
Scalable Database Server

HiRDB Version 8
SQL Reference

3020-6-357(E)



Relevant program products
List of program products:
For the HP-UX 11.0, HP-UX 11i, or HP-UX 11i V2 (PA-RISC) operating system:
P-1B62-1182  HiRDB/Single Server Version 8  08-00
P-1B62-1382  HiRDB/Parallel Server Version 8  08-00
P-1B62-1582  HiRDB/Single Server Version 8(64)  08-00
P-1B62-1782  HiRDB/Parallel Server Version 8(64)  08-00
P-1B62-1B82  HiRDB/Run Time Version 8  08-00
P-1B62-1C82  HiRDB/Developer's Kit Version 8  08-00
P-1B62-1D82  HiRDB/Run Time Version 8(64)  08-00
P-1B62-1E82  HiRDB/Developer's Kit Version 8(64)  08-00
P-F1B62-11823  HiRDB Staticizer Option Version 8  08-00
P-F1B62-11825  HiRDB Non Recover Front End Server Version 8  08-00
P-F1B62-11826  HiRDB Advanced High Availability Version 8  08-00
P-F1B62-11827  HiRDB Advanced Partitioning Option Version 8  08-00
For the HP-UX 11i V2 (IPF) operating system:
P-1J62-1582  HiRDB/Single Server Version 8(64)  08-00
P-1J62-1782  HiRDB/Parallel Server Version 8(64)  08-00
P-1J62-1D82  HiRDB/Run Time Version 8(64)  08-00
P-1J62-1E82  HiRDB/Developer's Kit Version 8(64)  08-00
P-F1J62-11823  HiRDB Staticizer Option Version 8  08-00
P-F1J62-11825  HiRDB Non Recover Front End Server Version 8  08-00
P-F1J62-11826  HiRDB Advanced High Availability Version 8  08-00
P-F1J62-11827  HiRDB Advanced Partitioning Option Version 8  08-00
For the Solaris 8, 9 or 10 operating system:
P-9D62-1182  HiRDB/Single Server Version 8  08-00
P-9D62-1382  HiRDB/Parallel Server Version 8  08-00
P-9D62-1582  HiRDB/Single Server Version 8(64)  08-00
P-9D62-1782  HiRDB/Parallel Server Version 8(64)  08-00
P-9D62-1B82  HiRDB/Run Time Version 8  08-00
P-9D62-1C82  HiRDB/Developer's Kit Version 8  08-00
P-9D62-1D82  HiRDB/Run Time Version 8(64)  08-00
P-9D62-1E82  HiRDB/Developer's Kit Version 8(64)  08-00
P-F9D62-11823  HiRDB Staticizer Option Version 8  08-00
P-F9D62-11825  HiRDB Non Recover Front End Server Version 8  08-00
P-F9D62-11826  HiRDB Advanced High Availability Version 8  08-00
P-F9D62-11827  HiRDB Advanced Partitioning Option Version 8  08-00
For the AIX(R) 5L V5.1, V5.2 or V5.3 operating system:
P-1M62-1182  HiRDB/Single Server Version 8  08-00
P-1M62-1382  HiRDB/Parallel Server Version 8  08-00
P-1M62-1582  HiRDB/Single Server Version 8(64)  08-00
P-1M62-1782  HiRDB/Parallel Server Version 8(64)  08-00
P-1M62-1B82  HiRDB/Run Time Version 8  08-00
P-1M62-1C82  HiRDB/Developer's Kit Version 8  08-00



P-1M62-1D82  HiRDB/Run Time Version 8(64)  08-00
P-1M62-1E82  HiRDB/Developer's Kit Version 8(64)  08-00
P-F1M62-11823  HiRDB Staticizer Option Version 8  08-00
P-F1M62-11825  HiRDB Non Recover Front End Server Version 8  08-00
P-F1M62-11826  HiRDB Advanced High Availability Version 8  08-00
P-F1M62-11827  HiRDB Advanced Partitioning Option Version 8  08-00
For the Red Hat Linux 7.1, Red Hat Linux 7.2, Red Hat Enterprise Linux AS 2.1, Red Hat Enterprise Linux AS 3 (x86), Red Hat 
Enterprise Linux ES 3 (x86), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise 
Linux AS 3 (AMD64 & Intel EM64T),* Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), or Red Hat Enterprise Linux ES 
4 (AMD64 & Intel EM64T) operating system:
P-9S62-1182  HiRDB/Single Server Version 8  08-00
P-9S62-1382  HiRDB/Parallel Server Version 8  08-00
P-9S62-1B82  HiRDB/Run Time Version 8  08-00
P-9S62-1C82  HiRDB/Developer's Kit Version 8  08-00
P-F9S62-11823  HiRDB Staticizer Option Version 8  08-00
P-F9S62-11825  HiRDB Non Recover Front End Server Version 8  08-00
P-F9S62-11826  HiRDB Advanced High Availability Version 8  08-00
P-F9S62-11827  HiRDB Advanced Partitioning Option Version 8  08-00
* Only operating systems that run on the Intel EM64T are supported.
 

For the Red Hat Enterprise Linux AS 3 (AMD64 & Intel EM64T),* Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), or 
Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T) operating system:
P-9W62-1182  HiRDB/Single Server Version 8  08-00
P-9W62-1382  HiRDB/Parallel Server Version 8  08-00
P-9W62-1B82  HiRDB/Run Time Version 8  08-00
P-9W62-1C82  HiRDB/Developer's Kit Version 8  08-00
* Only operating systems that run on the Intel EM64T are supported.
 
For the Red Hat Enterprise Linux AS 3 (IPF) or Red Hat Enterprise Linux AS 4 (IPF) operating system:
P-9V62-1182  HiRDB/Single Server Version 8  08-00
P-9V62-1382  HiRDB/Parallel Server Version 8  08-00
P-9V62-1B82  HiRDB/Run Time Version 8  08-00
P-9V62-1C82  HiRDB/Developer's Kit Version 8  08-00
P-F9V62-11823  HiRDB Staticizer Option Version 8  08-00
P-F9V62-11825  HiRDB Non Recover Front End Server Version 8  08-00
P-F9V62-11826  HiRDB Advanced High Availability Version 8  08-00
P-F9V62-11827  HiRDB Advanced Partitioning Option Version 8  08-00
For the Windows 2000, Windows XP Professional, Windows XP x64 Edition, Windows Server 2003, Windows Server 2003 x64 
Edition, Windows Server 2003 R2, or Windows Server 2003 R2 x64 Edition operation system:
P-2462-7187  HiRDB/Single Server Version 8  08-00
P-2462-7387  HiRDB/Parallel Server Version 8  08-00
P-2462-7H87  HiRDB Non Recover Front End Server Version 8  08-00
P-2462-7J87  HiRDB Advanced High Availability Version 8  08-00
P-2462-7K87  HiRDB Advanced Partitioning Option Version 8  08-00
For the Windows XP x64 Edition or Windows Server 2003 x64 Edition operating system:



P-2962-7187  HiRDB/Single Server Version 8  08-00
P-2962-7387  HiRDB/Parallel Server Version 8  08-00
P-2962-1187  HiRDB/Run Time Version 8  08-00
P-2962-1287  HiRDB/Developer's Kit Version 8  08-00
For the Windows Server 2003 (IPF) operating system:
P-2862-7187  HiRDB/Single Server Version 8  08-00
P-2862-7387  HiRDB/Parallel Server Version 8  08-00
P-2862-1187  HiRDB/Run Time Version 8  08-00
P-2862-1287  HiRDB/Developer's Kit Version 8  08-00
P-2862-7H87  HiRDB Non Recover Front End Server Version 8  08-00
P-2862-7J87  HiRDB Advanced High Availability Version 8  08-00
P-2862-7K87  HiRDB Advanced Partitioning Option Version 8  08-00
For the Windows 2000, Windows XP, Windows XP x64 Edition, Windows Server 2003, or Windows Server 2003 x64 Edition 
operating system:
P-2662-1187  HiRDB/Run Time Version 8  08-00
P-2662-1287  HiRDB/Developer's Kit Version 8  08-00
This edition of the manual is released for the preceding program products, which have been developed under a quality management 
system that has been certified to comply with ISO9001 and TickIT. This manual may also apply to other program products; for 
details, see Before Installing or Readme file (for the UNIX version, see Software Information or Before Installing).

Trademarks
ActiveX is a trademark of Microsoft Corp. in the U.S. and other countries.
AIX is a registered trademark of the International Business Machines Corp. in the U.S.
CORBA is a registered trademark of Object Management Group, Inc. in the United States.
DataStage, MetaBroker, MetaStage and QualityStage are trademarks of International Business Machines Corporation in the United 
States, other countries, or both.
DB2 is a registered trademark of the International Business Machines Corp. in the U.S.
HACMP/6000 is a trademark of the International Business Machines Corp. in the U.S.
HP-UX is a product name of Hewlett-Packard Company.
IBM is a registered trademark of the International Business Machines Corp. in the U.S.
Itanium is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States 
and other countries.
JBuilder is a trademark of Borland Software Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds.
Lotus, 1-2-3 are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
Microsoft Access is a registered trademark of Microsoft Corporation in the U.S. and other countries.
Microsoft Excel is a product name of Microsoft Corp.
Microsoft is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Motif is a registered trademark of the Open Software Foundation, Inc.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ODBC is Microsoft's strategic interface for accessing databases.
OLE is the name of a software product developed by Microsoft Corporation and the acronym for Object Linking and Embedding.
ORACLE is a registered trademark of Oracle Corporation.
Oracle8i is a trademark of ORACLE Corporation.
Oracle9i is a trademark of ORACLE Corporation.
Oracle 10g is a trademark of ORACLE Corporation.



OS/390 is a trademark of the International Business Machines Corp. in the U.S.
POSIX stands for Portable Operating System Interface for Computer Environment, which is a set of standard specifications 
published by the Institute of Electrical and Electronics Engineers, Inc.
RISC System/6000 is a registered trademark of the International Business Machines Corp. in the U.S.
Solaris is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun Microsystems is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
The right to use the trademark DCE in Japan is sub-licensed from OSF.
UNIFY2000 is a product name of Unify Corp.
UNIX is a registered trademark of The Open Group in the United States and other countries.
VERITAS is a trademark or registered trademark of Symantec Corporation in the U.S. and other countries.
Visual Basic is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual C++ is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual Studio is a registered trademark of Microsoft Corp. in the U.S. and other countries.
WebLogic is a registered trademark of BEA Systems, Inc.
Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows NT is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows Server is a registered trademark of Microsoft Corp. in the U.S. and other countries.
X/Open is a registered trademark of X/Open Company Limited in the U.K. and other countries.
X Window System is a trademark of X Consortium, Inc.
The following program products include material copyrighted by Sun Microsystems, Inc.: P-9D62-1182, P-9D62-1382, 
P-9D62-1582, P-9D62-1782, P-9D62-1B82, P-9D62-1C82, P-9D62-1D82, P-9D62-1E82, P-F9D62-11823, P-F9D62-11825, 
P-F9D62-11826, and P-F9D62-11827.
The following program products include material copyrighted by UNIX System Laboratories, Inc.: P-9D62-1182, P-9D62-1382, 
P-9D62-1582, P-9D62-1782, P-9D62-1B82, P-9D62-1C82, P-9D62-1D82, P-9D62-1E82, P-F9D62-11823, P-F9D62-11825, 
P-F9D62-11826, and P-F9D62-11827.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this 
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used 
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use 
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The 
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of 
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability, 
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3020-6-357(E)): March, 2007

Copyright
All Rights Reserved. Copyright (C) 2007, Hitachi, Ltd.





i

Preface

This manual explains the syntax of SQL, a language that is used for performing 
operations on databases of the HiRDB, Version 8, Scalable Database Server program 
products.

Intended readers
This manual is intended for users who will be using HiRDB Version 8 (referred to 
hereafter as "HiRDB") to design and create tables or to create and execute UAPs.
It is assumed that readers of this manual have the following:

• For Windows systems, a basic knowledge of managing Windows
• For UNIX Systems, a basic knowledge of managing UNIX, or Linux
• Basic knowledge of SQL
• A basic knowledge of programming in C language, COBOL, or Java

This manual is based on the following manuals, which should be read before reading 
this manual:

• HiRDB Version 8 Installation and Design Guide
• HiRDB Version 8 UAP Development Guide

Organization of this manual
This manual is organized as follows:
Chapter 1. Basics

Explains the basics of SQL.
Chapter 2. Details of Constituent Elements

Explains in detail the constituent elements of SQL.
Chapter 3. Definition SQL

Explains the syntax and structure of the definition SQL.
Chapter 4. Data Manipulation SQL

Explains the syntax and structure of the data manipulation SQL.
Chapter 5. Control SQL

Explains the syntax and structure of the control SQL.



ii

Chapter 6. Embedded Language Syntax
Explains the syntax and structure of the embedded language.

Chapter 7. Routine Control SQL
Explains the syntax and structure of the routine control SQL.

Appendix A. Reserved Words
Provides lists of the HiRDB and SQL reserved words.

Appendix B. List of SQLs
Provides a list of the SQL statements.

Appendix C. Correspondence Between Data Types When a Foreign Table is Used
Explains the correspondence between data types when a foreign table is used.

Appendix D. Restrictions on Using a Foreign Table
Explains restrictions applicable to the use of foreign tables.

Appendix E. Example Database
Explains the example database used in this manual.

Related publications
This manual is related to the following manuals, which should be read as required.
HiRDB (for Windows)

• For Windows Systems HiRDB Version 8 Description (3020-6-351(E))
• For Windows Systems HiRDB Version 8 Installation and Design Guide 

(3020-6-352(E))
• For Windows Systems HiRDB Version 8 System Definition (3020-6-353(E))
• For Windows Systems HiRDB Version 8 System Operation Guide 

(3020-6-354(E))
• For Windows Systems HiRDB Version 8 Command Reference (3020-6-355(E))

HiRDB (for UNIX)
• For UNIX Systems HiRDB Version 8 Description (3000-6-351(E))
• For UNIX Systems HiRDB Version 8 Installation and Design Guide 

(3000-6-352(E))
• For UNIX Systems HiRDB Version 8 System Definition (3000-6-353(E))
• For UNIX Systems HiRDB Version 8 System Operation Guide (3000-6-354(E))



iii

• For UNIX Systems HiRDB Version 8 Command Reference (3000-6-355(E))
• HiRDB Staticizer Option Version 7 Description and User's Guide 

(3000-6-282(E))
• For UNIX Systems HiRDB Version 8 Disaster Recovery System Configuration 

and Operation Guide (3000-6-364)*

HiRDB (for UNIX and Windows)
• HiRDB Version 8 UAP Development Guide (3020-6-356(E))
• HiRDB Version 8 Messages (3020-6-358(E))
• HiRDB Datareplicator Version 8 Description, User's Guide and Operator's 

Guide (3020-6-360(E))
• HiRDB Dataextractor Version 8 Description, User's Guide and Operator's Guide 

(3020-6-362(E))
* This manual has been published in Japanese only; it is not available in English.
You must use the UNIX or the Windows manuals, as appropriate to the platform you 
are using.
Others

• HiRDB External Data Access Version 7 Description and User's Guide 
(3000-6-284(E))

Organization of HiRDB manuals
The HiRDB manuals are organized as shown below. For the most efficient use of these 
manuals, it is suggested that they be read in the order they are shown, going from left 
to right.



iv

Conventions: Abbreviations
Unless otherwise required, this manual uses the following abbreviations for product 
and other names.



v

Name of product or other entity Representation

HiRDB/Single Server Version 8 HiRDB/Single 
Server

HiRDB or 
HiRDB Server

HiRDB/Single Server Version 8(64)

HiRDB/Parallel Server Version 8 HiRDB/Parallel 
Server

HiRDB/Parallel Server Version 8(64)

HiRDB/Developer's Kit Version 8 HiRDB/
Developer's Kit

HiRDB Client

HiRDB/Developer's Kit Version 8(64)

HiRDB/Run Time Version 8 HiRDB/Run Time

HiRDB/Run Time Version 8(64)

HiRDB Datareplicator Version 8 HiRDB Datareplicator

HiRDB Dataextractor Version 8 HiRDB Dataextractor

HiRDB Text Search Plug-in Version 7 HiRDB Text Search Plug-in

HiRDB Spatial Search Plug-in Version 3 HiRDB Spatial Search Plug-in

HiRDB Staticizer Option Version 8 HiRDB Staticizer Option

HiRDB LDAP Option Version 8 HiRDB LDAP Option

HiRDB Advanced Partitioning Option Version 8 HiRDB Advanced Partitioning Option

HiRDB Advanced High Availability Version 8 HiRDB Advanced High Availability

HiRDB Non Recover Front End Server Version 8 HiRDB Non Recover FES

HiRDB Disaster Recovery Light Edition Version 8 HiRDB Disaster Recovery Light 
Edition

HiRDB External Data Access Version 8 HiRDB External Data Access

HiRDB External Data Access Adapter Version 8 HiRDB External Data Access Adapter

HiRDB Adapter for XML - Standard Edition HiRDB Adapter for XML

HiRDB Adapter for XML - Enterprise Edition

HiRDB Control Manager HiRDB CM

HiRDB Control Manager Agent HiRDB CM Agent



vi

Hitachi TrueCopy TrueCopy

Hitachi TrueCopy basic

TrueCopy

TrueCopy remote replicator

JP1/Automatic Job Management System 2 JP1/AJS2

JP1/Automatic Job Management System 2 - Scenario Operation JP1/AJS2-SO

JP1/Cm2/Extensible SNMP Agent JP1/ESA

JP1/Cm2/Extensible SNMP Agent for Mib Runtime

JP1/Cm2/Network Node Manager JP1/NNM

JP1/Integrated Management - Manager JP1/Integrated Management or JP1/IM

JP1/Integrated Management - View

JP1/Magnetic Tape Access EasyMT

EasyMT

JP1/Magnetic Tape Library MTguide

JP1/NETM/DM JP1/NETM/DM

JP1/NETM/DM Manager

JP1/Performance Management JP1/PFM

JP1/Performance Management Agent for HiRDB JP1/PFM-Agent for HiRDB

JP1/Performance Management - Agent for Platform JP1/PFM-Agent for Platform

JP1/Performance Management/SNMP System Observer JP1/SSO

JP1/VERITAS NetBackup BS v4.5 NetBackup

JP1/VERITAS NetBackup v4.5

JP1/VERITAS NetBackup BS V4.5 Agent for HiRDB License JP1/VERITAS NetBackup Agent for 
HiRDB License

JP1/VERITAS NetBackup V4.5 Agent for HiRDB License

JP1/VERITAS NetBackup 5 Agent for HiRDB License

OpenTP1/Server Base Enterprise Option TP1/EE

Name of product or other entity Representation



vii

Virtual-storage Operating System 3/Forefront System Product VOS3/FS VOS3

Virtual-storage Operating System 3/Leading System Product VOS3/LS

Extensible Data Manager/Base Extended Version 2
XDM basic program XDM/BASE E2

XDM/BASE E2

XDM/Data Communication and Control Manager 3
XDM Data communication control XDM/DCCM3

XDM/DCCM3

XDM/Relational Database XDM/RD XDM/RD XDM/RD

XDM/Relational Database Extended Version 2
XDM/RD E2

XDM/RD E2

VOS3 Database Connection Server DB Connection Server

DB2 Universal Database for OS/390 Version 6 DB2

DNCWARE ClusterPerfect (Linux Version) ClusterPerfect

Microsoft(R) Excel Microsoft Excel or Excel

Microsoft(R) Visual C++(R) Visual C++ or C++

Oracle 8i ORACLE

Oracle 9i

Oracle 10g

Sun JavaTM System Directory Server Sun Java System Directory Server or 
Directory Server

HP-UX 11i V2 (IPF) HP-UX or HP-UX (IPF)

Red Hat Linux Linux

Red Hat Enterprise Linux

Red Hat Enterprise Linux AS 3 (IPF) Linux (IPF) Linux

Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux AS 3(AMD64 & Intel EM64T) Linux (EM64T)

Red Hat Enterprise Linux AS 4(AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4(AMD64 & Intel EM64T)

turbolinux 7 Server for AP8000 Linux for AP8000

Name of product or other entity Representation



viii

Microsoft(R) Windows NT(R) Workstation Operating System Version 
4.0

Windows NT

Microsoft(R) Windows NT(R) Server Network Operating System 
Version 4.0

Microsoft(R) Windows(R) 2000 Professional Operating System Windows 2000

Microsoft(R) Windows(R) 2000 Server Operating System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating System

Microsoft(R) Windows(R) 2000 Advanced Server Operating System Windows 2000 or Windows 2000 
Advanced Server

Microsoft(R) Windows ServerTM 2003, Standard Edition Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Enterprise Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard Edition Windows Server 2003 R2 or Windows 
Server 2003

Microsoft(R) Windows ServerTM 2003 R2, Enterprise Edition

64 bit Version Microsoft(R) Windows ServerTM 2003, Enterprise 
Edition (IPF)

Windows Server 2003 (IPF) or 
Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Standard x64 Edition Windows Server 
2003, Windows 
Server 2003 R2 or 
Windows Server 
2003 x64 Editions

Windows (x64)

Microsoft(R) Windows ServerTM 2003, Enterprise x64 Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard x64 Edition Windows Server 
2003, Windows 
Server 2003 R2 or 
Windows Server 
2003 x64 Editions

Microsoft(R) Windows ServerTM 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows(R) XP Professional x64 Edition Windows XP or 
Windows XP x64 
Edition

Microsoft(R) Windows(R) XP Professional Operating System Windows XP 
Professional

Windows XP

Microsoft(R) Windows(R) XP Home Edition Operating System Windows XP Home 
Edition

Name of product or other entity Representation



ix

• Windows 2000, Windows XP, and Windows Server 2003 may be referred to 
collectively as Windows.

• The hosts file means the hosts file stipulated by TCP/IP (including the /etc/
hosts file). As a rule, a reference to the hosts file means the 
%windir%\system32\drivers\etc\hosts file.

This manual also uses the following abbreviations:

Single server SDS

System manager MGR

Front-end server FES

Dictionary server DS

Back-end server BES

Abbreviation Full name or meaning

ACK Acknowledgement

ADM Adaptable Data Manager

ADO ActiveX Data Objects

ADT Abstract Data Type

AP Application Program

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BES Back End Server

BLOB Binary Large Object

BOM Byte Order Mark

CD-ROM Compact Disc - Read Only Memory

CGI Common Gateway Interface

CLOB Character Large Object

CMT Cassette Magnetic Tape

COBOL Common Business Oriented Language

Name of product or other entity Representation



x

CORBA(R) Common ORB Architecture

CPU Central Processing Unit

CSV Comma Separated Values

DAO Data Access Object

DAT Digital Audio Taperecorder

DB Database

DBM Database Module

DBMS Database Management System

DDL Data Definition Language

DF for Windows NT Distributing Facility for Windows NT

DF/UX Distributing Facility/for UNIX

DIC Dictionary Server

DLT Digital Linear Tape

DML Data Manipulate Language

DNS Domain Name System

DOM Document Object Model 

DS Dictionary Server

DTD Document Type Definition

DTP Distributed Transaction Processing

DWH Data Warehouse

EUC Extended UNIX Code

EX Exclusive

FAT File Allocation Table

FD Floppy Disk

FES Front End Server

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

Abbreviation Full name or meaning



xi

GUI Graphical User Interface

HBA Host Bus Adapter

HD Hard Disk

HTML Hyper Text Markup Language

ID Identification number

IP Internet Protocol

IPF Itanium(R) Processor Family

JAR Java Archive File

Java VM Java Virtual Machine

JDBC Java Database Connectivity

JDK Java Developer's Kit

JFS Journaled File System

JFS2 Enhanced Journaled File System

JIS Japanese Industrial Standard code

JP1 Job Management Partner 1

JRE Java Runtime Environment

JTA Java Transaction API

JTS Java Transaction Service

KEIS Kanji processing Extended Information System

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LIP loop initialization process

LOB Large Object

LRU Least Recently Used

LTO Linear Tape-Open

LU Logical Unit

LUN Logical Unit Number

Abbreviation Full name or meaning



xii

LVM Logical Volume Manager

MGR System Manager

MIB Management Information Base

MRCF Multiple RAID Coupling Feature

MSCS Microsoft Cluster Server

NAFO Network Adapter Fail Over

NAPT Network Address Port Translation

NAT Network Address Translation

NIC Network Interface Card

NIS Network Information Service

NTFS New Technology File System

ODBC Open Database Connectivity

OLAP Online Analytical Processing

OLE Object Linking and Embedding

OLTP On-Line Transaction Processing

OOCOBOL Object Oriented COBOL

ORB Object Request Broker

OS Operating System

OSI Open Systems Interconnection

OTS Object Transaction Service

PC Personal Computer

PDM II E2 Practical Data Manager II Extended Version 2

PIC Plug-in Code

PNM Public Network Management

POSIX Portable Operating System Interface for UNIX

PP Program Product

PR Protected Retrieve

Abbreviation Full name or meaning



xiii

PU Protected Update

RAID Redundant Arrays of Inexpensive Disk

RD Relational Database

RDB Relational Database

RDB1 Relational Database Manager 1

RDB1 E2 Relational Database Manager 1 Extended Version 2

RDO Remote Data Objects

RiSe Real time SAN replication

RM Resource Manager

RMM Resource Manager Monitor

RPC Remote Procedure Call

SAX Simple API for XML 

SDS Single Database Server

SGML Standard Generalized Markup Language

SJIS Shift JIS

SNMP Simple Network Management Protocol

SQL Structured Query Language

SQL/K Structured Query Language / VOS K

SR Shared Retrieve

SU Shared Update

TCP/IP Transmission Control Protocol / Internet Protocol

TM Transaction Manager

TMS-4V/SP Transaction Management System - 4V / System Product

UAP User Application Program

UOC User Own Coding

VOS K Virtual-storage Operating System Kindness

VOS1 Virtual-storage Operating System 1

Abbreviation Full name or meaning



xiv

Path name representations
• The backslash (\) is used as the delimiter in path names. Readers who are using 

a UNIX version of HiRDB must replace the backslash with a forward slash (/). 
When the path names in the Windows and UNIX versions differ, both path names 
are given.

• The HiRDB directory path is represented as %PDDIR%. However, when the path 
names in the Windows and UNIX versions differ, the directory path in the UNIX 
version is represented as $PDDIR, as shown in the following example:

   Windows version: %PDDIR%\CLIENT\UTL\
   UNIX version: $PDDIR/client/lib/

• %windir% refers to a Windows installation directory path.

Log representations
 Windows version

The application log that is displayed by Windows Event Viewer is referred to as 
the event log. The following procedure is used to view the event log.

To view the event log:
1. Choose Start, Programs, Administrative Tools (Common), and then Event 
Viewer.

VOS3 Virtual-storage Operating System 3

WS Workstation

WWW World Wide Web

XDM/BASE E2 Extensible Data Manager / Base Extended Version 2

XDM/DF Extensible Data Manager / Distributing Facility

XDM/DS Extensible Data Manager / Data Spreader

XDM/RD E2 Extensible Data Manager / Relational Database Extended Version 2

XDM/SD E2 Extensible Data Manager / Structured Database Extended Version 2

XDM/XT Extensible Data Manager / Data Extract

XFIT Extended File Transmission program

XML Extensible Markup Language

Abbreviation Full name or meaning



xv

2. Choose Log, and then Application.
3. The application log is displayed. Messages with HiRDBSingleServer or 
HiRDBParallelServer displayed in the Source column were issued by HiRDB.
If you specified a setup identifier when you installed HiRDB, the specified setup 
identifier follows HiRDBSingleServer or HiRDBParallelServer.

 UNIX version

The OS log is referred to generically as syslogfile. syslogfile is the log output 
destination specified in /etc/syslog.conf. Typically, the following files are 
specified as syslogfile.

Symbols used in figures
The following symbols are used in the figures in this manual:

Symbols used in text
In addition to those used in figures, this manual uses the following symbols in text:

 formula 
The resulting value is to be rounded up.

 CI-length / 1000 

 formula 
The resulting value is to be rounded off.

 CI-length / 1000 

OS File

HP-UX /var/adm/syslog/syslog.log

Solaris /var/adm/messages or /var/log/syslog

AIX 5L /var/adm/ras/syslog

Linux /var/log/messages



xvi

Organization of SQL syntax explanations
This manual explains the syntax of SQL expressions in the following general format:
Function

Explains the function of the SQL expression.
Privileges

Explains the privileges that are required in order to use the SQL expression.
Format

Shows the format of the operands.
Operands

Explains the operands that can be specified, when they should be specified, and 
their specification conventions.

Rules
Explains rules applicable to the SQL expression.

Notes
Provides helpful notes, such as the relationships between this SQL expression and 
other SQL expressions.

Examples
Shows examples of the use of the SQL expression.

Conventions: Fonts and symbols
Font conventions are divided into:

• general font conventions
• font conventions in syntax explanations and examples

These are described next.
General font conventions

Bold
Bold type indicates text on a window, other than the window title. Such text 
includes menus, menu options, buttons, radio box options, or explanatory labels. 
For example, bold is used in sentences like the following:

• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.



xvii

Italics
Italics are used to indicate a place-holder for some actual text provided by the user 
or system. Italics are also used for emphasis. For example:

• Write the command as follows:
copy source-file target-file

• Do not turn the power off without closing Windows.
Code font

A code font indicates text that the user enters without change, or text (such as 
messages) output by the system. For example:

• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.
Font conventions in syntax explanations and examples

Syntax definitions appear as follows:
StoreDatabase {:embedded-variable|?-parameter} [temp|perm] 
(database-name ...)

In such a syntax definition:
SD

Bold code-font characters indicate an abbreviation for a command.
{  }

One of the items enclosed in braces must be specified.
|

Only one of the options separated by a vertical bar can be used at one time.
perm

Underlined characters indicate a default value.
[ ]

An item or items enclosed in brackets are optional.
...

Ellipses (...) indicate that the item or items enclosed in ( ) or [ ] and which 
immediately precede the ellipses can be repeated.



xviii

()
The items enclosed by the parentheses are in the range to which | or ... are applied.

One space.
*DC 

 
One or more spaces.
WHERE  GNO=1

::=
The item to the left of the ::= notation is specified in terms of the items to the 
right of the ::= notation.

table-name ::= [authorization-identifier.]table-identifier

StoreDatabase
The user should enter code-font characters exactly as shown.

database-name
In actual commands the user must replace the italics by suitable characters.

Code examples and messages appear as follows (though there may be some 
exceptions, such as when the code is part of a diagram):
MakeDatabase
...
StoreDatabase temp DB32

In code examples, ellipses (...) indicate that some code has been removed for the sake 
of clarity.

Notes on Windows path names
• In this manual, the Windows terms directory and folder are both referred to as 

directory.
• Include the drive name when you specify an absolute path name.

Example: C:\win32app\hitachi\hirdb_s\spool\tmp
• When you specify a path name in a command argument, in a control statement 

file, or in a HiRDB system definition file, and that path name includes a space or 
a parenthesis, you must enclose the entire path name in double quotation marks 
(").

Example: pdinit -d "C:\Program 



xix

Files(x86)\hitachi\hirdb_s\conf\mkinit"
However, double quotation marks are not necessary when you use the set command 
in a batch file or at the command prompt to set an environment variable, or when you 
specify the installation directory. If you do use double quotation marks in such a case, 
the double quotation marks become part of the value assigned to the environment 
variable.
Example: set PDCLTPATH=C:\Program Files\hitachi\hirdb_s\spool

• HiRDB cannot use files on a networked drive, so you must install HiRDB and 
configure the HiRDB environment on a local drive. Files used by utilities, such 
as utility input and output files, must also be on the local drive.

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of 
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.
• Version 2.05 is written as 02-05.
• Version 2.50 (or 2.5) is written as 02-50.
• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same 
version number would be written in the program as 02-00.

Sources of HiRDB relational database language
The HiRDB relational database language described in this manual was developed by 
adding Hitachi's unique interpretations and specifications to the following standards. 
Hitachi expresses its appreciation to the developers and acknowledges the sources of 
these specifications.
HiRDB relational database

JIS X3005-1997 Database Language SQL



xx

Relationships to ANSI standard
The specifications for the HiRDB relational database language have been developed 
by adding Hitachi's unique interpretations to the specifications of ANS X3.135-1986 
information systems database language SQL.
Hitachi has been granted ANSI's permission for the creation of this manual; however, 
ANSI is not responsible for this product or the contents of this manual.

Acknowledgments
The COBOL language specifications were developed by CODASYL. The following 
statement acknowledges Hitachi's indebtedness to the developers, as requested by 
CODASYL. This acknowledgement restates a portion of the acknowledgement 
provided in the original specifications of COBOL, CODASYL COBOL JOURNAL OF 
DEVELOPMENT, 1984.
Any organization interested in reproducing the COBOL report and specifications in 
whole or in part, using ideas from this report as the basis for an instruction manual or 
for any other purpose, is free to do so. However, all such organizations are requested 
to reproduce the following acknowledgement paragraphs in their entirety as part of the 
preface to any such publication. Any organization using a short passage from this 
document, such as in a book review, is requested to mention "COBOL" in 
acknowledgment of the source, but need not quote the acknowledgment.
COBOL is an industry language and is not the property of any company or group of 
companies, or of any organization or group of organizations.
No warranty, expressed or implied, is made by any contributor or by the CODASYL 
COBOL Committee as to the accuracy and functioning of the programming system 
and language. Moreover, no responsibility is assumed by any contributor, or by the 
committee, in connection therewith.
The authors and copyright holders of the copyrighted material used herein are as 
follows:

FLOW-MATIC (trademark of Sperry Rand Corporation) programming for the 
UNIVAC  I and II, Data Automation Systems copyrighted 1958, 1959, by 
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013, 
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by 
Minneapolis-Honeywell have specifically authorized the use of this material, in 
whole or in part, in the COBOL specifications. Such authorization extends to the 
reproduction and use of COBOL specifications in programming manuals or 
similar publications.

IS ISO9075-1992 Information processing systems - Database Language SQL

ANS X3.135-1986 Information system - Database Language SQL



xxi

Important notes on this manual
The following facilities are explained, but they are not supported:

• Distributed database facility
• Server mode system switchover facility
• User server hot standby
• Rapid system switchover facility
• Standby-less system switchover (1:1) facility
• Standby-less system switchover (effects distributed) facility
• HiRDB External Data Access facility
• Inner replica facility (when described for the Windows version of HiRDB)
• Updatable online reorganization (when described for the Windows version of 

HiRDB)
• Sun Java System Directory Server linkage facility
• Simple setup tool

The following products and option program products are explained, but they are not 
supported:

• HiRDB Control Manager
• HiRDB Disaster Recovery Light Edition
• HiRDB External Data Access
• HiRDB LDAP Option





xxiii

Contents

Preface i
Intended readers .........................................................................................................i
Organization of this manual .......................................................................................i
Related publications ..................................................................................................ii
Organization of HiRDB manuals ............................................................................ iii
Conventions: Abbreviations .....................................................................................iv
Path name representations ......................................................................................xiv
Log representations ................................................................................................xiv
Symbols used in figures ..........................................................................................xv
Symbols used in text ...............................................................................................xv
Organization of SQL syntax explanations..............................................................xvi
Conventions: Fonts and symbols............................................................................xvi
Notes on Windows path names ........................................................................... xviii
Conventions: KB, MB, GB, and TB ......................................................................xix
Conventions: Version numbers...............................................................................xix
Sources of HiRDB relational database language ...................................................xix
Relationships to ANSI standard ..............................................................................xx
Acknowledgments ...................................................................................................xx
Important notes on this manual ..............................................................................xxi

1.  Basics 1
1.1  SQL coding format .....................................................................................................2

1.1.1  Order of specifying operands ..........................................................................2
1.1.2  Keyword specification.....................................................................................2
1.1.3  Specifying a numeric value .............................................................................2
1.1.4  Insertion of delimiters .....................................................................................3
1.1.5  SQL character set ............................................................................................5
1.1.6  Maximum length of an SQL statement ...........................................................9
1.1.7  Specification of names ....................................................................................9
1.1.8  Qualifying a name .........................................................................................14
1.1.9  Schema path ..................................................................................................19

1.2  Data types .................................................................................................................21
1.2.1  Data types ......................................................................................................21
1.2.2  Data types that can be converted (assigned or compared) ............................26
1.2.3  Notes on using character data, national character data, and mixed character 

data ................................................................................................................34
1.2.4  Notes on using the decimal type ...................................................................35
1.2.5  Notes on using large-object data ...................................................................37



xxiv

1.2.6  Notes on using the BINARY type ................................................................ 38
1.2.7  Notes on using logical data........................................................................... 40
1.2.8  Notes on using an abstract data type ............................................................ 40

1.3  Literals ..................................................................................................................... 41
1.3.1  Predefined character string representation of date data................................ 43
1.3.2  Predefined character string representation of time data ............................... 44
1.3.3  Predefined character string representation of time stamp data..................... 44
1.3.4  Decimal representation of date interval data ................................................ 45
1.3.5  Decimal representation of time interval data................................................ 45
1.3.6  Decimal representation of datetime interval data ......................................... 45

1.4  USER, CURRENT_DATE value function, CURRENT_TIME value function, and 
CURRENT_TIMESTAMP value function............................................................. 46
1.4.1  USER............................................................................................................ 46
1.4.2  CURRENT_DATE value function ............................................................... 46
1.4.3  CURRENT_TIME value function................................................................ 47
1.4.4  CURRENT_TIMESTAMP value function................................................... 47

1.5  Embedded variables, indicator variables, ? parameters, SQL parameters, and SQL 
variables.................................................................................................................. 49
1.5.1  Embedded variables and indicator variables ................................................ 49
1.5.2  ? parameters .................................................................................................. 54
1.5.3  SQL parameters and SQL variables ............................................................. 57
1.5.4  Specifiable locations..................................................................................... 58
1.5.5  Setting a value for an indicator variable ....................................................... 63
1.5.6  Setting a null default value in an embedded variable................................... 68
1.5.7  Assignment rules .......................................................................................... 70

1.6  Null value................................................................................................................. 74
1.7  Component specification ......................................................................................... 77
1.8  Routines ................................................................................................................... 78

1.8.1  Procedures .................................................................................................... 78
1.8.2  Functions ...................................................................................................... 78
1.8.3  Results-set return facility.............................................................................. 79

1.9  Java routines ............................................................................................................ 83
1.9.1  Specification of external routines ................................................................. 83
1.9.2  Type mapping ............................................................................................... 86
1.9.3  SQL executability using a non-POSIX library version of HiRDB (UNIX 

version only)................................................................................................. 88
1.10  Specifying a datetime format ................................................................................. 91
1.11  Relationship to HiRDB External Data Access....................................................... 98
1.12  Restrictions on the use of the inner replica facility ............................................. 101
1.13  Locator ................................................................................................................. 103

2.  Details of Constituent Elements 105
2.1  Cursor specification ............................................................................................... 106

2.1.1  Cursor specification: Format 1 ................................................................... 106



xxv

2.1.2  Cursor specification: Format 2 .................................................................... 111
2.2  Query expressions ..................................................................................................115

2.2.1  Query expression format 1 (general-query-expression)..............................115
2.2.2  Query expression format 2 (unnesting query expression for repetition 

columns)......................................................................................................123
2.3  Query specification.................................................................................................128
2.4  Subqueries ..............................................................................................................135
2.5  Table expressions....................................................................................................139
2.6  Table reference .......................................................................................................150
2.7  Search conditions....................................................................................................159

2.7.1  Function.......................................................................................................159
2.7.2  Logical operations .......................................................................................159
2.7.3  Results of a predicate ..................................................................................160
2.7.4  Rules common to predicates .......................................................................160
2.7.5  Predicates ....................................................................................................161

2.8  Row value constructors ..........................................................................................202
2.9  Value expressions, value specifications, and item specifications...........................203
2.10  Arithmetic operations ...........................................................................................208
2.11  Date operations .....................................................................................................211
2.12  Time operations ....................................................................................................216
2.13  Concatenation operation .......................................................................................221
2.14  Set functions .........................................................................................................224
2.15  Window function ..................................................................................................231
2.16  Scalar functions ....................................................................................................234

2.16.1  System built-in scalar functions ................................................................241
2.16.2  System-defined scalar functions................................................................307

2.17  CASE expressions ................................................................................................407
2.18  Operational results with overflow error suppression specified ............................412

2.18.1  Example of overflow in a search condition...............................................414
2.18.2  Example of overflow in an update value...................................................415

2.19  Lock option...........................................................................................................417
2.20  Function calls........................................................................................................420
2.21  Inner derived tables ..............................................................................................427

2.21.1  Conditions for an inner derived table ........................................................427
2.22  WRITE specification ............................................................................................436
2.23  GET_JAVA_STORED_ROUTINE_SOURCE specification ...............................444
2.24  SQL optimization specification ............................................................................447

2.24.1  SQL optimization specification for a used index ......................................448
2.24.2  Join method SQL optimization specification ............................................449
2.24.3  Subquery execution method SQL optimization specification...................450
2.24.4  Examples of SQL optimization specification............................................451

2.25  CAST specification ..............................................................................................454
2.26  Extended statement name .....................................................................................463
2.27  Extended cursor name ..........................................................................................465



xxvi

3.  Definition SQL 467
General rules ................................................................................................................. 469
ALTER PROCEDURE (Recreate SQL object of procedure)....................................... 472
ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)... 485
ALTER TABLE (Alter table definition) ....................................................................... 497
ALTER TRIGGER (Recreate a trigger SQL object) .................................................... 560
COMMENT (Comment)............................................................................................... 571
CREATE ALIAS (Define alias).................................................................................... 573
CREATE AUDIT (Define the target audit event)......................................................... 575
CREATE CONNECTION SECURITY (Define the connection security facility)....... 589
CREATE FOREIGN INDEX (Define a foreign index)................................................ 595
CREATE FOREIGN TABLE (Define a foreign table)................................................. 598
CREATE FUNCTION (Define function) ..................................................................... 604
CREATE INDEX Format 1 (Define index) .................................................................. 610
CREATE INDEX Format 2 (Define index) .................................................................. 624
CREATE PROCEDURE (Define procedure) ............................................................... 628
CREATE SCHEMA (Define schema) .......................................................................... 641
CREATE SERVER (Define a foreign server)............................................................... 642
CREATE TABLE (Define table) .................................................................................. 644
CREATE TRIGGER (Define a trigger) ........................................................................ 712
CREATE TYPE (Define type) ...................................................................................... 733
CREATE USER MAPPING (Define user mapping) .................................................... 739
CREATE VIEW (Define view)..................................................................................... 741
DROP ALIAS (Delete alias)......................................................................................... 750
DROP AUDIT (Delete an audit target event)............................................................... 752
DROP CONNECTION SECURITY (Delete the connection security facility)............ 757
DROP DATA TYPE (Delete user-defined data type) ................................................... 759
DROP FOREIGN INDEX (Delete a foreign index)..................................................... 762
DROP FOREIGN TABLE (Delete a foreign table)...................................................... 763
DROP FUNCTION (Delete function) .......................................................................... 765
DROP INDEX (Delete index) ...................................................................................... 768
DROP PROCEDURE (Delete procedure) .................................................................... 770
DROP SCHEMA (Delete schema) ............................................................................... 773
DROP SERVER (Delete a foreign server).................................................................... 775
DROP TABLE (Delete table) ....................................................................................... 776
DROP TRIGGER (Delete a trigger) ............................................................................. 779
DROP USER MAPPING (Delete user mapping)......................................................... 781
DROP VIEW (Delete view table)................................................................................. 782
GRANT Format 1 (Grant privileges)............................................................................ 785
GRANT Format 2 (Change auditor's password)........................................................... 794
REVOKE (Revoke privileges)...................................................................................... 795

4.  Data Manipulation SQL 805
General rules ................................................................................................................. 807



xxvii

ALLOCATE CURSOR statement Format 1 (Allocate a statement cursor) ..................811
ALLOCATE CURSOR statement Format 2 (Allocate a result set cursor) ...................813
ASSIGN LIST statement Format 1 (Create list) ...........................................................815
ASSIGN LIST statement Format 2 (Create list) ...........................................................821
CALL statement (Call procedure) .................................................................................824
CLOSE statement (Close cursor) ..................................................................................828
DEALLOCATE PREPARE statement (Nullify the preprocessing of SQL) .................830
DECLARE CURSOR Format 1 (Declare cursor) .........................................................832
DECLARE CURSOR Format 2 (Declare cursor) .........................................................839
DELETE statement Format 1 (Delete rows) .................................................................842
DELETE statement Format 2 (Delete row using an array) ...........................................847
Preparable dynamic DELETE statement: locating (Delete row using a preprocessable 
cursor)............................................................................................................................851
DESCRIBE statement Format 1 (Receive retrieval information and I/O information) 853
DESCRIBE statement Format 2 (Receive retrieval information and I/O information) 856
DESCRIBE CURSOR statement (Receive cursor retrieval information).....................858
DESCRIBE TYPE statement (Receive definition information on user-defined data 
type) ...............................................................................................................................860
DROP LIST statement (Delete list)...............................................................................863
EXECUTE statement Format 1 (Execute SQL) ............................................................864
EXECUTE statement Format 2 (Execute an SQL statement using an array) ...............868
EXECUTE IMMEDIATE statement (Preprocess and execute SQL)............................875
FETCH statement Format 1 (Fetch data) ......................................................................880
FETCH statement Format 2 (Fetch data) ......................................................................884
FETCH statement Format 3 (Fetch data) ......................................................................887
FREE LOCATOR statement (Invalidate locator) ..........................................................890
INSERT statement Format 1 (Insert row)......................................................................891
INSERT statement Format 2 (Insert row)......................................................................898
INSERT statement Format 3, Format 4 (Insert row using an array) .............................902
OPEN statement Format 1 (Open cursor)......................................................................908
OPEN statement Format 2 (Open cursor)......................................................................910
PREPARE statement (Preprocess SQL) ........................................................................912
PURGE TABLE statement (Delete all rows) ................................................................918
Single-row SELECT statement (Retrieve one row) ......................................................921
Dynamic SELECT statement Format 1 (Retrieve dynamically) ...................................925
Dynamic SELECT statement Format 2 (Retrieve dynamically) ...................................930
UPDATE statement Format 1 (Update data) .................................................................932
UPDATE statement Format 2 (Update data) .................................................................948
UPDATE statement Format 3, Format 4 (Update row using an array) .........................952
Preparable dynamic UPDATE statement: locating Format 1 (Update data using a 
preprocessable cursor) ...................................................................................................962
Preparable dynamic UPDATE statement: locating Format 2 (Update data using a 
preprocessable cursor) ...................................................................................................966



xxviii

Assignment statement Format 1 (Assign a value to an SQL variable or SQL 
parameter) ..................................................................................................................... 968
Assignment statement Format 2 (Assign a value to an embedded variable or a ? 
parameter) ..................................................................................................................... 970

5.  Control SQL 973
General rules ................................................................................................................. 974
COMMIT statement (Terminate transaction normally) ................................................ 976
CONNECT statement (Connect a UAP to HiRDB) ..................................................... 979
DISCONNECT statement (Disconnect a UAP from HiRDB) ..................................... 981
LOCK statement (Lock control on tables).................................................................... 982
CONNECT statement with RD-node specification (Connect to distributed RD-node) 986
DISCONNECT statement with RD-node specification (Disconnect from distributed 
RD-node) ...................................................................................................................... 989
ROLLBACK statement (Cancel transaction) ............................................................... 991
SET CONNECTION statement (Set current RD-node) ............................................... 993
SET SESSION AUTHORIZATION statement (Change connected user).................... 995

6.  Embedded Language Syntax 997
General rules ................................................................................................................. 998
BEGIN DECLARE SECTION (Declare beginning of embedded SQL) ................... 1000
END DECLARE SECTION (Declare end of embedded SQL).................................. 1002
ALLOCATE CONNECTION HANDLE (Allocate connection handle) .................... 1003
FREE CONNECTION HANDLE (Release connection handle) ................................ 1008
DECLARE CONNECTION HANDLE SET (Declare connection handle to be 
used)............................................................................................................................ 1010
DECLARE CONNECTION HANDLE UNSET (Reset all connection handles being 
used)............................................................................................................................ 1012
GET CONNECTION HANDLE (Get connection handle)......................................... 1013
COPY (Include library text) ....................................................................................... 1016
GET DIAGNOSTICS (Retrieve diagnostic information) .......................................... 1018
COMMAND EXECUTE (Execute commands from a UAP) .................................... 1024
SQL prefix .................................................................................................................. 1029
SQL terminator ........................................................................................................... 1030
WHENEVER (Declare embedded exception) ............................................................ 1031
SQLCODE variable .................................................................................................... 1039
SQLSTATE variable ................................................................................................... 1040
PDCNCTHDL type variable declaration .................................................................... 1041
INSTALL JAR (Register JAR file)............................................................................. 1043
REPLACE JAR (Re-register JAR file)....................................................................... 1045
REMOVE JAR (Remove JAR file) ............................................................................ 1047

7.  Routine Control SQL 1049
General rules ............................................................................................................... 1050



xxix

Compound statement (Execute multiple statements) ..................................................1052
IF Statement (Execute by conditional branching) .......................................................1063
LEAVE statement (Exit statement)..............................................................................1065
RETURN statement (Return function return value)....................................................1066
WHILE statement (Repeat statements) .......................................................................1067
FOR statement (Repeat a statement on rows) .............................................................1069
WRITE LINE statement (Character string output to a file) ........................................1075
SIGNAL statement (Signal error)................................................................................1077
RESIGNAL statement (Resignal error).......................................................................1080

Appendixes 1083
A.  Reserved Words .....................................................................................................1084

A.1  SQL reserved words ....................................................................................1084
A.2  HiRDB reserved words ...............................................................................1108
A.3  Reserved words that can be deleted using the SQL reserved word deletion 

facility .........................................................................................................1109
B.  List of SQLs...........................................................................................................1122
C.  Correspondence Between Data Types When a Foreign Table is Used ..................1138

C.1  Foreign DB: HiRDB....................................................................................1138
C.2  Foreign DB: XDM/RD E2...........................................................................1144
C.3  Foreign DB: ORACLE ................................................................................1151
C.4  Foreign DB: DB2.........................................................................................1161

D.  Restrictions on Using a Foreign Table...................................................................1169
E.  Example Database..................................................................................................1175

Index 1177



xxx

List of figures

Figure 1-1:  Examples of delimiter insertion .............................................................................. 3
Figure 1-2:  Examples of locations where delimiter is not allowed............................................ 4
Figure 1-3:  Examples of locations where delimiter can be inserted .......................................... 4
Figure 1-4:  Specifiable literals ................................................................................................. 41
Figure 1-5:  Structures of indicator variables and embedded variables that receive repetition 

column data .......................................................................................................... 64
Figure 1-6:  Examples of receiving repetition column data (1 of 2) ......................................... 65
Figure 1-7:  Examples of receiving repetition column data (2 of 2) ......................................... 66
Figure 1-8:  Structures of indicator variables and embedded variables to which data from a 

repetition column is passed .................................................................................. 67
Figure 1-9:  Example of data passed from repetition column (1 of 2) ...................................... 68
Figure 1-10:  Example of data passed from repetition column (2 of 2) .................................... 68
Figure 2-1:   Examples of valid scopes for correlation names, table names, and query 

names .................................................................................................................. 156
Figure 2-2:  Examples of valid scopes of correlation names, table names, and query names (when 

a specified correlation name is the same as a table name or a query name in a FROM 
clause)................................................................................................................. 157

Figure 2-3:   Example of valid scopes for correlation names and table names with a FROM 
derived table specified ........................................................................................ 158

Figure 2-4:  Results of predicates on which logical operations are performed....................... 160
Figure 2-5:  Execution examples of system built-in scalar functions with respect to date data, 

time data, time stamp data, and numeric data..................................................... 241
Figure 2-6:  Relationships between the dates date-1, date-2, date-3, and date-4 .................... 358
Figure 2-7:  Relationships between the dates date-1, date-2, date-3, and date-4 .................... 405
Figure 3-1:  Revocation of privileges granted to PUBLIC, to a specific user, or to a role ..... 802
Figure 5-1:  Increasing and decreasing of locking period and level ....................................... 984
Figure 6-1:  Scope of processing specified in WHENEVER declarations ........................... 1033
Figure 6-2:  Example of coding a WHENEVER statement (1) ............................................ 1034
Figure 6-3:  Example of coding a WHENEVER statement (2) ............................................ 1035
Figure 6-4:  Example of coding a WHENEVER statement (3) ............................................ 1036
Figure 6-5:  Example of coding a WHENEVER statement (4) ............................................ 1037
Figure E-1:  Example of basic table structure ........................................................................1175



xxxi

List of tables

Table 1-1:  SQL character set.......................................................................................................5
Table 1-2:  Characters in names and maximum numbers of characters ....................................10
Table 1-3:  Predefined data types...............................................................................................21
Table 1-4:  User-defined type.....................................................................................................26
Table 1-5:  Data types that can be converted (assigned or compared) (1/2)..............................26
Table 1-6:  Data types that can be converted (assigned or compared) (2/2)..............................32
Table 1-7:  Notes on use of character data, national character data and mixed character data..35
Table 1-8:  Items in which specifiable/not specifiable changes in a BINARY type definition 

length.....................................................................................................................39
Table 1-9:  Notations for literals ................................................................................................41
Table 1-10:  Restrictions on use of numeric literals ..................................................................43
Table 1-11:  Correspondence between the value of fractional second precision p and the 

definition length of CHAR when specifying CURRENT_TIMESTAMP as an 
update or insertion value .......................................................................................48

Table 1-12:  Functions, uses, and specifiable locations of embedded variables and indicator 
variables ................................................................................................................50

Table 1-13:  Substitution relationships between UAP embedded variables and SQL data 
types ......................................................................................................................52

Table 1-14:  Specifiable locations of variables and parameters.................................................58
Table 1-15:  Indicator variable values returned by the FETCH, SELECT, EXECUTE, or 

EXECUTE IMMEDIATE statement (other than a repetition column, or in the case 
of the values of elements in a repetition column) .................................................63

Table 1-16:  Relationship between the indicator variable value and the value received by the 
embedded variable.................................................................................................64

Table 1-17:  Indicator variable values returned by the FETCH, SELECT, EXECUTE, or 
EXECUTE IMMEDIATE statement (data on an entire repetition column) .........64

Table 1-18:  Indicator variable value to be set before execution of SQL (other than a repetition 
column and element values of a repetition column) .............................................66

Table 1-19:  Indicator variable value to be set before execution of SQL (information on the entire 
repetition column) .................................................................................................67

Table 1-20:  Default null values that can be set in an embedded variable.................................69
Table 1-21:  Assignment types...................................................................................................70
Table 1-22:  Assignment rules for fixed-length target data .......................................................71
Table 1-23:  Assignment rules for variable-length target data...................................................72
Table 1-24:  Structure rules for the source and target of assignment operation.........................73
Table 1-25:  Implicit mapping that occurs when a Java signature specifying an external routine 

is omitted ...............................................................................................................86
Table 1-26:  Mapping between Java data types specifiable in a Java signature with an external 

routine specification and HiRDB data types .........................................................87
Table 1-27:  Executability of SQL statements in non-POSIX library versions of HiRDB........89



xxxii

Table 1-28:  Datetime format elements and their meanings...................................................... 92
Table 1-29:  Relationship between the first and second characters of the datetime format element 

MON or MONTH, the name of a month, and the format of an abbreviated month.
93

Table 1-30:  Abbreviated and full names of each month (when a datetime format element is 
specified in MON or MONTH)............................................................................ 93

Table 1-31:  Character strings complementing datetime format elements................................ 95
Table 1-32:  Datetime items that are required by the scalar function that converts a given 

character string representation into a datetime value ........................................... 95
Table 1-33:  Relationship between scalar functions in which a datetime format can be specified 

and elements of the datetime format..................................................................... 96
Table 1-34:  SQL statements that are available when HiRDB External Data Access is 

installed................................................................................................................. 99
Table 1-35:  SQL statements that can be executed in conjunction with the inner replica 

facility................................................................................................................. 101
Table 1-36:  Types of locators ................................................................................................. 103
Table 1-37:  Locator specification method and locations where one can be specified ........... 103
Table 2-1:  Meanings of special characters in pattern character strings (LIKE predicate) ..... 171
Table 2-2:  Typical pattern character strings used in the LIKE predicate ............................... 173
Table 2-3:  Meanings of special characters in pattern character strings (XLIKE predicate) .. 177
Table 2-4:  Examples of pattern character strings used in the XLIKE predicate .................... 178
Table 2-5:  Meaning of each regular expression specification................................................ 184
Table 2-6:  Examples of pattern character strings used in the SIMILAR predicate................ 189
Table 2-7:  Result of a quantified predicate with ANY or SOME specified........................... 196
Table 2-8:  Result of a quantified predicate with ALL specified ............................................ 196
Table 2-9:  Result of EXISTS predicate.................................................................................. 198
Table 2-10:  Results of a predicate obtained by evaluating a Boolean predicate.................... 198
Table 2-11:  Types of arithmetic operations ............................................................................ 208
Table 2-12:  Relationships between the data types of operands of arithmetic operations (binary 

operations) and the data type of a result ............................................................. 208
Table 2-13:  Precision and the decimal scaling position of a result when the data type of a result 

of an arithmetic operation is DECIMAL............................................................ 209
Table 2-14:  Date operation data ..............................................................................................211
Table 2-15:  Relationships between the format of a date operation and the data type of the 

result ................................................................................................................... 213
Table 2-16:  Time operation data ............................................................................................ 216
Table 2-17:  Relationships between the format of time operation and the data type of the 

result ................................................................................................................... 218
Table 2-18:  Data types eligible for concatenation and the data type of a concatenation operation 

result ................................................................................................................... 221
Table 2-19:  Data length of the result of concatenation .......................................................... 222
Table 2-20:  Functions of set functions ................................................................................... 224
Table 2-21:  Relationships between data types of columns and data types of function values225
Table 2-22:  Function of the window function........................................................................ 231



xxxiii

Table 2-23:  List of scalar functions ........................................................................................234
Table 2-24:  Combinations of data types that can be specified in value-expression-1 and 

value-expression-2 (system built-in scalar function BIT_AND_TEST).............245
Table 2-25:  Default precisions of the DECIMAL scalar function..........................................253
Table 2-26:  Data type of the result of the DECIMAL scalar function....................................254
Table 2-27:  Data lengths of the result of the DIGITS scalar function ....................................256
Table 2-28:  Formats of internal representations by the HEX scalar function and examples of 

execution results..................................................................................................258
Table 2-29:  Relationship between the data type of a value expression for the HEX scalar 

function and the data type and data length of a result .........................................260
Table 2-30:  Execution result as a function of the data type of the value expression for the 

LENGTH scalar function.....................................................................................269
Table 2-31:  Relationship between a result data type and value-expression-1 and 

value-expression-2 data types .............................................................................273
Table 2-32:  Precision and decimal scaling position of a result when the result data type is 

DECIMAL...........................................................................................................274
Table 2-33:  Combinations of data types that can be specified in value expression 1 and value 

expression 2 of the scalar function POSITION...................................................277
Table 2-34:  Combinations of items that can be specified in value expression 1 and value 

expression 2 of the scalar function POSITION (where value expression 1 and value 
expression 2 are both a character string data type, national character string data 
type, mixed character string data type, or BINARY type with a maximum length of 
32,000 bytes) .......................................................................................................278

Table 2-35:  Combinations of items that can be specified in value expression 1 and value 
expression 2 of the scalar function POSITION (where value expression 2 is either 
the BLOB type or the BINARY type with a maximum length of 32,0001 bytes or 
greater) ................................................................................................................279

Table 2-36:  Combinations of items that can be specified in value expression 1 and value 
expression 2 of the scalar function POSITION (where value expression 1 is either 
the BLOB type or the BINARY type with a maximum length of 32,001 bytes or 
greater, and value expression 2 is either the character string data type or the 
BINARY type with a maximum length of 32,000 bytes)....................................281

Table 2-37:  Items that can be specified depending on the data type of value expression 1 of the 
scalar function SUBSTR .....................................................................................286

Table 2-38:  Data types and lengths of results of the SUBSTR scalar function 
(value-expression-3 specified) ............................................................................289

Table 2-39:  Data types and lengths of results of the SUBSTR scalar function 
(value-expression-3 omitted)...............................................................................291

Table 2-40:  Data type of the result of a CEIL system-defined scalar function.......................317
Table 2-41:  Data type of the result of a FLOOR system-defined scalar function ..................329
Table 2-42:  Data type of the result of a GREATEST system-defined scalar function ...........331
Table 2-43:  Maximum length of argument-4 of the INSERTSTR system-defined scalar 

function................................................................................................................335



xxxiv

Table 2-44:  Maximum length of argument-4 of the INSERTSTR_LONG system-defined scalar 
function............................................................................................................... 336

Table 2-45:  Data type of the result of the INSERTSTR system-defined scalar function....... 336
Table 2-46:  Data type of the result of the INSERTSTR_LONG system-defined scalar 

function............................................................................................................... 336
Table 2-47:  Ranges of specifiable values in argument-2 and argument-3 of the INSERTSTR 

system-defined scalar function ........................................................................... 337
Table 2-48:  Ranges of specifiable values in argument-2 and argument-3 of the 

INSERTSTR_LONG system-defined scalar function........................................ 337
Table 2-49:  Data type of the result of the LEAST system-defined scalar function ............... 346
Table 2-50:  Range of specifiable values in argument-2 of the LEFTSTR system-defined scalar 

function............................................................................................................... 348
Table 2-51:  Data type of the result of the LEFTSTR system-defined scalar function........... 349
Table 2-52:  Data type of the result of the LTRIM system-defined scalar function................ 352
Table 2-53:  Maximum length of argument-2 of the LTRIMSTR system-defined scalar 

function............................................................................................................... 353
Table 2-54:  Data type of the result of the LTRIMSTR system-defined scalar function ........ 354
Table 2-55:  Meanings of integer values specifiable in argument-2 (integer values for days of the 

week) .................................................................................................................. 360
Table 2-56:  Maximum length of argument-2 of the POSSTR system-defined scalar 

function............................................................................................................... 366
Table 2-57:  Ranges of specifiable values in argument-3 and argument-4 of the POSSTR 

system-defined scalar function ........................................................................... 367
Table 2-58:  Data type of the result of the POWER system-defined scalar function.............. 368
Table 2-59:  Data type of the result of the REPLACE system-defined scalar function.......... 373
Table 2-60:  Data type of the result of the REPLACE_LONG system-defined scalar 

function............................................................................................................... 373
Table 2-61:  Data type of the result of the REVERSESTR system-defined scalar function... 375
Table 2-62:  Range of specifiable values in argument-2 of the RIGHTSTR system-defined scalar 

function............................................................................................................... 377
Table 2-63:  Data type of the result of the RIGHTSTR system-defined scalar function ........ 377
Table 2-64:  Range of specifiable values in argument-2 of the ROUND system-defined scalar 

function............................................................................................................... 379
Table 2-65:  Data type of the result of the ROUND system-defined scalar function ............. 379
Table 2-66:  Data type of the result of the RTRIM system-defined scalar function ............... 383
Table 2-67:  Maximum length of argument-2 of the RTRIMSTR system-defined scalar 

function............................................................................................................... 384
Table 2-68:  Data type of the result of the RTRIMSTR system-defined scalar function........ 385
Table 2-69:  Data type of the result of the SIGN system-defined scalar function .................. 386
Table 2-70:  Data type of the result of the STRTONUM system-defined scalar function ...... 391
Table 2-71:  Maximum lengths of argument-2 and argument-3 of the TRANSL and 

TRANSL_LONG system-defined scalar functions............................................ 396
Table 2-72:  Data type of the result of the TRANSL system-defined scalar function ............ 396



xxxv

Table 2-73:  Data type of the result of the TRASNSL_LONG system-defined scalar 
function................................................................................................................396

Table 2-74:  Range of specifiable values in argument-2 of the TRUNC system-defined scalar 
function................................................................................................................398

Table 2-75:  Data type of the result of the TRUNC system-defined scalar function...............399
Table 2-76:  Scalar functions subject to overflow error suppression.......................................413
Table 2-77:  Priorities of predefined data types .......................................................................422
Table 2-78:  Priorities of abstract data types............................................................................423
Table 2-79:  Data type convertibility between the result of the value expression and AS data type 

(1/2) .....................................................................................................................455
Table 2-80:  Data type convertibility between the result of the value expression and AS data type 

(2/2) .....................................................................................................................457
Table 2-81:  Rules for the conversion of date interval data and time interval data into numeric 

data ......................................................................................................................458
Table 2-82:  Rules for conversion into character data and mixed character data ....................458
Table 2-83:  Conversion rules for date data, time data, and time stamp data ..........................460
Table 2-84:  Conversion rules for numeric data into date interval data or time interval data .461
Table 2-85:  Conversion rules for date interval data and time interval data ............................461
Table 2-86:  How to specify a scope option.............................................................................463
Table 2-87:   How to specify a scope option............................................................................466
Table 3-1:  Types and functions of definition SQL..................................................................469
Table 3-2:  SQL optimization option specification values (ALTER PROCEDURE) ...................479
Table 3-3:  SQL extension optimizing option specification values (ALTER PROCEDURE) ......482
Table 3-4:  SQL optimization option specification values (ALTER ROUTINE)....................490
Table 3-5:  SQL extension optimizing option specification values (ALTER ROUTINE) ......493
Table 3-6:  Whether an index storage RDAREA can be specified depending on the index 

type ......................................................................................................................515
Table 3-7:   Dictionary tables from which check pending status is released when USE is specified 

for the pd_check_pending operand in the system definition...............................533
Table 3-8:  SQL optimization option specification values (ALTER TRIGGER) ....................565
Table 3-9:  SQL extension optimizing option specification values (ALTER TRIGGER).......568
Table 3-10:  Audit trail that is acquired based on the specification in WHENEVER .............578
Table 3-11:  Session types and operations generated by the associated audit events ..............579
Table 3-12:   Privilege operation types and operations generated by the associated audit 

events...................................................................................................................579
Table 3-13:   Object definition event types and operations generated by the associated audit 

events...................................................................................................................580
Table 3-14:   Object operation event types and operations generated by the associated audit 

events...................................................................................................................582
Table 3-15:   Utility event types and operations generated by the associated audit events .....583
Table 3-16:   Event type, event subtype, and specifiability of AUDITTYPE .........................584
Table 3-17:  Event type, event subtype, and specifiability of object name (1/2).....................584
Table 3-18:  Event type, event subtype, and specifiability of object name (2/2).....................586



xxxvi

Table 3-19:  Specifiable operands depending on the specification of the LANGUAGE clause of 
CREATE FUNCTION........................................................................................ 606

Table 3-20:  Specifiability of UNIQUE in conjunction with row-partitioning of a table ........611
Table 3-21:  Lengths of multicolumn index columns ............................................................. 620
Table 3-22:  Specifiable operands depending on the specification of the LANGUAGE clause of 

CREATE PROCEDURE .................................................................................... 630
Table 3-23:  SQL optimization option specification values (CREATE PROCEDURE) ........ 634
Table 3-24:  SQL extension optimizing option specification values (CREATE 

PROCEDURE) ................................................................................................... 637
Table 3-25:  How a table storage RDAREA is determined by default ................................... 651
Table 3-26:  Applicability of row-locking and rollback during the updating (including additions 

and deletions) of rows with a WITHOUT ROLLBACK specification .............. 661
Table 3-27:  Relationship between last day of deletion prevention and the deletion-allowed 

data ..................................................................................................................... 664
Table 3-28:  Specification positions for the constraint name definition ................................. 665
Table 3-29:  Default values for a column with the WITH DEFAULT clause......................... 676
Table 3-30:  Operation on referencing tables with a reference-specification specification .... 695
Table 3-31:  Allowable operations on referenced tables with CASCADE specification, and the 

influence of those operations on the referencing table ....................................... 697
Table 3-32:  Operations on the referenced table with RESTRICT specification .................... 698
Table 3-33:  Names of triggers created by HiRDB ................................................................. 698
Table 3-34:  Default constraint names assigned by HiRDB.................................................... 699
Table 3-35:  Disabled objects .................................................................................................. 700
Table 3-36:  Index identifier that is defined ............................................................................ 701
Table 3-37:  Predefined-type data lengths............................................................................... 702
Table 3-38:  SQL optimization option specification values (CREATE TRIGGER)............... 722
Table 3-39:  SQL extension optimizing option specification values (CREATE TRIGGER) . 725
Table 3-40:  Data lengths ........................................................................................................ 736
Table 3-41:  Disabled objects .................................................................................................. 777
Table 3-42:  Relationship between the IDENTIFIED BY clause of the GRANT DBA statement 

and the user privilege.......................................................................................... 786
Table 3-43:  Relationship between the IDENTIFIED BY clause of the GRANT CONNECT 

statement and the user privilege ......................................................................... 787
Table 3-44:  Relationship between the IDENTIFIED BY clause of GRANT DBA and directory 

server user privileges .......................................................................................... 789
Table 4-1:  Types and functions of the data manipulation SQL.............................................. 807
Table 4-2:  Remote Database Access in a Distributed System (Data Manipulation SQL) ..... 809
Table 4-3:  Specification rules for IN, OUT, and INOUT....................................................... 825
Table 4-4:  Result sets returned by a procedure and their order.............................................. 826
Table 4-5:  Product code and quantity in stock stored in table (before updating)................... 873
Table 4-6:   Product code and quantity in stock subject to updating (assigned to an embedded 

variable array)..................................................................................................... 873
Table 4-7:   Product code and quantity in stock stored in table (after updating) .................... 873
Table 4-8:  Product code and inventory level stored in the table (before updating) ............... 959



xxxvii

Table 4-9:  Product code and inventory level (assigned to the embedded variable array) in the 
row to be updated ................................................................................................960

Table 4-10:  Product code and inventory level stored in the table (after update) ....................960
Table 5-1:  Types and functions of the control SQL................................................................974
Table 6-1:  Types and functions of the embedded language ....................................................998
Table 7-1:  Types and functions of routine control SQL .......................................................1050
Table 7-2:  Integer literals specified in SQLCODE value .....................................................1058
Table 7-3:  Messages corresponding to SQLCODE that can appear in HiRDB....................1058
Table 7-4:  Linefeed codes on the HiRDB server side that are appended .............................1076
Table A-1:  SQL reserved words (A).....................................................................................1084
Table A-2:  SQL reserved words (B) .....................................................................................1086
Table A-3:  SQL reserved words (C) .....................................................................................1086
Table A-4:  SQL reserved words (D).....................................................................................1089
Table A-5:  SQL reserved words (E) .....................................................................................1090
Table A-6:  SQL reserved words (F)......................................................................................1091
Table A-7:  SQL reserved words (G).....................................................................................1092
Table A-8:  SQL reserved words (H).....................................................................................1092
Table A-9:  SQL reserved words (I) ......................................................................................1093
Table A-10:  SQL reserved words (J) ....................................................................................1094
Table A-11:  SQL reserved words (K) ...................................................................................1094
Table A-12:  SQL reserved words (L) ...................................................................................1094
Table A-13:  SQL reserved words (M) ..................................................................................1095
Table A-14:  SQL reserved words (N)...................................................................................1096
Table A-15:  SQL reserved words (O)...................................................................................1097
Table A-16:  SQL reserved words (P)....................................................................................1098
Table A-17:  SQL reserved words (R) ...................................................................................1100
Table A-18:  SQL reserved words (S)....................................................................................1102
Table A-19:  SQL reserved words (T) ...................................................................................1104
Table A-20:  SQL reserved words (U)...................................................................................1105
Table A-21:  SQL reserved words (V)...................................................................................1107
Table A-22:  SQL reserved words (W) ..................................................................................1107
Table A-23:  SQL reserved words (X)...................................................................................1108
Table A-24:  SQL reserved words (Y)...................................................................................1108
Table A-25:  SQL reserved words (Z) ...................................................................................1108
Table A-26:  HiRDB reserved words.....................................................................................1108
Table A-27:   Reserved words that can be deleted (A) ..........................................................1109
Table A-28:  Reserved words that can be deleted (B) ........................................................... 1110
Table A-29:   Reserved words that can be deleted (C) .......................................................... 1110
Table A-30:   Reserved words that can be deleted (D) .......................................................... 1111
Table A-31:   Reserved words that can be deleted (E)........................................................... 1112
Table A-32:   Reserved words that can be deleted (F) ........................................................... 1112
Table A-33:   Reserved words that can be deleted (G) .......................................................... 1113
Table A-34:   Reserved words that can be deleted (H) .......................................................... 1113
Table A-35:   Reserved words that can be deleted (I)............................................................ 1113



xxxviii

Table A-36:   Reserved words that can be deleted (L) ...........................................................1114
Table A-37:   Reserved words that can be deleted (M)..........................................................1114
Table A-38:   Reserved words that can be deleted (N)...........................................................1115
Table A-39:   Reserved words that can be deleted (O)...........................................................1115
Table A-40:   Reserved words that can be deleted (P) ...........................................................1116
Table A-41:   Reserved words that can be deleted (R)...........................................................1116
Table A-42:   Reserved words that can be deleted (S) ...........................................................1117
Table A-43:   Reserved words that can be deleted (T) ...........................................................1118
Table A-44:   Reserved words that can be deleted (U)...........................................................1119
Table A-45:   Reserved words that can be deleted (V)...........................................................1120
Table A-46:   Reserved words that can be deleted (W)..........................................................1120
Table A-47:   Reserved words that can be deleted (X)...........................................................1121
Table A-48:   Reserved words that can be deleted (Y)...........................................................1121
Table B-1:  SQL statements (definition SQL)........................................................................1122
Table B-2:  SQL statements (data manipulation SQL) ..........................................................1126
Table B-3:  SQL statements (control SQL)............................................................................1131
Table B-4:  SQL statements (embedded language) ................................................................1133
Table B-5:  SQL statements (routine control SQL)................................................................1135
Table C-1:  Data type correspondence (foreign DB: HiRDB) (1/2) ......................................1138
Table C-2:  Data type correspondence (foreign DB: HiRDB) (2/2) ......................................1141
Table C-3:  Data type correspondence (Foreign DB: XDM/RD E2)(1/2) .............................1144
Table C-4:  Data type correspondence (Foreign DB: XDM/RD E2)(2/2) .............................1148
Table C-5:  Data type correspondence (foreign DB: ORACLE) (1/3)...................................1151
Table C-6:  Data type correspondence (foreign DB: ORACLE) (2/3)...................................1155
Table C-7:  Data type correspondence (foreign DB: ORACLE) (3/3)...................................1158
Table C-8:  Data type correspondence (foreign DB: DB2) (1/2) ...........................................1162
Table C-9:  Data type correspondence (Foreign DB: DB2) (2/2) ..........................................1165
Table D-1:  Locking on the foreign server with the lock option specified.............................1169
Table D-2:  Lock on foreign server with lock option specified with WITH ROLLBACK and NO 

WAIT specifications ..........................................................................................1170



1

Chapter

1. Basics

This chapter explains the basics of using SQL. It contains the following sections:
1.1 SQL coding format
1.2 Data types
1.3 Literals
1.4 USER, CURRENT_DATE value function, CURRENT_TIME value 

function, and CURRENT_TIMESTAMP value function
1.5 Embedded variables, indicator variables, ? parameters, SQL parameters, and 

SQL variables
1.6 Null value
1.7 Component specification
1.8 Routines
1.9 Java routines
1.10 Specifying a datetime format
1.11 Relationship to HiRDB External Data Access
1.12 Restrictions on the use of the inner replica facility
1.13 Locator



1. Basics

2

1.1 SQL coding format

1.1.1 Order of specifying operands
The operands of an SQL statement must be specified in the order in which they are 
shown in the format.

1.1.2 Keyword specification
A keyword is a fixed character string that specifies a function, such as the name of an 
SQL statement (e.g., SELECT or UPDATE). Because most keywords are registered as 
system-reserved words, they can be specified by users only at prescribed positions in 
a command.
However, keywords that are not registered as reserved words can be used as names.
Following is an example of keywords (for a list of the reserved words, see A. Reserved 
Words):
CREATE TABLE ID. T1 (C1 CHAR, C2 INTEGER)
Keyword Keyword          Keyword  Keyword

1.1.3 Specifying a numeric value
Numeric values (other than numeric literals) that are to be specified in an SQL 
statement must be specified in accordance with the notation rules and restrictions that 
are applicable to unsigned integers; these notation rules and restrictions are shown in 
Tables 1-9 and 1-10.
SQL recognizes the following as numeric values (not as numeric literals):

Sort item specification number (sort item specification number of the ORDER BY 
clause)
Length and maximum length (the length and the maximum length of character 
data)
Maximum number of resources (total number of tables and indexes used in a 
program)
Percentage of unused space (the percentage of unused space specified in table and 
index definitions)
Precision (the number of significant digits in decimal data)
Decimal scaling position (the number of digits following the decimal point in 
decimal data)
Data guarantee level (ALTER PROCEDURE, ALTER ROUTINE, ALTER TRIGGER, 
CREATE PROCEDURE, CREATE TYPE, and CREATE TRIGGER)



1. Basics

3

Subscript (for repetition columns)
Maximum number of elements (in a repetition column)
Precision of fractional seconds (number of digits to the right of the decimal point 
in time data)

1.1.4 Insertion of delimiters
The following characters can be used as delimiters:

Space (X'20')
TAB (X'09')
NL (X'0a')
CR (X'0d')
Two-byte space
Comment

(1) Delimiter insertion locations
A delimiter can be inserted at the following locations:

Between keywords
Between a keyword and a name
Between names
Between a keyword and a numeric value
Between a name and a numeric value

Figure 1-1 shows examples of delimiter insertion.
Figure 1-1: Examples of delimiter insertion

(2) Locations where a delimiter is not allowed
A delimiter cannot be inserted in any of the following locations:



1. Basics

4

Within a keyword
Within a name not enclosed in double quotation marks
Immediately following the opening double quotation mark enclosing a name
Immediately before the closing double quotation mark enclosing a name
Within a numeric literal
Within an operator
Between the N and the first single quotation mark (') in N' ...' that represents a 
national character string literal
Between the M and the first single quotation mark (') in M' ...' that represents a 
mixed character string literal
Between the X and the first single quotation mark (') in X'...' that represents a 
hexadecimal character string literal
Between periods in a component specification that is written as ..

Figure 1-2 shows examples of locations where a delimiter is not allowed.
Figure 1-2: Examples of locations where delimiter is not allowed

(3) Locations where a delimiter is allowed
Delimiters can be inserted in the following locations:

Before and after any of the following special characters, except as indicated in (2) 
above:
,, ., -, +, *, ', ", (, ), <, >, =, ^, !, /, ?, :, ;, |, [, ], TAB, NL, CR, space, 
two-byte space

Figure 1-3 shows examples of locations where a delimiter is allowed.
Figure 1-3: Examples of locations where delimiter can be inserted



1. Basics

5

(4) Comment
In an SQL statement, any characters that appear after a /* and before the first */ that 
is encountered are treated as a comment. When inserting a comment, observe the 
following notes:

• /*-*/ marks that are enclosed in double quotation marks (") or single quotation 
marks (') are not treated as a comment.

• Use of an SQL statement consisting only of a comment can cause an error.
• Comments cannot be nested.
• The /*>>-<<*/ format is treated as an SQL optimization specification. See 2.24 

SQL optimization specification.
Examples of specifying a comment are given as follows:
Correct examples:

 
CREATE TABLE T1(C1 INT) /* COMMENT */
 
CREATE /* COMMENT */ TABLE T1(C1 INT)
 

Incorrect examples:
 
SELECT * FROM T1 /* COMMENT
... An error occurs due to the absence of a */ termination symbol.
 
CREATE TABLE T1 /* COMMENT1 /* COMMENT2 */ COMMENT3 */(C1 
INT)
... Nested comments cause an error.

1.1.5 SQL character set
Table 1-1 shows the characters that are available in SQL.

Table 1-1: SQL character set

Type Permissible characters in SQL

Character string literal One-byte character codes (not including X'00')

National character string literal All two-byte code characters

Mixed character string literal One-byte character codes (not including X'00') and all two-byte code 
characters



1. Basics

6

Characters that can be used in SQL vary depending on the character code type 
specified in the pdsetup command. For details about the pdsetup command, see the 
manual HiRDB Version 8 Command Reference.
SQL allows the use of one-byte and two-byte characters. These two types of characters 
require different character codes (two-byte characters are not available among the 
single-byte character codes). The following table shows the relationships between 
characters and the character code types:

Other than above • Following one-byte code characters:
Uppercase alphabetic characters (A-Z, $, @, #)
Lowercase alphabetic characters (a-z)
Numeric characters (0-9)
Space
Underline character (_)
Kana characters

• All two-byte code characters
• Following special characters (one-byte character codes):

Comma (,)
Period (.)
Hyphen or minus sign (-)
Plus sign (+)
Asterisk (*)
Single quotation mark (')
Quotation mark (")
Left parenthesis (( )
Right parenthesis ( ))
Less than operator (<)
Greater than operator (>)
Equals sign (=)
Circumflex (^)
Exclamation mark (!)
Slash (/)

Other than above Question mark (?)
Colon (:)
Semicolon (;)
Percent sign (%)
Vertical bar (|)
Left bracket ([)
Right bracket (])
TAB (X'09')
NL (X'0a')
CR (X'0d')

Type Permissible characters in SQL



1. Basics

7

Legend:
: Not applicable

1 Cannot be used in the Linux version.
2 Gaiji codes assigned to EUC Code Set 3 (character codes that are represented in 3 
bytes as (8F)16 (xxxx)16) cannot be used.

3 Cannot be used in the Windows version.
4 Passing and receiving Japanese data through a String class or a class inheriting that 
class between a Java UAP and HiRDB or between HiRDB and a Java routine is 
performed according to the rules regarding the mapping of Java character codes 
(mapping between a given character code and Unicode). In this case, some gaiji codes 

Specified character code Single-byte character Double-byte 
character

Remarks

Multiple -byte 
character 
code

sjis1, 4

(Shift JIS kanji)
JISX0201 JISX0208 Double-byte 

characters include 
gaiji characters.

ujis3

(EUC Japanese kanji)
JISX0201 JISX0208 Double-byte 

characters do not 
include gaiji 
characters.2

chinese
(EUC Chinese kanji)

ISO-8859-1
(Exclusive of 80-FF)

GB2312-80 Double-byte 
characters do not 
include gaiji 
characters2

utf-84, 5

(Unicode (UTF-8))
JISX0221 JISX0221 Double-byte 

characters include 
gaiji characters. 
Within the ASCII 
code range, these 
characters are treated 
identically with 
other character 
codes, except that in 
some cases a single 
character may be 
represented in 6 
bytes.6

MS-Unicode MS-Unicode

Single-byte 
character 
code

lang-c3

(8-bit code)
Same as the specified 
code

These codes can be 
used in US ASCII 
and 8-bit codes.



1. Basics

8

may fail to be converted correctly.
5 HiRDB is governed by the UTF-8 encoding rules only; the mapping of codes and 
characters is transparent to HiRDB. Therefore, you can use characters that comply 
with the UTF-8 encoding rules. However, when performing character code conversion, 
you must pay attention to the relationship between the character set and the encoding 
rules. Therefore, to specify PDCLTCNVMODE in the client environment definition when 
the character codes of the HiRDB client are SJIS and the character codes of the HiRDB 
server are UTF-8, you must determine whether JISX0221 or MS-Unicode is being 
used. For details about PDCLTCNVMODE, see the HiRDB Version 8 UAP Development 
Guide.
6 To use characters of four bytes or longer, you may need to specify the 
pd_substr_length operand of the system definition and PDSUBSTRLEN in the 
client environment definition. For details about the pd_substr_length operand, see 
the manual HiRDB Version 8 System Definition; for details about PDSUBSTRLEN, see 
the HiRDB Version 8 UAP Development Guide.
In ISO/IEC 10646, characters are allocated to bytes 1 through 4. Bytes 5 and 6 are 
reserved for future specifications, and no characters are allocated. Therefore, if you use 
bytes 5 or 6, there is no assurance that a conflict will not occur in the future.
If the HiRDB External Data Access facility is used in an HiRDB using multi-byte 
character codes, you can use either the shift JIS kanji code or the EUC Japanese kanji 
code. Therefore, for the character code to be set in the pdsetup command, you need 
to specify either sjis or ujis.
In addition, for access to a foreign server using either the shift JIS kanji code or the 
EUC Japanese kanji code, you need to provide appropriate settings for the foreign 
server or the client for the foreign server. For details about settings for foreign servers 
and foreign server clients, see the appropriate DBMS manuals. The relationship 
between a foreign server and HiRDB character codes is shown as follows:

Type of foreign server Foreign server 
character code

HiRDB character code

Shift JIS kanji EUC Japanese 
kanji

HiRDB Shift JIS Japanese 
kanji

Y N

EUC Japanese kanji N Y

XDM/RD E2 EBCDIK or KEIS Y1 N

ORACLE Shift JIS kanji Y Y1

EUC Japanese kanji Y1 Y



1. Basics

9

Legend:
Y: Can be connected.
N: Cannot be connected.

1 Character code conversion performed by a DBMS client library or gateway software 
for connection to a DBMS.
2 The GRAPHIC or VARGRAPHIC type cannot be used. Execution of an SQL statement 
containing a ? parameter corresponding to the GRAPHIC or VARGRAPHIC type can 
cause an error.

1.1.6 Maximum length of an SQL statement
The maximum allowable length of an SQL statement is 2,000,000 bytes.

1.1.7 Specification of names
A name can be specified by either enclosing it in quotation marks (") or not enclosing 
it.

Reference note:
 

For specifying a name, Hitachi recommends enclosing it in quotation marks 
("). If a name containing alphabetic characters is enclosed in quotation marks 
("), the alphabetic characters will be case sensitive.
Reasons

A name must be distinct from any of the reserved words. However, a name 
enclosed in quotation marks (") can be identical to a reserved word. 
Because, as the SQL is expanded, additional reserved words may be 
registered in the system, the potential problem of conflict with newly 
added reserved words can be avoided by enclosing names in quotation 
marks (").

If any of the following names is used in a UAP, other than a cursor name specified in 
a procedure or a function, it should be specified without enclosing it in quotation marks 
("), even if it is identical to an SQL reserved word:

DB2 2-byte EBCDIC Y1 Y1, 2

1-byte, 2-byte mixed 
ASCII

Y1 Y1, 2

Type of foreign server Foreign server 
character code

HiRDB character code

Shift JIS kanji EUC Japanese 
kanji



1. Basics

10

• Cursor name
• SQL statement identifier
• Embedded variable name, indicator variable name, or host identifier

(1) Common rules
• For restrictions on characters and length (in bytes) that can be used in a name, see 

Table 1-1 SQL character set and Table 1-2 Characters in names and maximum 
number of characters.

• Single-byte and double-byte characters can be used in a name on a mixed basis.
• If a name containing alphabetic characters is not enclosed in quotation marks ("), 

the alphabetic characters are handled as uppercase characters.
• If a name containing alphabetic characters is enclosed in quotation marks ("), the 

alphabetic characters will be case sensitive.
• A name must begin with a single-byte upper-case alphabetic character, a 

single-byte lower-case alphabetic character, a single-byte upper-case katakana 
( , ) or a double-byte character.

• A name cannot contain a double-byte space.
• Any of the following characters, if contained in a name, must be enclosed in 

quotation marks ("):
 Single-byte space
 Single-byte hyphen

Any cursor name containing a single-byte hyphen should be enclosed in quotation 
marks (") only if the cursor name is specified in a procedure or function.

• When a remote XDM/RD database is accessed, names must not contain a mixture 
of 1- and 2-byte characters.
Table 1-2: Characters in names and maximum numbers of characters

Type of name Max 
number 
of bytes 
or chars

Single-byte characters Double-
byte 

charsUC, 
numeric

LC Kana Underline 
(_)

Space Hyphen
(-)

Index-type 
identifier 

30 bytes Y Y Y2 Y Y Y Y2

Index identifier Y Y Y2 Y Y Y Y2

Embedded 
variable name1

30 
characters

Y Y Y2 Y N Y Y2



1. Basics

11

Cursor name 30 bytes Y Y Y2 Y N Y Y2

Foreign server 
name

Y Y N Y Y Y N

External routine 
name1

255 bytes Y Y Y2 Y N N Y2

Condition name 30 bytes Y Y Y2 Y Y Y Y2

Correlation 
name

Y Y Y2 Y Y Y Y2

Attribute name Y Y Y2 Y Y Y Y2

Data type 
identifier 

Y Y Y2 Y Y Y Y2

Query name Y Y Y2 Y Y Y Y2

Trigger 
identifier

Y Y Y2 Y Y Y Y2

Authorization 
identifier 

8 bytes Y Y N N N N N

Password3 30 bytes Y Y N N N N N

Table identifier Y Y Y2 Y Y Y Y2

Indicator 
variable name1

30 
characters

Y Y Y2 Y N Y Y2

Table alias 30 bytes Y Y Y2 Y Y Y Y2

Statement label Y Y Y2 Y Y Y Y2

Loop variable 
name

Y Y Y2 Y Y Y Y2

Host identifier1 Y Y Y2 Y N Y Y2

List name Y Y Y2 Y Y Y Y2

Routine 
identifier

Y Y Y2 Y Y Y Y2

Type of name Max 
number 
of bytes 
or chars

Single-byte characters Double-
byte 

charsUC, 
numeric

LC Kana Underline 
(_)

Space Hyphen
(-)



1. Basics

12

UC: Uppercase characters
LC: Lowercase characters
Y: Can be used.
N: Cannot be used.
1 Specification of these names is subject to restrictions by the host language.
COBOL 85 and COBOL 2002 permit a mix of double-byte characters and single-byte 
characters in embedded variable names, indicator variable names, host identifiers, and 
external routine names. The allowable length of an embedded variable, external 
routine name, or indicator variable, regardless of whether it is in single- or double-byte 
characters, is 30 characters for COBOL 85 and 31 characters for COBOL 2002.
2 Restricted by the type of character code used. This character code should not be used 
when the character code type utf-8 is specified in the pdsetup command (pdntenv 
in Windows).
3 The following rules apply to passwords:

• A password must begin with an alphabetic character.
• A password cannot consist of numeric characters only.
• It is possible to require that a password not consist of only upper-case letters 

Column name Y Y Y2 Y Y Y Y2

Role name Y Y N N N N N

RDAREA name Y Y N Y Y Y Y2

RD-node name Y Y N N N N N

SQL parameter 
name

Y Y Y2 Y Y Y Y2

SQL statement 
identifier

Y Y Y2 Y N Y Y2

SQL variable 
name 

Y Y Y2 Y Y Y Y2

Constraint 
name

Y Y Y2 Y Y Y Y2

Type of name Max 
number 
of bytes 
or chars

Single-byte characters Double-
byte 

charsUC, 
numeric

LC Kana Underline 
(_)

Space Hyphen
(-)



1. Basics

13

or only lower-case letters.
(2) What to do if a name conflicts with an SQL reserved word

The following text shows what to do when a specified name conflicts with an SQL 
reserved word. Hitachi recommends the method described in (a). Method (b) should 
be used when the SQL cannot be revised, including the situation in which an 
application cannot be modified.

(a) Revising the SQL
Revise the SQL so that the name that is in conflict with a reserved word is enclosed in 
quotation marks ("). Note that if a name containing alphabetic characters is enclosed 
in quotation marks ("), the alphabetic characters will be case sensitive.

(b) Using the SQL reserved word deletion facility
The SQL reserved word deletion facility provides a facility for deleting keywords 
registered as SQL reserved words from the list of reserved words. If the reserved word 
that is in conflict with a specified name can be deleted using the SQL reserved word 
deletion facility, by deleting it from the list of reserved words, you can use the specified 
name without enclosing it in quotation marks ("). For a list of reserved words that can 
be deleted using the SQL reserved word deletion facility, see A.3 Reserved words that 
can be deleted using the SQL reserved word deletion facility. For reserved words that 
cannot be deleted by the SQL reserved word deletion facility, revise the SQL using 
method (a).
Although a deleted reserved word can be used as a name, it is no longer a keyword. 
Consequently, the SQL facility that uses the deleted reserved word may cease to 
function properly. For SQL facilities that lose their functionality in this manner, see 
A.3 Reserved words that can be deleted using the SQL reserved word deletion facility.
Usage method

SQL reserved word deletion files for which the reserved words to be deleted using 
the SQL reserved word deletion facility must be specified in advance in the 
system common definition pd_delete_reserved_word_file operand. For 
the system common definition pd_delete_reserved_word_file operand, 
see the manual HiRDB Version 8 System Definition.
When using the SQL reserved word deletion facility, you need to specify the SQL 
reserved word definition file to be used, by means of the client environment 
variable PDDELRSVWDFILE. For the client environment variable 
PDDELRSVWDFILE, see the HiRDB Version 8 UAP Development Guide.

Notes

1. When executing an SQL that recreates an SQL object, in the client 
environment variable PDDELRSVWDFILE, specify the reserved word deletion 
file that was specified at the time of the definition of the object.



1. Basics

14

2. When importing or exporting a table using the dictionary import/export 
utility (pdexp), in the client environment variable PDDELRSVWDFILE, 
specify the reserved word deletion file that was specified at the time of the 
definition of the table. Also, ensure that the following items match between 
the export source and import destination directories:

 All files under %PDDIR%\conf\pdrsvwd
 Values specified in the system common definition 

pd_delete_reserved_word_file operand

1.1.8 Qualifying a name
Names can be qualified by using periods to connect an RD-node name, authorization 
identifier, and a table identifier. Qualifying name is used to explicitly designate an 
authorization identifier or to make a given name unique.

(1) Table names, index names, index type names, user-defined type names, 
routine names, trigger names

Explanations of these names and their formats are given as follows:
Table name:

A table identifier qualified with an RD-node name and authorization identifier.
Index name:

An index identifier qualified with an authorization identifier.
Index type name:

An index type identifier qualified with an authorization identifier.
User-defined type name:

A data type identifier qualified with an authorization identifier.
Routine name:

A routine identifier qualified with an authorization identifier.
Trigger name:

A trigger identifier qualified with an authorization identifier.
table-name::=[[RD-node-name.]authorization-identifier.] table-identifier
index-name::=[authorization-identifier.]index-identifier
index-type-name::=[authorization-identifier.]index-type-identifier
user-defined-type-name::=[authorization-identifier.]data-type-identifier
routine-name::=[authorization-identifier.]routine-identifier
trigger-name::=[authorization-identifier.]trigger-identifier



1. Basics

15

* When the authorization identifier is omitted from an SQL character string specified 
in a definition SQL, PREPARE statement, or EXECUTE IMMEDIATE statement, the 
authorization identifier that is assumed is determined in the following priority:
1. Authorization identifier that was in effect during CONNECT
2. Authorization identifier that was specified in a client environment variable
3. UAP user
4. PUBLIC (when specifying a table identifier in an SQL other than a definition 

SQL)

(2) Table specification
When more than one table is specified in the same SQL statement, table-specification 

Specification item Description Rules

Authorization 
identifier

When a specified table identifier, 
index identifier, index type 
identifier, data type identifier, 
routine identifier or trigger identifier 
is the user's own identifier, the user's 
authorization identifier should be 
specified. When any of these 
identifiers belongs to another user, 
that user's authorization identifier 
should be specified. However, when 
specifying the name of a public view 
in a table identifier, specify PUBLIC.

When the authorization identifier is omitted, 
the authorization identifier that is assumed as 
the default is as explained below:
During execution of a utility program:
• Authorization identifier of the user who 

launched the HiRDB utility.
During execution of a UAP:*
• When the authorization identifier is 

omitted in a UAP, one of the following is 
assumed as the default (listed in priority 
order):

1. Authorization identifier specified in the 
pre-processing

2. Authorization identifier specified in an 
operand of the CONNECT statement

3. If the operand is not specified in the 
CONNECT statement, the authorization 
identifier specified in the PDUSER client 
environment variable

4. PUBLIC (when specifying a table identifier)

RD-node name For access to a remote database, an 
RD-node name should be specified. 
When no RD-node name is 
specified, the access is a local 
access.

Table identifier Specifies the name of a base table, 
foreign table, or view table.

Index identifier Specifies the name of an index or 
foreign index.

Index type identifier Specifies the name of an index type.

Data type identifier Specifies the name of a user-defined 
type.

Routine identifier Specifies the name of a procedure or 
function.

Trigger identifier Specifies the name of a trigger.



