedureNamePattern

Procedure name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a procedure name is not used to narrow down the
search.

Return value

ResultSet object

Functional detail

This method returns information about stored procedures. The following table shows
the format of the ResultSet that is returned:

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting# Description

1 String CHAR PROCEDURE_CAT -- Catalog name (NULL value is always
returned)

2 String VARCHAR PROCEDURE_SCHE
M

1 (ascending
order)

Authorization identifier

3 String VARCHAR PROCEDURE_NAM
E

2 (ascending
order)

Procedure name

4 String VARCHAR RESERVE1 -- Reserved

5 String VARCHAR RESERVE2 -- Reserved

6 String VARCHAR RESERVE3 -- Reserved

7 String VARCHAR REMARKS -- Description of procedure

18. Type4 JDBC Driver

1728

Legend:

--: Not applicable

#

Priority level of the sort key column

Exceptions

If one of the following is true, the JDBC driver throws an SQLException:

• close() was executed on the Connection object before this method
executed.

• A database access error occurred.

(bd)getProcedureTerm()
Function

Returns a word recommended for procedure.

Format

public String getProcedureTerm() throws SQLException

Arguments

None.

Return value

String object

Functional detail

8 short SMALLINT PROCEDURE_TYPE -- Procedure type:
• procedureResultUnknown

Results might be returned.
• procedureNoResult

Results are not returned.
• procedureReturnsResult

Results are returned.

C
ol
u
m
n
N
o.

Type SQL type
(Types)

Column name Sorting# Description

18. Type4 JDBC Driver

1729

This method always returns procedure.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(be)getResultSetHoldability ()
Function

Returns the holding facility for ResultSet objects.

Format

public int getResultSetHoldability() throws SQLException

Arguments

None.

Return value

This method returns the holding facility for ResultSet objects. This indicates
whether a ResultSet object is to be closed when the Connection.commit
method is called:

ResultSet.HOLD_CURSORS_OVER_COMMIT: ResultSet object is not to be
closed.

ResultSet.CLOSE_CURSORS_AT_COMMIT: ResultSet object is to be closed.

Functional detail

This method returns the holding facility for valid ResultSet objects.

If holdable cursor is enabled in the cursor operation mode (HIRDB_CURSOR)
when a Connection instance is created, the method returns
ResultSet.HOLD_CURSORS_OVER_COMMIT; if holdable cursor is disabled, the
method returns ResultSet.CLOSE_CURSORS_AT_COMMIT.

For details about how to specify the cursor operation mode, see 18.2.2(2) User
properties.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bf) getSchemas()
Function

Returns the available schema names.

18. Type4 JDBC Driver

1730

Format

public ResultSet getSchemas() throws SQLException

Arguments

None.

Return value

ResultSet object

Functional detail

This method returns only the names of schemas that own tables. The following
table shows the format of the ResultSet that is returned.

Table 18-41: Format of ResultSet returned by getSchemas

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bg)getSchemaTerm()
Function

Returns a word recommended for schema.

Format

public String getSchemaTerm() throws SQLException

Arguments

None.

Return value

String object

Functional detail

This method always returns schema.

Column
No.

Type SQL type Column name Description

1 String VARCHAR TABLE_SCHEM Authorization identifier

2 String CHAR TABLE_CATALOG NULL value is always returned.

18. Type4 JDBC Driver

1731

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bh)getSearchStringEscape()
Function

Returns the character string used as the escape sequence for wildcard characters.

Format

public String getSearchStringEscape() throws SQLException

Arguments

None.

Return value

String object

Functional detail

This method always returns a backslash (\).

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bi) getSQLKeywords()
Function

Returns a list (delimited by a comma) of all database-specific SQL keywords that
are not SQL92 keywords.

Format

public String getSQLKeywords() throws SQLException

Arguments

None.

Return value

String object

Functional detail

18. Type4 JDBC Driver

1732

When a HiRDB server is used, this method returns the following list:

ABS,ACCESS,AFTER,ALIAS,AMOUNT,ANDNOT,ANSI,ARRAY,ASSIGN,

ASYNC,AUTO,BASE,BEFORE,BINARY,BIT_AND_TEST,BLOB,BOOLEA
N,

BREADTH,BTREE,BUFFER,BYTE,CALL,CHANGE,CLUSTER,COLUMNS
,

COMMENT,COMPLETION,CONDITION,CONFIGURATION,CONST,

CONSTRUCTOR,CONTIGUOUS,CURAID,CYCLE,DATA,DATABASE,DAY
S,

DBA,DEFER,DEMOTING,DEPTH,DEVICE,DICTIONARY,DIGITS,DIRECT,
DO,

DOUBLE_PRECISION,EACH,EDIT,ELSEIF,EQUALS,ESTIMATED,

EXCLUSIVE,EXIT,EXTERN,FILE,FIX,FIXED,FLAT,FORCE,FREE,FUNCTI
ON,

GENERAL,GET_JAVA_STORED_ROUTINE_SOURCE,HANDLER,HASH,
HELP,

HEX,HiRDB,HOURS,HUGE,IDENTIFIED,IF,IGNORE,INDEX,INOUT,

IS_USER_CONTAINED_IN_HDS_GROUP,LARGE,LEAVE,LENGTH,LESS,

LIMIT,LINES,LINK,LIST,LOCATOR,LOCK,LOCKS,LOGID,LOGNAME,LO
NG,

LOOP,MASTER,MAXUSAGES,MCHAR,MINUTES,MOD,MODE,MODIFY,

MONTHS,MOVE,MVARCHAR,NEW,NONE,NOWAIT,NULLABLE,NVARC
HAR,

OBJECT,OFF,OFFSET,OID,OLD,OPERATION,OPERATORS,OPTIMIZE,

OTHERS,OUT,OVER,OVERFLOW,OWN,PAGE,PARAMETERS,PARTITIO
NED,

PCTFREE,PENDANT,PIC,PICTURE,PREALLOCATED,PREFERRED,

PREORDER,PRIVATE,PROGRAM,PROTECTED,PURGE,RANDOM,RD,

RDAREA,RECOMPILE,RECOVERABLE,RECOVERY,RECURSIVE,REF,

REFERENCING,REGLIKE,RELEASE,RELEASING,RENAME,RESIGNAL,

RESTART,RETURN,RETURNS,ROLE,ROOT,ROUTINE,ROW,ROWID,

SAVEPOINT,SCALE,SCAN,SCHEMAS,SCOPE,SD,SEARCH,SECONDS,

SEGMENT,SENSITIVE,SEPARATE,SEPARATOR,SEQUENCE,SFLIKE,SH

18. Type4 JDBC Driver

1733

ARE,

SHORT,SIGNAL,SIMILAR,SLOCK,SMALLFLT,SPLIT,SQLCODE_TYPE,

SQLCOUNT,SQLDA,SQLERRM,SQLERRMC,SQLERRML,SQLEXCEPTIO
N,

SQLNAME,SQL_STANDARD,SQLWARN,SQLWARNING,START,STATIC,

STOP,STOPPING,STRUCTURE,SUBSTR,SUPPRESS,SYNONYM,TEST,TE
XT,

THERE,TIMESTAMP_FORMAT,TREAT,TRIGGER,TYPE,UAMT,UBINBUF,

UCHAR,UDATE,UHANT,UHDATE,UNDER,UNIFY_2000,UNIONALL,

UNLIMITED,UNLOCK,UNTIL,USE,UTIME,UTXTBUF,VARCHAR_FORM
AT,

VARIABLE,VIRTUAL,VISIBLE,VOLATILE,VOLUME,VOLUMES,WAIT,

WHILE,WITHOUT,XLIKE,XLOCK,YEARS

When an XDM/RD E2 server is used, this method returns the following list:

ABS,ANDNOT,ARRAY,ASSIGN,AUDIT,BINARY,BLOB,BOOLEAN,CALL,

CARDINALITY,CHANGE,CLOB,CLUSTER,COMMENT,COMPRESSED,C
ORR,

COUNT,COVAR_POP,COVAR_SAMP,CUBE,CUME_DIST,CURRENT_ROL
E,

DATA,DAYS,DBA,DENSE_RANK,DIGITS,DO,EACH,ELSEIF,EVERY,

EXCLUSIVE,FALSE,FILTER,FIX,FLAT,FORCE,FUNCTION,GROUPING,H
EX,

HOURS,IDENTIFIED,IF,INDEX,INOUT,ITERATE,LABEL,LARGE,LEAVE,

LENGTH,LIMIT,LIST,LOCK,LONG,LOOP,MCHAR,MICROSECOND,

MICROSECONDS,MINUTES,MOD,MODE,MONTHS,MVARCHAR,NEW,

NONLOCAL,NOWAIT,NVARCHAR,OLD,OPTIMIZE,OUT,OVER,OVERLA
Y,

OWN,PARTITION,PCTFREE,PERCENT_RANK,PERCENTILE_CONT,

PERCENTILE_DISC,PRIVATE,PROGRAM,PROTECTED,PURGE,RANGE,

RANK,RDAREA,RDNODE,RECURSIVE,REFERENCING,REGR_AVGX,

REGR_AVGY,REGR_COUNT,REGR_INTERCEPT,REGR_R2,REGR_SLOP
E,

18. Type4 JDBC Driver

1734

REGR_SXX,REGR_SXY,REGR_SYY,RELEASE,REPEAT,RESERVED,RET
URN,

RETURNS,ROLLUP,ROUTINE,ROW,ROW_NUMBER,ROWID,SECONDS,

SHARE,SIGNAL,SMALLFLT,SPECIFIC,SQLCOUNT,SQLDA,SQLERRM,

SQLERRMC,SQLERRML,SQLNAME,SQLWARN,STDDEV_POP,

STDDEV_SAMP,STOPPING,SUBSTR,TIMESTAMP_FORMAT,TRIGGER,T
YPE,

UNBOUNDED,UNDER,UNTIL,USER_AUDIT,USER_GROUP,USER_LEVE
L,

VAR_POP,VAR_SAMP,VARCHAR_FORMAT,WAIT,WHILE,WINDOW,WIT
HIN,

WITHOUT,YEARS

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bj) getSQLStateType ()
Function

Returns a value indicating whether SQLSTATE returned by
SQLException.getSQLState is an X/Open SQL CLI or SQL99.

Format

public int getSQLStateType() throws SQLException

Arguments

None.

Return value

int type:

SQLSTATE type, which is sqlStateXOpen or sqlStateSQL99

Functional detail

• For a HiRDB server

If you specified YES in the PDSTANDARDSQLSTATE client environment
variable (or you omitted the PDSTANDARDSQLSTATE client environment
variable and you specified Y in the pd_standard_sqlstate system
common definition), the method sets sqlStateSQL99 as the return value

18. Type4 JDBC Driver

1735

because the value for SQL2003 is set in SQLSTATE.

For other than the above, the method sets 0 as the return value because an
HiRDB-specific value is set in SQLSTATE.

• For an XDM/RD E2 server

The method sets sqlStateSQL99 as the return value.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bk)getStringFunctions()
Function

Returns a list of string functions (delimited by a comma).

Format

public String getStringFunctions() throws SQLException

Arguments

None.

Return value

String object

Functional detail

When a HiRDB server is used, this method returns the following list:

ASCII,CHAR,INSERT,LCASE,LEFT,LENGTH,LOCATE,LTRIM,REPLACE,RI
GHT,RTRIM,SUBSTRING,UCASE

When an XDM/RD E2 server is used, this method returns the following list:

LCASE,LENGTH,LOCATE,LTRIM,POSITION,REPLACE,RTRIM,SUBSTRING,
UCASE

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bl) getSuperTables (String catalog,String schemaPattern,String
tableNamePattern)
Function

Returns a description of table hierarchies defined in a specified schema.

18. Type4 JDBC Driver

1736

Format

public ResultSet getSuperTables(String catalog,String
schemaPattern,String tableNamePattern) throws SQLException

Arguments

String catalog

Catalog name

String schemaPattern

Schema name pattern

String tableNamePattern

Table name pattern

Return value

ResultSet object

Functional detail

This method always returns a ResultSet in which the number of rows resulting
from the retrieval is 0 because HiRDB and XDM/RD E2 do not support table
hierarchies. The method does not perform a validity check on any of the
arguments. The following table shows the format of the ResultSet that is
returned:

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bm)getSuperTypes (String catalog,String schemaPattern,String
typeNamePattern)
Function

Returns a description of user-defined-type hierarchies that are defined in a

Column
No.

Type SQL type
(Types)

Column name Description

1 String CHAR TABLE_CAT Catalog name

2 String VARCHAR TABLE_SCHEM Authorization identifier

3 String VARCHAR TABLE_NAME Type name

4 String VARCHAR SUPERTABLE_NAME Super type name

18. Type4 JDBC Driver

1737

specified schema.

Format

public ResultSet getSuperTypes(String catalog,String
schemaPattern,String typeNamePattern) throws SQLException

Arguments

String catalog

Catalog name

String schemaPattern

Schema name pattern

String typeNamePattern

User-defined type name pattern

Return value

ResultSet object

Functional detail

This method always returns a ResultSet in which the number of rows resulting
from the retrieval is 0 because the Type4 JDBC driver does not support
user-defined types. The method does not perform a validity check on any of the
arguments. The following table shows the format of the ResultSet that is
returned:

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

Column
No.

Type SQL type
(Types)

Column name Description

1 String CHAR TYPE_CAT Catalog name of the user-defined type

2 String VARCHAR TYPE_SCHEM Schema name of the user-defined type

3 String VARCHAR TYPE_NAME Type name of the user-defined type

4 String CHAR SUPERTYPE_CAT Catalog name of the direct super type

5 String VARCHAR SUPERTYPE_SCHEM Schema name of the direct super type

6 String VARCHAR SUPERTYPE_NAME Type name of the direct super type

18. Type4 JDBC Driver

1738

(bn)getSystemFunctions()
Function

Returns the available system functions.

Format

public String getSystemFunctions() throws SQLException

Arguments

None.

Return value

String object

Functional detail

This method always returns USER.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bo)getTablePrivileges (String catalog,String schemaPattern,String
tableNamePattern)
Function

Returns information about table access privileges.

Format

public ResultSet getTablePrivileges(String catalog, String
schemaPattern, String tableNamePattern)throws SQLException

Arguments

String catalog

Catalog name (this driver ignores this argument)

String schemaPattern

Schema name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a schema name is not used to narrow down the
search.

String tableNamePattern

18. Type4 JDBC Driver

1739

Table name pattern (case sensitive). If null or a character string with a
length of 0 is specified, a table name is not used to narrow down the search.

Return value

ResultSet object

Functional detail

This method returns information about the access privileges for tables. The
following table shows the format of the ResultSet that is returned:

Column
No.

Type SQL type
(Types)

Column name Sorting# Description

1 String CHAR TABLE_CAT -- Catalog name (NULL value
is always returned)

2 String VARCHAR TABLE_SCHEM 1 (ascending
order)

Authorization identifier

3 String VARCHAR TABLE_NAME 2 (ascending
order)

Table name

4 String VARCHAR GRANTOR -- User who grants access
privileges

5 String VARCHAR GRANTEE -- User who receives access
privileges

6 String VARCHAR PRIVILEGE 3 (ascending
order)

Names of granted access
privileges (multiple access
privilege names are
separated by a comma):
SELECT: SELECT privilege
INSERT: INSERT privilege
UPDATE: UPDATE privilege
DELETE: DELETE privilege

18. Type4 JDBC Driver

1740

Legend:

--: Not applicable

#

Priority level of the sort key column

Exceptions

If one of the following is true, the JDBC driver throws an SQLException:

• close() was executed on the Connection object before this method
executed.

• A database access error occurred.

(bp)getTables(String catalog, String schemaPattern, String
tableNamePattern, String[] types)
Function

Returns information about tables.

Format

public ResultSet getTables(String catalog, String
schemaPattern, String tableNamePattern, String[] types)
throws SQLException

7 String VARCHAR IS_GRANTABLE -- Whether a user who has
received access privileges
can grant access privileges
to other users:
YES: User can grant
privileges to other users.
NO: User cannot grant
privileges to other users.
null: Whether the user can
grant privileges to other
users is unknown.
In both HiRDB and XDM/
RD E2, null will not be
returned. If multiple access
privileges are set in
PRIVILEGE and at least one
of the privileges can be
granted to other users, the
method sets YES.

Column
No.

Type SQL type
(Types)

Column name Sorting# Description

18. Type4 JDBC Driver

1741

Arguments

String catalog

Not used

String schemaPattern

Schema name pattern (case sensitive)

String tableNamePattern

Table name pattern (case sensitive)

String[] types

List of table types (case sensitive). You can specify any table types that are
returned by the getTableTypes() method. If null is specified, the
method assumes that TABLE, VIEW, and SYSTEM TABLE are all specified.

Return value

ResultSet object

Functional detail

This method returns information about tables. The following table shows the
format of the ResultSet that is returned.

Table 18-42: Format of ResultSet returned by getTables

Col
umn
No.

Type SQL type Column name Description

1 String CHAR TABLE_CAT NULL value is always returned

2 String VARCHAR TABLE_SCHEM Authorization identifier

3 String VARCHAR TABLE_NAME Table name

4 String VARCHAR TABLE_TYPE Table type:
• TABLE: Base table (if BASE TABLE

is specified in the DABroker for
Java-compatible mode, the
method assumes that TABLE is
specified)

• VIEW: View table
• SYSTEM TABLE: Data dictionary

table

5 String VARCHAR REMARKS Comment

6 String CHAR TYPE_CAT NULL value is always returned

18. Type4 JDBC Driver

1742

Exceptions

The JDBC driver throws an SQLException in the following cases:

• close() was executed on the Connection object before this method
executed.

• At lease one element in the String[] type argument is null.

• At least one element in the String[] type argument is not one of the
following character strings:

TABLE, VIEW, SYSTEM TABLE, BASE TABLE

(bq)getTableTypes ()
Function

Returns the available table types.

Format

public ResultSet getTableTypes()throws SQLException

Arguments

None.

Return value

ResultSet object

Functional detail

This method returns the available table types. The following table shows the
format of the ResultSet that is returned:

7 String CHAR TYPE_SCHEM NULL value is always returned

8 String CHAR TYPE_NAME NULL value is always returned

9 String CHAR SELF_REFERENCING_CO
L_NAME

NULL value is always returned

10 String CHAR REF_GENERATION NULL value is always returned

Col
umn
No.

Type SQL type Column name Description

18. Type4 JDBC Driver

1743

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(br) getTimeDateFunctions()
Function

Returns a list of the available time and date functions (delimited by a comma).

Format

public String getTimeDateFunctions() throws SQLException

Arguments

None.

Return value

String object

Functional detail

When a HiRDB server is used, this method returns the following list:

ADD_INTERVAL,CENTURY,CHARACTER,CURRENT_DATE,CURRENT_
TIME,CURRENT_TIMESTAMP,

DATE,DATE_TIME,DAYNAME,DAYOFWEEK,DAYOFYEAR,DAY,DAYS,I
NTERVAL_DATETIMES,

HALF,HOUR,LAST_DAY,MIDNIGHTSECONDS,MINUTE,MONTH,MONT
HNAME,MONTHS_BETWEEN,

NEXT_DAY,QUARTER,ROUNDMONTH,SECOND,TIME,TIMESTAMP,TI
MESTAMP_FORMAT,TRUNCYEAR,

VARCHAR_FORMAT,WEEK,WEEKOFMONTH,YEAR,YEARS_BETWEEN

When an XDM/RD E2 server is used, this method returns the following list:

CURDATE,CURRENT_DATE,CURTIME,CURRENT_TIME,CURRENT_TI

Column
No.

Type SQL type Column name Description

1 String VARCHAR TABLE_TYPE Table type:
• TABLE: Base table
• VIEW: View table
• SYSTEM TABLE: Data dictionary table

18. Type4 JDBC Driver

1744

MESTAMP,HOUR,MINUTE,MONTH,NOW,SECOND,YEAR

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bs)getTypeInfo()
Function

Returns information about the default SQL types.

Format

public ResultSet getTypeInfo() throws SQLException

Arguments

None.

Return value

ResultSet object

Functional detail

This method returns information about the default SQL types. The following table
shows the format of the ResultSet that is returned.

Table 18-43: Format of ResultSet returned by getTypeInfo

Co
lu
m
n

No
.

Type SQL type Column name Description

1 String VARCHAR TYPE_NAME Type name

2 short SMALLINT DATA_TYPE SQL data type of java.sql.Types

3 int INTEGER PRECISION Maximum precision

4 String VARCHAR LITERAL_PREFIX Prefix used to quote literals

5 String VARCHAR LITERAL_SUFFIX Suffix used to quote literals

6 String VARCHAR CREATE_PARAMS Parameter used to create types

18. Type4 JDBC Driver

1745

7 short SMALLINT NULLABLE Whether the NULL value can be used for
this type:
• typeNoNulls: NULL value cannot be

used.
• typeNullable: NULL value can be

used.
• typeNullableUnknown: Whether

the NULL value can be used is
unknown.

The method always returns
typeNullableUnknown.

8 boolean BIT CASE_SENSITIVE Whether the value is case sensitive:
• true: Character string data types
• false: Other data types

9 short SMALLINT SEARCHABLE Whether WHERE can be used for this
type:
• typePredNone: Cannot be used.
• typePredChar: Only WHERE..LIKE

can be used.
• typePredBasic: Values other than

WHERE..LIKE can be used.
• typeSearchable: All WHERE.. can

be used
The method always returns
typeSearchable.

10 boolean BIT UNSIGNED_ATTRIBUTE Whether the attribute is unsigned.
The method returns false for numeric
data (because it is signed) and true for
other data types (because they are
unsigned).

11 boolean BIT FIXED_PREC_SCALE Whether this can be a currency value.
The method always returns false.

12 boolean BIT AUTO_INCREMENT Whether this can be used as an
automatic increment value.
The method always returns false.

13 String VARCHAR LOCAL_TYPE_NAME The type name's localized version
The method returns the same value as
the type name.

Co
lu
m
n

No
.

Type SQL type Column name Description

18. Type4 JDBC Driver

1746

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bt) getUDTs (String catalog,String schemaPattern,String
typeNamePattern,int[] types)
Function

Returns information about the user-defined types.

Format

public ResultSet getUDTs(String catalog, String
schemaPattern, String typeNamePattern, int[] types) throws
SQLException

Arguments

String catalog

Catalog name

String schemaPattern

Schema name pattern

String typeNamePattern

Type name pattern

int[] types

List of user-defined types

14 short SMALLINT MINIMUM_SCALE Supported minimum scale

15 short SMALLINT MAXIMUM_SCALE Supported maximum scale

16 int INTEGER SQL_DATA_TYPE NULL value is always returned

17 int INTEGER SQL_DATETIME_SUB NULL value is always returned

18 int INTEGER NUM_PREC_RADIX 2 or 10 for numeric data, 0 for all other
data.

Co
lu
m
n

No
.

Type SQL type Column name Description

18. Type4 JDBC Driver

1747

Return value

ResultSet object

Functional detail

This method always returns a ResultSet in which the number of rows resulting
from the retrieval is 0 because the Type4 JDBC driver does not support
user-defined types. The method does not perform a validity check on any of the
arguments. The following table shows the format of the ResultSet that is
returned:

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bu)getURL()
Function

Returns the URL used for the connection to HiRDB or XDM/RD E2. If there is
no URL, the method returns NULL.

Format

public String getURL() throws SQLException

Arguments

None.

Column
No.

Type SQL type
(Types)

Column name Description

1 String CHAR TYPE_CAT Catalog name of the user-defined type

2 String VARCHAR TYPE_SCHEM Schema name of the user-defined type

3 String VARCHAR TYPE_NAME Type name of the user-defined type

4 String VARCHAR CLASS_NAME Java class name

5 int INTEGER DATA_TYPE Type value defined by java.sql.Types

6 String VARCHAR REMARKS Description of the type

7 short SMALLINT BASE_TYPE Type code of DISTINCT-type source or type code
of an implementation of
SELF_REFERENCING_COLUMN user-defined
reference type

18. Type4 JDBC Driver

1748

Return value

String object

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bv)getUserName()
Function

Returns the user name used to connect to HiRDB or XDM/RD E2.

Format

public String getUserName() throws SQLException

Arguments

None.

Return value

String object

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bw)getVersionColumns (String catalog,String schema,String table)
Function

Returns information about the table columns that are updated automatically when
rows in the table are updated.

Format

public ResultSet getVersionColumns(String catalog,String
schema,String table) throws SQLException

Arguments

String catalog

Catalog name

String schema

Schema name

18. Type4 JDBC Driver

1749

String table

Table name

Return value

ResultSet object

Functional detail

This method always returns a ResultSet in which the number of rows resulting
from the retrieval is 0 because HiRDB and XDM/RD E2 do not support a function
for updating columns automatically. The method does not perform a validity
check on any of the arguments. The following table shows the format of the
ResultSet that is returned:

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bx) insertsAreDetected(int type)
Function

Returns a value indicating whether insertion of a visible row can be detected by
calling the ResultSet.rowInserted() method.

Format

public boolean insertsAreDetected(int type) throws
SQLException

Column
No.

Type SQL type
(Types)

Column name Description

1 short SMALLINT SCOPE Not used

2 String VARCHAR COLUMN_NAME Column name

3 int INTEGER DATA_TYPE SQL type

4 String VARCHAR TYPE_NAME Data source-dependent type name

5 int INTEGER COLUMN_SIZE Data precision

6 int INTEGER BUFFER_LENGTH Data length in bytes

7 short SMALLINT DECIMAL_DIGITS Scale

8 short SMALLINT PSEUDO_COLUMN Whether this is a pseudo column

18. Type4 JDBC Driver

1750

Arguments

int type

One of the following ResultSet types:

• ResultSet.TYPE_FORWARD_ONLY

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

Return value

boolean type:

true: Changes are detected by the specified type of result set.

false: Changes are not detected by the specified type of result set.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(by) isCatalogAtStart()
Function

Returns a value indicating whether a catalog appears at the leading (or trailing)
end of a fully qualified table name.

Format

public boolean isCatalogAtStart() throws SQLException

Arguments

None.

Return value

boolean type:

true: The catalog name appears at the beginning of a fully qualified table
name.

false: The catalog name does not appear at the beginning of a fully qualified
table name.

Functional detail

18. Type4 JDBC Driver

1751

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(bz) isReadOnly()
Function

Returns a value indicating whether the database is in read-only mode.

Format

public boolean isReadOnly() throws SQLException

Arguments

None.

Return value

boolean type:

true: The database is in read-only mode.

false: The database is not in read-only mode.

Functional detail

This method always returns false.

Note
When you are using an XDM/RD E2 server and have used the Database
Connection Server start control statement or an operation command to set the
database access mode to READ, the database is placed in read-only mode.
However, the JDBC driver assumes that the access mode is UPDATE because
it does not acquire the access mode information from the server.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ca) locatorsUpdateCopy ()
Function

Indicates whether a change was made to a LOB copy or directly to the LOB.

Format

18. Type4 JDBC Driver

1752

public boolean locatorsUpdateCopy() throws SQLException

Arguments

None.

Return value

boolean type:

true : Change was made to a LOB copy.

false: Change was made directly to the LOB.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cb)nullPlusNonNullIsNull()
Function

Returns a value indicating whether a join of a NULL value and a non-NULL value
is treated as being NULL.

Format

public boolean nullPlusNonNullIsNull() throws SQLException

Arguments

None.

Return value

boolean type:

true: A join of a NULL and a non-NULL values is treated as NULL.

false: A join of a NULL and a non-NULL values is not treated as NULL.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

18. Type4 JDBC Driver

1753

(cc) nullsAreSortedAtEnd()
Function

Returns a value indicating whether the NULL value is sorted during termination
processing (regardless of the sort order).

Format

public boolean nullsAreSortedAtEnd() throws SQLException

Arguments

None.

Return value

boolean type:

true: Sorted

false: Not sorted

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cd)nullsAreSortedAtStart()
Function

Returns a value indicating whether the NULL value is sorted during startup
processing (regardless of the sort order).

Format

public boolean nullsAreSortedAtStart() throws SQLException

Arguments

None.

Return value

boolean type:

true: Sorted

18. Type4 JDBC Driver

1754

false: Not sorted

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ce) nullsAreSortedHigh()
Function

Returns a value indicating whether the NULL value is sorted in ascending order.

Format

public boolean nullsAreSortedHigh() throws SQLException

Arguments

None.

Return value

boolean type:

true: Sorted

false: Not sorted

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cf) nullsAreSortedLow()
Function

Returns a value indicating whether the NULL value is sorted in descending order.

Format

public boolean nullsAreSortedLow() throws SQLException

Arguments

18. Type4 JDBC Driver

1755

None.

Return value

boolean type:

true: Sorted

false: Not sorted

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cg)othersDeletesAreVisible(int type)
Function

Returns a value indicating whether a deletion performed externally is visible.

Format

public boolean othersDeletesAreVisible(int type) throws
SQLException

Arguments

int type

One of the following ResultSet types:

• ResultSet.TYPE_FORWARD_ONLY

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

Return value

boolean type:

true: Visible

false: Not visible

Functional detail

This method always returns false.

Exceptions

18. Type4 JDBC Driver

1756

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ch)othersInsertsAreVisible(int type)
Function

Returns a value indicating whether an insertion performed externally is visible.

Format

public boolean othersInsertsAreVisible(int type) throws
SQLException

Arguments

int type:

One of the following ResultSet types:

• ResultSet.TYPE_FORWARD_ONLY

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

Return value

boolean type:

true: Visible

false: Not visible

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ci) othersUpdatesAreVisible(int type)
Function

Returns a value indicating whether a deletion performed externally is visible.

Format

public boolean othersUpdatesAreVisible(int type) throws
SQLException

18. Type4 JDBC Driver

1757

Arguments

int type

One of the following ResultSet types:

• ResultSet.TYPE_FORWARD_ONLY

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

Return value

boolean type:

true: Visible

false: Not visible

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cj) ownDeletesAreVisible(int type)
Function

Returns a value indicating whether a deletion of a result set itself is visible.

Format

public boolean ownDeletesAreVisible(int type) throws
SQLException

Arguments

int type

One of the following ResultSet types:

• ResultSet.TYPE_FORWARD_ONLY

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

Return value

boolean type:

18. Type4 JDBC Driver

1758

true: Visible

false: Not visible

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ck) ownInsertsAreVisible(int type)
Function

Returns a value indicating whether an insertion of a result set itself is visible.

Format

public boolean ownInsertsAreVisible(int type) throws
SQLException

Arguments

int type

One of the following ResultSet types:

• ResultSet.TYPE_FORWARD_ONLY

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

Return value

boolean type:

true: Visible

false: Not visible

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cl) ownUpdatesAreVisible(int type)
Function

18. Type4 JDBC Driver

1759

Returns a value indicating whether an updating of a result set itself is visible.

Format

public boolean ownUpdatesAreVisible(int type) throws
SQLException

Arguments

int type

One of the following ResultSet types:

• ResultSet.TYPE_FORWARD_ONLY

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

Return value

boolean type:

true: Visible

false: Not visible

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cm)storesLowerCaseIdentifiers()
Function

Returns a value indicating whether an SQL identifier containing upper-case and
lower-case letters that is not enclosed in quotation marks is processed as being not
case sensitive, and then the results are stored in all lower-case letters.

Format

public boolean storesLowerCaseIdentifiers() throws
SQLException

Arguments

None.

18. Type4 JDBC Driver

1760

Return value

boolean type:

true: Such SQL identifiers are processed as being not case sensitive and are
stored in all lower-case letters.

false: Such SQL identifiers are stored as being case sensitive.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cn)storesLowerCaseQuotedIdentifiers()
Function

Returns a value indicating whether an SQL identifier containing upper-case and
lower-case letters that is enclosed in quotation marks is processed as being not
case sensitive, and then the results are stored in all lower-case letters.

Format

public boolean storesLowerCaseQuotedIdentifiers() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Such SQL identifiers are processed as being not case sensitive and are
stored in all lower-case letters.

false: Other than the above.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

18. Type4 JDBC Driver

1761

(co)storesMixedCaseIdentifiers()
Function

Returns a value indicating whether an SQL identifier containing upper-case and
lower-case letters that is not enclosed in quotation marks is processed as being not
case sensitive, and then the results are stored in upper-case and lower-case letters.

Format

public boolean storesMixedCaseIdentifiers() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Such SQL identifiers are processed as being not case sensitive and are
stored in upper-case and lower-case letters.

false: Other than the above.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cp)storesMixedCaseQuotedIdentifiers()
Function

Returns a value indicating whether an SQL identifier containing upper-case and
lower-case letters that is enclosed in quotation marks is processed as being not
case sensitive, and then the results are stored in upper-case and lower-case letters.

Format

public boolean storesMixedCaseQuotedIdentifiers() throws
SQLException

Arguments

None.

18. Type4 JDBC Driver

1762

Return value

boolean type:

true: Such SQL identifiers are processed as being not case sensitive and are
stored in upper-case and lower-case letters.

false: Other than the above.

Functional detail

This method always returns true.

Note
1. Such SQL identifiers are actually processed as being case sensitive, but

the method returns true because the results are stored as upper-case
and lower-case letters. You can use the
supportsMixedCaseQuotedIdentifiers method to determine
whether such SQL identifiers are processed as being case sensitive.

2. When you use an XDM/RD E2 server and you specify YES (the default
is NO) in the DELIMITED ID UPPER operand in the RD environment
definition for XDM/RD E2, the method stores the SQL identifiers in
upper-case letters. However, the method assumes that NO is specified
because the JDBC driver does not acquire information about the
DELIMITED ID UPPER operand from the server.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cq)storesUpperCaseIdentifiers()
Function

Returns a value indicating whether an SQL identifier containing upper-case and
lower-case letters that is not enclosed in quotation marks is processed as being not
case sensitive, and then the results are stored in all upper-case letters.

Format

public boolean storesUpperCaseIdentifiers() throws
SQLException

Arguments

None.

Return value

18. Type4 JDBC Driver

1763

boolean type:

true: Such SQL identifiers are processed as being not case sensitive and are
stored in all upper-case letters.

false: Other than the above.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cr) storesUpperCaseQuotedIdentifiers()
Function

Returns a value indicating whether an SQL identifier containing upper-case and
lower-case letters that is enclosed in quotation marks is processed as being not
case sensitive, and then the results are stored in all upper-case letters.

Format

public boolean storesUpperCaseQuotedIdentifiers() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Such SQL identifiers are processed as being not case sensitive and are
stored in all upper-case letters.

false: Other than the above.

Functional detail

This method always returns false.

Note
When you are using an XDM/RD E2 server and you specify YES (the default
is NO) in the DELIMITED ID UPPER operand in the RD environment
definition for XDM/RD E2, the method stores the SQL identifiers in
upper-case letters. However, the JDBC driver assumes that NO (the default
value) is specified because the driver cannot acquire information about the

18. Type4 JDBC Driver

1764

DELIMITED ID UPPER operand.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cs) supportsAlterTableWithAddColumn()
Function

Returns a value indicating whether ALTER TABLE with added columns is
supported.

Format

public boolean supportsAlterTableWithAddColumn() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ct) supportsAlterTableWithDropColumn()
Function

Returns a value indicating whether ALTER TABLE with dropped columns is
supported.

Format

public boolean supportsAlterTableWithDropColumn() throws
SQLException

Arguments

18. Type4 JDBC Driver

1765

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cu)supportsANSI92EntryLevelSQL()
Function

Returns a value indicating whether the ANSI92 entry-level SQL grammar is
supported.

Format

public boolean supportsANSI92EntryLevelSQL() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cv) supportsANSI92FullSQL()
Function

18. Type4 JDBC Driver

1766

Returns a value indicating whether the ANSI92 full-level SQL grammar is
supported.

Format

public boolean supportsANSI92FullSQL() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cw)supportsANSI92IntermediateSQL()
Function

Returns a value indicating whether the ANSI92 intermediate-level SQL grammar
is supported.

Format

public boolean supportsANSI92IntermediateSQL() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

18. Type4 JDBC Driver

1767

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cx) supportsBatchUpdates()
Function

Returns a value indicating whether batch updating is supported.

Format

public boolean supportsBatchUpdates() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cy) supportsCatalogsInDataManipulation()
Function

Returns a value indicating whether catalog names can be used in data
manipulation statements.

Format

public boolean supportsCatalogsInDataManipulation() throws
SQLException

Arguments

None.

18. Type4 JDBC Driver

1768

Return value

boolean type:

true: Catalog names can be used.

false: Catalog names cannot be used.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(cz) supportsCatalogsInIndexDefinitions()
Function

Returns a value indicating whether catalog names can be used in index definition
statements.

Format

public boolean supportsCatalogsInIndexDefinitions() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Catalog names can be used.

false: Catalog names cannot be used.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(da)supportsCatalogsInPrivilegeDefinitions()
Function

Returns a value indicating whether catalog names can be used in privilege

18. Type4 JDBC Driver

1769

definition statements.

Format

public boolean supportsCatalogsInPrivilegeDefinitions()
throws SQLException

Arguments

None.

Return value

boolean type:

true: Catalog names can be used.

false: Catalog names cannot be used.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(db)supportsCatalogsInProcedureCalls()
Function

Returns a value indicating whether catalog names can be used in procedure call
statements.

Format

public boolean supportsCatalogsInProcedureCalls() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Catalog names can be used.

false: Catalog names cannot be used.

Functional detail

18. Type4 JDBC Driver

1770

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dc)supportsCatalogsInTableDefinitions()
Function

Returns a value indicating whether catalog names can be used in table definition
statements.

Format

public boolean supportsCatalogsInTableDefinitions() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Catalog names can be used.

false: Catalog names cannot be used.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dd)supportsColumnAliasing()
Function

Returns a value indicating whether aliases are supported for columns.

Format

public boolean supportsColumnAliasing() throws SQLException

Arguments

None.

18. Type4 JDBC Driver

1771

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(de)supportsConvert()
Function

Returns a value indicating whether the CONVERT function is supported for SQL
types.

Format

public boolean supportsConvert() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(df) supportsConvert(int fromType, int toType)
Function

Returns a value indicating whether the CONVERT function is supported for a
specified combination of SQL types.

18. Type4 JDBC Driver

1772

Format

public boolean supportsConvert(int fromType, int toType)
throws SQLException

Arguments

int fromType

Conversion source type. This is a type code of the java.sql.Types class.

int toType

Conversion target type. This is a type code of the java.sql.Types class.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method returns a value that depends on the combination of the conversion
source type and the conversion target type. The following tables show the return
value depending on the combination of the conversion source and target types.

Table 18-44: Return value depending on the combination of the conversion
source and target types (part 1)

Conversi
on source

Type of
java.sql.T

ypes

Conversion target
Type of java.sql.Types

B
I
T

TIN
YIN
T

SMA
LLIN

T

INT
EG
ER

BI
GI
NT

FL
O
A
T

R
E
A
L

DO
UB
LE

NU
ME
RIC

DE
CIM
AL

C
H
A
R

VAR
CHA

R

LONGV
ARCHA

R

BIT 1 1 1 1 1 1 1 1 1 1 1 1 1

TINYINT 1 1 1 1 1 1 1 1 1 1 1 1 1

SMALLIN
T

1 1 1 1 1 1 1 1 1 1 1 1 1

INTEGER 1 1 1 1 1 1 1 1 1 1 1 1 1

BIGINT 1 1 1 1 1 1 1 1 1 1 1 1 1

18. Type4 JDBC Driver

1773

FLOAT 1 1 1 1 1 1 1 1 1 1 1 1 1

REAL 1 1 1 1 1 1 1 1 1 1 1 1 1

DOUBLE 1 1 1 1 1 1 1 1 1 1 1 1 1

NUMERIC 1 1 1 1 1 1 1 1 1 1 1 1 1

DECIMAL 1 1 1 1 1 1 1 1 1 1 1 1 1

CHAR 1 1 1 1 1 1 1 1 1 1 1 1 1

VARCHA
R

1 1 1 1 1 1 1 1 1 1 1 1 1

LONGVA
RCHAR

1 1 1 1 1 1 1 1 1 1 1 1 1

DATE 0 0 0 0 0 0 0 0 0 0 1 1 1

TIME 0 0 0 0 0 0 0 0 0 0 1 1 1

TIMESTA
MP

0 0 0 0 0 0 0 0 0 0 1 1 1

BINARY 0 0 0 0 0 0 0 0 0 0 0 0 0

VARBINA
RY

0 0 0 0 0 0 0 0 0 0 0 0 0

LONGVA
RBINARY

0 0 0 0 0 0 0 0 0 0 0 0 0

JAVA_OBJ
ECT

0 0 0 0 0 0 0 0 0 0 0 0 0

STRUCT 0 0 0 0 0 0 0 0 0 0 0 0 0

ARRAY 0 0 0 0 0 0 0 0 0 0 0 0 0

BLOB 0 0 0 0 0 0 0 0 0 0 0 0 0

CLOB 0 0 0 0 0 0 0 0 0 0 0 0 0

Conversi
on source

Type of
java.sql.T

ypes

Conversion target
Type of java.sql.Types

B
I
T

TIN
YIN
T

SMA
LLIN

T

INT
EG
ER

BI
GI
NT

FL
O
A
T

R
E
A
L

DO
UB
LE

NU
ME
RIC

DE
CIM
AL

C
H
A
R

VAR
CHA

R

LONGV
ARCHA

R

18. Type4 JDBC Driver

1774

Legend:

0: false

1: true

Table 18-45: Return value depending on the combination of the conversion
source and target types (part 2)

REF 0 0 0 0 0 0 0 0 0 0 0 0 0

Conversi
on source

Type of
java.sql.T

ypes

Conversion target
Type of java.sql.Types

D
A
T
E

T
I

M
E

TIME
STAM

P

BI
NA
RY

VARB
INAR

Y

LONGVA
RBINARY

JAVA_
OBJEC

T

ST
RU
CT

AR
RA
Y

B
L
O
B

C
L
O
B

R
E
F

BIT 0 0 0 0 0 0 0 0 0 0 0 0

TINYINT 0 0 0 0 0 0 0 0 0 0 0 0

SMALLIN
T

0 0 0 0 0 0 0 0 0 0 0 0

INTEGER 0 0 0 0 0 0 0 0 0 0 0 0

BIGINT 0 0 0 0 0 0 0 0 0 0 0 0

FLOAT 0 0 0 0 0 0 0 0 0 0 0 0

REAL 0 0 0 0 0 0 0 0 0 0 0 0

DOUBLE 0 0 0 0 0 0 0 0 0 0 0 0

NUMERIC 0 0 0 0 0 0 0 0 0 0 0 0

DECIMAL 0 0 0 0 0 0 0 0 0 0 0 0

Conversi
on source

Type of
java.sql.T

ypes

Conversion target
Type of java.sql.Types

B
I
T

TIN
YIN
T

SMA
LLIN

T

INT
EG
ER

BI
GI
NT

FL
O
A
T

R
E
A
L

DO
UB
LE

NU
ME
RIC

DE
CIM
AL

C
H
A
R

VAR
CHA

R

LONGV
ARCHA

R

18. Type4 JDBC Driver

1775

Legend:

0: false

1: true

Exceptions

CHAR 1 1 1 0 0 0 0 0 0 0 0 0

VARCHAR 1 1 1 0 0 0 0 0 0 0 0 0

LONGVAR
CHAR

1 1 1 0 0 0 0 0 0 0 0 0

DATE 1 0 1 0 0 0 0 0 0 0 0 0

TIME 0 1 0 0 0 0 0 0 0 0 0 0

TIMESTA
MP

1 0 1 0 0 0 0 0 0 0 0 0

BINARY 0 0 0 1 1 1 0 0 0 0 0 0

VARBINA
RY

0 0 0 1 1 1 0 0 0 0 0 0

LONGVAR
BINARY

0 0 0 1 1 1 0 0 0 0 0 0

JAVA_OBJ
ECT

0 0 0 0 0 0 0 0 0 0 0 0

STRUCT 0 0 0 0 0 0 0 0 0 0 0 0

ARRAY 0 0 0 0 0 0 0 0 0 0 0 0

BLOB 0 0 0 0 0 0 0 0 0 0 0 0

CLOB 0 0 0 0 0 0 0 0 0 0 0 0

REF 0 0 0 0 0 0 0 0 0 0 0 0

Conversi
on source

Type of
java.sql.T

ypes

Conversion target
Type of java.sql.Types

D
A
T
E

T
I

M
E

TIME
STAM

P

BI
NA
RY

VARB
INAR

Y

LONGVA
RBINARY

JAVA_
OBJEC

T

ST
RU
CT

AR
RA
Y

B
L
O
B

C
L
O
B

R
E
F

18. Type4 JDBC Driver

1776

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dg)supportsCoreSQLGrammar()
Function

Returns a value indicating whether the ODBC Core SQL grammar is supported.

Format

public boolean supportsCoreSQLGrammar() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dh)supportsCorrelatedSubqueries()
Function

Returns a value indicating whether correlated subqueries are supported.

Format

public boolean supportsCorrelatedSubqueries() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

18. Type4 JDBC Driver

1777

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(di) supportsDataDefinitionAndDataManipulationTransactions()
Function

Returns a value indicating whether data definition statements and data
manipulation statements are both supported in transactions.

Format

public boolean
supportsDataDefinitionAndDataManipulationTransactions()
throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

When a HiRDB server is used, this method returns false.

When an XDM/RD E2 server is used, this method returns true.

Note
When you are using an XDM/RD E2 server, you can execute a data
definition statement before a transaction that executes a data manipulation
statement has been completed. In such a case, the data definition statement
forcibly commits the transaction.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

18. Type4 JDBC Driver

1778

(dj) supportsDataManipulationTransactionsOnly()
Function

Returns a value indicating whether only data manipulation statements are
supported in transactions.

Format

public boolean supportsDataManipulationTransactionsOnly()
throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dk)supportsDifferentTableCorrelationNames()
Function

Returns a value indicating whether the table names must be different from the
correlation names when table correlation names are supported.

Format

public boolean supportsDifferentTableCorrelationNames()
throws SQLException

Arguments

None.

Return value

boolean type:

18. Type4 JDBC Driver

1779

true: Must be different

false: May be the same

Functional detail

When a HiRDB server is used, this method returns false.

When an XDM/RD E2 server is used, this method returns true.

Note
When you are using an XDM/RD E2 server and you specify USE (the default
is NOUSE) in the RANGE VARIABLE operand in the RD environment
definition for XDM/RD E2, you can use the same correlation name as the
table name. However, this method assumes that NOUSE (the default value) is
specified and returns true because the JDBC driver has not acquired
information about the RANGE VARIABLE operand from the server. The JDBC
driver itself does not require table names to be different from the correlation
names.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dl) supportsExpressionsInOrderBy()
Function

Returns a value indicating whether expressions are supported in an ORDER BY list.

Format

public boolean supportsExpressionsInOrderBy() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

When a HiRDB server is used, this method returns false.

When an XDM/RD E2 server is used, this method returns true.

18. Type4 JDBC Driver

1780

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dm)supportsExtendedSQLGrammar()
Function

Returns a value indicating whether the ODBC Extended SQL grammar is
supported.

Format

public boolean supportsExtendedSQLGrammar() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dn)supportsFullOuterJoins()
Function

Returns a value indicating whether full outer joins are supported.

Format

public boolean supportsFullOuterJoins() throws SQLException

Arguments

None.

Return value

18. Type4 JDBC Driver

1781

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(do)supportsGetGeneratedKeys ()
Function

Returns a value indicating whether automatic generation keys can be acquired
after statements have executed.

Format

public boolean supportsGetGeneratedKeys() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Automatic generation keys can be acquired.

false: Automatic generation keys cannot be acquired.

Functional detail

This method always returns false because the Type4 JDBC driver does not
support automatic generation keys.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dp)supportsGroupBy()
Function

Returns a value indicating whether the GROUP BY clause form is supported.

18. Type4 JDBC Driver

1782

Format

public boolean supportsGroupBy() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dq)supportsGroupByBeyondSelect()
Function

Returns a value indicating whether a column for which the GROUP BY clause is not
specified in SELECT can be used when all columns in SELECT must be specified.

Format

public boolean supportsGroupByBeyondSelect() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Can be used

false: Cannot be used

Functional detail

This method always returns true.

Exceptions

18. Type4 JDBC Driver

1783

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dr) supportsGroupByUnrelated()
Function

Returns a value indicating whether a column for which the GROUP BY clause is not
specified in SELECT can be used.

Format

public boolean supportsGroupByUnrelated() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Can be used

false: Cannot be used

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ds)supportsIntegrityEnhancementFacility()
Function

Returns a value indicating whether the SQL Integrity Enhancement Facility is
supported.

Format

public boolean supportsIntegrityEnhancementFacility()
throws SQLException

Arguments

None.

Return value

18. Type4 JDBC Driver

1784

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dt) supportsLikeEscapeClause()
Function

Returns a value indicating whether escape characters are supported in the LIKE
clause.

Format

public boolean supportsLikeEscapeClause() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(du)supportsLimitedOuterJoins()
Function

Returns a value indicating whether limited support is provided for outer joins.

Format

18. Type4 JDBC Driver

1785

public boolean supportsLimitedOuterJoins() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Limited support is provided.

false: Limited support is not provided.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dv)supportsMinimumSQLGrammar()
Function

Returns a value indicating whether the ODBC Minimum SQL grammar is
supported.

Format

public boolean supportsMinimumSQLGrammar() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

18. Type4 JDBC Driver

1786

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dw)supportsMixedCaseIdentifiers()
Function

Returns a value indicating whether an SQL identifier containing upper-case and
lower-case letters that is not enclosed in quotation marks is processed as being
case sensitive, and then the results are stored in upper-case and lower-case letters.

Format

public boolean supportsMixedCaseIdentifiers() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Results are stored in upper-case and lower-case letters.

false: Results are not stored using both upper-case and lower-case letters.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dx)supportsMixedCaseQuotedIdentifiers()
Function

Returns a value indicating whether an SQL identifier containing upper-case and
lower-case letters that is enclosed in quotation marks is processed as being case
sensitive, and then the results are stored in upper-case and lower-case letters.

Format

public boolean supportsMixedCaseQuotedIdentifiers() throws
SQLException

Arguments

18. Type4 JDBC Driver

1787

None.

Return value

boolean type:

true: Results are stored in upper-case and lower-case letters.

false: Results are not stored using both upper-case and lower-case letters.

Functional detail

This method always returns true.

Note
When you are using an XDM/RD E2 server and you specify YES (the default
is NO) in the DELIMITED ID UPPER operand in the RD environment
definition for XDM/RD E2, the method stores SQL identifiers in upper-case
letters. However, the JDBC driver assumes that NO (the default value) is
specified because the JDBC driver has not acquired information about the
DELIMITED ID UPPER operand from the server.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dy)supportsMultipleOpenResults ()
Function

Returns a value indicating whether it is possible for multiple ResultSet objects
to be returned simultaneously by a CallableStatement object.

Format

public boolean supportsMultipleOpenResults() throws
SQLException

Arguments

None.

Return value

boolean type:

true: A CallableStatement object can return multiple ResultSet
objects simultaneously.

false: A CallableStatement object cannot return multiple ResultSet
objects simultaneously.

18. Type4 JDBC Driver

1788

Functional detail

When a HiRDB server is used, this method returns true.

When an XDM/RD E2 server is used, this method returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(dz) supportsMultipleResultSets()
Function

Returns a value indicating whether multiple ResultSet objects can be acquired
from execution of a single execute method.

Format

public boolean supportsMultipleResultSets() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Multiple ResultSet objects can be acquired.

false: Multiple ResultSet objects cannot be acquired.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ea) supportsMultipleTransactions()
Function

Returns a value indicating whether multiple transactions can be open at the same
time (for different connections).

Format

public boolean supportsMultipleTransactions() throws

18. Type4 JDBC Driver

1789

SQLException

Arguments

None.

Return value

boolean type:

true Multiple transactions can be open at the same time.

false: Multiple transactions cannot be open at the same time.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(eb)supportsNamedParameters ()
Function

Returns a value indicating whether named parameters are supported for the
callable statement.

Format

public boolean supportsNamedParameters() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

18. Type4 JDBC Driver

1790

(ec) supportsNonNullableColumns()
Function

Returns a value indicating whether columns can be defined as non-null columns.

Format

public boolean supportsNonNullableColumns() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Columns can be defined as non-null columns.

false: Columns cannot be defined as non-null columns.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ed)supportsOpenCursorsAcrossCommit()
Function

Returns a value indicating whether the cursor can remain open between commit
operations.

Format

public boolean supportsOpenCursorsAcrossCommit() throws
SQLException

Arguments

None.

Return value

boolean type:

true: The cursor can remain open between commit operations.

18. Type4 JDBC Driver

1791

false: The cursor cannot remain open between commit operations.

Functional detail

If a holdable cursor is enabled in the cursor operation mode (HIRDB_CURSOR)
when a Connection instance is created, the method returns true; if a holdable
cursor is disabled, the method returns false. For details about how to specify the
cursor operation mode, see 18.2.2(2) User properties.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ee) supportsOpenCursorsAcrossRollback()
Function

Returns a value indicating whether the cursor can remain open between rollback
operations.

Format

public boolean supportsOpenCursorsAcrossRollback() throws
SQLException

Arguments

None.

Return value

boolean type:

true: The cursor can remain open between rollback operations.

false: The cursor cannot remain open between rollback operations.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ef) supportsOpenStatementsAcrossCommit()
Function

Returns a value indicating whether statements can remain open between commit
operations.

18. Type4 JDBC Driver

1792

Format

public boolean supportsOpenStatementsAcrossCommit() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Statements can remain open between commit operations.

false: Statements cannot remain open between commit operations.

Functional detail

If you specify TRUE in STATEMENT_COMMIT_BEHAVIOR in the URL
specification items during Connection instance creation or if you omit
STATEMENT_COMMIT_BEHAVIOR, the method returns true. If you specify
FALSE in STATEMENT_COMMIT_BEHAVIOR, the method returns false. For
details about how to specify the STATEMENT_COMMIT_BEHAVIOR URL
specification item, see 18.2.2(2) User properties.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(eg)supportsOpenStatementsAcrossRollback()
Function

Returns a value indicating whether statements can remain open between rollback
operations.

Format

public boolean supportsOpenStatementsAcrossRollback()
throws SQLException

Arguments

None.

Return value

boolean type:

true: Statements can remain open between rollback operations.

18. Type4 JDBC Driver

1793

false: Statements cannot remain open between rollback operations.

Functional detail

If you specify TRUE in STATEMENT_COMMIT_BEHAVIOR in the URL
specification items during Connection instance creation or if you omit
STATEMENT_COMMIT_BEHAVIOR, the method returns true. If you specify
FALSE in STATEMENT_COMMIT_BEHAVIOR, the method returns false. For
details about how to specify the STATEMENT_COMMIT_BEHAVIOR URL
specification item, see 18.2.2(2) User properties.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(eh)supportsOrderByUnrelated()
Function

Returns a value indicating whether a column for which the ORDER BY clause is not
in SELECT can be used.

Format

public boolean supportsOrderByUnrelated() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Can be used

false: Cannot be used

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ei) supportsOuterJoins()
Function

Returns a value indicating whether some form of outer join is supported.

18. Type4 JDBC Driver

1794

Format

public boolean supportsOuterJoins() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ej) supportsPositionedDelete()
Function

Returns a value indicating whether positioned DELETE is supported.

Format

public boolean supportsPositionedDelete() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns false.

Exceptions

18. Type4 JDBC Driver

1795

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ek) supportsPositionedUpdate()
Function

Returns a value indicating whether positioned UPDATE is supported.

Format

public boolean supportsPositionedUpdate() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(el) supportsResultSetConcurrency(int type, int concurrency)
Function

Returns a value indicating whether the combination of a specified type of
ResultSet and a specified parallel processing type is supported.

Format

public boolean supportsResultSetConcurrency(int type, int
concurrency) throws SQLException

Arguments

int type

Type defined in java.sql.ResultSet for the result set type

18. Type4 JDBC Driver

1796

int concurrency

Type defined by java.sql.ResultSet as the parallel processing type

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

When type is TYPE_FORWARD_ONLY or TYPE_SCROLL_INSENSITIVE and
concurrency is CONCUR_READ_ONLY, the method returns true; otherwise, the
method returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(em)supportsResultSetHoldability (int holdability)
Function

Returns a value indicating whether the holding facility is supported for a specified
ResultSet object.

Format

public boolean supportsResultSetHoldability(int
holdability) throws SQLException

Arguments

int holdability

Literal

ResultSet.HOLD_CURSORS_OVER_COMMIT: The ResultSet object is
not closed when the Connection.commit method is called.

ResultSet.CLOSE_CURSORS_AT_COMMIT: The ResultSet object is
closed when the Connection.commit method is called.

Return value

boolean type:

true: Supported

false: Not supported

18. Type4 JDBC Driver

1797

Functional detail

This method returns a value indicating whether the holding facility is supported
for a specified ResultSet object. The method returns the following values:

#

Cursor operation mode (HIRDB_CURSOR) when a Connection instance is
created.

For details about how to specify the cursor operation mode, see 18.2.2(2) User
properties.

Exceptions

If one of the following is true, the JDBC driver throws an SQLException:

• close() was executed on the Connection object before this method
executed.

• The holdability argument value is invalid.

(en)supportsResultSetType(int type)
Function

Returns a value indicating whether a specified type of ResultSet is supported.

Format

public boolean supportsResultSetType(int type) throws
SQLException

Arguments

int type

Type of result set defined in java.sql.ResultSet

Return value

boolean type:

true: Supported

holdability argument HIRDB_CURSOR#

Enabled Disabled

HOLD_CURSORS_OVER_COMMIT Returns true Returns false

CLOSE_CURSORS_AT_COMMIT Returns false Returns true

18. Type4 JDBC Driver

1798

false: Not supported

Functional detail

When type is TYPE_FORWARD_ONLY or TYPE_SCROLL_INSENSITIVE, the
method returns true; otherwise, the method returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(eo)supportsSavepoints ()
Function

Returns a value indicating whether save points are supported.

Format

public boolean supportsSavepoints() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns false because the JDBC driver does not support
save points in HiRDB or XDM/RD E2.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ep)supportsStatementPooling ()
Function

Returns a value indicating whether statement pooling is supported.

Format

public boolean supportsStatementPooling() throws
SQLException

18. Type4 JDBC Driver

1799

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns false because the Type4 JDBC driver does not
support statement pooling.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(eq)supportsSchemasInDataManipulation()
Function

Returns a value indicating whether schema names can be used in data
manipulation statements.

Format

public boolean supportsSchemasInDataManipulation() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Schema names can be used.

false: Schema names cannot be used.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is

18. Type4 JDBC Driver

1800

executed, the JDBC driver throws an SQLException.

(er) supportsSchemasInIndexDefinitions()
Function

Returns a value indicating whether schema names can be used in index definition
statements.

Format

public boolean supportsSchemasInIndexDefinitions() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Schema names can be used.

false: Schema names cannot be used.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(es) supportsSchemasInPrivilegeDefinitions()
Function

Returns a value indicating whether schema names can be used in privilege
definition statements.

Format

public boolean supportsSchemasInPrivilegeDefinitions()
throws SQLException

Arguments

None.

Return value

18. Type4 JDBC Driver

1801

boolean type:

true: Schema names can be used.

false: Schema names cannot be used.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(et) supportsSchemasInProcedureCalls()
Function

Returns a value indicating whether schema names can be used in procedure calls.

Format

public boolean supportsSchemasInProcedureCalls() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Schema names can be used.

false: Schema names cannot be used.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(eu)supportsSchemasInTableDefinitions()
Function

Returns a value indicating whether schema names can be used in table definition
statements.

Format

18. Type4 JDBC Driver

1802

public boolean supportsSchemasInTableDefinitions() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Schema names can be used.

false: Schema names cannot be used.

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ev) supportsSelectForUpdate()
Function

Returns a value indicating whether SELECT is supported for updating.

Format

public boolean supportsSelectForUpdate() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is

18. Type4 JDBC Driver

1803

executed, the JDBC driver throws an SQLException.

(ew)supportsStoredProcedures()
Function

Returns a value indicating whether stored procedure calls are supported.

Format

public boolean supportsStoredProcedures() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ex) supportsSubqueriesInComparisons()
Function

Returns a value indicating whether subqueries are supported in comparison
expressions.

Format

public boolean supportsSubqueriesInComparisons() throws
SQLException

Arguments

None.

Return value

boolean type:

18. Type4 JDBC Driver

1804

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ey) supportsSubqueriesInExists()
Function

Returns a value indicating whether subqueries are supported in exists
expressions.

Format

public boolean supportsSubqueriesInExists() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ez) supportsSubqueriesInIns()
Function

Returns a value indicating whether subqueries are supported in in statements.

Format

public boolean supportsSubqueriesInIns() throws SQLException

18. Type4 JDBC Driver

1805

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(fa) supportsSubqueriesInQuantifieds()
Function

Returns a value indicating whether subqueries are supported in quantified
expressions.

Format

public boolean supportsSubqueriesInQuantifieds() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

18. Type4 JDBC Driver

1806

(fb) supportsTableCorrelationNames()
Function

Returns a value indicating whether table correlation names are supported.

Format

public boolean supportsTableCorrelationNames() throws
SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(fc) supportsTransactionIsolationLevel(int level)
Function

Returns a value indicating whether a specified transaction isolation level is
supported.

Format

public boolean supportsTransactionIsolationLevel(int level)
throws SQLException

Arguments

int level

Transaction cut-off level defined in java.sql.Connection

Return value

boolean type:

18. Type4 JDBC Driver

1807

true: Supported

false: Not supported

Functional detail

When level is TRANSACTION_REPEATABLE_READ,
TRANSACTION_READ_COMMITTED, or TRANSACTION_READ_UNCOMMITTED,
the method returns true; otherwise, the method returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(fd) supportsTransactions()
Function

Returns a value indicating whether transactions are supported.

Format

public boolean supportsTransactions() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(fe) supportsUnion()
Function

Returns a value indicating whether SQL UNION is supported.

Format

public boolean supportsUnion() throws SQLException

18. Type4 JDBC Driver

1808

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(ff) supportsUnionAll()
Function

Returns a value indicating whether SQL UNION ALL is supported.

Format

public boolean supportsUnionAll() throws SQLException

Arguments

None.

Return value

boolean type:

true: Supported

false: Not supported

Functional detail

This method always returns true.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

18. Type4 JDBC Driver

1809

(fg) updatesAreDetected(int type)
Function

Returns a value indicating whether updating performed on a ResultSet of a
specified ResultSet type can be detected by the ResultSet.rowUpdated
method.

Format

public boolean updatesAreDetected(int type) throws
SQLException

Arguments

int type

One of the following ResultSet types:

• ResultSet.TYPE_FORWARD_ONLY

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

Return value

boolean type:

true: Can be detected.

false: Cannot be detected.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(fh) usesLocalFilePerTable()
Function

Returns a value indicating whether a file is to be used for each table.

Format

public boolean usesLocalFilePerTable() throws SQLException

Arguments

18. Type4 JDBC Driver

1810

None.

Return value

boolean type:

true: Used

false: Not used

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(fi) usesLocalFiles()
Function

Returns a value indicating whether tables are to be stored in local files.

Format

public boolean usesLocalFiles() throws SQLException

Arguments

None.

Return value

boolean type:

true: Tables are to be stored in local files.

false: Tables are not to be stored in local files.

Functional detail

This method always returns false.

Exceptions

If close() has been executed on the Connection object before this method is
executed, the JDBC driver throws an SQLException.

(3) Package and class names
The names of the package and class for installing this interface are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

18. Type4 JDBC Driver

1811

Class name: PrdbDatabaseMetaData

18.4.8 ResultSetMetaData interface
(1) Overview

The ResultSetMetaData interface provides the following principal function:

• Return of meta information, such as the data type and the data length, for each
column in the result set.

(2) Methods
The table below lists the methods of the ResultSetMetaData interface. The
interface does not support methods that are not listed in the table. If an unsupported
method is specified, the interface throws an SQLException.

Table 18-46: ResultSetMetaData interface methods

Subs
ectio

n

Method Function

(a) getCatalogName(int column) Returns the catalog name for a specified column
number of a table.

(b) getColumnClassName(int column) Returns the fully specified Java class name for a
specified column.

(c) getColumnCount() Returns the number of columns in this ResultSet
object.

(d) getColumnDisplaySize(int column) Returns a specified column's maximum width (in
characters).

(e) getColumnLabel(int column) Returns a recommended print or display title for a
specified column.

(f) getColumnName(int column) Returns a specified column's column name.

(g) getColumnType(int column) Returns a specified column's SQL data type.

(h) getColumnTypeName(int column) Returns a specified column's database-specific
format name.

(i) getPrecision(int column) Returns a specified column's length in decimal
digits.

(j) getScale(int column) Returns the number of decimal places in a
specified column.

(k) getSchemaName(int column) Returns a specified column's table schema.

(l) getTableName(int column) Returns the table name for a specified column.

18. Type4 JDBC Driver

1812

(a) getCatalogName(int column)
Function

Returns the catalog name for a specified column number of a table.

Format

public synchronized String getCatalogName(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

(m) isAutoIncrement(int column) Returns a value indicating whether a specified
column is both numbered automatically and
treated as being read-only.

(n) isCaseSensitive(int column) Returns a value indicating whether a specified
column is case sensitive.

(o) isCurrency(int column) Returns a value indicating whether a specified
column is for currency values.

(p) isDefinitelyWritable(int column) Returns a value indicating whether write
operations on a specified column will be
successful.

(q) isNullable(int column) Returns a value indicating whether the NULL value
can be set in a specified column.

(r) isReadOnly(int column) Returns a value indicating whether a specified
column's value is read-only.

(s) isSearchable(int column) Returns a value indicating whether a specified
column can be used in a where section.

(t) isSigned(int column) Returns a value indicating whether a specified
column is for signed numeric values.

(u) isWritable(int column) Returns a value indicating whether write
operations on a specified column can be
successful.

Subs
ectio

n

Method Function

18. Type4 JDBC Driver

1813

String object

Functional detail

This method always returns null.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(b) getColumnClassName(int column)
Function

Returns the fully specified Java class name for a specified column.

Format

public synchronized String getColumnClassName(int column)
throws SQLException

Arguments

int column

Column number (beginning with 1)

Return value

String object

Functional detail

This method returns the result of executing the ResultSet#getObject method
on a column as the String Java class type. The following table shows the return
value depending on the column's data type.

Table 18-47: Character strings returned by getColumnClassName

Column's HiRDB data type Character string returned

BLOB "java.lang.Object"

BINARY "java.lang.Object"

INTEGER "java.lang.Integer"

SMALLINT "java.lang.Integer"

FLOAT
DOUBLE PRECISION

"java.lang.Double"

18. Type4 JDBC Driver

1814

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(c) getColumnCount()
Function

Returns the number of columns in this ResultSet object.

Format

public synchronized int getColumnCount()

Arguments

None.

Return value

int type:

Number of columns

SMALLFLT
REAL

"java.lang.Float"

DECIMAL
NUMERIC

"java.math.BigDecimal"

CHAR "java.lang.String"

MCHAR "java.lang.String"

NCHAR "java.lang.String"

VARCHAR "java.lang.String"

MVARCHAR "java.lang.String"

NVARCHAR "java.lang.String"

DATE "java.sql.Date"

TIME "java.sql.Time"

TIMESTAMP "java.sql.Timestamp"

BOOLEAN (column found only in a ResultSet created from
DatabaseMetaData)

"java.lang.Boolean"

Column's HiRDB data type Character string returned

18. Type4 JDBC Driver

1815

Exceptions

None.

(d) getColumnDisplaySize(int column)
Function

Returns a specified column's maximum width (in characters)

Format

public synchronized int getColumnDisplaySize(int column)
throws SQLException

Arguments

int column

Column number beginning at 1

Return value

int type:

Maximum number of characters

Functional detail

This method returns the maximum width of a specified column in characters. The
following table shows the maximum width (in number of characters) returned by
getColumnDisplaySize.

Table 18-48: Maximum width (in number of characters) returned by
getColumnDisplaySize

Column's HiRDB data type Maximum width returned
(number of characters)

BLOB(n)
BINARY(n)

n

INTEGER 11

SMALLINT 6

FLOAT
DOUBLE PRECISION

23

SMALLFLT
REAL

13

18. Type4 JDBC Driver

1816

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(e) getColumnLabel(int column)
Function

Returns a recommended print or display title for a specified column.

This method returns the column name, which is the same value returned by
PrdbResultSetMetaData#getColumnName. For details, see (f)
getColumnName(int column).

Format

public synchronized String getColumnLabel(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

DECIMAL(n,m)
NUMERIC(n,m)

n + 2

CHAR(n)
MCHAR(n)
NCHAR(n)
VARCHAR(n)
MVARCHAR(n)
NVARCHAR(n)

n

DATE 10

TIME 8

TIMESTAMP(n) n > 0: 19 + (n + 1)
n = 0: 19

BOOLEAN (column found only in a ResultSet created from
DatabaseMetaData)

5

Column's HiRDB data type Maximum width returned
(number of characters)

18. Type4 JDBC Driver

1817

String object

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(f) getColumnName(int column)
Function

Returns a specified column's column name.

Format

public synchronized String getColumnName(int column) throws
SQLException

Arguments

int column

Column number beginning at 1

Return value

String object

Functional detail

This method returns the applicable contents from the HiRDB Column Name
Descriptor Area (SQLCNDA) as the name of the specified column. The method
acquires the name from SQLNAME in SQLCNDA that is sent from the HiRDB server
to this driver (and converts the name to Java's internal code) and then returns the
result. Note that if a set function, value expression, or WRITE specification is used
in the SELECT statement, only the first 28 bytes are returned and any additional
bytes are discarded during communication between server and client. This driver
ignores any of the following characters at the beginning of a name that is received
from the HiRDB server:

•

•

Legend: : Single-byte space, : 0xff

For details about this method's return value, see Appendix C.1 Organization and
contents of the Column Name Descriptor Area.

The first column of a ResultSet class acquired from an Array object is created
by the JDBC driver and JDBC_Array_Index is returned as its column name.

18. Type4 JDBC Driver

1818

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(g) getColumnType(int column)
Function

Returns a specified column's SQL data type. For the correspondence between the
column data types and the return values, see 18.8.1 Mapping SQL data types.

Format

public synchronized int getColumnType(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

int type:

SQL type from java.sql.Types

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(h) getColumnTypeName(int column)
Function

Returns a specified column's database-specific format name.

Format

public synchronized String getColumnTypeName(int column)
throws SQLException

Arguments

int column

Column number (beginning with 1)

Return value

18. Type4 JDBC Driver

1819

String object

Functional detail

This method returns a specified column's database-specific format name. The
following table shows the column data types and return values.

Table 18-49: Character strings returned by getColumnTypeName

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(i) getPrecision(int column)
Function

Column's HiRDB data type Character string returned

BLOB "BLOB"

BINARY "BINARY"

INTEGER "INTEGER"

SMALLINT "SMALLINT"

FLOAT "FLOAT"

REAL "REAL"

DECIMAL "DECIMAL"

CHAR "CHAR"

MCHAR "MCHAR"

NCHAR "NCHAR"

VARCHAR "VARCHAR"

MVARCHAR "MVARCHAR"

NVARCHAR "NVARCHAR"

DATE "DATE"

TIME "TIME"

TIMESTAMP "TIMESTAMP"

BOOLEAN (column found only in a ResultSet created
from DatabaseMetaData)

"BOOLEAN"

18. Type4 JDBC Driver

1820

Returns a specified column's length in decimal digits.

Format

public synchronized int getPrecision(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

int type:

Column length in decimal digits

Functional detail

If the specified column has a numeric data type (INTEGER, SMALLINT, FLOAT,
DOUBLE PRECISION, SMALLFLT, REAL, DECIMAL, or NUMERIC), this method
returns the number of decimal digits. If it does not have a numeric data type, the
method returns the column length in bytes. The following table shows the return
value of getPrecision.

Table 18-50: Return value of getPrecision

Column's HiRDB data type Return value

BLOB(n), BINARY(n) n

INTEGER 10

SMALLINT 5

FLOAT, DOUBLE PRECISION 15

SMALLFLT, REAL 7

DECIMAL(n,m), NUMERIC(n,m) n

CHAR(n), MCHAR(n), VARCHAR(n),
MVARCHAR(n)

n

NCHAR(n), NVARCHAR(n) n x 2

DATE 10

TIME 8

18. Type4 JDBC Driver

1821

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(j) getScale(int column)
Function

Returns the number of decimal places in a specified column.

Format

public synchronized int getScale(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

int type:

Column's number of decimal places

Functional detail

This method returns the number of decimal places in a specified column. The
following table shows the return value depending on the data type.

Table 18-51: Value returned by getScale

TIMESTAMP(n) n > 0: 19 + (n + 1)
n = 0: 19

BOOLEAN (column found only in a ResultSet created
from DatabaseMetaData)

1

Column's HiRDB data type Return value

DECIMAL
NUMERIC

Decimal places

TIMESTAMP Number of digits below a millisecond

Other 0

Column's HiRDB data type Return value

18. Type4 JDBC Driver

1822

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(k) getSchemaName(int column)
Function

Returns a specified column's table schema.

Format

public synchronized String getSchemaName(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

String object

Functional detail

This method always returns null.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(l) getTableName(int column)
Function

Returns the table name for a specified column.

Format

public synchronized String getTableName(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

18. Type4 JDBC Driver

1823

String object

Functional detail

This method always returns null.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(m) isAutoIncrement(int column)
Function

Returns a value indicating whether a specified column is both numbered
automatically and treated as being read-only.

Format

public synchronized boolean isAutoIncrement(int column)
throws SQLException

Arguments

int column

Column number (beginning with 1)

Return value

boolean type:

true: The specified column is numbered automatically and is treated as being
read-only.

false: The specified column is not numbered automatically or is not treated
as being read-only.

Functional detail

This method always returns false.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(n) isCaseSensitive(int column)
Function

Returns a value indicating whether a specified column is case sensitive.

Format

18. Type4 JDBC Driver

1824

public synchronized boolean isCaseSensitive(int column)
throws SQLException

Arguments

int column

Column number (beginning with 1)

Return value

boolean type:

true: The column is case sensitive.

false: The column is not case sensitive.

Functional detail

This method always returns false.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(o) isCurrency(int column)
Function

Returns a value indicating whether a specified column is for currency values.

Format

public synchronized boolean isCurrency(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

boolean type:

true: The column is for currency values.

false: The column is not for currency values.

Functional detail

18. Type4 JDBC Driver

1825

This method always returns false.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(p) isDefinitelyWritable(int column)
Function

Returns a value indicating whether write operations on a specified column will be
successful.

Format

public synchronized boolean isDefinitelyWritable(int column)
throws SQLException

Arguments

int column

Column number (beginning with 1)

Return value

boolean type:

true: Write operations on the column will be successful.

false: Write operations on the column might not be successful.

Functional detail

This method always returns false.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(q) isNullable(int column)
Function

Returns a value indicating whether the NULL value can be set in a specified
column.

Format

public synchronized int isNullable(int column) throws
SQLException

18. Type4 JDBC Driver

1826

Arguments

int column

Column number (beginning with 1)

Return value

int type:

ResultSetMetaData.columnNoNulls: The NULL value cannot be set.

ResultSetMetaData.columnNullable: The NULL value can be set.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(r) isReadOnly(int column)
Function

Returns a value indicating whether a specified column's value is read-only.

Format

public synchronized boolean isReadOnly(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

boolean type:

true: The specified column's value is read-only.

false: The specified column's value might not be read-only.

Functional detail

This method always returns false.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(s) isSearchable(int column)
Function

18. Type4 JDBC Driver

1827

Returns a value indicating whether a specified column can be used in a where
section.

Format

public synchronized boolean isSearchable(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Return value

boolean type:

true: The column can be used in a where section.

false: The column cannot be used in a where section.

Functional detail

If the ResultSet was created from DatabaseMetaData, the method returns
false.

If the ResultSet was not created from DatabaseMetaData, the method
returns true.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(t) isSigned(int column)
Function

Returns a value indicating whether a specified column is for signed numeric
values.

Format

public synchronized boolean isSigned(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

18. Type4 JDBC Driver

1828

Return value

boolean type:

true: The column is for signed numeric values.

false: The column is not for signed numeric values.

Functional detail

This method returns a value indicating whether a specified column is for signed
numeric values. The following table shows the return value depending on the
column's data type.

Table 18-52: Value returned by isSigned

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(u) isWritable(int column)
Function

Returns a value indicating whether write operations on a specified column can be
successful.

Format

public synchronized boolean isWritable(int column) throws
SQLException

Arguments

int column

Column number (beginning with 1)

Column's HiRDB data type Return value

INTEGER
SMALLINT
FLOAT
DOUBLE PRECISION
REAL
SMALLFLT
DECIMAL
NUMERIC

true

Other false

18. Type4 JDBC Driver

1829

Return value

boolean type:

true: Write operations on the column can be successful.

false: Write operations on the column cannot be successful.

Functional detail

This method always returns false.

Exceptions

If the specified column value is 0 or less or is greater than the number of columns,
the JDBC driver throws an SQLException.

(3) Package and class names
The names of the package and class for installing this interface are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbResultSetMetaData

(4) Notes
(a) getColumnName and getColumnLabel methods

The getColumnName and getColumnLabel methods get retrieval item names from
SQLNAME in the Column Name Descriptor Area (SQLCNDA) that the HiRDB driver
sends to the JDBC driver. The methods then convert the names to Java internal codes
and return them. For a description of the return values of these methods for specified
columns, see C.1 Organization and contents of the Column Name Descriptor Area.

18.4.9 Blob interface
(1) Overview

The Blob interface provides the following principal functions:

• Acquisition of binary data

• Acquisition of the length of binary data

• Acquisition of the pattern-matching position

The JDBC driver uses the PrdbBlob class to install the Blob interface.

The JDBC driver generates PrdbBlob class objects as return values of the getBlob
method of ResultSet and CallableStatement.

(2) Methods
The table below lists the methods of the Blob interface. The interface does not support
methods that are not listed in the table. If an unsupported method is specified, the

18. Type4 JDBC Driver

1830

interface throws an SQLException.

Table 18-53: Blob interface methods

(a) getBinaryStream()
Function

Returns a BLOB or BINARY value as a stream (PrdbDataStream object).

Format

public InputStream getBinaryStream() throws SQLException

Arguments

None.

Return value

Returns the PrdbDataStream from which InputStream is derived.

Functional detail

This method returns a BLOB or BINARY value as a stream (PrdbDataStream
object).

If the locator facility is used, the method acquires a locator from a
PrdbResultSet object and passes that locator to a PrdbDataStream class
constructor to create a PrdbDataStream object.

When the locator facility is used, the method issues a data acquisition request to

Subsectio
n

Method Function

(a) getBinaryStream() Returns a BLOB or BINARY value as a
stream (PrdbDataStream object).

(b) getBytes(long pos, int length) Returns all or part of a BLOB or BINARY
value as a byte array.

(c) length() Returns the length (in bytes) of the BLOB
or BINARY value specified by this
PrdbBlob object.

(d) position(Blob pattern, long start) Returns the byte location where pattern
begins within the BLOB or BINARY value
specified by the PrdbBlob object.

(e) position(byte[] pattern, long start) Returns the byte location where pattern
begins within the BLOB value indicated by
this Blob object.

18. Type4 JDBC Driver

1831

the HiRDB server each time data acquisition is requested because the
PrdbDataStream object does not contain a BLOB or BINARY value.

If the locator facility is not used, the method acquires a BLOB or BINARY value
from the PrdbResultSet object and passes that value to a PrdbDataStream
class constructor to create a PrdbDataStream object. In this case, the method
does not issue a data acquisition request to the HiRDB server because the
PrdbResultSet object contains the BLOB or BINARY value.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• The locator facility is used, but the PrdbConnection, PrdbStatement, or
PrdbResultSet object related to this PrdbBlob object is closed.

• The PrdbBlob object has become invalid due to transaction settlement.

• When the locator facility is used, data acquisition failed due to a
communication error.

(b) getBytes(long pos,int length)
Function

Returns all or part of a BLOB or BINARY value as a byte array. The method stores
in the byte array as many consecutive bytes as is specified in length beginning
at the location specified in pos.

Format

public byte[] getBytes(long pos,int length) throws
SQLException

Arguments

long pos

Location of the first byte to be extracted from the BLOB value (sequence
number)

The location of byte 1 is 1.

int length

Number of consecutive bytes to be copied

Return value

Array containing as many consecutive BLOB or BINARY value bytes as specified
in length beginning at the location specified in pos

Functional detail

18. Type4 JDBC Driver

1832

This method returns all or part of a BLOB or BINARY value as a byte array. In the
byte array, the method stores as many consecutive bytes as is specified in length
beginning at the location specified in pos.

The following table shows the data that is returned depending on the values of
pos and length:

Legend:

--: Not applicable

#1

Real length (X) indicates the real length of the BLOB or BINARY value that can be
acquired (real length of BLOB or BINARY value - pos argument value + 1).

#2

The limit value corresponds to MaxFieldSize or
HiRDB_for_JAVA_MAX_BINARY_SIZE. The following table shows the value
that becomes the limit value:

pos length Real length
(X)#1

Limit value#2
and length

Limit
value#2 and
real length

(X)#1

Data that is
returned

1 < = pos < =
real length (X)#1

 < 0 -- -- -- SQLException

> = 0 < = length -- Y < limit
value

BLOB or BINARY
value with the real
length (Y)

-- Y > = limit
value

BLOB or BINARY
value with the limit
value length

Y > length length < limit
value

-- BLOB or BINARY
value with the length
specified for length

length > = limit
value

-- BLOB or BINARY
value with the limit
value length

> real length
(X)#1

-- -- -- -- Data with a length of
0

Other -- -- -- -- SQLException

18. Type4 JDBC Driver

1833

#

Any character type (the HiRDB data types CHAR, VARCHAR, NCHAR, NVARCHAR,
MCHAR, and MVARCHAR)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• The pos argument value is less than 1 or the length argument value is less
than 0.

• The PrdbBlob object has become invalid due to transaction settlement.

• The locator facility is used, but the PrdbConnection, PrdbStatement, or
PrdbResultSet object related to this PrdbBlob object is closed.

• When the locator facility is used, data acquisition failed due to a
communication error.

(c) length()
Function

Returns the length (in bytes) of the BLOB or BINARY value specified by this
PrdbBlob object.

Format

public long length() throws SQLException

Arguments

None.

MaxFieldSize HiRDB_for_Java_MAX_BIN
ARY_SIZE

HiRDB data type Limit value
(maximum length of

data that can be
acquired)

0 (default) 0 (default) All data types Definition length (default)

0 (default) > 0 (specified) BLOB or BINARY type HiRDB_for_Java_MAX_BI
NARY_SIZE

Type other than BLOB or
BINARY#

Definition length (default)

> 0 (specified) 0 (default) All data types MaxFieldSize

> 0 (specified) > 0 (specified) All data types MaxFieldSize

18. Type4 JDBC Driver

1834

Return value

Length of BLOB or BINARY value (number of bytes)

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This PrdbDataStream class is closed.

• The locator facility is used, but the PrdbConnection, PrdbStatement, or
PrdbResultSet object related to the PrdbDataStream object is closed.

• PrdbDataStream has become invalid due to transaction settlement.

• When the locator facility is used, data acquisition failed due to a
communication error.

(d) position(Blob pattern, long start)
Function

Returns the byte location where pattern begins within the BLOB or BINARY
value specified by the PrdbBlob object. This method starts searching for
pattern at the location of start.

Format

public long position(Blob pattern, long start) throws
SQLException

Arguments

Blob pattern

Blob object used to specify the BLOB or BINARY value to be retrieved

long start

Location in the BLOB or BINARY value at which retrieval is to begin. The
start position is 1.

Return value

Location at which the data specified in pattern begins

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This PrdbDataStream class is closed.

• The locator facility is used, but the PrdbConnection, PrdbStatement, or
PrdbResultSet object related to the PrdbDataStream object is closed.

18. Type4 JDBC Driver

1835

• PrdbDataStream has become invalid due to transaction settlement.

• When the locator facility is used, data acquisition failed due to a
communication error.

(e) position(byte[] pattern, long start)
Function

Returns the byte location where pattern begins within the BLOB value indicated
by this Blob object. This method starts searching for pattern at the location of
start.

Format

public long position(byte[] pattern, long start) throws
SQLException

Arguments

byte[] pattern

byte[] to be retrieved

long start

Location in the BLOB value at which retrieval is to begin. The start position
is 1.

Return value

Location at which the data specified in pattern begins

Exceptions

The JDBC driver throws an SQLException in the following cases:

• This PrdbDataStream class is closed.

• The locator facility is used, but the PrdbConnection, PrdbStatement, or
PrdbResultSet object related to the PrdbDataStream object is closed.

• PrdbDataStream has become invalid due to transaction settlement.

• When the locator facility is used, data acquisition failed due to a
communication error.

(3) Package and class names
The names of the package and class for installing this interface are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbBlob

18. Type4 JDBC Driver

1836

18.4.10 Array interface
(1) Overview

The Array interface provides the following principal functions for accessing
repetition columns:

• Acquisition of SQL Array values

• Acquisition of a result set containing SQL Array values

The JDBC driver uses the PrdbArray class to install the Array interface.

The JDBC driver generates PrdbArray class objects as return values of the
getArray method of ResultSet.

(2) Methods
The table below lists the methods of the Array interface. The interface does not
support methods that are not listed in the table. If an unsupported method is specified,
the interface throws an SQLException.

Table 18-54: Array interface methods

(a) getArray()
Function

Subsectio
n

Method Function

(a) getArray() Acquires all elements of a repetition
column as an Object array.

(b) getArray(long index,int count) Retrieves some elements of a repetition
column.

(c) getBaseType() Acquires the JDBC type of the repetition
column represented by the PrdbArray
object as a java.sql.Types class
literal.

(d) getBaseTypeName() Acquires the data type name of the
repetition column represented by the
PrdbArray object.

(e) getResultSet() Returns the ResultSet object
containing the elements of a repetition
column.

(f) getResultSet(long index,int count) Returns the ResultSet object
containing the elements of a repetition
column.

18. Type4 JDBC Driver

1837

Acquires all elements of a repetition column as an Object array.

Format

public Object getArray() throws SQLException

Arguments

None.

Return value

All elements of a repetition column

Functional detail

This method acquires all elements of a repetition column as an Object array.

The method returns the elements of the repetition column contained in the
PrdbArray object in the Object array format. The following table shows the
array that is returned depending on the data type:

#

In actuality, no array is returned because HiRDB does not support BLOB or
BINARY repetition columns and cannot create the corresponding PrdbArray
object.

Exceptions

HiRDB data type Array that is returned

SMALLINT java.lang.Short[]

INTEGR java.lang.Integer[]

SMALLFLT,REAL java.lang.Float[]

FLOAT,DOUBLE PRECISION java.sql.Double[]

DECIMAL java.math.BigDecimal[]

CHAR,NCHAR,MCHAR java.lagn.String[]

VARCHAR,NVARCHAR,MVARCHAR java.lagn.String[]

DATE java.sql.Date[]

TIME java.sql.Time[]

TIMESTAMP java.sql.Timestamp[]

BINARY,BLOB java.io.InputStream[]#

18. Type4 JDBC Driver

1838

The JDBC driver throws an SQLException in the following cases:

• The PrdbResultSet object that created this PrdbArray object has been
closed.

This includes the case where this driver has closed the PrdbResultSet
object because the PrdbStatement object that created the
PrdbResultSet object was closed.

• The Connection object used to create the PrdbStatement object, which
created the PrdbResultSet object that created this PrdbArray object, is
closed.

• CltResultSet#getXXX() resulted in an error.

(b) getArray(long index, int count)
Function

Retrieves some elements of a repetition column. This method acquires from a
specified index as many elements as is specified as the maximum, and returns
them as an Object array.

Format

public Object getArray(long index, int count) throws
SQLException

Arguments

long index

Index of the first element to be retrieved (the first element is 1)

int count

Number of consecutive array elements to be acquired

Return value

An Object array containing as many elements as specified in count from the
specified index

Functional detail

This method retrieves some elements of a repetition column. The method acquires
from a specified index as many elements as is specified as the maximum, and
returns them as an Object array.

The following table shows the array that is returned depending on the relationship
between the index and count argument values:

18. Type4 JDBC Driver

1839

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• The PrdbResultSet object that created this PrdbArray object has been
closed.

This includes the case where this driver has closed the PrdbResultSet
object because the PrdbStatement object that created the
PrdbResultSet object was closed.

• The Connection object used to create the PrdbStatement object, which
created the PrdbResultSet object that created this PrdbArray object, is
closed.

• CltResultSet#getXXX() resulted in an error.

• The specified index argument value is less than 1 or the count argument
value is less than 0.

• The specified index argument value is greater than the number of elements.

(c) getBaseType()
Function

Acquires the JDBC type of the repetition column represented by the PrdbArray
object as a java.sql.Types class literal.

Format

public int getBaseType() throws SQLException

index count (index+count) Array that is returned

0 < index number
of elements

0 count (index + count) - 1
number of elements

Array whose length equals
the count value

(index + count) - 1 >
number of elements

Array whose length equals
the number of elements -
(index - 1)

count < 0 -- SQLException is thrown

index > number of
elements

-- -- SQLException is thrown

index < 1 -- -- SQLException is thrown

18. Type4 JDBC Driver

1840

Arguments

None.

Return value

java.sql.Types class literal indicating the JDBC type of the repetition column
represented by the PrdbArray object

Exceptions

None.

(d) getBaseTypeName()
Function

Acquires the data type name of the repetition column represented by the
PrdbArray object.

Format

public String getBaseTypeName() throws SQLException

Arguments

None.

Return value

HiRDB data type name

Exceptions

None.

(e) getResultSet()
Function

Returns the ResultSet object containing the elements of a repetition column.

Format

public ResultSet getResultSet()

Arguments

None.

Return value

ResultSet object

18. Type4 JDBC Driver

1841

Exceptions

The JDBC driver throws an SQLException in the following cases:

• The PrdbResultSet object that created this PrdbArray object has been
closed.

This includes the case where this driver has closed the PrdbResultSet
object because the PrdbStatement object that created the
PrdbResultSet object was closed.

• The Connection object used to create the PrdbStatement object, which
created the PrdbResultSet object that created this PrdbArray object, is
closed.

• An error occurred in the JDBC driver.

(f) getResultSet(long index,int count)
Function

Returns the ResultSet object containing the elements of a repetition column.