1. Basics

16

indicates a qualifier that enables identification of a specific table to which a column, 
*, or row applies. The table name or a correlation name can be specified as the table 
specification.
When the same table is joined or the same table is specified in a subquery to reference 
columns in a table used in an outer query in that subquery, a correlation name can be 
used as an alias for those tables. A correlation name allows the user to use a table as 
two distinct tables.
table-specification::={RD-node-name.authorization-identifier.table-identifier
                  | unqualified-table-specification}
unqualified-table-specification::={[authorization-identifier.] table-identifier
                           | correlation-name | query-name}

If a query name specified in the WITH clause and the same table identifier as the query 
name are to be specified in a FROM clause in the query expression body of a query 
expression that uses a WITH clause, it is necessary to explicitly qualify the table 
identifier with an authorization identifier and to differentiate the name by specifying a 
correlation name for the query name and the table identifier.
If a name in a table specification for the query expression body of a query expression 
that uses a WITH clause is qualified by an authorization identifier, that name is treated 
as a table identifier; if the name is not qualified by an authorization identifier, that 
name is treated as a query name or a table identifier. Note that if the name is not 
qualified by an authorization identifier, the query name has a higher priority than the 
table identifier.
Examples of table specifications are shown below.
Example 1

The two tables STOCK and ORDERS both have a column named PCODE. To 
reference the correct PCODE column, its name is qualified with its table name 
(STOCK):
SELECT STOCK.PCODE,PNAME,CCODE
    FROM STOCK,ORDERS
    WHERE STOCK.PCODE=ORDERS.PCODE

Example 2
In a table created by joining two of the same table (e.g., STOCK tables), correlation 
names (X, Y) are used as qualifiers (products in the same color as product code 
101M are searched):
SELECT X.* FROM STOCK X,STOCK Y
    WHERE X.COLOR=Y.COLOR AND Y.PCODE='101M'

Example 3
Correlation names simplify the description of lengthy table names (the name of 
the RDAREA storing a table (STOCK) belonging to the user is searched from a 



1. Basics

17

data dictionary table):
SELECT X.RDAREA_NAME
    FROM MASTER.SQL_RDAREAS X,
         MASTER.SQL_TABLES Y
    WHERE Y.TABLE_SCHEMA='U'
      AND Y.TABLE_NAME='STOCK'
      AND X.RDAREA_NAME=Y.RDAREA_NAME

Example 4
In a query expression using a WITH clause, specifying, in a FROM clause in the 
query expression itself, a table identifier (STOCK) which is identical to the query 
name used in the WITH clause (STOCK):
WITH STOCK(QC1,QC2)
  AS (SELECT PCODE,PRICE*SQUANTITY FROM STOCK)
    SELECT * FROM STOCK X,USER1.STOCK Y

Example 5
The RDnode name of the node to which remote database access is made is 
specified (when a column name is specified in an SQL statement that specifies an 
RD-node name, up to the table name is used as a correlation name. If the RD-node 
name is qualified with a correlation name, the user needs to change only the FROM 
clause, even when the RD-node name itself is changed.)
SELECT X.ENO
   FROM OSAKA.USER1.EMP X
   WHERE X.ENAME=N'John Doe'

(3) Column specification
In the following cases, it may be necessary to specify a column name or a repetition 
column name with an unqualified table specification; such a qualified column name or 
repetition column name is called a column specification:

In a retrieval in which multiple tables are specified in one FROM clause (by joining 
two or more tables) and the multiple tables contain identically named columns 
(without a qualification, it would not be clear which table was intended)
In a retrieval in which multiple query names or table names are specified in one 
FROM clause in the query expression body of a query expression using a WITH 
clause (by joining two or more tables) and the multiple tables to be searched or 
derived by the derived query expression in the WITH clause contain identically 
named columns (without a qualification, it would not be clear which table was 
intended)

(Incorrect)
Whether CLM1 specified in the selection expression is a column name of query name 
QRY1 or of query name QRY2 is not clear; the column name must be qualified:



1. Basics

18

WITH QRY1(CLM1) AS (SELECT PNAME FROM STOCK),
     QRY2(CLM1) AS (SELECT PCODE FROM STOCK)
     SELECT CLM1 FROM QRY1,QRY2

(Correct)
The column name of the specified column is qualified:
WITH QRY1(CLM1) AS (SELECT PNAME FROM STOCK),
     QRY2(CLM1) AS (SELECT PCODE FROM STOCK)
     SELECT QRY1.CLM1,QRY2.CLM1 FROM QRY1,QRY2

In a WHERE clause or HAVING clause in a subquery, a table specified in a FROM 
clause that occurs outside the subquery is to be referenced, or a column in the 
table to be updated is to be referenced (without a qualification, columns in an 
outer table cannot be referenced).

Some column names can be qualified while others cannot, due to syntactic 
considerations. The description column-specification in a format specification 
indicates a column name that can be qualified. The description column-name indicates 
that the column name cannot be qualified.
Column-specification::= unqualified-table-specification.]
{column-name|repetition-column-name[[subscript]]}
 
Subscript::={integer|ANY}

Qualifying a column name with an unqualified table specification is subject to the 
following rules:
1. A column name can be qualified with a specified correlation name or table name 

only within the scope of the correlation name or table name.
For the scope of a correlation name or table name, see 2.6 Table reference, 
DELETE statement Format 1 (Delete rows) and UPDATE statement Format 1 
(Update data) in Chapter 4.

2. When a valid, unqualified table specification with the same name (correlation 
name or table name) is specified multiple times in a subquery, referencing the 
unqualified table specification (correlation name or table name) causes the 
unqualified table specification (correlation name or table name) specified in the 
innermost query to be specified.
The following is an example of specifying multiple, valid table names that have 
the same name:
Example:

In the subquery, both the T11 and T12 specifications are valid. Referencing 
T1 specifies T12 in the innermost query.

SELECT * FROM T11



1. Basics

19

   WHERE T11.C2 >=
      (SELECT AVG(C2) FROM T12
       WHERE T12.C1 = 1      )

Valid range of T11: SELECT*FROM T11 and subsequent lines

Valid range of T12: (SELECT AVG (C2) FROM T12 and subsequent lines
Tables having the most local scope (identically named tables occur in the same 
FROM clause) must be qualified with correlation names. The following is an 
example of identically named tables occurring in the same FROM clause:
(Incorrect)

This subquery, in which T11 and T12 which have the most local scope occur, 
contains an invalid scope specification. To avoid this error, specify 
appropriate correlation names.

SELECT*FROM T2
   WHERE C3 IN
      (SELECT T11.C3 FROM T11,T12
       WHERE T11.C1=T12.C3   )

Most local scope: (SELECT T11.C3 FROM T11, T12 and subsequent 
specifications
(Correct)

The specified column must exist in the table that is specified with a qualifier.
SELECT*FROM T2
   WHERE C3 IN
      (SELECT X.C3 FROM T11 X,T12 Y
       WHERE X.C1=Y.C2          )

3. Column names can be qualified with a table specification. If column names are 
unqualified, the subquery that has the most local scope must contain one table that 
contains the specified column.

1.1.9 Schema path
When a routine name, index type name, or user-defined type that is not qualified 
explicitly with an authorization identifier is to be searched, a schema path determines 
the order in which different schemas are searched.
In the case of an index type name or a user-defined type name, if the target schema does 
not contain an index type name or a user-defined type name, the next schema is 
searched.
In the case of a function name, if executable candidate functions are not found 



1. Basics

20

according to the rules for determining the function to be called, the next schema is 
searched. For the rules for determining the function to be called, see 2.20 Function 
calls.

(a) Order of search
Schemas are searched in the following order:
1. Schemas for the user associated with the default authorization identifier (for the 

default authorization identifier, see 1.1.8 Qualifying a name)
2. MASTER schema

(b) Scope of a schema path
In a specification that is not qualified with an authorization identifier, a schema path is 
applied to the referencing of defined routine names, index type names, and 
user-defined type names.



1. Basics

21

1.2 Data types

1.2.1 Data types
Data types can be divided into the following two classes:

Predefined data types
User-defined data types (Specifies in the [authorization-identifier.] format.)

Format
data-type::={Predefined-data-type|user-defined-type}

Explanation
Predefined data type
Specifies a data type provided by HiRDB.
User-defined data types
A user-defined data type is specified in the following format:
[authorization-identifier.]data-type-identifier
authorization-identifier

Specifies a user-defined type of authorization identifier.
data-type-identifier

Specifies a user-defined type of data-type identifier.
(1) Predefined data type

Table 1-3 shows the provided predefined data types.
Table 1-3: Predefined data types

Classification Data type1 Data format Description

Numeric data INT[EGER] Integer (4-byte binary) Integer value in the range 
-2147483648 to 2147483647

SMALLINT Integer (2-byte binary) Integer value in the range -32768 
to 32767



1. Basics

22

[LARGE]DEC[IMAL] 
[(m[,n])] or 
NUMERIC [(m[,n])]

Fixed-point number (packed 
decimal with

(m+1)/2  bytes)8

Fixed-point number whose 
precision (total number of digits) 
is m and whose decimal scaling 
position (number of digits 
following the decimal point) is n, 
where m and n are positive 
integers such that 1  m  29, 
0  n  29, n  m. The 
default for m is 15; the default for 
n is 0.

FLOAT or DOUBLE 
PRECISION

Double-precision 
floating-point number (8 
bytes)

Double-precision floating-point 
number with a value of 
approximately 4.9  10-324 to 

3.4  10308  4

SMALLFLT or REAL Single-precision 
floating-point number (4 
bytes)

Single-precision floating-point 
number with a value of 
approximately 1.4  10-45 to 

3.4  1038  4

Character data CHAR[ACTER] [(n)] Fixed-length character 
string (length: n bytes)

Fixed-length character string of 
one-byte characters with a length 
of n bytes, where n is a positive 
integer such that 1  n  
30,000. The default for n is 1.

VARCHAR(n) or 
CHAR[ACTER] 
VARYING(n)

Variable-length character 
string (maximum length: n 
bytes)

Variable-length character string of 
one-byte characters with a 
maximum length of n bytes, where 
n is a positive integer such that 1 

 n  32,000. The real length 
is 0 or greater.

National character 
data6, 9

NCHAR[(n)] or 
NATIONAL 
CHAR[ACTER] [(n)]

Fixed-length national 
character string (length: n 
characters)

Fixed-length national character 
string of two-byte characters with 
a length of n characters (2n bytes), 
where n is a positive integer such 
that 1  n  15,000. The 
default for n is 1.

NVARCHAR(n) or 
NATIONAL 
CHAR[ACTER] 
VARYING(n) or 
NCHAR VARYING(n)

Variable-length national 
character string (maximum 
length: n characters)

Variable-length national character 
string of two-byte characters with 
a maximum length of n character 
(2n bytes), where n is a positive 
integer such that 1  n  
16,000. The real length is 0 or 
greater.

Classification Data type1 Data format Description



1. Basics

23

Mixed character 
data6

MCHAR [(n)] Fixed length, mixed 
character string (length: n 
bytes)

This is a fixed length, mixed 
character string with a length of n 
bytes containing both one-byte 
characters and two-byte 
characters, where n is a positive 
integer, 1  n  30,000. The 
default for n is 1.

MVARCHAR(n) Variable length, mixed 
character string (maximum 
length: n bytes)

This is a variable length, mixed 
character string with a maximum 
length of n bytes containing both 
one-byte characters and two-byte 
characters, where n is a positive 
integer, 1  n  32,000. The 
real length is 0 or greater.

Date data DATE Date (4-byte, unsigned, 
packed format, 
YYYYMMDD)
YYYY: 0001-9999 (year)
MM: 01-12 (month)
DD: 01-last day of the 
month (day)

Date represented by the year, 
month, and day.

Time data TIME Time (3-byte, unsigned, 
packed format, hhmmss)
hh: 00-23 (hour)
mm: 00-59 (minute)
ss: 00-59 (second)

Time represented by the hour, 
minute, and second.

Time stamp data TIMESTAMP[(p)] Time stamp
(unsigned packed format 7 
to 10 bytes long, 
YYYYMMDDhhmmss 
[nn...n])
YYYY: 0001-9999 (year)
MM: 01-12 (month)
DD: 01-the last day of a 
given month (day)
hh: 00-23 (hour)
mm: 00-59 (minute)
ss: 00-59 (second)
nn...n: fractional seconds in 
p digits (n: 0-9)

This is the time stamp data type 
having six areas: year, month, day, 
hour, minute, and second.
p is an integer such that p=0, 2, 4, 
or 6. The default is p=0.

Classification Data type1 Data format Description



1. Basics

24

Note 1
When comparing character data with mixed character data or converting data, the 
system uses one-byte character spaces (X'20') as filler characters. When 
comparing national character data or converting data, the system uses two-byte 
spaces as filler characters. The code for the two-byte space varies with the type of 
character code that is used.

Note 2

Date interval data INTERVAL YEAR TO 
DAY

Date interval (5-byte, 
packed format, 
0YYYYMMDDs)
YYYY: 0000-9999 (number 
of years)
MM: 00-99 (number of 
months)2

DD: 00-99 (number of days)
s: Sign (positive: C, F; 
negative: D)8

Interval between two dates, in the 
range -9999 years, 11 months, 99 
days to 9999 years, 11 months, 99 
days.

Time interval data INTERVAL HOUR TO 
SECOND

Time interval (4-byte, 
packed format, 0hhmmsst)
hh: 00-99 (hours)
mm: 00-99 (minutes)3

ss: 00-99 (seconds)3

t: Sign (positive: C, F; 
negative: D)8

Interval between two times, in the 
range -99 hours, 59 minutes, 59 
seconds to 99 hours, 59 minutes, 
59 seconds.

Large object data BLOB 
[(n[{K|M|G}])] 
or BINARY LARGE 
OBJECT 
[(n[{K|M|G}])]

Binary data string 
(maximum length: n bytes)
K: kilobytes
M: megabytes
G: gigabytes

This is a binary data string with a 
maximum length of n bytes. The 
default for n is 2,147,483,647 
bytes. The real length is 0 or 
greater. Units K, M, and G can be 
specified5. If a unit (K, M, G) is 
omitted, the length is assumed to 
be in bytes by default.

Binary data BINARY(n) Binary data string 
(maximum length: n bytes)

This is a binary data string with a 
maximum length of n bytes, where 
n is required. The actual length is 
0 or greater. n is a positive integer 
such that 1  n  
2,147,483,647 bytes.

Logical data BOOLEAN7 Logical value (4 bytes) Permissible logical values are 
TRUE, FALSE, and UNKNOWN.

Classification Data type1 Data format Description



1. Basics

25

See the Permissible characters in SQL column in Table 1-1 for the character 
codes with the available one-byte and two-byte characters.

1 If there are multiple data types for a data format, the typical data type is used 
thereafter in this manual as a representative example.
2 When the number 12 or greater is used, the year is incremented by 1.
3 When the number 60 or greater is specified in mm or ss, the hour or minute, 
respectively, is incremented by 1.
4 The allowable range of a floating-point number is limited by the data representation 
available on the hardware used to execute the SQL.
5 The following table shows, for each unit of length, the allowable range of values and 
the maximum length.

If the calculated value of an actual maximum length is 2147483648, the value is 
reduced to 2147483647.
6 When lang-c is specified in the pdsetup command as the character codes type, 
national character data and mixed character data cannot be defined (UNIX version 
only).
7 BOOLEAN can be used only as the data type for a function that provides a return value; 
it cannot be used as the data type for a column, SQL variable, or SQL parameter.
8 For details on the sign part of the decimal, date interval, and time interval types, see 
1.2.4 Notes on using the decimal type.
9 National character data cannot be defined if the character code type utf-8 is 
specified in the pdntenv command (pdsetup command in the UNIX version).

(2) User-defined type
Table 1-4 shows the available user-defined type.

Unit Allowable range of n Actual maximum length (bytes)

K 1  n  2097152 n  1024

M 1  n  2048 n  1048576

G 1  n  2 n  1073741824



1. Basics

26

Table 1-4: User-defined type

1.2.2 Data types that can be converted (assigned or compared)
Tables 1-5 and 1-6 show data types that can be converted (assigned or compared). For 
data types that can be converted by using a CAST specification or a scalar function, see 
2.16 Scalar functions and 2.25 CAST specification, respectively.

Table 1-5: Data types that can be converted (assigned or compared) (1/2)

Data type Data format Explanation

Abstract data type Not applicable Data type defined by CREATE TYPE. Attribute definitions 
and routines can be defined in the data type.

Before 
conversion

After conversion

Numeric 
data

Character 
data

National 
char- 
acter 
data

Mixed 
char- 
acter 
data

Date 
data

Time 
data

Time 
stamp 
data

INTEGER CHARACTER NCHAR MCHAR DATE TIME TIME 
STAMP

SMALL 
INT

DECIMAL VAR CHAR NVAR 
CHAR

MVAR 
CHAR

FLOAT

SMALL 
FLT

Numeric data
• INTEGER
• SMALLINT
• DECIMAL
• FLOAT
• SMALLFLT

Y, Y Y, N1 N, N Y, N1 N, N N, N N, N

Character data
• CHARACTER
• VARCHAR

C, C2, 3 Y, Y C, C7 Y, Y C, C4 C, C5 C, C6

National character 
data
• NCHAR
• NVARCHAR

N, N N, N Y, Y N, N N, N N, N N, N



1. Basics

27

Mixed character 
data
• MCHAR
• MVARCHAR

C, C2, 3 Y, Y N, N Y, Y N, N N, N N, N

Date data
• DATE 

N, N N, C8 N, N N, N Y, Y N, N N, N

Time data
• TIME

N, N N, C9 N, N N, N N, N Y, Y N, N

Time stamp data
• TIMESTAMP

N, N N, C10 N, N N, N N, N N, N Y, Y11

Day interval data
• INTERVAL 

YEAR TO DAY

N, C12 N, N N, N N, N N, N N, N N, N

Hour interval data
• INTERVAL 

HOUR TO 
SECOND

N, C13 N, N N, N N, N N, N N, N N, N

Large object data
• BLOB

N, N N, N N, N N, N N, N N, N N, N

Binary data
• BINARY(n)

1  n  
32,000

N, N N, N N, N N, N N, N N, N N, N

Before 
conversion

After conversion

Numeric 
data

Character 
data

National 
char- 
acter 
data

Mixed 
char- 
acter 
data

Date 
data

Time 
data

Time 
stamp 
data

INTEGER CHARACTER NCHAR MCHAR DATE TIME TIME 
STAMP

SMALL 
INT

DECIMAL VAR CHAR NVAR 
CHAR

MVAR 
CHAR

FLOAT

SMALL 
FLT



1. Basics

28

Legend:
Y: Can be converted.
C: Can be converted, subject to restrictions.
N: Cannot be converted.

Note

In the table, whether a given data type is convertible, is indicated in the form of 
"assignable, comparable." For example, the entry "Y, Y" means that the data type 
can be assigned and compared, whereas "Y, N" means that it can be assigned but 
cannot be compared.

1 The correspondence between numeric and character data, when they are converted, 
is given below. For any converted data type that is mixed character data, VARCHAR 
reads MVARCHAR, and CHAR reads MCHAR.

• INTEGER-type numeric data is converted into VARCHAR(11) character data.
• SMALLINT-type numeric data is converted into VARCHAR(6) character data.
• DECIMAL(p,0)-type numeric data is converted into VARCHAR(p+1) 

character data.

Binary data
• BINARY(n)

n > 32,000

N, N N, N N, N N, N N, N N, N N, N

Boolean data
• BOOLEAN

N, N N, N N, N N, N N, N N, N N, N

Abstract data type N, N N, N N, N N, N N, N N, N N, N

Before 
conversion

After conversion

Numeric 
data

Character 
data

National 
char- 
acter 
data

Mixed 
char- 
acter 
data

Date 
data

Time 
data

Time 
stamp 
data

INTEGER CHARACTER NCHAR MCHAR DATE TIME TIME 
STAMP

SMALL 
INT

DECIMAL VAR CHAR NVAR 
CHAR

MVAR 
CHAR

FLOAT

SMALL 
FLT



1. Basics

29

• DECIMAL(p,s)-type numeric data is converted into VARCHAR(p+2) 
character data.

• FLOAT-type or SMALLFLT-type numeric data is converted into CHAR(23) 
character data.

For INTEGER-type, SMALLINT-type, or DECIMAL-type numeric data, the 
converted character data does not include a positive sign. Conversion of 
FLOAT-type or SMALLFLT-type numeric data into character data always appends 
a sign to the characteristic and the mantissa.

2 Comparison of character data with numeric data involves a conversion of the 
character data into numeric data. Character data can be compared with numeric data 
only if the character data is present in a comparison predicate, quantified predicate, IN 
predicate, or BETWEEN predicate. The conditions under which a comparison can be 
made for each predicate are summarized in the following table:

Character data can be compared with numeric data if any of the following items 
is specified:
Character data

• Literal (including the case where the literal is specified in a selection 
expression in a subquery)

• ? parameter
• Embedded variable
• SQL variable
• SQL parameter

However, if either character or numeric data is specified in any of the following 
positions, the character data specified in an SQL variable or SQL parameter 
cannot be converted to numeric data:

• A row value constructor element in a row value constructor having two or 
more row value constructor elements

• A selection expression in a row or table subquery

Predicate Comparable condition

Comparison predicate A comparison can be made if either the right- or left-hand side of the comparison 
operator is numeric data.

IN predicate, quantified 
predicate

A comparison can be made if the left-hand side of the comparison operator is numeric 
data.

BETWEEN predicate A comparison can be made if the row value constructor element in row value 
constructor 1 is numeric data.



1. Basics

30

• A selection expression in a scalar subquery that is specified in a position 
other than the right-hand side of a comparison predicate, IN predicate, or 
quantified predicate

Numeric data

• Column specification (including the cases in which numeric data is 
specified in a selection expression in a subquery)

3 The correspondence relationship for assignment or comparison of character data with 
numeric data is as follows:

• Integer representations using a character string are converted into the 
INTEGER type.

• Decimal representations using a character string are converted into the 
DECIMAL type.

• Floating-point numeric representations using a character string are converted 
into the FLOAT type.

A space occurring before or after a numeric character string representation is 
ignored during the conversion process.

4 The following items can be assigned to and compared with date data:
• A literal in which a date is represented in a predefined character string
• An embedded variable corresponding to CHAR(10)

5 The following items can be assigned to and compared with time data:
• A literal in which time is represented in a predefined character string
• An embedded variable corresponding to CHAR(8)

6 The following items can be assigned to and compared with time stamp data:
• A literal in which a time stamp is represented in a predefined character string
• An embedded variable corresponding to a CHAR variable with a length of 19 

to 26 bytes
7 Character string literals coded in any of the following items, exclusive of definition 
SQL statements, are treated as national character string literals, for which only the 
length of the character data is checked; the character code is not checked:

• INSERT statement
• UPDATE statement
• Search condition statement



1. Basics

31

For details about the INSERT and UPDATE statements, see 4. Data Manipulation 
SQL. For details about search conditions, see 2.7 Search conditions.

8 The following items can be compared with date data:
• A literal in which a date is represented in a predefined character string
• An embedded variable corresponding to CHAR(10)

The following item can be converted into character data:
• Date data that is assigned to a CHAR or VARCHAR embedded variable with a 

minimum length of 10 bytes
9 The following items can be compared with time data:

• A literal in which time is represented in a predefined character string
• An embedded variable corresponding to CHAR(8)

The following item can be converted into character data:
• Time data that is assigned to a CHAR or VARCHAR embedded variable with a 

minimum length of 8 bytes
10 The following items can be compared with time stamp data:

• A literal in which a time stamp is represented in a predefined character string
• An embedded variable corresponding to a CHAR variable with a length of 19 

to 26 bytes
In addition, the following item can be assigned to character data:

• Assignment to a CHAR or VARCHAR embedded variable with a minimum 
length of 19 bytes if p = 0, or with a minimum length of 20 + p bytes if p > 
0 where p denotes the fractional second precision of the timestamp data 
before conversion.

11 If the source of assignment has a fractional second precision higher than that of the 
target of assignment, the fractional line part is truncated to match the precision of the 
target of assignment. If the source of assignment has a fractional second precision 
lower than that of the target of assignment, data is stored by zero-filling the expanded 
fractional second part to match the precision of the target of assignment.
12 The following items can be compared with date interval data:

• A literal in which a date interval is represented in a decimal
• An embedded variable corresponding to DECIMAL(8,0)

The following item can be converted into decimal data:



1. Basics

32

• Date interval data that is assigned to a DECIMAL(8,0) embedded variable
13 The following items can be compared with time interval data:

• A literal in which a time interval is represented in a decimal.
• An embedded variable corresponding to DECIMAL(6,0)

The following item can be assigned to decimal data:
• Time interval data that is assigned to a DECIMAL(6,0) embedded variable

Table 1-6: Data types that can be converted (assigned or compared) (2/2)

Before 
conversion

After conversion

Date 
interval 

data

Time 
interval 

data

Large 
object 
data

Binary data Boolean 
data

Abstract 
data 
type

INTERVAL 
YEAR TO 

DAY

INTERVAL 
HOUR TO 
SECOND

BLOB BINARY
(n)

1  n 
 

32,000

BINARY
(n)
n > 

32,000

BOOLEAN

Numeric data
• INTEGER
• SMALLINT
• DECIMAL
• FLOAT
• SMALLFLT

C, C1 C, C2 N, N N, N N, N N, N N, N

Character data
• CHARACTER
• VARCHAR 

N, N N, N N, N C, C3 N, N N, N N, N

National 
character data
• NCHAR
• NVARCHAR

N, N N, N N, N N, N N, N N, N N, N

Mixed 
character data
• MCHAR
• MVARCHAR

N, N N, N N, N N, N N, N N, N N, N

Date data
• DATE

N, N N, N N, N N, N N, N N, N N, N

Time data
• TIME

N, N N, N N, N N, N N, N N, N N, N



1. Basics

33

Legend:
Y: Can be converted.

Time stamp 
data
• TIMESTAMP

N, N N, N N, N N, N N, N N, N N, N

Date interval 
data
• INTERVAL 

YEAR TO 
DAY

Y, Y4 N, N N, N N, N N, N N, N N, N

Time interval 
data
• INTERVAL 

HOUR TO 
SECOND

N, N Y, Y5 N, N N, N N, N N, N N, N

Large object 
data
• BLOB

N, N N, N Y, N Y, N Y, N N, N N, N

Binary data
• BINARY(n)

1  n 
 

32,000

N, N N, N Y, N Y, Y Y, N N, N N, N

Binary data
• BINARY(n)

n > 32,000

N, N N,N Y, N Y, N Y, N N, N N, N

Boolean data
• BOOLEAN

N, N N, N N, N N, N N, N N, N N, N

Abstract data 
type

N, N N, N N, N N, N N, N N, N C, N6

Before 
conversion

After conversion

Date 
interval 

data

Time 
interval 

data

Large 
object 
data

Binary data Boolean 
data

Abstract 
data 
type

INTERVAL 
YEAR TO 

DAY

INTERVAL 
HOUR TO 
SECOND

BLOB BINARY
(n)

1  n 
 

32,000

BINARY
(n)
n > 

32,000

BOOLEAN



1. Basics

34

C: Can be converted, subject to restrictions.
N: Cannot be converted.

Note

In the table, whether a given data type is convertible is indicated in the form of 
"assignable, comparable." For example, the entry "Y, Y" means that the data type 
can be assigned and compared, whereas "Y, N" means that it can be assigned but 
cannot be compared.

1 The following items can be assigned to and compared with date interval data:
• A literal in which a date interval is represented in a decimal
• An embedded variable corresponding to DECIMAL(8,0)

2 The following items can be assigned to and compared with time interval data:

• A literal in which a time interval is represented in a decimal
• An embedded variable corresponding to DECIMAL(6,0)

3 The following items can be assigned to and compared with the BINARY type:
• Hexadecimal character string literals

4 Date interval data items are compared in the following order: year, month, and day.
5 Time interval data items are compared in the following order: hour, minute, and 
second.
6 The abstract data type ADT1 can be assigned to a column or variable defined on an 
abstract data type ADT2 if ADT1 is a value of ADT2 or a subtype value of the same.

1.2.3 Notes on using character data, national character data, and 
mixed character data

Table 1-7 provides notes on the use of character data, national character data and mixed 
character data.



1. Basics

35

Table 1-7: Notes on use of character data, national character data and mixed 
character data

Y: Can be used.
( ): In the Defined length row, the values in parentheses are for national character data.
* The total length of a column comprising an index must satisfy the following formula:

Total column length 
MIN ((page-size-of-index-storage-RDAREA  2) - 1242, 4036)

1.2.4 Notes on using the decimal type
The following signs can be used in the decimal, date interval, and time interval types:

Item Data type

CHAR, NCHAR or MCHAR VARCHAR, NVARCHAR or 
MVARCHAR

Defined length

1-255 (1-127) 256-30000 
(128-15000)

1-255 (1-127) 256-32000 
(128-16000)

Index definition Y Y* Y Y*

Sorting Y Y Y Y

Grouping Y Y Y Y

Set functions Y Y Y Y

Search conditions Y Y Y Y

Data insertion/updating Y Y Y Y

Exclusion of duplicates Y Y Y Y

Set operations Y Y Y Y

Sign value Meaning

X'A' Not recognized as a sign (error)*

X'B' Not recognized as a sign (error)*

X'C' Recognized as the positive sign

X'D' Recognized as the negative sign



1. Basics

36

* This is recognized as a sign when Y is specified in the pd_dec_sign_normalize 
operand of the system definition. For details about the pd_dec_sign_normalize 
operand, see the manual HiRDB Version 8 System Definition.
When N is specified in the pd_dec_sign_normalize operand or this operand is 
omitted, the signs of stored data are not normalized. In such a case, the signs of stored 
data items may contain X'C' and X'F', both of which are recognized as the positive 
sign. Signs may also change during the type conversion and operation processes at the 
time of SQL statement execution.
To standardize the signs in a database that contains mixed sign codes, it may be 
necessary to reload the table data.
For details about the facility for conversion to a decimal signed normalized number, 
see the explanation of the facility in the HiRDB Version 8 System Operation Guide.
If the data stored in a decimal-type column is positive but the signs of the data are not 
standardized to X'C', column retrieval operations may yield a discrepancy between the 
signs of the data and those of retrieval results. When you create a UAP with sign codes 
in mind, you need to take the following items into consideration:

(1) Signs in retrieval results for a decimal-type column defining an index
When a decimal-type column for which an index is defined is retrieved, signs in the 
retrieval results are handled as follows:

When all signs in the stored data are X'C':
All signs in the retrieval results will be X'C'.
When all signs in the stored data are X'F':
If the index defined for the decimal-type column is a single-column index, all 
signs in the retrieval results will be X'F'.
If the index is a multi-column index containing the decimal-type columns, the 
retrieval results may include X'C' as a sign code.
When the signs in the stored data are both X'C' and X'F':
The signs in the stored data and the retrieval results may not agree.

X'E' Not recognized as a sign (error)*

X'F' Recognized as the positive sign

Sign value Meaning



1. Basics

37

(2) Signs in retrieval results when the retrieval (in which a GROUP BY clause is 
specified) is performed by specifying a decimal-type grouping column in a 
selection expression

When a decimal-type grouping column is specified in a selection expression for a 
retrieval for which a GROUP BY clause is specified, signs in the retrieval results are 
handled as follows:

When all signs in the stored data in a selection expression are X'C':
All signs in the retrieval results will be X'C'.
When all signs in the stored data in a selection expression are X'F':
If rapid grouping is selected in the pd_optimize_level operand of the system 
common definition, the retrieval results may include X'C' as a sign code.
If rapid grouping is not selected, all signs in the retrieval results will be X'F'.
When the signs in the stored data include both X'C' and X'F':
The signs in the retrieval results will be either X'C' or X'F'.

(3) Signs in retrieval results when an SQL extension optimizing option is 
specified

When the hash join, hash execution of a subquery is specified as an SQL extension 
optimizing option, a retrieval specifying either queries or subqueries in which multiple 
tables are joined by = will result in the following signs:

When all signs in the stored data are X'C':
All signs in the retrieval results will be X'C'.
When all signs in the stored data are X'F':
The retrieval results may include X'C' as a sign code.
When the signs in the stored data include both X'C' and X'F':
Signs in the retrieval results may be X'C' even when the signs in the stored data 
are X'F'.

1.2.5 Notes on using large-object data
When using large-object data, be aware of the following restrictions:

(1) Items in which large-object data is not allowed
Large-object data cannot be used in any of the following items:

Index definition
Sort



1. Basics

38

Grouping
Set operation or arithmetic operation
Set functions
Duplicate elimination
CASE expressions
CAST specification (CAST(NULL AS BLOB type) can be specified)
Reference column to the outside from within an argument for a user-defined 
function

Large object data specified in a definition as an attribute of an abstract data type can 
be specified in an index definition by using a plug-in function. Concatenation 
operations on large-object data can be used only on updated values in the SET clause 
of an UPDATE statement.

(2) Scalar functions
The only scalar functions in which large-object data can be specified are the LENGTH, 
SUBSTR, and POSITION functions.

(3) Data insertion and updating
A literal cannot be used in the INSERT statement or UPDATE statement to insert or 
update large-object data. The following items can be used to insert large-object data: 
an embedded variable, a ? parameter, an SQL variable, an SQL parameter, the SUBSTR 
scalar function, a function call, and NULL. The following items are used to update 
large-object data: a column specification, a component specification, an embedded 
variable, a ? parameter, an SQL variable, an SQL parameter, a concatenation 
operation, the SUBSTR scalar function, a function call, a subquery, and NULL.

(4) Using a locator
When handling large object data in a UAP, the use of a locator allows you to process 
the SQL that handles large object data without storing the data itself on a client. For a 
description of locators, see 1.13 Locator.

1.2.6 Notes on using the BINARY type
(1) Items in which the BINARY type cannot be used

The BINARY type cannot be used in any of the following items:
• An index definition
• An external column reference

Table 1-8 shows items in which specifiable/not specifiable changes in a BINARY type 
definition length:



1. Basics

39

Table 1-8: Items in which specifiable/not specifiable changes in a BINARY type 
definition length

Legend:
Y: Can be used.
N: Cannot be used.

1 When specifying a literal in an update or insertion value for a BINARY-type column, 
you can specify only a hexadecimal character string literal.
2 BINARY-type concatenation operations with a maximum length of greater than or 
equal to 32,001 bytes can be used only on update values for the SET clause of the 
UPDATE statement.
3 The only scalar functions for which a BINARY type with a definition length of 32,001 
bytes or greater can be specified are the LENGTH, SUBSTR, and POSITION functions; 
on other scalar functions, the BINARY type cannot be used with a definition length of 
32,001 bytes or greater.

(2) Using a locator
When handling the BINARY type in a UAP, you can use a locator to allow you to 
process the SQL that handles BINARY type data without storing the data itself on a 

Item Definition length

1-255 256-32,000 32,001-2,147,483,647

Sorting Y Y N

Grouping Y Y N

Set function Y Y N

Search condition Y Y N

Data insertion/updating1 Y Y Y

Duplicate elimination Y Y N

Set operations Y Y N

Concatenation operation Y Y Y2

Scalar functions Y Y Y3

CASE expression Y Y N

CAST specification Y Y N



1. Basics

40

client. For a description of locators, see 1.13 Locator.

1.2.7 Notes on using logical data
Logical data can be used only as a function return value.

1.2.8 Notes on using an abstract data type
An abstract data type cannot be used in any of the following items:

Definition of an index
Sorting
Grouping
Set, arithmetic or concatenation operations
Set functions
Duplicates elimination
CASE expressions
CAST specification
Reference columns to outside

An abstract data type can be used for definition of an index by using a plug-in function.



1. Basics

41

1.3 Literals

A literal is data whose value cannot be modified within the program. Literals can be 
numeric literals (which represent numbers) or character string literals, national 
character string literals, and mixed character string literals (which represent character 
strings).
Figure 1-4 shows the literals that can be specified in SQL. Table 1-9 shows the 
notations for literals and the data types that can be interpreted by HiRDB. Table 1-10 
lists restrictions on using numeric literals.

Figure 1-4: Specifiable literals

Table 1-9: Notations for literals

Literal Notation Data type 
interpreted by 

HiRDB

Integer1 [sign]unsigned-integer
Examples:
  -123
    45
  6789

Integer represented as a string of unsigned 
integers with the sign represented by + or 
-.

INTEGER

Decimal [sign]integer-part.fracti
onal-part
Examples:
    12.3
  -456.
      .789

An integer part and a fractional part 
represented as an unsigned integer. Either 
the integer part or the fractional part may 
be omitted; the decimal point cannot be 
omitted.

DECIMAL(m[,n]), 
where m and n 
denote numbers of 
digits.



1. Basics

42

Note
Date and time values can be specified as a literal using a predefined character 
string representation. Similarly, date intervals and time intervals can be specified 
in SQL statements as decimal expression literals (decimal literals).

1 If a literal that exceeds the allowable range of an integer literal is specified in the 
integer literal notation, HiRDB assumes the decimal point to be at the right side of the 
literal and interprets the literal to be a decimal literal.
2 In the case of a character string literal (' ', X' ', N' ', or M' ') whose length is 0, n 
is 1.
3 For character strings that can be specified in COMMENT, EXECUTE IMMEDIATE, and 
PREPARE statements, see the syntax section for each SQL statement.

Floating-point 
numeric

mantissaEexponent
Examples:
  1.0E2
   .5E+67

Either an integer literal or a decimal literal 
as the mantissa, followed by a 1- to 3-digit 
integer literal as the exponent. The 
exponent represents a power of 10. The 
character E cannot be omitted.

FLOAT

Character 
string3

'character-string'
Examples:
  'HITACHI'
  '88'
  '''95.7.30'

A character string is expressed by a string 
of 1-byte characters. To use an single 
quotation mark in a character string, two 
single quotation marks in succession must 
be specified. The maximum length is 
32,000 bytes.

VARCHAR(n), where 
n indicates the 
length of the 
character string. 2

Hexadecimal 
character string 
literal6

X'hexadecimal-charact
er-string-literal'
Examples: X'82A0', 
X'82a0'

A hexadecimal character string literal is 
represented with characters 0-9 and A-F 
(or a-f). The maximum allowable length of 
a hexadecimal character string literal is 
64,000 characters, in a multiple of 2. Two 
hexadecimal characters make up one byte.

VARCHAR(n)
where n is the 
indicated character 
string length  2.2

National 
character 
string3, 4, 5

N'national-character-st
ring'
Example:
  N'SQL-syntax'

A character string is expressed by a string 
of 2-byte characters. The maximum length 
is 16,000 characters.

NVARCHAR(n), 
where n indicates 
the length of the 
character string.2

Mixed character 
string3, 4

M'character-string' 
Example: M'1996'

A character string is expressed by a string 
of 1- and 2-byte characters. The maximum 
length is 32,000 bytes.

MVARCHAR(n), 
where n indicates 
the length of the 
character string.2

Literal Notation Data type 
interpreted by 

HiRDB



1. Basics

43

4 When lang-c is specified in the pdsetup command as the character codes type, 
national character data and mixed character data cannot be defined (UNIX version 
only).
5 National character string literals cannot be used when the utf-8 character code type 
is specified in the pdntenv command (pdsetup command in the UNIX version).
6 Hexadecimal character string literals differ from character string literals only in the 
coding format. In this manual, any description on character string literals is also 
applicable to hexadecimal character string literals.

Table 1-10: Restrictions on use of numeric literals

* The allowable range of values is limited by the data representation available on the 
hardware used to execute the SQL.

1.3.1 Predefined character string representation of date data
Format: 'YYYY-MM-DD'
A date can be made into a literal using a predefined character string representation by 
connecting the year (YYYY), month (MM), and day (DD) with hyphens (-), as 
'YYYY-MM-DD', where the year (YYYY), month (MM), and day (DD) fields must be 
zero-filled on the left as necessary.
Any date literal in a predefined character string representation is converted into the 
date data type when it is specified as an argument in the DATE scalar function or where 
date data is required.
An example of turning a date into a predefined character string representation is given 
as follows:
Example:

Date: July 30, 1995
Predefined character string representation of the date: '1995-07-30'

Numeric literal type Range Maximum number of 
digits (including leading 

zeros)

Integer -2147483648 to 2147483647 10

Decimal 10-29 to (1030 - 1) 29

Floating-point numeric* Approx. 4.9 10-324 to 1.7 10308 Mantissa: 17
Exponent: 3



1. Basics

44

1.3.2 Predefined character string representation of time data
Format: 'hh:mm:ss'
A time value can be made into a literal using a predefined character string 
representation by connecting the hour (hh), minute (mm), and second (ss) with colons 
(:), as 'hh:mm:ss', where the hour (hh), minute (mm), and second (ss) fields must be 
zero-filled on the left as necessary.
Any time literal in a predefined character string representation is converted into the 
time data type when it is specified as an argument in the TIME scalar function or where 
time data is required.
An example of turning a time value into a predefined character string representation is 
given as follows:
Example:

Time: 11:3:58
Predefined character string representation of the time: '11:03:58'

1.3.3 Predefined character string representation of time stamp data
Format: 'YYYY-MM-DD hh:mm:ss'
A time stamp can be made into a predefined character string representation by 
connecting the year (YYYY), month (MM), day (DD) with hyphens (-), space-filling 
any unused character positions, and then connecting the hour (hh), minute (mm), and 
second (ss) with colons (:), as 'YYYY-MM-DD hh:mm:ss[nn...n]'. In this process, 
the year (YYYY), month (MM), and date (DD) fields must be zero-filled on the left as 
necessary. Similarly, the hour (hh), minute (mm), and second (ss) fields must be 
zero-filled on the left as necessary.

When representing a fractional second precision, use a period to connect the second 
(ss) to the fractional second (nn...n). If fractional second precision is omitted and only 
a period is specified, the fractional second precision is treated as zero data. A fractional 
second precision greater than 7 may cause an error.
Time stamp literals that are specified using a predefined character string representation 
can be specified as an argument in the TIMESTAMP scalar function or where time stamp 
data is required.
An example of turning a time stamp into a literal in a predefined character string 
representation is given as follows:
Example:

Time stamp: July 30, 1995, 11:3:58
Predefined character string representation of the time stamp: '1995-07-30 
11:03:58'



1. Basics

45

1.3.4 Decimal representation of date interval data
Format:  YYYYMMDD.

When making a date interval into a literal in decimal representation, the data is 
represented as  YYYYMMDD. in terms of year (YYYY), month (MM), day (DD), and 
a sign (s), in fixed point with a precision of 8 and a scaling of 0.
Any date interval literal in decimal representation, when specified where date interval 
data is required, is converted into the date interval data type.
An example of turning a date interval into a literal in decimal representation is given 
as follows:
Example:

Representing an interval of 1 year, 1 month, and 1 day in decimal: 00010101.

1.3.5 Decimal representation of time interval data
Format:  hhmmss.
When making a time interval into a literal in decimal representation, the data is 
represented as  hhmmss. in terms of hour (hh), minute (mm), second (ss), and a sign 
(t), in fixed point with a precision of 6 and a scaling of 0.
Any time interval literal in decimal representation, when specified where time interval 
data is required, is converted into the time interval data type.
An example of turning a time interval into a literal in decimal representation is given 
as follows:
Example:

Representing an interval of 1 hour, 1 minute, and 1 second in decimal: 010101.

1.3.6 Decimal representation of datetime interval data
Format: YYYYMMDDhhmmss.
To represent a datetime interval in a decimal representation literal, represent the year 
(YYYY), month (MM), day (DD), hour (hh), minute (mm), second (ss), and a sign (t) as 

YYYYMMDDhhmmss in fixed point with a precision of 14 and a scaling of 0.
The following is an example of representing a datetime interval in a decimal 
representation literal:
Example:

Representing an interval of 1 year, 2 months, 3 days, 4 hours, 5 minutes, and 6 
seconds in decimal: 00010203040506.



1. Basics

46

1.4 USER, CURRENT_DATE value function, CURRENT_TIME value 
function, and CURRENT_TIMESTAMP value function

A USER, CURRENT_DATE value function, CURRENT_TIME value function, and 
CURRENT_TIMESTAMP value function can be used as a value specification in an SQL 
statement.

1.4.1 USER
(1) Function

This function indicates the authorization identifier of the execution user.
(2) Format

USER
 

(3) Rules
1. If USER is specified, HiRDB interprets that VARCHAR(30) has been specified.
2. USER cannot be used as a table name or the authorization identifier for an index 

name.

1.4.2 CURRENT_DATE value function
(1) Function

This function indicates the current date.
(2) Format

CURRENT_DATE value-function::= {CURRENT_DATE|CURRENT DATE}
 

(3) Rules
1. If the CURRENT_DATE value function is specified, HiRDB interprets that the date 

data type (DATE) has been specified.
2. CURRENT_DATE represents the current date. The CURRENT_DATE function can be 

specified in the following items:
• In a selection expression or a condition expression
• As an update value or an insertion value for a column in the date data type or 

CHAR(10)
If this function is specified as an update or insertion value for a column in 
CHAR(10), the current date is converted into a predefined character string 
representation, and then it is used for updating or insertion.



1. Basics

47

3. Specifying CURRENT_DATE multiple times in an SQL statement produces the 
same value. Specifying CURRENT_DATE, CURRENT_TIME, and 
CURRENT_TIMESTAMP in combination in an SQL statement produces datetime 
values representing the same point in time.

1.4.3 CURRENT_TIME value function
(1) Function

This function indicates the current time.
(2) Format

 
CURRENT_TIME value-function::= {CURRENT_TIME|CURRENT TIME}
 

(3) Rules
1. If the CURRENT_TIME value function is specified, HiRDB interprets that the time 

data type (TIME) has been specified.
2. CURRENT_TIME represents the current time. The CURRENT_TIME function can be 

specified in the following items:
• In a selection expression or a condition expression
• As an update or insertion value for a column in the time data type and 

CHAR(8)
When the CURRENT_TIME function is specified as an update or insertion value for 
a column in CHAR(8), the current time is converted into a predefined character 
string representation, and then it is used for updating or insertion.

3. Specifying CURRENT_TIME multiple times in an SQL statement produces the 
same value. Specifying CURRENT_DATE, CURRENT_TIME, and 
CURRENT_TIMESTAMP in combination in an SQL statement produces datetime 
values representing the same point in time.

1.4.4 CURRENT_TIMESTAMP value function
(1) Function

This function indicates the current time stamp.
(2) Format

 
CURRENT_TIMESTAMP value-function::= {CURRENT_TIMESTAMP 
[(fractional-second-precision)]|CURRENT TIMESTAMP 
[(fractional-second-precision)]}
 



1. Basics

48

(3) Rules
1. If the CURRENT_TIMESTAMP value function is specified, HiRDB interprets that 

the time stamp data type (TIMESTAMP) has been specified.
2. CURRENT_TIMESTAMP indicates the current time stamp. The 

CURRENT_TIMESTAMP function can be specified in the following items:
• In a selection expression or a condition expression
• In a column whose data type is time stamp or as an update or insertion value 

for a CHAR column whose length is 19, 22, 24, or 26 bytes
If a fractional second precision p (p = 0, 2, 4, or 6) is specified, HiRDB returns a 
time stamp including a fractional second with p effective digits to the right of the 
decimal point. The default is a fractional second precision of p = 0.
If CURRENT_TIMESTAMP is specified as an update or insertion value for a CHAR 
column, the current time stamp is converted into a predefined character string 
representation, and the result is used for updating or insertion.
The table below shows the definition length of the CHAR column that can be 
specified when specifying CURRENT_TIMESTAMP as an update or insertion value.
Table 1-11: Correspondence between the value of fractional second precision p 
and the definition length of CHAR when specifying CURRENT_TIMESTAMP 
as an update or insertion value

3. Specifying CURRENT_TIMESTAMP multiple times in an SQL statement produces 
the same value. Specifying CURRENT_DATE, CURRENT_TIME, and 
CURRENT_TIMESTAMP in combination in an SQL statement produces datetime 
values representing the same point in time.

Value of fractional second precision p Definition length of CHAR

0 19

2, 4, or 6 20 + p



1. Basics

49

1.5 Embedded variables, indicator variables, ? parameters, SQL 
parameters, and SQL variables

This section explains the variables and parameters that are used to pass and receive 
values in UAPs, SQL statements, external routines, and SQL routines.

Embedded variables, indicator variables, ? parameters
These variables and parameters can be specified in SQL statements in a UAP or 
external routine. When specified, these variables and parameters are used to pass 
and receive values between the SQL statement and the UAP.
SQL variables
These variables can be specified in SQL statements in an SQL routine. When 
specified, these variables are used to pass and receive values with the SQL 
routine. SQL variables cannot be specified in an external routine.
SQL parameters
SQL parameters can be specified when a routine to be called is defined. 
Specifying an SQL parameter allows the values to be passed between the CALL 
statement in the SQL (UAP or routine that calls a function) and the routine being 
called. In an SQL routine, the SQL parameter is specified directly; in an external 
routine, the specification is made to a variable in an external routine 
corresponding to that SQL parameter.

1.5.1 Embedded variables and indicator variables
(1) Format

:embedded-variable[:indicator-variable]

(2) Function, uses, and specifiable locations
Table 1-12 shows the functions of embedded variables and indicator variables, their 
uses, and where in a program they can be specified.



1. Basics

50

Table 1-12: Functions, uses, and specifiable locations of embedded variables 
and indicator variables

Function Use Specifiable 
locations

Embedded 
variable

Indicator variable

Receipt of a 
column 
value as a 
retrieval 
result

Receives a value 
(other than the null 
value).1

Used in conjunction with an embedded variable 
to receive a column value, including the null 
value. In such a case, the indicator variable 
indicates whether or not the value read into the 
embedded variable is the null value. When 
character data, national character data, mixed 
character data, or large object data is received, 
the indicator variable indicates whether or not 
the data has been received correctly in the 
embedded variable.

INTO clause of 
SELECT, FETCH, 
EXECUTE, or EXECUTE 
IMMEDIATE statement

Altering a 
literal value

Specifies a value 
(other than the null 
value).1

When used in conjunction with an embedded 
variable to specify the null value, indicates 
whether or not the value of the embedded 
variable to be passed to SQL is the null value.

In place of a literal 
when the value of the 
literal specified in the 
SQL statement is 
modified at the time of 
execution.

Specifying a 
value for a ? 
parameter

Specifies a value 
(other than the null 
value).1

When used in conjunction with an embedded 
variable to specify the null value, indicates 
whether or not the value of the embedded 
variable to be passed to SQL is the null value.

To specify a value in 
the ? parameter 
specified in the SQL 
that is prepared in the 
PREPARE statement or 
that is prepared and 
executed in the 
EXECUTE IMMEDIATE 
statement, specify this 
item in the USING 
clause of the 
EXECUTE, OPEN, or 
EXECUTE IMMEDIATE 
statement.2

Altering an 
embedded 
variable

Specifies another 
embedded variable 
in place of an 
embedded variable 
in a SELECT 
statement that is 
specified in a cursor 
declaration.

USING clause of OPEN 
statement



1. Basics

51

: Not applicable.
1 To handle the null value, an indicator variable must also be specified; see 1.5.5 
Setting a value for an indicator variable below for the values of indicator variables.
2 An indicator variable cannot be specified in the USING clause of the OPEN statement.

(3) Relationships between the data types of embedded and indicator variables 
and data descriptions in various languages

When you are coding embedded variables and indicator variables in a UAP, data can 
be exchanged between an SQL and the UAP without causing a data conversion if 
certain relationships hold between the data types and data descriptions involved. For 
those relationships, see the HiRDB Version 8 UAP Development Guide.

(4) Qualifying embedded variables and indicator variables
(a) COBOL language

COBOL allows the qualifying of embedded variables and indicator variables with a 
group item.

Specifying 
an SQL 
character 
string

Specifies an SQL 
character string to 
prepare and execute 
an SQL statement 
that was generated 
when the UAP was 
executed.

PREPARE or EXECUTE 
IMMEDIATE statement

Specifying 
an 
authorizatio
n identifier 
and 
password

Indicates to HiRDB 
the user executing 
the UAP.

Authorization 
identifier and 
password in CONNECT 
statement

Specifying 
an RD-node 
name

Specifies the 
RD-node at the 
connection 
destination.

RD-node name in 
CONNECT statement 
with RD-node 
specification, 
DISCONNECT 
statement with 
RD-node 
specification, or SET 
CONNECTION 
statement

Function Use Specifiable 
locations

Embedded 
variable

Indicator variable



1. Basics

52

Group item qualification format:
 
:[variable-name-1.] variable-name-2
 

Any qualified embedded variable or indicator variable should be specified so that the 
result of qualification is unique. Names that need not be qualified can be qualified. If 
there are several possible combinations of qualifiers that result in a unique 
qualification, any of such combinations can be used.
variable-name-1 is the group item to which variable-name-2 is subordinate.

(b) C language
C allows the qualifying of a member of a structure with a structure or a pointer to a 
structure.
Structure qualification format:

 
: structure-name.member-name
 

Pointer qualification format:
 
: pointer-name-> member-name
 

(5) Search using a variable-length character string variable of a character string 
item whose actual length is 0

In the case of remote database access, if a distributed client that does not support 0 as 
the actual length of a variable-length character string (including national and mixed) 
variable uses a variable-length character string variable to search a character string 
whose actual length is 0, spaces of actual length 1 will be set as the search result.

(6) Relationships between embedded variables and SQL data types
Table 1-13 shows the substitution relationships between UAP embedded variables and 
SQL data types.

Table 1-13: Substitution relationships between UAP embedded variables and 
SQL data types

Embedded variable's data type SQL's data type

Character data National 
character data

Mixed 
character data

Character data Y Y

National character data Y



1. Basics

53

Y: Can be substituted.
: May be substituted; care must be exercised because substitution may occur 

regardless of the data type (see Note 2 and Note 3).
Note 1

Character data, national character data, and mixed character data include 
fixed-length and variable-length formats.

Note 2
The following rules apply when the data item is short and the data has trailing 
spaces:

• If character data or mixed character data in the embedded variable is 
substituted into national character data in the SQL data, the system fills out 
the national character data with trailing spaces.

• If national character data in the embedded variable is substituted into 
character data or mixed character data in the SQL data, the system fills out 
the character data or mixed character data with trailing one-byte spaces.

• If character data or mixed character data in the SQL data is substituted into 
national character data in the embedded variable, the system fills out the 
national character data with trailing one-byte spaces.

• If national character data in the SQL data is substituted into character data or 
mixed character data in the embedded variable, the system fills out the 
character data or mixed character data with trailing one-byte spaces.

• If character data or mixed character data in the embedded variable is 
substituted into character data or mixed character data in the SQL data, the 
system fills out the character data or mixed character data in the SQL data 
with trailing one-byte spaces.

• If national character data in the embedded variable is substituted into 
national character data in the SQL data, the system fills out the national 
character data in the SQL data with trailing one- or two-byte spaces 
(depending on the language).

• If character data or mixed character data in the SQL data is substituted into 
character data or mixed character data in the embedded variable, the system 
fills out the character data or mixed character data in the embedded variable 

Mixed character data Y Y

Embedded variable's data type SQL's data type

Character data National 
character data

Mixed 
character data



1. Basics

54

with trailing one- or two-byte spaces (depending on the language).
• If national character data in the SQL data is substituted into national 

character data in the embedded variable, the system fills out the national 
character data in the embedded variable with trailing one- or two-byte spaces 
(depending on the language). If, however, a space conversion level is set in 
PDSPACELVL in the client environment definition or in the 
pd_space_level operand in the system common definition, the added 
national character spaces will also be subject to the specified conversion. As 
a result, the national character spaces may be converted into double-byte 
spaces.

Note 3
If there are both regular spaces and one-byte spaces in national character data, 
operations such as a comparison that includes spaces may not execute as 
expected.

Note 4
One-byte characters should not be substituted into national character data; if an 
attempt is made to do so, the results cannot be predicted.

Note 5
When the LIKE predicate is used, special pattern characters must be in accordance 
with the SQL data type specification.

Note 6
If the character code type UTF-8 is specified in the pdntenv command 
(pdsetup command in the UNIX version), data cannot be assigned from the 
character data type or the mixed character data type of SQL to the national 
character data type of an embedded variable. Similarly, an assignment cannot be 
made from the national character data type of an embedded variable to the 
character data type or the mixed character data type of SQL.

1.5.2 ? parameters
(1) Function

For execution of a UAP, the ? parameter can be used to assemble SQL character strings 
in the program, prepare the SQL character strings using the PREPARE statement, 
execute them in the EXECUTE, OPEN, FETCH, or CLOSE statement, or prepare and 
execute them using the EXECUTE IMMEDIATE statement. In this case, specify a ? in the 
specific location in the SQL character string where a value is passed from the UAP, in 
the SQL character string that is prepared by the PREPARE statement, or prepared and 
executed by the EXECUTE IMMEDIATE statement. This facility is called the ? 
parameter.



1. Basics

55

(2) Specifying a value to be passed to a ? parameter
The value to be passed to a ? parameter is specified in terms of an embedded variable 
in the USING clause of the EXECUTE, OPEN, FETCH, CLOSE, or EXECUTE IMMEDIATE 
statement associated with the PREPARE statement. An indicator variable can be 
specified only in the EXECUTE or EXECUTE IMMEDIATE statement.
Following are examples of ? parameters that do not use the SQL descriptor area:
Example: Use of ? parameter (not using SQL descriptor area)
C language
       :
       :
       :
EXEC SQL BEGIN DECLARE SECTION;
    struct{
        long xcmnd_len;
        char xcmnd_txt[58];
    }xcmnd;
    char   XPCODE[5];
    char   XPNAME[21];
    char   XCOLOR[11];
    long   XPRICE;
    long   XSQUANTITY;
EXEC SQL END DECLARE SECTION;
       :
       :
       :
strcpy (xcmnd.xcmnd_txt, "INSERT INTO STOCK 
VALUES(?,?,?,?,?)");
xcmnd.xcmnd_len = strlen(xcmnd.xcmnd_txt);
EXEC SQL PREPARE ST1 FROM :xcmnd;
 
strcpy(XPCODE,"595M");
strcpy(XPNAME,"SOCKS");
strcpy(XCOLOR,"RED");
XPRICE=3.00;
XSQUANTITY=200;
EXEC SQL
    EXECUTE ST1 USING :XPCODE, :XPNAME, :XCOLOR, :XPRICE, 
:XSQUANTITY;
       :
       :
       :

COBOL
       :
       :



1. Basics

56

       :
DATA DIVISION.
 
WORKING-STORAGE SECTION.
 
    EXEC SQL
      BEGIN DECLARE SECTION
    END-EXEC.
01  XCMND.
  02  XCMND-LEN  PIC S9(9)  COMP VALUE 58.
  02  XCMND-TXT  PIC X(58)       VALUE SPACE.
77    XPCODE     PIC X(4).
77    XPNAME     PIC N(10).
77    XCOLOR     PIC N(5).
77    XPRICE     PIC S9(9) COMP.
77    XSQUANTITY PIC S9(9) COMP.
 
      EXEC SQL
        END DECLARE SECTION
      END-EXEC.
       :
       :
PROCEDURE DIVISION.
       :
       :
       :
      MOVE 'INSERT INTO STOCK VALUES(?,?,?,?,?)' TO XCMND-TXT.
      EXEC SQL
        PREPARE ST1 FROM :XCMND
      END-EXEC.
 
      MOVE '595M'   TO XPCODE.
      MOVE N'TSHIRTS' TO XPNAME.
      MOVE N'RED'    TO XCOLOR.
      MOVE 3.00     TO XPRICE.
      MOVE 300      TO XSQUANTITY.
 
      EXEC SQL
        EXECUTE ST1 USING :XPCODE, :XPNAME, :XCOLOR,
                             :XPRICE, :XSQUANTITY
      END-EXEC.
       :
       :
       :



1. Basics

57

1.5.3 SQL parameters and SQL variables
(1) Format

SQL parameter
[[authorization-identifier.] routine-identifier.] SQL-parameter-name

SQL variable
[statement-label.] SQL-variable-name

(2) Function
(a) SQL parameters

SQL parameters are parameters for a routine that is declared in a procedure definition 
or a function definition.
When a routine is called by a CALL statement or a function call, an SQL parameter is 
a variable that permits values to be passed and received between the UAP or routine 
containing the CALL statement or function call and the routine that is called.
The functions that can be performed by SQL parameters depend on the parameter 
mode that is specified when the routine is declared:

When the parameter mode is IN or INOUT:
The value of the SQL parameter can be referenced from within the routine, which 
makes it possible to receive a value from the UAP or routine that calls the routine.
When the parameter mode is OUT or INOUT:
The value of the SQL parameter can be assigned within the routine in order to 
return a value to the UAP or routine that calls the routine.

How to specify an SQL parameter differs depending on whether it is specified in a 
routine coded in SQL or in an external routine coded using tools other than SQL, as 
follows:

Specifying in an SQL-coded routine:
Specify [[authorization-identifier.]routine-identifier.]SQL-parameter-name.
Specifying in an external, non-SQL-coded routine:
Specify the parameter name of the external routine associated with the SQL 
parameter. In this case, the external routine references/updates the specified 
parameter not as an SQL parameter, but as a parameter in the language in which 
the external routine is implemented.

When values are passed or received between a UAP and a routine, the CALL statement 
in the UAP specifies the embedded variables, indicator variables, or ? parameters in 
the function call.



1. Basics

58

(b) SQL variables
SQL variables can be used to pass and receive data between SQL statements in an SQL 
routine or between a table and an SQL routine. SQL variables can be declared in a 
compound statement in an SQL routine and can be referenced in the compound 
statement in which they are declared.
The null value can be stored in SQL parameters and SQL variables; the null value 
cannot be stored in embedded variables. For this reason, it is not necessary to use an 
indicator variable or to place a colon (:) before the name of the variable.

(3) Data type
SQL parameters and SQL variables specify the data type of the SQL. For an 
explanation of SQL data types, see 1.2 Data types.

1.5.4 Specifiable locations
Table 1-14 shows the SQL statement locations at which embedded variables, indicator 
variables, ? parameters, SQL variables, and SQL parameters can be specified.

Table 1-14: Specifiable locations of variables and parameters

SQL statement Specifiable 
locations

Embedded 
variable

Indicator 
variable

? 
Parameter

SQL 
variable or 
parameter

WRITE specification 1st argument N N N N

2nd argument, 3rd 
argument

Y Y Y N

GET_JAVA_STORED_
ROUTINE_SOURCE 
specification

1st argument, 2nd 
argument

Y Y Y Y

3rd argument N N N N

DECLARE CURSOR Anywhere in a search 
condition where a 
literal is allowed1

Y Y N Y

ALLOCATE CURSOR 
Format 1

Extended cursor name Y N N N

Extended statement 
name

Y N N N

ALLOCATE CURSOR 
Format 2

Extended cursor name Y N N N



1. Basics

59

SELECT Anywhere in a search 
condition where a 
literal is allowed

Y Y Y Y

INTO clause Y Y N Y

INSERT Anywhere in a VALUES 
clause where a literal is 
allowed

Y Y Y Y

Anywhere in a search 
condition where a 
literal is allowed

Y Y Y Y

UPDATE Anywhere in a SET 
clause where a literal is 
allowed

Y Y Y Y

Anywhere in a search 
condition where a 
literal is allowed

Y Y Y Y

Preparable dynamic 
UPDATE statement: 
locating

Positions where a 
literal can be specified 
using a SET clause

N N Y N

DELETE Anywhere in a search 
condition where a 
literal is allowed

Y Y Y Y

OPEN USING clause Y N N N

FETCH INTO clause Y Y N Y

PREPARE Anywhere an SQL 
character string is 
allowed

Y N N N

DEALLOCATE 
PREPARE

Extended statement 
name

Y N N N

DESCRIBE Extended statement 
name

Y N N N

DESCRIBE CURSOR Extended cursor name Y N N N

DESCRIBE TYPE Extended statement 
name

Y N N N

SQL statement Specifiable 
locations

Embedded 
variable

Indicator 
variable

? 
Parameter

SQL 
variable or 
parameter



1. Basics

60

EXECUTE INTO clause Y Y N N

USING clause Y Y N N

Extended statement 
name

Y N N N

EXECUTE IMMEDIATE Anywhere an SQL 
character string is 
allowed

Y N N N

INTO clause Y Y N N

USING clause Y Y N N

CALL Argument Y Y Y Y

Assignment statement Assignment 
destination and 
assigned value

Y2 Y Y2 Y

FREE LOCATOR See Locator Y N N N

CONNECT Authorization 
identifier and password

Y N N N

CONNECT statement 
with RD-node 
specification

RD-node name Y N N N

DISCONNECT 
statement with 
RD-node 
specification

RD-node name Y N N N

SET CONNECTION 
statement

RD-node name Y N N N

SET SESSION 
AUTHORIZATION 
statement

Authorization 
identifier and password

Y N N N

ALLOCATE 
CONNECTION HANDLE

PDCNCTHDL-type 
variable, return 
code-receiving 
variable; connection 
PDHOST variable, and 
connection 
PDNAMEPORT variable

Y N N N

SQL statement Specifiable 
locations

Embedded 
variable

Indicator 
variable

? 
Parameter

SQL 
variable or 
parameter



1. Basics

61

Y: Specifiable
N: Not specifiable
Note 1

Embedded variables and indicator variables are specified in a UAP. The ? 
parameter should be specified in an SQL character string that is preprocessed by 
the PREPARE statement. SQL parameters in an external routine are specified in a 
parameter variable specification in the external routine with which they are 
associated. When a parameter for an external routine is passed to an SQL or a 
routine, it is specified as an embedded variable or a ? parameter rather than as an 
SQL parameter. An SQL variable cannot be specified in an external routine.

Note 2
Embedded variables, indicator variables, and ? parameters cannot be specified in 
selection expressions.
Embedded variables, indicator variables, and ? parameters can be specified in the 
following cases:

• Specifying in a function call argument
• Specifying in an argument of the SUBSTR scalar function

For specification methods, see 2.3 Query specification.
Note 3

Arithmetic or comparison operations cannot be specified between embedded 
variables, indicator variables, and ? parameters.

FREE CONNECTION 
HANDLE

PDCNCTHDL-type 
variable, and return 
code-receiving 
variable

Y N N N

DECLARE 
CONNECTION HANDLE 
SET

PDCNCTHDL-type 
variable

Y N N N

GET DIAGNOSTICS Statement information 
item name, condition 
information item name

Y N N N

WRITE LINE 
statement

value expression N N N Y

SQL statement Specifiable 
locations

Embedded 
variable

Indicator 
variable

? 
Parameter

SQL 
variable or 
parameter



1. Basics

62

Note 4
Embedded variables, indicator variables, and ? parameters cannot be specified in 
an argument of a set function.

Note 5
Embedded variables, indicator variables, and ? parameters cannot be specified in 
an argument of the HEX scalar function.

Note 6
Embedded variables, indicator variables, or ? parameters cannot be specified 
singly (including specification in a unary operation expression) in an argument of 
a scalar function, with the exception of the second and third arguments of VALUE, 
BIT_AND_TEST, or SUBSTR, or in the third argument of POSITION. However, 
embedded variables, indicator variables, or ? parameters of the BLOB or BINARY 
type, and these types only, can be specified if the AS data type is specified in the 
first argument of SUBSTR, in an argument of LENGTH, or in the first or second 
argument of POSITION.

Note 7
Embedded variables, indicator variables, and ? parameters cannot be specified in 
a date, time, or concatenation operation.

Note 8
Embedded variables, indicator variables, and ? parameters cannot be specified 
singly in the first value expression of the VALUE scalar function (including 
specification in monomial operational expressions).

Note 9
Embedded variables, indicator variables, and ? parameters cannot be specified 
singly in the CASE, THEN, or ELSE value expression of a simple CASE expression 
or searched CASE expression (including specification in monomial operational 
expressions).

Note 10
Embedded variables, indicator variables, and ? parameters cannot be specified 
singly in the first WHEN value expression during simple CASE expression 
specification, the first value expression of COALESCE, or both value expressions 
of NULLIF (including specification in monomial operational expressions).

Note 11
Embedded variables, indicator variables, or ? parameters cannot be specified 
singly (including specification in a unary operation expression) in the two value 
expressions of the BIT_AND_TEST scalar function.



1. Basics

63

1 Excludes the search condition of a CASE expression in a selection expression.
When a cursor declaration is specified in a function call argument, the function call can 
be specified in a search condition in the CASE expression of the selection expression.
2 When specifying an embedded variable, an indicator variable, or a ? parameter singly 
as an assignment value in an assignment statement (SET), you must always specify the 
AS data type.

1.5.5 Setting a value for an indicator variable
(1) For receiving data (INTO clause of the FETCH, SELECT, EXECUTE, or 
EXECUTE IMMEDIATE statement)

When the FETCH, SELECT, EXECUTE, or EXECUTE IMMEDIATE statement is executed, 
the values shown in the following table are assigned to the indicator variable that is 
specified in the INTO clause of the statement. If the null value is returned to an 
embedded variable, the value of the embedded variable cannot be guaranteed; in this 
case, an error results unless an indicator variable also is specified.

Table 1-15: Indicator variable values returned by the FETCH, SELECT, 
EXECUTE, or EXECUTE IMMEDIATE statement (other than a repetition 
column, or in the case of the values of elements in a repetition column)

Indicator 
variable 

value

Value received by associated embedded variable

Negative NULL value
If the value of the indicator variable is -2, this is the null value that is assigned when the element 
specified by a subscript in a repetition column does not exist. If the value of the indicator variable 
is -4, this is the null value that is assigned by the overflow error suppression option in an arithmetic 
operation, set function operation, window function operation, or scalar function that is subject to 
overflow error suppression during SQL execution. Because the embedded variable that received 
the null value and the specific operation performed are associated with each other, the operation in 
which the overflow occurred can be determined. In the case of remote database access, the value 
-1 is assigned to the indicator variable. For the scalar functions that are subject to overflow error 
suppression, see 2.18 Operational results with overflow error suppression specified.

0 NOT NULL value

Positive NOT NULL value
The received data is either character data or large object data and represents a value that has been 
truncated on the right because the embedded variable was too short. The indicator variable contains 
the length existing before this truncation. In the case of a remote database access, the value returned 
to the indicator variable depends on the data type involved. For details, see Table 1-16 Relationship 
between the indicator variable value and the value received by the embedded variable.



1. Basics

64

Table 1-16: Relationship between the indicator variable value and the value 
received by the embedded variable

Table 1-17: Indicator variable values returned by the FETCH, SELECT, 
EXECUTE, or EXECUTE IMMEDIATE statement (data on an entire repetition 
column)

Figure 1-5 shows the structures of the indicator variables and embedded variables that 
receive repetition column data. Figures 1-6 and 1-7 show examples of these structures.

Figure 1-5: Structures of indicator variables and embedded variables that 
receive repetition column data

Indicator variable value 
returned by server

Value received by associated embedded variable

BLOB type or BINARY type Any other data type

1-32767 1-32767 1-32767

32768-2147483647 32768-2147483647 1

Indicator 
variable 

value

Value received by associated embedded variable

Negative NULL value (number of elements is 0)

0 NOT NULL value (number of elements is at least 1)

Positive NOT NULL value (number of elements is at least 1)
If the number of elements in the embedded variable area is insufficient, the value indicates that the 
remaining elements have been truncated. In this case, the number of elements before truncation is 
set in the indicator variable.



1. Basics

65

Figure 1-6: Examples of receiving repetition column data (1 of 2)



1. Basics

66

Figure 1-7: Examples of receiving repetition column data (2 of 2)

(2) Passing data (not applicable to the INTO clause of the FETCH, SELECT, 
EXECUTE, or EXECUTE IMMEDIATE statement)

When executing an SQL statement other than the FETCH, SELECT, EXECUTE, or 
EXECUTE IMMEDIATE statement, in the UAP specify one of the values shown in the 
following table in the indicator variable before the SQL statement is executed. 
Depending on the value of the indicator variable, the value of the corresponding 
embedded variable must be used during execution of the SQL.

Table 1-18: Indicator variable value to be set before execution of SQL (other 
than a repetition column and element values of a repetition column)

Indicator 
variable 

value

Value passed to SQL by associated embedded variable

Negative NULL value
Any value contained in the embedded variable is ignored.

Non- 
negative

NOT NULL value.
This is the value contained in the embedded variable.



1. Basics

67

Table 1-19: Indicator variable value to be set before execution of SQL 
(information on the entire repetition column)

Figure 1-8 shows the structures of indicator variables and embedded variables to 
which data from a repetition column is passed. Figures 1-9 and 1-10 show examples 
of those structures.

Figure 1-8: Structures of indicator variables and embedded variables to which 
data from a repetition column is passed

Indicator 
variable 

value

Value passed by SQL to associated embedded variable

Negative NULL value (number of elements is 0)
Any value contained in the embedded variable is ignored.

Non- 
negative

Value of the element indicated by the elements count. 0 cannot be specified as the elements count.



1. Basics

68

Figure 1-9: Example of data passed from repetition column (1 of 2)

Figure 1-10: Example of data passed from repetition column (2 of 2)

1.5.6 Setting a null default value in an embedded variable
When data is retrieved into an embedded variable using the FETCH, SELECT, 



1. Basics

69

EXECUTE, or EXECUTE IMMEDIATE statement, and if the retrieved value is the null 
value, a negative value is assigned to the indicator variable. When this occurs, the 
embedded variable assumes the value that existed before the SQL statement was 
issued. A default value can be set in an embedded variable by using the null-value 
default-setting function on the embedded variable. An indicator variable does not need 
to be specified for null-value data. The null-value default-setting function can be used 
only for fetching data.
When using the default-setting function, the user needs to have set PDDFLNVAL option 
in the client environment definition process at the time the UAP is executed. For 
details about the client environment definition process, refer to the HiRDB Version 8 
UAP Development Guide.
The default-setting function cannot be used in remote database access.
Table 1-20 shows default null values that can be set in an embedded variable.

Table 1-20: Default null values that can be set in an embedded variable

Category Data type Default value

Numeric data INTEGER 0

SMALLINT

DECIMAL

LARGE DECIMAL

FLOAT

SMALLFLT

Character data CHARACTER(n) Space, n bytes

VARCHAR(n) Space, 1 byte1

National character data NCHAR(n) Space, n characters2

NVARCHAR(n) Space, 1 byte2

Mixed character data MCHAR(n) Space, n bytes

MVARCHAR(n) Space, 1 byte

Date data DATE 01/01/01

Time data TIME 0:0:0

Time stamp data TIMESTAMP 01/01/01 0:0:03

Date interval data INTERVAL YEAR TO DAY 0 days, 0 months, 0 years



1. Basics

70

Note: The data elements in simple structures and repetition structures are also defined 
according to this table. If all data in a repetition structure is NULL, the current number 
of elements will be 0.
1 In the result of a WRITE specification, this will be an IP address.
2 Depends on the character code used in HiRDB.

Example: X'8140' in shift JIS
If a space conversion level is specified in PDSPACELVL in the client environment 
definition or in the pd_space_level operand in the system common definition, any 
spaces in an embedded variable will also be subject to the conversion. Therefore, an 
NCHAR space can be converted into n x 2 bytes, an NVARCHAR space can be converted 
into 2 bytes.
3 If a fractional second precision is specified, the specified digit positions are 
zero-filled.
4 If a locator is used, a value that identifies data greater than 0 bytes in length on the 
server is assigned to the embedded variable of the locator.

1.5.7 Assignment rules
Table 1-21 shows types of assignments that are supported.

Table 1-21: Assignment types

Time interval data INTERVAL HOUR TO SECOND 0 seconds, 0 minutes, 0 hours

Large-object data4 BLOB(n) Data of length 0 bytes

Binary data4 BINARY(n) Data of length 0 bytes

Assignment type Description Source Target

Retrieval assignment Receives the value of a 
string.

String Embedded variable, SQL 
variable, or SQL 
parameter

Receives the value of a 
procedure parameter into an 
argument in the CALL 
statement.

Embedded variable SQL parameter

Receives the value of a 
function parameter into the 
argument that calls the 
function.

Embedded variable SQL parameter

Category Data type Default value



1. Basics

71

(1) Fixed-length target
If the target of an assignment is fixed-length character string data, mixed character 
string data, or national character string data, the applicable assignment rules vary with 
the length of the source data. Table 1-22 shows assignment rules for fixed-length target 
data.

Table 1-22: Assignment rules for fixed-length target data

Y: Assigned as is
: Assigned left-justified according to length of target data

N: An error occurs.
1 If the source is variable-length data, the length of the source data is its actual length.
2 If an overflow occurs, the excess portion of the data is truncated on the right, and 
warning information is set in the SQLWARN1 parameter for the SQL communication 
area. If an indicator variable is specified, the length of data before truncation is set in 
the indicator variable.
3 The trailing portion is space-filled on the right.

Storage assignment Assigns a value to a string. Embedded variable, 
SQL variable, or SQL 
parameter

String

Assigns the value from a 
CALL statement argument 
into a procedure parameter.

SQL parameter Embedded variable

Assigns a value from a 
function call argument to the 
function parameter.

SQL parameter Embedded variable

Assigns a value using an 
assignment (SET) statement.

SQL variable, SQL 
parameter, or embedded 
variable

SQL variable, SQL 
parameter, or embedded 
variable

Assignment type Data length

Source1 > target Source1 = target Source1 < target

Retrieval assignment  2 Y  3

Storage assignment N Y  3

Assignment type Description Source Target



1. Basics

72

(2) If the target of assignment is variable-length data, large object data, or 
BINARY

If the target of an assignment is character string data, mixed character data, national 
character string data, large object data, or BINARY of variable length, the rules of 
assignment vary depending upon the length of the assignment source data. The 
following table shows assignment rules that are applicable when the target of an 
assignment is variable-length data.

Table 1-23: Assignment rules for variable-length target data

: Assigned left-justified according to length of source data2
N: An error occurs.
1 If the source is variable-length data, the length of the source data is its actual length.
If the source is the embedded variable for a locator, the data length of the source is the 
actual length of the data that is assigned to the locator.
2 The length of target data is equal to the maximum allowable length of variable-length 
data.
If the source is the embedded variable for a locator, the target data length takes one of 
the following lengths:
BLOB locator: 2147483647
BINARY locator: 2147483647
3 If an overflow occurs, the excess portion of the data is truncated on the right, and the 
actual length is equal to the maximum allowable length of the target string. When this 
occurs, warning information is set in the SQLWARN1 parameter for the SQL 
communication area. If an indicator variable is specified, the length of data before 
truncation is set in the indicator variable.
4 If the source is fixed-length data, the length of the source data is its actual length.

(3) Rules on the structure of the source and target of an assignment
When the source and target have incompatible structures, an assignment may not work. 
Table 1-24 shows the structure rules for the source and target of an assignment 

Assignment type Data length

Source1 > target2 Source1  target2

Retrieval assignment 3 4

Storage assignment N 4



1. Basics

73

operation.
Table 1-24: Structure rules for the source and target of assignment operation

Y: Assignment allowed
N: Error may result.
Note: Subscripted repetition columns are treated as simple structures.

Source structure Target structure

Simple Structure Repetition Structure

Simple structure Y N

Repetition structure N Y



1. Basics

74

1.6 Null value

The null value is a special value that indicates either that no value exists or the value 
has not been set. The null value is set in an area that does not contain values or in which 
values have not been set. The null value in an abstract data type indicates whether or 
not a value has been generated by the constructor function.
The following explains how the null value is handled.

(1) Receiving a column value as a result of a retrieval
The value of an indicator variable indicates whether or not the null value was received. 
The null value cannot be received by an embedded variable. For details, see 1.5.5 
Setting a value for an indicator variable.

(2) Storing a value in a table
The value of an indicator variable indicates whether or not the null value was stored. 
The null value cannot be stored in a table by an embedded variable. For details, see 
1.5.5 Setting a value for an indicator variable.

(3) Comparison
If the value of a specified value expression, column, or embedded variable for a row 
in a predicate other than the NULL predicate is the null value, the predicate is 
undefined. An indicator variable is required to specify the null value using an 
embedded variable.

(4) Join
A row containing the null value in the joined column does not satisfy the join 
conditions.

(5) Sorting
In the case of an ascending-order sort, the null value is output at the end; in the case of 
a descending-order sort, the null value is output at the beginning.

(6) Grouping
If a row contains null values in grouping condition columns, SQL performs grouping 
by treating the null values as being the same value.

(7) Exclusion of duplicates
Multiple null values are treated as duplicates.

(8) Set functions
In general, set functions ignore the null value. The COUNT(*) function, however, 
calculates all eligible rows, regardless of null values that may be present in the rows.



1. Basics

75

(9) Window functions
The COUNT(*) and OVER() functions calculate all eligible rows, regardless of null 
values that may be present in the rows.

(10) Indexing
An index can be defined for a column that contains null values.

(11) Arithmetic, date, time, and concatenation operations
An arithmetic, date, time, or concatenation operation performed on the null value as a 
data value produces the null value.

(12) Scalar functions
Scalar functions other than VALUE and STRTONUM produce the null value as the result 
when any of the value expressions in an argument is the null value. The VALUE scalar 
function produces the null value as the result when all value expressions in an 
argument are the null value. The STRTONUM scalar function produces the null value as 
the result when the value expression for argument 1 is the null value.

(13) CASE expressions
In COALESCE of CASE abbreviation, if the value expressions of arguments are all null 
values, the results will also be null values.

(14) Abstract data type
How the null value in an abstract data type is handled is explained in terms of two 
cases: a value is generated by specifying a constructor function for the abstract data 
type, and a value is not generated by specifying a constructor function.

Value not generated by specifying constructor function
All values in the abstract data type will be the null value.
Value generated by specifying constructor function
Regardless of the values of the attributes that comprise the abstract data type, the 
entire abstract data type assumes NOT NULL values. Even if the value of an 
attribute comprising the abstract data type is NULL, the entire abstract data type 
will not be null.

(15) Boolean predicate
A Boolean predicate being undefined is equivalent to a Boolean value being the null 
value.

(16) Repetition column
Some elements may have a null value. If all column elements are 0, the entire column 
is treated as null.



1. Basics

76

(17) WRITE specification
In the case of a WRITE specification, the result will be the null value if any of the 
arguments is the null value.

(18) GET_JAVA_STORED_ROUTINE_SOURCE specification
The result of a GET_JAVA_STORED_ROUTINE_SOURCE specification will be the null 
value if any of the following conditions is satisfied:

Any of the arguments is the null value
The specified JAR file is not installed
A source file associated with a class specified in the JAR file is not found

(19) CAST specification
If NULL is specified in the value expression or the result of the value expression is the 
null value, the value of the result is the null value.

(20) Referential constraint
If the null value is contained in a foreign key component column, that column is not 
subject to referential constraint operation.



1. Basics

77

1.7 Component specification

A component specification in an SQL statement specifies the attribute of a member of 
an abstract data type, defined in the abstract data type.
component-specification::=item-specification..attribute-name 
[..attribute-name]...

A component specification is subject to the following rules:
If a value is assigned to an attribute, the value of the abstract data type containing 
the attribute must be generated by the constructor function (the value of the 
abstract data type cannot be the null value).
If an attribute is referenced by means of a component specification and the 
abstract data type containing the attribute is null (if that value was not generated 
by the constructor function), the referenced value will also be null.
A subscripted column specification cannot be specified in an item specification.



1. Basics

78

1.8 Routines

Routines can be divided into the following two programming language categories:
Java routines
Routines written in the Java language
SQL routines
Routines written in SQL

Routines can be divided into two classes, depending on the definition SQL:

Procedures
Functions

1.8.1 Procedures
Procedures are defined in a CREATE PROCEDURE or CREATE TYPE procedure.
Procedures can be divided into the following categories depending on the language in 
which the routines are written:

SQL procedures
Procedures defined in an SQL routine
Java procedures
Procedures in which a Java routine is defined as an external routine

Note that although trigger action procedures created in a trigger definition are also a 
part of SQL procedures, they are defined in CREATE TRIGGER as a schema element (a 
trigger) separate from a routine. Trigger action procedures, which are automatically 
executed upon a specified trigger event, cannot perform calls using a CALL statement 
or pass values using an SQL parameter.

1.8.2 Functions
(1) User-defined functions

This section describes functions that are defined using either CREATE FUNCTION or the 
CREATE TYPE function itself; it also shows functions that are provided by plug-ins. A 
function that is provided by a plug-in is called a plug-in function.

SQL functions
Functions defined in an SQL routine
Java functions



1. Basics

79

Functions in which a Java routine is defined as an external routine
(2) System-defined functions

Constructor functions are generated by the system using the CREATE TYPE function.

1.8.3 Results-set return facility
The use of the results-set return facility allows you to reference, at the source of the 
call, the results of a search using a cursor in a procedure.
This section explains how to return a results set in a procedure, and how to receive, 
into a UAP, the results set that is returned by the procedure.

(1) In an SQL procedure definition
In the DYNAMIC RESULT SETS clause of CREATE PROCEDURE, specify the maximum 
number of result sets (the maximum number of cursors to be returned to the source of 
the call). In addition, in the cursor declaration for the cursors that are returned as a 
results set from a procedure, specify WITH RETURN.
Closing the procedure with the cursors that were declared open by specifying WITH 
RETURN allows you to return the cursor results set to the source of the call. If there are 
two or more result sets to be returned, the system returns them in the order in which 
the cursors were opened.
An example of an SQL procedure definition is given below:
 
CREATE PROCEDURE ORDERED_EMPS(IN REGION INTEGER)
    DYNAMIC RESULT SETS 2
    BEGIN
        DECLARE CUR1 CURSOR WITH RETURN
            FOR SELECT id_no, name FROM emps_1
                WHERE id_no < REGION ORDER BY id_no;
        DECLARE CUR2 CURSOR WITH RETURN
            FOR SELECT id_no, name FROM emps_2
                WHERE id_no < REGION ORDER BY id_no;
        OPEN CUR1;
        OPEN CUR2;
    END;

(2) In a Java procedure definition
In the DYNAMIC RESULT SETS clause of CREATE PROCEDURE, specify the maximum 
number of result sets (the maximum number of cursors to be returned to the source of 
the call).
An example of a Java procedure definition is given below:
 
CREATE PROCEDURE ORDERD_EMPS(IN REGION INTEGER)
    DYNAMIC RESULT SETS 2 LANGUAGE JAVA



1. Basics

80

    EXTERNAL NAME
      'jfile.jar:Routines3.orderedEmps
       (int,java.sql.ResultSet[],java.sql.ResultSet[])
       returns void'
    PARAMETER STYLE JAVA;

(3) By creating a Java method that is the entity for a Java procedure
In the last argument in a Java method, which is the entity for a Java procedure, specify 
a parameter of the java.sql.ResultSet[] type. The Java method executes the 
SQL statement, receives result sets, and sets a variable that is a parameter of the 
java.sql.ResultSet[] type.
An example of how to create a Java method is given below:
 
public class Routines3 {
    public static void orderedEmps(int region,
        java.sql.ResultSet[] rs1, java.sql.ResultSet[] rs2)
    throws SQLException {
        java.sql.Connection conn=DriverManager.getConnection(
            "jdbc:hitachi:PrdbDrive","USER1","USER1");
        java.sql.PreparedStatement stmt1=
          conn.prepareStatement(
              "SELECT id_no,name FROM emps_1 WHERE id_no < ? 
ORDER BY id_no");
        stmt1.setInt(1, region);
        rs1[0]=stmt1.executeQuery();
        java.sql.PreparedStatement stmt2=
          conn.prepareStatement(
              "SELECT id_no,name FROM emps_2 WHERE id_no < ? 
ORDER BY id_no");
        stmt2.setInt(1, region);
        rs2[0]=stmt2.executeQuery();
        return;
    }
}

(4) By creating an embedded type UAP
When an embedded type UAP is created, a procedure is executed from the embedded 
type UAP, and a group of the result sets returned by the ALLOCATE CURSOR statement 
is assigned to a cursor. The cursor is associated with the first result set, and data can be 
fetched from the result set using the FETCH statement.
The second and subsequent result sets are allocated to the group of result sets. 
Executing the CLOSE statement on the cursor associated with the previous result set 
allows you to associate the new result set with the cursor and fetch data from the new 
result set using the FETCH statement.



1. Basics

81

An example of how to create an embedded type UAP in the C language is given below:
 
EXEC SQL WHENEVER SQLERROR GOTO error_end;
EXEC SQL CALL ORDERED_EMP(1000);
if (SQLCODE==120) {     /* A group of result sets was returned */
    EXEC SQL ALLOCATE GLOBAL :cur1 FOR PROCEDURE ORDERED_EMP;
                    /* A cursor is allocated */
                    /* Specify a cursor name in cur1 */
    while (1) {
        while (1) {
            EXEC SQL WHENEVER NOT FOUND DO break;
            EXEC SQL FETCH GLOBAL :cur1 INTO :emp_id, :emp_name;
            printf("ID No.=%s\n", emp_id);
            printf("Name=%s\n", emp_name);
        }
        EXEC SQL WHENEVER NOT FOUND DO break;
        EXEC SQL CLOSE GLOBAL :cur1;
    }
}
error_end:

(5) By creating a UAP using Java
A procedure is executed from a UAP coded in Java, and the result sets sent from the 
procedure are received.
An example of how to create a UAP using Java is given below, in which the UAP 
receives result sets by using java.sql.PreparedStatement.execute().
 
java.sql.CallableStatement stmt=conn.preparecall(
    "call ordered_emps(?)}");
stmt.setInt(1,3);
stmt.execute();
java.sql.ResoltSet rs=smmt.getResultSet();
                               //Receives result sets
while(rs.next()) {
    int id_no=rs.getInt(1);
    java.lang.String name=rs.getString(2);
    System.out.println("ID No.="+id_no);
    System.out.println("Name="+name);
    System.out.println();
}
rs.close();
while (stmt.getMoreResults()){
    rs = stmt.getResultSet();
    while(rs.next()) {
        int id_no=rs.getInt(1);
        java.lang.String name=rs.getString(2);
        System.out.println("ID No.="+id_no);



1. Basics

82

        System.out.println("Name="+name);
        System.out.println();
    }
    rs.close();
}

(6) Notes
Result sets (ResultSet) returned by a method in the DatabaseMetaData acquired 
in a Java procedure cannot be returned as dynamic result sets. In this case, data should 
be acquired by using the metadata on the connection for the source of the call.



1. Basics

83

1.9 Java routines

This section explains the following topics related to Java routines:
Specification of external routines
Type mapping
Results-set return facility

In HP-UX, Solaris, and AIX 5L, you cannot use a Java routine if a POSIX library 
version of HiRDB has not already been set up (by executing the pdsetup command), 
or after a POSIX library version of HiRDB has been reset as a non-POSIX library 
version. For details on the pdsetup command, see the manual HiRDB Version 8 
Command Reference.

1.9.1 Specification of external routines
External routines can be specified in CREATE PROCEDURE and CREATE FUNCTION 
statements because they can be used to define Java procedures and Java functions as 
external routines.

(1) Format
external-routine-name ::= 'JAR-file-name:Java-method-name [Java-signature]'
 
Java-method-name ::= Java-class-name.method-identifier
Java-class-name ::= [package-name.]class-identifier
Java-signature ::= ([Java-parameters])[returns type-name]
Java-parameter ::= type-name[,type-name]...

(2) Explanation
JAR-file-name

Specifies the name of an archive file, which is a set of classes or packages defined 
in Java. The JAR file name should not be specified as a path name. The length of 
a JAR file name cannot exceed 255 bytes.

method-identifier
Specifies the identifier of the Java method in which the actual processing is coded. 
The length of a method identifier cannot exceed 255 bytes.

package-name
Specifies the name of a package, which is a set of classes defined in Java.

class-identifier
Specifies the identifier of the class in which the Java method is defined. The 



1. Basics

84

length of the package name and class identifier together cannot exceed 255 bytes.
returns type-name

Specifies the Java type name associated with the arguments and return values for 
the Java method. If a Java procedure is being defined, either specify void (no 
return values) for type name of the return values or omit returns type-name.
If a Java function is being defined, returns type-name must be specified, except 
that it is not required when Java signature is omitted. Also in the case of a Java 
function, void (no return values) cannot be specified as the return values type 
name.

type-name[,type-name]...
Specifies the Java type names associated with the arguments and the return values 
of the Java method. Java type names must conform to the following rules:
1. The type names of Java method parameters coded in Java parameters should 

be coded in the order of the SQL parameter names that are specified in 
CREATE PROCEDURE or CREATE FUNCTION.

2. All Java method parameter type names associated with the SQL parameter 
names must be coded.

3. If the maximum number of the results sets in the DYNAMIC RESULTS SET 
clause of the CREATE PROCEDURE command is equal to or greater than 1, 
specify at the end of the Java parameters the type name 
java.sql.ResultSet[] and a value that is no more than the number of 
specified results sets.

4. When a function is defined with the CREATE FUNCTION command, specify 
Java data types that can be mapped to HiRDB data types.
In a procedure defined in CREATE PROCEDURE, if the input/output mode for 
the SQL parameters is IN, specify Java data types that can be mapped to 
HiRDB data types.
In a procedure defined in CREATE PROCEDURE, if the input/output mode for 
the SQL parameters is OUT or INOUT, specify a one-dimensional array for 
Java data types that can be mapped to HiRDB data types.
For example, with respect to the INTEGER or BLOB output parameters, 
specify either java.lang.Interger[] or byte[][]. For details on Java 
data types that can be mapped to HiRDB data types, see 1.9.2 Type mapping.

(3) Rules
1. If the Java signature is omitted, the Java data type is determined from the HiRDB 

data type and the SQL parameter input/output mode that are specified in the Java 
procedure or Java function definition, according to the following rules:



1. Basics

85

• If a function is defined using CREATE FUNCTION, the data type of the Java 
method is determined according to the mapping rules.

• If the input/output mode for the SQL parameter of a procedure defined in 
CREATE PROCEDURE is IN, the data type of the Java method is determined 
according to the mapping rules.

• If the input/output mode for the SQL parameter of a procedure defined in 
CREATE PROCEDURE is OUT or INOUT, the data type of the Java method is 
determined according to the one-dimensional array type of the mapping 
rules.

• If the Java signature is omitted by specifying the maximum number of results 
sets in the DYNAMIC RESULTS SET clause of CREATE PROCEDURE as being 
equal to or greater than 1, java.sql.ResultSet[] type parameters equal 
to the maximum number of results sets are added as Java method parameters 
to the data type determined according to the mapping rules.

For example, either java.lang.Integer[] or byte[][] is determined with 
respect to the INTEGER or BLOB output parameters. For the mapping rules, see 
1.9.2 Type mapping.

2. External routine names must be enclosed in single quotation marks (').
3. The only Java method that can be specified in an external routine name is the class 

method that is declared as static in a class definition.
4. The following character sets can be specified in the various items:

• JAR file names
Upper- and lowercase alphabetic characters
Numeric characters, _ (underline), $ (dollar sign), . (period), and - (hyphen)

• Class identifiers, method identifiers, and type names
Upper- and lowercase alphabetic characters
Numeric characters, _ (underline), and $ (dollar sign)

• Package names
Upper- and lowercase alphabetic characters
Numeric characters, _ (underline), $ (dollar sign), and . (period)

5. A numeric cannot be specified as the first character of a package name, class 
identifier, method identifier, or type name.

6. If a type name with a package name omitted is coded, HiRDB interprets the type 
name as containing the following package name:



1. Basics

86

1.9.2 Type mapping
This section explains the mapping between the data types that are recognized in the 
Java language and the data types that are recognized by HiRDB.
Table 1-25 shows the implicit mapping that occurs when a Java signature specifying 
an external routine is omitted. Table 1-26 shows the mapping between the Java data 
types that can be specified in a Java signature with an external routine specification and 
the HiRDB data types.

Table 1-25: Implicit mapping that occurs when a Java signature specifying an 
external routine is omitted

Default coding format Type name containing a package name, as interpreted by HiRDB

Integer java.lang.Integer

Short java.lang.Short

BigDecimal java.math.BigDecimal

Double java.lang.Double

Float java.lang.Float

String java.lang.String

Date java.sql.Date

Time java.sql.Time

Timestamp java.sql.Timestamp

ResultSet java.sql.ResultSet

HiRDB data type Java data type (null value allowed)

INT [EGER] java.lang.Integer

SMALLINT java.lang.Short

[LARGE] DEC [IMAL] java.math.BigDecimal

FLOAT, DOUBLE PRECISION java.lang.Double

SMALLFLT, REAL java.lang.Float



1. Basics

87

Table 1-26: Mapping between Java data types specifiable in a Java signature 
with an external routine specification and HiRDB data types

CHAR [ACTER] java.lang.String

VARCHAR(n), CHAR [ACTER] VARYING

NCHAR, NATIONAL CHAR [ACTER]

NVARCHAR, NATIONAL CHAR [ACTER], NCHAR 
VARYING

MCHAR

MVARCHAR

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

INTERVAL YEAR TO DAY java.math.BigDecimal

INTERVAL HOUR TO SECOND

BLOB, BINARY LARGE OBJECT byte[]

BINARY

HiRDB data type Java data type (null value 
allowed)

Java data type (null 
value not allowed)1

INT [EGER] java.lang.Integer int

SMALLINT java.lang.Short short

[LARGE] DEC [IMAL] java.math.BigDecimal

FLOAT, or DOUBLE PRECISION java.lang.Double double

SMALLFLT, or REAL java.lang.Float float

HiRDB data type Java data type (null value allowed)



1. Basics

88

: No corresponding data type exists in the Java language.
1 Assigning the null value may cause an error at runtime.
2 Either Java.lang.String or byte[] can be specified as the Java data type 
corresponding to the HiRDB character string data type. Specifying byte[] suppresses 
character code conversion.
3 When Japanese data is exchanged between HiRDB and a Java routine using a String 
class or a class that has inherited that class, gaiji codes may not be correctly translated 
due to Java character code mapping rules (between a given character code and 
Unicode).

1.9.3 SQL executability using a non-POSIX library version of HiRDB 
(UNIX version only)

Table 1-27 shows the executability of SQL statements in non-POSIX library versions 
of HiRDB. In the case of the HP-UX, Solaris, and AIX 5L versions, the non-POSIX 
library version of HiRDB refers to a HiRDB in which the load module in the POSIX 

CHAR [ACTER] java.lang.String, or 
byte[]2

3

VARCHAR(n), or CHAR [ACTER] VARYING

NCHAR, or NATIONAL CHAR [ACTER]

NVARCHAR, NATIONAL CHAR [ACTER], or NCHAR 
VARYING

MCHAR

MVARCHAR

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

INTERVAL YEAR TO DAY java.math.BigDecimal

INTERVAL HOUR TO SECOND

BLOB, or BINARY LARGE OBJECT byte[]

BINARY

Abstract data type

HiRDB data type Java data type (null value 
allowed)

Java data type (null 
value not allowed)1



1. Basics

89

library version has not been set up with the pdsetup command.
Table 1-27: Executability of SQL statements in non-POSIX library versions of 
HiRDB

Classification SQL statement Executable? SQL cannot be executed 

Definition SQL ALTER PROCEDURE C If a Java procedure is specified

ALTER ROUTINE C If a Java procedure or a Java 
function is specified

CREATE FUNCTION C If a Java routine is used

CREATE PROCEDURE C If a Java routine is used

CREATE TYPE C If a Java routine is used

CREATE VIEW C If a Java function is specified

DROP FUNCTION Y N/A

DROP PROCEDURE Y N/A

DROP SCHEMA Y N/A

Data 
manipulation 
SQL

ASSIGN LIST statement Y N/A

CALL statement C • Java procedure
• Procedure using a Java routine

DELETE statement Y N/A

DROP LIST statement Y N/A

FREE LOCATOR statement Y N/A

INSERT statement C If a Java function is used

PURGE TABLE statement Y N/A

Single-row SELECT statement C If a Java function is used

Dynamic SELECT statement C If a Java function is used

UPDATE statement C If a Java function is used

Assignment statement C Use of Java functions

Control SQL LOCK statement Y N/A



1. Basics

90

Y: Can be executed.
C: Results in an error depending on the condition.
N: Cannot be executed.
N/A: Not applicable

Embedded SQL 
language

INSTALL JAR N N/A

REPLACE JAR N N/A

REMOVE JAR Y N/A

Other Function call C • If a Java function is called
• If a Java function is used

Classification SQL statement Executable? SQL cannot be executed 



1. Basics

91

1.10 Specifying a datetime format

(1) Overview
The following operations require the specification of a datetime format:

• Converting date data, time data, or time stamp data into a non-predefined 
character string representation using the VARCHAR_FORMAT scalar function

• Converting a non-predefined character string representation of a date, time, or a 
time stamp into date data, time data, or time stamp data using the DATE, TIME, or 
TIMESTAMP_FORMAT scalar function

(2) Rules for the datetime format
1. The following items can be specified as a datetime format:

• Character string literals and mixed character string literals
• Column specifications
• Component specifications
• SQL variables or SQL parameters
• Concatenation operation
• Set functions (MAX and MIN)
• Scalar functions
• CASE expressions
• CAST specifications
• Function calls
• Scalar subquery

2. The data type of the datetime format should be either the character data type 
(CHAR, VARCHAR) or the mixed character data type (MCHAR, MVARCHAR).

3. The maximum allowable length of the datetime format is 240 bytes.
(3) Elements of the datetime format

1. Table 1-28 shows elements of the datetime format that can be specified in a 
datetime format, and their meanings:



1. Basics

92

Table 1-28: Datetime format elements and their meanings

1 All elements of the datetime format, with the exception of a character string enclosed 
in double quotation marks (") should be specified in single-byte characters. All 
characters with the exception of the first and second characters of MON and MONTH, 
and characters other than those in a character string enclosed in double quotation 
marks, are not case-sensitive.
2 In MON and MONTH, you can specify an abbreviated name of the month and also 
whether the name of a month is spelled in upper or lower case characters. The 

Datetime item Format item1 Meaning

Year YYYY A 4-digit year (0001-9999)

YY A 2-digit year (00-99)4

Month MM Month (01-12)

MON Month, abbreviated2, 3

MONTH Name of the month2, 3

Day DD Day (01 to the last day of the month)

Hour HH Hour (00-23)

Minute MI Minute (00-59)

Second SS Second (00-59)

Fractional 
second

FF Fractional second4, 5

NN...N Fractional second in p digits (p = N, where N is 1-6)6

Other Space ( ) Elements that can be used as delimiter characters

Hyphen (-)

Forward slash (/)

Comma (,)

Period (.)

Semicolon (;)

Colon (:)

"character-string" A character string enclosed in double quotation marks that 
denotes the character string itself7



1. Basics

93

determination of upper case vs. lower case is based on the first and second characters 
of a specified datetime element.

 

Examples
MONTH JUNE
Month June
month june
 

Table 1-29 shows the relationship between the first and second characters of the 
datetime format element MON or MONTH, the name of a month, and the format 
of an abbreviated name.
Table 1-29: Relationship between the first and second characters of the datetime 
format element MON or MONTH, the name of a month, and the format of an 
abbreviated month

3 Table 1-30 shows the abbreviated name and the full name of each month when a 
datetime format element is specified using MON or MONTH.

Table 1-30: Abbreviated and full names of each month (when a datetime format 
element is specified in MON or MONTH)

Second character First character 

Upper case Lower case

Upper case All upper case All lower case

Lower case Upper case in the first character 
only

All lower case

Month Abbreviated name Name

1 JAN JANUARY

2 FEB FEBRUARY

3 MAR MARCH

4 APR APRIL

5 MAY MAY

6 JUN JUNE

7 JUL JULY

8 AUG AUGUST



1. Basics

94

4 The items YY and FF can be used only in the VARCHAR_FORMAT scalar function; 
when specified in other scalar functions, they can cause an error.
5 With the item FF, the number of digits in the fractional second part of the resulting 
character string representation is governed by the type of the time stamp data that is 
specified in an argument in the VARCHAR_FORMAT scalar function. If the precision of 
the fractional second is 0, a character string with a zero length is produced.
6 The item NN...N is converted in the following format:

• Converting a datetime value into a character string representation:
If p is smaller than the fractional second precision of time stamp data, the 
data is truncated; if p is larger, the expanded fractional second part is 
zero-filled.

• Converting a character string representation into a datetime value:
The number of digits in the fractional second part of the character string 
representation must agree with p.

7 Any double quotation mark specified in a character string enclosed in double 
quotation marks must be expressed as two successive double quotation marks ("").

(4) Rules for datetime format elements
1. In a character string in a datetime format, elements of the datetime format of a 

datetime item, with the exception of delimiter characters and character strings 
enclosed in double quotation marks, can be specified only once.

2. During conversion of datetime data into a character string expression, if a 
datetime format element unrelated to the datetime data to be converted is present, 
that part is complemented by the character strings listed in Table 1-31.

 

Example
VARCHAR_FORMAT(DATE('2002-01-01'),'YYYY-MM-DD HH:MI')
-> '2002-01-01 00:00'
 

9 SEP SEPTEMBER

10 OCT OCTOBER

11 NOV NOVEMBER

12 DEC DECEMBER

Month Abbreviated name Name



1. Basics

95

Table 1-31 lists character strings that are used to complement datetime format 
elements.

Table 1-31: Character strings complementing datetime format elements

1. Table 1-32 shows the datetime items that are required by the scalar function that 
converts a given character string representation into a datetime value. An error 
occurs if a required datetime item is missing.

Table 1-32: Datetime items that are required by the scalar function that converts 
a given character string representation into a datetime value

2. During the process of converting a character string representation into a datetime 
value, datetime format elements that are not relevant to converted data do not 
appear in the results.

3. During the process of converting a character string representation into a datetime 
value, any space that is not in the specified datetime format but that occurs 
between format elements in the character string is ignored.

Datetime format element Complementing character string

YYYY Current year (e.g., '2002')

YY Last two digits of the current year (e.g., '02')

MM Current month (e.g., '08')

MON Current month, abbreviated name (e.g., 'AUG')

MONTH Name of the current month (e.g., 'AUGUST')

DD Current day (e.g., '05')

HH '00'

MI '00'

SS '00'

FF '00'

NN...N '00...0' (a string of p zeros, where the number of zeros is equal to the value 
of p = N)

Scalar function Required datetime items

DATE Year, month, day

TIME Hour, minute, second

TIMESTAMP_FORMAT Year, month, day, hour, minute, second



1. Basics

96

4. Table 1-33 shows the relationship between scalar functions in which a datetime 
format can be specified and elements of the datetime format.
Table 1-33: Relationship between scalar functions in which a datetime format 
can be specified and elements of the datetime format

Legend:
R: Required and can be specified only once. It causes an error if not specified.

Elements 
of 

datetime 
format

VARCHAR_FORMAT DATE TIME TIMESTAMP
_FORMAT

DATE 
type1

TIME type1 TIMESTAMP 
type1

YYYY Y2 Y2

(Current year)
Y2 R Y5 R

YY Y2 Y2

(Last 2 digits of 
current year)

Y2 N N N

MM Y3 Y3

(Current month)
Y3 R3 Y3, 5 R3

MON Y3 Y3

(Abbr. name of 
current month)

Y3 R3 Y3, 5 R3

MONTH Y3 Y3

(Name of 
current month)

Y3 R3 Y3, 5 R3

DD Y Y
(Current day)

Y R Y5 R

HH Y
('00')

Y Y Y5 R R

MI Y
('00')

Y Y Y5 R R

SS Y
('00')

Y Y Y5 R R

FF Y4

('00')
Y4

('00')
Y4 N N N

NN...N Y4

('00...0')
Y4

('00...0')
Y4 Y5 Y5 Y



1. Basics

97

Y: Can be specified only once.
N: Cannot be specified; it causes an error if specified.
( ): Parentheses indicate the character string to be converted.

1 Indicates the conversion of data of the type specified in the VARCHAR_FORMAT scalar 
function into a character string representation.
2 Either YYYY or YY, but not both, can be specified only once.
3 Only one of MM, MON, and MONTH can be specified only once.
4 Either FF or NN...N, but not both, can be specified only once.
5 This item, not relevant to the data type of the result, does not appear in the result.



1. Basics

98

1.11 Relationship to HiRDB External Data Access

Installation of HiRDB External Data Access permits the use of the following 
functions:

Foreign server definition
Can create and delete foreign server definitions.
User mapping
Can define and delete user mapping definitions.

Foreign tables
HiRDB External Data Access permits the following operations on foreign tables:

• Defining and deleting foreign tables
• Searching, inserting, updating, and deleting data in foreign tables
• Defining and deleting a view table that uses a foreign table as a base table
• Searching, inserting, updating, and deleting data in a view table that uses a 

foreign table as a base table
• Deleting schemas containing a foreign table, and deleting schemas 

containing a view table that uses a foreign table as a base table
Foreign indexes
HiRDB External Data Access permits the following operations on foreign 
indexes:

• Defining and deleting foreign indexes
• Deleting schemas containing a foreign index

Table 1-34 shows SQL statements that are available when HiRDB External Data 
Access is installed.



1. Basics

99

Table 1-34: SQL statements that are available when HiRDB External Data 
Access is installed

Classification SQL Available function

Definition SQL ALTER PROCEDURE Modifying procedure definitions using a foreign table 
or a view table using a foreign table as a base table

COMMENT Adding comments to a foreign table or a column in a 
foreign table

CREATE FOREIGN INDEX Defining a foreign index

CREATE FOREIGN TABLE Defining a foreign table

CREATE PROCEDURE Defining a procedure using a foreign table or a view 
table using a foreign table as a base table

CREATE SERVER Defining a foreign server

CREATE USER MAPPING Defining a user mapping

CREATE VIEW Defining a foreign table or a view table using a foreign 
table as a base table

DROP FOREIGN INDEX Deleting a foreign index

DROP FOREIGN TABLE Deleting a foreign table

DROP PROCEDURE Deleting a procedure using a foreign table or a view 
table using a foreign table as a base table*

DROP SERVER Deleting a foreign server

DROP USER MAPPING Deleting a user mapping

DROP SCHEMA Deleting a foreign table or a schema containing a 
foreign index

Data 
manipulation 
SQL

Single-row SELECT statement Retrieving a foreign table or a view table using a 
foreign table as a base table

Dynamic SELECT statement Retrieving a foreign table or a view table using a 
foreign table as a base table

INSERT statement (format 1) Inserting a row into a foreign table or into a view table 
that uses a foreign table as a base table

INSERT statement (format 3) Using an embedded variable array to insert multiple 
rows into a foreign table or into a view table that uses a 
foreign table as a base table 



1. Basics

100

Note

If HiRDB External Data Access is not installed, or it has been uninstalled, SQL 
statements other than the COMMENT and DROP PROCEDURE statements cannot be 
used.

* This function can be executed without the installation of HiRDB External Data 
Access.

UPDATE statement (format 1) Updating the value of a specified column in a foreign 
table or in a view table that uses a foreign table as a base 
table

UPDATE statement (format 3) Using an embedded variable array to update rows 
column by column in a foreign table or in a view table 
that uses a foreign table as a base table 

DELETE statement (format 1) Deleting a specified row from a foreign table or from a 
view table that uses a foreign table as a base table

DELETE statement (format 3) Using an embedded variable array to delete specified 
rows from a foreign table or from a view table that uses 
a foreign table as a base table 

Control SQL LOCK statement Executing locking in units of tables on external DB 
tables corresponding to a foreign table

Classification SQL Available function



1. Basics

101

1.12 Restrictions on the use of the inner replica facility

The use of the inner replica facility through the installation of HiRDB Staticizer 
Option and the use of updatable online reorganization are subject to the following 
restrictions:

Using the inner replica facility
SQL statements that can be executed on RDAREAs using the inner replica facility 
are subject to certain restrictions.
Using updatable online reorganization

SQL statements that can be executed on online reorganization-hold RDAREAs 
are subject to certain restrictions.

Table 1-35 shows SQL statements that can be executed in conjunction with the inner 
replica facility.

Table 1-35: SQL statements that can be executed in conjunction with the inner 
replica facility

SQL RDAREA status

Not on online 
reorganization hold

On online 
reorganization hold

Definition 
SQL

ALTER TABLE C1 N

CREATE INDEX C1 N

CREATE TABLE C1, 2 N

DROP INDEX C1 N

DROP SCHEMA C1 N

DROP TABLE C1 N

GRANT C1 C1



1. Basics

102

Legend:
Y: Can be executed.
C: Can cause an error depending on certain conditions.
N: Cannot be executed.

1 For details on the conditions, see the manual HiRDB Staticizer Option Version 7.
2 Falsification prevented tables cannot be created in an RDAREA for which the inner 
replica facility is used.

Data 
manipulation 
SQL

ASSIGN LIST statement Y C1

CALL statement Y C1

DELETE statement Y C1

FETCH statement Y C1

INSERT statement Y C1

PURGE TABLE statement Y N

Single-row SELECT statement Y C1

Dynamic SELECT statement Y C1

UPDATE statement Y C1

Assignment statement Y C1

Control SQL LOCK statement Y C1

SQL RDAREA status

Not on online 
reorganization hold

On online 
reorganization hold



1. Basics

103

1.13 Locator

(1) Overview
A locator is data containing a 4-byte value that identifies a specific data value on the 
server. The use of a locator allows you to process an SQL statement that handles data 
without storing the entity for the data on a client.

(2) Rules
1. The following table shows types of locators that are available.

Table 1-36: Types of locators

2. The following table shows how to specify a locator and locations where a locator 
can be specified.
Table 1-37: Locator specification method and locations where one can be 
specified

3. Locators to which data values on the server are not allocated are invalid.
4. When a locator is specified in one of the following locations, a data value is 

allocated to the locator, and the locator is enabled. In a given transaction, enabled 
locators can be specified in SQL statements, in the same way as data of the 
corresponding data type.

• INTO clause of the single-row SELECT statement

Type Description

BLOB locator Has a value that identifies BLOB type data values on the server.

BINARY locator Has a value that identifies BINARY type data values on the server.

Type Specification 
method

Specifiable locations

BLOB locator Embedded 
variable

Anywhere a BLOB type embedded variable can be specified.

BINARY locator Embedded 
variable

Anywhere a BINARY type embedded variable can be 
specified.
However, if the data type of the allocated data on the server is 
an embedded variable of a locator of the BINARY type with a 
maximum length of 32,001 bytes or greater, a BINARY locator 
can be specified only in those locations where BINARY-type 
embedded variables with a maximum length of 32,001 bytes or 
greater can be specified.



1. Basics

104

• INTO clause of the FETCH statement
• Target of an assignment statement
• An argument in the CALL statement with respect to the OUT or INOUT 

parameter for the procedure
• INTO clause of the EXECUTE statement

5. A locator is disabled in the following cases:
• When specified in the FREE LOCATOR statement
• When the COMMIT statement is executed
• When the ROLLBACK statement is executed
• When the DISCONNECT statement is executed
• Automatic COMMIT when the PURGE TABLE statement is executed
• Automatic COMMIT during execution of a definition SQL statement when 

YES is specified in the PDCMMTBFDDL client environment variable
• Transaction termination through implicit rollback

6. An error results if a disabled locator is specified in an SQL statement that handles 
allocated data or in the FREE LOCATOR statement.

7. If multiple locators that identify the same data on the server are created by 
specifying embedded variables for the locators in the target of assignment 
statement format 2 or in the assignment value, and if any of those locators is 
disabled, the other locators remain enabled.

8. If another set of data is allocated to an enabled locator to which data is already 
allocated, the original value of the locator remains enabled.

9. Overwriting the value of a locator by a UAP coding language disables the locator. 
In some cases, any data that is different from the data before the overwriting is 
identified.

10. Assigning the value of an enabled locator to a disabled locator by means of a UAP 
coding language enables the disabled locator, and the data that is the same as the 
assignment source locator is identified. In this case, disabling either locator 
disables both locators.



105

Chapter

2. Details of Constituent Elements

This chapter explains in detail the constituent elements that are involved in the use of 
SQL.
This chapter contains the following sections:

2.1 Cursor specification
2.2 Query expressions
2.3 Query specification
2.4 Subqueries
2.5 Table expressions
2.6 Table reference
2.7 Search conditions
2.8 Row value constructors
2.9 Value expressions, value specifications, and item specifications
2.10 Arithmetic operations
2.11 Date operations
2.12 Time operations
2.13 Concatenation operation
2.14 Set functions
2.15 Window function
2.16 Scalar functions
2.17 CASE expressions
2.18 Operational results with overflow error suppression specified
2.19 Lock option
2.20 Function calls
2.21 Inner derived tables
2.22 WRITE specification
2.23 GET_JAVA_STORED_ROUTINE_SOURCE specification
2.24 SQL optimization specification
2.25 CAST specification
2.26 Extended statement name
2.27 Extended cursor name



2. Details of Constituent Elements

106

2.1 Cursor specification

2.1.1 Cursor specification: Format 1
(1) Function

A cursor specification enables the user to retrieve data from one or more tables or to 
sort the results of a retrieval.
A cursor specification is made in a cursor declaration or in the dynamic SELECT 
statement.
For details about the SELECT statement, see Dynamic SELECT statement Format 1 
(Retrieve dynamically) in Chapter 4.

(2) Privileges
Users who can use all query specifications that are included in a cursor specification 
or who can use subqueries are authorized to use a cursor specification.
See 2.3 Query specification for query specification privileges and 2.4 Subqueries for 
subquery privileges.

(3) Format
 

Format 1: Searching one or more tables
query-expression
   [ORDER BY {column-specification
              |sort-item-specification-number}
   [{ASC | DESC}]
   [,{column-specification | sort-item-specification-number}
   [{ASC | DESC}]]... ]
   [LIMIT {[offset-of-first-row-to-return,] {limit-row-count | ALL}
          | {limit-row-count | ALL} [OFFSET offset-of-first-row-to-return]}]
 

(4) Operands
query-expression

A query expression specifies either a query specification or the union set or the 
disjunction set between derived tables that are obtained as a result of a query 
specification.
For details of query expressions, see 2.2 Query expressions.

ORDER BY {column-specification|sort-item-specification-number}
Specifies the sort method to be used when the retrieval results produced by a query 



2. Details of Constituent Elements

107

expression are to be sorted in ascending or descending order.
If the ORDER BY clause is omitted, the rows in the derived table may appear in random 
order.
The following rules apply to the ORDER BY clause:
1. A maximum of 255 columns can be specified in a sort key.
2. A column can be specified only once.
3. If an AS column name is specified in the outermost query selection expression and 

a table derived from the query expression contains a column with the same name, 
that column name cannot be specified in a sort key.

4. None of the following can be specified as a sort key:
• Repetition columns and value expressions that contain a repetition column
• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• BOOLEAN
• Abstract data type
• WRITE specification
• GET_JAVA_STORED_ROUTINE_SOURCE specification

5. When the ORDER BY clause is specified, an SQL variable, SQL parameter, or 
literal of any of the following data types cannot be specified by itself in a selection 
expression:

• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• Abstract data type

column-specification
Specifies a column to be used as a sort key.
The following rules apply to column specifications:
1. If the query expression contains either UNION [ALL] or EXCEPT [ALL], a 

column cannot be specified. However, if the table derived from the query 
expression contains no column with the same name, that column name can be 
specified.

2. If SELECT DISTINCT is specified in the outermost query, the column specified 
in the ORDER BY clause must be an item that is output as a retrieval result 
(specified in the selection expression).



2. Details of Constituent Elements

108

3. If the outermost query specification does not specify SELECT DISTINCT but 
instead specifies either a GROUP BY clause or a set function, the column specified 
in the ORDER BY clause must be a GROUPing column. In other cases, any column 
in the table specified in the outermost query specification can be specified.
sort-item-specification-number

When UNION [ALL] or EXCEPT [ALL] is specified, specifies the ordinal positional 
number in the derived table of a column to be used as a sort key. A column in the 
derived table obtained as a result of the query expression must be specified.
When UNION [ALL] or EXCEPT [ALL] is not specified and a column in the derived 
table obtained as a result of a set function, windows function, literal, arithmetic 
operation, date operation, scalar operation, CASE expression, CAST specification, 
function invocation, component specification, or concatenation operation is used as a 
sort key, this variable specifies the position in the derived table of the column that is to 
be used as the sort key.
A sort item specification number cannot be specified in the ORDER BY clause of a query 
expression in which ROW is specified in the selection expression.

{ASC |DESC}
ASC

Specifies that the retrieval results are to be sorted in ascending order.
DESC

Specifies that the retrieval results are to be sorted in descending order.
LIMIT {[offset-of-first-row-to-return,] {limit-row-count | ALL} | {limit-row-count 
|ALL} [OFFSET offset-of-first-row-to-return]}

Of search results in a query expression, specify the number of rows to be skipped from 
the beginning and the number of rows to be acquired. The LIMIT clause can improve 
SQL search performance. For a description of under what conditions the LIMIT clause 
should be specified, see the section on the facility for acquiring n rows of search results 
from the beginning in the HiRDB Version 8 UAP Development Guide.
offset-of-first-row-to-return

In offset-of-first-row-to-return, specifies the number of rows to be skipped from 
the beginning of the results in a search expression.

limit-row-count
If an offset is not specified, specifies the number of rows to be acquired from the 
results of the query expression.
If an offset is specified, specifies the number of rows to be acquired by skipping 
the offset from the beginning of the results of the query expression.



2. Details of Constituent Elements

109

ALL
If an offset is not specified, acquires all the results from the query expression.
If an offset is specified, acquires all the results by skipping the offset from the 
beginning of the results of the query expression.

The LIMIT clause is subject to the following rules:
1. In offset-of-first-row-to-return and limit-row-count, you can specify an integer 

literal, an embedded variable, a ? parameter, an SQL variable, and an SQL 
parameter.

2. Set the data type for offset-of-first-row-to-return and limit-row-count as an integer 
(either SMALLINT or INTEGER).

3. The null value cannot be specified in either offset-of-first-row-to-return or 
limit-row-count.

4. If either a ? parameter or an embedded variable is specified in 
offset-of-first-row-to-return or limit-row-count, the ? parameter or the embedded 
variable is assumed to have the INTEGER (without an indicator variable) data 
type.

5. The range of values that can be specified in offset-of-first-row-to-return is 0 to 
2,147,483,647.

6. Specifying 0 in offset-of-first-row-to-return has the same effect as when nothing 
is specified in offset-of-first-row-to-return.

7. The range of values that can be specified in limit-row-count is -1 to 
2,147,483,647.

8. If the value -1 is specified in limit-row-count, it should be specified as a literal.
9. The maximum total value that can be specified in offset-of-first-row-to-return and 

limit-row-count is 2,147,483,647.
10. If limit-row-count  0, the search result row count will be:

Max (Min (query-expression-row-count - offset-of-first-row-to-return, 
limit-row-count), 0)

11. If either limit-row-count = -1 or ALL is specified, the search result row count will 
be:
Max (query-expression-row-count - offset-of-first-row-to-return, 0)

12. If an offset is specified, the retrieval result is not uniquely identified unless there 
are multiple rows containing the same sort key value as the last row of the rows 
that are skipped, or unless a sort key is specified.

13. If the result of the query expression is greater than limit-row-count, the retrieval 



2. Details of Constituent Elements

110

result is not uniquely identified unless there are multiple rows containing the same 
sort key as the last row of limit-row-count or a sort key is specified. The following 
example shows a case in which retrieval results are not uniquely identified.
Example:

If a table (STOCK) is retrieved using the cursor declared in the following SQL 
statement, multiple rows have the third smallest value, 3640, in the sort key 
column (PRICE). Therefore, whether the retrieval result is 1 or 2 is indefinite:
 
DECLARE CR1 CURSOR FOR
  SELECT * FROM STOCK ORDER BY PRICE LIMIT 3
 

(5) Notes
1. Specifying ORDER BY can cause HiRDB to create a work table. In this case, the 

processing of ORDER BY can be restricted depending on the row length of the work 
table. For details about work table row lengths, see the HiRDB Version 8 
Installation and Design Guide.

(6) Specification examples
1. Provide a cursor specification in a cursor declaration:

 
  DECLARE CR1 CURSOR FOR
    SELECT PNAME,SUM(SQUANTITY)
      FROM STOCK



2. Details of Constituent Elements

111

      GROUP BY PNAME
      ORDER BY PNAME ASC
 

2. Specify a LIMIT clause in a cursor specification in a cursor declaration:
 
  DECLARE CR1 CURSOR FOR
    SELECT PCODE,SQUANTITY
      FROM STOCK
      WHERE SQUANTITY>20
      ORDER BY 2,1
      LIMIT 10

2.1.2 Cursor specification: Format 2
(1) Function

This format is used when a table is to be retrieved by means of a list.
A cursor specification for a table retrieved by means of a list is specified in a dynamic 
SELECT statement (for details about the dynamic SELECT statement, see Dynamic 
SELECT statement Format 1 (Retrieve dynamically) in 4. Data Manipulation SQL).

(2) Privileges
A user with the SELECT privilege for a base table can execute cursor specification: 
format 2 to retrieve that base table by means of a list.

(3) Format

(4) Operands
value-expression | WRITE specification |GET_JAVA_STORED_ROUTINE_SOURCE 
specification} [[AS] column-name]
[,{value-expression | WRITE specification 
|GET_JAVA_STORED_ROUTINE_SOURCE specification} [[AS] column-name]]...
|*}

 
SELECT {{value-expression | WRITE specification | GET_JAVA_STORED_ROUTINE_SOURCE specification}
 [[AS] column-name]
[,{value-expression | WRITE specification|GET_JAVA_STORED_ROUTINE_SOURCE specification}
 [[AS] column-name]]...
 |*}
FROM LIST list-name
[ORDER BY {column-name | sort-item-specification-number} [{ASC | DESC}]
[,{column-name | sort-item-specification-number} [{ASC | DESC}]]... ]
[LIMIT {[offset-of-first-row-to-return,] {limit-row-count | ALL}
| {limit-row-count | ALL} [OFFSET offset-of-first-row-to-return]}]
 



2. Details of Constituent Elements

112

value-expression
Specifies the value expression to be retrieved.
The following rules apply to the value expressions in the SELECT clause:

1. In column-name, specify the column name of the base table of the list to be 
retrieved.

2. In a repetition column, specify a repetition column in the base table of the list to 
be retrieved.

3. If a repetition column is specified singly, the ANY subscript cannot be specified.
4. In an attribute name, specify the attribute of the abstract data type for the base 

table of the list to be retrieved.
5. The following items cannot be specified in a value expression in the SELECT 

clause:
• Unqualified table specifications in a column specification for a base table
• External references to (a column in) a base table
• Set functions
• Window function
• Subqueries

6. Some receive functions for passing inter-function values can be specified without 
specifying a receive function for passing inter-function values for a plug-in 
provided function. For details about receive functions for passing inter-function 
values that can be specified, see the HiRDB Version 8 UAP Development Guide 
and various plug-in manuals.

7. Only one receive function for passing inter-function values for a plug-in provided 
function can be specified.

WRITE specification
Specifies a WRITE specification to enable BLOB data retrieval results to be output 
to a file (for details about the WRITE specification, see 2.22 WRITE specification).

GET_JAVA_STORED_ROUTINE_SOURCE specification
Specify when a Java class source file is to be extracted from the JAR file (for 
details, see 2.23 GET_JAVA_STORED_ROUTINE_SOURCE specification).

[AS] column-name
Specifies a name to be assigned to value-expression, WRITE specification, or 
GET_JAVA_STORED_ROUTINE_SOURCE specification.



2. Details of Constituent Elements

113

* Specifies that all columns in the base table are to constitute the list that is to be 
retrieved.

list-name
Specifies the name of the list storing the set to be retrieved.

ORDER BY {column-name | sort-item-specification-number} {ASC | DESC}
For rules on the ORDER BY clause, see Format 1.

LIMIT {[offset-of-first-row-to-return,] {limit-row-count | ALL} | {limit-row-count 
| ALL} [OFFSET offset-of-first-row-to-return]}

For rules on the LIMIT clause, see Format 1.
(5) Common rules

1. If a row that was found when a list was created is not found during retrieval 
processing, the system returns SQL code +110 and continues the retrieval. 
However, when one of the following conditions is applicable, the system does not 
return SQLCODE + 110:

• A column name in the base table for the list other than an argument for a 
receive function for passing inter-function values is specified, and a * is not 
specified for a column in the base table for the list.

• An ORDER BY clause is specified.
2. If the LIMIT clause specifies an offset, the row that returns SQLCODE + 110 is 

included in the number of rows to be skipped.
3. If the LIMIT clause specifies a limit row count, the row that returns SQLCODE 

+ 110 is included in the number of rows to be acquired.
4. A user cannot manipulate lists by connecting to multiple copies of HiRDB at the 

same time.
(6) Notes

1. A row in the base table that is deleted after a list is created is not retrieved. 
However, if only the following items are specified in a selection expression, the 
system retrieves the data in the row in the base table before the row is deleted:

• A value expression that does not include the column name of the table
• A receive function for passing inter-function values

2. If a row in the base table is updated after a list is created, the updated data will be 
retrieved. Note that a receive function for passing inter-function values, specified 
in a selection expression, retrieves un-updated data from a row in the base table.

3. If a row in the base table is deleted and then inserted after a list is created, the 



2. Details of Constituent Elements

114

inserted row may be retrieved.
4. From the time the SQL that retrieves a table by means of a list is processed by a 

PREPARE statement to the time the OPEN statement is executed, you must not 
execute an ASSIGN LIST statement that creates a list with the same list name.

5. When you specify a WRITE specification, you can specify in the first argument the 
name of the base table's BLOB type column or the BLOB type attribute name of the 
abstract data type.

(7) Specification example: Specifying a cursor specification in a cursor 
declaration

DECLARE CRL1 CURSOR FOR
SELECT PCODE,PNAME
   FROM LIST1



2. Details of Constituent Elements

115

2.2 Query expressions

2.2.1 Query expression format 1 (general-query-expression)
(1) Function

A query specification specifies a combination of a derived query expression and the 
query expression itself in the WITH clause. When the WITH clause is used, the derived 
table produced by the derived query expression can be the query name, which can be 
specified in the query expression itself.
The query expression body specifies either a query specification or a set operation in 
order to determine the union set or the disjunction set between the derived tables that 
are obtained as a result of a query specification. UNION [ALL] must be specified when 
a union set is to be determined. EXCEPT [ALL] must be specified when a disjunction 
set is to be determined. A query expression can be specified in either a cursor 
declaration or a cursor specification in a dynamic SELECT statement.

(2) Format
query-expression::=[WITH query-name[(column-name[,column-name]...)]
                                 AS(derived-query-expression)
                   [, query-name[(column-name[,column-name]...)]
                                 AS(derived-query-expression)]...]
                query-expression-body
derived-query-expression::= query-expression-body
query-expression-body::= {query-specification
                  | (query-expression-body)
                  | query-expression-body {UNION | EXCEPT} [ALL]
                   {query-specification | (query-expression-body) }}

(3) Operands
WITH query-name [(column-name[,column-name]...)]

WITH query-name
Specifies the name of the derived table to be specified in the table expression of 
the query expression body. Multiple query names specified in a WITH clause must 
all be unique.

column-name
Specifies a column name that corresponds to a column to be derived from the 
derived table specified by one of the derived query expressions in the WITH 
clause.
The following rules apply to column names:



2. Details of Constituent Elements

116

1. If no column name is specified, the default is determined as follows:
• If no set operation is specified in the derived query expression in the WITH 

clause, the column name of the column in the derived table specified by the 
query specification in the WITH clause (if AS column-name is specified, the 
column name specified in the AS clause) becomes the column name of the 
query name for the WITH clause.

• If a set operation is specified in the derived query expression in the WITH 
clause, the column name of the column in the derived table specified by the 
first query specification in the derived query expression (if AS column-name 
is specified, the column name specified in the AS clause) becomes the 
column name of the query name for the WITH clause.

If the derived table specified in the derived query expression in the WITH clause 
contains two or more columns with the same column name or contains a column 
that does not have a name, column-name cannot be omitted.

2. If a column in the derived table has been derived from any of the items listed 
below and AS column-name is omitted, that column becomes a nameless column:

• Scalar operation
• Function call
• Set function
• Literal
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• SQL variable
• SQL parameter

3. Each query in a WITH clause must have a unique name.
4. The number of columns specified by column names in a query name in a WITH 

clause must be the same as the number of columns in the derived table obtained 
as a result of the derived query expression in the WITH clause.

5. A maximum of 30,000 columns can be specified by column names for a single 
query name in a WITH clause.

derived-query-expression::=query-expression-body
Specify a table expression, a column to be derived as a query name, a set operation, or 
whether duplicate-row exclusion is on. In the FROM clause contained in a table 



2. Details of Constituent Elements

117

expression in query-expression-body, specify either a table name or a view table name.
query-expression-body::={query-specification|(query-expression-body)|query-exp
ression-body {UNION|EXCEPT}[ALL] 
{query-specification|(query-expression-body)}}

When the WITH clause is used, specifies a table name, a view table name, or a query 
name in the FROM clause contained in the table expression in the query expression 
body.
When the WITH clause is used, the following items cannot be specified in a query 
expression body: an alias table defined for access to a table in another RD node, a table 
in another RD node, or a view table in another RD node.
When the WITH clause is used, a single-row SELECT statement cannot be specified in 
the query expression body.

query-specification
Specifies the table expressions, the columns to be selected, or whether or not 
duplicates elimination is to be in effect for the rows to be selected.
See 2.3 Query specification for details about query specifications.

(query-expression-body)
Specifies the order in which the set operations in the query expressions are to be 
evaluated when two or more query specifications joined by UNION or EXCEPT are 
specified (query-expression-body must be specified in parentheses).

query-expression-body {UNION|EXCEPT} [ALL] 
{query-specification|(query-expression-body)}

Specifies that the union set or the difference set of derived tables produced by two 
query specifications or query expression bodies is to be determined. For details about 
set operations, see (6) below.

(4) Rules for the query expression body
1. When the WITH clause is used, a table name, foreign table name, view table name, 

or query name must be specified in the FROM clause contained in the table 
expression in the query expression body.

2. When the WITH clause is used, a table specifying an alias table, a table belonging 
to another RD node, or a view table belonging to another RD node cannot be 
specified in the query expression body.

3. When the WITH clause is used, single-row SELECT statements cannot be specified 
in the query expression body.

4. When a column derived by a derived query expression in a view definition or 
WITH clause is a set function whose argument is a value expression, the derived 



2. Details of Constituent Elements

118

column cannot be used for external referencing in the query expression body.
Example
WITH QRY1 (QC1,QC2) AS (SELECT MAX(C1+C2),AVG(C1+C2) 
                            FROM T1),
     QRY2 (QC1,QC2) AS (SELECT C1+C2,C3-C4 FROM T2)
  SELECT * FROM QRY1 X
     WHERE QC1>(SELECT QC1 FROM QRY2 WHERE QC2 = X.QC2)

5. When a column derived by a derived query expression in a view definition or 
WITH clause is COUNT(*), the derived column cannot be used for external 
referencing in the query expression body.
Example
WITH QRY1 (QC1) AS (SELECT COUNT(*) FROM T1),
     QRY2 (QC1,QC2) AS (SELECT C1+C2,C3/C4 FROM T2)
  SELECT * FROM QRY1 WHERE EXISTS
     (SELECT * FROM QRY2 WHERE QC1 = QRY1.QC1)

6. When you specify a table derived by specifying a value expression with any of 
the following attributes in the query expression body in a selection expression in 
the outermost query specification in a WITH clause, you cannot specify a query 
that creates an internally derived table (for the circumstances under which an 
internally derived table can be created, see 2.21 Inner derived tables):

• BLOB
• BINARY with minimum length of 32,001 bytes
• Repetition column

7. When a column derived from an SQL variable and an SQL parameter that has any 
of the following attributes is specified in a selection expression in the query 
expression body, FOR READ ONLY cannot be specified in a query that directly 
includes the SELECT clause:

• BLOB
• BINARY with a minimum definition length of 32,001 bytes

(5) Rules for derived query expressions in the WITH clause
1. Columns that are derived as query names by a derived query expression in the 

WITH clause have the same attribute (data type, data length, whether or not subject 
to NULL constraints) as the corresponding columns in the derived table specified 
in the derived query expression in the WITH clause.

2. Either a table name, foreign table name or a view table name should be specified 
in the FROM clause in the derived query expression in the WITH clause; a query 
name cannot be specified.



2. Details of Constituent Elements

119

3. In a selection expression, [table-specification.] ROW cannot be specified in a 
derived query expression in the WITH clause.

4. Subscripted repetition columns cannot be specified in the SELECT clause that is 
directly included in a derived query expression in the WITH clause.

5. Plug-in functions and component specifications cannot be specified in a derived 
query expression in a WITH clause.

6. None of the following can be specified in a derived query expression in the WITH 
clause: a table specifying a table alias, a table belonging to another RD node, or a 
view table belonging to another RD node.

7. Scalar operations, literals, function calls, and scalar subqueries of the following 
attributes cannot be specified in the selection expression in the outermost query 
in a derived query expression in the WITH clause or in the selection expression in 
a query that is an object of set operations:

• BLOB
• BINARY with a minimum length of 32,001 bytes

8. A value expression containing any of the following data types cannot be specified 
in a derived query expression in a WITH clause:

• BOOLEAN
• Abstract data type

9. Value expressions other than a column specification cannot be specified in the 
GROUP clause in a derived query expression in the WITH clause.

10. If a CASE expression is specified in a selection expression in the outermost query 
specification in the WITH clause, a repetition column cannot be specified in a 
search condition in the CASE expression.

11. The following items cannot be specified in a selection expression in a derived 
query expression in a WITH clause:

• WRITE specification
• GET_JAVA_STORED_ROUTINE_SOURCE specification
• The SUBSTR scalar function that produces BLOB data type results
• Function calls that produce BLOB data type results
• Window function

(6) Rules common to set operations
1. When a set operation is performed to obtain a union of sets or the difference 

between sets, the system performs the set operation by treating the two query 
specifications, derived query expressions, or query expression bodies that are 



2. Details of Constituent Elements

120

subject to the operation as a set of rows in the derived table that is obtained as the 
result.
Therefore, the derived tables that are subject to these set operations must have the 
same number of constituent columns in the same order. Similarly, the 
corresponding columns must have compatible data types for comparison 
operations. However, set operations cannot be performed between the following 
items: character string representations of date data items; character string 
representations of time data items; character string representations of time stamp 
data items; decimal representations of date interval data items; and decimal 
representations of time interval data items.

2. The column names of a table derived by a set operation become the column names 
of the columns of the derived table specified by the first query specification of the 
query expression (if AS column-name is specified, the column name specified in 
the AS clause).

3. If a column in the derived table has been derived from any of the items listed 
below and AS column-name is omitted, that column becomes a nameless column:

• A value expression that includes an arithmetic operation, date operation, 
time operation, concatenation operation, or system built-in scalar function

• CASE expression
• CAST specification
• Set function
• Literal
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• SQL variable
• SQL parameter
• Component specification
• Function call

4. A derived table obtained as a result of a set operation has the same number of 
constituent columns in the same order as the derived table that was subject to the 
set operation.

5. Literals and the results of a set function, date operation, time operation, arithmetic 
operation, CASE expression, or CAST specification cannot be NOT NULL 



2. Details of Constituent Elements

121

constrained (the null value must be allowed).
6. In a set operation, a query expression body cannot be specified in the FROM clause 

of a query specification.
7. When a set operation is performed, a value expression that produces a result with 

any of the following data types cannot be specified in a constituent column in the 
derived table that is subject to the set operation:

• BLOB
• BINARY with a minimum length of 32,001 bytes
• BOOLEAN
• Abstract data type

8. When a set operation is specified, a repetition column cannot be included in the 
columns in the derived table that are subject to the set operation.

9. When a set operation is specified, you cannot specify a WRITE specification, a 
GET_JAVA_STORED_ROUTINE_SOURCE specification, or the window function 
for a column of the target-derived table.

10. The results of a set operation produce the following data types and data lengths:
For character data, national character data, or mixed character data:

• If any of the value expressions contains variable-length data, the result will 
be variable-length data.

• The data length of the result will be the data length of the value expression 
with the largest data length.

• If value expressions contain both character data and mixed character data, 
the data type of the result will be mixed character data.

For numeric value data:
The following table shows the data types of the results from set operations 
involving numeric data:

Operand 1 Operand 2

SMALLINT INTEGER DECIMAL SMALLFLT FLOAT

SMALLINT SMALLINT INTEGER DECIMAL SMALLFLT FLOAT

INTEGER INTEGER INTEGER DECIMAL FLOAT FLOAT

DECIMAL DECIMAL DECIMAL DECIMAL FLOAT FLOAT

SMALLFLT SMALLFLT FLOAT FLOAT SMALLFLT FLOAT



2. Details of Constituent Elements

122

Set operation results of the DECIMAL data type have the following precision 
and scaling, where p and s denote the precision and scaling of operand 1, and 
p2 and s2 denote the precision and scaling of operand 2:

Precision = max(p1-s1,p2-s2) + max(s1,s2)
Scaling = max(s1,s2)
If the precision of the result is 29 or less, the result is DECIMAL; if it is greater 
than 29, an error is generated.
INTEGER is treated as DECIMAL (10,0); SMALLINT is treated as DECIMAL 
(5,0). If all corresponding constituent columns are NOT NULL constrained, 
the results are treated as NOT NULL constrained. Otherwise, the results are 
treated as not being NOT NULL constrained.

Time stamp data

Set operations can be performed between time stamp data items, producing 
the same data type as the source data type. If terms of a set operation include 
a fractional second precision, the fractional second precision of the result is 
MAX(p1, p2), where, given Q1 set operation Q2, p1 is the fractional second 
precision of Q1, and p2 is the fractional second precision of Q2.

Binary data

The data length of the result is the data length of the value expression with 
the largest data length.

11. When ALL is specified, duplicated rows are left intact and handled as separate 
rows. When ALL is omitted, duplicated rows are consolidated into a single row 
(duplications are eliminated).
The number of duplicated rows resulting from the operation "Q1 set-operation 
Q2" depends on whether ALL is specified, where Q1 denotes a query expression 
body (derived query expression) and Q2 denotes a query expression body 
(derived query expression) or a query specification.
Let R represent the duplicate rows in Q1 or Q2, or Q1 and Q2; let m be the number 
of rows in Q1 in the duplicate row R; and let n be the number of rows in Q2 (m 

 0, n  0). If Q1 or Q2, or Q1 and Q2 do not contain duplicated rows, the 
system performs the set operation by assuming that there is one duplicated row R 
(m = 1, n = 0, or m = 0, n = 1). The following table shows the number of duplicate 

FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT

Operand 1 Operand 2

SMALLINT INTEGER DECIMAL SMALLFLT FLOAT



2. Details of Constituent Elements

123

rows R resulting from each set operation:

(7) Note
1. HiRDB may create a work table when the following conditions are satisfied:

• Either UNION[ALL] or EXCEPT[ALL] is specified.
In this operation, the above processing can be restricted depending upon the row 
length of the work table. For details about work table row lengths, see the HiRDB 
Version 8 Installation and Design Guide.

(8) Specification examples
WITH clause used

DECLARE CR1 CURSOR FOR
  WITH QRY1(QPCODE,QPNAME,QCOLOR,QSALES) AS
    (SELECT PCODE,PNAME,COLOR,PRICE*SQUANTITY FROM STOCK),
      SELECT QPNAME,MAX(QSALES) FROM QRY1 GROUP BY QPNAME

WITH clause not used
DECLARE CR1 CURSOR FOR
  SELECT PCODE,PNAME,COLOR,PRICE,SQUANTITY
     FROM STOCK

2.2.2 Query expression format 2 (unnesting query expression for 
repetition columns)
(1) Function

This facility allows you to split a given repetition column by element and retrieve each 
element as a separate row.
In addition, this facility, which is called the unnesting facility for repetition columns, 
can retrieve elements in a repetition column having the same subscript as the same row.

(2) Format
 
  SELECT [ALL | DISTINCT] {selection-expression 
                [,selection-expression] ...| * }
  FROM [[RD-node-name.]authorization-identifier.]
        table-identifier (FLAT (column-name [,column-name] ...))
      [[AS] correlation-name] 

Set operation ALL not specified ALL specified

UNION min (1, n+m) m+n

EXCEPT 1 (m>0 and n=0)
0 (m=0 or n>0)

max (m-n, 0)



2. Details of Constituent Elements

124

       [used-index-SQL-optimization-specification]
       [WHERE search-condition]
       [GROUP BY column-specification [,column-specification]...]
       [HAVING search-condition]
 

(3) Operands
For operands other than selection-expression, FLAT, and search condition, see 2.2.1 
Query expression format 1 (general-query-expression).

{selection-expression [,selection-expression]...| * }
Specifies the item to be output as a search result.
For selection expressions, see 2.3 Query specification.

(FLAT (column-name [,column-name]...))
Specifies the repetition column or the list of columns containing repetition columns 
that are the object of flattening.
If multiple repetition columns are specified, the flattening is performed so that 
elements of the same subscript are contained in the same row.
If the specified repetition column also contains a normal column (a non-repetition 
structure column), the system generates rows having the same value with respect to 
any element in the repetition column.
After being flattened, any repetition column or a set of columns containing a repetition 
column becomes a normal column. Therefore, the columns should be specified as a 
normal column in that query expression.

search-condition
In search-condition, you can specify items that have been flattened.
For search conditions, see 2.7 Search conditions.

(4) Rules
1. The following table shows the relationship between columns to be flattened and 

the index.



2. Details of Constituent Elements

125

Legend: Y: executable, N: error
2. If WITHOUT INDEX is specified in the SQL optimization specification for the 

index being used, the system ignores the optimization specification and performs 
retrievals using the index that is available to HiRDB.

3. When specifying WITH INDEX in the SQL optimization specification for the 
index being used, specify an index that satisfies the SQL statement 
execution-enabling condition given in Rule 1. If the specified index does not 
satisfy the SQL statement execution-enabling condition, the system ignores the 
optimization specification and performs retrievals using the index that is available 
to HiRDB.

4. In the FROM clause, a FLAT specification cannot be specified in the SELECT 
statement of INSERT SELECT, a WITH clause query, a view definition, a derived 
table in the FROM clause, or a subquery.

5. The maximum number of column names that can be specified in FLAT is 16.
6. FLAT must be used to specify column names in an SQL statement that specifies 

flattening.
7. In table-identifier, a view table, a foreign table, or a table alias cannot be 

specified.
8. The following items cannot be specified with flattening:

• FOR UPDATE clause
• FOR READ ONLY
• LIMIT clause

Relationship between a column specified in a column name and an index SQL 
statement 

executable?

Index 
definition 
provided

Has an index 
that contains a 
repetition 
column.

There is an index that 
covers all the columns 
specified in the SQL 
statement among the 
columns specified in a 
FLAT column name.

The FLAT column name contains 
at least one repetition column.

Y

The FLAT column name does not 
contain any repetition column.

N

There is no index that covers all columns specified in the SQL 
statement, among the columns that are specified in a FLAT 
column name.

N

No index that contains a repetition column N

No index definition N



2. Details of Constituent Elements

126

• Component specifications
• Function calls
• Subqueries
• Set functions with a FLAT specification
• Subscripted columns

9. The following items cannot be specified in a search condition with flattening:
• Structured repetition predicates

(5) Example
Flatten a table of test scores and retrieve a list of students who scored 70 points or 
higher.

 
SELECT name, subject, score, FROM test-score-table (FLAT 
(name, subject, score))
    WHERE score >=70
 

The following table and index definition apply to the test score table:
Table definition:
    CREATE TABLE test-score-table (name,MCHAR(10),
                        subject MCHAR(10) ARRAY[4],



2. Details of Constituent Elements

127

                        score SMALLINT ARRAY[4]);
Index definition:
    CREATE INDEX subject score ON test-score-table (name, 
subject, score);



2. Details of Constituent Elements

128

2.3 Query specification

(1) Function
A query specification derives a table composed of retrieval results containing columns 
of selection expressions, by specifying retrieval conditions (table expressions) for a 
table and items (selection expressions) in which the retrieval results are to be output. 
The table obtained in this manner is called a derived table.

(2) Privileges
A user with the SELECT privilege for a table can execute a query specification to 
retrieve that table.

(3) Format
SELECT[{ALL|DISTINCT}]{selection-expression[, selection-expression]...
     |*}table-expression

(4) Operands
[{ALL|DISTINCT}]

For a retrieval that produces duplicated rows (identical rows composed of items 
specified in the selection expressions), specifies whether the duplicates are to be 
retained or eliminated.
Eliminating duplicate rows is called duplicates exclusion.
ALL

Specifies that duplicated rows are to be retained in the retrieval results.
DISTINCT

Specifies that duplicated rows are to be output as a single row.
{selection-expression[, selection-expression]...|*}

Specifies the items to be output as retrieval results.
selection-expression

The following can be specified as a selection expression:
• Column specification
• [table-specification.]ROW
• Set functions
• Window function
• Scalar functions



2. Details of Constituent Elements

129

• CASE expressions
• CAST specification
• Literals
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• SQL variable or SQL parameter

• Value expressions * [[AS] column-name]

• table-specification.*

• Component specification

• Function call*

• WRITE specification
• GET_JAVA_STORED_ROUTINE_SOURCE specification
• Scalar subquery

* The ? parameter and embedded variables can be specified as arguments in a 
function call. For the specification details, see 3 in subsection (5) below. ? 
parameters and embedded variables can be specified in the arguments for the 
scalar functions LENGTH, SUBSTR, and POSITION. See the rules on these 
functions for specification methods.
The following rules apply to selection expressions:

1. The ? parameter and the embedded variable can be specified in the arguments for 
the scalar functions LENGTH, SUBSTR, and POSITION. The ? parameter and the 
embedded variable can be specified in the argument for LENGTH, in the first 
argument of SUBSTR, or in the first and second arguments of POSITION only if 
their data type is BLOB or BINARY, and if the AS data type is specified.

2. Value expressions that yield the following type of result cannot be specified in a 
selection expression:

• BOOLEAN
3. Value expression that yield results of the abstract data type cannot be specified in 

a cursor declaration, a dynamic SELECT statement, a single-row SELECT 
statement, a derived table in a FROM clause, or a subquery in a predicate.

4. When SELECT DISTINCT is specified, a set function with the DISTINCT 



2. Details of Constituent Elements

130

specification cannot be specified in a selection expression or table expression.
5. When a repetition column is specified in a selection expression, none of the 

following items can be specified:
• SELECT DISTINCT
• UNION [ALL] with respect to that query
• EXCEPT [ALL] with respect to that query

6. [table-specification.]ROW can be specified only for a base table with the FIX 
attribute. ROW refers to an entire row, and specifying ROW retrieves into one area 
an entire row as a single data item. Regardless of the data types of the columns 
that compose the row, the data type of the row that is retrieved is the ROW type. 
(Either a variable associated with CHAR(n), where n denotes the row length, or a 
structure can be specified for the ROW type; however, the structure specified for 
the ROW type should not contain spaces for boundary alignment.) The data length 
of the resulting row is its row length (sum of the data lengths of the columns that 
compose the row). If ROW is specified in a selection expression, none of the 
following can be specified in a query specification related to the selection 
expression:

• Set functions
• GROUP BY clause
• UNION [ALL] or EXCEPT [ALL]

7. When using the ROW type, make sure that the platform on which the UAP runs and 
the platform on which the HiRDB server runs have the same endian. The ROW type 
cannot be used between applications using different endian types. For example, if 
the ROW type is used in a Windows UAP, the HiRDB server should also use the 
same endian order in the Windows version.

8. [table-specification.]ROW cannot be specified for an inner table of a joined table.
9. Any column specified in a SELECT clause must reference the table that is 

specified in the FROM clause of that table expression.
10. If a set function, GROUP BY clause, or HAVING clause is specified in a table 

expression, any column specification in the SELECT clause must be one of the 
following:

• Grouping column (value expression specified in the GROUP BY clause)
• Specification in an argument of a set function

11. If an SQL variable or SQL parameter of any of the following data types is 
specified in a selection expression, the functions and clauses indicated below 
cannot be specified in a query specification that directly includes the SELECT 
clause or in a query that includes the SELECT clause:



2. Details of Constituent Elements

131

Data type of SQL variable or SQL parameter
• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• BOOLEAN
• Abstract data type

Functions and clauses that cannot be specified simultaneously in a query 
specification

• Set functions
• GROUP BY clause
• HAVING clause
• DISTINCT
• Specifying in the FROM clause a view table specifying any of the facilities 

described previously or clauses in a derived query expression in a view 
definition.

Functions and clauses that cannot be specified simultaneously in a query
• Set operations
• ORDER BY clause
• FOR UPDATE clause
• FOR READ ONLY clause

12. Specifying table-specification.* means that all columns in the specified table are 
to be output in the order in which they were specified when the table was defined.

13. AS column-name is specified in order to assign a name to a selection expression.

14. When AS column-name is specified in the nth selection expression, the column 
name will be the nth column name in the table that is derived by the query 
specification that specified the selection expression.

15. When AS column-name is not specified in the nth selection expression, the column 
name that is specified in the selection expression will be the nth column name in 
the table that is derived by the query specification. If the selection expression 
contains more than the column specification, the nth column will be a column 
without a name.

16. If a scalar subquery is specified in an n-th selection expression, the n-th column 
name derived by the query specification will be the column name that is derived 
by a query specification of the scalar subquery. However, if an AS column name 



2. Details of Constituent Elements

132

is specified, the column name will be the one specified in AS column-name. If the 
column derived by the query specification in the scalar subquery is a nameless 
column, the n-th column that is derived by the query specification will be a 
nameless column.

17. A WRITE specification can be specified alone in a selection expression.
18. A GET_JAVA_STORED_ROUTINE_SOURCE specification can be specified as 

follows:
• Specified alone in a selection expression that is specified in the outermost 

query
• Specified as an argument in the LENGTH scalar function in a selection 

expression that is specified in the outermost query
19. DISTINCT is mutually exclusive with a WRITE specification or 

GET_JAVA_STORED_ROUTINE_SOURCE specification.
20. A WRITE specification and GET_JAVA_STORED_ROUTINE_SOURCE 

specification cannot be specified in a selection expression in a query specification 
in an INSERT statement.

21. If a GROUP BY clause specifying a value expression other than a column 
specification is specified in a table expression, that grouping column cannot be 
referenced from the scalar subquery that is specified in the selection expression.

22. When the window function is specified as a selection expression, you must 
specify at least one selection expression in addition to the window function.

23. You cannot specify the window function in a scalar operation.
24. When the window function is specified, you cannot specify a set function as a 

selection expression.
*

Specifies that all table columns are to be output.
Specification of an asterisk indicates that all columns in all the tables specified in 
the FROM clause of the query specification are specified in the order of their 
specification in the table specified in the FROM clause. In this case, the table 
columns are arranged in the same order as when they were specified during table 
definition.
table-expression

A table expression specifies one or more tables or externally joined tables that are the 
objects of retrieval. In a table expression it is also possible to specify the conditions 
under which tables are to be searched or joined (search conditions and grouping). For 
details about table expressions, see 2.5 Table expressions.



2. Details of Constituent Elements

133

For restrictions on derived query expressions in a view definition statement, see 
CREATE VIEW (Define view) in Chapter 3. Definition SQL.

(5) Rules
1. In a query specification with respect to the named derived table that has been 

derived from a value expression specifying the following attributes in the 
selection expression in the outermost query, a query for creation of an internally 
derived table cannot be specified (for the conditions under which an internally 
derived table can be created, see 2.21 Inner derived tables):

• BLOB
• BINARY with a minimum length of 32,001 bytes
• Repetition column

2. When a ? parameter or an embedded variable is specified as an argument in a 
function call, the argument must be specified in the following format:

• ? AS data-type
• :embedded-variable [:indicator-variable] AS data-type

(6) Notes
1. When retrieval or updating is performed in units of rows (ROW specification), the 

length of the date data type that is specified in an embedded variable, an SQL 
variable, or an SQL parameter relative to ROW is 4 bytes in X'YYYYMMDD' 
format.
If date data is passed or received in a character expression using a row-by-row 
basis (ROW specification) interface, the column must be defined as CHAR(10), 
rather than as a date data column. Any date operation should be specified by 
converting the data into the date data type with the DATE scalar function.

2. When a retrieval or updating is performed in units of rows (ROW specification), the 
length of the time data type that is specified in an embedded variable, an SQL 
variable, or an SQL parameter relative to ROW is 3 bytes in X'HHMMSS' format.
If time data is passed or received in a character expression using a row-by-row 
basis (ROW specification) interface, the column must be defined as CHAR(8), 
rather than as a time data column. Any time operation should be specified by 
converting the data into the time data type with the TIME scalar function.

3. For performing retrieval or updating in units of rows (ROW specification), the 
length of the time data type part of an embedded variable, SQL variable, or SQL 
parameter is (7 + (p  2)) bytes in an X'YYYYMMDDhhmmss[nn...n]' format. 
For passing or receiving time stamp data in character representations using a 
row-by-row interface (ROW specification), columns should be defined in CHAR of 
length 19, 22, 24, or 26 bytes instead of the time stamp data type.



2. Details of Constituent Elements

134

4. HiRDB may create a work table when any of the following conditions is satisfied:
• DISTINCT is specified.
• A value expression containing a set function is specified in a selection 

expression.
• A value expression containing the window function is specified in a selection 

expression.
In this process, the above processing may be subject to some restrictions 
depending on the row length of the work table. For details about work table row 
lengths, see the HiRDB Version 8 Installation and Design Guide.



2. Details of Constituent Elements

135

2.4 Subqueries

(1) Function
A subquery specifies the value, or the set of values, that can be obtained by retrieving 
a table.
The following types of subqueries are available:

• Scalar subquery
A scalar subquery is a subquery that yields a result column count of 1 and a result 
row count of 1 or less.

• Row subquery
A row subquery is a subquery that yields a result column count of 2 or greater and 
a result row count of 1 or less.

• Table subquery
A table subquery is a subquery that yields a result column count of 1 or greater, 
and a result row count of 0 or greater.

Subqueries can be specified in the following locations:
Scalar subquery

• Anywhere a value expression can be specified
Row subquery

• Anywhere a row value constructor can be specified
• SET clause in the UPDATE statement

Table subquery
• Right-hand side of the IN predicate
• Right-hand side of a quantified predicate
• EXISTS predicate
• Derived table in the FROM clause

(2) Privileges
A user with the SELECT privilege for a table can execute a subquery to retrieve that 
table.

(3) Format
scalar-subquery::=subquery
row-subquery::=subquery



2. Details of Constituent Elements

136

table-subquery::=subquery
 
subquery::=([SQL-optimization-specification-for-subquery-execution-method]que
ry-expression-body)
 

(4) Operands
([SQL-optimization-specification-for-subquery-execution-method ] 
query-expression-body)

For SQL optimization specification for a subquery execution method, see 2.24 SQL 
optimization specification. For details about a query specification body, see 2.2 Query 
expressions.

(5) Rules on subqueries for a derived table in a predicate (IN predicate, 
comparison predicate, quantified predicate, or EXISTS predicate) or in a FROM 
clause

1. Value expressions that yield results of the following data types cannot be specified 
in a selection expression in a predicate or in a subquery in a derived table:

• BLOB
• BINARY with a minimum length of 32,001 bytes
• Abstract data type

2. If either * or table-specification.* is specified in a subquery in the EXISTS 
predicate, the specification means the following:

• When a set operation is not specified:
The specification means any one column that is allowed in the subquery other 
than a set function.

• When a set operation is specified:
The * specification means specifying all column in all the tables specified in the 
FROM clause of that query specification in the order of the tables specified in the 
FROM clause. In each table, columns are ordered in the sequence that was specified 
at the time of table definition.
The table-specification.* specification means specifying all columns in all the 
specified tables in the order in which they were specified at the time of table 
definition.

(6) Rules
1. The result of a subquery is a NOT NULL constraint (allows the NULL value). 

However, the results of a table subquery specified in a derived table in the FROM 
clause are subject to the same constraint as the results of that query expression.



2. Details of Constituent Elements

137

2. The maximum number of columns of the results of a row subquery specified in a 
row value constructor is 255.

3. The maximum number of columns in the results of a row subquery specified in 
the SET clause of UPDATE is 30,000.

4. The maximum number of columns in the results of a table subquery is 255. 
However, the maximum number of columns in the results of a table subquery for 
a derived table in the FROM clause is 30,000.

5. When a scalar subquery or a row subquery is specified, the maximum allowable 
number of rows in the results is 1.

6. If the results of a scalar subquery are zero rows, the result is the null value.
7. If the results of a row subquery are zero rows, the result is a row in which all 

members are the null value.
8. Value expressions that yield results with the following data types cannot be 

specified in a selection expression in a subquery:
• BLOB
• BINARY with a maximum length of 32,001 bytes or greater
• Abstract data type
• BOOLEAN

The above restrictions, however, do not apply to a selection expression in a scalar 
subquery or a row subquery that is directly specified as an update value in the SET 
clause of the UPDATE statement.

9. [table-specification.]ROW cannot be specified in a selection expression in a 
subquery.

10. You cannot specify a WRITE specification, a 
GET_JAVA_STORED_ROUTINE_SOURCE specification, or the window function 
as a selection expression in a subquery.

11. Unsubscripted repetition columns cannot be specified in a selection expression in 
a subquery.
The above restriction, however, does not apply to selection expressions for a 
scalar subquery or a row subquery that is directly specified as an update value in 
the SET clause of the UPDATE statement.

12. A subquery cannot be specified in an SQL statement for access to a foreign table. 
View tables containing a subquery cannot be specified on a mixed basis with a 
foreign table.

13. A subquery cannot be specified in a value expression that is specified as an 
argument in a set function.



2. Details of Constituent Elements

138

(7) Specification examples
1. Specifying a table subquery in a quantified predicate in a SELECT statement:

 
SELECT DISTINCT PNAME FROM STOCK
   WHERE SQUANTITY > ALL
   (SELECT SQUANTITY FROM STOCK
   WHERE PNAME = N'socks')
 

2. Specifying a scalar subquery in the SET clause in an UPDATE statement:
Change the column of stock level (SQUANTITY) with a product code (PCODE) 
column in the stock table (STOCK) is 302S to the stock level (SQUANTITY) of the 
product for which the product code (PCODE) column of stock table 2 (STOCK2) 
with the same column definition information as the stock table is 302S.
 
UPDATE STOCK
  SET SQUANTITY =
    (SELECT SQUANTITY FROM STOCK2 WHERE PCODE = '302S')
  WHERE PCODE = '302S'
 

3. Specifying a row subquery in the SET clause of an UPDATE statement
Change the stock level (SQUANTITY) column and the unit price (PRICE) column 
of a stock table (STOCK) with a product code column (PCODE) of 302S to the stock 
level (SQUANTITY) and unit price (PRICE) of the product for which the product 
code (PCODE) column in stock table 2 (STOCK2) with the same column definition 
information as the stock table is 302S.
 
UPDATE STOCK
  SET (PRICE,SQUANTITY) =
        (SELECT PRICE,SQUANTITY FROM STOCK2
          WHERE PCODE = '302S')



2. Details of Constituent Elements

139

2.5 Table expressions

(1) Function
A table expression specifies one or more tables to be retrieved, tables to be inner-joined 
or outer-joined, or the query name specified in a WITH clause of a query expression. 
The conditions under which a table is to be retrieved or joined (search conditions or 
grouping conditions) can also be specified in a table expression. A table expression is 
specified in either a subquery or a query specification or in a single-line SELECT 
statement.

(2) Format
 
FROM table-reference [,table-reference]...
  [WHERE search-condition]
  [GROUP BY value-expression [,value-expression]...]
  [HAVING search-condition]
 

(3) Operands
(a) Not using a subquery

FROM table-reference [, table-reference]...
Specifies the table, query name, derived table, or joined table to be retrieved. For 
details about table references, see 2.6 Table reference.

[WHERE search-condition]
Omitting a search condition causes the system to retrieve all rows that are derived from 
a table (a specified table, joined table, derived table, or a table that is derived as a 
derived query expression in a WITH clause).
Embedded variables can be specified in a search condition. In a SELECT statement 
prepared by the PREPARE statement, ? parameters are used in place of embedded 
variables.
Either an SQL variable or an SQL parameter is used in the SQL procedure. For details 
about Java procedures, see the section on the JDBC driver in the HiRDB Version 8 
UAP Development Guide.

[GROUP BY value-expression[, value-expression] ...]
Specifies grouping. In a grouping operation, all rows that have the same value in the 
result of the value expression specified by the GROUP BY clause are treated as a group 
and are output as one row.
Only the following can be specified in a selection expression:column names used for 



2. Details of Constituent Elements

140

grouping, set functions, literals, value expressions that include these items as 
primaries, and value expressions to be grouped. In other words, value expressions that 
include value expressions to be grouped as primaries (except when value expressions 
are column specifications) cannot be specified. A value expression specified by a 
GROUP BY clause is called a grouping column.
The following rules apply to the GROUP BY clause:
1. If the columns that serve as a grouping condition contain a row that has null 

values, all the null values are treated alike and grouping is performed accordingly.
2. Duplicate value expressions of the same format cannot be specified in a value 

expression specified in a GROUP BY clause.
3. A set function cannot be included in a value expression specified in a GROUP BY 

clause.
4. The window function cannot be included in a value expression specified in a 

GROUP BY clause.
5. A component specification cannot be included in a value expression specified in 

a GROUP BY clause.
6. A repetition column cannot be specified in a value expression specified in a 

GROUP BY clause.
7. A subquery cannot be contained in a value expression specified in the GROUP BY 

clause.
[HAVING search-condition]

A NULL, LIKE, or XLIKE predicate cannot be specified in the HAVING clause.
Set functions that can be specified in a search condition are AVG, MAX, MIN, SUM, and 
COUNT.
The following rules apply to the HAVING clause:
1. Only grouped value expressions can be specified in a search condition other than 

a set function.
2. Any grouped value expression should have a format exactly identical to the value 

expression that is specified in the GROUP BY clause.
3. If a search condition is omitted, all groups are output.

(b) Using a subquery
FROM table-reference [, table-reference]...

Specifies the table, query name, derived table, or joined table to be retrieved. For 
details about table references, see 2.6 Table reference.
If tables are added to the FROM clause, the rows that are taken from the tables, one row 



2. Details of Constituent Elements

141

per table, and joined in the order in which the tables are specified, become the rows of 
the table that is the result of the FROM clause. The number of rows in the resulting table 
is the product of the numbers of rows in the original tables.

[WHERE search-condition]
A column specification in a search condition in a subquery can reference the columns 
of the tables specified outside the subquery.
In the case of nested queries, referencing from an inner query to (a column in) a table 
specified by an outer query is called outer referencing.
The following rules apply to the WHERE clause:
1. The option COUNT(*) cannot be specified in a WHERE clause.
2. A set function can be specified in a WHERE clause only if the WHERE clause 

belongs to a HAVING clause.
3. If a set function is specified in a WHERE clause belonging to a HAVING clause, any 

column specification in the set function should reference (in an external 
reference) the table that is specified in the FROM clause preceding the HAVING 
clause.

4. In a subquery in a WHERE clause with a query specification in which a value 
expression other than a column specification is specified in the GROUP BY clause, 
a value expression other than a column specification cannot be specified in the 
GROUP BY clause.
[GROUP BY value-expression[, value-expression] ...]

Specifies grouping. A column to be specified in a GROUP BY clause is shown in the 
table specified by the FROM clause in the table expression containing that GROUP BY 
clause.
In a grouping operation, all rows that have the same value in the result of the value 
expression specified by the GROUP BY clause are treated as a group and are output as 
one row.
Only the following can be specified in a selection expression: column names used for 
grouping, set functions, literals, value expressions that include these items as 
primaries, and value expressions to be grouped. In other words, value expressions that 
include value expressions to be grouped as primaries (except when value expressions 
are column specifications) cannot be specified. A value expression specified by a 
GROUP BY clause is called a grouping column.
In addition, if an item other than a column specification is specified in a value 
expression, the grouping column cannot be referenced from the scalar subquery 
specified in a selection expression.
The following rules apply to the GROUP BY clause:



2. Details of Constituent Elements

142

1. If the columns that serve as a grouping condition contain a row that has null 
values, all null values are treated alike and the grouping is performed accordingly.

2. Duplicate value expressions of the same format cannot be specified in a value 
expression specified in a GROUP BY clause.

3. A set function cannot be included in a value expression specified in a GROUP BY 
clause.

4. The window function cannot be included in a value expression specified in a 
GROUP BY clause.

5. A component specification cannot be included in a value expression specified in 
a GROUP BY clause.

6. A repetition column cannot be specified in a value expression specified in a 
GROUP BY clause.

7. A subquery cannot be contained in a value expression specified in a GROUP BY 
clause.
[HAVING search-condition]

The HAVING clause specifies the condition by which groups that are obtained as a 
result of preceding GROUP BY, WHERE, or FROM clauses are to be selected. If a GROUP 
BY clause is not specified, the result of a WHERE clause or a FROM clause forms a group 
that does not contain any grouping columns.
The following rules apply to the HAVING clause:
1. The group that yields the TRUE result from the search condition specified in the 

HAVING clause is selected.
2. If a HAVING clause is omitted, all groups of the results of the preceding GROUP BY 

clause, WHERE clause, or FROM clause are selected.
3. A NULL predicate, LIKE predicate, or XLIKE predicate cannot be specified 

directly in a HAVING clause.
4. Any grouped value expressions should have a format exactly identical to the value 

expression that is specified in the GROUP BY clause.
5. When a column specification is specified in a HAVING clause, the following 

provisions should be made:
• Either reference the table in the FROM clause in the table expression, or 

reference the table in the FROM clause in an outer table expression (in an 
external reference).

• If the table in the FROM clause in the table expression is referenced, specify 
the table in either a grouping column (the value expression that is specified 
in the GROUP BY clause) or in an argument of a set function.



2. Details of Constituent Elements

143

(4) Common rules
1. Embedded variables can be specified in a search condition.
2. The ? parameter should be specified in place of an embedded variable in SQL 

statements that are pre-processed by the PREPARE statement.
(5) Join rules

A retrieval that specifies multiple tables or query names in a single FROM clause (a 
retrieval that encompasses multiple tables) is called a join.
1. All tables or query names to be joined must be specified in the FROM clause. If no 

join conditions are specified in the WHERE clause, SQL extracts one row at a time 
from each of the tables to be joined and combines the rows to produce a result.
Thus, if three tables composed of l rows, m rows, and n rows are joined 
unconditionally, l  m  n rows will result.

2. If a condition that expresses the relationship between tables is specified in the 
WHERE clause (join condition), those rows that satisfy the condition are selected 
from the results of the concatenation operation described in (1) above.

3. Columns that are specified to be joined in a join condition must have mutually 
convertible data types (one numeric value can be converted into another numeric 
value; one character can be converted into another character).

4. A row that has the null value in its columns to be joined does not satisfy any 
condition relative to any row.

5. When specifying a column when joining a table containing columns of the same 
name or a table derived as a query name from a derived query expression of the 
WITH clause, assign a table name or correlation name to uniquely specify the 
column.

6. A total of 64 base tables (that can be specified in a FROM clause), derived tables 
of the FROM clause, and foreign tables can be joined.
Also, a total of 64 base tables and foreign tables (including the total number of 
base tables that are specified in subqueries) can be specified in an SQL statement. 
The total number of correlation names that can be specified is 65.
If named derived tables (a view table or a query in a WITH clause) are used, the 
number of tables that are joined to one of the named derived tables is equal to the 
total number of base tables, derived tables in a FROM clause, or foreign tables that 
are specified in a view definition statement or in a derived query expression in a 
WITH clause. Similarly, the number of tables specified in an SQL statement with 
respect to one of the named derived tables is equal to the total number of base 
tables and foreign tables specified in a view definition statement or in a derived 
query expression in a WITH clause. The number of correlation names specified in 
an SQL statement with respect to one of the named derived tables is equal to the 



2. Details of Constituent Elements

144

number of correlation names specified in a view definition statement or in a 
derived query expression in a WITH clause.
If a named derived table derived by specifying a set operation in a derived query 
expression in a view definition statement or a WITH clause is specified in an SQL 
statement, and the named derived table does not satisfy any of the conditions 
under which it can be an inner derived table, the following rules apply to the 
number of tables or the number of correlation names:
number of tables =

(total number of base tables specified in derived query expression and 
foreign tables)
+ ((number of set operations in derived query expression +1)

 (total number of base tables in subquery))
number of correlation names =

(total number of correlation names specified in derived query expression)
+ ((number of set operations in derived query expression +1)  (total 
number of correlation names in subquery))

For restrictions on derived query expressions in a view definition statement, see 
CREATE VIEW (Define view) in Chapter 3. For restrictions on derived query 
expressions in a WITH clause, see 2.2 Query expressions. Also, for conditions 
under which a named derived table becomes an inner derived table, see 2.21 Inner 
derived tables.

7. In a query specification for the creation of an inner derived table, the joining of a 
named derived table to itself, which is the object of inner derived table creation, 
cannot be specified. For conditions under which an inner derived table can be 
created, see 2.21 Inner derived tables.

(6) Rules for the GROUP BY clause and HAVING clause
1. For the GROUP BY clause in a view definition or a derived query expression in the 

WITH clause, specify a value expression with column specification.
2. If the window function is specified for a query specification, you cannot specify 

a GROUP BY or HAVING clause.
(7) Notes

1. HiRDB may create a work table when any of the following conditions is satisfied:
• Multiple tables are joined.
• A GROUP BY clause is specified.
• An inner derived table is created by specifying either a view table or a query 



2. Details of Constituent Elements

145

name in the table primary. (For inner derived tables, see 2.21 Inner derived 
tables.)

In this process, the above processing may be subject to restrictions depending on 
the row length of the work table. For details about work table row lengths, see the 
HiRDB Version 8 Installation and Design Guide.

(8) Specification example: Specifying a table expression in a dynamic SELECT 
statement

SELECT SUM(SQUANTITY) FROM STOCK
   WHERE PRICE >= (SELECT AVG(PRICE)
   FROM STOCK)

(9) Usage examples
Table A (outer table) lists product prices, Table B (inner table) lists the quantities of 
orders received, and Table C lists previous orders.

1. Select the product codes with a unit price greater than 200, their unit prices, and 
quantities ordered:
SELECT A.PCODE, PRICE, OQUANTITY FROM A
   LEFT OUTER JOIN B
   ON A.PCODE = B.PCODE WHERE PRICE > 200



2. Details of Constituent Elements

146

Note

The quantity of a product for which an order has not been received is the null 
value.

2. Select all product codes, unit prices, and products with a quantity ordered of 40 
or greater:
SELECT A.PCODE, PRICE, OQUANTITY FROM A
   LEFT OUTER JOIN B
   ON A.PCODE = B.PCODE AND OQUANTITY >= 40

Note

The quantity for a product for which an order has not been received is the null 
value.

3. Select all product codes, unit prices, and quantities ordered for products with a 
unit price of greater than or equal to 400:
SELECT A.PCODE, PRICE, OQUANTITY FROM A
  LEFT OUTER JOIN B
  ON A.PCODE = B.PCODE AND PRICE >= 400



2. Details of Constituent Elements

147

Note

The quantity for a product for which an order has not been received is the null 
value.

4. For each product with a unit price of 500 or less, determine its product code, unit 
price, orders received for the current month where the minimum size order is at 
least 40, and orders received for past month where the maximum size order is 30 
or fewer:
SELECT A.PCODE,A.PRICE,B.OQUANTITY,C.LMORDER
   FROM A LEFT OUTER JOIN B ON A.PCODE=B.PCODE AND
   B.OQUANTITY >= 40
         LEFT OUTER JOIN C ON A.PCODE=C.PCODE AND
           C.LMORDER=30
          WHERE A.PRICE<=500

Note

Products with a unit price greater than 500 are not retrieved.
NULL will be set as the ordered quantities for products that did not receive 
any orders, as the ordered quantity for the current month if all orders were 



2. Details of Constituent Elements

148

for less than 40 (OQUANTITY), and as the ordered quantity for the past month 
if all orders were for more than 30 (LMORDER).

5. For each product with a unit price of 400 or less, determine its product code, unit 
price, and ordered quantities for the current and past months.
SELECT A.PCODE,A.PRICE,B.OQUANTITY,C.LMORDER
  FROM A LEFT OUTER JOIN B ON A.PCODE = B.PCODE
           AND A.PRICE <= 400
         LEFT OUTER JOIN C ON A.PCODE = C.PCODE
           AND A.PRICE <= 400

Note

NULL will be set as the ordered quantities for products that did not receive 
any orders (OQUANTITY, LMORDER) and for products with a unit price greater 
than 400.

6. Determine all product codes and the percentage of the orders (in quantity) 
received this month against the orders received last month for each product. The 
quantity of the product for which an order has not been received this month or last 
month is the null value.
SELECT A.PCODE,100.0*B.OQUANTITY/C.LMORDER
   FROM A LEFT OUTER JOIN (B INNER JOIN C ON B.PCODE=C.PCODE)
            ON A.PCODE = B.PCODE



2. Details of Constituent Elements

149

7. Determine sales for the current and preceding months from all product codes, unit 
prices, the orders received this month, and the orders received last month:
 
  SELECT PCODE,PRICE*OQTY,PRICE*LMORDER
    FROM(SELECT A.PCODE,A.PRICE,B.OQTY,C.LMORDER
      FROM A LEFT OUTER JOIN B ON A.PCODE = B.PCODE
             LEFT OUTER JOIN C ON A.PCODE = C.PCODE)
    AS DT1(PCODE,PRICE,OQUANTITY,LMORDER)
 



2. Details of Constituent Elements

150

2.6 Table reference

(1) Function
Specifies a table to be retrieved or a join of tables to be retrieved. A table reference is 
specified in a table expression.

(2) Format
 
table-reference::= {table-primary | joined-table}
table-primary::=
   {[[RD-node-name.]authorization-identifier.] table-identifier
    [[AS] correlation-name]
     [used-index-SQL-optimization-specification]
    | query-name [[AS] correlation-name ]
     [used-index-SQL-optimization-specification] | (joined-table)
    | derived-table [[AS] correlation-name [(derived-column-list)]]}
 derived-table::= table-subquery
 derived-column-list::= column-name-list
 column-name-list::= column-name [,column-name]...
 joined-table::= table-reference [{INNER | LEFT [OUTER]}]
 JOIN [ join-method-SQL-optimization-specification]
        table-reference ON search-condition
 

(3) Operands
table-primary::= 

  {[[RD-node-name.]authorization-identifier.]
     table-identifier [[AS] correlation-name]
  [used-index-SQL-optimization-specification]
   | query-name [[AS] correlation-name]
     [used-index-SQL-optimization-specification]
   | (joined-table)
   | derived-table [[AS] correlation-name [(derived-column-list)]]}

RD-node-name
Specifies the name of the RD node to be accessed.

authorization-identifier
Specifies the authorization identifier for the owner of the table. When retrieving 
a data dictionary table, specify MASTER in authorization-identifier.

table-identifier



2. Details of Constituent Elements

151

Specifies the name of the table to be retrieved.
query-name

Specifies the name of the table derived from the derived query expression in the 
WITH clause.

[AS]correlation-name
When joining a table to itself or referencing columns in the same table from an 
inner subquery, specifies a name to be assigned to the table to distinguish it from 
each other. The word AS is optional.
If a given table or query name is specified multiple times in a FROM clause, specify 
a correlation name so that the table or the query name can be uniquely identified. 
If the query name is identical to the table name, specify a correlation name so that 
they can be uniquely identified.
The correlation name specified in correlation-name must be distinct from any 
other correlation names specified in a FROM clause.
In a single FROM clause, you cannot specify a name for correlation-name that is 
the same as a table name that specifies that correlation name, or a name, other than 
a query name, that is the same as a table identifier.
If you specify a correlation name that is the same as a correlation name specifed 
by a table name or a query name in the same FROM clause, the table name or query 
name in the FROM clause that specifies the correlation name does not have a valid 
scope.
The scope of a correlation name is the query specification that contains in a FROM 
clause a table reference specifying the correlation name not through a derived 
table, a single-row SELECT statement, and any subqueries that are internal to 
them.

SQL optimization specification for the index being used

For SQL optimization specification for the index being used, see 2.24 SQL 
optimization specification.

(joined-table)
When specifying the order of evaluation of joined tables, specify the joined tables 
enclosed in parentheses. If joined tables are not enclosed in parentheses, they are 
evaluated in sequence beginning with the leftmost table reference.
joined-table::= table-reference [{INNER |LEFT [OUTER]}] JOIN
       [join-method-SQL-optimization-specification]
       table-reference ON search-condition

In joined-table, specify the table that is derived by an inner or outer join.



2. Details of Constituent Elements

152

In inner join, rows are fetched one by one from the outer and inner tables, and, of those 
rows, rows that satisfy the search condition are retrieved. In outer join, all rows in the 
outer table and rows in the inner table that satisfy the search condition are retrieved. If 
successive outer joins are specified, the outermost two tables are evaluated first, and 
the resulting table is treated as an outer table, the table to the right of it is treated as an 
inner table, and this evaluation is repeated until all right-side tables are exhausted.
table-reference [{INNER | LEFT [OUTER]}] JOIN table-reference

Specifies this operation when processing two tables, outer and inner tables, by 
matching them (creating an inner or outer join).
For table-reference-1 [INNER JOIN] table-reference-2, the table 
(table-reference-1) of the result of the table reference specified to the left of the 
[INNER JOIN] becomes the outer table, and the table (table-reference-2) of the 
result of the table reference specified to the right becomes the inner table. Of the 
results of the matching, the rows that satisfy the search condition are derived.
For table-reference-1 LEFT [OUTER] JOIN table-reference-2, the table 
(table-reference-1) of the result of the table reference specified to the left of the 
LEFT [OUTER] JOIN becomes the outer table, and the table (table-reference-2) 
of the result of the table reference specified to the right becomes the inner table. 
All rows in the outer table are derived irrespective of whether the result of the 
matching is TRUE or FALSE. With regard to the rows in the inner table, only those 
rows that satisfy the search condition are derived.

SQL optimization specification for join methods

For SQL optimization specification for join methods, see 2.24 SQL optimization 
specification.

ON search-condition
Specifies a join condition for an inner or outer join.
In search-condition, a column of an outer or inner table can be specified.
Column specifications in a search condition in a subquery can reference columns 
of the table specified outside the subquery. For nested queries, referencing a table 
or column that is specified in an outside query from an inner query is called an 
outer reference.
When qualifying a column specification in a search condition with a table name, 
table columns for which a correlation name is specified should be qualified with 
a correlation name.
COUNT(*) or the window function cannot be specified as the ON search condition 
in a subquery. A set function can be specified in an ON search condition only in 
the ON search condition in a FROM clause belonging to a HAVING clause. If a set 
function is specified in an ON search condition in a FROM clause that belongs to a 



2. Details of Constituent Elements

153

HAVING clause, any table specification in the set function should reference (in an 
outer reference) the table that was specified in a FROM clause preceding the 
HAVING clause.
derived-table [AS] correlation-name [(derived-column-list)]]

Specifies a table subquery. The table derived by this query is called a derived table of 
the FROM clause. The n-th column in the table subquery becomes the n-th column in 
the derived table.
The query specification containing a derived table is a read-only specification.
When specifying a derived table, observe the following notes:

• If a derived table is specified for table reference, a correlation name for the 
derived table should be specified. The specification [AS] correlation-name 
[(derived-column-list)]] can be omitted only if the following format is specified 
in the outermost query:

 SELECT COUNT(*) FROM derived-table
• The following structure or data type cannot be specified as a constituent column 

of a table which is derived as a result of a table subquery in which a value 
expression is specified in a selection expression:

 Repetition structure
 BLOB
 BINARY with a minimum length of 32,001 bytes
 BOOLEAN
 Abstract data type

• A row interface (ROW) cannot be specified on a derived table.
• The window function cannot be specified in a derived table.

[AS] correlation-name
Specifies the name of a derived table.

[(derived-column-list)]
Specifies the names of columns in a derived table.
If a derived column list is omitted, the column name derived as a result of the 
outermost query in the derived table becomes the column name for the derived 
table. Consequently, the column specification (if an AS clause is specified, the 
column name in the AS clause) in the selection expression will be the column 
name of the derived table. In other cases, HiRDB assumes a column name that is 
distinct from any column name used in the SQL statement.



2. Details of Constituent Elements

154

If a derived column list is omitted, care should be taken that no columns of 
duplicate names are derived as a result of the table subquery.
Column names specified in a derived column list must all be distinct.
When specifying a derived column list, the number of column names used in the 
derived column list should be the same as the number of columns in the table that 
is derived by the derived table.
The number of columns used in a derived column list or derived by a table 
subquery must be 30,000 or less.

(4) Rules on joined tables
1. Specifying an outer join permits the specification of the null value in the columns 

of the inner table that results from the outer join.
2. Only columns in an outer or inner table or outer reference columns can be 

specified in ON search-condition.
3. Joined tables are read-only tables.
4. Tables derived from an inner join are composed of concatenated rows that satisfy 

the ON search condition for the outer and inner tables.
5. Tables derived from an outer join are composed of concatenated rows that satisfy 

the ON search condition for the outer and inner tables, and rows to which the null 
value is added, in numbers equal to the columns in the inner table, to the rows that 
do not satisfy the ON search condition for the outer table.

6. For a query specification containing a joined table, ROW cannot be specified in the 
selection expression that is derived from the inner table of the outer join.

(5) Rules on derived tables in a FROM clause
1. ROW cannot be specified in a selection expression in a derived table in a FROM 

clause.
2. An unsubscripted repetition column cannot be specified in a selection expression 

for a derived table in a FROM clause.
3. WRITE or GET_JAVA_STORED_ROUTINE_SOURCE cannot be specified in a 

selection expression for a derived table in a FROM clause.
4. The format in which [AS] correlation-name [(derived-column-list)] is optional 

(SELECT COUNT(*) FROM derived-table) cannot be specified in a WITH clause 
query, view definition, set operation, INSERT statement, or subquery.

(6) Notes
1. The scope for correlation names specified in a FROM clause, tables names 

specified without a correlation name, or query names is the innermost subquery 
including the FROM clause, the query specification, or the single-row SELECT 



2. Details of Constituent Elements

155

statement. The scope also includes subqueries that are interior to these elements.
2. If a correlation name is specified in a FROM clause in a subquery, the table name 

or query name does not have a valid scope.
3. The valid scope of a table name or a query name that specifies a correlation name 

in the outermost query specification, or that specifies a correlation name in the 
FROM clause directly under a single-row SELECT statement, consists of the query 
specifications other than the innermost subquery, or the single-row SELECT 
statement. However, if a specified correlation name is the same as a table name or 
a query name in the FROM clause, the table name or query name in the FROM clause 
that specifies the correlation name does not have a valid scope.
The following figures show examples of scopes of correlation names, table 
names, and query names.

If a table name or query name specified in a FROM clause in a subquery is 
associated with a correlation name, the table name or query name does not 
have a valid scope (T3 in the figure). If a table (T2 X in the figure) with a 
correlation name that is directly specified in the query is referenced by an 
inner query, the column name should be qualified with a column name (X), 
rather than with a table name (T2).



2. Details of Constituent Elements

156

Figure 2-1:  Examples of valid scopes for correlation names, table names, and 
query names

If a correlation name, table name, or query name is referenced within the 
scope in which the same valid name is specified more than once, the one with 
the greatest local valid scope is specified. To reference an outer table in such 
a situation, specify a different correlation name in the FROM clause, and use 
that name to specify the reference.



2. Details of Constituent Elements

157

Figure 2-2: Examples of valid scopes of correlation names, table names, and 
query names (when a specified correlation name is the same as a table name or a 
query name in a FROM clause)

If a specified correlation name is the same as a table name or a query name 
in the FROM clause, the table name or query name in the FROM clause that 
specifies the correlation name does not have a valid scope.

4. The following figure shows an example of the scopes for correlation names and 
table names with a FROM derived table specified.



2. Details of Constituent Elements

158

Figure 2-3:  Example of valid scopes for correlation names and table names with 
a FROM derived table specified



2. Details of Constituent Elements

159

2.7 Search conditions

2.7.1 Function
When outer join is not specified, a logical operation is performed based on the 
search conditions specified in the SQL, and the system retrieves only those rows 
for which the result of the evaluation of the search condition is TRUE. When outer 
join is specified, the rows in the outer table for which the result of the evaluation 
of the search condition is FALSE are also retrieved.
A search condition can be specified in any of the following locations:

• ON search condition in the FROM clause
• WHERE clause
• HAVING clause
• WHEN in a search CASE expression
• WHEN in a trigger action condition
• IF clause
• WHILE clause

Format
search-condition::={[NOT] {(search-condition)|predicate}
   |search-condition OR{(search-condition)|predicate}
   |search-condition AND{(search-condition)|predicate}
predicate::={NULL-predicate|IN-predicate|LIKE-predicate|XLIKE-predicate|
SIMILAR-predicate|BETWEEN-predicate|comparison-predicate|quantified-predic
ate|EXISTS-predicate|logical-predicate|structured-repetition-predicate}

2.7.2 Logical operations
Logical operations are preformed according to the following rules:

The order of evaluation of logical operation is items inside parentheses, NOT, AND, 
and OR.
The maximum number of logical operation nesting levels is 255.
The number of logical operation nesting levels is the number of parenthesized 
nestings, when the parentheses for specifying the order of evaluation of the 
logical operators AND and OR (exclusive of NOT) are specified explicitly.

If a named derived table is specified in a query specification and the specified named 
derived table does not create an inner derived table, the maximum allowable number 
of nesting levels for logical operations may be exceeded when the search condition for 



2. Details of Constituent Elements

160

the query that derived the named derived table is joined by the AND logical operation.

2.7.3 Results of a predicate
Figure 2-4 shows the results of predicates when logical operations are performed. The 
result of a predicate (other than the NULL predicate) that contains the null value is 
undefined.
A predicate that produces the null value is ineligible for retrieval.

Figure 2-4: Results of predicates on which logical operations are performed

2.7.4 Rules common to predicates
1. For types of data that can be compared, see 1.2.2 Data types that can be converted 

(assigned or compared). However, if a character string literal is specified as an 
object of comparison of national character data, the character string literal is 
treated as a national character literal. If a character string literal is treated as a 
national character string literal, the character data receives a length check only, 
and the character code is not checked.

2. When comparing fixed-length data with fixed-length data, or fixed-length data 
with variable-length data, HiRDB space-fills the shorter data item on the right, 
and performs the comparison after making the character strings equal in length.

3. When comparing two variable-length character data items of different lengths, 
HiRDB performs the comparison from the left, for a length equal to the length of 
the shorter data item. If the results are equal, HiRDB further compares the 
character string lengths.

4. When comparing two numeric data items of different data types, HiRDB 
performs the comparison by using the data type of the wider range. Different 
numeric data types have the following range widths:
FLOAT > SMALLFLT > DECIMAL > INTEGER > SMALLINT
If one of the items to be compared with is the SMALLFLT, it is compared as a 
FLOAT type irrespective of the width of its range.

5. When comparing two time stamp data items of different fractional second 
precisions, HiRDB extends the fractional precision of the lower precision item to 



2. Details of Constituent Elements

161

match the precision of the higher precision item, and zero-fills the extended 
fractional second part.

6. When comparing two BINARY type items of different data lengths, HiRDB 
performs the comparison from the left, for a length equal to the length of the 
shorter data item. If the results are equal, HiRDB further compares the data 
lengths.

2.7.5 Predicates
(1) Comparison predicate

Format
row-value-constructor
 {= | <> | ^= | != | < | <= | > | >=} row-value-constructor

Case in which the predicate is TRUE

Case involving one row value constructor
The predicate is TRUE if the right and left row value constructors satisfy the 
comparison condition.
If either row value constructor is the null value, the result of the comparison is 
indefinite.
Case involving two or more row value constructors
(=)

The result of the comparison is TRUE if the relationships between the 
corresponding elements in the right and left row value constructors are all =.
The result of the comparison is FALSE if one or more combinations of 
elements exist in which the relationship <> holds.
The result of the comparison is indefinite if one or more of the elements 
being compared is the null value, even when there is no combination of 
elements in which the relationship <> holds.

 (Examples of the result of a comparison being TRUE)
(1,2,3) = (1,2,3)
('A','B','C') = ('A','B','C')

(<> | ^= | !=)
The corresponding elements in the right and left row value constructors are 
compared, and the result is TRUE if at least one combination exists in which 
the relationship <> holds.
The result is FALSE if the relationship between the corresponding elements 



2. Details of Constituent Elements

162

is entirely =.
The result is FALSE if there is no combination in which the relationship <> 
holds and one or more elements being compared has the null value.

 (Examples of the result of a comparison being TRUE)
(1,2,3) <> (1,5,3)
('A','B','C') <> ('C','A','B')

(<)
The corresponding elements in the right and left row value constructors are 
compared from left to right, as long as the relationship = holds. The result is 
TRUE if the relationship < holds between the first elements for which = does 
not hold.
The result is FALSE if the relationship between the first elements for which 
= does not hold is >, and if the relationship = holds between all corresponding 
elements.
The result is indefinite if the first elements for which = does not hold contain 
the null value.