Format

public ResultSet getResultSet(long index,int count) throws
SQLException

Arguments

long index

Index of the first element to be retrieved (the first element is 1)

int count

Number of consecutive array elements to be acquired

Return value

ResultSet object

Functional detail

This method returns the ResultSet object containing the elements of a
repetition column.

The ResultSet object contains at most as many consecutive elements of the
repetition column as specified in count, beginning with the element specified in
index.

The following table shows the ResultSet object that is returned depending on
the relationship between the index and count argument values:

18. Type4 JDBC Driver

1842

Legend:

--: Not applicable

Exceptions

The JDBC driver throws an SQLException in the following cases:

• The PrdbResultSet object that created this PrdbArray object has been
closed.

This includes the case where this driver has closed the PrdbResultSet
object because the PrdbStatement object that created the
PrdbResultSet object was closed.

• The Connection object used to create the PrdbStatement object, which
created the PrdbResultSet object that created this PrdbArray object, is
closed.

• The specified index argument value is less than 1 or the count argument
value is less than 0.

• The specified index argument value is greater than the number of elements.

(3) Package and class names
The names of the package and class for installing this interface are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbArray

18.4.11 SQLException interface
The SQLException interface uses the SQLException class of the java.sql

index count (index+count) ResultSet that is
returned

0 < index number
of elements

0 count (index + count) - 1
number of elements

Result set containing as
many rows as specified in
count

(index -1 + count) - 1 >
number of elements

Result set containing as
many rows as the number of
elements - (index - 1)

count < 0 -- SQLException is thrown

index > number of
elements

-- -- SQLException is thrown

index < 1 -- -- SQLException is thrown

18. Type4 JDBC Driver

1843

package directly. For details and usage information about each method provided by the
SQLException interface, see the JDBC documentation provided by JavaSoft.

18.4.12 SQLWarning interface
(1) Overview

The SQLWarning interface provides the following principal function:

• Provision of information related to database access warnings

If a method object triggers a warning report, an SQLWarning object is accumulated
without an exception notice to that method object.

(2) Notes
(a) Releasing accumulated SQLWarning objects

SQLWarning objects are accumulated as a chain linked to the method object
(Connection, Statement, PreparedStatement, CallableStatement, or
ResultSet) that triggers the warning reports.

To release accumulated SQLWarning objects explicitly, execute the clearWarnings
method for the method object that triggered the warnings.

(b) Issuing conditions for SQLWarning objects
If the specified warning retention level indicates that warnings that occur during SQL
execution are to be retained in the JDBC driver, the JDBC driver generates
SQLWarning objects and retains warning information. In addition, a property can be
used to specify warning retention for Connection objects.

The following table describes the conditions under which SQLWarning objects are
generated.

Table 18-55: Conditions for generation of SQLWarning objects

SQL execution result Warning retention specification for Connection object

Warning is retained Warning is not retained

Warning retention level Warning retention level

IGNOR
E

SQLW
ARN

ALLWA
RN

IGNOR
E

SQLW
ARN

ALLWA
RN

SQLCODE is a
value greater than
0 other than 100,
110, or 120

Generated by an
object other than
a Connection
object

No No Yes No No Yes

Generated by a
Connection
object

No No Yes No No No

18. Type4 JDBC Driver

1844

Legend:

Yes: An SQLWarning object is generated.

No: An SQLWarning object is not generated.

Note

You can use SQLWARNING_IGNORE for URL, the SQLWARNING_IGNORE user
property, or the setSQLWarningIgnore method to specify the warning
retention specification for Connection objects. The default is false.

You can use SQLWARNING_LEVEL for URL, the
HiRDB_for_Java_SQLWARNING_LEVEL property, or the
setSQLWarningLevel method to specify the warning retention level. The
default is SQLWARN.

18.4.13 Unsupported interfaces
The JDBC1.2 core API does not support the following interfaces:

• Clob

• ParameterMetaData

• Savepoint

SQLWARN0 of the
SQL
Communications
Area is W (except
when SQLWARN6
is W)

Generated by an
object other than
a Connection
object

No Yes Yes No Yes Yes

Generated by a
Connection
object

No Yes Yes No No No

Warning occurs in
the JDBC driver

Generated by an
object other than
a Connection
object

No Yes Yes No Yes Yes

Generated by a
Connection
object

No Yes Yes No No No

SQL execution result Warning retention specification for Connection object

Warning is retained Warning is not retained

Warning retention level Warning retention level

IGNOR
E

SQLW
ARN

ALLWA
RN

IGNOR
E

SQLW
ARN

ALLWA
RN

18. Type4 JDBC Driver

1845

• SQLData

• SQLInput

• SQLOutput

18. Type4 JDBC Driver

1846

18.5 JDBC2.1 Core API

18.5.1 Expansion of the result set
Scrolling and parallel processing have been added to the JDBC2.1 Core API as
expansion facilities for result sets (ResultSet class).

(1) Scrolling types
There are three types of scrolling for result sets:

• Forward-only scrolling

• Scroll-insensitive scrolling

• Scroll-sensitive scrolling

The JDBC2.1 Core API supports only forward-only scrolling and scroll-insensitive
scrolling.

(2) Parallel processing types
There are two types of parallel processing for result sets:

• Read-only parallel processing

• Updatable parallel processing

The JDBC2.1 Core API supports only read-only parallel processing.

(3) Notes
(a) Notes about specifying an unsupported result set or type of parallel

processing
No error results when an unsupported result set or an unsupported type of parallel
processing is specified. The JDBC2.1 Core API assumes the result set that is closest to
the specified type of result set or type of parallel processing, and generates an instance
of the Statement class or that subclass. At this time, the API generates a warning
(SQLWarning object) and associates it with an instance of the Connection class.

(b) Notes on using a scrolling-type result set
For a scrolling-type result set, all retrieved data is cached in the JDBC driver. This
means that a large data size increases the possibility of a memory shortage or a drop in
performance. When you use a scrolling-type result set, you should take steps in
advance to minimize the amount of retrieved data. For example, you can add
appropriate conditions to the SQL statements.

18.5.2 Batch update
In the JDBC 2.1 Core API, a batch update facility has been added to the Statement

18. Type4 JDBC Driver

1847

and PreparedStatement classes. This facility enables you to register multiple SQL
statements or parameter values and execute them all at once.

When you execute a batch update, you can use facilities that use HiRDB arrays.

Facilities that use arrays are effective when you need to update quickly a large volume
of data for HiRDB. For details about facilities that use arrays, see 4.8 Facilities using
arrays.

(1) Batch update with the Statement class
The following notes apply to batch update with the Statement class.

• Use the addBatch method to register multiple update SQL statements.

• Use the executeBatch method to execute registered update SQL statements
collectively.

• An array of the numbers of rows updated by the individual update SQL statements
is returned as the batch execution results.

• If an error occurs during batch update, the batch update facility throws a
BatchUpdateException.

• If the registered SQL statements include a retrieval SQL statement, the batch
update facility throws a BatchUpdateException when the executeBatch
method is called.

Because the JDBC driver cannot execute multiple SQL statements simultaneously, it
executes the registered SQL statements consecutively.

(2) Batch update with the PreparedStatement class
The following notes apply to batch update with the PreparedStatement class.

• Use the normal procedure (setXXX method) to specify the ? parameters for the
update SQL statements specified during PreparedStatement instance
generation.

• Use the addBatch method to register the ? parameter sets.

• Use the executeBatch method to execute the registered ? parameter sets
collectively.

• An array of the number of rows updated by the individual ? parameter sets is
returned as the batch execution results.

• If an error occurs during batch execution, the batch update facility throws a
BatchUpdateException.

• If an SQL statement specified during PreparedStatement instance generation
is a retrieval SQL statement, the batch update facility throws a
BatchUpdateException when the executeBatch method is called.

18. Type4 JDBC Driver

1848

Note that the JDBC driver executes SQL statements consecutively in the following
cases:

• During batch updating when addBatch specifications for parameters and SQL
statements are combined

• During batch updating with SQL statements that contain ? parameters for
HiRDB's BINARY type (the length of the data to be set for a BINARY-type ?
parameter exceeds 32,000 bytes)

• During batch updating for SQL statements that contain ? parameters for HiRDB's
BLOB type

Notes

You must pay close attention to subsequent executions of addBatch, because the
values that were set for the previous execution are inherited when the number of
parameters specified by the setXXX method is insufficient.

The following example has two INTEGER-type arrays (array 1 and array 2):

Specification example
prepstmt.setInt(1,100);
prepstmt.setInt(2,100);
prepstmt.addBatch();
prepstmt.setInt(1,200);
prepstmt.addBatch();
prepstmt.executeBatch();

Explanation

• The values that are set by the first addBatch are array 1=100 and array
2=100.

If the number of parameters specified by addBatch is insufficient, an
error occurs.

• The values that are set by the second addBatch are array 1=200 and
array 2=100.

The second addBatch does not update the information for array 2, so
the array 2 information is inherited from the first addBatch.

(3) Batch update with the CallableStatement class
The following notes apply to batch update with the CallableStatement class.

• Use the normal procedure (setXXX method) to specify the input parameters for
the Java stored routines specified during CallableStatement class instance
generation.

18. Type4 JDBC Driver

1849

• Use the addBatch method to register the input parameter sets.

• Use the executeBatch method to execute the registered input parameter sets
collectively.

• An array of the return values (number of updated rows) of the Java stored routines
executed by the input parameter sets is returned as the batch execution results.

• If an error occurs during batch execution, the batch update facility throws a
BatchUpdateException.

• If a Java stored routine specified during CallableStatement instance
generation is not a routine that returns the number of updated rows, the batch
update facility throws a BatchUpdateException when the executeBatch
method is called.

• If a Java stored routine specified during CallableStatement instance
generation has output and input-output parameters, the batch update facility
throws a BatchUpdateException when the executeBatch method is called.

Because the JDBC driver cannot execute multiple rows of ? parameters for a stored
procedure in the batch mode, it executes them consecutively.

Note
Whether a stored procedure that returns a result set (ResultSet) will actually
return a result set will not be known until the stored procedure has executed
during batch updating. Therefore, if data is updated within the stored procedure,
updated information might be applied. For example, if you perform batch
updating on a stored procedure that searches and acquires the results of update
processing, a BatchUpdateException occurs, but updated information might
still be applied.

(4) Notes
(a) Implicit commit by the HiRDB server

If the SQL statements registered with addBatch contain one of the following SQL
statements, you must use the batch update facility for SQL statements carefully,
because the HiRDB server commits that SQL statement implicitly when the statement
is executed:

• PURGE TABLE statement

• Any definition SQL statement in which YES is specified for the PDCMMTBFDDL
client environment variable

(b) Processing by the batch update facility when addBatch specifications for
parameters and SQL statements are combined
When addBatch specifications for parameters and addBatch specifications for SQL
statements are combined, the batch update facility executes the addBatch

18. Type4 JDBC Driver

1850

specifications sequentially instead of by batch update. An example is shown below:

When this UAP is executed, each addBatch unit becomes an SQL execution, because
there are both addBatch specifications for parameters and addBatch specifications
for SQL statements. Therefore, executing this UAP produces the same results as
executing the following UAP:

When you use the batch update facility on a combination of addBatch for parameters
and addBatch for SQL statements, it is recommended that you disable the
auto-commit mode for the Connection class.

(c) Batch update with SQL statements that contain a ? parameter for
HiRDB's BINARY type
When batch update is executed with SQL statements that contain a ? parameter for
HiRDB's BINARY type, sequential execution is executed instead of batch update when
the following condition applies:

• The length of the data to be set with the setXXX method for the ? parameter

PreparedStatement pstmt = con.prepareStatement("UPDATE T1 SET C1=? WHERE C2=?");
pstmt.setInt(1, 1);
pstmt.setInt(2, 1);
pstmt.addBatch();
pstmt.setInt(1, 2);
pstmt.setInt(2, 2);
pstmt.addBatch();
pstmt.addBatch("INSERT INTO T2 VALUES(1,2,3)");
pstmt.setInt(1, 3);
pstmt.setInt(2, 4);
pstmt.addBatch();
pstmt.setInt(1, 4);
pstmt.setInt(2, 4);
pstmt.addBatch();
pstmt.executeBatch();

PreparedStatement pstmt = con.prepareStatement("UPDATE T1 SET C1=? WHERE C2=?");
pstmt.setInt(1, 1);
pstmt.setInt(2, 1);
pstmt.executeUpdate();
pstmt.setInt(1, 2);
pstmt.setInt(2, 2);
pstmt.executeUpdate();
pstmt.executeUpdate("INSERT INTO T2 VALUES(1,2,3)");
pstmt.setInt(1, 3);
pstmt.setInt(2, 4);
pstmt.executeUpdate();
pstmt.setInt(1, 4);
pstmt.setInt(2, 4);
pstmt.executeUpdate();

18. Type4 JDBC Driver

1851

exceeds 32,000 bytes (if character data is specified with the setString method,
the data length after the data has been encoded into data to be passed to HiRDB
exceeds 32,000 bytes).

(d) Batch update for SQL statements that contain a ? parameter for HiRDB's
BLOB type
When batch update is executed with SQL statements that include a ? parameter for
HiRDB's BLOB type, the statements are executed sequentially instead of by batch
update.

(e) Registering multiple parameters with the addBatch method
The JDBC driver accumulates in the driver all parameters registered with the
addBatch method until the executeBatch method is executed. You should make
note of the amount of memory being used when you are registering multiple
parameters.

When batch update is executed with a facility that uses HiRDB arrays, the maximum
number of executions that the JDBC driver can request to the HiRDB server is 30,000.
To register more than 30,000 parameters, you must divide them into groups of no more
than 30,000 and request SQL execution to the HiRDB server for each group. Note also
that because of the amount of memory in the JDBC driver that is used in this case, the
performance enhancement expected for batch updating may not be realized. When
more than 30,000 SQL executions are necessary, it is recommended that you execute
the executeBatch method in units of 30,000 or fewer SQL executions.

(f) Update count reported by BatchUpdateException
The following table shows the update count (int-type array) that is reported in the
return value of the getUpdateCounts method of BatchUpdateException that
occurs during batch update processing.

Table 18-56: Update count reported in the return value of the getUpdateCounts
method

Batch update
execution mode

BATCHEXCEPTION_BEHAVIOR#1 setting

TRUE FALSE

Batch execution
using the array
facility

Array containing no elements Array containing n elements
n: The addBatch that registered the parameter
resulting in the error.
When an error occurs, all elements are set to
Statement.EXECUTE_FAILED because processing
is rolled back.

18. Type4 JDBC Driver

1852

#1

Specified by one of the following:

• User property used when HiRDB is connected:
HiRDB_for_Java_BATCHEXCEPTION_BEHAVIOR

• BATCHEXCEPTION_BEHAVIOR for URL

• setBatchExceptionBehavior method of a DataSource interface

When the connected HiRDB's version is 08-01 or earlier, it is assumed that TRUE
is specified.

#2

Statement.SUCCESS_NO_INFO is set if a CALL statement is executed using the
executeBatch method of the CallableStatement class.

The following are examples of update count:

Example program of batch execution using the array facility

Example program of consecutive execution using a JDBC driver

Consecutive
execution using a
JDBC driver

Array containing as many
elements as there are SQL
statements executed
The number of updated rows#2 is
set in each array element.

Array containing n elements
n: The addBatch that registered the parameter or
SQL statement resulting in the error.
Array elements are set to the following values:
Elements 0 to n - 2: Number of updated rows#2

Element n - 1: Statement.EXECUTE_FAILED

PreparedStatement pstmt = con.prepareStatement("INSERT INTO T1 VALUES(?,?)");
pstmt.setInt(1, 1);
pstmt.setString(2,"aaaa");
pstmt.addBatch();
pstmt.setInt(1, 2);
pstmt.setString(2,"bbbbbbbb");
pstmt.addBatch();.......................................[A]
pstmt.setInt(1, 3);
pstmt.setString(2,"cccc");
pstmt.addBatch();
pstmt.executeBatch();

Batch update
execution mode

BATCHEXCEPTION_BEHAVIOR#1 setting

TRUE FALSE

18. Type4 JDBC Driver

1853

The following table shows the update count that is returned by the getUpdateCounts
method when these example programs are executed and the parameter or SQL
statement registered in [A] results in an error:

18.5.3 Added data types
Several new JDBC SQL types have been added to the JDBC2.1 Core API. Although
the following JDBC SQL types have been added, the JDBC driver cannot use them:

• BLOB

• CLOB

• ARRAY

• REF

• DISTINCT

• STRUCT

• JAVA OBJECT

18.5.4 Unsupported interfaces
The JDBC2.1 Core API does not support the following interfaces:

• Array

• Clob

• Ref

Statement stmt = con.createStatement();
stmt.addBatch("INSERT INTO T1 VALUES(1,'aaaa')");
stmt.addBatch("INSERT INTO T1 VALUES(2,'bbbbbbbb')");...[A]
stmt.addBatch("INSERT INTO T1 VALUES(3,'cccc')");
stmt.executeBatch();

Batch update
execution

mode

BATCHEXCEPTION_BEHAVIOR setting

TRUE FALSE

Batch execution
using the array
facility

int-type array containing no
elements

int-type array containing 2 elements
Value of element 0: Statement.EXECUTE_FAILED
Value of element 1: Statement.EXECUTE_FAILED

Consecutive
execution using
a JDBC driver

int-type array containing 1
element
Value of element 0: Number of
updated rows

int-type array containing 2 elements
Value of element 0: Number of updated rows
Value of element 1: Statement.EXECUTE_FAILED

18. Type4 JDBC Driver

1854

• SQLData

• SQLInput

• SQLOutput

• Struct

18. Type4 JDBC Driver

1855

18.6 JDBC2.0 Optional Package

The following functions were added to the JDBC2.0 Optional Package:

• JNDI support

• Connection pool

• Distributed transactions

• RowSets

Note, however, that the JDBC driver cannot use RowSets.

The following table lists the functions and interfaces of the JDBC2.0 Optional
Package.

Table 18-57: Functions and interfaces of the JDBC2.0 Optional Package

18.6.1 DataSource interface
For details and usage information about the methods provided by the DataSource
interface, see the JDBC documentation. This section shows the DataSource interface
methods that are supported by the JDBC driver.

(1) Methods
The following table lists the methods of the DataSource interface.

Table 18-58: DataSource interface methods

Function Interface

JNDI support DataSource

Connection pool ConnectionPoolDataSource

PooledConnection

Distributed transaction XAConnection

XADataSource

XAResource

XAException

Subsectio
n

Method Function

(a) getConnection() Attempts to connect to the database
using the connection information set in
the data source.

18. Type4 JDBC Driver

1856

(a) getConnection()
Function

Attempts to connect to the database using the connection information set in the
data source.

Format

public synchronized Connection getConnection() throws
SQLException

Arguments

None.

Return value

Connection object

Functional detail

This method uses the connection information that has been set in the
DataSource object to connect to the HiRDB server, and returns a connected
Connection object. For details about the specification method priorities for the
user name and password, see 18.11 Connection information priorities.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• A database access error occurred.

(b) getConnection(String username,String password) Attempts to connect to the database
using the connection information set in
the data source.

(c) getLoginTimeout() Returns the value specified by the
setLoginTimeout method.

(d) getLogWriter() Acquires the DataSource object's log
writer.

(e) setLoginTimeout(int seconds) Specifies the maximum amount of time
(in seconds) to wait for the connection
to the database to be completed.

(f) setLogWriter(PrintWriter out) Sets a log writer for the DataSource
object.

Subsectio
n

Method Function

18. Type4 JDBC Driver

1857

• Specified connection information is invalid.

For details about the conditions under which the connection information
items become invalid, see 18.2.2(1) URL syntax and 18.2.2(2) User
properties.

(b) getConnection(String username, String password)
Function

Attempts to connect to the database using the connection information set in the
data source.

Format

public synchronized Connection getConnection(String
username, String password) throws SQLException

Arguments

String username

User name used to establish connection

String password

Password used to establish connection

Return value

Connection object

Functional detail

This method uses the information specified in the arguments and the connection
information that has been set in the DataSource object to connect to the HiRDB
server, and returns a connected Connection object.

When the null value is set in the username or password argument it means
that the argument with the null value is not being used to set the user name or
password. When the password argument contains a character string with a
length of 0 it means that no password is specified. When a user ID is specified in
both the username argument and ConnectionProperty, the username
argument takes precedence. Similarly, the password argument takes precedence
for a password specification. For details about the specification priorities when
the username and password arguments are not specified, see 18.11 Connection
information priorities.

Exceptions

The JDBC driver throws an SQLException in the following cases:

18. Type4 JDBC Driver

1858

• A database access error occurred.

• The specified connection information is invalid.

For details about the conditions under which the connection information
items become invalid, see 18.2.2(1) URL syntax and 18.2.2(2) User
properties.

• The user name specified in the username argument is a character string with
a length of 0.

(c) getLoginTimeout()
Function

Returns the value specified by the setLoginTimeout method.

Format

public synchronized int getLoginTimeout()

Arguments

None.

Return value

int type:

Value specified by the setLoginTimeout method. If no value has been
specified by setLoginTimeout, this method returns 0.

Exceptions

None.

(d) getLogWriter()
Function

Acquires the DataSource object's log writer.

Format

public synchronized PrintWriter getLogWriter() throws
SQLException

Arguments

None.

Return value

18. Type4 JDBC Driver

1859

This method returns the log writer for the PrdbDataSource object. If no log
writer has been set, the method returns the NULL value.

Exceptions

None.

(e) setLoginTimeout(int seconds)
Function

Specifies the maximum amount of time (in seconds) to wait for the connection to
the database to be completed.

Format

public synchronized void setLoginTimeout(int seconds) throws
SQLException

Arguments

int seconds

Maximum connection wait time (seconds)

Return value

None.

Functional detail

This method is used when a physical connection is established with the HiRDB
server in order for the getConnection method to acquire a Connection object.
If 0 is specified or setLoginTimeout is not executed, the value specified in
PDCONNECTWAITTIME is assumed as the maximum amount of time to wait for the
HiRDB server to be physically connected.

Exceptions

If the seconds argument value is less than 0 or is greater than 300, the method
throws an SQLException.

(f) setLogWriter(PrintWriter out)
Function

Sets a log writer for the DataSource object.

Format

public synchronized void setLogWriter(PrintWriter out)
throws SQLException

18. Type4 JDBC Driver

1860

Arguments

PrintWriter out

Log writer

Return value

None.

Exceptions

None.

(2) Package and class names
The names of the package and class for using this interface directly are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbDataSource

18.6.2 ConnectionPoolDataSource interface
For details and usage information about the methods provided by the
ConnectionPoolDataSource interface, see the JDBC documentation. This section
shows the ConnectionPoolDataSource interface methods that are supported by
the JDBC driver.

(1) Methods
The following table lists the methods of the ConnectionPoolDataSource
interface.

Table 18-59: ConnectionPoolDataSource interface methods

Subsectio
n

Method Function

(a) getLoginTimeout() Returns the value specified by the
setLoginTimeout method.

(b) getLogWriter() Acquires the
ConnectionPoolDataSource
object's log writer.

(c) getPooledConnection() Acquires a PooledConnection object
that can be used as a pooled connection,
based on connection information set in
the data source.

(d) getPooledConnection(String user, String password) Acquires a PooledConnection object
that can be used as a pooled connection,
based on connection information set in
the data source.

18. Type4 JDBC Driver

1861

(a) getLoginTimeout()
Function

Returns the value specified by the setLoginTimeout method.

Format

public synchronized int getLoginTimeout() throws
SQLException

Arguments

None.

Return value

int type:

Value specified by the setLoginTimeout method. If the
setLoginTimeout method has not been specified, this method returns 0.

Exceptions

None.

(b) getLogWriter()
Function

Acquires the ConnectionPoolDataSource object's log writer.

Format

public synchronized PrintWriter getLogWriter() throws
SQLException

Arguments

None.

Return value

(e) setLoginTimeout(int seconds) Specifies the maximum amount of time
(in seconds) to wait for the connection
to the database to be completed.

(f) setLogWriter(PrintWriter out) Sets a log writer for the
ConnectionPoolDataSource object.

Subsectio
n

Method Function

18. Type4 JDBC Driver

1862

This method returns the log writer for the PrdbConnectionPoolDataSource
object. If no log writer has been set, the method returns the NULL value.

Exceptions

None.

(c) getPooledConnection()
Function

Acquires a PooledConnection object that can be used as a pooled connection,
based on connection information set in the data source.

Format

public synchronized PooledConnection getPooledConnection()
throws SQLException

Arguments

None.

Return value

PooledConnection object

Functional detail

This method returns a PooledConnection object that can be used as pooled
connection, based on connection information that has been set in a DataSource
object. For details about the specification method priorities for the user name and
password, see 18.11 Connection information priorities.

Exceptions

JDBC driver throws an SQLException if a database access error has occurred.

(d) getPooledConnection(String user, String password)
Function

Acquires a PooledConnection object that can be used as a pooled connection,
based on connection information set in the data source.

Format

public synchronized PooledConnection
getPooledConnection(String user, String password) throws
SQLException

Arguments

18. Type4 JDBC Driver

1863

String user: User name used to establish connection

String password: Password used to establish connection

Return value

PooledConnection object

Functional detail

This method returns a PooledConnection object that can be used as a pooled
connection, based on the information specified in the arguments and the
connection information that has been set in a DataSource object.

When the null value is set in the user or password argument it means that the
argument with the null value is not being used to set the user name or password.
When the password argument contains a character string with a length of 0, it
means that no password has been specified. When a user ID is specified in both
the user argument and ConnectionProperty, the user argument takes
precedence. Similarly, the password argument takes precedence for a password
specification. For details about the specification priorities when the user and
password arguments are not specified, see 18.11 Connection information
priorities.

Exceptions

The JDBC driver throws an SQLException in the following cases:

• A database access error occurred.

• The user name specified in the argument is a character string with a length
of 0.

(e) setLoginTimeout(int seconds)
Function

Specifies the maximum amount of time (in seconds) to wait for the connection to
the database to be completed.

Format

public synchronized void setLoginTimeout(int seconds) throws
SQLException

Arguments

int seconds: Maximum connection wait time (seconds)

Return value

None.

18. Type4 JDBC Driver

1864

Functional detail

This method is used when physical connection is established with the HiRDB
server in order for the getConnection method to acquire a Connection object.
If 0 is specified or setLoginTimeout is not executed, the value specified in
PDCONNECTWAITTIME is assumed as the maximum amount of time to wait for the
HiRDB server to be physically connected.

Exceptions

If the seconds argument value is less than 0 or is greater than 300, the method
throws an SQLException.

(f) setLogWriter(PrintWriter out)
Function

Sets a log writer for the ConnectionPoolDataSource object.

Format

public synchronized void setLogWriter(PrintWriter out)

Arguments

PrintWriter out: Log writer

Return value

None.

Exceptions

None.

(2) Package and class names
The names of the package and class for using this interface directly are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbConnectionPoolDataSource

18.6.3 PooledConnection interface
For details and usage information about the methods provided by the
PooledConnection interface, see the JDBC documentation. This section shows the
PooledConnection interface methods that are supported by the JDBC driver.

(1) Methods
The following table lists the methods of the PooledConnection interface.

18. Type4 JDBC Driver

1865

Table 18-60: PooledConnection interface methods

(a) getConnection()
Function

Establishes a physical connection when one is needed and returns a Connection
object. There is a one-to-one correspondence between a Connection object and
a physical connection with the HiRDB server.

Format

public synchronized Connection getConnection() throws
SQLException

Arguments

None.

Return value

Connection object

Functional detail

This method establishes a physical connection when one is needed and returns a
Connection object. There is a one-to-one correspondence between a
Connection object and a physical connection with the HiRDB server. Once
established, a physical connection is not closed until this class object is closed.
This class object maintains the physical connection even if the close method is
executed on the Connection object. This physical connection can then be used
again the next time a connection request is issued by calling this method (the wait

Subsecti
on

Method Function

(a) getConnection() Establishes a physical connection when one is
needed and returns a Connection object. There
is a one-to-one correspondence between a
Connection object and a physical connection
with the HiRDB server.

(b) addConnectionEventListener(ConnectionEvent
Listener listener)

Registers a specified event listener so that
events that occur in this PooledConnection
object will be reported.

(c) close() Closes the physical connection.

(d) removeConnectionEventListener(ConnectionE
ventListener listener)

Deletes from the component list a specified
event listener that reports on events that occur in
this PooledConnection object.

18. Type4 JDBC Driver

1866

time specified in setLoginTimeout or the PDCONNECTWAITTIME client
environment definition does not apply).

Exceptions

The JDBC driver throws an SQLException in the following cases:

• A database access error occurred.

• Specified connection information is invalid.

(b) addConnectionEventListener(ConnectionEventListener listener)
Function

Registers a specified event listener so that events that occur in this
PooledConnection object will be reported.

Format

public synchronized void
addConnectionEventListener(ConnectionEventListener
listener)

Arguments

ConnectionEventListener listener

Component that implements the ConnectionEventListener interface,
so that if the connection is closed or an error occurs, that event will be
reported. Normally, this is a connection pool management program.

Return value

None.

Functional detail

This method registers a specified event listener so that events that occur in this
PooledConnection object will be reported. If the listener to be added is null,
this method does not register a listener.

This driver's method cannot be called from the event listener registered by the
addConnectionEventListener method. If an attempt is made to call the
driver's method, the driver might stop responding (due to a deadlock).

Exceptions

None.

(c) close()
Function

18. Type4 JDBC Driver

1867

Closes the physical connection.

Format

public synchronized void close()

Arguments

None.

Return value

None.

Functional detail

This method closes the physical connection for all pooled connections. The
method attempts to close the physical connection by executing
PooledConnection.close() even if a Connection object has been acquired
and the database is being accessed.

Exceptions

None.

(d) removeConnectionEventListener(ConnectionEventListener listener)
Function

Deletes from the component list a specified event listener that reports on events
that occur in this PooledConnection object.

Format

public synchronized void
removeConnectionEventListener(ConnectionEventListener
listener)

Arguments

ConnectionEventListenerlistener

Component registered as a listener by implementing the
ConnectionEventListener interface. Normally, this is a connection
pool management program.

Return value

None.

Exceptions

18. Type4 JDBC Driver

1868

None.

(2) Package and class names
The names of the package and class for using this interface directly are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbPooledConnection

18.6.4 XAConnection interface
For details and usage information about the methods provided by the XAConnection
interface, see the JDBC documentation. This section shows the XAConnection
interface methods that are supported by the JDBC driver.

(1) Methods
The following table lists the methods of the XAConnection interface.

Table 18-61: XAConnection interface methods

Legend:

--: None.

(2) Package and class names
The names of the package and class for using this interface directly are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbXAConnection

18.6.5 XADataSource interface
For details and usage information about the methods provided by the XADataSource
interface, see the JDBC documentation. This section shows the XADataSource
interface methods that are supported by the JDBC driver.

(1) Methods
The following table lists the methods of the XADataSource interface.

Table 18-62: XADataSource interface methods

Method Remarks

getXAResource() --

Method Remarks

getLoginTimeout() Returns the value specified by the setLoginTimeout method. If no
value was set by the setLoginTimeout method, this method returns 0.

18. Type4 JDBC Driver

1869

Legend:

--: None

(2) Package and class names
The names of the package and class for using this interface directly are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbXADataSource

18.6.6 XAResource interface
For details and usage information about the methods provided by the XAResource
interface, see the JDBC documentation. This section shows the XAResource interface
methods that are supported by the JDBC driver.

(1) Methods
The following table lists the methods of the XAResource interface.

getLogWriter() --

getXAConnection() For details about the priorities among the setting methods for
authorization identifiers and passwords, see 18.11 Connection
information priorities.

getXAConnection(String
username,String password)

If the user or password argument is the null value, this method
indicates that no authorization identifier or password was specified by
this argument.
If the password argument is a character string whose length is 0, this
method indicates that no password was specified.
For details about the setting value used when a password is not specified,
see 18.11 Connection information priorities.
If the user argument is a character string whose length is 0, this method
throws an SQLException.

setLoginTimeout(int seconds) This specification is used only for the physical connection time with the
HiRDB server. When 0 is specified or when the setLoginTimeout
method is not executed, the time that was specified in
PDCONNECTWAITTIME in the client environment definition becomes the
maximum wait time for the HiRDB server.
If a value outside the range 0-300 is specified, this method throws an
SQLException.

setLogWriter(PrintWriter
out)

--

Method Remarks

18. Type4 JDBC Driver

1870

Table 18-63: XAResource interface methods

Legend:

--: None

(2) Package and class names
The names of the package and class for using this interface directly are as follows:

Package name: JP.co.Hitachi.soft.HiRDB.JDBC

Class name: PrdbXAResource

18.6.7 XAException interface
The XAException interface directly uses the XAException class of the
javax.transaction.xa package. For details and usage instructions about the
methods provided by the XAException interface, see the related JDBC
documentation.

18.6.8 Unsupported interfaces
The JDBC2.0 Optional Package does not support the following interfaces:

• RowSet

• RowSetInternal

• RowSetListner

• RowSetMetaData

• RowSetReader

Method Remarks

commit(Xid xid, boolean
onePhase)

--

end(Xid xid, int flags) --

getTransactionTimeout() This method returns 0 unconditionally.

prepare(Xid xid) --

recover(int flag) --

rollback(Xid xid) --

setTransactionTimeout(int
seconds)

This method does not set the transaction timeout value. Instead, it
returns false to indicate that the transaction timeout time was not set
properly.

start(Xid xid, int flags) --

18. Type4 JDBC Driver

1871

18.7 Connection information setup and acquisition interface

The DataSource, ConnectionPoolDataSource, and XADataSource classes
provided by the JDBC2.0 Optional Package provide methods for setting and getting
connection information necessary for connection to the database, in addition to the
methods prescribed by the JDBC2.0 Optional Package specifications.

The following table lists the methods for setting and getting connection information.

Table 18-64: Methods for setting and getting connection information

Method Function

setDescription Sets the additional connection information needed for connection to the
database.

getDescription Gets the additional connection information needed for connection to the
database.

setDBHostName Sets the host name of the HiRDB to be connected.

getDBHostName Gets the host name of the HiRDB to be connected.

setJDBC_IF_TRC Sets whether or not a JDBC interface method trace is to be acquired.

getJDBC_IF_TRC Gets the setting information about whether or not a JDBC interface method
trace is to be acquired.

setTRC_NO Sets the number of entries in the JDBC interface method trace.

getTRC_NO Gets the number of entries in the JDBC interface method trace.

setUapName Sets a UAP name.

getUapName Gets the UAP name.

setUser Sets an authorization identifier for database connection.

getUser Gets the authorization identifier for database connection.

setPassword Sets a password for database connection.

getPassword Gets the password for database connection.

setXAOpenString Sets an XA open character string.

getXAOpenString Gets the XA open character string.

setXACloseString Sets an XA close character string.

getXACloseString Gets the XA close character string.

18. Type4 JDBC Driver

1872

setLONGVARBINARY_Access Sets the method of accessing data of the LONGVARBINARY type (a JDBC SQL
type corresponding to HiRDB's BLOB and BINARY data types).

getLONGVARBINARY_Access Gets the method of accessing data of the LONGVARBINARY type (a JDBC SQL
type corresponding to HiRDB's BLOB and BINARY data types).

setSQLInNum Sets the maximum number of input ? parameters in the SQL statements to be
executed.

getSQLInNum Gets the maximum number of input ? parameters in the SQL statements to be
executed.

setSQLOutNum Sets the maximum number of retrieval items for the SQL statements to be
executed.

getSQLOutNum Gets the maximum number of retrieval items for the SQL statements to be
executed.

setSQLWarningLevel Sets the warning retention level for warnings that occur during SQL execution.

getSQLWarningLevel Gets the warning retention level for warnings that occur during SQL execution.

setXALocalCommitMode Sets whether or not the auto-commit facility is to be enabled if a transaction
during an XA connection is not a distributed transaction.

getXALocalCommitMode Gets the setting information about whether or not the auto-commit facility is to
be enabled if a transaction during an XA connection is not a distributed
transaction.

setSQLWarningIgnore Sets whether or not warnings returned from the database are to be discarded by
the Connection class.

getSQLWarningIgnore Gets the setting information about whether or not warnings returned from the
database are to be discarded by the Connection class.

setHiRDBCursorMode Sets whether or not objects of the ResultSet class are to be validated when
HiRDB executes commit processing.

getHiRDBCursorMode Gets the setting information about whether or not objects of the ResultSet
class are to be validated when HiRDB executes commit processing.

setNotErrorOccurred Sets whether or not the calling of
ConnectionEventListener.connectionErrorOccurred is to be
suppressed.

getNotErrorOccurred Gets the setting information about whether or not the calling of
ConnectionEventListener.connectionErrorOccurred has been
suppressed.

setEnvironmentVariables Sets client environment definitions for HiRDB.

getEnvironmentVariables Gets the client environment definitions for HiRDB that were set.

Method Function

18. Type4 JDBC Driver

1873

setEncodeLang Sets the name of the conversion character set for data conversion.

getEncodeLang Gets the name of the conversion character set for data conversion that was set.

setMaxBinarySize Sets the maximum data size for retrieval of data of the LONGVARBINARY type (a
JDBC SQL type).

getMaxBinarySize Gets the maximum data size for retrieval of data of the LONGVARBINARY type (a
JDBC SQL type).

setStatementCommitBehav
ior

Sets whether or not statement objects are to remain valid after a transaction is
committed.

getStatementCommitBehav
ior

Gets the setting information about whether or not statement objects are to
remain valid after a transaction is committed.

setLONGVARBINARY_Access
Size

Sets the LONGVARBINARY (a JDBC SQL type) data length for one access request
to the HiRDB server.

getLONGVARBINARY_Access
Size

Gets the LONGVARBINARY (a JDBC SQL type) data length for one access
request to the HiRDB server.

setLONGVARBINARY_TruncE
rror

Sets whether or not an exception is to be thrown if truncation occurs during
acquisition of data of the LONGVARBINARY type (a JDBC SQL type).

getLONGVARBINARY_TruncE
rror

Gets the setting information about whether or not an exception is to be thrown
if truncation occurs during acquisition of data of the LONGVARBINARY type (a
JDBC SQL type).

setStatementCloseBehavi
or

Sets whether preprocessing results are to be ignored during execution of the
close method of Statement (Statement, PreparedStatement, and
CallableStatement classes).

getStatementCloseBehavi
or

Gets the setting information about whether preprocessing results are ignored
during execution of the close method of Statement (Statement,
PreparedStatement, and CallableStatement classes).

setHiRDBINI Sets a directory for the HiRDB.INI file.

getHiRDBINI Gets the directory for the HiRDB.INI file.

setBatchExceptionBehavi
or

Sets whether a JDBC standard-compliant update count is to be set as the return
value of the getUpdateCounts method of
java.sql.BatchUpdateException.

getBatchExceptionBehavi
or

Gets the setting information about whether a JDBC standard-compliant update
count is set as the return value of the getUpdateCounts method of
java.sql.BatchUpdateException.

Method Function

18. Type4 JDBC Driver

1874

18.7.1 setDescription
(a) Function

Sets the additional connection information needed for connection to the database.

(b) Format

public void setDescription (String description) throws
SQLException

(c) Arguments
String description

Specifies additional connection information. If the null value is specified, the
current additional connection information that had been set by this method is
invalidated and the settings are returned to their initial status.

(d) Return value
None.

(e) Functional detail
The following table shows the additional connection information that can be set with
this method.

Setting Setting details Setting required?

HiRDB port number Sets the HiRDB port number, as a character string.
For details about the priorities among the setting methods
for the HiRDB port number, see 18.11 Connection
information priorities.

Optional

18. Type4 JDBC Driver

1875

Note 1:

Specification examples are shown below. In these examples ds represents the
name of a variable that has reference to the PrdbDataSource class's instance.

 represents a single-byte space character.

Example 1: When specifying the HiRDB port number

ds.setDescription ("22200");

Example 2: When the path of the environment variable group name is
C:\HiRDB_P\Client\HiRDB.ini

ds.setDescription
("@HIRDBENVGRP=C:\\HiRDB_P\\Client\\HiRDB.ini");

Example 3: When the path of the environment variable group name is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini

ds.setDescription

Environment variable
group name of HiRDB
client

Sets the environment variable group name of the HiRDB
client. The name is expressed as an absolute path name
that follows @HIRDBENVGRP=. Note the following points:
• If no value is set following the equal sign, as in

@HIRDBENVGRP=,, the JDBC driver assumes that
there is no specification for this item.

• The environment variable group name is case
sensitive. Also, the environment variable group name
depends on the OS.

• If the environment variable group name contains a
single-byte space or a single-byte at mark (@), you
must enclose the name in single-byte double quotation
marks ("). When an environment variable group name
is enclosed in single-byte double quotation marks, any
characters following the concluding single-byte
double quotation mark through the end of the
character string are ignored. An environment variable
group name containing a single-byte double quotation
mark or a single-byte comma cannot be specified.

• For Windows, an environment variable group name
that was specified with the HiRDB client environment
variable registration tool cannot be specified.

Optional

HiRDB environment
variable group identifier

Sets the HiRDB environment variable group identifier, as
four alphanumeric characters.

Required during XA
connection

Setting Setting details Setting required?

18. Type4 JDBC Driver

1876

("@HIRDBENVGRP=\"C:\\Program Files\\HITACHI\\HiRDB\HiR
DB.ini\"");

Example 4: When the path of the environment variable group name is /
HiRDB_P/Client/HiRDB.ini

ds.setDescription ("@HIRDBENVGRP=/HiRDB_P/Client/
HiRDB.ini");

Example 5: When a HiRDB environment variable group identifier is specified
during an XA connection

ds.setDescription ("HDB1");ds.setXAOpenString
("HDB1+C:\\Program Files\\HITACHI\\HiRDB\\HiRDB.ini");

Note 2:

Do not include single-byte spaces in an environment variable group name.
Examples of specification errors are shown below:

Note: represents a single-byte space character.

(f) Exceptions
When an environment variable group name begins with a single-byte at mark (@) and
the information specified following the at mark includes a single-byte space, this
method throws an SQLException.

18.7.2 getDescription
(a) Function

Gets the additional connection information needed for connection to the database.

(b) Format

public String getDescription() throws SQLException

@ HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP =/HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP= /HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini

18. Type4 JDBC Driver

1877

(c) Arguments
None.

(d) Return value
String

Additional connection information (if this information has not been specified, the
method returns the null value)

(e) Functional detail
Returns the additional connection information needed for connection to the database,
as was set by the setDescription method.

(f) Exceptions
None.

18.7.3 setDBHostName
(a) Function

Sets the name of the HiRDB host to be connected.

(b) Format

public void setDBHostName (String db_host_name) throws
SQLException

(c) Arguments
String db_host_name

Sets a HiRDB host name.

If the null value is specified, the current host name that had been set with this
method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets the host name of the HiRDB to be connected.

For details about the priorities among the settings methods for the HiRDB host name,
see 18.11 Connection information priorities.

(f) Exceptions
None.

18. Type4 JDBC Driver

1878

18.7.4 getDBHostName
(a) Function

Gets the name of the HiRDB host to be connected.

(b) Format

public String getDBHostName() throws SQLException

(c) Arguments
None.

(d) Return value
String

HiRDB host name (if this information has not been specified, the method returns
the null value)

(e) Functional detail
Returns the host name of the HiRDB to be connected, as was set with the
setDBHostName method.

(f) Exceptions
None.

18.7.5 setJDBC_IF_TRC
(a) Function

Sets whether or not a JDBC interface method trace is to be acquired.

(b) Format

public void setJDBC_IF_TRC (boolean flag) throws SQLException

(c) Arguments
boolean flag

Specifies whether or not a trace is to be acquired:

true: Acquire a trace.

false: Do not acquire a trace.

(d) Return value
None.

18. Type4 JDBC Driver

1879

(e) Functional detail
Sets whether or not a JDBC interface method trace is to be acquired.

The default value when this method is not called is false (trace is not acquired). You
can use the setLogWriter method in a separate operation to set the effective output
destination. For details about the JDBC interface method trace, see 18.14 JDBC
interface method trace.

(f) Exceptions
None.

(g) Note
Whether or not a JDBC interface method trace is to be acquired cannot be set
separately for each instance. The setting that is set by this method affects all
DataSource, ConnectionPoolDataSource, and XADataSource instances in
existence, both when the setting is set and after the setting has been set.

18.7.6 getJDBC_IF_TRC
(a) Function

Gets setting information about whether or not a JDBC interface method trace is to be
acquired.

(b) Format

public boolean getJDBC_IF_TRC() throws SQLException

(c) Arguments
None.

(d) Return value
boolean

This is the setting information about whether or not a trace is to be acquired:

true: A trace is acquired.

false: A trace is not acquired.

(e) Functional detail
Returns the setting information about whether or not a trace is to be acquired, as was
set by the setJDBC_IF_TRC method.

For details about the JDBC interface method trace, see 18.14 JDBC interface method
trace.

18. Type4 JDBC Driver

1880

(f) Exceptions
None.

18.7.7 setTRC_NO
(a) Function

Sets the number of entries in the JDBC interface method trace.

(b) Format

public void setTRC_NO (int trc_no) throws SQLException

(c) Arguments
int trc_no

Specifies the number of entries in the JDBC interface method trace.

(d) Return value
None.

(e) Functional detail
Sets the number of entries in the JDBC interface method trace, as a value in the range
from 10 to 1,000.

When this method is not called, the default number of entries in the JDBC interface
method trace is 500.

For details about the JDBC interface method trace, see 18.14 JDBC interface method
trace.

(f) Exceptions
If a value outside the range from 10 to 1,000 is set, this method throws an
SQLException.

18.7.8 getTRC_NO
(a) Function

Gets the number of entries in the JDBC interface method trace.

(b) Format

public int getTRC_NO() throws SQLException

(c) Arguments
None.

18. Type4 JDBC Driver

1881

(d) Return value
int

Number of JDBC interface method trace entries (if this information has not been
specified, the method returns the default value (500))

(e) Functional detail
Returns the number of entries in the JDBC interface method trace, as was set by the
setTRC_NO method.

For details about the JDBC interface method trace, see 18.14 JDBC interface method
trace.

(f) Exceptions
None.

18.7.9 setUapName
(a) Function

Sets a UAP name.

(b) Format

public void setUapName (String uap_name) throws SQLException

(c) Argument
String uap_name

Specifies a UAP name.

If the null value is specified, the current UAP name that had been set with this
method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets a UAP name.

The specified UAP name is used for the following purposes:

• In the output information to each type of trace information

• In the UAP identification information that is output when the -d prc option is
specified in the pdls command

In the following cases, the JDBC driver assumes that no UAP name has been set by

18. Type4 JDBC Driver

1882

this method (for details about how the JDBC driver handles the situation when there is
no setting, see 18.11 Connection information priorities):

• When the null value is specified in the uap_name argument

• When a character string whose length is 0 or a character string consisting of only
single-byte spaces is specified in the uap_name argument

(f) Exceptions
None.

(g) Notes
The UAP specified by this method is encoded using the conversion character set
specified by the setEncodeLang method, and the first 30 bytes of the encoded UAP
name are transferred to the HiRDB server (the name is truncated after 30 bytes even if
the 30th byte is only part of a character). The UAP name that can be obtained by the
HiRDB server is only the first 30 bytes after encoding.

18.7.10 getUapName
(a) Function

Gets the UAP name.

(b) Format

public String getUapName() throws SQLException

(c) Arguments
None.

(d) Return value
String

UAP name

(e) Functional detail
Returns the UAP name that was set with the setUapName method. If a UAP name has
not been set, HiRDB_Type4_JDBC_Driver is returned.

(f) Exceptions
None.

18.7.11 setUser
(a) Function

Sets an authorization identifier for database connection.

18. Type4 JDBC Driver

1883

(b) Format

public void setUser (String user) throws SQLException

(c) Arguments
String user

Specifies an authorization identifier.

If the null value is specified, the current authorization identifier that had been set
by this method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets an authorization identifier.

When one of the following methods is executed, the authorization identifier and
password that were specified with the setUser and setPassword methods are used
in establishing a physical connection to the database:

• getConnection method (no arguments) of the DataSource interface

• getPooledConnection method of the ConnectionPoolDataSource
interface

• getXAConnection method of the XADataSource interface

If the user argument is the null value, the JDBC driver assumes that no authorization
identifier has been set by this method.

For details about how the JDBC driver handles the situation when there is no setting,
see 18.11 Connection information priorities.

(f) Exceptions
If the length of the character string specified by the user argument is 0, this method
throws an SQLException.

18.7.12 getUser
(a) Function

Gets the authorization identifier for database connection.

(b) Format

String void getUser() throws SQLException

18. Type4 JDBC Driver

1884

(c) Arguments
None.

(d) Return value
String

Authorization identifier

(e) Functional detail
Returns the authorization identifier that was set by the setUser method. If an
authorization identifier has not been set, the null value is returned.

(f) Exceptions
None.

18.7.13 setPassword
(a) Function

Sets a password for database connection.

(b) Format

public void setPassword (String password) throws SQLException

(c) Arguments
String password

Specifies a password.

If the null value is specified, the current password that had been set by this method
is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets a password.

When one of the following methods is executed, the authorization identifier and
password that were specified with the setUser and setPassword methods are used
in establishing a physical connection to the database:

• getConnection method (no arguments) of the DataSource interface

• getPooledConnection method of the ConnectionPoolDataSource
interface

18. Type4 JDBC Driver

1885

• getXAConnection method of the XADataSource interface

If the password argument is the null value or a character string whose length is 0, the
JDBC driver assumes that no password has been set by this method.

For details about how the JDBC driver handles the situation when there is no setting,
see 18.11 Connection information priorities.

(f) Exceptions
None.

18.7.14 getPassword
(a) Function

Gets the password for database connection.

(b) Format

public String getPassword() throws SQLException

(c) Arguments
None.

(d) Return value
String

Password

(e) Functional detail
Returns the password that was set by the setPassword method.

(f) Exceptions
None.

18.7.15 setXAOpenString
(a) Function

Sets an XA open character string.

(b) Format

public void setXAOpenString (String xa_string) throws
SQLException

18. Type4 JDBC Driver

1886

(c) Arguments
String xa_string

Specifies an XA open character string.

If the null value is specified, the current XA open character string that had been
set by this method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets an XA open character string. This method is provided by the XADataSource
interface only. Specify the XA open character string in the following format:

Format

HiRDB-environment-variable-group-identifier +
environment-variable-group-name-of-HiRDB-client

Specify the HiRDB environment variable group identifier that was set by the
setDescription method. Unlike when the environment variable group name of the
HiRDB client is specified by the setDescription method, in this case the
environment variable group name of the HiRDB client doe not need to be enclosed in
quotation marks even if the name includes a single-byte at mark (@) or a single-byte
space.

Setting example 1

When the path of the environment variable group name of the HiRDB client is /
HiRDB/HiRDB.ini

ds.setDescription("HDB1");
ds.setXAOpenString("HDB1+/HiRDB/HiRDB.ini");

Setting example 2

When the path of the environment variable group name of the HiRDB client is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini (is a single-byte
space)

ds.setDescription("HDB1");
ds.setXAOpenString("HDB1+C:\\Program Files\\HITACHI\\HiRDB
\\HiRDB.ini");

18. Type4 JDBC Driver

1887

(f) Exceptions
None.

18.7.16 getXAOpenString
(a) Function

Gets the XA open character string.

(b) Format

public String getXAOpenString() throws SQLException

(c) Arguments
None.

(d) Return value
String

XA open character string (if this information has not been specified, the method
returns the null value)

(e) Functional detail
Returns the XA open character string that was set by the setXAOpenString method.
This method is provided by the XADataSource interface only.

(f) Exceptions
None.

18.7.17 setXACloseString
(a) Function

Sets an XA close character string.

(b) Format

public void setXACloseString (String xa_string) throws
SQLException

(c) Arguments
String xa_string

Specifies an XA close character string.

If the null value is specified, the current XA close character string that had been
set by this method is invalidated, and the setting is returned to its initial status.

18. Type4 JDBC Driver

1888

(d) Return value
None.

(e) Functional detail
Sets an XA close character string. This method is provided by the XADataSource
interface only.

(f) Exceptions
None.

18.7.18 getXACloseString
(a) Function

Gets the XA close character string.

(b) Format

public String getXACloseString() throws SQLException

(c) Arguments
None.

(d) Return value
String

XA close character string (if this information has not been specified, the method
returns the null value)

(e) Functional detail
Returns the XA close character string that was set by the setXACloseString
method. This method is provided by the XADataSource interface only.

(f) Exceptions
None.

18.7.19 setLONGVARBINARY_Access
(a) Function

Sets the method of accessing data of the LONGVARBINARY type (a JDBC SQL type
corresponding to HiRDB's BLOB and BINARY data types).

(b) Format

public void setLONGVARBINARY_Access (String mode) throws
SQLException

18. Type4 JDBC Driver

1889

(c) Arguments
String mode

Specifies the method of accessing data of the LONGVARBINARY type (a JDBC
SQL type corresponding to HiRDB's BLOB and BINARY data types).

For this method, the value specified in the argument is not case sensitive.

REAL

Access the data with real data.

LOCATOR

Access the data using HiRDB's locator facility.

If the null value is specified, the current data access method that had been set is
invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets the method for accessing data of the LONGVARBINARY type (a JDBC SQL type
corresponding to HiRDB's BLOB and BINARY data types). The default value when this
method is not called is REAL.

Setting a value with this method is equivalent to setting the LONGVARBINARY_ACCESS
property, which is shown in 18.2.2(2) User properties.

(f) Exceptions
If a value other than REAL or LOCATOR is specified in the mode argument, this method
throws a java.sql.SQLException.

(g) Notes
See 18.2.2(2)(i) LONGVARBINARY_ACCESS.

18.7.20 getLONGVARBINARY_Access
(a) Function

Gets the method of accessing data of the LONGVARBINARY type (a JDBC SQL type
corresponding to HiRDB's BLOB and BINARY data types).

(b) Format

public String getLONGVARBINARY_Access()

18. Type4 JDBC Driver

1890

(c) Arguments
None.

(d) Return value
String

Information about the method used to access data of the LONGVARBINARY JDBC
SQL type (HiRDB's BLOB and BINARY data types)

REAL

The data is accessed using real data.

LOCATOR

The data is accessed using HiRDB's locator facility.

(e) Functional detail
Returns the information that was set by the setLONGVARBINARY_Access method.

(f) Exceptions
None.

18.7.21 setSQLInNum
(a) Function

Sets the maximum number of input ? parameters in the SQL statements to be executed.

(b) Format

public void setSQLInNum (int inNum) throws SQLException

(c) Arguments
int inNum

Specifies the maximum number of input ? parameters in the SQL statements to
be executed. The specification value range is from 1 to 30,000.

(d) Return value
None.

(e) Functional detail
Sets the number of input ? parameter information items to be retrieved during SQL
preprocessing.

If the actual number of ? parameters is greater than the specification value of this
method, the input ? parameter information is retrieved after SQL preprocessing. The

18. Type4 JDBC Driver

1891

default value when this method is not called is 300.

At the time of database connection, the value specified by this method becomes the
value of the HiRDB_for_Java_SQL_IN_NUM property, which is shown in 18.2.2(2)
User properties.

(f) Exceptions
If a value outside the range from 1 to 30,000 is specified in the argument, this method
throws an SQLException.

(g) Notes
If the application does not execute SQL statements that have input ? parameters, you
should specify 1 as the argument value.

18.7.22 getSQLInNum
(a) Function

Gets the maximum number of input ? parameters in the SQL statements to be
executed.

(b) Format

public int getSQLInNum() throws SQLException

(c) Arguments
None.

(d) Return value
int

Maximum number of input ? parameters in the SQL statements to be executed, as
set by setSQLInNum (if this information has not been specified, the method
returns the default value (300))

(e) Functional detail
Gets the maximum number of input ? parameters in the SQL statements to be
executed, as set by the setSQLInNum method.

(f) Exceptions
None.

18.7.23 setSQLOutNum
(a) Function

Sets the maximum number of retrieval items for the SQL statements to be executed.

18. Type4 JDBC Driver

1892

(b) Format

public void setSQLOutNum (int outNum) throws SQLException

(c) Arguments
int outNum

Specifies the maximum number of retrieval items for the SQL statements to be
executed. The specification value range is from 1 to 30,000.

(d) Return value
None.

(e) Functional detail
Sets the maximum number of retrieval items for the SQL statements to be executed.

This specification becomes the number of output items to be acquired during SQL
preprocessing. The default value when this method is not called is 300.

If the actual number of output items is greater than the specification value of this
method, the output item information is acquired after SQL preprocessing.

The value specified by this method becomes the value of the
HiRDB_for_Java_SQL_OUT_NUM property, which is shown in 18.2.2(2) User
properties.

(f) Exceptions
If the specified value is outside the range from 1 to 30,000, this method throws an
SQLException.

(g) Notes
When there are no retrieval items, you should specify 1 as the argument value.

18.7.24 getSQLOutNum
(a) Function

Gets the maximum number of retrieval items for the SQL statements to be executed.

(b) Format

public int getSQLOutNum() throws SQLException

(c) Arguments
None.

18. Type4 JDBC Driver

1893

(d) Return value
int

Maximum number of retrieval items for the SQL statements to be executed, as set
by setSQLOutNum (if this information has not been specified, the method returns
the default value (300))

(e) Functional detail
Gets the maximum number of retrieval items for the SQL statements to be executed,
as set by the setSQLOutNum method.

(f) Exceptions
None.

18.7.25 setSQLWarningLevel
(a) Function

Sets the warning retention level for warnings that occur during SQL execution.

(b) Format

public void setSQLWarningLevel (String warningLevel) throws
SQLException

(c) Arguments
String warningLevel

Specifies the retention level for the warning information that occurs during SQL
execution.

The following values can be specified (for details about the relationships between
the specification values and the warnings to be retained, see 18.4.12(2)(b) Issuing
conditions for SQLWarning objects):

• IGNORE

• SQLWARN

• ALLWARN

For this method, the value specified in the argument is not case sensitive. If the
null value is specified, the current warning retention level that had been set by this
method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

18. Type4 JDBC Driver

1894

(e) Functional detail
Sets the retention level for the warning information that occurs during SQL execution.
The default value when this method is not called is SQLWARN.

The value specified by this method becomes the value of the
HiRDB_for_Java_SQLWARNING_LEVEL property, which is shown in 18.2.2(2) User
properties.

(f) Exceptions
If the argument is a value other than the specification values shown above, this method
throws an SQLException.

18.7.26 getSQLWarningLevel
(a) Function

Gets the warning retention level that was set by the setSQLWarningLevel method.

(b) Format

public String getSQLWarningLevel() throws SQLException

(c) Arguments
None.

(d) Return value
String

This is the warning retention level that was set by the setSQLWarningLevel
method. For details about the return value and the warnings that are retained, see
18.4.12(2)(b) Issuing conditions for SQLWarning objects.

(e) Functional detail
Returns the information that was set by the setSQLWarningLevel method. If no
information has been set, the default value SQLWARN is returned.

(f) Exceptions
None.

18.7.27 setXALocalCommitMode
(a) Function

Sets whether or not the auto-commit facility is to be enabled if a transaction during an
XA connection is not a distributed transaction.

18. Type4 JDBC Driver

1895

(b) Format

public void setXALocalCommitMode (boolean autoCommitMode)
throws SQLException

(c) Arguments
boolean autoCommitMode

Specifies the auto-commit facility:

true: Enable the auto-commit facility.

false: Disable the auto-commit facility.

(d) Return value
None.

(e) Functional detail
Sets the auto-commit facility during an XA connection. The default value is false
(the auto-commit facility is disabled). The table below shows the relationships
between this method's specification values and the JDBC driver operations.

(f) Exceptions
None.

Specification value Condition JDBC driver operation

true Auto-commit default during Connection object
generation

Enables auto-commit.

Transaction termination by the con.commit or
con.rollback method

Accepts normally.

setAutoCommit(true) execution Enables auto-commit.

setAutoCommit(false) execution Disables auto-commit.

false (default) Auto-commit default during Connection object
generation

Disables auto-commit.

Transaction termination by the con.commit or
con.rollback method

SQLException

setAutoCommit(true) execution SQLException

setAutoCommit(false) execution Normal termination (the
driver does nothing because
auto-commit cannot be
enabled)

18. Type4 JDBC Driver

1896

18.7.28 getXALocalCommitMode
(a) Function

Gets the setting information about whether or not the auto-commit facility is to be
enabled if a transaction during an XA connection is not a distributed transaction.

(b) Format

public boolean getXALocalCommitMode() throws SQLException

(c) Arguments
None.

(d) Return value
boolean

This is the setting for the auto-commit facility:

true: The auto-commit facility is enabled.

false: The auto-commit facility is disabled.

(e) Functional detail
Gets the setting for the auto-commit facility.

(f) Exceptions
None.

18.7.29 setSQLWarningIgnore
(a) Function

Sets whether or not warnings returned from the database are to be discarded by the
Connection class.

(b) Format

public void setSQLWarningIgnore (boolean mode)

(c) Arguments
boolean mode

Specifies whether warnings are to be discarded.

true: Discard warnings.

false: Retain warnings.

18. Type4 JDBC Driver

1897

(d) Return value
None.

(e) Functional detail
This method specifies whether warnings that occur in the Connection class are to be
discarded. The default value is false (the warnings are to be retained).

Using this method is equivalent to specifying the SQLWARNING_IGNORE item
described in 18.2.2(1) URL syntax and the SQLWARNING_IGNORE property described
in 18.2.2(2) User properties.

For details about the relationships between the specification values and the warnings
to be retained, see 18.4.12(2)(b) Issuing conditions for SQLWarning objects.

(f) Exceptions
None.

18.7.30 getSQLWarningIgnore
(a) Function

Gets the setting information about whether or not warnings returned from the database
are to be discarded by the Connection class.

(b) Format

public boolean getSQLWarningIgnore()

(c) Arguments
None.

(d) Return value
boolean

This is the setting information about whether or not warnings are to be discarded:

true: Discards warnings.

false: Retains warnings.

(e) Functional detail
This method acquires whether warnings that occur in the Connection class are to be
discarded.

The method returns the information specified by the setSQLWarningIgnore
method. If this information has not been specified, the method returns the default value
false.

18. Type4 JDBC Driver

1898

For details about the relationships between the return value and the warnings to be
retained, see 18.4.12(2)(b) Issuing conditions for SQLWarning objects.

(f) Exceptions
None.

18.7.31 setHiRDBCursorMode
(a) Function

Set whether or not objects of the ResultSet class are to be validated when HiRDB
executes commit processing.

(b) Format

public void setHiRDBCursorMode (boolean mode)

(c) Arguments
boolean mode

Specifies one of the following values:

true: Validate objects of the ResultSet class after commit processing. When
true is specified, objects of the following classes also become valid after commit
processing:

• Statement class

• PreparedStatement class

• CallableStatement class

false: Invalidate objects of the ResultSet class after commit processing.

(d) Return value
None.

(e) Functional detail
Sets whether or not objects of the ResultSet class are to be validated when HiRDB
executes commit processing. The default value if this method cannot be called is
false.

If an invalidated ResultSet object executes an operation other than close method
calling, this method throws an SQLException.

Executing this method is the same as setting the HIRDB_CURSOR item, which is shown
in 18.2.2(1) URL syntax.

18. Type4 JDBC Driver

1899

(f) Exceptions
None.

(g) Notes
See 18.2.2(1)(c) Notes about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

18.7.32 getHiRDBCursorMode
(a) Function

Gets the setting information about whether or not objects of the ResultSet class are
to be validated when HiRDB executes commit processing.

(b) Format

public boolean getHiRDBCursorMode()

(c) Arguments
None.

(d) Return value
boolean

This is the setting information about whether or not objects of the ResultSet
class are to be validated when HiRDB executes commit processing:

true: Objects of the ResultSet class are valid after commit processing.

false: Objects of the ResultSet class become invalid after commit processing.

(e) Functional detail
Gets the setting information about whether or not objects of the ResultSet class are
to be validated when HiRDB executes commit processing.

(f) Exceptions
None.

(g) Notes
None.

18.7.33 setNotErrorOccurred
(a) Function

Sets whether or not the calling of
ConnectionEventListener.connectionErrorOccurred is to be suppressed.

18. Type4 JDBC Driver

1900

(b) Format

public void setNotErrorOccurred (boolean mode)

(c) Arguments
boolean mode

Specifies whether or not occurrences of connectionErrorOccurred are to be
suppressed:

true: Suppress the calling of connectionErrorOccurred.

false: Do not suppress the calling of connectionErrorOccurred (default).

(d) Return value
None.

(e) Functional detail
Specifies the setting for suppressing the calling of
ConnectionEventListener.connectionErrorOccurred, which is called
when an error occurs while ConnectionPoolDataSource or XADataSource is
being used.

If this method is not set, connectionErrorOccurred is called. Normally, do not set
this method or set false.

(f) Exceptions
None.

18.7.34 getNotErrorOccurred
(a) Function

Gets the setting information about whether or not the calling of
ConnectionEventListener.connectionErrorOccurred is to be suppressed.

(b) Format

public boolean getNotErrorOccurred()

(c) Arguments
None.

(d) Return value
boolean

18. Type4 JDBC Driver

1901

This is the setting information about whether or not
ConnectionEventListener.connectionErrorOccurred is called:

true: connectionErrorOccurred is not called.

false: connectionErrorOccurred is called (default).

(e) Functional detail
Gets the setting information about whether or not
ConnectionEventListener.connectionErrorOccurred is to be called when a
fatal connection error occurs while ConnectionPoolDataSource or
XADataSource is being used. If no setting information has been set, this method
returns false.

(f) Exceptions
None.

18.7.35 setEnvironmentVariables
(a) Function

Sets client environment definitions for HiRDB.

(b) Format

public void setEnvironmentVariables (String variables) throws
SQLException

(c) Arguments
String variables

Specifies HiRDB client environment definitions in the format shown below:

Format

"variable-name=value;variable-name=value;...;variable-name=value"

A specification example is shown below:

Specification example

setEnvironmentVariables
("PDFESHOST=FES1;PDCWAITTIME=0");

If the null value is specified, the current client environment definitions that had
been set by this method are invalidated, and the settings are returned to their initial

18. Type4 JDBC Driver

1902

status.

(d) Return value
None.

(e) Functional detail
This method specifies HiRDB client environment definitions.

For details about the client environment definitions that can be specified by the JDBC
driver, see 18.10 Supported client environment definitions. If a client environment
definition that cannot be specified by the JDBC driver is specified for a variable, the
specification is ignored. Note that the variable names are case sensitive.

For details about the priorities among connection information items that have multiple
setting methods, see 18.11 Connection information priorities.

This method does not check each specification of the client environment definitions.
The specification values are checked during connection to the database, and an
SQLException is thrown if an error is detected.

(f) Exceptions
None.

18.7.36 getEnvironmentVariables
(a) Function

Gets the client environment definitions for HiRDB.

(b) Format

String void getEnvironmentVariables()

(c) Arguments
None.

(d) Return value
String

HiRDB client environment definitions (if this information has not been specified,
the method returns the null value)

(e) Functional detail
Gets the client environment definitions of HiRDB.

(f) Exceptions
None.

18. Type4 JDBC Driver

1903

18.7.37 setEncodeLang
(a) Function

Sets the name of the conversion character set for data conversion.

(b) Format

public void setEncodeLang (String encode_lang) throws
SQLException

(c) Arguments
String encode_lang

Specifies the name of the conversion character set. You must select a name from
the list of encodings shown under Internationalization in the JavaTM 2 SDK,
Standard Edition documentation.

The table below shows the HiRDB character encodings and the corresponding
conversion character sets.

Note:

If the specified conversion character set name is not in compliance with the
applicable name shown in this table, the operation of the JDBC driver is not
guaranteed.

#

The specification of SJIS or MS932 depends on the handling of Windows
special characters in the application.

When OFF is specified, the JDBC driver assumes that the applicable conversion
character set name shown in this table was specified. If the HiRDB character

HiRDB character encoding
(character encoding set with pdntenv or

pdsetup command)

Conversion character set to be specified

lang-c ISO8859_1

sjis SJIS or MS932#

ujis EUC_JP

utf-8 UTF-8

chinese EUC_CN

chinese-gb18030 GB18030

18. Type4 JDBC Driver

1904

encoding is sjis, the conversion character set determined by the OS running the
JDBC driver is as follows.

In UNIX: SJIS

In Windows: MS932

If the null value is specified, the current conversion character set name that had
been set by this method is invalidated, and the setting is returned to its initial
status.

Note that the specification values are case sensitive (except for OFF).

(d) Return value
None.

(e) Functional detail
The conversion character set that was specified by this method is used for carrying out
the following data conversions:

• Conversion to character data (Unicode) when the application uses String to get
data that was retrieved from HiRDB

• Conversion to binary data when the application uses String to set a value in
HiRDB

If this method is not specified, the JDBC driver converts characters using the
applicable conversion character set shown in the table above. However, the JDBC
driver uses the default character conversion set of the Java Virtual Machine to convert
the following items:

• Specification value of setUapName

• Authorization identifier and password (values specified by setUser,
setPassword, and getConnection)

• Specification values of client environment definitions specified by
setEnvironmentVariables

• Specification values of environment variables specified by the environment
variable group name of the HiRDB client

(f) Exceptions
If the specified conversion character set is not supported by the Java Virtual Machine,
this method throws an SQLException.

18.7.38 getEncodeLang
(a) Function

Gets the conversion character set for data conversion name that was set.

18. Type4 JDBC Driver

1905

(b) Format

public String getEncodeLang()

(c) Arguments
None.

(d) Return value
String

Conversion character set name (if a conversion character set name has not been
specified by the setEncodeLang method, the method returns the null value)

(e) Functional detail
Returns the conversion character set name that was set by the setEncodeLang
method.

(f) Exceptions
None.

18.7.39 setMaxBinarySize
(a) Function

Sets the maximum data size for retrieval of data of the LONGVARBINARY type (a JDBC
SQL type).

(b) Format

public void setMaxBinarySize (int size) throws SQLException

(c) Arguments
int size

Specifies the maximum data size, in the range from 0 to 2,147,483,647.

If 0 is specified, the defined length of the data to be retrieved is set as the
maximum size.

(d) Return value
None.

(e) Functional detail
Sets the maximum data size (bytes) when data of the LONGVARBINARY JDBC SQL
type is retrieved.

18. Type4 JDBC Driver

1906

When the JDBC driver retrieves LONGVARBINARY data, it allocates memory of the
defined length because it cannot recognize the actual data length until it retrieves the
data. Consequently, if the JDBC driver retrieves values from a column that is very
large, such as 2,147,483,647 bytes (the maximum size for HiRDB's BINARY and BLOB
data types), it attempts to allocate memory space of the defined length (2,147,483,647
bytes) as the defined length. Depending on the execution environment, this may cause
a memory shortage.

You should use this method to specify the maximum length of the data that is actually
stored. If the defined length of the BINARY and BLOB data to be retrieved is larger than
the size specified by this method, the JDBC driver truncates the retrieved data to the
specified size. When data has been truncated, the JDBC driver receives a warning from
the HiRDB server when the next method of ResultSet is executed. The JDBC driver
responds to the received warning by throwing an SQLException or issuing (or
ignoring) an SQLWarning, as specified by the setLONGVARBINARY_TruncError
value.

If a maximum data size has not been set by this method, the defined length of the data
to be retrieved is used as the maximum data size.

(f) Exceptions
If a negative value is specified, this method throws an SQLException.

(g) Notes
Any value specified for this method is not effective when LOCATOR is specified in the
mode argument of the setLONGVARBINARY_Access method. In such a case, the
JDBC driver allocates an area based on the actual data length and retrieves all of the
data.

18.7.40 getMaxBinarySize
(a) Function

Gets the maximum data size for retrieval of data of the LONGVARBINARY type (a JDBC
SQL type).

(b) Format

public int getMaxBinarySize()

(c) Arguments
None.

(d) Return value
int

18. Type4 JDBC Driver

1907

Value specified as the maximum data size

(e) Functional detail
Returns the maximum data size for retrieving data of the LONGVARBINARY type (a
JDBC SQL type), as set by the setMaxBinarySize method.

If a maximum data size has not been set by the setMaxBinarySize method, 0 is
returned.

(f) Exceptions
None.

18.7.41 setStatementCommitBehavior
(a) Function

Sets whether or not statement objects are to remain valid after a transaction is
committed. Here, statement objects refer to the following classes:

• Statement class

• PreparedStatement class

• CallableStatement class

(b) Format

public void setStatementCommitBehavior (boolean mode) throws
SQLException

(c) Arguments
boolean mode

Specifies whether statement objects are to be valid both before and after a
transaction is terminated by commit processing:

true: Validate statement objects after a transaction is completed.

false: Invalidate statement objects after a transaction is completed.

(d) Functional detail
Sets whether or not statement objects are to remain valid after a transaction is
committed. The default when this method is not called is true.

Executing this method is the same as setting the STATEMENT_COMMIT_BEHAVIOR
item, which is shown in 18.2.2(1) URL syntax.

(e) Exceptions
None.

18. Type4 JDBC Driver

1908

(f) Notes
See 18.2.2(1)(c) Notes about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

18.7.42 getStatementCommitBehavior
(a) Function

Gets setting information about whether or not statement objects are to remain valid
even after a transaction is committed. Here, statement objects refer to the following
classes:

• Statement class

• PreparedStatement class

• CallableStatement class

(b) Format

public boolean getStatementCommitBehavior() throws SQLException

(c) Arguments
None.

(d) Return value
boolean

Indicates whether statements objects are to remain valid after a transaction is
terminated by commit processing:

true: The statement objects are to remain valid.

false: The statement objects are not to remain valid.

(e) Functional detail
Gets the setting information about whether objects of the following classes are to
remain valid after commit execution:

• Statement class

• PreparedStatement class

• CallableStatement class

This method returns the setting value of the setStatementCommitBehavior
method. If no value has been set, true is returned.

18. Type4 JDBC Driver

1909

(f) Exceptions
None.

(g) Notes
None.

18.7.43 setLONGVARBINARY_AccessSize
(a) Function

Sets the LONGVARBINARY (a JDBC SQL type) data length for one access request to the
HiRDB server.

(b) Format

public void setLONGVARBINARY_AccessSize (int access_size)
throws SQLException

(c) Arguments
int access_size

Specifies the data length (kilobytes) to be requested. The specification value
range is from 0 to 2,097,151 (the default is 0). If 0 is specified, the entire data is
requested at once.

(d) Return value
None.

(e) Functional detail
Sets the LONGVARBINARY (a JDBC SQL type) data length for one access request to the
HiRDB server.

For example, if 20 is specified for the access_size argument and the application
uses the getBytes method of ResultSet to retrieve 100 kilobytes of
LONGVARBINARY data stored in the database, the JDBC driver retrieves the data by
dividing the operation into five executions of 20 kilobytes each.

This specification value becomes invalid if a value other than LOCATOR is specified in
the mode argument of the setLONGVARBINARY_Access method.

Specifying a value for this method is equivalent to setting the
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE property, which is shown in
18.2.2(2) User properties.

(f) Exceptions
If a value outside the range from 0 to 2,097,151 is specified in the access_size

18. Type4 JDBC Driver

1910

argument, this method throws a java.sql.SQLException.

(g) Notes
See 18.2.2(2)(i) LONGVARBINARY_ACCESS.

18.7.44 getLONGVARBINARY_AccessSize
(a) Function

Gets the LONGVARBINARY (a JDBC SQL type) data length for one access request to
the HiRDB server.

(b) Format

public int getLONGVARBINARY_AccessSize() throws SQLException

(c) Arguments
None.

(d) Return value
int

Length of the data (in kilobytes) that can be requested at one time (if this
information has not been specified, the method returns 0)

(e) Functional detail
Gets the LONGVARBINARY (JDBC SQL type) data length for one access request to the
HiRDB server. This method returns the setting value of the
setLONGVARBINARY_AccessSize method.

(f) Exceptions
None.

18.7.45 setLONGVARBINARY_TruncError
(a) Function

Sets whether or not an exception is to be thrown if truncation occurs during acquisition
of data of the LONGVARBINARY type (a JDBC SQL type).

(b) Format

public void setLONGVARBINARY_TruncError (boolean mode) throws
SQLException

18. Type4 JDBC Driver

1911

(c) Arguments
boolean mode

Specifies whether or not an exception is to be thrown when truncation occurs:

true

Throw an exception.

false

Do not throw an exception.

(d) Return value
None.

(e) Functional detail
Sets whether or not an exception is to be thrown if truncation occurs during acquisition
of data of the LONGVARBINARY type (a JDBC SQL type). If this method is not set, the
JDBC driver assumes that true was specified.

The specification value of this method becomes invalid if IGNORE is specified in the
warningLevel argument of the setSQLWarningLevel method. In such a case, the
JDBC driver operates as if false were specified.

A truncation that occurs when LONGVARBINARY data is retrieved refers to the action
that occurs when the flowing conditional expression is satisfied:

(f) Exceptions
None.

18.7.46 getLONGVARBINARY_TruncError
(a) Function

Gets the setting information about whether or not an exception is to be thrown if
truncation occurs during acquisition of data of the LONGVARBINARY type (a JDBC
SQL type).

(b) Format

public boolean getLONGVARBINARY_TruncError()

actual-length-of-LONGVARBINARY-data-retrieved-by-SQL-execution >
data-length-specified-by-setMaxBinarySize

18. Type4 JDBC Driver

1912

(c) Arguments
None.

(d) Return value
boolean

This is the setting information about whether not an exception is to be thrown
when truncation occurs:

true

An exception is thrown.

false

An exception is not thrown.

(e) Functional detail
Gets the setting information about whether or not an exception is to be thrown when
truncation occurs during acquisition of data of the LONGVARBINARY type (a JDBC
SQL type).

(f) Exceptions
None.

18.7.47 setStatementCloseBehavior
(a) Function

Sets whether preprocessing results are to be ignored during execution of the close
method of Statement (Statement, PreparedStatement, and
CallableStatement classes).

(b) Format

public synchronized void setStatementCloseBehavior(boolean
mode)

(c) Arguments
boolean mode

Specifies whether preprocessing results are to be ignored during execution of the
close method of Statement:

true

Ignore preprocessing results.

false

18. Type4 JDBC Driver

1913

Do not ignore preprocessing results.

(d) Return value
None.

(e) Functional detail
This method sets whether preprocessing results are to be ignored during execution of
the close method of Statement (Statement, PreparedStatement, and
CallableStatement classes).

If this information is not specified, the method assumes that false is specified.

Specifying a value with this method is equivalent to specifying the
HiRDB_for_Java_STATEMENT_CLOSE_BEHAVIOR property described in 18.2.2(2)
User properties.

(f) Exceptions
None.

18.7.48 getStatementCloseBehavior
(a) Function

Gets the setting information about whether preprocessing results are ignored during
execution of the close method of Statement (Statement, PreparedStatement,
and CallableStatement classes).

(b) Format

public boolean getStatementCloseBehavior()

(c) Arguments
None.

(d) Return value
true

Preprocessing results are ignored.

false

Preprocessing results are not ignored.

(e) Functional detail
Gets setting information about whether preprocessing results are ignored during
execution of the close method of Statement (Statement, PreparedStatement,
and CallableStatement classes). This method returns the value set by the

18. Type4 JDBC Driver

1914

setStatementCloseBehavior method. If this information has not been specified,
the method returns false.

(f) Exceptions
None.

18.7.49 setHiRDBINI
(a) Function

Sets a directory for the HiRDB.INI file when client environment variables specified
in the HiRDB.INI file are to be used.

(b) Format

public synchronized void setHiRDBINI (String dir)

(c) Arguments
string dir

Specifies the absolute path of the directory that is to contain the HiRDB.INI file.
If null is specified, the method assumes that this argument is not specified.

(d) Return value
None.

(e) Functional detail
When client environment variables specified in a HiRDB.INI file are to be used, this
method specifies the absolute path for the directory that is to contain the HiRDB.INI
file. For details about this method, see the description of HiRDB_INI in 18.2.2(1)(b)
Explanation of URL items.

(f) Exceptions
None.

18.7.50 getHiRDBINI
(a) Function

Gets the directory for the HiRDB.INI file (set by the setHiRDBINI method).

(b) Format

public String getHiRDBINI()

18. Type4 JDBC Driver

1915

(c) Arguments
None.

(d) Return value
String

Absolute path of the directory specified by the setHiRDBINI method for the
HiRDB.INI file. If this information has not been specified, the method returns
null.

(e) Functional detail
This method returns the absolute path of the directory specified by the setHiRDBINI
method.

(f) Exceptions
None.

18.7.51 setBatchExceptionBehavior
(a) Function

Sets whether a JDBC standard-compliant update count is to be set as the return value
of the getUpdateCounts method of java.sql.BatchUpdateException.

(b) Format

public synchronized void setBatchExceptionBehavior(boolean
mode)

(c) Arguments
boolean mode

Specifies whether a JDBC standard-compliant update count is to be set as the
return value of the getUpdateCounts method of
java.sql.BatchUpdateException.

true: Set a JDBC standard-compliant update count.

false: Set a HiRDB-specific update count.

(d) Return value
None.

(e) Functional detail
Specifies whether a JDBC standard-compliant update count is to be set as the return
value of the getUpdateCounts method of java.sql.BatchUpdateException.

18. Type4 JDBC Driver

1916

The default value applied when this method is not called is TRUE.

Specifying a value with this method is equivalent to specifying the
HiRDB_for_Java_ BATCHEXCEPTION_BEHAVIOR property described in 18.2.2(2)
User properties.

(f) Exceptions
None.

18.7.52 getBatchExceptionBehavior
(a) Function

Gets the setting information about whether a JDBC standard-compliant update count
is being set as the return value of the getUpdateCounts method of
java.sql.BatchUpdateException, which was specified in
setBatchExceptionBehavior.

(b) Format

public synchronized boolean getBatchExceptionBehavior()

(c) Arguments
None.

(d) Return value
boolean

Returns a value indicating whether a JDBC standard-compliant update count is
being set as the return value of the getUpdateCounts method of
java.sql.BatchUpdateException, which was specified in
setBatchExceptionBehavior. If this information has not been specified, the
method returns the default value TRUE.

true: A JDBC standard-compliant update count is being set.

false: A HiRDB-specific update count is being set.

(e) Functional detail
This method specifies the setting as to whether a JDBC standard-compliant update
count is being set as the return value of the getUpdateCounts method of
java.sql.BatchUpdateException, which was specified in
setBatchExceptionBehavior.

(f) Exceptions
None.

18. Type4 JDBC Driver

1917

18.8 Data types

18.8.1 Mapping SQL data types
There is not an exact match between HiRDB's SQL data types and JDBC's SQL data
types. For this reason, the JDBC driver performs mapping (conversion) between
JDBC's SQL data types and the SQL data types of the HiRDB to be connected. If an
unmappable SQL data type is used for data access, the JDBC driver throws an
SQLException. If an SQL statement that uses HiRDB's ROW type, which cannot be
mapped to any of JDBC's SQL data types, is executed for an HiRDB server that uses
little endian, the JDBC driver throws an SQLException that includes the
KFPA11104-E message indicating a syntax error.

The SQL data types are mapped with getXXX and setXXX methods of the
ResultSet, PreparedStatement, and CallableStatement classes. For details
about the mapping rules for the SQL data types and the getXXX and setXXX
methods, see the documentation for the JDBC1.0 standard and JDBC2.0 basic
standard.

The following table shows the correspondences between the HiRDB and the JDBC
SQL data types.

Table 18-65: SQL data type correspondences between HiRDB and JDBC
(Type4 JDBC driver)

HiRDB's SQL data type JDBC's SQL data type

INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL, NUMERIC DECIMAL (NUMERIC)#1

FLOAT, DOUBLE PRECISION FLOAT (DOUBLE)#1

SMALLFLT, REAL REAL

CHAR CHAR

VARCHAR VARCHAR (LONGVARCHAR)#1

NCHAR CHAR

NVARCHAR VARCHAR (LONGVARCHAR)#1

MCHAR CHAR

MVARCHAR VARCHAR (LONGVARCHAR)#1

18. Type4 JDBC Driver

1918

#1

Data types shown in parentheses are supported only when JDBC's SQL data types
are specified in the arguments of the setNull, setObject, or
registerOutParameter method. They are not supported during mapping from
HiRDB's SQL data types to JDBC's SQL data types.

#2

This refers to a BOOLEAN column in a ResultSet object that is generated by the
getTypeInfo method of DatabaseMetaData.

18.8.2 Mapping during retrieval data acquisition
The tables below show the mapping between getXXX methods of the ResultSet and
CallableStatement classes and JDBC's SQL data types. If a getXXX method is
called for one of JDBC's unmappable SQL data types, the JDBC driver throws an
SQLException.

Table 18-66: Mapping between getXXX methods and JDBC's SQL data types
(1/2)

DATE DATE

TIME TIME

BLOB LONGVARBINARY (BINARY, VARBINARY, BLOB)#1

BINARY LONGVARBINARY (BINARY, VARBINARY, BLOB)#1

TIMESTAMP TIMESTAMP

BOOLEAN#2 BIT

getXXX method JDBC's SQL data type

SMALLIN
T

INTEGER FLOAT REAL DECIMAL CHAR

getByte Y Y Y Y Y Y#1

getShort Rec. Y Y Y Y Y#1

getInt Y Rec. Y Y Y Y#1

getLong Y Y Y Y Y Y#1

getFloat Y Y Y Rec. Y Y#1

HiRDB's SQL data type JDBC's SQL data type

18. Type4 JDBC Driver

1919

Table 18-67: Mapping between getXXX methods and JDBC's SQL data types
(2/2)

getDouble Y Y Rec. Y Y Y#1

getBigDecimal Y Y Y Y Rec. Y#1

getBoolean Y Y Y Y Y Y

getString Y Y Y Y Y Rec.

getBytes -- -- -- -- -- --

getDate -- -- -- -- -- Y#1

getTime -- -- -- -- -- Y#1

getTimestamp -- -- -- -- -- Y#1

getAsciiStream -- -- -- -- -- Y

getBinaryStream -- -- -- -- -- --

getObject Y Y Y Y Y Y

getCharacterStream -- -- -- -- -- Y

getArray -- -- -- -- -- --

getBlob -- -- -- -- -- --

getXXX method JDBC's SQL data type

VARCHA
R

DATE TIM
E

TIMESTAM
P

LONGVARBINAR
Y

ARRA
Y

getByte Y#1 -- -- -- -- --

getShort Y#1 -- -- -- -- --

getInt Y#1 -- -- -- -- --

getLong Y#1 -- -- -- -- --

getFloat Y#1 -- -- -- -- --

getXXX method JDBC's SQL data type

SMALLIN
T

INTEGER FLOAT REAL DECIMAL CHAR

18. Type4 JDBC Driver

1920

Legend:

Rec.: Mapping is recommended

Y: Can be mapped. Note, however, that data loss or a conversion error may occur
depending on the format of the conversion-source data.

--: Cannot be mapped.

#1

If there are any single-byte spaces preceding or following the character string data
retrieved from the database during conversion by this method, the JDBC driver
removes them. After removing the single-byte spaces, the JDBC driver converts the
data to the Java data type returned by the getXXX method.

Note the following items when data is converted to a Java data type:

• If the character string data contains a fractional part and the getByte, getInt,

getDouble Y#1 -- -- -- -- --

getBigDecimal Y#1 -- -- -- -- --

getBoolean Y -- -- -- -- --

getString Rec. Y Y Y Y --

getBytes -- -- -- -- Y --

getDate Y#1 Rec.#2 -- Y -- --

getTime Y#1 -- Rec. Y -- --

getTimestamp Y#1 Y -- Rec. -- --

getAsciiStream Y -- -- -- Y --

getBinaryStream -- -- -- -- Rec. --

getObject Y Y Y Y Y --

getCharacterStream Y -- -- -- Y --

getArray -- -- -- -- -- Rec.

getBlob -- -- -- -- Y --

getXXX method JDBC's SQL data type

VARCHA
R

DATE TIM
E

TIMESTAM
P

LONGVARBINAR
Y

ARRA
Y

18. Type4 JDBC Driver

1921

getShort, or getLong method is executed, the JDBC driver discards the
fractional part and then converts and returns only the integer.

• If the character string data contains double-byte characters, the JDBC driver
throws an SQLException without converting the data. Double-byte characters
include double-byte spaces used for padding when a character string shorter than
the defined column length is stored in a column of HiRDB's NCHAR data type.

• If overflow occurs after character string data is converted to a Java data type, the
JDBC driver throws an SQLException.

#2

When the JDBC SQL type is the DATE type and a java.util.Calender object
is specified in a setDate method that is then executed, the JDBC driver uses the
specified java.util.Calendar object to convert the data, discards the time
data, and stores only the date data in the database. Because the time data is
discarded, if an application specifies a java.util.Calendar object in the
getDate method and executes the method to retrieve the data that was stored
with the setDate method, the retrieved date may differ from the one that was
specified in the setDate method.

Example

In this example, the UAP uses Japan Standard Time as the default time zone
and specifies a java.util.Calendar object that uses Greenwich Mean
Time in the setDate and getDate methods.

When the UAP specifies a java.sql.Date object representing
2005-10-03 in the setDate method and executes the method, the JDBC
driver supplements 00:00:00 to the time portion, and then subtracts 9 hours
because of the time zone difference. The result is 2005-10-02 15:00:00,
and the JDBC driver stores the date portion 2005-10-02 of the result in the
database. When the UAP uses the getDate method to retrieve this data, the
JDBC driver gets the date portion 2005-10-02 from the database,
supplements 00:00:00 to the time portion, and adds 9 hours because of the
time difference to produce 2005-10-02 09:00:00. Consequently, in the
java.sql.Date object used as the return value of the getDate method,
the JDBC driver sets 2005-10-02, which differs from 2005-10-03, as was
specified in the SetDate method.

18.8.3 Mapping when a ? parameter is set
The table below lists the setXXX methods of the PreparedStatement and
CallableStatement classes and shows the corresponding JDBC SQL types that are
mapped. If a JDBC SQL type cannot be used, the setXXX method throws an
SQLException.

The setCharacterStream method has been added as a replacement for the

18. Type4 JDBC Driver

1922

setUnicodeStream method, because the JDBC2.0 basic standard does not
recommend the latter method.

Table 18-68: JDBC SQL types mapped by the setXXX methods

#

The JDBC driver cannot use this method.

The following tables show the mapping between the setXXX methods of the
PreparedStatement and CallableStatement classes and JDBC's SQL types.