 (Examples of the result of a comparison being TRUE)
(1,2,3) < (3,1,2)
This is TRUE because the relationship between the first elements is 1< 3.
('A','B','C','D') < ('A','B','E','A')
The elements are compared from left to right, and the result is TRUE because 
the relationship between the first elements for which = does not hold is 'C' 
< 'E'.

(>)
The corresponding elements in the right and left row value constructors are 
compared from left to right as long as = holds. The result is TRUE if the 
relationship > holds between the first elements for which = does not hold.
The result is FALSE if the relationship between the first elements for which 
= does not hold is a <, or if the relationship = holds between all corresponding 
elements.
The result is indefinite if the first elements for which = does not hold contain 
the null value.

 (Examples of the result of a comparison being TRUE)
(1,2,3) > (1,1,5)



2. Details of Constituent Elements

163

The elements are compared from left to right. The result is TRUE because the 
relationship between the first elements for which = does not hold is 2 > 1.
('A','A','C') > ('A','A','A')
The elements are compared from left to right. The result is TRUE because the 
relationship between the first elements for which = does not hold is 'C' > 
'A'.

(<=)
The corresponding elements in the right and left row value constructors are 
compared from left to right as long as the relationship = holds. The result is 
TRUE if the relationship between the first elements for which = does not hold 
is a <, or if the relationship = holds between all corresponding elements.
Notice that the result is FALSE if the relationship between the first elements 
for which = does not hold is a >.
The result is indefinite if the first elements for which = does not hold contain 
the null value.

(>=)
The corresponding elements in the right and left row value constructors are 
compared from left to right as long as the relationship = holds. The result is 
TRUE if the relationship between the first elements for which = does not hold 
is a >, or if the relationship = holds between all corresponding elements.
Notice that the result is FALSE if the relationship between the first elements 
for which = does not hold is a <.
The result is indefinite if the first elements for which = does not hold contain 
the null value.

Each comparison predicate can be expanded into a form using Boolean 
operations. The following table shows forms in which comparison predicates are 
expanded using Boolean operations.

Operator Coding using a row value constructor Coding using Boolean operations

= (Rx1,Rx2,...,Rxn) = (Ry1,Ry2,...,Ryn) Rx1= Ry1 AND Rx2 = Ry2 AND ... AND Rxn 
= Ryn

<> (Rx1,Rx2,...,Rxn) <> (Ry1,Ry2,...,Ryn) Rx1<> Ry1 OR Rx2 <> Ry2 OR ... OR Rxn <> 
Ryn



2. Details of Constituent Elements

164

Rules

1. On both sides of the comparison operators (=, <>, ̂ =, !=, <, <=, >, >=), row value 
constructors consisting solely of literals can be specified.

2. Values that yield any of the following data types as a result of an operation cannot 
be specified:

• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• BOOLEAN
• Abstract data type

3. For row value constructors, see 2.8 Row value constructors.
4. Row value constructor elements that are located in the corresponding positions in 

the right and left row value constructors are treated as corresponding values. The 
corresponding values must have data types that are comparable.

< (Rx1,Rx2,Rx3,...,Rxn) < 
(Ry1,Ry2,Ry3,...,Ryn)

Rx1< Ry1 OR
(Rx1 = Ry1 AND Rx2 < Ry2) OR
(Rx1 = Ry1 AND Rx2 = Ry2 AND Rx3 < Ry3) 
OR ... OR (Rx1 = Ry1 AND Rx2 = Ry2 AND 
Rx3 = Ry3 AND ... AND Rxn-1 = Ryn-1 AND 
Rxn < Ryn)

> (Rx1,Rx2,Rx3,...,Rxn) > 
(Ry1,Ry2,Ry3,...,Ryn)

Rx1 > Ry1 OR
(Rx1 = Ry1 AND Rx2 > Ry2) OR
(Rx1 = Ry1 AND Rx2 = Ry2 AND Rx3 > Ry3) 
OR ...
OR (Rx1 = Ry1 AND Rx2 = Ry2 AND Rx3 = 
Ry3 AND ... AND Rxn-1 = Ryn-1 AND Rxn > 
Ryn) 

Operator Coding using a row value constructor Coding using Boolean operations



2. Details of Constituent Elements

165

5. A subquery cannot be specified in a comparison predicate in any of the following 
locations:

• A search condition in an IF statement
• A search condition in a WHILE statement
• A WHEN search condition in CREATE TRIGGER (trigger action search 

condition)
6. When specifying a repetition column, specify a subscript. If a subscripted 

repetition column is specified and if its elements satisfy the condition, the result 
of the comparison with the corresponding value is TRUE.

7. The word ANY can be specified as a repetition column subscript. If ANY is 
specified and if at least one element in the column satisfies the condition, the 
result of the comparison is TRUE. If the result of the comparison is not TRUE and 
if the condition specified on at least one element of the column is indefinite, the 
result of the comparison is indefinite. If the result of the comparison is not TRUE 
or indefinite, the result of the comparison is FALSE.

8. If a subscripted repetition column is specified and the subscripted elements do not 
exist, the result of the comparison with the corresponding value is indefinite.

9. The row value constructors that are to be compared must have the same number 
of result columns.

(2) NULL predicate
Format
item-specification IS [NOT] NULL

Conditions under which a predicate is TRUE
For a row that contains the NULL value in specified item (column, component 
specification, SQL variable, or SQL parameter), the NULL predicate will be TRUE. If 



2. Details of Constituent Elements

166

NOT is specified, the NULL predicate will be TRUE for a row that does not contain the 
NULL value. For details of the NULL value, see 1.6 Null value.
Rules
1. The NULL predicate can be specified in the following locations:

• ON search condition in a FROM clause
• WHERE clause
• Search condition of an IF statement
• Search condition of a WHILE statement
• WHEN search condition of a searched CASE expression (excluding a searched 

CASE expression directly specified in a HAVING clause)
• WHEN search condition of CREATE TRIGGER (trigger action condition)

2. Items with any of the following data types cannot be specified:
• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• BOOLEAN

3. If an unsubscripted repetition column is specified and the column does not contain 
any elements (in the case of the NOT specification, if at least one element is 
present), the NULL predicate will be TRUE. Even if all the elements in the column 
are NULL, the NULL predicate will not be TRUE.

4. If a subscripted repetition column is specified and a specified element is NULL, 
the NULL predicate will be TRUE.

5. If a subscripted repetition column is specified and the column does not contain 
any elements, the NULL predicate will be UNKNOWN.

6. When a subscripted repetition column is specified, ANY can be specified as a 
subscript. When ANY is specified and at least one element in the column satisfies 
the specified conditions, the NULL predicate will be TRUE.

(3) IN predicate
Format
row-value-constructor [IS] [NOT] IN
{(row-value-constructor [,row-value-constructor]...)
 |(table-subquery)
([SQL-optimization-specification-for-subquery-execution-method]
SELECT[{ALL | DISTINCT}]{selection-expression|*}
(table-expression)
FROM table-reference [,table-reference]...



2. Details of Constituent Elements

167

[WHERE search-condition]
[GROUP BY value-expression [,value-expression]...]
[HAVING search-condition])}

Conditions under which a predicate is TRUE
The IN predicate is TRUE if any of the following conditions is satisfied:

• The left-hand side row value constructor matches any row value constructor on 
the right-hand side.

• The left-hand side row value constructor matches any result row for a table 
subquery.

If NOT is specified, the IN predicate is TRUE with respect to rows for which the row 
value constructor on the left-hand side does not match any of the result rows for any 
row value constructor or table subquery that is specified on the right-hand side.
Rules
1. Values in which the data items as a result of a row value constructor or table 

subquery take any of the following data types:
• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• BOOLEAN
• Abstract data type

2. A maximum of 255 row value constructors can be specified on the right-hand 
side.

3. A row value constructor consisting solely of a value specification cannot be 
specified on the left side of an IN predicate that is not a table subquery.

4. For table subqueries, see 2.4 Subqueries.
5. Some IN predicates have the same meaning as a quantified predicate. The 

following predicates are synonymous:

6. If the result of a table subquery is the empty set, the result of the IN predicate is 
FALSE; the result, however, is TRUE if NOT is specified.

IN predicate Quantified predicate

row-value-constructor IN table-subquery row-value-constructor = ANY table-subquery
or
row-value-constructor = SOME table-subquery

row-value-constructor NOT IN table-subquery row-value-constructor <> ALL table-subquery



2. Details of Constituent Elements

168

7. A table subquery cannot be specified in an IN predicate in the following locations:
• Search condition of an IF statement
• Search condition of a WHILE statement
• WHEN search condition (trigger action condition) of CREATE TRIGGER

8. In the row value constructors, the row value constructor elements and the 
selection expressions of table subqueries in the corresponding positions are 
treated as corresponding values. The corresponding values must have mutually 
convertible or comparable data types. If, however, the result data type of a row 
value constructor element in a row value constructor specified on the left-hand 
side is national character data, and a character string literal is specified as the 
corresponding value, the character string literal is treated as a national character 
string literal. If a character string literal is treated as a national character string 
literal, HiRDB only checks the length of the character data without checking the 
character code.

9. When specifying a repetition column, a subscript must be specified. If a 
subscripted repetition column is specified and its elements satisfy specified 
conditions, the IN predicate is TRUE.

10. The word ANY can be specified as a subscript for a repetition column. If ANY is 
specified and if at least one element in the column satisfies the specified 
condition, the IN predicate is TRUE. If the IN predicate is not TRUE and if a 
condition specified with respect to at least one element in the column is indefinite, 
the IN predicate becomes indefinite. Any IN predicate that is not TRUE or that is 
not indefinite is FALSE.

11. A repetition column with an ANY subscript cannot be specified in the row value 
constructor on the right side.

12. If a repetition column is specified with a subscript and the column contains no 
elements, the IN predicate is indefinite.



2. Details of Constituent Elements

169

13. If the result of a row value constructor is the null value, the result of the 
comparison of the corresponding value is indefinite.

14. The row value constructors that are subject to comparison must have the same 
number of result columns.

Note

1. If a table subquery is specified in an IN predicate, in some cases HiRDB creates 
a work table. In this process, the processing of the subquery in the IN predicate 
may be subject to restrictions depending on the row length of the work table. For 
details about work table row lengths, see the HiRDB Version 8 Installation and 
Design Guide.

(4) LIKE predicate
Format
value-expression [NOT] LIKE pattern-character-string [ESCAPE
   escape-character]

Conditions under which a predicate is TRUE
The LIKE predicate is TRUE for a row in which the value of a specified value 
expression matches the pattern represented by a pattern character string. If NOT is 
specified, the LIKE predicate is TRUE for those rows for which the value of the 
specified column does not match the pattern expressed by the pattern character string.
Rules
The LIKE predicate can be specified in the following locations:

ON search condition in a FROM clause
WHERE clause

Search condition of an IF statement
Search condition of a WHILE statement
WHEN search condition of a searched CASE expression (excluding a searched CASE 
expression specified directly in a HAVING clause)
WHEN search condition of CREATE TRIGGER (trigger action condition)

value-expression
1. Specifies the value expression that will be the object of a character string 

pattern comparison.
However, value expressions in which only values other than SQL variables 
or SQL parameters are specified cannot be specified.

2. The following data types can be specified in a value expression or a pattern 



2. Details of Constituent Elements

170

character string: character string data, national character string data, mixed 
character string data, or BINARY with a maximum definition length of 32,000 
bytes.

3. When a repetition column is specified, a subscript must be specified. If a 
repetition column is specified with a subscript and its elements meet 
specified conditions, the LIKE predicate will be TRUE.

4. ANY can be specified as a subscript for a repetition column. When ANY is 
specified and at least one element in the column meets specified conditions, 
the LIKE predicate will be TRUE. If the LIKE predicate is not TRUE and a 
condition specified for at least one element in the column is UNKOWN, the 
LIKE predicate will be UNKNOWN. If the LIKE predicate is neither TRUE nor 
UNKNOWN, it will be FALSE.

5. If a repetition column is specified with a subscript and the column contains 
no elements, the LIKE predicate will be UNKNOWN.

pattern-character-string
1. Specifies a value specification.
2. A specifiable pattern character string must have the same data type as the 

data type of the value expression.
3. The following combinations of value expression data types and pattern 

character string data types are allowed:

Y: Specifiable
N: Not specifiable
1 Only character string literals can be specified in pattern character strings. 
In such a case, the character string literals are treated as national character 
string literals. When a character string literal is treated as a national character 
string literal, only the character data length is checked; the character codes 
are not checked. Special characters must be specified as 2-byte characters.

Value expression data type Pattern character string data type

Character 
string data

National 
character 

string data

Mixed 
character 

string data

Binary data

Character string data Y N Y N

National character string data N1 Y N N

Mixed character string data Y N Y N

Binary data Y2 N N Y



2. Details of Constituent Elements

171

2 Only hexadecimal character string literals can be specified.
4. The following special characters can be used in a pattern character string: the 

underline, the percent sign, and escape characters. For special characters in 
terms of binary data, you need to specify _, %, and a code that denotes the 
escape character. When used in a pattern character string, the underline and 
the percent sign have the meanings given in Table 2-1.

Table 2-1: Meanings of special characters in pattern character strings (LIKE 
predicate)

* When specifying a special character using binary data, you need to specify 
a code that denotes a special character (_, %) and is in the character code that 
was defined when HiRDB was set up.

5. If the pattern character string does not contain the % sign and the data lengths 
of the column to be compared and the pattern character string are different, 
the LIKE predicate is not TRUE.

6. If the character string and the pattern character string specified in 
value-expression are variable-length data (VARCHAR, NVARCHAR, 
MVARCHAR, or BINARY), HiRDB compares the data lengths in addition to the 
data and the pattern character string data in the value-expression.

7. When an embedded variable, an SQL variable, or an SQL parameter is 
specified as a pattern character string point, the following must be observed:

Item specification data type Special characters

Character string data • _ (underline): Any 1-byte character
• % (percent sign): Any character string with 0 or more characters

The underline and percent sign characters are expressed as one-byte 
characters.

National character string data • _ (underline): Any 1-byte character
• % (percent sign): Any national character string with 0 or more 

characters
The underline and percent sign characters are expressed as two-byte 
characters.

Mixed character string data • _ (underline): Any 1-byte character
• % (percent sign): Any mixed character string with 0 or more 

characters
The underline and percent sign characters are expressed as one-byte 
characters.

Binary data • 5f (the code that denotes an underline)*: any 1 byte
• 25 (the code that denotes the percent sign)*: any byte string with 

any number of bytes greater than or equal to 0



2. Details of Constituent Elements

172

If a pattern character string formed with a fixed-length embedded variable, 
SQL variable, or SQL parameter and if a pattern character string shorter than 
the length of the variable is set in that variable, the variable may be filled 
with trailing spaces or with any remaining invalid characters as values. If a 
retrieval is attempted using this type of pattern character string, target data 
that does not have matching trailing spaces or matching leftover characters 
will not be retrieved.
To avoid this problem when a fixed-length variable is used as a pattern 
character string, the percent sign should be set at the end of the variable.

Example:
In the following example, character string data containing 'ABCD' gives the 
indicated results if pattern character strings 'AB%' and 'AB%%' are assigned to 
variables:

Example:
A comparison between binary data 52454452554d and a variable in which a 
pattern character string, X'52454425', is set gives the following results:

Examples of pattern character strings
Table 2-2 shows typical pattern character strings used in the LIKE predicate.

Data type of variable Pattern character 
string

Character string 
data

Result of 
comparison

Variable-length character string 'AB%' 'ABCD' Matches.

'AB%%' 'ABCD' Matches.

Fixed-length character string (4 
bytes)

'AB% ' 'ABCD' Does not match.

'AB%%' 'ABCD' Matches.

Data type of variable Pattern character 
string

Binary data Result of 
comparison

BINARY type X'52454425' 52454452554d Matches

X'5245442525' 52454452554d Matches



2. Details of Constituent Elements

173

Table 2-2: Typical pattern character strings used in the LIKE predicate

Item Pattern 
character 

string

Meaning Example

Pattern 
character 

string

Pattern-matching 
character string

Front match nnn% The leading portion of the 
character string is nnn.

'ACT%' Character strings 
beginning with "ACT", 
such as ACT, ACTOR, 
and ACTION.

Rear match1 %nnn The trailing portion of the 
character string is nnn.

'%ING' Character strings ending 
with"ING", such as ING, 
BEING, and HAVING.

Any match %nnn% The character string 
contains nnn at any 
position.

N'%OR%' Character strings 
containing "or", such as 
OR, More, and CoLoR.1

Complete 
match

nnn The character string is 
equal to nnn.

'EQUAL' EQUAL

Partial match _..._nnn_...
_   I j

A specific portion (from 
ith to jth character) of the 
character string is equal to 
nnn; the other portions of 
the character string contain 
any characters.

'_I_' 3-letter character strings, 
in which the second 
character is "I", such as 
BIT, HIT, and KIT.

Other nnn%mmm The leading portion of the 
character string is nnn and 
the trailing portion is 
mmm.

'O%N' Character strings that 
begin with "O" and end 
with "N"" such as ON, 
OWN, and ORIGIN.

%nnn%mmm% The character string 
contains nnn at any 
position and mmm at a 
subsequent position.

'%O%N%' Character strings that 
contain "O," and have an 
"N" in any subsequent 
position, such as ON, 
ONE, DOWN, and 
COUNT.

nnn_..._       1  
i         mmm%              
j    k

From the first to the ith 
character is nnn; from the 
jth to the kth character is 
mmm.

'CO_ _ ECT%' Character strings that 
begin with "CO" and 
contain the string "ECT" 
in the 5th through 7th 
character positions, such 
as CORRECT, 
CONNECTER, and 
CONNECTION



2. Details of Constituent Elements

174

1 Because the space is regarded as a character for comparison purposes, a comparison 
with data that has trailing spaces produces the FALSE result.
2 In a national character string, the _ and % special characters are coded using the _ and 
% national characters.
Note

nnn and mmm denote any character strings that do not contain % or _.
escape character

Any underline or percent sign coded in a pattern character string is 
unconditionally treated as a special character; these characters cannot be treated 
as regular characters. When a special character is to be specified as a regular 
character, an escape character must be specified. Specifying any character after 
the ESCAPE keyword (an escape character) causes the special character following 
the escape character coded in the pattern character string to be treated as a regular 
character.
Example 1

A character string containing a '5%', such as '5%' and '25%':
'%5?%%' ESCAPE '?'

Example 2
A character string ending with 'PRINT_REC', such as 'SQLPRINT_REC':
'%PRINT@_REC' ESCAPE '@'

Example 3
A hexadecimal character string containing X'48695244425f' in the binary 
string, such as X'48695244425f':
X'4869524442ee5f' ESCAPE X'ee'

The following characters can be specified as escape characters:

Note

Item data type Specifiable character

Character data (CHAR, VARCHAR) Any one-byte character

Mixed character data (MCHAR, MVARCHAR)

National character data (NCHAR, NVARCHAR) Any two-byte character

Binary data (BINARY) Any single-byte value



2. Details of Constituent Elements

175

Care must be taken that the special character is specified following the 
escape character.

Notes
1. For improved performance, the definition length of the column used in a 

value expression on the left-hand side of LIKE should be either a maximum 
of 255 bytes (CHAR, VARCHAR, MCHAR, MVARCHAR, or BINARY) or a 
maximum of 127 characters (NCHAR or NVARCHAR).

2. Multi-byte characters stored in a CHAR or VARCHAR-type column are 
evaluated byte by byte. Consequently, if the character code for a single-byte 
character specified in a pattern character string is included in the character 
codes for the multi-byte characters, the result of LIKE predicate is true.
Example

Execute the following query in a condition where the query is set up in sjis 
character code, a CHAR-type column C1 is in Table T1, and a row  is in 
column C1:
SELECT C1 FROM T1 WHERE C1 LIKE '%A%' ;
The character code for the character  in hexadecimal is 8341. The 
character code in hexadecimal for the character A in the pattern character 
string is 41. Therefore, because the character code for , which is a 
multi-byte character, includes the character code for the single-byte 
character A, the result of the LIKE predicate is true.

(5) XLIKE predicate
Format
value-expression [NOT] XLIKE pattern-character-string [ESCAPE 
escape-character]

Conditions under which a predicate is TRUE
The XLIKE predicate is TRUE for a row in which the value of a specified value 
expression matches the pattern represented by a pattern character string. If NOT is 
specified, the predicate is TRUE for a rows for which the value does not match the 
pattern character string. The comparison performed is not case-sensitive.
Rules
The XLIKE predicate can be specified in the following locations:

ON search condition in a FROM clause
WHERE clause
Search condition of an IF statement



2. Details of Constituent Elements

176

Search condition of a WHILE statement
WHEN search condition of a searched CASE expression (excluding a searched CASE 
expression specified directly in a HAVING clause)
WHEN search condition of CREATE TRIGGER (trigger action condition)

value-expression
1. Specifies the value expression that will be the object of a character string 

pattern comparison.
However, value expressions in which only values other than SQL variables 
or SQL parameters are specified cannot be specified.

2. Character string data, national character data, or mixed character string data 
can be specified as the data type of a value expression.

3. When a repetition column is specified, a subscript must be specified. If a 
repetition column is specified with a subscript and its elements meet 
specified conditions, the XLIKE predicate will be TRUE.

4. ANY can be specified as a subscript for a repetition column. If ANY is 
specified and at least one element in the column meets specified conditions, 
the XLIKE predicate will be TRUE. If the XLIKE predicate is not TRUE and a 
condition specified for at least one element in the column is UNKOWN, the 
XLIKE predicate will be UNKNOWN. If the XLIKE predicate is neither TRUE 
nor UNKNOWN, it will be FALSE.

5. If a repetition column is specified with a subscript and the column contains 
no elements, the XLIKE predicate will be UNKNOWN.

pattern-character-string
1. A value specification must be specified in the pattern character string.
2. Any data type that can be specified in an value expression can be specified 

in a pattern character string.
3. The following combinations of value expression data types and pattern 

character string data types are allowed:

Value expression data type Pattern character string data type

Character 
string data

National character 
string data

Mixed character 
string data

Character string data Y N Y

National character string data N* Y N

Mixed character string data Y N Y



2. Details of Constituent Elements

177

Y: Specifiable
N: Not specifiable
* Only character string literals can be specified in pattern character strings. 
In such a case, the character string literals are treated as national character 
string literals. When a character string literal is treated as a national character 
string literal, only the character data length is checked; the character codes 
are not checked. Special characters must be specified as 2-byte characters.

4. The following special characters can be used in a pattern character string: the 
underline, the percent sign, and escape characters. When used in a pattern 
character string, the underline and the percent sign have the meanings given 
in Table 2-3.

Table 2-3: Meanings of special characters in pattern character strings (XLIKE 
predicate)

5. Comparison of the following characters with pattern character string data is 
not case-sensitive:
Alphanumeric national characters and mixed characters

6. This predicate is not TRUE if a percent sign does not occur in the pattern 
character string or the column data and the pattern character string differ in 
length.

7. If the character string and pattern character string specified in the value 
expression are both variable-length character strings (VARCHAR, NVARCHAR, 
or MVARCHAR), HiRDB compares the character string lengths, as well as the 
character string data and the pattern character string data.

Item specification data type Special characters

Character string data • _ (underline): Any 1-byte character
• % (percent sign): Any character string with 0 or more characters

The characters underline and percent sign are expressed as one-byte 
characters.

National character string data • _ (underline): Any 1-byte character
• % (percent sign): Any national character string with 0 or more 

characters
The characters underline and percent sign are expressed as two-byte 
characters.

Mixed character string data • _ (underline): Any 1-byte character
• % (percent sign): Any mixed character string with 0 or more 

characters
The characters underline and percent sign are expressed as one-byte 
characters.



2. Details of Constituent Elements

178

8. When an embedded variable, an SQL variable, or an SQL parameter is to be 
specified as a pattern character string, the following point must be observed:
If a pattern character string is formed with a fixed-length embedded variable, 
SQL variable, or SQL parameter and if a pattern character string shorter than 
the length of the variable is set in that variable, the variable may be filled 
with trailing spaces or with any remaining invalid characters as values. When 
this type of pattern character string is used as a search string, data that does 
not similarly contain trailing spaces or invalid characters cannot be retrieved. 
Therefore, when using a fixed-length variable as a pattern character string, 
the variable must be filled with trailing percent signs.

Examples of pattern character strings
Table 2-4 shows typical examples of pattern character strings used in the XLIKE 
predicate.

Table 2-4: Examples of pattern character strings used in the XLIKE predicate

Item Pattern
character 

string

Meaning Example

Pattern 
character 

string

Pattern-matching 
character string

Front match nnn% The leading portion of the 
character string is nnn.

'ACT%' Character strings 
beginning with "ACT"1, 
such as ACT, Actor, and 
action.

Rear match %nnn The trailing portion of the 
character string is nnn.

'%ING' Character strings ending 
with "ING"2, such as Ing, 
Being, and HAVING.

Any match %nnn% The character string 
contains nnn at any 
position.

'%OR%' Character strings 
containing "or"3, such as 
OR, More, and CoLoR.

Complete 
match

nnn The character string is 
equal to nnn.

'MAX' Character strings such as 
MAX, max, and mAx4

Partial match _..._nnn_..
._     i  j

A specific portion (from 
the ith through the jth 
character) of the character 
string is equal to nnn, the 
other portions of the 
character string contain any 
characters.

'_I_' A three-character 
character string in which 
the second character is 
either "I" or "i", such as 
Bit, HIT, and Kit.



2. Details of Constituent Elements

179

Note 1: nnn and mmm are any character strings that do not contain % or _.
Note 2: Because the space character is also used as a comparison character, 
comparison is with data containing trailing spaces, this string yields the FALSE result.
Note 3: In a national character string, the special characters (% and _) should be coded 
as the national character "%" or "_".
1 One of the character strings ACT, ACt, Act, aCT, aCt, acT, or act
2 One of the character strings ING, INg, Ing, InG, iNG, iNg, inG, or ing
3 One of the character strings OR, Or, oR, or or
4 One of the character strings MAX, MAx, Max, MaX, mAX, mAx, maX, or max
5 One of the character strings CO, Co, cO, or co
6 One of the character strings ECT, ECt, Ect, EcT, eCT, eCt, ecT, or ect
Escape-character

Any underline or percent sign coded in a pattern character string is 
unconditionally treated as a special character; these characters cannot be treated 
as regular characters. When a special character is to be specified as a regular 
character, an escape character must be specified. Specifying any character after 

Other nnn%mmm The leading portion of the 
character string is nnn and 
the trailing portion is mmm.

'O%N' Character strings that 
begin with "O" or "o" and 
end with "N" or "n", such 
as on, Own, and ORIGIN.

%nnn%mmm% The character string 
contains nnn at any 
position and mmm at a 
subsequent position.

'%O%N%' Character strings that 
contain "O" or "o" and 
have "N" or "n" at a 
subsequent position, such 
as ON, one, DowN, and 
Count.

nnn_..._         
1 I      mmm%           
j    k

From the first through the 
ith character is nnn; from 
the jth through the kth 
character is mmm.

'CO_ _ ECT%' Character strings that 
begin with "CO"5, and 
whose 5th through the 7th 
characters are "ECT"6, 
such as correct, Connecter, 
and CONNECTION.

Item Pattern
character 

string

Meaning Example

Pattern 
character 

string

Pattern-matching 
character string



2. Details of Constituent Elements

180

the ESCAPE keyword (escape character) causes the special character following the 
escape character coded in the pattern character string to be treated as a regular 
character.
Example 1

A character string containing a '5%', such as '5%' and '25%':
'%5?%%' ESCAPE '?'

Example 2
A character string ending with 'PRINT_REC', such as 'SQLPRINT_REC':
'%PRINT@_REC' ESCAPE '@'

The following characters can be specified as escape characters:

Note
Care must be taken that the special character is specified following the 
escape character.

Notes

1. For improved performance, the definition length of the column used in a 
value expression on the left-hand side of XLIKE should be either a maximum 
of 255 bytes (CHAR, VARCHAR, MCHAR, or MVARCHAR) or a maximum of 127 
characters (NCHAR or NVARCHAR).

2. Multi-byte characters stored in a CHAR or VARCHAR-type column are 
evaluated byte by byte. Consequently, if the character code for a single-byte 
character specified in a pattern character string is included in the character 
codes for the multi-byte characters, the result of the XLIKE predicate is true.

Example

Execute the following query in a condition where the query is set up in sjis 
character code, a CHAR-type column C1 is in Table T1, and a row  is in column 
C1:
SELECT C1 FROM T1 WHERE C1 XLIKE '%A%' ;
The character code for the character  in hexadecimal is 8341. The character 
code in hexadecimal for the character A in the pattern character string is 41. 

Item data type Specifiable character

Character data (CHAR, VARCHAR) Any one-byte character

Mixed character data (MCHAR, MVARCHAR)

National character data (NCHAR, NVARCHAR) Any two-byte character



2. Details of Constituent Elements

181

Therefore, because the character code for , which is a multi-byte character, 
includes the character code for the single-byte character A, the result of the XLIKE 
predicate is true.

(6) SIMILAR predicate
Format

Conditions under which a predicate is TRUE

The SIMILAR predicate is TRUE for a row in which the value of a specified value 
expression matches the pattern expressed by a pattern character string. If NOT is 
specified, the predicate is TRUE for a row in which the value of a specified value 
expression does not match the pattern expressed by the pattern character string. Note 
that when the length of the pattern character string is 0, the SIMILAR predicate is TRUE 
when the length of the value expression is 0.
Rules

value-expression
1. Specifies the value expression that is to be compared with the character 

string pattern. However, you cannot specify a value expression that specifies 
only the ? parameter, or a value of an embedded variable.

2. The following data types can be specified in a value expression or a pattern 
character string: character string data, national character string data, mixed 
character string data, or BINARY with a maximum definition length of 32,000 
bytes.

3. When a repetition column is specified, a subscript must be specified. If a 
repetition column is specified with a subscript and its elements meet 
specified conditions, the SIMILAR predicate will be TRUE.

4. ANY can be specified as a subscript for a repetition column. When ANY is 
specified, the SIMILAR predicate will be TRUE as long as at least one of the 
elements of the column satisfies the condition. If the SIMILAR predicate is 
not TRUE and if the condition specified for at least one of the elements of the 
column is unknown, the SIMILAR predicate will be FALSE. When the 
SIMILAR predicate is neither TRUE nor unknown, it is FALSE.

5. If a repetition column is specified with a subscript and the column contains 
no elements, the SIMILAR predicate will be unknown.

pattern-character-string
1. A value expression must be specified in the pattern character string.

 
 value-expression [NOT] SIMILAR-TO-pattern-character-string [ESCAPE escape-character]
 



2. Details of Constituent Elements

182

2. You cannot specify a repetition column for a value expression.
3. The following combinations of value expression data types and pattern 

character string data types are allowed:

Legend:
Y: Specifiable
N: Not specifiable

#1
Only character string literals can be specified in pattern character strings. In such 
a case, the character string literals are treated as national character string literals. 
When a character string literal is treated as a national character string literal, only 
the character data length is checked; the character codes are not checked. Special 
characters must be specified as 2-byte characters.

#2
Only hexadecimal character string literals can be specified.
4. The format of a regular expression to be specified for a pattern character 

string is shown below:

Value expression data 
type

Pattern character string or escape character data type

Character 
string data

National 
character string 

data

Mixed character 
string data

Binary data

Character string data Y N Y N

National character string 
data

Y#1 Y N N

Mixed character string data Y N Y N

Binary data Y#2 N N Y



2. Details of Constituent Elements

183

5. The syntax rules for a regular expression to be specified for a pattern 
character string are described below:

 Specify one of the following for the normal character set identifier:
 'ALPHA', 'UPPER', 'LOWER', 'DIGIT', 'ALNUM', 'SPACE', 
'WHITESPACE'

 The non-escaped characters include all the individual characters other than 
the following special characters:

 
regular-expression ::= normal-term | regular-expression | regular-expression
normal-term ::= normal-factor | normal-term normal-factor
normal-factor ::=   normal-primary
               | normal-primary *
               | normal-primary +
               | normal-primary ?
               | normal-primary repetition-factor
repetition-factor ::= { lower-limit [ upper-limit-specification ] }
upper-limit-specification ::= , [ upper-limit ]
normal-primary ::=   character-specifier
                 | %
                 | normal-character-set
                 | normal-character-set-identifier-specification
                 | ( regular-expression )
character-specifier ::=   non-escape-character
                 | escape-character
normal-character-set ::=   _
                   | [ character-list... ]
                   | [ ^ character-list... ]
character-list ::=   character-specifier
               | character-specifier - character-specifier
               | normal-character-set-identifier-specification
normal-character-set-identifier-specification ::= [ : normal-character-set-identifier : ]

Special character Code to be specified in binary data

_(underscore) X'5F'

% (percent sign) X'25'

* (asterisk) X'2A'

+ (plus sign) X'2B'

? (question mark) X'3F'

| (vertical bar) X'7C'

( (left parenthesis) X'28'



2. Details of Constituent Elements

184

#: These symbols are treated as special characters only within a character 
string.

 To specify a special character as a regular character (that is, to escape it), 
you must specify it following the escape character.

 For the lower and upper limits, specify integers that satisfy the following 
condition: 0  lower limit  upper limit 256.

6. Table 2-5 shows the meaning of each regular expression specification to be 
specified for the pattern character string.

Table 2-5: Meaning of each regular expression specification

) (right parenthesis) X'29'

{ (left curly bracket) X'7B'

} (right curly bracket) X'7D'

[ (left square bracket) X'5B'

] (right square bracket) X'5D'

Escape character Value specified in ESCAPE

- (minus sign)# X'2D'

: (colon)# X'3A'

^ (caret)# X'5E'

Regular expression 
specification

Meaning

Character specifier Means a character (character string with a length of 1) specified by a 
character specifier.

_ (underscore) Means a character with a length of 1.

% (percent sign) Means a character string with a length of 0 or greater.

Normal primary* Means 0 or more repetitions of the preceding normal primary.

Normal primary+ Means one or more repetitions of the preceding normal primary.

Normal primary? Means 0 or one repetition of the preceding normal primary.

regular-expression|regular-expre
ssion

Means either of the regular expressions specified before and after the vertical 
bar (|).

Special character Code to be specified in binary data



2. Details of Constituent Elements

185

The following table shows the character codes of the characters included in 
[:WHITESPACE:]:

(regular-expression) Means grouping of the regular expression specified within the parentheses.
When a regular expression is to be used, this specification is used to clarify 
that it is a regular expression. It is used primarily when the vertical bar (|) is 
used.

normal-primary{n}
normal-primary{n,m}
normal-primary{n,}

Means that the preceding normal primary is repeated. The following shows 
how a repetition count is specified:
{n}: Repeats the preceding regular expression n times.
{n,m}: Repeats the preceding regular expression at least n times but not 
more than m times.
{n,}: Repeats the preceding regular expression at least n times.

[character-list...] Means any of the characters listed.

[^character-list...] Means any character except those listed.

character-specifier-1-character-s
pecifier-2

When specified in a character string list, means any character between the 
character indicated by character-specifier-1 and the character indicated by 
character-specifier-2 (character code range). 

[:ALPHA:] Any upper-case alphabetic character (excluding \, @, and #) or lower-case 
alphabetic character

[:UPPER:] Any upper-case alphabetic character (excluding \, @, and #)

[:LOWER:] Any lower-case alphabetic character

[:DIGIT:] Any numeric digit

[:ALNUM:] Any upper-case alphabetic character (excluding \, @, and #), lower-case 
alphabetic character, or numeric digit

[:SPACE:] A single-byte space (double-byte space when the value expression is national 
character string data)

[:WHITESPACE:] Any single character from among the characters whose character codes are 
shown in the table below (what is meant by [:WHITESPACE:] depends on 
the type of character codes)

Unicode 
(UTF-8)

Shift_JIS 
kanji 

character

EUC 
Japanese 

kanji 
character

EUC 
Chiense 

kanji 
character

LANG-C Name of the 
character 

specified by 
Unicode rules

X'09' X'09' X'09' X'09' X'09' Horizontal 
Tabulation

Regular expression 
specification

Meaning



2. Details of Constituent Elements

186

X'0A' X'0A' X'0A' X'0A' X'0A' Line Feed

X'0B X'0B X'0B X'0B X'0B Vertical Tabulation

X'0C' X'0C' X'0C' X'0C' X'0C' Form Feed

X'0D' X'0D' X'0D' X'0D' X'0D' Carriage Return

X'20' X'20' X'20' X'20' X'20' Space

X'C285' -- -- -- -- Next Line#

X'C2A0' -- -- -- -- No-Break Space#

X'E19A80' -- -- -- -- Ogham Space 
Mark#

X'E28080' -- -- -- -- En Quad#

X'E28081' -- -- -- -- Em Quad#

X'E28082' -- -- -- -- En Space#

X'E28083' -- -- -- -- Em Space#

X'E28084' -- -- -- -- Three-Per-Em 
Space#

X'E28085' -- -- -- -- Four-Per-Em 
Space#

X'E28086' -- -- -- -- Six-Per-Em Space#

X'E28087' -- -- -- -- Figure Space#

X'E28088' -- -- -- -- Punctuation Space#

X'E28089' -- -- -- -- Thin Space#

X'E2808A' -- -- -- -- Hair Space#

X'E280A8' -- -- -- -- Line Separator#

X'E280A9' -- -- -- -- Paragraph 
Separator#

Unicode 
(UTF-8)

Shift_JIS 
kanji 

character

EUC 
Japanese 

kanji 
character

EUC 
Chiense 

kanji 
character

LANG-C Name of the 
character 

specified by 
Unicode rules



2. Details of Constituent Elements

187

Legend:
--: Not applicable

#
Not included in [:WHITESPACE:] when the value expression is character string 
type.
7. Binary data cannot be specified for a normal character set identifier.
8. You should note the following about specifying an embedded variable, SQL 

variable, or SQL parameter as a pattern character string:
When a fixed-length embedded variable, SQL variable, or SQL parameter is 
specified as a pattern character string, setting a pattern character string that 
is shorter than the length of the variable may cause spaces to be entered 
following the variable, or may set the remaining invalid characters as a value. 
When such a pattern character string is used for a search, data that is not 
followed by similar spaces or that does not contain the same value as the 
invalid characters is not retrieved. Therefore, when using a fixed-length 
variable as a pattern character string, you should fill the excess positions with 
the percent sign (%).

Example 1:
The table below shows the comparison results when AB% and AB%% are 
specified for the pattern character string and the character string data is 
ABCD.

X'E280AF' -- -- -- -- Narrow No-Break 
Space#

X'E38080' 0x8140 X'A1A1' X'A1A1' -- Ideographic Space#

Variable data type Pattern character 
string

Character string data Comparison result

Variable-length character 
string

'AB%' 'ABCD' Matches.

'AB%%' 'ABCD' Matches.

Fixed-length character 
string (4 bytes)

'AB% ' 'ABCD' Does not match.

'AB%%' 'ABCD' Matches.

Unicode 
(UTF-8)

Shift_JIS 
kanji 

character

EUC 
Japanese 

kanji 
character

EUC 
Chiense 

kanji 
character

LANG-C Name of the 
character 

specified by 
Unicode rules



2. Details of Constituent Elements

188

Example 2:
The table below shows the comparison results when X'52454425 is 
specified for the pattern character string and the binary data is 
52454452554d.

Invalid pattern character string

1. The table below shows the conditions that make a pattern character string 
invalid (KFPA11424-E message is issued):

Variable data type Pattern character 
string

Binary data Comparison result

BINARY type X'52454425' 52454452554d Matches.

X'5245442525' 52454452554d Matches.

Related item Condition Examples of invalid 
pattern character 

strings

Normal primary*
Normal primary+
Normal primary?

Normal primary preceding * , + , or ? is not specified. (*), (+), (?)

regular-expression|regul
ar-expression

A regular expression is not specified on both sides of 
the vertical bar (|).

a|, (a|), (a||b)

(regular-expression) No regular expression is specified within the 
parentheses.

()

Left and right parentheses do not match. (abc, abc)

normal-primary{n}
normal-primary{n,m}
normal-primary{n,}

The normal primary that should precede the 
repetition factor is not specified.

{4}

The repetition count specified for the repetition 
factor is invalid.

a{-1}, a{4,2}

Left and right curly brackets do not match. a{4, a4}

[character-list...]
[^character-list...]

Character list contains a non-escaped special 
character. Note that a normal character set identifier 
can be specified.

[a%c]

The character specified before or after the minus sign 
(-) is invalid.

[-], [c-a], [a--]

No character list is specified within the square 
brackets.

[], [^]

Left and right square brackets do not match. [a-c, a-c]



2. Details of Constituent Elements

189

Examples of pattern character strings

Table 2-6 shows typical examples of pattern character strings used in the 
SIMILAR predicate.
Table 2-6: Examples of pattern character strings used in the SIMILAR predicate

Escape character The last character of a pattern character string is an 
escape character.

abc\ (when \ is specified as 
the escape character)

Normal character set 
identifier specification

The normal character set identifier is invalid. [:INVALID:]

Item Pattern 
character 

string

Meaning Example

Pattern 
character 

string

Pattern-matching 
character string 

Front match nnn% The leading portion of the 
character string is nnn.

'ACT%' Character strings 
beginning with ACT, such 
as ACT, ACTOR, ACTION.

Rear match#1 %nnn The trailing portion of the 
character string is nnn.

'%ING' Character strings ending 
with ING, such as ING, 
BEING, and HAVING.

Any match %nnn% Any portion of the 
character string contains 
nnn.

N'%A%' Character strings 
containing A, such as A, 
ACT, CA, and TACT #2

Complete 
match

nnn Character string is the 
same as nnn.

'EQUAL' EQUAL

Partial match _..._nnn_...
_
  i j

A specific portion (from 
the ith through the jth 
character) of the character 
string is the same as nnn, 
but the remaining 
characters are different.

'_I_' Three-letter character 
strings in which the 
second letter is I, such as 
BIT, HIT, and KIT.

Repetition of 
at least once

mmm[0-9]+
1  i
or
mmm[:DIGIT:
]+
1  i

The leading portion of the 
character string is mmm 
and the value beginning 
with the ith character is 
numeric.

'KFPA11[0-9]
+-E'
or
'KFPA11[:DIG
IT :]+-E'

Character strings 
beginning with KFPA11 in 
which numerics begin at 
the seventh character, 
followed by -E, such as 
KFPA11104-E and 
KFPA11901-E.

Related item Condition Examples of invalid 
pattern character 

strings



2. Details of Constituent Elements

190

Several 
selected 
characters

mmm(n|o)
1  i
or
mmm[no]
1  i

The leading portion of the 
character string is mmm 
and the ith character is n or 
o.

'KFPA%-(W|E)
'
or
'KFPA%-[WE]'

Character strings 
beginning with KFPA in 
which the last two 
characters are -E or -W, 
such as KFPA20008-W 
and KFPA11901-E.

Repetition of 
between zero 
and one time

nnno?mmm The leading and trailing 
portions of the character 
string are nnn and mmm, 
respectively, and the 
character W may or may not 
be present between the two 
character strings.

'OW?N' Character strings 
beginning with O and 
ending with N in which the 
character W may or may 
not be present between O 
and N, such as ON and OWN.

Repetition of 
at least zero 
times

nnno*mmm The leading and trailing 
portions of the character 
string are nnn and mmm, 
respectively, and the 
character 0 is repeated at 
least 0 times between the 
character strings.

10*1 Character strings 
beginning with 1, 
followed by 0 at least zero 
times, and ending with 1, 
such as 11, 101, and 
1001.

n repetitions mmm{n} The leading portion of the 
character string is mmm, 
followed by n repetitions.

[1-9]0{3} Character strings 
beginning with 1 through 
9, followed by 0 repeated 
three times, such as 1000, 
2000, and 3000.

Item Pattern 
character 

string

Meaning Example

Pattern 
character 

string

Pattern-matching 
character string 



2. Details of Constituent Elements

191

Note:
nnn and mmm are any character strings that do not contain a special 
character.

#1
Because the space character is also used as a comparison character, 
comparison with data containing trailing spaces produces the FALSE result.

#2
Special characters appropriate to individual national characters are used for 
the special characters in a national character string.

escape-character
Special characters within a pattern character string cannot be handled as regular 
characters. When a special character needs to be specified as a regular character, 
an escape character must also be specified. The escape character is any character 
that you specify following the ESCAPE keyword. You can then specify the defined 
escape character before the special character in the pattern character string, which 
causes the special character to be handled as a regular character. You can specify 
as the escape character a character literal, ? parameter, embedded variable, SQL 

Other nnn%mmm The leading and trailing 
portions of the character 
string are nnn and mmm, 
respectively.

'O%N' Character strings 
beginning with O and 
ending with N, such as ON, 
OWN, and ORIGIN.

%nnn%mmm% Character string containing 
nnn anywhere within it, 
and containing mmm 
anywhere in the following 
portion.

'%O%N%' Character strings 
containing the character O 
and also containing the 
character N in the 
following portion, such as 
ON, ONE, DOWN, and 
COUNT.

nnn_..._
1 i
mmm%
j  k

The first through the ith 
characters are nnn and the 
jth through kth characters 
are mmm.

'CO_ _ECT%' Character strings 
beginning with CO and in 
which the fifth through 
seventh characters are 
ECT, such as CORRECT,
CONNECTOR,
and CONNECTION.

Item Pattern 
character 

string

Meaning Example

Pattern 
character 

string

Pattern-matching 
character string 



2. Details of Constituent Elements

192

variable name, or SQL parameter name.
Example 1

A character string containing '5%', such as '5%' or '25%':
 
  '%5\%%' ESCAPE '\'

Example 2
A character string ending with 'PRINT_REC', such as 'SQLPRINT_REC':
 
  '%PRINT\_REC' ESCAPE '\'
 

Example 3
A hexadecimal character string containing X'48695244425f' in the binary 
string, such as X'48695244425f':
 
  X'4869524442ee5f' ESCAPE X'ee'
 

The following characters can be specified as escape characters:

Note
You must be sure to specify the special character following the escape 
character.

Notes

1. For improved performance, the definition length of the column used in a 
value expression on the left-hand side of SIMILAR should be either a 
maximum of 255 bytes (CHAR, VARCHAR, MCHAR, MVARCHAR, or BINARY) or 
a maximum of 127 characters (NCHAR or NVARCHAR).

2. Multi-byte characters stored in a CHAR or VARCHAR-type column are 
evaluated byte by byte. Consequently, if the character code for a single-byte 
character specified in a pattern character string is included in the character 
codes for the multi-byte characters, the result of the SIMILAR predicate is 

Item data type Specifiable character

Character data (CHAR, VARCHAR) Any one-byte character

Mixed character data (MCHAR, MVARCHAR)

National character data (NCHAR, NVARCHAR) Any two-byte character

Binary data (BINARY) Any single-byte value



2. Details of Constituent Elements

193

true.
Example:
Execute the following query in a condition where the query is set up in sjis 
character codes, the CHAR-type column C1 is in Table T1, and the row  is 
in column C1:
SELECT C1 FROM T1 WHERE C1 LIKE '%A%' ;
The character code for the character  in hexadecimal is 8341. The 
character code in hexadecimal for the character A in the pattern character 
string is 41. Therefore, because the character code for , which is a 
multi-byte character, includes the character code for the single-byte 
character A, the result of the SIMILAR predicate is true.

3. If the pattern character string is extremely long or if the special characters {} 
are specified consecutively, search performance may deteriorate or the 
amount of memory used may increase.

(7) BETWEEN predicate
Format
row-value-constructor-1 [NOT] BETWEEN
   row-value-constructor-2 AND row-value-constructor-3

Conditions under which predicate is TRUE
The BETWEEN predicate is TRUE for those rows that satisfy the following condition:
row-value-constructor-2  row-value-constructor-1  row-value-constructor-3
If NOT is specified, the BETWEEN predicate is TRUE for those rows that do not satisfy 
the above condition.

Rules
(row-value-constructor-1)
1. A row value constructor element consisting solely of a value specification cannot 

be specified.
2. When a repetition column is specified, a subscript must be specified. If a 

repetition column is specified with a subscript and its elements meet specified 
conditions, the BETWEEN predicate will be TRUE.

3. ANY can be specified as a subscript for a repetition column. If ANY is specified and 
at least one element in the column meets specified conditions, the BETWEEN 
predicate will be TRUE. If the BETWEEN predicate is not TRUE and a condition 
specified for at least one element in the column is UNKNOWN, the BETWEEN 
predicate will be UNKNOWN. If the BETWEEN predicate is neither TRUE nor 
UNKNOWN, it will be FALSE.



2. Details of Constituent Elements

194

4. If a repetition column is specified with a subscript and the column contains no 
elements, the BETWEEN predicate will be UNKNOWN.

(row-value-constructor-2 and row-value-constructor-3)
1. Repetition columns cannot be specified.
Common
1. Row value constructor elements located in corresponding positions in row value 

constructors are treated as corresponding values. Corresponding values must have 
data types that are mutually convertible. If, however, national character data is 
specified in row-value-constructor-1, and character string literals are specified in 
the corresponding values for row-value-constructor-2 or 
row-value-constructor-3, the character string literals are treated as national 
character string literals. If a character string literal is treated as a national 
character string literal, HiRDB only checks the length of the character data, not 
the character code.

2. Values of any of the following data types cannot be specified in 
row-value-constructor-1, row-value-constructor-2, or row-value-constructor-3:

• BLOB
• BINARY with a minimum length of 32,001 bytes
• BOOLEAN
• Abstract data type

(8) Quantified predicate
Format
 
row-value-constructor= {= | <> | ^= | != | < | <=|> | >=}
    {{ANY | SOME} | ALL}



2. Details of Constituent Elements

195

(table-subquery)
([SQL-optimization-specification-for-subquery-execution-method]
SELECT [{ALL | DISTINCT}] {selection expression |*}
(table-expression)
FROM table-reference [,table-reference]...
[WHERE search-condition]
[GROUP BY value-expression [,value-expression]...]
[HAVING search condition])

Conditions under which a predicate is TRUE
If either ANY or SOME is specified and if any one row in the results of a table subquery 
satisfies the comparison condition with respect to a row value constructor, the result of 
the quantified predicate is TRUE.
If ALL is specified and if all rows in the results of a table subquery satisfy the 
comparison condition with respect to a row value constructor, or if the result of a table 
subquery is the empty set, the result of the quantified predicate is TRUE.
Rules
1. Values that yield any of the following data types as a result of an operation cannot 

be specified:
• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• BOOLEAN
• Abstract data type

2. This predicate is indefinite with respect to rows in which the result of the row 
value constructor is null.

3. For table subqueries, see 2.4 Subqueries.
4. The SOME quantified predicate and the ANY quantified predicate produce the same 

results.
5. Some quantified predicates have the same meaning as the IN predicate, as 

follows:

Quantified predicate IN predicate

row-value-constructor = row-value-constructor = ANY 
table-subquery
or
row-value-constructor = SOME table-subquery

row-value-constructor IN table-subquery

row-value-constructor <> ALL table-subquery row-value-constructor NOT IN table-subquery



2. Details of Constituent Elements

196

6. The following table shows the result of a quantified predicate in which either ANY 
or SOME is specified. If any row in the results of a table subquery satisfies 
specified conditions, the result of the quantified predicate is TRUE. If the results 
of comparison of all rows are all FALSE or if the result of a table subquery is the 
empty set, the result of the quantified predicate is FALSE. If neither is the case, 
the result of the quantified predicate is indefinite.
Table 2-7: Result of a quantified predicate with ANY or SOME specified

7. Table 2-8 shows the results of a quantified predicate in which ALL is specified.
The result of the quantified predicate is TRUE if the comparison results of all rows 
in the results of a table subquery are TRUE or if the results of a table subquery are 
TRUE. If neither of the above two conditions is applicable, the quantified predicate 
is indefinite.
Table 2-8: Result of a quantified predicate with ALL specified

8. A qualified predicate cannot be specified in the following locations:
• Search condition of an IF statement
• Search condition of a WHILE statement
• WHEN search condition (trigger action condition) of CREATE TRIGGER

9. When specifying a repetition column in a row value constructor element, specify 
a subscript. If a repetition column is specified with a subscript and its elements 
meet specified conditions, the quantified predicate will be TRUE.

10. ANY can be specified as a subscript for a repetition column. If ANY is specified and 
at least one element in the column meets specified conditions, the quantified 

Result of comparing rows in subquery Result of quantified predicate (ANY or SOME)

TRUE rows found TRUE

No TRUE rows Indefinite Indefinite

Not indefinite FALSE

Empty set FALSE

Result of comparing rows in subquery Result of quantified predicate (ALL)

FALSE rows found FALSE

No FALSE rows Indefinite Indefinite

Not indefinite TRUE

Empty set TRUE



2. Details of Constituent Elements

197

predicate will be TRUE. If the quantified predicate is not TRUE and a condition 
specified for at least one element in the column is UNKNOWN, the quantified 
predicate will be UNKNOWN. If the quantified predicate is neither TRUE nor 
UNKNOWN, it will be FALSE.

11. If a repetition column is specified with a subscript and the column contains no 
elements, the quantified predicate will be UNKNOWN.

12. The number of columns in the row value constructor specified on the left side of 
a quantified predicate must have the same number of columns as the results of a 
table subquery.

Note

1. Specifying a quantified predicate may cause HiRDB to create a work table. In this 
case, the processing of the quantified predicate may be subject to restrictions, 
depending on the row length of the work table. For details about work table row 
lengths, see the HiRDB Version 8 Installation and Design Guide.

(9) EXISTS predicate
Format
EXISTS
  (table-subquery)
     ([SQL-optimization-specification-for-subquery-execution-method]
       SELECT [{ALL|DISTINCT}] {selection-expression|*}
      (Table-Expression)
      FROM table-reference [,table-reference]...
         [WHERE search-condition]]...
         [GROUP BY value-expression [, value-expression]...]
         [HAVING search-condition])

Conditions under which a predicate is TRUE
The results of the EXISTS predicate are TRUE unless the results of the table subquery 
are the empty set.
Rules
1. For table subqueries, see 2.4 Subqueries.
2. The EXISTS predicate is used to determine whether the results of a table subquery 

are the empty set.
3. The following table shows the results of an EXISTS predicate. The result of the 

EXISTS predicate is TRUE if the results of a table subquery are one or more rows. 
The EXISTS predicate is FALSE if the result of the subquery is the empty set.



2. Details of Constituent Elements

198

Table 2-9: Result of EXISTS predicate

4. The EXISTS predicate cannot be specified in the following locations:
• Search condition of an IF statement
• Search condition of a WHILE statement
• WHEN search condition (trigger action condition) of CREATE TRIGGER

(10) Boolean predicate
Format
value-expression IS [NOT] {TRUE|FALSE|UNKNOWN}

Conditions under which a predicate is TRUE
If the logical value of a value expression matches the specified TRUE, FALSE, or 
UNKNOWN, the Boolean predicate will be TRUE. If NOT is specified and the logical value 
of the value expression does not match the specified TRUE, FALSE, or UNKNOWN, the 
Boolean predicate will be TRUE.
Rules
1. Table 2-10 shows the result of a predicate obtained by evaluating a Boolean 

predicate. If NOT is specified, the logical values shown in Table 2-10 are reversed.
Table 2-10: Results of a predicate obtained by evaluating a Boolean predicate

2. Values in the following data type can be specified in a value expression:
• BOOLEAN

3. An undefined Boolean value is the same as a null value.
(11) Structured repetition predicate

Format

Number of rows meeting query condition as result 
of subquery

Result of EXISTS predicate

One or more rows TRUE

0 rows FALSE

Logical value of value expression IS TRUE IS FALSE IS UNKNOWN

TRUE TRUE FALSE FALSE

FALSE FALSE TRUE FALSE

UNKNOWN FALSE FALSE TRUE



2. Details of Constituent Elements

199

ARRAY (column-specification [, column-specification]...)
   [ANY] (search-condition)

Conditions under which a predicate is TRUE
If the repetition column specified in ARRAY (column-specification [, 
column-specification]...) is treated as repetitions of multiple items that are a set of 
elements with the same subscript and if any of the elements meet specified search 
conditions, the structured repetition predicate will be TRUE.
Rules
ARRAY (column-specification [,column-specification]...)

1. column-specification specifies a repetition column to be structured.
2. The column specifications should be entirely from one index constituent 

column.
3. The following cannot be specified in a column specification:

 Columns of different tables
 Columns derived from different tables

"Different tables" includes tables with the same base table but different 
correlation names.

4. Columns that make external references cannot be specified.
5. The same column cannot be specified more than once.
6. A maximum of 16 columns can be specified.

search-condition
Specifies a search condition. Structured repetition predicates are subject to the 
following rules.
1. None of the following items can be specified in a search condition:

 Subscripted column specifications
 Columns other than a repetition column specified in ARRAY 

(column-specification [, column-specification]...)
 Predicates containing a system-defined scalar function, a function call, or 

IS_USER_CONTAINED_IN_HDS_GROUP
 Structured repetition columns
 Predicates not containing a column specification
 Subqueries



2. Details of Constituent Elements

200

2. If the NULL predicate is specified and the column does not contain any 
elements, the NULL predicate will be UNKNOWN. If a specified element is the 
NULL value, the NULL predicate will be TRUE.

Common rules
1. Search conditions that contain a structured repetition predicate cannot be negated 

by NOT.
2. Structured repetition predicates cannot be specified in a search condition in the IF 

or WHILE statement.
3. Structured repetition predicates cannot be specified in the HAVING clause.
4. Structured repetition predicates cannot be specified in a search condition in a 

CASE expression.
5. An OR containing a structured repetition predicate and any of the following 

columns (excluding external reference columns) in its operand search condition 
cannot be specified:

• Columns of different tables
• Columns derived from different tables

"Different tables" includes tables with the same base table but different 
correlation names.

6. Structured repetition predicates cannot be specified in a search condition in a 
derived query expression in a view definition.

7. When a structured repetition predicate in the ON search condition for a query 
specification including an outer-joined joined table is specified, specify columns 
of the inner table in the column specification.

8. When a structured repetition predicate in the WHERE clause of a query 
specification including an outer-joined joined table is specified, specify columns 
of the outermost table in the outer join in the column specification.

Usage example
From a listing of students' grades, find the names of students who had a minimum score 
of 85 in mathematics. The grades list consists of a repetition column of 10 elements 
composed of subjects and scores.
SELECT name FROM grades-list
   WHERE ARRAY (subject,score) [ANY]
      (subject='mathematics' AND score>=85)



2. Details of Constituent Elements

201

Note

The grades list has the following table definition and index definition:
Table definition:
CREATE TABLE grades-list (name MCHAR(10),
                          subject MCHAR(10) ARRAY[4],
                          score SMALLINT ARRAY[4];

Index definition:
CREAT INDEX subject-score
            ON grades-list (subject, score);



2. Details of Constituent Elements

202

2.8 Row value constructors

(1) Function
Specifies either rows or a list of ordered columns.

(2) Format
 
row-value-constructor::= {row-value-constructor-element
    | (row-value-constructor-element
       [,row-value-constructor-element] ...) | row-subquery}
row-value-constructor-element::= value-expression
 

(3) Rules
1. The maximum number of row value constructor elements that can be specified in 

a row value constructor is 255.
2. The following data types cannot be specified for columns of the results of a row 

value constructor:
• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• Abstract data type
• BOOLEAN

3. In the specification of two or more row value constructor elements, if a repetition 
column is specified as a row value constructor element, the subscript ANY cannot 
be specified.

4. For details about row subqueries, see 2.4 Subqueries.



2. Details of Constituent Elements

203

2.9 Value expressions, value specifications, and item specifications

(1) Function
Values can be specified in SQL in the formats shown below.

(2) Format
value-expression::={[+|-]primary|value-expression {+|-|*|/}
                 [{+|-}] primary|value-expression * primary
                  |value-expression / primary|value-expression |
                  | primary}
primary::={(value-expression)|item-specification
           |unsigned-value-specification
           |set-function|window-function|scalar-function
           |CASE-clause|CAST-specification|labeled-interval
           |function-call|scalar-subquery}
value-expression::={literal|? parameter |:embedded-variable
                 [:indicator-variable]
                 |USER|CURRENT DATE|CURRENT_DATE
                 |CURRENT_TIME|CURRENT_TIMESTAMP[(p)]
                 |CURRENT DATE|CURRENT DATE
                 |CURRENT TIME|CURRENT TIMESTAMP[(p)]
                 |[statement-label.]SQL-variable-name
                 |[[authorization-identifier.] routine-identifier.]
                   SQL-parameter-name
                 |SQLCODE|SQLCOUNT}
unsigned-value-specification::={unsigned-numeric-literal|general-literal
                          |? parameter|:embedded-variable
                             [:indicator-variable]
                          |USER|CURRENT DATE|CURRENT_DATE
                          |CURRENT_TIME
                          |CURRENT_TIMESTAMP[(p)]
                          |CURRENT DATE|CURRENT DATE
                          |CURRENT TIME
                          |CURRENT TIMESTAMP[(p)]
                          |[statement-label.]SQL-variable-name
                          |[[authorization-identifier.]
                              routine-identifier.]
                                SQL-parameter-name
                          |SQLCODE|SQLCOUNT}
literal::={numeric-literal|general-literal}
general-literal::={character-string-literal|hexadecimal-character-string-literal
                 |floating-point-literal
                 |national-character-string-literal



2. Details of Constituent Elements

204

                 |mixed-character-string-literal}
item-specification::={column-specification
                   |[statement-label.]SQL-variable-name
                   |[[authorization-identifier.] routine-identifier.]
                        SQL-parameter-name
                   |component-specification}

(3) Common rules
1. Among the operations that can be specified in a value expression, the following 

are referred to generically as scalar operations: arithmetic operations, date 
operations, time operations, concatenation operations, the CASE expression, the 
CAST specification, the window function, and scalar functions.

2. A value expression is specified in terms of a comparison predicate, comparison 
value, BETWEEN predicate, IN predicate, LIKE predicate, XLIKE predicate, 
quantified predicate, Boolean predicate, component specification, function call, 
column specification, update value, primary, set function, or scalar operation.

3. Scalar operations are evaluated in the following order:
(1) Inside the parentheses
(2) * or /
(3) +, -, or | |
However, multiple scalar operations of the same order of evaluation occurring in 
a value expression are evaluated from left to right.

4. The maximum number of allocatable nesting levels for scalar operations is 255. 
The number of nesting levels for scalar operations is the number of nesting levels 
of parentheses when the parentheses indicating the order of evaluation of the 
operators +, -, *, /, or || are specified explicitly. The number of nesting levels 
associated with a scalar function, depending on the type of scalar function 
involved, is as follows:

• When the scalar function SUBSTR, VARCHAR_FORMAT, 
TIMESTAMP_FORMAT, DATE (with a datetime format specified), TIME (with 
a datetime format specified), or TIMESTAMP (function 3) is specified, the 
number is 2.

• For the scalar function VALUE, the number is the 
number-of-value-expressions-of-arguments + 1.

• For the other scalar functions, the number is 1.
For simple CASE expressions and search CASE expressions, the number is the 
number of WHEN statements; for the CASE abbreviation COALESCE, it is the 
number-of-value-expressions-of-arguments + 1; for the CASE abbreviation 



2. Details of Constituent Elements

205

NULLIF, it is 2.
If a scalar operation for which the operand is a column in a named derived table 
is specified, the column is derived from the scalar operation, and the named 
derived table does not create an inner derived table; such a specification is 
equivalent to specifying a scalar operation deriving a column of a named derived 
table for which the scalar operation is an operand. In this case, the maximum 
allowable number of nesting levels for scalar operations may be exceeded.
If scalar functions and function calls are specified in a value expression, the 
maximum allowable sum of scalar operation nesting levels and function call 
nesting levels is 255.

5. If specified data has the null value, the result of an arithmetic, date, time, or 
concatenation operation also has the null value.

6. In an arithmetic, date, or time operation involving division, an error results if 0 is 
specified as the value of the second operand.

7. An error results if overflow occurs during an operation.
For value expressions, see 2.10 Arithmetic operations through 2.13 
Concatenation operation.

8. An SQL parameter name is used in a procedure definition to reference the SQL 
parameter for that procedure or function.

9. An SQL variable name is used in a compound statement in a procedure definition 
or a function definition to reference the SQL variable declared in that compound 
statement.

10. If a column, an SQL variable, or an SQL parameter with the same name exists, 
these names must be qualified with a table specification, a statement label or with 
[authorization-identifier.]routine-identifier. If these items are not qualified or if 
they are qualified with the same set of qualifiers, they will be identified on a 
priority basis in ascending order of the scopes of the names. Thus, the following 
priority will be effective: columns, SQL variables, then SQL parameters. If an 
item is valid as a column name, it is identified as a column. If an item, though 
invalid as a column, is valid as an SQL variable, it is identified as an SQL 
variable. If an item, though invalid as a column or an SQL predicate, is valid as 
an SQL parameter, it is identified as an SQL parameter. If an item is invalid as a 
column, an SQL variable, or an SQL parameter, a syntax error results.
However, in a handler declaration, statement labels and 
[authorization-identifier.]routine-identifier outside the handler declaration are 
not inherited. Consequently, if an SQL variable or an SQL parameter is qualified 
with a statement label or [authorization-identifier.]routine-identifier within the 
handler declaration, only the statement label declared in the applicable handler 
declaration takes effect. The following shows examples of scopes of columns, 



2. Details of Constituent Elements

206

SQL variables, and SQL parameters. The following examples assume that a table 
T1 containing columns Y and Z of the INTEGER type is defined:



2. Details of Constituent Elements

207

Explanation

1. The value 10 is assigned to the SQL variable X defined in scope C.
2. The value 10 is assigned to the SQL variable Z defined in scope B.
3. The value 10 is assigned to the SQL variable X defined in scope C.
4. An error occurs (a valid Z is not found in the handler in question).
5. An error occurs (PPP is not inherited because a handler is being declared).
6. The value 10 is assigned to the SQL parameter Y.
7. An error occurs (AAA is not inherited because a handler is being declared).
8. An error occurs (PPP is not inherited because a handler is being declared).
9. The value of column Y of table T1 is assigned to the SQL variable X 
defined in scope B. For Y and Z that are specified in the WHERE clause of the 
single-row SELECT statement, columns Y and Z are used from table T1.
10. The value 10 is assigned to the SQL variable X defined in scope E.
11. The value 10 is assigned to the SQL variable Y defined in scope E.
12. The value 10 is assigned to the SQL variable X defined in scope E.
13. The value 10 is assigned to the SQL variable Y defined in scope E.
14. The value 10 is assigned to the SQL parameter Y.

11. SQLCODE and SQLCOUNT can be used only in routine control SQL other than an 
SQL procedure. SQLCODE and SQLCOUNT are used to test to see whether the 
return code is 100, indicating the result of the execution of the preceding SQL 
procedure statement, exclusive of the routine control SQL, as well as to reference 
the number of rows that have been updated. SQLCODE and SQLCOUNT have the 
INTEGER data type.

12. A repetition column without a subscript cannot be specified in a scalar operation 
that is directly specified in a CASE expression search condition and that does not 
contain a repetition column.

13. The subscript ANY cannot be specified in a scalar operation that is directly 
specified in a CASE expression search condition and that does not contain a 
repetition column.

14. For details about scalar subqueries, see 2.4 Subqueries.



2. Details of Constituent Elements

208

2.10 Arithmetic operations

(1) Types of arithmetic operations
Retrievals involving arithmetic operations can be specified in a value expression.
Table 2-11 shows types of arithmetic operations and their functions.

Table 2-11: Types of arithmetic operations

(2) Data types of results of arithmetic operations
Table 2-12 shows the relationships between the data types of the operands of 
arithmetic operations (binary operations) and the data type of the result.

Table 2-12: Relationships between the data types of operands of arithmetic 
operations (binary operations) and the data type of a result

Arithmetic operations are performed using the data types shown above. In the case of 
a unary operation, the data type of the result is the same as the data type of the operand. 
Table 2-13 shows the precision and decimal scaling position of the result when the data 
type of the result of an arithmetic operation is DECIMAL.

Arithmetic operation Meaning Function

+ (Unary operation) Positive sign Leaves the sign unchanged.

(Binary operation) Addition Adds the second operand to the first operand.

- (Unary operation) Negative sign Reverses the sign.

(Binary operation) Subtraction Subtracts the second operand from the first operand.

* (Binary operation) Multiplication Multiplies the first operand by the second operand.

/ (Binary operation) Division Divides the first operand by the second operand.

Data type of
operand 1

Data type of operand 2

SMALLINT INTEGER DECIMAL SMALLFLT FLOAT

SMALLINT INTEGER INTEGER DECIMAL SMALLFLT FLOAT

INTEGER INTEGER INTEGER DECIMAL FLOAT FLOAT

DECIMAL DECIMAL DECIMAL DECIMAL FLOAT FLOAT

SMALLFLT SMALLFLT FLOAT FLOAT SMALLFLT FLOAT

FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT



2. Details of Constituent Elements

209

Table 2-13: Precision and the decimal scaling position of a result when the data 
type of a result of an arithmetic operation is DECIMAL

Note 1: Data type of operand 1: DECIMAL(p1,s1)

Data type of operand 2: DECIMAL(p2,s2)

Note 2: INTEGER is treated as DECIMAL(10,0).
SMALLINT is treated as DECIMAL(5,0).

(3) Rules
For the rules for using arithmetic operations, see the rules below and the rules in 
Section 2.9 Value expressions, value specifications, and item specifications.
1. Arithmetic operations can be specified on numeric data.
2. Embedded variables and value expressions involving the ? parameter only cannot 

be specified on both sides of an arithmetic operation (+, -, *, /).
3. When arithmetic operations of different data types are nested, the intermediate 

results must be handled without any loss in accuracy.
4. The window function cannot be specified in the operation term.

(4) Notes
1. The rules below apply to arithmetic operations; however, they do not apply (no 

error results) when the overflow error suppression feature is set:
• An error occurs when 0 is specified as the value of the second operand in 

division
• An error results when overflow occurs during computation

For details about the operational results that are produced when the overflow error 
suppression feature is set, see 2.18 Operational results with overflow error 
suppression specified.

2. If, in a DECIMAL division, the sum of the number of digits (p1-s1) in the integer 

Data type of 
result of 

arithmetic 
operation

Precision and decimal scaling position

Addition and subtraction Multiplication Division

DECIMAL(p,s) p=1+max(p1-s1, p2-s2)+s
s=max(s1,s2)

p=p1+p2
s=s1+s2

p=29
s=max(0,29-((p1-s1)+s2))

DECIMAL(p',s') (p 
> 29)

p'=29
s'=max(s1,s2)

Not applicable



2. Details of Constituent Elements

210

part of the dividend and the number of digits (s2) in the fractional part of the 
divisor is greater than or equal to 29 ((p1-s1)+s2 29), the scaling factor for the 
result of the division will be 0. If digits following the decimal point are desired, 
the DECIMAL scalar function must be used before division is performed to reduce 
either the precision (p1) or the scaling factor (s2) of the dividend.

Reference

The following expressions can be obtained from Table 2-13:
p1=29-s+s1-s2
s2=29-s+s1-p1

Example

The divisions of the sums of column C1 (DECIMAL(12,2)) and column C2 
(DECIMAL(12,2)) in Table T1 result in divisions by DEC(29,2) and 
DEC(29,2), yielding the result DEC(29,0). If two places following the 
decimal point are desired, the DECIMAL scalar function can be used to reduce 
the precision of the dividend as follows:

SELECT DEC(SUM(C1),27,2)/SUM(C2) FROM T1



2. Details of Constituent Elements

211

2.11 Date operations

(1) Function
Date operations enable retrieval and updating involving dates and date intervals to be 
performed.
The date function supports the following operations: subtraction on dates; addition and 
subtraction of the dates between date intervals; addition and subtraction on date 
intervals; multiplication and division of a date interval by an integer.

(2) Data eligible for operations
Table 2-14 shows the values of date data and date interval data on which date 
operations can be performed.

Table 2-14: Date operation data

(3) Labeled duration
A labeled duration used in date operations expresses specific units of time as numeric 

Operation Applicable date operation values

Date data Date interval data

Addition • Date interval data (INTERVAL YEAR TO 
DAY)

• Literals that express date intervals as 
decimal numbers

• Labeled duration (YEAR[S], MONTH[S], 
DAY[S])

• Date data (DATE)
• Literals in which a date is 

specified in a predefined 
character string representation

• Date interval data (INTERVAL 
YEAR TO DAY)

• Literals that express date 
intervals as decimal numbers

Subtraction • Date data (DATE)
• Literals in which a date is specified in a 

predefined character string 
representation

• Date interval data (INTERVAL YEAR TO 
DAY)

• Literals that express date intervals as 
decimal numbers

• Labeled duration (YEAR[S], MONTH[S], 
DAY[S])

• Date interval data (INTERVAL 
YEAR TO DAY)

• Literals that express date 
intervals as decimal numbers

Multiplication, Division Not specifiable Integer data (INTEGER, 
SMALLINT)

Unary operation Not specifiable in date data or as a labeled duration



2. Details of Constituent Elements

212

values followed by interval keywords. A labeled duration can be specified only in the 
second operand for addition or subtraction of date interval data relative to date data.

(4) Format
(value-expression){YEAR [S]|MONTH [S]|DAY [S]}

(5) Explanation
1. The following items can be specified in a value expression:

• Integer literals
• Column specification
• Component specification
• SQL variable or SQL parameter
• Arithmetic operations
• Set functions
• Scalar functions
• CASE expression
• CAST specification
• Function call
• Scalar subquery

2. The value expression must have an integer data type (SMALLINT or INTEGER).
3. YEAR [S], MONTH [S], and DAY [S] indicate the units of years, months, and days, 

respectively. The S suffix is optional.

Specification examples are given below:
1 year: 1 YEAR
11 months: 11 MONTHS
100 days: 100 DAYS

4. The following ranges of values can be specified in a value expression:
YEAR [S]: -9998 to 9998
MONTH [S]: -199987 to 119987
DAY [S]: -3652058 to 3652058

(6) Format of a date operation and the data type of the result
Table 2-15 shows the relationships between the format of a date operation and the data 
type of the result.



2. Details of Constituent Elements

213

Table 2-15: Relationships between the format of a date operation and the data 
type of the result

Note: Embedded variables, indicator variables, and ? parameters cannot be specified 
in a date operation involving date data or date interval data.

(7) Rules for date operations
For the rules for performing date operations, see the rules below and the rules provided 
in Section 2.9 Value expressions, value specifications, and item specifications.

(a) Rules for subtracting one date data item from another
The data type of the result of subtraction involving two date data items is the date 
interval data type that expresses the number of years, months, and days.
The result of the operation expression (date1 - date2) is computed according to 
the following rules:

date1  date2:
Result = date1 - date2

date1 < date2:

Result = - (date2 - date1)*

Day of date1  day of date2:
Day of result = day of date1 - day of date2

Day of date1 < day of date2:
Day of result = day of date1 - day of date2 + last day of month of date2
Month of date2 = month of date2 + 1

Month of date1  month of date2:
Month of result = month of date1 - month of date2

Month of date1 < month of date2:

Operation format Data type of result

date-data - date-data Date interval data type

date-data {+|-} {date-interval-data|labeled-duration} Date data type

date-interval-data + date-data Date data type

date-interval-data {+|-} date-interval-data Date interval data type

date-interval-data {*|/} integer-data Date interval data type



2. Details of Constituent Elements

214

Month of result = month of date1 - month of date2 + 12
Year of date2 = year of date2 + 1

Year of result = year of date1 - year of date2
* The result of subtraction will be the result of date2 - date1 with a minus sign.
Example

Determine the result of the subtraction 
DATE('1995-10-15')-DATE('1989-12-16'):

(b) Explanation of the algorithm

(8) Rules for addition and subtraction of date data and date interval data
1. The result of addition or subtraction of date data or date interval data is the date 

data type.
2. The allowable range of the result of a computation is from 1/1/0001 through 12/

31/9999.
3. Date interval data (not a labeled duration) is computed in the order of year, month, 

and day.



2. Details of Constituent Elements

215

4. If the result of an operation on a year and month is a non-existent date (31st day 
of a 30-day month or February 29 of a non-leap-year), the date is changed to the 
last day of the month.* When a non-existent date is generated and the resulting 
date has been so modified, 'W' is set in the SQLWARNA variable.

5. If the result of an operation on a year and month is beyond the last date of the 
month or is before the first day (1st) of the month, the year and month are rounded 
up or down, as appropriate.

* Adding of months to the last day of a month does not necessarily produce the last day 
of the resulting month. Likewise, adding months to a day and subtracting the same 
number of months from the result does not necessarily produce the original date.
Example

DATE('1995-01-31') + 1 MONTH  DATE('1995-02-28')
DATE('1995-02-28') - 1 MONTH  DATE('1995-01-28')
Adding 1 month to 1/31/1995 results in 2/28/1995. However, subtracting 1 month 
from 2/28/1995 results in 1/28/1995, rather than the original 1/31/1995.

(9) Rules for addition or subtraction between date interval data, and 
multiplication or division of date interval data by an integer

1. The results of these computations take the date interval data type.
2. If the result of a date computation falls outside the range 00 to 99, the "W" warning 

is set in the SQLWARNC area. In this case, 00 is set as the number of days if the 
result is less than 00, and 99 is set if the result is greater than 99.

3. In the result of division, any digits following the decimal point are rounded off.
(10) Notes

The rules below for date operations do not result in an error when the overflow error 
suppression feature is set:

Overflow occurs in the date data type
Overflow occurs in the date interval data type
Overflow occurs in the labeled duration data type

For details about the operational results produced when the overflow error suppression 
feature is set, see 2.18 Operational results with overflow error suppression specified.



2. Details of Constituent Elements

216

2.12 Time operations

(1) Function
Time operations enable retrieval and updating involving times and time intervals to be 
performed.
The time function supports the following operations: subtraction on times; addition 
and subtraction of the time between time intervals; addition and subtraction on time 
intervals; multiplication and division of a time interval by an integer.

(2) Data eligible for operations
Table 2-16 shows the values of time data and time interval data on which time 
operations can be performed.

Table 2-16: Time operation data

(3) Labeled duration
A labeled duration used in time operations expresses specific units of time as numeric 
values followed by interval keywords. A labeled duration can be specified only in the 

Operation Applicable time operation values

Time data Time interval data

Addition • Time interval data (INTERVAL HOUR TO 
SECOND)

• Literals that express time intervals as 
decimal numbers

• Labeled duration (HOUR[S], MINUTE[S], 
SECOND[S])

• Time data (TIME)
• Literals in which time is specified 

in a predefined character string 
representation

• Time interval data (INTERVAL 
HOUR TO SECOND)

• Literals that express time intervals 
as decimal numbers

Subtraction • Time data (TIME)
• Literals in which time is specified in a 

predefined character string representation
• Time interval data (INTERVAL HOUR TO 

SECOND)
• Literals that express time intervals as 

decimal numbers
• Labeled duration (HOUR[S], MINUTE[S], 

SECOND[S])

• Time interval data (INTERVAL 
HOUR TO SECOND)

• Literals that express time intervals 
as decimal numbers

Multiplication, 
Division

Not specifiable Integer data (INTEGER, SMALLINT)

Unary operation Not specifiable in time data or as a labeled duration



2. Details of Constituent Elements

217

second operand for addition or subtraction of time interval data relative to time data.
(4) Format

(value-expression) {HOUR[S]|MINUTE[S]|SECOND[S]}

(5) Explanation
1. The following items can be specified in a value expression:

• Integer literals
• Column literals
• SQL variable or SQL parameter
• Arithmetic operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The value expression must have an integer data type (SMALLINT or INTEGER).
3. HOUR[S], MINUTE[S], and SECOND[S] indicate the units of hours, minutes, and 

seconds, respectively. The S suffix is optional.
Specification examples are given below:

1 hour: 1 HOUR
23 minutes: 23 MINUTES
100 seconds: 100 SECONDS

4. The following ranges of values can be specified in a value expression:
HOUR[S]:  -23 to 23
MINUTE[S]: -1439 to 1439
SECOND[S]: -86399 to 86399

(6) Format of a time operation and the data type of the result
Table 2-17 shows the relationships between the format of a time operation and the data 
type of the result.



2. Details of Constituent Elements

218

Table 2-17: Relationships between the format of time operation and the data 
type of the result

Note: Embedded variables, indicator variables, and ? parameters cannot be specified 
in a time operation involving time data or time interval data.

(7) Rules for time operations
For the rules for performing time operations, see the rules below and the rules provided 
in section 2.9 Value expressions, value specifications, and item specifications.

(a) Rules for subtracting one time data item from another
The data type of the result of subtraction involving two time data items is the time 
interval data type that expresses the number of hours, minutes, and seconds.
The result of the operation expression (time1 - time2) is computed according to 
the following rules:
time1  time2:

Result = time1 - time2
time1 < time2:

Result = - (time2 - time1)
Second of time1  second of time2:

Second of result = second of time1 - second of time2
Second of time1 < second-of-time2:

Second of result = second of time1 - second of time2 + 60
Minute of time2 = minute of time2 + 1

Minute of time1  minute of time2:
Minute of result = minute of time1 - minute of time2

Minute of time1 < minute-of-time2:

Operation format Data type of result

time-data - time-data Time interval data type

time-data {+|-} {time-interval-data|label-duration} Time data type

time-interval-data + time-data Time data type

time-interval-data {+|-} time-interval-data Time interval data type

time-interval-data {*|/} integer-data Time interval data type



2. Details of Constituent Elements

219

Minute of result = minute of time1 - minute of time2 + 60
Hour of time2 = hour of time2 + 1

Hour of result = hour of time1 - hour of time2
Example

Determine the result of the subtraction
TIME('13:10:15')-TIME ('11:50:59'):

(b) Explanation of the algorithm

(8) Rules for addition and subtraction of time data and time interval data
1. The result of addition or subtraction of time data or time interval data is the time 

data type.
2. The allowable range of the result of a computation is from 0:0:0 through 23:59:59.
3. Time interval data (not a labeled duration) is computed in the order of hour, 

minute, and second.



2. Details of Constituent Elements

220

(9) Rules for addition or subtraction between time interval data, and 
multiplication or division of time interval data by an integer

1. The results of these computations take the date interval data type.
2. The result of an operation should be in the following range: -99 hours, 59 minutes, 

59 seconds to 99 hours, 59 minutes, 59 seconds.
3. If the result of a time computation is greater than 60 minutes or 60 seconds, the 

result is carried to the next hour or minute, respectively.
4. Division is performed by converting a given time value into seconds. Any digits 

following the decimal point in the result are rounded off.
(10) Notes

The rules below for time operations do not result in an error when the overflow error 
suppression feature is set:

Overflow occurs in the time data type.
Overflow occurs in the time interval data type.
Overflow occurs in the labeled duration data type.

For details about the operational results produced when the overflow error suppression 
feature is set, see 2.18 Operational results with overflow error suppression specified.



2. Details of Constituent Elements

221

2.13 Concatenation operation

(1) Function
When you specify a concatenation operation in a value expression, HiRDB 
concatenates multiple data strings (character strings or binary columns) in the 
specified order to create a single data string.
Note that you can specify concatenation operations on BLOB type data, and on BINARY 
type data that has a maximum length of 32,001 bytes or greater, only as an update value 
in the SET clause of the UPDATE statement. For details, see Rules on updating a column 
of the BLOB type or the BINARY type with a definition length of 32,001 bytes or 
greater, using concatenation operations under UPDATE statement Format 1 (Update 
data) in Chapter 4. The format is the same as that for concatenation operations on 
character string data.
The following table shows the data types that can be concatenated and the data types 
resulting from concatenation operations for character string data and for BINARY type 
data that has a maximum length of no more than 32,000 bytes.

Table 2-18: Data types eligible for concatenation and the data type of a 
concatenation operation result

Data type of 
operand 1

Data type of operand 2

Character data National character 
data

Mixed character 
data

Binary 
data

CHAR VARCHA
R

NCHA
R

NVARCH
AR

MCHA
R

MVRCH
AR

Char 
data

CHAR CHAR1 VARCHAR N N MCHAR1 MVARCHA
R

BINARY

VARCHAR VARCH
AR

VARCHAR N N MVARCH
AR

MVARCHA
R

N

Nat'l 
char 
data

NCHAR N N NCHAR1 NVARCHA
R

N N BINARY2

NVARCHAR N N NVARCH
AR

NVARCHA
R

N N N

Mixed 
char 
data

MCHAR MCHAR1 MVARCHA
R

N N MCHAR1 MVARCHA
R

N

MVARCHAR MVARC
HAR

MVARCHA
R

N N MVARCH
AR

MVARCHA
R

N



2. Details of Constituent Elements

222

N: Cannot be specified.
Char: Character
Nat'l: National
1 If the result length after concatenation is greater than the maximum length of CHAR, 
NCHAR or MCHAR, the result is treated as either VARCHAR, NVARCHAR or MVARCHAR.
2 For the BINARY type, only a hexadecimal character string literal can be specified in 
the operation term.

Table 2-19: Data length of the result of concatenation

n1: Data length of operand 1

n2: Data length of operand 2

Note 1: n is expressed in bytes for data types CHAR, VARCHAR, MCHAR, MVARCHAR, and 
BINARY. For NCHAR and NVARCHAR, n is expressed as the number of characters.
Note 2: If operands 1 and 2 are character string literals (including national and mixed 

Binary 
data

BINARY N BINARY2 N N N N BINARY

Data type of result of 
concatenation

Data length (maximum length for variable-length data)

CHAR(n) n = n1 + n2 (if n > 255, the data type of the result is VARCHAR)

VARCHAR(n) n = n1 + n2 (if n > 32000, an error results)

NCHAR(n) n = n1 + n2 (if n > 127, the data type of the result is NVARCHAR)

NVARCHAR(n) n = n1 + n2 (if n > 16000, an error results)

MCHAR(n) n = n1 + n2 (if n > 255, the data type of the result is MVARCHAR)

MVARCHAR(n) n = n1 + n2 (if n > 32000, an error results)

BINARY(n) n = n1 + n2 (provided n > 32,000; an error in clauses other than the SET clause of the 
UPDATE statement)

Data type of 
operand 1

Data type of operand 2

Character data National character 
data

Mixed character 
data

Binary 
data

CHAR VARCHA
R

NCHA
R

NVARCH
AR

MCHA
R

MVRCH
AR



2. Details of Constituent Elements

223

character string literals) whose length is 0, n1 or n2 must be set to 0. However, if the 
data length of the concatenation result is 0, n is 1.

(2) Format
value-expression | | primary

(3) Rules
For concatenation operations on character string data, also see the common rules given 
in 2.9 Value expressions, value specifications, and item specifications.
1. An embedded variable or a ? parameter cannot be directly specified in an operand 

of a concatenation operation.
2. The null value is allowed in the result of a concatenation operation, regardless of 

the NOT NULL constraint on primaries or value expressions.
3. An error results if the data length (maximum length) of the result of a 

concatenation operation exceeds the allowable maximum length for 
variable-length data.

4. If the data type of the result of a concatenation operation is the BINARY type and 
the data length (maximum length) of the result is greater than 32,000 bytes, an 
error may occur in clauses other than the SET clause of the UPDATE statement.



2. Details of Constituent Elements

224

2.14 Set functions

(1) Function
Set functions enable average, sum, maximum, minimum, and number of rows 
computations to be made in an SQL. Table 2-20 shows the functions of the set function. 
Table 2-21 shows the relationships between the data type of a column and the data type 
of the value of a set function.

Table 2-20: Functions of set functions

1 In general, set functions ignore the null value. However, the COUNT(*) set function 
counts all rows that satisfy a given set of conditions, regardless of null values.

Item Set function

AVG SUM MAX MIN COUNT

Function Calculates an 
average.

Calculates a 
sum.

Calculates a 
maximum value.

Calculates a 
minimum value.

Calculates the 
number of rows.

Treatment of 
null value

Ignored Ignored Ignored Ignored Ignored1

Meaning of 
DISTINCT 
specification

Average value 
obtained by 
removing 
rows that 
contain a 
duplicated 
value in 
specified 
columns.

Sum obtained by 
removing rows 
that contain a 
duplicated value 
in specified 
columns.

Has no meaning. Has no meaning. Number of rows 
obtained by 
removing rows 
that contain a 
duplicated value 
in specified 
columns.

Function 
value for a set 
in which the 
target of 
application is 
either zero3 or 
only the null 
value

Null value Null value Null value Null value 0

Whether a 
repetition 
column can be 
specified in an 
argument2

Cannot be 
specified.

Cannot be 
specified.

Can be 
specified.

Can be 
specified.

Cannot be 
specified.



2. Details of Constituent Elements

225

2 With the set functions MAX and MIN, a repetition column can be specified in an 
argument by coding a FLAT specification. If a repetition column is specified, the set 
functions MAX and MIN calculate either a maximum or a minimum from all the 
elements in the rows within the scope of the operation. This process excludes any 
columns in which the values of the entire column are the null value (a repetition 
column in which the number of elements is 0).
3 If a GROUP BY or HAVING clause is specified, groups for which the number of rows 
is 0 are excluded from the calculation.

Table 2-21: Relationships between data types of columns and data types of 
function values

Data type of set 
function argument

AVG SUM MAX and MIN COUNT

INTEGER INTEGER INTEGER INTEGER INTEGER

SMALLINT INTEGER INTEGER SMALLINT INTEGER

DECIMAL(p,s) DECIMAL (29, 
29-p+s)

DECIMAL 
(29,s)

DECIMAL(p,s) INTEGER

FLOAT FLOAT FLOAT FLOAT INTEGER

SMALLFLT SMALLFLT SMALLFLT SMALLFLT INTEGER

INTERVAL YEAR TO 
DAY

INTERVAL YEAR TO DAY INTEGER

INTERVAL HOUR TO 
SECOND

INTERVAL HOUR TO SECOND INTEGER

CHAR(n) CHAR(n) INTEGER

VARCHAR(n) VARCHAR(n) INTEGER

NCHAR(n) NCHAR(n) INTEGER

NVARCHAR(n) NVARCHAR(n) INTEGER

MCHAR(n) MCHAR(n) INTEGER

MVARCHAR(n) MVARCHAR(n) INTEGER

DATE DATE INTEGER

TIME TIME INTEGER

TIMESTAMP TIMESTAMP INTEGER

BINARY(n)1 BINARY(n) INTEGER



2. Details of Constituent Elements

226

: Cannot be used.
1 n should be less than or equal to 32,000.

(2) Format
set-function::={COUNT(*)|ALL set-function|DISTINCT set-function}
ALL set-function::={AVG|SUM|MAX|MIN|COUNT}([ALL] 
{value-expression|FLAT-specification})
DISTINCT set-function::= {AVG|SUM|MAX|MIN|COUNT}
                        (DISTINCT {value-expression|FLAT-specification})
FLAT-specification:: = FLAT (column-specification)

(3) Rules for when a subquery is not used
1. When GROUP BY, WHERE, or FROM clauses are specified, the groups that are 

obtained as a result of the last specified clause are used as the input to the set 
function.
However, if the GROUP BY clause is not specified, the result of either the WHERE 
clause or the FROM clause becomes a group that does not have grouped columns 
(value expressions that are specified in the GROUP BY clause).
The results of an operation by a set function are obtained for each group.

2. A set function can be specified only in the SELECT or HAVING clause.
3. When the GROUP BY clause, the HAVING clause, or a set function is specified, one 

of the following column specifications must be used in the SELECT or HAVING 
clause:

• Grouped columns (value expressions specified in the GROUP BY clause)
• Specified in the argument of a set function

4. The SELECT DISTINCT specification and DISTINCT set-function are mutually 
exclusive.

(4) Rules for when a subquery is used
1. When a set function is specified in a subquery, the following can be used as input 

to the set function:

BLOB(n)

BOOLEAN

Abstract data type

Data type of set 
function argument

AVG SUM MAX and MIN COUNT



2. Details of Constituent Elements

227

• A set function can be specified for each query specification (including 
specifications inside the parentheses in a subquery). The sets that can be used 
as input to the set function are determined for each query specification.

• The sets that can be used as input to the COUNT(*) set function are 
determined on the basis of the query specification that directly includes 
COUNT(*). Other sets that can be used as input to the set function are 
determined on the basis of the query specification that uses the FROM clause 
to specify the table that is referenced in the argument.

• If a GROUP BY clause, a WHERE clause, or a FROM clause is specified in a 
query specification, the group that is obtained as the result of the last 
specified clause is used as the input to the set function.

If a GROUP BY clause is not specified, the group that results from the WHERE or 
FROM clause does not have a grouping column (value expressions specified in a 
GROUP BY clause). The results of operation by a set function are obtained on a 
group-by-group basis.

2. A set function for query specification Q can be specified only in the SELECT or 
HAVING clause in query specification Q. A set function can also be specified in the 
ON search condition in a FROM clause, the WHERE clause, or HAVING clause in a 
subquery of the HAVING clause by referencing a column in the table for query 
specification Q as an argument (outer referencing).

3. When a GROUP BY clause or a HAVING clause is specified in a query specification, 
or when a set function is specified in a SELECT clause, any column specification 
in a SELECT or HAVING clause in the query specification must meet the following 
conditions:
Columns specified in a SELECT clause

• The column specification must reference the table in the FROM clause in the 
query specification.

• The column specification either must be a grouping column or must be 
specified in an argument in the set function.

Columns specified in a HAVING clause
• The column specification references either the table in the FROM clause in the 

query specification or a table in the FROM clause in an outer query 
specification (outer referencing).

• The column specification references a table in the FROM clause in the query 
specification, is a grouping column, or is specified in an argument in the set 
function.

4. If SELECT DISTINCT is specified in a query specification, a set function 
specifying DISTINCT for the query specification cannot be specified. A set 



2. Details of Constituent Elements

228

function specifying the DISTINCT option is called a DISTINCT set function.
5. In a given query, an argument in a set function cannot specify an operation that 

includes an outer-referencing column.
(5) Common rules

1. A set function cannot be specified in any of the following clauses and statements: 
SET clause, IF statement, WHILE statement, SET statement, RETURN statement, 
WRITE LINE statement, ADD clause, GROUP BY clause.

2. Embedded variables and ? parameters cannot be specified in the argument of a set 
function.

3. Value expressions containing column specifications should be specified in the 
argument of a set function.

4. A set function or the window function cannot be specified in the argument of a set 
function.

5. The collating sequence of character string data is based on ASCII codes.
6. The collating sequence of national character string data is based on the national 

character code being used (shift JIS code, EUC Japanese kanji code, or EUC 
Chinese kanji code).

7. The collating sequence of mixed character string data is based on ASCII code and 
the national character code being used (shift JIS code, EUC Japanese kanji code, 
EUC Chinese kanji code, or Unicode (UTF-8)).

8. In averages (AVG), the digits following the significant digits are rounded off.
9. An error results if overflow occurs during a computation, unless the overflow 

error suppression feature is set. The overflow error suppression feature is 
applicable to the following set functions:

• AVG
• SUM
• COUNT

For details about the operational results produced when the overflow error 
suppression feature is set, see 2.18 Operational results with overflow error 
suppression specified.

10. Component specifications cannot be specified in an argument of a set function.
11. The following rules apply to the specification of repetition columns in an 

argument in a set function:
• Repetition columns can be specified only in the MAX or MIN set function for 

which a FLAT specification is coded.



2. Details of Constituent Elements

229

• Only unsubscripted repetition columns can be specified in a column 
specification that is coded in a FLAT specification.

• Set functions for which a FLAT specification is coded cannot be specified in 
a query specification in which a value expression other than a column 
specification is specified in the GROUP BY clause.

12. Normally, only one DISTINCT set function can be specified per query 
specification.
However, in the following cases, multiple DISTINCT set functions can be 
specified:

• When different value expressions can be specified in the MAX and MIN set 
functions

• When value expressions coded in the same format can be specified in the 
AVG, SUM, and COUNT set functions

13. A subquery cannot be specified in a value expression that is specified as an 
argument of a set function.

(6) Usage examples
1. Determine the average stock quantities (SQUANTITY) of all products in a stock 

table (STOCK):
SELECT AVG(SQUANTITY) FROM STOCK

2. Determine the sum of the stock quantities (SQUANTITY) of the rows whose 
product name (PNAME) is skirt in a stock table (STOCK):
SELECT N'skirt',SUM(SQUANTITY)
    FROM STOCK
    WHERE PNAME=N'skirt'

3. Determine the total sum of each product's quantity in stock (SQUANTITY) times 
its unit price (PRICE) from a stock table (STOCK):
SELECT SUM(PRICE*SQUANTITY)
    FROM STOCK

4. Determine the maximum, minimum, and total number of entries for the quantities 
in stock (SQUANTITY) in a stock table (STOCK):
SELECT COUNT(*),MAX(SQUANTITY),MIN(SQUANTITY)
    FROM STOCK

5. From the following table of competition results, determine the highest score 
(maximum value) and the lowest score (minimum value) for the event with an 
event code 0001; assume that the column of scores is a repetition column for 
which the number of elements is 3:



2. Details of Constituent Elements

230



2. Details of Constituent Elements

231

2.15 Window function

(1) Function
The window function determines a result from a window frame that specifies a 
window associated with the window function. The function of the window function is 
described below.
In the window frame, specify the portion of a set of rows from which data is to be 
collected. In a version that supports only () for the window specification, the window 
frame indicates the entire range of a table derived as the result of a WHERE or FROM 
clause.

Table 2-22: Function of the window function

(2) Format

(3) Operands
window-function::=COUNT(*)
           OVER window-specification
window-specification::=()

The following rules apply to the window function:
1. The window function can be specified in a selection expression. When a subquery 

is specified in a selection expression, you can specify only a selection expression 
of a scalar subquery.

2. The result data type of the window function COUNT(*) OVER() is INTEGER.
3. An error results if overflow occurs during an operation, unless the overflow error 

suppression feature is set. For details about the operational results when overflow 
error suppression is specified, see 2.18 Operational results with overflow error 
suppression specified.

4. The window function cannot be specified in the following locations:

Window function type Explanation

COUNT(*) Sets the number of rows to be input into the window frame.

 
 window-function::=COUNT(*)
           OVER window-specification
 window-specification::=()
 



2. Details of Constituent Elements

232

 Query expression body of an INSERT statement
 Subquery
 Derived table
 Derived query expression of a view definition
 Derived query expression inside a WITH clause

5. The window function cannot be specified in a query specification, derived query 
expression, or query expression body that is the target of a set operation.

6. When the window function is specified, a GROUP BY or HAVING clause cannot be 
specified.

7. When the window function is specified in a selection expression, at least one 
selection expression must be specified, in addition to the window function.

8. The window function cannot be specified in a scalar operation.
9. When the window function is specified, a set function cannot be specified in the 

selection expression.
(4) Notes

1. The window function is always evaluated by HiRDB even if it is specified in an 
SQL statement that manipulates a foreign table.

2. If the window frame (the entire range of a table derived as the result of a WHERE 
or FROM clause) is an empty set, the set function COUNT(*) returns 0, but the 
window function COUNT(*) OVER() does not.

(5) Usage examples
A usage example of the window function is described below. The table used in this 
example has the following structure:



2. Details of Constituent Elements

233

1. From the scores table (SCORES), determine numbers (ID), points (POINTS), and 
total (TOTAL), in descending order of the points.

 
    SELECT "ID", "POINTS", COUNT(*) OVER() AS "TOTAL"
      FROM "SCORES" ORDER BY "POINTS" DESC



2. Details of Constituent Elements

234

2.16 Scalar functions

Scalar functions are used as data-type variables, for the partial extraction of data, and 
for value conversions; they are specified in selection expressions in an SQL query or 
in search conditions.
HiRDB provides the following two types of scalar functions:

• System built-in scalar functions
These scalar functions can be specified anywhere a scalar function can be 
specified.

• System-defined scalar functions
These scalar functions can be specified in locations where a function call can be 
specified.

Table 2-23 shows a list of scalar functions.
Table 2-23: List of scalar functions

Classification Scalar code 
function

Function Type of 
scalar 

function

Conversion 
function

INTEGER Converts numeric data into integer data. Built-in

DECIMAL Converts numeric data into decimal data. Built-in

FLOAT Converts numeric data into floating-point data. Built-in

DIGITS Extracts the numeric part of integer, decimal, 
date interval, or time interval data and converts 
it into a character string representation.

Built-in

NUMEDIT Edits a numeric value and converts it into a 
character string representation.

Defined

STRTONUM Converts the character string representation of 
a numeric value into a numeric data type.

Defined

CHARACTER Converts date data, time data, or time stamp 
data into a character string representation.

Built-in

VARCHAR_FORMAT Converts date data, time data, or time stamp 
data into a character string representation in a 
specified format.

Built-in



2. Details of Constituent Elements

235

DATE Converts the character string representation of 
a date in a specified format into date data.
Converts a given cumulative number of days 
from January 1, year 1 (A.D.) into date data 
representing that date.

Built-in

DAYS Converts either given date data or time stamp 
data into a cumulative number of days from 
January 1, year 1 (A.D.).

Built-in

TIME Converts the character string representation of 
a given time in a specified format into time 
data.

Built-in

TIMESTAMP Converts the predefined character string 
representation of a time stamp into the time 
stamp data. Converts the cumulative number of 
days from January 1, year 1 (A.D.) into time 
stamp data that it represents. Given date data 
and time data, converts the results into time 
stamp data combining the data items.

Built-in

TIMESTAMP_FORMAT Converts the character string representation of 
a time stamp in a specified format into time 
stamp data.

Built-in

MIDNIGHTSECONDS Determines the number of seconds from 
00:00:00 a.m. to a specified time value.

Defined

HEX Converts a numeric expression into a 
hexadecimal character string representation.

Built-in

ASCII Converts a given character into its ASCII code. Defined

CHR Converts a given ASCII code into its character 
equivalent.

Defined

RADIANS Converts a given angle from degrees to the 
equivalent radian measure.

Defined

DEGREES Converts a given angle from a radian measure 
to the equivalent degrees.

Defined

CAST specification Converts value expression data into a specified 
data type.
For CAST specification, see 2.25 CAST 
specification.

Not 
applicable

Classification Scalar code 
function

Function Type of 
scalar 

function



2. Details of Constituent Elements

236

Extraction function YEAR Extracts the year part from date data, time 
stamp data, or date interval data.

Built-in

MONTH Extracts the month part from date data, time 
stamp data, or date interval data.

Built-in

DAY Extracts the day part from date data, time 
stamp data, or date interval data.

Built-in

HOUR Extracts the hour part from time data, time 
stamp data, or time interval data.

Built-in

MINUTE Extracts the minute part from time data, time 
stamp data, or time interval data.

Built-in

SECOND Extracts the second part from time data, time 
stamp data, or time interval data.

Built-in

Mathematical 
function

ABS Returns the absolute value of a given numeric 
expression.

Built-in

MOD Returns the remainder of a division. Built-in

CEIL Determines the smallest integer greater than or 
equal to a given numeric value.

Defined

FLOOR Determines the largest integer less than or 
equal to a given numeric value. 

Defined

TRUNC Truncates a given numeric value below a 
specified digit.

Defined

ROUND When a boundary between rounding up and 
rounding off is specified, rounds a given 
numeric value to a specified number of digits, 
or performs rounding.

Defined

SIGN Determines the sign of a given numeric value 
in terms of 1 (positive), 0, and -1 (negative).

Defined

SQRT Determines the square root of a given numeric 
value.

Defined

POWER Determines the power of a given numeric 
value.

Defined

EXP Determines the power to the base of the natural 
logarithm.

Defined

Classification Scalar code 
function

Function Type of 
scalar 

function



2. Details of Constituent Elements

237

LN Determines the natural logarithm of a given 
numeric value.

Defined

LOG10 Determines the common logarithm of a given 
numeric value.

Defined

SIN Determines the sine (trigonometric function) of 
an angle specified in radian measure.

Defined

COS Determines the cosine (trigonometric function) 
of an angle specified in radian measure.

Defined

TAN Determines the tangent (trigonometric 
function) of an angle specified in radian 
measure.

Defined

ASIN Determines the inverse sine (trigonometric 
function) of an angle specified in radian 
measure.

Defined

ACOS Determines the inverse cosine (trigonometric 
function) of an angle specified in radian 
measure.

Defined

ATAN Determines the inverse tangent (trigonometric 
function) of an angle specified in radian 
measure.

Defined

ATAN2 Determines the inverse sine (trigonometric 
function) of a given point (x, y) in terms of 
radian measure.

Defined

SINH Determines the hyperbolic sine of a given 
numeric value.

Defined

COSH Determines the hyperbolic cosine of a given 
numeric value.

Defined

TANH Determines the hyperbolic tangent of a given 
numeric value.

Defined

PI Determines the circle ratio . Defined

Character string 
manipulation 
function

SUBSTR Determines a partial data string of a specified 
number of characters or length from a specified 
position in a given data string (character string 
or binary string).

Built-in

Classification Scalar code 
function

Function Type of 
scalar 

function



2. Details of Constituent Elements

238

LEFTSTR Determines a partial character string of a 
specified number of characters from the 
beginning of a given character string.

Defined

RIGHTSTR Determines a partial character string of a 
specified number of characters from the end of 
a given character string.

Defined

UPPER Converts lower case characters into upper case 
characters in given character string data.

Built-in

LOWER Converts upper case characters into lower case 
characters in given character string data.

Built-in

TRANSL
(TRANSL_LONG)

Translates a specified character in a character 
string into another, equivalent character.

Defined

LTRIM Trims either spaces or specified characters 
from the left.

Defined

RTRIM Trims either spaces or specified characters 
from the right.

Defined

LTRIMSTR Trims a specified character string from the left. Defined

RTRIMSTR Trims a specified character string from the 
right.

Defined

REPLACE
(REPLACE_LONG)

Repeatedly replaces partial character strings in 
a given character string with another character 
string.

Defined

INSERTSTR
(INSERTSTR_LONG)

Deletes a partial character string of a specified 
number of characters from a specified position, 
and inserts another character string into that 
position.

Defined

POSSTR Determines the character position of a 
specified nth partial character string that occurs 
after a specified position in a given character 
string.

Defined

POSITION Determines the position of the first data 
substring that occurs at a specified position or 
beyond in a data string (either a character string 
or a binary string).

Built-in

REVERSESTR Determines a right-left reversed character 
string.

Defined

Classification Scalar code 
function

Function Type of 
scalar 

function



2. Details of Constituent Elements

239

Date manipulation 
function

NEXT_DAY Determines the date of a specified day of week 
following a given date.

Defined

LAST_DAY Determines the last day of the year in which a 
specified date falls.

Defined

DAYOFWEEK Given a date in day of week, determines the 
ordinal number of the day in that week.

Defined

DAYOFYEAR Given a date, determines the ordinal number of 
the date in that year.

Defined

DAYNAME Determines the day of week of a specified date 
in English.

Defined

WEEK Given a date, determines the ordinal number of 
the week in which the date falls in that year.

Defined

WEEKOFMONTH Given a date, determines the ordinal number of 
the week in that month.

Defined

MONTHNAME Determines the name of the month of a 
specified date in English.

Defined

ROUNDMONTH Given a smallest number of days beyond which 
days are to be rounded up, determines the year 
and month of a specified date by rounding the 
day.

Defined

TRUNCYEAR Given the first month and day of a fiscal year, 
determines the first date of that fiscal year.

Defined

QUARTER Given the first month and day of a fiscal year, 
determines the quarter in which that date falls.

Defined

HALF Given the first month and day of a fiscal year, 
determines whether that date falls in the first 
half or the second half.

Defined

CENTURY Determines the century of a specified date. Defined

MONTHS_BETWEEN Determines the number of months between 
given dates as a real number.

Defined

YEARS_BETWEEN Determines the number of years between given 
dates as a real number.

Defined

Datetime 
manipulation 
function 

DATE_TIME Concatenates date data and time data, and 
converts the result into a predefined character 
string representation of a time stamp.

Defined

Classification Scalar code 
function

Function Type of 
scalar 

function



2. Details of Constituent Elements

240

Legend:
Built-in: System built-in scalar function
Defined: System-defined scalar function

INTERVAL_DATETIME
S

Determines the date and time interval between 
time stamps that are given in a predefined 
character string representations.

Defined

ADD_INTERVAL Adds a given date and time interval to a date 
stamp in a predefined character string 
representation.

Defined

Inspection function ISDIGITS Determines whether all characters in a given 
character string are digits.

Defined

IS_DBLBYTES Determines whether all characters in a given 
character string are double-byte characters.

Defined

IS_SNGLBYTES Determines whether all characters in a given 
character string are single-byte characters.

Defined

Other functions LENGTH Determines the data length of a value 
expression.

Built-in

VALUE Extracts the first non-null value expression 
from a list of value expressions.

Built-in

GREATEST Determines the maximum value of arguments. Defined

LEAST Determines the minimum value of arguments. Defined

IS_USER_CONTAINED
_IN_HDS_GROUP

Returns the result of a test determining whether 
a given user belongs to a directory server group 
or a role.
IS_USER_CONTAINED_IN_HDS_GROUP is in 
effect only when the directory server linkage 
facility is being used.

Built-in

BIT_AND_TEST Determines the logical product of specified 
arguments bit-by-bit and returns the result in 
terms of true or false.

Built-in

CASE expressions Specifies a conditional value.
For CASE expressions, see 2.17 CASE 
expressions.

Not 
applicable

Classification Scalar code 
function

Function Type of 
scalar 

function



2. Details of Constituent Elements

241

2.16.1 System built-in scalar functions
This section explains the syntax of system built-in scalar functions.
Figure 2-5 shows execution examples of system built-in scalar functions with respect 
to date data, time data, time stamp data, and numeric data.

Figure 2-5: Execution examples of system built-in scalar functions with respect 
to date data, time data, time stamp data, and numeric data



2. Details of Constituent Elements

242

Common rules
The following rules apply to system built-in scalar functions:
1. An embedded variable or the ? parameter cannot be specified in a value 

expression by itself. However, they can be specified in value expressions 
involving arithmetic operations (except for unary operators).

2. When a repetition column is specified as a value expression in an argument, a 
subscript should also be specified; however, the ANY subscript cannot be 
specified.



2. Details of Constituent Elements

243

(1) ABS
(a) Function

The ABS scalar function returns the absolute value of a value expression.
(b) Format

ABS(value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• Numeric literals
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Arithmetic operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The data type of a value expression must be numeric data, date interval data, or 
time interval data.

3. The data type of the result will be the same as the data type of the value 
expression.

4. The NOT NULL constraint does not apply to the result value (the null value is 
allowed). If the value expression is the null value, the result will also be the null 
value.

5. The result must be a value that can be expressed as the absolute value of the value 
expression. If a value that cannot be expressed as the absolute value is specified, 
an overflow error occurs (for the result when overflow error suppression is set, 
see 2.18 Operational results with overflow error suppression specified).

(2) BIT_AND_TEST
(a) Function

Determines a bit-by-bit logical product of value-expression-1 and value-expression-2, 



2. Details of Constituent Elements

244

and returns the BOOLEAN value TRUE if any of the bits in the results of the logical 
product is 1.

(b) Format

(c) Rules
1. The following items can be specified in value-expression-1 and 

value-expression-2:
• Literals
• USER
• Column specification
• Component specification
• SQL variables or SQL parameters
• Concatenation operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Embedded variables or ? parameters
• Function calls

• Scalar subquery
2. The data type of value-expression-1 and value-expression-2 should be either a 

character data type (CHAR or VARCHAR) or BINARY with a maximum length of 
32,000 bytes. Table 2-24 shows combinations of data types that can be specified 
in value-expression-1and value-expression-2:

 
BIT_AND_TEST(value-expression-1, value-expression-2)
 



2. Details of Constituent Elements

245

Table 2-24: Combinations of data types that can be specified in 
value-expression-1 and value-expression-2 (system built-in scalar function 
BIT_AND_TEST)

Legend:
Y: Can be specified.
N: Cannot be specified.

* Only hexadecimal character string literals can be specified as a character data value 
expression.
1. Value expressions consisting solely of embedded variables or ? parameters cannot 

be specified in both value-expression-1and value-expression-2.
2. If one value expression is an embedded variable or a ? parameter, HiRDB 

assumes that the data type of the embedded variable or ? parameter is VARCHAR, 
provided that the data type of the other value expression is character data, and 
BINARY if the data type of the other value expression is binary data. Similarly, 
HiRDB assumes that the data length of the embedded variable or ? parameter is 
equal to the data length of the other value expression.

3. If value-expression-1and value-expression-2 have different data lengths, HiRDB 
fills the shorter data with X'00' on the right and determines a bit-by-bit logical 
product after making the two value expressions equal in character string length.

4. The data type of the result is the BOOLEAN type.
5. The value of the result is not NOT NULL constrained (the null value is allowed). If 

either value-expression-1or value-expression-2 is the null value, the result also is 
the null value.

6. Determines a bit-by-bit logical product of value-expression-1 and 
value-expression-2, and the result is TRUE if any of the bits in the results of the 
logical product is 1; it is FALSE otherwise.

7. If both value-expression-1and value-expression-2 are character strings of a length 
0, the result is FALSE.

Data type of value expression 1 Data type of value expression 2

Character data (CHAR and 
VARCHAR)

Binary data (BINARY)

Character data (CHAR and VARCHAR) Y N*

Binary data (BINARY) N* Y



2. Details of Constituent Elements

246

(d) Notes
The BIT_AND_TEST scalar function can be specified in the following locations:

• Value expressions in a logical predicate in a search condition
• RETURN statement in CREATE FUNCTION for which the data type of the return 

value is the BOOLEAN type
(e) Example

Performs a test to determine if C1 in a column of table T1 (data type: VARCHAR(2)) 
contains bits.
 
SELECT * FROM T1
    WHERE BIT_AND_TEST(C1,X'FFFF') IS TRUE

(3) CHARACTER
(a) Function

Converts date data, time data, or time stamp data into a character string representation.
(b) Format

CHAR[ACTER](value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• Columns of the date data type, time data type, or time stamp data type
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Date operations that produce date data type results
• Time operations that produce time data type results
• Set functions
• Scalar functions
• CASE expressions
• CAST specification



2. Details of Constituent Elements

247

• Function call
• Scalar subquery

2. The data type of value-expression should be the date data type (DATE), time data 
type (TIME), or time stamp data type (TIMESTAMP).

3. The data types of the result are as follows:
If value-expression is the date data type:

CHAR(10)
If value-expression is the time data type:

CHAR(8)
If value-expression is the time stamp data type:

CHAR(19), CHAR(22), CHAR(24), or CHAR(26)
4. The value of the result is a predefined character string representation of the data 

type of value-expression.
5. The value of the result is not NOT NULL constrained (null values are allowed). 

Therefore, if the source value expression is the null value, the result is also the 
null value.

(d) Examples
Update any dates older than 6 months in column C1 of table T1 (CHAR data type) 
to the date 02-06-1995:
UPDATE T1
   SET C1=CHAR(CURRENT_DATE)
   WHERE CHAR(CURRENT_DATE - 6 MONTHS) > C1

Update the time 0:0:0 in column C1 of table T2 (CHAR data type) to the time 
14:24:45:
UPDATE T2



2. Details of Constituent Elements

248

   SET C1=CHAR(CURRENT_TIME)
   WHERE C1='00:00:00'

(4) DATE
(a) Function

The DATE scalar function performs the following conversions:
1. Converts the character string representation of a date in a specified format into 

date data.
2. Converts the cumulative number of days since January 1, 1 (Gregorian calendar) 

into equivalent date data.
(b) Format

Format of function 1
DATE(value-expression[,datetime-format])

Format of function 2
DATE(value-expression)

(c) Rules for function 1
1. The following items can be specified as the value expression:

• Literals that are character string expressions of dates
• CURRENT_DATE
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Date operations that produce date data type results
• Concatenation operation



2. Details of Constituent Elements

249

• Set functions (MAX, MIN)
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The value expression should be one of the following data types:
• A datetime format is specified:

Character data type (CHAR, VARCHAR) or mixed character data type (MCHAR, 
MVARCHAR) with a definition length of 8 to 255 bytes

• A datetime format is not specified:
Character data type (CHAR, VARCHAR) or date data type (DATE) with a 
definition length of 10 bytes

3. The value expression should be the character string representation of a date in a 
format specified in a datetime format. If a datetime format is omitted, the value 
expression should be the predefined character string representation of a date.
Examples:

Datetime format 'YYYY/MM/DD'  '1995/06/30'
Datetime format omitted  '1995-06-30'

4. If the value expression is of the date data type, the result will be the equivalent 
date.

5. For datetime formats, see 1.10 Specifying a datetime format.
(d) Rules for function 2

1. The following items can be specified as the value expression:
• Numeric literals
• Column specifications
• Arithmetic operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification



2. Details of Constituent Elements

250

• Function call
• Scalar subquery

2. The data type of the value expression should be an integer (INTEGER).
If an arithmetic operation, set function, or CASE expression is specified, the result 
of the operation should be the integer data type.

3. The allowable range of values is 1 to 3652059.
4. The result is the date (specified numeric value - 1) from January 1, 1 (Gregorian 

calendar).
Example: If the value expression is 35, then the date is February 4, 1 (Gregorian 
calendar).

(e) Common rules
1. The data type of the result is the date data type (DATE).
2. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression or the datetime format is the null value, the result also is the 
null value.

(f) Example
1. The following uses the DATE scalar function to perform the same processing as 

the example in the section on the CHARACTER scalar function:
UPDATE T1
   SET C1=CHAR(CURRENT DATE)
   WHERE CURRENT DATE - 6 MONTHS > DATE(C1)

2. Obtains date data from the character string, in a format other than a predefined 
character string representation ('DD/MON/YYYY') of a date in column C1 (data 
type: CHAR) in table T2:
SELECT DATE(C1,'DD/MON/YYYY') FROM T2

(5) DAY
(a) Function

Extracts the day part from date data, time stamp data, or date interval data.



2. Details of Constituent Elements

251

(b) Format
DAY (value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• CURRENT_DATE
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Date operations
• Set functions (MAX, MIN)
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The data type of the value expression should be either the date data type (DATE), 
time stamp data type (TIMESTAMP), or the date interval data type (INTERVAL 
YEAR TO DAY).

3. The data type of the result is integer (INTEGER).

4. If the value expression is of the date data type or time stamp data type, the results 
will be in the range 1 to 31.

5. If the value expression is of the date interval data type, the result will be in the 
range -99 to 99.
If the result is non-zero, the result has the same sign as the value expression.

6. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the source value expression is the null value, the result is also the 
null value.

(d) Example
Retrieve all rows with the current date from the rows in column C1 (date data type data 
type) of table T1:
SELECT * FROM T1
   WHERE DAY(C1)=DAY(CURRENT_DATE)



2. Details of Constituent Elements

252

(6) DAYS
(a) Function

Converts date data or time stamp data into a cumulative number of days since January 
1, year 1 (A.D.).

(b) Format
DAYS (value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• Predefined character string representation literals of a date
• CURRENT_DATE
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Date operations that produce date data type results
• Concatenation operations producing a result that is the predefined character 

string representation literal of a date
• Set functions (MAX, MIN)
• Scalar functions
• CASE expressions

• CAST specification
• Function call
• Scalar subquery

2. The data type of the value expression should be the date data type (DATE) or time 
stamp data type (TIMESTAMP).

3. The data type of the result should be an integer (INTEGER).
4. The result of executing the DAYS scalar function on a specified date is the 

cumulative number of days, including the specified date, since January 1, 1 
(Gregorian calendar).

5. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.



2. Details of Constituent Elements

253

(d) Example
Determine the number of days through the current date (06-30-1995) since the value 
in column C1 of table T1:
SELECT DAYS(CURRENT_DATE) - DAYS(C1)
   FROM T1

(7) DECIMAL
(a) Function

The DECIMAL scalar function converts numeric data into decimal data.
(b) Format

DEC[IMAL] (value-expression [, precision [, decimal-scaling-position]])

(c) Rules
1. The following items can be specified as the value expression:

• Numeric literals
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Arithmetic operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The following items can be specified as the data type of value-expression:
• Numeric data type

3. The precision should be an integer in the range 1 to 29.
The default precision depends on the data type of the specified value expression, 
as shown in Table 2-25.
Table 2-25: Default precisions of the DECIMAL scalar function

Data Type Precision (number of digit positions)

INTEGER 10



2. Details of Constituent Elements

254

4. Scaling is specified in the range of values from 0 to the specified precision. The 
scaling should either be an integer or a character string representation of an 
integer. The default scaling is 0.

5. Table 2-26 shows the data type of the result.
Table 2-26: Data type of the result of the DECIMAL scalar function

6. The integer part of the value expression should be expressed by a value that is 
within the specified precision and decimal scaling position. If the integer part 
exceeds the specified precision, an overflow error results.

7. Any digits following the specified decimal scaling position in the result are 
rounded off.

8. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.

(d) Example
Obtain the result as decimal data, DEC(29,19), of dividing column C1 
(DECIMAL(10,0) data type) by column C2 (INTEGER data type) in Table T1; delete 
extraneous digits to make the result DEC(4,2) (the result is converted with the 
DECIMAL scalar function):
SELECT DECIMAL(C1/C2,4,2)
   FROM T1

SMALLINT 5

DECIMAL 15

FLOAT 29

SMALLFLT

Data Type Precision of result

DECIMAL Up to 29 digits

Data Type Precision (number of digit positions)



2. Details of Constituent Elements

255

(8) DIGITS
(a) Function

The DIGITS scalar function extracts the digits part of an integer, decimal number, date 
interval data, or time interval data and converts it into a character string expression.

(b) Format
DIGITS (value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• Integer or decimal literals
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Arithmetic operations
• Date operations that produce results that are of the date interval data type
• Time operations that produce results that are of the time interval data type
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call

• Scalar subquery
2. The data type of the value expression should be one of the following:

• Integer (INTEGER, SMALLINT)
• Fixed-point number (DECIMAL)
• Date interval data type (INTERVAL YEAR TO DAY)
• Time interval data type (INTERVAL HOUR TO SECOND)

3. The data type of the result is a fixed-length character string (CHAR).
4. The data length of the result depends on the data type of the value expression, as 

shown in Table 2-27.



2. Details of Constituent Elements

256

Table 2-27: Data lengths of the result of the DIGITS scalar function

p: Precision.
s: Decimal scaling position.

5. The result is a character string expression of the absolute value of the value 
expression, without a sign or decimal point. If the actual value has fewer digits 
than the data length of the destination field, the destination field is filled with 
leading zeros.
Example: The data type of the values to be converted is DECIMAL(4,1):
15.   '0150'
-12.4  '0124'

6. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.

(d) Example
Retrieve data for which the value of column C1 (CHAR data type) and the value of 
column C2 (DECIMAL data type) in table T3 are equal:
SELECT * FROM T3
   WHERE C1 = DIGITS(C2)

Data type Data length of result

INTEGER 10

SMALLINT 5

DECIMAL(p,s) p

INTERVAL YEAR TO DAY 8

INTERVAL HOUR TO SECOND 6



2. Details of Constituent Elements

257

(9) FLOAT
(a) Function

The FLOAT scalar function converts numeric data into floating-point data.
(b) Format

FLOAT (value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• Numerical literals
• Component specification

• SQL variables or SQL parameters
• Arithmetic operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The following items can be specified as the data type of value-expression:



2. Details of Constituent Elements

258

• Numeric data type
3. The data type of the result should be a double-precision floating-point number 

(FLOAT).
4. The value of the result is not NOT NULL constrained (null values are allowed). 

Therefore, if the value expression is the null value, the result is also the null value.
(d) Example

Obtain the result in floating-point data of dividing column C1 (INTEGER data type) by 
column C2 (INTEGER data type) in Table T1; use the FLOAT scalar function before the 
division operation to convert either operand to the FLOAT type:
SELECT FLOAT(C1)/C2 FROM T1

(10) HEX
(a) Function

The HEX scalar function converts a value expression into a hexadecimal character 
string expression.

(b) Format
HEX (value-expression)

(c) Rules
1. The HEX scalar function converts the format of the value expression, represented 

internally in the system, into a hexadecimal character string expression.
Table 2-28 shows the formats of internal representations and examples of 
execution results.
Table 2-28: Formats of internal representations by the HEX scalar function and 
examples of execution results

Value expression Internal representation format HEX(value-expression)

'#AB12' Data type: CHAR(5)
23|41|42|31|32

'2341423132'



2. Details of Constituent Elements

259

2. The following items can be specified as the value expression:
• Literals
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Arithmetic operations
• Date operations
• Time operations
• Concatenation operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

3. Table 2-29 shows the relationship between data types that can be specified as the 
value expression and the data type and data length of the result.

1234 Data type: INTEGER
In Windows: D2|04|00|00
In UNIX: 00|00|04|D2

In Windows: 'D2040000'
In UNIX: '000004D2'

1234. Data type: DECIMAL(4,0)
01| 23| 4C

'01234C'

Value expression Internal representation format HEX(value-expression)



2. Details of Constituent Elements

260

Table 2-29: Relationship between the data type of a value expression for the 
HEX scalar function and the data type and data length of a result

Value expression Execution result

Data type Defined 
length

Actual 
length

Data type Defined 
length

Actual 
length

CHAR(n) 1  n < 128 CHAR n*2

128  n  
16,000

VARCHAR n*2

NCHAR(n) 1  n < 64 CHAR n*4

64  n  
8,000

VARCHAR n*4

MCHAR(n) 1  n < 128 CHAR n*2

128  n  
16,000

VARCHAR n*2

VARCHAR(n) 1  n  
16,000

[r] VARCHAR n*2 r*2

NVARCHAR(n) 1  n  
8,000

n*4 r*4

MVARCHAR(n) 1  n  
16,000

n*2 r*2



2. Details of Constituent Elements

261

P: Precision
S: Decimal scaling position
p: Fractional second precision

: Not applicable
Note: If only a character string literal (including national and mixed character 
string literals) whose length is 0 is specified in the value expression, the defined 
length of the execution result will be 1.

4. The HEX scalar function cannot be specified for a value expression if execution of 
the value expression produces any of the following data types:

• CHAR, VARCHAR, MCHAR, or MVARCHAR with a minimum length of 16,001 
bytes

• NCHAR or NVARCHAR with a minimum length of 8,001 characters
• BLOB

INTEGER CHAR 8

SMALLINT 4

DECIMAL(P,S) 1  P  29
0  S  29
S P

(  P/2  + 1) 
* 2

FLOAT 16

SMALLINT 8

DATE 8

TIME 6

TIMESTAMP(p) p = 0, 2, 4, or 6 (7+p/2)*2

INTERVAL YEAR TO DAY 10

INTERVAL HOUR TO 
SECOND

8

BINARY(n) 1  n  
16,000

[r] VARCHAR n*2 r*2

Value expression Execution result

Data type Defined 
length

Actual 
length

Data type Defined 
length

Actual 
length



2. Details of Constituent Elements

262

• BINARY with a minimum length of 16,001 bytes
• BOOLEAN

5. A value expression that contains embedded variables or ? parameters cannot be 
specified.

6. If an operand in the value expression or the argument of the function is composed 
solely of literals, the HEX scalar function cannot be specified if it produces a result 
with a length exceeding 255 bytes.

7. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.

8. In the Windows version, the result value (numeric data excluding the DECIMAL 
type) is represented internally in Little Endian. Specifically, the value 1234 of the 
INTEGER type is represented internally as D2 04 00 00 and the execution result 
is represented as D2040000.

9. In the UNIX version, the result value depends on the internal expression of the 
server platform. For example, in the case of Linux running on an Intel family 
CPU, numeric data excluding the DECIMAL type is represented internally in Little 
Endian. Specifically, the value 1234 of the INTEGER type is represented internally 
as D2 04 00 00, and the execution result is represented as D2040000.

(11) HOUR
(a) Function

Extracts the time part from time data, time stamp data, or time interval data.
(b) Format

HOUR (value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Time operations
• Set functions (MAX, MIN)
• Scalar functions (ABS, TIME, VALUE)



2. Details of Constituent Elements

263

• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The data type of the value expression should be the time data type (TIME), time 
stamp data type (TIMESTAMP), or time interval data type (INTERVAL HOUR TO 
SECOND).

3. The data type of the result is integer (INTEGER).
4. If the value expression is of the time data type or the time stamp data type, the 

result is in the range 0 to 23.
5. If the value expression is of the time interval data type, the result will be in the 

range -99 to 99.
If the result is non-zero, the result has the same sign as the value expression.

6. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.

(d) Example
Retrieve all rows with the current time from the rows in column C1 (time data type) of 
table T1:
SELECT * FROM T1
   WHERE HOUR (C1) = HOUR(CURRENT TIME)

(12) INTEGER
(a) Function

The INTEGER scalar function converts numeric data into an integer.
(b) Format

INT[EGER] (value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• Numeric literals
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Arithmetic operations



2. Details of Constituent Elements

264

• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The following items can be specified as the data type of value-expression:
• Numeric data type

3. The data type of the result is an integer (INTEGER).
4. The result of executing the INTEGER scalar function should be a value that can be 

expressed in INTEGER.
5. Any numeric digits in the result that follow the decimal point are rounded off.
6. The value of the result is not NOT NULL constrained (null values are allowed). 

Therefore, if the value expression is the null value, the result is also the null value.
(d) Example

Obtain only the fractional part from column C1 (DECIMAL(4,3)) in table T1:
SELECT C1 - INTEGER(C1) FROM T1

(13) IS_USER_CONTAINED_IN_HDS_GROUP
(a) Function

The IS_USER_CONTAINED_IN_HDS_GROUP scalar function returns a Boolean value 
indicating whether or not the executing user belongs to the Sun Java System Directory 
Server role.

(b) Format
IS_USER_CONTAINED_IN_HDS_GROUP (value-expression)

(c) Rules
1. The following items can be specified in the value expression:



2. Details of Constituent Elements

265

• USER
• Character string literal or mixed character string literal
• Column specification (dictionary table column only)
• Component specification
• SQL variable or parameter
• Concatenation operation
• Set function
• Scalar function
• CASE expression
• CAST specification
• Function call
• Scalar subquery

2. The data type of the value expression must be character string (CHAR or VARCHAR) 
or mixed character string (MCHAR or MVARCHAR).

3. For the value of the value expression, specify a role name that is registered with 
the directory server. For role names, see the HiRDB Version 8 System Operation 
Guide. For restrictions on the length of a role name, see 1.1.7 Specification of 
names.

4. When a column specification is specified in the value expression, only a 
dictionary table column can be specified.

5. Multiple table columns cannot be specified in the value expression. If the OR 
operation is to be performed on a predicate for which 
IS_USER_CONTAINED_IN_HDS_GROUP is specified, multiple table columns 
cannot be specified in the OR operation. An AND operation negated by a NOT is 
also treated as an OR operation.

6. IS_USER_CONTAINED_IN_HDS_GROUP cannot be specified in a selection 
expression or in a HAVING clause.

7. Cannot be specified in a retrieval using a list.
8. If IS_USER_CONTAINED_IN_HDS_GROUP is specified in ON search condition for 

a joined table for an outer join, a column of the outer table cannot be specified in 
the value expression.

9. If a table joined to an outer join is specified in a FROM clause and 
IS_USER_CONTAINED_IN_HDS_GROUP is specified in a WHERE clause, columns 
of the inner table of the outer join cannot be specified.



2. Details of Constituent Elements

266

10. The following items cannot be specified if a column of a dictionary table is not 
specified in the value expression:

• Multiple tables specified in the FROM clause
• ORDER BY specification
• DISTINCT specification
• GROUP BY specification
• Set function specification
• FOR UPDATE specification
• FOR READ ONLY specification

11. Specify one or more dictionary tables in the FROM clause.
12. The data type of the result is BOOLEAN.
13. The value of the result is not NOT NULL constrained (the null value is allowed). 

If the value expression is the null value, the result also is the null value.
14. Use of the directory server linkage facility produces the following results:

• If the executing user does not belong to the role, the result is FALSE.
• If the role is not registered in the directory server (the role does not exist), the 

result is FALSE.
• If the executing user belongs to the role, the result is TRUE.
• If the role name is registered in duplicate, the result is FALSE.

15. If the directory server linkage facility is not being used, the result always is 
FALSE.

16. If there is a change in user information or role information on the directory server 
after an execution user has connected to HiRDB and while he or she is executing 
IS_USER_CONTAINED_IN_HDS_GROUP, HiRDB may fail to determine whether 
the execution user belongs to a role, and results may change.

(d) Example
Assume that a role with a condition of manager is specified in the Sun Java System 
Directory Server, and that a manager role (MGRROLE) is registered. The SELECT 
privilege for table T1 to which user A belongs is granted to the manager role. In 
addition, assume that the SELECT privilege for table T2 owned by user A is granted to 
user B. This example shows retrieval of the dictionary table by using 
IS_USER_CONTAINED_IN_HDS_GROUP in order to check the names of the tables that 
user B can access.
The executing user can access the following tables:



2. Details of Constituent Elements

267

Tables owned by the executing user
Tables for which the executing user has access privilege
Tables for which the access privilege is PUBLIC
Tables for which the role to which the executing user belongs has access privilege

The SELECT privilege for table T1 to which user A belongs is granted to the manager 
role (MGRROLE).
GRANT SELECT ON T1 TO GROUP MGRROLE

Grant the SELECT privilege for table T2 owned by user A to user B (USERB):
GRANT SELECT ON T2 TO USERB

Check the names of the tables that user B can access (the example shows use of 
IS_USER_CONTAINED_IN_HDS_GROUP to retrieve the dictionary table, the contents 
of the dictionary table, and the retrieval results):
Retrieval example:
SELECT TABLE_NAME FROM MASTER.SQL_TABLE_PRIVILEGES X
  WHERE (X.GRANTOR=USER OR
         X.GRANTEE_TYPE IS NULL AND X.GRANTEE IN
           (USER, 'PUBLIC') OR
         X.GRANTEE_TYPE='G' AND
         IS_USER_CONTAINED_IN_HDS_GROUP(X.GRANTEE IS TRUE)

Dictionary table:
GRANTOR  GRANTEE     TABLE_SCHEMA  TABLE_NAME  ...  GRANTEE_TYPE
USERA    USERA       USERA         T1               -
USERA    MGRROLE  USERA         T1               G
USERA    USERA       USERA         T2               -
USERA    USERB       USERA         T2               -

Retrieval results:

When user B (USERB) belongs to the manager role (when the result is TRUE)
T1, T2
When user B (USERB) does not belong to the manager role (when the result is 
FALSE)
T2

(14) LENGTH
(a) Function

The LENGTH scalar function determines the length of a value expression.



2. Details of Constituent Elements

268

(b) Format
LENGTH ({value-expression
         |GET_JAVA_STORED_ROUTINE_SOURCE specification})

(c) Rules
1. The following items can be specified as the value expression:

• Literals
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Arithmetic operations
• Date operations
• Time operation
• Concatenation operations
• Set functions
• Scalar functions
• CASE expressions

• CAST specification
• Function call
• Scalar subquery
• : embedded-variable [: indicator-variable] AS data-type (allowable data 

types: BLOB or BINARY types only)
• ? AS data-type (allowable data types: BLOB or BINARY types only)

2. The following data types cannot be specified in value-expression:
• BOOLEAN
• Abstract data type

3. When specifying an embedded variable or a ? parameter in value-expression, its 
data type should be specified in the AS clause. An error may result if the actual 



2. Details of Constituent Elements

269

length (for a locator, the actual length of the data allocated to the locator) of the 
data assigned to the embedded variable or ? parameter is greater than the 
maximum length of the data type specified in the AS clause.

4. The data type of the result is integer (INTEGER).
5. The result of execution of the LENGTH function depends on the data type of the 

value expression, as shown in Table 2-30.
Table 2-30: Execution result as a function of the data type of the value 
expression for the LENGTH scalar function

6. If the value expression is of the character string data type, a space is counted as 
one character.

7. If the value expression is a literal, it is processed according to the data type 
interpreted by HiRDB; see 1.3 Literals for details.

8. If the value expression is USER, CURRENT_DATE, CURRENT_TIME, or 
CURRENT_TIMESTAMP[(p)], the value expression is processed according to the 
data type as interpreted by HiRDB. For details, see 1.4 USER, CURRENT_DATE 
value function, CURRENT_TIME value function, and CURRENT_TIMESTAMP 
value function.

9. The value of the result is not NOT NULL constrained (null values are allowed). 

Data type of value expression Execution result

Fixed-length character data Definition length in bytes

Variable-length character data Actual number of data bytes

Fixed-length national character data Definition length in characters

Variable-length national character data Actual number of data characters

Fixed-length mixed character data Actual number of data characters

Variable-length mixed character data Actual number of data characters

Numeric data Definition length in bytes

For the DECIMAL data type, the length is (  number of 
digits specified in precision/2  + 1). For details, see 1.2 
Data types.

Date, time, or time stamp data Definition length in bytes

Date interval/time interval data For details, see 1.2 Data types.

Large-object data Actual number of data bytes

Binary data Actual number of data bytes



2. Details of Constituent Elements

270

Therefore, if the value expression is the null value, the result is also the null value.
(15) LOWER

(a) Function
The LOWER function converts the uppercase alphabetic characters in character data, 
national character data, or mixed character data into lowercase characters.

(b) Format
LOWER (value-expression)

(c) Rules
1. The following items can be specified as a value expression:

• Literals
• USER
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Concatenation operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call

• Scalar subquery
2. NULL, embedded variables, or the ? parameter cannot be specified in the value 

expression.
3. The data type of the value expression should be character string data type (CHAR 

or VARCHAR), national character string data type (NCHAR or NVARCHAR) or mixed 
character string data type (MCHAR or MVARCHAR).

4. The execution result inherits the data type and the data length of the value 
expression.

5. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.



2. Details of Constituent Elements

271

(16) MINUTE
(a) Function

Extracts the minute part from time data, time stamp data, or time interval data.
(b) Format

MINUTE (value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Time operations
• Set functions (MAX, MIN)
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The data type of the value expression should be either the time data type (TIME) 
or the time interval data type (INTERVAL HOUR TO SECOND).

3. The data type of the result is integer (INTEGER).
4. If the value expression is the time data type or time stamp data type, the result is 

in the range 0 to 59.
5. If the value expression is of the time interval data type, the result will be in the 

range -59 to 59.
If the result is non-zero, the result has the same sign as the value expression.

6. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.

(d) Example
Retrieve the data for which the difference between column C2 (time data type) and 



2. Details of Constituent Elements

272

column C3 (time data type) in table T1 is less than or equal to 30 minutes:
SELECT C1 FROM T1
   WHERE MINUTE(C3-C2) <= 30

(17) MOD
(a) Function

The MOD scalar function returns the remainder from a division operation.
(b) Format

MOD (value-expression-1, value-expression-2)

(c) Rules
1. The following items can be specified as value-expression-1 and 

value-expression-2:
• Integer literals or decimal number literals
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Arithmetic operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The numerator is specified as value-expression-1, and the denominator is 
specified as value-expression-2.

3. The data types of value-expression-1 and value-expression-2 must be one of the 



2. Details of Constituent Elements

273

following:
• Integer (INTEGER, SMALLINT)
• Fixed-point number (DECIMAL)

4. The value of the result is not NOT NULL constrained (the null value is allowed). 
If value-expression-1 or value-expression-2 is the null value, the result will also 
be the null value.

5. If value-expression-1 or value-expression-2 contains a decimal part, the result 
value will also contain a decimal part.

6. The sign of the result will be the same as the sign of value-expression-1.
7. If value-expression-2 is 0, an error results (for the result when overflow error 

suppression is set, see 2.18 Operational results with overflow error suppression 
specified).

8. If the following inequality holds, overflow will occur during the computation, 
resulting in an overflow error:
(p1 - s1) + s2 > 29

p1: Effective precision of the value of value-expression-1

s1: Effective decimal scaling position of the value of value-expression-1

p2: Effective precision of the value of value-expression-2

s2: Effective decimal scaling position of the value of value-expression-2

For the result when overflow error suppression is set, see 2.18 Operational results 
with overflow error suppression specified.

9. Table 2-31 shows the relationship between the data type of the result and the data 
types of value-expression-1 and value-expression-2.
Table 2-31: Relationship between a result data type and value-expression-1 and 
value-expression-2 data types

value-expression-1 Data Type Value-expression-2 data type

SMALLINT INTEGER DECIMAL

SMALLINT SMALLINT INTEGER DECIMAL

INTEGER SMALLINT INTEGER DECIMAL

DECIMAL (p, 0) SMALLINT INTEGER DECIMAL

DECIMAL (p, s) (s > 0) DECIMAL DECIMAL DECIMAL



2. Details of Constituent Elements

274

10. Table 2-32 shows the precision and decimal scaling position of the result when 
the data type of the result is DECIMAL.
Table 2-32: Precision and decimal scaling position of a result when the result 
data type is DECIMAL

Note 1

value-expression-1 data type: DECIMAL(p1,s1)

value-expression-2 data type: DECIMAL(p2,s2)

Note 2

INTEGER is treated as DECIMAL(10,0).
SMALLINT is treated as DECIMAL(5,0).

(18) MONTH
(a) Function

Extracts the month part from date data, time stamp data, or date interval data.
(b) Format

MONTH (value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• CURRENT_DATE
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Date operations
• Set functions (MAX, MIN)
• Scalar functions
• CASE expressions

Item Precision or decimal scaling position

Precision (p) p=MIN (p2-s2+s, 29)

Decimal scaling position (s) s=MAX (s1, s2)



2. Details of Constituent Elements

275

• CAST specification
• Function call
• Scalar subquery

2. The data type of the value expression should be the date data type (DATE), time 
stamp data type (TIMESTAMP), or date interval data type (INTERVAL YEAR TO 
DAY).

3. The data type of the result is integer (INTEGER).
4. If the value expression is the date data type or time stamp data type, the result is 

in the range 1 to 12.
5. If the value expression is of the date interval data type, the result will be in the 

range -11 to 11.
If the result is non-zero, the result has the same sign as the value expression.

6. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.

(d) Example
Delete all rows from table T1 that are not of the current month (September):
DELETE FROM T1
   WHERE MONTH(C1) <> MONTH(CURRENT_DATE)

(19) POSITION
(a) Function

Determines the starting position of the first part in a data string (a character string or 
binary string) that matches a given data substring.

(b) Format
 
POSITION (value-expression-1 IN value-expression-2 [ FROM value-expression-3])
 



2. Details of Constituent Elements

276

(c) Rules
1. In value-expression-1, specify the search data substring. In value-expression-2, 

specify the data string to be searched for. Items that can be specified in 
value-expression-1 and value-expression-2 are listed below. Items that can be 
specified vary depending upon combinations of the data types of 
value-expression-1 and value-expression-2. For specifiable combinations, see 
Rule 2.

• Literals (character strings, national character strings, mixed character 
strings, or hexadecimal character strings)

• Column specifications
• Component specification
• SQL variables or SQL parameters
• Concatenation operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery
• : embedded-variable [: indicator-variable] AS data-type (allowable data 

types: BLOB or BINARY types only)
• ? AS data-type (allowable data types: BLOB or BINARY types only)

2. The following table shows combinations of data types that can be specified in 
value-expression-1 and value-expression-2:



2. Details of Constituent Elements

277

Table 2-33: Combinations of data types that can be specified in value expression 
1 and value expression 2 of the scalar function POSITION

Legend:
Y: Specifiable
R: Specifiable, subject to restrictions
N: Not specifiable
Table number: Table of combinations of corresponding item if item is 
specifiable

1 Can be specified only if value expression-1 is a hexadecimal character string 
literal.
2 Can be specified only if value expression-2 is a hexadecimal character string 
literal.

Value 
expression 1

Value expression 2

Character 
string data 

type

National 
character 
string data 

type

Mixed 
character 
string data 

type

BLOB 
type

BINARY 
type with a 
maximum 
length of 

32,000 
bytes

BINARY 
type with a 
maximum 
length of 

32,001 
bytes or 
greater

Character string 
data type

Y
(Table 2-34)

N Y
(Table 2-34)

R1

(Table 2-35)
R1

(Table 2-34)
R1

(Table 2-35)

National 
character string 
data type

N Y
(Table 2-34)

N N N N

Mixed character 
string data type

Y
(Table 2-34)

N Y
(Table 2-34)

N N N

BLOB type R2

(Table 2-36)
N N Y

(Table 2-35)
Y

(Table 2-36)
Y

(Table 2-35)

BINARY type 
with a maximum 
length of 32,000 
bytes

R2

(Table 2-34)
N N Y

(Table 2-35)
Y

(Table 2-34)
Y

(Table 2-35)

BINARY type 
with a maximum 
length of 32,001 
bytes or greater

R2

(Table 2-36)
N N Y

(Table 2-35)
Y

(Table 2-36)
Y

(Table 2-35)



2. Details of Constituent Elements

278

3. The following table shows combinations of items that can be specified in value 
expression-1 and value expression-2.
Table 2-34: Combinations of items that can be specified in value expression 1 
and value expression 2 of the scalar function POSITION (where value expression 
1 and value expression 2 are both a character string data type, national character 
string data type, mixed character string data type, or BINARY type with a 
maximum length of 32,000 bytes)

Legend:
Y: Specifiable
Lit: Literal
Col spc: Column specification

Value 
expression 1

Value expression 2

Lit Col 
spc

Cmp 
spc

SQL Con Set 
fnc

Scl 
fnc

CSE CST Fnc 
call

Scl 
sq

Emb 
var, 
? 

para*

Literal Y Y Y Y Y Y Y Y Y Y Y Y

Column 
specification

Y Y Y Y Y Y Y Y Y Y Y Y

Component 
specification

Y Y Y Y Y Y Y Y Y Y Y Y

SQL variable, 
SQL parameter

Y Y Y Y Y Y Y Y Y Y Y Y

Concatenation Y Y Y Y Y Y Y Y Y Y Y Y

Set function Y Y Y Y Y Y Y Y Y Y Y Y

Scalar function Y Y Y Y Y Y Y Y Y Y Y Y

CASE 
expression

Y Y Y Y Y Y Y Y Y Y Y Y

CAST 
specification

Y Y Y Y Y Y Y Y Y Y Y Y

Function call Y Y Y Y Y Y Y Y Y Y Y Y

Embedded 
variable,
? parameter*

Y Y Y Y Y Y Y Y Y Y Y Y



2. Details of Constituent Elements

279

Cmp spc: Component specification
SQL: SQL variable, SQL parameter
Con: Concatenation
Set fnc: Set function
Scl fnc: Scalar function
CSE: CASE expression
CST: CAST specification
Fnc call: Function call
Scl sq: Scalar subquery
Emb var: Embedded variable
? para: ? parameter

* Embedded variables and ? parameters can be specified only if they are of the 
BINARY type.
Table 2-35: Combinations of items that can be specified in value expression 1 
and value expression 2 of the scalar function POSITION (where value expression 
2 is either the BLOB type or the BINARY type with a maximum length of 
32,0001 bytes or greater)

Value 
expression 1

Value expression 2

Lit Col 
spc

Cmp 
spc

SQL Con Set 
fnc

Scl 
fnc

CSE CST Fnc 
call

Scl 
sq

Emb 
var, 

? 
para

Literal* N Y N Y N N N N N N N Y

Column 
specification

N N N N N N N N N N N N

Component 
specification

N N N N N N N N N N N N

SQL variable,
SQL parameter

N Y N Y N N N N N N N Y

Concatenation N N N N N N N N N N N N

Set function N N N N N N N N N N N N

Scalar function N N N N N N N N N N N N



2. Details of Constituent Elements

280

Legend:
Y: Specifiable
N: Not specifiable
Lit: Literal
Col spc: Column specification
Cmp spc: Component specification
SQL: SQL variable, SQL parameter
Con: Concatenation
Set fnc: Set function
Scl fnc: Scalar function
CSE: CASE expression
CST: CAST specification
Fnc call: Function call
Scl sq: Scalar subquery
Emb var: Embedded variable
? para: ? parameter

* Literals can be specified only if they are of the character string data type 
(hexadecimal character string literal).

CASE 
expression 

N N N N N N N N N N N N

CAST 
specification

N N N N N N N N N N N N

Function call N N N N N N N N N N N N

Embedded 
variable,
? parameter

N Y N Y N N N N N N N Y

Value 
expression 1

Value expression 2

Lit Col 
spc

Cmp 
spc

SQL Con Set 
fnc

Scl 
fnc

CSE CST Fnc 
call

Scl 
sq

Emb 
var, 
? 

para



2. Details of Constituent Elements

281

Table 2-36: Combinations of items that can be specified in value expression 1 
and value expression 2 of the scalar function POSITION (where value expression 
1 is either the BLOB type or the BINARY type with a maximum length of 32,001 
bytes or greater, and value expression 2 is either the character string data type or 
the BINARY type with a maximum length of 32,000 bytes)

Legend:
Y: Specifiable
N: Not specifiable
Lit: Literal
Col spc: Column specification
Cmp spc: Component specification

Value 
expression 1

Value expression 2

Lit Col 
spc

Cmp 
spc

SQL Con Set 
fnc

Scl 
fnc

CSE CST Fnc 
call

Scl 
sq

Emb 
var, 

? 
para*

Literal N N N N N N N N N N N N

Column 
specification

N N N N N N N N N N N N

Component 
specification

N N N N N N N N N N N N

SQL variable,
SQL parameter

Y Y Y Y Y Y Y Y Y Y Y Y

Concatenation N N N N N N N N N N N N

Set function N N N N N N N N N N N N

Scalar function N N N N N N N N N N N N

CASE 
expression 

N N N N N N N N N N N N

CAST 
specification

N N N N N N N N N N N N

Function call N N N N N N N N N N N N

Embedded 
variable,
? parameter

Y Y Y Y Y Y Y Y Y Y Y Y



2. Details of Constituent Elements

282

SQL: SQL variable, SQL parameter
Con: Concatenation
Set fnc: Set function
Scl fnc: Scalar function
CSE: CASE expression
CST: CAST specification
Fnc call: Function call
Scl sq: Scalar subquery
Emb var: Embedded variable
? para: ? parameter

* Embedded variables and ? parameters can be specified only if they are of the 
BINARY type.

4. When specifying an embedded variable or a ? parameter in value-expression-1 or 
value-expression-2, specify its data type in the AS clause. An error may result if 
the actual length (for a locator, the actual length of the data allocated to the 
locator) of the data assigned to the embedded variable or ? parameter is greater 
than the maximum length of the data type specified in the AS clause.

5. value-expression-3 specifies a starting search position. If value-expression-2 is a 
character string data type, BLOB type, or BINARY type, the starting position is 
specified in bytes; if value-expression-2 is a national character string data type or 
mixed character string data type, it is specified in units of characters. If the data 
type of value-expression-2 is character string data type, national character string 
data type, or mixed character string data type, the starting position should be 
within a 1  (value-expression-3)  (maximum of value-expression-2) range. 
If the data type of value-expression-2 is the BLOB or BINARY type, the starting 
position should be in a 1  (value-expression-3) range. For the mixed character 
string data type, the (maximum of value-expression-2) is in units of bytes. If 
value-expression-3 is omitted, the default starting search position is 1.

6. The following items can be specified in value-expression-3:
• Unsigned integer literal
• Column specification
• Component specification
• Arithmetic operations
• Set function



2. Details of Constituent Elements

283

• Scalar function
• CASE expression
• CAST specification
• Function call
• Scalar subquery
• SQL variable or SQL parameter
• Embedded variable or ? parameter

The following items can be specified in value-expression-3 if value-expression-1 
or value-expression-2 is a BLOB type or a BINARY type with a maximum length 
of 32,0001 bytes or greater:

• Unsigned integer literal
• SQL variable or SQL parameter
• Embedded variable or ? parameter

7. The data type of value-expression-3 should be integer (INTEGER, SMALLINT).
8. The data type of a result will be integer (INTEGER).
9. The result is in bytes if value-expression-2 is a character string data type, BLOB 

type, or BINARY type, and it is a position in units of characters if 
value-expression-2 is a national character string data type or mixed character 
string data type.

10. If the actual length of value-expression-1 is 0, the result will be the value of 
value-expression-3. If value-expression-3 is omitted, the actual length will be 1.

11. If the actual length of value-expression-1 is greater than 0 and value-expression-3 
is greater than the actual length of value-expression-2, the result will be 0.

12. If the data substring of value-expression-1 is not found beyond the starting search 
position in the data string specified in value-expression-2, the result will be 0.

13. The value of the result will be the NOT NULL constraint (allows the null value). If 
value-expression-1, value-expression-2, or value-expression-3 is the null value, 
the result will also be the null value.

(d) Example
Find the first position where the character string 'TIME' occurs at byte 6 or beyond in 
column C1 (data type: CHAR) of table T1:
 
    SELECT POSITION('TIME:' IN C1 FROM 6) FROM T1
 



2. Details of Constituent Elements

284

(20) SECOND
(a) Function

Extracts the second part from time data, time stamp data, or time interval data.
(b) Format

SECOND (value-expression)

(c) Rules
1. The following items can be specified as the value expression:

• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Time operations

• Set functions (MAX, MIN)
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The data type of the value expression should be the time data type (TIME), time 
stamp data type (TIMESTAMP), or time interval data type (INTERVAL HOUR TO 
SECOND).

3. The data type of the result is integer (INTEGER).



2. Details of Constituent Elements

285

4. If the value expression is the time data type or time stamp data type, the result is 
in the range 0 to 59.

5. If the value expression is of the time interval data type, the result will be in the 
range -59 to 59.
If the result is non-zero, the result has the same sign as the value expression.

6. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.

(d) Example
Determine in units of seconds the difference between the earliest time and the latest 
time in column C1 (time data type) in table T1:
SELECT MINUTE(MAX(C1)-MIN(C1))
            *60+SECOND(MAX(C1)
            -MIN(C1))
      FROM T1

(21) SUBSTR
(a) Function

Extracts a part of character string data, national character string data, mixed character 
string data, or binary data.

(b) Format
SUBSTR (value-expression-1, value-expression-2 [, value-expression-3])

(c) Rules
1. In value-expression-1, specify the data string (a character string or a binary string) 

to be processed. The following items can be specified in value-expression-1, 
subject to variation depending upon the data type of value-expression-1:

• Literals (character strings, national character strings, or mixed character 



2. Details of Constituent Elements

286

strings)
• Column specification
• Component specification
• SQL variables or ? parameters
• Concatenation operation
• Set functions
• Scalar functions
• CASE expression
• CAST specification
• Function calls
• Scalar subquery
• : embedded-variable [: indicator-variable] AS data-type (allowable data 

types: BLOB or BINARY types only)
• ? AS data-type (allowable data types: BLOB or BINARY types only)

The following table shows data types that can be specified.
Table 2-37: Items that can be specified depending on the data type of value 
expression 1 of the scalar function SUBSTR

Item Data type of value expression 1

Character string data 
type,

national character 
string data type,

mixed character string 
data type

BINARY type with a 
maximum length of 

32,000 bytes

BLOB type,
or BINARY type 
with a maximum 
length of 32,001 
bytes or greater

Literal Y N N

Column specification Y Y Y

Component specified Y Y N

SQL variable,
SQL parameter

Y Y Y

Concatenation
Set function
Scalar function
CASE expression
CAST specification

Y Y N



2. Details of Constituent Elements

287

Legend:
Y: Specifiable
N: Not specifiable

1. The data type of value-expression-1 should be the character string data type 
(CHAR, VARCHAR), national character string data type (NCHAR, NVARCHAR), mixed 
character string data type, (MCHAR, MVARCHAR), BLOB type, or BINARY type.

2. When specifying an embedded variable or a ? parameter in value-expression-1, 
specify its data type in the AS clause. An error may result if the actual length (for 
a locator, the actual length of the data allocated to the locator) of the data assigned 
to the embedded variable or ? parameter is greater than the maximum length of 
the data type specified in the AS clause.

3. In value-expression-2, specify the starting position of the partial data string to be 
extracted as a positive integer. For the character string data type, the BLOB type, 
or the BINARY type, specify the starting position in bytes; for the national 
character string data type or the mixed character string data type, specify it in 
units of characters. If the data type of value-expression-1 is of the character string 
data type, the national character string data type, or the mixed character string 
data type, the starting position should be in the range 1  (value-expression-2) 

 (maximum length of value-expression-1). If the data type of 
value-expression-1 is of the BLOB type or the BINARY type, the starting position 
should be in the range 1  (value-expression-2). For the mixed character string 
data type, the unit of (maximum length of value-expression-1) is in bytes.

4. In value-expression-3, specify the length of the partial data string to be extracted, 
as a positive integer.
For the character string data type, the BLOB type, or the BINARY type, specify the 
length in bytes. For the national character string data type or the mixed character 

Function call Y Y Y

Scalar subquery Y Y N

Embedded variable
? parameter

N Y Y

Item Data type of value expression 1

Character string data 
type,

national character 
string data type,

mixed character string 
data type

BINARY type with a 
maximum length of 

32,000 bytes

BLOB type,
or BINARY type 
with a maximum 
length of 32,001 
bytes or greater



2. Details of Constituent Elements

288

string data type, specify it in units of characters.
If the data type of value-expression-1 is of the character string data type, the 
national character string data type, or the mixed character string data type, the 
length should be specified in the range 0  (value-expression-3)  (maximum 
length of value-expression-1) - (value-expression-2) + 1. If the data type of 
value-expression-1 is of the BLOB type or the BINARY type, the length should be 
in the range 0  (value-expression-3). The literal 0 cannot be specified in 
value-expression-3.

5. The following items can be specified as value-expression-2 and 
value-expression-3:

• Unsigned integer literals
• Column specifications
• Component specification
• Arithmetic operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• SQL variables or SQL parameters
• Embedded variables or ? parameters
• Scalar subquery

If value-expression-1 is of the BLOB type of the BINARY type with a minimum 
length of 32,001 bytes, the following items can be specified in value-expression-2 
and value-expression-3:

• Unsigned integer literals
• SQL variables or SQL parameters
• Embedded variables or ? parameters

6. The data type of value-expression-2 and value-expression-3 should be an integer 
(INTEGER or SMALLINT).

7. If value-expression-2 is greater than the real length of value-expression-1, the 
result is the null value (the length of the result: 0).

8. If the data length of a result is 0, the result is the null value.



2. Details of Constituent Elements

289

9. If value-expression-3 is omitted and value-expression-1 is fixed-length data, 
HiRDB extracts characters from the starting position indicated by 
value-expression-2 through the last character indicated by the definition length. If 
value-expression-1 is variable-length data, HiRDB extracts characters from the 
starting position indicated by value-expression-2 through the last character 
indicated by the real length.

10. If value-expression-1 is of the BLOB type and value-expression-3 is not omitted, 
and if the data string in the specified range includes a part that does not contain 
real data, HiRDB only extracts the part that contains real data.

11. The value of the result is not NOT NULL constrained (the null value is allowed).
12. Table 2-38 and Table 2-39 show the data types and lengths of the result.

Table 2-38: Data types and lengths of results of the SUBSTR scalar function 
(value-expression-3 specified)

[ ]
Value enclosed in square brackets is the actual length.

L1

If data type is character string: Length L of value-expression-3 (in bytes).
If data type is national character string: Length L of value-expression-3 (in 
characters)  2
If data type is mixed character string: min(length L of value-expression-3 (in 

Data type of 
character string 

(value-expression-1) 
from which partial 
string is extracted

Actual 
length

Length L (value-expression-3)

Literal (character string) Non-literal

L1  255 L1  256

CHAR(n) CHAR(L) VARCHAR(L)[L] VARCHAR[L]

VARCHAR(n) [r]

NCHAR(n) NCHAR(L) NVARCHAR(L)[L] NVARCHAR[L]

NVARCHAR(n) [r]

MCHAR(n) MCHAR(L1) MVARCHAR(L1)[L2] MVARCHAR[L2]

MVARCHAR(n) [r]

BLOB(n) [r] BLOB(L)[k5] BLOB(L)[k5] BLOB(n)[k5]

BINARY(n) [r] BINARY(L)[k5] BINARY(L)[k5] BINARY(n)[k5]



2. Details of Constituent Elements

290

characters)  c, n).
L2

Length (in bytes) of the extracted partial character string containing L characters 
(L  L2  L1).

n
Definition length of the data string (value-expression-1) to be processed
For the character string data type, the mixed character string data type, or the 
BLOB type, in bytes
For the national character string data type, in units of characters

k5

min(L,r-S + 1)
c

Maximum number of bytes representing each character
When utf-8 is specified for the character code type in the pdntenv command 
(pdsetup command in the case of UNIX), the following specifications are used:

• pd_substr_length in the system common definition
• PDSUBSTRLEN in the client environment definition
• SUBSTR LENGTH in the SQL compile option

Note that the value is 2 when the character code type is not utf-8.
: Not applicable.

Note 1: When value-expression-3 is specified, the specification of value-expression-2 
does not affect the data type of the result.

When value-expression-2 is longer than the actual length of value-expression-1, 
the result is the null value (length of the result is 0).
When the length of the partial character string of the result is 0, the result is the 
null value.
When value-expression-3 is omitted and value-expression-1 is fixed-length data, 
characters are extracted from the beginning of value-expression-2 for as many 
characters as the defined length. If value-expression-1 is variable-length data, 
characters are extracted from the beginning of value-expression-2 through the last 
character of the actual length.
The value of the result is not NOT NULL constrained (null value is allowed). If any 
of value-expression-1, value-expression-2, or value-expression-3, is the null 



2. Details of Constituent Elements

291

value, the result will also be the null value.
Note 2: If value-expression-1 is a variable-length character string and 
value-expression-3 is not omitted, the portion of the character string into which 
characters are to be extracted but which does not contain real data will be padded with 
spaces.
Example:

Executing SUBSTR(character-string-1, 3, 5) on character string 1 of 
VARCHAR(8)[5] causes spaces to be set in the two right-side characters in the 
character string being extracted.

If value-expression-1 is of the BLOB type or the BINARY type and value-expression-3 
is not omitted, and if the binary string in the specified range includes a part that does 
not contain real data, HiRDB extracts only the part that contains real data, without 
setting spaces.
Example:

Executing SUBSTR(binary-data-1, 101, 600) on binary data 1 of 
BLOB(1024)[512] produces a result that is from bytes 101 to 512 of binary data 
1.
Table 2-39: Data types and lengths of results of the SUBSTR scalar function 
(value-expression-3 omitted)

Data type of 
character string 

(value-expression-1) 
from which partial 
string is extracted

Actual 
length

Begin position S (value-expression-2)

Literal (character string) Non-literal

value-expression-1: 
Fixed length

value-expression-1: 
Variable length

k0  255 k0  256

CHAR(n) CHAR(k1) VARCHAR(n
)[k1]

VARCHAR(n
)[k1]

VARCHAR(n) [r] VARCHAR(n)[k2] VARCHAR(n
)[k2]

NCHAR(n) NCHAR(k1) NVARCHAR(
n)[k1]

NVARCHAR(
n) [k1]

NVARCHAR(n) [r] NVARCHAR(n)[k2] NVARCHAR(
n) [k2]

MCHAR(n) MCHAR(k1) MVARCHAR(
n) [k3]

MVARCHAR(
n) [k3]



2. Details of Constituent Elements

292

[ ]
Value enclosed in square brackets is the actual length.

n
Definition length of the character string of value-expression-1 from which data is 
extracted (in bytes for the character string or mixed character string data type; in 
characters for the national character string data type)

k0
If data type is character string or mixed character string: n - S + 1
If data type is mixed character string: (n - S + 1)  2

k1
n - S + 1

k2
max(r - S + 1, 0)

k3

Number of bytes in the partial character string from the Sth character through the 
nth byte
max (n - (S - 1)  c, 0)  l3  n - S + 1

l4

Number of bytes in the partial character string from the Sth character through the 

MVARCHAR(n) [r] MVARCHAR(n)[k4] MVARCHAR(
n) [k4]

BLOB(n) [r] BLOB(n)[k2] BLOB(n)[k
2]

BINARY(n) [r] BINARY(n)[k2] BINARY(n)
[k2]

Data type of 
character string 

(value-expression-1) 
from which partial 
string is extracted

Actual 
length

Begin position S (value-expression-2)

Literal (character string) Non-literal

value-expression-1: 
Fixed length

value-expression-1: 
Variable length

k0  255 k0  256



2. Details of Constituent Elements

293

rth byte
max (r - (S - 1)  c, 0))  l3  max (r - S + 1, 0))

c
Maximum number of bytes representing each character
When utf-8 is specified for the character code type in the pdntenv command 
(pdsetup command in the case of UNIX), the following specification is used:

• pd_substr_length in the system common definition
• PDSUBSTRLEN in the client environment definition
• SUBSTR LENGTH in the SQL compile option

Note that the value is 2 when the character code type is not utf-8.
: Not applicable.

Note: When value-expression-1 is a variable-length character string, 
value-expression-3 is omitted, and l2 or l4 is 0, the result will be the null value.

(d) Example
Retrieve the rows in which the two characters in column C1 (CHARACTER data type) of 
table T1 beginning with the second character are 95:
SELECT C1 FROM T1
   WHERE SUBSTR(C1,2,2)='95'

(22) TIME
(a) Function

Converts the character string representation of time in a specified format into time 
data.

(b) Format
TIME (value-expression[,datetime-format])



2. Details of Constituent Elements

294

(c) Rules
1. The following items can be specified as the value expression:

• Literals that are character string expressions of the time
• CURRENT_TIME
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Time operations that produce results that are of the time data type
• Concatenation operations
• Set functions (MAX, MIN)
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The value expression should be in one of the following data types:
• A datetime format specified:

Character data type (CHAR, VARCHAR) or mixed character data type (MCHAR, 
MVARCHAR) of a definition length of 6 to 255

• A datetime format not specified:
Character data type (CHAR, VARCHAR) or time data type (TIME) of a 
definition length of 8 bytes

3. The value expression should be the character string representation of time in the 
format specified in datetime-format. If datetime-format is omitted, the predefined 
character string representation of time should be used.
Examples:

Datetime format 'HH-MI-SS'  '13-45-17'
Datetime format omitted  '13:45:17'

4. If the value expression is of the time data type, the result will be the equivalent 
time.

5. For datetime formats, see 1.10 Specifying a datetime format.



2. Details of Constituent Elements

295

6. The data type of the result is the time data type (TIME).
7. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression or the datetime format is the null value, the result also is the 
null value.

(d) Example
1. Obtains the difference between the earliest time and the latest time in column C1 

(data type: CHAR) of table T1:
SELECT MAX(TIME(C1))-MIN(TIME(C1))
     FROM T1

2. Obtains time data from a character string in column C1 (data type: CHAR) of table 
T2, expressed in a format ('HHMISS') other than the predefined character string 
representation of time:
SELECT TIME(C1,'HHMISS') FROM T2

(23) TIMESTAMP
(a) Function

1. Converts the predefined character expression of a time stamp into time stamp 
data.

2. Converts the cumulative number of days from January 1, year 1 (A.D.) into the 
equivalent time stamp data.

3. Converts date data and time data into time stamp data that is the combination of 
the two data items.



2. Details of Constituent Elements

296

(b) Format
Format of function 1:

Format of function 2:

Format of function 3:

(c) Rules for function 1
1. The following items can be specified in value-expression:

• Time stamp literals in predefined character string representation
• CURRENT_TIMESTAMP[(p)]
• Column specification
• Component specification
• SQL variables or SQL parameters
• Concatenation operation
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function calls
• Scalar subquery

2. In value-expression, specify a character data type (CHAR, VCHAR) with a definition 
length of 19-26 bytes, or the time stamp data type (TIMESTAMP).

3. When specifying a character data type in value-expression, specify the predefined 
character string representation of a time stamp.

4. If value-expression is of the time stamp data type, the result is that time stamp.

 
TIMESTAMP(value-expression)
 

 
TIMESTAMP(value-expression)
 

 
TIMESTAMP(value-expression-1, value-expression-2)
 



2. Details of Constituent Elements

297

5. The data type of the result is the time stamp data type (TIMESTAMP) taking the 
following fractional second precision:

• If value-expression is of the character data type, its fractional second 
precision is based on the predefined character string representation of the 
time stamp of the value-expression.

• If value-expression is the time stamp data, its fractional second precision is 
that of the time stamp data.

(d) Rules for function 2
1. The following items can be specified in value-expression:

• Numeric literals
• Column specification
• Component specification
• SQL variables or SQL parameters
• Arithmetic operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function calls
• Scalar subquery

2. The data type of value-expression should be an integer (INTEGER). When 
specifying an arithmetic operation, a scalar function, a CAST expression, a CASE 
specification, a function call, or a set function, ensure that the result of the 
operation is an integer data type.

3. The range of value-expression should be 1 to 3,652,059.
4. The result is a time stamp after (specified-numeric-value - 1) since January 1, year 

1 (A.D.). The time part of the result is 0:0:0.
Example:

If value-expression is 35  February 4, year 1 (A.D.), 0:0:0.
(e) Rules for function 3

1. The following items can be specified in value-expression-1:
• Predefined character string representation literals of dates



2. Details of Constituent Elements

298

• CURRENT_DATE
• Column specification
• Component specification
• SQL variables or SQL parameters
• Date operations producing operation results that are of the date data type
• Concatenation operation
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function calls
• Scalar subquery

2. The data type of value-expression-1 should be either a character data type 
(CHARACTER, VARCHAR) of a length of 10 bytes, or the date data type (DATE).

3. In value-expression-1, specify the predefined character string representation of a 
date.
Example:
'1995-06-30'

4. The following items can be specified in value-expression-2:
• Predefined character string representation literals of time
• CURRENT_TIME
• Column specification
• Component specification
• SQL variables or SQL parameters
• Time operations producing results that are time data
• Concatenation operation
• Set functions
• Scalar functions
• CASE expressions
• CAST specification



2. Details of Constituent Elements

299

• Function calls
• Scalar subquery

5. The data type of value-expression-2 should be a character data type (CHARACTER, 
VARCHAR) of a length of 8 bytes, or the time data type (TIME).

6. In value-expression-2, specify the predefined character string representation of 
time.
Example:
'13:45:17'

(f) Common rules
1. The data type of the result is of the time stamp data type (TIMESTAMP).
2. The value of the result is not NOT NULL constrained (the null value is allowed). 

If the value expression is the null value, the result also is the null value.
(g) Examples

1. From column C1 (data type: time stamp data type) in table T1, retrieve data 
occurring since a specified time stamp:
SELECT C1 FROM T1
  WHERE C1 >= TIMESTAMP('2000-01-01 00:00:00.00')

2. Convert column C1 (data type: numeric data type) in table T1 into time stamp data 
and insert the results into column C1 (data type: time stamp data type) in table T2:
INSERT INTO T2(C1) SELECT TIMESTAMP(C1) FROM T1



2. Details of Constituent Elements

300

3. Combine the data from column C1 (data type: date data type) in table T1 with the 
data from column C2 (data type: time data type) in table T1, and insert the results 
into column C1 (data type: time stamp data type) in table T2:
INSERT INTO T2(C1) SELECT TIMESTAMP(C1,C2) FROM T1

(24) TIMESTAMP_FORMAT
(a) Function

Converts the character string representation of a time stamp based on a specified 
datetime format into time stamp data.

(b) Format

(c) Rules
1. The following items can be specified in value-expression:

• Character string representation literals of time stamps

• Column specification
• Component specification
• SQL variables or SQL parameters
• Concatenation operation
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function calls
• Scalar subquery

 
TIMESTAMP_FORMAT(value-expression, datetime-format)
 



2. Details of Constituent Elements

301

2. In value-expression, specify a character data type (CHARACTER, VARCHAR) of a 
definition length of 14 to 255 bytes, or a mixed character data type (MCHAR, 
MVARCHAR).

3. In value-expression, specify the character string representation of a time stamp in 
a format specified in the datetime format.
Example:
Datetime format 'YYYY/MM/DD HH-MI-SS.NNNN':
->'2002/06/30 10-45-30.1523'

4. For datetime formats, see 1.10 Specifying a datatime format.
5. The data type of the result is of the time stamp data type (TIMESTAMP) with a 

fractional second precision of 6.
(d) Common rules

1. The value of the result is not NOT NULL constrained (the null value is allowed). 
If the value expression or the datetime format is the null value, the result also is 
the null value.

(e) Example
Obtain time stamp data from a character string in column C1 (data type: CHAR) in table 
T1, represented in a format ('DD/MON/YYYY HH-MI-SS NNNN') other than the 
predefined character string representation of a time stamp:
SELECT TIMESTAMP_FORMAT(C1,'DD/MON/YYYY HH-MI-SS NNNN')
  FROM T1

(25) UPPER
(a) Function

Converts the lowercase alphabetic characters in character data, national character data, 
or mixed character data into uppercase.

(b) Format
UPPER (value-expression)

(c) Rules
1. The following items can be specified as a value-expression:



2. Details of Constituent Elements

302

• Literals
• USER
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Concatenation operations
• Set functions
• Scalar functions (HEX, LOWER, SUBSTR, UPPER)
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. NULL, embedded variables, or the ? parameter cannot be specified in the value 
expression.

3. The data type of the value expression should be the character string data type 
(CHAR or VARCHAR), the national character string data type (NCHAR or 
NVARCHAR) or the mixed character string data type (MCHAR or MVARCHAR).

4. The execution result inherits the data type and the data length of value expression.
5. The value of the result is not NOT NULL constrained (null values are allowed). 

Therefore, if the value expression is the null value, the result is also the null value.
(26) VALUE

(a) Function
The VALUE scalar function extracts the value indicated by the first non-null value 
expression from a list of value expressions.

(b) Format
VALUE (value-expression [, value-expression]...)

(c) Rules
1. The following items can be specified as a value expression:

• Literals
• USER
• CURRENT_DATE



2. Details of Constituent Elements

303

• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters
• Arithmetic operations
• Date operations
• Time operations
• Concatenation operations
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• ? parameters or embedded variables
• Function call
• Scalar subquery

2. The maximum allowable number of value expressions is 255.
3. The VALUE scalar function cannot be specified for a value expression if execution 

of the value expression produces any of the following data types:
• BLOB
• BINARY with a minimum length of 32,001 bytes
• BOOLEAN
• Abstract data type

4. NULL cannot be specified in a value expression.
5. The ? parameter or an embedded variable cannot be specified alone in the first 

value expression (including specification in monomial operational expressions).
6. All the value expressions must have data types that are compatible for comparison 

purposes.
Example: If one value expression is the CHAR data type, all other value 
expressions must also be the CHAR data type.
For data types that can be compared, see 1.2 Data types.



2. Details of Constituent Elements

304

The following data types cannot be compared:
• Date data and a character string expression of date data
• Time data and a character string expression of time data
• Time stamp data and the character string representation of time stamp data
• Date interval data and a decimal expression of date interval data
• Time interval data and a decimal expression of time interval data
• Binary data and hexadecimal character string literals

7. If one or more value expressions of VALUE are ? parameters or embedded 
variables, the data types of the ? parameters or embedded variables will be 
assumed to be the same as in the first value expression.

8. The list of value expressions is evaluated sequentially from left to right. The first 
value that is not the null value is taken as the result.

9. The data type and the data length of the result are the same as data type and data 
length of the result of a set operation (UNION ALL or EXCEPT ALL). For details, 
see 2.2 Query expressions.

10. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.

(d) Example
Extract the null value from column C2 of table T5, and assign the value 0:
SELECT VALUE(C1,C2,C3,0)
   FROM T5

* Null value
(27) VARCHAR_FORMAT

(a) Function
Converts date data, time data, or time stamp data into a character string representation 
according to a specified datetime format.



2. Details of Constituent Elements

305

(b) Format

(c) Rules
1. The following items can be specified in value-expression:

• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• Column specification
• Component specification
• SQL variables or SQL parameters
• Date operations producing results that are of the date data type
• Time operations producing results that are of the time data type
• Set functions
• Scalar functions
• CASE expressions
• CAST specification
• Function calls
• Scalar subquery

2. The data type of value-expression should be the date data type (DATE), time data 
type (TIME), or time stamp data type (TIMESTAMP).

3. For datetime formats, see 1.10 Specifying a datetime format.
4. The results take the following data types:

The datetime format is a character data type (CHAR or VARCHAR):
VARCHAR(n)

The datetime format is a mixed character data type (MCHAR or MVARCHAR):
MVARCHAR(n)

The definition length n takes the following values:
 If the value expression is specified as a non-literal value and the datetime 

format is specified in a literal, the definition length is the maximum length of the 

 
VARCHAR_FORMAT(value-expression, datetime-format)
 



2. Details of Constituent Elements

306

character string that can be converted according to a specified format.
 If the value expression is specified as a literal and the datetime format is 

specified in a literal, the definition length is equal to the length of the character 
string that is converted according to the format.

 If the datetime format is specified in a non-literal item, the definition length is 
equal to definition-length + 15 of the data type of the datetime format.

5. The value of the result is the predefined character string representation of the data 
type of the value expression.

6. The value of the result is not NOT NULL constrained (the null value is allowed). 
If the value expression or the datetime format is the null value, the result also is 
the null value.

(d) Example
From column C1 (data type: DATE) in table T1, obtain a result in a character string 
represented in a specified datetime format ('DD/MON/YYYY'):
SELECT VARCHAR_FORMAT(C1,'DD/MON/YYYY') FROM T1

(28) YEAR
(a) Function

Extracts the year part from date data, time stamp data, or date interval data.
(b) Format

YEAR (value-expression)

(c) Rules
1. The following items can be specified in value-expression:

• CURRENT_DATE
• CURRENT_TIMESTAMP[(p)]
• Column specifications
• Component specification
• SQL variables or SQL parameters



2. Details of Constituent Elements

307

• Date operations
• Set functions (MAX, MIN)
• Scalar functions
• CASE expressions
• CAST specification
• Function call
• Scalar subquery

2. The data type of value-expression should be the date data type (DATE), time stamp 
data type (TIMESTAMP) or date interval data type (INTERVAL YEAR TO DAY).

3. The data type of the result is integer (INTEGER).
4. If value-expression is of the date data type or the time stamp data type, the result 

is 1 to 9999.
5. If the value expression is of the date interval data type, the result will be in the 

range -9999 to 9999. If the result is non-zero, the result has the same sign as the 
value expression.

6. The value of the result is not NOT NULL constrained (null values are allowed). 
Therefore, if the value expression is the null value, the result is also the null value.

(d) Example
Obtain the year of column C1 (date data type) for which the value of column C2 
(INTEGER data type) of table T1 is 221140; because column C1 expresses the end of a 
year, display the result as the year that is one year prior to the year indicated by column 
C1:
SELECT SUBSTR(DIGITS(YEAR(C1)-1),7,4),N'YEAR' FROM T1
   WHERE C2=221140

2.16.2 System-defined scalar functions
This section explains the syntax of system-defined scalar functions.
The following rules apply to system-defined scalar functions:



2. Details of Constituent Elements

308

1. Before you can use system-defined scalar functions, you must use pdinit or 
pdmod to create a data dictionary LOB RDAREA (for details of pdinit and 
pdmod, see the HiRDB Version 8 Command Reference manual).

2. When you specify a repetition column as a value expression for an argument, you 
must specify a subscript; however, the word ANY cannot be specified as a 
subscript.

3. When you specify an embedded variable or a ? parameter by itself in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than embedded variables or ? parameters cannot be specified.

4. The portable cursor cannot be used in queries on named derived tables derived by 
specifying a system-defined scalar function.

5. System-defined scalar functions cannot be specified in a derived query expression 
in a view definition.

(1) ACOS
(a) Function

Returns in the range 0 to  the angle (in radians) that is the inverse cosine of an 
argument.

(b) Format
[MASTER.]ACOS(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter



2. Details of Constituent Elements

309

• Scalar subquery
3. When you specify only an embedded variable or a ? parameter in the value 

expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. Specifying in the argument a value whose function value is not defined causes a 
definition area error (domain error occurs).

(2) ADD_INTERVAL
(a) Function

Returns the predefined character string representation of a time stamp, which is 
obtained by adding the datetime interval ( YYYYMMDDhhmmss.) in decimal 
representation specified in argument-2 to the time stamp in predefined character string 
representation ('YYYY-MM-DD hh:mm:ss') specified in argument-1.

(b) Format
[MASTER.]ADD_INTERVAL(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression of argument-1:

• Character string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression



2. Details of Constituent Elements

310

• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expression of argument-2:
• Decimal or integer literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. argument-1 must be a character string data type (CHAR or VARCHAR), and its 
length must not exceed 19 bytes.

6. The data type of argument-2 must be DECIMAL, INTEGER, or SMALLINT. An 
integer value must not exceed 14 digits (the decimal point is ignored if specified).

7. The data type of the result will be CHAR(19).
8. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

9. As the value of argument-1, specify the predefined character string representation 
('YYYY-MM-DD hh:mm:ss') of a valid time stamp. A fractional second 
should not be used in the predefined character string representation of a time 
stamp.

10. argument-2 must specify in the format YYYYMMDDhhmmss. the decimal 
representation of a date and time interval:



2. Details of Constituent Elements

311

• YYYY: Years
• MM: Months
• DD: Days
• hh: Hours
• mi: Minutes
• ss: Seconds

If the value of argument-2 is positive, the operation adds a datetime interval 
(YYYYMMDDhhmmss.) to the time stamp specified in argument-1. If the value of 
argument-2 is negative, the operation results in the subtraction of the datetime 
interval (YYYYMMDDhhmmss.) from the time stamp specified in argument-1.

11. The date and time interval is added or subtracted in the following order: years, 
months, days, hours, minutes, seconds. If the result falls on a non-existent date 
(the 31st of a month with fewer than 31 days or on February 29 of a non-leap 
year), the result is adjusted to the last day of the month.
Adding months to the last day of a month does not necessarily produce the last 
day of the result month. Also, adding a number of months to a date and 
subtracting the same number of months from the resulting date does not 
necessarily produce the original date.

12. If the result of the ADD_INTERVAL function is not within the range 0001/01/01 
00:00:00 - 9999/12/31 23:59:59, an overflow error occurs. For details about the 
operational results when overflow error suppression is in effect, see 2.18 
Operational results with overflow error suppression specified.

13. The result of the function is the predefined character string representation of a 
time stamp.

(d) Examples
Examples of the ADD_INTERVAL function are shown below:
ADD_INTERVAL('1999-12-31 23:59:59',10000000000001.)
  ==> '2001-01-01 00:00:00'
 
ADD_INTERVAL(2001-01-01 00:00:00',-10000000000001.)
  ==> '1999-12-31 23:59:59'
 
ADD_INTERVAL('1956-06-07 03:15:30',400313115450.)
  ==> '1996-09-20 15:10:20'
 
ADD_INTERVAL('1998-12-31 13:59:59',10200030405.)
  ==> '2000-02-29 17:04:04'
 
ADD_INTERVAL('2000-02-29 17:04:04',-10200030405.)



2. Details of Constituent Elements

312

  ==> '1998-12-28 13:59:59'

(3) ASCII
(a) Function

Returns the ASCII integer value for the first character in the character string specified 
in an argument.

(b) Format
[MASTER.]ASCII(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Character string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification

• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a character string data type (CHAR or VARCHAR).
5. The data type of the result will be INTEGER.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.



2. Details of Constituent Elements

313

7. If the length of the argument value is 0 bytes, the result will be the null value.
(d) Example

An example of the ASCII function is shown below:
ASCII('ABC')      ==> 65
CHR(ASCII('ABC')) ==> 'A'

(4) ASIN
(a) Function

Returns in the range - /2 to /2 the angle (in radians) that is the inverse sine of an 
argument.

(b) Format
[MASTER.]ASIN(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.



2. Details of Constituent Elements

314

5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. Specifying in the argument a value whose function value is not defined causes a 
definition area error (domain error occurs).

(5) ATAN
(a) Function

Returns in the range - /2 to /2 the angle (in radians) that is the inverse tangent of 
an argument.

(b) Format
[MASTER.]ATAN(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.



2. Details of Constituent Elements

315

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(6) ATAN2
(a) Function

Returns in the range -  to  the angle (in radians) that is the inverse tangent of x/y, 
where x is argument-1 and y is argument-2.

(b) Format
[MASTER.]ATAN2(argument-1, argument-2)

(c) Rules
1. The following items can be specified in argument-1 and argument-2:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.



2. Details of Constituent Elements

316

5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

(7) CEIL
(a) Function

Returns the smallest integer that is equal to or greater than the value of an argument.
(b) Format

[MASTER.]CEIL(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call

• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. Table 2-40 shows the data type of the result.



2. Details of Constituent Elements

317

Table 2-40: Data type of the result of a CEIL system-defined scalar function

6. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of the argument is the null value, the result is also the null 
value.

7. If the CEIL function's result is a value that cannot be represented by the result data 
type, an overflow error will result. For details about the operational results when 
overflow error suppression is in effect, see 2.18 Operational results with overflow 
error suppression specified.

(8) CENTURY
(a) Function

Returns as an ordinal number the century of the date specified in an argument.
(b) Format

[MASTER.]CENTURY(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression

Data type of argument Data type of result

SMALLINT INTEGER

INTEGER INTEGER

DECIMAL(p, s) DECIMAL(p, s)

SMALLFLT FLOAT

FLOAT FLOAT



2. Details of Constituent Elements

318

• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be DATE.
5. The data type of the result will be INTEGER.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(d) Examples
Examples of the CENTURY function are shown below:
CENTURY(DATE'1900-12-31'))   ==> 19
CENTURY(DATE'1901-01-01'))   ==> 20
CENTURY(DATE'1999-12-31'))   ==> 20
CENTURY(DATE'2000-12-31'))   ==> 20
CENTURY(DATE'2001-01-01'))   ==> 21

(9) CHR
(a) Function

Returns the ASCII character represented by the integer value specified in an argument 
(returns the null value if the argument value is not in the range 0 to 255).

(b) Format
[MASTER.]CHR(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Integer literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation



2. Details of Constituent Elements

319

• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be INTEGER or SMALLINT.
5. The data type of the result will be CHAR(1).
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(d) Example
An example of the CHR function is shown below:
CHR(65           ==> 'A'
ASCII(CHR(65))   ==> 65

(10) COS
(a) Function

Returns the cosine (COS trigonometric function) of an argument that is an angle 
specified in radians.

(b) Format
[MASTER.]COS(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification



2. Details of Constituent Elements

320

• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(11) COSH
(a) Function

Returns the hyperbolic cosine of an argument.
(b) Format

[MASTER.]COSH(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation



2. Details of Constituent Elements

321

• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. If the COSH function's result is a value that cannot be represented by the result data 
type, an overflow error will result. For details about the operational results when 
overflow error suppression is in effect, see 2.18 Operational results with overflow 
error suppression specified.

(12) DATE_TIME
(a) Function

Returns the date of the DATE type specified in argument-1 and the time of the TIME 
type specified in argument-2 by converting them into the predefined character string 
representation ('YYYY-MM-DD hh:mm:ss') of a time stamp.

(b) Format
[MASTER.]DATE_TIME(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression of argument-1:

• CURRENT_DATE



2. Details of Constituent Elements

322

• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expression of argument-2:
• CURRENT_TIME
• Column specification
• SQL variable or SQL parameter
• Time operations
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. The data type of argument-1 must be DATE; the data type of argument-2 must be 
TIME.

6. The data type of the result will be CHAR(19).
7. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of argument-1 or argument-2 is the null value, the result is 



2. Details of Constituent Elements

323

also the null value.
8. The predefined character string representation of the time stamp, which is the 

result of DATE_TIME(date, time), is a value that is obtained by concatenation of 
the predefined character string representation of date, one space character, and the 
predefined character string representation of time.
CHAR(date) | | ' ' | | CHAR(time)

(d) Examples
Examples of the DATE_TIME function are shown below:
DATE_TIME(DATE('1999-12-31'), TIME('23:59:59'))
  ==> '1999-12-31 23:59:59'
DATE_TIME(CURRENT_DATE, CURRENT_TIME)
  ==> '1999-07-27 11:05:20'

(13) DAYNAME
(a) Function

Returns the character string (such as "Sunday" or "Monday") for the day of the week 
of the date specified in an argument.

(b) Format
[MASTER.]DAYNAME(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter



2. Details of Constituent Elements

324

• Scalar subquery
3. When you specify only an embedded variable or a ? parameter in the value 

expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be DATE.
5. The data type of the result will be VARCHAR(18).
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(d) Examples
Examples of the DAYNAME function are shown below:
DAYNAME(DATE('1999-06-06'))   ==> 'Sunday'
DAYNAME(DATE('1999-06-07'))   ==> 'Monday'
DAYNAME(DATE('1999-06-08'))   ==> 'Tuesday'
DAYNAME(DATE('1999-06-09'))   ==> 'Wednesday'
DAYNAME(DATE('1999-06-10'))   ==> 'Thursday'
DAYNAME(DATE('1999-06-11'))   ==> 'Friday'
DAYNAME(DATE('1999-06-12'))   ==> 'Saturday'

(14) DAYOFWEEK
(a) Function

Returns the integer indicating the day of the week ("1" for Sunday,"2" for Monday, 
etc.) for the date specified in an argument.

(b) Format
[MASTER.]DAYOFWEEK(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function



2. Details of Constituent Elements

325

• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be DATE.
5. The data type of the result will be INTEGER.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(d) Examples
Examples of the DAYOFWEEK function are shown below:
DAYOFWEEK(DATE('1999-06-06'))   ==> 1
DAYOFWEEK(DATE('1999-06-07'))   ==> 2
DAYOFWEEK(DATE('1999-06-08'))   ==> 3
DAYOFWEEK(DATE('1999-06-11'))   ==> 6
DAYOFWEEK(DATE('1999-06-12'))   ==> 7
  '1999-06-06' was a Sunday.

(15) DAYOFYEAR
(a) Function

Returns the integer (in the range 1 to 366) that represents the date specified in an 
argument as the number of days elapsed since January 1.

(b) Format
[MASTER.]DAYOFYEAR(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:



2. Details of Constituent Elements

326

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be DATE.
5. The data type of the result will be INTEGER.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(d) Examples
Examples of the DAYOFYEAR function are shown below:
DAYOFYEAR(DATE('1999-01-01'))   ==>   1
DAYOFYEAR(DATE('1999-02-28'))   ==>  53
DAYOFYEAR(DATE('1999-06-07'))   ==> 158
DAYOFYEAR(DATE('1999-12-31'))   ==> 365
DAYOFYEAR(DATE('2000-12-31'))   ==> 366

(16) DEGREES
(a) Function

Converts to degrees the angle specified in radians in an argument.
(b) Format

[MASTER.]DEGREES(argument)



2. Details of Constituent Elements

327

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. If the DEGREES function's result is a value that cannot be represented by the result 
data type, an overflow error will result. For details about the operational results 
when overflow error suppression is in effect, see 2.18 Operational results with 
overflow error suppression specified.

(17) EXP
(a) Function

Determines an exponent to the base of the natural logarithm.



2. Details of Constituent Elements

328

(b) Format
[MASTER.]EXP(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. If the EXP function's result is a value that cannot be represented by the result data 
type, an overflow error will result. For details about the operational results when 
overflow error suppression is in effect, see 2.18 Operational results with overflow 
error suppression specified.



2. Details of Constituent Elements

329

(18) FLOOR
(a) Function

Returns the largest integer that is equal to or less than the value of an argument.
(b) Format

[MASTER.]FLOOR(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter

• Scalar subquery
3. When you specify only an embedded variable or a ? parameter in the value 

expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. Table 2-41 shows the data type of the result.

Table 2-41: Data type of the result of a FLOOR system-defined scalar function

Data type of argument Data type of result

SMALLINT INTEGER

INTEGER INTEGER



2. Details of Constituent Elements

330

6. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of the argument is the null value, the result is also the null 
value.

7. If the FLOOR function's result is a value that cannot be represented by the result 
data type, an overflow error will result. For details about the operational results 
when overflow error suppression is in effect, see 2.18 Operational results with 
overflow error suppression specified.

(19) GREATEST
(a) Function

Returns the largest value among specified arguments.
(b) Format

[MASTER.]GREATEST(argument, argument[, argument])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. A maximum of three arguments can be specified.
3. The following can be specified in each value expression:

• Literal
• USER, CURRENT_DATE, or CURRENT_TIME
• Column specification
• SQL variable or SQL parameter
• Arithmetic, date, time, or concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression

DECIMAL(p, s) DECIMAL(p, s)

SMALLFLT FLOAT

FLOAT FLOAT

Data type of argument Data type of result



2. Details of Constituent Elements

331

• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. All specified arguments must be of one of the following data types: numeric, 
character string, mixed character string, national character string, date, or time.

6. Table 2-42 shows the data type of the result.
Table 2-42: Data type of the result of a GREATEST system-defined scalar 
function

1 The following precision and scaling apply, where pi and si denote the precision 
and scaling of the ith argument, respectively:

Precision = max(p1-s1, p2-s2, ...) + max(s1, s2, ...)

Scaling = max(s1, s2, ...)

A result whose precision exceeds 29 causes an error.
INTEGER is treated as DECIMAL(10,0); SMALLINT is treated as 
DECIMAL(5,0).