Table 18-69: Mapping between the setXXX methods and JDBC's SQL data
types (1/2)

setXXX method of PreparedStatement class Mapped JDBC SQL type

setCharacterStream CHAR or VARCHAR

setRef# REF

setBlob LONGVARBINARY

setClob# CLOB

setArray ARRAY

setXXX method JDBC's SQL data type

SMALLINT INTEGER FLOAT REAL DECIMAL#3 CHAR

setByte Y Y Y Y Y Y

setShort Rec. Y Y Y Y Y

setInt Y Rec. Y Y Y Y

setLong Y Y Y Y Y Y

setFloat Y Y Y Rec. Y Y

setDouble Y Y Rec. Y Y Y

setBigDecimal Y Y Y Y Rec. Y

setBoolean Y Y Y Y Y Y

setString Y Y Y Y Y Rec.

setBytes -- -- -- -- -- --

setDate -- -- -- -- -- Y

18. Type4 JDBC Driver

1923

Table 18-70: Mapping between the setXXX methods and JDBC's SQL data
types (2/2)

setTime -- -- -- -- -- Y

setTimestamp#1 -- -- -- -- -- Y

setAsciiStream -- -- -- -- -- Y

setBinaryStream -- -- -- -- -- --

setObject#2 Y Y Y Y Y Y

setCharacterStream -- -- -- -- -- Y#4

setArray -- -- -- -- -- --

setBlob -- -- -- -- -- --

setXXX method JDBC's SQL data type

VARCHAR DATE TIME TIMESTAMP LONGVAR
BINARY

ARRA
Y

setByte Y -- -- -- -- --

setShort Y -- -- -- -- --

setInt Y -- -- -- -- --

setLong Y -- -- -- -- --

setFloat Y -- -- -- -- --

setDouble Y -- -- -- -- --

setBigDecimal Y -- -- -- -- --

setBoolean Y -- -- -- -- --

setString Rec. Y Y Y Y --

setBytes -- -- -- -- Y --

setDate Y Rec.#5 -- Y -- --

setTime Y -- Rec. Y -- --

setXXX method JDBC's SQL data type

SMALLINT INTEGER FLOAT REAL DECIMAL#3 CHAR

18. Type4 JDBC Driver

1924

Legend:

Rec.: Mapping is recommended

Y: Can be mapped. Note, however, that data loss or a conversion error may occur
depending on the format of the conversion-source data.

--: Cannot be mapped.

#1

If a setXXX method specifies a value for a ? parameter of HiRDB's TIMESTAMP
data type, and the ? parameter and the value have different precisions for the
fractional seconds part, the JDBC driver performs one of the following
operations:

• If the value has a larger fractional seconds precision than the ? parameter:
truncates the fractional seconds part of the value.

• If the value has a smaller fractional seconds precision than the ? parameter:
expands the fractional seconds part of the value.

#2

Objects of the InputStream class and the Reader class (including subclasses)
cannot be specified in the setObject method.

#3

If a setXXX method specifies a value for a ? parameter of HiRDB's DECIMAL
data type, and the ? parameter and the value have different precisions and decimal
scaling positions, the JDBC driver performs one of the following operations, as
applicable:

setTimestamp#1 Y Y -- Rec. -- --

setAsciiStream Y -- -- -- Y --

setBinaryStream -- -- -- -- Y --

setObject#2 Y Y Y Y Y --

setCharacterStream Y#4 -- -- -- Y#4 --

setArray -- -- -- -- -- Y

setBlob -- -- -- -- Y --

setXXX method JDBC's SQL data type

VARCHAR DATE TIME TIMESTAMP LONGVAR
BINARY

ARRA
Y

18. Type4 JDBC Driver

1925

• When the value has a larger precision than the ? parameter: Throws an
SQLException.

• When the value has a smaller precision than the ? parameter: Expands the
precision.

• When the value has a larger decimal scaling position than the ? parameter:
Truncates the value according to the actual scaling position.

• When the value has a smaller decimal scaling position than the ? parameter:
Adds zeros to expand the decimal scaling position.

#4

If the length of the data that can be retrieved from a java.io.Reader object is
shorter than the length specified in the arguments, the JDBC driver adds zeros as
shown below until the length specified in the arguments is reached:

#5

When the JDBC SQL type is the DATE type and a java.util.Calender object
is specified in a setDate method that is then executed, the JDBC driver uses the
specified java.util.Calendar object to convert the data, discards the time
data, and stores only the date data in the database. Because the time data is
discarded, if an application specifies a java.util.Calendar object in the
getDate method and executes the method to retrieve the data that was stored
with the setDate method, the retrieved date may differ from the one that was
specified in the setDate method.

Example

In this example, the UAP uses Japan Standard Time as the default time zone
and specifies a java.util.Calendar object that uses Greenwich Mean
Time in the setDate and getDate methods.

When the UAP specifies a java.sql.Date object representing
2005-10-03 in the setDate method and executes the method, the JDBC

18. Type4 JDBC Driver

1926

driver supplements 00:00:00 to the time portion, and then subtracts 9 hours
because of the time zone difference. The result is 2005-10-02 15:00:00,
and the JDBC driver stores the date portion 2005-10-02 of the result in the
database. When the UAP uses the getDate method to retrieve this data, the
JDBC driver gets the date portion 2005-10-02 from the database,
supplements 00:00:00 to the time portion, and adds 9 hours because of the
time difference to produce 2005-10-02 09:00:00. Consequently, in the
java.sql.Date object used as the return value of the getDate method,
the JDBC driver sets 2005-10-02, which differs from 2005-10-03, which
was specified in the SetDate method.

18.8.4 Data conversion of TIME, DATE, and TIMESTAMP columns
(1) setTime, setDate, setTimestamp, and setString methods

This item explains the conversion process when data of HiRDB's TIME, DATE, or
TIMESTAMP data type is set in the setTime, setDate, setTimestamp, or
setString method.

When the setTime, setDate, setTimestamp, or setString method is used to set
data in a column of HiRDB's TIME, DATE, or TIMESTAMP data type, data conversion
takes place according to the HiRDB data type.

The following table shows the conversion processing for combinations of the different
column data types and methods.

Table 18-71: Conversion processing for combinations of the TIME, DATE, and
TIMESTAMP types and the setXXX methods

setXXX method HiRDB data type

TIME type DATE type TIMESTAMP type

setTime(Time Obj)#1 Stores the UAP
setting value in the
database without any
conversion.

Throws an
SQLException.

Stores in the database data
that has 1970-01-01
added before the UAP
setting value
hh:mm:ss[.000000].

setDate(Date Obj)#2 Throws an
SQLException.

Stores the UAP setting
value in the database
without any conversion.

Stores data in the database
that has
00:00:00[.000000]
added after the UAP setting
value yyyy-MM-DD.

setTimestamp(Timesta

mp Obj)#3
Throws an
SQLException.

Stores in the database the
data formed when
yyyy-MM-DD is
removed from the UAP
setting value.

Stores the UAP setting
value in the database
without any conversion.

18. Type4 JDBC Driver

1927

Note:

If a non-existent date or time is specified, the specified value is returned by the
Java Virtual Machine.

#1

Time Obj is an object that has the value of a java.sql.Time object with the
format hour:minute:second.

#2

Date Obj is an object that has the value of the java.sql.Date object with the
format year-month-day.

#3

Timestamp Obj is an object that has the value of the java.sql.Timestamp
object with the format year-month-day hour:minute:second:nanosecond.

#4

For [.ffffff], the number of digits after the decimal point depends on the precision
of HiRDB's TIMESTAMP type.

 represents a single-byte space character.

#5

The result when a non-existent date or time is specified depends on

setString(character
string in hh:mm:ss
format)

Converts the specified
time with
java.sql.Time.va
lueOf() and stores
the result in the
database.#5

Throws an
SQLException.

Throws an
SQLException.

setString(character
string in yyyy-MM-DD
format)

Throws an
SQLException.

Converts the specified
date with
java.sql.Date.value
Of() and stores the result
in the database.#5

Throws an
SQLException.

setString(character
string in
yyyy-MM-DD hh:mm:ss
[.ffffff] format)#4

Throws an
SQLException.

Throws an
SQLException.

Converts the specified
date/time with
java.sql.Timestamp.v
alueOf() and stores the
result in the database.#5

setXXX method HiRDB data type

TIME type DATE type TIMESTAMP type

18. Type4 JDBC Driver

1928

java.sql.Time.valueOf(), java.sql.Date.valueOf(), or
java.sql.Timestamp.valueOf():

Example 1: 25:00:00 becomes 01:00:00.

Example 2: 2000-01-32 becomes 2000-02-01.

Example 3: 1582-10-05 becomes 1582-10-15 (switching from the Julian to
the Gregorian calendar).

(2) getTime, getDate, and getTimestamp methods
This item explains the conversion process when data of HiRDB's TIME, DATE,
TIMESTAMP or character string (CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, or
NVARCHAR) data type is set in the getTime, getDate, or getTimestamp method.

When the getTime, getDate, or getTimestamp method is used to set data in a
column of HiRDB's TIME, DATE, TIMESTAMP, or character string data type, data
conversion takes place according to the HiRDB data type.

The following table shows the conversion processing for combinations of the different
column data types and methods.

Table 18-72: Conversion processing for combinations of the TIME, DATE,
TIMESTAMP, and character string types and the getXXX methods

getXXX
method

HiRDB data type

TIME type DATE type TIMESTAMP type Character string
type

getTime()#2 Gets the value
stored in the
database and sets it
as the
java.sql.Time
object without any
conversion.#1

Throws an
SQLException.

Removes the
hour:minute:second
data from the
TIMESTAMP data
retrieved from the
database and sets the
result as the
java.sql.Time
object.#1

Gets only an
hh:mm:ss character
string expression of
the TIME type as the
java.sql.Time
object. For other
expressions, the
method throws an
exception.

getDate()#2 Throws an
SQLException.

Gets the value
stored in the
database and sets it
as the
java.sql.Date
object without any
conversion.#1

Removes the
year-month-day
data from the
TIMESTAMP data
retrieved from the
database and sets the
result as the
java.sql.Date
object.#1

Gets only a
yyyy-MM-DD
character string
expression of the
DATE type as the
java.sql.Date
object. For other
expressions, the
method throws an
exception.

18. Type4 JDBC Driver

1929

Legend:

Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR

#1

The setting value of an unspecified date item (year-month-day) is 1970-01-01,
and the setting value of an unspecified time item
(hour:minute:second.millisecond) is 00:00:00.000000.

#2

The date and time stored in the database may be different from the date and time
obtained from java.sql.Time, java.sql.Date, and
java.sql.Timestamp:

Example 1: 25:00:00 becomes 01:00:00.

Example 2: 2000-01-32 becomes 2000-02-01.

Example 3: Both 1582-10-05 and 1582-10-15 become 1582-10-15 (the
calendar switches from the Julian to the Gregorian calendar).

18.8.5 Overflow handling
This section explains when overflow is set when a program uses a setXXX method to
set a value, or uses a getXXX method to get a value.

(1) setXXX methods (except for the setObject method)
The following tables show for each HiRDB data type whether overflow occurs when

getTimestamp(

)#2
Throws an
SQLException.

Appends
00:00:00.000000
to the DATE data
retrieved from the
database and sets
the result as the
java.sql.Timest
amp object.

Gets the value stored
in the database and
sets it as the
java.sql.Timest
amp object without
any conversion.

Gets only a
yyyy-MM-DD hh
:mm:ss[.ffffff]
character string
expression of the
TIMESTAMP type as
the
java.sql.Timest

amp object (is a
single-byte space
character). For other
expressions, the
method throws an
SQLException.

getXXX
method

HiRDB data type

TIME type DATE type TIMESTAMP type Character string
type

18. Type4 JDBC Driver

1930

a setXXX method is used.

Table 18-73: Possibility of overflow when the setXXX method is used (1/2)

Legend:

--: Overflow does not occur regardless of the value.

Y: Overflow may occur depending on the value.

N/A: This combination is not allowed.

Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR

setXXX method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string types

setByte -- -- -- -- Y --

setShort -- -- -- -- Y --

setInt Y -- -- -- Y --

setLong Y Y -- -- Y --

setFloat Y Y -- -- Y --

setDouble Y Y -- -- Y --

setBigDecimal Y Y -- -- Y --

setBoolean -- -- -- -- Y --

setString Y Y -- -- Y --

setBytes N/A N/A N/A N/A N/A N/A

setDate N/A N/A N/A N/A N/A --

setTime N/A N/A N/A N/A N/A --

setTimestamp N/A N/A N/A N/A N/A --

setBlob N/A N/A N/A N/A N/A N/A

setBinaryStream N/A N/A N/A N/A N/A N/A

setAsciiStream N/A N/A N/A N/A N/A --

setArray Y Y Y Y Y --

setCharacterStream N/A N/A N/A N/A N/A --

18. Type4 JDBC Driver

1931

Table 18-74: Possibility of overflow when the setXXX method is used (2/2)

Legend:

--: Overflow does not occur regardless of the value.

Y: Overflow may occur depending on the value.

N/A: This combination is not allowed.

#

Overflow occurs when the value obtained by the getTime method of the

setXXX method HiRDB data type

DATE# TIME# TIMESTAMP# BINARY BLOB

setByte N/A N/A N/A N/A N/A

setShort N/A N/A N/A N/A N/A

setInt N/A N/A N/A N/A N/A

setLong N/A N/A N/A N/A N/A

setFloat N/A N/A N/A N/A N/A

setDouble N/A N/A N/A N/A N/A

setBigDecimal N/A N/A N/A N/A N/A

setBoolean N/A N/A N/A N/A N/A

setString Y -- Y N/A N/A

setBytes N/A N/A N/A -- --

setDate Y N/A Y N/A N/A

setTime N/A Y Y N/A N/A

setTimestamp Y N/A Y N/A N/A

setBlob N/A N/A N/A -- --

setBinaryStream N/A N/A N/A -- --

setAsciiStream N/A N/A N/A -- --

setArray Y Y Y N/A N/A

setCharacterStream N/A N/A N/A -- --

18. Type4 JDBC Driver

1932

java.sql.Date, java.sql.Time, or java.sql.Timestamp class is an
object larger than 253,402,268,399,999 or smaller than -62,135,802,000,000. The
getTime method returns the number of milliseconds since 1970-01-01 00:00:00
(Greenwich Mean Time).

The methods shown below can be used to obtain 253,402,268,399,999 from the
maximum value that can be stored in HiRDB's TIMESTAMP type, and
-62,135,802,000,000 from the minimum value that can be represented by the
java.sql.Timestamp class.

253,402,268,399,999:

Timestamp.valueOf("9999-12-31
23:59:59.999999").getTime()

-62,135,802,000,000:

Timestamp.valueOf("0001-01-01 00:00:00.0").getTime()

(2) setObject method
The following tables show whether overflow occurs for each HiRDB data type when
a setObject method is used.

Table 18-75: Possibility of overflow when the setObject method is used (1/2)

setObject method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string types

Byte -- -- -- -- Y --

Short -- -- -- -- Y --

Integer Y -- -- -- Y --

Long Y Y -- -- Y --

Decimal Y Y -- -- Y --

Float Y Y -- -- Y --

Double Y Y -- Y Y --

Boolean -- -- -- -- Y --

String Y Y --- -- Y --

Date N/A N/A N/A N/A N/A --

Time N/A N/A N/A N/A N/A --

Timestamp N/A N/A N/A N/A N/A --

18. Type4 JDBC Driver

1933

Legend:

--: Overflow does not occur regardless of the value.

Y: Overflow may occur depending on the value.

N/A: This combination is not allowed.

Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR

Table 18-76: Possibility of overflow when the setObject method is used (2/2)

byte[] N/A N/A N/A N/A N/A --

Blob N/A N/A N/A N/A N/A N/A

Array N/A N/A N/A N/A N/A N/A

setObject method HiRDB data type

DATE# TIME# TIMESTAMP# BINARY BLOB

Byte N/A N/A N/A N/A N/A

Short N/A N/A N/A N/A N/A

Integer N/A N/A N/A N/A N/A

Long N/A N/A N/A N/A N/A

Decimal N/A N/A N/A N/A N/A

Float N/A N/A N/A N/A N/A

Double N/A N/A N/A N/A N/A

Boolean N/A N/A N/A N/A N/A

String Y -- Y N/A N/A

Date Y N/A Y N/A N/A

Time N/A Y N/A N/A N/A

Timestamp Y N/A Y N/A N/A

byte[] N/A N/A N/A -- --

setObject method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string types

18. Type4 JDBC Driver

1934

Legend:

--: Overflow does not occur regardless of the value.

Y: Overflow may occur depending on the value.

N/A: This combination is not allowed.

#

Overflow occurs if the value obtained by the getTime method of the
java.sql.Date, java.sql.Time, or java.sql.Timestamp class is an
object larger than 253,402,268,399,999 or smaller than -62,135,802,000,000. The
getTime method returns the number of milliseconds since 1970-01-01 00:00:00
(Greenwich Mean Time).

The methods shown below can be used to obtain 253,402,268,399,999 from the
maximum value that can be stored in HiRDB's TIMESTAMP type, and
-62,135,802,000,000 from the minimum value that can be represented by the
java.sql.Timestamp class.

253,402,268,399,999:

Timestamp.valueOf("9999-12-31
23:59:59.999999").getTime()

-62,135,802,000,000:

Timestamp.valueOf("0001-01-01 00:00:00.0").getTime()

(3) getXXX methods (except the getObject method)
The following tables show whether overflow occurs for each HiRDB data type when
a getXXX method is used.

Table 18-77: Possibility of overflow when the getXXX method is used (1/2)

Blob N/A N/A N/A -- --

Array N/A N/A N/A N/A N/A

getXXX method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string types

getByte Y Y Y Y Y Y

getShort -- Y Y Y Y Y

setObject method HiRDB data type

DATE# TIME# TIMESTAMP# BINARY BLOB

18. Type4 JDBC Driver

1935

Legend:

--: Overflow does not occur regardless of the value.

Y: Overflow may occur depending on the value.

N/A: This combination is not allowed.

Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR

getInt -- -- Y Y Y Y

getLong -- -- Y Y Y Y

getFloat -- -- -- -- -- --

getDouble -- -- -- -- -- --

getBigDecimal -- -- -- -- -- --

getBoolean -- -- -- -- -- --

getString -- -- -- -- -- --

getBytes N/A N/A N/A N/A N/A N/A

getDate N/A N/A N/A N/A N/A --

getTime N/A N/A N/A N/A N/A --

getTimestamp N/A N/A N/A N/A N/A --

getAsciiStream N/A N/A N/A N/A N/A --

getBinaryStream N/A N/A N/A N/A N/A N/A

getCharacterStream N/A N/A N/A N/A N/A --

getArray N/A N/A N/A N/A N/A --

getBlob N/A N/A N/A N/A N/A N/A

getXXX method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string types

18. Type4 JDBC Driver

1936

Table 18-78: Possibility of overflow when the getXXX method is used (2/2)

Legend:

--: Overflow does not occur regardless of the value.

N/A: This combination is not allowed.

(4) getObject method
The following tables show whether overflow occurs for each HiRDB data type when
a getObject method is used.

getXXX method HiRDB data type

DATE TIME TIMESTAM
P

BINARY BLOB

getByte N/A N/A N/A N/A N/A

getShort N/A N/A N/A N/A N/A

getInt N/A N/A N/A N/A N/A

getLong N/A N/A N/A N/A N/A

getFloat N/A N/A N/A N/A N/A

getDouble N/A N/A N/A N/A N/A

getBigDecimal N/A N/A N/A N/A N/A

getBoolean N/A N/A N/A N/A N/A

getString -- -- -- -- --

getBytes N/A N/A N/A -- --

getDate -- N/A -- N/A N/A

getTime N/A -- -- N/A N/A

getTimestamp -- N/A -- N/A N/A

getAsciiStream N/A N/A N/A -- --

getBinaryStream N/A N/A N/A -- --

getCharacterStream N/A N/A N/A -- --

getArray N/A N/A N/A -- --

getBlob N/A N/A N/A -- --

18. Type4 JDBC Driver

1937

Table 18-79: Possibility of overflow when the getObject method is used (1/2)

Legend:

--: Overflow does not occur regardless of the value.

Y: Overflow may occur depending on the value.

N/A: This combination is not allowed.

Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR

getObject method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string type

Byte Y Y Y Y Y Y

Short -- Y Y Y Y Y

Int -- -- Y Y Y Y

Long -- -- Y Y Y Y

Float -- -- Y -- Y Y

Double -- -- -- Y Y Y

BigDecimal -- -- -- Y Y Y

Boolean -- -- -- -- -- --

String -- -- -- -- -- --

Bytes N/A N/A N/A N/A N/A N/A

Date N/A N/A N/A N/A N/A --

Time N/A N/A N/A N/A N/A --

Timestamp N/A N/A N/A N/A N/A --

AsciiStream N/A N/A N/A N/A N/A --

BinaryStream N/A N/A N/A N/A N/A N/A

Object -- -- -- -- -- --

CharacterStream N/A N/A N/A N/A N/A --

Array N/A N/A N/A N/A N/A --

Blob N/A N/A N/A N/A N/A N/A

18. Type4 JDBC Driver

1938

Table 18-80: Possibility of overflow when the getObject method is used (2/2)

Legend:

--: Overflow does not occur regardless of the value.

N/A: This combination is not allowed.

getObject method HiRDB data type

DATE TIME TIMESTAMP BINARY BLOB

Byte N/A N/A N/A N/A N/A

Short N/A N/A N/A N/A N/A

Int N/A N/A N/A N/A N/A

Long N/A N/A N/A N/A N/A

Float N/A N/A N/A N/A N/A

Double N/A N/A N/A N/A N/A

BigDecimal N/A N/A N/A N/A N/A

Boolean N/A N/A N/A N/A N/A

String -- -- -- N/A N/A

Bytes N/A N/A N/A -- --

Date -- N/A -- N/A N/A

Time N/A -- -- N/A N/A

Timestamp -- N/A -- N/A N/A

AsciiStream N/A N/A N/A -- --

BinaryStream N/A N/A N/A -- --

Object -- -- -- -- --

CharacterStream N/A N/A N/A -- --

Array N/A N/A N/A -- --

Blob N/A N/A N/A -- --

18. Type4 JDBC Driver

1939

18.9 Character conversion facility

Because character codes in Java programs are handled as Unicode, the JDBC driver
performs mutual character code conversion between HiRDB character data and
Unicode. In this character code conversion process, the JDBC driver uses the encoder
provided by the Java Virtual Machine.

The following figure shows the flow of mutual character code conversion between
HiRDB character data and Unicode.

Figure 18-1: Flow of mutual character code conversion between HiRDB
character data and Unicode

When the JDBC driver exchanges character data with HiRDB, it specifies the
character set name to the encoder of the Java Virtual Machine. At this time, the JDBC
driver gets the character encoding of the HiRDB server and specifies the character set
name that corresponds to that encoding. If a character set name was specified by the
ENCODELANG property or by the setEncodeLang method when the connection was
established, the specified character set name is specified with priority to the encoder
of the Java Virtual Machine. Therefore, if a character set name that does not
correspond to the character encoding of the HiRDB server is specified in the
ENCODELANG property or by the setEncodeLang method, an error occurs during
character code conversion.

18. Type4 JDBC Driver

1940

18.10 Supported client environment definitions

The table below lists the client environment definitions that can be specified with the
JDBC driver. The numbers in the list correspond to the numbers of the individual
environment variables in 6.6.4 Environment definition information.

Table 18-81: Client environment variables that can be specified with the JDBC
driver

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

1 PDHOST HiRDB_for_Java_PDHOST Specifies the host name of the
HiRDB server to be
connected.

System
configuration

2 PDNAMEPORT HiRDB_for_Java_PDNAME
PORT

Specifies the port number of
the HiRDB server.

3 PDFESHOST HiRDB_for_Java_PDFESHO
ST

Specifies the host name of the
front-end server.

4 PDSERVICEGRP HiRDB_for_Java_PDSERVI
CEGRP

Specifies the server name of
the single server or front-end
server.

5 PDSRVTYPE HiRDB_for_Java_PDSRVTY
PE

Specifies the HiRDB server
type.

6 PDSERVICEPORT HiRDB_for_Java_PDSERVI
CEPORT

Specifies the port number for
high-speed connection.

7 PDFESGRP HiRDB_for_Java_PDFESGR
P

Specifies a FES group to be
connected when high-speed
connection is used.

8 PDCLTRCVPORT HiRDB_for_Java_PDCLTRC
VPORT

Specifies the client receive
port number.

9 PDCLTRCVADDR HiRDB_for_Java_PDCLTRC
VADDR

Specifies the IP address or
host name of the client.

20 PDUSER HiRDB_for_Java_PDUSER Specifies the authorization
identifier and password. In
UNIX, this environment
variable can be omitted.

User execution
environment

21 PDCLTAPNAME HiRDB_for_Java_PDCLTAP
NAME

Specifies UAP identification
information (UAP identifier)
of the UAP that accesses the
HiRDB server.

18. Type4 JDBC Driver

1941

24 PDDBLOG HiRDB_for_Java_PDDBLO
G

Specifies whether or not the
database update log is to be
retrieved when the UAP is
executed.

25 PDEXWARN HiRDB_for_Java_PDEXWA
RN

Specifies whether return
codes with warnings are to be
accepted from the server.

26 PDSUBSTRLEN HiRDB_for_Java_PDSUBST
RLEN

Specifies the maximum
number of bytes representing
one character.

30 PDCLTGRP HiRDB_for_Java_PDCLTGR
P

Specifies a client group name
when the connection frame
guarantee facility for client
groups is used.

32 PDAUTORECONNEC
T

HiRDB_for_Java_PDAUTO
RECONNECT

Specifies whether or not the
automatic reconnect facility is
to be used.

33 PDRCCOUNT HiRDB_for_Java_PDRCCO
UNT

Specifies the number of times
the CONNECT statement is
retried by the automatic
reconnect facility.

34 PDRCINTERVAL HiRDB_for_Java_PDRCINT
ERVAL

Specifies the CONNECT retry
interval at which the
automatic reconnect facility
executes reconnect
processing.

35 PDUAPENVFILE HiRDB_for_Java_PDUAPE
NVFILE

Specifies the UAP
environment definition file
that defines the execution
environment if the UAP is to
be executed in a separate
environment.

36 PDDBBUFLRU HiRDB_for_Java_PDDBBU
FLRU

Specifies whether the LRU
method is to be applied to
processing when a page
accessed by the UAP is
cached to the global buffer.

37 PDHATRNQUEUING HiRDB_for_Java_PDHATR
NQUEUING

Specifies that the client does
not use the transaction
queuing facility.

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

18. Type4 JDBC Driver

1942

38 PDCLTBINDLOOPB
ACKADDR

HiRDB_for_Java_PDCLTBI
NDLOOPBACKADDR

Specifies whether bind() is
to be executed at a loopback
address when a receive port to
be used for communication
with the HiRDB server is
created.

48 PDCWAITTIME HiRDB_for_Java_PDCWAIT
TIME

Specifies the maximum time
that the HiRDB client waits
for a response from the
HiRDB server after sending a
request to the HiRDB server.

System
monitoring

49 PDSWAITTIME HiRDB_for_Java_PDSWAIT
TIME

Specifies the maximum time
that the HiRDB server waits
for the next request from the
HiRDB client to arrive after
returning a response to the
previous request from the
HiRDB client.
This function monitors the
time during transaction
processing.

50 PDSWATCHTIME HiRDB_for_Java_PDSWATC
HTIME

Specifies the maximum time
that the HiRDB server waits
for the next request from the
HiRDB server to arrive after
returning a response to the
previous request from the
HiRDB client.
This function monitors the
time other than the transaction
processing time.

51 PDCWAITTIMEWRN
PNT

HiRDB_for_Java_PDCWAIT
TIMEWRNPNT

Specifies the output timing of
the SQL runtime warning
information file when the SQL
runtime warning output
facility is used. The output
timing is specified as a
percentage of the maximum
time that the HiRDB client
waits, or as an amount of time.

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

18. Type4 JDBC Driver

1943

55 PDNBLOCKWAITTI
ME

HiRDB_for_Java_PDNBLO
CKWAITTIME

Specifies the connection
establishment monitoring
time in nonblock mode when
monitoring is performed for
completion of the connection
between the HiRDB server
and the client.

56 PDCONNECTWAITT
IME

HiRDB_for_Java_PDCONN
ECTWAITTIME

Specifies the maximum time
that the HiRDB client waits
for a response from the
HiRDB server when it
connects with the HiRDB
server.

57 PDCLTPATH HiRDB_for_Java_PDCLTPA
TH

Specifies the storage directory
for the SQL trace file and
client error log file created by
the HiRDB client.

Troubleshootin
g

58 PDSQLTRACE#2 HiRDB_for_Java_PDSQLTR
ACE

Specifies the size (bytes) of
the SQL trace file into which
SQL trace information for the
UAP is to be output.

61 PDPRMTRC HiRDB_for_Java_PDPRMT
RC

Specifies whether parameter
information and retrieval data
are to be output in the SQL
trace information.

62 PDPRMTRCSIZE HiRDB_for_Java_PDPRMT
RCSIZE

Specifies the maximum data
length of the parameter
information and retrieval data
to be output in the SQL trace
information.

64 PDUAPREPLVL HiRDB_for_Java_PDUAPRE
PLVL

Specifies output information
for UAP statistical reports.

65 PDREPPATH HiRDB_for_Java_PDREPPA
TH

Specifies whether UAP
statistical report files are to be
output to a different directory
from the directory specified
by PDCLTPATH.

66 PDTRCPATH HiRDB_for_Java_PDTRCPA
TH

Specifies the storage directory
for dynamic SQL trace files.

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

18. Type4 JDBC Driver

1944

68 PDSQLTEXTSIZE HiRDB_for_Java_PDSQLTE
XTSIZE

Specifies the size of the SQL
statement to be output to the
SQL trace.

70 PDRCTRACE HiRDB_for_Java_PDRCTR
ACE

Specifies the size of the output
file for the UAP reconnect
trace information.

71 PDWRTLNPATH HiRDB_for_Java_PDWRTL
NPATH

Specifies the storage directory
for files to which value
expression values of WRITE
LINE statements are to be
output.

72 PDWRTLNFILSZ HiRDB_for_Java_PDWRTL
NFILSZ

Specifies the maximum size of
the files to which value
expression values of WRITE
LINE statements are to be
output.

73 PDWRTLNCOMSZ HiRDB_for_Java_PDWRTL
NCOMSZ

Specifies the total size of the
value expression values in
WRITE LINE statements.

78 PDVWOPTMODE HiRDB_for_Java_PDVWOP
TMODE

Specifies whether the access
path information file is to be
retrieved.

Access path
information file
for the access
path display
utility

82 PDSTJTRNOUT HiRDB_for_Java_PDSTJTR
NOUT

Specifies whether UAP
statistical information is to be
output to a statistical log file
for each transaction.

Output unit for
UAP statistical
information

83 PDLOCKLIMIT HiRDB_for_Java_PDLOCK
LIMIT

Specifies the maximum
number of lock requests that a
UAP can issue to one server.

Lock

84 PDDLKPRIO HiRDB_for_Java_PDDLKPR
IO

Specifies the deadlock priority
value of the UAP.

85 PDLOCKSKIP HiRDB_for_Java_PDLOCKS
KIP

Specifies whether an unlocked
conditional search is to be
performed.

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

18. Type4 JDBC Driver

1945

86 PDFORUPDATEEXL
OCK

HiRDB_for_Java_PDFORUP
DATEEXLOCK

Specifies whether WITH
EXCLUSIVE LOCK is to be
applied to the lock option of
SQL statements in which the
FOR UPDATE clause is
specified (or assumed).

87 PDISLLVL HiRDB_for_Java_PDISLLV
L

Specifies the data guarantee
level of an SQL statement

SQL-related

88 PDSQLOPTLVL HiRDB_for_Java_PDSQLOP
TLVL

Specifies optimization
methods (SQL optimization
options) for determining the
most efficient access path by
taking the database status into
consideration.

89 PDADDITIONALOP
TLVL

HiRDB_for_Java_PDADDIT
IONALOPTLVL

Specifies optimization
methods (SQL extension
optimizing methods) for
determining the most efficient
access path by taking the
database status into
consideration.

90 PDHASHTBLSIZE HiRDB_for_Java_PDHASH
TBLSIZE

Specifies the hash table size
when hash join, subquery hash
execution is applied in SQL
optimization.

91 PDDFLNVAL HiRDB_for_Java_PDDFLN
VAL

Specifies whether a default
value is to be set into an
embedded variable when table
data is to be fetched into the
embedded variable and the
fetched value is a null value.

92 PDAGGR HiRDB_for_Java_PDAGGR Specifies the maximum
number of groups allowed in
each server so that the
memory size used in GROUP
BY processing can be
determined.

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

18. Type4 JDBC Driver

1946

93 PDCMMTBFDDL HiRDB_for_Java_PDCMMT
BFDDL

When a definition SQL is to
be executed in a transaction
that is executing a data
manipulation SQL, specifies
whether the transaction is to
be committed automatically
before the definition SQL is
executed.

94 PDPRPCRCLS HiRDB_for_Java_PDPRPCR
CLS

Specifies whether an open
cursor is to be closed
automatically if a PREPARE
statement reuses the SQL
identifier that is using that
open cursor.

96 PDDDLDEAPRPEXE HiRDB_for_Java_PDDDLD
EAPRPEXE

Ignores the preceding
transaction's preprocessing
results and executes definition
transactions.

97 PDDDLDEAPRP HiRDB_for_Java_PDDDLD
EAPRP

Specifies whether definition
information of a table being
used by a closed holdable
cursor can be changed by
another UAP between
transactions.

98 PDLCKWAITTIME HiRDB_for_Java_PDLCKW
AITTIME

Specifies the maximum
amount of time the HiRDB
client is to monitor for release
of a lock request, beginning
when the lock request is
placed in wait status.

100 PDDELRSVWDFILE HiRDB_for_Java_PDDELRS
VWDFILE

Specifies the name of the SQL
reserved word deletion file
when the SQL reserved word
deletion facility is used.

101 PDHJHASHINGMOD
E

HiRDB_for_Java_PDHJHAS
HINGMODE

Specifies the hashing method
when application of hash join,
subquery hash execution is
selected as the SQL extension
optimizing option.

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

18. Type4 JDBC Driver

1947

102 PDCALCMDWAITTI
ME

HiRDB_for_Java_PDCALC
MDWAITTIME

Specifies the maximum
amount of time the HiRDB
client is to wait for
termination of a command
executed by the CALL
COMMAND statement or a
utility, beginning when
command execution starts.

103 PDSTANDARDSQLS
TATE

HiRDB_for_Java_PDSTAND
ARDSQLSTATE

Specifies whether the details
of the SQLSTATE value are to
be displayed.

104 PDBLKF HiRDB_for_Java_PDBLKF Specifies the number of rows
to be sent in one transfer when
the HiRDB server transfers
retrieval results to the HiRDB
client.

Block transfer
facility

105 PDBINARYBLKF HiRDB_for_Java_PDBINAR
YBLKF

Specifies whether the block
transfer facility is to be
applied when a table with a
BINARY-type selection
expression with a defined
length exceeding 32,00 bytes
is searched.

106 PDBLKBUFFSIZE HiRDB_for_Java_PDBLKB
UFFSIZE

Specifies the size of the
server-client communication
buffer used by the block
transfer facility.

113 PDDBACCS HiRDB_for_Java_PDDBAC
CS

When the inner replica facility
is being used and an
RDAREA that is not the
current RDAREA is to be
accessed, specifies that
RDAREA's generation
number.

Inner replica
facility

114 PDDBORGUAP HiRDB_for_Java_PDDBOR
GUAP

Specifies whether to execute a
UAP on the original
RDAREA that is in online
reorganization hold status.

Updatable
online
reorganization

115 PDSPACELVL HiRDB_for_Java_PDSPACE
LVL

Specifies the space conversion
level for data storage,
comparison, and search
processing.

Data space
conversion

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

18. Type4 JDBC Driver

1948

116 PDCLTRDNODE HiRDB_for_Java_PDCLTRD
NODE

Specifies the identifier of the
XDM/RD E2 database to be
connected when the XDM/RD
E2 connection facility is used.

XDM/RD E2
connection
facility

119 PDCNSTRNTNAME HiRDB_for_Java_PDCNSTR
NTNAME

Specifies the position of the
constraint name definition
when a referential or check
constraint is defined.

Referential and
check
constraints

120 PDBESCONHOLD HiRDB_for_Java_PDBESCO
NHOLD

Specifies whether the BES
connection holding facility is
to be used.

BES
connection
holding facility

121 PDBESCONHTI HiRDB_for_Java_PDBESCO
NHTI

Specifies the BES connection
holding period when the BES
connection holding facility is
used.

129 PDPLGIXMK HiRDB_for_Java_PDPLGIX
MK

Specifies whether delayed
batch creation of plug-in
indexes is to be used.

Plug-ins

130 PDPLUGINNSUB HiRDB_for_Java_PDPLUGI
NNSUB

For details, see the manual for
the target plug-in.

131 PDPLGPFSZ HiRDB_for_Java_PDPLGPF
SZ

Specifies the initial size of the
index information file for
delayed batch creation of
plug-ins.

132 PDPLGPFSZEXP HiRDB_for_Java_PDPLGPF
SZEXP

Specifies the extension size of
the index information file for
delayed batch creation of
plug-ins.

133 PDJDBFILEDIR -- Specifies the log file output
destination for Exception
trace logs in the Type4 JDBC
driver.

JDBC driver

134 PDJDBFILEOUTNU
M

-- Specifies the number of
Exception trace logs that the
Type4 JDBC driver outputs to
the log file.

135 PDJDBONMEMNUM -- Specifies the number of
Exception trace logs acquired
in memory by the Type4
JDBC driver.

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

18. Type4 JDBC Driver

1949

Legend:

--: Not applicable

#1

You can use the system properties to specify the same connection information as
in the client environment definitions. For details about the specification priorities,
see 18.11 Connection information priorities. For details about the system property
settings for connection information related to trace logs, see 18.15.1(2) Setup for
acquisition of the Exception trace log.

Note that for an internal driver, system property specifications are ignored.

#2

The name of the SQL trace file is pdjsqlxxxxxxxx_ppppp_1.trc or
pdjsqlxxxxxxxx_ppppp_2.trc.

xxxxxxxx: Name of connected server (up to eight characters)

ppppp: Receive port number (5 characters) at the client side

This format is used even when the SQL trace file is acquired by the UAP
statistical report facility (PDREPPATH specification) or by the SQL trace dynamic
acquisition facility (PDTRCPATH specification). However, if the SQL trace file is
acquired before connection to the FES or SDS, the file name becomes
pdjsql1.trc or pdjsql2.trc.

Using a HiRDB.INI file to enable client environment variables

Client environment variables defined in a HiRDB.INI file (that is stored in any
desired directory) can be applied in any of the following cases:

136 PDJDBTRACELEVE
L

-- Specifies the trace acquisition
level for Exception trace logs
in the Type4 JDBC driver.

137 PDXDSHOST -- Specifies the host name of the
XDS to be connected.

XDS client only

138 PDXDSPORT -- Specifies the port number of
the XDS to be connected.

139 PDXVWOPT -- Specifies whether the access
path of the SQL statement
used to access a table to be
expanded to the memory
database is to be output.

No
.

Environment
variable name

Corresponding system
property#1

Function Environment
variable type

18. Type4 JDBC Driver

1950

• HiRDB_for_Java_HiRDB_INI is specified in the Properties argument
of DriverManager.getConnection.

• HiRDB_INI is specified in the URL of
DriverManager.getConnection.

• The absolute path of the HiRDB_INI file is specified in the setHiRDBINI
method of a DataSource interface.

For details about the specification priorities, see 18.11 Connection information
priorities.

Note that for an internal driver, specifications in the HiRDB.INI file are ignored.

18. Type4 JDBC Driver

1951

18.11 Connection information priorities

(1) List of connection information priorities
The JDBC driver enables you to specify synonymous connection information by using
multiple setup methods (for example, DBHOST specified in the URL and PDHOST
specified in HiRDB client environment definition). The following table lists the
connection information items that have multiple setup methods; it also shows the
priorities when items are set concurrently by multiple setup methods.

18. Type4 JDBC Driver

1952

Table 18-82: Priorities for connection information

Meaning of connection
information

Setup method Priority

A B C

HiRDB host name HiRDB_for_Java_PDHOST specified in system
properties

1 1 1

HiRDB_for_Java_DBHOST property in the Properties
argument of DriverManager.getConnection

2 -- --

DBHOST in the URL 3 -- --

PDHOST in the HiRDB client environment definition
specified in HiRDB_for_Java_ENV_VARIABLES in the
Properties argument of
DriverManager.getConnection

4 -- --

PDHOST in the HiRDB environment variable group
specified in HiRDB_for_Java_DBID in the Properties
argument of DriverManager.getConnection

5 -- --

PDHOST in the HiRDB environment variable group
specified in DBID in the URL

6 -- --

PDHOST in the HiRDB.ini file specified in
HiRDB_for_Java_HiRDB_INI in the Properties
argument of DriverManager.getConnection

7 -- --

PDHOST in the HiRDB.ini file specified in HiRDB_INI in
the URL

8 -- --

setDBHostName method of DataSource interface -- 2 2

PDHOST in the HiRDB client environment definition
specified in the setEnvironmentVariables method of
the DataSource interface

-- 3 3

PDHOST in the HiRDB environment variable group
specified by setDescription method of the
DataSource interface

-- 4 --

PDHOST in the HiRDB environment variable group
specified by XADataSource.setXAOpenString

-- -- 4

PDHOST in a HiRDB.ini file specified in the
setHiRDBINI method of the DataSource interface

-- 5 5

18. Type4 JDBC Driver

1953

HiRDB port number HiRDB_for_Java_ PDNAMEPORT specified in system
properties

1 1 1

HiRDB_for_Java_DBID property in the Properties
argument of DriverManager.getConnection

2 -- --

DBID in the URL 3 -- --

PDNAMEPORT in the HiRDB client environment definition
specified in HiRDB_for_Java_ENV_VARIABLES in the
Properties argument of
DriverManager.getConnection

4 -- --

PDNAMEPORT in the HiRDB environment variable group
specified in HiRDB_for_Java_DBID in the Properties
argument of DriverManager.getConnection

5 -- --

PDNAMEPORT in the HiRDB environment variable group
specified in DBID in the URL

6 -- --

PDNAMEPORT in the HiRDB.ini file specified in
HiRDB_for_Java_HiRDB_INI in the Properties
argument of DriverManager.getConnection

7 -- --

PDNAMEPORT in the HiRDB.ini file specified in
HiRDB_INI in the URL

8 -- --

setDescription method of the DataSource interface -- 2 2

PDNAMEPORT in the HiRDB client environment definition
specified in the setEnvironmentVariables method of
a DataSource interface

-- 3 3

PDNAMEPORT in the HiRDB environment variable group
specified by setDescription method of the
DataSource interface

-- 4 --

PDNAMEPORT in the HiRDB environment variable group
specified by XADataSource.setXAOpenString

-- -- 4

PDNAMEPORT in the HiRDB.ini file specified in the
setHiRDBINI method of the DataSource interface

-- 5 5

User name used to establish
connection, password#1

HiRDB_for_Java_PDUSER specified in system
properties

1 1 1

Meaning of connection
information

Setup method Priority

A B C

18. Type4 JDBC Driver

1954

user and password arguments in
DriverManager.getConnection or user and
password in the Properties argument

2 -- --

USER and PASSWORD in the URL 3 -- --

PDUSER in the HiRDB client environment variable
specified in HiRDB_for_Java_ENV_VARIABLES in the
Properties argument of
DriverManager.getConnection

4 -- --

PDUSER in the HiRDB environment variable group
specified in HiRDB_for_Java_DBID in the Properties
argument of DriverManager.getConnection

5 -- --

PDUSER in the HiRDB environment variable group
specified in DBID in the URL

6 -- --

PDUSER in the HiRDB.ini file specified in
HiRDB_for_Java_HiRDB_INI in the Properties
argument of DriverManager.getConnection

7 -- --

PDUSER in the HiRDB.ini file specified in HiRDB_INI in
the URL

8 -- --

Argument in the getConnection method of the
DataSource interface or argument in the
getPooledConnection method of the
ConnectionPoolDataSource interface

-- 2 --

Argument in the getXAConnection method of
XADataSource interface

-- -- 2

setUser and setPassword methods of the DataSource
interface

-- 3 3

PDUSER in the HiRDB client environment variable
specified in the setEnvironmentVariables method of
the DataSource interface

-- 4 4

PDUSER in the HiRDB environment variable group
specified in the setDescription method of the
DataSource interface

-- 5 --

PDUSER in the HiRDB environment variable group
specified in XADataSource.setXAOpenString

-- -- 5

PDUSER in the HiRDB.ini file specified in the
setHiRDBINI method of a DataSource interface

-- 6 6

Meaning of connection
information

Setup method Priority

A B C

18. Type4 JDBC Driver

1955

UAP name#2 HiRDB_for_Java_ PDCLTAPNAME specified in system
properties

1 1 1

UAPNAME property in the Properties argument of the
DriverManager.getConnectionoperties

2 -- --

UAPNAME in the URL 3 -- --

PDCLTAPNAME in the HiRDB client environment
definition specified in
HiRDB_for_Java_ENV_VARIABLES in the Properties
argument of DriverManager.getConnection

4 -- --

PDCLTAPNAME in the HiRDB environment variable
specified in HiRDB_for_Java_DBID in the Properties
argument of DriverManager.getConnection

5 -- --

PDCLTAPNAME in the HiRDB environment variable group
specified in DBID in the URL

6 -- --

PDCLTAPNAME in the HiRDB.ini file specified in
HiRDB_for_Java_HiRDB_IN in the Properties
argument of DriverManager.getConnection

7 -- --

PDCLTAPNAME in the HiRDB.ini file specified in
HiRDB_INI in the URL

8 -- --

setUapName method of DataSource interface -- 2 2

PDCLTAPNAME in the HiRDB client environment
definition specified in the setEnvironmentVariables
method of the DataSource interface

-- 3 3

PDCLTAPNAME in the HiRDB environment variable group
specified by the setDescription method of
DataSource interface

-- 4 --

PDCLTAPNAME in the HiRDB environment variable group
specified by XADataSource.setXAOpenString

-- -- 4

PDCLTAPNAME in the HiRDB.ini file specified in the
setHiRDBINI method of the DataSource interface

-- 5 5

Conversion character set ENCODELANG property in the Properties argument of
DriverManager.getConnection

1 -- --

ENCODELANG in the URL 2 -- --

setEncodeLang of the DataSource interface -- 1 1

Meaning of connection
information

Setup method Priority

A B C

18. Type4 JDBC Driver

1956

Cursor operation mode HIRDB_CURSOR property in the Properties argument of
DriverManager.getConnection

1 -- --

HIRDB_CURSOR in the URL 2 -- --

setHiRDBCursorMode of the DataSource interface -- 1 1

Status after statement commit
execution

HiRDB_for_Java_DAB_STATEMENT_COMMIT_BEHAVIO
R specified in system properties

1 1 1

HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR
property in the Properties argument of
DriverManager.getConnection

2 -- --

STATEMENT_COMMIT_BEHAVIOR in the URL 3 -- --

setStatementCommitBehavior of the DataSource
interface

-- 2 2

Login wait time HiRDB_for_Java_PDCONNECTWAITTIME specified in
system properties

1 1 1

DriverManager.setLoginTimeout 2 -- --

PDCONNECTWAITTIME in the HiRDB client environment
definition specified in HiRDB_for_Java_HiRDB_IN in
the Properties argument of
DriverManager.getConnection

3 -- --

PDCONNECTWAITTIME in the HiRDB environment
variable group specified in DBID in the Properties
argument of DriverManager.getConnection

4 -- --

PDCONNECTWAITTIME in the HiRDB environment
variable group specified by DBID in the URL

5 -- --

PDCONNECTWAITTIME in the HiRDB.ini file specified in
HiRDB_for_Java_HiRDB_INI in the Properties
argument of DriverManager.getConnection

6 -- --

PDCONNECTWAITTIME in the HiRDB.ini file specified in
HiRDB_INI in the URL

7 -- --

setLoginTimeout of the DataSource interface -- 2 2

PDCONNECTWAITTIME in the HiRDB client environment
definition specified in the setEnvironmentVariables
method of the DataSource interface

-- 3 3

Meaning of connection
information

Setup method Priority

A B C

18. Type4 JDBC Driver

1957

Legend:

A: For connection that uses DriverManager

B: For non-XA connection that uses the DataSource interface

C: For XA connection that uses the XADataSource interface

--: Cannot be specified for the connection method.

#1

If you specify a user name but omit a password, the JDBC driver assumes that no
password is specified. If you omit a user name but specify a password, the
specified password is ignored and the specification with the next highest priority
takes effect.

#2

If this information cannot be set with the setting method shown in this table, the
JDBC driver operates with the information set by the
HiRDB_Type4_JDBC_Driver, which is the product name of the JDBC driver.

PDCONNECTWAITTIME in the HiRDB environment
variable group specified by the setDescription method
of the DataSource interface

-- 4 --

PDCONNECTWAITTIME in the HiRDB environment
variable group specified by
XADataSource.setXAOpenString

-- -- 4

PDCONNECTWAITTIME in the HiRDB.ini file specified in
the setHiRDBINI method of the DataSource interface

-- 5 5

Discarding of SQL preprocessing
results during execution of the
close method of Statement

HiRDB_for_Java_STATEMENT_CLOSE_BEHAVIOR
specified in system properties

1 1 1

HiRDB_for_Java_STATEMENT_CLOSE_BEHAVIOR
property in the Properties argument of
DriverManager.getConnection

2 -- --

STATEMENT_CLOSE_BEHAVIOR in the URL 3 -- --

setStatementCloseBehavior of the DataSource
interface

-- 2 2

Meaning of connection
information

Setup method Priority

A B C

18. Type4 JDBC Driver

1958

(2) Priorities for other client environment definitions
The following table shows the priorities for other HiRDB client environment
definitions:

Notes
• If a HiRDB environment variable group file is specified in

HiRDB_for_Java_DBID in the Properties argument of
DriverManager.getConnection and in DBID in the URL, the DBID
specification in the URL is ignored.

• If HiRDB_for_Java_HiRDB_INI is specified in the Properties
argument of DriverManager.getConnection and HiRDB_INI is
specified in the URL, the HiRDB_IN specification in the URL is ignored.

Priority Client environment variable

1 System property

2 HiRDB client environment definition specified in HiRDB_for_Java_ENV_VARIABLES in the
Properties argument of DriverManager.getConnection

3 Client environment variable in a HiRDB environment variable group file specified in
HiRDB_for_Java_DBID in the Properties argument of DriverManager.getConnection

4 Client environment definition in a HiRDB environment variable group file specified in DBID in the
URL in DriverManager.getConnection

5 HiRDB client environment variable specified in a HiRDB.ini file under the directory specified in
HiRDB_for_Java_HiRDB_INI in the Properties argument of DriverManager.getConnection

6 HiRDB client environment variable specified in a HiRDB.ini file in the directory specified in
HiRDB_INI in the URL in DriverManager.getConnection

18. Type4 JDBC Driver

1959

18.12 Migration from a Type2 JDBC driver

This section discusses migration to a Type4 JDBC driver of Java stored procedures that
have been used with a Type2 JDBC driver.

If you use any of the platforms listed below, you can migrate Java stored procedures
from a Type2 JDBC driver to a Type4 JDBC driver without having to change the
programs:

• 64-bit mode HP-UX(PA-RISC)

• 64-bit mode Solaris(PA-RISC)

• 64-bit mode AIX(PA-RISC)

• Linux(EM64T)

• Windows (x64)

If you use any other platform, you must change the settings as shown below when you
migrate the internal driver from Type2 JDBC to Type4 JDBC.

Item
requiring
change

Type2 JDBC driver Type4 JDBC driver

Driver name "JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDrive
r"

"JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDrive
r"

Protocol
name,
subprotocol
name, and
subname
specified in
the URL
when
connection is
established
with HiRDB

jdbc:hitachi:PrdbDrive jdbc:hitachi:hirdb

Class name
of
DataSource
class

JdbhDataSource PrdbDataSource

18. Type4 JDBC Driver

1960

Cursor
operation
mode#

Specify by using one of the following
methods:
• COMMIT_BEHAVIOR in the URL that is

specified when connection is established
• COMMIT_BEHAVIOR property that is

specified when connection is established
• setCommit_Behavior method of the

DataSource class

Specify by using one of the following methods:
• Combination of HIRDB_CURSOR and

STATEMENT_COMMIT_BEHAVIOR in the
URL that is specified when connection is
established

• Combination of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR properties
that are specified when connection is
established

• Combination of
setStatementCommitBehavior and
setHiRDBCursorMode methods of the
DataSource class

HiRDB's
array update,
array
insertion, and
array deletion
facilities

Supported if this function is set to be used by
one of the following methods:
• BLOCK_UPDATE property that is

specified when connection is established
• HiRDB_for_Java_BLOCK_UPDATE

system property
• setBlockUpdate method of the

DataSource class
• setBlockUpdate method of the

JdbcDbpsvPreparedStatement class

Supported unconditionally.
However, the setBlockUpdate method of the
JdbcDbpsvPreparedStatement class is not
supported.

Maximum
number of
input or
input-output
? parameters
in the SQL
statements to
be executed

Specify by using one of the following
methods:
• HiRDB_for_Java_SQL_IN_NUM

property that is specified when
connection is established

• HiRDB_for_Java_SQL_IN_NUM system
property

• setSQLInNum method of the
DataSource class

The default value is 64.

Specify by using one of the following methods:
• HiRDB_for_Java_SQL_IN_NUM property

that is specified when connection is
established

• setSQLInNum method of the DataSource
class

The default value is 300.

Maximum
number of
output items
for the SQL
statement to
be executed

Specify by using one of the following
methods:
• HiRDB_for_Java_SQL_OUT_NUM

property that is specified when
connection is established

• HiRDB_for_Java_SQL_OUT_NUM
system property

• setSQLOutNum method of the
DataSource class

The default value is 64.

Specify by using one of the following methods:
• HiRDB_for_Java_SQL_OUT_NUM property

that is specified when connection is
established

• setSQLOutNum method of the DataSource
class

The default value is 300.

Item
requiring
change

Type2 JDBC driver Type4 JDBC driver

18. Type4 JDBC Driver

1961

#

Whether ResultSet and Statement objects become valid after commit
execution depends on the cursor's operation mode.

The table below shows the correspondence of the cursor operation mode settings
between Type2 JDBC and Type4 JDBC drivers.

Note that the default values are different between the Type2 JDBC and Type4
JDBC drivers.

Client environment definitions in Java applications

With a Type2 JDBC driver, the PDHOST and PDNAMEPORT specifications in the
OS's environment variables are effective if you omit information (such as URL)
when connection is established.

A Type4 JDBC driver does not use OS environment variables, so when you
migrate from a Type2 JDBC driver you must modify your UAPs so that PDHOST
and PDNAMEPORT in the client environment definitions are used for URL when
connection is established.

ResultS
et object

status
after

commit
executio

n

Stateme
nt

object
status
after

commit
executi

on

Type2 JDBC driver Type4 JDBC driver

Invalid Invalid COMMIT_BEHAVIO
R= "DELETE"
(default value)

HIRDB_CURSOR=FALSE (default value)
STATEMENT_COMMIT_BEHAVIOR=FALSE

Valid COMMIT_BEHAVIO
R= "CLOSE"

HIRDB_CURSOR=FALSE (default value)
STATEMENT_COMMIT_BEHAVIOR=TRUE (default
value)

Valid Valid COMMIT_BEHAVIO
R= "PRESERVE"

HIRDB_CURSOR=TRUE
STATEMENT_COMMIT_BEHAVIOR=TRUE or
STATEMENT_COMMIT_BEHAVIOR=FALSE

18. Type4 JDBC Driver

1962

18.13 Migration from DABroker for Java

If you migrate your JDBC driver from DABroker for Java to a Type4 JDBC, you might
need to change UAPs. A facility called the DABroker for Java-compatible facility is
provided for running a Type4 JDBC driver in a mode compatible with DABroker for
Java by specifying system properties. This section describes the DABroker for
Java-compatible facility.

18.13.1 System properties related to the DABroker for
Java-compatible facility

You use system properties to specify connection information related to the DABroker
for Java-compatible facility. The table below lists and describes the system properties
to be specified.

Note that for an internal driver, system property specifications are ignored.

Table 18-83: System properties related to the DABroker for Java-compatible
facility

Property name Description Sp
eci
fic
ati
on

HiRDB_for_Java
_DAB_CONVER
T_NULL

Specifies whether the setString and getString methods of the
CallableStatement class are to be run in the DABroker for Java-compatible
mode. If this property is omitted, FALSE is assumed. The specified value is not case
sensitive.
TRUE

Runs the methods in the DABroker for Java-compatible mode.
If the data type of a ? parameter in the setString method is CHAR, VARCHAR,
NCHAR, NVARCHAR, MCHAR, or MVARCHAR, and a character string with a length of
0 is specified in the argument, null is set in the ? parameter.
If the ? parameter value acquired by the getString method is a character string
with a length of 0, null is set as the return value.

FALSE

Does not run the methods in the DABroker for Java-compatible mode.
If the data type of a ? parameter in the setString method is CHAR, VARCHAR,
NCHAR, NVARCHAR, MCHAR, or MVARCHAR, and a character string with a length of
0 is specified in the argument, a character string with a length of 0 is set in the ?
parameter.
If the ? parameter value acquired by the getString method is a character string
with a length of 0, a character string with a length of 0 is set as the return value.

Other
The driver assumes that FALSE is specified.

Op
tio
nal

18. Type4 JDBC Driver

1963

HiRDB_for_Java
_DAB_STATEM
ENT_COMMIT_
BEHAVIOR

Specifies whether the processing for disabling the objects of Statement during
commit execution is to be run in the DABroker for Java-compatible mode. If this
property is omitted, FALSE is assumed. The specified value is not case sensitive.
TRUE

Makes the processing compatible with DABroker for Java.
If commit processing is performed, the objects of Statement are disabled.

FALSE

Does not make the processing compatible with DABroker for Java.
The driver uses a value specified by another method. For details about the
specification method, see 18.11(1) List of connection information priorities.

Other
The driver assumes that FALSE is specified.

Op
tio
nal

HiRDB_for_Java
_DAB_EXECUT
ESQL_NOCHK

Specifies whether the executeQuery and executeUpdate methods of Statement
are to be run in the DABroker for Java-compatible mode. If this property is omitted,
FALSE is assumed. The specified value is not case sensitive.
TRUE

Runs the methods in the DABroker for Java-compatible mode.
• The executeQuery method of Statement can be used to execute

non-retrieval SQL statements.
• The executeUpdate method of Statement can be used to execute retrieval

SQL statements.
• If a non-retrieval SQL statement is executed by the execute,

executeQuery, or executeUpdate method of Statement and then the
getResultSet method is executed, the driver returns a ResultSet
containing no columns.

FALSE

Does not run the methods in the DABroker for Java-compatible mode.
• If the executeQuery method of Statement is used to execute a

non-retrieval SQL statement, the driver throws an SQLException.
• If the executeUpdate method of Statement is used to execute a retrieval

SQL statement, the driver throws an SQLException.
• If a non-retrieval SQL statement is executed by the execute or

executeUpdate method of Statement and then the getResultSet
method is executed, the driver returns null.

Other
The driver assumes that FALSE is specified.

Op
tio
nal

Property name Description Sp
eci
fic
ati
on

18. Type4 JDBC Driver

1964

18.13.2 Items that are not compatible with a Type4 JDBC driver
The tables in this subsection list the items that are not compatible with a Type4 JDBC
driver for the various versions of DABroker for Java and Cosminexus.

DABroker for Java and Cosminexus versions:

• DABroker for Java Version 2 02-10 or earlier

• Cosminexus Studio Version 5 05-05-/E or earlier

• Cosminexus Application Server Version 5 05-05-/E or earlier

• Cosminexus Developer Version 5 05-05-/E or earlier

HiRDB_for_Java
_DAB_OUTPAR
MSIZE_MAX

Specifies whether the registerOutParameter method of the
CallableStatement class is to be run in the DABroker for Java-compatible mode.
If this property is omitted, FALSE is assumed. The specified value is not case
sensitive.
TRUE

Runs the method in the DABroker for Java-compatible mode.
If the VARCHAR, NVARCHAR, or MVARCHAR data type has been acquired for INOUT
or OUT parameters by CALL statement preprocessing and this data type is
registered as java.sql.Types.CHAR by the registerOutParameter method
of the CallableStatement class, the getString method of the
CallableStatement class returns the maximum size of data acquired by
preprocessing.
If the data set by the stored procedure is smaller than the maximum size of data
acquired by preprocessing, spaces are added to the data set by the stored
procedure to match the maximum size acquired by preprocessing.

FALSE

Does not run the method in the DABroker for Java-compatible mode.
If the VARCHAR, NVARCHAR, or MVARCHAR data type has been acquired for INOUT
or OUT parameters by CALL statement preprocessing and this data type is
registered as java.sql.Types.CHAR by the registerOutParameter method
of the CallableStatement class, the getString method of the
CallableStatement class returns the data set by the stored procedure as is. No
spaces are added to the data set by the stored procedure.

Other
The driver assumes that FALSE is specified.

Op
tio
nal

Property name Description Sp
eci
fic
ati
on

18. Type4 JDBC Driver

1965

Table 18-84: Items that are not compatible with a Type4 JDBC driver (part 1)

DABroker for Java and Cosminexus versions:

• DABroker for Java Version 2 02-07 or earlier

• Cosminexus Studio Version 5 05-05 or earlier

• Cosminexus Application Server Version 5 05-05 or earlier

• Cosminexus Developer Version 5 05-05 or earlier

Incompatible item DABroker for Java Type4 JDBC driver

Handling of character string
with a length of 0 by the
setString and getString
methods of the
CallableStatement class

setString method If the data type of a ?
parameter is CHAR,
VARCHAR, NCHAR,
NVARCHAR, or MVARCHAR
and a character string
with a value of 0 is set in
the argument, null is set
in the ? parameter.

If the data type of a ?
parameter is CHAR,
VARCHAR, NCHAR,
NVARCHAR, or MVARCHAR
and a character string
with a value of 0 is set in
the argument, a character
string with a length of 0
is set in the ? parameter.

getString method If the acquired ?
parameter value is a
character string with a
length of 0, null is set as
the return value.

If the acquired ?
parameter value is a
character string with a
length of 0, a character
string with a length of 0
is set as the return value.

Status of Statement after commit execution If commit processing is
performed, the objects of
Statement are disabled.

If commit processing is
performed, the objects of
Statement are enabled.

18. Type4 JDBC Driver

1966

Table 18-85: Items that are not compatible with a Type4 JDBC driver (part 2)

DABroker for Java and Cosminexus versions:

• Cosminexus DABroker 03-00-/D or earlier

• Cosminexus DABroker for Java 02-06-/B or earlier

• Cosminexus Studio Version 5 05-00-/D or earlier

• Cosminexus Application Server Version 5 05-00-/D or earlier

• Cosminexus Developer Version 5 05-00-/D or earlier

Incompatible item DABroker for Java Type4 JDBC driver

• Types of SQL
statements that can be
executed by the
executeQuery and
executeUpdate
methods of
Statement

• Return value of the
getResultSet
method after
execution of a
non-retrieval SQL
statement

executeQuery method • All SQL statements
can be executed.

• If a non-retrieval
SQL statement is
executed, a
ResultSet
containing no
columns is returned.

Only retrieval SQL
statements can be
executed.

executeUpdate method • All SQL statements
can be executed.

• If a retrieval SQL
statement is executed,
-1 is returned.

Only non-retrieval SQL
statements can be
executed.

getResultSet method If the getResultSet
method is executed after a
non-retrieval SQL
statement was executed
by the execute,
executeQuery, or
executeUpdate method
of Statement, a
ResultSet containing
no columns is returned.

If the getResultSet
method is executed after a
non-retrieval SQL
statement was executed
by the execute or
executeUpdate method
of Statement, null is
returned.

18. Type4 JDBC Driver

1967

Table 18-86: Items that are not compatible with a Type4 JDBC driver (part 3)

Incompatible item DABroker for Java Type4 JDBC driver

Data received by the getString
method of the CallableStatement
class when the VARCHAR, NVARCHAR, or
MVARCHAR data type has been acquired
for INOUT or OUT parameters by CALL
statement preprocessing and this data
type is registered as
java.sql.Types.CHAR by the
registerOutParameter method of
the CallableStatement class

The maximum size of data
acquired by preprocessing is
returned.
If the data set by the stored
procedure is smaller than the
maximum size of data acquired by
preprocessing, spaces are added
to the data set by the stored
procedure to match the maximum
size acquired by preprocessing.

The data set by the stored
procedure is returned.
No spaces are added to the data
set by the stored procedure.

18. Type4 JDBC Driver

1968

18.14 JDBC interface method trace

You can acquire a JDBC interface method trace as troubleshooting information when
you call a method of the JDBC interface.

18.14.1 Setup for trace acquisition
(1) Connection with the DriverManager class

Specify a valid log writer by using the setLogWrite method of the DriverManager
class, and specify acquisition of the JDBC interface method trace in the arguments
(Properties info) of the getConnection method.

For details, see 18.2.2(2)(d) JDBC_IF and 18.2.2(2)(e) TRC_NO.

(2) Connection with the DataSource class
Specify a valid log writer by using the setLogWriter method provided by the
DataSource, ConnectionPoolDataSource, and XADataSource interfaces, and
specify the setJDBC_IF_TRC method provided by the DataSource,
ConnectionPoolDataSource, and XADataSource classes, which are provided by
the JDBC2.0 Optional Package.

For details, see 18.7.5 setJDBC_IF_TRC and 18.7.7 setTRC_NO.

18.14.2 Acquisition rules
This section describes the rules for acquisition of the JDBC interface method trace.

• Trace information is acquired when a method of the JDBC interface is called and
when processing is returned from that method.

However, trace information is not acquired for methods executed before
connection to the database.

Trace information is not acquired for the following methods:

Driver interface

- acceptsURL(String url)

- getMajorVersion()

- getMinorVersion()

- getPropertyInfo(String url, Properties info)

- jdbcCompliant()

DataSource interface

- getLoginTimeout()

18. Type4 JDBC Driver

1969

- getLogWriter()

- setLoginTimeout(int seconds)

- setLogWriter(PrintWriter out)

• Trace information is stored for the number of entries and is output to the specified
log writer when the Connection.close method is called (normal termination),
or when an SQLException, XAException, or BatchUpdateException is
thrown (error occurrence).

• If the number of trace information items exceeds the number of entries, the stored
trace information is discarded in chronological sequence and the newest trace
information is retained.

• A JDBC interface method trace uses a single-entry trace area for each Entry and
each Return.

18.14.3 Output example
Shown below is an output example of a JDBC interface method trace.

Output example

Explanation

1. [HiRDB_Type4_JDBC_Driver]

Name of the JDBC driver

2. [JDBC Interface Entry], [JDBC Interface Return]

[JDBC Interface Entry]: Calling of the JDBC method

[JDBC Interface Return]: Return from the JDBC method

3. [XXXXX.YYYYY]
YYYYY method of the XXXXX class

[1] [2] [3]
[HiRDB_Type4_JDBC_Driver][JDBC Interface Entry][PrdbStatement.executeQuery]
 [4]
[HiRDB_Type4_JDBC_Driver] sql=select * from pp
[HiRDB_Type4_JDBC_Driver][JDBC Interface Return][PrdbStatement.executeQuery]
 [5]
[HiRDB_Type4_JDBC_Driver]
Return=JP.co.Hitachi.soft.HiRDB.JDBC.Prdb...
[HiRDB_Type4_JDBC_Driver][JDBC Interface Entry][PrdbResultSet.getMetaData]
[HiRDB_Type4_JDBC_Driver][JDBC Interface Return][PrdbResultSet.getMetaData]
[HiRDB_Type4_JDBC_Driver]
Return=JP.co.Hitachi.soft.HiRDB.JDBC.Prdb...

18. Type4 JDBC Driver

1970

4. select * from pp

Argument of the JDBC method (for the argument indicating the password, an
asterisk (*) is output, as in password=*)

5. JP.co.Hitachi.soft.HiRDB.JDBC.Prdb

Return value of the JDBC method

18. Type4 JDBC Driver

1971

18.15 Exception trace log

You can acquire an Exception trace log as troubleshooting information. If a failure
caused by an exception occurs in the JDBC driver, the failure cause is output to the
Exception trace log.

The following constitute the output contents:

• Information (such as error messages) when an exception occurs

• Execution record of JDBC's API methods up to the point where an exception
occurred

When this function is used, information about JDBC's API methods that are called
from the UAP is stored in the JDBC driver memory. Then if an SQLException,
BatchUpdateException, or XAException occurs, the information stored in
memory can be output to a file before the exception is thrown.

18.15.1 Methods to be acquired and setup for log acquisition
(1) Methods to be acquired in the Exception trace log

The information to be acquired in the Exception trace log is the calling and return of
methods described in the java.sql package found in the API specifications of Java 2
Platform, Standard Edition, Version 1.4.

Methods that satisfy all of the following conditions are acquired:

• The methods listed in the table below, when a trace acquisition level required for
acquisition is specified for each method.

• Methods of the Blob and InputStream classes when LOCATOR is specified in
LONGVARBINARY_ACCESS.

Methods that only look up and return information found in objects or only store
information into objects, such as the ResultSet.getXXX,
PreparedStatement.setXXX, and Connection.isClosed methods, are not
acquisition targets.

The table below lists the methods that are acquisition targets of the Exception trace log.
The table also provides the trace acquisition levels of the methods.

18. Type4 JDBC Driver

1972

Table 18-87: Methods that are acquisition targets of the Exception trace log and
their trace acquisition levels

Class Method Trace acquisition level

1 2 3 4 5#1

CallableStatem
ent

void close()#6 Y Y Y Y Y

boolean execute()#2 #6 -- Y Y Y Y

ResultSet executeQuery()#2, #6 -- Y Y Y Y

int executeUpdate()#2, #6 -- Y Y Y Y

boolean execute(String sql)#3, #6 Y Y Y Y Y

int[] executeBatch()#6 -- Y Y Y Y

ResultSet executeQuery(String sql)#3, #6 Y Y Y Y Y

int executeUpdate(String sql)#3, #6 Y Y Y Y Y

Connection void close() Y Y Y Y Y

void commit() -- Y Y Y Y

Statement createStatement()#2 Y Y Y Y Y

Statement createStatement(int
resultSetType, int
resultSetConcurrency)#3

Y Y Y Y Y

DatabaseMetaData getMetaData() -- Y Y Y Y

CallableStatement prepareCall(String

sql)#2
Y Y Y Y Y

CallableStatement prepareCall(String
sql, int resultSetType, int

resultSetConcurrency)#3

Y Y Y Y Y

PreparedStatement
prepareStatement(String sql)#2

Y Y Y Y Y

PreparedStatement
prepareStatement(String sql, int
resultSetType, int
resultSetConcurrency)#3

Y Y Y Y Y

18. Type4 JDBC Driver

1973

void rollback()#2 -- Y Y Y Y

void setAutoCommit(boolean autoCommit) -- Y Y Y Y

DatabaseMetaDa
ta

ResultSet getAttributes(String catalog,
String schemaPattern, String
typeNamePattern, String
attributeNamePattern)

-- Y Y Y Y

ResultSet getBestRowIdentifier(String
catalog, String schema, String table, int
scope, boolean nullable)

-- Y Y Y Y

ResultSet getCatalogs() -- Y Y Y Y

ResultSet getColumnPrivileges(String
catalog, String schema, String table,
String columnNamePattern)

-- Y Y Y Y

ResultSet getColumns(String catalog,
String schemaPattern, String
tableNamePattern, String
columnNamePattern)

-- Y Y Y Y

Connection getConnection() -- Y Y Y Y

ResultSet getCrossReference(String
primaryCatalog, String primarySchema,
String primaryTable, String
foreignCatalog, String foreignSchema)

-- Y Y Y Y

ResultSet getExportedKeys(String catalog,
String schema, String table)

-- Y Y Y Y

ResultSet getImportedKeys(String catalog,
String schema, String table)

-- Y Y Y Y

ResultSet getIndexInfo(String catalog,
String schema, String table, boolean
unique, boolean approximate)

-- Y Y Y Y

ResultSet getPrimaryKeys(String catalog,
String schema, String table)

-- Y Y Y Y

ResultSet getProcedureColumns(String
catalog, String schemaPattern, String
procedureNamePattern, String
columnNamePattern)

-- Y Y Y Y

Class Method Trace acquisition level

1 2 3 4 5#1

18. Type4 JDBC Driver

1974

ResultSet getProcedures(String catalog,
String schemaPattern, String
procedureNamePattern)

-- Y Y Y Y

ResultSet getSchemas() -- Y Y Y Y

ResultSet getSuperTables(String catalog,
String schemaPattern, String
tableNamePattern)

-- Y Y Y Y

ResultSet getSuperTypes(String catalog,
String schemaPattern, String
typeNamePattern)

-- Y Y Y Y

ResultSet getTablePrivileges(String
catalog, String schemaPattern, String
tableNamePattern)

-- Y Y Y Y

ResultSet getTables(String catalog,
String schemaPattern, String
tableNamePattern, String[] types)

-- Y Y Y Y

ResultSet getTableTypes() -- Y Y Y Y

ResultSet getTypeInfo() -- Y Y Y Y

ResultSet getUDTs(String catalog, String
schemaPattern, String typeNamePattern,
int[] types)

-- Y Y Y Y

ResultSet getVersionColumns(String
catalog, String schema, String table)

-- Y Y Y Y

Driver Connection connect(String url, Properties
info)

Y Y Y Y Y

PreparedStatem
ent

boolean execute()#2 -- Y Y Y Y

ResultSet executeQuery()#2 -- Y Y Y Y

int executeUpdate()#2 -- Y Y Y Y

ResultSetMetaData getMetaData() -- Y Y Y Y

boolean execute(String sql)#3, #5 Y -- Y Y Y

int[] executeBatch()#5 -- Y Y Y Y

Class Method Trace acquisition level

1 2 3 4 5#1

18. Type4 JDBC Driver

1975

ResultSet executeQuery(String sql)#3, #5 Y Y Y Y Y

int executeUpdate(String sql)#3, #5 Y Y Y Y Y

ResultSet boolean absolute(int row) -- Y Y Y Y

void afterLast() -- Y Y Y Y

void beforeFirst() -- Y Y Y Y

void close() -- Y Y Y Y

boolean first() -- Y Y Y Y

ResultSetMetaData getMetaData() -- Y Y Y Y

Statement getStatement() -- Y Y Y Y

boolean last() -- Y Y Y Y

boolean next() -- Y Y Y Y

boolean relative(int rows) -- Y Y Y Y

boolean isAfterLast() -- Y Y Y Y

boolean isBeforeFirst() -- Y Y Y Y

boolean isLast() -- Y Y Y Y

Statement void cancel() -- Y Y Y Y

void close() Y Y Y Y Y

boolean execute(String sql) Y Y Y Y Y

int[] executeBatch() -- Y Y Y Y

ResultSet executeQuery(String sql) Y Y Y Y Y

int executeUpdate(String sql) Y Y Y Y Y

ResultSet getResultSet() -- Y Y Y Y

Blob long position(Blob pattern,long start)#2 -- Y Y Y Y

long position(byte[] pattern, long
start)#3

-- Y Y Y Y

Class Method Trace acquisition level

1 2 3 4 5#1

18. Type4 JDBC Driver

1976

long length() -- Y Y Y Y

byte[] getBytes(long pos, int length) -- Y Y Y Y

InputStream int read()#2 -- Y Y Y Y

int read(byte[] data, int data_offset,int
data_len)#3

-- Y Y Y Y

int read(byte[] data, int data_offset,int
data_len)#4

-- Y Y Y Y

DataSource getConnection()#2 Y Y Y Y Y

getConnection(String username, String
password)#3

Y Y Y Y Y

ConnectionPool
DataSource

getPooledConnection()#2 Y Y Y Y Y

getPooledConnection(String username,
String password)#3

Y Y Y Y Y

PooledConnecti
on

close() Y Y Y Y Y

getConnection() Y Y Y Y Y

XADataSource getXAConnection()#2 Y Y Y Y Y

getXAConnection(String username, String
password)#3

Y Y Y Y Y

XAConnection getXAResource() Y Y Y Y Y

XAResource commit(Xid xid, boolean onePhase) -- -- Y Y Y

end(Xid xid, int flags) -- -- Y Y Y

forget(Xid xid) -- -- Y Y Y

isSameRM(XAResource xares) -- -- Y Y Y

prepare(Xid xid) -- -- Y Y Y

recover(int flag) -- -- Y Y Y

rollback(Xid xid) -- -- Y Y Y

start(Xid xid, int flags) -- -- Y Y Y

Class Method Trace acquisition level

1 2 3 4 5#1

18. Type4 JDBC Driver

1977

Legend:

Y: An Exception trace log is acquired.

--: An Exception trace log is not acquired.

#1

If the trace acquisition level is 5, an Exception trace log that includes internal
calling is acquired.

#2

method-name(1) is output as the method name.

#3

method-name(2) is output as the method name.

#4

method-name(3) is output as the method name.

#5

This method overrides the method of the Statement class.

#6

This method overrides the methods of the Statement and
PreparedStatement classes.

(2) Setup for acquisition of the Exception trace log
Use the system properties or the client environment definitions to set the file output
destination of the Exception trace log, the number of outputs to the file, the number of
information items to be acquired in memory, and the trace acquisition level. The
priorities are as follows:

1. System properties

2. Client environment definitions

(a) Setting client environment definitions
Specify the following items in the client environment definitions:

• PDJDBFILEDIR

• PDJDBFILEOUTNUM

• PDJDBONMEMNUM

• PDJDBTRACELEVEL

For details about the specification values, see 6.6.4 Environment definition
information.

18. Type4 JDBC Driver

1978

If invalid values are specified in these client environment definitions, the facility for
controlling the Exception trace log acquired when an SQLException is thrown
assumes that values were not specified for these client environment definitions. In this
situation, the defaults shown in the table below are assumed.

(b) Setting system properties
Specify in the system properties the items shown in the following table.

Table 18-88: System property settings for acquisition of the Exception trace log

Item System property Description Default#

File output
destination

HiRDB_for_Java_F
ileDIR

Specify the absolute path of the directory to which the
Exception trace log is to be output. The Exception trace
log is output immediately under the specified directory.

Current
directory

Number of
outputs to
the file

HiRDB_for_Java_F
ileOutNUM

Specify the maximum number of information items to be
output to one file. Specify a value in the range from 1 to
50.
The maximum number of information items to be output
to one file is actually number of outputs to the file x
number of acquisition items to be acquired in memory.
For the number of outputs to the file, the formats from
Format 2 to Format 4 shown in 18.15.2 Output formats
are each counted as one output.
The information items are output to memory in the
sequence they were stored.
If information items exceeding the maximum value are
to be output to a file, the items are wrapped around into
two files. The file names are as follows:
• pdexc1.trc

• pdexc2.trc

However, the output destination file does not change
between Format 1 and Format 2 shown in 18.15.2
Output formats.

5

Number of
information
items to be
acquired in
memory

HiRDB_for_Java_O
nMemNUM

Specify the maximum number of information items to be
stored in memory. You can specify a value in the range
from 500 to 10,000.
For the information acquired in memory, each method
shown in Table 18-87 is counted as one item.
If the number of information items to be stored exceeds
the maximum value, old information items are
overwritten with new information items in chronological
sequence.

1,000

18. Type4 JDBC Driver

1979

#

When the Exception trace log is acquired in the following cases, the JDBC driver
assumes that values were not specified in the system properties (and the defaults
are assumed):

• When an invalid value is specified in the system properties and an
SQLException is thrown during connection to the database

• When the Java Virtual Machine denies the JDBC driver permission to
exchange system properties because of security manager reasons

• Before initial connection of the Java Virtual Machine is established

18.15.2 Output formats
The Exception trace log has the following four formats.

Format 1: Header section

Format 2: Method execution history (execution start of a method)

Format 3: Method execution history (normal termination of a method)

Format 4: Timing when output occurred

Trace
acquisition
level

HiRDB_for_Java_T
raceLevel

Specify a trace acquisition level. You can specify a level
in the range from 0 to 5.
If you specify 5, all methods that are trace acquisition
targets, including internally called methods, are
acquired.
If you specify 0, an Exception trace log is not acquired.

1

[AA....AA] HiRDB_Type4_JDBC_Driver BB-CC

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:[C][DD....DD]
 ConnectionID(EE....EE) : SID(FF....FF)
 GG....GG

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:[C][DD....DD]
 ConnectionID(EE....EE) : SID(FF....FF)
 HH....HH

Item System property Description Default#

18. Type4 JDBC Driver

1980

Format 2 and Format 3 are output repeatedly in time series sequence for each method
executed.

(1) Explanation of variables in Format 1
AA....AA

Indicates the sequence number of the output information.

The sequence number is incremented by 1 for each output (including failures
caused by output errors). After the value reaches 2,147,483,647, the sequence
returns to 0.

BB
Indicates the version of the JDBC driver.

CC
Indicates the revision of the JDBC driver.

(2) Explanation of variables in Format 2, Format 3, and Format 4
AAAAAAAAAAAAAAAAAAAAAAA

Indicates the acquisition date and time of the Exception trace log, in the following
format (a value from 0 to 9 is set in each variable):

YYYY: Year (Western calendar)

MM: Month

DD: Day

hh: Hour (24-hour clock format)

mm: Minute

ss.sss: Second (includes 3 digits after the decimal point)

BB....BB
Indicates thread identification information for the target thread, in the following

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:Exception:
II....II

YYYY/MM/DD hh:mm:ss.sss

18. Type4 JDBC Driver

1981

format:

aa....aa: Thread information, including the thread name, priority sequence, and
thread group name. The Java Virtual Machine determines the format.

bb....bb: Hash code of the object. The Java Virtual Machine determines the
format.

C
Indicates call identification information for the method:

E: Indicates that the information is history information for when the method was
started.

R: Indicates that the information is history information for when the method
terminated normally.

DD....DD
Indicates the object identifier and the method name, in the following format:

aa....aa: Object identifier (up to 32 characters)

The Java Virtual Machine determines the format.

bb....bb: Method name

EE....EE
Indicates the connection ID, in the following format:

aa....aa: Front-end server name or single-server name (up to 32 characters).

If this information cannot be retrieved, an asterisk (*) is output.

bb....bb: Connection sequence number (up to 10 characters) of the server
identified by aa....aa.

If this information cannot be retrieved, an asterisk (*) is output.

cc....cc: Process ID (up to 10 characters) of the server identified by aa....aa.

Thread[aa....aa]@bb....bb

aa....aa.bb....bb

aa....aa:bb....bb:cc....cc

18. Type4 JDBC Driver

1982

If this information cannot be retrieved, an asterisk (*) is output.

FF....FF
Indicates the section ID (up to 4 characters).

GG....GG
Indicates the method arguments, in the following format (this information is not
output for methods without arguments):

aa....aa: Argument name.

bb....bb: Argument contents (up to 256 characters).

For reference type values, the object determines the format.

One asterisk (*) is output to bb....bb for the password argument of the following
methods:

• getConnection(String username, String password) of the
DataSource class

• getPooledConnection(String username, String password) of the
ConnectionPoolDataSource

• getXAConnection(String username, String password) of
XADataSource

For the info argument in connect(String url,Properties info) of the
Driver class, the value of the each of the following properties is replaced by one
asterisk (*) and then output:

• password

• HiRDB_for_Java_ENV_VARIABLES

HH....HH
Indicates the return value of the method, in the following format:

aa....aa=bb....bb
aa....aa=bb....bb
 :
aa....aa=bb....bb

Return=aa....aa

18. Type4 JDBC Driver

1983

aa....aa: Argument name.

This item is not output for methods that do not have a return value. If the return
value is a reference-type value, the Java Virtual Machine determines the format.

II....II
Indicates troubleshooting information, in the following format:

aa....aa: Execution class name of the exception object that was thrown.

bb....bb: Client environment definitions being used in the connection of the
exception object. The definitions are output in the following format (if no
definitions are to be output, this variable is replaced by an asterisk (*) and then
output):

yy....yy: Name of the client environment definition without the initial PD
characters. The following client environment definitions are the output
targets.

Note that the information that is output depends on the connection-target
server, as shown in the following table:

ExceptionClass: aa....aa
UapEnvironment: bb....bb
Message: cc....cc
ErrorInfo: kk....kk
ErrorCode: dd....dd
SQLState: eeeee
UpdateCounts: ff....ff,<omitted>,ff....ff
SocketInfo: ll....ll
Etc.: gg....gg, hh....hh, iiii
jj....jj

yy....yy (zz....zz), ...<omitted>, yy....yy (zz....zz)

No. Client environment definition Connection target

Server providing
primary functions

XDS

1 PDUSER Y Y

2 PDNAMEPORT Y Y

3 PDCWAITTIME Y Y

18. Type4 JDBC Driver

1984

Legend:

Y: Output

--: Not output

zz....zz: Contents of the client environment definition. The password portion of
PDUSER is not output.

cc....cc: Message of the exception object.

dd....dd: SQLCODE error code (for XAException, error code indicated by the
errorCode field of the XAException object) (up to 11 characters).

This item is output when the execution class of the thrown exception object
is one of the following classes or subclasses:

• SQLException

• XAException

eeeee: SQLSTATE (5 characters).

This item is output when the execution class of the thrown exception object
is SQLException or a subclasss of SQLException.

4 PDSWAITTIME Y Y

5 PDHOST Y Y

6 PDFESHOST Y Y

7 PDSERVICEGRP Y --

8 PDSWATCHTIME Y Y

9 PDSERVICEPORT Y Y

10 PDSRVTYPE Y Y

11 PDCLTRCVPORT Y --

12 PDCLTRCVADDR Y --

13 PDFESGRP Y --

14 PDXDSHOST -- Y

15 PDXDSPORT -- Y

No. Client environment definition Connection target

Server providing
primary functions

XDS

18. Type4 JDBC Driver

1985

ff....ff: Number of update rows for each update statement in a batch update that
was executed normally before this exception occurred (up to 11 characters).

This item is output when the execution class of the exception object is
BatchUpdateException.

If the number of update rows cannot be obtained, an asterisk (*) is output.

gg....gg: SQL counter value (up to 6 characters).

This information can be used for coordinating with the trace information
output by the SQL trace facility.

If the SQL counter cannot be obtained, an asterisk (*) is output.

hh....hh: Failure information of the HiRDB server when an error occurs in the
HiRDB server (up to 22 characters).

The failure information is used by maintenance personnel.

If no errors have occurred in the HiRDB server, an asterisk (*) is output.

iiii: Type of request (operation code) that the JDBC driver issued to the HiRDB
server when an error occurred in the HiRDB server.

If no errors have occurred in the HiRDB server, an asterisk (*) is output.

jj....jj: Stack trace in which the exception-throwing method is set as the base point.

The Java Virtual Machine determines the format.

kk....kk: Additional troubleshooting information is output in message format.

ll....ll: Socket information used to connect the object resulting in the exception, in
the following format:

The contents of the socket information are as follows:

aa....aa(bb....bb), ...omitted..., aa....aa(bb....bb)

Name of socket information (aa....aa) Contents of socket information (bb....bb)

LocalAddress Local IP address

LocalPort Local port number

SendBufferSize# Send buffer size

RecvBufferSize# Receive buffer size

SoLinger SO_LINGER

18. Type4 JDBC Driver

1986

Note: If nothing is specified for socket information, only the parentheses ()
are output. If no socket information has been specified, item ll....ll is not
output.

#: Output when the connection target is a server that provides primary
functions.

18.15.3 Output example and analysis method
(1) Output example

An output example of the Exception trace log is shown below:

KeepAlive# SO_KEEPALIVE

ReuseAddr# SO_REUSEADDR

[1] HiRDB_Type4_JDBC_Driver 08-00
2006/07/06 23:07:09.129
Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.createStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:09.160
Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.createStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbStatement@1e4cbc4
2006/07/06 23:07:09.160
Thread[main,5,main]@1259414:[E][PrdbStatement@1e4cbc4.execute]
 ConnectionID(sds:23:20484) : SID(0)
 sql=DELETE FROM SEINO_TABLE
2006/07/06 23:07:14.285 Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:14.301 Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:14.301
Thread[main,5,main]@1259414:[R][PrdbStatement@1e4cbc4.execute]
 ConnectionID(sds:23:20484) : SID(1)
 Return=false
2006/07/06 23:07:14.301
Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 sql=INSERT INTO SEINO_TABLE VALUES(?, ?)
2006/07/06 23:07:14.348
Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement@15d56d5
2006/07/06 23:07:26.567 Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)

Name of socket information (aa....aa) Contents of socket information (bb....bb)

18. Type4 JDBC Driver

1987

2006/07/06 23:07:26.567 Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:26.567
Thread[main,5,main]@1259414:[E][PrdbStatement@1e4cbc4.executeQuery]
 ConnectionID(sds:23:20484) : SID(0)
 sql=SELECT * FROM SEINO_TABLE
2006/07/06 23:07:26.676
Thread[main,5,main]@1259414:[R][PrdbStatement@1e4cbc4.executeQuery]
 ConnectionID(sds:23:20484) : SID(1)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbResultSet@3eca90
2006/07/06 23:07:28.332 Thread[main,5,main]@1259414:[E][PrdbResultSet@3eca90.close]
 ConnectionID(sds:23:20484) : SID(1)
2006/07/06 23:07:28.332 Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:28.332 Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:28.332 Thread[main,5,main]@1259414:[R][PrdbResultSet@3eca90.close]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:28.332
Thread[Thread-0,5,main]@30090737:[E][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 sql=SELECT * FROM SEINO_TABLE
2006/07/06 23:07:28.332
Thread[Thread-0,5,main]@30090737:[R][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement@2808b3

2006/07/06 23:07:28.348
Thread[Thread-1,5,main]@5462872:[E][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 sql=DELETE FROM SEINO_TABLE WHERE I1=?
2006/07/06 23:07:28.358
Thread[Thread-1,5,main]@5462872:[E][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:29.672
Thread[Thread-1,5,main]@5462872:[R][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:30.098
Thread[Thread-1,5,main]@5462872:[R][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement@922804
2006/07/06 23:07:30.332
Thread[Thread-2,5,main]@25253977:[E][PrdbConnection@82c01f.rollback(1)]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:42.098
Thread[Thread-2,5,main]@25253977:[R][PrdbConnection@82c01f.rollback(1)]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:42.098
Thread[Thread-2,5,main]@25253977:[E][PrdbConnection@82c01f.close]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:42.098
Thread[Thread-2,5,main]@25253977:[R][PrdbConnection@82c01f.close]
 ConnectionID(sds:23:20484) : SID(0)

18. Type4 JDBC Driver

1988

2006/07/06 23:07:42.535 Thread[Thread-1,5,main]@5462872:Exception:
ExceptionClass: SQLException
UapEnvironment: *
Message: KFPJ20006-E Connection closed[PrdbPreparedStatement.setInt]
ErrorCode: -1020006
SQLState: R2400
Etc.: *,*,****
java.sql.SQLException: KFPJ20006-E Connection closed[PrdbPreparedStatement.setInt]
at
JP.co.Hitachi.soft.HiRDB.JDBC.JdbMakeException.generateSQLException(JdbMakeException
.java:31)
at
JP.co.Hitachi.soft.HiRDB.JDBC.PrdbStatement.generateClosedSQLException(PrdbStatement
.java:3005)
at
JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement.setInt(PrdbPreparedStatement.jav
a:1170)
at Exception1.run(ExceptionTraceSample.java:57)
[2] HiRDB_Type4_JDBC_Driver 08-00
2006/07/06 23:07:25.723
Thread[Thread-3,5,main]@13249998:[E][PrdbConnection@119cca4.prepareStatement(1)]
 ConnectionID(sds:24:20484) : SID(0)
 sql=SELECT * FROM SEINO_TABLE
2006/07/06 23:07:25.770
Thread[Thread-4,5,main]@25839584:[E][PrdbConnection@119cca4.rollback(1)]
 ConnectionID(sds:24:20484) : SID(0)
2006/07/06 23:07:25.770
Thread[Thread-4,5,main]@25839584:[R][PrdbConnection@119cca4.rollback(1)]
 ConnectionID(sds:24:20484) : SID(0)
2006/07/06 23:07:25.770
Thread[Thread-5,5,main]@24431647:[E][PrdbConnection@119cca4.prepareStatement(1)]
 ConnectionID(sds:24:20484) : SID(0)
 sql=SELECT ** FROM SEINO_TABLE
2006/07/06 23:07:25.863 Thread[Thread-5,5,main]@24431647:Exception:
ExceptionClass: SQLException
UapEnvironment: USER(USER1), NAMEPORT(20249), CWAITTIME(0), SWAITTIME(600),
HOST(dragon2), FESHOST(),
SERVICEGRP(sds), SWATCHTIME(), SERVICEPORT(), SRVTYPE(WS), CLTRCVPORT(),
CLTRCVADDR(), FESGRP()
Message: KFPA11105-E Invalid token "*" after token "*"[PrdbStatement.prepare]
ErrorCode: -105
SQLState: R0000
Etc.: 4,sqapyac1.c(651),SET
java.sql.SQLException: KFPA11105-E Invalid token "*" after token
"*"[PrdbStatement.prepare]
at JP.co.Hitachi.soft.HiRDB.JDBC.CltSection.prepare(CltSection.java:1497)
at JP.co.Hitachi.soft.HiRDB.JDBC.PrdbStatement.prepare(PrdbStatement.java:2834)
at
JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement.<init>(PrdbPreparedStatement.jav
a:109)
at
JP.co.Hitachi.soft.HiRDB.JDBC.PrdbConnection.prepareStatement(PrdbConnection.java:10
41)
at Exception1.run(ExceptionTraceSample.java:64)

18. Type4 JDBC Driver

1989

(2) Analysis method
This item explains the analysis method of the Exception trace log. You can use a text
editor to reference the Exception trace log.

Described below is an example of analyzing the Exception trace log shown in (1)
Output example.

Analysis example

To analyze the Exception trace log:

1. Extract the sequentially numbered information, including the exception to be
investigated.

2. Categorize the information by using the thread identification information, and
separate the information by thread.

3. Arrange the information in time sequence based on the acquisition time.

The following table shows what the results look like.

Table 18-89: Example in which the Exception trace log is arranged in time
sequence

Date and time Thread 1 Thread 2 Thread 3 Thread 4

Thread[main,5,m
ain]

@1259414

Thread[Threa
d-0,5,main]
@30090737

Thread[Thread
-1,5,main]
@5462872

Thread[Thread
-2,5,main]

@25253977

2006/07/06

23:07:09.129

PrdbConnection

@82c01f.createS
tatement(1)

2006/07/06

23:07:09.160

PrdbStatement

@1e4cbc4.execut
e

2006/07/06

23:07:14.285

PrdbConnection

@82c01f.commit

2006/07/06

23:07:14.301

PrdbConnection

@82c01f.prepare
Statement(1)

2006/07/06

23:07:26.567

PrdbConnection

@82c01f.commit

2006/07/06

23:07:26.567

PrdbStatement

@1e4cbc4.execut
eQuery

18. Type4 JDBC Driver

1990

4. Check the contents of the exception error.

The information indicates that an SQLException occurred in Thread 3 at 2006/
07/06 23:07:42.535, and that a Statement or Connection object had already
been closed.

2006/07/06

23:07:26.567

PrdbStatement

@1e4cbc4.execut
e

2006/07/06

23:07:28.332

PrdbResultSet

@3eca90.close

PrdbConnecti
on

@82c01f.prep
areStatement
(1)

2006/07/06

23:07:28.332

PrdbConnection

@82c01f.commit

2006/07/06

23:07:28.348

 PrdbConnectio
n

@82c01f.prepa
reStatement(1
)

2006/07/06

23:07:28.358

 PrdbConnectio
n

@82c01f.commi
t

2006/07/06

23:07:30.332

 PrdbConnectio
n

@82c01f.rollb
ack

2006/07/06

23:07:42.098

 PrdbConnectio
n

@82c01f.close

2006/07/06

23:07:42.535

 SQLException
occurred

KFPJ20006-E
Connection
closed

Date and time Thread 1 Thread 2 Thread 3 Thread 4

Thread[main,5,m
ain]

@1259414

Thread[Threa
d-0,5,main]
@30090737

Thread[Thread
-1,5,main]
@5462872

Thread[Thread
-2,5,main]

@25253977

18. Type4 JDBC Driver

1991

5. Check the operation of the object in the time sequence.

Because the object ID of the Connection object in the next thread is the same,
we know that the four threads were being processed in the same connection.

• Thread 1 at 2006/07/06 23:07:09.129

• Thread 2 at 2006/07/06 23:07:28.332

• Thread 3 at 2006/07/06 23:07:28.348

• Thread 4 at 2006/07/06 23:07:30.332

6. Search for the location of the error cause.

Because we know that the four threads have the same connection, we can search
for the locations where the Statement.close or Connection.close method
was executed, and learn that Thread 4 executed the Connection.close method
at 2006/07/06 23:07:42.098. From this, we know that the cause of the
SQLException that occurred in Thread 3 at 2006/07/06 23:07:42.535 was that
Thread 4 executed the Connection.close method at 2006/07/06 23:07:42.098.

18.15.4 Required memory size and file size
(1) Required memory size

The memory size required for acquiring the Exception trace log is determined from the
following formula:

Formula

Explanation

n: Number of information items to be acquired in memory

(2) Required file size
The file size for acquiring the Exception trace log is determined from the following
formula:

Formula

Explanation

360 x n/1024 (kilobytes)

180 x n x m/1024 + 1 (kilobytes)

18. Type4 JDBC Driver

1992

n: Number of information items to be acquired in memory

m: File output information

18.15.5 Notes
(1) If the system properties and client environment definition settings are
different

The following table shows how the method execution history that was accumulated in
the JDBC driver memory before establishment of the first HiRDB connection is
transferred when the system properties and client environment definition settings are
different.

Table 18-90: Transfer of the method execution history accumulated in the JDBC
driver memory

Item Relationship between system
properties and client

environment definition

Transfer operation

Number of information
items to be acquired in
memory

HiRDB_for_Java_OnMemNUM <
PDJDBONMEMNUM

The JDBC driver re-allocates memory for
accumulation of the method execution
history based on the PDJDBONMEMNUM
specification, and then copies the
execution history accumulated up to that
point to the re-allocated area.
However, if the PDJDBTRACELEVEL
specification is 0, memory is not
re-allocated.

HiRDB_for_Java_OnMemNUM >
PDJDBONMEMNUM

The JDBC driver re-allocates memory for
accumulation of the method execution
history based on the PDJDBONMEMNUM
specification. The driver then destroys any
accumulated execution history information
that cannot be stored in the re-allocated
area, and copies the remaining information
to the re-allocated area.
However, if the PDJDBTRACELEVEL
specification is 0, memory is not
re-allocated.

18. Type4 JDBC Driver

1993

(2) First output after startup of the Java Virtual Machine
The first time the Exception trace log is output to a file after the Java Virtual Machine
is started, the log is output to the file with the older update date and time. If the date
and time are the same for both files, the log is output to pdexc1.trc.

(3) Specification of the file output destination
If the same file output destination is specified when Exception trace logs are being
acquired from multiple processes, trace information for the different processes is
output to the same file. To acquire a trace for each process, specify a different file
output destination for each process.

The JDBC driver uses the facilities of the Java Virtual Machine to create log files in
the file system provided by the OS. Therefore, the following items depend on the Java
Virtual Machine and file system being used:

• Prefix for the absolute path name

• Path delimiter character

• Maximum number of characters for the output destination file (absolute path)

• Size per file

(4) Processing when an error occurs
Information is not output to the Exception trace log when file creation or output fails.
An error message may be returned to the UAP and file output may be retried.

Trace acquisition level HiRDB_for_Java_TraceLevel <
PDJDBTRACELEVEL

The driver simply transfers the execution
history that was accumulated up to that
point.

HiRDB_for_Java_TraceLevel >
PDJDBTRACELEVEL

If the PDJDBTRACELEVEL specification is
1 or greater, the JDBC driver simply
transfers the execution history
accumulated up to that point. The driver
also transfers the execution history of
methods that are not targeted by the trace
acquisition level specified by
PDJDBTRACELEVEL.
If the PDJDBTRACELEVEL specification is
0, the JDBC driver destroys the
accumulated execution history for each
accumulation memory.

Item Relationship between system
properties and client

environment definition

Transfer operation

18. Type4 JDBC Driver

1994

(5) Character encoding
The Exception trace log is output with the default conversion character set of the Java
Virtual Machine being used.

18. Type4 JDBC Driver

1995

18.16 Example UAP that uses a JDBC driver

This section presents an example of a UAP that uses a JDBC driver.

This UAP executes SQL statements that display the rows that satisfy specified
conditions. The UAP checks the SQL statements for errors and acquires error
information when errors are detected.

import java.sql.*;
import java.io.*;
import java.util.Properties;

public class SAMPLE {

 public static void main(String[] args) {

 //Connection object variables
 String url = "jdbc:hitachi:hirdb://DBID=22200,DBHOST=host1";
 String user = "USER1";
 String passwd = "USER1";
 String driver = "JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver";
 try {
 Class.forName(driver);
 }catch(Exception e){e.printStackTrace();return;}

 Connection con = null;
 PreparedStatement pstmt = null;
 ResultSet rs = null;

 // *** Environment variables ***
 java.util.Properties info = new java.util.Properties();
 info.setProperty("user",user);
 info.setProperty("password",passwd);
 info.setProperty("HiRDB_for_Java_ENV_VARIABLES",
 "PDCLTPATH=C:\\tmp;PDSQLTRACE=0;PDPRMTRC=INOUT;");
 // ************

 // Register and load the driver
 System.setProperty("jdbc.drivers",
 "JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver");

 // Configure an environment
 try {
 // Connect ..1
 con = DriverManager.getConnection(url,info);

18. Type4 JDBC Driver

1996

Explanation:

1. Uses the getConnection method to connect to HiRDB.

2. Executes the SQL statement that displays the rows that satisfy the specified
conditions.

3. Uses the close method to disconnect from HiRDB.

 // ***
 // Example of retrieval by SAMPLE1(C1 INT,C2 INT,C3 VARCHAR(30)).........2
 // ***
 // Acquire PreparedStatement
 pstmt = con.prepareStatement
 ("SELECT C2,C3 FROM SAMPLE1 WHERE C1 = ? ");
 // Set a ? parameter (C1 = 200)
 pstmt.setInt(1,200);
 // Acquire ResultSet
 rs = pstmt.executeQuery();
 int cnt=1;
 System.out.println("**** Retrieving ****");
 while(rs.next()){
 System.out.println("**** Retrieving row "+cnt+" ***");
 // Acquire and display C2 data
 int i_data = rs.getInt(1);
 System.out.println("C2="+i_data);
 // Acquire and display C3 data
 String c_data = rs.getString(2);
 System.out.println("C3="+c_data);
 cnt++;
 }
 // Release ResultSet
 rs.close();
 // Release PreparedStatement
 pstmt.close();
 // Disconnect..3
 con.close();
 }

 catch(SQLException e){ 4
 // Output error information
 e.printStackTrace();
 // Acquire individual information item by the following processing
 // Output SQLSTATE
 System.out.println("SQLSTATE=" + e.getSQLState());
 // Output SQLCODE
 System.out.println("SQLCODE=" + e.getErrorCode());
 // Output SQLERRM (SQL message)
 System.out.println("SQLERRM=" + e.getMessage());
 return;
 }
 }
}

18. Type4 JDBC Driver

1997

4. If an error occurs, the UAP returns SQLException and outputs error
information.

18. Type4 JDBC Driver

1998

18.17 Estimating the memory requirements for using a JDBC driver

This section describes how to estimate the size of the Java heap to be used by the JDBC
driver.

18.17.1 Estimating the Connection object size
The following shows the formulas for estimating the Connection object size.

Formula (for 32-bit mode)

Formula (for 64-bit mode)

Send buffer size: Use the formula shown below to determine the value. If multiple
SQL statements are executed, you must obtain the send buffer size for each SQL
statement and then use the largest value.

Length of SQL statement: Length of SQL statement (String) that has been
converted to the HiRDB server's character codes

Length of user-added information: Sum of the lengths of user-added
information 1, user-added information 2, and user-added information 3. Add
this value if you use Connection.setHiRDB_Audit_Info.

User-added information 1: Use the following formula to determine the value:

16 + length of user-added information 1 (String) converted to HiRDB

Connection object size =
70000 + (11000 + send buffer size + receive buffer size) x number of Connection instances
(bytes)

Connection object size =
304000 + (14000 + send buffer size + receive buffer size) x number of Connection instances
(bytes)

MAX(32768,
 (240 + length of SQL statement + length of user-added information) 4096 x 4096,
 (240 + length of input parameter information + length of output parameter information
 + length of user-added information) 4096 x 4096)

18. Type4 JDBC Driver

1999

server's character codes

User-added information 2: Use the following formula to determine the value:

16 + length of user-added information 2 (String) converted to HiRDB
server's character codes

User-added information 3: Use the following formula to determine the value:

16 + length of user-added information 3 (String) converted to HiRDB
server's character codes

Length of input parameter information: If there are input parameters, obtain
this value from the following formula and then add the resulting value:

Number of input parameters: See the following table:

Input data length: Real data length set by a setXXXX method

If the length was set by the setString method, this is the length of input
data that has been converted to the HiRDB server's character codes.

Length of output parameter information: If the values of OUT and INOUT
parameters are to be acquired by executing retrieval SQL statements or
stored procedures, add the value obtained from the following formula:

24 + 16 x number of output parameters

Number of output parameters: If you execute retrieval SQL statements, this
is the number of columns to be retrieved. If you execute stored procedures,
this is the total number of OUT and INOUT parameters.

Receive buffer size: Use the formula shown below to determine the value. If you
execute multiple SQL statements, obtain a receive buffer size for each SQL
statement and then use the largest value.

Object Number of input parameters

PreparedStatement Number of ? parameters

CallableStatement Number of IN and INOUT parameters

18. Type4 JDBC Driver

2000

#: Use one of the following specifications to obtain this value when you use
the locator facility to access data:

• Specification of LOCATOR in the url argument of
DriverManager.getConnection or in the
LONGVARBINARY_ACCESS user property

• Specification of LOCATOR in the setLONGVARBINARY_Access
method of a DataSource interface

Number of input parameters: See the following table:

Number of output parameters: The value is the same as for the send buffer
size.

Length of output data during data access by the locator facility: Use either of
the following, as appropriate:

• When a non-zero value is specified in
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE:

Use the following formula to determine the value:

HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE value x 1024

• When 0 is specified in
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE or
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE is omitted:

Real length of data stored in BLOB-type or BINARY-type columns

18.17.2 Estimating the Statement object size
The following shows the formulas for estimating the Statement object size.

Formula (for 32-bit mode)

MAX(32768,
 (240 + 52 x (number of input parameters + number of output parameters)) 4096 x 4096,
 ((240 + length of output data during data access by the locator facility) 4096 x 4096)#

Object Number of input parameters

Statement 0

PreparedStatement Number of ? parameters

CallableStatement Number of IN and INOUT parameters

18. Type4 JDBC Driver

2001

Formula (for 64-bit mode)

Retrieval results storage area size: The value is 0 for non-retrieval SQL
statements.

For retrieval SQL statements, use the following formula to determine the
value:

Definition length of data in the column to be retrieved: If the column to be
retrieved is BLOB or BINARY and the locator facility is used, the value is 4.
If the locator facility is not used, the value is one of the following:

• If HiRDB_for_Java_MAXBINARYSIZE is omitted:

8 + definition length

• If HiRDB_for_Java_MAXBINARYSIZE is specified:

MIN(8 + definition length, 8 + MAXBINARYSIZE value)

18.17.3 Estimating the PreparedStatement object size
The following shows the formulas for estimating the PreparedStatement object
size.

Formula (for 32-bit mode)

Formula (for 64-bit mode)

Statement object size =
38000 + (2000 + retrieval results storage area size) x number of Statement instances (bytes)

Statement object size =
38000 + (2100 + retrieval results storage area size) x number of Statement instances (bytes)

PreparedStatement object size =
39000 + (2100 + input data storage area size + retrieval results storage area size)
 x number of PreparedStatement instances (bytes)

18. Type4 JDBC Driver

2002

Input data storage area size: If ? parameters are used, use the following formula
to determine the value:

The retrieval results storage area size is the same as for the Statement object.

18.17.4 Estimating the CallableStatement object size
The following shows the formulas for estimating the CallableStatement object
size.

Formula (for 32-bit mode)

Formula (for 64-bit mode)

Input data storage area size: If the IN and INOUT parameters are used, use the
following formula to determine the value:

The method for determining the data length for IN and INOUT parameters is the
same as for the method for determining the length of input parameter information

PreparedStatement object size =
40000 + (2600 + input data storage area size + retrieval results storage area size)
 x number of PreparedStatement instances (bytes)

CallableStatement object size =
 39000 + (2100 + input data storage area size + output data storage area size)
 x number of CallableStatement instances (bytes)

CallableStatement object size =
40000 + (2600 + input data storage area size + output data storage area size)
 x number of CallableStatement instances (bytes)

18. Type4 JDBC Driver

2003

for Connection objects.

Output data storage area size: If the INOUT and OUT parameters are used, use the
following formula to determine the value:

Definition length of data for INOUT and OUT parameters: If the INOUT and
OUT parameters are BLOB or BINARY and the locator facility is used, the
value is 4. If the locator facility is not used, the value is one of the following:

• If HiRDB_for_Java_MAXBINARYSIZE is omitted:

8 + definition length

• If HiRDB_for_Java_MAXBINARYSIZE is specified:

MIN(8 + definition length, 8 + HiRDB_for_Java_MAXBINARYSIZE
value)

18.17.5 Estimating the ResultSet object size
The following shows the formulas for estimating the ResultSet object size.

Formula (for 32-bit mode)

Formula (for 64-bit mode)

Locator access object length: If the locator facility is used (LOCATOR specified in
the url argument of DriverManager.getConnection or in the
LONGVARBINARY_ACCESS user property, or LOCATOR specified by the
setLONGVARBINARY_Access method of a DataSource interface), add 1,600.

ResultSet object size =
16000 + (900 + locator access object length + receive buffer size)
 x number of ResultSet instances + retrieval results accumulation area size x number of ResultSet instances 2
 (bytes)

ResultSet object size =
17000 + (1300 + locator access object length + receive buffer size)
 x number of ResultSet instances + retrieval results accumulation area size x number of ResultSet instances 2
 (bytes)

18. Type4 JDBC Driver

2004

Receive buffer size: Use the following formula to determine the value:

Data length of retrieved row: Use the following formula to determine the
value:

Definition length of column data: If the data is BLOB or BINARY and a locator
is used, the value is 4. If a locator is not used, the value is one of the
following:

• If HiRDB_for_Java_MAXBINARYSIZE is omitted:

8 + definition length

• If HiRDB_for_Java_MAXBINARYSIZE is specified:

MIN(8 + definition length, 8 + HiRDB_for_Java_MAXBINARYSIZE
value)

Number of rows for block transfer: If the block transfer facility is not used,
the value is 1.

Retrieval results accumulation area size: Use the following formula to determine
the value:

Real length of column data: See the following table:

MAX(32768,
(240 + data length of retrieved row x number of rows for block transfer) 4096 x 4096)

Output data attribute Real length of column data

INTEGER 4

SMALLINT 2

DECIMAL(m, n) m 2 + 1

18. Type4 JDBC Driver

2005

Number of ResultSet instances 2: Number of ResultSet instances
whose result set type is ResultSet.TYPE_SCROLL_INSENSITIVE or
ResultSet.TYPE_SCROLL_SENSITIVE

18.17.6 Estimating the size of trace objects
The total size of trace objects is equal to the total amount of memory required for
collecting the following troubleshooting information:

• Interface method traces

• Exception trace logs

• SQL traces

(1) Interface method traces
Add this value if you collect interface method traces.

Formula

Number of entries: Either of the following values, as appropriate:

• Value of the url argument in DriverManager.getConnection or the
value of the TRC_NO user property

• Value specified in the setTRC_NO method of a DataSource interface

(2) Estimating the size of Exception trace logs
Add this value when the acquisition level for Exception trace logs is not 0.

Formula

FLOAT 8

SMALLFLT 4

BLOB or BINARY If the locator facility is used, the value is 4; if not, the value is one of the following:
• If HiRDB_for_Java_MAXBINARYSIZE is omitted:

8 + real length
• If HiRDB_for_Java_MAXBINARYSIZE is specified:

MIN(8 + real length, 8 + MAXBINARYSIZE value)

Other Real length

Size of interface method traces = 300 x number of entries x number of Connection instances
 (bytes)

Output data attribute Real length of column data

18. Type4 JDBC Driver

2006

Number of data items to be collected in memory: The value is one of the
following:

• Value of the HiRDB_for_Java_OnMemNUM system property

• Value of the PDJDBONMEMNUM client environment definition

(3) Estimating the size of SQL traces
Add this value if you collect SQL traces.

Formula

Size of Exception trace logs = 360 x number of data items to be collected in memory (bytes)

Size of SQL traces = 10,000 x number of Connection instances (bytes)

2007

Chapter

19. SQLJ

This chapter explains how to use SQLJ to develop a UAP. Note that SQLJ cannot be
used in the Linux for AP8000 edition client.

19.1 Overview
19.2 SQLJ Translator
19.3 UAP coding rule
19.4 Native Runtime

19. SQLJ

2008

19.1 Overview

19.1.1 What is SQLJ?
SQLJ is a language specification for coding a static SQL statement as an embedded
SQL statement in Java and executing it.

The following figure shows the flow of UAP development when SQLJ is used.

Figure 19-1: Flow of UAP development that uses SQLJ

SQLJ consists of SQLJ Translator and SQLJ Runtime Library.

SQLJ Translator

SQLJ Translator analyzes an SQLJ source program and replaces SQL statements
with standard Java instructions for accessing a database through SQLJ Runtime
Library.

SQLJ Translator generates a Java source file and a profile that stores SQL
information. The user uses the Java compiler to compile the Java source file to
create a class file (executable file).

19. SQLJ

2009

SQLJ Runtime Library

SQLJ Runtime Library is used for executing a compiled class file.

SQLJ Runtime Library can be used in either of the following ways, depending on
the access interface used:

• Invoke the JDBC interface API (standard interface edition) and execute the
SQL statements.

• Invoke an original interface (native interface edition), not the JDBC
interface, and execute the SQL statements.

The following figure shows UAP execution when SQLJ is used.

Figure 19-2: Execution of a UAP that uses SQLJ

Explanation:

• A class file of the SQLJ source file compiled by the Java compiler accesses
a database through the SQLJ Runtime Library.

19. SQLJ

2010

• When the native interface is used, SQLJ Runtime Library directly invokes a
HiRDB client library instead of invoking JDBC. In this case, you cannot use
coding that directly invokes the JDBC API and shares connection and result
sets with JDBC.

• Because the SQLJ Runtime Library loads a profile during execution, the
class file and profile must be stored in the same directory. Also, when the
class file is stored in the jar file, you must also store the profile in the jar
file.

19.1.2 Environment settings
The environment variable settings required for SQLJ operation are shown below. Since
SQLJ uses the JDBC driver, environment settings for the JDBC driver must also be
specified.

(1) Environment settings for the UNIX edition
Set the following information in the environment variables for the execution
environment.

(a) HiRDB/Developer's Kit

CLASSPATH=$CLASSPATH:[installation-directory]/client/lib/pdsqlj.jar#

#: For the 32-bit mode HP-UX (IPF) edition, specify pdsqlj32.jar.

(b) HiRDB/Run Time

CLASSPATH=$CLASSPATH:[installation-directory]/client/lib/
pdruntime.jar#1

CLASSPATH=$CLASSPATH:[installation-directory]/client/lib/
pdnativert.jar#2

Note

When using the 32-bit mode HP-UX (IPF) edition, do not specify the following
pairs of files at the same time:

• pdsqlj.jar and pdsqlj32.jar

• pdruntime.jar and pdruntime32.jar

• pdnativert.jar and pdnativert32.jar

#1: For the 32-bit mode HP-UX (IPF) edition, specify pdruntime32.jar.

#2: For the 32-bit mode HP-UX (IPF) edition, specify pdnativert32.jar.

19. SQLJ

2011

(2) Environment settings in the Windows edition
In sequence, choose Control Panel, System, System Properties, and Environment,
and then set the contents shown below.

(a) HiRDB/Developer's Kit

CLASSPATH=%CLASSPATH%:[installation-directory]\UTL\pdsqlj.jar

(b) HiRDB/Run Time

CLASSPATH=%CLASSPATH%:[installation-directory]\UTL\pdruntime.jar
CLASSPATH=%CLASSPATH%:[installation-directory]\UTL\pdnativert.jar

19. SQLJ

2012

19.2 SQLJ Translator

SQLJ Translator analyzes an SQLJ source program and generates a Java source file
and a profile.

SQL statements are replaced with Java instructions, including the invocation of the
JDBC API, and are output as a Java source file.

SQL character strings, number of parameters, types and modes of individual
parameters, and the description of the columns to be output to a profile. The profile is
referenced from the SQLJ Runtime Library. The entity of a profile is an instance of the
java.sql.runtime.Profile class.

The following table lists the files that are generated and referenced by the SQLJ
Translator.

Table 19-1: Files that are generated and referenced by the SQLJ Translator

The prefixes of the classes and variables internally generated by SQLJ Translator are
as follows:

sJT: Names of the variables internally generated

_SJ: Names of the classes and profiles internally generated

File classification File name format Explanation Type

SQLJ source file file-name.sqlj Indicates an SQLJ source file. Referenced

Java source file file-name.java Indicates a Java source file. Generated

Profile file-name_SJProfile
profile-number.ser

Stores the information of each SQL
statement extracted from an SQLJ
source file. A profile number is
assigned to each context. The
cardinal number is 0 for all.

Generated

19. SQLJ

2013

19.3 UAP coding rule

This section explains the coding rule for SQLJ source files.

19.3.1 Labeling rule
The following labels cannot be used:

• Label that begins with _sJT_

• Label that begins with _SJf

• Label that begins with p_rdb

Other rules are based on the Java language rules.

19.3.2 SQL coding rule
(1) SQL statement coding rule

Each SQL statement must be enclosed between the SQL leading character string
(#sql) and the SQL trailing character (;). The SQL statement itself must further be
enclosed between curly brackets. Connection class and cursor declarations must also
be enclosed between the SQL leading character string and the SQL trailing character.

The following table shows the SQL statement coding formats.

Table 19-2: SQL statement coding formats

Function Format Purpose

SQL execution #sql [context] { SQL-statement } ; Executes an SQL statement.
The SQL statements that can be
used differ for the standard
interface edition and the native
interface edition. For details,
see 19.3.3 SQL statements that
can be used in SQLJ.

Declaration of an
iterator class with
column specification

• Standard interface edition
#sql modifier iterator class-name
 (data-type column-name,...) ;

• Native interface edition
This function cannot be used.

Declares the class to be used for
cursor declaration. Cannot be
used in a FETCH statement.

19. SQLJ

2014

Notes

modifier
Combination of private, public, protected, final, abstract,
protected, static, native, synchronized, transient, and
volatile.

context
{connection-context|connection-context,execution-context|execution-cont
ext}

keyword
holdability or updateColumns

value
true, false, or "column-name-1,column-name-2,..."

data-type
Java data type

column-name

Declaration of an
iterator class with a
position specification

• Standard interface edition
#sql modifier iterator class-name
 (data-type,...) ;

• Native interface edition
#sql modifier iterator class-name
 [implements

JP.co.Hitachi.soft.HiRDB.pdjpp.runti
me.

 ForUpdate]

 [with (keyword=value,...)]
 (data-type,...) ;

Declares the class to be used in
the cursor declaration. This
function is used in a FETCH
statement.

Declaration of a
connection class

#sql modifier context class-name ; Declares the class to be used for
connection.

Declaration of a
cursor

#sql iterator-object = { SELECT-statement } ; Defines and opens a cursor.

Conversion of a result
set

• Standard interface edition
#sql [context] iterator-object
 = {CAST :JDBC-result-set} ;

• Native interface edition
This function cannot be used.

Converts a JDBC result set into
one that can be used by SQLJ.

Function Format Purpose

19. SQLJ

2015

Retrieval item

(2) Explicitly specifying connection context when using the multi-connection
facility

When you use the multi-connection facility, insert the connection context surrounded
by square brackets between the SQL leading character string and the SQL statement,
to explicitly specify the connection to be used. An example follows:

If no connection context is explicitly specified, the default connection context is
assumed.

(3) Explicitly specifying an execution environment
In SQLJ, a user can explicitly specify an execution environment instead of using the
default one. To specify an execution environment, insert the execution connection
context surrounded by square brackets between the SQL leading character string and
the SQL statement.

If SQL statements are simultaneously being executed in multiple threads for a single
connection, using separate multiple execution environments can prevent an execution
result from being overwritten by another SQL statement. An example follows:

If no execution connection context is explicitly specified, the default execution
environment is used.

The values described in the following table are maintained in the execution
environments. These values are set using the set<name> method and determined
using the get<name> method.

 #sql [connCtx] { DELETE FROM EMP WHERE SAL > 1000};

 ExecutionContext execCtx = new ExecutionContext();
 try {
 #sql [execCtx] { DELETE FROM STOCK WHERE PCODE > 1000 };
 System.out.println
 ("removed " + execCtx.getUpdateCount() + "goods");
 }
 catch(SQLException e){
 System.out.println("SQLException has occurred with "+ " exception " + e);
 }

Name Details

MaxRows Maximum number of rows to be returned from a search.

MaxFieldSize Maximum size of data in units of bytes to be returned in columns and OUTPUT
variable value.

QueryTimeout Maximum wait time until SQL execution is completed. This is invalid in HiRDB.

UpdateCount Number of updated, inserted, or deleted rows (reference only).

19. SQLJ

2016

If multi-connection is also specified, the connection context and execution connection
context must be specified in that order, delimited by a comma. An example follows:

(4) Specifying embedded variables
In SQLJ, BEGIN DECLARE SECTION for declaring embedded variables is not used.

Any variables, parameters, and object fields can be used as embedded variables. In an
SQL statement, a variable is described as :variable-name with a colon at the front. The
colon can be separated by spaces from the variable name.

The IN, OUT, or INOUT parameter of a CALL statement is described as
:{IN|OUT|INOUT}variable-name.

Additionally, in SQLJ, you can use :(expression) as an embedded variable. The
expression must be enclosed by parentheses. This is a Java method and not an SQL
method. An example follows:

(5) Specifying indicator variables
SQLJ has no indicator variable. Therefore, to set a null value for an embedded
variable, use the Wrapper type defined in the sql.lang package instead of the basic
data type. If a null value is received by a Java variable of the basic data type, the
SQLNullException exception occurs.

(6) Exception handling
SQLJ cannot handle exceptions from an embedded SQL WHENEVER statement.
Therefore, Java exception handling (try...catch) is used instead of WHENEVER. An
example follows:

If an error occurs during SQL execution, the JDBC exception object
(java.sql.SQLException) is issued.

SQLWarnings Correspond to SQLWARN0-SQLWARNF (reference only).

 #sql [connCtX, execCtx] { DELETE FROM STOCK WHERE PCODE > 1000 };

#sql { SELECT COL1, COL2 FROM TABLE1 WHERE :(x[--i]) > COL3 };

 try{
 #sql { DELETE FROM STOCK WHERE PCODE > 1000 };
 }
 catch(SQLException e){
 System.out.println("SQLCODE:" + e.getErrorCode() +
 "\nERRMSG:" + e.getMessage());
 }

Name Details

19. SQLJ

2017

SQLCODE, SQLSTATE, and error messages are stored in exception objects, and their
values can be obtained using the getErrorCode, getSQLState, and getMessage
methods.

(7) Static SQL statements and dynamic SQL statements
In SQLJ, only static SQL statements can be described. Dynamic SQL statements
cannot be described.

To use a dynamic SQL statement, use the JDBC API.

(8) Reading out the result set of a dynamic cursor
You can use a CAST statement to convert and read out the result set of a dynamic cursor
created using the JDBC API as the result set of an SQLJ cursor. An example follows:

The CAST statement cannot be used with the native interface edition. If the statement
is used, a translation error results.

(9) Connecting to and disconnecting from a HiRDB server
The CONNECT and DISCONNECT statements can be used in the native interface edition
but not in the standard interface edition. For both the standard interface and native
interface editions, Java instructions can be used to connect to or disconnect from a
HiRDB server.

(10) Exception generation conditions
In HiRDB embedded SQL statements, an alarm is issued in the following cases. In
contrast, exceptions occur in SQLJ.

• In a single-row SELECT statement, the number of search items does not match the
number of variables specified in an INTO clause.

• In a single-row SELECT statement, the retrieval result has zero rows.

• In a single-row SELECT statement, the retrieval result has multiple rows.

• In a FETCH statement, the number of search items does not match the number of
variables specified in an INTO clause.

• The number of columns defined by an iterator with a position specification does
not match the number of retrieval items.

• The number of columns defined by an iterator with a column name specification

 #sql iterator Employees(String ename, double sal);
 Statement stmt=conn.createStatement();
 String Query="SELECT pname, pcode FROM stock WHERE pcode > 1000";
 ResultSet rs=stmt.executeQuery(query);
 Employees emps;
 #sql emps ={CAST :rs };

19. SQLJ

2018

is greater than the number of retrieval items.

(11) Comments and handling of SQL optimization specification
Comments (/*-*/) described between the SQL leading character string and the SQL
trailing character are deleted. However, in cursor declaration and SQL statement
execution, the SQL optimization specification (/*>>-<<*/) described between curly
brackets is not deleted and handled as an SQL statement. All other SQL optimization
specifications (/*>>-<<*/) are treated as comments. For details on comments and
SQL optimization specifications inside SQL statements, see the manual HiRDB
Version 9 SQL Reference.

19.3.3 SQL statements that can be used in SQLJ
The following table lists the SQL statements that can be used in SQLJ.

Table 19-3: SQL statements that can be used in SQLJ

Type SQL statement Usability Alternate
means

Standard
interface
edition

Native
interface
edition

Definition
SQL statement

All Y Y None

Data
manipulation
SQL
statements

ASSIGN LIST statement N (SQLJ) N (SQLJ) Use JDBC.

CALL statement Y Y None

CLOSE statement N (SQLJ) N (SQLJ) Use an
iterator.

DECLARE CURSOR N (SQLJ) N (SQLJ)

DELETE statement Y Y None

DESCRIBE statement N (JDBC) N (JDBC)# Use JDBC.

DESCRIBE TYPE statement N (JDBC) N (JDBC)#

DROP LIST statement N (JDBC) N (JDBC)#

EXECUTE statement N (JDBC) N (JDBC)#

EXECUTE IMMEDIATE statement N (JDBC) N (JDBC)#

FETCH statement (Format 1 or 3) Y Y None

FETCH statement (Format 2) N N None

INSERT statement Y Y None

19. SQLJ

2019

OPEN statement (Format 1) N (SQLJ) N (SQLJ) Use an
iterator.

OPEN statement (Format 2) N (SQLJ) N (SQLJ) Use JDBC.

PREPARE statement N (SQLJ) N (SQLJ)

PURGE TABLE statement Y Y None

Single-row SELECT statement Y Y None

Dynamic SELECT statement N (JDBC) N (JDBC)# Use JDBC.

UPDATE statement Y Y None

Control SQL
statements

COMMIT statement Y Y None

COMMIT statement (RELEASE specified) N (SQLJ) N (SQLJ) Split into
COMMIT and
DISCONNECT.

CONNECT statement N Y None

DISCONNECT statement N Y None

LOCK statement Y Y None

ROLLBACK statement Y Y None

ROLLBACK statement (RELEASE
specified)

N (SQLJ) N (SQLJ) Split into
ROLLBACK
and
DISCONNECT.

SET SESSION AUTHORIZATION
statement

N N None

Embedded
language
syntax

BEGIN DECLARE SECTION N N None

END DECLARE SECTION N N None

ALLOCATE CONNECTION HANDLE N (SQLJ) N (SQLJ) Use a
connection
context.DECLARE CONNECTION HANDLE N (SQLJ) N (SQLJ)

FREE CONNECTION HANDLE N (SQLJ) N (SQLJ)

Type SQL statement Usability Alternate
means

Standard
interface
edition

Native
interface
edition

19. SQLJ

2020

Legend:

Y: Can be used in SQLJ.

N (SQLJ): Cannot be used in SQLJ, but a similar function is available in the
functions provided by SQLJ or JAVA.

N (JDBC): Cannot be used in SQLJ, but a similar function is available when
JDBC is used.

N: Cannot be used in SQLJ.

None: There is no alternate means.

Note

SQLJ cannot use HiRDB functions that are not provided by the JDBC driver. The
following functions cannot be used:

• UPDATE statement and DELETE statement that use an iterator

• Specification of a keyword in a WITH clause during the declaration of an
iterator

• INSERT function that uses an array

#: If you use a JDBC connection object to create a connection context, you can also
use the alternate means with the native interface. If you do not use a JDBC connection
object to create a connection context, you cannot use the alternate means.

19.3.4 Correspondence between HiRDB data types and SQLJ data
types

The table below shows the correspondence between the HiRDB data types and the
SQLJ data types. To use embedded variables in SQLJ, declare variables according to
this table.

GET CONNECTION HANDLE N N None

COPY N N None

GET DIAGNOSTICS N N None

WHENEVER N (SQLJ) N (SQLJ) Implement
using try ...
catch.

Type SQL statement Usability Alternate
means

Standard
interface
edition

Native
interface
edition

19. SQLJ

2021

Table 19-4: Correspondence between HiRDB data types and SQLJ data types

HiRDB data types SQLJ data types (Java data types)

When a null value is included When a null value is not
included

CHAR#1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.

runtime.HiRDBCHAR#4
N/A

VARCHAR java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.

runtime.HiRDBVARCHAR#4
N/A

NCHAR#1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.

runtime.HiRDBNCHAR#4
N/A

NVARCHAR#1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.

runtime.HiRDBNVARCHAR#4
N/A

MCHAR#1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.

runtime.HiRDBMCHAR#4
N/A

MVARCHAR#1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.

runtime.HiRDBMVARCHAR#4
N/A

DECIMAL#2 java.math.BigDecimal N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.

runtime.HiRDBDECIMAL#4
N/A

SMALLINT java.lang.Short short

INTEGER java.lang.Integer int

REAL, SMALLFLT java.lang.Float float

FLOAT, DOUBLE PRECISION java.lang.Double double

DATE java.sql.Date N/A

TIME java.sql.Time N/A

19. SQLJ

2022

Legend:

N/A: Cannot be used or not applicable

Note

Repetition columns cannot be used.

#1: When java.lang.String is specified in the native interface edition, the data
type requested to the server is VARCHAR. When the data type is specified in an output
variable, the length of the data acceptance area is assumed to be 32,000 bytes.

#2: When java.math.BigDecimal is used as an output variable in the native
interface edition, the precision is set to 15 and the scale to 0.

#3: When the data type is specified with byte[] in the native interface edition, the
data type requested to the server is BINARY type. If the HiRDB server is version 06-02
or earlier and the BLOB type is to be used, specify
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBBLOB, which is a HiRDB
data type. An error occurs if byte[] is specified.

#4: This type can be specified for the native interface edition.

19.3.5 Output variable settings (limited to the native interface
edition)

When an execution request is sent to the server, the data length set in the SQL
descriptor area for an output variable used in single-line searches, and in the OUT
parameters of CALL statements when an execution request is sent to the server, differs
depending on the initial value of the output variable. The following table lists the initial
value and the data length set in the SQL descriptor area for each data type.

TIMESTAMP java.sql.Timestamp N/A

INTERVAL HOUR TO SECOND N/A N/A

INTERVAL YEAR TO DAY N/A N/A

BLOB#3 JP.co.Hitachi.soft.HiRDB.pdjpp.

runtime.HiRDBBLOB#4
byte[]

BINARY JP.co.Hitachi.soft.HiRDB.pdjpp.

runtime.HiRDBBINARY#4
byte[]

HiRDB data types SQLJ data types (Java data types)

When a null value is included When a null value is not
included

19. SQLJ

2023

Table 19-5: Initial value for each data type and the data length set in SQL
Descriptor Area

Data type Initial value Length of data set in SQL Descriptor
Area

HiRDBCHAR variable = null; 30,000 bytes

variable = new HiRDBCHAR(int n); n bytes (1 n 30,000)

variable = new HiRDBCHAR(String
t);

Length of t (length of byte array obtained with
t.getBytes())

HiRDBVARCHAR variable = null; 32,000 bytes

variable = new HiRDBVARCHAR(int
n);

n bytes (1 n 32,000)

variable = new
HiRDBVARCHAR(String t)

Length of t (length of byte array obtained with
t.getBytes())

HiRDBNCHAR variable = null; 30,000 bytes (15,000 double-byte characters)

variable = new HiRDBNCHAR(int
n);

(n*2) bytes (n double-byte characters) (1 n
 15,000)

variable = new HiRDBNCHAR(String
t)

Length of t (length of (byte array/2) obtained
with t.getBytes())

HiRDBNVARCHAR variable = null; 32,000 bytes (16,000 double-byte characters)

variable = new HiRDBNVARCHAR(int
n);

(n x 2) bytes (n double-byte characters) (1
n 16,000)

variable = new
HiRDBNVARCHAR(String t)

Length of t (length of (byte array/2) obtained
with t.getBytes())

HiRDBMCHAR variable = null; 30,000 bytes

variable = new HiRDBMCHAR(int
n);

n bytes (1 n 30,000)

variable = new HiRDBMCHAR(String
t)

Length of t (length of byte array obtained with
t.getBytes())

HiRDBMVARCHAR variable = null; 32,000 bytes

variable = new HiRDBMVARCHAR(int
n);

n bytes (1 n 32,000)

variable = new
HiRDBMVARCHAR(String t)

Length of t (length of byte array obtained with
t.getBytes())

19. SQLJ

2024

19.3.6 Using data types when a cursor is declared (limited to the
native interface edition)

To use HiRDB data types with a cursor declared, you must specify the data types as

HiRDBDECIMAL variable = null; Precision 15, scale 0

variable = new HiRDBDECIMAL(int
p,int s);

Precision p, scale s (1 p 29, 0 s
p)

variable = new
HiRDBDECIMAL(String t)

The precision is the character string length
obtained when the sign and period characters
are subtracted from t. The scale is the character
string length after the period (excluding the
period).

variable =
newHiRDBDECIMAL(java.math.Bi
gDecimal t)

The precision is the character string length
obtained when the flag and period characters of
the character string retrieved with
toString() are subtracted from t. The scale
is the value retrieved by the scale() method
of the BigDecimal object.

HiRDBBLOB variable = null; 1 megabyte

variable = new HiRDBBLOB(int n); n bytes (1 n 2,147,483,647)

variable = new HiRDBBLOB(byte[]
t)

Length of t

HiRDBBINARY variable = null; 1 megabyte

variable = new HiRDBBINARY(int
n);

n bytes (1 n 2,147,483,647)

variable = new
HiRDBBINARY(byte[] t)

Length of t

Java.math.BigDec
imal

variable = null; Precision 15, scale 0

variable = new
java.math.BigDecimal;

The precision is set to the character string
length obtained when the flag and period
characters in the character string retrieved by
toString() are subtracted from the
BigDecimal object. The scale is set to the
value retrieved by the scale() method.

byte[] variable = null; 1 megabyte

variable = new byte[int n] n bytes (1 n 2,147,483,647)

Data type Initial value Length of data set in SQL Descriptor
Area

19. SQLJ

2025

shown in the following table.

Table 19-6: Descriptions and acceptance area settings for using the HiRDB data
types when a cursor is declared

19.3.7 Description of connection to and disconnection from a HiRDB
server

SQLJ has no CONNECT or DISCONNECT statement. Therefore, connection to or
disconnection from a HiRDB server is coded as Java instructions.

(1) Connection to a HiRDB server
To connect to a HiRDB server, use the following coding using a connection context.

(a) Defining a connection context class
Define a class for the connection context. Class-name indicates a Java identifier. The
defined class inherits sqlj.runtime.ConnectionContext.

Data type Description when cursor declared Acceptance area setting

HiRDBCHAR #sql iterator
cursor-name(HiRDBCHAR(int n));

n bytes (1 n 30,000)

HiRDBVARCHAR #sql iterator
cursor-name(HiRDBVARCHAR(int n));

n bytes (1 n 32,000)

HiRDBNCHAR #sql iterator
cursor-name(HiRDBNCHAR(int n));

(n x 2) bytes (n double-byte
characters)
(1 n 15,000)

HiRDBNVARCHAR #sql iterator
cursor-name(HiRDBNVARCHAR(int n));

(n x 2) bytes (n double-byte
characters)
(1 n 16,000)

HiRDBMCHAR #sql iterator
cursor-name(HiRDBMCHAR(int n));

n bytes (1 n 30,000)

HiRDBMVARCHAR #sql iterator
cursor-name(HiRDBMVARCHAR(int n));

n bytes (1 n 32,000)

HiRDBDECIMAL #sql iterator
cursor-name(HiRDBMVARCHAR(int p,int
s));

Precision p, scale s
(1 p 29, 0 s p)

HiRDBBLOB #sql iterator
cursor-name(HiRDBBLOB(int n));

n bytes
(1 n 2,147,483,647)

HiRDBBINARY #sql iterator
cursor-name(HiRDBBINARY(int n));

n bytes
(1 n 2,147,483,647)

19. SQLJ

2026

(b) Declaring connection context
Using the declared class, declare the connection context (as a Java variable
declaration). Connection-context indicates a Java identifier.

(c) Connecting to a HiRDB server
Create a connection context object using a new operator. During this step, connection
is made to the HiRDB server. For the connection parameters, describe the HiRDB
server at the connection destination, port number, authorization identifier, and
password in the same format as that used for JDBC.

(d) Connecting to the HiRDB server when the native interface is used
When the native interface is used, there are three ways of connecting to the HiRDB
server:

• Describing the connection as a Java instruction

• Using the CONNECT statement

• Using the JDBC connection object (Connection)

These connection methods are described below.

1. Describing the connection as a Java instruction

Use the new operator to generate a connection context object. However, since
JDBC is not being used, specify an authorization identifier, a password, a server
name, and a port number in the connection parameters.

If no connection parameters are specified, the HiRDB server checks the client
environment variables.

An example of creating a connection context follows:

 #sql modifier context class-name ;

 modifier class-name connection-context ;

 connection-context = new class-name(connection-parameter) ;

 connection-context = new class-name(connection-parameters);

 connection-context = new class-name();

19. SQLJ

2027

2. Using the CONNECT statement

Specify an authorization identifier and a password in the connection parameters.

The HiRDB server checks the client environment definitions for the port number
and the server name.

If connection parameters are not specified, the HiRDB server checks the client
environment definitions.

An example of the CONNECT statement follows:

3. Using the JDBC connection object (Connection)

Use the new operator to generate a connection context object. In the connection
parameters, specify the JDBC connection object (java.sql.Connection).

An example of creating a connection context follows:

 #sql context Ctx;
 String Userid=new String("user1");
 String Passwd=new String("puser1");
 String Host=new String("HiRDB_SV");
 short port=22000;

 Ctx con = new Ctx(:Userid,:Passwd,:Host,:port);

 #sql [connection-context]{CONNECT USER :embedded variable USING :embedded variable};
 or
 #sql [connection-context]{CONNECT :embedded variable IDENTIFIED BY :embedded variable};

 #sql [connection-context]{CONNECT};

 #sql context Ctx;
 String Userid=new String("user1");
 String Passwd=new String("puser1");
 Ctx con;

 #sql [con] {CONNECT USER :Userid USING :Passwd };

 connection-context = new class-name(connection-object);

19. SQLJ

2028

(2) Disconnecting from a HiRDB server
To disconnect from the HiRDB server, invoke the close method for the connection
context. Note that there is no reconnection method. To reconnect, create a new object.

An example of invoking the close method for the connection context follows:

When using the native interface edition, you can use the DISCONNECT statement
instead of invoking the close method for the connection context.

An example of the DISCONNECT statement follows:

(3) Default connection
(a) Standard interface edition

For the standard interface edition, the default connection context is assumed if no
connection context is specified in an SQL statement.

To use the default connection context, a UAP must create a connection context in

 #sql context Ctx;
 java sql.Connection con =

 java.sql.DriverManager.getConnection("jdbc:hitachi:PrdbDrive://DBID=22200,
 DBHOST=HiRDB_SV","user1","user1");

 Ctx ctx = new Ctx(con);

 connection-context.close() ;

 #sql context DeptContext;
 ...
 {
 DeptContext deptCtx = new DeptContext(deptURL,true);
 #sql [deptCtx] { DELETE FROM TAB };
 deptCtx.close();
 }

 #sql[connection-context]{DISCONNECT};

 #sql context Ctx;
 Ctx con;
 #sql[con]{CONNECT};

 #sql[con]{DISCONNECT};

19. SQLJ

2029

advance, and set it as the default connection context. Once the default connection
context is set, it remains valid until the close() method for the default connection
context is issued or a new connection context is set as the default connection context.

The default connection context is held by a variable inside the default connection
context class (JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext).

The default connection context has multiple constructors that have the different
arguments described as follows.

• Constructor that has a JDBC connection object as an argument

• Constructor that has the URL of the connection destination, authorization
identifier, password, and auto commit specification as arguments

• Constructor that has the specifications of the URL of the connection destination,
Properties object, and autoCommit as arguments

• Constructor that has connection context as an argument

To specify the URL of the connection destination, authorization identifier, and
password, use the same format as is used for the JDBC driver of HiRDB.

In SQLJ, to use a constructor that includes a connection URL during the creation of a
connection context, you must specify autoCommit, and specify TRUE to enable it and
FALSE to disable it.

If the default connection context is created from the JDBC connection context, the
autoCommit setting in the JDBC connection context is inherited.

Creating and setting the default connection context

An example for creating and setting the default connection context follows:

Releasing and resetting the default connection context

An example of releasing and resetting the default connection context follows:

 import JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext;
 ...
 PrdbContext pctx = new PrdbContext(url,user,passwd,autoCommit);
 PrdbContext.setDefaultContext(pctx);

 import JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext;
 ...
 PrdbContext pctx = new PrdbContext(url,user,passwd,autoCommit);
 PrdbContext.setDefaultContext(pctx);
 ...
 pctx.close();
 PrdbContext new_pctx = new PrdbContext(url.use,passwd,autoCommit);

 PrdbContext.setDefaultContext(new_pctx);

19. SQLJ

2030

Acquiring the default connection context

When the following method is invoked, the connection context can be acquired:

JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext.getDefault
Context();

An example of specifying the default context follows:

(b) Native interface edition
For the native interface edition, the default connection context class is held in a
variable of JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext.

The default connection context class has the following constructors:

• Constructors with JDBC connection objects as arguments

• Constructors with the authorization identifier, password, server name, and port
number of the connection destination as arguments

• Constructors with the authorization identifier and password specification of the
connection destination as arguments

• Constructors with connection contexts as arguments

• Constructors without arguments

Creating and setting the default connection context

An example of creating and setting the default connection context follows:

Releasing and resetting the default connection context

An example of releasing and resetting the default connection context follows:

 void print_address(String name) throws SQLException;
 {
 String telno;
 sqlj.runtime.ConnectionContext ctx;
 ctx = JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext.getDefaultContext();
 #sql [ctx] { SELECT TELNO INTO :telno
 FROM PERSON
 WHERE :name = NAME } ;
 }

 import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext;
 :
 PrdbContext pctx = new PrdbContext();
 PrdbContext.setDefaultContext(pctx);

19. SQLJ

2031

Getting the default connection context

To get the default connection context, invoke the following method:

JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext.getDefau
ltContext();

A coding example in which the default context is implicitly specified follows:

19.3.8 Description of cursor-based retrieval
Because SQLJ has no DECLARE CURSOR, OPEN, or CLOSE statements, cursor
declaration, opening, and closing must be coded as Java instructions. During this step,
an iterator object is used in place of a cursor name. Because the iterator object is
declared as a reference variable to an object, the same naming rule and valid range as
in the Java rules apply here.

Depending on the iterator object type used, the retrieval result can be obtained using
or not using a FETCH statement. A FETCH statement uses an object in the iterator type
with a position specification and cannot use an object in the iterator type with a column
name specification.

(1) Retrieval using a FETCH statement
The method for describing a retrieval using a FETCH statement is explained as follows.

 import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext;
 :
 PrdbContext pctx = new PrdbContext(user,passwd,host,port);
 PrdbContext.setDefaultContext(pctx);
 :
 pctx.close();
 PrdbContext new_pctx = new PrdbContext(user,passwd,host,port);

 PrdbContext.setDefaultContext(new_pctx);

void print_address(String name) throws SQLException;
{
 String telno;
 JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ConnectionContext ctx;
 ctx = JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext.getDefaultContext();
 #sql [ctx] { SELECT TELNO INTO :telno FROM PERSON WHERE :name = NAME } ;
}

19. SQLJ

2032

(a) Defining a class for an iterator with position specification and declaring
an iterator object

Standard interface edition

For the standard interface edition, define a class for an iterator with a position
specification and declare an iterator object. class-name indicates a Java identifier.
data-type-N indicates the data type of a Java variable that stores the N-th retrieval item
in the FETCH statement.

Native interface edition

For the native interface edition, the specification is as follows:

If an iterator is used in an UPDATE or DELETE statement, the
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ForUpdate interface is
inherited.

keyword in the WITH clause indicates the function of the iterator. Only a constant can
be specified. The following table shows the combinations of keyword in the WITH
clause and the setting values.

Table 19-7: Combinations of keyword in the WITH clause and setting values

(b) Defining and opening a cursor
Substitute the result set from the SELECT statement into the declared iterator object.

 #sql modifier iterator class-name
 (data-type-1,data-type-2,...) ;
 modifier class-name iterator-object ;

 #sql modifier iterator class-name
 [implements JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ForUpdate]
 [with keyword=setting-value,...]
 (data-type-1,data-type-2,...) ;
 modifier class-name iterator-object ;

Keyword in the WITH
clause

Function Setting

holdability Indicates a holdable cursor. TRUE

updateColumns Indicates the column to be updated. "column-name,column-name,..."

 #sql [context] iterator-object = { SELECT-statement } ;

19. SQLJ

2033

(c) Extracting the retrieval result
Specify an iterator object instead of a cursor name and execute a FETCH statement. The
iterator object must be preceded by a colon.

(d) Determining NOT FOUND
Invoke the endFetch method for the iterator object and determine whether the result
is NOT FOUND. If there is no row to be retrieved, true is returned. If the next row is
found, false is returned. If the endFetch method is invoked after the cursor is
closed, true is returned.

(e) Closing the cursor
To close the cursor, invoke the close method.

An example of a retrieval using a FETCH statement follows:

(2) Retrieval without using a FETCH statement
Using the fields in the iterator with a column name specification, read out each column
of the retrieval result.

(a) Defining a class for an iterator with column name specification
Define the same name (not case sensitive) as the retrieval item as the class field. For
the data type, specify the data type of the Java variable that receives the retrieval result.

 #sql [context] {
 FETCH :iterator-object INTO :variable-1,:variable-2,...} ;

 while(! iterator-object.endFetch()) {
 processing-on-the-extracted-row
 }

 iterator-object.close() ;

 #sql public iterator ByPos(String, int);
 :
 {
 ByPos positer;
 String name = null;
 int code = 0;

 #sql positer = { SELECT PNAME,PCODE FROM STOCK };
 #sql { FETCH :positer INTO :name,:code };
 while(!positer.endFetch()){
 System.out.println(name + ":" + code);
 #sql { FETCH :positer INTO :name,:pcode };
 }
 positer.close();
 }

19. SQLJ

2034

This class cannot be used for the native interface.

If the retrieval item is a value expression, a column name that includes a character that
cannot be used in Java, for example, use an AS clause to define an alias for the retrieval
item, and use that alias.

(b) Defining and opening a cursor
Substitute the result set from the SELECT statement into the declared iterator object.

(c) Extracting the next row and determining NOT FOUND
Invoke the next method for the iterator object and determine whether the result is NOT
FOUND. If the result is NOT FOUND, TRUE is returned. If a row is found, FALSE is
returned. After the cursor is opened, it is not positioned on the first line of the retrieval
result until the first next method is executed.

(d) Acquiring the retrieval result
Read data out from each field of the iterator object. If the result is NOT FOUND or if data
is read out after the cursor is closed, the result is undetermined. If data is read out when
the data type of the field is the Java basic data type and the retrieval result is a null
value, the SQLNullException object occurs.

Data substituted into a field is not reflected in the database.

(e) Closing the cursor
To close the cursor, invoke the close method for the iterator object.

An example of retrieval without using a FETCH statement follows:

Example:

 #sql modifier iterator class-name
 (data-type-1 column-name-1,
 data-type-2 column-name-2,...) ;
 modifier class-name iterator-object;

 #sql [context] iterator-object = { SELECT-statement } ;

 while(iterator-object.next()){
 processing-on-the-extracted-row
 }

 variable-1 = iterator-object.column-name-1 ;
 variable-2 = iterator-object.column-name-2 ;
 ...

 iterator-object.close() ;

19. SQLJ

2035

(3) Updating using the cursor
For the native interface, a cursor can be used to update data.

To use an UPDATE or DELETE statement to manipulate the row on which the cursor is
positioned, specify an iterator instead of a cursor name. Note that when the class for
the iterator is being defined, it must inherit the ForUpdate interface.

An example of an update that uses an iterator follows:

 #sql public iterator ByName(String pname,
 int pcode);
 :
 {
 ByName nameiter;
 String s;
 int i;

 #sql nameiter = { SELECT PNAME, PCODE FROM STOCK };
 while(nameiter.next()){
 s = nameiter.pname();
 i = nameiter.pcode();
 System.out.println(s + ":" + i);
 }
 nameiter.close();
 }

 #sql [context] { DELETE-statement WHERE CURRENT OF :iterator-object } ;

 #sql [context] { UPDATE-statement WHERE CURRENT OF :iterator-object } ;

 #sql public iterator ByPos
 implements JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ForUpdate
 (String, int);
 :

 {
 ByPos positer;
 String name = null;
 int year = 0;
 int newyear;

 #sql positer = { SELECT FULLNAME, BIRTHYEAR FROM PEOPLE };
 #sql { FETCH :positer INTO :name,:year };
 while(!positer.endFetch()){
 newyear=year+10;
 #sql { UPDATE PEOPLE SET YEAR=:newyear WHERE CURRENT OF :positer; };
 }
 positer.close();
 }

19. SQLJ

2036

19.3.9 Receiving a dynamic result set
To receive a dynamic result set by invoking a procedure that returns a dynamic result
set, use the getNextResultSet() method for the execution context. For the native
interface edition, a procedure that returns a dynamic result set cannot be used because
JDBC result sets cannot be used.

The getNextResultSet() method returns a dynamic result set (ResultSet object)
as a return value. Every time this method is invoked, it returns the next result set. After
it returns the last result set, it returns a null value.

For a procedure or SQL statement that does not return a dynamic result set, a null value
is returned. A null value is returned also when SQL execution is not normally
terminated.

If an error occurs during the execution of the getNextResultSet() method, the
SQLException occurs.

An example follows:

19.3.10 Using JDBC and SQLJ together
This subsection explains how to use JDBC and SQLJ together.

(1) Acquiring a JDBC result set from an SQLJ iterator
You can convert an SQLJ iterator into a JDBC result set (ResultSet object) and use
the JDBC API to obtain the retrieval result. For the native interface edition, JDBC
result sets cannot be obtained.

To obtain a JDBC result set, use the getResultSet method for the iterator class
(ResultSetiterator). This method returns a JDBC result set as a return value.
After executing the next method for the iterator, do not invoke the getResultSet
method.

After you have used the getResultSet method to convert an SQLJ iterator into a
JDBC result set, do not receive a retrieval result using the original iterator.

An example follows:

#sql [execCtx] { CALL MULTI_RESULTS() };
 ResultSet rs;
 while((rs == execCtx.getNextResultSet()) != null){
 processing-of-the-retrieval-result;
 rs.close();
 }

19. SQLJ

2037

(2) Reading a JDBC result set as an iterator result set of SQLJ (limited to the
standard interface edition)

The JDBC result set (ResultSet) that was created using the JDBC API is converted
with the CAST statement and read as a result set of the SQLJ cursor.

The coding example follows:

(3) Converting JDBC connection into SQLJ connection context
The SQLJ connection context defines a constructor for generating an object from a
JDBC connection. Using this constructor, you can convert a JDBC connection into an
SQLJ connection context. Note that JDBC connection is transferred as an argument of
the constructor. You can also use both types of connection together.

An example follows:

(4) Converting SQLJ connection into JDBC connection
You can use the getConnection method to get the JDBC connection from an SQLJ
connection. You can also use both types of connection together.

With the native interface edition, an SQLJ connection cannot be converted into a
JDBC connection. To use the same connection as JDBC, you must create a connection
in JDBC beforehand, and then convert the connection into an SQLJ connection
context.

 public void showEmployeeName() throws SQLException
 {
 sqlj.runtime.ResultSetIterator iter;
 #sql iter = { SELECT ename FROM rmp } ;
 ResultSet rs = iter.getResultSet();
 while(rs.next()){
 System.out.println("employee name: " + rs.getString(1));
 }
 iter.close();
 }

 #sql iterator Employees(String ename, double sal);
 Statement stmt=conn.createStatement();
 String query="SELECT pname, pcode FROM stock WHERE pcode > 1000";
 ResultSet rs=stmt.executeQuery(query);
 Employees emps;
 #sql emps ={CAST :rs };

 java.sql.Connection jdbcConCtx =java.sql.DriverManager.getConnection(...);
 #sql context Inventory;
 Inventory sljConCtx = new Inventory(jdbcConCtx);

19. SQLJ

2038

An example follows:

(5) Dynamic SQL statement
SQLJ can describe only static SQL statements. Therefore, to execute a dynamic SQL
statement, you must use the JDBC API.

(a) Executing a dynamic SQL statement
A dynamic SQL statement is executed using a PreparedStatement object in JDBC.

When the prepareStatement method for the connection context is executed using
the SQL as an argument, a PreparedStatement object is returned as a return value.

To set a parameter in a dynamic SQL statement, use the set method of
PreparedStatement. To execute the dynamic SQL statement, use the execute
method of the PreparedStatement object.

An example of dynamic SQL execution follows:

(b) Retrieving a dynamic cursor
Only static cursors can be used in SQLJ. Therefore, to use a dynamic cursor, you must
use the JDBC API.

When the prepareStatement method for the connection context is executed for a
character string that indicates a SELECT statement, a PreparedStatement object is
returned as a return value.

To set a parameter, use the set method of PreparedStatement. To execute the SQL
statement, use the executeQuery method of the PreparedStatement object. The
executeQuery method returns the JDBC result set.

To receive a retrieval result, use the get method for result sets.

An example of retrieval using a dynamic cursor follows:

 #sql context Inventory;
 Inventory sljConCtx = new Inventory(url);
 java.sql.Connection jdbcConCtx = sqljConCtx.getConnection();

 java.sql.PreparedStatement pstmt = con.prepareStatement(
 "INSERT INTO FOO_TABLE VALUES(?, ?)");
 pstmt.setInt(1, 100);
 pstmt.setString(2, "test");
 pstmt.execute();

19. SQLJ

2039

(c) Executing a DESCRIBE statement
To determine the column name and data type of each retrieval item of a dynamic
cursor, use a ResultSetMetaData object. You can obtain a ResultSetMetaData
object from the getMetaData object of the result set.

You can also use the getColumnClassName method of the ResultSetMetaData
object to obtain the character string that indicates the data type of each retrieval item.

You can use the getColumnName method to obtain column names.

Specify the items to be retrieved using numbers (beginning with 1). You can use the
getColumnCount method to obtain the number of columns.

An example of executing the DESCRIBE statement follows:

19.3.11 Creating and executing a UAP
(1) Executing the SQLJ translator

1.Set environment variables.

When the HiRDB client is the UNIX IPF edition:

Set environment variables as shown below. The underlined portion is the
default installation directory.

• For HiRDB/Developer's Kit

 java.sql.PreparedStatement pstmt = con.prepareStatement(
 "SELECT NAME, POINT FROM FOO_TABLE WHERE BAR=100");
 ResultSet rs = pstmt.executeQuery();
 String name;
 Integer point;
 rs.next();
 name = pstmt.getString(1);
 point = pstmt.getInteger(2);

 java.sql.PreparedStatement pstmt = con.prepareStatement(
 "SELECT * FROM FOO_TABLE");
 java.sql.ResultSetMetaData aMeta = pstmt.getMetaData();
 int columCount = aMeta.getColumnCount();
 Vector nameList = new Vector();
 Vector classLis = new Vector();
 for(int i = 1; i <= columnCount; i++){
 nameList.addElement(aMeta.getColumnName(i));
 classList.addElement(a.Meta.getColumnClassName(i));
 }
 Vector dataList = new Vector();
 rs.next();
 for(int i = 1; i <= columnCount; i++){
 dataList.addElement(rs.getObject(i));
 }

19. SQLJ

2040

CLASSPATH=$CLASSPATH:/HiRDB/client/lib/pdsqlj.jar#1

• For HiRDB/Run Time

CLASSPATH=$CLASSPATH:/HiRDB/client/lib/
pdruntime.jar#2

CLASSPATH=$CLASSPATH:/HiRDB/client/lib/
pdnativert.jar#3

#1: For the 32-bit mode HP-UX (IPF) edition, this setting becomes
pdsqlj32.jar.

#2: For the 32-bit mode HP-UX (IPF) edition, this setting becomes
pdruntime32.jar.

#3: For the 32-bit mode HP-UX (IPF) edition, this setting becomes
pdnativert32.jar.

When the HiRDB client is Windows:

Choose Control Panel, System, System Properties, and Environment in
that order, and then specify as shown below. The underlined portion is the
default installation directory:

• For HiRDB/Developer's Kit

CLASSPATH=%CLASSPATH%:\HiRDB\UTL\pdsqlj.jar
• For HiRDB/Run Time

CLASSPATH=%CLASSPATH%\HiRDB\UTL\pdruntime.jar
CLASSPATH=%CLASSPATH%\HiRDB\UTL\pdnativert.jar

2. Executing the SQLJ Translator

The SQLJ Translator runs on a Java virtual machine.

Format

Description

option
The table below lists the SQLJ Translator options.

file-name-1
This is a UAP source file that describes SQLJ.

file-name-2

 pdjava [option] file-name-1.sqlj [file-name-2.java]

19. SQLJ

2041

This is a post-source file.

file-name-1 and file-name-2 may contain a path. If file-name-2.java is not
specified, file-name-1.java is assumed.

Table 19-8: SQLJ Translator options

Notes

1. When specifying multiple options, use spaces to separate the options.

Up to two options can be specified for the standard interface edition,
and up to three options (including -native) for the native interface
edition. If more options are specified, an error occurs.

2. The -native option for using the native interface edition must be
specified first. If the -native option is not specified first, an error
occurs.

3. If the -help or -version option is specified, the other options are
ignored. However, it both -help and -version are specified at the
same time, both are valid.

Execution example

Execution examples are shown below.

Options Coding format Explanation

-dir -dir=directory-name Specifies the direction in which to create the
post-source file.

-d -d=directory-name

-status -status Displays the internal status for preprocessing.
This is a debugging option.

-J -J-option Specifies a Java virtual machine option to be
used during the execution of the SQLJ
Translator.

-version -version Displays the version of the SQLJ translator. No
translation is performed.

-help -help Specified to display an option explanation. No
translation is performed.

-native -native Generates a post source for the native interface.
If you are specifying multiple options, be sure to
specify this option first.

-d 64 -d 64 Specifies that the SQLJ translator is to be
executed with the 64-bit mode HP-UX (IPF)
edition.

19. SQLJ

2042

• For the standard interface edition

Example 1: pdjava file-name.sqlj
Example 2: pdjava -dir=d:\sqljsrc file-name.sqlj
Example 3: pdjava -d64 file-name.sqlj#

#: This example is for the 64-bit mode HP-UX (IPF) edition.

• For the native interface edition

Example 1: pdjava -native file name.sqlj
Example 2: pdjava -native -dir=d:\sqljsrc file name.sqlj
Example 3: pdjava -native -d64 file name.sqlj#

#: This example is for the 64-bit mode HP-UX (IPF) edition.

(2) Compiling and executing an UAP
1. Setting environment variables

See step 1 in (1) Executing the SQLJ translator.

2. Compiling the post-source file

Use the Java compiler to compile the post-source file generated by the SQLJ
Translator. The format used for compilation follows:

3. Setting the path to the JDBC driver in CLASSPATH

For details on setting up a path for the JDBC driver, see 17.1 Installation and
environment setup.

4. Using DriveManager to connect to a database

For details about database connection using DriverManager, see 17.2.1 Driver
class.

5. Using the Java Virtual Machine to execute the CLASS file

Use the Java Virtual Machine to execute the Class file. The execution format
follows:

When the 32-bit mode HP-UX (IPF) edition is used, the execution format is as follows:

 javac file-name-2.java

 java file-name-2

19. SQLJ

2043

19.3.12 Migrating an SQLJ source from the standard interface
edition to the native interface edition

Some portions must be revised to migrate an SQLJ source from the standard interface
edition to the native interface edition. The following table shows where revisions are
required to migrate to the native interface edition.

Table 19-9: Revisions required for an SQLJ source to be migrated from the
standard interface edition to the native interface edition

 java -d64 file-name-2

Command name Standard interface edition Native interface edition Revision
needed?

UAP (input) source file-name.sqlj file-name.sqlj N

UAP (output) source JAVAsource-file-name.
javaprofile-name.ser

JAVAsource-file.java N

Option Specification of output file
name, others

Specification of output file name,
others

N

SQL prefix #sql #sql N

SQL terminator ; ; N

SQL declare section Unnecessary Unnecessary N

Embedded variable :variable-name :variable-name N

Declaration statement #sql context class-name
#sql iterator class-name

#sql context class-name
#sql iterator class-name#1

N#2

Connection context
creation

A JDBC connection object can
be specified in a parameter.

A JDBC connection object can be
specified in a parameter.

N

An object other than a JDBC
connection object can be
specified in a parameter.

There is no object that obtains the
same parameter.

Y#3

Use of default
connection context

JP.co.Hitachi.soft.HiR
DB.sqj.runtime.

PrdbContext

JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.
PrdbContext

Y#4

Explicit specification of
execution context

sqlj.runtime.Execution
Context

JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.

ExecutionContext

Y#5

19. SQLJ

2044

Legend:

Y: Need for revision.

N: No need for revision.

#1: A name iterator cannot be used. A position iterator can be used but not in an inner
class.

#2: Revision becomes necessary when a name iterator or an inner class is used.

#3: Change the connection process. For details, see 19.3.7(1)(d) Connecting to the
HiRDB server when the native interface is used.

#4: Change the JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext
package name to
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext.

#5: Change sqlj.runtime.ExecutionContext to
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ExecutionContext.

#6: CAST statements result in errors when translated. Therefore, delete all CAST
statements. Modify the UAP so that it operates the JDBC result set directly and does
not use an SQLJ iterator.

#7: Since there is no method that accepts a dynamic result set, an error occurs during
Java compilation. Therefore, delete the section that issues

Use of the CAST
statement (acceptance
of a JDBC result set)

Can be executed. Cannot be executed. Y#6

Acceptance of dynamic
result set

Can be executed. Cannot be executed. Y#7

Data type byte[]

java.math.BigDecimal

java.lang.String

JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.

HiRDBBLOB

JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.
HiRDBDECIMAL

JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.

HiRDBCHAR and others

Y#8

Execution of different
SELECT statements that
use the same iterator
object name

Can be executed. Cannot be executed. Y#9

Command name Standard interface edition Native interface edition Revision
needed?

19. SQLJ

2045

ExecutionContext.getNextResultSet(). To get the dynamic result set, change
the UAP so that is uses JDBC directly.

#8: byte[] is requested to the HiRDB server as the BINARY type. Modification is
necessary if the HIRDB server is version 06-02 or earlier.

When the BigDecimal type is specified in an acceptance variable, the precision in set
to 15 and the scale to 0. Therefore, if any other precision or scale value is set, the value
must be changed.

When String is specified in an input variable, it is requested to the HiRDB server as
the VARCHAR type. If you want to associate the data type with a data type of the HiRDB
server, you must change the data type.

#9: The same iterator object name cannot be used to execute different SELECT
statements. In this case, a separate iterator object name must be specified for each
SELECT statement.

#sql iterator pos(HiRDBCHAR(10));
 :
pos positer = null
pos positer2 = null;
HiRDBCHAR out = null;
 :
#sql positer = {SELECT * FROM T1};
#sql {FETCH :positer INTO :out}
positer.close();

#sql positer2 = {SELECT * FROM T2};
#sql {FETCH :positer2 INTO :out}
positer2.close();

19.3.13 Notes about UAP development
When developing a UAP that uses multiple threads, do not use the default connection
text as the connection context. If multiple threads use the same connection context, an
error occurs.

When using multiple threads, be sure to specify the connection context explicitly. An
example in which the connection context is specified explicitly follows:

#sql context Ctx;

public class sample{
 public void main(String args[]){
 Ctx con = null;
 #sql [con] {CONNECT}; //Explicit
specification of connection context
 ...

19. SQLJ

2046

 int data = 100;
 #sql [con] {INSERT INTO T1 VALUES(:data)}; //Explicit
specification of connection context

 #sql [con] {DISCONNECT}; //Explicit
specification of connection context
 }
}

When using the SQLJ native interface edition, match the number of SELECT statement
retrieval items with the number of columns of the iterator object to be used. If the two
do not match, false errors may occur.

19. SQLJ

2047

19.4 Native Runtime

The SQLJ runtime library used by the native interface is called Native Runtime.

Native Runtime provides the following functions:

• Classes and interfaces used in compilation when the -native option is specified

• Access to HiRDB

19.4.1 Package configuration
The following table shows the configuration of the Native Runtime packages.

Table 19-10: Configuration of the Native Runtime packages

19.4.2 Public classes of Native Runtime
The following table lists the public classes of Native Runtime.

Table 19-11: Public classes of Native Runtime

Package name Collected contents

JP.co.Hitachi.soft.HiRDB.pdjpp.runtime Classes and interfaces

JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.error Error class

Package Class or interface
name

Function

N/A Connection context This class is generated by #sql
context class-name; of the SQLJ
translator. This corresponds to a
connection context of SQLJ.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

PrdbContext This is the default connection context.
This corresponds to the default
connection context of SQLJ.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

ExecutionContext This is an execution context. This class
corresponds to an execution context of
SQLJ and is used in managing SQL
execution.

N/A Iterator This class is generated by #sql
iterator class-name; of the SQLJ
translator. This corresponds to an
iterator of SQLJ.

19. SQLJ

2048

Legend:

N/A: No package is available.

19.4.3 Cluster specifications
This section describes the method and field values of each class.

(1) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBCHAR class
Description

This class corresponds to the CHAR type of HiRDB.

Constructors

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

RTResultSet This is a result set object. This class
corresponds to a result set of JDBC and
is used in managing results.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

ForUpdate This interface is implemented by an
iterator declaration when cursor update
using an iterator is used.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBCHAR Indicates the CHAR type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBVARCHAR Indicates the VARCHAR type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBNCHAR Indicates the NCHAR type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBNVARCHAR Indicates the NVARCHAR type of
HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBMCHAR Indicates the MCHAR type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBMVARCHAR Indicates the MVARCHAR type of
HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBDECIMAL Indicates the DECIMAL type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBBLOB Indicates the BLOB type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBBINARY Indicates the BINARY type of HiRDB.

Package Class or interface
name

Function

19. SQLJ

2049

Methods

(2) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBVARCHAR class
Description

This class corresponds to the VARCHAR type of HiRDB.

Constructors

Methods

Return value Method Function description

HiRDBCHAR HiRDBCHAR(String s)
 throws SQLException

Generates a new HiRDBCHAR class.
If the length of the specified character string is
30,001 bytes or greater, SQLException is thrown.

HiRDBCHAR HiRDBCHAR(int len)
 throws SQLException

Returns a HiRDBCHAR class that has a length of len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (single-byte space
character x len) was specified. If the specified len
value is not in the range from 1 to 30,000,
SQLException is thrown.

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBVARCHAR HiRDBVARCHAR(String s)
 throws SQLException

Generates a new HiRDBVARCHAR class.
If the length of the specified character string is
32,001 bytes or greater, SQLException is thrown.

HiRDBVARCHAR HiRDBVARCHAR(int len)
 throws SQLException

Returns a HiRDBVARCHAR class that has a length of
len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (single-byte space
character x len) was specified. If the specified len
value is not in the range from 1 to 32,000,
SQLException is thrown.

19. SQLJ

2050

(3) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBNCHAR class
Description

This class corresponds to the NCHAR type of HiRDB.

Constructors

Methods

(4) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBNVARCHAR class
Description

This class corresponds to the NVARCHAR type of HiRDB.

Constructors

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBNCHAR HiRDBNCHAR(String s)
 throws SQLException

Generates a new HiRDBNCHAR class.
If the length of the specified character string is
15,001 bytes or greater, SQLException is thrown.

HiRDBNCHAR HiRDBNCHAR(int len)
 throws SQLException

Returns a HiRDBNCHAR class that has a length of len
(len is the number of double-byte characters).
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (double-byte
space character x len) was specified. If the specified
len value is not in the range from 1 to 15,000,
SQLException is thrown.

Return value Methods Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBNVARCHAR HiRDBNVARCHAR(String s)
 throws SQLException

Generates a new HiRDBNVARCHAR class.
If the length of the specified character string is
16,001 characters or greater, SQLException is
thrown.

19. SQLJ

2051

Methods

(5) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBMCHAR class
Description

This class corresponds to the MCHAR type of HiRDB.

Constructors

Methods

HiRDBNVARCHAR HiRDBNVARCHAR(int len)
 throws SQLException

Returns a HiRDBNVARCHAR class that has a length
of len (len is the number of double-byte characters).
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (double-byte
space character x len) was specified. If the specified
len value is not in the range from 1 to 16,000,
SQLException is thrown.

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBMCHAR HiRDBMCHAR(String s)
 throws SQLException

Generates a new HiRDBMCHAR class.
If the length of the specified character string is
30,001 bytes or greater, SQLException is thrown.

HiRDBMCHAR HiRDBMCHAR(int len)
 throws SQLException

Returns a HiRDBMCHAR class that has a length of
len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (single-byte space
character x len) was specified. If the specified len
value is not in the range from 1 to 30,000,
SQLException is thrown.

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

19. SQLJ

2052

(6) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBMVARCHAR class
Description

This class corresponds to the MVARCHAR type of HiRDB.

Constructors

Method

(7) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBBLOB class
Description

This class corresponds to the BLOB type of HiRDB.

Constructors

Methods

Return value Method Function description

HiRDBMVARCHAR HiRDBMVARCHAR(String s)
 throws SQLException

Generates a new HiRDBMVARCHAR class.
If the length of the specified character string is
32,001 bytes or greater, SQLException is thrown.

HiRDBMVARCHAR HiRDBMVARCHAR(int len)
 throws SQLException

Returns a HiRDBMVARCHAR class that has a length
of len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (single-byte space
character x len) was specified. If the specified len
value is not in the range from 1 to 32,000,
SQLException is thrown.

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBLOB HiRDBBLOB(byte[] b) Generates a new HiRDBBLOB class.

HiRDBBLOB HiRDBBLOB(int len)
 throws SQLException

Returns a HiRDBBLOB class that has a length of len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that the number
(0(0x30) x len) was specified. If the specified len
value is 0 or less, SQLException is thrown.

19. SQLJ

2053

(8) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBBINARY class
Description

This class corresponds to the BINARY type of HiRDB.

Constructors

Methods

(9) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBDECIMAL class
Description

This class corresponds to the DECIMAL type of HiRDB.

Constructors

Return value Method Function description

byte[] getBytes[] Returns byte[].

int length() Returns the byte[] length.

Return value Method Function description

HiRDBBINARY HiRDBBINARY(byte[] b) Generates a new HiRDBBINARY class.

HiRDBBINARY HiRDBBINARY(int len)
 throws SQLException

Returns a HiRDBBINARY class that has a length of
len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that the number
(0(0x30) x len) was specified. If the specified len
value is 0 or less, SQLException is thrown.

Return value Method Function description

byte[] getBytes() Returns byte[].

int length() Returns the byte[] length.

Return value Method Function description

HiRDBDECIMAL HiRDBDECIMAL(String s)
 throws SQLException

Generates a new HiRDBDECIMAL class.
If the character string of the argument contains a
character string other than a number, a period, and a
sign or if the precision and scale values obtained
from the character string are 30 or higher,
SQLException occurs.

19. SQLJ

2054

Methods

19.4.4 Coding examples using the native interface
(1) Data insertion and retrieval

A coding example (sample1.sqlj) of data insertion and retrieval follows:

HiRDBDECIMAL HiRDBDECIMAL

 (java.math.BigDecimal)

 throws SQLException

Generates a new HiRDBDECIMAL class.
If the precision and scale values in the arguments
are 30 or higher, SQLException occurs.

HiRDBDECIMAL HiRDBDECIMAL(int x,int y)
 throws SQLException

Returns a HiRDBDECIMAL class with precision x
and scale y.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that 0 was specified. If
x is not in the range from 1 to 29, y is not in the
range from 0 to 29, and x is less than y,
SQLException occurs.

Return value Method Function description

String getString() Returns the String object.

java.math.BigDec
imal

getBigDecimal() Returns the java.math.BigDecimal object.

int precision() Returns the precision.

int scale() Returns the scale.

import java.sql.*;
import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.*;
//Declare iterator (cursor)
#sql iterator Pos(int,HiRDBCHAR(10),HiRDBNCHAR(5),HiRDBDECIMAL(10,5));

public class sample1{
 public static void main(String args[]){

 //Connect and create table
 try{
 #sql{CONNECT}; //Refer to client environment variable and connect
 #sql{CREATE TABLE SAMPLE1(c1 int,c2 char(10),c3 nchar(5),c4 decimal(10,5))};
 }catch(SQLException e){System.out.println(e.getMessage());};

Return value Method Function description

19. SQLJ

2055

(2) Data insertion and single-row retrieval
A coding example (sample2.sqlj) of data insertion and single-row retrieval
follows:

 //Insert data
 try{
 int InInt = 100;
 HiRDBCHAR InChar = new HiRDBCHAR("CHAR");
 HiRDBNCHAR InNchar = new HiRDBNCHAR("NCHAR");
 HiRDBDECIMAL InDecimal = new HiRDBDECIMAL("12345.678");

 #sql{INSERT INTO SAMPLE1 VALUES(:InInt,:InChar,:InNchar,:InDecimal)};
 #sql{COMMIT};
 }catch(SQLException e){System.out.println(e.getMessage());};

 //Retrieve data (FETCH)
 try{
 Pos sampleCur = null;
 int OutInt = 0;
 HiRDBCHAR OutChar = null;
 HiRDBNCHAR OutNchar = null;
 HiRDBDECIMAL OutDecimal = null;

 #sql sampleCur = {SELECT * FROM SAMPLE1};
 while(true){
 #sql {FETCH :sampleCur INTO :OutInt ,:OutChar ,:OutNchar ,:OutDecimal };
 if(sampleCur.endFetch()) break;
 System.out.println("c1="+ OutInt +" c2="+ OutChar.getString() +
 " c3="+ OutNchar.getString() + " c4="+ OutDecimal.getString());
 }
 }catch(SQLException e){System.out.println(e.getMessage());};
 try{#sql{DISCONNECT};}catch(SQLException e){System.out.println(e.getMessage());}
 }
}

import java.sql.*;
import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.*;
//Iterator (cursor) declaration
#sql iterator Pos(int,HiRDBCHAR(10),HiRDBNCHAR(5),HiRDBDECIMAL(10,5));

public class sample1{
 public static void main(String args[]){

 //Connection and table creation
 try{
 #sql{CONNECT}; //Refer to the client environment variables and connect.
 #sql{CREATE TABLE SAMPLE1(c1 int,c2 char(10),c3 nchar(5),c4 decimal(10,5))};
 }catch(SQLException e){System.out.println(e.getMessage());};

19. SQLJ

2056

(3) CALL statement execution
A coding example (sample3.sqlj) of CALL statement execution follows:

 //Insert data
 try{
 int InInt = 100;
 HiRDBCHAR InChar = new HiRDBCHAR("CHAR");
 HiRDBNCHAR InNchar = new HiRDBNCHAR("NCHAR");
 HiRDBDECIMAL InDecimal = new HiRDBDECIMAL("12345.678");

 #sql{INSERT INTO SAMPLE1 VALUES(:InInt,:InChar,:InNchar,:InDecimal)};
 #sql{COMMIT};
 }catch(SQLException e){System.out.println(e.getMessage());};

 //Retrieve data (single-row retrieval)
 try{
 //Declare output variables
 int OutInt = 0;
 HiRDBCHAR OutChar = new HiRDBCHAR(10);
 HiRDBNCHAR OutNchar = new HiRDBNCHAR(5);
 HiRDBDECIMAL OutDecimal = new HiRDBDECIMAL(10,5);

 #sql {SELECT * INTO :OutInt,:OutChar,:OutNchar,:OutDecimal FROM SAMPLE1};
 System.out.println("c1="+ OutInt +" c2="+ OutChar.getString() +
 " c3="+ OutNchar.getString() + " c4="+ OutDecimal.getString());
 }catch(SQLException e){System.out.println(e.getMessage());};
 try{#sql{DISCONNECT};}catch(SQLException e){System.out.println(e.getMessage());}
 }
}

import java.sql.*;
import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.*;

public class sample3{
 public static void main(String args[]){

 Integer PInteger1 = new Integer(99);
 Integer PInteger2 = new Integer(100);
 Integer PInteger3 = new Integer(101);try{
 #sql {CONNECT};
 }catch(SQLException e){System.out.println(e.getMessage());}

19. SQLJ

2057

(4) Update using a cursor
A coding example (sample4.sqlj) of update using a cursor follows:

 try{
 #sql {DROP PROCEDURE PROCSQLJ};
 #sql {DROP TABLE PROCTABLE};
 }catch(SQLException e1){}

 try{
 #sql {CREATE TABLE PROCTABLE(c1 int, c2 int)};
 #sql {CREATE PROCEDURE PROC1(in p1 int,out p2 int,inout p3 int)
 begin
 insert into PROCTABLE values(p1,p3);
 select * into p2,p3 from PROCTABLE;
 end};
 #sql {COMMIT};
 }catch(SQLException e){System.out.println(e.getMessage());}

 try{
 #sql {CALL PROC1(in :PInteger1 ,out :PInteger2 ,inout :PInteger3)};
 }catch(SQLException e){System.out.println(e.getMessage());}

 System.out.println("IN parameter PInteger1 = " + PInteger1);
 System.out.println("OUT parameter PInteger2 = " + PInteger2);
 System.out.println("INOUT parameter PInteger3 = " + PInteger3);

 try{#sql {DISCONNECT};}catch(SQLException e){System.out.println(e.getMessage());}
 }
}

import java.sql.*;
import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.*;
#sql iterator iterP implements
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ForUpdate(short);

public class sample4{
 public static void main(String args[]){
 iterP positer = null;
 iterP positer2 = null;
 short indata;
 short indata2 = 0;
 short indata3 = 999;
 try{
 #sql {CONNECT};
 #sql {DROP TABLE CURTABLE};
 }catch(SQLException e){System.out.println(e.getMessage());}

19. SQLJ

2058

 //Create table
 try{#sql {CREATE TABLE CURTABLE(c1 smallint)};
 }catch(SQLException e){System.out.println(e.getMessage());}
 //Insert data
 for(short i = 0;i < 5;i++){
 indata = i;
 try{#sql{INSERT INTO CURTABLE VALUES(:indata)};}catch(SQLException e){}
 }

 //Execute SELECT and update using cursor
 try{
 #sql positer = {SELECT * FROM CURTABLE};
 }catch(SQLException e){}
 try{
 while(true){
 #sql {FETCH :positer INTO :indata2};
 if(positer.endFetch()) break;
 System.out.println(indata2);
 #sql { UPDATE CURTABLE SET C1=:indata3 WHERE CURRENT OF :positer };
 }
 }catch(SQLException e){e.getMessage();}

 //Check update results
 try{#sql positer2 = {SELECT * FROM CURTABLE};}catch(SQLException e){}
 try{
 while(true){
 #sql {FETCH :positer2 INTO :indata2};
 if(positer2.endFetch()) break;
 System.out.println(indata2);
 }
 }catch(SQLException e){System.out.println(e.getMessage());}
 try{#sql{DISCONNECT};}catch(SQLException e){}
 }
}

2059

Appendixes

A. SQL Communications Area
B. SQL Descriptor Area
C. Column Name Descriptor Area
D. Type Name Descriptor Area
E. Character Set Descriptor Area
F. SQL Data Types and Data Descriptions
G. Data Dictionary Table Retrieval
H. Functions provided by HiRDB
I. Scalar Functions That Can Be Specified in the Escape Clause
J. Character Code Conversion Rules When Character Sets Are Used
K. HiRDB SQL Tuning Advisor Environment Setup
L. Maximum and Minimum HiRDB Values
M. List of Sample UAPs

A. SQL Communications Area

2060

A. SQL Communications Area

When SQL statements are executed, HiRDB sends a return code and related
information to the UAP indicating whether or not the SQL statements executed
normally. The area that receives this information is called the SQL Communications
Area. This appendix explains the organization and contents of the SQL
Communications Area and the expansion of the area.