2 The following maximum length applies, where ni denotes the maximum length 

Data type of integer Data type of result

INTEGER or SMALLINT INTEGER

DECIMAL [, INTEGER or SMALLINT] DECIMAL1

FLOAT, SMALLFLT [, DECIMAL, INTEGER, or SMALLINT] FLOAT

CHAR or VARCHAR VARCHAR2

MCHAR or MVARCHAR MVARCHAR2

NCHAR or NVARCHAR NVARCHAR2

DATE DATE

TIME TIME



2. Details of Constituent Elements

332

of the ith argument (the definition length in the case of a fixed-length data type):
Maximum length = max(n1, n2, ...)

7. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of any argument is the null value, the result is also the null 
value.

(20) HALF
(a) Function

Based on a month specified in argument-2 and a day specified in argument-3 as the 
beginning of the fiscal year, returns an integer (1 or 2) indicating whether the date 
specified in argument-1 is in the first half or the second half of the fiscal year.

(b) Format
[MASTER.]HALF(argument-1 [, argument-2 [, argument-3]])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression of argument-1:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expressions of argument-2 and 
argument-3:

• Integer literal
• Column specification



2. Details of Constituent Elements

333

• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. The data type of argument-1 must be DATE; the data types of argument-2 and 
argument-3 must be INTEGER or SMALLINT.

6. The data type of the result will be INTEGER.
7. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of any argument is the null value, the result is also the null 
value.

8. For argument-2, the default is 1 and the range of specifiable values is 1 to 12. For 
argument-3, the default is 1 and the range of specifiable values is 1 to 29 when the 
value of argument-2 is 2 and 1 to (number of days in the month specified in 
argument-2) in all other cases.

9. The result is determined according to the following rules:
• If day of argument-1-date < argument-3-day:

Number of months = month of argument-1 date - argument-2-month - 1
• If day of argument-1-date  argument-3-day:

Number of months = month of argument-1 date - argument-2-month
• If number of months < 0:

Result = (number of months + 12)  2 + 1
• If number of months  0:

Result = number of months  2 + 1



2. Details of Constituent Elements

334

(d) Examples
Examples of the HALF function are shown below:
HALF(DATE('1999-01-01'))    ==> 1
HALF(DATE('1999-09-10'))    ==> 2
HALF(DATE('1999-12-31'))    ==> 2
HALF(DATE('1999-04-01'), 4)    ==> 1
HALF(DATE('1999-09-10'), 4)    ==> 1
HALF(DATE('1999-03-31'), 4)    ==> 2
HALF(DATE('1999-03-21'), 3, 21)    ==> 1
HALF(DATE('1999-09-20'), 3, 21)    ==> 1
HALF(DATE('1999-03-20'), 3, 21)    ==> 2

(21) INSERTSTR (INSERTSTR_LONG)
(a) Function

Deletes from the character string specified in argument-1 the substring beginning at 
the character position specified in argument-2 and consisting of the number of 
characters specified in argument-3, then sets the character string specified in 
argument-4 at the argument-2 position and returns the modified character string.

(b) Format
[MASTER.]INSERTSTR(argument-1, argument-2, argument-3, argument-4)
[MASTER.]INSERTSTR_LONG(argument-1, argument-2, argument-3, 
argument-4)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expressions of argument-1 and 

argument-4:
• Character string literal, mixed character string literal, or national character 

string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression



2. Details of Constituent Elements

335

• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expressions of argument-2 and 
argument-3:

• Integer literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. argument-1 and argument-4 must both be the same character string data type 
(CHAR or VARCHAR), mixed character string data type (MCHAR or MVARCHAR), or 
national character string data type (NCHAR or NVARCHAR).

6. Tables 2-43 and 2-44 show the maximum length for the value of argument-4.
Table 2-43: Maximum length of argument-4 of the INSERTSTR system-defined 
scalar function

Data type of argument-1 (and argument-4) Maximum length of argument-4

CHAR or VARCHAR 255

MCHAR or MVARCHAR 255

NCHAR or NVARCHAR 127



2. Details of Constituent Elements

336

Table 2-44: Maximum length of argument-4 of the INSERTSTR_LONG 
system-defined scalar function

7. The data types of argument-2 and argument-3 must be INTEGER or SMALLINT.
8. Specifying 0 in argument-3 means that nothing is to be deleted.
9. Tables 2-45 and 2-46 show the data type of the result.

Table 2-45: Data type of the result of the INSERTSTR system-defined scalar 
function

Table 2-46: Data type of the result of the INSERTSTR_LONG system-defined 
scalar function

10. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of any argument is the null value, the result is also the null 
value.

11. Tables 2-47 and 2-48 show the ranges of values that can be specified in 
argument-2 and argument-3, where m denotes the value of argument-2.

Data type of argument-1 (and argument-4) Maximum length of argument-4

CHAR or VARCHAR 32000

MCHAR or MVARCHAR 32000

NCHAR or NVARCHAR 16000

Data type of argument-1 Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)

Data type of argument-1 Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(32000)

MCHAR(n) or MVARCHAR(n) MVARCHAR(32000)

NCHAR(n) or NVARCHAR(n) NVARCHAR(16000)



2. Details of Constituent Elements

337

Table 2-47: Ranges of specifiable values in argument-2 and argument-3 of the 
INSERTSTR system-defined scalar function

Table 2-48: Ranges of specifiable values in argument-2 and argument-3 of the 
INSERTSTR_LONG system-defined scalar function

12. If the character string specified in argument-1 is shorter than the character 
position (m) specified in argument-2, the character string is padded with spaces 
until its length is (m-1); there is no deletion of a substring in such a case (when 
the data type of argument-1 is NCHAR or NVARCHAR, the padding character is the 
double-byte space).
If the character string specified in argument-1 is longer than m but less than 
(m-1+nd), the characters beginning at position m through the last character are 
deleted (nd is the number of characters specified in argument-3).

13. The length of the result must not exceed the maximum length for the result data 
type. When the length of the result will exceed the length of the argument-1 
character string, the INSERTSTR_LONG function should be used.

(d) Examples
Examples of the INSERTSTR and INSERTSTR_LONG functions are shown below:
INSERTSTR('data warehouse system', 6, 9, 'base')
  ==> 'data base system'
INSERTSTR_LONG('data system', 6, 0, 'warehouse ')
  ==> 'data warehouse system'
INSRTSTR('data base management system', 11, 11, '')
 ==> 'data base system'

The character string specified in argument-4 has a length 0.
INSERTSTR_LONG('data base system', 31, 0, '')
  ==> 'data base system               '

Data type of argument-1 Range of values in 
argument-2

Range of values in 
argument-3

CHAR(n) or VARCHAR(n) 1 to n 0 to (n + 1 - m)

MCHAR(n) or MVARCHAR(n) 1 to n 0 to (n + 1 - m)

NCHAR(n) or NVARCHAR(n) 1 to n 0 to (n + 1 - m)

Data type of argument-1 Range of value of argument-2 Range of value of argument-3

CHAR(n) or VARCHAR(n) 1 to 32000 0 to (32001-m)

MCHAR(n) or MVARCHAR(n) 1 to 32000 0 to (32001-m)

NCHAR(n) or NVARCHAR(n) 1 to 16000 0 to (16001-m)



2. Details of Constituent Elements

338

The result value contains 14 space characters following the string system.
(22) INTERVAL_DATETIMES

(a) Function
Returns the datetime interval between two time stamps in predefined character string 
representation ('YYYY-MM-DD hh:mm:ss') specified in the arguments, in terms of 
a decimal representation ( YYYYMMDDhhmmss.). If time-stamp-of-argument-1 < 
time-stamp-of-argument-2, the result is a negative value.

(b) Format
[MASTER.]INTERVAL_DATETIMES(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• Character string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. argument-1 and argument-2 must both be a character string data type (CHAR or 
VARCHAR), and the length of the arguments must be 19 bytes.

5. The data type of the result will be DECIMAL(14).



2. Details of Constituent Elements

339

6. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

7. For the value of argument-1 and argument-2, specify a valid predefined character 
string representation ('YYYY-MM-DD hh:mm:ss') of the time stamp; do not 
specify a fractional second in the predefined character string representation of the 
time stamp.

8. The result of INTERVAL_DATETIMES(time-stamp-1, time-stamp-2) is 
calculated according to the following rules:

• If time-stamp-1 < time-stamp-2:
Result = -INTERVAL_DATETIMES(time-stamp-1, time-stamp-2)

• If time-stamp-1  time-stamp-2:
 If second of time-stamp-1  second of time-stamp-2:

Second of the result = second of time-stamp-1 - second of time-stamp-2
 If second of time-stamp-1 < second of time-stamp-2:

Second of the result = second of time-stamp-1 - second of time-stamp-2 + 60
Minute of time-stamp-2 = minute of time-stamp-2 + 1

 If minute of time-stamp-1  minute of time-stamp-2:
Minute of the result = minute of time-stamp-1 - minute of time-stamp-2

 If minute of time-stamp-1 < minute of time-stamp-2:
Minute of the result = minute of time-stamp-1 - minute of time-stamp-2 + 60
Hour of time-stamp-2 = hour of time-stamp-2 + 1

 If hour of time-stamp-1  hour of time-stamp-2:
Hour of the result = hour of time-stamp-1 - hour of time-stamp-2

 If hour of time-stamp-1 < hour of time-stamp-2:
Hour of the result = hour of time-stamp-1 - hour of time-stamp-2 + 24
Day of time-stamp-2 = day of time-stamp-2 + 1

 If day of time-stamp-1  day of time-stamp-2:
Day of the result = day of time-stamp-1 - day of time-stamp-2

 If day of time-stamp-1 < day of time-stamp-2
Day of the result = day of time-stamp-1 - day of time-stamp-2 + last day of 
the month of time-stamp-2



2. Details of Constituent Elements

340

Month of time-stamp-2 = month of time-stamp-2 + 1
 If month of time-stamp-1 = month of time-stamp-2:

Month of the result = month of time-stamp-1 - month of time-stamp-2
 If month of time-stamp-1 < month of time-stamp-2:

Month of the result = month of time-stamp-1 - month of time-stamp-2 + 12
Year of time-stamp-2 = year of time-stamp-2 + 1
Year of the result = year of time-stamp-1 - year of time-stamp-2

• Result = (years of result x 10000000000 + months of result x 100000000 + 
days of result x 1000000 + hours of result x 10000 + minutes of result x 100 
+ seconds of result)

(d) Examples
Examples of the INTERVAL_DATETIMES function are shown below:
INTERVAL_DATETIMES('2001-01-01 00:00:00',
                   '1999-12-31 23:59:59')
  ==>    10000000001.
INTERVAL_DATETIMES('1999-12-31 23:59:59',
                   '2001-01-01 00:00:00')
  ==>   -10000000001.
INTERVAL_DATETIMES('1996-09-20 15:10:20',
                   '1956-06-07 03:15:30')
  ==>   400313115450.
NUMEDIT(INTERVAL_DATETIMES('1996-09-20 15:10:20',
                           '1956-06-07 03:15:30'),
       '<9990" YEARS "90" MONTHS "90" DAYS "90" HOURS "
       90" MINUTES "90" SECONDS"')
  ==>  '40 years 3 months 13 days 11 hours 54 minutes 50 seconds'

(23) ISDIGITS
(a) Function

Returns a BOOLEAN value indicating whether or not the character string specified in an 
argument is composed solely of numeric digits.

(b) Format
[MASTER.]ISDIGITS(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:



2. Details of Constituent Elements

341

• Character string literal or mixed character string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a character string data type (CHAR or VARCHAR) or mixed 
character string data type (MCHAR or MVARCHAR) and its length may not exceed 60 
bytes.

5. The data type of the result will be BOOLEAN.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. If the character string specified in the argument consists solely of numeric digits 
(0 to 9), the result is TRUE; otherwise, the result is FALSE.

(d) Examples
Examples of the ISDIGITS function are shown below:
ISDIGITS('1234567890')  ==> true
ISDIGITS('123ABC')     ==> false
ISDIGITS('')           ==> false

(24) IS_DBLBYTES
(a) Function

Returns a BOOLEAN value indicating whether or not the character string specified in an 
argument is composed solely of double-byte characters.



2. Details of Constituent Elements

342

(b) Format
[MASTER.]IS_DBLBYTES(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Character string literal or mixed character string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a character string data type (CHAR or VARCHAR) or mixed 
character string data type (MCHAR or MVARCHAR).

5. The data type of the result will be BOOLEAN.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. If the character string specified in the argument consists solely of double-byte 
characters, the result is TRUE; otherwise, the result is FALSE.

(d) Examples
Examples of the IS_DBLBYTES function are shown below:



2. Details of Constituent Elements

343

(25) IS_SNGLBYTES
(a) Function

Returns a BOOLEAN value indicating whether or not the character string specified in an 
argument is composed solely of single-byte characters.

(b) Format
[MASTER.]IS_SNGLBYTES(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Character string literal or mixed character string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function

• Function call
• CAST specification
• CASE expression
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a character string data type (CHAR or VARCHAR) or mixed 
character string data type (MCHAR or MVARCHAR).



2. Details of Constituent Elements

344

5. The data type of the result will be BOOLEAN.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. If the character string specified in the argument consists solely of single-byte 
characters, the result is TRUE; otherwise, the result is FALSE.

(d) Examples
Examples of the IS_SNGLBYTES function are shown below:

(26) LAST_DAY
(a) Function

Returns the last day of the month for the date specified in an argument.
(b) Format

[MASTER.]LAST_DAY(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter



2. Details of Constituent Elements

345

• Scalar subquery
3. When you specify only an embedded variable or a ? parameter in the value 

expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be DATE.
5. The data type of the result will be DATE.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(d) Examples
Examples of the LAST_DAY function are shown below:
LAST_DAY(DATE('1999-01-01'))  ==> '1999-01-31'
LAST_DAY(DATE('1999-02-16'))  ==> '1999-02-28'
LAST_DAY(DATE('1999-06-10'))  ==> '1999-06-30'
LAST_DAY(DATE('1999-12-25'))  ==> '1999-12-31'
LAST_DAY(DATE('2000-02-03'))  ==> '2000-02-29'

(27) LEAST
(a) Function

Returns the smallest value among specified arguments.
(b) Format

[MASTER.]LEAST(argument, argument [, argument])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. A maximum of three arguments can be specified.
3. The following can be specified in each value expression:

• Literal
• USER, CURRENT_DATE, or CURRENT_TIME
• Column specification
• SQL variable or SQL parameter
• Arithmetic, date, time, or concatenation operation



2. Details of Constituent Elements

346

• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. All specified arguments must be of one of the following data types: numeric, 
character string, mixed character string, national character string, date, or time.

6. Table 2-49 shows the data type of the result.
Table 2-49: Data type of the result of the LEAST system-defined scalar function

1 The following precision and scaling apply, where pi and si denote the precision 
and scaling of the ith argument, respectively:

Precision = max(p1 - s1, p2 - s2, ...) + max(s1, s2, ...)

Scaling = max(s1, s2, ...)

Data type of integer Data type of result

INTEGER or SMALLINT INTEGER

DECIMAL [, INTEGER or SMALLINT] DECIMAL1

FLOAT, SMALLFLT [, DECIMAL, INTEGER, or SMALLINT] FLOAT

CHAR or VARCHAR VARCHAR2

MCHAR or MVARCHAR MVARCHAR2

NCHAR or NVARCHAR NVARCHAR2

DATE DATE

TIME TIME



2. Details of Constituent Elements

347

A result whose precision exceeds 29 causes an error.
INTEGER is treated as DECIMAL(10,0); SMALLINT is treated as 
DECIMAL(5,0).

2 The following maximum length applies, where ni denotes the maximum length 
of the ith argument (the definition length in the case of a fixed-length data type):

Maximum length = max(n1, n2, ...)

7. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of any argument is the null value, the result is also the null 
value.

(28) LEFTSTR
(a) Function

Returns from the beginning (the leftmost position) of the character string specified in 
argument-1 the substring consisting of the number of characters specified in 
argument-2.

(b) Format
[MASTER.]LEFTSTR(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression of argument-1:

• Character string literal, mixed character string literal, or national character 
string literal

• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter



2. Details of Constituent Elements

348

• Scalar subquery
3. The following can be specified in the value expression of argument-2:

• Integer literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. argument-1 must be a character string data type (CHAR or VARCHAR), mixed 
character string data type (MCHAR or MVARCHAR), or national character string type 
data type (NCHAR or NVARCHAR).

6. The data type of argument-2 must be INTEGER or SMALLINT.
7. Table 2-50 shows the range of values that can be specified in argument-2.

Table 2-50: Range of specifiable values in argument-2 of the LEFTSTR 
system-defined scalar function

8. Table 2-51 shows the data type of the result.

Data type of argument-1 Range of values in argument-2

CHAR(n) or VARCHAR(n) 0 to n

MCHAR(n) or MVARCHAR(n) 0 to n

NCHAR(n) or NVARCHAR(n) 0 to n



2. Details of Constituent Elements

349

Table 2-51: Data type of the result of the LEFTSTR system-defined scalar 
function

9. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

10. If the number of characters in the argument-1 character string is less than the 
number of characters specified in argument-2, the result will be the argument-1 
value.

(d) Examples
Examples of the LEFTSTR function are shown below:
LEFTSTR('data base system', 9)  ==> 'data base'
LEFTSTR('DATA SYSTEM', 0)       ==> ''(Character string of 0 length)

(29) LN
(a) Function

Returns the natural logarithm of an argument.
(b) Format

[MASTER.]LN(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function

Data type of argument-1 Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)



2. Details of Constituent Elements

350

• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(30) LOG10
(a) Function

Returns the common logarithm of an argument.
(b) Format

[MASTER.]LOG10(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression



2. Details of Constituent Elements

351

• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(31) LTRIM
(a) Function

Beginning at the left end of the character string specified in argument-1, removes all 
instances of each of the characters in the character string specified in argument-2 until 
a character not found in the argument-2 character string is encountered.

(b) Format
[MASTER.]LTRIM(argument-1 [, argument-2])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• Character string literal, mixed character string literal, or national character 
string literal

• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression



2. Details of Constituent Elements

352

• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. argument-1 and argument-2 must both be the same character string data type 
(CHAR or VARCHAR), mixed character string data type (MCHAR or MVARCHAR), or 
national character string data type (NCHAR or NVARCHAR). The maximum length 
of the argument-2 value is 30 bytes for a character string or mixed character string 
data type and 30 characters for a national character string data type.

5. Table 2-52 shows the data type of the result.
Table 2-52: Data type of the result of the LTRIM system-defined scalar function

6. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

7. If argument-2 is omitted, one space character in the data type of the result is 
assumed.

(d) Examples
Examples of the LTRIM function are shown below:
LTRIM('abcabcabdata base', 'abc')  ==> 'abdata base'
LTRIM('    data base')             ==> 'data base'

(32) LTRIMSTR
(a) Function

Beginning at the left end of the character string specified in argument-1, deletes each 
successive occurrence of the character string specified in argument-2 until it does not 
find that character string.

Data type of argument-1 (and argument-2) Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)



2. Details of Constituent Elements

353

(b) Format
[MASTER.]LTRIMSTR(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• Character string literal, mixed character string literal, or national character 
string literal

• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. argument-1 and argument-2 must both be the same character string data type 
(CHAR or VARCHAR), mixed character string data type (MCHAR or MVARCHAR), or 
national character string data type (NCHAR or NVARCHAR).

5. Table 2-53 shows the maximum length for the value of argument-2.
Table 2-53: Maximum length of argument-2 of the LTRIMSTR system-defined 
scalar function

Data type of argument-1 (and argument-2) Maximum length of argument-2

CHAR or VARCHAR 255

MCHAR or MVARCHAR 255



2. Details of Constituent Elements

354

6. Table 2-54 shows the data type of the result.
Table 2-54: Data type of the result of the LTRIMSTR system-defined scalar 
function

7. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

(d) Example
An example of the LTRIMSTR function is shown below:
LTRIMSTR('abcabcabdata base', 'abc')  ==> 'abdata base'

(33) MIDNIGHTSECONDS
(a) Function

Returns the number of seconds from midnight to the time specified in an argument.
(b) Format

[MASTER.]MIDNIGHTSECONDS(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Time operation
• Set function

NCHAR or NVARCHAR 127

Data type of argument-1 (and argument-2) Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)

Data type of argument-1 (and argument-2) Maximum length of argument-2



2. Details of Constituent Elements

355

• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be TIME.
5. The data type of the result will be INTEGER.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. The result can be obtained from the following formula:
Result = (((hour of argument x 60) + minute of argument) x 60) + second of 
argument

(d) Examples
Examples of the MIDNIGHTSECONDS function are shown below:
MIDNIGHTSECONDS(TIME('23:59:59'))   ==> 86399
MIDNIGHTSECONDS(TIME('14:14:14'))   ==> 51254

(34) MONTHNAME
(a) Function

Returns the month name (such as "January" or "February") of the date specified in an 
argument.

(b) Format
[MASTER.]MONTHNAME(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:



2. Details of Constituent Elements

356

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be DATE.
5. The data type of the result will be VARCHAR(18).
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(d) Examples
Examples of the MONTHNAME function are shown below:
MONTHNAME(DATE('1999-01-01'))   ==> 'January'
MONTHNAME(DATE('1999-02-28'))   ==> 'February'
MONTHNAME(DATE('1999-03-03'))   ==> 'March'
MONTHNAME(DATE('1999-04-01'))   ==> 'April'
MONTHNAME(DATE('1999-05-05'))   ==> 'May'
MONTHNAME(DATE('1999-06-07'))   ==> 'June'
MONTHNAME(DATE('1999-07-07'))   ==> 'July'
MONTHNAME(DATE('1999-08-15'))   ==> 'August'
MONTHNAME(DATE('1999-09-23'))   ==> 'September'
MONTHNAME(DATE('1999-10-10'))   ==> 'October'
MONTHNAME(DATE('1999-11-11'))   ==> 'November'
MONTHNAME(DATE('1999-12-31'))   ==> 'December'



2. Details of Constituent Elements

357

(35) MONTHS_BETWEEN
(a) Function

Returns as a real number (FLOAT type) the number of months between two dates 
specified in arguments.

(b) Format
[MASTER.]MONTHS_BETWEEN(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter

• Scalar subquery
3. When you specify only an embedded variable or a ? parameter in a value 

expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data types of argument-1and argument-2 must be DATE.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

7. The number of months which is the result of MONTHS_BETWEEN is calculated 



2. Details of Constituent Elements

358

according to the following rules:
• If date-1 < date-2:

Result = -MONTHS_BETWEEN (date-2, date-1)
• If date-1  date-2:

Let m be an integer greater than or equal to 0, and let date-4 and date-3 be 
the date (date-2 + m months) and (date-2 + (m + 1) months), respectively, 
such that date-4  date-1 < date-3
Let d1 and d2 be the number of days between date-4 and date-1 (DAYS 
(date-1) - DAYS (date-4)) and the number of days between date-4 and date-3 
(DAYS (date-3) - DAYS (date-4)), respectively (where d2 is one of the 
following values: 28, 29, 30, 31)
The number of months in the result will be (m + d1  d2) months.

Figure 2-6 shows the relationships between the dates date-1, date-2, date-3, 
and date-4:

Figure 2-6: Relationships between the dates date-1, date-2, date-3, and date-4

(d) Examples
Examples of the MONTHS_BETWEEN function are shown below:
MONTHS_BETWEEN(DATE('1999-07-10'), DATE('1999-06-10'))
  ==> 1
MONTHS_BETWEEN(DATE('1999-07-11'), DATA('1999-06-10'))
  ==> 1.032258...
MONTHS_BETWEEN(DATE('1999-06-11'), DATA('1999-05-10'))
  ==> 1.033333...
MONTHS_BETWEEN(DATE('1999-02-11'), DATA('1999-01-10'))
  ==> 1.035714...
MONTHS_BETWEEN(DATE('2000-02-11'), DATA('2000-01-10'))
  ==> 1.034482...
MONTHS_BETWEEN(DATE('1999-09-09'), DATA('1999-06-10'))
  ==> 2.967741...
MONTHS_BETWEEN(DATE('1999-06-10'), DATA('1999-09-09'))
  ==> -2.967741...



2. Details of Constituent Elements

359

(36) NEXT_DAY
(a) Function

Returns the next date after the date specified in argument-1 that is the same day of the 
week as the weekday number specified in argument-2 (where Sunday is weekday 1).

(b) Format
[MASTER.]NEXT_DAY(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression for argument-1:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter

• Scalar subquery
3. The following can be specified in the value expression for argument-2:

• Integer literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression



2. Details of Constituent Elements

360

• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. The data type of argument-1 must be DATE; the data type of argument-2 must be 
INTEGER or SMALLINT.

6. The data type of the result will be DATE.
7. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

8. Table 2-55 shows the meanings of the integer values that can be specified in 
argument-2.
Table 2-55: Meanings of integer values specifiable in argument-2 (integer 
values for days of the week)

9. If the NEXT_DAY function's result is a value that cannot be represented by the 
result data type, an overflow error will result. For details about the operational 
results when overflow error suppression is in effect, see 2.18 Operational results 
with overflow error suppression specified.

(d) Examples
Examples of the NEXT_DAY function are shown below:
NEXT_DAY(DATE('1999-06-10'), 1)   ==> '1999-06-13'

Integer value of argument-2 Day of week

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday



2. Details of Constituent Elements

361

NEXT_DAY(DATE('1999-06-10'), 4)   ==> '1999-06-16'
NEXT_DAY(DATE('1999-06-10'), 5)   ==> '1999-06-17'
NEXT_DAY(DATE('1999-06-10'), 6)   ==> '1999-06-11'
NEXT_DAY(DATE('1999-06-10'), 7)   ==> '1999-06-12'
   1999.06.10 was a Thursday.

(37) NUMEDIT
(a) Function

Converts the numeric value specified in argument-1 into character string 
representation by editing it according to the format specified in argument-2.

(b) Format
[MASTER.]NUMEDIT(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression for argument-1:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expression for argument-2:
• Character string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation



2. Details of Constituent Elements

362

• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. argument-1 must be a numeric data type; argument-2 must be a character string 
data type (CHAR or VARCHAR). The length of the value of argument-2 must not 
exceed 250 bytes.

6. The data type of the result will be VARCHAR(255).
7. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

8. The value of argument-2 must be specified in the following format:
["character-string"]  [+]
    {[{<|>}] {9|0|,|"character-string"}...
      [,{9|0|,|"character-string"}...]
     |{E|e} .integer ["character-string"]}

"character-string"
A character string enclosed in double quotation marks represents itself.
To specify double quotation marks within a character string enclosed in 
double quotation marks, specify two sets of double quotation marks in 
succession.

+
The [+] symbol specifies the method of sign representation.
"+" uses the minus sign (-) to represent argument-1 as a negative value; 
otherwise, it uses a plus sign (+) to represent the value.
The default for the '+' symbol is a minus sign (-) if the value of argument-1 
is negative, and a space character otherwise.



2. Details of Constituent Elements

363

{< | >}
The {< | >} symbols specify justification of the character representation of 
the numeric value.
The "<" symbol removes all space characters and shifts the character 
representation to the left.
The ">" symbol removes all space characters, shifts the character 
representation to the right, and pads the left side with space characters.
If neither "<" nor ">" is specified, the character representation is not shifted.

{ 9 | 0 | , | "character-string"} ... [, { 9 | 0 | , | "character-string"}] ...
The numbers "9" and "0" each represent one digit of the numeric value so 
that the number of digits associated with the numeric value of argument-1 
can be edited.
The total number of "9"s and "0"s represents the precision of the numeric 
value after being edited.
Specifying "0"s produces an edit result equal in digit positions to the number 
of "0"s specified.
Specifying a "," produces an edit result that is the comma itself if the edit 
results on both sides of "," are numeric characters; otherwise, the comma is 
replaced with one space character.
The symbol "." represents the decimal point.
The total number of "9"s and "0"s following the "." indicates the scaling of 
the numeric value after editing.
Specifying a "9" before a "." causes the result of editing by "9" to be a space 
character, provided that the corresponding digit is 0 and the "9" is the first 
digit, or the edit result to the left of the result of editing by "9" is not a 
numeric character (except when it is associated with a comma); otherwise, 
the result of editing by "9" will be a numeric character in the corresponding 
digit position.
Specifying a "9" after a "." causes the result of editing by "9" to be an empty 
(0) character, provided that the corresponding digit is 0 and the "9" is the last 
digit, or the edit result to the right of the result of editing by "9" is not a 
numeric character (except when it is associated with a comma); otherwise, 
the result of editing by "9" will be a numeric character in the corresponding 
digit position.

{ E | e }.integer is specified in floating-point decimal format.
The result of the editing is a floating-point decimal format with a scaling for 
the mantissa specified in integer. The scaling for the mantissa should not 



2. Details of Constituent Elements

364

exceed 30.
9. If the value of argument-1 is a value that cannot be represented by the format 

specified in argument-2, an overflow error will result. For details about the 
operational results when overflow error suppression is in effect, see 2.18 
Operational results with overflow error suppression specified.

10. If low-order digits are truncated by the editing, the result value is rounded off.
(d) Examples

Examples of the NUMEDIT function are shown below:
NUMEDIT(1234567.89, '99,999,990.00"$"')   ==>'  1,234,567.89$'
NUMEDIT(1000, '99,999,990.00"$"')        ==>'      1,000.00$'
NUMEDIT(1234567.89, '" $"99,999,990.00') ==>' $  1,234,567.89'
NUMEDIT(1000, '" $"99,999,990.00')       ==>' $      1,000.00'
NUMEDIT(1234567.89, '"$"+99,999,990.00') ==>'$+ 1,234,567.89'
NUMEDIT(-1000, '"$"+99,999,990.00')      ==>'$-     1,000.00'
NUMEDIT(1234567.89, '"$">99,999,990.00') ==>'  $1,234,567.89'
NUMEDIT(1000, '"$">99,999,990.00')       ==>'      $1,000.00'
NUMEDIT(1234567.89, '"$"<99,999,990.00') ==>'$1,234,567.89'
NUMEDIT(1000, '"$"<99,999,990.00')       ==>'$1,000.00'
NUMEDIT(0.5, '"$"<99,999,990.00')        ==>'$0.50'
NUMEDIT(1234567.89, '+E.10"$"')          ==>'+1.2345678900E+0.6$'
NUMEDIT(1234567.89, '"$"+e.10')          ==>'$+1.2345678900e+0.6'

(38) PI
(a) Function

Returns , the value of the circle constant.
(b) Format

[MASTER.]PI()

(c) Rules
1. The data type of the result will be FLOAT.
2. The value of the result is not NOT NULL constrained (null values are allowed). 

However, because the value of  is always returned, the null value will never be 
returned.

(d) Example
An example of the PI function is shown below:
PI() ==> 3.14159265358979323846



2. Details of Constituent Elements

365

(39) POSSTR
(a) Function

If in the character string specified in argument-1 the substring specified in argument-2 
occurs at least the number of times (nd) specified in argument-4 at or after the character 
position specified in argument-3, returns the starting position (character position) of 
the ndth substring.

(b) Format
[MASTER.]POSSTR(argument-1, argument-2, [, argument-3
                     [, argument-4]])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each of the value expressions of argument-1 and 

argument-2:
• Character string literal, mixed character string literal, or national character 

string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in each of the value expressions of argument-3 and 
argument-4:

• Integer literal
• Column specification
• SQL variable or SQL parameter

• Arithmetic operation



2. Details of Constituent Elements

366

• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. argument-1 and argument-2 must both be the same character string data type 
(CHAR or VARCHAR), mixed character string data type (MCHAR or MVARCHAR), or 
national character string data type (NCHAR or NVARCHAR).

6. Table 2-56 shows the maximum length for the value of argument-2.
Table 2-56: Maximum length of argument-2 of the POSSTR system-defined 
scalar function

7. The data types of argument-3 and argument-4 must be INTEGER or SMALLINT.
8. The data type of the result will be INTEGER.
9. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of any argument is the null value, the result is also the null 
value.

10. Table 2-57 shows the ranges of values that can be specified in argument-3 and 
argument-4.

Data type of argument-1 (and argument-2) Maximum length of argument-2

CHAR or VARCHAR 255

MCHAR or MVARCHAR 255

NCHAR or NVARCHAR 127



2. Details of Constituent Elements

367

Table 2-57: Ranges of specifiable values in argument-3 and argument-4 of the 
POSSTR system-defined scalar function

11. The default for argument-3 is 1; the default for argument-4 is also 1.
12. If the length (number of characters) of the character string in argument-2 is 0, the 

result will be the value of argument-3.
13. If the substring matching the character string specified in argument-2 occurs more 

than the number of times (nd) specified in argument-4 at or after the character 
position (m) specified in argument-3 in the character string specified in 
argument-1, the result will be a value greater than or equal to m and equal to the 
number of characters in the character string specified in argument-1 that are to the 
left of the beginning of the ndth substring, plus 1. It should be noted that these 
substrings that match the character string specified in argument-2 are not 
duplicate substrings. If the substring matching the character string specified in 
argument-2 does not occur more than the number of times (nd) specified in 
argument-4 at or after the character position (m) specified in argument-3 in the 
character string specified in argument-1, the result will be 0.

(d) Examples
Examples of the POSSTR function are shown below:
POSSTR(data base system', 'a')       ==> 2
POSSTR(data base system', '')        ==> 1   (argument-2 is
POSSTR(data base system', 'a', 5)    ==> 7   character string
POSSTR(data base system', 'st')      ==> 13   of 0 length.)
POSSTR(data base system', 'a', 1, 3) ==> 7
POSSTR(data base system', 'manager') ==> 0

(40) POWER
(a) Function

Returns the nth power of the value of argument-1, where n denotes the value of 
argument-2.

(b) Format
[MASTER.]POWER(argument-1, argument-2)

Data type of argument-1 (and 
argument-2)

Range of values in argument-3 Range of values in 
argument-4

CHAR(n) or VARCHAR(n) 1 to n 1 to n

MCHAR(n) or MVARCHAR(n) 1 to n 1 to n

NCHAR(n) or NVARCHAR(n) 1 to n 1 to n



2. Details of Constituent Elements

368

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. argument-1 and argument-2 must both be a numeric data type.
5. Table 2-58 shows the data type of the result.

Table 2-58: Data type of the result of the POWER system-defined scalar 
function

6. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

Data type of argument-1 Data type of argument-2

SMALLINT or INTEGER DECIMAL(p,s), 
SMALLFLT, or FLOAT

SMALLINT or INTEGER INTEGER FLOAT

DECIMAL(p, s), SMALLFLT, or FLOAT FLOAT FLOAT



2. Details of Constituent Elements

369

7. Specifying a negative value in argument-1 or a non-integer value in argument-2 
causes a definition area error (domain error occurs).

8. Specifying the value 0 in argument-1 and a non-positive value in argument-2 
causes division by zero (division by zero). For details about the operational 
results when overflow error suppression is in effect, see 2.18 Operational results 
with overflow error suppression specified.

9. If the POWER function's result is a value that cannot be represented by the result 
data type, an overflow error will result. For details about the operational results 
when overflow error suppression is in effect, see 2.18 Operational results with 
overflow error suppression specified.

(41) QUARTER
(a) Function

Based on a month specified in argument-2 and a day specified in argument-3 as the 
beginning of the fiscal year, returns an integer (1, 2, 3, or 4) indicating the fiscal-year 
quarter in which the date specified in argument-1 falls.

(b) Format
[MASTER.]QUARTER(argument-1 [, argument-2 [, argument-3]])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression of argument-1:

• CURRENT_DATE
• Column specification

• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expressions of argument-2 and 



2. Details of Constituent Elements

370

argument-3:
• Integer literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. The data type of argument-1 must be DATE.
6. The data types and argument-2 and argument-3 must be INTEGER or SMALLINT.
7. The data type of the result will be INTEGER.
8. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of any argument is the null value, the result is also the null 
value.

9. For argument-2, the default is 1 and the range of specifiable values is 1 to 12.
10. For argument-3, the default is 1 and the range of specifiable values is 1 to 29 when 

the value of argument-2 is 2 and 1 to (number of days in the month specified in 
argument-2) in all other cases.

11. The result is determined according to the following rules:
• If day of argument-1 date < argument-3 day:

Number of months = month of argument-1 date - argument-2 month - 1
• If day of argument-1 date  argument-3:

Number of months = month of argument-1 date - argument-2 month



2. Details of Constituent Elements

371

• If number of months < 0:
Result = (number of months + 12)  4 + 1

• If number of months  0:
Result = number of months  4 + 1

(d) Examples
Examples of the QUARTER function are shown in the following:
QUARTER(DATE('1999-01-01'))         ==> 1
QUARTER(DATE('1999-09-10'))         ==> 3
QUARTER(DATE('1999-12-31'))         ==> 4
QUARTER(DATE('1999-04-01'), 4)      ==> 1
QUARTER(DATE('1999-09-10'), 4)      ==> 2
QUARTER(DATE('1999-03-31'), 4)      ==> 4
QUARTER(DATE('1999-03-21'), 3, 21)  ==> 1
QUARTER(DATE('1999-09-20'), 3, 21)  ==> 2
QUARTER(DATE('1999-03-20'), 3, 21)  ==> 4

(42) RADIANS
(a) Function

Converts to radians the angle specified in degrees in an argument.
(b) Format

[MASTER.]RADIANS(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification



2. Details of Constituent Elements

372

• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(43) REPLACE (REPLACE_LONG)
(a) Function

Replaces in the character string specified in argument-1 all instances of the character 
string specified in argument-2 with the character string specified in argument-3.

(b) Format
[MASTER.]REPLACE(argument-1, argument-2[, argument-3])
[MASTER.]REPLACE_LONG(argument-1, argument-2, argument-3)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]

2. The following can be specified in each value expression:
• Character string literal, mixed character string literal, or national character 

string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification



2. Details of Constituent Elements

373

• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. argument-1, argument-2, and argument-3 must all be the same character string 
data type (CHAR or VARCHAR), mixed character string data type (MCHAR or 
MVARCHAR), or national character string data type (NCHAR or NVARCHAR). In the 
case of a character string data type or mixed character string type, the length of 
the argument-2 value or argument-3 value must not exceed 255 bytes; in the case 
of a national character string data type, the length of the argument-2 value or 
argument-3 value must not exceed 127 characters.

5. If argument-3 is omitted, an empty character string is assumed, and the function 
deletes all substrings matching the character string specified in argument-2 from 
the character string specified in argument-1.

6. Tables 2-59 and 2-60 show the data type of the result.
Table 2-59: Data type of the result of the REPLACE system-defined scalar 
function

Table 2-60: Data type of the result of the REPLACE_LONG system-defined 
scalar function

7. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of any argument is the null value, the result is also the null 
value.

Data type of argument-1 Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)

Data type of argument-1 Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(32000)

MCHAR(n) or MVARCHAR(n) MVARCHAR(32000)

NCHAR(n) or NVARCHAR(n) NVARCHAR(16000)



2. Details of Constituent Elements

374

8. The length of the result must not exceed the maximum length for the result data 
type. When the length of the result will exceed the length of the argument-1 
character string, the REPLACE_LONG function should be used.

(d) Examples
Examples of the REPLACE function are shown below:
REPLACE('a big dog and a small dog', 'dog', 'cat')
  ==> 'a big cat and small cat'
REPLACE('a big dog and a small dog', 'big ')
  ==> 'a dog and a small dog'

(44) REVERSESTR
(a) Function

Returns a character string that is the reverse of the character string specified in an 
argument (the returned character string reads from left to right the same as the 
specified character string reads from right to left).

(b) Format
[MASTER.]REVERSESTR(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Character string literal, mixed character string literal, or national character 
string literal

• Column specification

• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 



2. Details of Constituent Elements

375

expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a character string data type (CHAR or VARCHAR), mixed 
character string data type (MCHAR or MVARCHAR), or national character string data 
type (NCHAR or NVARCHAR).

5. Table 2-61 shows the data type of the result.
Table 2-61: Data type of the result of the REVERSESTR system-defined scalar 
function

6. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of the argument is the null value, the result is also the null 
value.

(d) Examples
Examples of the REVERSESTR function are shown below:
REVERSESTR('data base')      ==> 'esab atad'
REVERSESTR('esab atad')      ==> 'data base'
REVERSESTR('   esab atad')   ==> 'data base   '

(45) RIGHTSTR
(a) Function

Returns from the end (the rightmost position) of the character string specified in 
argument-1 the substring consisting of the number of characters specified in 
argument-2.

(b) Format
[MASTER.]RIGHTSTR(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression of argument-1:

Data type of argument Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)



2. Details of Constituent Elements

376

• Character string literal, mixed character string literal, or national character 
string literal

• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expression of argument-2:
• Integer literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. argument-1 must be a character string data type (CHAR or VARCHAR), mixed 
character string data type (MCHAR or MVARCHAR), or national character string type 
data type (NCHAR or NVARCHAR).



2. Details of Constituent Elements

377

6. The data type of argument-2 must be INTEGER or SMALLINT.
7. Table 2-62 shows the range of values that can be specified in argument-2.

Table 2-62: Range of specifiable values in argument-2 of the RIGHTSTR 
system-defined scalar function

8. Table 2-63 shows the data type of the result.
Table 2-63: Data type of the result of the RIGHTSTR system-defined scalar 
function

9. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

10. If the number of characters in the argument-1 character string is less than the 
number of characters specified in argument-2, the result will be the argument-1 
value.

(d) Examples
Examples of the RIGHTSTR function are shown below:
RIGHTSTR('data base system', 6) ==> 'system'
RIGHTSTR('data system', 0)      ==> ''
                                    (Character string of 0 length)

(46) ROUND
(a) Function

Rounds the value of argument-1 following the nth place after the decimal point 
(number of digits following the decimal point given by 10 -n), where n is the value of 
argument-2.

Data type of argument-1 Range of values in argument-2

CHAR(n) or VARCHAR(n) 0 to n

MCHAR(n) or MVARCHAR(n) 0 to n

NCHAR(n) or NVARCHAR(n) 0 to n

Data type of argument-1 Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)



2. Details of Constituent Elements

378

Specifying argument-3 causes the function to round up if the value of argument-1 at 
the rightmost digit position given by 1  10 (-n-1) is greater than or equal to the value 
of argument-3; otherwise, the function rounds down.

(b) Format
[MASTER.]ROUND(argument-1, [, argument-2[, argument-3]])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. argument-1 must be a numeric data type; the data types of argument-2 and 
argument-3 must be INTEGER or SMALLINT.

5. The default for argument-2 is 0. Table 2-64 shows the range of values that can be 
specified in argument-2.



2. Details of Constituent Elements

379

Table 2-64: Range of specifiable values in argument-2 of the ROUND 
system-defined scalar function

6. Table 2-65 shows the data type of the result.
Table 2-65: Data type of the result of the ROUND system-defined scalar 
function

7. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of any argument is the null value, the result is also the null 
value.

8. The default for argument-3 is 5. The range of values that can be specified in 
argument-3 is 1 to 9. If the value of argument-1 at the rightmost digit position 
given by 1  10 (-n-1) is greater than or equal to the value of argument-3, the 
value of argument-1 is rounded up; otherwise, it is rounded down.

9. If the ROUND function's result is a value that cannot be represented by the result 
data type, an overflow error will result. For details about the operational results 
when overflow error suppression is in effect, see 2.18 Operational results with 
overflow error suppression specified.

(47) ROUNDMONTH
(a) Function

Rounds off the date specified in argument-1 to the first day of either the specified date's 
month or the following month, using the day of the month specified in argument-2 to 

Data type of result Range of values in argument-2

INTEGER -9 to 0

DECIMAL(p, s) -(p - s- 1) to s

FLOAT HP-UX (32-bit mode):
-307 to 307
HP-UX (64-bit mode), Solaris, AIX 5L, Linux, and Windows:
-307 to 323

Data type of argument-1 Data type of result

SMALLINT INTEGER

INTEGER INTEGER

DECIMAL(p, s) DECIMAL(p, s)

SMALLFLT FLOAT

FLOAT FLOAT



2. Details of Constituent Elements

380

determine the point for rounding up to the following month. This function can be used, 
for example, to change a date on or after the 20th of the month to the first of the next 
month.

(b) Format
[MASTER.]ROUNDMONTH(argument-1 [, argument-2])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression for argument-1:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expression for argument-2:
• Integer literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification



2. Details of Constituent Elements

381

• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. The data type of argument-1 must be DATE; the data type of argument-2 must be 
INTEGER or SMALLINT.

6. The data type of the result will be DATE.
7. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

8. The default for argument-2 is 16. The range of values that can be specified in 
argument-2 is 1 to 32.

9. The result is determined according to the following rules:
• If day of argument-1 < argument-2:

Year of result = year of argument-1
Month of result = month of argument-1
Day of result = 1

• If day of argument-1  argument-2:
 If month of argument-1 < 12:

Year of result = year of argument-1
Month of result = month of argument-1 + 1
Day of result = 1

 If month of argument-1 = 12:
Year of result = year of argument-1 + 1
Month of result = 1
Day of result = 1

10. If the result of the ROUNDMONTH function is not within the range 0001/01/01 - 
9999/12/31, an overflow error will result. For details about the operational results 
when overflow error suppression is in effect, see 2.18 Operational results with 
overflow error suppression specified.



2. Details of Constituent Elements

382

(d) Examples
Examples of the ROUNDMONTH function are shown below:
ROUNDMONTH(DATE('1999-08-15'))       ==> '1999-08-01'
ROUNDMONTH(DATE('1999-08-16'))       ==> '1999-09-01'
ROUNDMONTH(DATE('1999-09-20'), 21)   ==> '1999-09-01'
ROUNDMONTH(DATE('1999-09-21'), 21)   ==> '1999-10-01'
ROUNDMONTH(DATE('1999-12-21'), 21)   ==> '2000-01-01'
ROUNDMONTH(DATE('1999-03-31'), 32)   ==> '1999-03-01'
ROUNDMONTH(DATE('1999-02-29'), 29)   ==> '2000-03-01'
ROUNDMONTH(DATE('1999-03-31'), 29)   ==> '2000-04-01'
ROUNDMONTH(DATE('9999-12-31'), 26)   ==> Overflow

(48) RTRIM
(a) Function

Beginning at the right end of the character string specified in argument-1, removes all 
instances of each of the characters in the character string specified in argument-2 until 
a character not found in the argument-2 character string is encountered.

(b) Format
[MASTER.]RTRIM(argument-1 [, argument-2])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• Character string literal, mixed character string literal, or national character 
string literal

• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery



2. Details of Constituent Elements

383

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. argument-1 and argument-2 must both be the same character string data type 
(CHAR or VARCHAR), mixed character string data type (MCHAR or MVARCHAR), or 
national character string data type (NCHAR or NVARCHAR).

5. The maximum length of the argument-2 value is 30 bytes for a character string or 
mixed character string data type and 30 characters for a national character string 
data type.

6. Table 2-66 shows the data type of the result.
Table 2-66: Data type of the result of the RTRIM system-defined scalar function

7. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

8. If argument-2 is omitted, one space character in the data type of the result is 
assumed.

(d) Examples
Examples of the RTRIM function are shown below:
RTRIM('data basebcabcabc', 'abc')   ==> 'data basebc'
RTRIM('database    ')               ==> 'data base'

(49) RTRIMSTR
(a) Function

Beginning at the right end of the character string specified in argument-1, deletes each 
successive occurrence of the character string specified in argument-2 until it does not 
find that character string.

(b) Format
[MASTER.]RTRIMSTR(argument-1, argument-2)

Data type of argument-1 (and argument-2) Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)



2. Details of Constituent Elements

384

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• Character string literal, mixed character string literal, or national character 
string literal

• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. argument-1 and argument-2 must both be the same character string data type 
(CHAR or VARCHAR), mixed character string data type (MCHAR or MVARCHAR), or 
national character string data type (NCHAR or NVARCHAR).

5. Table 2-67 shows the maximum length for the value of argument-2.
Table 2-67: Maximum length of argument-2 of the RTRIMSTR system-defined 
scalar function

6. Table 2-68 shows the data type of the result.

Data type of argument-1 (and argument-2) Maximum length of argument-2

CHAR or VARCHAR 255

MCHAR or MVARCHAR 255

NCHAR or NVARCHAR 127



2. Details of Constituent Elements

385

Table 2-68: Data type of the result of the RTRIMSTR system-defined scalar 
function

7. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

(d) Example
An example of the RTRIMSTR function is shown below:
RTRIMSTR('data basebcabcabc', 'abc')   ==> 'data basebc'

(50) SIGN
(a) Function

Returns the sign of an argument (+1 for positive, -1 for negative, 0 for zero).
(b) Format

[MASTER.]SIGN(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification

Data type of argument-1 (and argument-2) Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)



2. Details of Constituent Elements

386

• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. Table 2-69 shows the data type of the result.

Table 2-69: Data type of the result of the SIGN system-defined scalar function

6. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of the argument is the null value, the result is also the null 
value.

(51) SIN
(a) Function

Returns the sine (SIN trigonometric function) of an argument in which an angle is 
specified in radians.

(b) Format
[MASTER.]SIN(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification

Data type of argument-1 Data type of result

SMALLINT INTEGER

INTEGER INTEGER

DECIMAL(p, s) DECIMAL(1,0)

SMALLFLT FLOAT

FLOAT FLOAT



2. Details of Constituent Elements

387

• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(52) SINH
(a) Function

Returns the hyperbolic sine of an argument.
(b) Format

[MASTER.]SINH(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation



2. Details of Constituent Elements

388

• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. If the SINH function's result is a value that cannot be represented by the result data 
type, an overflow error will result. For details about the operational results when 
overflow error suppression is in effect, see 2.18 Operational results with overflow 
error suppression specified.

(53) SQRT
(a) Function

Returns the square root of the value of an argument.
(b) Format

[MASTER.]SQRT(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal
• Column specification
• SQL variable or SQL parameter



2. Details of Constituent Elements

389

• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. Specifying a negative value in the argument causes a definition area error 
(domain error occurs).

(54) STRTONUM
(a) Function

Converts the character string representation of the numeric value specified in 
argument-1 into a numeric data type. Conversion is into INTEGER when the data type 
of argument-2 is INTEGER or SMALLINT; into DECIMAL with the same precision and 
scaling when the data type of argument-2 is DECIMAL; and into FLOAT when the data 
type of argument-2 is FLOAT or SMALLFLT.

(b) Format
[MASTER.]STRTONUM(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression for argument-1:



2. Details of Constituent Elements

390

• Character string literal
• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expression for argument-2:
• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called..

5. argument-1 must be a character string data type (CHAR or VARCHAR). The length 
of the character string specified in argument-1 must not exceed 255 bytes.

6. argument-2 must be a numeric data type.



2. Details of Constituent Elements

391

7. Table 2-70 shows the data type of the result.
Table 2-70: Data type of the result of the STRTONUM system-defined scalar 
function

8. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 is the null value, the result is also the null 
value. The value of argument-2 does not affect the result.

9. Specify the value of the character string in argument-1 in the following format:
• Data type of argument-2 is INTEGER:

[space-character...] [+|-] [space-character ...] numeric-character...
   [space-character ...]

• Data type of argument-2 is DECIMAL:
[space-character...] [+|-] [space-character...]
   |numeric-character...[. [numeric-character...]]
   | .numeric-character...| [space-character...]

• Data type of argument-2 is FLOAT:
[space-character...] [+|-] [space-character...]
   |numeric-character... [. [numeric-character...]]
   | .numeric-character...|
   [{E|e} [+|-] numeric-character...] [space-character...]

10. If the STRTONUM function's result is a value that cannot be represented by the 
result data type, an overflow error will result. For details about the operational 
results when overflow error suppression is in effect, see 2.18 Operational results 
with overflow error suppression specified.

11. When the data type of argument-2 is DECIMAL and low-order digits are truncated 
by the data type conversion, the result value is rounded off.

(d) Examples
Examples of the STRTONUM function are shown below:

Data type of argument-2 Data type of result

SMALLINT INTEGER

INTEGER INTEGER

DECIMAL(p, s) DECIMAL(p, s)

SMALLFLT FLOAT

FLOAT FLOAT



2. Details of Constituent Elements

392

When argument-2 is INTEGER:
STRTONAM(' - 1234567 ', 0)
  ==> -1234567                  (INTEGER type)
STRTONUM('  + 1234567890123  ', 0)
  ==> Overflow
STRTONUM('  1234567.89  ', 9)
  ==> Invalid value in argument-1 in STRTONUM function
      during conversion to INTEGER

When argument-2 is DECIMAL:
STRTONUM(' -1234567  ', 123456789012.
  ==> -1234567                 (DECIMAL(12, 0) type)
STRTONUM('  1234567.89  ', 9999999999.999)
  ==. 1234567.89               (DECIMAL(13, 3) type)
STRTONUM('  1234567.89  ', 99999.999)
 ==> Overflow
STRTONUM('  1.23456789E6 ', 9999999999.999)
 ==> Invalid value in argument-1 in STRTONUM function
     during conversion to DECIMAL

When argument-2 is FLOAT:
STRTONUM('  1234567.89  ', 1e0)
  ==> 1.23456789e6               (FLOAT type)
STRTONUM('  -1234567890123  ', 0e0)
  ==> -1.234567890123E12         (FLOAT type)
STRTONUM('  1.23456789E6 ', 1E1)
  ==> 1.23456789E6               (FLOAT type)
STRTONUM('  1.0E310  ', 9E9)
  ==> Overflow

(55) TAN
(a) Function

Returns the tangent (TAN trigonometric function) of an argument in which an angle is 
specified in radians.

(b) Format
[MASTER.]TAN(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• Numeric literal



2. Details of Constituent Elements

393

• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. If the TAN function's result is a value that cannot be represented by the result data 
type, an overflow error will result. For details about the operational results when 
overflow error suppression is in effect, see 2.18 Operational results with overflow 
error suppression specified.

(56) TANH
(a) Function

Returns the hyperbolic tangent of an argument.
(b) Format

[MASTER.]TANH(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:



2. Details of Constituent Elements

394

• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The argument must be a numeric data type.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

7. If the TANH function's result is a value that cannot be represented by the result data 
type, an overflow error will result. For details about the operational results when 
overflow error suppression is in effect, see 2.18 Operational results with overflow 
error suppression specified.

(57) TRANSL (TRANSL_LONG)
(a) Function

If any of the characters in the character string specified in argument-2 is included in 
the character string specified in argument-1, returns a character string in which those 
characters are translated into the corresponding characters in the character string 
specified in argument-3, where the ith character in the character string specified in 
argument-2 corresponds to the ith character in argument-3. If the number of characters 
in argument-3 is less than the number of characters in the character string of 
argument-2, for the character string in argument-3, HiRDB assumes a character string 
that is obtained by repeatedly filling the character string in argument-3 with the 



2. Details of Constituent Elements

395

characters in argument-4.
(b) Format

[MASTER.]TRANSL(argument-1, argument-2, argument-3[, argument-4])
[MASTER.]TRANSL_LONG(argument-1, argument-2, argument-3
   [, argument-4])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• Character string literal, mixed character string literal, or national character 
string literal (for TRANS_LONG, mixed character string literal only)

• Column specification
• SQL variable or SQL parameter
• Concatenation operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. If there are fewer characters in the character string specified in argument-3 than 
in the character string specified in argument-2, the character specified in 
argument-4 is used to pad out the argument-3 character string to the same length 
as the argument-2 character string.

5. Only one character can be specified in argument-4. The default for argument-4 is 
the space character (the double-byte space character when the data type of 
argument-1 is NCHAR or NVARCHAR).

6. For the TRANSL function, the data type of all arguments must be the same 



2. Details of Constituent Elements

396

character string data type (CHAR or VARCHAR), mixed character string data type 
(MCHAR or MVARCHAR), or national character string data type (NCHAR or 
NVARCHAR). For the TRANSL_LONG function, the data type of all arguments must 
be MCHAR or MVARCHAR.

7. Table 2-71 shows the maximum lengths for the values of argument-2 and 
argument-3.
Table 2-71: Maximum lengths of argument-2 and argument-3 of the TRANSL 
and TRANSL_LONG system-defined scalar functions

* Not specifiable for TRANSL_LONG.
8. Tables 2-72 and 2-73 show the data type of the result.

Table 2-72: Data type of the result of the TRANSL system-defined scalar 
function

Table 2-73: Data type of the result of the TRASNSL_LONG system-defined 
scalar function

9. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of any argument is the null value, the result is also the null 
value.

Data type of argument-1 Maximum length of argument-2 and argument-3

CHAR or VARCHAR* 255

MCHAR or MVARCHAR 255

NCHAR or NVARCHAR* 127

Data type of argument-1 Data type of result

CHAR(n) or VARCHAR(n) VARCHAR(n)

MCHAR(n) or MVARCHAR(n) MVARCHAR(n)

NCHAR(n) or NVARCHAR(n) NVARCHAR(n)

Data type of argument-1 Data type of result

CHAR(n) or VARCHAR(n) Not specifiable

MCHAR(n) or MVARCHAR(n) MVARCHAR(32000)

NCHAR(n) or NVARCHAR(n) Not specifiable



2. Details of Constituent Elements

397

(d) Examples
Examples of the TRANSL and TRANSL_LONG functions are shown below:
TRANSL('data base system', 'abcdefghijklmnopqrstuvwxyz',
       'ABCDEFGHIJKLMNOPQRSTUVWXYZ')
  ==> 'DATA BASE SYSTEM' (Translation of lowercase characters
                         into uppercase characters)
TRANSL('<data base> system', '[ ] { } ( ) < >', '')
  ==> ' data base system '
       (argument-3 is a character string with a length of 0, and all 
       enclosure symbols (such as [, ], {, }, (, ), <, >) are translated into spaces)
       
TRANSL('+12345.678', '+-012345678', 'SS', '9')
  ==> 'S99999.999'
TRANSL (M' d a t a  b a s e  s y s t e m'
        M' 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n
           o p q r s t u v w x y z'
        M'0123456789abcdefghijklmnopqrstuvwxyz')
  ==> M'data base system' (Translation of double-byte characters
                           into single-byte characters)
 
TRANSL_LONG(M'data base system',
            M'0123456789abcdefghijklmnopqrstuvwxyz',
            M'0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n
           o p q r s t u v w x y z')
  ==> M'd a t a  b a s e  s y s t e m'
      (Translation of single-byte characters into double-byte characters)
       
TRANSL('+12345.678', '+012345678', '', 'S')
  ==> 'SSSSSS.SSS'
TRANSL('2000-03-31 12:23:30', '-:', '/.')
  ==> '2000/03/31 12.23.30'

(58) TRUNC
(a) Function

Returns the value obtained by rounding off the value of argument-1 at the nth place 
after the decimal point (number of digits following the decimal point given by 10-n), 
where n is the value specified in argument-2.

(b) Format
[MASTER.]TRUNC(argument-1 [, argument-2])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]



2. Details of Constituent Elements

398

2. The following can be specified in each value expression:
• Numeric literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. argument-1 must be a numeric data type; the data type of argument-2 must be 
INTEGER or SMALLINT.

5. The default for argument-2 is 0. Table 2-74 shows the range of values that can be 
specified in argument-2.
Table 2-74: Range of specifiable values in argument-2 of the TRUNC 
system-defined scalar function

6. Table 2-75 shows the data type of the result.

Data type of result Range of values in argument-2

INTEGER 0 to 9

DECIMAL(p, s) (p - s - 1) to s

FLOAT HP-UX (32-bit mode):
-307 to 307
HP-UX (64-bit mode) Solaris, AIX 5L, Linux, and Windows:
-307 to 323



2. Details of Constituent Elements

399

Table 2-75: Data type of the result of the TRUNC system-defined scalar 
function

7. The value of the result is not NOT NULL constrained (null values are allowed). If 
the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

(59) TRUNCYEAR
(a) Function

Based on a month specified in argument-2 and a day specified in argument-3 as the 
beginning of the fiscal year, returns the first day of the fiscal year in which the date 
specified in argument-1 falls. This function can be used to determine a fiscal year that 
ends, for example, on March 20 or on the last day of March.

(b) Format
[MASTER.]TRUNCYEAR(argument-1[, argument-2[, argument-3]])

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression of argument-1:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression

Data type of argument-1 Data type of result

SMALLINT INTEGER

INTEGER INTEGER

DECIMAL(p, s) DECIMAL(p, s)

SMALLFLT FLOAT

FLOAT FLOAT



2. Details of Constituent Elements

400

• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. The following can be specified in the value expressions of argument-2 and 
argument-3:

• Integer literal
• Column specification
• SQL variable or SQL parameter
• Arithmetic operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

4. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

5. The data type of argument-1 must be DATE.
6. The data types of argument-2 and argument-3 must be INTEGER or SMALLINT.
7. The data type of the result will be DATE.
8. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of any argument is the null value, the result is also the null 
value.

9. For argument-2, the default is 1 and the range of values that can be specified is 1 
to 12.

10. For argument-3, the default is 1 and the range of values that can be specified is 1 
to 29 when the value of argument-2 is 2 and 1 to (number of days in the month 
specified in argument-2) in all other cases.

11. The result is determined according to the following rules:



2. Details of Constituent Elements

401

• If month of argument-1 < argument-2 or month of argument-1 = argument-2 
and day of argument-1 < argument-3:
Year of result = year of argument-1 - 1

• If month of argument-1 > argument-2 or month of argument-1 = argument-2 
and day of argument-1  argument-3:
Year of result = year of argument-1

• If year of result is non-leap year and argument-2 = 2 and argument-3 = 29:
Month of result = 3
Day of result = 1

• If the year of the result is a leap year and argument-2 is not 2, or argument-3 
is not 29:
Month of result = argument-2
Day of result = argument-3

12. If the result of the TRUNCYEAR function is not within the range 0001/01/01 - 
9999/12/31, an overflow error will result. For details about the operational results 
when overflow error suppression is in effect, see 2.18 Operational results with 
overflow error suppression specified.

(d) Examples:
Examples of the TRUNCYEAR function are shown below:
TRUNCYEAR(DATE('1999-09-10'))         ==> '1999-01-01'
TRUNCYEAR(DATE('1999-09-11'), 4)      ==> '1999-04-01'
TRUNCYEAR(DATE('1999-03-31'), 4)      ==> '1999-04-01'
TRUNCYEAR(DATE('1999-08-11'), 3, 21)  ==> '1999-03-21'
TRUNCYEAR(DATE('1999-03-20'), 3, 21)  ==> '1999-03-21'
TRUNCYEAR(DATE('2000-02-28'), 2, 29)  ==> '1999-03-01'
                                (1999-02-29 is a nonexistent date.)
TRUNCYEAR(DATE('2000-03-20'), 2, 29)  ==> '2000-02-29'
TRUNCYEAR(DATE('0001-03-20'), 4)      ==> Overflow

(60) WEEK
(a) Function

Returns an integer, in the range 1 to 54, that represents the number of the week since 
the beginning of the year in which the date specified in an argument falls (assuming 
that each week begins on Sunday).

(b) Format
[MASTER.]WEEK(argument)



2. Details of Constituent Elements

402

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in the value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be DATE.
5. The data type of the result will be INTEGER.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.

(d) Examples
Examples of the WEEK function are shown below:
WEEK(DATE('2000-01-01'))   ==> 1
WEEK(DATE('2000-01-02'))   ==> 2
WEEK(DATE('2000-02-29'))   ==> 10
WEEK(DATE('2000-12-30'))   ==> 53
WEEK(DATE('2000-12-31'))   ==> 54
             2000-01-01 is a Saturday, and 2000-12-31 is a Sunday.



2. Details of Constituent Elements

403

(61) WEEKOFMONTH
(a) Function

Returns an integer, in the range 1 to 6, that represents the number of the week since the 
beginning of the month in which the date specified in an argument falls.

(b) Format
[MASTER.]WEEKOFMONTH(argument)

(c) Rules
1. The following can be specified in the argument:

• value-expression [AS data-type]
2. The following can be specified in the value expression:

• CURRENT_DATE
• Column specification
• SQL variable or SQL parameter
• Date operation
• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter

• Scalar subquery
3. When you specify only an embedded variable or a ? parameter in the value 

expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.

4. The data type of the argument must be DATE.
5. The data type of the result will be INTEGER.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of the argument is the null value, the result is also the null 
value.



2. Details of Constituent Elements

404

(d) Examples
Examples of the WEEKOFMONTH function are shown below:
WEEKOFMONTH(DATE('2000-01-01'))   ==> 1
WEEKOFMONTH(DATE('2000-01-02'))   ==> 2
WEEKOFMONTH(DATE('2000-01-29'))   ==> 5
WEEKOFMONTH(DATE('2000-01-30'))   ==> 6
            2000-01-01 is a Saturday, and 2000-01-31 is a Sunday.

(62) YEARS_BETWEEN
(a) Function

Returns as a real number (FLOAT type) the number of years between two dates 
specified in arguments.

(b) Format
[MASTER.]YEARS_BETWEEN(argument-1, argument-2)

(c) Rules
1. The following can be specified in each argument:

• value-expression [AS data-type]
2. The following can be specified in each value expression:

• CURRENT DATE
• Column specification
• SQL variable or SQL parameter
• Date operation

• Set function
• Scalar function
• Function call
• CASE expression
• CAST specification
• Embedded variable or ? parameter
• Scalar subquery

3. When you specify only an embedded variable or a ? parameter in a value 
expression, you must specify the AS data type. When the AS data type is specified, 
items other than an embedded variable or a ? parameter cannot be specified. 
Specifying the AS data type causes the function that has a parameter with the data 
type specified in the AS clause to be called.



2. Details of Constituent Elements

405

4. The data types of argument-2 and argument-3 must be DATE.
5. The data type of the result will be FLOAT.
6. The value of the result is not NOT NULL constrained (null values are allowed). If 

the value expression of argument-1 or argument-2 is the null value, the result is 
also the null value.

7. The number of years which is the result of YEARS_BETWEEN is calculated 
according to the following rules:

• If date-1 < date-2:
Result = -YEARS_BETWEEN (date-2, date-1)

• If date-1  date-2:
Let y be an integer greater than or equal to 0, and let date-4 and date-3 be the 
date (date-2 + y years) and (date-2 + (y + 1)) years, respectively, such that 
date-4  date-1 < date-3
Let d1 and d2 be the number of days between date-4 and date-1 (DAYS 
(date-1) - DAYS (date-4)) and the number of days between date-4 and date-3 
(DAYS (date-3) - DAYS (date-4)), respectively (where d2 is one of the 
following values: 365, 366)
The number of years in the result will be (y + d1  d2) years.

Figure 2-7 shows the relationships between the dates date-1, date-2, date-3, and 
date-4:
Figure 2-7: Relationships between the dates date-1, date-2, date-3, and date-4

(d) Examples
Examples of the YEARS_BETWEEN function are shown below:
YEARS_BETWEEN(DATE('2000-06-10'),DATE('1999-06-10'))==>   1
YEARS_BETWEEN(DATE('2000-06-11'),DATE('1999-06-10'))==>   
1.002739...
YEARS_BETWEEN(DATE('1999-06-11'),DATE('1999-06-10'))==>   
1.002732...
YEARS_BETWEEN(DATE('2014-09-09'),DATE('1999-06-10'))==>  
15.249315...
YEARS_BETWEEN(DATE('1999-06-10'),DATE('1999-06-10'))==> 



2. Details of Constituent Elements

406

-15.249315...



2. Details of Constituent Elements

407

2.17 CASE expressions

(1) Function
A CASE expression specifies a value with a condition.

(2) Format
CASE-expression::={searched-CASE-expression|simple-CASE-expression|
                      CASE-abbreviation}
searched-CASE-expression::=CASE
                         {WHEN search-condition THEN {value-expression
                              |NULL}}...
                         [ELSE {value-expression|NULL}]
                        END
simple-CASE-expression::=CASE value-expression
                         {WHEN value-condition THEN {value-expression
                              |NULL}}...
                         [ELSE {value-expression|NULL}]...
                        END
CASE-abbreviation::={NULLIF (value-expression, value-expression)
                   |COALESCE (value-expression, [, value-expression]...)}

(3) Rules
1. A maximum of 255 WHEN statements can be specified in a single CASE expression.
2. If some of the search conditions in the CASE expression are TRUE, the result value 

of the first WHEN for which the search condition is TRUE is converted to the CASE 
expression data type and used as the value of the CASE expression.

3. If none of the search conditions in the CASE expression is TRUE, the result value 
of the ELSE that is assumed or specified is converted to the CASE expression data 
type and used as the value of the CASE expression.

4. For search conditions, see 2.7 Search conditions.
5. The data type and data length of the result of a CASE expression are the same as 

for the set operation.
6. The data type of the result of a CASE expression is without the NOT NULL 

constraint (the null value is allowed).
7. In the case of COALESCE, value expressions are evaluated from left to right and 

the first non-null value is used as the result.
8. A value expression must be specified in at least one THEN in a CASE expression.
9. The ? parameter or an embedded variable cannot be specified alone in the value 

expression in CASE, THEN, or ELSE (including specification in monomial 



2. Details of Constituent Elements

408

operational expressions).
10. If ELSE is not specified, ELSE NULL is assumed.
11. Values with any of the following data types cannot be specified in a CASE value 

expression, WHEN value expression, or NULLIF and COALESCE value expressions:
• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• BOOLEAN
• Abstract data type

12. Values with the following data type cannot be specified in THEN or ELSE value 
expressions:

• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• BOOLEAN
• Abstract data type

13. A simple CASE expression is the same as a searched CASE expression for which 
V2=V1 is specified as a search condition, where V1 is a value expression in WHEN 
and V2 is a value expression in CASE.

14. The ? parameter or an embedded variable cannot be specified alone in the value 
expression in the first WHEN in a simple CASE specification, the first value 
expression in COALESCE, or both value expressions in NULLIF (including 
specification in monomial operational expressions).

15. If the value expression in at least one WHEN in a simple CASE expression is the ? 
parameter or an embedded variable, the data type of the ? parameter or embedded 
variable is assumed to be the same as that of the value expression in the first WHEN.

16. If one of the value expressions in NULLIF is the ? parameter or an embedded 
variable, the data type of the ? parameter or embedded variable is assumed to be 
the same as that of the other value expression.

17. If at least one value expression in COALESCE is the ? parameter or an embedded 
variable, the data type of the ? parameter or embedded variable is assumed to be 
the same as that of the first value expression.

18. A maximum of 255 value expressions can be specified in COALESCE.
19. NULLIF(V1, V2) is the same as the following CASE expression:

CASE WHEN V1=V2 THEN NULL ELSE V1 END

20. COALESCE(V1, V2) is the same as the following scalar function VALUE or CASE 



2. Details of Constituent Elements

409

expression:
VALUE(V1, V2)
CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END

21. COALESCE(V1, V2, ..., Vn), where n is at least 3, is the same as the following 
scalar function VALUE or CASE expression:
VALUE(V1, V2, ..., Vn)
CASE WHEN V1 IS NOT NULL THEN V1 ELSE COALESCE (V2, ..., Vn) 
END

22. Comparable data types should be used for the THEN and ELSE value expressions 
in a searched CASE expression or a simple CASE expression. For the comparable 
data types, see 1.2 Data types. The following data types cannot be compared:

• Date data and its character string representation
• Time data and its character string representation
• Time stamp data and the character string representation of time stamp data
• Date interval data and its decimal representation
• Time interval data and its decimal representation
• Binary data and hexadecimal character string literals

23. In the case of a simple CASE expression, comparable data types should be used 
for the value expressions of WHEN and CASE. For the comparable data types, see 
1.2 Data types. The following data types cannot be compared:

• Date data and its character string representation
• Time data and its character string representation
• Time stamp data and the character string representation of time stamp data

• Date interval data and its decimal representation
• Time interval data and its decimal representation
• Binary data and hexadecimal character string literals

24. In the case of NULLIF or COALESCE, comparable data types should be used for 
their value expressions. For the comparable data types, see 1.2 Data types. The 
following data types cannot be compared:

• Date data and its character string representation
• Time data and its character string representation
• Date interval data and its decimal representation
• Time interval data and its decimal representation



2. Details of Constituent Elements

410

25. By specifying a subscript, repetition columns can be specified in a CASE 
expression. Also, ANY as a subscript can be specified for a repetition column as a 
search condition in a CASE expression. Unsubscripted repetition columns can be 
specified in the IS NULL predicate (at the same locations as in a search 
condition). ANY as a subscript cannot be specified for a repetition column in a 
CASE expression that is specified in a selection expression.

26. A window function cannot be specified.
(4) Examples

(a) Searched CASE
In table T1, change "AA" and "BB" in column C1 to "AAA" and "BBB", respectively:
UPDATE T1 SET C1 =
   CASE WHEN C1='AA' THEN 'AAA' WHEN C1='BB' THEN 'BBB'
   ELSE C1
END

(b) Simple CASE
In table T1, change "AA" and "BB" in column C1 to "AAA" and "BBB", respectively:
UPDATE T1 SET C1 =
   CASE C1 WHEN 'AA' THEN 'AAA' WHEN 'BB' THEN 'BBB'
   ELSE C1
END



2. Details of Constituent Elements

411

(c) CASE abbreviation (COALESCE)
Extract columns that do not contain all null values from table T1, in the order of 
columns C1, C2, and C3; if all columns contain only null values, set 0 as the result:
SELECT COALESCE(C1,C2,C3,0) FROM T1

* Null value
(d) CASE abbreviation (NULLIF)

If the values in columns C1 and C2 of table T1 are equal, the null value is returned as 
the result; if the values in columns C1 and C2 of table T1 are not equal, column C1 is 
extracted:
SELECT NULLIF(C1,C2) FROM T1

* Null value



2. Details of Constituent Elements

412

2.18 Operational results with overflow error suppression specified

When the overflow error suppression feature is set by the pd_overflow_suppress 
option of the system common definition, the following conditions do not generate an 
error (HiRDB treats the result of the operation that generates the overflow as the null 
value and continues processing):

0 is specified as the value of the second operand for division
Overflow occurs during computation

The following types of overflows are subject to overflow error suppression:

Numeric-type overflow
Division-by-zero error
Date data type overflow
Time data type overflow
Date interval data type overflow
Time interval data type overflow
Labeled duration overflow
Overflow in the SUM, COUNT, or AVG set function
Window function overflow
Scalar function overflow (Table 2-76 shows the scalar functions that are subject 
to overflow suppression.)

An error does occur in the following cases even when the overflow error suppression 
feature is in effect:

Attempt is made to receive data into a UAP without specifying an indicator 
variable
Attempt is made to update a NOT NULL constrained column with the null value or 
to insert the null value into a NOT NULL constrained column when the null value 
is set by means of the overflow error suppression feature

When overflow occurs, the 'W' warning is set in SQLWARNB in the SQL 
Communications Area. Whether or not overflow has occurred can be determined by 
referencing SQLWARNB.



2. Details of Constituent Elements

413

Table 2-76: Scalar functions subject to overflow error suppression

Shown below is an example of the processing that occurs when the overflow error 
suppression feature is in effect. The examples are based on the following stock control 
table (CONTROL):

Classification Scalar function Scalar function type

Conversion function DEGREES System-defined scalar function

NUMEDIT

STRTONUM

Mathematical function ABS System-built-in scalar function

MOD

CEIL System-defined scalar function

COSH

EXP

FLOOR

POWER

ROUND

SINH

TAN

TANH

TRUNCYEAR

Date manipulation ADD_INTERVAL

NEXT_DAY

ROUNDMONTH



2. Details of Constituent Elements

414

Note: The "Unit price" (PRICE), "Quantity" (QUANTITY), and "Total" (TOTAL) 
columns should be of the INTEGER data type; the "Total" (TOTAL) column should be 
a NOT NULL constrained column.

2.18.1 Example of overflow in a search condition
Retrieve from the stock control table (CONTROL) the rows for which the product of the 
unit price (PRICE) and the quantity (QUANTITY) is greater than 15,000,000:

(1) SQL
SELECT PCODE, PRICE, QUANTITY
  FROM CONTROL
  WHERE PRICE * QUANTITY > 15000000



2. Details of Constituent Elements

415

(2) Retrieval results

If the overflow error suppression feature is not in effect, overflow occurs in the product 
of the unit price and the quantity (PRICE * QUANTITY) for the row with B-300 as the 
product code (PCODE). Processing is cancelled when the overflow occurs.
Even with the overflow error suppression feature in effect, overflow occurs for the row 
with B-300 as the product code (PCODE), but processing continues.
The result of an operation in which overflow occurs is the null value. Because the null 
value does not satisfy the search condition, the row that contains the null value is not 
retrieved.

2.18.2 Example of overflow in an update value
Update in the stock control table (CONTROL), the total (TOTAL) column using the 
product of the unit price (PRICE) and the quantity (QUANTITY):

(1) SQL
UPDATE CONTROL
   SET TOTAL = PRICE * QUANTITY

(2) Update results (with overflow error suppression feature specified)

If the overflow error suppression feature is not in effect, overflow occurs in the product 
of the unit price and the quantity (PRICE * QUANTITY) for the row with B-300 as the 
product code (PCODE). Processing is cancelled when the overflow occurs.
Even with the overflow error suppression feature in effect, overflow occurs for the row 



2. Details of Constituent Elements

416

with B-300 as the product code (PCODE), but processing continues.
The result of an operation in which overflow occurs is the null value, so the total 
column (TOTAL) is updated with the null value. If a table is updated while the overflow 
error suppression feature is in effect, the table is updated with the null value. This fact 
should be taken into consideration when a table is to be updated.



2. Details of Constituent Elements

417

2.19 Lock option

(1) Function
The lock option provides exclusive controls for retrieving data.
The lock option is specified in the cursor declaration, the cursor specification in a FOR 
statement, the single-row SELECT statement, or the dynamic SELECT statement.

(2) Format
lock-option::=[{WITH {SHARE|EXCLUSIVE} LOCK
               |WITHOUT LOCK [{WAIT|NOWAIT}]}]
              [{WITH ROLLBACK|NO WAIT}]

(3) Operands
[{WITH {SHARE|EXCLUSIVE} LOCK|WITHOUT LOCK [{WAIT|NOWAIT}]}]

However, the default for this operand is WITH EXCLUSIVE LOCK if a FOR 
UPDATE clause is specified in the cursor declaration or in the dynamic SELECT 
statement, or the row using the cursor is updated or deleted.
WITH SHARE LOCK

Specifies that the contents of retrieved data may be referenced but may not 
be updated by other users (shared mode) until the current transaction has 
terminated.

WITH EXCLUSIVE LOCK
Specifies that the contents of retrieved data are not to be referenced (except 
for referencing by WITHOUT LOCK NOWAIT) or updated (exclusive mode) 
until the current transaction has terminated.
The WITH EXCLUSIVE LOCK option is effective only on the table specified 
in the FROM clause of a query specification.
Even when the WITH EXCLUSIVE LOCK option is specified, the 
shared-mode exclusive use option is applied to the key values of an index 
only when the index is referenced, and the exclusive use option is reset upon 
completion of the referencing operation. This permits other users to access 
the same index. However, if the index that is used for retrieval purposes is 
updated by another user, the user who needs to use the index for retrieval 
purposes may have to wait. The LOCK statement ensures that any processing 
of the index by another user must wait until the current transaction has been 
completed.

WITHOUT LOCK [WAIT]



2. Details of Constituent Elements

418

Specifies that the contents of retrieved data are not to be subject to exclusive 
control until the current transaction terminates.
Specifying WITHOUT LOCK [WAIT] causes HiRDB to reset the lock upon 
completion of the retrieval of a row without waiting for termination of the 
current transaction, thus reducing lock resource requirements. This 
technique minimizes the resources required to perform exclusive control and 
improves HiRDB's ability to process transactions concurrently. It should be 
noted, however, that the WITHOUT LOCK [WAIT] option can create a situation 
in which the same row retrieved twice during the same transaction provides 
different results.

WITHOUT LOCK NOWAIT
Specifies that data being updated by another user (or data subject to the 
exclusive lock option) can be referenced before the updating operation is 
completed and that the contents of retrieved data are not to be subject to 
exclusive lock until the current transaction has been completed. However, if 
the table to be searched is a shared table and if the LOCK statement is being 
executed in the lock mode by another user, the table is lock-release pending, 
unavailable for referencing.
In a retrieval performed by a SQL statement with WITHOUT LOCK specified, 
any referenced locked resources (rows or pages) are unlocked. In a retrieval 
performed by an SQL statement with WITHOUT LOCK NOWAIT specified, 
resources can be referenced in the same manner as without a lock (except that 
a logical file cannot be referenced), even when other transactions are 
applying the lock option to the tables and rows in the EX mode. However, 
tables that are being accessed by the pdload or pdorg command cannot be 
referenced.
Note that when WITHOUT LOCK NOWAIT is specified, the same data cannot 
be received again when the same row is retrieved twice in the same 
transaction. Moreover, if a table updating transaction is cancelled by one 
user, another user may receive data that did not exist when the table was 
retrieved while it was being updated.
If the WITHOUT LOCK NOWAIT option is specified in a cursor declaration or 
in a dynamic SELECT statement, a FOR UPDATE clause cannot be specified 
in the cursor declaration or dynamic SELECT statement; similarly, the 
WITHOUT LOCK NOWAIT option specified in the cursor declaration conflicts 
with the UPDATE or DELETE operation that uses the cursor.

[{WITH ROLLBACK|NO WAIT}]
If this operand is omitted and the data to be searched is being used by another user, 
the data goes into the wait state (exclusive of WITHOUT LOCK NOWAIT) until the 
pending user transaction terminates.



2. Details of Constituent Elements

419

WITH ROLLBACK
Specifies if the data to be searched is being used by another user and if the 
pending transaction is to be cancelled and nullified (any SQL statements that 
were executed before the error occurred will be rolled back).

NO WAIT
Specifies when the data to be searched is being used by another user and the 
search is to be flagged as an error (lock error) without canceling the 
transaction (SQL statements that were executed before the error occurred 
will not be rolled back).
In this case, any lock applied by the specified SQL statement is not unlocked. 
Because the cursor remains open, it should be closed by executing the CLOSE 
statement in the UAP.
However, if a lock error occurs under any of the following circumstances, the 
transaction will be canceled and invalidated even when the NO WAIT option 
is specified:

• With respect to a table that is subject to a retrieval by a subquery
• A derived table that is the object of search by the FROM clause
• With respect to a table that is subject to a retrieval by a query in which 

a value expression is specified in the GROUP BY clause
• See 2.21 Inner derived tables for details about in-table derived tables 

that are subject to a retrieval by a query that satisfies one of the 
conditions that result in an "inner derived table."

(4) Notes
Because WITHOUT LOCK NOWAIT has a different meaning from WITHOUT LOCK NO 
WAIT, these options must be specified with care.

(5) Specification example (lock option is specified in the SELECT statement)
SELECT PCODE FROM STOCK
  WHERE PNAME = N'blouse'
  WITH SHARE LOCK
  WITH ROLLBACK



2. Details of Constituent Elements

420

2.20 Function calls

(1) Function
A function call calls a specified function.

(2) Format
function-call::=[authorization-identifier.] routine-identifier
               ([argument [, argument]...])
argument::=value-expression [AS data-type]

(3) Operands
authorization-identifier

Specifies the authorization identifier of the function to be called.
routine-identifier

Specifies the routine identifier of the function to be called.
argument::= value-expression [AS data-type]

value-expression
Specifies a value expression for a parameter of the function to be called.

AS data-type
Specifies the ? parameter or a predefined data type for the embedded 
variable for a parameter of the function to be called.

(4) Rules
1. Arguments are associated with parameters in the order in which they are 

specified.
2. The data type of an argument must be compatible with the data type of the 

corresponding parameter. For compatible data types, see 1.2.2 Data types that can 
be converted (assigned or compared). The following combinations of data types 
are incompatible:

• Character data and mixed character data
• Date interval data and literals that express a date interval in decimal
• Date interval data and embedded variables that are associated with 

DECIMAL(8,0)
• Time interval data and literals that express a time interval in decimal
• Time interval data and embedded variables that are associated with 



2. Details of Constituent Elements

421

DECIMAL(6,0)
• Date data and literals that express a date as a character string
• Date data and embedded variables that are associated with CHAR(10)
• Date data and CHAR or VARCHAR embedded variables with a length of at least 

10 bytes
• Time data and literals that express a time as a character string
• Time data and embedded variables that are associated with DECIMAL(6,0)
• Time data and CHAR or VARCHAR embedded variables with a length of at least 

8 bytes
• Time stamp data and literals representing time stamps in character strings
• Time stamp data and embedded variables corresponding to CHAR or 

VARCHAR of a length of 19, 20, 22, 24, or 26 bytes
• Time stamp data and embedded variables corresponding to CHAR or 

VARCHAR of a length of 19, 20, 22, 24, or 26 bytes or greater
• Embedded variable of CHAR or VARCHAR data type greater than or equal to 

19 bytes or greater if the fractional second precision of the time stamp data 
is 0, or 22 bytes or greater if the latter is 2 or greater.

• BINARY type and hexadecimal character string literals
In addition, the data type of an argument must have a priority equal to or greater 
than the data type of the parameter. For the priorities of data types, see Table 2-77 
and Table 2-78.

3. When only the ? parameter or an embedded variable is specified in a value 
expression, the AS data type must be specified in order to determine the data type 
for the value expression.

4. When the AS data type is specified, items other than the ? parameter or an 
embedded variable cannot be specified in a value expression.

5. Unary operations using either the ? parameter or an embedded variable cannot be 
specified in a value expression.

6. When a repetition column is specified in an argument, a subscript must be 
specified. However, ANY cannot be specified as the subscript.

7. If only the ? parameter or an embedded variable is specified in a value expression, 
the ? parameter or an embedded variable should be a simple structure.

8. The maximum number of nesting levels for a function call is 255. The nesting 
level for a function call is equal to the nesting level specified in the parentheses 
in "routine-identifier (".



2. Details of Constituent Elements

422

9. In argument, the SUBSTR scalar function producing either BLOB as the data type 
of the result or the BINARY type with a minimum length of 32,001 bytes cannot 
be specified as a single value expression.

10.  The window function cannot be specified.
(5) Notes

For the default values for an authorization identifier, see 1.1.9 Schema path.
(6) Rules for determining the function to be called and the data type of the result

1. The specified function is called only if the number of authorization identifiers, the 
number of routine identifiers, and the number of arguments are all the same, the 
data types of the arguments do not include the abstract data type, and the data 
types of parameters are in complete agreement with the order in which arguments 
are listed. In such a case, the data type of the result of the function will be the data 
type of the RETURNS clause of the function being called.

2. If there is any disagreement in the numbers of authorization identifiers, routine 
identifiers, and arguments, the specified function is not called.

3. If the numbers of authorization identifiers, routine identifiers, and arguments are 
all the same, but either the data types of the arguments includes the abstract data 
type or the data types of parameters are not in complete agreement with the order 
in which the arguments are listed, the function to be called is determined as 
follows:

• When abstract data type is not included:
Based upon the predefined data type of each argument as a standard, 
beginning with the leftmost argument, either the function whose priority is 
the same as the standard priority or the function whose parameter has a 
predefined data type that has the next highest data type priority is called. 
Table 2-77 shows the priorities of the predefined data types. Because the 
function to be called is determined uniquely during SQL analysis, the data 
type of the result of the function will be the data type of the RETURNS clause 
of the function being called.

Table 2-77: Priorities of predefined data types

Data type of 
argument

Priority order

Numeric data SMALLINT  INTEGER  DECIMAL  SMALLFLT  FLOAT

Character data CHAR  VARCHAR

National character 
data

NCHAR  NVARCHAR



2. Details of Constituent Elements

423

A  B: Priority of A is higher than priority of B.
• When an abstract data type is included:

If the data types of arguments include the abstract data type, the function to 
be called is determined as follows:

4. Determine the basic function.
The basic function is determined as follows: Based upon the predefined data type 
of each argument as a standard, beginning with the leftmost argument, either the 
function that has a priority equal to the standard priority or the function whose 
parameter has a predefined data type that has the next highest data type priority is 
designated as a basic function. If the data type of a given function is a predefined 
data type, the priority listed in Table 2-77 is used. If the data type is an abstract 
data type, the priority listed in Table 2-78 below is used.
Table 2-78: Priorities of abstract data types

A  B: Priority of A is higher than priority of B.
* The super type that is specified directly in the UNDER clause in the definition of 
an abstract data type has higher priority than any other super type.

5. Determine candidate functions.
If the argument is an abstract data type, the data type of the actual value that the 
argument can take is either the data type of the abstract data type in which the 
argument is defined or its subtype. Therefore, in addition to the basic function, all 
functions that have the same data type as the abstract data type of the argument or 
are associated with parameters with the abstract data type of the subtype will be 
candidate functions.
If only one candidate function (i.e., the basic function) is found, that function is 
called. The data type of the result of the function will be the data type of the 
RETURNS clause of the function being called.

Mixed character 
data

MCHAR  MVARCHAR

Large-object data 
and binary data

BINARY  BLOB

Data type of argument Priority order

Abstract data type Same data type  Super type*

Data type of 
argument

Priority order



2. Details of Constituent Elements

424

6. Narrow candidate functions by using the data type of the RETURNS clause.
HiRDB checks the compatibility between the data type of the RETURNS clause of 
the basic function and the RETURNS clause of the candidate functions other than 
the basic function. Functions that have an incompatible RETURNS clause data type 
are eliminated as candidates. After the compatibility check, the data type of the 
result of the functions is determined based on the data type of the RETURNS clause 
of the remaining candidate functions. The data type and the data length of the 
result will be the same as the data type and data length of the result of set 
operations (UNION ALL or EXCEPT ALL). For details, see 2.2 Query expressions.
In the case of an abstract data type, the abstract data type of the RETURNS clause 
of the basic function will be used.
For the BINARY or BLOB type, the following rules apply:

• The data length of the result is the longest data length.
• If the BINARY and BLOB types occur on a mixed basis, the result is the BLOB 

type.
7. Determine the function to be used during execution of an SQL statement.

If steps 2 and 3 above fail to determine uniquely the function to be used, the 
function to be called from the candidate functions is determined uniquely 
according to the actual data type of the argument of an abstract data type during 
execution of an SQL statement. Beginning with the leftmost argument, if the 
actual value of an argument is NOT NULL, the data type of that value is used as a 
base. If it is NULL, the data type of that argument is used as a base, and the function 
that has as a parameter a data type that is equal in priority to the base data type or 
that is highest in priority among the candidate functions that are lower in priority 
than the base data type is chosen and designated as the function to be called.

Examples
Determine the function to be called when an abstract data type is included
Let A, B, and C denote abstract data types, where C is the super type of B and B is the 
super type of A (priority of abstract data types: A  B  C).
Example 1:
Preconditions

Table definition:
CREATE TABLE T1(C1 C)

Function definition:
f(A), f(B), f(C)

SQL statement:



2. Details of Constituent Elements

425

SELECT f(C1) FROM T1

Results
Basic function:
f(C)

Candidate functions for which the function call is f(C1):
f(A),f(B),f(C)

Function to be called
The following functions are called during execution of the SQL statement:

Example 2:
Preconditions

Table definition:
CREATE TABLE T1(C1 C,C2 B)

Function definition:
f(A,A), f(A,B), f(A,C), f(B,A), f(B,C), f(C,A), f(C,B), 
f(C,C)

SQL statement:
SELECT f(C1,C2) FROM T1

Results
Basic function:
f(C,B)

Candidate functions for which the function call is f(C1,C2):
f(A,A),f(A,B),f(A,C),f(B,A),f(B,C),f(C,A),f(C,B)

Function to be called
The following functions are called during execution of the SQL statement:

Actual value of T1.C1 Function to be called

Type A f(A)

Type B f(B)

Type C f(C)

NULL value f(C)



2. Details of Constituent Elements

426

Actual value of T1.C1 Actual value of T1.C2 Function to be called

Type A Type A f(A,A)

Type B f(A,B)

NULL value f(A,B)

Type B Type A f(B,A)

Type B f(B,C)

NULL value f(B,C)

Type C Type A f(C,A)

Type B f(C,B)

NULL value f(C,B)

NULL value Type A f(C,A)

Type B f(C,B)

NULL value f(C,B)



2. Details of Constituent Elements

427

2.21 Inner derived tables

View tables and the query names of the WITH clause are called named derived tables.
When a named derived table is specified in a query specification, an internal work 
table may be created for the named derived table. A named derived table for which a 
work table is created is called an inner derived table.

2.21.1 Conditions for an inner derived table
If any of the named derived tables shown in (1)-(10) is specified in the FROM clause of 
a query specification, an inner derived table can be created under the following 
conditions:

(1) Named derived table that is derived by specifying SELECT DISTINCT
A named derived table is included in the subquery. Alternatively, the query 
specification, specifying a named derived table in a FROM clause, directly contains one 
of the following items:

• GROUP BY clause, HAVING clause, or a set function
• SELECT DISTINCT
• Table joining (including outer joins and inner joins)
• A value expression other than a column specification is specified in the selection 

expression.
• A scalar subquery is specified in the selection expression.
• The selection expression does not specify all the columns, column by column, in 

the view table specified in the FROM clause.
• ORDER BY clause

Examples
If named derived table V1 (a view table) and Q1 (the query name in the WITH clause) 
that are derived by SELECT DISTINCT C1,C2 FROM T1 are specified in the FROM 
clause, the following coding creates an internally derived table with respect to V1:
Example 1:

SELECT * FROM T2 WHERE EXISTS(SELECT * FROM V1)

Example 2:
SELECT VC1,VC2 FROM V1 GROUP BY VC1,VC2

Example 3:
WITH Q1(QC1,QC2) AS (SELECT DISTINCT C1,C2 FROM T1)
   SELECT DISTINCT * FROM V1



2. Details of Constituent Elements

428

Example 4:
SELECT X.VC1,Y.C1 FROM V1 X,T2 Y WHERE X.VC1=Y.C2

Example 5:
SELECT V1.VC1,T2.C2 FROM V1 LEFT JOIN T2 ON T2.C2=V1.VC2

Example 6:
WITH Q1(QC1,QC2) AS (SELECT DISTINCT C1,C2 FROM T1)
   SELECT QC1+100,CURRENT_DATE FROM Q1

(2) Named derived table that is derived by specifying a GROUP BY clause, 
HAVING clause, or set function

The query specification specifying a named derived table in a FROM clause directly 
contains one of the following items:

• GROUP BY clause, HAVING clause, or a set function
• Table joining (including outer joins and inner joins)
• Window function

Examples
If named derived table V1 (a view table) and Q1 (the query name in the WITH clause) 
that are derived by SELECT C1,C2 FROM T1 GROUP BY C1,C2 and named derived 
table V2 (a view table) that is derived by SELECT MAX(C1),C2 FROM T1 GROUP 
BY C2 HAVING C2<100 are specified in the FROM clause, the following coding 
creates an internally derived table with respect to V1, V2 and Q2:
Example 1:

WITH Q1(QC1,QC2) AS (SELECT C1,C2 FROM T1
   GROUP BY C1,C2) SELECT AVG(QC1),QC2 FROM Q1
      GROUP BY QC2

Example 2:
SELECT V1.VC1,V2.VC1 FROM V1,V2 WHERE V1.VC1=V2.VC1

Example 3:
WITH Q1(QC1,QC2) AS (SELECT C1,C2 FROM T1
  GROUP BY C1,C2)
  SELECT Q1.QC1,V1.VC1 FROM Q1 INNER JOIN V1 ON
         V1.VC2=Q1.QC2

(3) Named derived table that is derived by specifying a value expression other 
than a column specification in a selection expression

A query specification specifying a named derived table in a FROM clause directly 
contains one of the following items:



2. Details of Constituent Elements

429

• GROUP BY clause, HAVING clause, or a set function#

• Window function
• Outer or inner join

#
Excludes cases in which the rapid grouping facility is enabled. For details about 
the rapid grouping facility, see the manual HiRDB Version 8 UAP Development 
Guide.