For details about the use of the SQL Communications Area, see 3.6 SQL error
identification and corrective measures.

A.1 Organization and contents of the SQL Communications Area
The organization and contents of the area that receives SQL execution information are
explained as follows.

(1) Organization of the SQL Communications Area
The following figure shows the organization of the SQL Communications Area.

A. SQL Communications Area

2061

Figure A-1: Configuration of SQL Communications Area

Note

1. Numbers in parentheses indicate length (in bytes).

2. Brackets [] in parentheses enclose a value for 64-bit mode. For 64-bit mode
Windows, SQLCA is 336 bytes.

3. In 64-bit mode, the length of SQLCABC, SQLCODE, and SQLERRD becomes
the size of the long type for each platform.

(2) Contents of the SQL Communications Area
The following table shows the contents of the SQL Communications Area.

A. SQL Communications Area

2062

Table A-1: Contents of the SQL Communications Area

Level
number#

1

Communications
area name

Data
type

Length
(bytes)

Description

1 SQLCA -- 336
[368]

Denotes the overall SQL Communications Area.

2 SQLCAID -- 8 Denotes the SQLCAIDC, SQLCAIDS, and SQLCAIDE
areas.

3 SQLCAIDC char 5 Contains a character string (SQLCA) indicating that
the area is the SQL Communications Area.

3 SQLCAIDS char 2 Used by HiRDB.

3 SQLCAIDE char 1 Used by HiRDB.

2 SQLCABC long 4 [8]#3 Sets the size (336 [368] bytes) of the SQL
Communications Area.

2 SQLCODE long 4 [8]#3 Receives one of the following return codes from
HiRDB after SQL statements have been executed:
Negative: Abnormal termination
0: Normal termination
Positive: Normal termination with a message
For details about the messages associated with
return codes, see the manual HiRDB Version 9
Messages. Return codes associated with messages
are retrieved as follows:
Return code Associated message ID
-yyy KFPA11yyy
-1yyy KFPA19yyy
-3yyy KFPA18yyy
 yyy KFPA12yyy
 3yyy KFPA13yyy
Examples:
Return code Message ID
-125 KFPA11125

-1200 KFPA19200

-3200 KFPA18200

 100 KFPA12100

 3010 KFPA13010

A. SQL Communications Area

2063

2 SQLERRM -- 256 Denotes the SQLERRML and SQLERRMC areas.
The contents of these areas vary depending on
whether the return code returned to the SQLCODE
area is positive or negative:
• If the return code is negative, a character string

indicating the location or the cause of the error
can be returned

• If the return code is positive, a character string
indicating message information can be returned.

3 SQLERRML short 2 Contains the length of the message returned to the
SQLERRMC area.

3 SQLERRMC char 254 Contains the message associated with the return
code returned to the SQLCODE area; for the contents
of this area, see the manual HiRDB Version 9
Messages.

2 SQLERRP char 8 Used by HiRDB.

2 SQLERRD long 4#3 x 6 Contains the internal status of HiRDB. This area is
an array of six areas of the long data type:
SQLERRD[0]: Not used
SQLERRD[1]: Not used
SQLERRD[2]:
When SQLCODE is 0 or a positive value: One of the
following values.
• Number of rows retrieved by the SELECT

statement
• Number of rows updated by the UPDATE

statement
• Number of rows deleted by the DELETE

statement
• Number of rows inserted by the INSERT

statement
• Number of rows fetched by the FETCH

statement
• Number of rows created by the ASSIGN LIST

statement
When SQLCODE is a negative value:
A value is returned indicating the array element that
resulted in an error during update processing using
the array.#4

SQLERRD[3]: Used by the system.
SQLERRD[4]: Used by the system.
SQLERRD[5]: Not used

Level
number#

1

Communications
area name

Data
type

Length
(bytes)

Description

A. SQL Communications Area

2064

2 SQLWARN0 char 1 W is set in this area when a warning flag (W) is set in
any of the areas SQLWARN1-SQLWARNF.

2 SQLWARN1 char 1 W is set in this area if an embedded variable for
receiving data during character data retrieval was
shorter than the data, and the truncated value was
received.
W is also set if the embedded variable for receiving
data during repetition retrieval had a smaller
element count than the data and values of the
discarded elements that were received; otherwise,
this area is empty.

2 SQLWARN2 char 1 W is set in this area if the null value was ignored in
set function processing; otherwise, this area is
empty.
However, in either of the following cases, a space
may be set in this area even if the null value was
ignored during set function processing:
• When a table that defines an index that

recognizes a null value as an exception value is
retrieved.

• When the rapid grouping facility is used.

2 SQLWARN3 char 1 W is set in this area if the number of columns
containing the results of a retrieval did not match the
number of embedded variables that received the
results of the retrieval; otherwise, this area is empty.

2 SQLWARN4 char 1 W is set in this area if an UPDATE or DELETE
statement without a WHERE clause was executed;
otherwise, this area is empty.

2 SQLWARN5 char 1 Spare

2 SQLWARN6 char 1 W is set in this area if the transaction was cancelled
implicitly; otherwise, this area is empty.

2 SQLWARN7 char 1 W is set in this area if a repetition column with
subscripts is specified in the SET or DELETE clause
of the UPDATE statement, and the update is ignored
because there are no elements in the row to be
updated; otherwise, this area is empty.

2 SQLWARN8 char 1 Spare

2 SQLWARN9 char 1 Spare

Level
number#

1

Communications
area name

Data
type

Length
(bytes)

Description

A. SQL Communications Area

2065

--: Not Applicable.

Note

Value in brackets [] indicates the length for 64-bit mode. For 64-bite mode
Windows, SQLCA is 336 bytes.

#1:

Level numbers indicate the set inclusion relationships of the SQL
Communications Area. The level 1 Communications Area is composed of level 2
Communications Areas.

#2:

The first FETCH statement returns W when an SQL statement containing sort
processing or an SQL statement containing the EXISTS predicate is executed.

In a HiRDB/Parallel Server environment, the row that returns W cannot be
determined if a warning is generated at the WHERE clause.

#3:

In 64-bit mode, the length is the size of the long type for each platform.

2 SQLWARNA#2 char 1 W is set in this area if an invalid date occurred as a
result of a date operation and HiRDB modified the
date automatically to the last day of the affected
month; otherwise, this area is empty.

2 SQLWARNB#2 char 1 W is set in this area if either an overflow error or
division by zero error occurred in a computation
during SQL statements execution and the result of
the computation was set as a null value. Otherwise,
this area is empty.

2 SQLWARNC#2 char 1 W is set in this area when the value for a day in a date
interval is more than two digits after a date
operation has been completed; otherwise, this area
is empty.

2 SQLWARND char 1 Used by HiRDB.

2 SQLWARNE char 1 Spare

2 SQLWARNF char 1 Spare

2 SQLCASYS char 16 Used by HiRDB.

Level
number#

1

Communications
area name

Data
type

Length
(bytes)

Description

A. SQL Communications Area

2066

#4

Such a value is set if YES is specified in the PDARYERRPOS client environment
variable.

A.2 Expanding the SQL Communications Area
The SQL Communications Area need not be described in the UAP, because it is
expanded by the SQL preprocessor in the source program written in a high-level
language.

The format of the SQL Communications Area expanded by the SQL preprocessor in a
source program is shown as follows.

(1) C
This example shows SQL Communications Area expansion when C language is used.
 #define SQLCAIDE sqlca.sqlcaide
 #define SQLCODE sqlca.sqlcode
 #define SQLERRML sqlca.sqlerrml
 #define SQLERRMC sqlca.sqlerrmc
 #define SQLERRMD sqlca.sqlerrmd
 #define SQLERRD0 sqlca.sqlerrd[0]
 #define SQLERRD1 sqlca.sqlerrd[1]
 #define SQLERRD2 sqlca.sqlerrd[2]
 #define SQLERRD3 sqlca.sqlerrd[3]
 #define SQLERRD4 sqlca.sqlerrd[4]
 #define SQLERRD5 sqlca.sqlerrd[5]
 #define SQLWARN0 sqlca.sqlwarn0
 #define SQLWARN1 sqlca.sqlwarn1
 #define SQLWARN2 sqlca.sqlwarn2
 #define SQLWARN3 sqlca.sqlwarn3
 #define SQLWARN4 sqlca.sqlwarn4
 #define SQLWARN5 sqlca.sqlwarn5
 #define SQLWARN6 sqlca.sqlwarn6
 #define SQLWARN7 sqlca.sqlwarn7
 #define SQLWARN8 sqlca.sqlwarn8
 #define SQLWARN9 sqlca.sqlwarn9
 #define SQLWARNA sqlca.sqlwarna
 #define SQLWARNB sqlca.sqlwarnb
 #define SQLWARNC sqlca.sqlwarnc
 #define SQLWARND sqlca.sqlwarnd
 #define SQLWARNE sqlca.sqlwarne
 #define SQLWARNF sqlca.sqlwarnf
 typedef struct sqlca {
 char sqlcaidc[5]; /* Table ID */
 char sqlcaids[2]; /* Used by HiRDB */
 char sqlcaide; /* Used by HiRDB */
 long sqlcabc; /* SQLCA area length */
 long sqlcode; /* SQLCODE */

A. SQL Communications Area

2067

 short sqlerrml; /* Effective message length */
 char sqlerrmc[254]; /* Message text */
 char sqlerrp[8]; /* Used by HiRDB */
 long sqlerrd[6]; /* HiRDB internal status */
 char sqlwarn0; /* Warning information flag */
 char sqlwarn1; /* Warning information 1 */
 char sqlwarn2; /* Warning information 2 */
 char sqlwarn3; /* Warning information 3 */
 char sqlwarn4; /* Warning information 4 */
 char sqlwarn5; /* Warning information 5 */
 char sqlwarn6; /* Warning information 6 */
 char sqlwarn7; /* Warning information 7 */
 char sqlwarn8; /* Warning information 8 */
 char sqlwarn9; /* Warning information 9 */
 char sqlwarna; /* Warning information 10 */
 char sqlwarnb; /* Warning information 11 */
 char sqlwarnc; /* Warning information 12 */
 char sqlwarnd; /* Warning information 13 (reserved) */
 char sqlwarne; /* Warning information 14 (reserved) */
 char sqlwarnf; /* Warning information 15 (reserved) */
 char sqlcasys1[16]; /* Reserved */
 }SQLCA;
 extern SQLCA sqlca;

(2) COBOL
The next example shows SQL Communications Area expansion when COBOL is
used.
01 SQLCA IS EXTERNAL.
 02 SQLCAID PIC X(8).
 02 FILLER REDEFINES SQLCAID.
 03 SQLCAIDC PIC X(5).
 03 SQLCAIDS PIC X(2).
 03 SQLCAIDE PIC X(1).
 02 SQLCABC PIC S9(9) COMP.
 02 SQLCODE PIC S9(9) COMP.
 02 SQLERRM.
 03 SQLERRML PIC S9(4) COMP.
 03 SQLERRMC PIC X(254).
 02 SQLERRP PIC X(8).
 02 SQLERRD PIC S9(9) COMP OCCURS 6 TIMES.
 02 SQLWARN.
 03 SQLWARN0 PIC X.
 03 SQLWARN1 PIC X.
 03 SQLWARN2 PIC X.
 03 SQLWARN3 PIC X.
 03 SQLWARN4 PIC X.
 03 SQLWARN5 PIC X.

A. SQL Communications Area

2068

 03 SQLWARN6 PIC X.
 03 SQLWARN7 PIC X.
 02 SQLEXT.
 03 SQLWARN8 PIC X.
 03 SQLWARN9 PIC X.
 03 SQLWARNA PIC X.
 03 SQLWARNB PIC X.
 03 SQLWARNC PIC X.
 03 SQLWARND PIC X.
 03 SQLWARNE PIC X.
 03 SQLWARNF PIC X.
 02 SQLCASYS1 PIC X(16).

B. SQL Descriptor Area

2069

B. SQL Descriptor Area

Sometimes when SQL statements are assembled dynamically during execution of a
UAP, the number and attributes of the I/O variables (data exchange areas) necessary
for executing the SQL statements can be determined only when the UAP is executed.
Therefore, HiRDB requires an area in which I/O variables are determined dynamically
during UAP execution. The information in the area (the number, attributes, and I/O
variable addresses) is posted to HiRDB via the OPEN, FETCH, or EXECUTE statement.
The area is called the SQL Descriptor Area.

The area can also be used by the DESCRIBE statement to receive information on SQL
retrieval items that were preprocessed for dynamic execution.

For details about the UAP description languages that can use the SQL Descriptor Area,
see 3.2 Overview of UAPs.

B.1 Organization and contents of the SQL Descriptor Area
This appendix explains the organization and contents of the areas that are described in
the information on I/O variables, determined dynamically at the time of UAP
execution.

(1) Organization of the SQL Descriptor Area
The following figure shows the organization of the SQL Descriptor Area.

Figure B-1: Organization of the SQL Descriptor Area

Notes

1. Numbers in parentheses indicate length (in bytes).

2. n indicates the number of SQLVARs specified in SQLN.

B. SQL Descriptor Area

2070

3. Square brackets ([]) enclose the length for 64-bit mode. For 64-bit mode
Windows, SQLDA is 16 + 24n bytes.

4. In 64-bit mode, the length of SQLDABC is the size of the long type for each
platform.

#: If BLOB- or BINARY-type data is used, the area name is SQLVAR_LOB, which
consists of SQLDIM(1), SQLCOD(1), SQLXDIM(2), SQLLOBLEN(4), SQLDATA(4
[8]), and SQLLOBIND(4 [8]).

Define the SQLVAR_LOB area in the SQLVAR area, and use it by overwriting the
SQLVAR area during the input/output of BLOB-type data. For the contents of
SQLVAR_LOB, see Table B-3 Contents of SQLVAR_LOB.

(2) Contents of the SQL Descriptor Area
Table B-1 shows the contents of the SQL Descriptor Area; for details about SQL data,
see Table B-2 Data codes and data lengths set in the SQL Descriptor Area.

Table B-1: Contents of the SQL Descriptor Area

Level
number#

1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

1 SQLDA -- 16+16n
[24+24n]

-- Denotes the overall SQL
Descriptor Area.

2 SQLDAID char 8 HiRDB Contains the SQLDA ID (SQLDA
), indicating the

SQLDA. This parameter is set
when the DESCRIBE or
DESCRIBE TYPE statement is
issued.

2 SQLDABC long 4 [8]#6 HiRDB Contains the length of SQLDA.
This parameter is set when the
DESCRIBE or DESCRIBE TYPE
statement is issued.

2 SQLN#2 short 2 UAP When an SQLDA area is allocated
or SQLDA is used, this
parameter specifies the number
of SQLVARs (1 to 4,000) for the
allocated SQLDA area.

HiRDB Binary 0 is set in this area if there
is not enough SQLDA area
(SQLN < SQLD) when the
DESCRIBE or DESCRIBE TYPE
statement is issued.

B. SQL Descriptor Area

2071

2 SQLD short 2 UAP When the OPEN or EXECUTE
statement is issued, specifies the
number of input ? parameters in
SQLD of the SQL Descriptor
Area that is specified in the
USING clause.
When the EXECUTE statement is
issued, specifies the number of
output ? parameters in SQLDA
of the SQL Descriptor Area that
is specified in the INTO clause.
When the FETCH statement is
issued, specifies the number of
retrieval items (1-4,000).

HiRDB Binary 0, the number of retrieval
items, or the number of output ?
parameters is set when the
DESCRIBE [OUTPUT] statement
is issued:
0:

The SQL statement that was
preprocessed was a
statement other than the
SELECT statement and was
not a CALL statement
containing an output ?
parameter

Number of retrieval items:
The SQL statement that was
preprocessed was the
SELECT statement

Number of output ? parameters:
The SQL statement that was
preprocessed was the CALL
statement

Level
number#

1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

2072

The number of input ?
parameters is set when the
DESCRIBE INPUT statement is
issued.
The total number of user-defined
type configuration elements that
the system tried to receive and
high-order user-defined type
configuration elements being
inherited is set when the
DESCRIBE TYPE statement is
issued. However, if the number
of configuration elements
exceeds 30,000, 30001 is set.

2 SQLVAR -- 16n
[24n]

-- Area composed of the SQLDIM,
SQLCOD, SQLXDIM, SQLLEN,
SQLSYS, SQLDATA, and SQLIND
areas. This set of areas should be
defined at least as many times as
the value specified in the SQLN
area.

3 SQLDIM unsigne
d char

1 -- Not used.

3 SQLCOD unsigne
d char

1 UAP A data code#3 is specified in this
area when an EXECUTE, OPEN, or
FETCH statement is issued.

HiRDB A data code#3 is set in this area
after a DESCRIBE or DESCRIBE
TYPE statement is issued.

Level
number#

1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

2073

3 SQLXDIM short 2 UAP One of the following values is
specified, depending on the
structure type of the area for the
variable specified by SQLDA
when the EXECUTE, OPEN, or
FETCH statement is issued.
Simple structure: 1
Repetition structure: 2 to 30000
(integer indicating maximum
number of elements in the area)
For details about data area
structures, see F. SQL Data
Types and Data Descriptions.

HiRDB One of the following values is set
depending on the structure type
of the retrieval item or ?
parameter when the DESCRIBE
or DESCRIBE TYPE statement is
issued.
Simple structure: 1
Repetition structure: 2 to 30000
(integer indicating maximum
number of members in the area)

3 SQLLEN#3,

#4
short 2 UAP A data length#3 is set in this area

when an EXECUTE, OPEN, or
FETCH statement is issued.

HiRDB A data length#3 is set in this area
after a DESCRIBE or DESCRIBE
TYPE statement is issued.

Level
number#

1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

2074

Legend:

: One space.

--: Not applicable.

Note

3 SQLSYS short 2 UAP The following value is specified
when the EXECUTE, OPEN, or
FETCH statement is issued:
• Length of the area for one

element that includes a gap
when a variable-length
character string type
(VARCHAR, NVARCHAR,
MVARCHAR) of a repetition
structure or array structure is
specified.

• 0 for all other cases

HiRDB 0 is set when the DESCRIBE or
DESCRIBE TYPE statement is
issued.

3 SQLDATA#

5
unsigne
d char

4 [8] UAP Specifies the address of the data
area that stores the value of the ?
parameter when either an
EXECUTE or an OPEN statement is
issued.#5

When a FETCH statement is
issued, this area specifies the
address of the data area that
receives the data.

3 SQLIND#5 short 4 [8] UAP Specifies the address of the area
for receiving the value of the
indicator variable only if a data
code with an indicator variable is
set in SQLCODE when an
EXECUTE, OPEN, or FETCH
statement is issued. The area for
receiving the value of the
indicator variable is 2 bytes. For
details about indicator variable
specification, see Table B-2 Data
codes and data lengths set in the
SQL Descriptor Area.

Level
number#

1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

2075

Square brackets ([]) enclose the length for 64-bit mode. For 64-bit mode
Windows, SQLCA is 16 + 24n bytes.

#1: Level numbers indicate the set inclusion relationships of the SQL Descriptor Area.
For example, the level 1 data area is composed of level 2 data areas.

#2: The number of SQLVARs set by a UAP in the SQLN area should be either the number
of ? parameters set in the SQLD area or a value greater than the number of retrieval
items. If the number of SQLVARs is less than the number of ? parameters or less than
the number of retrieval items, HiRDB posts this fact by returning binary 0 to the SQLN
area.

#3: For details about the data codes and data lengths, see Table B-2 Data codes and
data lengths set in the SQL Descriptor Area.

#4: For a packed decimal number (DECIMAL, INTERVAL YEAR TO DAY, or INTERVAL
HOUR TO SECOND), the SQLLEN area is composed of the following areas:

#5: Because the SQLDATA and SQLIND areas are cleared when a DESCRIBE statement
is executed, a value must be reset after the DESCRIBE statement has executed. For
repetition columns, use the following structure to set a value:

#6: In 64-bit mode, the length is the size of the long type for each platform. In
COBOL in 64-bit mode, a declaration for long type is S9(18) COMP.

Data area name Data type Length
(bytes)

Description

SQLPRCSN B 1 Precision (p)

SQLSCALE B 1 Decimal scaling position (s)

B. SQL Descriptor Area

2076

Table B-2: Data codes and data lengths set in the SQL Descriptor Area

Decimal
data
code

Hexadecima
l data code

Indicator
variable

Data type Data length Unit

0 00 -- Data type not available in
HiRDB

0 Bytes

1 01 -- Any data type#1 0

48 30 No C VARCHAR(n)#4 1 n 3,2000#2

49 31 Yes

68 44 No ROW Row length L in table
to be operated on:
1 L 30,00069 45 Yes

100 64 No INTERVAL YEAR TO DAY Precision 8
Decimal scaling factor
0

Digits

101 65 Yes

110 6E No INTERVAL HOUR TO
SECOND

Precision 6
Decimal scaling factor
0111 6F Yes

112 70 No DATE 4 Bytes

113 71 Yes

120 78 No TIME 3

121 79 Yes

124 7C No TIMESTAMP[(p)] 7 p 2
p = 0, 2, 4, or 6

125 7D Yes

131 83 -- Abstract data type#3 -- --

B. SQL Descriptor Area

2077

144 90 No BINARY(n) 1 n
2,147,483,647#2

Bytes

145 91 Yes

146 92 No BLOB[(n)] 1 n
2,147,483,647

147 93 Yes

154 9A No BINARY locator 4

155 9B Yes

158 9E No BLOB locator 4

159 9F Yes

160 A0 No MVARCHAR(n) 1 n 32,000#2

161 A1 Yes

164 A4 No MCHAR[(n)] 1 n 30,000

165 A5 Yes

176 B0 No NVARCHAR(n) 1 n 16,000#2 Characters

177 B1 Yes

180 B4 No NCHAR(n) or NATIONAL
CHAR[ACTER](n)

1 n 15,000

181 B5 Yes

192 C0 No VARCHAR(n) 1 n 32,000#2 Bytes

193 C1 Yes

196 C4 No CHAR[ACTER](n) 1 n 30,000

197 C5 Yes

224 E0 No FLOAT or DOUBLE
PRECISION

8

225 E1 Yes

226 E2 No SMALLFLT or REAL 4

227 E3 Yes

Decimal
data
code

Hexadecima
l data code

Indicator
variable

Data type Data length Unit

B. SQL Descriptor Area

2078

Legend:

--: Not applicable.

#1: HiRDB sets this data code only when the DESCRIBE INPUT statement or the
PREPARE statement with INPUT specified is executed on an SQL statement with the
NULL predicate specified for a ? parameter (? IS NULL). This data code cannot be used
for any other purpose. If you use the SQL descriptor area received by the DESCRIBE
INPUT statement or the PREPARE statement with INPUT specified in order to specify
a value for the ? parameter, you must specify the data code and data length again.

#2: When a variable-length character string of 0 length is set in the UAP, 1 must be set
in the SQLLEN area.

#3: When the DESCRIBE statement is executed, a data type is returned from the server.
The UAP can reference data types. Data type setup and data length setup and
referencing are disabled.

#4: This data type can be set in C.

#5: This data type can be set in COBOL.

228 E4 No [LARGE]DEC[IMAL]

[(p [, s])]
Precision p
Decimal scaling factor
s
1 p 29, 0 s

 p

Digits

229 E5 Yes

234 EA No DISPLAY SIGN LEADING

SEPARATE#5
Precision p
Decimal scaling factor
s
1 p 29, 0 s

 p

235 EB Yes

236 EC No DISPLAY SIGN

TRAILING#5
Precision p
Decimal scaling factor
s
1 p 29, 0 s

 p

Digits

237 ED Yes

240 F0 No INT[EGER] 4 Bytes

241 F1 Yes

244 F4 No SMALLINT 2

245 F5 Yes

Decimal
data
code

Hexadecima
l data code

Indicator
variable

Data type Data length Unit

B. SQL Descriptor Area

2079

Table B-3: Contents of SQLVAR_LOB

Level
number#

1

Data Area
name

Data
type

Length (bytes) Source
of

value

Description

2 SQLVAR_LOB -- 16n
[24n]

-- Area that consists of SQLDIM,
SQLCOD, SQLXDIM, SQLLOBLEN,
SQLDATA, SQLDATA, and
SQLLOBIND. Define this area in
the SQLVAR area, and use it by
overwriting the SQLVAR area
during the input/out of BLOB-
and BINARY-type data.

3 SQLDIM unsigned
char

1 -- Not used.

3 SQLCOD unsigned
char

1 UAP Specifies a data code#2 when the
EXECUTE, OPEN, or FETCH
statement is issued.

HiRDB Contains a data code#2 after the
DESCRIBE or DESCRIBE TYPE
statement has been issued.

3 SQLXDIM short 2 UAP Specifies 1 when the EXECUTE,
OPEN, or FETCH statement is
issued. For details about the data
area structures, see F. SQL Data
Types and Data Descriptions.

HiRDB Contains the value 1 after the
DESCRIBE or DESCRIBE TYPE
statement has been issued.

3 SQLLOBLEN#2 long
[int]

4 UAP Specifies the data length#2 when
the EXECUTE, OPEN, or FETCH
statement is issued.

HiRDB Contains the data length#2 after
the DESCRIBE or DESCRIBE
TYPE statement is issued.

3 SQLDATA#3 unsigned
char *

4 [8] UAP When the EXECUTE or OPEN
statement is issued, specifies the
address of the data area in which
a ? parameter value is stored.
When the FETCH statement is
issued, specifies the address of
the data area that receives the
data.

B. SQL Descriptor Area

2080

--: Not applicable.

Note

The square brackets in the data type and length columns indicate the data type and
length in the 64-bit mode.

#1: Level numbers indicate the set inclusion relationships of the SQL Descriptor Area.
For example, the level 2 data area is composed of the level 3 data areas.

#2: For details on data length and data codes, see Table B-2 Data codes and data
lengths set in the SQL Descriptor Area.

#3: The SQLDATA and SQLLOBIND data areas are cleared when a DESCRIBE statement
is executed. Therefore, if you use a DESCRIBE statement, reset the values for these data
areas after executing the DESCRIBE statement. For the structure for setting a value in
a repetition column, see footnote #5 in Table B-1 Contents of the SQL Descriptor Area.

B.2 Expanding the SQL Descriptor Area
The SQL Descriptor Area is allocated by means of a declaration within the UAP.

The format of the SQL Descriptor Area expanded in a source program is shown below,
followed by an example.

(1) Expansion format of the SQL Descriptor Area
(a) C

This example shows SQL Descriptor Area expansion when C is used.
struct {
 char sqldaid[8]; /* Table ID */
 long sqldabc; /* Table length */
 short sqln; /* Elements count in SQLVAR array */

3 SQLLOBIND#3 long *

[int *]

4 [8] UAP Specifies the address of the area
for receiving the value of the
indicator variable only if a data
code with an indicator variable is
set in SQLCODE when an
EXECUTE, OPEN, or FETCH
statement is issued. The area for
receiving the value of the
indicator variable is 4 bytes. For
details about indicator variable
specification, see Table B-2
Data codes and data lengths set
in the SQL Descriptor Area.

Level
number#

1

Data Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

2081

 short sqld; /* ? parameters count, retrieval items count */
 struct sqlvar{ /* Data information area */
 unsigned char sqldim; /* Unused */
 unsigned char sqlcod; /* Data code */
 short sqlxdim; /* Maximum elements count */
 union {
 short sqllen; /* Data length */
 struct {
 unsigned char sqlprcsn; /* Precision */
 unsigned char sqlscale; /* Scale */
 } s_sqllen;
 } sqllen;
 short sqlsys; /* Unused */
 unsigned char *sqldata; /* Data area address */
 short *sqlind; /* Indicator variable address */
 } SQLVAR[n];#1

} sqlda;#2

#1: n indicates the required number (1 to 30000).

#2: Any desired character string can be specified for the structure name (sqlda
portion), except that no character string beginning with SQL is allowed.

(b) COBOL
This example shows SQL Descriptor Area expansion when COBOL is used.

In Windows edition and 32-bit mode UNIX edition

01 USQLDA.#1

 02 USQLDAID PIC X(8) VALUE 'SQLDA'.
 02 USQLDABC PIC S9(9) COMP.
 02 USQLN PIC S9(4) COMP.
 02 USQLD PIC S9(4) COMP.

 02 USQLVAR OCCURS n TIMES.#2
 03 USQLTYPE PIC S9(4) COMP.
 03 FILLER REDEFINES USQLTYPE.
 04 USQLDIM PIC X(1).
 04 USQLCOD PIC X(1).
 03 USQLXDIM PIC S9(4) COMP VALUE IS 1.
 03 USQLATTR.
 04 USQLLEN PIC S9(4) COMP.
 04 FILLER REDEFINES USQLLEN.
 05 USQLPRCSN PIC X(1).
 05 USQLSCALE PIC X(1).
 04 USQLSYS PIC S9(4) COMP.
 03 FILLER REDEFINES USQLATTR.
 04 USQLLOBLEN PIC S9(9) COMP.
 03 USQLDATA USAGE IS ADDRESS.

B. SQL Descriptor Area

2082

 03 USQLIND USAGE IS ADDRESS.

#1: Any name can be specified as the name of the set item (USQLDA area); however, a
character string that begins with SQL cannot be used for a data item.

#2: n indicates the required number (1 to 30000).

In 64-bit mode UNIX edition

 01 USQLDA.#1

 02 USQLDAID PIC X(8) VALUE 'SQLDA'.

 02 USQLDABC PIC S9(18) COMP. #3

 02 USQLN PIC S9(4) COMP.
 02 USQLD PIC S9(4) COMP.

 02 FILLER PIC X(4). #3

 02 USQLVAR OCCURS n TIMES.#2

 03 USQLTYPE PIC S9(4) COMP.
 03 FILLER REDEFINES USQLTYPE.
 04 USQLDIM PIC X(1).
 04 USQLCOD PIC X(1).
 03 USQLXDIM PIC S9(4) COMP VALUE IS 1.
 03 USQLATTR.
 04 USQLLEN PIC S9(4) COMP.
 04 FILLER REDEFINES USQLLEN.
 05 USQLPRCSN PIC X(1).
 05 USQLSCALE PIC X(1).
 04 USQLSYS PIC S9(4) COMP.
 03 FILLER REDEFINES USQLATTR.
 04 USQLLOBLEN PIC S9(9) COMP.
 03 USQLDATA USAGE IS ADDRESS.
 03 USQLIND USAGE IS ADDRESS.

#1: Any name can be specified as the name of the set item (USQLDA area);
however, a character string that begins with SQL cannot be used for a data item.

#2: n indicates the required number (1 to 30000).

#3: The Windows edition differs from the 32-bit mode UNIX edition in the
following respects:

 Contents of the PICTURE clause in USQLDABC

 Whether there is a FILLER item between USQLD and USQLVAR

B. SQL Descriptor Area

2083

(2) SQL Descriptor Area example
(a) Declaration and area allocation for using the SQL Descriptor Area

The SQL Descriptor Area is declared and allocated in the UAP.

(b) Collection of retrieval item information
This next example illustrates collecting retrieval item information. The items
identified by numbers in the code are explained as follows.
EXEC SQL BEGIN DECLARE SECTION; 1
struct{ .. 1
long# cmd_len; 1
char cmd_data[1000]; 1
}XCMND; .. 1
EXEC SQL END DECLARE SECTION; 1
XCMND.cmd_len=(long#)sprintf(XCMND.cmd_data,
 "SELECT*FROM stock WHERE GNO=1") .. 2
EXEC SQL WHENEVER SQLERROR GO TO :RERROR; 3
EXEC SQL PREPARE ST1 FROM :XCMND; 4
EXEC SQL DESCRIBE ST1 INTO :DAREA; 5

Notes

1. When a DESCRIBE statement is executed, binary 0 or the number of retrieval
items is set in the SQLD area:

0 is set when the SQL statement that was preprocessed is not a SELECT
statement.

Number of retrieval items is set when the SQL statement that was
preprocessed is a SELECT statement.

2. The data code, data length, and maximum elements count of each retrieval
item are set in SQLCOD, SQLLEN, and SQLXDIM, respectively.

#: In 64-bit mode, this is int.

Explanation

1. Declares an embedded variable (XCMND) for storing the SQL statements.

2. Sets the SQL statement in the variable (XCMND).

3. Specifies the action to be taken if an error occurs after SQL statement
execution.

4. Preprocesses the SQL statements specified as the variable XCMND and
assigns an SQL statement identifier (ST1).

5. Collects the information of items retrieved by the SQL statements (ST1) into
the SQL Descriptor Area (DAREA).

B. SQL Descriptor Area

2084

(c) Fetching retrieval results with dynamic receive area allocation
In this example, retrieval results are fetched into areas allocated based on the
information obtained using a DESCRIBE statement. The items in italics in the figure
are explained as follows.
for(n=0;n<DAREA.sqld;n++){ 1
 DAREA.SQLVAR[n].sqldata=(unsigned char *)&(X_INT_DATA[n]);
.. 1
 DAREA.SQLVAR[n].sqlind=&(X_IND[n]); 1
} ... 1
EXEC SQL DECLARE CR1 CURSOR FROM ST1; 2
EXEC SQL OPEN CR1 3
EXEC SQL WHENEVER NOT FOUND GO TO:FEND; 4
for(;;){ 5
 EXEC SQL FETCH CR1 USING DESCRIPTOR:DAREA . 5
 : 5,6
} .. 5
 EXEC SQL WHENEVER NOT FOUND CONTINUE; 7
FEND:EXEC SQL CLOSE CR1; 8

Notes

Before the FETCH statement is executed, the following information must be set in
DAREA:

• Size of SQLVAR array (SQLN)

• Number of areas to receive retrieval results (SQLD): executing a DESCRIBE
statement sets this value

• Data type of receive area (SQLCOD): executing a DESCRIBE statement sets
this value

• Data length of receive area (SQLLEN): executing a DESCRIBE statement sets
this value.

Explanation

1. Sets the address of the allocated area in the SQL Descriptor Area (DAREA).

2. Declares a cursor (CR1) for the SQL statement identifier (ST1).

3. Opens the cursor (CR1).

4. Specifies the action to be taken (branching to FEND) at the termination of
retrieval.

5. Advances the cursor (CR1) to the next line, and fetches that line into the area
specified by the SQL Descriptor Area (DAREA).

6. Specifies the processing to be performed on the retrieval result (e.g., editing
and output).

B. SQL Descriptor Area

2085

7. Invalidates the action at the termination of retrieval.

8. Closes the cursor (CR1).

(d) Dynamic allocation of a data area for specifying ? parameter values
This is an example of inserting data into a dynamically specified table. The items in
italics in the figure are explained as follows.
char TNAME[30]; ... 1
scanf("%S",TNAME); 2
XCMND.cmd_len=(long#)sprint(XCMND.cmd_data,
 "SELECT * FROM %S",TNAME); 3

EXEC SQL PREPARE ST1 FROM:XCMND; 3

EXEC SQL DESCRIBE ST1 INTO:DAREA; 3
 : ... 4
for(n=0;n<DAREA.sqld;n++){ 5
DAREA.SQLVAR[n].sqldata=(unsigned char *)&(X_INT_DATA[n]);
................................ 5
DAREA.SQLVAR[n].sqlind=&(X_IND[n]); 5
} .. 3
XCMND.cmd_len=(long#)sprit(XCMND.cmd_data,
 "INSERT INTO %S VALUES(?,...,?)",TNAME);
........................... 6
 EXEC SQL PREPARE ST2 FROM:XCMND; 7
for(;;){ ... 8
 [Input insertion data (branched to IEND if there is no data)]; 8
 [Insert data in the data area and the indicator variable area]; 8
 EXEC SQL EXECUTE ST2 USING DESCRIPTOR:DAREA; 8
} .. 8
IEND:

#: In 64-bit mode, this is int.

Explanation

1. Declares the variable (TNAME) that stores the table name.

2. Loads the table name from the input data into the variable (TNAME).

3. Uses the DESCRIBE statement to set the columns count of the table specified
in 2 data type, data length, and maximum elements count of each column, as
the number of ? parameters, the data type, data length, and maximum
elements count of the data area for each ? parameter, respectively, in the SQL
Descriptor Area (DAREA).

4. Allocates data area for each ? parameter.

5. Sets the address of the allocated area in the SQL Descriptor Area (DAREA).

B. SQL Descriptor Area

2086

6. Creates an INSERT statement for inserting data into the specified table.

7. Preprocesses the INSERT statement in XCMND and assigns the SQL statement
identifier (ST2).

8. Repeats data insertion on a row basis, setting in the data area, and execution
using the EXECUTE statement, as long as data to be inserted exists.

(e) Retrieving DECIMAL data using a FETCH statement
In this example, DECIMAL data is retrieved using a FETCH statement.

1. Declares a data area and an indicator variable.

EXEC SQL BEGIN DECLARE SECTION ;

 SQL TYPE IS DECIMAL(20,0) xdec1 ; /* Data area */
 short xdec1_i ; /* Indicator variable */

EXEC SQL END DECLARE SECTION ;

2. Sets an SQL Descriptor Area.

PDSQLCOD(usrsqlda, 2)=PDSQL_DECIMAL_I ; /* Sets a data code */

 PDSQLPRCSN(usrsqlda, 2)=20 ; /* Sets precision */
 PDSQLSCALE(usrsqlda, 2)= 0 ; /* Sets a scale */
 PDSQLDATA(usrsqlda, 2)=(void*)xdec1 ; /* Embedded variable
address*/
 /* Setting */
 PDSQLXDIM(usrsqlda, 2)=1; /* Not a repetition column */

PDSQLIND(usrsqlda, 2)=(void*)&xdec1_i ; /* Indicator variable address
*/
 /* Setting */

(3) SQL Descriptor Area expansion
The following table shows the procedure for expanding the SQL Descriptor Area.

Table B-4: SQL Descriptor Area expansion procedure

Language When include file is used When directly coded by user

C #include <pdbsqlda.h> PDUSRSQLDA(n)
usrsqlda;

Expansion of SQL Descriptor Area is
coded directly.

COBOL COPY SQLDA#

[REPLACING 256 BY n].
Expansion of SQL Descriptor Area is
coded directly. Level 01 must always be
specified first.

B. SQL Descriptor Area

2087

#: In 64-bit mode, change SQLDA to SQLDA64.

Following is a COBOL coding example in which parameters are specified in the SQL
Descriptor Area:
EXEC SQL
 BEGIN DECLARE SECTION
END EXEC
01 IN-CHR1 PIC X(15).
01 IN-IND1 PIC S9(4) COMP.
EXEC SQL
 END DECLARE SECTION
END-EXEC
COPY SQLDA.
 :
COMPUTE USQLDABC=32
COMPUTE USQLN=1
COMPUTE USQLD=1
COMPUTE USQLDATA(1)=FUNCTION ADDR(IN-CHR1)
MOVE SQLCNST0 TO USQLDIM(1)
MOVE SQLDCOD197 TO USQLCOD(1)
COMPUTE USQLXDIM(1)=1
COMPUTE USQLLEN(1)=15
COMPUTE USQLIND(1)=FUNCTION ADDR(IN-INT1)
EXEC SQL
 EXECUTE ST1 USING DESCRIPTOR :USQLDA
END-EXEC

(4) SQL Descriptor Area operation macros
Various macros for declaring the SQLDA and for setting/referencing values are defined
in C language. These macros can be used by including the unique header file
(pdbsqlda.h) in the UAP. Table B-5 shows the SQL Descriptor Area operation
macros, and Table B-6 shows the macros for specifying data types.

Table B-5: SQL Descriptor Area operation macros

Macro Function

PDUSRSQLDA(m) Declares a user SQLDA.

PDSETSIZE(usrsqlda,m) Specifies the SQLDA size.

PDSQLN(usrsqlda) Specifies the ? parameter.

PDSQLD(usrsqlda) Specifies/references the ? parameter and the number of retrieval items.

PDSQLCOD(usrsqlda,n) Specifies/references the data code.

PDSQLLEN(usrsqlda,n) Specifies/references the data length (other than BLOB and decimal
number).

B. SQL Descriptor Area

2088

Legend:

usrsqlda: User-defined SQL Descriptor Area name; any name can be specified.

m: Number of ? parameters (1 to 30,000).

n: Number of ? parameters to be specified or referenced (0 to 29,999).

Table B-6: Macros for specifying data types

PDSQPRCSN(usrsqlda,n) Specifies/references the precision (decimal number only).

PDSQLSCALE(usrsqlda,n) Specifies/references the scale (decimal number only).

PDSQLDATA(usrsqlda,n) Specifies the address of the data area.

PDSQLIND(usrsqlda,n) Specifies an indicator variable address.

PDSQLLOBLEN(usrsqlda,n) Specifies/references the BLOB data length.

PDSQLDIM(usrsqldata,n) Specifies/references the value in unused area.

PDSQLXDIM(usrsqldata,n) Specifies/references the maximum number of elements for the repetition
structure.

PDSQLSYS(usrsqldata,n) Specifies the length of one element that includes the gap in
variable-length character string type for the repetition structure or array
structure.

Macro Indicator variable Corresponding data type

PDSQL_FLOAT

PDSQL_FLOAT_I

No
Yes

FLOAT

PDSQL_SMALLFLT

PDSQL_SMALLFLT_I

No
Yes

SMALLFLT

PDSQL_DECIMAL

PDSQL_DECIMAL_I

No
Yes

DECIMAL

PDSQL_INTEGER

PDSQL_INTEGER_I

No
Yes

INTEGER

PDSQL_SMALLINT

PDSQL_SMALLINT_I

No
Yes

SMALLINT

PDSQL_VARCHAR

PDSQL_VARCHAR_I

No
Yes

VARCHAR

PDSQL_CHAR

PDSQL_CHAR_I

No
Yes

CHAR

Macro Function

B. SQL Descriptor Area

2089

Following is a C coding example in which parameters are specified in the SQL
Descriptor Area:
#include <pdbsqlda.h> /* Includes header file. */

PDSQL_NVARCHAR

PDSQL_NVARCHAR_I

No
Yes

NVARCHAR

PDSQL_NCHAR

PDSQL_NCHAR_I

No
Yes

NCHAR

PDSQL_MVARCHAR

PDSQL_MVARCHAR_I

No
Yes

MVARCHAR

PDSQL_MCHAR

PDSQL_MCHAR_I

No
Yes

MCHAR

PDSQL_DATE

PDSQL_DATE_I

No
Yes

DATE

PDSQL_TIME

PDSQL_TIME_I

No
Yes

TIME

PDSQL_YEARTODAY

PDSQL_YEARTODAY_I

No
Yes

INTERVAL YEAR TO DAY

PDSQL_HOURTOSEC

PDSQL_HOURTOSEC_I

No
Yes

INTERVAL HOUR TO SECOND

PDSQL_ROW

PDSQL_ROW_I

No
Yes

ROW

PDSQL_BLOB

PDSQL_BLOB_I

No
Yes

BLOB

PDSQL_TIMESTAMP

PDSQL_TIMESTAMP_I

No
Yes

TIMESTAMP

PDSQL_BINARY

PDSQL_BINARY_I

No
Yes

BINARY

PDSQL_BLOB_LOC

PDSQL_BLOB_LOC_I

No
Yes

BLOB locator

PDSQL_BINARY_LOC

PDSQL_BINARY_LOC_I

No
Yes

BINARY locator

PDSQL_CVARCHAR

PDSQL_CVARCHAR_I

No
Yes

VARCHAR for C

Macro Indicator variable Corresponding data type

B. SQL Descriptor Area

2090

EXEC SQL BEGIN DECLARE SECTION ;
short xint1 ;
char xchr1[16] ;
EXEC SQL END DECLARE SECTION ;
PDUSRSQLDA(2) usrsqlda ; /* Declares SQL Descriptor
 Area. */
 :
ClearSqlda(2); /* Clears SQL Descriptor Area */
PDSQLCOD(usrsqlda, 0)=PDSQL_SMALLINT ; /* Sets data code. */
PDSQLLEN(usrsqlda, 0)=sizeof(short) ; /* Sets data code. */
PDSQLDATA(usrsqlda, 0)=(void*)&xint ; /* Sets embedded variable
 address. */
PDSQLIND(usrsqlda, 0)=NULL ; /* Sets indicator variable
 address. */
PDSQLCOD(usrsqlda, 1)=PDSQL_CHAR ; /* Sets data code. */
PDSQLLEN(usrsqlda, 1)=sizeof(xchar)-1 ;/* Sets data code. */
PDSQLDATA(usrsqlda, 1)=(void*)xchr ; /* Sets embedded variable
 address. */
PDSQLIND(usrsqlda, 1)=NULL ; /* Sets indicator variable
 address. */

EXEC SQL
 EXECUTE ST1 USING DESCRIPTOR :usrsqlda ;

(5) Expansion format of repetition columns
During compilation, embedded variables in a repetition column are expanded into the
structures shown in Table B-7 based on macro definition. The explanation here applies
to the C language.

The macro for manipulating a repetition column uses the members of the expanded
structures to reference the elements of the repetition column.

If the user wishes to directly set an address in the SQL Descriptor Area by securing an
area, the area must be assigned to a language boundary. FLOAT ARRAY explicitly
includes a free area for language boundary adjustment. However, when setting an
address in the SQL Descriptor Area, you must set it by taking a free area into
consideration.

Specify these expansion formats only when adjusting a boundary or determining a size
during this type of area allocation. When specifying a repetition column as an
embedded variable, do not specify an expansion format. Instead, use the macros
described in F. SQL Data Types and Data Descriptions.

B. SQL Descriptor Area

2091

Table B-7: Repetition column expansion format

SQL data type Macro name Expansion format

SMALL INT ARRAY[m] PD_MV_SINT(m) struct {

 long mcnt;

 short data[m];
}

INTEGER ARRAY[m] PD_MV_INT(m) struct{

 long mcnt

 long data[m];
}

SMALL FLT ARRAY[m] PD_MV_SFLT(m) struct {

 long mcnt;

 float data[m];
}

FLOAT ARRAY[m] PD_MV_FLT(m) struct

 union {

 double resv1;

 struct {

 long resv2;

 long mcnt;

 }mcnt_dmy2;

 } mcnt_dmy1;

 double data[m];
}

CHAR(n) ARRAY[m] PD_MV_CHAR(m, n) struct {

 long mcnt;

 char data[m][(n)+1];
}

NCHAR(n) ARRAY[m] PD_MV_NCHAR(m, n) struct {

 long mcnt;

 char data[m][2*(n)+1];
}

B. SQL Descriptor Area

2092

VARCHAR(n) ARRAY[m] PD_MV_VCHAR(m, n) struct {

 long mcnt;

 struct {

 short len;

 char str[n];
 } data[m];
}

PD_MV_CVCHAR(m, n) struct {

 long mcnt;

 char data[m][(n)+1];
}

NVARCHAR(n) ARRAY[m] PD_MV_NVCHAR(m, n) struct {

 long mcnt;

 struct {

 short len;

 char str[2*(n)+1];
 } data[m];
}

DECIMAL

 [(p[,s])]ARRAY[m]
PD_MV_DEC(m, p, s) struct {

 long mcnt;

 unsigned char data[m][(p)/
2+1];

}

SQL data type Macro name Expansion format

C. Column Name Descriptor Area

2093

C. Column Name Descriptor Area

When using the SQL Descriptor Area to receive the following information, you can
also receive the column name information and routine parameter information by
specifying a Column Name Descriptor Area:

• Retrieval item information (number of retrieval items, as well as each retrieval
item's data type, data length, and maximum number of elements)

• CALL statement's input/output ? parameter information (number of ? parameters,
as well as the ? parameter's data type and data length)

C.1 Organization and contents of the Column Name Descriptor Area
(1) Organization of the Column Name Descriptor Area

The following figure shows the organization of the Column Name Descriptor Area
(SQLCNDA).

Figure C-1: Organization of the Column Name Descriptor Area

Note

Numbers in parentheses indicate length (in bytes).

#: SQLNAMEC is an array of variable-length character strings with a maximum length
of 30 bytes. The array should be the same length as the SQLVAR array in the SQL
Descriptor Area. For details about the size of the SQLVAR array, see B.1 Organization
and contents of the SQL Descriptor Area.

(2) Contents of the Column Name Descriptor Area
The following table shows the contents of the Column Name Descriptor Area.

C. Column Name Descriptor Area

2094

Table C-1: Contents of the Column Name Descriptor Area

Legend:

: X'FF'

Acquired information
item

Type of retrieval item Description

Retrieval item Column (without subscript
specification)

column-name

Column (with subscript
specification)

column-name [subscript]

Set function COUNT(*)
 COUNT_FLOAT(*)

{ { | } function-name (column-name) |
{ | } function-name

(DISTINCT-column-name) | function-name (
EXP)}

Window function EXP(integer)

Value expression (including
literal)

 EXP(integer)

WRITE specification EXP(integer)

ROW ROW

CALL statement's input ?
parameter

? parameter routine's-parameter-name

CALL statement's output
? parameter

User-defined type
configuration element

Attribute attribute-name

CALL COMMAND
statement's input ?
parameter

? parameter Command name: COMMAND_NAME
WITH clause:

 First: WITH
 Subsequent: WITH (argument-number)

INPUT clause: INPUT
ENVIRONMENT clause: ENVIRONMENT
SERVER clause: SERVER

CALL COMMAND
statement's output ?
parameter

? parameter OUTPUT TO clause: OUTPUT
ERROR TO clause: ERROR
RETURN CODE TO clause: RETURN_CODE

C. Column Name Descriptor Area

2095

: One space

Notes

1. The ith element of the Column Name Descriptor Area stores column name
information for the ith retrieval item.

2. If a retrieval item is a column, the column name is assigned to the retrieval
item from the beginning of the retrieval item. If the length of the column
name, including subscripts, is greater than 30 bytes, the excess bytes of the
column name are truncated.

If a retrieval item is not a column, one or two spaces (indicated by in the
table) are set at the beginning of the retrieval item. If the column is greater
than 30 bytes, X'FF' is set in byte 2. The symbol in the table denotes the
value X'FF'.

3. Integer indicates the ordinal number of a retrieval item.

4. For UNION[ALL] or EXCEPT[ALL], the contents of the retrieval item in the
query specified first are set in the Column Name Descriptor Areas.

5. If an AS column name is specified, the specified column name is set.

6. The routine's parameter name is set only when the? parameter is specified
independently in the CALL statement's argument. If a value expression
including the? parameter is specified, SQLNAMEL is set to 0.

7. If the retrieval item is a column of a derived table, the derived column list is
omitted after the derived table, and the derived column has no column name
in the query selection expression, NONAME is set.

C.2 Expanding the Column Name Descriptor Area
The Column Name Descriptor Area is allocated as static area by declaring it in the
UAP.

(1) C
The following code shows the format of the Column Name Descriptor Area that is to
be expanded in the source program when C language is used:
struct {
 short sqlnz; /* Effective arrays count */
 struct {
 short sqlnamel; /* Effective column name length */
 char sqlnamec[30]; /* Column name storage area */
 } SQLNAME[n];#1
 }XXXXX;#2

#1: n indicates the same number (1 to 30000) as the size of the SQLVAR array in the
SQL Descriptor Area.

C. Column Name Descriptor Area

2096

#2: Any desired character string can be specified as the structure name (XXXXX
portion), except that a character string beginning with SQL cannot be specified. When
Column Name Descriptor Areas are specified using a DESCRIBE statement, the name
of the allocated areas must be specified.

(2) COBOL
The following code shows the format of the Column Name Descriptor Area that is to
be expanded in the source program when COBOL is used:
01 SQLCNDA.#1

 02 SQLNZ PIC S9(4) COMP.

 02 SQLNAME OCCURS 1 TIMES n.#2
 03 SQLNAMEL PIC S9(4) COMP.
 03 SQLNAMEC PIC X(30).

#1: Any name can be specified as the name of the set item (SQLCNDA area); however,
a character string that begins with SQL cannot be used for a data item. In addition, the
set item level must always be set to 01.

#2: n indicates the required number (1 to 30,000).

D. Type Name Descriptor Area

2097

D. Type Name Descriptor Area

When the SQL Descriptor Area is used to receive retrieval item information and
user-defined type definition information, user-defined type data type names can also
be received by specifying a Type Name Descriptor Area (SQLTNDA).

D.1 Organization of the Type Name Descriptor Area
The following figure shows the organization of the Type Name Descriptor Area
(SQLTNDA).

Figure D-1: Organization of the Type Name Descriptor Area

Note

Parentheses enclose a length in bytes.

#: SQLTNVAR is an array of a structure composed of a variable length character string
SQLSCHEMA with a maximum length of 10 bytes, and a variable-length character string
SQLTYPE with a maximum length of 32 bytes. The array should be the same length as
the SQLVAR array in the SQL Descriptor Area. For details about the size of the SQLVAR
array, see B.1 Organization and contents of the SQL Descriptor Area.

D.2 Contents of the Type Name Descriptor Area
The following table shows the contents of the Type Name Descriptor Area.

Table D-1: Contents of the Type Name Descriptor Area

Level
number#

Type name
area name

Data
type

Length
(bytes)

Description

1 SQLTNDA -- 2+ 42 x n Indicates the name of the entire Type Name
Descriptor Area.

2 SQLTZ short 2 Specifies the number of retrieval items.

D. Type Name Descriptor Area

2098

Legend:

--: Not applicable

#: Level numbers indicate the set inclusion relationships of the Type Name Descriptor
Area. For example, the level 2 data area is composed of the level 3 data areas.

D.3 Expanding the Type Name Descriptor Area
The Type Name Descriptor Area is allocated by declaring it in the UAP.

(1) C
The following code shows the format of the Type Name Descriptor Area that is to be
expanded in the source program when C is used.
struct {
 short sqlnz; /* Effective array count */
 struct {
 struct {
 short sqlchemal; /* Effective authorization identifier length */
 char sqlschemac[8]; /* Authorization identifier storage area */
 } sqlschema;
 struct {
 short sqltypel; /* Effective length of user-defined type
 name */
 char sqltypec[30]; /* User-defined type name storage area */

2 SQLTNVAR -- 42 x n Area composed of the authorization identifier and
data type identifiers.

3 SQLSCHEMA -- 10 Area storing information about the user-defined type
authorization identifier.

4 SQLSCHEMAL short 2 The authorization identifier is set in this area. 0 is set
if the data type of the corresponding retrieval item is
not a user-defined type.

4 SQLSCHEMAC char 8 The authorization identifier is set in this area.

3 SQLTYPE -- 32 Area storing information about the user-defined type
data type identifier.

4 SQLTYPEL short 2 The length of the user-defined type is set in this area.
0 is set if a data type of the corresponding retrieval
item is not the user-defined type.

4 SQLTYPEC char 30 The data type identifier of the user-defined type is set
in this area.

Level
number#

Type name
area name

Data
type

Length
(bytes)

Description

D. Type Name Descriptor Area

2099

 } sqltnvar[n];#1
} Usrsqltnda;#2

#1: n indicates the same number (1 to 30000) as the size of the SQLVAR array in the
SQL Descriptor Area.

#2: Any desired character string can be specified as the structure name (usrsqltnda
portion), except that a character string beginning with SQL cannot be specified. When
the Type Name Descriptor Area is specified using a DESCRIBE statement, the name of
the allocated area must be specified.

(2) COBOL
The following code shows the format of the Type Name Descriptor Area that is to be
expanded in the source program when COBOL is used.
01 USQLTNDA.#1

 02 USQLTZ PIC S9(4) COMP.

 02 USQLTNVAR OCCURS 1 TIMES n.#2
 03 USQLSCHEMA.
 04 USQLSCHEMAL PIC S9(4) COMP.
 04 USQLSCHEMAC PIC X(8).
 03 USQLTYPE.
 04 USQLTYPEL PIC S9(4) COMP.
 04 USQLTYPEC PIC X(30).

#1: Any name can be specified as the name of the set item (USQLTNDA portion);
however, a character string that begins with SQL cannot be used for a data item.

#2: n indicates the same number (1 to 30000) as the size of the SQLVAR array in the
SQL Descriptor Area.

E. Character Set Descriptor Area

2100

E. Character Set Descriptor Area

The character set descriptor area is used for setting character set names for input and
output variables that are determined dynamically during UAP execution, and for
reporting them to the system with the OPEN, FETCH, and EXECUTE statements. During
dynamic execution, the character set descriptor area can also be used to receive a
character set name for a ? parameter or an item retrieved by a preprocessed SQL
statement.

For details about the UAP coding languages that use the character set descriptor area,
see 3.2 Overview of UAPs.

E.1 Organization and contents of the character set descriptor area
This section describes the organization and contents of the area used for setting
character set names for input and output variables that are determined dynamically
during UAP execution.

(1) Organization of the character set descriptor area
The following figure shows the organization of the character set descriptor area.

Figure E-1: Organization of the character set descriptor area

E. Character Set Descriptor Area

2101

Note 1
Numbers in parentheses indicate area length (in bytes).

Note 2
n indicates the number of SQLCVARs specified in SQLCVARN.

m indicates the number of SQLCSNs specified in SQLCSNN.

Note 3
A value in square brackets ([]) within parentheses indicates the length in 64-bit
mode. The value for 64-bit mode Windows is the same as for 32-bit mode.

Note 4
In 64-bit mode, the length of SQLCSNBC becomes the size of the long type for
each platform.

(2) Contents of the character set descriptor area
The following table shows the contents of the character set descriptor area.

Table E-1: Contents of the character set descriptor area

Level
number#

1

Data area
name

Data
type

Length
(bytes)

Source
of

value

Description

1 SQLCSNA -- 32[36]#2

+ 2 x n
+ 64 x m

-- Denotes the overall character set
descriptor area.

2 SQLCSNID char 8 HiRDB Contains the ID "SQLCSNA ,"
indicating the SQLCSNA. This parameter
is set when the DESCRIBE, DESCRIBE
CURSOR, or PREPARE statement is
issued.

2 SQLCSNBC long 4 [8]#2 HiRDB Contains the length of the SQLCSNA.
This parameter is set when the
DESCRIBE, DESCRIBE CURSOR, or
PREPARE statement is issued.

E. Character Set Descriptor Area

2102

2 SQLCVARN short 2 UAP When an SQLCSNA area is allocated or
SQLCSNA is used, specifies the number
of SQLCVARs (1 to 4,000) in the area
allocated for the SQLCSNA.

HiRDB Binary 0 is set when the DESCRIBE,
DESCRIBE CURSOR, or PREPARE
statement is issued and there is a
shortage of SQLCSNA area (SQLCVARN
< SQLCVARD).

Level
number#

1

Data area
name

Data
type

Length
(bytes)

Source
of

value

Description

E. Character Set Descriptor Area

2103

2 SQLCVARD short 2 UAP When the OPEN, EXECUTE, EXECUTE
IMMEDIATE, or FETCH statement is
issued, specifies the maximum element
number of the SQLCVAR for which a
character set for input ? parameters has
been specified.

HiRDB When the DESCRIBE[OUTPUT],
DESCRIBE CURSOR, or PREPARE
statement is issued, binary 0, the number
of retrieval items, or the maximum
element number of the SQLCVAR for
which a character set for output ?
parameters has been specified is set.
0:

This value is set in either of the
following cases:
• The SQL statement was a

statement other than a SELECT
statement and was not a CALL
statement containing output ?
parameters.

• The retrieval items or output ?
parameters do not have a
character set other than the
default character set.

maximum-element-number:
This value is set when both of the
following conditions are satisfied:
• The SQL statement was a

SELECT statement or a CALL
statement containing an output ?
parameter.

• A retrieval item or an output ?
parameter has a character set
other than the default character
set.

When the DESCRIBE INPUT or PREPARE
statement is issued, binary 0 or the
maximum element number of the
SQLCVAR containing character set
information for input ? parameters is set.

Level
number#

1

Data area
name

Data
type

Length
(bytes)

Source
of

value

Description

E. Character Set Descriptor Area

2104

0:
This value is set in either of the
following cases:
• The SQL statement does not

contain input ? parameters.
• The input ? parameters do not

have a character set other than
the default character set.

maximum-element-number:
This value is set when both of the
following conditions are satisfied:
• The SQL statement contains an

input ? parameter.
• An input ? parameter has a

character set other than the
default character set.

2 SQLCSNN short 2 UAP When an SQLCSNA area is allocated,
specifies the number of SQLCSN areas (1)
that have been allocated.

HiRDB Binary 0 is set when the DESCRIBE,
DESCRIBE CURSOR, or PREPARE
statement is issued and there is a
shortage of SQLCSN area (SQLCSNN <
SQLCSND).

Level
number#

1

Data area
name

Data
type

Length
(bytes)

Source
of

value

Description

E. Character Set Descriptor Area

2105

2 SQLCSND short 2 UAP When the OPEN, EXECUTE, EXECUTE
IMMEDIATE, or FETCH statement is
issued, specifies the number of character
sets (1) that are used by input ?
parameters.

HiRDB When the DESCRIBE[OUTPUT],
DESCRIBE CURSOR, or PREPARE
statement has been issued and there is a
shortage of SQLCSN area (SQLCSNN <
SQLCSND), binary 0 or the number of
character sets used for retrieval items or
output ? parameters is set.
0:

This value is set in either of the
following cases:
• The SQL statement was a

statement other than a SELECT
statement and was not a CALL
statement containing output ?
parameters.

• The retrieval items and output ?
parameters do not have a
character set other than the
default character set.

maximum-element-number:
This value is set when both of the
following conditions are satisfied:
• The SQL statement was a

SELECT statement or a CALL
statement containing an output ?
parameter.

• A retrieval item or an output ?
parameter has a character set
other than the default character
set.

When the DESCRIBE INPUT or PREPARE
statement is issued, binary 0 or the
number of character sets used in input ?
parameters is set.

Level
number#

1

Data area
name

Data
type

Length
(bytes)

Source
of

value

Description

E. Character Set Descriptor Area

2106

0:
This value is set in either of the
following cases:
• The SQL statement does not

contain input ? parameters.
• The input ? parameters do not

have a character set other than
the default character set.

maximum-element-number:
This value is set when both of the
following conditions are satisfied:
• The SQL statement contains an

input ? parameter.
• An input ? parameter has a

character set other than the
default character set.

2 SQLCSNEX -- 12 -- Not used

2 SQLCVAR -- 2 x n -- Area composed of SQLCSNXs. This area
corresponds to SQLVAR of SQLDA and
must be defined as many times as the
value specified in SQLCVARN.

3 SQLCSNX short 2 UAP When the OPEN, EXECUTE, EXECUTE
IMMEDIATE, or FETCH statement is
issued, specifies the element number of
the SQLCSN that has a character set name
for input ? parameters.

HiRDB When the DESCRIBE, DESCRIBE
CURSOR, or PREPARE statement is
issued, the element number of the
SQLCSN that has the character set name
used in retrieval items or ? parameters is
set. If the retrieval items or output ?
parameters do not contain a character set
specification, binary 0 is set.
When the DESCRIBE INPUT or PREPARE
statement is issued, the element number
of the SQLCSN that has the character set
name used in input ? parameters is set. If
the input ? parameters do not contain a
character set specification, binary 0 is
set.

Level
number#

1

Data area
name

Data
type

Length
(bytes)

Source
of

value

Description

E. Character Set Descriptor Area

2107

Legend:

: One space

--: Not applicable

2 SQLCSN -- 64 x m -- Area composed of SQLCSOL, SQLCSOC,
SQLCSNL, and SQLCSNC areas. This area
is for the information about one
character set and must be defined as
many times as the value specified in
SQLCSNN.

3 SQLCSOL short 2 UAP When the OPEN, EXECUTE, EXECUTE
IMMEDIATE, or FETCH statement is
issued, specifies the length of the
authorization identifier.

HiRDB When the DESCRIBE, DESCRIBE
CURSOR, or PREPARE statement is
issued, the length of the authorization
identifier is set.

3 SQLCSOC char 30 UAP When the OPEN, EXECUTE, EXECUTE
IMMEDIATE, or FETCH statement is
issued, specifies the authorization
identifier.

HiRDB When the DESCRIBE, DESCRIBE
CURSOR, or PREPARE statement is
issued, the authorization identifier is set.

3 SQLCSNL short 2 UAP When the OPEN, EXECUTE, EXECUTE
IMMEDIATE, or FETCH statement is
issued, specifies the length of the
character set name.

HiRDB When the DESCRIBE, DESCRIBE
CURSOR, or PREPARE statement is
issued, the length of the character set
name is set.

3 SQLCSNC char 30 UAP When the OPEN, EXECUTE, EXECUTE
IMMEDIATE, or FETCH statement is
issued, specifies the character set name.

HiRDB When the DESCRIBE, DESCRIBE
CURSOR, or PREPARE statement is
issued, the character set name is set.

Level
number#

1

Data area
name

Data
type

Length
(bytes)

Source
of

value

Description

E. Character Set Descriptor Area

2108

#1

Level numbers indicate the set inclusion relationships of the character set
descriptor area. For example, the level 1 data area is composed of level 2 data
areas.

#2

Square brackets ([]) enclose the length for 64-bit mode. For 64-bit mode
Windows, the length is the same as for 32-bit mode.

(3) Character set information that can be set in SQLCSN in the character set
descriptor area

The following table shows the character set information that UAPs can set in SQLCSN.

Table E-2: Character set information that UAPs can set in SQLCSN

#1

This value can be used only when sjis is specified as the character code type by
the pdntenv command (in the UNIX edition, pdsetup command).

#2

This value can be used only when utf-8 is specified as the character code type
by the pdntenv command (in the UNIX edition, pdsetup command).

If you use data descriptions in UTF-16 in C language or data descriptions containing
Japanese data items (PICTURE N) in COBOL by using COBOL2002's Unicode
functionality, you must specify the character sets UTF16, UTF-16LE, and UTF-16BE.

For details about the data descriptions in UTF-16 in C language, see Appendix F.1 SQL
data types and C data descriptions. For details about the data descriptions containing
Japanese data items (PICTURE N) in COBOL, see F.2 SQL data types and COBOL data
descriptions.

The following table shows the attributes of the UTF16, UTF-16LE, and UTF-16BE
character sets.

SQLCSOL SQLCSOC SQLCSNL SQLCSNC

6 MASTER 6 EBCDIK#1

6 MASTER 8 UTF-16LE#2

6 MASTER 8 UTF-16BE#2

6 MASTER 5 UTF16#2

E. Character Set Descriptor Area

2109

Table E-3: Attributes of the UTF16, UTF-16LE, and UTF-16BE character sets

If you issue a DESCRIBE, DESCRIBE TYPE, DESCRIBE CURSOR, or PREPARE
statement to process an SQL retrieval item or a ? parameter whose resulting character
set is UTF16, HiRDB sets UTF16 as the character set name in the character set
descriptor area.

If you retrieve data from an SQL retrieval item or a ? parameter whose resulting
character set is UTF16 by using the OPEN, EXECUTE, EXECUTE IMMEDIATE, or FETCH
statement, or if you pass data represented in UTF-16 to HiRDB by using a ? parameter,
you must specify UTF16, UTF-16LE, or UTF-16BE as the character set name.

(4) Relationship with the SQL descriptor area
The following figure shows the relationship between the SQL descriptor area and the
character set descriptor area.

Figure E-2: Relationship between SQL descriptor area and character set
descriptor area

Legend:

N: SQLN setting (maximum number of SQLVARs)

D: SQLD setting (valid number of SQLVARs)

Character set name Usage format Character repertoire

UTF-16LE UTF-16, little endian Unicode characters that can be
coded by using UTF-16

UTF-16BE,UTF16 UTF-16, big endian

E. Character Set Descriptor Area

2110

n: SQLCVARN setting (maximum number of SQLCVARs)

dn: SQLCVARD setting (valid number of SQLCVARs)

m: SQLCSNN setting (maximum value of SQLCSN)

dm: SQLCSND setting (valid value of SQLCSN)

E.2 Expanding the character set descriptor area
You allocate the character set descriptor area by declaring it within a UAP.

This section presents the format of a character set descriptor area that is expanded
within a source program, and provides usage examples.

(1) Expansion format of character set descriptor area
(a) In C language

The following shows the expansion format of the character set descriptor area in C
language:

struct {
 char sqlcsnid[8]; /* name indicating SQLCSNA */
 long sqlcsnbc; /* length of SQLCSNA */
 short sqlcvarn; /* number of elements in the SQLCVAR array */
 short sqlcvard; /* valid number of SQLCVARs */
 short sqlcsnn; /* number of elements in the SQLCSN array */
 short sqlcsnd; /* valid number of SQLCSNs */
 char sqlcsnex[12]; /* reserved */
 struct sqlcvar {
 short sqlcsnx; /* number of SQLCSN that has the */
 /* corresponding character set name */
 } SQLCVAR[m]; #1

 struct sqlcsn {
 short sqlcsol; /* valid length of authorization identifier */
 char sqlcsoc[30]; /* authorization identifier storage area */
 short sqlcsnl; /* valid length of character set name */
 char sqlcsnc[30]; /* character set name storage area */
 } SQLCSN[n]; #2

} sqlcsna; #3

#1: m specifies the required number of items (1 to 30000).

#2: n specifies the required number of items (1).

#3: For a structure name (the sqlcsna part), specify any desired character string. A
structure name cannot begin with SQL.

E. Character Set Descriptor Area

2111

(b) In COBOL
The following shows the expansion format of the character set descriptor area in
COBOL:

01 USQLCSNA.#1

 02 USQLCSNID PIC X(8) VALUE 'SQLCSNA'.

 02 USQLCSNBC PIC S9(9) COMP.#4

 02 USQLCVARN PIC S9(4) COMP.
 02 USQLCVARD PIC S9(4) COMP.
 02 USQLCSNN PIC S9(4) COMP.
 02 USQLCSND PIC S9(4) COMP.
 02 USQLCSNEX PIC X(12).

 02 USQLCVAR OCCURS m TIMES. #2

 03 USQLCSNX PIC S9(4) COMP.

 02 USQLCSN OCCURS n TIMES. #3

 03 USQLCSOL PIC S9(4) COMP.
 03 USQLCSOC PIC X(30).
 03 USQLCSNL PIC S9(4) COMP.
 03 USQLCSNC PIC X(30).

#1: Any name can be specified for the set item (the USQLCSNA part). The data items
cannot begin with SQL.

#2: m specifies the required number of items (1 to 30000).

#3: n specifies the required number of items (1).

#4: In 64-bit mode UNIX, change the PICTURE clause of USQLCSNBC to S9(18).

(2) How to expand the character set descriptor area
The following table describes how to expand the character set descriptor area.

Table E-4: How to expand the character set descriptor area

#: In 64-bit mode, change SQLCSNA to SQLCSNA64.

Language Using an include file Direct specification by the user

C #include <pdbsqlcsna.h>
PDUSRSQLCSNA(m,n) usrsqlcsna

For details about m, n, and usrsqlcsna, see (3)
Character set descriptor area operation macros.

The user directly codes the expanded
format of the character set descriptor area.

COBOL COPY SQLCSNA#

[REPLACING 256 BY m
==OCCURS 1 == BY ==OCCURS n ==].

The user directly codes the expanded
format of the character set descriptor area.
Coding must begin at the 01 level.

E. Character Set Descriptor Area

2112

(3) Character set descriptor area operation macros
Various macros for declaring SQLCSNA and for setting/referencing values are defined
in C language. These macros can be used by including a unique header file
(pdbsqlcsna.h) in the UAP. Table E-5 lists the character set descriptor area
operation macros and the macros for specifying character set names.

Table E-5: Character set descriptor area operation macros

Legend:

usrsqlcsna: User-defined character set descriptor area. Specify any value.

m: Number of ? parameters (1 to 30000)

n: Number of character set names (0 or 1)

o: Number assigned to the ? parameter or retrieval item that is to be specified or
referenced (0 to 29999)

p: Number assigned to the character set name that is to be specified or referenced
(0)

Macro Function

PDUSRSQLCSNA(m,n) Declares a user SQLCSNA.

PDSETCSNASIZE(usrsqlcsna,m,n) Specifies the size of the SQLCSNA.

PDSQLCVARN(usrsqlcsna) Specifies the number of elements in an SQLCVAR array.

PDSQLCVARD(usrsqlcsna) Specifies and references the valid number of SQLCVARs.

PDSQLCSNN(usrsqlcsna) Specifies the number of elements in an SQLCSN array.

PDSQLCSND(usrsqlcsna) Specifies and references the valid number of SQLCSNs.

PDSQLCSNX(usrsqlcsna,o) Specifies and references the number assigned to the SQLCSN that
has the corresponding character set name.

PDSQLCSOL(usrsqlcsna,p) Specifies and references the length of the authorization identifier
for a character set.

PDSQLCSOC(usrsqlcsna,p) Specifies and references the authorization identifier for a character
set.

PDSQLCSNL(usrsqlcsna,p) Specifies and references the length of a character set's character set
name.

PDSQLCSNC(usrsqlcsnaa,p) Specifies and references a character set's character set name.

E. Character Set Descriptor Area

2113

Table E-6: Macros for specifying character set names

Macro Function

PDSQL_CS_MASTER_L Length of the authorization identifier MASTER

PDSQL_CS_MASTER_C Character string of the authorization identifier MASTER

PDSQL_CS_EBCDIK_L Length of the character set name EBCDIK

PDSQL_CS_EBCDIK_C Character string of the character set name EBCDIK

PDSQL_CS_UTF16_L Length of the character set name UTF16

PDSQL_CS_UTF16_C Character string of the character set name UTF16

PDSQL_CS_UTF_16LE_L Length of the character set name UTF-16LE

PDSQL_CS_UTF_16LE_C Character string of the character set name UTF-16LE

PDSQL_CS_UTF_16BE_L Length of the character set name UTF-16BE

PDSQL_CS_UTF_16BE_C Character string of the character set name UTF-16BE

F. SQL Data Types and Data Descriptions

2114

F. SQL Data Types and Data Descriptions

This appendix shows the correspondence between SQL data types and C or COBOL
data descriptions.

F.1 SQL data types and C data descriptions
This section provides the correspondence between SQL data types and C data
descriptions. Data can be exchanged between variables of compatible data types and
between variables of either convertible or assignable data types.

(1) SQL data types and C data descriptions
The following table shows the SQL data types and C data descriptions.

Table F-1: SQL data types and C data descriptions

SQL data type C data description Remarks

SMALLINT short variable-name; --

INTEGER long variable-name; --

DECIMAL [(p[,s])] SQL TYPE IS

 DECIMAL(p,s)
 variable-name;#5

1 p 38, 0 s p

SMALLFLT, REAL float variable-name; --

FLOAT (DOUBLE
PRECISION)

double variable-name; --

CHAR [(n)]
[CHARACTER SET
character-set-specification
]

char

 [CHARACTER SET[IS]
 character-set-specification]
 variable-name[n+1];#1

1 n 30,000
character-set-specification:
[MASTER.]EBCDIK

CHAR[(2n)]
CHARACTER SET
character-set-specification

char
 CHARACTER SET[IS]
 character-set-specification
 variable-name[2n+2];

1 n 15,000
character-set-specification:
[MASTER.]UTF16

SQL TYPE IS CHAR(2n)
 CHARACTER SET[IS]
 character-set-specification
character-set-specification
 variable-name;#10

F. SQL Data Types and Data Descriptions

2115

VARCHAR(n)
[CHARACTER SET
character-set-specification
]

struct {

 short variable-name-1;
 char variable-name-2[n];
 }[CHARACTER SET[IS]
 character-set-specification]
 structure-name;

1 n 32,000
variable-name-1: Character string
length (bytes)
variable-name-2: Character string
character-set-specification:
[MASTER.]EBCDIK

SQL TYPE IS

 VARCHAR(n)
 [CHARACTER SET[IS]
 character-set-specification]
 variable-name;#6

VARCHAR

 [CHARACTER SET[IS]
 character-set-specification]
 variable-name[n+1]#9

VARCHAR(2n)
CHARACTER SET
character-set-specification

struct {
 short variable-name-1;
 char variable-name-2[2n];
 } CHARACTER SET[IS]
 character-set-specification
 structure-name;

1 n 16,000
variable-name-1: Character string
length (number of bytes, as a
multiple of 2)
variable-name-2: Character string
character-set-specification:
[MASTER.]UTF16

SQL TYPE IS
 VARCHAR(2n)
 CHARACTER SET[IS]
 character-set-specification
 variable-name;#11

VARCHAR
 CHARACTER SET[IS]
 character-set-specification
 variable-name[2n+2];#10

NCHAR [(n)] char variable-name-2[2n+1];#1 1 n 15,000

NVARCHAR(n) struct {

short variable-name-1;
char variable-name-2[2n];
} structure-name;

1 n 16,000
variable-name-1: Character string
length (number of characters)
variable-name-2: Character string

SQL TYPE IS

 NVARCHAR(n)
 variable-name;#6

SQL data type C data description Remarks

F. SQL Data Types and Data Descriptions

2116

MCHAR [(n)] char variable-name[n+1];#1 1 n 30,000

MVARCHAR(n) struct {

short variable-name-1;
char variable-name-2[n];
} structure-name;

1 n 32,000
variable-name-1: Character string
length (number of bytes)
variable-name-2: Character string

SQL TYPE IS

 MVARCHAR(n)
 variable-name;#6

DATE char variable-name[11];#2 --

TIME char variable-name[9];#2 --

INTERVAL YEAR TO DAY SQL TYPE IS

 DECIMAL(8,0)

 variable-name;#5

--

INTERVAL HOUR TO
SECOND

SQL TYPE IS

 DECIMAL(6,0)

 variable-name;#5

--

TIMESTAMP[(p)] char variable-name[n + 1];#2 If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

ROW#3 char variable-name[n + 1]; 1 total length 30,000

BLOB SQL TYPE IS BLOB(n[K |M |G])]
 variable-name;#4

Default: 1 n 2,147,483,647
In units of K: 1 n 2,097,152
In units of M: 1 n 2,048
In units of G: 1 n 2

BINARY(n) struct {

 long variable-name-1;
 char variable-name-2[n];
 } structure-name;

1 n 2,147,483,647
variable-name-1: Character string
length (number of bytes)
variable-name-2: Character string

SQL TYPE IS BINARY(n)
 variable-name;#7

BLOB locator SQL TYPE IS

BLOB AS LOCATOR

 variable-name#8

--

SQL data type C data description Remarks

F. SQL Data Types and Data Descriptions

2117

Legend:

--: Not applicable

n: Length (bytes)

p: Precision (total number of digits)

s: Scale (number of digits beyond the decimal point)

Note

In 64-bit mode, use int instead of long.

#1: The following rules govern data conversion between SQL data types (CHAR(n),
NCHAR(n), and MCHAR(n)) and C-language data types (char[n+1], char[2n+1],
and char[2n+1]):

• For input (conversion from char[n+1] to CHAR(n), conversion from
char[2n+1] to NCHAR(n), or conversion from char[n+1] to MCHAR(n))

The length of a fixed-length character string received by HiRDB from a C
language-character string is equal to the length from the beginning of the
character string to one character before the null character. If no null character
is found in n+1 array elements, the length is defined as n.

BINARY locator SQL TYPE IS

BINARY AS LOCATOR

 variable-name#8

--

Indicator
variable

Other
than
BLOB,
BINARY,
BLOB
locator, or
BINARY
locator

short variable-name; --

BLOB,
BINARY,
BLOB
locator, or
BINARY
locator

long variable-name;

SQL statement struct {

 long variable-name-1;
 char variable-name-2[n];
 } structure-name;

1 n 2,000,000
variable-name-1: Character string
length (number of bytes)
variable-name-2: Character string

SQL data type C data description Remarks

F. SQL Data Types and Data Descriptions

2118

• For output (conversion from CHAR(n) to char[n+1], conversion from
NCHAR(n) to char[2n+1], or conversion from MCHAR(n) to char[n+1])

A null character is appended at the end of the character string; therefore, the
length of the character string known to the UAP is the SQL character string
length + 1.

#2: When retrieving date data (DATE) using a dynamic SQL, the data code for the
retrieval item information obtained by the DESCRIBE statement must be set as the
character data type with a data length of at least 10 bytes. Similarly, when retrieving
time data using a dynamic SQL, the data code for the retrieval item information
obtained by the DESCRIBE statement must be set as the character data type with a data
length of at least 8 bytes.

To retrieve time stamp data (TIMESTAMP) using a dynamic SQL statement,
specify the following:

• Set the data code for the retrieval item information obtained using a
DESCRIBE statement to the character data type.

• If p is 0, set the data size to 19 bytes or greater. If p is 2, 4, or 6, set the data
size to 20 + p bytes or greater.

#3: The ROW type is allowed only when the HiRDB server and the HiRDB client use
the same endian type.

#4: The coding of a BLOB UAP is expanded internally as follows:
struct{
 long variable-name_reserved; 1
 unsigned long variable-name_length; 2
 char variable-name_data[m]; 3
} variable-name

1. variable-name_reserved is not used. In the 64-bit mode, int
variable-name_reserved; is used.

2. variable-name_length indicates the actual BLOB size. In the 64-bit mode,
unsigned int variable-name_length; is used.

3. variable-name_data[m] is the BLOB data storage area (where m denotes
the actual data length).

#5: The code for a DECIMAL UAP is internally expanded as follows:
unsigned char variable-name[p/2 +1];

One byte of DECIMAL data expresses two numeric digits. A sign is expressed by
four low-order bits of the trailing byte. Therefore, for DECIMAL data consisting
of an even number of digits, four high-order bits of the leading byte must be
padded with 0s. Do not use any number other than 0 for padding purposes.

F. SQL Data Types and Data Descriptions

2119

The following table shows the standard sign representation; for details about the
sign for DECIMAL type used with HiRDB, see the manual HiRDB Version 9 SQL
Reference.

Coding examples

123.4567 (odd number of digits)

unsigned char ex1[4]={0x12,0x34,0x56,0x7c};

-123.456 (even number of digits)

unsigned char ex2[4]={0x01,0x23,0x45,0x6d};

0 (odd number of digits)

unsigned char ex3[1]={0x0c};

#6: The following internal expansion takes place:

struct{
 short len;
 char str[n];
}variable-name

For NVARCHAR, str[2n] is used.

#7: The following internal expansion takes place:

struct{
 long len;
 char str[n];
}variable-name

In 64-bit mode, long len; is replaced with int len;.

#8: The following internal expansion takes place:
unsigned long variable-name;

In 64-bit mode, unsigned long variable-name; is replaced with unsigned
int variable-name;.

Sign in hexadecimal
representation

Description

X'C' Treated as a positive sign. Positive numbers include 0.

X'D' Treated as a negative sign.

F. SQL Data Types and Data Descriptions

2120

#9: The following internal expansion takes place:
char variable-name[n+1];

The character string length is the length from the beginning of the string to the
character before the NULL character. When a character string in C is accepted, an
error occurs if there is no NULL character in the n+1-th array element.

#10

The following internal expansion takes place:

When the type specifier is not specified in the preprocessor's -XU16 option:

char variable-name[2n+2];

When the type specifier is not specified in the preprocessor's -XU16 option:

type-specifier variable-name[n+1];

For details about the -XU16 option, see 8.2.2 Preprocessing in UNIX or 8.2.3
Preprocessing in Windows.

#11

The following internal expansion takes place:

When the type specifier is not specified in the preprocessor's -XU16 option:
struct{
 short len;
 char str[2n];
} variable-name;

When the type specifier is not specified in the preprocessor's -XU16 option:

struct{
 short len;
 type-specifier str[n];
} variable-name;

For details about the -XU16 option, see 8.2.2 Preprocessing in UNIX or 8.2.3
Preprocessing in Windows.

F. SQL Data Types and Data Descriptions

2121

(2) SQL data types and C data descriptions when arrays are used
The following table shows the SQL data types and C data descriptions when arrays are
used.

Table F-2: SQL data types and C data descriptions when arrays are used

SQL data type C data description Remarks

SMALLINT short variable-name[m]; --

INTEGER long variable-name[m]; --

DECIMAL[(p[,s])] SQL TYPE IS DECIMAL(p,s)
 variable-name[m];

1 p 38, 0 s p

SMALLFLT, REAL float variable-name[m]; --

FLOAT (DOUBLE
PRECISION)

double variable-name[m]; --

CHAR[(n)]
[CHARACTER SET
character-set-specificati
on]

char

 [CHARACTER SET[IS]
 character-set-specification]
 variable-name[m][n+1];

1 n 30,000
character-set-specification:
[MASTER.]EBCDIK

CHAR[(2n)]
CHARACTER SET
character-set-specificati
on

char
 CHARACTER SET[IS]
 character-set-specification
 variable-name[m][2n+2];

1 n 15,000
character-set-specification:
[MASTER.]UTF16

SQL TYPE IS CHAR(2n)
 CHARACTER SET[IS]
 character-set-specification
 variable-name[m];

VARCHAR(n)
[CHARACTER SET
character-set-specificati
on]

struct {
short variable-name-1;
char variable-name-2[n];
 }[CHARACTER SET[IS]
 character-set-specification]
 structure-name[m];

1 n 32,000
character-set-specification:
[MASTER.]EBCDIK

SQL TYPE IS VARCHAR(n)
 [CHARACTER SET[IS]
 character-set-specification]
 variable-name[m];

--

VARCHAR

 [CHARACTER SET[IS]
 character-set-specification]
 variable-name[m][n+1];

F. SQL Data Types and Data Descriptions

2122

VARCHAR(2n)
CHARACTER SET
character-set-specificati
on

struct {
 short variable-name-1;
 char variable-name-2[2n];
 } CHARACTER SET[IS]
 character-set-specification
 structure-name[m];

1 n 16,000
variable-name-1: Character string
length (number of bytes, as a
multiple of 2)
variable-name-2: Character string
character-set-specification:
[MASTER.]UTF16

SQL TYPE IS VARCHAR(n)
 CHARACTER SET[IS]
 character-set-specification
 variable-name[m];

VARCHAR
 CHARACTER SET[IS]
 character-set-specification
 variable-name[m][2n+2]

NCHAR[(n)] char variable-name[m][2n+1]; 1 n 15,000

NVARCHAR[(n)] struct {
short variable-name-1;
char variable-name-2[2n];
} structure-name[m];

1 n 16,000

SQL TYPE IS NVARCHAR(n)
 variable-name[m];

MCHAR(n) char variable-name[m][n+1]; 1 n 30,000

MVARCHAR(n) struct {
short variable-name-1;
char variable-name-2[n];
} structure-name[m];

1 n 32,000

SQL TYPE IS MVARCHAR(n)
 variable-name[m];

DATE char variable-name[m][11]; --

TIME char variable-name[m][9]; --

TIMESTAMP[(p)] char variable-name[m][n + 1]; If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

INTERVAL YEAR TO
DAY

SQL TYPE IS DECIMAL(8,0)

 variable-name[m];
--

SQL data type C data description Remarks

F. SQL Data Types and Data Descriptions

2123

Legend:

CN: Cannot be coded.

--: Not applicable

m: Number of array elements (1 to 4,096)

n: Length (bytes)

p: Precision (total number of digits)

s: Scale (number of digits beyond the decimal point)

Note

In 64-bit mode, use int instead of long.

INTERVAL HOUR TO
SECOND

SQL TYPE IS DECIMAL(6,0)

 variable-name[m];

--

ROW char variable-name[m][n+1]; 1 n 30,000

BLOB CN --

BINARY struct {
long variable-name-1;
char variable-name-2[n];
} structure-name[m];

• FETCH that uses an array
4 n 2,147,483,644 (n
must be a multiple of 4.)

• Other than FETCH that uses an
array4 n 32,000 (n must
be a multiple of 4.)SQL TYPE IS BINARY(n)

 variable-name[m];

BLOB locator CN --

BINARY locator SQL TYPE IS

BINARY AS LOCATOR

 variable-name[m];

--

Indicator
variable

Other
than
BINARY
or
BINARY
locator

short variable-name[m]; --

BINARY
or
BINARY
locator

long variable-name[m]; --

SQL statement CN --

SQL data type C data description Remarks

F. SQL Data Types and Data Descriptions

2124

(3) SQL data types and C data descriptions when repetition columns are used
The following table shows the SQL data types and C data descriptions when repetition
columns are used.

Table F-3: SQL data types and C data descriptions when repetition columns are
used

SQL data type C data description Remarks

SMALLINT PD_MV_SINT(m) variable-name; --

INTEGER PD_MV_INT(m) variable-name; --

DECIMAL PD_MV_DEC(m,p,s)
variable-name;

1 p 38,
0 s p

SMALLFLT, REAL PD_MV_SFLT(m) variable-name; --

FLOAT (DOUBLE
PRECISION)

PD_MV_FLT(m) variable-name; --

CHAR[(n)] PD_MV_CHAR(m,n)
variable-name;

1 n 30,000

VARCHAR(n) PD_MV_VCHAR(m,n)
variable-name;

1 n 32,000

PD_MV_CVCHAR(m,n)
variable-name;

NCHAR[(n)] PD_MV_NCHAR(m,n)
variable-name;

1 n 15,000

NVARCHAR[(n)] PD_MV_NVCHAR(m,n)
variable-name;

1 n 16,000

MCHAR(n) PD_MV_CHAR(m, n)
variable-name;

1 n 30,000

MVARCHAR(n) PD_MV_CHAR(m, n)
variable-name;

1 n 32,000

DATE PD_MV_CHAR(m,10)
variable-name;

--

TIME PD_MV_CHAR(m,8)
variable-name;

--

TIMESTAMP[(p)] PD_MV_CHAR(m,n)
variable-name;

If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

F. SQL Data Types and Data Descriptions

2125

Legend:

CN: Cannot be coded.

--: Not applicable.

m: Maximum number of repetition array elements (2 to 30,000).

n: Length (bytes)

p: Precision (total number of digits)

s: Scale (number of digits beyond the decimal point)

(4) Macros for referencing or setting embedded variables
Special macros for referencing or setting embedded variables for each data type are
used in the SQL data type and C data description when repetition columns are used.
The following table shows the macros for referencing or setting embedded variables.

Table F-4: Macros for referencing or setting embedded variables

INTERVAL YEAR TO
DAY

PD_MV_DEC(m,8,0)
variable-name;

--

INTERVAL HOUR TO
SECOND

PD_MV_DEC(m,6,0)
variable-name;

--

ROW CN --

BLOB CN --

BINARY CN --

Indicator variable (other
than BLOB, BINARY,
BLOB locator, or BINARY
locator)

PD_MV_SINT(m) variable-name; --

SQL statement CN --

SQL data type Macro name Data to be referenced or set Data type

SMALLINT PD_MV_SINT_CNT
(variable-name)

Current repetition data element count long#

PD_MV_SINT_DATA
(variable-name, m)

Each repetition element short

SQL data type C data description Remarks

F. SQL Data Types and Data Descriptions

2126

INTEGER PD_MV_INT_CNT
(variable-name)

Current repetition data element count long#

PD_MV_INT_DATA
(variable-name, m)

Each repetition element long#

DECIMAL[(p[,s])] PD_MV_DEC_CNT

(variable-name)
Current repetition data element count long#

PD_MV_DEC_DATA

(variable-name,m)
Start address of each repetition element
in decimal

unsigned

SMALLFLT, REAL PD_MV_SFLT_CNT
(variable-name)

Current repetition data element count long#

PD_MV_SFLT_DATA
(variable-name, m)

Each repetition element float

FLOAT (DOUBLE
PRECISION)

PD_MV_FLT_CNT
(variable-name)

Current repetition data element count long#

PD_MV_FLT_DATA
(variable-name, m)

Each repetition element double

CHAR[(n)] PD_MV_CHAR_CNT
(variable-name)

Current repetition data element count long#

PD_MV_CHAR_DATA
(variable-name, m)

Leading address of character string of
each repetition element

char[]

VARCHAR(n) PD_MV_VCHAR_CNT
(variable-name)

Current repetition data element count long#

PD_MV_VCHAR_LEN
(variable-name, m)

Actual length of character string of each
repetition element

short

PD_MV_VCHAR_STR
(variable-name)

Address of character string of each
repetition element

char[]

PD_MV_CVCHAR_CNT(vari
able-name)

Current repetition data element count long#

PD_MV_CVCHAR_DATA(var
iable-name,m)

Address of character string of each
repetition element

char[]

NCHAR[(n)] PD_MV_NCHAR_CNT
(variable-name)

Current repetition data element count long#

PD_MV_NCHAR_DATA
(variable-name, m)

Leading address of character string of
each repetition element

char[]

SQL data type Macro name Data to be referenced or set Data type

F. SQL Data Types and Data Descriptions

2127

Legend:

--: Not applicable

m: Number of each repetition column element (0 - m-1).

NVARCHAR[(n)] PD_MV_NVCHAR_CNT
(variable-name)

Current repetition data element count long#

PD_MV_NVCHAR_LEN
(variable-name, m)

Actual length of character string of each
repetition element

short

PD_MV_NVCHAR_STR
(variable-name, m)

Leading address of character string of
each repetition element

char[]

MCHAR(n) PD_MV_CHAR_CNT
(variable-name)

Current repetition data element count long#

PD_MV_CHAR_DATA
(variable-name, m)

Leading address of character string of
each repetition element

char[]

MVARCHAR(n) PD_MV_VCHAR_CNT
(variable-name)

Current repetition data element count long#

PD_MV_VCHAR_LEN
(variable-name, m)

Actual length of character string of each
repetition element

short

PD_MV_VCHAR_STR
(variable-name, m)

Address of character string of each
repetition element

char[]

DATE Same as CHAR(10) -- --

TIME Same as CHAR(8) -- --

TIMESTAMP[(p)] Same as CHAR(n)
If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

-- --

INTERVAL YEAR TO
DAY

Same as DECIMAL(8,0) -- --

INTERVAL HOUR TO
SECOND

Same as DECIMAL(6,0) -- --

Indicator variable PD_MV_SINT_CNT
(variable-name)

Indicator of the overall repetition
column

long#

PD_MV_SINT_DATA
(variable-name, m)

Indicator of each repetition column
element

short

SQL data type Macro name Data to be referenced or set Data type

F. SQL Data Types and Data Descriptions

2128

n: Length (bytes)

p: Precision (total number of digits)

s: Scale (number of digits beyond the decimal point)

#: In 64-bit mode, the data type is int.

The following shows an example of macros used for referencing or setting embedded
variables in repetition columns:
EXEC SQL BEGIN DECLARE SECTION;
char xname[5];
PD_MV_SINT(4) xmscore;
PD_MV_CHAR(4,5) xmsubject;
EXEC SQL END DECLARE SECTION;
 :
strcpy(xname,"SMITH")
PD_MV_SINT_DATA(xmscore,0)=90;
PD_MV_SINT_DATA(xmscore,1)=65;
PD_MV_SINT_DATA(xmscore,2)=85;
PD_MV_SINT_DATA(xmscore,3)=55;
PD_MV_SINT_CNT(xmscore)=4;
strcpy(PD_MV_CHAR_DATA(xmsubject,0),"MATHEMATICS");
strcpy(PD_MV_CHAR_DATA(xmsubject,1),"ENGLISH");
strcpy(PD_MV_CHAR_DATA(xmsubject,2),"SCIENCE");
strcpy(PD_MV_CHAR_DATA(xmsubject,3),"SOCIAL STUDIES");
PD_MV_CHAR_CNT(xmsubject)=4;
EXEC SQL
 INSERT INTO
SCORE_TABLE(NAME,SUBJECT,SCORE))VALUES(:xname,
:xmsubject;:xmscore);

(5) Pointer variables and the C language data description
The following table shows pointer variables and the C language data description.

Table F-5: Pointer variables and C language data description

SQL data type C language data
description

Remarks

SMALLINT short *variable-name; --

INTEGER long *variable-name; --

DECIMAL[(p[,s])] SQL TYPE IS DECIMAL(p,s)
 *variable-name;

1 p 38, 0 s p

SMALLFLT, REAL float *variable-name; --

FLOAT

(DOUBLE PRECISION)

double *variable-name; --

F. SQL Data Types and Data Descriptions

2129

CHAR[(n)]
[CHARACTER SET
character-set-specification]

char *

 [CHARACTER SET[IS]

character-set-specification]*va
riable-name;

1 n 30,000#

character-set-specification:
[MASTER.]EBCDIK

CHAR[(2n)]
CHARACTER SET
character-set-specification

SQL TYPE IS CHAR(2n)
 CHARACTER SET[IS]
 character-set-specification
*variable-name;

1 n 15,000
character-set-specification:
[MASTER.]UTF16

VARCHAR(n)
[CHARACTER SET
character-set-specification]

struct {

short variable-name-1;
char variable-name-2[n];
 } [CHARACTER SET[IS]

character-set-specification]*str
ucture-name;

1 n 32,000
variable-name-1: Character string length
(number of bytes)
variable-name-2: Character string
character-set-specification:
[MASTER.]EBCDIK

SQL TYPE IS VARCHAR(n)
 [CHARACTER SET[IS]
 character-set-specification]
*variable-name;

VARCHAR

 [CHARACTER SET[IS]
 character-set-specification]
*variable-name;#

VARCHAR(2n)
CHARACTER SET
character-set-specification

struct {
 short variable-name-1;
 char variable-name-2[2n];
 } CHARACTER SET[IS]
 character-set-specification
*structure-name;

1 n 16,000
variable-name-1: Character string length
(number of bytes, as a multiple of 2)
variable-name-2: Character string
character-set-specification:
[MASTER.]UTF16

SQL TYPE IS VARCHAR(2n)
 CHARACTER SET[IS]
 character-set-specification
*variable-name;

NCHAR[(n)] char *variable-name; 1 n 15,000#

SQL data type C language data
description

Remarks

F. SQL Data Types and Data Descriptions

2130

NVARCHAR(n) struct {

short variable-name-1;
char variable-name-2[2n];
} *structure-name;

1 n 16,000
variable-name-1: Character string length
(number of characters)
variable-name-2: Character string

SQL TYPE IS

 NVARCHAR(n)
 *variable-name;

MCHAR[(n)] char *variable-name; 1 n 30,000#

MVARCHAR(n) struct {

short variable-name-1;
char variable-name-2[n];
} *structure-name;

1 n 32,000
variable-name-1: Character string length
(number of bytes)
variable-name-2: Character string

SQL TYPE IS

 MVARCHAR(n)
 *variable-name;

DATE# char *variable-name; --

TIME# char *variable-name; --

TIMESTAMP# char *variable-name; --

INTERVAL YEAR TO DAY SQL TYPE IS DECIMAL(8,0)

 *variable-name;
--

INTERVAL HOUR TO SECOND SQL TYPE IS DECIMAL(6,0)

 *variable-name;
--

ROW char *variable-name; 1 total-length 30,000#

BLOB SQL TYPE IS

 BLOB(n[{K|M|G}])
 *variable-name;

Default: 1 n 2,147,483,647
In units of K: 1 n 2,097,152
In units of M: 1 n 2,048
In units of G: 1 n 2

BINARY(n) struct {

 long variable-name-1;
 char variable-name-2[n];
} *structure-name;

1 n 2,147,483,647

SQL TYPE IS BINARY(n)
 *variable-name;

SQL data type C language data
description

Remarks

F. SQL Data Types and Data Descriptions

2131

BLOB locator SQL TYPE IS

BLOB AS LOCATOR

 *variable-name;

--

BINARY locator SQL TYPE IS

BINARY AS LOCATOR

 *variable-name;

--

Indicator
variable

Other than
BLOB,
BINARY,
BLOB
locator, or
BINARY
locator

short *variable-name; --

BLOB,
BINARY,
BLOB locator,
or BINARY
locator

long *variable-name;

SQL statement struct {

 long variable-name-1;
 char variable-name-2[n];
 } *structure-name;

1 n 2,000,000

SMALLINT ARRAY m PD_MV_SINT(m)
 *variable-name;

--

INTEGER ARRAY m PD_MV_INT(m)
 *variable-name;

--

DECIMAL[(p[,s])] ARRAY
m

PD_MV_DEC(m,p,s)
 *variable-name;

1 p 38, 0 s p

SMALLFLT ARRAY m
(REAL)

PD_MV_SFLT(m)
 *variable-name;

--

FLOAT ARRAY m
(DOUBLE PRECISION)

PD_MV_FLT(m)
 *variable-name;

--

CHAR[(n)] ARRAY m and
MCHAR[(n)] ARRAY m

PD_MV_CHAR(m,n)
 *variable-name;

1 n 30,000

SQL data type C language data
description

Remarks

F. SQL Data Types and Data Descriptions

2132

Legend:

--: Not applicable

m: Number (0 - m-1) indicating each element in a repetition column

n: Length (bytes)

p: Precision (total number of digits)

s: Scale (number of digits beyond the decimal point)

Note

In 64-bit mode, use int instead of long.

#: The defined length of the area cannot be determined during preprocessing.
Therefore, at the time of execution, use strlen(variable-name) to determine the

VARCHAR[(n)] ARRAY m
and MVARCHAR[(n)] ARRAY
m

PD_MV_VCHAR(m,n)
 *variable-name;

1 n 32,000

PD_MV_CVCHAR(m,n)
 *variable-name;

NCHAR[(n)] ARRAY m PD_MV_NCHAR(m,n)
 *variable-name;

1 n 15,000

NVARCHAR[(n)] ARRAY m PD_MV_NVCHAR(m,n)
 *variable-name;

1 n 16,000

DATE ARRAY m PD_MV_CHAR(m,10)
 *variable-name;

--

TIME ARRAY m PD_MV_CHAR(m,8)
 *variable-name;

--

TIMESTAMP ARRAY m PD_MV_CHAR(m,n)
 *variable-name;

If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

INTERVAL YEAR TO DAY
ARRAY m

PD_MV_DEC(m,8,0)
 *variable-name;

--

INTERVAL HOUR TO SECOND
ARRAY m

PD_MV_DEC(m,6,0)
 *variable-name;

--

Indicator variable for
repetition column

PD_MV_SINT(m)
 *variable-name;

--

SQL data type C language data
description

Remarks

F. SQL Data Types and Data Descriptions

2133

length of the character string stored in the area indicated by the pointer, and use this
length in place of the area length. To receive the retrieval result, use a character other
than NULL character to clear the area indicated by the pointer and enter the NULL
character at the end.

(6) Macros for pointer-type repetition columns
To reference or set a variable for a pointer-type repetition column, use a dedicated
macro. The following table shows the macros for pointer-type repetition columns.

Table F-6: Macros for pointer-type repetition columns

SQL data type Macro name Data to be referenced or
set

Data type

SMALLINT ARRAY
m

PD_MV_SINTP_CNT(variable-name) Current repetition data element
count

long#

PD_MV_SINTP_DATA(variable-name,
m)

Each repetition element short

INTEGER ARRAY m PD_MV_INTP_CNT(variable-name) Current repetition data element
count

long#

PD_MV_INTP_DATA(variable-name,m
)

Each repetition element long#

DECIMAL[(p[,s])
] ARRAY m

PD_MV_DECP_CNT(variable-name) Current repetition data element
count

long#

PD_MV_DECP_DATA(variable-name,m
)

Start address of each repetition
element in decimal

char[]

SMALLFLT ARRAY
m
(REAL)

PD_MV_SFLTP_CNT(variable-name) Current repetition data element
count

long#

PD_MV_SFLTP_DATA(variable-name,
m)

Each repetition element float

FLOAT ARRAY m
(DOUBLE
PRECISION)

PD_MV_FLTP_CNT(variable-name) Current repetition data element
count

long#

PD_MV_FLTP_DATA(variable-name,m
)

Each repetition element double

CHAR[(n)]
ARRAY m, or
MCHAR[(n)]
ARRAY m

PD_MV_CHARP_CNT(variable-name) Current repetition data element
count

long#

PD_MV_CHARP_DATA(variable-name,
m)

Leading address of character
string of each repetition
element

char[]

F. SQL Data Types and Data Descriptions

2134

VARCHAR(n)
ARRAY m, or
MVARCHAR(n)
ARRAY m

PD_MV_VCHARP_CNT(variable-name) Current repetition data element
count

long#

PD_MV_VCHARP_LEN(variable-name,
m)

Actual length of character
string of each repetition
element

short

PD_MV_VCHARP_STR(variable-name,
m)

Address of character string of
each repetition element

char[]

PD_MV_CVCHARP_CNT(variable-name
)

Current repetition data element
count

long#

PD_MV_CVCHARP_DATA(variable-nam
e, m)

Address of character string of
each repetition element

char[]

NCHAR[(n)]
ARRAY m

PD_MV_NCHARP_CNT(variable-name) Current repetition data element
count

long#

PD_MV_NCHARP_DATA(variable-name
,m)

Leading address of character
string of each repetition
element

char[]

NVARCHAR(n)
ARRAY m

PD_MV_NVCHARP_CNT(variable-name
)

Current repetition data element
count

long#

PD_MV_NVCHARP_LEN(variable-name
,m)

Actual length of character
string of each repetition
element

short

PD_MV_NVCHARP_STR(variable-name
,m)

Leading address of character
string of each repetition
element

char[]

DATE ARRAY m Same as CHAR(10) -- --

TIME ARRAY m Same as CHAR(8) -- --

TIMESTAMP[(p)]
ARRAY m

Same as CHAR(n)
If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

-- --

INTERVAL YEAR
TO DAY

Same as DECIMAL(8,0) -- --

INTERVAL HOUR
TO SECOND

Same as DECIMAL(6,0) -- --

SQL data type Macro name Data to be referenced or
set

Data type

F. SQL Data Types and Data Descriptions

2135

Legend:

--: Not applicable

m: Number of each repetition column element (0 - m-1)

n: Length (bytes)

p: Precision (total number of digits)

s: Scale (number of digits beyond the decimal point)

#: In 64-bit mode, the data type is int.

(7) Structures to be specified in batches
The following table shows the structures to be specified in batches.

Table F-7: Structures to be specified in batches

F.2 SQL data types and COBOL data descriptions
This section provides the correspondence between SQL data types and COBOL data
descriptions.

Data can be exchanged between variables of compatible data types and between
variables of either convertible or assignable data types.

(1) SQL data types and COBOL data descriptions
The table below shows the SQL data types and COBOL data descriptions. Note that

Indicator variable PD_MV_SINTP_CNT(variable-name) Indicator of the overall
repetition column

long#

PD_MV_SINTP_DATA(variable-name,
m)

Indicator of each repetition
column element

short

SQL data type C language data
description

Item coding Remarks

Multiple items Structure that contains
the data types listed in
Tables F-1 to F-3 as
members

Specifies multiple
embedded variables in a
batch.

Pointers can be declared.

Indicator variable for
multiple items

Structure that contains as
members the indicator
variables listed in Tables
F-1 to F-3

Specifies multiple
indicator variables in a
batch.

Pointers can be declared.

SQL data type Macro name Data to be referenced or
set

Data type

F. SQL Data Types and Data Descriptions

2136

the data descriptions in these tables can also be coded as follows:

PICTURE:

PIC

COMPUTATIONAL:

COMP

COMPUTATIONAL-n:
COMP-n

9(n):
99 9

X(n):
XX X

OCCURS n TIMES:
OCCURS 1 TO n TIMES 0
OCCURS 1 TO n
OCCURS n
Table F-8: SQL data types and COBOL data descriptions

SQL data type COBOL data description Item coding Remarks

SMALLINT L1 elementary-item-name
PICTURE S9(4)

COMPUTATIONAL.

elementary-item or
independent-item

--

INTEGER L1 elementary-item-name
PICTURE S9(9)

COMPUTATIONAL.

elementary-item or
independent-item

--

DECIMAL
[(p[,s])]

L1 elementary-item-name
PICTURE S9(p-s) [V9(s)]
COMPUTATIONAL-3.

elementary-item or
independent-item

If 1 p 38#10,
0 s p,
and p = s, then
SV9(s).
If s = 0, then [V9(s)]
is omitted.

L1 elementary-item-name
 PICTURE S9(p-s)[V9(s)]
 DISPLAY SIGN

 LEADING SEPARATE.#9, #12

F. SQL Data Types and Data Descriptions

2137

L1 elementary-item-name
 PICTURE S9(p-s)[V9(s)]

 DISPLAY SIGN
 TRAILING.#11, #12, #13

SMALLFLT (REAL) L1 elementary-item-name
COMPUTATIONAL-1.

elementary-item or
independent-item

--

FLOAT (DOUBLE
PRECISION)

L1 elementary-item-name
COMPUTATIONAL-2.

elementary-item or
independent-item

--

CHAR [(n)]
[CHARACTER SET
[MASTER.]EBCDIK
]

L1 elementary-item-name
 [CHARACTER SET[IS]
 [MASTER.]EBCDIK]
PICTURE X(n).#5

elementary-item or
independent-item

1 n 30,000

CHAR[(2n)]

CHARACTER SET
[MASTER.]UTF16

If the HiRDB server's default
character set is not UTF-8:#15

CHAR type cannot be used.
If the HiRDB server's default
character set is UTF-8:#15

L1 elementary-item-name
 PICTURE N(n).

elementary-item or
independent-item

1 n 15,000

VARCHAR (n)
[CHARACTER SET
[MASTER.]EBCDIK
]

L2 group-item-name
 [CHARACTER SET[IS]
 [MASTER.]EBCDIK].
L3 elementary-item-name-1

PICTURE S9(4)

COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n).#5

A group item composed of
two elementary items
elementary-item-name-1:
character-string-length
(number of bytes)
elementary-item-name-2:
character-string

1 n 32,000

VARCHAR(2n)

CHARACTER SET
[MASTER.]UTF16

If the HiRDB server's default
character set is not UTF-8:#15

VARCHAR type cannot be used.
If the HiRDB server's default
character set is UTF-8:#15

L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(4)
 COMPUTATIONAL.
 L3 elementary-item-name-2
 PICTURE N(n).

A group item composed of
two elementary items
elementary-item-name-1:
character-string-length
(number of bytes)
elementary-item-name-2:
character-string

1 n 16,000

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2138

NCHAR [(n)] If the HiRDB server's default
character set is not UTF-8:#15

L1 elementary-item-name
PICTURE N(n).

If the HiRDB server's default
character set is UTF-8:#15

NCHAR type cannot be used.

elementary-item or
independent-item

1 n 15,000

NVARCHAR (n) If the HiRDB server's default
character set is not UTF-8:#15

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(4)

COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE N(n)

If the HiRDB server's default
character set is UTF-8:#15

NVARCHAR type cannot be used.

A group item composed of
two elementary items
elementary-item-name-1:

character-string-length
elementary-item-name-2:

character-string

1 n 16,000

MCHAR [(n)] L1 elementary-item-name
PICTURE X(n).#6

If the HiRDB server's default
character set is UTF-8,#15 this can
be coded as follows:
L1 elementary-item-name
PICTURE N(n2).

#14

elementary-item or
independent-item

1 n 30,000

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2139

MVARCHAR (n) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(4)

COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n).#6

If the HiRDB server's default
character set is UTF-8,#15 this can
be coded as follows:
L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(4)
 COMPUTATIONAL.
 L3 elementary-item-name-2
 PICTURE N(n2).

#14

A group item composed of
two elementary items
elementary-item-name-1:

character-string-length
elementary-item-name-2:

character-string

1 n 32,000

DATE L1 elementary-item-name
PICTURE X(10).#6

elementary-item or
independent-item

--

TIME L1 elementary-item-name
PICTURE X(8).#6

elementary-item or
independent-item

--

TIMESTAMP[(p)] L1 elementary-item-name
PICTURE X(n).#6

elementary-item or
independent-item

If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

INTERVAL YEAR TO
DAY

L1 elementary-item-name
PICTURE S9(8)

COMPUTATIONAL-3.

elementary-item or
independent-item

--

INTERVAL HOUR TO
SECOND

L1 elementary-item-name
PICTURE S9(6)

COMPUTATIONAL-3.

elementary-item or
independent-item

--

ROW#3 Combination of data items and
group items in this table#1

A group item composed of
elementary items

1 total-length
 30,000

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2140

BLOB L2 group-item-name#2

[USAGE [IS]]

SQL TYPE IS

BLOB(n[K |M |G]).#4, #7

elementary-item Default: 1 n
2,147,483,647
In units of K: 1 n

 2,097,152
In units of M: 1
n 2,048
In units of G: 1 n

 2

BINARY(n) L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(9)
 COMPUTATIONAL.

 L3 elementary-item-name-2
 PICTURE X(n).#5, #7

A group item composed of
two elementary items
elementary-item-name-1:
character-string-length
elementary-item-name-2:
character-string
character-string-length is
the byte count.

1 n
2,147,483,647

BLOB locator L1 elementary-item-name
 SQL TYPE IS

 BLOB AS LOCATOR.#8

elementary-item or
independent-item

--

BINARY locator L1 elementary-item-name
 SQL TYPE IS

 BINARY AS LOCATOR.#8

elementary-item or
independent-item

--

Indicator
variable

Other
than
BLOB,
BINARY
, BLOB
locator,
or
BINARY
locator

L1 elementary-item-name
PICTURE S9(4)

COMPUTATIONAL.

elementary-item or
independent-item

--

BLOB,
BINARY
, BLOB
locator,
or
BINARY
locator

L1 elementary-item-name
PICTURE S9(9)

COMPUTATIONAL.

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2141

Legend:

--: Not applicable

L1: Level number 01-49 or 77

L2: Level number 01-48

L3: Level number 02-49 (L2 < L3)

n: Length (bytes)

p: Precision (total number of digits)

s: Scale (number of digits beyond the decimal point)

#1: The following clauses can be used:

• REDEFINES

• OCCURS

• ADDRESSED BY

If you manipulate a table with the FIX attribute in units of rows, you must specify
a data item that is to store a row of data as a group item. Each column of the target
table must correspond to a data item belonging to the group item. To specify a data
item that corresponds to a column, you use the data description that corresponds
to the data type of that column. Note that a data description that requires data
format conversion cannot be used.

The following table shows the data descriptions that require data format
conversion and the substitute data descriptions that can be used:

SQL statement L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9)

COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n)

A group item composed of
two elementary items
elementary-item-name-1:

character-string-length
elementary-item-name-2:

character-string

1 n
2,000,000

Column's data
type

Data description that is
not available because it

requires data format
conversion

Substitute data description that can be used

DECIMAL DISPLAY (external decimal
format)

COMP-3 (internal decimal format)

MCHAR PICTURE N (Japanese data
item)

PICTURE X (alphanumeric item)

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2142

Note
You can use the REDEFINES clause to redefine the data items corresponding
to the columns of the target table. In such a case, you can specify an item to
be redefined regardless of the data type of the corresponding column.
However, you can use only those elementary items that correspond to the
INTEGER, SMALLINT, DECIMAL, FLOAT SMALLFLT, CHAR, and NCHAR
types shown in Table F-8 and the group items consisting of these elementary
items. For these elementary and group items, you can specify the OCCURS
clause.

#2:

A group item name should be coded as no more than 21 characters. However, for
COBOL2002, a group item name should be 22 characters or less.

#3:

The ROW type is allowed only when the HiRDB server and the HiRDB client use
the same endian type.

#4: The coding of a BLOB UAP is expanded internally as follows:
L2 group-item-name.
 49 group-item-name_RESERVED PIC S(9) USAGE IS BINARY. 1
 49 group-item-name_LENGTH PIC S(9) USAGE IS BINARY. 2
 49 group-item-name_DATA PIC X(m). 3

1. group-item-name_RESERVED is not used.

2. group-item-name_LENGTH is equal to the BLOB actual length.

3. group-item-name_DATA is the BLOB data storage area (where m denotes the

DATE PICTURE X(10)
10: Number of characters in
character string representation

PICTURE X(4)
4: Number of bytes in the format X'YYYYMMDD'

TIME PICTURE X(8)
8: Number of characters in
character string representation

PICTURE X(3)
3: Number of bytes in the format X'hhmmss'

TIMESTAMP(p) PICTURE X(n)
n: Number of characters in
character string representation

PICTURE X(n)
n=7 + p/2
n: Number of bytes in the format
X'YYYYMMDDhhmmss[nn...n]'

Column's data
type

Data description that is
not available because it

requires data format
conversion

Substitute data description that can be used

F. SQL Data Types and Data Descriptions

2143

actual data length).

#5:

This item can be defined using 9 in place of X. If 9 is used for definition, the operation
when a character string containing a character other than a number is substituted or
received as the retrieval result depends on the installed COBOL compiler.

#6:

Do not use 9 for X during definition, although using 9 does not cause an error
during preprocessing.

#7:

The maximum value that can be declared depends on the installed COBOL
compiler. For details, see the manual for the COBOL compiler to be used.

#8:

The following internal expansion takes place:

L1 elementary-item-name PICTURE S9(9) COMPUTATIONAL.

#9:

The HiRDB server's data type is DECIMAL, but it is expressed as an external
decimal item whose first byte is an operation sign.

#10:

The value range depends on the specifications of the COBOL compiler. For
example, for COBOL85, the range is 1 p 18.

#11

The HiRDB server's data type is DECIMAL, but it is expressed as an external
decimal item (zoned format) that has an operation sign in the 4 high-order bits of
the rightmost byte.

#12

If a data item format is specified for a numeric item with an operation sign,
DISPLAY (external decimal item) is assumed. If the SIGN clause is not specified
for an external decimal item with an operation sign, the location and format of the
operation sign are treated as being the same as in the DISPLAY SIGN TRAILING
format.

#13

The DISPLAY SIGN TRAILING format is supported only in COBOL85 and
COBOL2002.

F. SQL Data Types and Data Descriptions

2144

#14

This data description containing a Japanese data item (PICTURE N) of COBOL is
permitted as a data description corresponding to the SQL mixed character string
data type (MCHAR or MVARCHAR) only if the Unicode functionality of
COBOL2002 is used.

For details about UAP execution using the Unicode functionality of
COBOL2002, see 8.4.3 UAP execution using the Unicode functionality of
COBOL2002.

You can use this data description in embedded variable declarations and the
declarations of data areas for storing ? parameter values.

For embedded variables:

The data is treated as having a character data type (CHAR or VARCHAR) for
which UTF-16LE or UTF-16BE is specified as the character set name
according to the -XU16 option specification. The following table shows the
details:

Note: For variable-length elementary-item-name-1, specify the length (in
bytes) of the Japanese-language character string to be stored in
elementary-item-name-2. Because the character codes for data to be stored
in a Japanese data item are UTF-16 (within the range of UCS-2), the length
of the Japanese language character string in bytes is twice the number of
characters. This length in bytes is 2 x n2 or less.

For data areas for storing ? parameter values:

If you use this data description in the declaration of a data area for storing a
? parameter value, you must set the SQL descriptor area and character set
descriptor area as shown in the following table:

Data
description

format

Data description in
COBOL

Attribute of embedded variable

Data type Character set name

Fixed length L1 elementary-item-name
 PICTURE N(n2).

CHAR(m)
m = 2 x n2

UTF-16LE or UTF-16BE

Variable length L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(4)
 COMPUTATIONAL.
 L3 elementary-item-name-2
 PICTURE N(n2).

VARCHAR(m)
m = 2 x n2

UTF-16LE or UTF-16BE

F. SQL Data Types and Data Descriptions

2145

Note: For variable-length elementary-item-name-1, specify the length in
bytes of the Japanese-language character string to be stored in
elementary-item-name-2. Because the character codes for data to be stored
in a Japanese data item are UTF-16 (within the range of UCS-2), the length
of the Japanese language character string in bytes is twice the number of
characters. This length in bytes is 2 x n2 or less.

For details about the character set names, see Appendix E.1(3) Character set
information that can be set in SQLCSN in the character set descriptor area.

#15

If you specify utf-8 as the character code type in the pdntenv command (in
UNIX edition, pdsetup command), the HiRDB server's default character set is
set to UTF-8.

(2) SQL data types and COBOL data descriptions when arrays are used
The following table shows the SQL data types and COBOL data descriptions when
arrays are used.

Data
description

format

Data description in
COBOL

Setting in SQL descriptor area Setting in
character set

descriptor areaData code Data length

Fixed length L1 elementary-item-name
 PICTURE N(n2).

Data code of CHAR
type

2 x n2 UTF-16LE or
UTF-16BE

Variable length L2 group-item-name.
 L3
elementary-item-name-1
 PICTURE S9(4)
 COMPUTATIONAL.
 L3
elementary-item-name-2
 PICTURE N(n2).

Data code of
VARCHAR type

2 x n2 UTF-16LE or
UTF-16BE

F. SQL Data Types and Data Descriptions

2146

Table F-9: SQL data types and COBOL data descriptions when arrays are used

SQL data type COBOL data description Item coding Remarks

SMALLINT L2 elementary-item-name
PICTURE S9(4)

COMPUTATIONAL

OCCURS m TIMES.

A group item composed of repetitions
of data items in which the same data
structure is repeated through
specification of OCCURS

--

INTEGER L2 elementary-item-name
PICTURE S9(9)

OCCURS m TIMES.

--

DECIMAL
[(p[,s])]

L2 elementary-item-name
PICTURE S9

(p-s)[V9(s)]
COMPUTATIONAL-3

OCCURS m TIMES.

1 p
 38#3,

0 s
p
If p = s,
SV9(s) is
used.
If s = 0,
[V9(s)] is
omitted.

L2 elementary-item-name
PICTURE S9(p-s)[V9(s)]
DISPLAY SIGN LEADING

SEPARATE OCCURS m
TIMES.

L2 elementary-item-name
PICTURE S9(p-s)[V9(s)]

DISPLAY SIGN TRAILING

OCCURS m TIMES.

--

SMALLFLT (REAL) L2 elementary-item-name
COMPUTATIONAL-1

OCCURS m TIMES.

--

FLOAT (DOUBLE
PRECISION)

L2 elementary-item-name
COMPUTATIONAL-2

OCCURS m TIMES.

--

CHAR [(n)]
[CHARACTER SET
[MASTER.]EBCDI
K]

L2 elementary-item-name
 [CHARACTER SET[IS]
 [MASTER.]EBCDIK]
PICTURE X(n)
OCCURS m TIMES.#1

1 n
 30,000

F. SQL Data Types and Data Descriptions

2147

CHAR[(2n)]

CHARACTER SET
[MASTER.]UTF16

If the HiRDB server's default
character set is not UTF-8:#5

CHAR type cannot be used.
If the HiRDB server's default
character set is UTF-8:#5

L2 elementary-item-name
 PICTURE N(n)
 OCCURS m TIMES.

1 n
 15,000

VARCHAR (n)
[CHARACTER SET
[MASTER.]EBCDI
K]

L2 group-item-name
 [CHARACTER SET[IS]
 [MASTER.]EBCDIK]
OCCURS m TIMES.
L3 elementary-item-name-1

PICTURE S9(4)

COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n).#1

1 n
 32,000

VARCHAR(2n)

CHARACTER SET
[MASTER.]UTF16

If the HiRDB server's default
character set is not UTF-8:#5

VARCHAR type cannot be used.
If the HiRDB server's default
character set is UTF-8:#5

L2 group-item-name-2
 OCCURS m TIMES.
 L3 elementary-item-name-1
 PICTURE S9(4)
 COMPUTATIONAL.
 L3 elementary-item-name-2
 PICTURE N(n).

1 n
 16,000

NCHAR [(n)] If the HiRDB server's default
character set is not UTF-8:#5

L2 elementary-item-name
PICTURE N(n)
OCCURS m TIMES.

If the HiRDB server's default
character set is UTF-8:#5

NCHAR type cannot be used.

1 n
 15,000

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2148

NVARCHAR (n) If the HiRDB server's default
character set is not UTF-8:#5

L2 group-item-name
OCCURS m TIMES.
L3 elementary-item-name-1

PICTURE S9(4)

COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE N(n)

If the HiRDB server's default
character set is UTF-8:#5

NVARCHAR type cannot be used.

1 n
 16,000

MCHAR [(n)] L2 elementary-item-name
PICTURE X(n)
OCCURS m TIMES.#2

If the HiRDB server's default
character set is UTF-8,#5 this can
be coded as follows:
L2 elementary-item-nameL2
elementary-item-name
 PICTURE N(n2)

 OCCURS m TIMES.#4

1 n
 30,000

MVARCHAR (n) L2 group-item-name-2
OCCURS m TIMES.
L3 elementary-item-name-1

PICTURE S9(4)

COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n).#2

If the HiRDB server's default
character set is UTF-8,#5 this can
be coded as follows:
L2 group-item-name-2
 OCCURS m TIMES.
 L3 elementary-item-name-1
 PICTURE S9(4)
 COMPUTATIONAL.
 L3 elementary-item-name-2 L3
elementary-item-name-2
 PICTURE N(n2).

#4

1 n
 32,000

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2149

DATE L2 elementary-item-name
PICTURE X(10)

OCCURS m TIMES.#2

--

TIME L2 elementary-item-name
PICTURE X(8)

OCCURS m TIMES.#2

--

TIMESTAMP(p) L2 elementary-item-name
 PICTURE X(n)
 OCCURS m TIMES.#2

If p = 0, n
= 19.
If p = 2, n
= 21 or 22.
If p = 4, n
= 23 or 24.
If p = 6, n
= 25 or 26.

INTERVAL YEAR
TO DAY

L2 elementary-item-name
PICTURE S9(8)

COMPUTATIONAL-3

OCCURS m TIMES.

--

INTERVAL HOUR
TO SECOND

L2 elementary-item-name
PICTURE S9(6)

COMPUTATIONAL-3

OCCURS m TIMES.

--

ROW L2 group-item-name-2
OCCURS m TIMES.

Combination of data items and
group items in this table#6

--

BLOB CN CN --

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2150

BINARY L2 group-item-name-2
 OCCURS m TIMES.

 L3 elementary-item-name-1
 PICTURE S9(9)

 COMPUTATIONAL.

 L3 elementary-item-name-2
 PICTURE X(n).#1

A group item composed of repetitions
of data items in which the same data
structure is repeated through
specification of OCCURS.

• FETCH
that
uses an
array
4 n

2,147,
483,64
4 (n
must
be a
multipl
e of 4.)

• Other
than
FETCH
that
uses an
array
4 n

32,000
(n
must
be a
multipl
e of 4.)

BLOB locator -- -- --

BINARY locator L2 elementary-item-name
 SQL TYPE IS

 BINARY AS LOCATOR

 OCCURS m TIMES.

Group item consisting of iterative data
items that repeat the same data
structure according to the OCCURS
specification

--

Indicato
r
variable

Other
than
BINARY
or
BINARY
locator

L2 elementary-item-name
PICTURE S9(4)

COMPUTATIONAL

OCCURS m TIMES.

--

BINARY
or
BINARY
locator

L2 elementary-item-name
 PICTURE S9(9)

 COMPUTATIONAL

 OCCURS m TIMES.

--

SQL statement CN CN --

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2151

Legend:

CN: Cannot be coded.

--: Not applicable.

L2: Level number 02-49 (L2 < L3). You cannot specify level number 01, 66, 77,
or 88 for L2. For details, see the syntax rules for the OCCURS clause in the COBOL
manual.

L3: Level number 03-49

m: Number of array elements (1-4,096)

n: Length (bytes)

p: Precision (total number of digits)

s: Scale (number of digits beyond the decimal point)

#1:

This item can be defined using 9 in place of X. If 9 is used for definition, the
operation when a character string containing a character other than a number is
substituted or received as the retrieval result depends on the installed COBOL
compiler.

#2:

Do not use 9 for X during definition, although using 9 does not result in an error
during preprocessing.

#3:

The range depends on the specifications of the COBOL compiler. For example,
for COBOL85, the range is 1 p 18.

#4

This data description containing a Japanese data item (PICTURE N) of COBOL is
permitted as a data description corresponding to the SQL mixed character string
data type (MCHAR or MVARCHAR) only if the Unicode functionality of
COBOL2002 is used. For details, see the notes on MCHAR[(n)] and
MVARCHAR(n) in Table F-8 SQL data types and COBOL data descriptions.

#5

If you specify utf-8 as the character code type in the pdntenv command (in
UNIX edition, pdsetup command), the HiRDB server's default character set is
set to UTF-8.

#6

For details about the combinations, see Table F-8.

F. SQL Data Types and Data Descriptions

2152

(3) SQL data types and COBOL data descriptions when repetition columns are
used

The following table shows the SQL data types and COBOL data descriptions when
repetition columns are used.

Table F-10: SQL data types and COBOL data descriptions when repetition
columns are used

SQL data type COBOL data description Item coding Remarks

SMALLINT L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE S9(4) COMPUTATIONAL OCCURS
m TIMES.

A group item
composed of two
elementary items

--

INTEGER L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE S9(9) COMPUTATIONAL
OCCURS m TIMES.

--

DECIMAL
[(p[,s])]

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE S9

(p-s)[V9(s)] COMPUTATIONAL-3 OCCURS
m TIMES.

1 p
38#3,
0 s p
When p = s,
SV9(s) is used.
When s = 0,
[V9(s)] is
omitted.

L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(9) COMPUTATIONAL.

 L3 elementary-item-name-2
 PICTURE S9(p-s)[V9(s)]
 DISPLAY SIGN LEADING SEPARATE

 OCCURS m TIMES.

L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(9) COMPUTATIONAL.

 L3 elementary-item-name-2
 PICTURE S9(p-s)[V9(s)]

 DISPLAY SIGN TRAILING

 OCCURS m TIMES.

F. SQL Data Types and Data Descriptions

2153

SMALLFLT (REAL) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
COMPUTATIONAL-1 OCCURS m TIMES.

--

FLOAT (DOUBLE
PRECISION)

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
COMPUTATIONAL-2 OCCURS m TIMES.

--

CHAR [(n)] L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n) OCCURS m TIMES.#1

1 n
30,000

VARCHAR (n) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
OCCURS m TIMES.

L4 elementary-item-name-3
PICTURE S9(4) COMPUTATIONAL.

L4 elementary-item-name-4
PICTURE X(n).#1

A group item
composed of two
elementary items
and a group item
composed of one
elementary item.

1 n
32,000

NCHAR [(n)] If the HiRDB server's default character set is
not UTF-8:#5

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE N(n) OCCURS m TIMES.

If the HiRDB server's default character set is
UTF-8:#5

NCHAR type cannot be used.

A group item
composed of two
elementary items.

1 n
15,000

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2154

NVARCHAR (n) If the HiRDB server's default character set is
not UTF-8:#5

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
OCCURS m TIMES.

L4 elementary-item-name-3
PICTURE S9(4) COMPUTATIONAL.

L4 elementary-item-name-4
PICTURE N(n).

If the HiRDB server's default character set is
UTF-8:#5

NVARCHAR type cannot be used.

A group item
composed of two
elementary items
and a group item
composed of one
elementary item.

1 n
16,000

MCHAR [(n)] L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n) OCCURS m TIMES.#1

If the HiRDB server's default character set is
UTF-8,#5 this can be coded as follows:
L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(9) COMPUTATIONAL.

 L3 elementary-item-name-2
 PICTURE N(n2) OCCURS m TIMES.#4

A group item
composed of two
elementary items.

1 n
30,000

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2155

MVARCHAR (n) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
OCCURS m TIMES.

L4 elementary-item-name-3
PICTURE S9(4) COMPUTATIONAL.

L4 elementary-item-name-4
PICTURE X(n).#1

If the HiRDB server's default character set is
UTF-8,#5 this can be coded as follows:
L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(9) COMPUTATIONAL.

 L3 group-item-name-2 OCCURS m TIMES.
 L4 elementary-item-name-3
 PICTURE S9(4)

 COMPUTATIONAL.

 L4 elementary-item-name-4 PICTURE
N(n2).

#4

A group item
composed of two
elementary items
and a group item
composed of one
elementary item.

1 n
32,000

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2156

DATE L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(10) OCCURS m TIMES.#2

A group item
composed of two
elementary items.

--

TIME L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(8 OCCURS m TIMES.#2

--

TIMESTAMP[(n)] L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(9) COMPUTATIONAL.

 L3 elementary-item-name-2
 PICTURE X(n) OCCURS m TIMES.#2

If p = 0, n = 19.
If p = 2, n = 21
or 22.
If p = 4, n = 23
or 24.
If p = 6, n = 25
or 26.

INTERVAL YEAR TO
DAY

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(8) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE S9(8) COMPUTATIONAL-3
OCCURS m TIMES.

--

INTERVAL HOUR TO
SECOND

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(6) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE S9(6) COMPUTATIONAL-3
OCCURS m TIMES.

--

ROW CN CN --

BLOB CN CN --

BINARY CN CN --

BLOB locator CN CN --

BINARY locator CN CN --

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2157

Legend:

CN: Cannot be coded.

--: Not applicable.

L2: Level number 02-49

L3 and L4: Level number 03-49

m: Maximum number of repetition column elements (2 to 30,000)

n: Length (bytes)

p: Precision (total number of digits)

s: Scale (number of digits beyond the decimal point)

Notes

1. The value of elementary-item-name-1 must be the current element count.

2. The values of elementary-item-name-2 and group-item-name-2 must be
specified as the value of each repetition element.

3. elementary-item-name-1 of the indicator variable must be specified as the
indicator of the entire repetition column.

4. elementary-item-name-2 of the indicator variable must be specified as the
indicator of each repetition column element.

#1:

This item can be defined using 9 in place of X. If 9 is used for definition, the
operation when a character string containing a character other than a number is
substituted or received as the retrieval result depends on the installed COBOL
compiler.

#2:

Do not use 9 for X during definition, although using 9 does not result in an error
during preprocessing.

Indicator variable
(other than BLOB,
BINARY, BLOB
locator, or BINARY
locator)

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE S9(4) COMPUTATIONAL
OCCURS m TIMES.

A group item
composed of two
elementary items.

--

SQL statement CN CN --

SQL data type COBOL data description Item coding Remarks

F. SQL Data Types and Data Descriptions

2158

#3:

The range depends on the specifications of the COBOL compiler. For example,
for COBOL85, the range is 1 p 18.

#4

This data description containing a Japanese data item (PICTURE N) of COBOL is
permitted as a data description corresponding to the SQL mixed character string
data type (MCHAR or MVARCHAR) only if the Unicode functionality of
COBOL2002 is used. For details, see the notes on MCHAR[(n)] and
MVARCHAR(n) in Table F-8 SQL data types and COBOL data descriptions.

#5

If you specify utf-8 as the character code type in the pdntenv command (in
UNIX edition, pdsetup command), the HiRDB server's default character set is
set to UTF-8.

G. Data Dictionary Table Retrieval

2159

G. Data Dictionary Table Retrieval

This section discusses the retrieval and referencing of data dictionary tables.

HiRDB data dictionary tables can be referenced in the same way as an ordinary
HiRDB database by using operation SQL statements. The authorization identifier of a
dictionary table is MASTER.

This appendix provides examples of SQL descriptions for dictionary table retrievals
and explains the definition information required for referencing.

The following table lists the data dictionary tables that can be referenced.

Table G-1: Data dictionaries

Number Table name Description Row contents

1 SQL_PHYSICAL_FILES HiRDB file information
(correspondences between HiRDB
file system names and RDAREA
names)

One HiRDB file

2 SQL_RDAREAS Information such as the RDAREA
names, their definition information,
the RDAREA types, the number of
stored tables, and number of indexes

One RDAREA

3 SQL_TABLES Owner name and table name of each
table (including dictionary tables) in
the database

One table

4 SQL_COLUMNS Column definition information,
such as the column names and their
data types

One column

5 SQL_INDEXES Owner name and index name of
each index (including dictionary
tables) in the database

One index

6 SQL_USERS Execution privileges and
authorization identifiers of users
authorized to access the database

One user

7 SQL_RDAREA_PRIVILEGES Grants of RDAREA usage
privileges

Use of one RDAREA
for one authorization
identifier

8 SQL_TABLE_PRIVILEGES Grants of table access privileges Access to one table
for one authorization
identifier

G. Data Dictionary Table Retrieval

2160

9 SQL_VIEW_TABLE_USAGE Names of base tables used for view
tables

One view table

10 SQL_VIEWS View definition information One view table

11 SQL_DIV_TABLE Table partitioning information
(partitioning conditions specified in
CREATE TABLE and names of
RDAREAs that store partitioned
tables)

One table (described
by n rows)

12 SQL_INDEX_COLINF Names of columns to which indexes
are assigned

One index (described
by n rows)

13 SQL_DIV_INDEX Index partitioning information
(storage RDAREA names)

One index (described
by n rows)

14 SQL_DIV_COLUMN BLOB-type column partitioning
information (storage RDAREA
names specified when CREATE
TABLE was executed)

One column
(described by n rows)

15 SQL_ROUTINES Routine definition information One routine
(described by one
row)

16 SQL_ROUTINE_RESOURCES Information about resources used in
a routine

One routine
(described by n rows)

17 SQL_ROUTINE_PARAMS Information about parameter
definitions in a routine

One routine
(described by n rows)

18 SQL_TABLE_STATISTICS Table statistical information One table

19 SQL_COLUMN_STATISTICS Column statistical information One column

20 SQL_INDEX_STATISTICS Index statistical information One index

21 SQL_DATATYPES Information about user-defined
types

One user-defined
type

22 SQL_DATATYPE_DESCRIPTORS Information about user-defined type
configuration attributes

One attribute

23 SQL_TABLE_RESOURCES Information about resources used in
a table

One resource

24 SQL_PLUGINS Plug-in information One plug-in

25 SQL_PLUGIN_ROUTINES Information about routines in a
plug-in

One plug-in routine

Number Table name Description Row contents

G. Data Dictionary Table Retrieval

2161

26 SQL_PLUGIN_ROUTINE_PARAMS Information about parameters in a
plug-in routine

One set of parameter
information

27 SQL_INDEX_TYPES Information about index types One index type

28 SQL_INDEX_RESOURCES Information about resources used in
an index

One set of resource
information

29 SQL_INDEX_DATATYPE Information about target items in an
index

One set of target item
information (for one
level)

30 SQL_INDEX_FUNCTION Information about abstract data type
functions used in an index

One set of abstract
data function
information

31 SQL_TYPE_RESOURCES Information about resources used in
a user-defined type

One set of resource
information

32 SQL_INDEX_TYPE_FUNCTION Information about abstract data type
functions used in an index that
defines index types

One index type
(described by n rows)

33 SQL_EXCEPT Information about exclusion key
values in an index

Exclusion key
groups in one index
(described by n rows)

34 SQL_IOS_GENERATIONS For UNIX:
Generation information in the
HiRDB file system areas when the
inner replica facility is used
For Windows:
Used by the system (table is empty)

For UNIX:
One row per HiRDB
file system area
For Windows:
None

35 SQL_TRIGGERS Information on the trigger that is
inside the schema

One trigger in one
row

36 SQL_TRIGGER_COLUMNS UPDATE trigger event column list
information

One piece of event
column information
in one row

37 SQL_TRIGGER_DEF_SOURCE Trigger definition source
information

One piece of trigger
definition source
information in n rows

38 SQL_TRIGGER_USAGE Resource information referenced
inside a trigger action condition

One resource name
being referenced
inside the trigger
action condition in
one row

Number Table name Description Row contents

G. Data Dictionary Table Retrieval

2162

39 SQL_PARTKEY Partitioning key information of a
matrix-partitioned table

One piece of
partitioning key
information in one
row

40 SQL_PARTKEY_DIVISION Partitioning condition value
information of a matrix-partitioned
table

One piece of
partitioning
condition value
information in one
row

41 SQL_AUDITS Information on the monitoring
target

One object or
information on one
event for one user in
one row

42 SQL_REFERENTIAL_CONSTRAINT
S

Referential constraint conditions Information on one
constraint in one row

43 SQL_KEYCOLUMN_USAGE Information on the columns that
make up the external keys

Information on one
column in one row

44 SQL_TABLE_CONSTRAINTS Information on the integrity
constraints in a schema

Information on one
integrity constraint in
one row

45 SQL_CHECKS Check constraint information Information on one
check constraint in
one row

46 SQL_CHECK_COLUMNS Information on columns used by a
check constraint

Information on one
column using one
check constraint in
one row

47 SQL_DIV_TYPE Partitioning key information for
matrix partitioning tables that
combine key range partitioning and
hash partitioning

Information on one
partitioning key in
one row

48 SQL_SYSPARAMS Restriction information on the
number of consecutive certification
failures and the password character
string

Information on one
setting item in one
row, and restriction
information on one
number of
consecutive
certification failures
or one password
character string in n
rows

Number Table name Description Row contents

G. Data Dictionary Table Retrieval

2163

G.1 Examples of SQL statements for retrieval
Examples of SQL statements that retrieve data dictionary tables are shown as follows:
For details about the SQL statements, see the HiRDB Version 9 SQL Reference manual.

The types of information that a particular user can retrieve depend on the setting of the
data dictionary referencing authorization. For details about how to set data dictionary
referencing authorizations, see the HiRDB Version 9 System Operation Guide.

After a dictionary table is retrieved, immediately issue a COMMIT statement or specify
WITHOUT LOCK NOWAIT as shown in the retrieval example.

Example 1
Retrieve the server names for the RDAREAs that exist in the HiRDB system, the
HiRDB filenames, and the names of the RDAREAs to which the HiRDB files
belong:
SELECT X_SERVER_NAME, PHYSICAL_FILE_NAME, X.RDAREA_NAME
 FROM MASTER.SQL_PHYSICAL_FILES X, MASTER.SQL_RDAREAS Y
 WHERE X.RDAREA_NAME=Y.RDAREA_NAME
 ORDER BY SERVER_NAME
 WITHOUT LOCK NOWAIT

Example 2
From the column definition information for tables owned by a user, retrieve the
names of the tables that contain the columns, the column names, the data types,
and the column data lengths:
SELECT TABLE_NAME, COLUMN_NAME, DATA_TYPE, DATA_LENGTH
 FROM MASTER.SQL_COLUMNS
 WHERE TABLE_SCHEMA=USER*
 ORDER BY TABLE_NAME
 WITHOUT LOCK NOWAIT

Example 3
From the index definition information for tables owned by a user, retrieve the
names of the tables that contain the index, the index names, and the percentages
of unused space per page:
SELECT TABLE_NAME, INDEX_NAME, FREE_AREA

49 SQL_INDEX_XMLINF Information on the component
substructure paths of a substructure
index

Information on one
index in one row

50 SQL_SEQUENCES Information on the sequence
generator

Information on one
sequence generator
in one row

Number Table name Description Row contents

G. Data Dictionary Table Retrieval

2164

 FROM MASTER.SQL_INDEXES
 WHERE TABLE_SCHEMA=USER*
 ORDER BY TABLE_NAME
 WITHOUT LOCK NOWAIT

Example 4
Retrieve the tables that a user can access and the types of access privileges to
those tables (SELECT, INSERT, DELETE, and UPDATE privileges):
SELECT TABLE_NAME, SELECT_PRIVILEGE, INSERT_PRIVILEGE,
 DELETE_PRIVILEGE, UPDATE_PRIVILEGE
 FROM MASTER.SQL_TABLE_PRIVILEGES
 WHERE GRANTEE=USER* OR GRANTEE='PUBLIC'
 WITHOUT LOCK NOWAIT

Example 5
Retrieve the number of RDAREAs that become targets for group specification by
a command (RDAREAs beginning with RD1):
SELECT COUNT(*) FROM MASTER.SQL_RDAREAS
 WHERE RDAREA_TYPE='U' AND
 RDAREA_NAME LIKE 'RD1%'
 WITHOUT LOCK NOWAIT

Example 6
Retrieve the names of RDAREAs that become targets for group specification by
a command (RDAREAs beginning with RD1):
SELECT RDAREA_NAME FROM MASTER.SQL_RDAREAS
 WHERE RDAREA_TYPE='U' AND
 RDAREA_NAME LIKE 'RD1%' ORDER BY RDAREA_NAME
 WITHOUT LOCK NOWAIT

Example 7
Retrieve the name of the RDAREA that stores a non-partitioning table owned by
a user (table named T1):
SELECT X.RDAREA_NAME
 FROM MASTER.SQL_RDAREAS X, MASTER.SQL_TABLES Y
 WHERE Y.TABLE_SCHEMA=USER*
 AND Y.TABLE_NAME='T1'
 AND X.RDAREA_NAME=Y.RDAREA_NAME

* USER refers to a variable that stores a value indicating the executing user's
authorization identifier. For details about authorization identifiers, see the HiRDB
Version 9 SQL Reference manual.

Example 8
Retrieve the name of the RDAREA that stores objects for a stored procedure or

G. Data Dictionary Table Retrieval

2165

stored function, to be used during execution to re-initialize a data dictionary LOB
RDAREA.
SELECT RDAREA_NAME FROM MASTER.SQL_DIV_COLUMN
 WHERE TABLE_SCHEMA='HiRDB'
 AND TABLE_NAME='SQL_ROUTINES'
 AND COLUMN_NAME='ROUTINE_OBJECT'
 WITHOUT LOCK NOWAIT

Note

When a data dictionary LOB RDAREA is reinitialized, all its stored SQL
objects must be re-created.

Example 9
Retrieve the name of the stored procedure or stored function that has an invalid
SQL object or an invalid index:
SELECT ROUTINE_SCHEMA,ROUTINE_NAME
 FROM MASTER.SQL_ROUTINES
 WHERE ROUTINE_VALID='N'
 OR INDEX_VALID='N'
 WITHOUT LOCK NOWAIT

Example 10
Retrieve the data types of the arguments that are actually used when embedded
variables are used in arguments of the user-defined function FUNC1:
SELECT PARAMETER_NAME,DATA_TYPE,UDT_OWNER,UDT_NAME,
PARAMETER_NO
 FROM MASTER.SQL_ROUTINE_PARAMS
 WHERE ROUTINE_SCHEMA=USER AND ROUTINE_NAME='FUNC1'
 ORDER BY PARAMETER_NO
 WITHOUT LOCK NOWAIT

Example 11
To reorganize all the tables owned by user USERA, retrieve the RDAREAs
containing any of those tables (the RDAREAs that need to be placed in shutdown
status):

Non-partitioned table:
SELECT DISTINCT(RDAREA_NAME) FROM MASTER.SQL_TABLES
 WHERE TABLE_SCHEMA=USERA AND RDAREA_NAME IS NOT NULL
 WITHOUT LOCK NOWAIT

Partitioned table:
SELECT DISTINCT(RDAREA_NAME) FROM MASTER.SQL_DIV_TABLE
 WHERE TABLE_SCHEMA=USERA
 WITHOUT LOCK NOWAIT

G. Data Dictionary Table Retrieval

2166

Eliminate any duplicated RDAREA names from the result, then place all the
resulting RDAREAs in shutdown status.

G.2 Data dictionary table details
The definition information required for referencing of each data dictionary table is
shown as follows:

Each dictionary table has a column with the VARCHAR or MVARCHAR data type. This is
the dictionary datatype operand for the database initialization utility or database
structure modification utility, and must be set to either VARCHAR or MVARCHAR.

(1) SQL_PHYSICAL_FILES table
This table manages HiRDB file information (relationships between HiRDB files and
RDAREAs). (Each row describes information on one HiRDB file.)

The following table shows the contents of the SQL_PHYSICAL_FILES table.

Table G-2: SQL_PHYSICAL_FILES table contents

(2) SQL_RDAREAS table
This table manages RDAREA definition information. (Each row describes
information on one RDAREA.)

The following table shows the contents of the SQL_RDAREAS table.

Table G-3: SQL_RDAREAS table contents

Number Column name Data type Contents

1 SERVER_NAME CHAR(8) Server name (back-end server name or dictionary
server name)

2 PHYSICAL_FILE_NAME VARCHAR(167) HiRDB filename

3 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the RDAREA to which HiRDB files are
allocated

4 INITIAL_SIZE INTEGER Number of HiRDB file segments

5 PHYSICAL_FILE_ID INTEGER Physical file ID

Number Column name Data type Contents

1 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

RDAREA name

2 SERVER_NAME CHAR(8) Server name (back-end server name or dictionary
server name)

G. Data Dictionary Table Retrieval

2167

3 RDAREA_TYPE CHAR(1) RDAREA type:
M: Master directory RDAREA
D: Data directory RDAREA
S: Data dictionary RDAREA
W: Work RDAREA
U: User RDAREA
P: Data dictionary LOB RDAREA
L: User LOB RDAREA
R: Registry RDAREA
K: Registry LOB RDAREA
A: list RDAREA

4 PAGE_SIZE INTEGER Page length (in bytes)

5 SEGMENT_SIZE INTEGER Segment size (in pages)

6 FILE_COUNT INTEGER Number of HiRDB files

7 N_TABLE INTEGER Number of tables stored (defined number) (initial
value is 0). If tables and sequence generators are
both defined, the maximum number of tables and
sequence generators combined is 500.

8 N_INDEX INTEGER Number of indexes stored (defined number)
(initial value is 0)

9 RDAREA_ID INTEGER RDAREA ID

10 REBALANCE_TABLE CHAR(1) Rebalance table status:
Y: A rebalance table is used.
Null value: No rebalance table is used.

11 MAX_ENTRIES INTEGER Maximum number of entries in the list
NULL for any RDAREA other than the list
RDAREA or if max entries is not specified

12 EXTENSION CHAR(1) Specification of RDAREA expansion:
U: Specified.
N: Not specified.

13 EXTENSION_SEGMENT_S
IZE

INTEGER Number of extension segments
NULL if RDAREA expansion is not specified

14 ORIGINAL_RDAREA_NAM
E

VARCHAR(30) or
MVARCHAR(30)

For UNIX:
Name of the original RDAREA
Null value if the RDAREA is not a replica
RDAREA.
For Windows:
Used by the system (no contents)

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2168

(3) SQL_TABLES table
This table manages information of the tables found in schemas. (Each row describes
information on one table.)

The rows of the SQL_TABLES table are created during table definition, and row
deletion is performed during table deletion.

15 ORIGINAL_RDAREA_ID INTEGER For UNIX:
ID of the original RDAREA
Null value if the RDAREA is not a replica
RDAREA.
For Windows:
Used by the system (no contents)

16 GENERATION_NUMBER SMALLINT For UNIX:
Generation number
Null value if the RDAREA is not an original
RDAREA or replica RDAREA.
For Windows:
Used by the system (no contents)

17 REPLICA_COUNT SMALLINT For UNIX:
Replica counter
Null value if the RDAREA is not an original
RDAREA or if the RDAREA has lost its replica
RDAREA.
For Windows:
Used by the system (no contents)

18 REPLICA_STATUS CHAR(1) For UNIX:
Replica status
C: Current RDAREA
S: Sub-RDAREA
Null value if the RDAREA is not an original
RDAREA or replica RDAREA.
For Windows:
Used by the system (no contents)

19 SHARED CHAR(1) Shared RDAREA
S: Shared RDAREA
Null value: Unshared RDAREA

20 N_SEQUENCE INT Number of stored sequence generators.
If the number of sequence generators is 0, the null
value is set. If tables and sequence generators are
both defined, the maximum number of tables and
sequence generators combined is 500.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2169

The following table shows the contents of the SQL_TABLES table.

Table G-4: SQL_TABLES table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner or PUBLIC for a public view table

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 TABLE_TYPE CHAR(16) Table type
BASE TABLE: Base table
VIEW: View table
READ ONLY VIEW: Read-only view table

4 TABLE_ID INTEGER Table ID
Indicates an internal ID that is unique within the
system.

5 N_COLS SMALLINT Number of structure columns

6 N_INDEX SMALLINT Number of defined indexes
Total number of the following defined indexes:
• B-tree indexes (including primary keys,

cluster keys, and substructure indexes)
• Plug-in indexes
(initial value is 0)

7 DCOLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Partitioned column name (column name of the
first partitioning key for multiple column
partitioning or matrix partitioning)
Null value for a non-partitioned table and for a
view table.

8 VDEFLEN INTEGER Length of view analysis information
Null value for a base table.

9 FREE_AREA SMALLINT Percentage of unused space in each page
0 for a view table.

10 FREE_PAGE SMALLINT Rate (%) of free pages (unused pages) inside a
segment
0 for a view table.

11 TABLE_COMMENT VARCHAR(255)
or
MVARCHAR(255)

Comment (initial value is NULL)

12 CREATE_TIME CHAR(14) Table creation date and time
(YYYYMMDDHHMMSS)

G. Data Dictionary Table Retrieval

2170

13 ENQ_RESOURCE_

SIZE

CHAR(1) Locked resource unit
P: In page units
Null value for locking in units of rows and for a
view table.

14 DEFAULT_COLUMN SMALLINT Number of specified columns with the default
value (DEFAULT clause or WITH DEFAULT).
Null value for a view table and for a dictionary
table.

15 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of storage RDAREA for non-partitioned
table
Null value for a partitioned table and for a view
table.

16 DEFINITION_CACHE_

SIZE

INTEGER Table definition cache size (in bytes) (Null value
for dictionary tables)

17 STATISTICS_CACHE_

SIZE

INTEGER Statistical information cache size (in bytes) (The
initial value is a null value.)

18 N_RDAREA INTEGER Number of RDAREAs for storage of table (1 to
1,024)
0 for a view table.

19 FIX_TABLE CHAR(1) FIX specification
F: Specified
N: Not specified

20 VIEW_LEVEL INTEGER Number of nesting levels in view definition
Null value for a base table.

21 N_BASETABLE INTEGER Number of base tables used for a view table
Null value for a base table.

22 ROW_LENGTH INTEGER Row length of a FIX table
Null value for a non-FIX table and for a view
table.

23 N_NOTNULL INTEGER Number of NOT NULL values
Null value for a view table and for a dictionary
table.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2171

24 COMPRESS_TYPE VARCHAR(8) Data compression information:
• Compression type (first byte)

S: Data compression (SUPPRESS)
• Suppressed data type (byte 2 and beyond):

D: DECIMAL
Null value for a table without SUPPRESS
specification, for a view table, and for a
dictionary table.

25 DIV_TYPE CHAR(1) Partitioning type
P: Boundary value partitioning and matrix
partitioning
H: Flexible hash partitioning
F: FIX hash partitioning
M: Hash mixed matrix partitioning
Null value for a non-partitioned table, for a key
range partitioning table, and for a view table.

26 HASH_NAME VARCHAR(8) or
MVARCHAR(8)

Hash function name
"HASH1"
"HASH2"
"HASH3"
"HASH4"
"HASH5"
"HASH6"
"HASH0"
"HASHA"
"HASHB"
"HASHC"
"HASHD"
"HASHE"
"HASHF"
Null value for a table without a HASH
specification, for a matrix partitioning table, for a
view table, and for a data dictionary table.

27 N_LOB_COLUMN SMALLINT Number of columns with BLOB-data type
Null value for a view table and for a table without
BLOB columns.

28 N_LOB_RDAREA INTEGER Number of user LOB RDAREAs for a table
Null value for a view table, for a table without
BLOB columns, and for a table without an abstract
data type containing BLOB attributes.

29 CHANGE_TIME CHAR(14) Time table definition was changed
(YYYYMMDDHHMMSS)
Null value when a table is created initially.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2172

30 N_DIV_COLUMN SMALLINT Number of partitioning key columns (216)
Null value for a non-partitioned table, for a table
with single column partitioning keys specified,
and for a view table.

31 COLUMN_SUP_INF CHAR(1) Whether or not data suppression is specified for
each column:
Y: Specified
Null value: No specification
Null value for a table for which
column-by-column data suppression is not
specified and for a view table.

32 N_ADT_COLUMN SMALLINT Number of columns with an abstract data type
Null value for a table in which an abstract data
type is not defined.

33 WITHOUT_

ROLLBACK

CHAR(1) Whether or not a WITHOUT ROLLBACK is
specified
'Y': Specified
Null value: No specification
Null value for a table for which WITHOUT
ROLLBACK is not defined and for a view table.

34 N_EXCEPT_VALUES INTEGER Number of exclusion key values in an index
Null value for an index without exceptional value
specifications and for a view table.

35 EXCEPT_VALUES_LEN INTEGER Total length of exclusion key values in an index
Null value for an index without exceptional value
specifications and for a view table.

36 REBALANCE CHAR(1) Whether or not the rebalancing facility is used:
Y: Used.
Null value for a table that does not use the
rebalancing facility and for a view table.

37 INDEXLOCK_OPT CHAR(1) Information used by the system

38 N_PK_COLUMNS SMALLINT Number of columns for the primary key
Null value if no primary key is defined.

39 FOREIGN_SERVER_

NAME

VARCHAR(30) or
MVARCHAR(30)

Information used by the system

40 FOREIGN_SERVER_

ID

INTEGER Information used by the system

41 BASE_FOREIGN_

TABLE_SCHEMA

VARCHAR(30) or
MVARCHAR(30)

Information used by the system

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2173

42 BASE_FOREIGN_

TABLE_NAME

VARCHAR(30) or
MVARCHAR(30)

Information used by the system

43 N_RDAREA_BEFORE_

REBALANCE

INTEGER Number of partitioning information items before
execution of ALTER TABLE ADD RDAREA (number
of rows in SQL_DIV_TABLE table)#1

Null value if rebalancing is started, for a table
that is not a rebalancing table, and for a view
table.

44 ON_REBALANCE CHAR(1) Rebalancing status:
Y: Under execution
Null value: Execution not ongoing
Becomes Y after rebalancing has started, and
becomes a null value when rebalancing is
normally terminated.

45 SEGMENT_REUSE CHAR(1) Whether or not SEGMENT REUSE is specified
Y: Specified
Null value: Not specified
Null value if NO is specified for SEGMENT REUSE
(including when its specification is omitted) and
for a view table.

46 N_REUSE_SEGMENT INTEGER Number of segments that start reusing free
areas.#2

Null value if NO is specified for SEGMENT REUSE
(including when its specification is omitted) and
for a view table.

47 REUSE_SEGMENT_SIZE CHAR(10) Specified number of segments that start reusing
free areas.#3

Null value if a value other than a segment count
is specified for SEGMENT REUSE and for a view
table.

48 REUSE_SEGMENT_SIZE_
TYPE

CHAR(1) Unit for the number of segments that start reusing
free areas.
K: Specifies K.
M: Specifies M.
Null value: Not specified.
Null value if a value other than a segment count
is specified for SEGMENT REUSE and for a view
table.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2174

49 INSERT_ONLY CHAR(1) Whether or not the falsification prevention
facility is specified
Y: Specified
Null value: Not specified
Null value if the falsification prevention facility
is not used and for a view table.

50 DELETE_PROHIBIT_TER
M_TYPE

CHAR(1) Type of deletion prevented duration
I: Date interval data
Y: Labeled duration (YEAR)
M: Labeled duration (MONTH)
D: Labeled duration (DAY)
Null value: Not specified
Null value if the falsification prevention facility
is not used and for a view table.

51 DELETE_PROHIBIT_TER
M

CHAR(10) Specification value for the deletion prevented
duration#4

Null value if the falsification prevention facility
is not used, if no deletion prevented duration is
specified, and for a view table.

52 SYSGEN_COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the insert history maintenance column
Null value if the falsification prevention facility
is not used, if no deletion prevented duration is
specified, and for a view table.

53 N_TRIGGER INTEGER Number of defined triggers
Null value if no trigger is defined, and for a view
table or a data dictionary table.

54 N_DIV_DIMENSION SMALLINT Number of division dimensions
Null value for a table that is not a
matrix-partitioned table.

55 AUDIT_TABLE_OPTION CHAR(1) Value that specifies whether this table is an audit
trail table.
Y: Audit trail table
V: View table based on an audit trail table
Null value for a table that is not an audit trail table
or a view table based on an audit trail table.

56 N_PARENTS SMALLINT Number of foreign keys
Null value for a table without a defined
referential constraint and for a view table.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2175

57 N_CHILDREN SMALLINT Number of foreign keys that reference the main
keys of this table
Null value for an unreferenced table that is not a
referenced table and for a view table.

58 N_FK_COLUMNS SMALLINT Total number of foreign key columns
Null value for a table without defined referential
constraints and for a view table.

59 CHECK_PEND CHAR(1) Type of check pending status for a referential
constraint
C: Pending status
Null value: Non-pending status
Null value for a view table.

60 N_CHECK INTEGER Number of defined check constraints
Null value for a table without defined referential
constraints and for a view table.

61 N_CHECK_LIMIT INTEGER Check constraint limit#5

Null value for a table without defined referential
constraints and for a view table.

62 CHECK_PEND2 CHAR(1) Type of check pending status for a check
constraint
C: Pending status
Null value: Non-pending status
Null value for a view table.

63 CHK_SOURCE_LEN INTEGER Total length of search conditions of a check
constraint
Null value for a table without defined referential
constraints and for a view table.

64 SHARED CHAR(1) Shared table specification
S: Shared table
Null value: Unshared table

65 CHANGE_TIME_INSERT_
ONLY

CHAR(14) Update date and time of a falsification prevention
table (YYYYMMDDHHMMSS)
Null value when a table is defined and for a view
table.

66 N_UPDATE_COLUMN SMALLINT Number of columns for which an updatable
column attribute is specified
Null value for a table without a specified
updatable column attribute and for a view table.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2176

#1: If an RDAREA is added to a rebalancing table by using ALTER TABLE ADD
RDAREA, the number of partitioning information items (number of rows in the
SQL_DIV_TABLE table) existing before the RDAREA was added is stored.

Once the number of partitioning information items has been set, it will not be updated
even when an RDAREA is added by using ALTER TABLE ADD RDAREA until the

67 TABLE_CREATOR VARCHAR(30) or
MVARCHAR(30)

Creator of a public view table
Null value for a table that is not a public view
table.

68 N_CONSTRUCTOR_COLUM
N

SMALLINT Used by the system; always the null value.

69 CONSTRUCTOR_TYPE CHAR(1) Used by the system; always the null value.

70 NONE_DFLTCST_CLMCOU
NT

SMALLINT Number of columns for which non-default
character sets are specified
Null value if no character set is specified.

71 CHARSET_SPECCOUNT SMALLINT Number of columns for which character sets are
specified
Null value if no character set is specified.

72 N_PARTIAL_STRUCTURE
_INDEXES

SMALLINT Number of substructure indexes defined
Null value if no substructure index is defined and
for a view table.

73 MEMORY_TABLE CHAR(1) Information on table expansion to the memory
database:
A: Waiting to be expanded to the memory
database
C: Expansion to the memory database has been
completed
D: Waiting to be released from expansion to the
memory database
Null value: Not expanded to the memory
database
Null value for a table that is not expanded to the
memory database and for a view table.

74 DBAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of database area for data
Null value for a table that is not expanded to the
memory database and for a view table.

75 XDS_NAME CHAR(8) XDS name of the storage for a table to be
expanded to the memory database#6

Null value for a table that is not expanded to the
memory database and for a view table.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2177

rebalancing operation is completed by the rebalancing utility (pdrbal). When the
rebalancing operation is completed, the null value is set.

#2: When a segment count unit is specified, the following values are stored:

When K is specified: Specified value x 1,024

When M is specified: Specified value x 1,0242

#3: Values are stored right-justified. Note that the segment count units (K and M) are
not included.

#4: The following is stored depending on the type of deletion prevented duration:

When 'I' is specified: +YYYYMMDD. character format

When 'Y', 'M', or 'D' is specified: Right-justified character format

#5: The check constraint limit is the sum of the total number of logical operators
specified in the search conditions of the check constraints (number of AND and OR
specifications, excluding the AND and OR specifications in WHEN search conditions of
CASE expressions) and the total number of check constraints.

Example

If a table is defined as follows, the check constraint limit is 4 (the total
number of operators (AND and OR) is 2 and the total number of check
constraints is 2):

CREATE TABLE "STOCK"
 ("GNO" CHAR(5),"GNAME" CHAR(8),"PRICE" INTEGER,
 "QUANTITY" INTEGER,"STOCKING DATE" DATE)
 CHECK("QUANTITY " 100 AND "QUANTITY" 1000)
 CONSTRAINT "QUANTITY RULE"
 CHECK("STOCKING DATE"=DATE('1992-08-21')
 OR "STOCKING DATE"=DATE('1992-09-21'))
 CONSTRAINT "STOCKING DATE RULE"

#6: If the left-justified length is less than 8 characters, the column is padded with
spaces.

(4) SQL_COLUMNS table
This table manages column definition information. (Each row describes information
on one column.)

Rows of the SQL_COLUMNS table are created during table definition, and row deletion
(including schema deletion) is performed during table deletion.

The following table shows the contents of the SQL_COLUMNS table.

G. Data Dictionary Table Retrieval

2178

Table G-5: SQL_COLUMNS table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner or PUBLIC for a public view table

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the column

3 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name

4 TABLE_ID INTEGER Table ID

5 COLUMN_ID SMALLINT Column ID (integer beginning with 1; values less
than 1 are not allowed)

6 DATA_TYPE CHAR(24) Data type#1

7 DATA_LENGTH CHAR(7) Column data length is stored right justified in
character format (spaces are used for leading
zeros)

8 IS_NULLABLE CHAR(3) Column null information:
YES: Null value allowed
NO: Null values not allowed

9 DIVIDED_KEY CHAR(1) Partitioning key:
Y: Partitioning key
Empty: Not a partitioning key

10 CLUSTER_KEY CHAR(1) Cluster key:
Y: Column used for cluster key
Empty: Not a column used for cluster key

11 COLUMN_COMMENT VARCHAR(255)
or
MVARCHAR(255)

Comment (The initial value is a null value.)

12 BASE_TYPE CHAR(1) Base column type#7:
C: Column
F: Function, operation
E: Other
Null value for a base table.

13 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of base table that contains base column
Null value for a base table.

14 BASE_TABLE VARCHAR(30) or
MVARCHAR(30)

Name of base table that contains base column
Null value for a base table.

G. Data Dictionary Table Retrieval

2179

15 BASE_COLUMN VARCHAR(30) or
MVARCHAR(30)

Base column name
Null value for a base table.

16 DEFAULT_COLUMN CHAR(1) WITH DEFAULT specification
Y: Specified
N: Not specified
Null value for view tables

17 COLUMN_OFFSET SMALLINT Column offset
Null value for a non-FIX table and for a view
table.

18 HASH_KEY CHAR(1) Hash key:
Y: Hash key
Empty: Other than hash key

19 RECOVERY_TYPE CHAR(1) RECOVERY specification:
A: ALL
P: PARTIAL
N: NO
Null value if the data type is not BLOB.#8

20 LOB_LENGTH CHAR(20) Column length specification stored
right-justified in character format (spaces are
used for leading zeros)
Null value if the length is not for BLOB or
BINARY.#8

21 LOB_LENGTH_TYPE CHAR(1) Column length type (in column lengths):
K: K specified
M: M specified
G: G specified
Empty: Default
Null value if the data type is not BLOB.#8

22 DATA_TYPE_CODE SMALLINT Data type code#2

23 DATA_LENGTH_CODE SMALLINT Column data length code#3

24 LOB_LENGTH_CODE CHAR(8) BLOB column data length
code#4, #5

Null value if the data type is not BLOB or BINARY.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2180

25 DIVCOL_ORDER SMALLINT Partitioning key specification order (0-16)
Unique values within the applicable table,
beginning with 1.
Partitioning key specification order +1. 0 is
specified for a column that is not a partitioning
key.
Null value for a non-partitioned table, for a table
with single column partitioning keys specified,
and for a view table.

26 SUPPRESS_INF CHAR(1) Whether or not data suppression is specified:
Y: Specified
Null value: No specification
Null value for a table without the data
suppression specification and for a view table.

27 PLUGIN_

DESCRIPTION

VARCHAR(255) Plug-in option contents
Null value if no PLUGIN clause is specified.

28 UDT_OWNER VARCHAR(30) Owner of a user-defined type
Null value if the type is not user-defined.

29 UDT_NAME VARCHAR(30) Name of the user-defined type
Null value if the type is not user-defined.

30 UDT_TYPE_ID INTEGER User-defined type ID
Null value if the type is not user-defined.

31 MAX_ELM SMALLINT Maximum number of repetition column elements
Null value if the column is not a repetition
column.

32 NO_SPLIT CHAR(1) Whether or not NO SPLIT is specified:
Y: Specified
Null value: No specification
Null value for a view table and for when ALTER
TABLE CHANGE SPLIT is executed.

33 PRIMARY_KEY CHAR(1) Primary key type
Y: Primary key
Empty: Other than the primary key

34 COLLATING_SEQUENCE CHAR(1) Information used by the system

35 TRAILING_SPACE CHAR(1) Information used by the system

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2181

36 SYSTEM_GENERATED CHAR(1) Whether or not SYSTEM GENERATED is specified
Y: Specified
Null value: No specification
Null value if SYSTEM GENERATED is not specified
and for a view table.

37 DEFAULT_CLAUSE CHAR(1) Whether or not the DEFAULT clause is specified
Y: Specified
Null value: No specification
Null value if the DEFAULT clause is not specified
and for a view table.

38 DEFAULT_VALUE VARCHAR(32000
) or
MVARCHAR(3200

0)#6

Default value (character format) specified for the
DEFAULT clause.#9

Null value if the DEFAULT clause is not specified
and for a view table.

39 DEFAULT_VALUE2 VARCHAR(32000
) or
MVARCHAR(3200

0)#6

Default value specified for the DEFAULT clause
(stores the 32,001st - 64,000th byte values in the
character format when a literal is specified).#9

Null value if a literal is not specified, if the
DEFAULT clause is not specified, and for a view
table.

40 DEFAULT_VALUE3 VARCHAR(3) or
MVARCHAR(3)

Default value specified for the DEFAULT clause
(stores the 64,000th byte value and beyond in the
character format when a literal is specified).#9

Null value if a literal is not specified, if the
DEFAULT clause is not specified, and for a view
table.

41 CHECK_COLUMN CHAR(1) Check constraint specification
Y: Specified
Null value for a table in which a check constraint
is not defined and for a view table.

42 FOREIGN_KEY CHAR(1) Foreign key type
Y: Foreign key configuration table
Null value: Non-foreign key configuration table

43 UPDATABLE CHAR(1) Updatable column attribute
U: Can be updated (UPDATE)
N: Can be updated only once from a null value to
a non-null value (UPDATE ONLY FROM NULL)
Null value for a table without a specified
updatable column attribute and for a view table.

44 CONSTRUCTOR_TYPE CHAR(1) Used by the system; always the null value.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2182

#1: The stored value depends on the data type, as follows:

45 CHARSET_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Character set owner (always MASTER).
Null value if no character set is specified.

46 CHARSET_NAME VARCHAR(30) or
MVARCHAR(30)

Character set name:
EBCDIK: EBCDIK is specified for the character
set.
UTF16: UTF16 is specified for the character set.
Null value if no character set is specified.

47 CHARSET_ID INTEGER Character set ID.
Null value if no character set is specified.
For details about the character set IDs, see the
HiRDB Version 9 Installation and Design Guide.

Data type Value to be stored

INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL DECIMAL

FLOAT FLOAT

DOUBLE PRECISION

SMALLFLT SMALLFLT

REAL

CHAR CHAR

VARCHAR VARCHAR

NCHAR NCHAR

NVARCHAR NVARCHAR

MCHAR MCHAR

MVARCHAR MVARCHAR

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

INTERVAL YEAR TO DAY INTERVAL YEAR TO DAY

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2183

#2: The stored value depends on the data type, as follows:

INTERVAL HOUR TO SECOND INTERVAL HOUR TO SECOND

BINARY BINARY

BLOB BLOB

Abstract data type ADT

BOOLEAN BOOLEAN

Data type Value to be stored

When the null value can be
specified

When the null value
cannot be specified

INTEGER F1 F0

SMALLINT F5 F4

DECIMAL E5 E4

FLOAT E1 E0

DOUBLE PRECISION

SMALLFLT E3 E2

REAL

CHAR C5 C4

VARCHAR C1 C0

NCHAR B5 B4

NVARCHAR B1 B0

MCHAR A5 A4

MVARCHAR A1 A0

DATE 71 70

TIME 79 78

TIMESTAMP 7D 7C

INTERVAL YEAR TO DAY 65 64

Data type Value to be stored

G. Data Dictionary Table Retrieval

2184

#3: For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB, BINARY, and abstract data types.

#4: The specified column length is stored in binary format in 8 bytes divided into
4-byte segments.

#5: SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.

#6: Specifies NO SPLIT.

#7: E (Other) is set when the selection formula is one of the following:

• Scalar operations (four arithmetic operations, data operation, time operation,
CASE expression, and scalar functions)

• Literal

• CAST specification

• Function invocation (excluding plug-in functions)

• USER

• CURRENT_DATE

• CURRENT_TIME

• CURRENT_TIMESTAMP

#8: The value listed below is set for columns of a view table when a function call is
specified and its resulting data type is BLOB. For this reason, the resulting format might
differ from the format specified when the function was defined.

• NULL is set in a RECOVERY_TYPE column.

INTERVAL HOUR TO SECOND 6F 6E

BINARY 91 90

BLOB 93 92

Abstract data type 83 82

BOOLEAN 21 20

Data type Value to be stored

When the null value can be
specified

When the null value
cannot be specified

G. Data Dictionary Table Retrieval

2185

• An exact multiple of the largest unit (K, M, or G) is set in a LOB_LENGTH
column.

• The largest divisible units are set in a LOB_LENGTH_TYPE column.

#9: The following table shows the values that are stored when the DEFAULT clause is
specified.

Table G-6: Values that are stored when the DEFAULT clause is specified

Default value Data type#1 Value stored in DEFAULT_VALUE column,
DEFAULT_VALUE2 column, or
DEFAULT_VALUE3 column#2

Data size
(in char
format)

Default value (character format)

Omitted All Null value Null value

NULL All 4 'NULL'

USER CHAR and
MCHAR

4 'USER'

VARCHAR and
MVARCHAR

CURRENT DATE DATE, or
CHAR(10)

12 'CURRENT DATE'#3

CURRENT_DATE 12 'CURRENT_DATE'

CURRENT TIME TIME or
CHAR(8)

12 'CURRENT TIME'#3

CURRENT_TIME 12 'CURRENT_TIME'

CURRENT TIMESTAMP(p)
(p: decimal seconds precision)

TIMESTAMP,
CHAR(19),
CHAR(22),
CHAR(24), or
CHAR(26)

20 'CURRENT TIMESTAMP(p)'#3, #7

CURRENT_TIMESTAMP(p)
(p: decimal seconds precision)

20 'CURRENT_TIMESTAMP(p)'#7

G. Data Dictionary Table Retrieval

2186

Lit Char
string
lit

Character string
literal
Example 1:
'HiRDB'

Example 2:
'2002-10-2

4
10:50:23.123
4'

CHAR or MCHAR def-val-size +
2#4

specified-default-value-size#4

Example: ''HiRDB''
VARCHAR or
MVARCHAR

DATE, TIME, or
TIMESTAMP

def-val-size +
2#4

specified-default-value-size#4

Example:
''2002-10-24 10:50:23.1234''

Mixed character
string literal
Example:
M'100 years'

CHAR or MCHAR def-val-size +
3#4

specified-default-value-size#4

Example: 'M'100 years''
VARCHAR or
MVARCHAR

National
character string
literal
Example:
N'software'

NCHAR or
NVARCHAR

def-val-size +
3#4

specified-default-value-size#4

Example: 'N'software'''

Hexadecimal
character string
literal
Example 1:
X'48692D43'

Example 2:
X'2002102410
502312'

CHAR,
VARCHAR,
MCHAR,
MVARCHAR, or
BINARY

def-val-size +
3#4

Example: 'X'48692D43''#4, #6

DATE, TIME, or
TIMESTAMP(p)

Example:
'X'2002102410502312''#4, #6

Default value Data type#1 Value stored in DEFAULT_VALUE column,
DEFAULT_VALUE2 column, or
DEFAULT_VALUE3 column#2

Data size
(in char
format)

Default value (character format)

G. Data Dictionary Table Retrieval

2187

The following abbreviations are used in this table:

Num: Numeric

Lit: Literal

Char: Character

def: default

val: value

: 1-byte space

#1: Excludes BLOB, the abstract data type, and BINARY of 32,001 bytes or greater.

Num
lit

Integer literal
Example: 10

INTEGER,
SMALLINT,
DECIMAL,
FLOAT, or
SMALLFLT

def-val-size#5 specified-default-value#5

Example: '10'

Floating-point
literal
Example: 15e +
3

INTEGER,
SMALLINT,
DECIMAL,
FLOAT, or
SMALLFLT

22 or 23 specified-default-value#5

Example:
'+1.500000000000000E+04'

(From the left, 1 byte for a sign, 17
bytes for the virtual number portion
(decimal literal), 1 byte for 'E', 1 byte
for a sign, 2-3 bytes for the exponential
part (power of 10))

Decimal literal
Example 1:
15.5

Example 2:
-010101.

Example 3:
00011399.

INTEGER,
SMALLINT,
DECIMAL,
FLOAT,
SMALLINT,
INTERVAL
YEAR TO DAY,
or INTERVAL
HOUR TO
SECOND

def-val-size#5 specified-default-value#5

Example 1: ' 15.5'
Example 2: '-010101.'
Example 3:
'+00020199.' for INTERVAL YEAR
TO DAY

' 00011399.' for INTEGER
(For INTERVAL YEAR TO DAY and
INTERVAL HOUR TO SECOND, the
value is corrected and a sign is added to
the front (the value is empty in all other
cases and for a positive value))

Default value Data type#1 Value stored in DEFAULT_VALUE column,
DEFAULT_VALUE2 column, or
DEFAULT_VALUE3 column#2

Data size
(in char
format)

Default value (character format)

G. Data Dictionary Table Retrieval

2188

#2: If the data size is smaller than 32,001 bytes, the DEFAULT_VALUE2 column
and DEFAULT_VALUE3 column become null values. If the data size is
32,001-64,000 bytes, the DEFAULT_VALUE3 column becomes a null value.

#3: Spaces between CURRENT and DATE, TIME, or TIMESTAMP are edited into a
single space.

#4: The specified default value is stored as a literal expression in the character
format. The data size and default value include the literal expressions M, N, X, and
apostrophe ('). Therefore, the data size range is 2-32,002 bytes including ' ' for
a character string literal, 3-32,003 bytes including M' ' and N' ' for a mixed
character string literal and a national character string literal, and 3-64,003 bytes
including X' ' for a hexadecimal character string literal.

Bytes 1-32,000 of the specified literal are stored in the DEFAULT_VALUE
column; bytes 32,001-64,000 are stored in the DEFAULT_VALUE2 column;
and bytes 64,000 and beyond are stored in the DEFAULT_VALUE3 column.

Example:

When 32,000 bytes worth of a default value is specified for the hexadecimal
character string literal (a total of 64,003 bytes including X and an apostrophe
('))

VARCHAR(32000) DEFAULT X'C1C1C1...C1C1C1'

The first 32,000 bytes X'C1C1C1... are stored in the DEFAULT_VALUE
column.

The next 32,000 bytes C1C1C1... are stored in the DEFAULT_VALUE2
column.

The remaining 3 bytes C1' are stored in the DEFAULT_VALUE3 column.

#5: The specified default value is stored as a literal expression in the character
format. Size in the character format expression is stored for the data size.

Example:

When a default value is specified for the numeric literal

INTEGER DEFAULT 100

The first 3 bytes 100 are stored in the DEFAULT_VALUE column.

Null values are stored in the DEFAULT_VALUE2 and DEFAULT_VALUE3
columns.

#6: The value is all upper-case letters (upper-case letters are stored even when
lower-caser letters are specified for the value).

#7: If the decimal precision (p) for the CURRENT_TIMESTAMP value to be
specified for the default value is omitted, p = 0 is assumed.

G. Data Dictionary Table Retrieval

2189

(5) SQL_INDEXES table
This table manages information about the following indexes (each row describes
information for one index):

• B-tree indexes (including primary keys, cluster keys, and substructure indexes)

• Plug-in indexes

The following table shows the contents of the SQL_INDEXES table.

Table G-7: SQL_INDEXES table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains an index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 INDEX_ID INTEGER Index ID

5 TABLE_ID INTEGER Table ID

6 UNIQUE_TYPE CHAR(1) Unique type:
U: Unique
N: Non-unique

7 COLUMN_COUNT SMALLINT Number of columns comprising the index

8 CREATE_TIME CHAR(14) Index creation date and time
(YYYYMMDDHHMMSS)

9 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of storage RDAREA for non-partitioned
index
Null value for a partitioning key index.