Examples
If named derived table V1 (a view table) and Q1 (the query name in the WITH clause) 
that are derived by SELECT C1+100, C2| |C2 FROM T1 are specified in the FROM 
clause, the following coding creates an internally derived table with respect to V1 and 
Q1:
Example 1:

SELECT AVG(VC1),VC2 FROM V1 GROUP BY VC2

Example 2:
SELECT * FROM V1 LEFT JOIN T2 ON T2.C2=V1.VC2

Example 3:
WITH Q1(QC1,QC2) AS (SELECT C1+100,C2| |C2 FROM T1)
    SELECT QC1,QC2 FROM Q1 GROUP BY QC1,QC2
           HAVING QC1<=100

Example 4:
SELECT COUNT(*) OVER(),VC1 FROM V1
 

(4) Named derived table that is derived by specifying a set function specifying a 
DISTINCT specification

The query specification, specifying a named derived table in a FROM clause, directly 
contains one of the following items:

• SELECT DISTINCT
• GROUP BY clause, HAVING clause, or set function
• Joined table (including inner or outer joins)
• Window function

Example
If named derived table V1 (a view table) that is derived by SELECT AVG (DISTINCT 
C1) FROM T1 is specified in the FROM clause, the following coding creates an 



2. Details of Constituent Elements

430

internally derived table with respect to V1:
SELECT DISTINCT VC1 FROM V1
WITH Q1(C1) AS (SELECT AVG(DISTINCT C1) FROM T1)
  SELECT COUNT(*) OVER(),C1 FROM Q1

(5) Named derived table that is derived by specifying a joined table
A named derived table is specified in an inner or outer join table reference.
Examples
If named derived table V1 (a view table) and Q1 (the query name in the WITH clause) 
that are derived by SELECT T1.C1,T2.C1 FROM T1,T2 are specified in the FROM 
clause, the following coding creates an internally derived table with respect to V1 and 
Q1:
Example 1:

SELECT V1.* FROM V1 LEFT JOIN T3 ON T3.C1=V1.VC1

Example 2:
WITH Q1(QC1,QC2) AS (SELECT T1.C1,T2.C1 FROM T1,T2
     SELECT * FROM Q1 INNER JOIN T3 ON Q1.QC1=T3.C1

(6) Named derived table that is derived by specifying an inner or outer join
The query specification specifying a named derived table in a FROM clause directly 
contains a table join.
Examples

In the specification of named derived tables V1 (a view table) and Q1 (a query 
name) derived by SELECT T1.C1,T2.C1 FROM T1 LEFT JOIN T2 ON 
T1.C2=T2.C2 in a FROM clause, the following coding creates an inner derived 
table with respect to V1 and Q1:

Example 1:
SELECT V1.VC1,T3.C1 FROM V1 LEFT JOIN T3 ON T3.C2=V1.VC2

Example 2:
WITH Q1(QC1,QC2) AS (SELECT T1.C1,T2.C1 FROM T1 LEFT JOIN T2
   ON T1.C2=T2.C2) SELECT Q1.QC1 FROM Q1 INNER JOIN T3 ON 
T3.C2=Q1.QC2

(7) Named derived table that is derived by specifying a value expression, 
containing a subquery, in a selection expression

A query specification specifying a named derived table in a FROM clause directly 
contains one of the following items:

• SELECT DISTINCT



2. Details of Constituent Elements

431

• GROUP BY clause, HAVING clause, or a set function
• Joined table (including inner or outer joins)
• A value expression, other than a column specification, in a selection expression
• A scalar subquery specification in a selection expression
• Same column derived from a value expression containing a subquery specified 

two or more times in the selection expression of a named derived table
• A column derived from a value expression containing a subquery specified in the 

selection expression of a named derived table as a column that references outside
• View table defined before version 07-02

Examples
In the specification of named derived tables V1 (a view table) and Q1 (a query 
name) derived by SELECT (SELECT C1 FROM T2),C1 FROM T1 in a FROM 
clause, the following coding creates an inner derived table with respect to V1 and 
Q1:

Example 1:
SELECT VC1,VC2 FROM V1 WHERE VC1>0

Example 2:
WITH Q1(QC1,QC2) AS (SELECT (SELECT C1 FROM T2),C1 FROM T1)
  SELECT QC1,QC2 FROM Q1 WHERE QC1>0

(8) Named derived table that is derived by set operations
One of the following conditions must be satisfied:
1. One of the operands in the set operation directly contains one of the following 

items:
• A query on an inner derived table
• A query specifying a derived table
• A scalar subquery in a selection expression

2. One of the operands in the set operation and a query on the named derived table 
satisfy one of the conditions listed in (1)-(8).

3. Condition (9) or (10) is satisfied depending on whether a specified set operation 
contains options other than UNION ALL or it contains the option UNION ALL only.

Example
In the specification of named derived tables V1 (a view table) and Q1 (a query name) 
derived by SELECT (SELECT C1 FROM T2),C2 FROM T1 UNION SELECT C1,C2 
FROM T3 in a FROM clause, the following coding creates an inner derived table with 



2. Details of Constituent Elements

432

respect to V1 and Q1:
Example 1:

SELECT * FROM V1

Example 2:
WITH Q1(QC1,QC2) AS (
  SELECT (SELECT C1 FROM T2),C2 FROM T1 UNION SELECT C1,C2 
FROM T3)
  SELECT * FROM Q1

(9) Named derived table that is derived by a set operation containing options 
other than UNION ALL

One of the following conditions must be satisfied:
1. The query specification specifying a named derived table in the FROM clause 

directly contains one of the following items:
• GROUP BY clause, HAVING clause, or a set function
• SELECT DISTINCT
• Table joining (including inner and outer joins)
• WHERE clause
• Subquery
• A value expression, other than a column specification, in a selection 

expression
• Not all columns in the named derived table are specified once per selection 

expression
2. The condition (8) Named derived table that is derived by set operations is 

satisfied.
Examples

In the specification of named derived tables V1 (a view table) and Q1 (a query 
name) derived by SELECT C1,C2 FROM T1 UNION SELECT C1,C2 FROM T2 
in a FROM clause, the following coding creates an inner derived table with respect 
to V1 and Q1:

Example 1:
SELECT C1,C2 FROM V1 GROUP BY C1,C2

Example 2:
WITH Q1(QC1,QC2) AS (SELECT C1,C2 FROM T1 UNION SELECT C1,C2 
FROM T2)



2. Details of Constituent Elements

433

SELECT QC1,QC2 FROM Q1,T3 WHERE QC1=T3.C1
(10) Named derived table that is derived by a set operation specifying UNION 
ALL only

One of the following conditions must be satisfied:
1. The query specification specifying a named derived table in the FROM clause 

directly contains one of the following items:
• GROUP BY clause, HAVING clause, set function
• Window function
• WHERE clause, subquery (provided that the query in (1) is included in one of 

the following: a subquery, an operand in a set operation, or the query body 
of an INSERT statement)

• Function call
• System-defined scalar function
• Component specification
• WRITE specification
• GET_JAVA_STORED_ROUTINE_SOURCE specification
• A column not contained in a selection item is specified as a sort item
• A subquery specifying the named derived table meeting Condition (2) in a 

FROM clause
• A subquery specifying a derived table
• A subquery specifying a value expression, other than a column specification, 

in a GROUP BY clause
• One of the SQL variables or SQL parameters specified in a selection 

expression takes one of the following data types:
BLOB type
BINARY with a minimum definition length of 32,001 bytes
Abstract data type
BOOLEAN type

2. One of the following items is specified for the query specification specifying a 
named derived table for joining tables:

• A named derived table specified for referencing a table other than a foreign 
table on the farthest left of an outer join

• Comma join specified for a FROM clause in which a named derived table is 



2. Details of Constituent Elements

434

specified (that is, another table reference is specified other than the joined 
table specifying the named derived table)

• A subquery or derived table
• Query specification contained in a subquery, or the operation term of a set 

operation
• A set operation term for deriving a named derived table contains one of the 

following items:
 Table joining
 GROUP BY clause, HAVING clause, set function
 SELECT DISTINCT
 A value expression, other than a column specification, in a selection 

expression
 Query that generates an internal derived table
 Query specifying a derived table

• A named derived table derived by specifying a set operation specified in 
addition to another named derived table

• One of the following items is specified for a table reference for a joined table 
for which a named derived table is specified:

 A named derived table derived by specifying table joining
 A named derived table derived by specifying a GROUP BY clause, HAVING 

clause, or set function
 A named derived table derived by specifying SELECT DISTINCT
 A named derived table derived by specifying a value expression other than 

a column specification for the selection expression
 A named derived table derived by specifying a query that generates an 

internal derived table
 A named derived table derived by specifying a subquery

• The total number of tables obtained from the following expression exceeds 
65:
total-number-of-tables = 
(aggregate-number-of-tables-from-which-named-derived-tables-are-derive
d)
        + (number-of-set-operations-for-deriving-named-derived-tables 
+ 1)



2. Details of Constituent Elements

435

            
(aggregate-number-of-tables-to-be-specified-on-the-right-side-of-outer-joi
n)
        + 
(aggregate-number-of-tables-specified-for-query-if-query-is-specified-in-a
ddition-to-query-specifying-named-derived-table)

3. Satisfies the conditions described in (8) Named derived table that is derived by set 
operations.

Examples
In the specification of named derived tables V1 (a view table) and Q1 (a query 
name) derived by SELECT C1,C2 FROM T1 UNION ALL SELECT C1,C2 FROM 
T2 in a FROM clause, the following coding creates an inner derived table with 
respect to V1 and Q1:

Example 1:
SELECT C1,C2 FROM V1 GROUP BY C1,C2

Example 2:
WITH Q1(QC1,QC2) AS (SELECT C1,C2 FROM T1 UNION ALL SELECT 
C1,C2 FROM T2)
SELECT QC1,QC2 FROM Q1,T3 WHERE QC1=T3.C1

Example 3:
SELECT * FROM T1 WHERE EXISTS(SELECT * FROM V1 WHERE 
V1.C1=T1.C1)

Example 4:
INSERT INTO T3 SELECT * FROM V1 WHERE C1>'C001'



2. Details of Constituent Elements

436

2.22 WRITE specification

(1) Function
A WRITE specification outputs BLOB data to a file at the single server or front-end 
server unit and returns the IP address and the filename of the output unit.

(2) Format
WRITE (output-BLOB-value, file-prefix, file-output-option)

(3) Operands
output-BLOB-value

Specifies any of the following (note that the data type of output-BLOB-value must be 
the BLOB type):

• Column specification
• Component specification
• Function call
• SUBSTR scalar function that produces a result that is the BLOB data type

The following rules apply to output-BLOB-value:
1. Embedded variables and ? parameters can be specified in the argument for the 

function call or in the second or third argument of the SUBSTR scalar function that 
is specified in output-BLOB-value.

2. If a BLOB column is specified in output-BLOB-value, the BLOB column cannot by 
itself be specified in a selection expression or in the output-BLOB-value for 
another WRITE specification.
Examples of invalid specifications are shown below:
SELECT WRITE(C1,***),C1 FROM ***
SELECT WRITE(C1,***),WRITE(C1,***) *** FROM ***

3. If a FOR READ ONLY clause is specified, only a column specification can be 
specified in output-BLOB-value.

4. A subquery cannot be specified in an argument of a function call or in an 
argument of the scalar function SUBSTR specified as an output BLOB value.
file-prefix

Specifies the prefix part of the file name that HiRDB will assemble. The data type of 
file-prefix must be VARCHAR and the length must not exceed 222 bytes.
The following can be specified in a file-prefix:



2. Details of Constituent Elements

437

• Literal (character string)
• Embedded variable or ? parameter

The following rules apply to file-prefix:
1. Specify an absolute path name, including directory, that is valid at the unit for the 

single-server or front-end server to which HiRDB is connected. Additionally, the 
HiRDB administrator must grant the file user the privileges (access type: full 
control) for performing all types of operations on the directory. In the case of the 
UNIX version, the HiRDB administrator must grant the file user the privileges to 
read, write, and search within the directory.

2. For the file separator to be specified as a file prefix, specify / if the HiRDB server 
is UNIX, and specify \ if the HiRDB server is Windows. For the characters that 
can be specified in a file name, the rules for the HiRDB server platform apply. If 
the utf-8 character code type is specified in the pdntenv command (pdsetup 
command in the UNIX version), the file name should be specified within the 
range of ASCII code.

3. If only an embedded variable or a ? parameter is specified in the file prefix, the 
embedded variable or the ? parameter must have a simple structure.
file-output-option

Specifies the file output mode as a numeric data type (INTEGER type is returned during 
execution of the DESCRIBE INPUT statement).
The following can be specified in file-output-option:

• Numeric literal
• Embedded variable or ? parameter

The following values can be specified:

Note

The asynchronous output option can be specified in combination with re-create, 
append, or overwrite disable. When asynchronous output is combined with 
another option, specify the value that is the logical union of the asynchronous 
output option's value and the value for the other option. When the asynchronous 

Function Value

Re-create (overwrites any existing file) 0

Append (adds to the end of an existing file) 1

Overwrite disable (flags an error if an existing file is encountered) 2

Asynchronous output (requests asynchronous output from the operating system) 4



2. Details of Constituent Elements

438

output option is not specified, HiRDB requests synchronous output (immediate 
WRITE) from the operating system.

If only an embedded variable or a ? parameter is specified in the file prefix, the 
embedded variable or the ? parameter must have a simple structure.

(4) Rules on the results of a WRITE specification
1. The result of a WRITE specification will be the VARCHAR type without the NOT 

NULL constraint (null value will be permitted) and a definition length of 255 
bytes.

2. The result of a WRITE specification is in the following format:
IP-address : file-prefix - column-number - row-counter
                    <      file-name     >
Note: A colon (:) separates the IP address and the file prefix. The file prefix, 
column number, and row counter are delimited by the hyphen (-).
Explanation
IP-address

Returns the IP address of the unit for the single-server or front-end server to 
which the client is connected. An IP address is in the format 
XXX.XXX.XXX.XXX and its length is 7-15 bytes (XXX is numeric characters 
in the range 0-255).

file-prefix
Returns the file prefix that was specified in the second argument of the 
WRITE specification.

column-number
Returns a number indicating the specified position for the derived table. A 
column number consists of five numeric digits; the number of the first 
column is 1 (preceded by leading zeros).

row-counter
Returns numbers in ascending order, corresponding to the number of rows 
that are retrieved. The row counter is a 10-digit numeric character string 
beginning with 1 (preceded by leading zeros). When the count goes past 
2,147,483,646 rows, the counter resets itself to 1.

3. If a retrieval is performed from a client at which the WRITE specification cannot 
be used, no IP address is set; instead, a character string beginning with a colon is 
returned.

4. If any of output-BLOB-value, file-prefix, or file-output-option is the null value, the 



2. Details of Constituent Elements

439

result is also the null value. If the default value setting facility for null values is 
used in an embedded variable, only an IP address is returned.

5. Similar to an ordinary character data retrieval, if the embedded variable receiving 
the result of a WRITE specification is shorter than the result, the excess part is 
truncated and the actual length is assigned to an indicator variable. The truncation 
process treats the length of the embedded variable as (embedded variable length 
- 15) bytes by excluding the maximum length of the IP address; if the length 
includes an IP address, truncation can occur even if the result of the WRITE 
specification can be stored in the embedded variable.

6. An error may result if the embedded variable receiving the results of the WRITE 
specification is shorter than 15 bytes.

(5) Rules on the file to which BLOB data is to be output
1. The BLOB data specified in output-BLOB-value is output to a file on a unit at the 

single-server or front-end server.
2. If the result of the WRITE specification is the null value, no file is created.
3. If the actual length of the BLOB data produced by a WRITE specification is 0 bytes, 

a file whose size is 0 bytes is created.
4. If the result of the preceding FETCH and the BLOB value involving the same cursor 

search are the same, the same file name may be returned without a file being 
re-created.

5. The format of the output file contains BLOB data only; it does not include 
information on the actual length of the data.

6. In the UNIX version, the owner of the created file and the mode are as follows:
Owner: HiRDB administrator
Group: Group that includes the HiRDB administrator
Mode: rw-rw-rw-

7. If fewer embedded variables receiving retrieval results are specified than the 
number of columns for retrieval results and if there is no embedded variable to 
receive the results of the WRITE specification, no file is created.

(6) Common rules
1. A WRITE specification can be specified by itself in a selection expression for the 

outermost query specification.
2. A WRITE specification cannot be specified in a sort key field when ORDER BY is 

specified.
3. In a derived query expression in a WITH clause, a WRITE specification cannot be 

specified in a selection expression.



2. Details of Constituent Elements

440

4. In a set operation, a WRITE specification cannot be specified in a column of the 
derived table that is subject to the operation.

5. A WRITE specification cannot be specified in a selection expression for a 
subquery (including a derived table in a FROM clause).

6. A WRITE specification cannot be specified in a selection expression for a derived 
query expression for a view definition.

7. A WRITE specification cannot be specified in a selection expression with a query 
specification in an INSERT statement.

8. A WRITE specification cannot be specified in query specification in an SQL 
procedure statement in a routine.

(7) Notes
1. Any files that are created should be deleted by the user. If a file name is returned 

to the UAP as a retrieval result, HiRDB will not manipulate (read or write) the 
created file; however, caution should be exercised with respect to the following 
points:

• If a file is deleted after a FETCH, and if the preceding FETCH result and the 
BLOB value for the same cursor retrieval are the same, the same file name 
may be returned but the file will not be re-created. In such a case, you should 
note the preceding file name and delete the file when its file name has 
changed.

• The file can be deleted unconditionally after the cursor is closed.
• The file can be deleted unconditionally after the transaction is resolved.

2. If the event of an error or rollback, HiRDB does not delete the created file.
3. Normally in the event of an SQL error, any file that is created by the affected SQL 

statement is deleted. However, if an error occurs after the file output processing 
within the HiRDB server is completed, files may not be deleted in some case; e.g., 
in the case of a communication error involving return of results from the HiRDB 
server to the HiRDB client.

4. If the FETCH facility is used with an array, each FETCH creates a file equal in size 
to the number of elements in the array, in which case it is important to monitor the 
available disk space.

5. If the block transfer facility is used, the first FETCH creates a file equal in size to 
the number of rows transferred per block. Subsequently during each FETCH 
following completion of the FETCH equal to the number of transferred rows per 
block, files are repeatedly created equal to the number of rows transferred per 
block, in which case it is important to monitor the available disk space.

6. Files that are not deleted can compete for OS resources, such as disk space; it is 



2. Details of Constituent Elements

441

important to be aware of this possibility.
7. If file names conflict with other transactions or cursor retrievals, files can destroy 

one another; it is important to be aware of this possibility. Hitachi recommends 
that duplicate file names be avoided, such as by using a different directory name 
in the file prefix or a different file name for each transaction and cursor.

8. If character string truncation occurs as a result of a WRITE specification, a 
complete file name cannot be acquired but a file is created. It is important to 
monitor any competition for disk space for such a possibility.

9. If asynchronous output is specified as the file output option, HiRDB will output 
BLOB data to a file without specifying synchronous output (immediate WRITE) to 
the OS. As a result, the file output processing by the operating system can remain 
incomplete due to a high load on output devices even if the file output processing 
within HiRDB is complete. Consequently, even if a file name is returned to the 
client, the file is not actually created or its creation remains pending under certain 
timing conditions.
This situation can be avoided by not specifying asynchronous output as the file 
output option, at the expense of I/O overhead having a significant impact on 
response time.

(8) Example
Retrieval examples using the file output facility involving BLOB data are shown below:

(a) Retrieving BLOB columns
Retrieve columns C1 and C2 from Table T1, writing BLOB data from C1 to a file and 
acquiring the file name:



2. Details of Constituent Elements

442

(b) Retrieving abstract data types with the BLOB attribute
From table T1, retrieve column ADT1 such that CONTAINS() is TRUE, writing a BLOB 
value, which is the result of passing the column value to an argument of EXTRACTS(), 
to a file, and acquiring the file name (this example illustrates the case in which all 
columns are retrieved).



2. Details of Constituent Elements

443



2. Details of Constituent Elements

444

2.23 GET_JAVA_STORED_ROUTINE_SOURCE specification

(1) Function
A GET_JAVA_STORED_ROUTINE_SOURCE specification extracts a Java class source 
file from a JAR file.
Java routines can be used in the HP-UX, Solaris, AIX 5L, Linux, and Windows 
versions of HiRDB. In the case of HP-UX, Solaris, and AIX 5L, Java routines cannot 
be used if a POSIX library version of HiRDB is not set up (by executing the pdsetup 
command) or if a POSIX library version of HiRDB has been reinstalled as a 
non-POSIX library version of HiRDB. For details of the pdsetup command, see the 
manual HiRDB Version 8 Command Reference.

(2) Format
GET_JAVA_STORED_ROUTINE_SOURCE (class-name, JAR-filename
      [, source-file-maximum-length])

(3) Operands
class-name

Specifies a class name as a character string of no more than 255 bytes; following is the 
format:
'[package-name.] class-identifier'
In class-name, VARCHAR type value expressions with a maximum of 255 bytes can be 
specified.
If only a ? parameter or an embedded variable is specified in class-name, the ? 
parameter or the embedded variable must be a simple structure.

JAR-filename
Specifies the name of a JAR file as a character string of no more than 255 bytes.
In JAR-filename, VARCHAR type value expressions with a maximum of 255 bytes can 
be specified.
A JAR file name must not be specified as a path name.
If only a ? parameter or an embedded variable is specified in JAR-filename, the ? 
parameter or the embedded variable should be a simple structure.

source-file-maximum-length
Specifies as an integer literal the maximum length (in bytes) of the source file from 
which data is to be extracted.
The specifiable range is 1 to 2,147,483,647. The null value cannot be specified. The 



2. Details of Constituent Elements

445

default is 2,147,483,647.
(4) Rules on GET_JAVA_STORED_ROUTINE_SOURCE specification results

1. The result of a GET_JAVA_STORED_ROUTINE_SOURCE specification will be the 
BLOB type without the NOT NULL constraint (null value will be permitted) and a 
definition length equal to the length specified in source-file-maximum-length.

2. The result of a GET_JAVA_STORED_ROUTINE_SOURCE specification is the 
contents of the file that is fetched from the JAR file (any portion that is in excess 
of the value specified in source-file-maximum-length is truncated).

3. The result of a GET_JAVA_STORED_ROUTINE_SOURCE specification is the null 
value in any of the following cases:

• Any argument is the null value.
• The specified JAR file has not been installed.
• No source file associated with the specified class is found in the JAR file.

(5) Common rules
1. GET_JAVA_STORED_ROUTINE_SOURCE can be specified in the following 

places:
• Singly in a selection expression in an outermost query specification
• In an argument of the LENGTH scalar function in a selection expression in an 

outermost query specification
2. If the ORDER BY clause is specified, GET_JAVA_STORED_ROUTINE_SOURCE 

cannot be specified in a sort key field.
3. GET_JAVA_STORED_ROUTINE_SOURCE cannot be specified in a selection 

expression in a derived query expression in the WITH clause.
4. When a set operation is performed, GET_JAVA_STORED_ROUTINE_SOURCE 

cannot be specified in a column for the derived table to be subject to the operation.
5. A GET_JAVA_STORED_ROUTINE_SOURCE specification cannot be specified in a 

selection expression for a subquery (including a derived table in a FROM clause).
6. GET_JAVA_STORED_ROUTINE_SOURCE cannot be specified in a selection 

expression in a derived query expression in a view definition.
7. GET_JAVA_STORED_ROUTINE_SOURCE cannot be specified in a selection 

expression in a query specification in an INSERT statement.
8. GET_JAVA_STORED_ROUTINE_SOURCE only references a class identifier that is 

obtained by removing the package name from the class name. Therefore, if there 
are multiple source files with the same class identifier in the JAR file, the result 
will be a linkage of the multiple source files.



2. Details of Constituent Elements

446

9. GET_JAVA_STORED_ROUTINE_SOURCE regards character strings with 'java' 
suffixed to the specified class identifier as Java-class source files.

10. In order for a source file to be fetched by 
GET_JAVA_STORED_ROUTINE_SOURCE, it must be available in the JAR file. For 
details of creating JAR files, see the HiRDB Version 8 UAP Development Guide.

(6) Notes
1. GET_JAVA_STORED_ROUTINE_SOURCE operates on JAR files that are installed 

in HiRDB.
2. In order for SQL statements that include a 

GET_JAVA_STORED_ROUTINE_SOURCE specification to be executed, the Java 
environment must be installed.

3. Class names and JAR file names must not include space characters.
(7) Example

Extract the contents of the source file for a Java routine (JAVAROUTINE) registered in 
a schema (USER1):
SELECT GET_JAVA_STORED_ROUTINE_SOURCE(CLASS_NAME,JAR_NAME)
  FROM MASTER.SQL_ROUTINES
   WHERE ROUTINE_SCHEMA='USER1' AND ROUTINE_NAME='JAVAROUTINE'



2. Details of Constituent Elements

447

2.24 SQL optimization specification

Function
This function allows you to specify optimization for improving the retrieval 
efficiency of an SQL statement in the SQL statement.
SQL optimization can be specified for the following items:

• Used indexes
• Join methods

• Subquery execution methods
Common rules
1. In some cases, SQL optimization, when specified, may not take effect. You 

can check whether the SQL optimization specification has taken effect by 
using the access path display utility. For details about this utility, see the 
manual HiRDB Version 8 Command Reference.

2. You can enclose an SQL optimization specification by placing the /*>> and 
<<*/ symbols before and after it. Each SQL optimization specification must 
be enclosed separately. An SQL optimization specification enclosed in /*>> 
and <<*/ is not interpreted as a comment. Specifying an SQL optimization 
by enclosing it in /*>> and <<*/ can be useful for ensuring compatibility 
with APs that are common to other DBMSs.

3. The SQL optimization specification takes precedence over the SQL 
optimization specification option and the SQL extension optimizing option. 
For details about the SQL optimization specification option and the SQL 
extension optimizing option, see ALTER PROCEDURE, ALTER ROUTINE, 
ALTER TRIGGER, CREATE PROCEDURE, or CREATE TRIGGER.

Notes
1. If BY NEST is specified in a join method SQL optimization specification, and 

if an index is specified that cannot be used in a nest-loop join as an SQL 
optimization specification in a used index in the joined inner table, or the 
suppression of the use of the index is specified, the SQL optimization 
specification for the used index is nullified.

2. An SQL optimization specification enclosed in /*>> and <<*/ cannot be 
enclosed again in /*>> and <<*/.



2. Details of Constituent Elements

448

2.24.1 SQL optimization specification for a used index
(1) Function

In the SQL optimization specification for a used index, you can specify either an index 
to be used for retrieving a table or the suppression of use of an index (table scanning).

(2) Format

(3) Operands
WITH INDEX(index-specification [, index-specification] ...)

Specifies the index to be used. If multiple indexes are specified, the operation uses 
multiple indexes.

WITHOUT INDEX
Suppresses the use of an index (table scanning).

[[authorization-identifier.]index-identifier | PRIMARY KEY | CLUSTER KEY | 
PRIMARY CLUSTER KEY]

authorization-identifier
Specifies the authorization identifier of the user who owns the index. For default 
values, see 1.1.8 Qualifying a name.

index-identifier
Specifies the name of the index to be used.

PRIMARY KEY
Specifies the option of when to use an index that is defined by specifying a 
primary key (or a primary cluster key) during table definition. For primary and 
cluster keys, see CREATE TABLE.

CLUSTER KEY
Specifies the option of when to use an index that is defined by specifying an index 
key (or a primary cluster key) during table definition.

PRIMARY CLUSTER KEY
Specifies the option of when to use an index that is defined by specifying a 

 
SQL-optimization-specification-for-a-used-index :: =
     [WITH INDEX (index-specification[, index-specification] ... |) | WITHOUT INDEX]
 
Index-specification :: = [ [authorization-identifier.]index-identifier |PRIMARY KEY
            |CLUSTER KEY |PRIMARY CLUSTER KEY]
 



2. Details of Constituent Elements

449

primary cluster key during table definition.
(4) Rules

1. SQL optimization cannot be specified for a named derived table that functions as 
an inner derived table. For inner derived tables, see 2.21 Inner derived tables.

2. SQL optimization cannot be specified for named derived tables that are derived 
from the joining of two or more tables or as a result of a set operation.

3. If additional SQL optimization for a used index is specified in a named derived 
table that is derived by specifying SQL optimization for a used index, the later 
specification takes effect, and the specification of the derived query expression is 
nullified.

4. When specified for an outer table, any SQL optimization is nullified.
(5) Notes

1. For retrievals using an index, see the retrieval methods described in the HiRDB 
Version 8 UAP Development Guide. Indexes that are used can be checked by 
using the access path display utility.

2.24.2 Join method SQL optimization specification
(1) Function

The join method SQL optimization specification allows you to specify a join method 
for a joined table.

(2) Format

(3) Operands
{NEST|HASH|MERGE}

NEST
This option can be specified to make the join method into either a nest-loop-join 
or a distributed nest-loop-join.
The result is a nest-loop-join if the inner table is a base table or a named derived 
table based on the base table; it is a distributed nest-loop-join if the inner table is 
an outer table or a named derived table based on the outer table.

HASH
This option can be specified when making the join method into a hash-join.

MERGE

 
Join-method-SQL-optimization-specification::= BY {NEST|HASH|MERGE}
 



2. Details of Constituent Elements

450

This option can be specified when making the join method into a merge-join.
(4) Rules

1. When specified for a join that is executed on a foreign server, the SQL 
optimization specification is nullified.

2. Specifying HASH requires the same preparations as specifying execution of a 
hash-join or a subquery hash for the SQL extension optimizing option. For 
preparations for applying either hash-join or subquery-hash-join, see the HiRDB 
Version 8 UAP Development Guide.

(5) Notes
1. For join methods, see the HiRDB Version 8 UAP Development Guide. Join 

methods can be checked by using the access path display utility.

2.24.3 Subquery execution method SQL optimization specification
(1) Function

The subquery execution method SQL optimization specification allows you to specify 
a subquery execution method for a subquery that occurs in a predicate.

(2) Format

(3) Operands
{HASH|NO HASH}

HASH
Specifies the option for making the subquery execution method into a hash 
execution.

NO HASH
Specifies the option for making the subquery execution method into a non-hash 
execution.

(4) Rules
1. Subquery execution method SQL optimization specification should be specified 

in a subquery that occurs in a predicate.
2. Specifying HASH requires the same preparations as specifying execution of a 

hash-join or a subquery hash for the SQL extension optimizing option. For 
preparations for applying either hash-join or subquery-hash-execution, see the 
HiRDB Version 8 UAP Development Guide.

 
Subquery-execution-method-SQL-optimization-specification:: = {HASH|NO HASH}
 



2. Details of Constituent Elements

451

(5) Notes
1. For subquery execution methods, see the subquery execution method without 

external reference or the subquery execution method with external reference in 
the HiRDB Version 8 UAP Development Guide. Subquery execution methods can 
be checked by using the access path display utility.

2.24.4 Examples of SQL optimization specification
Examples of using an SQL optimization specification are given as follows:
1. In a SELECT statement, specify an SQL optimization specification for a used 

index. For this process, use an index (IDX1) for retrieving a stock table (STOCK):
SELECT PNAME FROM STOCK WITH INDEX (IDX1)
  WHERE PRICE <= 500

2. In a SELECT statement, specify an SQL optimization specification for a used 
index. For this process, use multiple indexes (IDX1, IDX2) for retrieving a stock 
table (STOCK):
SELECT PNAME FROM STOCK WITH INDEX (IDX1,IDX2)
  WHERE PRICE <= 500 OR SQUANTITY > 100

3. In a SELECT statement, specify an SQL optimization specification for a used 
index. For this process, for the definition of a stock table (STOCK), use an index 
that was defined by specifying the PRIMARY KEY option:
SELECT PNAME FROM STOCK WITH INDEX (PRIMARY KEY)
  WHERE PRICE <= 500

4. In a SELECT statement, specify an SQL optimization specification for a used 
index. During this process, suppress the use of an index (table scanning) for the 
retrieval of the stock table (STOCK):
SELECT PNAME FROM STOCK WITHOUT INDEX
  WHERE PRICE <= 500

5. In a SELECT statement, specify a join method SQL optimization specification. 
For this process, make the inner join join method into nest-loop-join or distributed 
nest-loop-join.
SELECT STOCK.PCODE,STOCK.PNAME,ORDER.CCODE
  FROM STOCK INNER JOIN BY NEST ORDER
    ON STOCK.PCODE = ORDER.PCODE

6. In a SELECT statement, specify a join method SQL optimization specification. 
For this process, make the outer join join method into hash-join.
SELECT STOCK.PCODE,STOCK.PNAME,ORDER.CCODE
  FROM STOCK LEFT OUTER JOIN BY HASH ORDER
    ON STOCK.PCODE = ORDER.PCODE

7. In a SELECT statement, specify a join method SQL optimization specification. In 



2. Details of Constituent Elements

452

this process, make the inner join (with INNER omitted) join method into 
merge-join.
SELECT STOCK.PCODE,STOCK.PNAME,ORDER.CCODE
  FROM STOCK JOIN BY MERGE ORDER
    ON STOCK.PCODE = ORDER.PCODE

8. In a SELECT statement, specify a subquery execution method SQL optimization 
specification. In this process, make the subquery execution method into hash 
execution.
SELECT PNAME FROM STOCK
  WHERE PCODE =ANY
    (HASH SELECT PCODE FROM ORDER
       WHERE CCODE = '302S')

9. In a SELECT statement, specify a subquery execution method SQL optimization 
specification. In this process, make the subquery execution method into non-hash 
execution (in this example, the option is either work table execution or work table 
ATS execution).
SELECT PNAME FROM STOCK
  WHERE PCODE =ANY
    (NO HASH SELECT PCODE FROM ORDER
      WHERE CCODE = '302S')

10. Specify a used index SQL optimization specification by enclosing it in /*>> and 
<<*/.
SELECT PNAME FROM STOCK /*>> WITH INDEX (IDX1) <<*/
  WHERE PRICE <= 500

11. Specify a join method SQL optimization specification by enclosing it in /*>> and 
<<*/.
SELECT STOCK.PCODE,STOCK.PNAME,ORDER.CCODE
  FROM STOCK INNER JOIN /*>> BY NEST <<*/ ORDER
    ON STOCK.PCODE = ORDER.PCODE

12. Specify a subquery execution method SQL optimization specification by 
enclosing it in /*>> and <<*/.
SELECT PNAME FROM STOCK
  WHERE PCODE =ANY
    (/*>> HASH <<*/ SELECT PCODE FROM ORDER
      WHERE CCODE = '302S')

13. In a SELECT statement, specify a join method SQL optimization specification and 
a used index SQL optimization specification. In this process, use an index (IDX3) 
for retrieving a stock table (STOCK) and make the inner join (with INNER omitted) 
join method into hash-join.
SELECT STOCK.PCODE,STOCK.PNAME,ORDER.CCODE
  FROM STOCK WITH INDEX (IDX3) JOIN BY HASH ORDER



2. Details of Constituent Elements

453

    ON STOCK.PCODE = ORDER.PCODE

14. In a SELECT statement, specify a join method SQL optimization specification and 
a used index SQL optimization specification by enclosing each in /*>> and <<*/
. In this process, use an index (IDX3) for retrieving a stock table (STOCK) and 
make the inner join (with INNER omitted) join method into hash-join.
SELECT STOCK.PCODE,STOCK.PNAME,ORDER.CCODE
  FROM STOCK /*>> WITH INDEX (IDX3) <<*/ JOIN /*>> BY HASH 
<<*/ ORDER
    ON STOCK.PCODE = ORDER.PCODE



2. Details of Constituent Elements

454

2.25 CAST specification

(1) Function
Converts the data in a value expression into a specified data type.

(2) Format

(3) Rules
1. The following data types cannot be specified in value-expression:

• BLOB
• BINARY with a minimum definition length of 32,001 bytes
• Abstract data type

2. The following data types cannot be specified in AS data-type:
• BLOB

CAST(NULL AS BLOB) can be specified.
• BINARY with a minimum length of 32,001 bytes

CAST(NULL AS BINARY(n)) can be specified, where n is a byte count with 
a minimum of 32,001 bytes.

• BOOLEAN
• Abstract data type

3. The value of the result is not NOT NULL constrained (the null value is allowed).
4. If NULL is specified in value-expression or the result of the value expression is the 

null value, the value of the result is the null value.
5. If a real length of 0 bytes or character data with a real length of 0 is specified in 

value-expression, conversions into a character type are performed according to 
the data conversion rules. Any conversion into a data type other than a character 
type may result in an error.

6. If an embedded variable or a ? parameter by itself is specified in value-expression 
for the data type of the embedded variable or the ? parameter, HiRDB assumes 
the data type that was specified in AS data-type.

7. When specifying a repetition column in value-expression, specify a subscript, 

 
CAST-specification::= CAST ([value-expression | NULL] AS data-type)
 



2. Details of Constituent Elements

455

except in the option ANY, for which a subscript cannot be specified.
8. In AS data-type, specify a data type that can be converted into the data type that 

is specified in value-expression. Tables 2-79 and 2-80 show data type 
convertibility.
Table 2-79: Data type convertibility between the result of the value expression 
and AS data type (1/2)

Data type of result of value 
expression

AS data type

Numeric data Character 
data

National 
character 

data

Mixed 
character 

dataExact 
numeric

Approxi- 
mate 

numeric

INTEGER, 
SMALL 

INT, 
DECIMAL

FLOAT, 
SMALL 

FLT

CHAR, 
VAR 

CHAR

NCHAR, 
NVAR 
CHAR

MCHAR,
MVAR 
CHAR

Numer- 
ic data

Exact 
numeric

INTEGER, 
SMALL INT, 
DECIMAL

Y Y Y N Y

Approx- 
imate 
numeric

FLOAT, 
SMALLFLT

Y Y Y N Y

Character data CHAR, 
VARCHAR

Y Y Y N Y

National character 
data

NCHAR, 
NVARCHAR

N N N Y N

Mixed character data MCHAR, 
MVARCHAR

Y Y Y N Y

Boolean data BOOLEAN N N Y N Y

Date data DATE N N Y* N Y*

Time data TIME N N Y* N Y*

Time stamp data TIMESTAMP N N Y* N Y*

Date interval data INTERVAL 
YEAR TO 
DAY

Y N N N N



2. Details of Constituent Elements

456

Legend:
Y: Data can be converted.
N: Data cannot be converted.

* Conversion can be performed if the length specified in AS data-type is one of 
the following:

DATE:
    10 bytes
TIME:
    8 bytes
TIMESTAMP(p):
    If p = 0, 19 bytes
    If p > 0, 21-26 bytes

If the length of the character string representation of the data in the result of the 
value expression is 21, 23, or 25 bytes, the data is zero-filled at the end, and the 
respective fractional second precisions are 2, 4, and 6.
If the data length of the area that receives results is greater than the length of the 
character string representation of the resulting data in the value expression, the 
data is left-justified and the area is filled with single-byte spaces on the right. If p 
= 0, a period is not used.

Time interval data INTERVAL 
HOUR TO 
SECOND

Y N N N N

Binary data BINARY N N Y N N

Data type of result of value 
expression

AS data type

Numeric data Character 
data

National 
character 

data

Mixed 
character 

dataExact 
numeric

Approxi- 
mate 

numeric

INTEGER, 
SMALL 

INT, 
DECIMAL

FLOAT, 
SMALL 

FLT

CHAR, 
VAR 

CHAR

NCHAR, 
NVAR 
CHAR

MCHAR,
MVAR 
CHAR



2. Details of Constituent Elements

457

Table 2-80: Data type convertibility between the result of the value expression 
and AS data type (2/2)

Legend:
Y: Data can be converted.
N: Data cannot be converted.

Data type of result of value 
expression

AS data type

Date 
data

Time 
data

Time 
stamp 
data

Date 
interval 

data

Time 
interval 

data

Binary 
data

DATE TIME TIME 
STAMP

INTER 
VAL 

YEAR 
TO DAY

INTER 
VAL 

HOUR TO 
SECOND

BINARY

Numeric 
data

Exact 
numeric

INTEGER, 
SMALLINT, 
DECIMAL

N N N Y Y N

Approx- 
imate 
numeric

FLOAT, 
SMALLFLT

N N N N N N

Character data CHAR, 
VARCHAR

Y Y Y N N Y

National character data NCHAR, 
NVARCHAR

N N N N N N

Mixed character data MCHAR,MVA
RCHAR

Y Y Y N N N

Boolean data BOOLEAN N N N N N N

Date data DATE Y N Y N N N

Time data TIME N Y Y N N N

Time stamp data TIMESTAMP Y Y Y N N N

Date interval data INTERVAL 
YEAR TO 
DAY

N N N Y Y N

Time interval data INTERVAL 
HOUR TO 
SECOND

N N N Y Y N

Binary data BINARY N N N N N Y



2. Details of Constituent Elements

458

9. The window function cannot be specified.
(4) Conversion rules specific to the data types of results

(a) Numeric data
• The result in the value expression is numeric data:

Higher effective digits should not be lost in the data type to be converted.
• The result in the value expression is a character string or a mixed character string:

The result obtained by removing leading and trailing spaces from the data must 
be the character string representation of a numeric literal. After the character 
string representation of the numeric literal is converted into a numeric value, the 
rules for numeric data are applied to the result stored in the value expression.

• The result in the value expression is either date interval data or time interval data:
If the precision and scaling of the data type (DECIMAL) of the result are as shown 
in Table 2-81, the data is converted into the decimal format of date interval data 
or time interval data.
Table 2-81: Rules for the conversion of date interval data and time interval data 
into numeric data

(b) Character data and mixed character data
• Table 2-82 shows rules for conversion into character data and mixed character 

data.
Table 2-82: Rules for conversion into character data and mixed character data

Data type of result in value expression Length specified in AS data type

INTERVAL YEAR TO DAY Precision 8, scaling 0

INTERVAL HOUR TO SECOND Precision 6, scaling 0

Relationship between length of 
result of value expression and 

length of AS data type

Data type of result of value expression

Character data and mixed 
character data

Other than character data or 
mixed character data

length-of-value-expression-result < 
length-specified-in-AS-data-type

If the data type specified in the AS data type is of a fixed length, the data 
is left-justified and filled with single-byte spaces on the right.

length-of-value-expression-result = 
length-specified-in-AS-data-type

Normal conversion



2. Details of Constituent Elements

459

* If a truncation occurs in the middle of a multi-byte character, a part of the multi-byte 
character is returned as the value of the result.

• If the result in the value expression is an exact numeric (SMALLINT, INTEGER, or 
DECIMAL):
The shortest character string (with the leading zeros removed) that results from 
the conversion of data into a numeric literal is the result.
If the data is less than 0, the negative sign (-) is assigned at the beginning.

• If the result in the value expression is an approximate numeric (SMALLFLT or 
FLOAT):
The shortest character string (whose leading digit is non-zero; if the data is 0, the 
leading digit is 0E0) that results from the conversion of data into a numeric literal 
is the result.
If the data is less than 0, the negative sign (-) is assigned at the beginning.

• If the result in the value expression is a character string or a mixed character 
string:
If the data length of the result in the value expression is greater than the length 
specified in AS data type, the data is left-justified and the remainder is truncated. 
If the part of the data to be truncated contains characters other than a single-byte 
space, a 'W' is assigned to the SQLWARN1 area.

• If the result in the value expression is Boolean data:
If the result in the value expression is true, the conversion result is 'TRUE'; if the 
result in the value expression is false, the conversion result is 'FALSE'. If the 
result in the value expression is unknown, the conversion result is the null value.

• If the result in the value expression is date data, time data, or time stamp data:
The data is converted into the defined character string representation of date data, 
time data, or time stamp data.

length-of-value-expression-result > 
length-specified-in-AS-data-type

The data is left-justified and the 
remainder is truncated. If the data 
in the part to be truncated contains 
characters other than a single-byte 
space, a 'W' is assigned to the 
SQLWARN1 area.*

An error may occur.

Relationship between length of 
result of value expression and 

length of AS data type

Data type of result of value expression

Character data and mixed 
character data

Other than character data or 
mixed character data



2. Details of Constituent Elements

460

• If the result in the value expression is binary data:
If the data length of the result in the value expression is greater than the data 
length specified for the data type of the result, a 'W' is assigned to the SQLWARN1 
area.

(c) National character data
• If the result in the value expression is a national character string:

If the data type of the result is of a fixed length, and the result of converting the 
data in the value expression is less than the length specified in AS data-type, the 
data is filled with double-byte spaces that correspond to the character code.
If the result of converting the data in the value expression into a national character 
string is greater than the data length specified for the data type of the result, the 
data is left-justified and truncated on the right. If the part of the data to be 
truncated contains characters other than a double-byte space corresponding to the 
character code, a 'W' is assigned to the SQLWARN1 area.

(d) Date data, time data, and time stamp data
• If the result in the value expression is a character string or a mixed character 

string:
The data can be converted if it is the defined character string representation of 
date data, time data, or time stamp data. An error may occur if the result of 
removing leading and trailing single-byte spaces from the data in the value 
expression has a fractional second precision other than 0, 2, 4, or 6.

• If the result in the value expression is date data, time data, or time stamp data:
Conversion can be performed according to the combinations shown in Table 2-83.
Table 2-83: Conversion rules for date data, time data, and time stamp data

Data type of result 
of value 

expression

AS data type Conversion rule

DATE DATE Not converted.

TIMESTAMP(p2) The time part is converted as '00:00:00'. The fractional 
second part is zero-filled.

TIME TIME Not converted.

TIMESTAMP(p2) The date part is converted into CURRENT_DATE. The 
fractional second part is zero-filled.



2. Details of Constituent Elements

461

(e) Date interval data and time interval data
• If the result in the value expression is DECIMAL:

If the precision and scaling are as indicated in Table 2-84, numeric data can be 
converted into the corresponding date interval data or time interval data.
Table 2-84: Conversion rules for numeric data into date interval data or time 
interval data

• If the result in the value expression is date interval data or time interval data:
Conversions can be performed according to the combinations shown in Table 2-85.

Table 2-85: Conversion rules for date interval data and time interval data

TIMESTAMP(p1) DATE Extracts and converts the date part.

TIME Extracts and converts the time part.

TIMESTAMP(p2) Not converted.
If p1 > p2, the fractional second part is truncated, and if p1 < 
p2, it is zero-filled.

Format of numeric data Data type of result of value expression

Precision 8, scaling 0 INTERVAL YEAR TO DAY

Precision 6, scaling 0 INTERVAL HOUR TO SECOND

Data type of result of 
value expression

AS data type Conversion rule

INTERVAL YEAR TO DAY INTERVAL YEAR TO 
DAY

Not converted.

INTERVAL HOUR TO 
SECOND

The date part is converted into a time part, and if the 
result does not exceed the range of values for 
INTERVAL HOUR TO SECOND, the data can be 
converted. If the result exceeds this range, an error may 
occur.

INTERVAL HOUR TO 
SECOND

INTERVAL YEAR TO 
DAY

If the time part is greater than 24 hours, it is carried to 
the date part. Any data less than 24 hours is truncated.

INTERVAL HOUR TO 
SECOND

Not converted.

Data type of result 
of value 

expression

AS data type Conversion rule



2. Details of Constituent Elements

462

(f) Binary data
• If the result of the value expression is a character string:

If the conversion of the data in the value expression into BINARY produces a result 
that exceeds the length specified in AS data-type, the value 'W' is assigned to the 
SQLWARN1 area.



2. Details of Constituent Elements

463

2.26 Extended statement name

(1) Overview
The extended statement name, when specified in a PREPARE statement, identifies the 
SQL statement that is prepared by the PREPARE statement. When specified in any of 
the following SQL statements, the extended statement name permits operations on the 
SQL statement that is identified by it:

• DESCRIBE statement
• DESCRIBE TYPE statement

• ALLOCATE CURSOR statement
• EXECUTE statement
• DEALLOCATE PREPARE statement

(2) Format

(3) Explanation
scope-option
Specifies the scope for the extended statement name. The following table shows 
available scope options:
Table 2-86: How to specify a scope option

: embedded-variable
Specifies an embedded variable of the variable-length character string type that 
has an SQL statement identifier as a value.

(4) Rules
1. Values should be specified in embedded-variable according to the specification 

method applicable to SQL statement identifiers. For details about SQL statement 
identifier specification methods, see 1.1.7 Specification of names.

2. Valid extended statement names having the same value are identified as the same 

 
extended-statement-name::= scope-option : embedded-variable
scope-option ::= GLOBAL

Specification Scope

GLOBAL The extended statement name is enabled during the current SQL session (from the time HiRDB 
is connected until it is disconnected).



2. Details of Constituent Elements

464

extended statement name.
3. If the value of an extended statement name is the same as an SQL statement 

identifier directly specified in an SQL statement, both are distinguished as 
identifying different SQL statements.



2. Details of Constituent Elements

465

2.27 Extended cursor name

(1) Overview
The extended cursor name, when specified in an ALLOCATE CURSOR statement, 
identifies the cursor that is allocated to a group of result sets that are returned by a 
dynamic SELECT statement or a procedure. When specified in one of the following 
SQL statements, the extended cursor name permits operations on the cursor identified 
by it:

• DESCRIBE CURSOR statement

• OPEN statement
• FETCH statement
• DELETE statement (exclusive of extended cursor names that identify a results set 

cursor)
• UPDATE statement (exclusive of extended cursor names that identify a results set 

cursor)
• CLOSE statement

In addition, when directly specified in any of the following SQL statements, the value 
of an extended cursor name permits operations on the cursor identified by the extended 
cursor name:

• Preparable dynamic DELETE statement: locating (exclusive of extended cursor 
name values that identify a results set cursor)

• Preparable dynamic UPDATE statement: locating (exclusive of extended cursor 
name values that identify a results set cursor)

(2) Format

(3) Explanation
scope-option
Specifies the scope for the extended statement name. The following table shows 
available scope options.

 
extended-cursor-name :: = scope-option : embedded-variable
scope-option :: = GLOBAL



2. Details of Constituent Elements

466

Table 2-87:  How to specify a scope option

: embedded-variable
Specifies an embedded variable of the variable-length character string type 
having a cursor name as a value.

(4) Rules
1. Values should be specified in embedded-variable according to the specification 

method applicable to cursor names. For details about cursor name specification 
methods, see 1.1.7 Specification of names.

2. Extended cursor names having the same value are identified as the same extended 
cursor name.

3. An error may result if an extended cursor name is specified in an ALLOCATE 
CURSOR statement and if another valid extended cursor name having the same 
name already identifies another cursor.

4. If the value of an extended cursor name is the same as the cursor name that is 
directly specified in an SQL statement, both are distinguished as identifying 
different cursors, with the exception that a cursor name directly specified in a 
preparable-dynamic UPDATE-statement-locating or preparable-dynamic 
DELETE-statement-locating identifies the cursor that is the same as the extended 
cursor name having that value.

Specification Scope

GLOBAL The extended statement name is enabled during the current SQL session (from the time HiRDB 
is connected until it is disconnected).



467

Chapter

3. Definition SQL

This chapter explains the syntax and structure of the definition SQL.
General rules
ALTER PROCEDURE (Recreate SQL object of procedure)
ALTER ROUTINE (Recreate SQL objects for functions, procedures, and 

triggers)
ALTER TABLE (Alter table definition)
ALTER TRIGGER (Recreate a trigger SQL object)
COMMENT (Comment)
CREATE ALIAS (Define alias)
CREATE AUDIT (Define the target audit event)
CREATE CONNECTION SECURITY (Define the connection security facility)
CREATE FOREIGN INDEX (Define a foreign index)
CREATE FOREIGN TABLE (Define a foreign table)
CREATE FUNCTION (Define function)
CREATE INDEX Format 1 (Define index)
CREATE INDEX Format 2 (Define index)
CREATE PROCEDURE (Define procedure)
CREATE SCHEMA (Define schema)
CREATE SERVER (Define a foreign server)
CREATE TABLE (Define table)
CREATE TRIGGER (Define a trigger)
CREATE TYPE (Define type)
CREATE USER MAPPING (Define user mapping)
CREATE VIEW (Define view)
DROP ALIAS (Delete alias)
DROP AUDIT (Delete an audit target event)
DROP CONNECTION SECURITY (Delete the connection security facility)
DROP DATA TYPE (Delete user-defined data type)
DROP FOREIGN INDEX (Delete a foreign index)
DROP FOREIGN TABLE (Delete a foreign table)
DROP FUNCTION (Delete function)
DROP INDEX (Delete index)
DROP PROCEDURE (Delete procedure)
DROP SCHEMA (Delete schema)
DROP SERVER (Delete a foreign server)
DROP TABLE (Delete table)



468

DROP TRIGGER (Delete a trigger)
DROP USER MAPPING (Delete user mapping)
DROP VIEW (Delete view table)
GRANT Format 1 (Grant privileges)
GRANT Format 2 (Change auditor's password)
REVOKE (Revoke privileges)



General rules

469

General rules

Types and functions of the definition SQL
The definition SQL enables users to define and modify schemas and to define and 
delete tables, indexes, and privileges.
Table 3-1 lists the types and functions of the definition SQL.

Table 3-1: Types and functions of definition SQL

Type Function

ALTER PROCEDURE (Recreate SQL object of 
procedure)

Recreates the SQL object of a procedure.

ALTER ROUTINE (Recreate SQL objects for 
functions, procedures, and triggers)

Recreates SQL objects for functions, procedures, and triggers.

ALTER TABLE (Alter table definition) • Adds a new column to the end of a base table.
• Increases the maximum length of an existing column of the 

variable-length data type.
• Changes data types.
• Deletes a base table column that contains no data.
• Changes the uniqueness constraint for cluster keys for a 

base table containing no data.
• Renames tables and columns.
• Assigns the updatable column attribute.
• Changes the table to a falsification-prevented table.
• Changes the partitioning storage condition for row 

partitioned tables and matrix partitioned tables.

ALTER TRIGGER (Recreate trigger SQL object) Recreates a trigger SQL object.

COMMENT (Comment) Provides a comment in a table or column.

CREATE ALIAS (Define alias) Defines a table alias to allow access to tables in other RD nodes.

CREATE AUDIT (Define audit event) Defines audit events and their targets to be recorded as an audit 
trail.

CREATE CONNECTION SECURITY (Definition 
of the connection security facility)

Defines security items related to the connection security facility.

CREATE FOREIGN INDEX (Define foreign 
index)

Defines a foreign index for a column of a foreign table.

CREATE FOREIGN TABLE (Define foreign 
table)

Defines a foreign table.

CREATE FUNCTION (Define function) Defines a function.



General rules

470

CREATE INDEX (Define index) Defines an index (in ascending or descending order) for 
columns in a base table.

CREATE PROCEDURE (Define procedure) Defines a procedure.

CREATE SCHEMA (Define schema) Defines a schema.

CREATE SERVER (Define foreign server) Defines a foreign database as a foreign server.

CREATE TABLE (Define table) Defines a base table.

CREATE TRIGGER (Define trigger) Defines a trigger.

CREATE TYPE (Define type) Defines an abstract data type.

CREATE USER MAPPING (Define user 
mapping)

For access to a foreign database, defines the mapping of 
authorization identifiers and passwords.

CREATE VIEW (Define view) Defines a view table.

CREATE PUBLIC VIEW (Define public view) Defines a public view.

DROP AUDIT (Delete audit event) Removes definitions that match the target audit events defined 
in CREATE AUDIT from being audited.

DROP ALIAS (Delete alias) Deletes a table alias that has been created to allow access to 
tables in other RD nodes.

DROP DATA TYPE (Delete user-defined data 
type)

Deletes an abstract data type.

DROP CONNECTION SECURITY (Delete 
connection security facility)

Deletes security items related to the connection security facility.

DROP FOREIGN INDEX (Delete foreign index) Deletes a foreign index.

DROP FOREIGN TABLE (Delete foreign table) Deletes a foreign table.

DROP FUNCTION (Delete function) Deletes a function.

DROP INDEX (Delete index) Deletes an index.

DROP PROCEDURE (Delete procedure) Deletes a procedure.

DROP SCHEMA (Delete schema) Deletes a schema.

DROP SERVER (Delete foreign server) Deletes the definition of a foreign server.

DROP TABLE (Delete table) Deletes a base table, as well as any indexes, comments, access 
privileges, and view tables associated with the base table.

DROP TRIGGER (Delete trigger) Deletes a trigger.

Type Function



General rules

471

Common rules
Upon normal execution of a definition SQL statement, a COMMIT is made 
simultaneously with the completion of the processing.

Notes
A definition SQL cannot be specified from an X/Open-compliant UAP running under 
OLTP.

DROP USER MAPPING (Delete user mapping) Deletes user mapping.

DROP VIEW (Delete view table) Deletes a view table.

DROP PUBLIC VIEW (Delete public view) Deletes a public view.

GRANT CONNECT (Grant CONNECT privilege) Grants the CONNECT privilege to users.

GRANT DBA (Grant DBA privilege) Grants the DBA privilege to users.

GRANT RDAREA (Grant RDAREA usage 
privilege)

Grants the RDAREA usage privilege to users.

GRANT SCHEMA (Grant schema definition 
privilege)

Grants the schema definition privilege to users.

GRANT access privilege (Grant access 
privileges) 

Grants access privileges to users.

GRANT AUDIT (Change auditor password) Changes the auditor's password.

REVOKE CONNECT (Revoke CONNECT 
privilege) 

Revokes previously granted CONNECT privileges.

REVOKE DBA (Revoke DBA privilege) Revokes previously granted DBA privileges.

REVOKE RDAREA (Revoke RDAREA usage 
privilege)

Revokes previously granted RDAREA usage privileges.

REVOKE SCHEMA (Revoke schema definition 
privilege)

Revokes previously granted schema definition privileges.

REVOKE access privilege (Revoke access 
privileges)

Revokes previously granted access privileges.

Type Function



ALTER PROCEDURE (Recreate SQL object of procedure)

472

ALTER PROCEDURE (Recreate SQL object of procedure)

Function
ALTER PROCEDURE recreates the SQL object for procedures or modifies the compile 
options for a Java procedure.

Privileges
Owner of the procedure
A user can recreate the SQL object of a procedure owned by that user.

Only the user's own authorization identifier can be specified in the 
AUTHORIZATION clause.
Only the user's own procedure can be specified in the routine identifier.
If the AUTHORIZATION clause and the routine identifier are both omitted, an error 
results.

Users with the DBA privilege
These users can recreate the SQL objects for procedures owned by them and by other 
users.

Both the user's own authorization identifier and other users' authorization 
identifiers can be specified in the AUTHORIZATION clause.
The routine identifiers of the user's own procedures and of other users' procedures 
can be specified.
By omitting both the AUTHORIZATION clause and the routine identifier, all 
procedures in the system can be recreated.

Format
ALTER PROCEDURE
   [{[authorization-identifier.] routine-identifier
    |  [AUTHORIZATION authorization-identifier]
       [ALL|INDEX USING [authorization-identifier.]
          table-identifier]}]
   [SQL-compile-option[SQL-compile-option]...
|SUBSTR LENGTH maximum-character-length ]
 
SQL-compile-option ::={ISOLATION data-guarantee-level [FOR UPDATE 
EXCLUSIVE]
                     |OPTIMIZE LEVEL SQL-optimization-option
                        [,SQL-optimization-option]
                     |ADD OPTIMIZE LEVEL SQL-extension-



ALTER PROCEDURE (Recreate SQL object of procedure)

473

                      optimizing-options
                        [,SQL-extension-optimizing-option]

Operands
[authorization-identifier.] routine-identifier

Specifies a specific procedure whose SQL object is to be recreated.
The SQL object is recreated, regardless of the validity of the index information of the 
specified procedure or the validity of the SQL object.
This operand is used to change the SQL compile option.
authorization-identifier

Specifies the authorization identifier of the owner of the procedure whose SQL 
object is to be recreated.

routine-identifier
Specifies the name of the procedure whose SQL object is to be recreated.
[authorization authorization-identifier]
[ALL|INDEX USING [authorization-identifier.] table-identifier]

Specifies procedures that are to be recreated in terms of the authorization identifier of 
the owner of the procedures and the procedures' status.
[AUTHORIZATION authorization-identifier]

Specifies the authorization identifier of the owner of procedures when the SQL 
objects of all procedures owned by that owner are to be recreated.
When this operand is omitted, the SQL objects of all procedures in the system are 
recreated.
However, whether or not all the SQL objects will actually be recreated is 
determined by the combination of this specification and specification of the ALL 
or INDEX USING clause.

authorization-identifier
Specifies the authorization identifier of the owner of the procedures whose SQL 
objects are to be recreated.

[ALL|INDEX USING [authorization-identifier.]table-identifier]
Specifies the status of the procedures whose SQL objects are to be recreated.
If neither the ALL nor the INDEX USING clause is specified, SQL objects are 
recreated for only those procedures whose SQL objects are inactive.
ALL



ALTER PROCEDURE (Recreate SQL object of procedure)

474

Specifies that all the SQL objects are to be recreated, regardless of the 
validity of the index information of each specified procedure or the validity 
of each SQL object.

INDEX USING [authorization-identifier.]table-identifier
Specifies that only the SQL objects of procedures whose index information 
is invalid are to be recreated.
When an index is added or deleted, the index information in the procedure's 
SQL object becomes invalid. Therefore, specifying the base table identifier 
of a table in which an index was added or deleted enables re-creation of the 
SQL objects of all procedures that use that table and thus have invalid index 
information.
A procedure can still be executed when only the index information in its SQL 
object is invalid. However, better performance is achieved when the index 
information is valid.
An SQL object is recreated also for a procedure that uses the specified base 
table or a view table defined using the view table as the base table, if its index 
information is invalid.
When the INDEX USING clause is specified, the SQL object is recreated for 
a procedure in which only its index information is invalid, but the SQL object 
is not recreated for a procedure whose SQL object is inactive. If it is 
necessary to recreate an SQL object for a procedure whose SQL object is 
inactive, either the INDEX USING clause must be omitted or ALTER 
PROCEDURE with ALL specified must be issued.

[authorization-identifier.] table-identifier
Specifies the authorization identifier and table identifier of a table or view 
table that is used by the procedures whose SQL objects are to be recreated.
If the authorization identifier is omitted, the authorization identifier of the 
executing user is assumed.
When specifying a public view in table-identifier, in authorization-identifier 
specify the word PUBLIC enclosed in double quotation marks (").
When a table identifier for a foreign table is specified, an SQL object is not 
recreated because there is no SQL object that nullifies index information.

SQL compile-option::= {ISOLATION data-guarantee-level [FOR UPDATE 
EXCLUSIVE]
    |OPTIMIZE LEVEL SQL-optimization-option
                  [,SQL-optimization-option]...
    |ADD OPTIMIZE LEVEL SQL-extension-optimizing-option}



ALTER PROCEDURE (Recreate SQL object of procedure)

475

                  [,SQL-extension-optimizing-option
         |SUBSTR LENGTH maximum-character-length]...
ISOLATION, OPTIMIZE LEVEL, ADD OPTIMIZE LEVEL, and SUBSTR LENGTH 
can each be specified only once in SQL compile-option.

[ISOLATION data-guarantee-level [FOR UPDATE EXCLUSIVE]]
Specifies an SQL data integrity guarantee level.
data-guarantee-level

A data integrity guarantee level specifies the point to which the integrity of 
the transaction data must be guaranteed. The following data integrity 
guarantee levels can be specified:

• 0
Do not guarantee data integrity. Specifying 0 for a set of data allows the 
user to reference the data even when it is being updated by another user. 
If the table to be referenced is a shared table, and if another use is 
executing the LOCK statement, a lock release wait is required.

• 1
Guarantee the integrity of data until a retrieval process is completed. 
When level 1 is specified, data that has been retrieved cannot be updated 
by other users until the retrieval process is completed (until HiRDB 
finishes viewing the current page or row).

• 2
Guarantee the integrity of data that has been retrieved until the 
transaction is completed. When level 2 is specified, data that has been 
retrieved cannot be updated by other users until the transaction is 
completed.

When this operand is omitted, the data guarantee level specified for the most 
recent creation of an SQL object (execution of a CREATE PROCEDURE, ALTER 
PROCEDURE, or ALTER ROUTINE statement) is assumed.
For data integrity assurance levels, see the HiRDB Version 8 UAP Development 
Guide.
[FOR UPDATE EXCLUSIVE]

Specify this option if WITH EXCLUSIVE LOCK is always assumed 
irrespective of the cursor in a procedure for which the FOR UPDATE clause 
is specified or assumed, or for the data guarantee level on a query that is 
specified in SQL-compile-option. If level 2 is specified in 
data-guarantee-level, WITH EXCLUSIVE LOCK is assumed for the cursor for 



ALTER PROCEDURE (Recreate SQL object of procedure)

476

which the FOR UPDATE clause is specified or assumed, or for the query, and, 
therefore, FOR UPDATE EXCLUSIVE need not be specified. If a data 
guarantee level is specified in SQL-compile-option, and FOR UPDATE 
EXCLUSIVE is omitted, FOR UPDATE EXCLUSIVE need not be specified.

Relationship with client environment definition

Any specification of PDISLLVL or PDFORUPDATEEXLOCK with respect to 
ALTER PROCEDURE has no effect.

Relationship with SQL statements

If a lock option is specified in an SQL statement in a procedure, the lock 
option specified in the SQL statement takes precedence over any data 
guarantee level specified in SQL-compile-option or the lock option assumed 
because of FOR UPDATE EXCLUSIVE.

OPTIMIZE LEVEL SQL-optimization-option[,SQL-optimization-option]...
Specifies the optimization method for determining the most efficient access path 
by taking the database's status into consideration.
SQL optimization options can be specified with identifiers (character strings) or 
numeric values. Hitachi recommends that identifiers be used.
The default is the value that was adopted during the previous SQL object creation 
(CREATE PROCEDURE, ALTER PROCEDURE, or ALTER ROUTINE).
Specification with identifiers:

OPTIMIZE LEVEL "identifier"[, "identifier"] ...

Specification examples
• Apply the Prioritized nest-loop-join and the Rapid grouping facility 

options:
OPTIMIZE LEVEL "PRIOR_NEST_JOIN", "RAPID_GROUPING"

• Do not apply any optimization:
OPTIMIZE LEVEL "NONE"

Rules
1. At least one identifier must be specified.
2. When multiple identifiers are specified, separate them with the comma 

(,).
3. For the optimization option identifiers, see Table 3-2 SQL optimization 

option specification values below.
4. If no optimization options are to be applied, specify "NONE" as the 

identifier. If "NONE" and some other identifier are both specified, the 



ALTER PROCEDURE (Recreate SQL object of procedure)

477

"NONE" specification is ignored.
5. The identifiers are case-sensitive.
6. If the same identifier is specified more than once, it is treated as if it was 

specified only once; however, where possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specification with numeric values:
OPTIMIZE LEVEL unsigned-integer[, unsigned-integer] ...

Specification examples (optimization values listed in Table 3-2)
• Apply the 2. Making multiple SQL objects, the 8. Suppressing use of 

AND multiple indexes, and the 13. Forcing use of multiple indexes 
options:
Specify unsigned integers separated by commas:

OPTIMIZE LEVEL 4,10,16

Specify a sum of unsigned integers:
OPTIMIZE LEVEL 30

• Add the new value 16 to the previously specified value 14 (4 + 10):
OPTIMIZE LEVEL 14,16

• Do not apply any optimization:
OPTIMIZE LEVEL 0

Rules
1. When HiRDB is upgraded from a version older than Version 06-00 to a 

Version 06-00 or later, the total value specification in the older version 
also remains valid. If the optimization option does not need to be 
modified, the specification value for this operand need not be changed 
when HiRDB is upgraded to a Version 06-00 or later.

2. At least one integer must be specified.
3. When multiple integers are specified, separate them with the comma 

(,).
4. For the optimization option integers, see Table 3-2 SQL optimization 

option specification values below.
5. If no optimization options are to be applied, specify 0 as the integer. If 

0 and another integer are both specified, the 0 specification is ignored.
6. If the same integer is specified more than once, it will be treated as a 

single instance of the integer. However, multiple specifications of the 
same integer should be avoided.



ALTER PROCEDURE (Recreate SQL object of procedure)

478

7. When multiple optimization options are to be applied, you can specify 
the sum of the appropriate unsigned integers. However, the same 
optimization option value must not be added in more than once to avoid 
the possibility of the addition result being interpreted as a different set 
of optimization options.

8. Specifying multiple optimization options by adding their values can be 
ambiguous as to which optimization options are actually intended, so 
Hitachi recommends that the option values be specified individually 
separated by commas. If multiple optimization option have already been 
specified by the addition method and another optimization option is 
required, you can specify the new option's value following the previous 
summed value by separating them with a comma.

Relationships to system definition
1. When specified in ALTER PROCEDURE, the system-defined operand 

pd_optimize_level has no effect.
2. When the pd_floatable_bes operand or the 

pd_non_floatable_bes operand is specified, specification of the 
Increasing the target floatable servers (back-end servers for fetching 
data) option or the Limiting the target floatable servers (back-end 
servers for fetching data) option, respectively, is invalid.

3. When KEY is specified in the pd_indexlock_mode operand of the 
system definition (i.e., in the case of index key value lock), specification 
of the Suppressing creation of update-SQL work tables option is invalid.

Relationship to client environment definition
The specification of PDSQLOPTLVL has no applicability to ALTER 
PROCEDURE.

Relationship with SQL

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL optimization option specification values
Table 3-2 shows the SQL optimization option specification values. For 
details about optimization methods, see the HiRDB Version 8 UAP 
Development Guide.



ALTER PROCEDURE (Recreate SQL object of procedure)

479

Table 3-2: SQL optimization option specification values (ALTER PROCEDURE)

#1: If the 3. Increasing the target floatable servers (back-end servers for fetching data) 
option and the 10. Limiting the target floatable servers (back-end servers for fetching 
data) option are both specified, neither of these options will be applied; instead, the 11 

No. Optimization option Specification values 

Identifier Unsigned 
integer

1 Forced nest-loop-join "FORCE_NEST_JOIN" 4

2 Making multiple SQL objects "SELECT_APSL" 10

3 Increasing the target floatable servers 
(back-end servers for fetching data)#1, #2

"FLTS_INC_DATA_BES" 16

4 Prioritized nest-loop-join "PRIOR_NEST_JOIN" 32

5 Increasing the number of floatable server 
candidates#2

"FLTS_MAX_NUMBER" 64

6 Priority of OR multiple index use "PRIOR_OR_INDEXES" 128

7 Group processing, ORDER BY processing, 
and DISTINCT set function processing at 
the local back-end server#2

"SORT_DATA_BES" 256

8 Suppressing use of AND multiple indexes "DETER_AND_INDEXES" 512

9 Rapid grouping facility "RAPID_GROUPING" 1024

10 Limiting the target floatable servers 
(back-end servers for fetching data)#1, #2

"FLTS_ONLY_DATA_BES" 2048

11 Separating data collecting servers#1, #2 "FLTS_SEPARATE_COLLECT_SVR" 2064

12 Suppressing index use (forced table scan) "FORCE_TABLE_SCAN" 4096

13 Forcing use of multiple indexes "FORCE_PLURAL_INDEXES" 32768

14 Suppressing creation of update-SQL work 
tables

"DETER_WORK_TABLE_FOR_UPDATE" 131072

15 Deriving conditions for rapid searches "DERIVATIVE_COND" 262144

16 Applying key conditions including scalar 
operations

"APPLY_ENHANCED_KEY_COND" 524288

17 Facility for batch acquisition from 
functions provided by plug-ins

"PICKUP_MULTIPLE_ROWS_PLUGIN" 1048576



ALTER PROCEDURE (Recreate SQL object of procedure)

480

Separating data collecting servers option will be applied.
#2: This option is ignored if specified for a HiRDB/Single Server
ADD OPTIMIZE LEVEL 
SQL-extension-optimizing-option[,SQL-extension-optimizing-option]...

Specifies optimizing options for determining the most efficient access path, 
taking into consideration the status of the database.
SQL extension optimizing options can be specified with identifiers (character 
strings) or numeric values. Hitachi recommends that identifiers be used.
The default is the value that was used during the previous SQL object creation 
(CREATE PROCEDURE, ALTER PROCEDURE, or ALTER ROUTINE).
Specification with identifiers:

ADD OPTIMIZE LEVEL identifier[, identifier] ...

Specification examples
• Apply the Application of optimizing mode 2 based on cost and Hash 

join, subquery hash execution options:
ADD OPTIMIZE LEVEL
        "COST_BASE_2","APPLY_HASH_JOIN"

• Do not apply any optimizing:
ADD OPTIMIZE LEVEL "NONE"

Rules
1. At least one identifier must be specified.
2. When multiple identifiers are specified, separate them with the comma 

(,).
3. For details of specifying optimization option identifiers, see Table 3-3 

SQL extension optimizing option specification values below.
4. If no extension optimizing options are to be applied, specify "NONE" as 

the identifier.
5. The identifiers are case-sensitive.
6. If the same identifier is specified more than once, it is treated as if it was 

specified only once; however, where possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specification with numeric values:
ADD OPTIMIZE LEVEL unsigned-integer[, unsigned-integer] ...

Specification examples



ALTER PROCEDURE (Recreate SQL object of procedure)

481

• Apply the Application of optimizing mode 2 based on cost and Hash 
join, subquery hash execution options:

ADD OPTIMIZE LEVEL 1,2

• Do not apply any optimizing:
ADD OPTIMIZE LEVEL 0

Rules
1. At least one integer must be specified.
2. When multiple integers are specified, separate them with the comma 

(,).
3. For details of specifying extension optimizing option integers, see Table 

3-3 SQL extension optimizing option specification values below.
4. If no extension optimizing options are to be applied, specify 0 as the 

integer.
5. If the same unsigned integer is specified more than once, it is treated as 

if it was specified only once; however, where possible, precautions 
should be taken to avoid specifying a given unsigned integer in 
duplicate.

Relationship to system definition
The system-defined pd_optimize_level operand, if specified in ALTER 
PROCEDURE, has no effect.

Relationship to client environment definition
The specification of PDADDITIONALOPTLVL has no applicability to ALTER 
PROCEDURE.

Relationship with SQL

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL extension optimizing option specification values
Table 3-3 shows the SQL extension optimizing option specification values. 
For details about optimization methods, see the HiRDB Version 8 UAP 
Development Guide.



ALTER PROCEDURE (Recreate SQL object of procedure)

482

Table 3-3: SQL extension optimizing option specification values (ALTER 
PROCEDURE)

Note 1

Items 2-5 take effect when Application of optimizing mode 2 based on cost is 
specified.

Note 2

Optimization items 3-5 take effect when a foreign table is retrieved; in other 
cases, these items have no effect.

[SUBSTR LENGTH maximum-character-length]
Specifies the maximum number of bytes for representing a single character.
The value specified for the maximum character length must be in the range from 
3 to 6.
This operand is valid only when utf-8 is specified for the character code type in 
the pdntenv command (pdsetup command in the case of the UNIX version); it 
affects the length of the result of the SUBSTR scalar function. For details about 
SUBSTR, see 2.16.1(21) SUBSTR.
Rules

When HiRDB is upgraded from a version earlier than version 08-00 to 
version 08-00 or later, 3 is assumed. If there is no need to change the 
maximum character length, you do not need to specify this operand when 
upgrading to HiRDB version 08-00 or later.

Relationships to system definition
When SUBSTR LENGTH is specified in ALTER PROCEDURE, the 

No. Optimizing option Specification values 

Identifier Unsigned integer

1 Application of optimizing mode 2 based on cost "COST_BASE_2" 1

2 Hash join, subquery hash execution "APPLY_HASH_JOIN" 2

3 Suppressing execution of a foreign server in SQL 
statements that contain joins

"DETER_JOIN_SQL" 67108864

4 Forcing the execution of SQL statements including a 
direct product on a foreign server

"FORCE_CROSS_JOIN_
SQL"

134217728

5 Suppressing the derivation of rapid search that can be 
generated unconditionally and executed on a foreign 
server

"DETER_FSVR_DERIVA
TIVE_COND"

1073741824



ALTER PROCEDURE (Recreate SQL object of procedure)

483

pd_substr_length system definition operand has no effect. For details 
about the pd_substr_length operand, see the manual HiRDB Version 8 
System Definition.

Relationship to client environmental definition
The specification of PDSUBSTREN has no applicability to ALTER 
PROCEDURE. For details about PDSUBSTRLEN, see the manual HiRDB 
Version 8 UAP Development Guide.

Relationship to the character code type specified in the pdntenv or pdsetup 
command

This operand is valid only when utf-8 is specified for the character code 
type.
For all other character code types, only a syntax check is performed and the 
specification is ignored.

When this operand is omitted, the value specified during creation of the most 
recent SQL object (execution of a CREATE PROCEDURE, ALTER PROCEDURE, or 
ALTER ROUTINE statement) is assumed.

Common rules
1. When the SQL compile option is specified in ALTER PROCEDURE, the length of 

the SQL statement that is created by incorporating the SQL compile option in the 
source CREATE PROCEDURE for the procedure to be recreated must not exceed the 
maximum allowable length for SQL statements.

2. The ALTER PROCEDURE cannot be executed from a Java procedure when the SQL 
object being executed can be re-created.

Notes
1. The ALTER PROCEDURE statement cannot be specified from an X/

Open-compliant UAP running under OLTP.
2. When SQL objects for multiple procedures are being recreated, a COMMIT or 

ROLLBACK statement is executed automatically for each procedure.
3. By executing a GET DIAGNOSTICS statement immediately following execution 

of an ALTER PROCEDURE statement, diagnostic information can be obtained for 
the ALTER PROCEDURE statement. The return code for the SQL object of a 
procedure whose re-creation terminated normally is 0.

4. The data guarantee level of the SQL statement in the procedure, the SQL 
optimization option, the SQL extension optimizing option, and the maximum 
character length are determined by what is specified when the routine is being 
defined or re-created, and are not affected by the system definition or client 
environment variable definition that is in effect when the procedure is called.



ALTER PROCEDURE (Recreate SQL object of procedure)

484

5. Because no SQL object is created, the Java procedure and the Java function 
cannot re-create the SQL object; they can only update the SQL compile option.

6. The identifier for a trigger action procedure cannot be specified in 
routine-identifier. When recreating a trigger SQL object, use either ALTER 
ROUTINE or ALTER TRIGGER.

Examples
1. Recreate with data guarantee level 1 a procedure (PROC1) belonging to a user 

(USER1):
ALTER PROCEDURE
   USER1.PROC1 ISOLATION 1

2. Of the active procedures of a user (USER1) that reference a table (T1) belonging 
to that user, recreate those procedures whose SQL objects contain invalid index 
information:
ALTER PROCEDURE
   AUTHORIZATION USER1 INDEX USING USER1.T1

3. Of all procedures, recreate those procedures that contain inactive SQL objects:
ALTER PROCEDURE



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

485

ALTER ROUTINE (Recreate SQL objects for functions, procedures, 
and triggers)

Function
ALTER ROUTINE recreates the SQL objects for functions, procedures, and triggers, or 
modifies the compile option for a Java function or procedure.

Privileges
Owner of the functions, procedures, and triggers
A user can recreate SQL objects for functions, procedures, and triggers owned by that 
user.

Only the user's own authorization identifier can be specified in the 
AUTHORIZATION clause.
If the AUTHORIZAT ION clause is omitted, an error results.

Users with the DBA privilege
These users can recreate the SQL objects for functions, procedures, and triggers owned 
by them and by other users.

Both the user's own authorization identifier and other users' authorization 
identifiers can be specified in the AUTHORIZATION clause.
By omitting the AUTHORIZATION clause, SQL objects for all functions and 
procedures in the system are recreated.

Format
ALTER ROUTINE [[AUTHORIZATION authorization-identifier] [ALL]]
   [SQL-compile-option[SQL-compile-option]...]
SQL-compile-option ::={ISOLATION data-guarantee-level [FOR UPDATE 
EXCLUSIVE]
      |OPTIMIZE LEVEL SQL-optimization-option
                     [,SQL-optimization-option]...
      |ADD OPTIMIZE LEVEL SQL-extension-optimizing-option
                     [,SQL-extension-optimizing-option]...
                |SUBSTR LENGTH maximum-character-length }

Operands
[AUTHORIZATION authorization-identifier] [ALL]

Specifies the function, procedure, and trigger to be recreated in terms of the owner's 
authorization identifier and the status of the function, procedure, and trigger.



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

486

[AUTHORIZATION authorization-identifier]
Specifies the authorization identifier of the owner of the function, procedure, and 
trigger to recreate the SQL objects of all the functions, procedures, and triggers 
owned by the user. The default for this operand is to recreate the SQL objects for 
all the functions, procedures, and triggers in the system. Whether an SQL object 
is actually recreated is determined by the particular combination of the operands 
with the ALL clause.
authorization-identifier

Specifies the authorization identifier of the owner of functions, procedures, 
and triggers that are to be recreated.

[ALL]
Specifies that the status of the SQL objects is to be taken into consideration in 
determining which SQL objects for functions, procedures, and triggers are to be 
recreated. When this operand is omitted, only functions, procedures, and triggers 
whose SQL object is disabled are recreated.
ALL

Specifies that the SQL objects for all functions, procedures, and triggers are 
to be recreated, regardless of whether the SQL objects are enabled or 
disabled.

SQL-compile-option::= {ISOLATION data-guarantee-level [FOR UPDATE 
EXCLUSIVE]
    |OPTIMIZE LEVEL SQL-optimization-option
                   [, SQL-optimization-option]...
    |ADD OPTIMIZE LEVEL SQL-extension-optimizing-option
                   [, SQL-extension-optimizing-option]...
         |SUBSTR LENGTH maximum-character-length}

ISOLATION, OPTIMIZE LEVEL, ADD OPTIMIZE LEVEL, and SUBSTR LENGTH can 
each be specified only once in SQL-compile-option.
[ISOLATION data-guarantee-level [FOR UPDATE EXCLUSIVE]]

Specifies an SQL data integrity guarantee level.
data-guarantee-level

A data integrity guarantee level specifies the point to which the integrity of 
the transaction data must be guaranteed. The following data integrity 
guarantee levels can be specified:

• 0



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

487

Do not guarantee data integrity. When 0 is specified for a set of data, the 
user can reference the data even while it is being updated by another 
user. If the table to be referenced is a shared table, and if another user is 
executing the LOCK statement, a lock release wait is required.

• 1
Guarantee the integrity of data until a retrieval process is completed. 
When level 1 is specified, data that has been retrieved cannot be updated 
until the retrieval process is completed (until HiRDB finishes viewing 
the current page or row).

• 2
Guarantees the integrity of data that has been retrieved until the 
transaction is completed. When level 2 is specified, data that has been 
retrieved cannot be updated by other users until the transaction has been 
completed.

[FOR UPDATE EXCLUSIVE]
Specify this option if WITH EXCLUSIVE LOCK is always assumed 
irrespective of the cursor in a procedure for which the FOR UPDATE clause 
is specified or assumed, or for the data guarantee level on a query that is 
specified in SQL-compile-option. If level 2 is specified in 
data-guarantee-level, WITH EXCLUSIVE LOCK is assumed for the cursor for 
which the FOR UPDATE clause is specified or assumed, or for the query, and, 
therefore, FOR UPDATE EXCLUSIVE need not be specified. If a data 
guarantee level is specified in SQL-compile-option, and FOR UPDATE 
EXCLUSIVE is omitted, FOR UPDATE EXCLUSIVE need not be specified.

Relationship with client environment definition

Any specification of PDISLLVL or PDFORUPDATEEXLOCK with respect to 
ALTER ROUTINE has no effect.

Relationship with SQL statements

If a lock option is specified in an SQL statement in a procedure, the lock 
option specified in the SQL statement takes precedence over any data 
guarantee level specified in SQL-compile-option or the lock option assumed 
because of FOR UPDATE EXCLUSIVE.

When this operand is omitted, the data guarantee level specified for the most 
recent SQL object creation (execution of a CREATE PROCEDURE, ALTER 
PROCEDURE, CREATE TYPE, ALTER ROUTINE, CREATE TRIGGER, or ALTER 
TRIGGER statement) is assumed.
For data guarantee levels, see the HiRDB Version 8 UAP Development Guide.

OPTIMIZE LEVEL SQL-optimization-option[,SQL-optimization-option]...



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

488

Specifies the optimization method for determining the most efficient access path, 
taking into account the database's status.
SQL optimization options can be specified with identifiers (character strings) or 
numeric values. Hitachi recommends that identifiers be used.
The default is the value that was used during the previous creation of an SQL 
object (CREATE PROCEDURE, ALTER PROCEDURE, CREATE TYPE, ALTER 
ROUTINE, CREATE TRIGGER, or ALTER TRIGGER).
Specification with identifiers:

OPTIMIZE LEVEL "identifier"[, "identifier"] ...

Specification examples
• Apply the Prioritized nest-loop-join and the Rapid grouping facility 

options:
OPTIMIZE LEVEL "PRIOR_NEST_JOIN","RAPID_GROUPING"

• Do not apply any optimization:
OPTIMIZE LEVEL "NONE"

Rules
1. At least one identifier must be specified.
2. When multiple identifiers are specified, separate them with the comma 

(,).
3. For the optimization option identifiers, see Table 3-4 SQL optimization 

option specification values below.
4. If no optimization options are to be applied, specify "NONE" as the 

identifier. If "NONE" and some other identifier are both specified, the 
"NONE" specification is ignored.

5. The identifiers are case-sensitive.
6. If the same identifier is specified more than once, it is treated as if it was 

specified only once; however, where possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specification with numeric values:
OPTIMIZE LEVEL unsigned-integer[, unsigned-integer] ...

Specification examples
• Apply the 2. Making multiple SQL objects, 8. Suppressing use of AND 

multiple indexes, and 13. Forcing use of multiple indexes options:
Specify unsigned integers separated by commas:

OPTIMIZE LEVEL 4,10,16



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

489

Specify a sum of unsigned integers:
OPTIMIZE LEVEL 30

• Add the new value 16 to the previously specified value 14 (4 + 10):
OPTIMIZE LEVEL 14,16

• Do not apply any optimization:
OPTIMIZE LEVEL 0

Rules
1. When HiRDB is upgraded from a version older than Version 06-00 to a 

Version 06-00 or later, the total value specification in the older version 
also remains valid. If the optimization option does not need to be 
modified, the specification value for this operand need not be changed 
when HiRDB is upgraded to a Version 06-00 or later.

2. At least one integer must be specified.
3. When multiple integers are specified, separate them with the comma 

(,).
4. For the optimization option integers, see Table 3-4 SQL optimization 

option specification values below.
5. If no optimization options are to be applied, specify 0 as the integer. If 

0 and another integer are both specified, the 0 specification is ignored.
6. If the same integer is specified more than once, it will be treated as a 

single instance of the integer. However, multiple specifications of the 
same integer should be avoided.

7. When multiple optimization options are to be applied, you can specify 
the sum of the appropriate unsigned integers. However, the same 
optimization option value must not be added in more than once to avoid 
the possibility of the addition result being interpreted as a different set 
of optimization options.

8. If multiple optimization methods are specified by adding values, which 
optimization methods are being specified may not be apparent. In this 
case, Hitachi recommends specifying values by delimiting them with 
commas. If multiple optimization methods are already specified by 
adding values, and a new optimization method must be specified, the 
additional value can be appended by delimiting it with a comma.

Relationships to system definition
1. The system-defined pd_optimize_level operand, if specified in 

ALTER ROUTINE, has no effect.



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

490

2. When the pd_floatable_bes operand or the 
pd_non_floatable_bes operand is specified, specification of the 
Increasing the target floatable servers (back-end servers for fetching 
data) option or the Limiting the target floatable servers (back-end 
servers for fetching data) option, respectively, is invalid.

3. When KEY is specified in the pd_indexlock_mode operand of the 
system definition (i.e., in the case of index key value lock), specification 
of the Suppressing creation of update-SQL work tables option is invalid.

Relationship to client environment definition
The specification of PDSQLOPTLVL has no applicability to ALTER ROUTINE.

Relationship with SQL

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL optimization option specification values
Table 3-4 shows the SQL optimization option specification values. For 
details about the optimization option, see the manual HiRDB Version 8 UAP 
Development Guide.

Table 3-4: SQL optimization option specification values (ALTER ROUTINE)

No. Optimization option Specification values 

Identifier Unsigned 
integer

1 Forced nest-loop-join FORCE_NEXT_JOIN 4

2 Making multiple SQL objects SELECT_APSL 10

3 Increasing the target floatable servers 
(back-end servers for fetching data)#1, #2

FLTS_INC_DATA_BES 16

4 Prioritized nest-loop-join PRIOR_NEST_JOIN 32

5 Increasing the number of floatable server 
candidates#2

FLTS_MAX_NUMBER 64

6 Priority of OR multiple index use PRIOR_OR_INDEXES 128

7 Group processing, ORDER BY processing, 
and DISTINCT set function processing at 
the local back-end server#2

SORT_DATA_BES 256

8 Suppressing use of AND multiple indexes DETER_AND-INDEXES 512



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

491

#1: If the 3. Increasing the target floatable servers (back-end servers for fetching data) 
option and the 10. Limiting the target floatable servers (back-end servers for fetching 
data) option are both specified, neither of these options will be applied; instead, the 11. 
Separating data collecting servers option will be applied.
#2: This option is ignored if specified for a HiRDB/Single Server.

ADD OPTIMIZE LEVEL SQL-extension-optimizing-option[, 
SQL-extension-optimizing-option]...

Specifies optimizing options for determining the most efficient access path, 
taking into consideration the status of the database.
SQL extension optimizing options can be specified with identifiers (character 
strings) or numeric values. Hitachi recommends that identifiers be used.
The default is to use value that was used during the previous creation of an SQL 
object (CREATE PROCEDURE, ALTER PROCEDURE, CREATE TYPE, ALTER 
ROUTINE, CREATE TRIGGER, or ALTER TRIGGER).
Specification with identifiers:

ADD OPTIMIZE LEVEL "identifier"[, "identifier"] ...

Specification examples

9 Rapid grouping facility RAPID_GROUPING 1024

10 Limiting the target floatable servers 
(back-end servers for fetching data)#1, #2

FLTS_ONLY_DATA_BES 2048

11 Separating data collecting servers#1, #2 FLTS_SEPARATE_COLLECT_SVR 2064

12 Suppressing index use (forced table scan) FORCE_TABLE_SCAN 4096

13 Forcing use of multiple indexes FORCE_PLURAL_INDEXES 32768

14 Suppressing creation of update-SQL work 
tables

DETER_WORK_TABLE_FOR_UPDATE 131072

15 Deriving rapid retrieval conditions "DERIVATIVE_COND" 262144

16 Applying key conditions including scalar 
operations

"APPLY_ENHANCED_KEY_COND" 524288

17 Facility for batch acquisition from 
functions provided by plug-ins

"PICKUP_MULTIPLE_ROWS_PLUGIN" 1048576

No. Optimization option Specification values 

Identifier Unsigned 
integer



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

492

• Apply the Application of optimizing mode 2 based on cost and Hash 
join, subquery hash execution options:

ADD OPTIMIZE LEVEL
        "COST_BASE_2", "APPLY_HASH_JOIN"

• Do not apply any optimizing:
ADD OPTIMIZE LEVEL "NONE"

Rules
1. At least one identifier must be specified.
2. When multiple identifiers are specified, separate them with the comma 

(,).
3. For details of specifying optimization option identifiers, see Table 3-5 

SQL extension optimizing option specification values below.
4. If no extension optimizing options are to be applied, specify "NONE" as 

the identifier.
5. The identifiers are case-sensitive.
6. If the same identifier is specified more than once, it is treated as if it was 

specified only once; however, where possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specification with numeric values:
ADD OPTIMIZE LEVEL unsigned-integer[, unsigned-integer] ...

Specification examples
• Apply the Application of optimizing mode 2 based on cost and Hash 

join, subquery hash execution options:
ADD OPTIMIZE LEVEL 1,2

• Do not apply any optimizing:
ADD OPTIMIZE LEVEL 0

Rules
1. At least one integer must be specified.
2. When multiple integers are specified, separate them with the comma 

(,).
3. For details of specifying extension optimizing option integers, see Table 

3-5 SQL extension optimizing option specification values below.
4. If no extension optimizing options are to be applied, specify 0 as the 

integer.



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

493

5. If the same integer is specified more than once, it will be treated as a 
single instance of the integer. However, multiple specifications of the 
same integer should be avoided.

Relationship to system definition
The system-defined pd_optimize_level operand, if specified in ALTER 
ROUTINE, has no effect.

Relationship to client environment definition
The specification of PDADDITIONALOPTLVL has no applicability to ALTER 
ROUTINE.

Relationship with SQL

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL extension optimizing option specification values
Table 3-5 shows the SQL extension optimizing option specification values. 
For details about optimization methods, see the HiRDB Version 8 UAP 
Development Guide.

Table 3-5: SQL extension optimizing option specification values (ALTER 
ROUTINE)

Note 1

Items 2-5 take effect when Application of optimizing mode 2 based on cost is 
specified.

Note 2

No. Optimizing option Specification values 

Identifier Unsigned integer

1 Application of optimizing mode 2 based on cost "COST_BASE_2" 1

2 Hash join, subquery hash execution "APPLY_HASH_JOIN" 2

3 Suppressing foreign servers for SQL statements 
including a join

"DETER_JOIN_SQL" 67108864

4 Forcing the execution of foreign servers for SQL 
statements including direct product

"FORCE_CROSS_JOIN_
SQL"

134217728

5 Suppressing the derivation of rapid search conditions 
that can be executed on a foreign server and that are 
unconditionally generated

"DETER_FSVR_DERIVA
TIVE_COND"

1073741824



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

494

Optimization items 3-5 take effect when a foreign table is retrieved; in other 
cases, they have no effect.

[SUBSTR LENGTH maximum-character-length]
Specifies the maximum number of bytes for representing a single character.
The value specified for the maximum character length must be in the range from 
3 to 6.
This operand is valid only when utf-8 is specified for the character code type in 
the pdntenv command (pdsetup command in the case of the UNIX version), it 
affects the length of the result of the SUBSTR scalar function. For details about 
SUBSTR, see 2.16.1(21) SUBSTR.
Rules

When HiRDB is upgraded from a version earlier than version 08-00 to 
version 08-00 or later, 3 is assumed. If there is no need to change the 
maximum character length, you do not need to specify this operand when 
upgrading to HiRDB version 08-00 or later.

Relationships to system definition
When SUBSTR LENGTH is specified in ALTER ROUTINE, the 
pd_substr_length system definition operand has no effect. For details 
about the pd_substr_length operand, see the manual HiRDB Version 8 
System Definition.

Relationship to client environmental definition
The specification of PDSUBSTREN has no applicability to ALTER ROUTINE. 
For details about PDSUBSTRLEN, see the manual HiRDB Version 8 UAP 
Development Guide.

Relationship to the character code type specified in the pdntenv or pdsetup 
command

This operand is valid only when utf-8 is specified for the character code 
type.
For all other character code types, only a syntax check is performed and the 
specification is ignored.

When this operand is omitted, the value specified during creation of the most 
recent SQL object (execution of a CREATE PROCEDURE, ALTER PROCEDURE, 
CREATE FUNCTION, CREATE TYPE, ALTER ROUTINE, CREATE TRIGGER, or 
ALTER TRIGGER statement) is assumed.

Common rules
1. When an SQL compile option is specified in ALTER ROUTINE, the SQL statement 



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

495

created by incorporating the SQL compile option into the original CREATE 
PROCEDURE, CREATE FUNCTION, CREATE TYPE, or CREATE TRIGGER statement 
of the routine to be recreated must be of a length that does not exceed the 
maximum allowable length for SQL statements.

2. Specification of the SQL compile option is valid only for procedures or triggers; 
it has no effect on functions.

3. The ALTER ROUTINE cannot be executed from a Java procedure when the SQL 
object being executed can be re-created.

Notes
1. ALTER ROUTINE cannot be specified from an X/Open-compliant UAP running 

under OLTP.
2. When SQL objects for multiple functions, procedures, and triggers are recreated, 

the COMMIT or ROLLBACK statement is executed for each function, procedure, and 
trigger.

3. By executing a GET DIAGNOSTICS statement immediately following execution 
of an ALTER ROUTINE statement, diagnostic information can be obtained for the 
ALTER ROUTINE statement. The return code for the SQL object of a function, 
procedure, or trigger whose re-creation terminated normally is 0.

4. The data guarantee level of the SQL optimization option, the SQL extension 
optimizing option, and the maximum character length are determined by what is 
specified when the routine or trigger is being defined or re-created, and are not 
affected by the system definition or client environment variable definition that is 
in effect when the procedure or function is called or when the trigger operation is 
executed.

5. If an index is added or deleted to or from a table (exclusive of the table in which 
the trigger is defined) that is used in a procedure or trigger, any index information 
in the SQL object for the procedure and the trigger is nullified, in which case the 
affected trigger cannot be executed. Because the procedure cannot be executed 
from another procedure or trigger, the SQL object needs to be recreated by 
specifying ALL.

6. Because no SQL object is created, the Java procedure or Java function cannot 
re-create the SQL object; it can only update the SQL compile option.