10 CLUSTER_KEY CHAR(1) Index type:
Y: Cluster index
N: Non-cluster index

11 DIV_INDEX CHAR(1) Type of first column of the columns that make up
the index:
Y: Partitioning key or plug-in index
(The same order from the first key of partitioning
keys specified in CREATE TABLE for
multiple-partitioning keys)
N: Not a partitioning key

12 FREE_AREA SMALLINT Percentage of unused space in each page (%)

G. Data Dictionary Table Retrieval

2190

13 COLUMN_ID_LIST VARCHAR(64) List of IDs of columns constituting the index#

Ascending and descending orders are indicated
with + and -. + is set to specify the descending
order of single-column indexes (other than
cluster key indexes). + is always set for plug-in
indexes.

14 SPLIT_OPT CHAR(1) Page split option:
U: Unbalanced split
Null value for an index for which unbalanced
split is not specified.

15 ATTR_COUNT SMALLINT Number of abstract data type attributes
constituting an index
Null value for CREATE INDEX (Format 1).

16 INDEX_TYPE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of an index type
Null value for CREATE INDEX (Format 1).

17 INDEX_TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of an index type
Null value for CREATE INDEX (Format 1).

18 INDEX_TYPE_ID INTEGER Index type ID
Null value for CREATE INDEX (Format 1).

19 PLUGIN_

DESCRIPTION

VARCHAR(255) Plug-in option contents
Null value if PLUGIN is not specified.

20 N_FUNCTION INTEGER Number of applied functions
Null value for CREATE INDEX (Format 1).

21 EXCEPT_VALUES CHAR(1) Whether or not exclusion key values are
specified:
Y: Specified
N: Not specified

22 N_EXCEPT_VALUES SMALLINT Number of exclusion key values in an index
Null value for indexes without exception value
specifications

23 ARRAY_TYPE CHAR(1) Type of the columns that make up the index:
M: Includes repetition columns
Null value: The columns that make up the index
do not include repetition columns.

24 LOCK_OPT CHAR(1) Information used by the system

25 PRIMARY_KEY CHAR(1) Index type
Y: Primary key index
Null value: Not a primary key index

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2191

#: SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.

(6) SQL_USERS table
This table manages information about the execution and DBA (database administration)
privileges of users. (Each row describes information on one user.)

This table can be referenced only by owners with the DBA privilege and auditors.

The following table shows the contents of the SQL_USERS table.

Table G-8: SQL_USERS table contents

26 DIV_IN_SRV CHAR(1) Whether or not a non-partitioning key index is
partitioned within the server:
Y: Partitioned within the server
Null value: Not partitioned within the server
Null value for a partitioning key index.

27 SHARED CHAR(1) Shared index specification
S: Shared index
Null value: Unshared index

28 N_PARTIAL_STRUCTURE
_PATHS

SMALLINT Number of component substructure paths of a
substructure index
Null value if no substructure index is defined.

29 USING_UNIQUE_TAG CHAR(1) Substructure path uniqueness
Y: Substructure paths are unique
NULL: Other than the above
Null value if no substructure index is defined or
when USING UNIQUE TAG is not specified.

30 DBAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Database area name for index
Null value if the table is not expanded to the
memory database.

Number Column name Data type Contents

1 USER_ID VARCHAR(30) or
MVARCHAR(30)

Name of the user with privileges

2 DBA_PRIVILEGE CHAR(1) DBA privilege:
Y: Has the DBA privilege
N: Does not have the DBA privilege

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2192

#: If the consecutive certification failure account lock is set and no connection is
established after the specified account lock period has elapsed, a null value is not set

3 SCHEMA_PRIVILEGE CHAR(1) Schema definition privilege:
Y: Has the schema definition privilege
S: Owns a schema
N: Does not have the schema definition privilege
The initial value is N.

4 CREATE_TIME CHAR(14) Schema creation date and time
(YYYYMMDDHHMMSS)
The initial value is a null value; also a null value
when DROP SCHEMA is executed.

5 AUDIT_PRIVILEGE CHAR(1) Audit privilege status:
Y: Granted
Null value: Not granted
Null value for any user who is not the auditor.

6 AUTH_ERR_COUNT SMALLINT Number of consecutive certification failures
Null value if the number of consecutive
certification failures is not specified, the number
of consecutive user certification failures is 0, or
the number of continuous certification failures
has been cleared.

7 CON_LOCK_TIME TIMESTAMP(0) Consecutive certification failure account lock
date and time
Null value if the number of consecutive
certification failures is not specified or if the
consecutive certification failure account lock
state has not occurred.#

8 PWD_LOCK_TIME TIMESTAMP(0) Password-invalid account lock date and time
Null value if a password character string limit is
not specified or if the password-invalid account
lock state has not occurred.

9 PASSWORD_TEST CHAR(1) Password limit violation type code
L: Minimum number of allowed bytes
U: Specification of authentication indicator
prohibited
S: Specification of single-character type
prohibited
Null value if the user for whom the
password-invalid account lock state occurs has
not been prechecked or if there is no violation
after the precheck.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2193

even if the consecutive certification failure account lock state has not occurred.

(7) SQL_RDAREA_PRIVILEGES table
This table manages the assignment of RDAREA usage privileges. (Each row describes
information on one user of one RDAREA.)

The following table shows the contents of the SQL_RDAREA_PRIVILEGES table.

Table G-9: SQL_RDAREA_PRIVILEGES table contents

(8) SQL_TABLE_PRIVILEGES table
This table manages the granting of table access privileges. (Each row describes
information on one user.)

Rows of the SQL_TABLE_PRIVILEGES table are created when users are granted table
access privileges by GRANT. Rows are deleted when all of a user's privileges are
revoked by REVOKE.

The following table shows the contents of the SQL_TABLE_PRIVILEGES table.

Table G-10: SQL_TABLE_PRIVILEGES table contents

Number Column name Data type Contents

1 GRANTEE VARCHAR(30) or
MVARCHAR(30)

Name of the user with the RDAREA usage
privilege or PUBLIC

2 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the RDAREA

3 GRANT_TIME CHAR(14) Date and time at which the relevant privilege was
granted (YYYYMMDDHHMMSS)

Number Column name Data type Contents

1 GRANTOR VARCHAR(30) or
MVARCHAR(30)

Name of the user granting the table access
privileges or the definer of the public view table

2 GRANTEE VARCHAR(30) or
MVARCHAR(30)

Name of the user who receives table access
privilege, or PUBLIC

3 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which access privilege is
to be granted. PUBLIC for a public view table.

4 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which access privileges are
to be granted

G. Data Dictionary Table Retrieval

2194

(9) SQL_VIEW_TABLE_USAGE table
This table manages information of the base tables that serve as the basis for view
tables. (Each row describes information on one view table.)

The following table shows the contents of the SQL_VIEW_TABLE_USAGE table.

Table G-11: SQL_VIEW_TABLE_USAGE table contents

5 SELECT_PRIVILEGE CHAR(1) SELECT privilege status:
G: Granted (for a table owner)
Y: Granted
N: Not granted
The initial value is N.

6 INSERT_PRIVILEGE CHAR(1) INSERT privilege status
G: Granted (for a table owner)
Y: Granted
N: Not granted
The initial value is N.

7 DELETE_PRIVILEGE CHAR(1) DELETE privilege status
G: Granted (for a table owner)
Y: Granted
N: Not granted
The initial value is N.

8 UPDATE_PRIVILEGE CHAR(1) UPDATE privilege status
G: Granted (for a table owner)
Y: Granted
N: Not granted
The initial value is N.

9 GRANT_TIME CHAR(14) Date and time at which the relevant privilege was
granted (YYYYMMDDHHMMSS)

10 GRANTEE_TYPE CHAR(1) Null value (fixed)

Number Column name Data type Contents

1 VIEW_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of a view table or PUBLIC for a public
view table

2 VIEW_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a view table

3 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the base table or the resource to be
used, or PUBLIC for a public view table or public
routine

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2195

(10) SQL_VIEWS table
This table manages view table definition information. (Each row describes information
on one view table.)

The following table shows the contents of the SQL_VIEWS table.

Table G-12: SQL_VIEWS table contents

(11) SQL_DIV_TABLE table
This table manages table partitioning information in the database. (Each row describes
information on one table.)

4 BASE_TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the base table or the resource to be used

5 BASE_TYPE CHAR(1) Type of the base table or the resource to be used
R: Real table
V: View table
P: User-defined function (excluding plug-in
functions)

6 BASE_ROUTINE_CREATO
R

VARCHAR(30) or
MVARCHAR(30)

User who defined a public function if the
resource to be used is the public function
Null value if the resource to be used is not a
public function

Number Column name Data type Contents

1 VIEW_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of a view table or PUBLIC for a public
view table

2 VIEW_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a view table

3 SOURCE_ORDER INTEGER Order if source is divided and stored in multiple
rows (1-n)

4 IS_UPDATABLE CHAR(3) Update possibility:
YES: Possible
NO: Not possible

5 VIEW_DEFINITION VARCHAR(32000
) or
MVARCHAR(3200
0)

View definition source statements

6 VIEW_ID INTEGER View ID

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2196

The following table shows the contents of the SQL_DIV_TABLE table.

Table G-13: SQL_DIV_TABLE table contents

(12) SQL_INDEX_COLINF table
This table manages index column information. (Each row describes information on
one index.)

The following table shows the contents of the SQL_INDEX_COLINF table.

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of a view table

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a view table

3 DIV_NO INTEGER Partitioning condition specification order
(unique value beginning with 1 for the
corresponding table, which is obtained by adding
1 to the partitioning condition specification
order)

4 TABLE_ID INTEGER Table ID

5 DCOND CHAR(2) Partitioning condition code
The partitioning storage condition value is stored
in character format; the storable values are =, ^=,
<, <=, >, and >=; if <> or != is specified, it is
stored as ^=.
For a matrix-partitioned table, <= is stored.
Nothing is stored if no partitioning storage
condition is specified or if hash partitioning is
specified.

6 DCVALUES VARCHAR(256)
or
MVARCHAR(256)

Partitioning condition value
The value to be stored is not converted even if a
character set is specified for a partitioning key.
Null value if no partitioning storage condition is
specified or if hash partitioning is specified.

7 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of storage RDAREA

8 DCVALUES2 VARCHAR(255)
or
MVARCHAR(255)

Second dimension key partitioning condition
value (The storage format is the same as that for
DCVALUES.)
Null value for a table that is not a
matrix-partitioned table and for a
matrix-partitioned table for which no boundary
value is specified.

G. Data Dictionary Table Retrieval

2197

Table G-14: SQL_INDEX_COLINF table contents

(13) SQL_DIV_INDEX table
This table manages index partitioning information (partitioning conditions and names
of storage RDAREAs specified by CREATE TABLE). (Each row describes information
on one index.)

The following table shows the contents of the SQL_DIV_INDEX table.

Table G-15: SQL_DIV_INDEX table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains an index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 INDEX_ID INTEGER Index ID

5 INDEX_ORDER INTEGER Order of columns comprising the index (integer
beginning with 1, which identifies the name order
of columns comprising the index)

6 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name (name of columns comprising the
index)

7 ASC_DESC CHAR(1) Ascending or descending order:
A: Ascending order
D: Descending order
Empty: (for plug-in indexes)
(If descending order is specified for a
single-column index, it is stored as ascending
order.)

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains an index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

G. Data Dictionary Table Retrieval

2198

#: This value is not related to DIV_NO of SQL_DIV_TABLE.

(14) SQL_DIV_COLUMN table
This table manages BLOB-type column partitioning information (name of storage
RDAREA specified by CREATE TABLE). (Each row describes information on one
column.)

The following table shows the contents of the SQL_DIV_COLUMN table.

Table G-16: SQL_DIV_COLUMN table contents

4 DIV_NO INTEGER RDAREA definition order (unique value
beginning with 1 for the corresponding index
which is obtained by adding 1 to the RDAREA
definition order)#

5 INDEX_ID INTEGER Index ID

6 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of partitioned storage RDAREA
comprising the index)

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name

4 DIV_NO INTEGER Storage order

5 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the user LOB RDAREA

6 STORE_NO INTEGER Always 1

7 MASTER_RDAREA_

NAME

VARCHAR(30) or
MVARCHAR(30)

Name of user RDAREA for the corresponding
table

8 N_LEVEL SMALLINT Number of levels
Null value for BLOB type columns.

9 COMPONENT_

NAME

VARCHAR(30) or
MVARCHAR(30)

Component name
Null value for BLOB type columns.

10 LOB_NO SMALLINT LOB attribute number
Null value for BLOB type columns.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2199

(15) SQL_ROUTINES table
This table manages routine definition information. (Each row describes information on
one routine.)

The following table shows the contents of the SQL_ROUTINES table.

Table G-17: SQL_ROUTINES table contents

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Routine owner
PUBLIC for public routines

2 ROUTINE_NAME VARCHAR(30) or
MVARCHAR(30)

Routine name#9

3 OBJECT_ID INTEGER Object ID

4 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name#2

5 ROUTINE_TYPE CHAR(1) Routine type:
P: Procedure
F: Function

6 ROUTINE_VALID CHAR(1) Validity flag:
Y: Validity routine
N: Invalidity routine

7 INDEX_VALID CHAR(1) Index status change flag:
Y: Index status valid#1

N: Index status invalid#1

8 CREATE_TIME CHAR(14) Routine creation date and time
(YYYYMMDDHHMMSS)
SQL analysis time for SQL procedure statements
or definition creation time for external routines

9 ALTER_TIME CHAR(14) Routine re-creation date and time
(YYYYMMDDHHMMSS)
(The initial value is a null value.)

10 OBJECT_SIZE INTEGER Object size (in bytes)
0 for external routines

11 SOURCE_SIZE INTEGER Definition source size (bytes)
0 for external routines and registry operation
procedures

12 ISOLATION_LEVEL SMALLINT Data guarantee level (0-2)
Valid for procedures

G. Data Dictionary Table Retrieval

2200

13 OPTIMIZE_LEVEL INTEGER SQL optimization option (converted to decimal
format)
Specifies the value of OPTIMIZE LEVEL for
CREATE PROCEDURE, ALTER PROCEDURE,
CREATE TYPE, or ALTER ROUTINE.

14 SQL_LEVEL SMALLINT SQL level (0-2)
Valid for procedures

15 N_PARAM INTEGER Number of parameters

16 N_RESOURCE INTEGER Number of resources used in an object

17 PARAM_LOCATION INTEGER Start position of a procedure statement in a
definition source statement.#7

18 ROUTINE_

COMMENT

VARCHAR(255)
or

MVARCHAR(255)

Comment
(The initial value is a null value.)

19 DEF_SOURCE BLOB Definition source statement (not including
compiler options)
Null value for a system definition function, for a
registry operation procedure, and for a trigger
action procedure.

20 ROUTINE_ADT_OWNER VARCHAR(30) Owner of the abstract data type that defined
routines
Null value for a routine that is not defined in an
abstract data type.

21 ROUTINE_ADT_NAME VARCHAR(30) Name of the abstract data type that defined
routines
Null value for a routine that is not defined in an
abstract data type.

22 ROUTINE_BODY CHAR(1) Function routine type:
S: SQL procedure
E: External routine
T: Trigger action procedure
Null value for a procedure (excluding a trigger
action procedures) that is not a foreign routine.

23 FUNCTION_TYPE CHAR(1) Function type:
C: System-defined function constructor
Empty: User-defined function
Null value for a procedure.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2201

24 EXTERNAL_NAME VARCHAR(255) External routine name (library-name !
operation-name) or a Java method name if
defined in Java
Null value if this is not for an external stored
routine.

25 EXTERNAL_LANGUAGE CHAR(20) External descriptive language type:
C: C language
Java: Java language
Null value if this is not for an external stored
routine.

26 PARAMETER_STYLE VARCHAR(20) Parameter style (external stored routine type)
PLUGIN: Plug-in
RDSQL: RDSQL
Java: Java

Null value if this is not for an external stored
routine.

27 ENCAPSULATION_

LEVEL

VARCHAR(10) Encapsulation level (PUBLIC, PRIVATE, or
PROTECTED)
Null value for a routine that is not defined in an
abstract data type.

28 RETURN_UDT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of a return value data type
Null value if the return value is not a user-defined
function.

29 RETURN_UDT_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a return value data type
Null value if the return value is not a user-defined
function.

30 RETURN_UDT_TYPE_

ID

INTEGER ID of a return value data type
Null value if the return value is not a user-defined
function.

31 RETURN_DATA_TYPE CHAR(24) Return value data type
For details about the storage format, see the
DATA_TYPE column in the SQL_COLUMNS table.
Null value if the return value data type is not a
function.

32 RETURN_DATA_TYPE
_CODE

SMALLINT Code for a return value data type
For details about the storage format, see the
DATA_TYPE_CODE column in the SQL_COLUMNS
table.
Null value if the return value data type is not a
function.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2202

33 RETURN_DATA_

LENGTH_CODE

SMALLINT Code for a return value data length#3

Null value for a procedure.

34 RETURN_DATA_

LENGTH

CHAR(7) Return value data length stored right-justified in
character format (spaces are used for leading
zeros)
Null value for a procedure.

35 RETURN_LOB_

LENGTH_CODE

CHAR(8) Code for a return value BLOB data length#4, #8

Null value for a procedure or if the return value is
not a BLOB or BINARY function.

36 RETURN_LOB_

LENGTH

CHAR(20) Specification value of a return value BLOB data
length
Right-justified in character format (spaces are
used for leading zeros)
Null value for a procedure or if the return value is
not a BLOB or BINARY function.

37 RETURN_LOB_

LENGTH_TYPE

CHAR(1) Type of a return value BLOB data length:
K: K specified
M: M specified
G: G specified
Empty: Default
Null value for a procedure or if the return value is
not a BLOB or BINARY function.

38 ADDITIONAL_

OPTIMIZE_LEVEL

INTEGER Extended SQL optimization option (converted to
decimal format)
Specifies the value of ADD OPTIMIZE LEVEL for
CREATE PROCEDURE, ALTER PROCEDURE,
CREATE TYPE, or ALTER ROUTINE.
Null value if the routine was created by HiRDB
of version 06-00 or earlier.

39 CLASS_NAME VARCHAR(255) package-name.class-name#5

Null value if the foreign routine is not coded in
Java.

40 JAR_NAME VARCHAR(255) Java archive file name
Null value if the foreign routine is not coded in
Java.

41 DYNAMIC_RESULT_

SETS

SMALLINT Maximum number of result sets to be returned
Null value if no maximum number is specified
for the result sets.

42 SQL_

SPECIFICATION

CHAR(1) Information used by the system

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2203

43 RETURNS_JAVA_

DATA_TYPE

VARCHAR(255) Java return value's data type corresponding to
return value's data type#6

Null value if the foreign routine is not coded in
Java.

44 RETURNS_JAVA_

DATA_TYPE_CODE

INTEGER Java return value's data type code corresponding
to return value's data type#6

Null value if the foreign routine is not coded in
Java.

45 RETURN_DATA_

MAX_ELM

SMALLINT Maximum number of elements for return value's
data type
Null value if ARRAY is not specified for the return
value data type.

46 N_JAVA_RESULT_

SETS

INTEGER Number of java.sql.ResultSet[]s specified
Null value if java.sql.ResultSet[] is not
specified.

47 FOR_UPDATE_EXCLUSIV
E_LOCK

CHAR(1) Whether ISOLATION LEVEL is a value other than
2 and FOR UPDATE EXCLUSIVE is specified
Y: Yes
Null value: No
Null value for a routine created with a HiRDB
version earlier than 07-01, if FOR UPDATE
EXCLUSIVE has not been specified, or if the
ISOLATION LEVEL value is 2.

48 SUBSTR_LENGTH SMALLINT Specification value of SUBSTR LENGTH of the
SQL compile option
Null value for a routine created with a HiRDB
version earlier than 08-00 or when the character
code type is not Unicode (UTF-8).

49 RETCSET_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Character set owner for the data type of return
value (always MASTER)
Null value if no character set is specified for the
data type of the return value.

50 RETCSET_NAME VARCHAR(30) or
MVARCHAR(30)

Character set name for the data type of the return
value:
EBCDIK: EBCDIK is specified for the character
set.
UTF16: UTF16 is specified for the character set.
Null value if no character set is specified for the
data type of the return value.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2204

#1: Index information in the routine is invalid (the routine cannot be executed). In this
case, SQL objects must be re-created by ALTER ROUTINE or ALTER PROCEDURE.

#2: For procedures, this name is the same as the routine name; for functions, the system
internally generates a name from the routine name and object ID as follows:

F routine name (up to 19 bytes) object ID (10 bytes)

#3: For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB and abstract data types.

#4: The specified column length is stored in binary format in 8 bytes, divided into
4-byte segments.

#5: The following shows the storage format for package-name.class-name:

• Package name specified

package-name.class-name
• Package name not specified

class-name
#6: The following Java data types are stored as a character string in
RETURN_JAVA_DATA_TYPE. The Java data types expressed in hexadecimal numbers
are stored in RETURN_JAVA_DATA_TYPE_CODE.

51 RETCSET_ID INTEGER Character set ID for the data type of the return
value
Null value if no character set is specified for the
data type of return value.
For details about character set IDs, see the
HiRDB Version 9 Installation and Design Guide.

52 ROUTINE_CREATOR VARCHAR(30) or
MVARCHAR(30)

User who defined the public routine
Null value if the routine is not a public routine

Java data type Value in hexadecimal

byte[] 1000

byte[][] 100A

short 1002

short[] 1003

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2205

#7: The location at which the procedure statement starts is counted from the top of the
SQL statement, beginning at 1. For an external routine (Java stored routine), the

int 1004

int[] 1005

float 1006

float[] 1007

double 1008

double[] 1009

java.match.BigDecimal 2000

java.match.BigDecimal[] 2001

java.lang.String 2002

java.lang.String[] 2003

java.sql.Date 2004

java.sql.Date[] 2005

java.sql.Time 2006

java.sql.Time[] 2007

java.lang.Double 2008

java.lang.Double[] 2009

java.lang.Float 200A

java.lang.Float[] 200B

java.lang.Integer 200C

java.lang.Integer[] 200D

java.lang.Short 200E

java.lang.Short[] 200F

java.sql.Timestamp 2010

java.sql.Timestamp[] 2011

void 0000

Java data type Value in hexadecimal

G. Data Dictionary Table Retrieval

2206

location at which the external routine specification (EXTERNAL NAME clause) starts is
counted from the beginning of the SQL statement. A value of 0 is set for the following:

• External routine (excluding Java stored routines)

• Registry manipulation procedure

• Trigger action procedure

#8: SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.

#9: For a trigger action procedure, the following routine name (22 bytes long) is stored:

'(TRIGyyyymmddhhmmssth)'
yyyymmddhhmmssth: Time stamp at the time of trigger definition (units: 1/100
seconds)

(16) SQL_ROUTINE_RESOURCES table
This table manages resource information used in routines. (n rows describe
information on one routine.)

The following table shows the contents of the SQL_ROUTINE_RESOURCES table.

Table G-18: SQL_ROUTINE_RESOURCES table contents

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Routine owner
PUBLIC for public routines

2 ROUTINE_NAME VARCHAR(30) or
MVARCHAR(30)

Routine name

3 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name#1

4 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Resource owner or PUBLIC for a public view
table or a public routine

5 BASE_NAME VARCHAR(30) or
MVARCHAR(30)

Resource identifier

6 BASE_TYPE CHAR(1) Resource type:
R: Base table
V: View table that can be updated
U: Read-only view table
I: Index
D: Data type
P: Routine
T: Trigger
Q: Sequence generator

G. Data Dictionary Table Retrieval

2207

7 ROUTINE_TYPE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of abstract data type for routine defined in
abstract data type
Null value for routines that are not defined in an
abstract data type.

8 ROUTINE_TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of abstract data type for routine defined in
abstract data type
Null value for routines that are not defined in an
abstract data type.

9 SELECT_OPERATION#2 CHAR(1) Retrieval target specification status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.#3

10 INSERT_OPERATION#2 CHAR(1) Data insertion target status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.#3

11 UPDATE_OPERATION#2 CHAR(1) Data update target status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.#3

12 DELETE_OPERATION#2 CHAR(1) Data deletion target status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.#3

13 LOCK_OPERATION#2 CHAR(1) Data insertion target status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.#3

14 PURGE_OPERATION#2 CHAR(1) Whether or not a data deletion target is specified
in a PURGE TABLE statement:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.#3

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2208

#1: For procedures, this name is the same as the routine name; for functions, the system
internally generates a name from the routine name and object ID as follows:

'F' routine name (up to 19 bytes) object ID (10 bytes)

#2: If a view table is used as an SQL object, information that merges the operation
types of all view tables being used is set in the base table (the highest order base table
if the base table is a view table) that is the base for the view table being used as the
SQL object.

#3: If the type of resource being used is a view table (V), a null value is set for a view
table that is not actually contained in the SQL object.

(17) SQL_ROUTINE_PARAMS table
This table manages parameter information in routines. (n rows describe information on
one routine.)

The following table shows the contents of the SQL_ROUTINE_PARAMS table.

Table G-19: SQL_ROUTINE_PARAMS table contents

15 BASE_ROUTINE_CREATO
R

VARCHAR(30) or
MVARCHAR(30)

User who defined a public routine if the resource
to be used is the public routine
Null value if the resource to be used is not a
public routine

16 ROUTINE_CREATOR VARCHAR(30) or
MVARCHAR(30)

User who defined the public routine.
Null value if this is not for a public routine.

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Routine owner
PUBLIC for public routines

2 ROUTINE_NAME VARCHAR(30) or
MVARCHAR(30)

Routine name

3 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name

4 PARAMETER_NAME VARCHAR(30) or
MVARCHAR(30)

Parameter name#4

5 PARAMETER_NO INTEGER Parameter specification sequence (a unique
number within the routine beginning with 1)

6 DATA_TYPE CHAR(24) Data type
For details about the storage format, see the
DATA_TYPE column in the SQL_COLUMNS table.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2209

7 DATA_LENGTH CHAR(7) Data length stored right-justified in character
format (spaces are used for leading zeros)
Null value if the data type is BLOB, BINARY, or a
user-defined type.

8 LOB_LENGTH CHAR(20) Column length specification value right-justified
in character format (spaces are used for leading
zeros)
Null value if the data type is not BLOB or BINARY.

9 LOB_LENGTH_TYPE CHAR(1) Column length type:
K: K specified
M: M specified
G: G specified
Empty: Default
Null value if the data type is not BLOB.

10 PARAMETER_MODE CHAR(5) Parameter I/O mode:
IN: Input mode
NOUT: Output mode
INOUT: Input/output mode
NONE: Other than above

11 DATA_TYPE_CODE SMALLINT Data type code
For details about the storage format, see the
DATA_TYPE_CODE column of the SQL_COLUMNS
table.

12 DATA_LENGTH_CODE SMALLINT Data length code#1

Null value if the data type is BLOB, BINARY, or a
user-defined type.

13 LOB_LENGTH_CODE CHAR(8) Column length specification
value#2, #3

Null value if the data type is not BLOB or BINARY.

14 UDT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of a data type parameter
Null value if the parameter is a system-defined
type.

15 UDT_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a data type parameter
Null value if the parameter is a system-defined
type.

16 UDT_TYPE_ID INTEGER ID of a data type parameter
Null value if the parameter is a system-defined
type.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2210

17 JAVA_DATA_TYPE VARCHAR(255) Data type of the corresponding Java parameter
For the storage format, see the
RETURNS_JAVA_DATA_TYPE column in the
SQL_ROUTINES table.
Null value if the foreign routine is not coded in
Java.

18 JAVA_DATA_TYPE_CODE INTEGER Data type code of the corresponding Java
parameter
For the storage format, see the
RETURNS_JAVA_DATA_TYPE_

CODE column in the SQL_ROUTINES table.
Null value if the foreign routine is not coded in
Java.

19 MAX_ELM SMALLINT Maximum number of parameter elements
Null value if the number of parameter elements is
not specified.

20 TRIGGER_COLUMN CHAR(1) Parameter information for the column specified
by an old or new values correlation name of the
trigger action procedure
O: Column referenced by an old values
correlation name
N: Column referenced by a new values
correlation name
Null value: Neither of the above
Null value if the parameter is not for a trigger
action procedure or does not correspond to a
column specified by an old or new values
correlation name.

21 TRIGGER_TABLE_ID INTEGER Table ID that defines the column before it is
replaced with a parameter
Null value if the ID is not for a trigger action
procedure or does not correspond to a column
specified by an old or new values correlation
name.

22 TRIGGER_COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name before being replaced with a
parameter
Null value if the name is not for a trigger action
procedure or does not correspond to a column
specified by an old or new values correlation
name.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2211

#1: For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB and abstract data types.

#2: The specified column length is stored in binary format in 8 bytes, divided into
4-byte segments.

#3: SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.

#4: For a trigger action procedure, the following parameter name (27 bytes long) is
used:

'(T#tbl_id#col_id#nnnnn)'

tbl_id
Table ID (hexadecimal, 8 digits (If the number of digits is less than 8, the
front portion is zero filled.))

col_id
Column ID (hexadecimal, 8 digits (If the number of digits is less than 8, the
front portion is zero filled.))

nnnnn
00001: Parameter that corresponds to a column modified by an old values
correlation name

00002: Parameter that corresponds to a column modified by a new values

23 PARMCSET_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Character set owner for the data type (always
MASTER)
Null value if no character set is specified for the
data type.

24 PARMCSET_NAME VARCHAR(30) or
MVARCHAR(30)

Character set name for the data type:
EBCDIK: EBCDIK is specified for the character
set.
UTF16: UTF16 is specified for the character set.
Null value if no character set is specified for the
data type.

25 PARMCSET_ID INTEGER Character set ID for the data type
Null value if no character set is specified for the
data type.
For details about character set IDs, see the
HiRDB Version 9 Installation and Design Guide.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2212

correlation name

(18) SQL_TABLE_STATISTICS table
This table manages table statistical information. (Each row describes information on
one table.)

If there is no statistical information (for example, immediately following CREATE
TABLE), the contents of this table are empty.

The following table shows the contents of the SQL_TABLE_STATISTICS table.

Table G-20: SQL_TABLE_STATISTICS table contents

(19) SQL_COLUMN_STATISTICS table
This table manages column statistical information. (Each row describes information on
one column.)

If there is no statistical information (for example, immediately after CREATE TABLE),
the contents of this table are empty.

The following table shows the contents of the SQL_COLUMN_STATISTICS table.

Table G-21: SQL_COLUMN_STATISTICS table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 N_PAGE FLOAT Number of pages stored (statistical information)
Null value if lvll is specified for the -c option
of pdgetcst

4 N_ROW FLOAT Total number of rows (statistical information)

5 UPDATE_TIME CHAR(14) Update date and time (YYYYMMDDHHMMSS)

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains a column

3 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name

4 N_UNIQUE FLOAT Number of unique values (statistical information)

G. Data Dictionary Table Retrieval

2213

#: The maximum and minimum column values set in the pdgetcst parameter file are
stored in the RANGE_VALUES column after being converted into an internal format. To
reference these maximum and minimum values, the SQL described as follows must be
executed. The retrieval results are displayed in hexadecimal.

• SQL for retrieving the maximum column value
 SELECT HEX(SUBSTR("RANGE_VALUE",33,a))
 FROM "MASTER".SQL_COLUMN_STATISTICS
 WITHOUT LOCK NOWAIT

For a, specify the data length of the column in bytes. If the data is of the character
string type, it is truncated to 16 bytes, so a value equal to or less than 16 must be
specified.

• SQL for retrieving the minimum column value

 When the column's data type is DECIMAL or NUMERIC and the precision is 32
digits or more

SELECT HEX(SUBSTR("RANGE_VALUE",33,a))
 FROM "MASTER".SQL_COLUMN_STATISTICS
 WITHOUT LOCK NOWAIT

 When the column's data type is neither DECIMAL nor NUMERIC

SELECT HEX(SUBSTR("RANGE_VALUES"),49,a)
 FROM "MASTER".SQL_COLUMN_STATISTICS
 WITHOUT LOCK NOWAIT

For a, specify the data length of the column in bytes. If the data is of the character
string type, it is truncated to 16 bytes, so a value equal to or less than 16 must be
specified.

5 N_MAX_DUP_KEY FLOAT Maximum number of duplicate key values
(statistical information)

6 N_MIN_DUP_KEY FLOAT Minimum number of duplicate key values
(statistical information)

7 N_NULL FLOAT Number of null values

8 UPDATE_TIME CHAR(14) Update date and time (YYYYMMDDHHMMSS)

9 RANGE_VALUES VARCHAR(2872) Column value frequency distribution information
(statistical information)#

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2214

Example
Referencing the maximum column value of an INT-type column
SELECT HEX(SUBSTR("RANGE_VALUE"),33,4)
 FROM "MASTER".SQL_COLUMN_STATISTICS
 WITHOUT LOCK NOWAIT

Output result (when maximum column value is 10)

'0000000A'

(20) SQL_INDEX_STATISTICS table
This table manages index statistical information. (Each row describes information on
one index.)

If there is no statistical information (for example, immediately following CREATE
TABLE), the contents of this table are empty.

The following table shows the contents of the SQL_INDEX_STATISTICS table.

Table G-22: SQL_INDEX_STATISTICS table contents

(21) SQL_DATATYPES table
This table manages user-defined type information (each row defines information on
one user-defined type).

The following table shows the contents of the SQL_DATATYPES table.

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 N_ENTRY FLOAT Number of key entries (statistical information)

5 N_IXPG FLOAT Number of leaf pages (statistical information)

6 N_LEVEL SMALLINT Number of levels (statistical information)

7 SEQ_RATIO INTEGER Sequential level (statistical information)

8 UPDATE_TIME CHAR(14) Update date and time (YYYYMMDDHHMMSS)

G. Data Dictionary Table Retrieval

2215

Table G-23: SQL_DATATYPES table contents

Number Column name Data type Contents

1 TYPE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the user-defined type

2 TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the user-defined type

3 META_TYPE CHAR(1) Type of the user-defined type:
A: Abstract data type

4 TYPE_ID INTEGER ID of the user-defined type

5 N_ATTR SMALLINT Number of attributes

6 CREATE_TIME CHAR(14) Creation date and time (YYYYMMDDHHMMSS)

7 N_SUBTYPE INTEGER Number of subtypes

8 SOURCE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the supertype abstract data type
Null value if there is no supertype abstract data
type.

9 SOURCE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the supertype abstract data type
Null value if there is no supertype abstract data
type.

10 SOURCE_TYPE_ID INTEGER ID of the supertype abstract data type
Null value if there is no supertype abstract data
type.

11 ROOT_TYPE_ID INTEGER ID of the highest order abstract data type if the
supertype abstract data type also has a supertype

12 LEVEL_NO SMALLINT Number of generations from highest order
supertype abstract data type if the supertype
abstract data type also has a supertype

13 TYPE_COMMENT VARCHAR(255) Comment
The initial value is a null value.
Null value if there is no comment.

14 N_LOB_ATTR SMALLINT Number of BLOB-type attributes

15 N_ADT_ATTR SMALLINT Number of abstract-data-type attributes

16 N_LARGE_BINARY_ATTR SMALLINT Number of attributes for BINARY-type data of
32,001 bytes or more

G. Data Dictionary Table Retrieval

2216

(22) SQL_DATATYPE_DESCRIPTORS table
This table manages user-defined type attribute information. (Each row describes
information on one attribute.)

The following table shows the contents of the SQL_DATATYPE_DESCRIPTORS table.

Table G-24: SQL_DATATYPE_DESCRIPTORS table contents

Number Column name Data type Contents

1 TYPE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the user-defined type

2 TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the user-defined type

3 OBJECT_NAME VARCHAR(30) or
MVARCHAR(30)

Attribute name

4 TYPE_ID INTEGER ID of the user-defined type

5 META_TYPE CHAR(1) Type of the user-defined type:
S: System-defined type
A: Abstract data type

6 ORDINAL_POSITION SMALLINT Order position

7 ENCAPSULATION_

LEVEL

VARCHAR(10) Encapsulation level (PUBLIC, PRIVATE, or
PROTECTED)

8 IS_NULLABLE CHAR(3) Column null value information
YES: Null value allowed
NO: Null values not allowed

9 DATA_TYPE CHAR(24) Data type
For details about the storage format, see the
DATA_TYPE column in the SQL_COLUMNS table.

10 DATA_TYPE_CODE SMALLINT Data type code
For details of the storage format, see the
DATA_TYPE_CODE column of the SQL_COLUMNS
table.

11 DATA_LENGTH_CODE SMALLINT Data length code#1

12 DATA_LENGTH CHAR(7) Data length stored right-justified in character
format (spaces are used for leading zeros)

13 LOB_LENGTH_CODE CHAR(8) BLOB attribute length code#2, #3

Null value if the code is not for BLOB or BINARY.

G. Data Dictionary Table Retrieval

2217

#1: For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB and abstract data types.

#2: The specified column length is stored in binary format in 8 bytes, divided into
4-byte segments.

#3: SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.

(23) SQL_TABLE_RESOURCES table
This table manages resource information used in tables. (Each row describes
information on one resource.)

The following table shows the contents of the SQL_TABLE_RESOURCES table.

14 LOB_LENGTH CHAR(20) BLOB attribute length specification value stored
right-justified in character format (spaces are
used for leading zeros)
Null value if the value is not for BLOB or BINARY.

15 LOB_LENGTH_TYPE CHAR(1) BLOB attribute length type (unit):
K: K specified
M: M specified
G: G specified
Empty: Default
Null value if the type is not BLOB.

16 UDT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the abstract data type for an abstract
data type attribute that has another abstract data
type
Null value if the owner is for the system
definition type.

17 UDT_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type for an abstract
data type attribute that has another abstract data
type
Null value if the name is for the system definition
type.

18 DATA_COMMENT VARCHAR(255) Comment
(The initial value is a null value; null value is also
used if there is no comment.)

19 NO_SPLIT CHAR(1) Whether or not NO SPLIT is specified:
Y: Specified
Null value: No specification

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2218

Table G-25: SQL_TABLE_RESOURCES table contents

(24) SQL_PLUGINS table
This table manages plug-in information. (Each row describes information on one
plug-in.)

The following table shows the contents of the SQL_PLUGINS table.

Table G-26: SQL_PLUGINS table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the resource used

4 BASE_NAME VARCHAR(30) or
MVARCHAR(30)

ID of the resource used

5 BASE_TYPE CHAR(1) Type of the resource used:
A: Abstract data type

Number Column name Data type Contents

1 PLUGIN_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Plug-in owner

2 PLUGIN_NAME VARCHAR(30) or
MVARCHAR(30)

Plug-in name

3 PLUGIN_TYPE CHAR(1) Plug-in type:
D: Data type plug-in
I: Index type plug-in

4 TYPE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the abstract data type or index type

5 TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type or index type

6 CREATE_TIME CHAR(14) Plug-in creation time

7 PLUGIN_LIB_NAME VARCHAR(255) Library path name

8 PLUGIN_COMMENT VARCHAR(255) Comment
The initial value is a null value.
Null value if there is no comment.

G. Data Dictionary Table Retrieval

2219

(25) SQL_PLUGIN_ROUTINES table
This table manages plug-in routine information. (Each row describes information on
one plug-in routine.)

The following table shows the contents of the SQL_PLUGIN_ROUTINES table.

Table G-27: SQL_PLUGIN_ROUTINES table contents

#: A plug-in routine is named in the following format:

'P' function-name registration-date-and-time
P

Code that indicates a function provided by a plug-in

function-name
The leading characters (maximum 15 characters) are truncated so that the
specific name is within 30 characters.

registration-date-and-time
Indicates the year, month, hour, minute, and second with 14 characters.

9 PLUGIN_VERSION VARCHAR(10) Plug-in version
Null value if the plug-in is the initial version.

10 PLUGIN_EXT_FUNC VARCHAR(255) Plug-in extended function code (information
used in the system)

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Routine owner

2 PLUGIN_NAME VARCHAR(30) or
MVARCHAR(30)

Plug-in name

3 OPERATION_NAME VARCHAR(255) Operation name

4 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name#

5 N_PARAM INTEGER Number of parameters

6 TIMING_DESCRIPTOR VARCHAR(30) Timing descriptor

7 OPERATION_

DESCRIPTOR

VARCHAR(255) Operation modification information

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2220

(26) SQL_PLUGIN_ROUTINE_PARAMS table
This table manages plug-in routine parameter information. (Each row describes
information on one parameter.)

The following table shows the contents of the SQL_PLUGIN_ROUTINE_PARAMS table.

Table G-28: SQL_PLUGIN_ROUTINE_PARAMS table contents

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner

2 PLUGIN_NAME VARCHAR(30) or
MVARCHAR(30)

Plug-in name

3 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name

4 PARAMETER_NAME VARCHAR(30) or
MVARCHAR(30)

Parameter name

5 PARAMETER_MODE CHAR(7) Parameter I/O attribute:
IN: Input mode
OUT: Output mode
INOUT: Input/output mode
RETURNS: Return value attribute
PICKUP: ROWID output attribute

6 PARAMETER_
DESCRIPTOR

VARCHAR(255) Parameter modification information
Parameter modification information specified
with the plug-in IDL is held as a character string
without changes.
Null value if no parameter modification
information is specified.

7 SPECIFIC_BIND_
OPERATION_NAME

VARCHAR(30) or
MVARCHAR(30)

Specific bind operation name
Null value if bind operation is not specified.

G. Data Dictionary Table Retrieval

2221

8 PARAMETER_TYPE CHAR(1) Parameter mode:
Empty: Normal (data type that can be handled by
SQL)
I: Indicator
N: New data
C: Current data
D: dbifb
K: Index key inf
P: Pointer
R: rowid
U: utlifb
T: Pointer
These are plug-in specific parameter modes,
except normal.

9 PARAMETER_NO INTEGER Parameter specification order position for
abstract data type functions

10 DATA_TYPE CHAR(24) Parameter data type
For details about the storage format, see the
DATA_TYPE column in the SQL_COLUMNS table.
Null value if the parameter mode is D, K, P, R, U,
or T.

11 DATA_TYPE_CODE SMALLINT Parameter data code
Null value if the parameter mode is D, K, P, R, U,
or T.
For details about the storage format, see the
DATA_TYPE_CODE column of the SQL_COLUMNS
table.

12 DATA_LENGTH_

CODE

SMALLINT Parameter data type definition length code#1

Null value if the parameter mode is D, K, P, R, U,
or T.

13 DATA_LENGTH CHAR(7) Parameter data definition length stored
right-justified in character format (spaces are
used for leading zeros)
Null value if the parameter mode is D, K, P, R, U,
or T.

14 LOB_LENGTH_

CODE

CHAR(8) LOB column length code or BINARY column
length code#2, #3

Null value if the parameter mode is normal and
the data type is not BLOB or BINARY.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2222

#1: For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB and abstract data types.

#2: The specified column length is stored in binary format in 8 bytes, divided into
4-byte segments.

#3: SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.

(27) SQL_INDEX_TYPES table
This table manages index type information. (Each row describes information on one
index type.)

The following table shows the contents of the SQL_INDEX_TYPES table.

15 LOB_LENGTH CHAR(20) LOB column length specification value or
BINARY column length specification value
Stored in the character format, right-justified
(higher-order 0s are left as spaces). Null value if
the parameter mode is normal and the data type
is not BLOB or BINARY.

16 LOB_LENGTH_TYPE CHAR(1) LOB column length type (unit):
K: K specified
M: M specified
G: G specified
Empty: Default
Null value if the parameter mode is normal and
the data type is not BLOB or BINARY.

17 UDT_OWNER VARCHAR(30) or
MVARCHAR(30)

Parameter data type owner
Null value if the data type is not a user-defined
type.

18 UDT_NAME VARCHAR(30) or
MVARCHAR(30)

Parameter data type name
Null value if the data type is not a user-defined
type.

19 UDT_TYPE_ID INTEGER Parameter data type ID
Null value if the data type is not a user-defined
type.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2223

Table G-29: SQL_INDEX_TYPES table contents

(28) SQL_INDEX_RESOURCES table
This table manages resource information used in indexes. (Each row describes
information on one resource.)

The following table shows the contents of the SQL_INDEX_RESOURCES table.

Table G-30: SQL_INDEX_RESOURCES table contents

(29) SQL_INDEX_DATATYPE table
This table manages target item information in indexes. (Each row describes
information on one target item (one level).)

Number Column name Data type Contents

1 INDEX_TYPE_

SCHEMA

VARCHAR(30) or
MVARCHAR(30)

Index type owner

2 INDEX_TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Index type name

3 INDEX_TYPE_ID INTEGER Index type ID

4 CREATE_TIME CHAR(14) Creation time

5 ADT_OWNER VARCHAR(30) or
MVARCHAR(30)

Abstract data type owner

6 ADT_NAME VARCHAR(30) or
MVARCHAR(30)

Abstract data type name

7 N_FUNCTION INTEGER Number of abstract data type functions that can
be used in an index-type-defined index

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the index definition table

2 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

3 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the resource used

4 BASE_NAME VARCHAR(30) or
MVARCHAR(30)

ID of the resource used

5 BASE_TYPE CHAR(1) Type of the resource used:
I: Index type

G. Data Dictionary Table Retrieval

2224

The following table shows the contents of the SQL_INDEX_DATATYPE table.

Table G-31: SQL_INDEX_DATATYPE table contents

(30) SQL_INDEX_FUNCTION table
This table manages abstract data type function information used in indexes. (Each row
describes information on one abstract data type function.)

The following table shows the contents of the SQL_INDEX_FUNCTION table.

Table G-32: SQL_INDEX_FUNCTION table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 INDEX_ID INTEGER Index ID

5 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name (index column name)

6 N_LEVEL SMALLINT Number of levels (number used to identify the
name order of attributes constituting an abstract
data type)

7 ADT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the abstract data type

8 ADT_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type

9 ADT_ATTR_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type attribute

10 ADT_ATTR_ID SMALLINT Attribute position

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

G. Data Dictionary Table Retrieval

2225

(31) SQL_TYPE_RESOURCES table
This table manages resource information used in user-defined types. (Each row
describes information on one resource.)

The following table shows the contents of the SQL_TYPE_RESOURCES table.

Table G-33: SQL_TYPE_RESOURCES table contents

(32) SQL_INDEX_TYPE_FUNCTION table
This table manages abstract data type function information that can be used in an index
that defines index types. (Each row describes information on one index type.)

The following table shows the contents of the SQL_INDEX_TYPE_FUNCTION table.

4 INDEX_ID INTEGER Index ID

5 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name (index column name)

6 ADT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner name of the abstract data type function

7 ADT_FUNCTION_

NAME

VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type function (routine
name)

8 ADT_FUNCTION_

OBJECT_ID

INTEGER Object ID of the abstract data type function

Number Column name Data type Contents

1 TYPE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

User-defined type owner

2 TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

User-defined type name

3 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the resource used

4 BASE_NAME VARCHAR(30) or
MVARCHAR(30)

ID of the resource used

5 BASE_TYPE CHAR(1) ID of the resource used
A: Abstract data type

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2226

Table G-34: SQL_INDEX_TYPE_FUNCTION table contents

#: This is not a specific name.

(33) SQL_EXCEPT table
This table manages index exclusion key value information. (Each row describes
information on the exclusion key group for one index.) This table manages one
exclusion key value (exclusion value group for multicolumn indexes) in each row.

The following table shows the contents of the SQL_EXCEPT table.

Table G-35: SQL_EXCEPT table contents

Number Column name Data type Contents

1 INDEX_TYPE_

SCHEMA

VARCHAR(30) or
MVARCHAR(30)

Index type owner

2 INDEX_TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

3 ADT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the abstract data type function

4 ADT_FUNCTION_

NAME

VARCHAR(30) or
MVARCHAR(30)

ID of the abstract data type function#

5 ADT_FUNCTION_

OBJECT_ID

INTEGER Object ID of the abstract data type function

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Index owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 INDEX_ID INTEGER Index ID

5 TABLE_ID INTEGER Table ID

6 EXCEPT_VALUE VARCHAR(573)
or
MVARCHAR(573)

Contents of the exclusion key value
The specified values for each column are
delimited with a comma in a character format.
The initial value is a null value.

G. Data Dictionary Table Retrieval

2227

(34) SQL_IOS_GENERATIONS table contents
This table manages the generation information of HiRDB file system areas when the
inner replica facility is used. (Each row describes information on one HiRDB file
system area.)

If the HiRDB Staticizer Option is not installed, this table is empty. However, if a
database is created with HiRDB Staticizer Option installed, and then HiRDB Staticizer
Option is removed, any data set in the table remains.

The following table shows the contents of the SQL_IOS_GENERATIONS table.

Table G-36: SQL_IOS_GENERATIONS table contents

#: Even when a dictionary table of a HiRDB/Parallel Server is used in a HiRDB/Single
Server without any modification, the server name is not changed.

If the name is less than 8 characters when left justified, the remaining spaces are filled
with spaces.

(35) SQL_TRIGGERS table contents
This table manages the information of the triggers that are inside a schema. (Each row
describes information on one trigger.)

The following table shows the contents of the SQL_TRIGGERS table.

Table G-37: SQL_TRIGGERS table contents

Number Column name Data type Contents

1 FILE_SYSTEM_NAME VARCHAR(165) HiRDB file system area name (absolute path
name)

2 GENERATION_NUMBER SMALLINT Generation number

3 SERVER_NAME CHAR(8) Server name (BES or SDS)#

4 ORIGINAL_FILE_SYSTE
M_NAME

VARCHAR(165) Original HiRDB file system area name
(absolute path name)

Number Column name Data type Contents

1 TRIGGER_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Trigger owner

2 TRIGGER_NAME VARCHAR(30)
or
MVARCHAR(30)

Trigger name

3 OBJECT_ID INTEGER Object ID

G. Data Dictionary Table Retrieval

2228

4 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the table for which the trigger is
defined.

5 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the table for which the trigger is
defined.

6 TRIGGER_VALID CHAR(1) Trigger-enabling flag
Y: Enabled
N: Disabled
Same value as the ROUTINE_VALID column of
the SQL_ROUTINES table for the trigger action
procedure

7 INDEX_VALID CHAR(1) Index-enabling flag
Y: Enabled
N: Disabled
Same value as the INDEX_VALID column of the
SQL_ROUTINES table for the trigger action
procedure

8 ACTION_TIME CHAR(1) Trigger action timing
A: AFTER
B: BEFORE

9 EVENT CHAR(1) Trigger event type
I: INSERT
D: DELETE
U: UPDATE

10 ACTION_TYPE CHAR(1) Trigger action unit
R: ROW
S: STATEMENT

11 OLD_ROW_NAME VARCHAR(30)
or
MVARCHAR(30)

Old values correlation name (correlation name
specified in OLD ROW)
Null value if OLD ROW is not specified.

12 NEW_ROW_NAME VARCHAR(30)
or
MVARCHAR(30)

New values correlation name (correlation name
specified in NEW ROW)
Null value if NEW ROW is not specified.

13 CREATE_TIME VARCHAR(16) Trigger definition creation time

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2229

(36) SQL_TRIGGER_COLUMNS table contents
This table manages the list information of UPDATE trigger event columns. (Each row
describes information on one trigger column.)

The following table shows the contents of the SQL_TRIGGER_COLUMNS table.

Table G-38: SQL_TRIGGER_COLUMNS table contents

14 ALTER_TIME CHAR(14) Trigger SQL object re-creation time
Same value as the ALTER_TIME column of the
SQL_ROUTINES table for the trigger action
procedure
Null value if a trigger SQL object is not
re-created.

15 DEF_SOURCE_LEN INTEGER Trigger definition source length

16 SPECIFIC_NAME VARCHAR(30)
or
MVARCHAR(30)

Specific name of the trigger action procedure

17 N_UPDATE_COLUMNS SMALLINT Number of trigger event columns
Null value for an UPDATE trigger for which no
INSERT trigger, DELETE trigger, or trigger event
column is specified.

18 REFERENCING_TABLE_I
D

INTEGER Table ID of the referencing table
Null value for a trigger that is not created by a
referential constraint action.

19 REFERENCE_ACTION CHAR(2) Referential constraint operation type
DC: ON DELETE CASCADE
UC: ON UPDATE CASCADE
Null value for a trigger that is not created by a
referential constraint action.

20 CONSTRAINT_NAME VARCHAR(30)
or
MVARCHAR(30)

Constraint name of referential trigger
Null value for a trigger that is not created by a
referential constraint action.

Number Column name Data type Contents

1 TRIGGER_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Trigger owner

2 TRIGGER_NAME VARCHAR(30)
or
MVARCHAR(30)

Trigger name

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2230

(37) SQL_TRIGGER_DEF_SOURCE table contents
This table manages the source information of trigger definitions. (Each row describes
information on one trigger definition source.)

The following table shows the contents of the SQL_TRIGGER_DEF_SOURCE table.

Table G-39: SQL_TRIGGER_DEF_SOURCE table contents

3 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the table for which the trigger is
defined.

4 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the table for which the trigger is
defined.

5 COLUMN_NAME VARCHAR(30)
or
MVARCHAR(30)

Column name specified for the column list

6 TABLE_ID INTEGER ID of the table for which the trigger is defined.

Number Column name Data type Contents

1 TRIGGER_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Trigger owner

2 TRIGGER_NAME VARCHAR(30)
or
MVARCHAR(30)

Trigger name

3 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the table for which the trigger is
defined.

4 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the table for which the trigger is
defined.

5 SOURCE_NO INTEGER Definition source serial number

6 DEF_SOURCE VARCHAR(3200
0) or
MVARCHAR(320
00)

Definition source (excluding SQL compile
options and WITH PROGRAM)

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2231

(38) SQL_TRIGGER_USAGE table contents
This table manages the resource information being referenced inside trigger action
conditions. (Each row describes information on one resource name being referenced
in a trigger action condition.)

The following table shows the contents of the SQL_TRIGGER_USAGE table.

Table G-40: SQL_TRIGGER_USAGE table contents

Number Column name Data type Contents

1 TRIGGER_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Trigger owner

2 TRIGGER_NAME VARCHAR(30)
or
MVARCHAR(30)

Trigger name

3 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the table for which the trigger is
defined.

4 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the table for which the trigger is
defined.

5 BASE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the resource being used
PUBLIC for public routines

6 BASE_TABLE VARCHAR(30)
or
MVARCHAR(30)

Table name of the resource being used
Null value if the type of the resource being used
is F (function).

7 BASE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the resource being used (specific name
or column name)

8 BASE_TYPE CHAR(1) Type of resource being used
F: Function
C: Column name

9 TABLE_ID INTEGER Table ID
Null value if the type of the resource being used
is F (function).

10 BASE_ID INTEGER ID of the resource being used (object ID or
column ID)

G. Data Dictionary Table Retrieval

2232

(39) SQL_PARTKEY table contents
This table manages the partitioning key information of matrix-partitioned tables. (Each
row describes information on one partitioning key.)

If HiRDB Advanced High Availability is not installed, this table is empty. However, if
HiRDB Advanced High Availability is installed and a database is created, and then
HiRDB Advanced High Availability is removed afterwards, the data in the table
remains.

The following table shows the contents of the SQL_PARTKEY table.

Table G-41: SQL_PARTKEY table contents

(40) SQL_PARTKEY_DIVISION table contents
This table manages the information on the partitioning condition values for a
matrix-partitioned table. (Each row describes information on one partitioning
condition value.)

11 BASE_ROUTINE_CREATO
R

VARCHAR(30)
or
MVARCHAR(30)

User who defined a public function if the
resource being used is a public function
Null value if the resource being used is not a
public function.

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Table name

3 KEY_NO SMALLINT Partitioning key number (dimension number 1
or 2)

4 KEY_NAME VARCHAR(30)
or
MVARCHAR(30)

Partitioning key column name

5 COLUMN_ID SMALLINT Partitioning key column ID

6 N_DIVISION SMALLINT Number of divisions inside the key

7 HASH_KEY_NO SMALLINT Sequence number in hash key column
Null value for dimensions of boundary value
partitioning.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2233

If HiRDB Advanced High Availability is not installed, this table is empty. However, if
HiRDB Advanced High Availability is installed and a database is created, and then
HiRDB Advanced High Availability is removed afterwards, the data in the table
remains.

The following table shows the contents of the SQL_PARTKEY_DIVISION table.

Table G-42: SQL_PARTKEY_DIVISION table contents

(41) SQL_AUDITS table contents
This table manages audit target information. (Each row describes information on one
event for one object or user.)

The following table shows the contents of the SQL_AUDITS table.

Table G-43: SQL_AUDITS table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Table name

3 KEY_NO SMALLINT Partitioning key number (dimension number 1
or 2)

4 IN_DIM_NO SMALLINT Serial number inside a partitioning key

5 DCVALUES VARCHAR(255)
or
MVARCHAR(255
)

Partitioning condition value (the specified
partitioning condition value is stored in the
character format).
The value to be stored is not converted even if a
character set is specified for a partitioning key.
Null value for the last boundary value within a
partitioning key and for dimensions of hash
partitioning.

Number Column name Data type Contents

1 EVENT_TYPE VARCHAR(30) Name of the event type#1 specified by the
CREATE AUDIT FOR operation type or 'ANY'.

2 EVENT_SUBTYPE VARCHAR(30) Event sub-type name#2 or 'ANY'
Null value if CREATE AUDIT FOR ANY is
specified.

G. Data Dictionary Table Retrieval

2234

#1: The following event types are available:

SESSION, PRIVILEGE, DEFINITION, ACCESS, and UTILITY

#2: The following event sub-types are available:

CONNECT, AUTHORIZATION, DISCONNECT, GRANT, REVOKE, CREATE, DROP,

3 OBJECT_TYPE VARCHAR(30) Type of object specified by the CREATE AUDIT
selection option.#3

Null value if no object is specified or if the
HiRDB version is earlier than 07-03.

4 OBJECT_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of object specified by the CREATE
AUDIT selection option.
Null value if no object is specified or if the
HiRDB version is earlier than 07-03.

5 OBJECT_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of object specified by the CREATE AUDIT
selection option.
Null value if no object is specified or if the
HiRDB version is earlier than 07-03.

6 USER_NAME VARCHAR(30)
or
MVARCHAR(30)

Authorization identifier of event executor (null
value).

7 ANY_VALID CHAR(1) Whether or not CREATE AUDIT WHENEVER
ANY is specified:
Y: Specified
N: Not specified

8 SUCCESSFUL_VALID CHAR(1) Whether or not CREATE AUDIT WHENEVER
SUCCESSFUL is specified:
Y: Specified
N: Not specified

9 UNSUCCESSFUL_ANY_VA
LID

CHAR(1) Whether or not CREATE AUDIT WHENEVER
UNSUCCESSFUL is specified:
Y: Specified
N: Not specified

10 AUDIT_TYPE CHAR(1) Acquisition information type:
E: CREATE AUDIT AUDITTYPE EVENT is
specified
A: CREATE AUDIT AUDITTYPE ANY is
specified
Null value: CREATE AUDIT AUDITTYPE
PRIVILEGE is specified or AUDITTYPE is
omitted.

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2235

ALTER, SELECT, INSERT, UPDATE, DELETE, PURGE, CALL, OPEN, LOCK,
PDLOAD, PDRORG, and PDEXP

#3: The following object types are available:

FUNCTION, INDEX, PROCEDURE, SCHEMA, SERVER, TABLE, TRIGGER, DATA
TYPE, VIEW, LIST, COMMENT, and SEQUENCE

(42) SQL_REFERENTIAL_CONSTRAINTS table contents
This table manages the corresponding conditions of referential constraints. (Each row
describes information on one constraint.)

The following table shows the contents of the SQL_REFERENTIAL_CONSTRAINTS
table.

Table G-44: SQL_REFERENTIAL_CONSTRAINTS table contents

Number Column name Data type Contents

1 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

2 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Constraint owner

3 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint is defined

4 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint is defined

5 COLUMN_COUNT SMALLINT Number of columns in the foreign
key

6 COLUMN_NAME VARCHAR(527) or
MVARCHAR(527)

Column names of the table
containing the foreign key
Enclose each column in quotation
marks and link the columns with
commas.

7 COLUMN_NO VARCHAR(32) Column IDs (16 IDs) of the table
containing the foreign key#

8 R_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the table to be referenced

9 R_TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table to be referenced

10 DELETE_RULE CHAR(11) Deletion rule (RESTRICT or
CASCADE)

G. Data Dictionary Table Retrieval

2236

#: Endian conversion is not performed on the SQL results even if the connection modes
have different endians. Therefore, when an application accesses the SQL results, the
SQL must consider the endian and convert the endian if necessary.

(43) SQL_KEYCOLUMN_USAGE table contents
This table manages information on the columns that make up foreign keys. (Each row
describes information on one column.)

The following table shows the contents of the SQL_KEYCOLUMN_USAGE table.

11 UPDATE_RULE CHAR(11) Update rule (RESTRICT or
CASCADE)

12 CONSTRAINT_TIME CHAR(14) Date and time when the constraint
was defined
(YYYYMMDDHHMMSS)

13 CHECK_PEND CHAR(1) Type of check pending status
C: Pending
Null value: Non-pending

14 DELETE_TRIGGER_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the trigger created by the
action of the ON DELETE referential
constraint
(DRAYYYYMMDDHHMMSSth)
Null value if no trigger is created by
the action of the ON DELETE
referential constraint.

15 UPDATE_TRIGGER_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the trigger created by the
action of the ON UPDATE referential
constraint
(DRAYYYYMMDDHHMMSSth)
Null value if no trigger is created by
the action of the ON UPDATE
referential constraint.

16 R_COLUMN_NAME VARCHAR(527) or
MVARCHAR(527)

Column names of the columns that
make up the main key
Enclose each column in quotation
marks and link the columns with
commas.

17 R_COLUMN_NO VARCHAR(32) Column IDs (16 IDs) of the columns
that make up the main key#

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2237

Table G-45: SQL_KEYCOLUMN_USAGE table contents

(44) SQL_TABLE_CONSTRAINTS table contents
This table manages information on integrity constraints found in a schemas. (Each row
describes information on one integrity constraint.)

The following table shows the contents of the SQL_TABLE_CONSTRAINTS table.

Table G-46: SQL_TABLE_CONSTRAINTS table contents

(45) SQL_CHECKS table contents
This table manages information on check constraints. (Each row describes information
on one check constraint.)

Number Column name Data type Contents

1 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Constraint owner

2 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

3 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint was defined

4 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint was defined

5 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the column for which the
constraint was defined

6 COLUMN_ORDER SMALLINT Position of the column for which the
constraint was defined

Number Column name Data type Contents

1 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Constraint owner

2 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

3 CONSTRAINT_TYPE VARCHAR(30) Constraint type
FOREIGN KEY: Foreign key
CHECK: Check constraint

4 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint was defined

5 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint was defined

G. Data Dictionary Table Retrieval

2238

The following table shows the contents of the SQL_CHECKS table.

Table G-47: SQL_CHECKS table contents

(46) SQL_CHECK_COLUMNS table contents
This table manages information on the columns used by check constraints. (Each row
describes information on one column used by one check constraint.)

The following table shows the contents of the SQL_CHECK_COLUMNS table.

Table G-48: SQL_CHECK_COLUMNS table contents

Number Column name Data type Contents

1 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Check constraint owner

2 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

3 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint was defined

4 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint was defined

5 CHK_SOURCE_LEN INTEGER Length of the check constraint
search conditions

6 CHK_SOURCE BINARY(2000000) Check constraint search conditions

7 CREATE_TIME CHAR(14) Date and time when the search
constraint was defined
(YYYYMMDDHHMMSS)

8 CHECK_PEND2 CHAR(1) Check pending status type
C: Pending
Null value: Non-pending

9 N_CHK_COLUMN INTEGER Number of constraint columns
specified in the check constraint
definition (number of duplicate
exclusion columns)

Number Column name Data type Contents

1 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Check constraint owner

2 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

G. Data Dictionary Table Retrieval

2239

(47) SQL_DIV_TYPE table contents
This table manages information on partitioning keys in matrix partitioning tables that
combine key range partitioning and hash partitioning. (Each row describes information
on one partitioning key.)

The following table shows the contents of the SQL_DIV_TYPE table.

Table G-49: SQL_DIV_TYPE table contents

3 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint was defined

4 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint was defined

5 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the column used by the
constraint

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 KEY_NO SMALLINT Partitioning key number (dimension
number)

4 DIV_TYPE CHAR(1) Partitioning type in the dimension
P: Boundary value partitioning
F: FIX hash partitioning
H: Flexible hash partitioning

5 HASH_NAME VARCHAR(30) or
MVARCHAR(30)

Hash function name
"HASH1"

"HASH2"

"HASH3"

"HASH4"

"HASH5"

"HASH6"

"HASH0"

Null value for dimensions without
hash partitioning

6 N_DIV_COLUMN SMALLINT Number of partitioning columns in
the dimension

Number Column name Data type Contents

G. Data Dictionary Table Retrieval

2240

(48) SQL_SYSPARAMS table contents
This table manages information about limits on the number of consecutive certification
failures and password character strings. (Each row describes information on one
setting item. n rows describes information on one limit on the number of consecutive
certification failures or one password character string limit.) The SQL_SYSPARAMS
table can be referenced only by owners with the DBA privilege and auditors.

The following table shows the contents of the SQL_SYSPARAMS table.

Table G-50: SQL_SYSPARAMS table contents

#: The table below shows the values that are stored for the INT-type and CHAR-type
data values.

Number Column name Data type Contents

1 PARAM_KIND VARCHAR(20) Parameter type
(CONNECTION_SECURITY)

2 FUNCTION_KEY VARCHAR(20) Function name
CONNECT: Limit on the number of
consecutive certification failures
PASSWORD: Password character sting
limit

3 PARAM_KEY VARCHAR(20) Specification item
When the function name is
CONNECT, the specification item is
one of the following:
PERMISSION_COUNT: Permitted
number of consecutive certification
failures
LOCK_MINUTE: Account lock period
(minutes)
LOCK_MINUTE_CODE: Account lock
period code
When the function name is
PASSWORD, the specification item is
one of the following:
MIN_LENGTH: Minimum number of
allowed bytes
USER_IDENTIFIER: Specification
of authorization identifier prohibited
SIMILAR: Specification of single
character type prohibited

4 INT_VALUE INTEGER INT-type data value#

5 CHAR_VALUE VARCHAR(30) CHAR-type data value#

G. Data Dictionary Table Retrieval

2241

(49) SQL_INDEX_XMLINF table contents
This table manages information about the component substructure paths of
substructure indexes (each row describes information on one index).

The following table shows the contents of the SQL_INDEX_XMLINF table.

Table G-51: SQL_INDEX_XMLINF table contents

PARAM_KEY setting value Value specified in
SQL

INT_VALUE CHAR_VALUE

PERMISSION_COUNT Constant Constant Constant

No specification 2 2

LOCK_MINUTE Constant Constant Constant

UNLIMITED Null value UNLIMITED

No specification 1440 1440

LOCK_MINUTE_CODE Constant Constant Constant

UNLIMITED Null value UNLIMITED

No specification 1000000 1000000

MIN_LENGTH Constant Constant Constant

No specification 8 8

USER_IDENTIFIER RESTRICT Null value RESTRICT

UNRESTRICT Null value UNRESTRICT

No specification Null value RESTRICT

SIMILAR RESTRICT Null value RESTRICT

UNRESTRICT Null value UNRESTRICT

No specification Null value RESTRICT

Numb
er

Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

G. Data Dictionary Table Retrieval

2242

(50) SQL_SEQUENCES table contents
This table manages information about sequence generators. (Each row describes
information on one sequence generator.)

The following table shows the contents of the SQL_SEQUENCES table.

Table G-52: SQL_SEQUENCES table contents

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 PARTIAL_STRUCTURE_PATH_
ORDER

SMALLINT Always 1

5 PARTIAL_STRUCTURE_PATH VARCHAR(32000) or
MVARCHAR(32000)

Substructure path

6 ASC_DESC CHAR(1) Sort order:
A: Ascending order
D: Descending order

7 DATA_TYPE CHAR(24) Data type of the substructure path
For details about the storage format,
see the DATA_TYPE column of the
SQL_COLUMNS table.

8 DATA_TYPE_CODE SMALLINT Data type code of the substructure
path
For details about the storage format,
see the DATA_TYPE_CODE column of
the SQL_COLUMNS table.

9 DATA_LENGTH CHAR(7) Data length of the substructure path
(character format)
For details about the storage format,
see the DATA_LENGTH column of the
SQL_COLUMNS table.

10 DATA_LENGTH_CODE SMALLINT Data length of the substructure path.
For details about the storage format,
see the DATA_LENGTH_CODE
column of the SQL_COLUMNS table.

Numb
er

Column name Data type Contents

1 SEQUENCE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the sequence generator

Numb
er

Column name Data type Contents

G. Data Dictionary Table Retrieval

2243

2 SEQUENCE_NAME VARCHAR(30) or
MVARCHAR(30)

Sequence generator identifier

3 SEQUENCE_ID INT Sequence generator ID

4 SEQUENCE_TYPE CHAR(1) Information used by the system
Always E.

5 PUBLIC_USAGE CHAR(1) Whether PUBLIC USAGE is
specified:
Y: Specified
Null value: PUBLIC USAGE is not
specified.

6 CREATE_TIME CHAR(14) Sequence generator creation time

7 ALTER_TIME CHAR(14) Always the null value

8 DATA_TYPE CHAR(24) Data type of the sequence generator:
INTEGER: Default value
For details about the storage format,
see the DATA_TYPE column of the
SQL_COLUMNS table.

9 DATA_TYPE_CODE SMALLINT Data type code of the sequence
generator
For details about the storage format,
see the DATA_TYPE_CODE column of
the SQL_COLUMNS table.

10 DATA_LENGTH CHAR(7) Data length of the sequence
generator (character format)
For details about the storage format,
see the DATA_LENGTH column of the
SQL_COLUMNS table.

11 DATA_LENGTH_CODE SMALLINT Data length of the sequence
generator
For details about the storage format,
see the DATA_LENGTH_CODE
column of the SQL_COLUMNS table.

12 START_VALUE VARCHAR(255) Start value
Null value if this information is not
specified.

Numb
er

Column name Data type Contents

G. Data Dictionary Table Retrieval

2244

13 MAXIMUM_VALUE VARCHAR(255) Maximum value:
NO MAXVALUE: NO MAXVALUE is
specified
Null value if this information is not
specified.

14 MINIMUM_VALUE VARCHAR(255) Minimum value:
NO MINVALUE: NO MINVALUE is
specified
Null value if this information is not
specified.

15 INCREMENT VARCHAR(255) Increment
Null value if this information is not
specified.

16 CYCLE_OPTION CHAR(1) Cycle option:
Y: CYCLE
N: NO CYCLE is specified or the
specification is omitted.

17 LOGINTERVAL INT Sequence generator log output
interval
If this information is not specified, 1
is set.
The initial value is 1.

18 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the sequence generator
storage RDAREA

19 RDAREA_ID INT ID of the sequence generator storage
RDAREA

Numb
er

Column name Data type Contents

H. Functions provided by HiRDB

2245

H. Functions provided by HiRDB

This appendix explains the following functions provided by HiRDB:

• Hash function for table partitioning

• Space conversion facility

• Function for conversion to a DECIMAL signed normalized number

• Function that sets the character code classification

Note that the Linux for AP8000 edition client cannot use the functions provided by
HiRDB.

H.1 Hash function for table partitioning
The hash function for table partitioning uses the partitioning key values to obtain the
order of partitioning conditions that are specified for partitioning a table. If a UAP is
executed using the hash function for table partitioning, the storage RDAREAs can be
identified before data is stored in a table, even if the table is a hash-partitioned table.
Because this function can identify each storage RDAREA, you can use the function for
the following purposes:

To evaluate whether the data to be stored will be partitioned equally when
determining the hash function and partitioning key for hash partitioning

To create an input data file for each RDAREA when loading data to a
hash-partitioned table in units of RDAREAs concurrently using the database load
utility

(1) Prerequisites for using the hash function for table partitioning
The following describes the prerequisites for using the hash function for table
partitioning.

(a) Program language
When the hash function for table partitioning is used to create a UAP, the UAP can be
written in either C or C++.

(b) Execution environment
The hash function for table partitioning can be executed on a server machine in which
a HiRDB server or HiRDB client has been installed.

However, certain combinations of a HiRDB server operating system and a HiRDB
client operating system can produce incorrect results when the function is executed
with a HiRDB client.

The following table shows the UAP execution conditions in the HiRDB client.

H. Functions provided by HiRDB

2246

Table H-1: Execution conditions in the HiRDB client

E: Can be executed.

--: Errors occur in the partitioning condition specification order or the partitioning key
sequence numbers because the operating systems use a different byte order.

(2) Creating and executing UAPs that use the hash function for table partitioning
Create and execute a UAP according to the following procedure:

1. Create a source program.

2. Compile and link the source program.

3. Execute the load module.

(a) Creating a source program
Specify function calling of the hash function for table partitioning in the source
program written in C or C++. Because the hash function for table partitioning is
presented in a shared library format, link the source program to use the function.

When the hash function for table partitioning is used, the distributed header files must
be included when the source program is created. Include all header files required by
the hash function for table partitioning. For details about the header files required by
the hash function for table partitioning, see (3) Function details.

(b) Compiling and linking the source program
Compile and link the source program in a server machine that has either the HiRDB
server or HiRDB client installed.

If SQL statements are embedded in the source program, preprocessing must be
executed before compiling and linking.

For details about compiling, linking, and preprocessing, see 8. Preparation for UAP
Execution.

Compiling and linking in a UNIX environment (HiRDB server)
Specification examples for compiling and linking a source program in the HiRDB
server are shown as follows:

Example (C)

HiRDB server operating system HiRDB client operating system

HP-UX, Solaris, and AIX Linux and Windows

HP-UX, Solaris, and AIX E --

Linux and Windows -- E

H. Functions provided by HiRDB

2247

When the source filename is sample.c and the name of the executable file
is not specified

• Creating a UAP that is run in 32-bit mode:
cc -I $PDDIR/include sample.c -L$PDDIR/client/lib -l
sqlauxf

• Creating a UAP that is run in 64-bit mode:
cc +DD64 -I $PDDIR/include sample.c -L$PDDIR/client/lib
-l sqlauxf64

Example (C++)

When the source filename is sample.C and the name of the executable file
is not specified

• Creating a UAP that is run in 32-bit mode:
CC -I $PDDIR/include sample.C -L$PDDIR/client/lib -l
sqlauxf

• Creating a UAP that is run in 64-bit mode:
CC +DD64 -I $PDDIR/include sample.C -L$PDDIR/client/lib
-l sqlauxf64

Compiling and linking in a UNIX environment (HiRDB client)
Shown below are specification examples for compiling and linking a source
program in the HiRDB client.

Example (C)

When the source filename is sample.c and the name of the executable file
is not specified

• Creating a UAP that is run in 32-bit mode:
cc -I /HiRDB/include sample.c -L/HiRDB/client/lib -l
sqlauxf

• Creating a UAP that is run in 64-bit mode:
cc +DD64 -I /HiRDB/include sample.c -L/HiRDB/client/lib
-l sqlauxf64

Note

The underline indicates the HiRDB client's installation directory.

Example (C++)

When the source filename is sample.C and the name of the executable file
is not specified

H. Functions provided by HiRDB

2248

• Creating a UAP that is run in 32-bit mode:
CC -I /HiRDB/include sample.C -L/HiRDB/client/lib -l
sqlauxf

• Creating a UAP that is run in 64-bit mode:
CC +DD64 -I /HiRDB/include sample.C -L/HiRDB/client/lib
-l sqlauxf64

Note

The underline indicates the HiRDB client's installation directory.

Compiling and linking in a Windows environment (HiRDB server)
For a source program written in C, use an ANSI-C-compliant compiler to compile
the program. For a source program written in C++, use a C++-compliant compiler
to compile the program.

If you are using Microsoft Visual C++ Version 1.0 to compile and link the source
program, select Set Project from the Options menu for the option settings.

If you are using Microsoft Visual C++ Version 2.0 to compile and link the source
program, select Set from the Project menu for the option settings.

The following table shows the items to be set in the HiRDB server with Set
Project or Set.
Table H-2: Items to be set in the HiRDB server with Set Project or Set

Note

The underline indicates the HiRDB client's installation directory.

Compiling and linking in a Windows environment (HiRDB client)
For a source program written in C, use an ANSI-C-compliant compiler to compile
the program. For a source program written in C++, use a C++-compliant compiler
to compile the program.

If you are using Microsoft Visual C++ Version 1.0 to compile and link the source
program, select Set Project from the Options menu for the option settings.

Item Category Category setting Setting value

Compiler Code generation Structure member alignment 8 bytes

Run time library to be used Multi-thread

Processor Include file path \HiRDB\client\include

Linker Input Library \HiRDB\client\lib\pdsqlauxf.l
ib

H. Functions provided by HiRDB

2249

If you are using Microsoft Visual C++ Version 2.0 to compile and link the source
program, select Set from the Project menu for the option settings.

The following table shows the items in the HiRDB client to be set with Set
Project or Set.
Table H-3: Items to be set in the HiRDB client with Set Project or Set

Note

The underline indicates the HiRDB client's installation directory.

(3) Function details
(a) Required input information

To call the hash function for table partitioning, obtain the information for items 1
through 8, described as follows, and set the information to arguments.

1. Hash function name specified for partitioning

2. Number of columns specified in partitioning keys

3. Specification order of partitioning keys, data type codes, and data length codes

4. Number of table partitions

5. Data values stored in partitioning keys

6. Double-byte space character for each national character code type used in the
HiRDB server.

7. Space conversion level

8. Whether or not to use the facility for conversion to a DECIMAL signed
normalized number

Items 1 through 4 correspond to the following sections in the CREATE TABLE
statement:

Item Category Category setting Setting value

Compiler Code generation Structure member alignment 8 bytes

Run time library to be used Multi-thread

Processor Include file path \HiRDB\include

Linker Input Library \HiRDB\lib\pdsqlauxf.lib

H. Functions provided by HiRDB

2250

If the table is already defined, information for items 1 through 4 can be obtained by
retrieving the dictionary table. For examples of dictionary table retrieval, see (6)
Retrieval from dictionary tables (for hash partitioning).
For details about the space conversion level (space conversion facility) and the facility
for conversion to a DECIMAL signed normalized number, see the HiRDB Version 9
System Operation Guide.

(b) Specification configuration
Details about the hash function for table partitioning are explained as follows:

Description

Provides an overview of the function.

Header files

Explains the headers that are necessary for using the hash function for table
partitioning.

Format

Explains the actual specification format.

Arguments

Explains the arguments specified in the format.

Return value

Explains the return value types (specified as data types) of the hash function for
table partitioning.

(c) p_rdb_dbhash hash function for table partitioning
Description

H. Functions provided by HiRDB

2251

This function obtains the partitioning condition specification order (1 to number
of table partitions) in which the partitioning keys are stored, or the partitioning
key sequence numbers. If the function does not terminate normally, an incorrect
value is obtained for the partitioning condition specification order.

If the partitioning condition specification order is obtained from multiple rows,
the partitioning key data must be changed for each of those rows before the hash
function for table partitioning is called. In this case, only those arguments that
contain data values for partitioning keys must be changed; all other arguments do
not need to be changed.

For details about how to determine the partitioning condition specification order
from the partitioning key sequence numbers, see (7) Retrieval from dictionary
tables (for matrix partitioning).

Header files
#include<pddbhash.h>

This header file must be specified when the hash function for table
partitioning is used.

#include<pdbsqlda.h>

This header file should be specified when a macro that begins with PDSQL_
is used to set data type codes for the partitioning keys. This header file can
be omitted when the data type codes to be set are retrieved from the
dictionary table.

Format 1 (when no character is set specified for partitioning keys)

 int p_rdb_dbhash(short hashcode,
 short ncol,
 p_rdb_collst_t *collst,
 p_rdb_dadlst_t *dadlst,
 unsigned int ndiv,
 unsigned char ncspace[2],
 int flags,
 int *rdno);

Format 2 (When character sets are specified for partitioning keys)

 int p_rdb_dbhash_cs(short hashcode,
 short ncol,
 p_rdb_collst_t *collst,
 p_rdb_csidlst_t *csidlst,
 p_rdb_dadlst_t *dadlst,
 unsigned int ndiv,
 unsigned char ncspace[2],
 int flags,

H. Functions provided by HiRDB

2252

 int *rdno);

Arguments
hashcode (input)

Specifies a hash function code that corresponds to a hash function name. For
details on hash function codes, see (4)(a) Hash function codes.

ncol (input)

Specifies the number of columns that were specified as partitioning keys
when the table was defined.

collst (input)

Specifies a pointer to a partitioning key list. A partitioning key list is a
structure that consists of the data type code and data size code of a
partitioning key, and is an area in which partitioning keys are continuously
listed. For details on the partitioning key list, see (4)(b) Partitioning key list.
You can obtain the data type code and data size code of a partitioning key by
retrieving them from a dictionary table. For examples of dictionary table
retrieval, see (6) Retrieval from dictionary tables (for hash partitioning).

csidlst (input)

Specifies a pointer to the character set ID list for partitioning keys. This
argument is specified only in format 2 (when character sets are specified for
partitioning keys).

The character set ID list is an area containing as many consecutive structures
composed of character set IDs as there are partitioning keys. For details
about the character set ID list, see (4)(c) Character set ID list.
You can obtain the character set IDs of the partitioning keys by searching
data dictionary tables. For details about searching data dictionary tables, see
(6) Retrieval from dictionary tables (for hash partitioning).

dadlst (input)

Specifies the pointer to the data address list. The data address list is a
structure composed of the addresses to the data storage areas for partitioning
keys and is allocated as a contiguous area for all partitioning keys. For
details, see (4)(d) Data address list.

ndiv (input)

Specifies the number of partitions in hash partitioning.

ncspace (input)

Specifies the double-byte space character for each national character code

H. Functions provided by HiRDB

2253

type used in the HiRDB server. The character is specified in a two-byte area.
When the data type of a partitioning key is NVARCHAR, this argument is used
to remove spaces that follow character strings before hashing is executed.
This argument is also used for space conversion for the partitioning key
value (NCHAR, NVARCHAR, MCHAR, or MVARCHAR) when space conversion
level 1 or 3 is specified in the flags argument.

An error results if the area specified in the ncspace argument contains no
space character in the following cases:

• Partitioning key is NVARCHAR.

• Space conversion level 1 or 3 is specified in flags and the partitioning
key is NCHAR, NVARCHAR, MCHAR, or MVARCHAR.

The following table lists the double-byte space characters that can be specified in
ncspace.

Table H-4: Double-byte space characters specified in ncspace

#1: If the character code type is lang-c, NCHAR, NVARCHAR, MCHAR, or
MVARCHAR cannot be used for the column data type.

#2: For a Windows environment, specify the space character code of the character
code type that was specified in the pdntenv command.

Character code type specified in pdsetup#2 ncspace

ncspace[0] ncspace[1]

sjis (shift JIS kanji code) 0x81 0x40

Chinese (EUC Chinese kanji code) 0xA1 0xA1

ujis (EUC Japanese kanji code) 0xA1 0xA1

lang-c (single-byte character code)#1 0x00 0x00

Unicode (UTF-8)#3 0x00 0x00

chinese-gb18030 (Chinese kanji code GB18030)#3 0xA1 0xA1

Default value (sjis for HP-UX) 0x81 0x40

Default value (sjis for AIX) 0x81 0x40

Default value (ujis for Solaris) 0xA1 0xA1

Default value (ujis for Linux) 0xA1 0xA1

Default value (sjis for Windows) 0x81 0x40

H. Functions provided by HiRDB

2254

#3: NCHAR or NVARCHAR cannot be used for the column data type.

flags (input)

Specifies the flag according to the space conversion level and the facility for
conversion to a DECIMAL signed normalized number (this argument is required
even if these facilities are not used). For details about the space conversion level
(space conversion facility) and the facility for conversion to a DECIMAL signed
normalized number, see the HiRDB Version 9 System Operation Guide.

The following table shows the values for flags:

#: If the character code for the HiRDB server is Unicode (UTF-8), spaces must be
converted before this function is executed. Therefore, specify only
p_rdb_FLG_SPLVL_0 for the flags value.

rdno (output)

Sets the partitioning condition specification order (1 to number of table partitions)
or the partitioning key sequence numbers.

Return values
data type: int

p_rdb_RC_RTRN(0)

Normal termination.

p_rdb_RC_ERRHASH(-1)

Invalid hash function code (p_rdb_HASH1 to p_rdb_HASH6,
p_rdb_HASH0, p_rdb_HASHA to p_rdb_HASHF).

p_rdb_RC_ERRNCOL(-2)

Partitioning key count error (1 to p_rdb_MXDCL).

HiRDB operating environment Value of flags

Space conversion level# Omitted p_rdb_FLG_SPLVL_0

0

1 p_rdb_FLG_SPLVL_1

3 p_rdb_FLG_SPLVL_3

Facility for conversion to a DECIMAL signed
normalized number

Omitted p_rdb_FLG_DECNRM_N

N

Y p_rdb_FLG_DECNRM_Y

H. Functions provided by HiRDB

2255

p_rdb_RC_ERRCLST(-3)

Area error for partitioning key data type or data length.

p_rdb_RC_ERRCTYP(-31)

Invalid data type for partitioning key.

p_rdb_RC_ERRCLEN(-32)

Invalid data type for partitioning key.

p_rdb_RC_ERRCSID(-33)

Invalid character set ID for partitioning key

p_rdb_RC_ERRDLST(-4)

Area error for data address.

p_rdb_RC_ERRDADR(-41)

Data address not set.

p_rdb_RC_ERRDLEN(-42)

Actual data length is shorter than character length limit for hash function.

p_rdb_RC_ERRNDIV(-5)

Table partition count error (1 to p_rdb_MNCND)

p_rdb_RC_ERRRADR(-6)

Storage area for partitioning condition specification order or partitioning key
sequence numbers is not set.

p_rdb_RC_ERRNCSC(-7)

Area for double-byte space character is not set.

Notes
1. If the partitioning key is NCHAR, NVARCHAR, MCHAR, or MVARCHAR, the value

of rdno may be invalid unless an appropriate value corresponding to the
space conversion level is specified in flags.

2. If the partitioning key is NCHAR, NVARCHAR, MCHAR, or MVARCHAR, and 1 or
3 is specified for the space conversion level, perform one of the following:

 Use the setlocale function to set an appropriate locale for the
LC_CTYPE category or the LC_ALL category.

 Call the p_rdb_set_lang function.

Operation is not guaranteed if the character code type of the key value and
the locale specified by the setlocale function or p_rdb_set_lang

H. Functions provided by HiRDB

2256

function contradict each other. If this function is called from a Windows
UAP, Linux UAP with SJIS character codes type, or UAP with CHINESE
character codes type, the p_rdb_set_lang function is used instead of the
setlocale function. For details about the p_rdb_set_lang function, see
H.4 Character code type specification function.

3. If the partitioning key value is DECIMAL, INTERVAL YEAR TO DAY, or
INTERVAL HOUR TO SECOND, the value of rdno may be invalid unless an
appropriate value is specified in flags which corresponds to the facility for
conversion to a DECIMAL signed normalized number.

4. When using the hash function for table partitioning with a HiRDB client
version earlier than 05-05, you cannot use the space conversion level in
flags or the facility for conversion to a DECIMAL signed normalized
number. In this case, the function ignores flags and assumes that the facility
for conversion to a DECIMAL signed normalized number is omitted. To use
the flags specification, either execute the function at the HiRDB server or
at a HiRDB client with version 05-05 or later.

5. If the character code for the HiRDB server is Unicode (UTF-8), this function
does not convert spaces. The partitioning key value to be specified for
dadlst must be converted beforehand using the space conversion function
p_rdb_conv_space_utf8.

6. If UTF16 is specified as the character set, data for the partitioning key must
be in big endian format. If the data is not in big endian format, the rdno value
might become invalid.

(4) Data types and macros
(a) Hash function codes

The following table shows the hash function codes that correspond to the hash
functions specified in CREATE TABLE or ALTER TABLE.

Table H-5: Hash function codes for hash functions

Hash function name Hash function code (value)

HASH1(when hash function name is omitted) p_rdb_HASH1(1)

HASH2 p_rdb_HASH2(2)

HASH3 p_rdb_HASH3(3)

HASH4 p_rdb_HASH4(4)

HASH5 p_rdb_HASH5(5)

HASH6 p_rdb_HASH6(6)

H. Functions provided by HiRDB

2257

(b) Partitioning key list
The partitioning key list is a structure composed of data type codes and data length
codes for partitioning keys, and is allocated a contiguous area for all partitioning keys.
Table H-6 shows the area for setting partitioning keys. If there are multiple partitioning
keys, the area must be specified as an array consisting of all columns specified as
partitioning keys.

Table H-7 lists the data type codes and the data length codes.

Table H-6: Area for setting partitioning keys

Table H-7: Data type codes and data length codes

HASH0 p_rdb_HASH0(100)

HASHA p_rdb_HASHA(101)

HASHB p_rdb_HASHB(102)

HASHC p_rdb_HASHC(103)

HASHD p_rdb_HASHD(104)

HASHE p_rdb_HASHE(105)

HASHF p_rdb_HASHF(106)

Data type Data type details Explanation

p_rdb_collst_t struct p_rdb_TG_collst {

 unsigned short datatype ;

 short datalen ;

} p_rdb_collst_t ;

Data type code
Data length code

Data type Data type code Data length code

INTERVAL YEAR TO DAY PDSQL_YEARTODAY 8 x 256

INTERVAL HOUR TO SECOND PDSQL_HOURTOSEC 6 x 256

DATE PDSQL_DATE 4

TIME PDSQL_TIME 3

TIMESTAMP[(p)] PDSQL_TIMESTAMP 7 + p/2 (0 is assumed
if p is omitted.)

MVARCHAR(n) PDSQL_MVARCHAR n

Hash function name Hash function code (value)

H. Functions provided by HiRDB

2258

(c) Character set ID list
A character set ID list is specified only when a character set is specified for a
partitioning key. Table H-8 shows the area in which a character set ID is set. If there
are multiple partitioning keys, the character set ID list must be an array containing as
many elements as there are columns specified as partitioning keys. Table H-9 lists the
character set ID codes.

Table H-8: Area in which a character set ID is set

Table H-9: Character set ID codes

MCHAR[(n)] PDSQL_MCHAR n (default value is 1)

NVARCHAR(n) PDSQL_NVARCHAR n

NCHAR[(n)] PDSQL_NCHAR n (default value is 1)

VARCHAR(n) PDSQL_VARCHAR n

CHAR[(n)] PDSQL_CHAR n (default value is 1)

FLOAT PDSQL_FLOAT 8

SMALLFLT PDSQL_SMALLFLT 4

DECIMAL[(p[,q])] PDSQL_DECIMAL p x 256 + q (default values
are 15 for p and 0 for q)

INTEGER PDSQL_INTEGER 4

SMALLINT PDSQL_SMALLINT 2

Data type Details of data type Description

p_rdb_csidlst_t struct p_rdb_TG_csidlst {
 int charset_id ;
} p_rdb_csidlst_t ;

Character set ID code

Character set Character set ID code (value)

No character set specified p_rdb_CSDEF
(0x00000000)

EBCDIK p_rdb_CSEBK
(0x01000004)

UTF16 p_rdb_CSU16
(0x11030004)

Data type Data type code Data length code

H. Functions provided by HiRDB

2259

(d) Data address list
The data address list is a structure composed of the addresses to the data storage areas
for partitioning keys, and is allocated as a contiguous area for all partitioning keys. The
table below shows the area for setting the data address of a partitioning key. If there
are multiple partitioning keys, the area must be specified as an array consisting of all
columns specified as partitioning keys.

Specify the area in binary format. For details about the binary format, see the HiRDB
Version 9 Command Reference manual.

Table H-10: Area for setting the data address of a partitioning key

Notes common to all data types
• Convert the real data in the data address list to the data type format defined

in the column.

• The boundaries of the real data area for the data address list do not have to
be adjusted.

Notes about data types DECIMAL, INTERVAL YEAR TO DAY, and
INTERVAL HOUR TO SECOND

• For positive values, use C or F in the sign section of the real data in the data
address list. If Y is specified for the facility for conversion to a DECIMAL
signed normalized number, A and E are also available.

• For negative values, use D in the sign section of the real data in the data
address list. If Y is specified for the facility for conversion to a DECIMAL
signed normalized number, B is also available.

Notes about data types CHAR, NCHAR, and MCHAR
• For CHAR and MCHAR, pad the data area of the data address list with

single-byte space characters up to the defined length.

• For NCHAR, pad the data area of the data address list with double-byte space
characters up to the defined length. The double-byte space characters must
be of the character code that was specified at HiRDB server setup.

• The data area of the data address list must be specified with the character
codes used by the HiRDB server.

Notes about data types VARCHAR, NVARCHAR, and MVARCHAR

Data type Data type details Explanation

p_rdb_dadlst_t struct p_rdb_TG_dadlst {

 unsigned char * dataaddr ;

} p_rdb_dadlst_t ;

Address to data area

H. Functions provided by HiRDB

2260

• For the real length section in the data area of the data address list, use bytes
instead of character string length to indicate the data length.

• If the real length of the data area for the data address list is less than the
defined length of the partitioning key list, do not pad the character string that
follows.

• Specify character codes used by the HiRDB server in the data area of the data
address list.

(e) Macros for maximum values
The following table lists the macros for maximum values.

Table H-11: Macros for maximum values

(5) Coding examples
A partial coding example that uses C to describe hash partitioning is shown below. Use
this coding example by customizing it to suit the user needs. However, because this
example does not include error handling during SQL statement execution, code error
handling as needed. For details about error handling, see 3.6 SQL error identification
and corrective measures.

(a) Declaration section
/
**
*/
/* ALL RIGHTS RESERVED. COPYRIGHT (C) 1999,2000, HITACH, LTD. */
/* LICENSED MATERIAL OF HITACHI,LTD. */
/* Sample Program that Uses the Hash Function for Table
Partitioning */
/
**
*/
#include <stdio.h>
#include <string.h>
#include <pdbsqlda.h>
#include <pddbhash.h>

union data_area { /* Data storage area */
 short data_smallint ;
 int data_int ;
 unsigned char data_dec[15] ;

Macro name Description (value)

p_rdb_MXDCL Maximum number of partitioning key columns (16)

p_rdb_MNCND Maximum number of table partitions (1,024)

H. Functions provided by HiRDB

2261

 float data_smallflt ;
 double data_float ;
 unsigned char data_char[255] ;
 struct {
 short length ;
 unsigned char data[255] ;
 } data_varchar ;
 unsigned char data_date[4] ;
 unsigned char data_time[3] ;
 unsigned char data_timestamp[10] ;
 unsigned char data_iytd[5] ;
 unsigned char data_ihts[4] ;
} ;

void print_data(short , p_rdb_collst_t * , union data_area *) ;

/
**
*/
/* Main Function */
/
**
*/
int main(int argc , char *argv[])
{

 short hashcode ; /* Hash function code */
 short ncol ; /* Number of partitioning key columns */
 p_rdb_collst_t collst[p_rdb_MXDCL] ;/* Partitioning key list */
 p_rdb_csidlst_t csidlst[p_rdb_MXDCL] ; /* Character set ID list# */
 p_rdb_dadlst_t dadlst[p_rdb_MXDCL] ;/* Data address list */
 union data_area data[p_rdb_MXDCL] ; /* Data storage area */
 unsigned int ndiv ; /* Number of storage RDAREAs */
 unsigned char ncspace[2] ; /* Space code for each national character
code
 type */
 int flags ; /* Enhancement flag */
 int rdno ; /* Partitioning condition specification order */
 int rc ; /* Return value */
 short i, j, k ; /* Counter variables */

 struct rdarea { /* RDAREA list */
 int rdareaid ;
 char rdareaname[31] ;
 } rdarealst [p_rdb_MNCND] ;

H. Functions provided by HiRDB

2262

 EXEC SQL BEGIN DECLARE SECTION ;
 struct { /* Embedded variable for hash function name */
 short length ;
 char data[9] ;
 } xhashname ;
 short xncol ; /* Embedded variable for number of partitioning key columns */
 short xndiv ; /* Embedded variable for number of table partitions */
 short xdatatype ; /* Embedded variable for data type code */
 short xdatalen ; /* Embedded variable for data length code */
 int xcharset_id ; /* Embedded variable for character set ID code# */
 struct { /* Embedded variable for storage RDAREA name */
 short length ;
 char data[31] ;
 } xrdname ;
 EXEC SQL END DECLARE SECTION ;

 EXEC SQL CONNECT ;

#: Specified only when character sets are specified for partitioning keys.

(b) Settings for the data storage area and space code for national character
codes
for (k = 0 ; k < p_rdb_MXDCL ; k ++) {
dadlst[k].dataaddr = (unsigned char *)&data[k] ;
}
ncspace[0] = 0x81 ; /* Space code */
ncspace[1] = 0x40 ; /* Example of shift JIS kanji code */
flags = 0 ;

(c) Settings for flags
/
**
**/
/* (a) Specifying explicitly */
/* 1 specified for space conversion level and Y for facility */
/* for conversion to a DECIMAL signed normalized number */
/
**
**/
flags=p_rdb_FLG_SPLVL_1+p_rdb_FLG_DECNRM_Y;

(d) Settings for the hash function name, number of partitioning key columns,
and number of storage RDAREAs
/**/
/*(a)Setting values with codes */
/**/

H. Functions provided by HiRDB

2263

hashcode = p_rdb_HASH6 ; /* When HASH6 is specified */
ncol = 4 ; /* For partitioning with 4 columns */
ndiv = 6 ; /* For 6 partitions */

/**/
/* (b) Retrieving values from the dictionary table */
/**/
 EXEC SQL
 select HASH_NAME,

 value(N_DIV_COLUMN,1) ,
 N_RDAREA
 into :xhashname , :xncol, :xndiv
 from MASTER.SQL_TABLES
 where TABLE_SCHEMA=USER
 and TABLE_NAME='TABLE1' ;

 xhashname.data[xhashname.length] = '\0' ;
 if (strcmp(xhashname.data,"HASH1") == 0) {
 hashcode=p_rdb_HASH1 ; /* HASH1 setting */
 } else if (strcmp(xhashname.data,"HASH2") == 0) {
 hashcode=p_rdb_HASH2 ; /* HASH2 setting */
 } else if (strcmp(xhashname.data,"HASH3") == 0) {
 hashcode=p_rdb_HASH3 ; /* HASH3 setting */
 } else if (strcmp(xhashname.data,"HASH4") == 0) {
 hashcode=p_rdb_HASH4 ; /* HASH4 setting */
 } else if (strcmp(xhashname.data,"HASH5") == 0) {
 hashcode=p_rdb_HASH5 ; /* HASH5 setting */
 } else if (strcmp(xhashname.data,"HASH6") == 0) {
 hashcode=p_rdb_HASH6 ; /* HASH6 setting */
 } else if (strcmp(xhashname.data,"HASHA") == 0) {
 hashcode=p_rdb_HASH0 ; /* HASH0 setting */
 } else if (strcmp(xhashname.data,"HASHA") == 0) {
 hashcode=p_rdb_HASHA ; /* HASHA setting */
 } else if (strcmp(xhashname.data,"HASHB") == 0) {
 hashcode=p_rdb_HASHB ; /* HASHB setting */
 } else if (strcmp(xhashname.data,"HASHC") == 0) {
 hashcode=p_rdb_HASHC ; /* HASHC setting */
 } else if (strcmp(xhashname.data,"HASHD") == 0) {
 hashcode=p_rdb_HASHD ; /* HASHD setting */
 } else if (strcmp(xhashname.data,"HASHE") == 0) {
 hashcode=p_rdb_HASHE ; /* HASHE setting */
 } else if (strcmp(xhashname.data,"HASHF") == 0) {
 hashcode=p_rdb_HASHF ; /* HASHF setting */
 } else {
 /* Add when a hash function is added in the future. */
 }

H. Functions provided by HiRDB

2264

 ncol = xncol ;
 ndiv = xndiv ;

 /**/
 /* Displaying table definition information */
 /**/
 printf("Hash function code:%d\n",hashcode);
 printf("Number of partitioning key columns:%d\n",ncol);
 printf("Number of table partitions:%d\n",ndiv);
 printf("\n") ;

(e) Settings for the partitioning key specification order, data type code, and
data length code (when no character set is specified for partitioning
keys)
 /**/
 /* (a) Setting values with codes */
 /**/
 collst[0].datatype=PDSQL_CHAR ; /* CHAR(10)*/
 collst[0].datalen=10 ;
 collst[1].datatype=PDSQL_DECIMAL ; /* DEC(5,2) */
 collst[1].datalen=5*256+2 ;
 collst[2].datatype=PDSQL_SMALLINT ; /* SMALLINT */
 collst[2].datalen=2 ;
 collst[3].datatype=PDSQL_NVARCHAR ; /* NVARCHAR(4) */
 collst[3].datalen=4 ;

 /**/
 /* (b) Retrieving values from the dictionary table */
 /**/

 EXEC SQL
 declare cr1 cursor for
 select value(DIVCOL_ORDER,1) ,
 DATA_TYPE_CODE,
 DATA_LENGTH_CODE
 from MASTER.SQL_COLUMNS
 where TABLE_SCHEMA=USER
 and TABLE_NAME='TABLE1'
 and DIVIDED_KEY='Y'
 order by 1 asc ;

 EXEC SQL open cr1 ;
 EXEC SQL whenever not found goto fetch_end1 ;

 for (i = 0 ; ; i++) {
 EXEC SQL fetch cr1 into :xncol , : xdatatype , : xdatalen ;
 collst[i].datatype = xdatatype ;
 collst[i].datalen = xdatalen ;

H. Functions provided by HiRDB

2265

 }

 fetch_end1 :
 EXEC SQL close cr1 ;

(f) Settings for the partitioning key specification order, data type code, data
length code, and character set ID (when a character set is specified for
partitioning keys)
 /
**
*****/
 /* (a) Setting codes */
 /
**
*****/
 collst[0].datatype=PDSQL_CHAR ; /* CHAR(10) */
 collst[0].datalen=10 ;
 csidlst[0].charset_id=p_rdb_CSEBK ; /* CHARACTER SET EBCDIK
*/
 collst[1].datatype=PDSQL_DECIMAL ; /* DEC(5,2)
*/
 collst[1].datalen=5*256+2 ;
 csidlst[1].charset_id=p_rdb_CSDEF ;
 collst[2].datatype=PDSQL_SMALLINT ; /* SMALLINT
*/
 collst[2].datalen=2 ;
 csidlst[2].charset_id=p_rdb_CSDEF ;
 collst[3].datatype=PDSQL_NVARCHAR ; /* NVARCHAR(4)
*/
 collst[3].datalen=4 ;
 csidlst[3].charset_id=p_rdb_CSDEF ;

 /
**
*****/
 /* (b) Retrieving from data dictionary tables */
 /
**
*****/
 EXEC SQL
 declare cr1_cs cursor for
 select value(DIVCOL_ORDER,1),
 DATA_TYPE_CODE,
 DATA_LENGTH_CODE,
 value(CHARSET_ID,0)
 from MASTER.SQL_COLUMNS
 where TABLE_SCHEMA=USER
 and TABLE_NAME='TABLE1'

H. Functions provided by HiRDB

2266

 and DIVIDED_KEY='Y'
 order by 1 asc ;

 EXEC SQL open cr1_cs ;
 EXEC SQL whenever not found goto fetch_end1_cs ;

 for (i = 0 ; ; i++) {
 EXEC SQL fetch cr1_cs into :xncol , : xdatatype , :
xdatalen, :xcharset_id ;
 collst[i].datatype = xdatatype ;
 collst[i].datalen = xdatalen ;
 csidlst[i].charset_id = xcharset_id ;
 }

 fetch_end1_cs :
 EXEC SQL close cr1_cs ;

(g) Settings for storage RDAREA name
 /**/
 /* Retrieving values from the dictionary table */
 /**/
 EXEC SQL
 declare cr2 cursor for
 select RDAREA_NAME
 from MASTER.SQL_DIV_TABLE
 where TABLE_SCHEMA=USER
 and TABLE_NAME='TABLE1'
 order by DIV_NO asc ;

 EXEC SQL open cr2 ;
 EXEC SQL whenever not found goto fetch_end2 ;

 for (j = 0 ; ; j++) {
 EXEC SQL fetch cr2 into :xrdname ;
 strncpy(rdarealst[j].rdareaname,
 xrdname.data,
 xrdname.length) ;
 rdarealst[j].rdareaname[xrdname.length] = '\0' ;
 }

 fetch_end2 :
 EXEC SQL close cr2 ;

 EXEC SQL DISCONNECT ;

 /**/
 /* Displaying RDAREA information */

H. Functions provided by HiRDB

2267

 /**/
 printf("RDAREA-name[") ;
 for (j = 0 ; j<ndiv ; j++) {
 printf("%s",rdarealst[j].rdareaname) ;
 if (j != ndiv-1) {
 printf(",") ;
 } else ;
 }
 printf("]\n") ;
 printf("\n") ;

(h) Data setting to be stored in partitioning keys
/
**
*/
/* Assigning data in binary format. */
/* Setting data and call hash function for each line. */
/
**
*/
memcpy((char *)data[0].data_char,"abcdefg ",10) ;/*"abcdefg "
*/

data[1].data_dec[0] = 0x04 ;
data[1].data_dec[1] = 0x32 ;
data[1].data_dec[2] = 0x1D ; /* -43.21 */

data[2].data_smallint = 12345 ; /* 12345 */

/* NCHAR and NVARCHAR specify character codes used in the HiRDB server.*/
data[3].data_varchar.length = 6 ;
data[3].data_varchar.data[0] = 0x82 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[1] = 0xa0 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[2] = 0x82 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[3] = 0xa2 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[4] = 0x82 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[5] = 0xa4 ; /* Example of shift JIS kanji code */

/
**
*/
/*Displaying data type code, data length code, and data area */
/
**
*/
print_data(ncol , collst , data) ;

/

H. Functions provided by HiRDB

2268

**
*/
/* Hash function call */
/
**
*/
rc =
p_rdb_dbhash(hashcode,ncol,collst,dadlst,ndiv,ncspace,flags,&r
dno);

switch (rc) {
case p_rdb_RC_RTRN :
 /
***/
 /* Normal processing */
 /
***/
 printf("Partitioning condition specification order : %d ->
%s\n",

 rdno,rdarealst[rdno-1].rdareaname) ;
 break ;
default :
/
**
*/
/* Adding error processing */
/
**
*/
 printf("RETURN CODE=%d\n",rc) ;
 break ;
}

return ;
}

/
**
*/
/* Display function for data type code, data length code, */
/*and data area */
/
**
*/
void print_data(short ncol ,
 p_rdb_collst_t *pcollst ,
 union data_area *pdata)

H. Functions provided by HiRDB

2269

{
 int i , j ; /* Counter variables */
 int len;
 p_rdb_collst_t *ccollst ;
 union data_area *cdata ;

 printf("Partitioning key specification order Data type code
Data length code Binary-format data value\n") ;
 for (i = 0 , ccollst = pcollst , cdata = pdata ;
 i<ncol ;
 i++ , ccollst++ , cdata++) {
 printf(" %2d %#.4x %#.4x ",
 i+1,ccollst->datatype, ccollst->datalen) ;

 switch (ccollst->datatype) {
 case PDSQL_CHAR :
 case PDSQL_MCHAR :
 case PDSQL_INTEGER :
 case PDSQL_SMALLFLT :
 case PDSQL_FLOAT :
 case PDSQL_SMALLINT :
 case PDSQL_DATE :
 case PDSQL_TIME :
 case PDSQL_TIMESTAMP :
 len=ccollst->datalen ;
 break ;
 case PDSQL_VARCHAR :
 case PDSQL_MVARCHAR :
 case PDSQL_NVARCHAR :
 len=cdata->data_varchar.length+2 ;
 break ;
 case PDSQL_NCHAR :
 len=ccollst->datalen*2 ;
 break ;
 case PDSQL_DECIMAL :
 case PDSQL_YEARTODAY :
 case PDSQL_HOURTOSEC :
 len=ccollst->datalen/256/2+1 ;
 break ;
 default :
 break ;
 }
 for(j=0 ; j<len ;j++){
 printf("%.2X",cdata->data_char[j]) ;
 }
 printf("\n") ;
 }
 printf("\n") ;

H. Functions provided by HiRDB

2270

return;
}

(i) Execution results for HP-UX and shift JIS kanji codes
Hash function code: 6
Number of partitioning key columns: 4
Number of table partitions: 6
RDAREA names: [RU01, RU02, RU03, RU04, RU05, RU06]

Partitioning condition specification order: 1 > RU01

(6) Retrieval from dictionary tables (for hash partitioning)
Examples of retrieval from dictionary tables for hash partitioning are shown below.

(a) Obtaining the hash function name, number of partitioning key columns,
and number of table partitions for a hash-partitioned table
SELECT HASH_NAME, /* Hash function name */
 VALUE(N_DIV_COLUMN,1), /* Number of partitioning key columns */
 N_RDAREA /* Number of table partitioned */
 FROM MASTER.SQL_TABLES
 WHERE TABLE_SCHEMA = authorization-identifier
 /* Item with matching authorization identifier */
 AND TABLE_NAME = table-identifier
 /* Item with matching table identifier */

(b) Obtaining the partitioning key specification order, data type code, and
data length code (when no character set is specified for partitioning
keys)
SELECT VALUE(DIVCOL_ORDER,1), /* Partitioning key specification order */
 DATA_TYPE_CODE, /* Data type code */
 DATA_LENGTH_CODE /* Data length code */
 FROM MASTER.SQL_COLUMNS
 WHERE TABLE_SCHEMA = authorization-identifier
 /* Item with matching authorization identifier */
 AND TABLE_NAME= table-identifier
 /* Item with matching table identifier */

Partitioning key
specification

order

Data type code Data length code Binary format data value

1 0x00c4 0x000a 61626364656667202020

2 0x00e4 0x0502 04321D

3 0x00f4 0x0002 3039

4 0x00b0 0x0004 000682A082A282A4

H. Functions provided by HiRDB

2271

 AND DIVIDED_KEY='Y' /* Item that is a partitioning key*/
 ORDER BY 1 ASC

(c) Obtaining the partitioning key specification order, data type code, data
length code, and character set ID code (when a character set is specified
for partitioning keys)

SELECT VALUE(DIVCOL_ORDER,1), /* Partitioning key specification order */
 DATA_TYPE_CODE, /* Data type code */
 DATA_LENGTH_CODE, /* Data length code */
 VALUE(CHARSET_ID,0) /* Character set ID code */
 FROM MASTER.SQL_COLUMNS
 WHERE TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 AND TABLE_NAME=table-identifier /* Item with matching table identifier */
 AND DIVIDED_KEY='Y' /* Item that is a partitioning key */
 ORDER BY 1 ASC

(d) Obtaining the storage RDAREA name
SELECT DIV_NO, /* Partitioning condition specification order */
 RDAREA_NAME /* Storage RDAREA name */
 FROM MASTER.SQL_DIV_TABLE
 WHERE TABLE_SCHEMA = authorization-identifier
 /* Item with matching authorization identifier */
 AND TABLE_NAME = table-identifier
 /* Item with matching table identifier */
 ORDER BY 1 ASC

(7) Retrieval from dictionary tables (for matrix partitioning)
Examples of retrieval from dictionary tables for matrix partitioning are shown below.

(a) Obtaining the hash function name, number of partitioning key columns,
partitioning key numbers, and number of table partitions for a
hash-partitioned table

Obtaining the hash function name and the number of partitioning key columns

select HASH_NAME, /* Hash function name */
 value(N_DIV_COLUMN,1), /* Number of partitioning key columns */
 KEY_NO /* Partitioning key number */
 from MASTER.SQL_DIV_TYPE
 where TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 and TABLE_NAME=table-identifier /* Item with matching table identifier */

Obtaining the number of partitions in the key

H. Functions provided by HiRDB

2272

select distinct N_DIVISION /* Number of partitions in key */
from MASTER.SQL_PARTKEY
 where TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 and TABLE_NAME=table-identifier /* Item with matching table identifier */
 and KEY_NO=partitioning-key-number /* Set partitioning key numbers */
 /* for hash partitioning */

(b) Obtaining the partitioning key specification order, data type code, and
data length code (when no character set is specified for partitioning
keys)

select DIVCOL_ORDER, /* Number of partitions in key */
 DATA_TYPE_CODE, /* Data type code */
 DATA_LENGTH_CODE /* Data length code */
 from MASTER.SQL_COLUMNS X,
 MASTER.SQL_PARTKEY Y
 where X.TABLE_SCHEMA=Y.TABLE_SCHEMA
 and X.TABLE_NAME=Y.TABLE_NAME
 and X.COLUMN_ID=Y.COLUMN_ID
 and Y.TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 and Y.TABLE_NAME=table-identifier /* Item with matching table
identifier */
 and Y.KEY_NO=partitioning-key-number /* Set partitioning key
number */
 /* for hash partitioning */
 order by DIVCOL_ORDER asc

(c) Obtaining the partitioning key specification order, data type code, data
length code, and character set ID (when a character set is specified for
partitioning keys)

select DIVCOL_ORDER, /* Number of partitions in key */
 DATA_TYPE_CODE, /* Data type code */
 DATA_LENGTH_CODE, /* Data length code */
 value(CHARSET_ID,0) /* Character set ID code */
 from MASTER.SQL_COLUMNS X,
 MASTER.SQL_PARTKEY Y
 where X.TABLE_SCHEMA=Y.TABLE_SCHEMA
 and X.TABLE_NAME=Y.TABLE_NAME
 and X.COLUMN_ID=Y.COLUMN_ID
 and Y.TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 and Y.TABLE_NAME=table-identifier /* Item with matching table
identifier */

H. Functions provided by HiRDB

2273

 and Y.KEY_NO=partitioning-key-number /* Set partitioning key numbers */
 /* for hash partitioning */
 order by DIVCOL_ORDER asc

(d) Obtaining the storage RDAREA name

select DIV_NO, /* Partitioning condition specification order */
 RDAREA_NAME /* Storage RDAREA name */
 from MASTER.SQL_DIV_TABLE
 where TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 and TABLE_NAME=table-identifier /* Item with matching table identifier */
 order by 1 asc

Note

The partitioning condition specification order is determined from the partitioning
key sequence numbers. The expression follows:

N x m - (N - n)
 N: Number of partitions in second dimension
 m: Partitioning key sequence number of first partitioning
key
 n: Partitioning key sequence number of second partitioning
key

H.2 Space conversion function
The space conversion function converts single-byte spaces in a character string to
double-byte spaces, and vice versa. Because this function lets you know the
conversion result without having to store character string data in a database, you can
use the function for the following purposes:

• To evaluate whether the data to be stored will be partitioned equally when
determining the partitioning key for partitioning a table by the key range

• To create an input data file for each RDAREA when loading data to a
key-range-partitioned table in units of RDAREAs concurrently using the database
load utility

Prerequisites for using the space conversion function
The prerequisites for using the space conversion function are the same as for the
hash function for table partitioning. For details, see H.1(1) Prerequisites for using
the hash function for table partitioning.

Prerequisites for creating and executing a UAP using the space conversion
function

H. Functions provided by HiRDB

2274

The prerequisites for creating and executing a UAP using the space conversion
function are the same as for the hash function for table partitioning. For details,
see H.1(2) Creating and executing UAPs that use the hash function for table
partitioning.

(1) Details about the space conversion function
(a) Specification configuration

For details about the specification configuration, see H.1(3)(b) Specification
configuration.

(b) Space conversion function (p_rdb_conv_space)
Function

The function converts spaces according to the specified conversion type as
follows:

Single-byte space double-byte space:

Converts two consecutive single-byte spaces in a character string to one
double-byte space.

Double-byte space single-byte space:

Converts each double-byte space in a character string to two single-byte
spaces.

The function converts spaces in the character string indicated by srcp and stores
the conversion result in destp. The following table shows the combination of
stype and flags arguments and the conversion type:

#: The function treats the value specified in the ncspace argument as the character

stype
(data type)

flags (conversion type)

Single-byte space
double-byte space

Double-byte space single-byte
space

NCHAR Checks two bytes at a time from the top
and converts any two consecutive
single-byte spaces to a double-byte
space.#
The function does not convert any
isolated single-byte space.

Checks two bytes at a time from the top and
converts any double-byte space# to two
single-byte spaces.NVARCHAR

MCHAR Results in an error. Checks each character code from the top and
converts any double-byte space# to two
single-byte spaces.MVARCHAR

H. Functions provided by HiRDB

2275

code for double-byte space.

Header files
#include<pdauxcnv.h>

This header file is required to use the space conversion function.

#include<pdbsqlda.h>

This header file lets you use macros (with a name beginning with PDSQL_)
to specify a data type code. If the data type code is to be retrieved from a data
dictionary table, this header file is not necessary.

Format

Arguments
srcp (input)

Specifies the start address of the character string storage area.

stype (input)

Specifies the data type before conversion. Specifiable data types are as
follows:

srcl (input)

Specifies the length of the character string specified in srcp. For a
variable-length character string, specify the length of the actual character
string (in bytes) that is stored in the area indicated by srcp.

destp (output)

Sets the start address of the character string storage area after conversion.
Allocate this area indicated by destp on the side that calls the space

int p_rdb_conv_space(char *srcp,
 unsigned char stype,
 unsigned int srcl,
 char *destp,
 unsigned char ncspace[2],
 int flags);

Macro name Data type

PDSQL_NCHAR NCHAR

PDSQL_NVARCHAR NVARCHAR

PDSQL_MCHAR MCHAR

PDSQL_MVARCHAR MVARCHAR

H. Functions provided by HiRDB

2276

conversion function.

ncspace (input)

Specifies a two-byte area that contains the double-byte space character for
the national character code used in the HiRDB server. For the double-byte
space characters that can be specified in ncspace, see Table H-4 Double-byte
space characters specified in ncspace.

flags (input)

Specifies the conversion type. Available conversion types are as follows:

Return values
data type: int

p_rdb_RC_RTRN(0)

Normal termination.

p_rdb_RC_ERRINVF(-8)

Invalid flags argument

p_rdb_RC_ERRTYPC(-9)

Invalid data type

Notes
1. The National Language Support (NLS) facility provided by the OS is used to

convert double-byte spaces into single-byte spaces. Therefore, before
invoking the space conversion function, you must use the setlocale
function to set an appropriate locale to the LC_CTYPE or LC_ALL category.
Additionally, for a Windows UAP, a Linux UAP with a character code type
of SJIS, or a UAP with a character code type of CHINESE, you must invoke
the p_rdb_set_lang function before invoking the space conversion
function. For details about the p_rdb_set_lang function, see H.4
Character code type specification function.

If the character code type of the character string indicated by the srcp
argument contradicts the locale specified by the setlocale or
p_rdb_set_lang function, the operation cannot be guaranteed.

2. Operation is guaranteed if the data input area is the same as the data output

Macro name Conversion type

p_rdb_HALF_TO_FULL_SPACE
Single-byte space double-byte space

p_rdb_FULL_TO_HALF_SPACE
Double-byte space single-byte space

H. Functions provided by HiRDB

2277

area, or if the output area is located before the input area and the latter half
of the output area overlaps the first half of the input area.

3. Be sure to specify an appropriate value in srcl because the function does
not check the length of a character string for any error.

4. The function uses 0x20 as the character code for a single-byte space and the
character code specified in the ncspace argument as the character code for
a double-byte space.

5. The data types that can be specified for input are NCHAR, NVARCHAR, MCHAR,
and MVARCHAR.

6. For a variable-length character string, the function references srcl to
determine the length of character string to be converted. Specify the length
without the real length section in the srcl argument.

7. The real length section of a variable-length character string remains
unchanged after space conversion.

8. If the character code type is Unicode, the operation of this function cannot
be guaranteed. If the character code type is Unicode, use the
p_rdb_conv_space_utf8 function. For details on this function, see (c)
Space conversion function (p_rdb_conv_space_utf8).

(c) Space conversion function (p_rdb_conv_space_utf8)
Function

This function converts double-byte spaces into single-byte spaces when the
character code is Unicode (UTF-8). It converts each double-byte space inside a
character string into two single-byte spaces.

This function applies space conversion to the space characters inside the character
string indicated by srcp. The conversion result is stored in destp and the
character string length following the conversion is stored in destl.

The following table shows the combinations of the stype and flags arguments,
along with conversion details.

#: 0xE38080 is treated as a double-byte space character code.

stype (data type) flags (conversion type)

Single-byte spaces -> Double-byte
spaces

Double-byte spaces -> Single-byte
spaces

MCHAR An error occurs. Character codes are checked from the
beginning, and any double-byte spaces#
found are converted into single-byte
spaces.

MVARCHAR

H. Functions provided by HiRDB

2278

Header files

#include <pdauxcnv.h>

This header file is required to use the space conversion function.

#include <pdbsqlda.h>

This header file lets you use macros (with a name beginning with PDSQL_)
to specify a data type code. If the data type code is to be retrieved from a data
dictionary table, this header file is not necessary.

Format

Arguments

srcp (input)

Specifies the start address of the character string storage area.

stype (input)

Specifies the data type before conversion. The following table shows the data
types that can be specified:

srcl (input)

Specifies the length of the character string specified by srcp. For a
variable-length character string, this argument specifies the length (units:
bytes) of the character string actually stored in the area indicated by srcp.

destp (output)

Specifies the start address of the character string storage area after
conversion. The area indicated by destp must be allocated in the system that
invokes the space conversion function.

destl (output)

Specifies the length of the character string specified by destp. For a
variable-length character string, this argument specifies the length (units:

 int p_rdb_conv_space_utf8(char *srcp,
 unsigned char stype,
 unsigned int srcl,
 char *destp,
 unsigned int *destl,
 int flags) ;

Macro name Data type

PDSQL_MCHAR MCHAR

PDSQL_MVARCHAR MVARCHAR

H. Functions provided by HiRDB

2279

bytes) of the character string actually stored in the area indicated by destp.

flags (input)

Specifies a conversion type. The following table shows the conversion types:

Return values

Data type: int

p_rdb_RC_RTRN(0)

Normal termination

p_rdb_RC_ERRINVF(-8)

Invalid flags argument

p_rdb_RC_ERRTYPC(-9)

Invalid data type

Notes

1. This space conversion function is used only for Unicode (UTF-8).

2. Before invoking this function, you must set UTF8 for the lang argument and
invoke the p_rdb_set_lang function. For details about the
p_rdb_set_lang function, see H.4 Character code type specification
function.

3. If the data input area is the same as the data output area, or if the output area
is located before the input area and the second half of the output area
overlaps with the first half of the input area, the correct operation of the
function is guaranteed.

4. Because errors related to character string length are not checked, you must
enter an appropriate value in srcl.

5. The single- and double-byte space codes use 0x20 and 0xE38080,
respectively.

6. The data types that can be set for the input are MCHAR and MVARCHAR.

7. When a character string has a variable length, srcl is referenced for the
length of the character string to be converted. Specify for srcl a length that
excludes the effective-length portion.

8. Because space conversion converts each double-byte space (3 bytes) into
two single-byte spaces (2 bytes), the length of the character string following

Macro name Conversion type

p_rdb_FULL_TO_HALF_SPACE Double-byte spaces -> Single-byte spaces

H. Functions provided by HiRDB

2280

conversion is shorter than that before the conversion.

9. When a character string has a variable length, the effective-length portion of
the area for storing character strings following conversion stores the data
length following the conversion.

10. The data inside the area for storing character strings following conversion is
guaranteed only for the length specified in destl.

11. If this function is invoked by a character code other than Unicode (UTF-8),
the operation of this function cannot be guaranteed.

H.3 Function for conversion to a DECIMAL signed normalized
number

The function for conversion to a DECIMAL signed normalized number sets the sign
for DECIMAL data to either X'C' or X'D' (for a value of 0, the sign is X'C'). Because
this function lets you obtain the normalized sign without having to store DECIMAL data
in a database, you can use it for the following purposes:

• To evaluate whether the data to be stored will be partitioned equally when
pd_dec_sign_normalize=Y is specified in the system definition and the key
for partitioning a table is determined by the key range

• To create an input data file for each RDAREA when
pd_dec_sign_normalize=Y is specified in the system definition and data is
loaded to a key-range-partitioned table in units of RDAREAs concurrently using
the database load utility

Prerequisites for using the function for conversion to a DECIMAL signed
normalized number

The prerequisites are the same as those for the hash function for table partitioning.
For details, see H.1(1) Prerequisites for using the hash function for table
partitioning.

Prerequisites for creating and executing a UAP using the function for conversion
to a DECIMAL signed normalized number

The prerequisites are the same as those for the hash function for table partitioning.
For details, see H.1(2) Creating and executing UAPs that use the hash function
for table partitioning.

(1) Details about the function for conversion to a DECIMAL signed normalized
number

(a) Specification configuration
For details about the specification configuration, see H.1(3)(b) Specification
configuration.

H. Functions provided by HiRDB

2281

(b) Function for conversion to a DECIMAL signed normalized number
(p_rdb_dec_sign_norm)
Function

The function normalizes the sign of DECIMAL data indicated by srcp as follows:

#: If the absolute value of data is 0, the sign part is set to X'C'.

Header file
#include<pdauxcnv.h>

This header file is required to use the function for conversion to a DECIMAL
signed normalized number.

Format

Arguments
srcp (input)

Specifies the start address of the DECIMAL data to be normalized.

srcl (input)

Specifies the length code of the DECIMAL data indicated by the srcp
argument. Specifiable data length codes are as follows:

Before normalization After normalization

X'A' X'C'

X'B' X'D'#

X'C' X'C'

X'D' X'D'#

X'E' X'C'

X'F' X'C'

X'0' to X'9' Error

int p_rdb_dec_sign_norm(unsigned char *srcp,
 short srcl,
 unsigned char *destp);

Data type Data length code

INTERVAL YEAR TO DAY 8 x 256

INTERVAL HOUR TO SECOND 6 x 256

H. Functions provided by HiRDB

2282

destp (output)

Sets the normalized DECIMAL data. Allocate this area indicated by destp on
the side that calls the function for conversion to a DECIMAL signed
normalized number.

Return values
data type: int

p_rdb_RC_RTRN(0)

Normal termination.

p_rdb_RC_ERRDFRM(-12)

Invalid sign part for data.

Notes

1. The function does not check anything for error other than the sign part of
DECIMAL data. Operation is not guaranteed if DECIMAL data is invalid or the
data length code specified by the srcl argument contradicts the DECIMAL
data.

2. Operation is guaranteed if the data input area is the same as the data output
area, or if the output area is located before the input area and the latter half
of the output area overlaps the first half of the input area.

H.4 Character code type specification function
The character code type specification function is used to pass the type of the character
code from a UAP to a hash function for table partitioning or a space conversion
function.

By using this function to specify the type of the character code, you can execute
processing that depends on the type of character code, such as the hash function for
table partitioning and the space conversion function.

Prerequisites for using the character code type specification function
The prerequisites are the same as those for the hash function for table partitioning.
For details, see H.1(1) Prerequisites for using the hash function for table
partitioning.

Prerequisites for creating and executing a UAP using the character code type
specification function

DECIMAL[(p[,q])] p x 256 + q
(If p is omitted, 15 is assumed; if q is omitted, 0 is assumed.)

Data type Data length code

H. Functions provided by HiRDB

2283

The prerequisites are the same as those for the hash function for table partitioning.
For details, see H.1(2) Creating and executing UAPs that use the hash function
for table partitioning.

(1) Details about the character code type specification function
(a) Specification configuration

For details about the specification configuration, see H.1(3)(b) Specification
configuration.

(b) Character code type specification function (p_rdb_set_lang)
Function

The character code type specification function specifies the type of character code
to be handled by the hash function for table partitioning and the space conversion
function.

Header file
#include<pdauxcnv.h>

This header file is required to use the character code type specification
function.

Format

Arguments
lang (input)

Specifies the type of character encoding to be handled by the hash function
for table partitioning and the space conversion function. Specifiable
character encodings are as follows:

#1: Can be specified for Linux and Windows.

#2: Can be specified for Windows.

int p_rdb_set_lang(char *lang);

Type of character codes Value of lang argument

Shift JIS kanji codes#1 "SJIS"

EUC Chinese kanji codes "CHINESE"

Single-byte character codes#2 "C"

Unicodes (UTF-8) "UTF8"

Chinese kanji codes (GB18030) "GB18030"

H. Functions provided by HiRDB

2284

If an empty character string (for example, p_rdb_set_lang ("")) is
specified, the operation is as follows:

UNIX environment

The setlocale function executed before this function sets the character
code type corresponding to the locale that was set to the LC_ALL category. If
the setlocale function has not been executed, the character code type
corresponding to the default locale of the LC_ALL category is set.

Windows environment

The default character code type of the OS is set. However, if the default
character code type is set to a type that is not listed in the above table, the
operation cannot be guaranteed.

Return values
data type: int

p_rdb_RC_RTRN(0)

Normal termination.

p_rdb_RC_ERRIVLG(-10)

Invalid character encoding type.

Notes

1. You must execute p_rdb_set_lang if any of the following conditions is
applicable:

 When setting a character code type from a UAP in a Windows
environment

 When invoking p_rdb_conv_space_utf8 from a UAP in a UNIX
environment#

 When setting the character code type to SJIS from a UAP in a Linux
environment

 When setting the character code type to CHINESE from a UAP in a UNIX
environment

#: Before invoking p_rdb_conv_space_utf8, execute
p_rdb_set_lang. When invoking the space conversion function
p_rdb_conv_space, use the setlocale function provided by the OS
instead of p_rdb_set_lang.

2. In an UNIX environment, after setting a character code type using this
function, to use a character code type that cannot be used to use another
function, issue p_rdb_set_lang("") first and then invoke the

H. Functions provided by HiRDB

2285

setlocale function to reset the character code type to an appropriate one.

I. Scalar Functions That Can Be Specified in the Escape Clause

2286

I. Scalar Functions That Can Be Specified in the Escape Clause

The following table lists the scalar functions that can be specified in the escape clause.

Table I-1: Scalar functions that can be specified in the escape clause

Scalar
function

Standard format of
scalar function

Format conversion#1

Type2 Type4 Type4 (XDM/RD E2 is
connected)

Mathemat
ical
functions

ABS(number) None None None

ACOS(float) None MASTER.ACOS(float) None

ASIN(float) None MASTER.ASIN(float) None

ATAN(float) None MASTER.ATAN(float) None

ATAN2(float1, float2) None MASTER.ATAN2(float1,
float2)

None

CEILING(number)#2 CEIL(num
ber)
08-02

MASTER.CEIL(number) None

COS(float) None MASTER.COS(float) None

COT(float)#3, #4 None None None

DEGREES(number) None MASTER.DEGREES(num
ber)

None

EXP(float) None MASTER.EXP(float) None

FLOOR(number) None MASTER.FLOOR(number
)

None

LOG(float)#2 LN(float)
08-02

MASTER.LN(float) LN(float)

LOG10(float) None MASTER.LOG10(float) None

MOD(integer1,
integer2)

None None None

PI() None MASTER.PI() None

POWER(number,
power)

None MASTER.POWER(numbe
r, power)

None

I. Scalar Functions That Can Be Specified in the Escape Clause

2287

RADIANS(number) None MASTER.RADIANS(num
ber)

None

RAND(integer)#3, #4 None None None

ROUND(number,
places)

None MASTER.ROUND(numbe
r, places)

None

SIGN(number) None MASTER.SIGN(number) None

SIN(float) None MASTER.SIN(float) None

SQRT(float) None MASTER.SQRT(float) None

TAN(float) None MASTER.TAN(float) None

TRUNCATE(number,
places)#2

TRUNC(nu
mber,
places)
08-02

MASTER.TRUNC(numbe
r, places)

None

String
functions

ASCII(string) None MASTER.ASCII(string) None

BIT_LENGTH(string
)#3

None None None

CHAR(code)#2 CHR(code)
08-02

MASTER.CHR(code) None

CHAR[ACTER]_LE
NGTH(string)#3

None None None

CONCAT(string1,
string2)#3

None None None

DIFFERENCE(string
1, string2)#3

None None None

INSERT(string1,
start, length,
string2)#2

INSERTST
R(string1,
start,
length,
string2)
08-02

MASTER.INSERTSTR(str
ing1, start, length, string2)

None

Scalar
function

Standard format of
scalar function

Format conversion#1

Type2 Type4 Type4 (XDM/RD E2 is
connected)

I. Scalar Functions That Can Be Specified in the Escape Clause

2288

LCASE(string)#2 LOWER(st
ring)
08-02

Same as at left Same as at left

LEFT(string, count)#2 LEFTSTR(
string,
count)
08-02

MASTER.LEFTSTR(strin
g, count)

None

LENGTH(string) None None None

LOCATE(string1,
string2[, start])#2

POSITION
(string1 IN
string2
[FROM
start])
08-02

Same as at left Same as at left

LTRIM(string) None MASTER.LTRIM(string) TRIM(LEADING FROM
string)

OCTET_LENGTH(st
ring)#3

None None None

POSITION(character
IN character)

None None None

REPEAT(string,
count)#3

None None None

REPLACE(string1,
string2, string3)

None MASTER.REPLACE(strin
g1, string2, string3)

None

RIGHT(string,
count)#2

RIGHTST
R(string,
count)
08-02

MASTER.RIGHTSTR(stri
ng, count)

None

RTRIM(string) None MASTER.RTRIM(string) TRIM(TRAILING FROM
string)

SOUNDEX(string)#3 None None None

SPACE(count)#3 None None None

Scalar
function

Standard format of
scalar function

Format conversion#1

Type2 Type4 Type4 (XDM/RD E2 is
connected)

I. Scalar Functions That Can Be Specified in the Escape Clause

2289

SUBSTRING(string,
start, length)#2

SUBSTR(s
tring, start,
length)

Same as at left Same as at left

UCASE(string)#2 UPPER(stri
ng)

Same as at left Same as at left

Time and
date
functions

CURDATE()#2 CURRENT
DATE

Same as at left Same as at left

CURRENT_DATE()#

2
CURRENT
DATE

Same as at left Same as at left

CURTIME()#2 CURRENT
TIME

Same as at left Same as at left

CURRENT_TIME None None None

CURRENT_TIME(ti
me-precision)#2, #5

The time-precision
argument specifies the
precision of the
fraction of a second in
the return value.

CURRENT
TIME
08-02

Same as at left None

CURRENT_TIMEST
AMP[(timestamp-pre
cision)]
The
timestamp-precision
argument specifies the
precision of the
fraction of a second in
the returned
timestamp.

None None None

DAYNAME(date) None MASTER.DAYNAME(dat
e)

None

DAYOFMONTH(dat
e)#3

None None None

DAYOFWEEK(date) None MASTER.DAYOFWEEK(
date)

None

Scalar
function

Standard format of
scalar function

Format conversion#1

Type2 Type4 Type4 (XDM/RD E2 is
connected)

I. Scalar Functions That Can Be Specified in the Escape Clause

2290

DAYOFYEAR(date) None MASTER.DAYOFYEAR(
date)

None

EXTRACT(extract-fi
eld FROM
extract-source)#3

None None None

HOUR(time) None None None

MINUTE(time) None None None

MONTH(time) None None None

MONTHNAME(date
)

None MASTER.MONTHNAME
(date)

None

NOW()#2 CURRENT
TIMESTA
MP(6)
08-02

Same as at left Same as at left

QUARTER(date) None MASTER.QUARTER(date
)

None

SECOND(time) None None None

TIMESTAMPADD(in
terval, count,
timestamp)#3

None None None

TIMESTAMPDIFF(i
nterval, timestamp1,
timestamp2)#3

None None None

WEEK(date) None MASTER.WEEK(date) None

YEAR(date) None None None

System
functions

DATABASE()#3 None None None

IFNULL(expression,
value)#3

None None None

USER()#4 USER
08-02

Same as at left Same as at left

Scalar
function

Standard format of
scalar function

Format conversion#1

Type2 Type4 Type4 (XDM/RD E2 is
connected)

I. Scalar Functions That Can Be Specified in the Escape Clause

2291

#1

Indicates the format of the converted scalar function in the analysis of the escape
syntax in the Statement object. None means that the function is not converted.
xx-xx indicates an added version.

#2

The standard format differs from the HiRDB format or XDM/RD E2 format.

#3

There is no corresponding scalar function in HiRDB or XDM/RD E2.

#4

Because the function is not supported by HiRDB or XDM/RD E2, specifying the
scale function (standard format) in the escape syntax will result in a HiRDB
server or XDM/RD E2 error. xx-xx indicates an added version of Type2 JDBC
driver.

#5

A Type4 JDBC driver treats the precision of the fraction of a second as being 0
because it converts the function to CURRENT TIME. The precision of seconds
specified in the argument is ignored.

Data type
conversio
n function

CONVERT(value,
SQLtype)#2, #4

None None None

Scalar
function

Standard format of
scalar function

Format conversion#1

Type2 Type4 Type4 (XDM/RD E2 is
connected)

J. Character Code Conversion Rules When Character Sets Are Used

2292

J. Character Code Conversion Rules When Character Sets Are Used

This section describes the character code conversion rules when character sets are
used.

J.1 Converting shift JIS kanji codes to EBCDIK
This section describes conversion from shift JIS kanji codes to EBCDIK.

J. Character Code Conversion Rules When Character Sets Are Used

2293

How to interpret the table:

J. Character Code Conversion Rules When Character Sets Are Used

2294

Row 1: Character to be converted

Row 2: Code before conversion

Row 3: Code after conversion

A double-byte character (whose first byte is 0x81 to 0x9F, 0xE0 to 0xEF, or 0xF0 to
0xFC) is treated as two single-byte characters.

J.2 Converting EBCDIK to shift JIS kanji codes
This section describes conversion from EBCDIK to shift JIS kanji codes.

J. Character Code Conversion Rules When Character Sets Are Used

2295

How to interpret the table:

J. Character Code Conversion Rules When Character Sets Are Used

2296

Row 1: Character to be converted

Row 2: Code before conversion

Row 3: Code after conversion

K. HiRDB SQL Tuning Advisor Environment Setup

2297

K. HiRDB SQL Tuning Advisor Environment Setup

HiRDB SQL Tuning Advisor is not supported.

L. Maximum and Minimum HiRDB Values

2298

L. Maximum and Minimum HiRDB Values

The HiRDB system defines a specific range of acceptable values for each item. This
appendix lists the maximum and minimum values allowed.

Table L-1: HiRDB maximum and minimum values

Classification Item Minimum
value

Maximum
value

Unit

Database
manipulation

Number of retrieval items 1 30,000 Tables

Number of update columns 1 30,000

Number of sort columns 1 255

Number of grouped columns 0 or 1#1 255

Number of duplicate locked columns 1 255

Number of nested logical operations 0 255

Number of value expressions of IN
predicate

1 30,000

Number of nested scalar functions 0 255

Length of character string literal in SQL 0 255 Bytes

Length of national character string literal in
SQL

0 127 Characters

Length of mixed character string literal in
SQL

0 255 Bytes

Length of one SQL statement 1 2,000 Kilobytes

Number of tables that can be specified in
one SQL statement

1 64 Tables

Number of correlation names that can be
specified in one SQL statement

0 65

Number of locked base tables in LOCK
statement

1 64

Number of arguments in CALL statement 0 30,000

Row length of work table#2 6 32,720 Bytes

L. Maximum and Minimum HiRDB Values

2299

#1: If the GROUP BY clause is specified, the minimum value is 1. If the HAVING clause
is specified without the GROUP BY clause, or if a set function is specified in the
SELECT clause, the minimum value is 0.

#2: Some SQL statements require a work table file. For details about work table files,
see the HiRDB Version 9 Installation and Design Guide.

UAP Number of SQL statements in one UAP 1 4,095 Tables

Number of cursors in one UAP 0 1,023

Number of ? parameters in SQL statement 0 30,000

Number of embedded variables in SQL
statement

0 30,000

Classification Item Minimum
value

Maximum
value

Unit

M. List of Sample UAPs

2300

M. List of Sample UAPs

The following table lists the sections where sample UAPs can be found.

Table M-1: List of sample UAPs

Classification Description Section

Creating stored
routines

Numbering using a stored procedure 4.2.2(7)

Defining and calling an SQL stored procedure 4.3.1(3)

Using the results-set return facility to define and call an SQL
statement procedure

4.3.1(6)(c)

Defining and calling an SQL stored function 4.3.2(2)

External Java stored routine program 9.3

Java stored procedure program that uses the results-set return
facility

9.4.5(3)

External C stored routine program 10.3

Using arrays Coding the FETCH facility using arrays 4.8.1(4)

Coding the INSERT facility using arrays 4.8.2(4)

Coding the UPDATE facility using arrays 4.8.3(4)

Coding the DELETE facility using arrays 4.8.4(4)

Using the
multi-connection
facility

Coding the multi-connection facility 4.10(3)

Using the locator
facility

Coding the locator facility 4.16.4

Creating UAPs in C
language

Example of basic operation 7.2.2(1)

Example that uses a user-defined SQL descriptor area 7.2.2(2)

Example of manipulating LOB data 7.2.2(3)

Eliminating the embedded SQL declare section 8.2.5(2)

Example that uses the structures of C language 8.2.7(3)

Using hash partitioning H.1(5)

M. List of Sample UAPs

2301

Retrieving records HiRDB First
Step Guide

Creating UAPs in
COBOL

Example of basic operation 7.3.2(1)

Example that uses a row interface 7.3.2(2)

Example that uses the TYPE, TYPEDEF, and SAME AS clauses 7.3.2(3)

Retrieving records HiRDB First
Step Guide

Executing commands
from UAPs

UAP that loads data 12.2

Using the
HiRDB.NET data
provider

Connecting to the database 16.11.1

Executing SQL statements 16.11.2

Executing transactions 16.11.3

Executing retrieval statements 16.11.4

Executing the INSERT facility by using arrays 16.11.5

Executing repetition columns 16.11.6

Checking for an error in SQL statements and acquiring error
information

16.11.7

Using DataSource and
JNDI (Type2 JDBC
driver)

Registering DataSource into JNDI 17.4.1(3)

Acquiring DataSource from JNDI 17.4.1(4)

Connecting to the database 17.4.1(5)

Using DataSource and
JNDI (Type4 JDBC
driver)

Registering DataSource into JNDI 18.3(3)

Acquiring DataSource from JNDI 18.3(4)

Connecting to the database 18.3(5)

Using a JDBC driver UAP that uses a JDBC driver 18.16

Using SQLJ Coding connection to and disconnection from a HiRDB server 19.3.7

Classification Description Section

M. List of Sample UAPs

2302

Coding data retrieval using the cursor 19.3.8

Receiving a dynamic result set 19.3.9

Operation with JDBC 19.3.10

Coding that uses a native interface 19.4.4

Retrieving records HiRDB First
Step Guide

Classification Description Section

2303

Index

Symbols
? parameter, specifying value using repetition column
as 1272

A
abbreviations for products vii
abstract data type, manipulating data in table with 89
access path information 994
access privilege

granting 8
revoking 9

ADO.NET-compatible application program, HiRDB
access from 1119
ALLOCATE CONNECTION HANDLE 13
ALLOCATE CURSOR statement 9
ALTER PROCEDURE 5
ALTER ROUTINE 5
ALTER TABLE 5
ALTER TRIGGER 5
AND 62
AND multiple index usage [SQL optimization] 329
AND multiple indexes, suppressing use of [SQL
optimization option] 653
AND PLURAL INDEXES SCAN [SQL
optimization] 333
arithmetic operations on numeric data 69
array

DELETE facility using 402
facilities using 377
FETCH facility using 377
INSERT facility using 386
UPDATE facility using 399

Array class [Type2 JDBC driver] 1270, 1326
ASSIGN LIST statement 9
assignment statement 12
audit event

defining 6
deleting 7

auditor's password, changing 8
automatic reconnect facility 443
AVG 72

B
base table 29

defining 6
base table search process information 1001
batch acquisition from functions provided by plug-ins,
facility for [SQL optimization option] 658
batch updating

JDBC2.0 basic facility 1246
JDBC2.1 Core API 1846

BEGIN DECLARE SECTION 13
BETWEEN predicate 58

data search using 59
BINARY data

addition update of 436
partial extraction of 436

Blob class [Type2 JDBC driver] 1326
BLOB data

addition update of 436
file output facility for 431
partial extraction of 436

Blob interface [JDBC1.2 core API] 1829
BLOB type, notes on using [Type2 JDBC
driver] 1278
block mode 626
block transfer facility 373
Boolean predicate, searching for data using 63

C
C data description 2114
CALL statement 9
CallableStatement class

JDBC1.0 facility 1237
Type2 JDBC driver 1316

cataloged text, copying 14

Index

2304

character code classification 798, 810
character code conversion facility [Type2 JDBC
driver] 1312
character code type specification function 2282
character conversion facility [Type4 JDBC
driver] 1939
character string, outputting to file 15
check pending status 155, 157
Class file, creating 887
client environment definition 533, 562

supported [Type4 JDBC driver] 1940
client environment setup 483
CLOSE statement 9
COBOL data description 2135
coding example

C language 722, 731, 743
COBOL 759, 775

coding rule
C++ 786
COBOL 750

column 28
name 28

Column Name Descriptor Area 2093
contents of 2093
expanding 2095
organization of 2093

COMMAND EXECUTE 14
command trace facility 1018
command trace file, backing up 1019
command trace information

how to obtain 1018
interpreting 1018

commands, executing from UAP 14
COMMENT 6
comment, adding 6
COMMIT statement 12
COMMIT_BEHAVIOR, notes on 1231
comparison condition 65
comparison predicate 57

data search using 58
compiling 842

using multi-connection facility 859
component specification 89
compound statement 15

CONNECT privilege
granting 8
revoking 8

CONNECT statement 12
Connection class

JDBC1.0 facility 1235
Type2 JDBC driver 1314

connection handle
allocating 13
freeing 13
getting 14
to be used, cancelling all 13
to be used, declaring 13

connection information priorities [Type4 JDBC
driver] 1951
Connection interface [JDBC1.2 core API] 1370
connection pooling [JDBC2.0 Optional
Package] 1262
connection security facility

defining 6
deleting 7

ConnectionPoolDataSource interface [JDBC2.0
Optional Package] 1860
conventions

abbreviations for products vii
diagrams xx
fonts and symbols xxi
KB, MB, GB and TB xxv
version numbers xxv

COPY 14
COUNT 72
CREATE AUDIT 6
CREATE CONNECTION SECURITY 6
CREATE FUNCTION 6
CREATE INDEX 6
CREATE PROCEDURE 6
CREATE SCHEMA 6
CREATE TABLE 6
CREATE TRIGGER 6
CREATE TYPE 6
CREATE VIEW 6
CROSS JOIN [SQL optimization] 327
cursor

allocating 9

Index

2305

closing 9
closure of 38
declaration and lock 216
declaring 9, 114, 122
definition of 36
deletion using 49
examples of using 223
opening 11, 36
receiving retrieval information for 10
retrieval using 32
retrieval without using 34
table operations using 212
updating row retrieved, using 33
updating using 43
usage of 32
use of 212
using multiple cursors simultaneously 215

cursor library, setting 1098
cursor updatability 212

D
data

deletion of 49
deletion of, with condition specified 50
duplicated, eliminating 74
extraction of 37
fetching 10
grouping 72
inserting 53
operation 69
processing 72
retrieval of 35
satisfying multiple conditions, searching
for 62
sorted 73
sorting 73
specific data search 57
that uses preprocessable cursor, updating 12
updating 11, 43
updating with condition specified 44

data collecting servers, separating
SQL optimization 305
SQL optimization option 654

data dictionary table

details of 2166
examples of SQL statement retrieving 2163
list of 2159
retrieval of 2159

data guarantee level 368, 641
data guarantee level 0 369
data guarantee level 1 369
data guarantee level 2 370

data type 28
defining type 6
Type2 JDBC driver 1311
Type4 JDBC driver 1917
user-defined type, deleting 7

data type, added
JDBC2.0 basic facility 1250
JDBC2.1 Core API 1853

database operation 27
DatabaseMetaData class

JDBC1.0 facility 1242
Type2 JDBC driver 1319

DatabaseMetaData interface [JDBC1.2 core
API] 1666
DataSource interface [JDBC2.0 Optional
Package] 1855
DataSource object and JNDI, database connection
using [Type4 JDBC driver] 1359
date data operation 70
DBA privilege

granting 8
revoking 8

DbType property 1190
deadlock

between servers 166
causes of 164
corrective measures for 164
countermeasures for 169
example of 165
in logical file used by plug-in, avoiding 171
preventing 170

DEALLOCATE PREPARE statement 9
DECIMAL signed normalized number, function for
conversion to 2280
DECLARE CONNECTION HANDLE SET 13
DECLARE CONNECTION HANDLE UNSET 13

Index

2306

DECLARE CURSOR 9
definition information for user-defined type,
receiving 10
DELETE statement 9

WHERE clause of 50
DESCRIBE CURSOR statement 10
DESCRIBE statement 10
DESCRIBE TYPE statement 10
diagnostic information, getting 14
diagram conventions xx
DISCONNECT statement 12
distributed transaction [JDBC2.0 Optional
Package] 1264
Driver class [JDBC1.0 facility] 1226
Driver interface [JDBC1.2 core API] 1363
DriverManager class, database connection using
[Type4 JDBC driver] 1330
DROP AUDIT 7
DROP CONNECTION SECURITY 7
DROP DATA TYPE 7
DROP FUNCTION 7
DROP INDEX 7
DROP LIST statement 10
DROP PROCEDURE 7
DROP SCHEMA 7
DROP TABLE 8
DROP TRIGGER 8
DROP VIEW 8
dynamic SELECT statement 11, 123
dynamic SQL 123

execution characteristics of 123
notes on executing 124

E
embedded exception, declaring 14
embedded SQL

declaring beginning of 13
declaring end of 13

embedded SQL declare section
dispensing with 833
items that can be described within 714

embedded SQL UAP, overview of 710
embedded variable, declaration of 113
empty set 67

END DECLARE SECTION 13
environment definition information 574
environment setting

Type2 JDBC driver 1224
Type4 JDBC driver 1328

environment variable
access path display utility 568
access path information file for HiRDB SQL
Tuning Advisor 568
BES connection holding facility 572
block transfer facility 570
client using X/Open-compliant API in OLTP
environment 562
command execution from UAP 565
inner replica facility 571
inter-process memory communication
facility 565
JDBC driver 573
lock control 568
ODBC function 572
output unit of UAP statistical
information 568
plug-in 572
referential or check constraint 572
setting 533
space conversion for data 571
specifying pointer as 834
SQL-related 569
system configuration 562
system monitoring 566
trouble-shooting 567
updatable online reorganization 571
user execution environment 563
XDM/RD E2 connection facility 571

environment variable group 700
registering 700

environment variable specification
using UAP under OpenTP1 as client 545
using UAP under TP1/EE as client 558
using UAP under TP1/LiNK as client 549
using UAP under TPBroker for C++ as
client 551
using UAP under TUXEDO as client 555

Index

2307

using UAP under WebLogic Server as
client 556

error
automatic identification of 230
corrective measures for detected 229
identification of 117
re-reporting 16
reporting 15

error-handling process specification 114
EX 138
Exception trace log

methods acquired in 1971
notes 1992
output example and analysis method 1986
output format 1979
required memory size and file size 1991
setup for acquiring 1971
Type4 JDBC driver 1971

EXECUTE IMMEDIATE statement 10
EXECUTE statement 10
execution user, changing 13
EXISTS predicate 67
extended SQL error information, facility for output
of 974

F
FALSE 63
FETCH statement 10, 37
floatable server allocation

optimization features related to 304
optimization features related to number of
candidates of 305
SQL optimization 302

floatable server candidates, increasing number of
SQL optimization 305
SQL optimization option 651

floatable server, allocating [SQL optimization] 302
font conventions xxi
FOR READ ONLY clause 215

specifying 216
FOR statement 15
FOR UPDATE clause 215

specifying 216
forced nest-loop-join [SQL optimization option] 648

FREE CONNECTION HANDLE 13
FREE LOCATOR statement 10
function 89

defining 6
deleting 7
returning return value of 15
rules for determining called function 275

G
GB meaning xxv
GET CONNECTION HANDLE 14
GET DIAGNOSTICS 14
getBlockUpdate [Type2 JDBC driver] 1276, 1302
getClear_Env [Type2 JDBC driver] 1309
getCommit_Behavior [Type2 JDBC driver] 1301
getDBHostName

Type2 JDBC driver 1289
Type4 JDBC driver 1878

getDescription
Type2 JDBC driver 1288
Type4 JDBC driver 1876

getEncodeLang
Type2 JDBC driver 1291
Type4 JDBC driver 1904

getEnvironmentVariables [Type4 JDBC driver] 1902
getHiRDBCursorMode [Type4 JDBC driver] 1899
getJDBC_IF_TRC [Type4 JDBC driver] 1879
getLONGVARBINARY_Access

Type2 JDBC driver 1304
Type4 JDBC driver 1889

getLONGVARBINARY_AccessSize [Type4 JDBC
driver] 1910
getLONGVARBINARY_TruncError [Type4 JDBC
driver] 1911
getMaxBinarySize [Type4 JDBC driver] 1906
getNotErrorOccurred [Type4 JDBC driver] 1900
getPassword

Type2 JDBC driver 1293
Type4 JDBC driver 1885

getRMID [Type2 JDBC driver] 1297
getSQLInNum

Type2 JDBC driver 1305
Type4 JDBC driver 1891

getSQLOutNum

Index

2308

Type2 JDBC drover 1307
Type4 JDBC driver 1892

getSQLWarningLevel
Type2 JDBC driver 1308
Type4 JDBC driver 1894

getStatementCommitBehavior [Type4 JDBC
driver] 1908
getTRC_NO [Type4 JDBC driver] 1880
getUapName [Type4 JDBC driver] 1882
getUser

Type2 JDBC driver 1292
Type4 JDBC driver 1883

getXACloseString
Type2 JDBC driver 1296
Type4 JDBC driver 1888

getXALocalCommitMode [Type4 JDBC
driver] 1896
getXAOpenString

Type2 JDBC driver 1295
Type4 JDBC driver 1887

getXAThreadMode [Type2 JDBC driver] 1298
global deadlock 166

example of 167
GRANT access-privilege 8
GRANT AUDIT 8
GRANT CONNECT 8
GRANT DBA 8
GRANT RDAREA 8
GRANT SCHEMA 8
group

average value of 72
maximum value of 72
minimum value of 72
rows count of 72
total value of 72

group processing, ORDER BY processing, and
DISTINCT set function processing at local back-end
server

SQL optimization 310
SQL optimization option 653

grouping processing method [SQL optimization] 309
grouping processing, rapid

SQL optimization 310
SQL optimization option 654

H
hash execution [SQL optimization] 336, 343
hash function for table partitioning 2245
hash join

preparing for application of 347
SQL optimization 315
subquery hash execution [SQL extension
optimizing option] 666

HASH JOIN [SQL optimization] 319
hash join processing method 320

batch hash join 320
bucket partitioning hash join 321
continuous hash join 321
intermittent hash join 322

HASH SUBQ [SQL optimization] 340, 345
hash table size 347
hashing mode 351

tuning 354
high-speed search condition

application scope of 355
deriving 355
deriving [SQL optimization option] 656
deriving by CNF conversion 363
deriving by condition shifting 364

HiRDB
data type of 1065
functions provided by 2245

HiRDB client
installing 486
no response status 618
organization of directory for 490
organization of file for 490
types of 484

HiRDB client environment variable, tool for
registering 701
HiRDB OLE DB provider 1110
HiRDB.NET Data Provider 1120

data types of 1190
example of UAP using 1210
installing 1123
interfaces of 1142
list of classes provided by 1124
list of members provided by 1126
notes about 1186

Index

2309

prerequisite programs for 1120
type conversion by 1193

HiRDB/Developer's Kit 484
HiRDB/Run Time 484
HiRDB_PDHOST 563, 590
HiRDB_PDNAMEPORT 563, 591
HiRDB_PDTMID 563, 592
HiRDB_PDXAMODE 563, 592
HiRDBCommand 1142

list of members 1126
HiRDBCommandBuilder 1146

list of members 1127
HiRDBConnection 1152

list of members 1129
HiRDBDataAdapter 1157

list of members 1131
HiRDBDataReader 1159

list of members 1132
HiRDBException 1169

list of members 1135
HiRDBParameter 1169

list of members 1135
HiRDBParameterCollection 1174

list of members 1137
HiRDBProviderFactory 1181
HiRDBRowUpdatedEventArgs 1183

list of members 1140
HiRDBRowUpdatingEventArgs 1183

list of members 1140
HiRDBTransaction 1184

list of members 1141
HiRDBType property 1190
holdable cursor 219

example of using 225
hosts file, setting 532

I
I/O information, receiving 10
IF statement 15
IN predicate 59

data search using 60
index

benefits of using 234
changing during retrieval 235

defining 6
deleting 7
drawbacks of using 234
priority 234
processing time 234

index key value
creating locked resources for 210
non-locking of 175

INDEX SCAN [SQL optimization] 330
index scan [SQL optimization] 329
index use, suppressing [SQL optimization
option] 654
index-type plug-in-dependent function 478
forcing use of multiple indexes 654
indicator variable, declaration of 113
INSERT statement 11, 53

specifying ROW in 54
INSTALL JAR 14
installing

Type2 JDBC driver 1224
Type4 JDBC driver 1328

integrity constraint 121
inter-process memory communication facility 616
interface 17

area 120
area type of 120
between UAP and HiRDB 17
use of 120

J
JAR file

creating 889
deleting 15
re-registering 15
registering 14

JAR file access facility [JDBC2.0 Optional
Package] 1267
JAR format, archiving in 889
Java file

compiling 887
creating 887

Java program, coding 887
Java stored function 883
Java stored procedure 883

Index

2310

JDBC driver
functions provided by 1275

JDBC interface method trace
setup for acquiring 1968
Type4 JDBC driver 1968

JDBC1.0 facility 1226
JDBC1.2 core API 1363
JDBC2.0 basic facility 1244
JDBC2.0 Optional Package [Type2 JDBC
driver] 1259, 1855
JDBC2.1 Core API 1846
join method [SQL optimization] 314
join method types [SQL optimization] 314
join process information 1000

K
KB meaning xxv
key conditions including scalar operation, applying
[SQL optimization option] 657
KEY SCAN [SQL optimization] 331
key scan [SQL optimization] 329
KEY SCAN MERGE JOIN [SQL optimization] 316

L
L-KEY R-LIST MERGE JOIN [SQL
optimization] 317
L-KEY R-SORT MERGE JOIN [SQL
optimization] 317
L-LIST R-KEY MERGE JOIN [SQL
optimization] 317
L-LIST R-SORT MERGE JOIN [SQL
optimization] 317
L-SORT R-KEY MERGE JOIN [SQL
optimization] 317
L-SORT R-LIST MERGE JOIN [SQL
optimization] 317
labeling rule

C language 712
C++ 786
COBOL 750
OOCOBOL 787

LANG, character codes that can be specified for 798
LEAVE statement 15
LIKE predicate

data search using 61
linking 842

using multi-connection facility 859
list

creating 9
deleting 10

LIST SCAN [SQL optimization] 335
LIST SCAN MERGE JOIN [SQL optimization] 316
locator facility 448
locator, invalidating 10
lock

period 163
referencing during 163
releasing 163
starting 163

lock control on tables 12
lock mode 137

exclusive mode 138
protected retrieve mode 137
protected update mode 138
shared retrieve mode 138
shared update mode 138
simultaneous execution by two users based
on 138
transition rule of 139
typical combination of 140, 143, 145, 148,
150, 153, 155, 157

LOCK statement 12
locked resource

inclusive relationships 136
setting minimum unit of 136

locking 136
based on deadlock priority value 170
page 145, 148
row 140, 143
row-level 139
units of 136

log collection mode 596
long running SQL statements, interval monitoring
of 618

M
mapping

during retrieval data acquisition 1918

Index

2311

SQL data type 1917
when ? parameter is set 1921

MAX 72
maximum-hash-table-row-length 347
maximum-number-of-hash-joins-in-SELECT-
statement 350
MB meaning xxv
merge join [SQL optimization] 314
MIN 72
MULTI COLUMNS INDEX SCAN [SQL
optimization] 331
MULTI COLUMNS KEY SCAN [SQL
optimization] 332
multi-connection facility 409

N
narrowed search 424

using inner replica facility 430
Native Runtime 2047
nest-loop-join, prioritized [SQL optimization
option] 650
NESTED LOOPS JOIN [SQL optimization] 318
nested loops row value execution [SQL
optimization] 342
NESTED LOOPS ROW VALUE SUBQ [SQL
optimization] 344
nested loops work table execution [SQL
optimization] 342
NESTED LOOPS WORK TABLE SUBQ [SQL
optimization] 343
nested-loops-join [SQL optimization] 314
no-log mode 596
non-locking of index key values 150, 153
non-NULL data, searching for 61
nonblock mode 626
NOT 62
NOT NULL constraint 121
NULL predicate 61

with NOT, data search using 62

O
object relational database table 30
ODBC 3.5 driver

installing 1053

setting environment variable 1053
ODBC application program, HiRDB access
from 1047
ODBC function

data type of 1065
facility available to 1067
provided by HiRDB 1060

ODBC2.0 driver, installing 1049
OLE DB 1110
OLE DB application program, HiRDB access
from 1109
OPEN statement 11
operation code 959
optimizing mode 2 based on cost, application of [SQL
extension optimizing option] 665
OR 62
OR multiple index usage [SQL optimization] 330
OR multiple index use, priority of [SQL optimization
option] 652
OR PLURAL INDEXES SCAN [SQL
optimization] 334
outer joining 76
overflow handling 1929

P
p_rdb_conv_space 2274
p_rdb_conv_space_utf8 2277
p_rdb_dbhash 2250
p_rdb_dec_sign_norm 2281
p_rdb_set_lang 2283
parameter trace output examples 966
PATH 533, 541
PDADDITIONALOPTLVL 569, 662
PDAGGR 569, 667
PDASTHOST 565, 613
PDASTPORT 565, 614
PDASTUSER 565, 615
PDAUTOCONNECT 569, 669
PDAUTORECONNECT 564, 610
PDBESCONHOLD 572, 688
PDBESCONHTI 572, 689
PDBINARYBLKF 570, 680
PDBLKBUFFSIZE 570, 680
PDBLKF 570, 679

Index

2312

pdcbl 811
PDCLTAPNAME 563, 593
PDCLTCNVMODE 564, 597
PDCLTGAIJIDLL 564, 603
PDCLTGAIJIFUNC 564, 604
PDCLTGRP 564, 607
PDCLTLANG 563, 594
PDCLTPATH 567, 627
PDCLTRCVADDR 562, 585
PDCLTRCVPORT 562, 583
PDCLTRDNODE 571, 686
PDCMDTRACE 565, 615
PDCMDWAITTIME 565, 615
PDCMMTBFDDL 569, 668
PDCNCTHDL-type variable, declaration of 14
PDCNSTRNTNAME 572, 688
PDCONNECTWAITTIME 566, 626
pdcpp 799
PDCURSORLVL 570, 674
PDCWAITTIME 566, 618
PDCWAITTIMEWRNPNT 566, 622
PDDBACCS 571, 684
PDDBBUFLRU 564, 612
PDDBLOG 564, 596
PDDBORGUAP 571, 685
PDDDLDEAPRP 672
PDDELRSVWDFILE 570, 677
PDDFLNVAL 569, 667
PDDLKPLIO 569
PDDLKPRIO 639
PDERRSKIPCODE 567, 628
PDEXWARN 564, 596
PDFESGRP 562, 580
PDFESHOST 562, 576
PDFORUPDATEEXLOCK 569, 640
PDGDATAOPT 572, 690
PDHASHTBLSIZE 569, 667
PDHATRNQUEUING 564, 613
PDHJHASHINGMODE 570, 678
PDHOST 562, 574
PDIPC 565, 616
PDISLLVL 569, 641
PDJDBFILEDIR 573, 694
PDJDBFILEOUTNUM 573, 694

PDJDBONMEMNUM 573, 694
PDJDBTRACELEVEL 573, 694
PDJETCOMPATIBLE 572, 693
PDKALVL 566, 623
PDKATIME 566, 625
PDLANG 563, 595
PDLOCKLIMIT 568, 639
PDLOCKSKIP 569, 640
PDNAMEPORT 562, 575
PDNBLOCKWAITTIME 566, 625
PDNODELAYACK 571, 682
pdocb 811
pdocc 799
PDODBCWRNSKIP 572, 692
PDODBESCAPE 572, 690
PDODBLOCATOR 572, 691
PDODBSPLITSIZE 572, 692
PDODBSTATCACHE 572, 689
PDPLGIXMK 572, 693
PDPLGPFSZ 573, 693
PDPLGPFSZEXP 573, 693
PDPLUGINNSUB 693
PDPLUGINNSUB2 572
PDPRMTRC 567, 629
PDPRMTRCSIZE 567, 630
PDPRPCRCLS 569, 669
PDRCCOUNT 564, 611
PDRCINTERVAL 564, 611
PDRCTRACE 567, 632
PDRDCLTCODE 571, 687
PDRECVMEMSIZE 565, 617
PDREPPATH 567, 631
PDSENDMEMSIZE 565, 617
PDSERVICEGRP 562, 578
PDSERVICEPORT 562, 579
PDSPACELVL 571, 685
PDSQLEXECTIME 567, 632
PDSQLOPTLVL 569, 642
PDSQLTEXTSIZE 567, 632
PDSQLTRACE 567, 627
PDSQLTRCOPENMODE 567, 632
PDSRVTYPE 562, 578
PDSTJTRNOUT 568, 638
PDSUBSTRLEN 564, 597

Index

2313

PDSWAITTIME 566, 619
PDSWATCHTIME 566, 619
PDSYSTEMID 565, 615
PDTAAPINFMODE 568, 638
PDTAAPINFPATH 568, 637
PDTAAPINFSIZE 568, 638
PDTCPCONOPT 564, 607
PDTIMEDOUTRETRY 566, 625
PDTMID 562, 586
PDTP1SERVICE 571, 687
pdtrcmgr 1021
PDTRCMODE 567, 630
PDTRCPATH 567, 631
PDTXACANUM 563, 587
PDUAPENVFILE 564, 611
PDUAPERLOG 567, 628
PDUAPEXERLOGPRMSZ 568, 635
PDUAPEXERLOGUSE 568, 634
PDUAPREPLVL 567, 630
PDUSER 563, 592
PDVWOPTMODE 568, 636
PDWRTLNCOMSZ 568, 634
PDWRTLNFILSZ 568, 633
PDWRTLNPATH 568, 633
PDXAMODE 563, 587
PDXARCVWTIME 563, 588
PDXATRCFILEMODE 563, 589
plug-in distribution function 477
PLUGIN INDEX SCAN [SQL optimization] 332
PLUGIN KEY SCAN [SQL optimization] 332
pointer, specifying as environment variable 834
PooledConnection interface [JDBC2.0 Optional
Package] 1864
PR 137
preparable dynamic DELETE statement: locating 9
preparable dynamic UPDATE statement: locating 12
PREPARE statement 11
PreparedStatement class

JDBC1.0 facility 1237
Type2 JDBC driver 1316

PreparedStatement interface [JDBC1.2 core
API] 1431
preprocessing 797

for C programs in UNIX environment 798

for C programs in Windows environment 816
for COBOL programs in UNIX
environment 809
for COBOL programs in Windows
environment 826
overview of 797

preprocessor declaration statement, validating 831
priority [SQL optimization] 302
procedure 259

calling 9
defining 6
deleting 7

process, avoiding survival of 619, 620
program example

C language 719
COBOL 755

PU 138
PURGE TABLE statement 11, 51

Q
quantified predicate 65
query process information 998
query processing method in HiRDB [SQL
optimization] 302

R
R-LIST NESTED LOOPS JOIN [SQL
optimization] 318
rapid grouping facility 406
RDAREA usage privilege

granting 8
revoking 8

reconnect trace facility 1022
relational database table 28
REMOVE JAR 15
REPLACE JAR 15
RESIGNAL statement 16
result set enhancement [JDBC2.0 basic facility] 1244
result set expansion [JDBC2.1 Core API] 1846
results-set return facility

Java stored procedures only 922
limited to SQL stored procedures 265

ResultSet class
JDBC1.0 facility 1238

Index

2314

Type2 JDBC driver 1317
ResultSet interface [JDBC1.2 core API] 1561
ResultSetMetaData class

JDBC1.0 facility 1239
Type2 JDBC driver 1318

ResultSetMetaData interface [JDBC1.2 core
API] 1811
retrieval information, receiving 10
retrieve first n records facility 441
return code, referencing 227
RETURN statement 15
REVOKE access-privilege 9
REVOKE CONNECT 8
REVOKE DBA 8
REVOKE RDAREA 8
REVOKE SCHEMA 8
rollback

setting 133
ROLLBACK statement 13
rollback, setting 131, 133
row 28

deleting 9
deleting all 11
in table, deleting all 51
inserting 11
into table with repetition column, inserting 55
on column basis, inserting 53
on row basis, inserting 55
on row basis, inserting (to table with FIX
attribute) 54
repeating execution of each 15
retrieval on basis of 42
retrieving one 11
that uses preprocessable cursor, deleting 9
updating on basis of 46

row identifier, searching using [SQL
optimization] 335
row value execution [SQL optimization] 336
ROW VALUE SUBQ [SQL optimization] 340
ROWID FETCH [SQL optimization] 335

S
scalar function 70
schema

defining 6
deleting 7

schema definition privilege
granting 8
revoking 8

search method [SQL optimization] 328
SELECT statement

FROM clause of 39
selection clause of 41

SELECT-APSL [SQL optimization] 315, 327, 329,
333
set operation process information 996
SET SESSION AUTHORIZATION statement 13
setBlockUpdate [Type2 JDBC driver] 1275, 1301
setClear_Env [Type2 JDBC driver] 1309
setCommit_Behavior [Type2 JDBC driver] 1299
setDBHostName

Type2 JDBC driver 1288
Type4 JDBC driver 1877

setDescription
Type2 JDBC driver 1286
Type4 JDBC driver 1874

setEncodeLang
Type2 JDBC driver 1289
Type4 JDBC driver 1903

setEnvironmentVariables [Type4 JDBC driver] 1901
setHiRDBCursorMode [Type4 JDBC driver] 1898
setJDBC_IF_TRC [Type4 JDBC driver] 1878
setLONGVARBINARY_Access

Type2 JDBC driver 1303
Type4 JDBC driver 1888

setLONGVARBINARY_AccessSize [Type4 JDBC
driver] 1909
setLONGVARBINARY_TruncError [Type4 JDBC
driver] 1910
setMaxBinarySize [Type4 JDBC driver] 1905
setNotErrorOccurred [Type4 JDBC driver] 1899
setPassword

Type2 JDBC driver 1293
Type4 JDBC driver 1884

setRMID [Type2 JDBC driver] 1297
setSQLInNum

Type2 JDBC driver 1304
Type4 JDBC driver 1890

Index

2315

setSQLOutNum
Type2 JDBC driver 1306
Type4 JDBC driver 1891

setSQLWarningLevel
Type2 JDBC driver 1307
Type4 JDBC driver 1893

setStatementCommitBehavior [Type4 JDBC
driver] 1907
setTRC_NO [Type4 JDBC driver] 1880
setUapName [Type4 JDBC driver] 1881
setUser

Type2 JDBC driver 1291
Type4 JDBC driver 1882

setXACloseString
Type2 JDBC driver 1296
Type4 JDBC driver 1887

setXALocalCommitMode [Type4 JDBC driver] 1894
setXAOpenString

Type2 JDBC driver 1294
Type4 JDBC driver 1885

setXAThreadMode [Type2 JDBC driver] 1298
SIGNAL statement 15
single row retrieval 34
single-row SELECT statement 11, 122
SORT MERGE JOIN [SQL optimization] 315
source program 3
space conversion function 2273
specific character pattern, searching for 60
SQL 3

corrective measures for error of 227
error identification of 227
executing 10
for retrieving data (execution statement) 115
for updating data (execution statement) 115
functional organization of 4
information by 993
preprocessing 10
value provided at time of execution 124

SQL coding rule
C language 712
C++ 786
COBOL 750
OOCOBOL 787

SQL Communications Area 2060

contents of 2061
expanding 2066
organization of 2060

SQL data type 2114, 2135
SQL Descriptor Area 2069

contents of 2070
data code set in 2076
data length set in 2076
example of 2083
expanding 2080
operation macro for 2087
organization of 2069
procedure for expanding 2086

SQL extension optimizing option 285, 662
SQL object

re-creating for function 5
re-creating for procedure 5
re-creating for trigger 5

SQL objects, making multiple [SQL optimization
option] 649
SQL optimization 285

method types of 300
option 285
specification 285
specifying 301

SQL optimizing mode 286
optimizing mode 1 based on cost 286
optimizing mode 2 based on cost 287

SQL prefix 14
SQL preprocessor

activating 799, 811, 816, 826
return code of (for C programs in UNIX
environment) 809
return code of (for C programs in Windows
environment) 825
return code of (for COBOL programs in UNIX
environment) 815
return code of (for COBOL programs in
Windows environment) 831
standard input and output of (for C programs in
UNIX environment) 809
standard input and output of (for C programs in
Windows environment) 825

Index

2316

standard input and output of (for COBOL
programs in UNIX environment) 815
standard input and output of (for COBOL
programs in Windows environment) 831

SQL runtime interim results 995
SQL statement

description locations of 715
divisions in COBOL for describing 754
executing by conditional branching 15
executing multiple 15
for retrieval, examples of 2163
list of (control SQL) 12
list of (data manipulation SQL) 9
list of (definition SQL) 5
list of (embedded language) 13
list of (routine control SQL) 15
list of (usable in HiRDB) 4
preprocessed and executed by EXECUTE
IMMEDIATE statement 125
preprocessed by PREPARE statement 125
preprocessed, releasing 9
preprocessing 11
repeating 15

SQL stored function
defining 269
executing 269

SQL stored procedure
debugging 263
defining 260
executing 260

SQL terminator 14
SQL trace dynamic acquisition facility 1020
SQL trace file 954

making backup of 966
SQL trace information

collecting 954
examining 956

SQL tracing 954
SQL-optimization-option 642
SQL_AUDITS table 2233
SQL_CHECK_COLUMNS table 2238
SQL_CHECKS table 2237
SQL_COLUMN_STATISTICS table 2212
SQL_COLUMNS table 2177

SQL_DATATYPE_DESCRIPTORS table 2216
SQL_DATATYPES table 2214
SQL_DIV_COLUMN table 2198
SQL_DIV_INDEX table 2197
SQL_DIV_TABLE table 2195
SQL_DIV_TYPE table 2239
SQL_EXCEPT table 2226
SQL_INDEX_COLINF table 2196
SQL_INDEX_DATATYPE table 2223
SQL_INDEX_FUNCTION table 2224
SQL_INDEX_RESOURCES table 2223
SQL_INDEX_STATISTICS table 2214
SQL_INDEX_TYPE_FUNCTION table 2225
SQL_INDEX_TYPES table 2222
SQL_INDEXES table 2189
SQL_IOS_GENERATIONS table 2227
SQL_KEYCOLUMN_USAGE table 2236
SQL_PARTKEY table 2232
SQL_PARTKEY_DIVISION table 2232
SQL_PHYSICAL_FILES table 2166
SQL_PLUGIN_ROUTINE_PARAMS table 2220
SQL_PLUGIN_ROUTINES table 2219
SQL_PLUGINS table 2218
SQL_RDAREA_PRIVILEGES table 2193
SQL_RDAREAS table 2166
SQL_REFERENTIAL_CONSTRAINTS table 2235
SQL_ROUTINE_PARAMS table 2208
SQL_ROUTINE_RESOURCES table 2206
SQL_ROUTINES table 2199
SQL_SYSPARAMS table 2240
SQL_TABLE_CONSTRAINTS table 2237
SQL_TABLE_PRIVILEGES table 2193
SQL_TABLE_RESOURCES table 2217
SQL_TABLE_STATISTICS table 2212
SQL_TABLES table 2168
SQL_TRIGGER_COLUMNS table 2229
SQL_TRIGGER_DEF_SOURCE table 2230
SQL_TRIGGER_USAGE table 2231
SQL_TRIGGERS table 2227
SQL_TYPE_RESOURCES table 2225
SQL_USERS table 2191
SQL_VIEW_TABLE_USAGE table 2194
SQL_VIEWS table 2195
SQLCODE variable 14

Index

2317

SQLException interface [JDBC1.2 core API] 1842
SQLJ 2007
SQLJ Runtime Library 2009
SQLJ Translator 2008, 2012
SQLSTATE variable 14
SQLWarning class [JDBC1.0 facility] 1242
SQLWarning interface [JDBC2.1 core API] 1843
SR 138
Statement class

JDBC1.0 facility 1236
Type2 JDBC driver 1315

Statement interface [JDBC1.2 core API] 1403
statement, leaving 15
static SQL 123

execution characteristics of 123
stored function 269

defining 269
stored procedure 259
structure, referencing 836
structured repetition predicate, searching for data
using 63
SU 138
subqueries with external references, execution of
[SQL optimization] 341
subqueries with no external references, execution of
[SQL optimization] 335
subquery 64

searching for data using 64
using EXISTS predicate 67
using quantified predicate 65

subquery hash execution, preparing for application
of 347
SUM 72
symbol conventions xxi
synchronization point, setting 131, 133
system property, setting [Type2 JDBC driver] 1280

T
table

basic configuration of 28
deleting 8
outer joining of 76
procedure for deleting 49
procedure for updating 43

retrieval from multiple tables 39
retrieval from single table 35
retrieval from two tables 40
using repetition columns 28
with FIX attribute, retrieval of 41
with FIX attribute, updating 45
with repetition columns, updating 46

table data, retrieving dynamically 11
table definition, altering 5
TABLE SCAN [SQL optimization] 330
table scan [SQL optimization] 328
table with abstract data type

deleting rows from 107
inserting row into 108
retrieving data from 105
updating 106

target floatable server
increasing (back-end servers for fetching data)
[SQL optimization option] 649
increasing (back-end servers for fetching data)
[SQL optimization] 304
limiting (back-end servers for fetching data)
[SQL optimization option] 654
limiting (back-end servers for fetching data)
[SQL optimization] 305

TB meaning xxv
time data operation 70, 71
TIME, DATE, and TIMESTAMP columns, data
conversion of 1926
total number of hits, facility for returning 453
trace acquisition command 1021
transaction

cancelling 13
control 131
invalidation of 117
moving 134
startup of 131, 133
terminating normally 12
termination of 131
validation of 117

trigger 283
defining 6
deleting 8

trigger operation search conditions 283

Index

2318

trigger SQL statement 283
trigger-activating SQL statement 283
TRUE 63
Type Name Descriptor Area 2097

contents of 2097
expanding 2098
organization of 2097

Type2 JDBC driver 1223
Array class 1326

Type4 JDBC driver 1327

U
UAP

basic configuration of 710
basic SQL configuration in 112
characteristics of 3
command execution from 1027
configuration element of 710
connecting to HiRDB 12
connection to HiRDB system 131
connection with HiRDB 114
created with XDM/RD or UNIFY2000,
converting 882
creating 709
data type and accessory used by 1192
descriptive language of 119
design for improving handling 233
design for improving performance 233
designing 111
disconnecting from HiRDB 12
disconnection from HiRDB 118
disconnection from HiRDB system 131
embedded format of 3, 119
error recovery 1025
execution procedure for 794
extracting retrieved contents and storing them
in 38
format of 3
in C++, writing 786
in C, writing 712
in OOCOBOL, writing 787
notes on execution of 866
operation environment of 18
overview of 119

preparation for execution of 793
troubleshooting of 953
using X/Open-based API (TX_function),
executing 871
written in C, executing 794
written in COBOL, executing 795

UAP statistical report
how to obtain 988
interpreting 991

UAP statistical report facility 988
uniqueness constraint 121
UNKNOWN 63
unlocked conditional search 172
unsupported interfaces

JDBC1.2 core API 1844
JDBC2.0 Optional Package 1870
JDBC2.1 Core API 1853

UPDATE statement 11
SET clause of 45
WHERE clause 44

update-SQL work table, suppressing creation of [SQL
optimization option] 655

V
value

assigning 12
set in variables and SQL statement execution
status 227

version number conventions xxv
view table 29

defining 6, 81
deleting 8
manipulating 81, 87

W
WHENEVER 14
WHILE statement 15
window function 453
work table ATS execution [SQL optimization] 336
WORK TABLE ATS SUBQ [SQL optimization] 338
work table buffer size 350
work table execution [SQL optimization] 336
WORK TABLE SUBQ [SQL optimization] 339

Index

2319

work table, searching internally created [SQL
optimization] 335
WRITE LINE statement 15

X
XAConnection interface [JDBC2.0 Optional
Package] 1868
XADataSource interface [JDBC2.0 Optional
Package] 1868
XAException interface [JDBC2.0 Optional
Package] 1870
XAResource interface [JDBC2.0 Optional
Package] 1869