7. If triggers must be nested, care should be taken with the following items:
• If some or all of the nested triggers are disabled, a single execution of ALTER 

ROUTINE may not be able to put all the triggers in effect (ALTER ROUTINE 
results in a KFPA11528-E error). In this case, execute ALTER ROUTINE 
repeatedly until ALTER ROUTINE terminates normally.

8. If there are triggers to be nested, and if a function is specified in a search condition 



ALTER ROUTINE (Recreate SQL objects for functions, procedures, and triggers)

496

during the operation of the triggers, care should be taken with the following item:
• If this function is deleted, a KFPA11529-E error may occur during the 

execution of the trigger, even when ALTER ROUTINE terminates normally. In 
this case, re-execute the trigger or the routine by recreating it (ALTER 
TRIGGER or ALTER PROCEDURE). The trigger or routine that caused the 
runtime error is the calling trigger, or routine or the trigger from which the 
function was deleted.

9. If there are looping triggers, care should be taken with the following item:
• If all looping triggers are disabled, they cannot be recreated by executing 

ALTER ROUTINE. In this case, delete all the looping triggers and the triggers 
that are in the table defining the looping triggers. You need to re-define them.

Examples
1. Recreate among all functions, procedures, and triggers those functions and 

procedures for which the SQL object has been nullified:
ALTER ROUTINE

2. Recreate all the functions, procedures, and triggers belonging to a user (USER1):
ALTER ROUTINE
   AUTHORIZATION USER1 ALL



ALTER TABLE (Alter table definition)

497

ALTER TABLE (Alter table definition)

Function
ALTER TABLE has the following functions:

• Appends a new column to a base table.
• Adds a table storage RDAREA to a base table that is row-partitioned by a hash 

function.
• Changes the attribute of a base table or column.

• Increases the maximum length of the variable-length data type.
• Changes character data to mixed character string data.
• Increases the maximum number of elements in a repetition column.
• Changes the method of storing variable-length character data.
• Changes the column recovery restriction.
• Sets up, changes, or deletes a predefined value for a column.
• Changes a NOT NULL constrained column without a predefined value to a 

NOT NULL constrained column with a predefined value.
• Changes the updatable column attribute.
• Changes the uniqueness constraint of a cluster key of a base table in which 

no data is stored.
• Changes the unit of the minimum locked resource of a base table.
• Changes the hash function of a base table that is row-partitioned by a hash 

function.
• Enables or disables application of the free space reusage facility.
• Changes the segment count upper limit for the free space reusage facility.
• Changes to a falsification prevented table.

• Deletes base table columns that are not storing any data.
• Changes the name of a base table or column.
• Changes the partitioning storage condition of a row-partitioned base table.

Privileges
Owner of a base table



ALTER TABLE (Alter table definition)

498

This user can specify this command only on his or her own tables.

Format
The item numbers in the following format correspond with the operand numbers:

• Details of individual items

No. Format

1 ALTER TABLE [authorization-identifier.]table-identifier

 table-definition-change::={ column-addition-definition
           |RDAREA-addition-definition
           |column-attribute-change-definition
           |column-deletion-definition
           |table-name-change-definition
           |column-name-change-definition
           |partitioning-storage-condition-change-definition }

No. Format

2 column-addition-definition::=
 ADD column-name data-type[ARRAY [maximum-number-of-elements]] [NO SPLIT]
        [[column-recovery-restriction-1]
         {LOB-column-storage-RDAREA-specification
          |matrix-partitioned-LOB-column-storage-RDAREA-specification
          |abstract-data-type-definition-LOB-storage-RDAREA-specification
          [plug-in specification]
          |matrix-partitioned-LOB-attribute-storage-RDAREA-specification
          [plug-in specification]}]
        [DEFAULT clause]
        {[NULL|NOT NULL [WITH DEFAULT]]1
        |[[NOT NULL]   WITH DEFAULT]2}
        [updatable-column-attribute]
        [WITH PROGRAM]

  column-recovery-restriction-1::= RECOVERY[[ALL | PARTIAL | NO]

  LOB-column-storage-RDAREA-specification::=
   IN [LOB-column-storage-RDAREA-name
    |(LOB-column-storage-RDAREA-name)
    |((LOB-column-storage-RDAREA-name)
     [,(LOB-column-storage-RDAREA-name)]...)]

  matrix-partitioned-LOB-column-storage-RDAREA-specification::= 2-dimension storage RDAREA 
specification
 matrix-partitioned-LOB-attribute-storage-RDAREA-specification::= 2-dimension storage RDAREA 
specification
 2-dimension storage RDAREA specification::=(matrix-partitioning-RDAREA-list
   [, matrix-partitioning-RDAREA-list]...)
 matrix-partitioning-RDAREA-list::= (RDAREA-name[,RDAREA-name]...)



ALTER TABLE (Alter table definition)

499

  abstract data type LOB storage RDAREA specification::=
  ALLOCATE(attribute-name[... attribute-name]...
   IN [LOB-attribute-storage-RDAREA-name
   |(LOB-attribute-storage-RDAREA-name)
   | ((LOB-attribute-storage-RDAREA-name)
   [,(LOB-attribute-storage-RDAREA-name)]...)}
   [, attribute-name [.. attribute-name]...
   IN {LOB-attribute-storage-RDAREA-name
   | (LOB-attribute-storage-RDAREA-name)
   | ((LOB-attribute-storage-RDAREA-name)
   [, (LOB-attribute-storage-RDAREA-name)]...)}]...)

  DEFAULT clause::= DEFAULT [default-value]
 default-value::= {literal |USER | CURRENT_DATE | CURRENT DATE
   |CURRENT_TIME | CURRENT TIME
   | CURRENT_TIMESTAMP [(fractional-second-precision)] [USING BES]
   | CURRENT TIMESTAMP [(fractional-second-precision)] [USING BES]
   |NULL}

 updatable-column-attribute::= UPDATE [ONLY FROM NULL]

3 RDAREA-addition-definition::=
  ADD RDAREA table-storage-RDAREA-name
        [FOR COLUMN column-name
        {LOB-column-storage-RDAREA-specification
       |abstract-date-type-definition-LOB-storage-RDAREA-specification}
       [, column-name {LOB-column-storage-RDAREA-specification
        |abstract-date-type-definition-LOB-storage-RDAREA-specification}]...]
        [FOR INDEX index-identifier index-storage-RDAREA-specification
        [, index-identifier index-storage-RDAREA-specification]...]
        [FOR [PRIMARY] CLUSTER KEY index-storage-RDAREA-specification]
        [FOR PRIMARY KEY index-storage-RDAREA-specification]
        [WITH PROGRAM]

  LOB-column-storage-RDAREA-specification::=
   IN {LOB-column-storage-RDAREA-name
    | (LOB-column-storage-RDAREA-name)
    | ((LOB-column-storage-RDAREA-name)
   [, (LOB-column-storage-RDAREA-name)]...)}

  abstract data type LOB storage RDAREA specification::=
   ALLOCATE (attribute-name [.. attribute-name]...
   IN {LOB-attribute-storage-RDAREA-name
    | (LOB-attribute-storage-RDAREA-name)
   | ((LOB-attribute-storage-RDAREA-name)
   [, (LOB-attribute-storage-RDAREA-name)]...)}
   [, attribute-name [,,, attribute-name]...
   IN {LOB-attribute-storage-RDAREA-name
   | (LOB-attribute-storage-RDAREA-name)
    | ((LOB-attribute-storage-RDAREA-name)
   [, (LOB-attribute-storage-RDAREA-name)]...)}]...)

No. Format



ALTER TABLE (Alter table definition)

500

  index-storage-RDAREA-specification::=
   IN {index-storage-RDAREA-name
   | (index-storage-RDAREA-name)
   | ((index-storage-RDAREA-name)
   [, (index-storage-RDAREA-name)]...)}

4 column-attribute-change-definition::=
  CHANGE{column-name{[{VARCHAR (data-length)
     |NVARCHAR (data-length)
     |MCHAR({*|data-length})
     |MVARCHAR({*|data-length})}]
     [ARRAY [{*|maximum-number-of-elements}]]
     |[ARRAY [maximum-number-of-elements]]
     |BINARY(data-length)}
     [{NO SPLIT|SPLIT}]
   [column-recovery-restriction-2]
     [{SET DEFAULT clause|DROP DEFAULT}]
     [WITH DEFAULT]
     [updatable-column-attribute]
     |CLUSTER KEY[UNIQUE]
     |LOCK{ROW|PAGE}
     |HASH hash-function-name
     |SEGMENT REUSE {[number-of-segments[{K|M|G}]]|NO}}
     | INSERT ONLY 
       [WHILE {date-interval-data| labeled-interval} BY column-name]}
     [WITH PROGRAM]

  column-recovery-restriction-2::= RECOVERY{ALL|PARTIAL|NO}

5 column-deletion-definition::=
  DROP column-name [WITH PROGRAM]

6 table-name-change-definition::=
  RENAME TABLE TO table-identifier
     [WITH PROGRAM]

7 column-name-change-definition::=
    RENAME COLUMN FROM pre-change-column-name TO post-change-column-name
     [WITH PROGRAM]

8 partitioning-storage-condition-change-definition::=
   CHANGE RDAREA row-partitioned-table-change-specification
   [LOB-column-storage-RDAREA-change-specification]
   [index-storage-RDAREA-change-specification
    [index-storage-RDAREA-change-specification]...]
   [cluster-key-storage-RDAREA-change-specification]
   [primary-key-storage-RDAREA-change-specification]
   [WITHOUT PURGE]
   [WITH PROGRAM]

No. Format



ALTER TABLE (Alter table definition)

501

8-1  row-partitioned-table-change-specification::=
  {[PARTITIONED] pre-change-boundary-value-list INTO 
post-change-boundary-value-partition-specification
   |PARTITIONED CONDITION pre-change-RDAREA-information-list
     INTO post-change-storage-condition-partition-specification}

8-2  pre-change-boundary-value-list::= boundary-value-list
 boundary-value-list::= (({boundary-value | MAX}) [, ({boundary-value |MAX})]...)

8-3  post-change-boundary-value-partitioning-specification::= {table-storage-RDAREA-name
   | (table-storage-RDAREA-name)
   | ([(table-storage-RDAREA-name) boundary-value,]
   ...(table-storage-RDAREA-name))}

8-4  pre-change-RDAREA-information-list::=
     {name-of-RDAREA-for-table
       |(name-of-RDAREA-for-table)
       |((name-of-RDAREA-for-table)
        [,(name-of-RDAREA-for-table)]...[,OTHERS])
       |OTHERS}

8-5 pre-change-RDAREA-information-list::=
     {table-storage-RDAREA-name
       |(table-storage-RDAREA-name)
       |((table-storage-RDAREA-name)
        [,(table-storage-RDAREA-name)]...[,OTHERS])
       |OTHERS}

8-6  index-storage-RDAREA-change-specification::=
   FOR INDEX index-name
   INTO post-change-index-storage-RDAREA-name-list
 post-change-index-storage-RDAREA-name-list::= RDAREA-name-list
 index-name::=
   {index-storage-RDAREA-name
   | (index-storage-RDAREA-name)
   | ((index-storage-RDAREA-name)
   [, (index-storage-RDAREA-name)]...[,OTHERS])
      |OTHERS}

8-7  primary-key-storage-RDAREA-change-specification::=
   FOR PRIMARY KEY
   INTO post-change-index-storage-RDAREA-name-list

8-8  cluster-key-storage-RDAREA-change-specification::=
   FOR [PRIMARY] CLUSTER KEY
   INTO post-change-index-storage-RDAREA-name-list

8-9  LOB-column-storage-RDAREA-change-specification::=
   FOR COLUMN column-name
   LOB-column-storage-RDAREA-change-list
  [, column-name-LOB-column-storage-RDAREA-change-list
  ]...

No. Format



ALTER TABLE (Alter table definition)

502

Legend:
: See specification locations 1 to 6.

1 Columns in a non-FIX table
2 Columns in a FIX table

Operands
1)[authorization-identifier.]table-identifier
authorization-identifier

Specifies the authorization identifier of the owner of the base table to be 
redefined.

table-identifier
Specifies the name of the base table to be redefined.

2) column-addition-definition::=
ADD column-name data-type [ARRAY [maximum-number-of-elements]][NO SPLIT]

[[column-recovery-restriction-1]
 {LOB-column-storage-RDAREA-specification
  |matrix-partitioned-LOB-column-storage-RDAREA-specification
  |abstract-date-type-definition-LOB-column-storage-RDAREA-specification
   [plug-in specification]
   |matrix-partitioned-LOB-attribute-storage-RDAREA-specification
   [plug-in specification]}]
[DEFAULT clause]
{[NULL|NOT NULL[WITH DEFAULT]]1

 |[[NOT NULL]WITH DEFAULT]2}
[updatable-column-attribute]

8-10  LOB-column-storage-RDAREA-change-list::=
   INTO {LOB-column-storage-RDAREA-name
    | (LOB-column-storage-RDAREA-name)
    | ((LOB-column-storage-RDAREA-name)
   [, (LOB-column-storage-RDAREA-name)]...[,OTHERS])
    |OTHERS}

No. Format



ALTER TABLE (Alter table definition)

503

[WITH PROGRAM]
1 Columns in a non-FIX table
2 Columns in a FIX table

column-name
Specifies the name of the column to be added to a base table.
The following rules apply to column names:
1. When a column is to be added to a base table, the new column must be 

distinct in name from any columns that are already in the table.
2. More than 30,000 columns cannot be added to a base table.
3. A column cannot be added to a FIX table containing data.

4. When a column is added, the null value is assigned to the added column in 
an existing row. For details about how to assign the null value, see the 
UPDATE statement Format 1 (Update data) for data manipulation SQL 
statements.

data-type
Specifies the data type of the column to be added to the base table.
The following rules apply to data types:
When specifying BLOB in data-type, specify a LOB storage RDAREA.
When specifying an abstract data type in data-type, specify a LOB attribute 
storage RDAREA. An abstract data type for which BLOB is defined in super-type 
cannot be specified.
If the authorization identifier for the abstract data type is omitted and an abstract 
data type for the default authorization identifier does not exist, and if the abstract 
data type of the same name is in the MASTER schema, HiRDB assumes that that 
abstract data type is specified.

ARRAY [maximum-number-of-elements]
Specifies the maximum number of elements for the repetition column to be added 
to the base table.
The following rules apply to ARRAY maximum-number-of-elements:
1. In maximum-number-of-elements, specify an unsigned integer in the 2 to 

30,000 range.
2. Omitting ARRAY maximum-number-of-elements indicates that the column is 

not a repetition column.



ALTER TABLE (Alter table definition)

504

3. The following data types cannot be specified for a repetition column:
 BLOB
 BINARY
 Abstract data type

4. A repetition column cannot be specified in a FIX table.
NO SPLIT

This option is specified when storing one row per page if the actual data length of 
a variable-length character string is 256 bytes or greater.
The NO SPLIT option can reduce the size of the database. For details about the NO 
SPLIT option, see the HiRDB Version 8 Installation and Design Guide.
NO SPLIT can be specified only with variable-length character types (VARCHAR, 
NVARCHAR, and MVARCHAR).

column-recovery-restriction-1 ::=[RECOVERY[{ALL|PARTIAL|NO}]]
When adding a BLOB data-type column or an abstract data-type column with a 
BLOB attribute to a table, specify an update log acquisition mode for the LOB 
column storage RDAREA in which the column is to be stored or for the database 
for the LOB storage RDAREA in the abstract data type definition.
Column recovery restriction cannot be specified for columns other than a BLOB 
data type column or an abstract data type column with a BLOB attribute.
ALL

This option is specified when operating the LOB RDAREA in the log 
acquisition mode. When the RDAREA is operated in the log acquisition 
mode, HiRDB acquires the database update log necessary for rollback and 
roll-forward operations.

PARTIAL
This option is specified when operating the LOB RDAREA in the pre-update 
log acquisition mode. When the RDAREA is operated in the pre-update log 
acquisition mode, HiRDB acquires the database update log necessary for 
rollback operations.

NO
This option is specified when operating the user LOB RDAREA in the 
no-log mode. When the RDAREA is operated in the no-log mode, HiRDB 
does not acquire a database update log.
Depending on the specific update log acquisition method specified for a 
database, HiRDB employs different UAP execution methods or user LOB 



ALTER TABLE (Alter table definition)

505

RDAREA recovery methods in the event of an error. For details about no-log 
mode operations, see the HiRDB Version 8 System Operation Guide.

LOB-column-storage-RDAREA-specification::=
IN {LOB-column-storage-RDAREA-name
   |(LOB-column-storage-RDAREA-name)
   |((LOB-column-storage-RDAREA-name)
    [, (LOB-column-storage-RDAREA-name)]...)}
When adding a BLOB-type column, specifies the name of the user LOB RDAREA 
in which BLOB column data is to be stored.
The following rules apply to LOB column storage RDAREAs:
1. If BLOB is specified as a data type for a column, always specify the name of 

the LOB column storage RDAREA. A name cannot be specified for a 
column for which a data type other than BLOB is specified.

2. When adding a column to a row-partitioned table, specify the same number 
of LOB RDAREAs as the user RDAREAs specified in the table definition, 
taking care that user RDAREAs and LOB RDAREAs on the same server are 
in the same order.

3. LOB column storage RDAREA names cannot be specified in duplicate. 
When adding a column to a partitioned table with a boundary value 
specification or to a matrix-partitioned table, specify corresponding LOB 
column storage RDAREA names, in which case LOB column storage 
RDAREA names may be specified in duplicate.

matrix-partitioned-LOB-column-storage-RDAREA-specification::=two-dimensional
-storage-RDAREA-specification

two-dimensional-storage-RDAREA-specification::=(matrix-partitioning-RDA
REA-list
   [, matrix-partitioning-RDAREA-list]...)
matrix-partitioning-RDAREA-list::=
   (RDAREA-name[, RDAREA-name]...)
When adding a BLOB-type column to a matrix-partitioned table, specifies the 
name of the RDAREA in which the BLOB column is to be stored.
When adding a BLOB-type column to a matrix-partitioned table, specifies the 
RDAREA for storing matrix-partitioned LOB columns.
For RDAREA names, see the explanation in 
LOB-column-storage-RDAREA-specification.



ALTER TABLE (Alter table definition)

506

abstract-date-type-definition LOB-column-storage-RDAREA-specification::=
ALLOCATE(attribute-name[..attribute-name]...
  IN {LOB-attribute-storage-RDAREA-name
    |(LOB-attribute-storage-RDAREA-name)
    |((LOB-attribute-storage-RDAREA-name)
     [, (LOB-attribute-storage-RDAREA-name)]...)}
  [, attribute-name[..attribute-name]...
    IN {LOB-attribute-storage-RDAREA-name
      |(LOB-attribute-storage-RDAREA-name)
      |((LOB-attribute-storage-RDAREA-name)
     [, (LOB-attribute-storage-RDAREA-name)]...)}]...)
This option is specified when adding a column of the abstract data type including 
the LOB attribute.
attribute-name[..attribute-name]

Specifies attribute names that comprise an abstract data type. If the attribute 
of an abstract data type is the abstract data type and if the attribute of the 
nested abstract data type has a LOB-type attribute, specify the attribute name 
of the LOB type.
Specify an attribute name in the following cases:

• Attribute of an abstract data type definition
This operand is specified if the attribute of the abstract data type 
definition is the LOB type.

• Nest of an abstract data type definition
If the attribute of an abstract data type is the abstract data type and if the 
attribute of a nested abstract data type is a LOB-type attribute, specify 
the attribute name of the LOB type.

LOB-attribute-storage-RDAREA-name
Specifies the name of the user LOB RDAREA that stores BLOB attribute 
data, located in any hierarchy of abstract data types.
The following rules apply to LOB attribute storage RDAREAs:
1. When an abstract data type including BLOB is specified as a data type, 

always specify the name of a user LOB RDAREA for each BLOB 
attribute. Such a name cannot be specified in attributes for which a 



ALTER TABLE (Alter table definition)

507

non-BLOB data type is specified.
2. When adding a column to a row-partitioned table, specify the same 

number of LOB RDAREAs as the user RDAREAs specified in the table 
definition, taking care that user RDAREAs and LOB RDAREAs on the 
same server are in the same order.

3. LOB attribute storage RDAREA names cannot be specified in 
duplicate. When adding a column to a partitioned table with a boundary 
value specification, or to a matrix-partitioned table, specify 
corresponding LOB attribute storage RDAREA names, in which case 
LOB attribute storage RDAREA names may be specified in duplicate.

plug-in-specification ::=PLUGIN plug-in-option
Specifies as a character string literal (of up to 255 bytes) parameter information 
to be passed to the plug-in facility for a column that is defined as an abstract data 
type for which the plug-in facility is implemented. Hexadecimal character string 
literals cannot be specified as parameter information.
For details about parameter information, see the respective plug-in manuals.

matrix-partitioned-LOB-attribute-storage-RDAREA-specification::=two-dimension
al-storage-RDAREA-specification

two-dimensional-storage-RDAREA-specification::=(matrix-partitioning-RDA
REA-list
   [, matrix-partitioning-RDAREA-list]...)
matrix-partitioning-RDAREA-list ::=
   (RDAREA-name[, RDAREA-name]...)
When adding a column of abstract data type including the LOB attribute to a 
matrix-partitioned table, specifies the name of the RDAREA in which the LOB 
attribute is to be stored.
When adding a column of abstract data type including the LOB attribute to a 
matrix-partitioned table, specifies the name of the RDAREA in which the 
matrix-partitioned LOB attribute is to be stored.
For RDAREA names, see the explanation in abstract-date-type-definition 
LOB-column-storage-RDAREA-specification ::= .

DEFAULT clause ::=DEFAULT[predefined-value]
This option is specified when setting a predefined value in the column being 
added.
The following rules apply to DEFAULT clause:
1. DEFAULT clause cannot be specified together with WITH DEFAULT in a 



ALTER TABLE (Alter table definition)

508

single ALTER TABLE.
2. If data is stored in the base table, DEFAULT clause cannot be specified on the 

column being added.
3. The DEFAULT clause cannot be specified on a BLOB-type column, an abstract 

data-type column, or a BINARY-type column, with a definition length of 
32,001 bytes or greater.

4. The DEFAULT clause cannot be specified on a repetition column.
NULL

The NULL option can be specified on the column specified in column-name if the 
column allows the null value.
The NULL option cannot be specified on a column in a FIX table.

NOT NULL
This option is specified if the column specified in column-name must be 
constrained (NOT NULL-constrained) so that it does not allow the null value.
The following rules apply to the NOT NULL option:
1. NOT NULL cannot be specified if data is already stored in the base table.
2. If NOT NULL is omitted, the added column allows the null value, and if the 

column was added to a row containing data, the null value is assigned to the 
column.

3. The NOT NULL option cannot be specified on repetition columns or columns 
of the abstract data type.

WITH DEFAULT
This option is specified when adding a NOT NULL-constrained column containing 
a predefined value.
The following rules apply to the WITH DEFAULT option:
1. Specify NOT NULL when specifying WITH DEFAULT for a non-FIX table.
2. WITH DEFAULT cannot be specified together with DEFAULT clause in a 

single ALTER TABLE.
3. WITH DEFAULT cannot be specified for a repetition column.
4. WITH DEFAULT cannot be specified for columns of the abstract data type.

updatable-column-attribute::= UPDATE [ONLY FROM NULL]
Specify this operand when adding an updatable column to a 
falsification-prevented table or adding an updatable column to a table that is to be 
changed to a falsification-prevented table.



ALTER TABLE (Alter table definition)

509

The updatable column attribute is valid only when specified on a 
falsification-prevented table.
For details about how to change a given table to a falsification-prevented table, 
see the INSERT ONLY option in CHANGE.
UPDATE

Specify this operand when adding an updatable column to a 
falsification-prevented table.

UPDATE ONLY FROM NULL
Specify this operand when adding a column in which row values can be 
changed only once from the null value to a non-null value in a 
falsification-prevented table.
The following table summarizes the conditions under which the value of an 
UPDATE ONLY FROM NULL-specified column can be changed in a 
falsification-prevented table.

Legend:
Y: Updatable
N: Not updatable

Note

For a repetition column, only updates by column from the null value (a value 
in which the number of elements is 0) to an unsubscripted specification can 
be executed.

* Contains the same value as the pre-update value.
Specification of the UPDATE ONLY FROM NULL operand is subject to the 
following rules:
1. The operand cannot be specified for a NOT NULL-specified column.
2. The operand cannot be specified for a FIX table.
3. The operand cannot be specified for BLOB-type columns and for 

Column value before change Column value after change Whether updatable

Null value Null value Y

Null value Non-null-value Y

Non-null-value Null value N

Non-null-value Non-null-value* N



ALTER TABLE (Alter table definition)

510

BINARY type columns with a definition length of 32,001 bytes or 
greater.

If the attribute is specified, the column value of the updatable column attribute can 
be updated under the following conditions:

Legend:
Y: Updatable
N: Not updatable

: Not applicable
* Can be updated only once from the null value to a non-null value.

WITH PROGRAM
Specify WITH PROGRAM in any of the following operations when an SQL object 
with an effective function, procedure, or trigger with respect to the table is to be 
nullified:

• Adding a column with a DEFAULT clause to a table
• Adding a column with a NOT NULL specification to a table
• Adding a column of the BLOB or abstract data type to a table

3) RDAREA-addition-definition::=
ADD RDAREA table-storage-RDAREA-name

[FOR COLUMN column-name
 {LOB-column-storage-RDAREA-specification
  |abstract-date-type-definition LOB-column-storage-RDAREA-specification}
 [, column-name {LOB-column-storage-RDAREA-specification
     |abstract-date-type-definition 
LOB-column-storage-RDAREA-specification}]...]

Table type UPDATE specification UPDATE ONLY FROM 
NULL specification

No specification

Specifiable Column 
value 

updatable

Specifiable Column 
value 

updatable

Specifiable Column 
value 

updatable

Non-falsification-
prevented table

Y Y Y Y Y

Falsification-prev
ented table

Y Y Y Y* N



ALTER TABLE (Alter table definition)

511

[FOR INDEX index-identifier index-storage-RDAREA-specification
 [, index-identifier index-storage-RDAREA-specification]...]
[FOR [PRIMARY] CLUSTER KEY index-storage-RDAREA-specification]
[FOR PRIMARY KEY index-storage-RDAREA-specification]
[WITH PROGRAM]

table-storage-RDAREA-name
This operand is specified when a user RDAREA is to be added to a 
row-partitioned table by a hash function.
The following rules apply to the names of table storage RDAREAs:
1. The addition of a user RDAREA to a table may fail if a unique-specification 

index is defined on the table. For details, see the explanation for CREATE 
INDEX Format 1, UNIQUE operand.

2. In the table to which an RDAREA is to be added, any user RDAREA that is 
already in use cannot be specified in table-storage-RDAREA-name.

3. If the rebalancing facility is not used, a user RDAREA cannot be added to a 
FIX hash-partitioned table in which data is stored. For details about the 
rebalancing facility, see the HiRDB Version 8 System Operation Guide.

4. Other tables and indexes cannot be added to the RDAREA that stores tables 
that use the rebalancing facility.

5. If an RDAREA is added to a FIX hash-partitioned table that uses the 
rebalancing facility, performance of the SQL statement that retrieves or 
updates the table may deteriorate until such time as the rebalancing utility is 
successfully executed.

6. If an index with a unique specification, a unique cluster key, or the primary 
key is defined for a FIX hash-partitioned table using the rebalancing facility, 
and if an RDAREA is added to that table, no data can be added to or updated 
in the table until such time as the rebalancing utility is successfully executed.

7. When adding an RDAREA to a table using the free space reusage facility, the 
free space reusage facility is also applied to the RDAREA that is added.

8. A shared RDAREA cannot be specified in a table storage RDAREA.
9. The maximum total number of split RDAREAs after a change in table 

definition, exclusive of duplicates, is 1024.
column-name

This operand is specified when the table to which an RDAREA is being added 
contains a BLOB column or a column of the abstract data type including the BLOB 



ALTER TABLE (Alter table definition)

512

attribute.
In column-name, specify either a BLOB-type column or a column defined in the 
abstract data type including the BLOB attribute.
All BLOB-type columns and columns of the abstract data type including the BLOB 
attribute need to be specified.

LOB-column-storage-RDAREA-specification::=
IN {LOB-column-storage-RDAREA-name
   |(LOB-column-storage-RDAREA-name)
   |((LOB-column-storage-RDAREA-name)
   [, (LOB-column-storage-RDAREA-name)]...)}
Specifies the name of the user LOB RDAREA in which BLOB-column data is to 
be stored.
The name of the RDAREA to be specified should be the user LOB RDAREA that 
is located on the same server as the RDAREA specified in 
table-storage-RDAREA-name.

abstract-data-type-definition-LOB-storage-RDAREA-specification::=
ALLOCATE(attribute-name[..attribute-name]...
  IN {LOB-attribute-storage-RDAREA-name
     |(LOB-attribute-storage-RDAREA-name)
     |((LOB-attribute-storage-RDAREA-name)
     [, (LOB-attribute-storage-RDAREA-name)]...)}
  [, attribute-name[..attribute-name]...
   IN {LOB-attribute-storage-RDAREA-name
     |(LOB-attribute-storage-RDAREA-name)
      |((LOB-attribute-storage-RDAREA-name)
     [, (LOB-attribute-storage-RDAREA-name)]...)}]...)
attribute-name[..attribute-name]

Specifies the name of the attribute that comprises the abstract data type. If 
the attribute of an abstract data type is the abstract data type and if the 
attribute of a nested abstract data type is a LOB-type attribute, specify the 
attribute name of the LOB type.
Specify attribute-name in the following cases:



ALTER TABLE (Alter table definition)

513

• Attribute of an abstract data type definition
Specify attribute-name if the data type of an attribute of an abstract data 
type definition is the LOB type.

• Nest of an abstract data type definition
If the attribute of an abstract data type is the abstract data type and if the 
attribute of a nested abstract data type is a LOB-type attribute, specify 
the attribute name of the LOB type.

LOB-attribute-storage-RDAREA-name
Specifies the name of the user LOB RDAREA for the storage of BLOB 
attribute data, in any hierarchy of abstract data types.
The following rules apply to LOB attribute storage RDAREAs:
1. Specify a user LOB RDAREA for all BLOB attributes that are in the 

abstract data type.
2. For the RDAREA name to be specified, specify the user LOB 

RDAREA that is defined on the same server as the RDAREA that was 
defined in table-storage-RDAREA-name.

FOR INDEX index-identifier index-storage-RDAREA-specification
[, index-identifier index-storage-RDAREA-specification]...]
If an index is defined for the table to which an RDAREA is being added, specifies 
the index storage RDAREA corresponding to the table storage RDAREA being 
added.
index-identifier

Specifies the index identifier of the index that is defined for the table to 
which the RDAREA is being added.

index-storage-RDAREA-specification
For index storage RDAREA specifications, see the explanation in ADD 
RDAREA, index storage RDAREA specification.

FOR [PRIMARY] CLUSTER KEY index-storage-RDAREA-specification
If a cluster key is already defined for the table to which an RDAREA is to be 
added, specifies the cluster key storage RDAREA associated with the table 
storage RDAREA being added.
PRIMARY

This option is specified if the cluster key is defined as the primary key.
index-storage-RDAREA-specification



ALTER TABLE (Alter table definition)

514

For index storage RDAREA specifications, see the explanation in ADD 
RDAREA, index storage RDAREA specification.

FOR PRIMARY KEY index-storage-RDAREA-specification
If the primary key is already defined for the table to which an RDAREA is to be 
added, specifies the primary key storage RDAREA associated with the table 
storage RDAREA being added.
If a table comprising a cluster key is defined as the primary key, specify FOR 
PRIMARY CLUSTER KEY.
For index storage RDAREA specifications, see the explanation in ADD 
RDAREA, index storage RDAREA specification.

index-storage-RDAREA-specification::=
IN{index-storage-RDAREA-name
  |(index-storage-RDAREA-name)
  |((index-storage-RDAREA-name)
   [, (index-storage-RDAREA-name)]...)}
Specifies the name of the RDAREA in which an index, a cluster key, or the 
primary key is to be stored.
For the index (the data type of the index constituent column is not the abstract data 
type), or cluster key or primary key defined in CREATE INDEX format 1, specify 
a user RDAREA. However, for HiRDB/Parallel Server, a shared RDAREA is 
specified for a shared table.
For the index (the data type of the index constituent column is the abstract data 
type) defined in CREATE INDEX format 2, specify a user LOB RDAREA.
The following rules apply to the specification of an index storage RDAREA:
1. For HiRDB/Parallel Server, the RDAREA for storing the table being added 

and the RDAREA that stores the associated index must be on the same 
back-end server.

2. The index that is row-partitioned on the server must have the same number 
of table-storage RDAREAs as index-storage RDAREAs.

3. Indexes on a server that are not row-partitioned must have the same number 
of index-storing RDAREAs as the back-end server on which tables are 
stored.

4. When adding a user RDAREA, you need to specify an RDAREA that 
satisfies the following formula:
Key length  (page-size-of-index-storage-RDAREA  2) - 1242



ALTER TABLE (Alter table definition)

515

5. Table 3-6 shows which index storage RDAREAs can be specified, 
depending on the type of index involved. For an index for which the 
specification of an index storage RDAREA is mandatory, an index storage 
RDAREA should be specified.

Table 3-6: Whether an index storage RDAREA can be specified depending on 
the index type

Legend:
Y: An index storage RDAREA needs to be specified.
N: An index storage RDAREA is not required.

1 Refers to row-partitioning on a HiRDB/Single Server or row-partitioned that is 
closed to a single back-end server on a HiRDB/Parallel Server.
2 Refers to row-partitioning extending across multiple back-end servers on a 
HiRDB/Parallel Server and not partitioning an index on the back-end server.
3 Refers to row-partitioning extending across multiple back-end servers on a 
HiRDB/Parallel Server and partitioning an index on the back-end server.

Index definition method Index-partitioning method Specifiability 
of index 
storage 

RDAREA

Index and primary key 
defined using CREATE INDEX 
format 1

Row-partitioning on 
one server1

On-server partitioning key index Y

On-server non-partitioning key 
index

Row-partitioning 
only between 
servers2

On-server partitioning key index

On-server non-partitioning key 
index

N5, 6

Row partitioning on 
and between 
servers3

On-server partitioning key index Y

On-server non-partitioning key 
index

Non-partitioning4 Non-partitioning key index N5

Index and cluster key defined 
using CREATE INDEX format 
2

Row-partitioning on one server1 Y

Row-partitioning only between servers2

Row-partitioning on and between servers3



ALTER TABLE (Alter table definition)

516

4 Refers to an index that is not row-partitioned.
5 If the addition of RDAREAs increases the number of back-end servers on which 
tables are stored, you also need to specify index storage RDAREAs.
6 If the addition of RDAREAs does not change the number of back-end servers 
on which tables are stored, you can also specify index storage RDAREAs. If an 
index storage RDAREA is specified, the index becomes a row-partitioned index 
on the server.

WITH PROGRAM
When adding an RDAREA to a hash-partitioned table, this option is specified to 
nullify the SQL object if there is an effective SQL object for a function, 
procedure, or trigger that uses that table.

4) column-attribute-change-definition::=
CHANGE{column-name{[{VARCHAR(data-length)

    |NVARCHAR(data-length)
    |MCHAR({*|data-length})
    |MVARCHAR({*|data-length})}]
    [ARRAY [{*|maximum-number-of-elements}]]
   |[ARRAY [maximum-number-of-elements]]
   |BINARY(data-length)}
   [{NO SPLIT|SPLIT}]
     [column-recovery-restriction-2]
   [{SET DEFAULT clause|DROP DEFAULT}]
   [WITH DEFAULT]
   [updatable-column-attribute]
  |CLUSTER KEY[UNIQUE]
  |LOCK{ROW|PAGE}
  |HASH hash-function-name
  |SEGMENT REUSE {[number-of-segments[{K|M|G}]]|NO}}
  |INSERT ONLY [WHILE {date-interval-data | labeled-interval} BY 
column-name]}
 [WITH PROGRAM]



ALTER TABLE (Alter table definition)

517

column-name
When modifying the definition of a column, specifies the name of the column.
The following rules apply to column names:
1. Columns for which any of the following specifications is made during a view 

table definition cannot be redefined using ALTER TABLE:
 A column specified as an argument in a scalar function in a selection 

expression or a search condition
 A column specified as an argument in a function call in a selection 

expression or a search condition
 A column specified as an operation term for a concatenation operation in 

a selection expression or a search condition
 A column specified in a value expression in a CASE expression in a 

selection expression or a search condition
 A column specified in a value expression in a CAST specification in a 

selection expression or a search condition
2. If any of the following items is specified in a view definition statement 

during the definition of a view table, the definition of columns in the table 
specified in the view table cannot be altered using ALTER TABLE.

 An item containing a row subquery
 An item containing a scalar subquery or a table subquery using set 

operations
 An item containing a table subquery with a results column count of 2 or 

greater in a FROM clause derived table or in a predicate other than the EXISTS 
predicate

 A selection expression containing a scalar subquery
 A row value constructor on the left side of a comparison predicate, IN 

predicate, or quantified predicate containing a scalar subquery
 A row value constructor, on the right side of a comparison predicate, 

containing a scalar subquery, with the number of row value constructor 
elements being 2 or greater

 A list of row value constructors, on the right side of an IN predicate, 
containing a scalar subquery

 Scalar subquery contained in a BETWEEN predicate, LIKE predicate, 
XLIKE predicate, or SIMILAR predicate

3. In column-name, specify the name of a column in the base specified in 



ALTER TABLE (Alter table definition)

518

table-identifier.
4. After column-name, specify one or more operands that provide a description 

of the change in column definition.
{VARCHAR (data-length))

|NVARCHAR(data-length)
|MCHAR({*|data-length})
|MVARCHAR({*|data-length})
|BINARY (data-length)}
Specifies data-length when changing the data length of variable-length data; it 
can also be specified when changing the data type from CHAR to MCHAR or from 
VARCHAR to MVARCHAR.
The following rules apply:
1. The maximum length of a column of the variable-length data type cannot be 

reduced.
2. For a variable-length data-type column for which an index is defined, its data 

length cannot be changed in a manner that violates the following formula:
Key length 
MIN ((page-size-of-index-storage-RDAREA  2) - 1242, 4036)

3. A data type should be omitted when you are not changing the maximum 
length.

4. Of the columns that are specified in a derived query expression in a view 
definition statement, columns that are subject to any of the following 
specifications cannot be changed to BINARY greater than or equal to 32,001 
bytes:

 Columns that are specified in a subquery in a comparison predicate, 
quantified predicate, or IN predicate

 Columns specified for duplicate elimination
 Columns specified for grouping or in a set function
 Columns specified in a selection expression with a query specification that 

is subject to set operations
 Columns that are specified during the definition of a view table that is 

expanded as an inner derived table in a query specification that satisfies one 
of the conditions for the creation of an inner derived table
For conditions for creating an inner derived table, see 2.21 Inner derived 



ALTER TABLE (Alter table definition)

519

tables.
5. CHAR can be changed to MCHAR, but the data length cannot be changed. For 

data length, specify either the data length before the change or an asterisk (*).
6. VARCHAR can be changed to MVARCHAR while increasing the maximum 

length of the column. If the maximum length is not to be changed, for data 
length, specify either the maximum length before the change or an asterisk 
(*).

7. The following columns cannot be changed to a BINARY type of 32,001 bytes 
or greater:

 Columns for which UPDATE ONLY FROM NULL of the updatable column 
attribute is specified

 Columns to which UPDATE ONLY FROM NULL of the updatable column 
attribute is assigned at the same time as a change in the attribute's data length

ARRAY [{*|maximum-number-of-elements}]
This operand is specified when increasing the maximum number of elements for 
a repetition column.
The following rules apply:
1. In maximum-number-of-elements, specify an unsigned integer in the 2 to 

30,000 range.
2. The default is that the column is not a repetition column.
3. When not changing the maximum number of elements, specify an asterisk 

(*).
4. The maximum number of elements cannot be reduced.

ARRAY [maximum-number-of-elements]
This operand is specified when increasing the maximum number of elements for 
a repetition column.
In maximum-number-of-elements, specify an unsigned integer in the 2 to 30,000 
range.
The maximum number of elements cannot be reduced.

{NO SPLIT|SPLIT}
This operand is specified to reduce the size of the database when storing data of 
a variable-length character type (VARCHAR, NVARCHAR, or MVARCHAR).
For details on NO SPLIT and SPLIT (the NO SPLIT option), see the HiRDB 
Version 8 Installation and Design Guide.



ALTER TABLE (Alter table definition)

520

NO SPLIT
This option is specified when the real data length is greater than or equal to 
256 bytes.

• When defining a table or adding a column definition, specify this option 
for a variable-length character string type for which NO SPLIT is not 
specified.

• This option cannot be specified for a base table containing data.
SPLIT

This option is specified when the real data length is less than or equal to 255 
bytes.

• When defining a table or adding a column definition, specify this option 
for a variable-length character type for which NO SPLIT is specified.

• This option cannot be specified for a base table containing data.
column-recovery-restriction-2::= RECOVERY{ALL|PARTIAL|NO}
When the column data type is BLOB or when the column is an abstract data type 
containing the BLOB attribute, this option is specified to change the method of 
acquiring the database update log corresponding to the column. The details of the ALL, 
PARTIAL, and NO options are the same as when column-recovery-restriction-1 is 
specified for ALTER TABLE ADD.
{SET DEFAULT clause|DROP DEFAULT}

SET DEFAULT clause
DEFAULT clause ::=DEFAULT[predefined-value]

The column data type that can be specified is the same as the default clause 
of ALTER TABLE ADD.
Specifying the SET DEFAULT clause on a column for which WITH DEFAULT 
is defined nullifies the WITH DEFAULT specification and causes the SET 
DEFAULT clause specification to take effect.
This option cannot be specified with WITH DEFAULT in a single ALTER 
TABLE statement.

DROP DEFAULT
This option is specified when deleting a predefined value.
DROP DEFAULT should be specified for columns for which DEFAULT clause 
is specified.

WITH DEFAULT



ALTER TABLE (Alter table definition)

521

This option is specified when changing a NOT NULL-constrained column without 
a predefined value into a NOT NULL-constrained column for which there is a 
predefined value.
The following rules apply to WITH DEFAULT:
1. This option cannot be specified on not NOT NULL-constrained columns.
2. WITH DEFAULT cannot be specified on NOT NULL-constrained columns for 

which there already is a predefined value.
3. WITH DEFAULT cannot be specified on columns for which DEFAULT clause 

is defined.
4. This option cannot be specified together with a SET DEFAULT or DROP 

DEFAULT clause in a single ALTER TABLE statement.
5. This option cannot be used to change a column with a predefined value into 

a column without a predefined value.
6. This option cannot be specified for a repetition column.
7. This option cannot be specified for an abstract data type column.

updatable-column-attribute::= UPDATE [ONLY FROM NULL]
Specify this operand if the updatable column attribute is to be changed before a 
table is changed into a falsification-prevented table.
The updatable column attribute is valid only with falsification-prevented tables.
For changing a given table into a falsification-prevented table, see the INSERT 
ONLY option.
The following rules apply to the updatable column attribute:
1. The attribute cannot be specified for a falsification-prevented table.
2. The attribute cannot be specified for a column for which SYSTEM 

GENERATED is specified.
3. The attribute cannot be specified for a column for which the updatable 

column attribute is already specified.
4. The attribute cannot be specified for any of the following non-updatable 

columns:
 Cluster key constituent column
 Partitioning key constituent column (not including partitioning key 

constituent columns for a flexible hash partitioning table)
UPDATE

With this option specified, the column is updatable after the table is changed 



ALTER TABLE (Alter table definition)

522

into a falsification-prevented table.
UPDATE ONLY FROM NULL

After a change into a falsification-prevented table, the column value can be 
updated only once from the null value to a non-null value.
The following table shows the updatability of the values of a column 
specified in a falsification-prevented table with the UPDATE ONLY FROM 
NULL option:

Legend:
Y: Updatable
N: Not updatable

Note

For a repetition column, only an update by column without a subscript 
specification can be executed from the null value (with an element count of 
0).

* Contains the same value as before the update.
The UPDATE ONLY FROM NULL specification is subject to the following 
rules:

• The operand cannot be specified for columns with a NOT NULL 
specification.

• The operand cannot be specified for FIX tables.
• The operand cannot be specified for the primary key or a cluster key 

constituent column.
• The operand cannot be specified for a partitioning key constituent 

column.
• The operand cannot be specified for a BLOB-type column or a 

BINARY-type column with a definition length of 32,001 bytes or greater.
If the attribute is specified, the column value of the updatable column attribute can 

Column value before update Column value after update Updatable

Null value Null value Y

Null value Non-null value Y

Non-null value Null value N

Non-null value Non-null value* N



ALTER TABLE (Alter table definition)

523

be updated under the following conditions:

Legend:
Y: Updatable
N: Not updatable

: Not applicable
* Can be updated only once from the null value to a non-null value.

CLUSTER KEY UNIQUE
This option is specified when changing a cluster key without uniqueness 
constraint into a cluster key with uniqueness constraint.
The following rules apply to CLUSTER KEY UNIQUE:
1. The cluster key attribute of a base table cannot be changed if the table already 

contains data.
2. This option cannot be specified for a table if a uniqueness-constrained cluster 

key is defined in the table definition.
3. This option cannot be specified for flexible hash-partitioned tables.

CLUSTER KEY
This option is specified when changing a cluster key with uniqueness constraint 
into a cluster key without uniqueness constraint.
The cluster key attribute cannot be changed for a base table if the table already 
contains data.
This option cannot be specified for a table if the table definition defines a not 
uniqueness constrained cluster key.

LOCK{ROW|PAGE}
This option is specified when changing the minimum lock resource unit for a 

Table type UPDATE specification UPDATE ONLY FROM 
NULL specification

No specification

Specifiable Column 
value 

updatable

Specifiable Column 
value 

updatable

Specifiable Column 
value 

updatable

Non-falsification-
prevented table

Y Y Y Y Y

Falsification-prev
ented table

N Y N Y* N



ALTER TABLE (Alter table definition)

524

table.
Specify LOCK ROW when changing the minimum lock resource unit into units of 
rows; specify LOCK PAGE when changing it into units of pages.

HASH hash-function-name
For a table that is row-partitioned by a hash function, this option can be specified 
when changing hash functions. This option cannot change hash functions on FIX 
hash-partitioned tables containing data.
HASH1-HASH6 and HASH0 cannot be specified as a hash function for a table that 
uses the rebalancing facility. Similarly, HASHA-HASHF cannot be used as a hash 
function for a table that does not use the rebalancing facility.

SEGMENT REUSE {[number-of-segments[{K|M|G}]]|NO}
This option is specified when applying the free space reusage facility for a table 
for which the free space reusage facility is not being used. For details about the 
free space reusage facility, see the HiRDB Version 8 Installation and Design 
Guide.
number-of-segments[{K|M|G}]

When using the free space reusage facility for a table and assigning an upper 
limit on the number of segments for the table, this operand specifies an upper 
limit on the number of segments in an unsigned integer in the 1 to 
268,435,440 range. As a unit, you can also specify K (kilo), M (mega), or G 
(giga).
When a table is subject to frequent insertion or deletion of rows, this operand 
can improve row insertion performance and the storage efficiency in a 
specified segment.

When number-of-segments is not specified
The operand number-of-segments can be omitted when the free space 
reusage facility is being used and no maximum number of segments is set for 
the table.
Use this operand when a table is subject to frequent row insertions or 
deletions and only the specified table is to be stored in the RDAREA. This 
operand also improves row insertion performance and the storage efficiency 
of free space in the RDAREA in which the specified table is to be stored.

NO
This operand is specified when not using the free space reusage facility.
Specify NO for tables that are not subject to frequent row insertions or 
deletions.



ALTER TABLE (Alter table definition)

525

The following rules apply to SEGMENT REUSE:
1. The free space reusage facility has no effect on LOB columns, abstract data 

type columns of the LOB attribute, or indexes.
2. The free space reusage facility cannot be specified for rebalancing tables.

INSERT ONLY [WHILE {date-interval-data | labeled-interval} BY column-name]
Specify this operand when changing a given table into a falsification-prevented 
table. For details about falsification-prevented tables, see the HiRDB Version 8 
Installation and Design Guide.
If a table is converted into a falsification-prevented table, its values cannot be 
updated; however, its updatable columns can be updated.
For the falsification-prevented table, a period during which deletion of rows is 
disabled (a deletion-prevented duration) can be specified. For specifying a 
deletion-prevented duration, use WHILE to specify a time period, and as a column 
name, specify an insert history maintenance column (a column of the DATE type 
and SYSTEM GENERATED). If a deletion-prevented duration is not specified, the 
column cannot be deleted at any time.
date-interval-data

Specifies a deletion-prevented duration in a decimal representation of date 
interval data. See 1.3.4 Decimal representation of date interval data.
Date interval data can be specified in positive numbers only.

labeled-interval
Specifies a deletion-prevented duration as a labeled duration. See 2.11 Date 
operations for labeled durations.
Only a positive integer literal not enclosed in parentheses can be specified in 
a value expression for a labeled duration.

column-name
Specify a DATE-type column that is SYSTEM GENERATED.
The deletion-prevented duration includes the day the row was inserted, and 
the calculation of a deletion-prevented duration is subject to the rules on 
adding or subtracting date data and date interval data in 2.11 Date 
operations. The last deletion-prevented date and the deletion-enabled date 
result from the following operations:

• last-deletion-prevented-date = row-insertion-date + 
deletion-prevented-duration - 1-day

• deletion-enabled-date = row-insertion-date + 
deletion-prevented-duration



ALTER TABLE (Alter table definition)

526

For the relationship between a last deletion-prevented date and a deletion 
enabled date at specified values of a row insertion date and 
deletion-prevented duration, see Table 3-27 Relationship between last day of 
deletion prevention and the deletion-allowed data.

Changing a given table to a falsification-prevented table is subject to the 
following restrictions:
1. A table that is already converted into a falsification-prevented table cannot 

be specified.
2. A table for which a foreign key is defined cannot be changed into a 

falsification-prevented table.
3. A table for which a check constraint is defined cannot be changed into a 

falsification-prevented table.
4. A table for which the updatable column attribute is specified for all columns 

cannot be changed into a falsification-prevented table.
5. If a given table is defined in an RDAREA to which the inner replica facility 

is applied, the table cannot be changed into a falsification-prevented table.
6. A table containing rows cannot be changed into a falsification-prevented 

table.
WITH PROGRAM

This option can be specified in the following cases:
• For disabling an enabled SQL statement for the function, procedure, or 

trigger for the table in question when changing column names, changing the 
default for the DEFAULT clause, changing the lock mode for a table, changing 
hash functions for a hash-partitioned table, changing SEGMENT REUSE, or 
changing falsification-prevented tables.

• Nullifying an SQL object that is effective for a function, procedure, or trigger 
on a cluster key when the uniqueness constraint attribute of the cluster key is 
to be changed.

5) column-deletion-definition::=
DROP column-name[WITH PROGRAM]
column-name

This operand is specified when deleting a column.
The following rules apply to the column-name operand:
1. In column-name, specify the name of the column that is in the base table 

specified in table-identifier.



ALTER TABLE (Alter table definition)

527

2. Columns in a base table cannot be deleted if the base table already contains 
data.

3. If a column is the only one left in a table, it cannot be deleted.
4. Deleting a column causes any index on the column, comments, and any view 

table (including public view tables) using the column also to be deleted.
5. Columns comprising an index for which a cluster key or the primary key is 

defined cannot be deleted.
6. Columns with a BLOB data type cannot be deleted.
7. Columns of a table containing abstract data-type columns cannot be 

specified.
8. Insert history maintenance columns for a falsification-prevented table cannot 

be deleted.
9. A column in a falsification-prevented table cannot be deleted if its deletion 

makes all columns in the table updatable.
WITH PROGRAM

This option is specified when deleting a column in a table and when SQL objects 
for which functions, procedures, and triggers using the table are to be nullified.

6) table-name-change-definition::=
RENAME TABLE TO table-identifier

[WITH PROGRAM]
This option is specified when renaming a table.
table-identifier

Specifies the name of the renamed base table.
The following rules apply to the table-identifier operand:
1. This operand can also be used to rename indexed tables.
2. This operand cannot be used to rename view tables or foreign tables.
3. The names of the following tables cannot be modified:

 A table that becomes the base for a view table
 A table specified in a CREATE PROCEDURE SQL procedure statement
 A table specified in a CREATE TRIGGER SQL procedure statement and a 

table that defines a trigger
4. The name of a table cannot be changed to a name identical to a base table, a 

view table, a foreign table, or a table alias, that is in the schema.



ALTER TABLE (Alter table definition)

528

5. Falsification-prevented tables cannot be renamed.
WITH PROGRAM

When the name of a table identifier is modified, this option is specified to 
invalidate the valid SQL object of a function, procedure, or trigger defined for the 
table. Note that even when WITH PROGRAM is specified, the table name of the 
table for which the trigger is defined cannot be modified.

7) column-name-change-definition::=
RENAME COLUMN FROM pre-change-column-name TO 
post-change-column-name
[WITH PROGRAM]

This option is specified to change the name of a column.
old-column-name, new-column-name

When renaming a column, specifies the old name and the new name.
The following rules apply to old-column-name and new-column-name operands:
1. Index key columns can also be renamed.
2. Columns in a view table or foreign table cannot be renamed.
3. The names of the following columns cannot be altered:

 Columns in a table that becomes the base for a view table
 Columns in a table specified in a CREATE PROCEDURE SQL procedure 

statement
 Columns in a table specified in a CREATE TRIGGER SQL procedure 

statement, trigger event columns, and columns specified in a trigger action 
condition

4. The name of a column cannot be changed to a column name that is already 
in the table.

5. A column cannot be renamed if its existing column name is not in the table.
6. Columns in a falsification-prevented table cannot be renamed.

WITH PROGRAM
When the name of a column is modified, this option is specified to invalidate the 
valid SQL object of a function, procedure, or trigger defined for the table 
containing the column. However, the WITH PROGRAM option cannot rename the 
table for which a trigger is defined or any of the following columns:

• Trigger event columns



ALTER TABLE (Alter table definition)

529

• Columns that are referenced in a trigger action condition using an old or new 
values correlation name

• Columns that are referenced in a trigger SQL statement using an old or new 
values correlation name

8) partitioning-storage-condition-change-definition::=
CHANGE RDAREA row-partitioned-table-change-specification

[LOB-column-storage-RDAREA-change-specification]
[index-storage-RDAREA-change-specification
[index-storage-RDAREA-change-specification]...]
[cluster-key-storage-RDAREA-change-specification]
[primary-key-storage-RDAREA-change-specification]
[WITHOUT PURGE]
[WITHOUT PROGRAM]
Specify this operand when modifying the partitioning storage condition for a 
row-partitioned table.
The partitioning storage condition for the following tables cannot be changed:

• Matrix-partitioned table
• Row-partitioned table containing columns of the abstract data type

In the following text, columns for which the BLOB type is specified are referred to 
as LOB columns.
In an ALTER TABLE statement, table partitioning storage conditions can be 
partitioned and combined in the following units:

For SQL examples of partitioning or combining table partitioning storage 
conditions, see examples 9 (on modifying the boundary values for a 
row-partitioned table with a boundary value specification) and 10 (on modifying 

Table type Table partitioning method Execution type

Partitioning Combining

Row-partitioned 
table 

Key range 
partitioning

Boundary value 
specification

Partitions an arbitrarily 
selected boundary value 
into 2 to 16 values.

Combines 2 to 16 arbitrarily 
selected boundary values 
into a single value.

Storage 
condition 
specification

Partitions an arbitrarily 
selected RDAREA into 
2 to 16 segments.

Combines 2 to 16 arbitrarily 
selected RDAREAs into a 
single RDAREA.



ALTER TABLE (Alter table definition)

530

the RDAREAs of a row-partitioned table with a storage condition specification) 
under Examples in subsection 8-10. If a partitioning storage condition is 
modified, the system deletes any data stored in the RDAREA that is subject to 
modification when the ALTER TABLE command is executed. (If the WITHOUT 
PURGE option is specified, the scope of deletion of modification-object data may 
change. For details, see the WITHOUT PURGE option for details.) For this 
reason, any data that is required after the execution of ALTER TABLE must be 
stored again, by performing operations such as unloading the data before the 
partitioning storage condition is changed and loading it after the partitioning 
storage condition is changed. For details about how to store again the data to be 
deleted, see Changing the partitioning storage condition for a table in the manual 
HiRDB Version 8 System Operation Guide.
Modification of table partitioning storage conditions is subject to the following 
rules:
Items to be checked before changing table partitioning storage conditions

Before changing table partitioning storage conditions, the following items 
must be checked:
1. Modifying a partitioning storage condition requires HiRDB Advanced 

Partitioning Option 07-01 or later.
2. Some table types and partitioning methods involved prohibit a 

modification of partitioning storage conditions, as summarized in the 
following table:

Table type Partitioning method Modifiability

Row-partitioned 
table

Key range 
partitioning

Storage condition 
specification

Table in which only = 
is used for the storage 
condition comparison 
operator

Y

Table in which an 
operator other than = 
is used for the storage 
condition comparison 
operator 

N

Boundary value specification Y

Hash partitioning N

Matrix-partitioned 
table

First dimension: Boundary value specification
Second dimension: Boundary value specification

N

First dimension: Boundary value specification
Second dimension: Hash partitioning

N



ALTER TABLE (Alter table definition)

531

Legend:
Y: Modifiable
N: Modifiable

: Not applicable
* A table without a partitioning storage condition specification.

3. Partitioning storage conditions cannot be modified if table storage 
RDAREAs, index storage RDAREAs, and LOB column storage 
RDAREAs are not in 1-to-1 correspondence.

4. For a row-partitioned table with a storage condition specification, the 
partitioning storage condition cannot be modified if both of the 
following conditions are satisfied:

 An index key, primary key, or cluster key is defined in the table that 
is to be modified.

 There is only a single table storage RDAREA in the table that is to be 
modified or in the table resulting from the modification.

5. Partitioning storage conditions on falsification-prevented tables cannot 
be modified.

6. The following items must be checked if the inner replica facility is being 
used:

 RDAREAs storing tables, indexes, primary keys, cluster keys, and 
LOB columns must all have the same generation number.

 If a referential constraint is defined for a table, RDAREAs that store 
the referencing table and the referenced table must all have the same 
generation number.

Rules for modifying a table partitioning storage condition

Modifying a table partitioning storage condition is subject to the following 
rules:
1. The partitioning and combining of partitioning storage conditions 

cannot be performed simultaneously in a single execution of ALTER 
TABLE. These actions should be performed in two separate executions 
of ALTER TABLE.

Non-partitioned 
table*

N

Table type Partitioning method Modifiability



ALTER TABLE (Alter table definition)

532

2. The RDAREAs for the table to be modified (RDAREA identified by the 
pre-modification boundary value list that specifies row-partitioned table 
modification or RDAREA specified in the pre-modification RDAREA 
information list), index storage RDAREAs, and LOB column storage 
RDAREAs must be in 1-to-1 correspondence.

3. Tables, indexes, primary keys, cluster keys, and LOB columns must 
maintain correspondence between the number of partitions and any 
duplication of RDAREAs based on a table. (For example, if the system 
consolidates boundary values into a single value before and after the 
modification of a table, and if the RDAREA to be specified stores data 
other than a boundary value to be modified, the same RDAREA must 
be used before and after modification, and the index, the primary key, 
the cluster key, and the LOB column must also specify, in an identical 
manner, the position in which the same RDAREA is used. For details, 
see Modifying the table partitioning storage condition in the manual 
HiRDB Version 8 System Operation Guide.)

4. The maximum total number of partitioned RDAREAs before and after 
a change in table definitions is 1,024, exclusive of duplicates.

5. For a row-partitioned table with a storage condition specification, the 
name of the table storage RDAREA after the table definition 
modification must be unique. The maximum total number of boundary 
values (including other) before and after table definition is 3,000.

6. The maximum total number of storage condition specifications after the 
table definition modification (including RDAREAs without storage 
condition specification) is 15,000.

7. The data in the table in the RDAREA specified as an object of 
modification is deleted by the system during the execution of ALTER 
TABLE (the data in the index storage RDAREA and the data in the LOB 
column storage RDAREA associated with the RDAREA are also 
deleted by the system). If the inner replica facility is used, the data in the 
replica RDAREAs of all generations that store the table, index, primary 
key, cluster key, or LOB column (including the LOB-type attribute 
column) that are subject to modification is also deleted by the system 
during the execution of ALTER TABLE (see item 4 in the notes about 
modification).

8. When USE is specified for the pd_check_pending operand in the 
system definition and the modification-target table is a referenced table, 
the table information in dictionary tables and in the RDAREA is set to 
check pending status for the table that is referencing the referenced 
table. Additionally, if the inner replica facility is used, the table 
information in the RDAREA is set to check pending status for all 



ALTER TABLE (Alter table definition)

533

generations.
9. When the partitioning storage condition of a table that is in check 

pending status is modified, the following rules apply to releasing the 
check pending status:
<<Check pending status specified in the table information of an 
RDAREA>>
The check pending status of the modification-target table is released 
only from the RDAREA from which data is to be deleted.
<<Check pending status specified in dictionary tables>>
The table below shows the dictionary tables from which the check 
pending status is released when USE is specified for the 
pd_check_pending operand in the system definition. When NOUSE is 
specified, there are no dictionary tables from which the check pending 
status is released.

Table 3-7:  Dictionary tables from which check pending status is released when 
USE is specified for the pd_check_pending operand in the system definition

Constraint defined in 
the modification-target 

table

Is there an 
RDAREA in which 
the check pending 
status is specified 

for the table 
information?#

Dictionary tables from which the check pending 
status is released

Referential constraint No SQL_REFERENTIAL_CONSTRAINTS 
table

CHECK_PEND 
column

SQL_TABLES table CHECK_PEND 
column

Check constraint No SQL_CHECKS table CHECK_PEND2 
column

SQL_TABLES table CHECK_PEND2 
column



ALTER TABLE (Alter table definition)

534

Legend:
: Not applicable

# When the inner replica facility is used, includes the table RDAREAs 
of the modification-target table in all generations.

10. The data to be modified is deleted according to the scope described 
below (when the WITHOUT PURGE option is specified, the scope in 
which the data subject to modification is deleted may vary; for details, 
see WITHOUT PURGE option):

Row-partitioned tables with a boundary value specification:

 Table, index, primary key, cluster key, and LOB column data of the 
RDAREA identified by the boundary value specified in the pre-modification 
boundary value list

 Data of the boundary value other than the modification target when the 
RDAREA identified by the boundary value specified in the pre-modification 

Referential constraint and 
check constraint

Referential constraint: 
No
Check constraint: No

SQL_REFERENTIAL_CONSTRAINTS 
table

CHECK_PEND 
column

SQL_CHECKS table CHECK_PEND2 
column

SQL_TABLES table CHECK_PEND 
column, 
CHECK_PEND2 
column

Referential constraint: 
No
Check constraint: Yes

SQL_REFERENTIAL_CONSTRAINTS 
table

CHECK_PEND 
column

SQL_TABLES table CHECK_PEND 
column

Referential constraint: 
Yes
Check constraint: No

SQL_CHECKS table CHECK_PEND2 
column

SQL_TABLES table CHECK_PEND2 
column

No constraint defined No

Constraint defined in 
the modification-target 

table

Is there an 
RDAREA in which 
the check pending 
status is specified 

for the table 
information?#

Dictionary tables from which the check pending 
status is released



ALTER TABLE (Alter table definition)

535

boundary value list is the same as the RDAREA that stores the data of the 
boundary value other than the modification target

 When the inner replica facility is used, table, index, primary key, cluster 
key, and LOB column data of all generations of replica RDAREAs of the 
RDAREA identified by the boundary value specified in the pre-modification 
boundary value list

Row-patterned tables with a storage condition specification:

 Table, index, primary key, cluster key, and LOB column data of the 
RDAREA specified in the pre-modification RDAREA information list

 When the inner replica facility is used, table, index, primary key, cluster 
key, and LOB column data of all generations of replica RDAREAs of the 
RDAREA identified in the pre-modification RDAREA information list
1. For a row-partitioned table with a boundary value specification, the 

table below describes the conditions applicable when the RDAREAs 
are duplicated (RDAREAs storing non-adjacent boundary values are 
the same RDAREAs) or consecutive (RDAREAs storing adjacent 
boundary values are the same RDAREAs). For details, see the manual 
HiRDB Version 8 System Operation Guide.

* The RDAREA specified in the post-change boundary value partition 
specification (8-3).

2. A specification is not allowed if it results in the following condition of 
the table storage RDAREA as a result of the combining:

 The number of table partitions is 1.
3. A shared RDAREA cannot be specified for a modified RDAREA.
4. If a function, procedure, or trigger is defined for the table in which 

partitioning storage conditions are to be modified, the function, 
procedure, or trigger must be disabled by specifying WITH PROGRAM.

Item Row-partitioned table with a boundary value 
specification

Modified RDAREA specified in 
ALTER TABLE*

Duplicate Duplication acceptable.

Contiguous Contiguous allocation should be avoided.

RDAREA of an entire table of 
the results of modification of a 
partitioning storage condition

Duplicate Duplication acceptable.

Contiguous During partitioning, the system consolidates 
contiguous RDAREAs into one area.

Cannot be specified for combining.



ALTER TABLE (Alter table definition)

536

When modifying a partitioning storage condition, observe the following 
points:

Notes on modification

1. If a function, procedure, or trigger is defined for a table in which 
partitioning storage conditions are to be modified, and if the function, 
procedure, or trigger is disabled by specifying WITH PROGRAM, the 
definition-nullified function, procedure, or trigger must be recreated by 
using ALTER ROUTINE. (A procedure can be recreated using ALTER 
PROCEDURE, and a trigger, by ALTER TRIGGER).

2. If the RDAREA identified with the boundary value to be modified is the 
duplicate of an RDAREA storing boundary value data that is not be to 
be modified, the system, which deletes all data in the table in the 
RDAREA to be modified, also deletes boundary value data that is not 
being modified.

3. If data in the table to be modified is to be re-stored in the modified table, 
or if a data backup is to be obtained for error recovery, operations are 
required such as unloading the pre-modification data by using the 
database reorganization utility (pdrorg) and loading it on the modified 
table, or creating a backup of the RDAREA using the database copy 
utility (pdcopy). For details, see Changing a table's partitioning 
storage condition in the manual HiRDB Version 8 System Operation 
Guide.

4. If the table being modified is a referenced table and the data in the table 
is to be deleted, compatibility between the referencing and referenced 
tables may be lost. In this case, modify the partitioning storage 
condition for the tables, re-store data in the modified table, and then 
verify the compatibility between the referencing and referenced tables. 
For details about how to store the data in the modified table, see 3. 
above; for the verification method, see Changing a table's partitioning 
storage condition in the manual HiRDB Version 8 System Operation 
Guide.

5. If the inner replica facility is used, compatibility between the 
referencing and referenced tables may be lost unless the RDAREAs that 
store the referencing and referenced tables all have the same generation 
number. If compatibility between referencing and referenced tables is 
lost, operations such as restoring data from a backup RDAREA are 
required. For the operation method, see Changing the partitioning 
storage condition for a table in the manual HiRDB Version 8 System 
Operation Guide.

6. When USE is specified in the pd_check_pending operand in the 
system definition, and the table referencing the table whose partitioning 



ALTER TABLE (Alter table definition)

537

storage condition is to be changed is being used by another user, the 
referencing is set to check pending status once the transaction 
terminates.

8-1) row-partitioned-table-change-specification::=
  {[PARTITIONED] pre-change-boundary-value-list INTO 
post-change-boundary-value-partition-specification
   |PARTITIONED CONDITION pre-change-RDAREA-information-list
     INTO post-change-storage-condition-partition-specification}
Specify this operand when modifying the partitioning storage condition of a 
row-partitioned table with a boundary value or storage condition specification.

PARTITIONED
Specify this operand when modifying the partitioning storage condition for a 
row-partitioned table with a boundary value specification.
The following rules apply to row-partitioned table modification specifications:
Partitioning

1. A single SQL statement can be used to partition a boundary value and 
an RDAREA associated with the boundary value.

2. Boundary values specified in a pre-modification boundary value list are 
partitioned according to the row-partitioned table modification 
specification.

Combining

1. A single SQL statement can be used to combine consecutive, multiple 
boundary values and the RDAREAs associated with the boundary 
values.

2. The specification combines the boundary values specified in a 
pre-modification boundary value list into the largest boundary value 
specified in the pre-modification boundary value list and into the 
RDAREA specified in the post-change boundary value partitioning 
specification.

PARTITIONED CONDITION
Specify this operand when modifying the partitioning storage condition for a 
row-partitioned table with a storage condition specification. The following rules 
apply to row-partitioned table modification specifications:
Partitioning

1. A single SQL statement can be used to partition a single RDAREA that 



ALTER TABLE (Alter table definition)

538

satisfies the storage condition.
2. The RDAREA specified in the pre-change RDAREA information list is 

partitioned according to the post-change storage condition partitioning 
specification.

Combining

1. A single SQL statement can be used to combine multiple RDAREAs 
that satisfy the storage condition.

2. The RDAREAs specified in the pre-change RDAREA information list 
are combined into the RDAREA specified in the post-change storage 
condition partitioning specification.

8-2) pre-change-boundary-value-list::= boundary-value-list
boundary-value-list::= ((boundary-value | MAX) [, (boundary-value | MAX)]...)
Specifies a pre-modification boundary value, and identifies the RDAREA to be 
modified based on the specified boundary value.
The following rules apply to row-partitioned table modification specifications:
Partitioning

1. One boundary value or one instance of MAX can be specified.
2. Boundary values not defined in a table cannot be specified.
3. For a partitioning key value greater than the maximum boundary value 

specified in the table, specify MAX instead of a boundary value.
Combining

1. The number of boundary values and instances of MAX that can be 
specified is 2 to 16.

2. Only one instance of MAX can be specified.
3. Boundary values not defined in a table cannot be specified.
4. For a partitioning key value greater than the maximum boundary value 

specified in the table, specify MAX instead of a boundary value.
5. Consecutive boundary values should be specified in ascending order.
6. A given boundary value cannot be specified multiple times.

boundary-value
Specifies the boundary value that is defined for the table before the table is 
modified. This operand is specified to identify the boundary value and the 
RDAREA to be modified.



ALTER TABLE (Alter table definition)

539

MAX
Specify this option when a range greater than the maximum boundary value 
defined in the pre-modification table is to be modified.

8-3) post-change-boundary-value-partitioning-specification::= 
{table-storage-RDAREA-name

               | (table-storage-RDAREA-name)
               | ([(table-storage-RDAREA-name) boundary-value,]
                 ...(table-storage-RDAREA-name))}
This operand changes the boundary value and the RDAREA to be modified that 
were specified in the pre-modification boundary value list (8-2) to a specified 
boundary value and RDAREA. Any data that has the specified boundary value as 
a partitioning key is stored in the RDAREA specified immediately before this 
specification.
Partitioning

1. The number of table storage RDAREA names that can be specified is 2 
to 16.

2. A boundary value cannot be specified for the last RDAREA.
3. The number of boundary values that can be specified is 1 to 15.
4. In boundary-value, specify a literal.
5. Boundary values should be specified in ascending order.
6. For an RDAREA that stores the last range in which the boundary value 

to be modified is partitioned, as specified in the pre-modification 
boundary value list, specify an RDAREA name in the format in which 
a boundary value is not specified after the RDAREA.

7. Boundary values greater than the range to be modified, as specified in 
the pre-modification boundary value list, cannot be specified.

8. The same RDAREA name can be specified multiple times in 
table-storage-RDAREA-name. However, identical RDAREA names 
cannot be specified consecutively.

9. For values that can be specified in boundary-value, see CREATE 
TABLE (Define table).

Combining

1. Only one table storage RDAREA name can be specified.
2. Boundary values cannot be specified.



ALTER TABLE (Alter table definition)

540

3. A specification cannot be made such that there is only one storage 
RDAREA in a modified table.

Notes

If, as a result of partitioning, the RDAREAs that store adjacent boundary 
values are the same RDAREA, the system consolidates the boundary values 
into a maximum boundary value.

table-storage-RDAREA-name
Specifies the RDAREA that stores data after modification.

boundary-value
During partitioning, specifies a modified boundary value; this operand 
cannot be specified during combining.

8-4) pre-change-RDAREA-information-list::=
       {table-storage-RDAREA-name
       |(table-storage-RDAREA-name)
       |((table-storage-RDAREA-name)
        [,(table-storage-RDAREA-name)]...[,OTHERS])
       |OTHERS}
Specifies the name of the pre-change table storage RDAREA. The specified table 
storage RDAREA name is used to specify the storage condition for the change 
target.
The following rules apply to the pre-change RDAREA information list:

Partitioning

1. You can specify only a single table storage RDAREA name or OTHERS.
2. You cannot specify a table storage RDAREA name not specified in the table.
3. You cannot specify a table storage RDAREA name for which only a single 

literal is specified for the storage condition. However, you can specify a table 
storage RDAREA name for which no storage condition is specified.

4. If you specify a table storage RDAREA name for which a storage condition 
is specified, you cannot partition the storage condition in the RDAREA into 
other RDAREAs and add a new storage condition.

5. If a table storage RDAREA name for which no storage condition is specified 
is specified, you can add a new storage condition.

6. To add a storage condition if the table whose definition is to be changed does 
not include a table storage RDAREA for which no storage condition is 



ALTER TABLE (Alter table definition)

541

specified, specify OTHERS in place of the table storage RDAREA name.
7. If a table storage RDAREA for which no storage condition is specified does 

exist, you cannot specify OTHERS.
Combining

1. You can specify 2 to 16 table storage RDAREA names or OTHERS.
2. You can specify OTHERS only once.
3. You cannot specify a table storage RDAREA name not specified in the table.
4. The same table storage RDAREA name cannot be specified more than once.
5. If you make a specification containing a table storage RDAREA name for 

which no storage condition is specified, you can delete the storage condition.
6. To delete a storage condition if there is no table storage RDAREA name for 

which no storage condition is specified, specify OTHERS in place of the table 
storage RDAREA name.

7. If the table does include a table storage RDAREA for which no storage 
condition is specified, you cannot specify OTHERS.

table-storage-RDAREA-name
Specifies the table storage RDAREA name specified in the pre-change table. You 
specify this name to specify the storage condition to be changed.

OTHERS
Specify this option to add or delete a storage condition when a table storage 
RDAREA for which no storage condition is specified does not exist in the table 
to be changed.

8-5) pre-change-RDAREA-information-list::= {table-storage-RDAREA-name
       |(table-storage-RDAREA-name)

       |((table-storage-RDAREA-name)storage-condition
         {,(table-storage-RDAREA-name)storage-condition
         [[,(table-storage-RDAREA-name)storage-condition
            ...]
           [{,(table-storage-RDAREA-name)
             |,OTHERS}])
          |,(table-storage-RDAREA-name))
          |,OTHERS)}



ALTER TABLE (Alter table definition)

542

       |OTHERS}
   storage-condition::=column-name={literal|(literal[,literal...])}
Changes the change-target RDAREAs specified in the pre-change RDAREA 
information list to the specified storage conditions and RDAREAs.
The following rules apply to post-change storage condition partitioning 
specifications:

Partitioning

1. You can specify 2 to 16 table storage RDAREA names or OTHERS.
2. You can specify OTHERS only once.
3. You can specify only one table storage RDAREA name for which no storage 

condition is specified.
When an RDAREA for which a storage condition is specified is specified in the 
pre-change RDAREA list

1. You cannot specify an RDAREA for which a storage condition is not 
specified or OTHERS.

When an RDAREA for which no storage condition is specified is specified in the 
pre-change RDAREA list

1. Include the name of the RDAREA for which no storage condition is 
specified or OTHERS in the specification.

2. When deleting an RDAREA for which no storage condition is specified, 
specify OTHERS.

When OTHERS is specified in the pre-change RDAREA list
1. Include the name of the RDAREA for which no storage condition is 

specified or OTHERS in the specification.
2. When adding a storage condition, specify OTHERS.

Combining

1. You can specify only a single table storage RDAREA name, or OTHERS.
2. You cannot specify a storage condition.
3. When deleting a storage condition, specify OTHERS.
4. You cannot make a specification that would eliminate all storage conditions 

from the combined table.
When only an RDAREA name for which a storage condition is specified is 
specified in the pre-change RDAREA list



ALTER TABLE (Alter table definition)

543

1. You cannot specify an RDAREA name for which a storage condition is 
not specified.

When an RDAREA name for which a storage condition is not specified is also 
specified in the pre-change RDAREA list

1. When deleting an RDAREA for which no storage condition is specified, 
specify OTHERS.

When OTHERS is also specified in the pre-change RDAREA list
1. You can add an RDAREA for which no storage condition is specified.

table-storage-RDAREA-name
Specifies the name of the RDAREA that stores data after the change.

storage-condition
Specifies the post-change storage condition during partitioning. This option 
cannot be specified during combining.
For the column name, specify the column name specified for the partitioning key.
For the storage condition, specify a literal. For details about the values that can be 
specified as a storage condition, see CREATE TABLE (Define table) in this 
chapter.
When a table storage RDAREA name for which a storage condition is specified 
is specified in the pre-change RDAREA information list

1. Specify all storage conditions specified for the change-target table 
storage RDAREA.

2. You cannot specify a storage condition that does not exist.
3. You cannot specify a storage condition in duplicate.

When a table storage RDAREA name for which no storage condition is specified 
is specified or OTHERS in the pre-change RDAREA information list

1. Specify a storage condition that does not exist in the table definition.
2. You cannot specify a storage condition that exists in the table definition.

OTHERS
Specify this option when there is no need for an RDAREA for storing data that 
does not satisfy the storage condition defined in the table as a result of the table 
definition change.

8-6) index-storage-RDAREA-change-specification::=
FOR INDEX index-name



ALTER TABLE (Alter table definition)

544

INTO post-change-index-storage-RDAREA-name-list
Specify this operand if an index is defined for the table for which partitioning 
storage conditions are to be modified.
The following rules apply to RDAREAs for index modification specifications:
1. A modification cannot be specified if it only modifies an RDAREA for 

index.
2. Index RDAREAs can be modified if they have the same scope or same 

storage condition as the boundary value specified in the row-partitioned table 
modification specification.

3. All indexes that are defined in the table must be specified.
index-name

If an index is defined on the table for which partitioning storage conditions are to 
be modified, in this operand specify the identifier for the index that is defined.

post-change-index-storage-RDAREA-name-list::=
{RDAREA-name-for-index
| (RDAREA-name-for-index)
| ((RDAREA-name-for-index)
[, (RDAREA-name-for-index)]...[, OTHERS])
}
| OTHERS}
Specifies the name of the RDAREA that stores an index, primary key, or cluster 
key.
The following rules apply to modified RDAREA for index name lists:
1. The number of RDAREAs specified in 

post-change-index-storage-RDAREA-name-list must be equal to the number 
of RDAREAs specified in the following location:

• Post-change boundary value partitioning specification (for a row-partitioned 
table with a boundary value specification)

• Post-change storage condition partitioning specification (for a 
row-partitioned table with a storage condition specification)

• Matrix-partitioned table storage RDAREA change specification (for a 
matrix-partitioned table)

1. If an RDAREA is specified in duplicate in the post-change boundary value 
partitioning specification, the RDAREAs specified in 



ALTER TABLE (Alter table definition)

545

post-change-index-storage-RDAREA-name-list must also have the same 
duplication.

2. Tables, indexes, primary keys, and cluster keys must maintain duplication 
correspondence with the number of partitions and RDAREAs based on a 
table. (For example, if the system consolidates boundary values into a single 
value before and after the modification of a table, and if a specified 
RDAREA stores data other than the boundary value to be modified, the same 
RDAREA must be used, and a position that specifies the same RDAREA 
must similarly be specified in the index, the primary key, and the cluster key.)

3. If OTHERS is specified in the post-change storage condition specification, 
OTHERS must also be specified in 
post-change-index-storage-RDAREA-name-list that corresponds to the 
post-change storage condition specification.

RDAREA-name-for-index
Specifies the name of the RDAREA in which modified data is to be stored.

OTHERS
Specify this option when OTHERS is specified in the post-change storage 
condition specification.
OTHERS cannot be specified if OTHERS is not specified in the post-change 
storage condition specification.

8-7) primary-key-storage-RDAREA-change-specification::=
   FOR PRIMARY KEY
   INTO post-change-index-storage-RDAREA-name-list
Specify this operand if the primary key is defined for the table for which 
partitioning storage conditions are to be modified.
The following rules apply to primary key storage RDAREA modification 
specifications:
1. Only one primary key storage RDAREA modification specification can be 

specified.
2. A modification that only modifies the RDAREA that stores the primary key 

cannot be specified.
FOR PRIMARY KEY

Specify this option if the primary key is defined for a table.
post-change-index-storage-RDAREA-name-list

Specifies the RDAREA that stores a modified primary key. For details, see 



ALTER TABLE (Alter table definition)

546

post-change-index-storage-RDAREA-name-list in 8-4.
8-8) cluster-key-storage-RDAREA-change-specification::=

   FOR [PRIMARY] CLUSTER KEY
   INTO post-change-index-storage-RDAREA-name-list
Specify this operand if a cluster key is defined for the table for which partitioning 
storage conditions are to be modified.
The following rules apply to cluster key storage RDAREA modification 
specifications:
1. A modification that only modifies the RDAREA that stores a cluster key 

cannot be specified.
2. Only one cluster key storage RDAREA modification specification can be 

specified.
FOR [PRIMARY] CLUSTER KEY

Specify this option when modifying the RDAREA for index that stores a cluster 
key is to be modified.
PRIMARY

Specify this option if a cluster key is defined as the primary key.
post-change-index-storage-RDAREA-name-list

Specifies the name of the RDAREA that stores a modified cluster key. For details, 
see post-change-index-storage-RDAREA-name-list in 8-6.

8-9) LOB-column-storage-RDAREA-change-specification::=
 FOR COLUMN column-name
  LOB-column-storage-RDAREA-change-list
  [, column-name-LOB-column-storage-RDAREA-name-specification]...
Specify this operand if a LOB column is defined for the table for which 
partitioning storage conditions are to be changed.
The following rules apply to LOB column storage RDAREA modification 
specifications:
1. A modification that only modifies a LOB column storage RDAREA cannot 

be specified.
2. In column-name, specify a LOB column.
3. All LOB columns that are defined for the table must be specified.

column-name



ALTER TABLE (Alter table definition)

547

Specifies the name of the LOB column defined on the table.
8-10) LOB-column-storage-RDAREA-change-list::=

   INTO {LOB-column-storage-RDAREA-name
   | (LOB-column-storage-RDAREA-name)
   | ((LOB-column-storage-RDAREA-name)
   [, (LOB-column-storage-RDAREA-name)]...[, OTHERS])
|OTHERS}
Specifies the name of the user LOB RDAREA that stores LOB column data for a 
row-partitioned table.
The following rules apply to LOB column storage RDAREAs:
1. For a column for which the BLOB data type is specified, a LOB column 

storage RDAREA name must always be specified. A LOB column storage 
RDAREA name cannot be specified for columns for which a non-BLOB data 
type is specified.

2. If an RDAREA is specified in duplicate in the post-change boundary value 
partitioning specification, the same duplicated RDAREA must also be 
specified in LOB-column-storage-RDAREA-name.

3. Tables and LOB columns must maintain duplication correspondence with the 
number of partitions and RDAREAs based on a table. (For example, if the 
system consolidates boundary values into a single value before and after the 
modification of a table, and if a specified RDAREA stores data other than the 
boundary value to be modified, the same RDAREA must be used, and a 
position that specifies the same RDAREA must similarly be specified in the 
LOB column.)

4. If OTHERS is specified in the post-change storage condition specification, 
OTHERS must also be specified in 
LOB-column-storage-RDAREA-change-list that corresponds to the 
post-change storage condition specification.

LOB-column-storage-RDAREA-name
Specifies the name of the RDAREA in which the LOB column is to be stored.

WITHOUT PURGE
If the data in a post-change table does not fall within the boundary value range of 
the partitioning storage condition or match the storage condition specification, 
HiRDB deletes that data during execution of ALTER TABLE. However, if the 
same RDAREA is specified before and after the change (the change-target 
RDAREA is specified for the post-change boundary value partitioning 



ALTER TABLE (Alter table definition)

548

specification or for the post-change storage condition partitioning specification), 
you can specify the WITHOUT PURGE option to prevent HiRDB from deleting the 
table data from the same RDAREA during execution of ALTER TABLE. Such a 
specification is useful when the pre-modification table data for the partitioning 
storage condition is to be used after modification so that table data unloading/
loading operations can be minimized.
However, the table data in the RDAREA that is not used after modification, even 
with WITHOUT PURGE specification, loses association with the table to be 
modified, and can no longer maintain compatibility. In this case, the system 
deletes the data.
The WITHOUT PURGE option can be specified if the following conditions are 
satisfied; in other cases, a WITHOUT PURGE specification can cause an error (for 
details, see Changing the partitioning storage condition for a table in the manual 
HiRDB Version 8 System Operation Guide):
Row-partitioned table with a boundary value specification

When the RDAREA to be modified is contained in the modified RDAREA.
Row-partitioned table with a storage condition specification

When the change-target RDAREA is included in the post-change RDAREA
Notes

When specifying the WITHOUT PURGE option, observe the following points:
1. When partitioning a partitioning storage condition, you must verify that 

all data in the change-target RDAREA matches the data in the boundary 
value range to be allocated after partitioning, or the storage condition to 
be allocated after partitioning. For details, see Changing the 
partitioning storage condition for a table in the manual HiRDB Version 
8 System Operation Guide.

2. When combining partitioning storage conditions, if the data in the 
RDAREA to be deleted must be reregistered, the data must be unloaded 
before the partitioning storage condition is modified, and it must be 
loaded to the table that is the result of the modification of the 
partitioning storage conditions. However, if the data that is not deleted 
due to the specification of WITHOUT PURGE is loaded after the 
partitioning storage condition is modified, duplicate data registration 
results. To guard against this possibility, RDAREAs should be unloaded 
and loaded with care. For details, see Changing the partitioning storage 
condition for a table in the manual HiRDB Version 8 System Operation 
Guide.

3. For a row-partitioned table with a storage condition specification, you 
cannot specify WITHOUT PURGE if OTHERS is specified in the 



ALTER TABLE (Alter table definition)

549

pre-change RDAREA information list during partitioning of the 
partitioning storage condition.

WITH PROGRAM
Specify this operand when the SQL object in which functions, procedures, and 
triggers that use the table being modified are in effect is to be nullified.

Common rules
1. Changing a column in a base table using the CHANGE clause also changes the 

columns in the view table.
2. ALTER TABLE cannot be specified for a column for which a storage condition is 

specified.
3. If WITH PROGRAM is omitted, the table definition can be changed if there is a table 

to be defined or an SQL object with an effective function, procedure or trigger that 
uses the view table defined by referencing that table.

4. A non-repetition column cannot be changed into a repetition column. Conversely, 
a repetition column cannot be changed into a non-repetition column.

5. When adding either a BLOB column or an abstract data-type column including the 
BLOB attribute to a partitioned table with a boundary value specification or a 
matrix-partitioned table, either a LOB column storage RDAREA name or a LOB 
attribute storage RDAREA name must be specified, respectively, so that the 
resulting table corresponds to the table storage RDAREA name that was specified 
in the table definition. Therefore, if there is an RDAREA name duplicate for the 
table storage RDAREA name that is specified in the table definition, the LOB 
column storage RDAREA name or the LOB attribute storage RDAREA name 
must also be specified in duplicate.

6. The table storage RDAREA, the LOB column storage RDAREA, the LOB attribute 
storage RDAREA, and the RDAREA for index that are specified in ADD COLUMN, 
ADD RDAREA, or CHANGE RDAREA should be created in advance using the 
database initialization utility, or must be added using the database structure 
modification utility.

7. LOB column storage RDAREAs, LOB attribute storage RDAREAs, and index 
storage RDAREAs using a user LOB RDAREA cannot be specified in duplicate. 
For each, a different user LOB RDAREA must be specified.

8. User LOB RDAREAs that are assigned to other BLOB columns, the BLOB 
attribute, or an index cannot be specified.

9. If the SQL object is nullified during the execution of this command, ALTER 
TABLE cannot be executed from within a Java procedure.

10. RDAREAs using the inner replica facility and those not using the facility cannot 
be specified on a mixed basis in a table storage RDAREA, LOB column storage 



ALTER TABLE (Alter table definition)

550

RDAREA, LOB attribute storage RDAREA, or RDAREA for index that is 
specified in ADD COLUMN, ADD RDAREA, or CHANGE RDAREA. When specifying 
an RDAREA to which the inner replica facility is applied, specify the name of the 
original RDAREA.

11. For execution conditions for ALTER TABLE using the inner replica facility, see the 
manual HiRDB Staticizer Option Version 7.

12. ALTER TABLE cannot be executed for an audit trail table.
13. A table definition cannot be modified using the DROP clause on referenced and 

referencing tables.
14. Referenced and referencing tables cannot be renamed using the RENAME clause.
15. Modifying the definition of the primary key constituent column or foreign key 

constituent column for a referenced table is subject to the following constraints:
• The data type or data length cannot be modified using the CHANGE clause.
• Columns cannot be renamed using the RENAME clause.

16. The definition of a table for which a check constraint is defined cannot be 
modified using the DROP clause.

17. Tables for which a check constraint is defined cannot be renamed using the 
RENAME clause.

18. Any change of definition of columns for which a check constraint is defined is 
subject to the following constraints:

• The data type or data length cannot be modified using the CHANGE clause.
• SPLIT cannot be modified using the CHANGE clause.
• Default values cannot be assigned or released using the CHANGE clause.
• The WITH DEFAULT option cannot be set using the CHANGE clause.
• Columns cannot be renamed using the RENAME clause.

Notes
1. If data is stored in the base table for which FIX was specified during the table 

definition, the following items can be specified in ALTER TABLE:
• Adding a table storage RDAREA
• Changing hash functions
• Changing the column attribute from CHAR to MCHAR
• Renaming tables and columns
• Changing units of minimum locking resources



ALTER TABLE (Alter table definition)

551

• Changing the partitioning storage condition
• Assigning an updatable column attribute (UPDATE specification only)
• Changing a table to a falsification-prevented table

2. WITH DEFAULT cannot add columns to a table already containing data.
3. When passing or receiving date data in CHAR(10) using the row-unit interface, 

specify a column in CHAR(10) instead of a date data type.
4. When passing or receiving time data in CHAR(8) using the row-unit interface, 

specify a column in CHAR(8) instead of a time data type.
5. When passing or receiving time stamp data in 19, 22, 24, or 26-byte CHAR using 

the row-unit interface, specify a column in 19, 22, 24, or 26-byte CHAR instead of 
a time stamp data type.

6. ALTER TABLE cannot be specified from an X-Open compliant UAP running under 
OLTP.

7. If a table or column is renamed, when using a utility or an operating command, 
the new name should be specified.

8. If a table or column is renamed, any of the following files that were created before 
the renaming action cannot be used:

• Unload data files for the database reorganization utility
• Index information files for the database load utility or the database 

reorganization utility
• Export files for the dictionary import/export utility

9. When changing a hash function or adding a table storage RDAREA, data need not 
be reloaded. However, because data is not stored in the added table storage 
RDAREA until the INSERT statement is executed, data is not stored when the 
table storage RDAREA is added.

10. If an SQL object for which functions, procedures, or triggers are in effect is 
nullified by specifying WITH PROGRAM, any rows associated with the nullified 
functions, procedures, or triggers in the SQL_ROUTINE_RESOURCES dictionary 
table are deleted.

11. Before executing the SQL object associated with the function, procedure, or 
trigger that was nullified by specifying WITH PROGRAM, you need to recreate the 
function, procedure, or trigger by executing ALTER ROUTINE, ALTER 
PROCEDURE, or ALTER TRIGGER.

12. Column data suppression cannot be specified for columns that are added by using 
the ADD option of ALTER.

13. CHANGE LOCK PAGE cannot be specified for tables for which the WITHOUT 



ALTER TABLE (Alter table definition)

552

ROLLBACK option is specified.
14. Columns can be added to a table for which a trigger is defined. If a trigger event 

column is omitted from the trigger, any added columns are also subject to the 
execution of the trigger. If a trigger event column is specified, those columns are 
not subject to the trigger execution. Adding a column does not nullify the SQL 
object.

15. Trigger event columns can be changed in terms of definition, or they can be 
deleted. Deleting all trigger event columns associated with a trigger causes the 
trigger to be deleted. Adding a column with the same name as a deleted column 
does not make the new column a target of the execution of the trigger. Changing 
the definition of a trigger event column or deleting the column does not nullify 
the SQL object for the trigger.

16. If, after deleting a trigger event column, a different operation is used to nullify the 
SQL object for the trigger, one of the following operations must be performed 
before the nullified SQL object can be executed:

• Reset the column definition, and execute either ALTER TRIGGER or ALTER 
ROUTINE to recreate the SQL object for the trigger.

• Delete the nullified trigger by using DROP TRIGGER, and then redefine the 
trigger by using CREATE TRIGGER so that the deleted column is not reused. 
If triggers satisfying all of the following conditions exist, use DROP TRIGGER 
to delete them all, and redefine the triggers using CREATE TRIGGER in the 
order in which they were defined so that there is no change in sequence of 
execution of trigger actions.
Conditions:

 The defined trigger is later than the nullified trigger.
 The nullified trigger is the same as the defined table.
 The nullified trigger is the same as the trigger event (INSERT, UPDATE, or 

DELETE) (for UPDATE, the nullified trigger is considered to be the same as 
the trigger event regardless of whether a trigger event column is specified or 
the contents of the specification).

 The nullified trigger has the same trigger action timing (BEFORE or 
AFTER) as the trigger event.

 The nullified trigger has the same trigger action units (units of rows or 
statements) as the trigger event.

17. Adding a NOT NULL column to the table being referenced from a trigger SQL 
statement by specifying WITH PROGRAM nullifies the SQL object associated with 
the trigger. Before executing the nullified SQL object, you need to recreate the 
trigger SQL object by executing either ALTER TRIGGER or ALTER ROUTINE.



ALTER TABLE (Alter table definition)

553

18. Any of the following operations performed by specifying WITH PROGRAM 
nullifies the SQL object for the trigger:

• Redefining a column deleting a column, renaming a column or renaming the 
table with respect to the table that is referenced from the trigger SQL 
statement.

• Redefining or deleting the column being referenced from a trigger SQL 
statement by using an old or new-values correlation name

To execute the SQL object for the nullified trigger, you need to perform one of the 
following operations:

• Reset the column definition, column name, or table name, and then execute 
either ALTER TRIGGER or ALTER ROUTINE to recreate the SQL object for 
the trigger.

• Use CREATE TRIGGER to redefine the trigger so that, after DROP TRIGGER is 
used to delete the nullified trigger, the column on which column definition 
change or column deletion was performed is not used, or so that the old 
column name or old table name is not used. If there are triggers that satisfy 
all of the following conditions, delete them all by using DROP TRIGGER and 
redefine them by using CREATE TRIGGER in the order in which they were 
originally defined, so that the order in which trigger actions are executed 
does not change.
Conditions:

 The defined trigger is later than the nullified trigger.
 The nullified trigger is the same as the defined table.
 The nullified trigger is the same as the trigger event (INSERT, UPDATE, or 

DELETE) (for UPDATE, the nullified trigger is considered to be the same as 
the trigger event regardless of whether a trigger event column is specified or 
the contents of the specification).

 The nullified trigger has the same trigger action timing (BEFORE or 
AFTER) as the trigger event.

 The nullified trigger has the same trigger action units (units of rows or 
statements) as the trigger event.

19. Changing its definition or deleting the column being referenced by using an old 
or new-values correlation name in a trigger action condition by specifying WITH 
PROGRAM causes the SQL object for the trigger to be nullified. Similarly, 
pre-processing a trigger-inducing SQL statement also causes an error. To execute 
the SQL object for a nullified trigger or perform pre-processing on a 
trigger-inducing SQL statement, you need to perform one of the following 
operations:



ALTER TABLE (Alter table definition)

554

• Reset the column definition, and execute either ALTER TRIGGER or ALTER 
ROUTINE to recreate the SQL object.

• Use CREATE TRIGGER to redefine the trigger so that, after DROP TRIGGER is 
used to delete the nullified trigger, the column on which column definition 
change or column deletion was performed is not used. If there are triggers 
that satisfy all of the following conditions, delete them all by using DROP 
TRIGGER and redefine them by using CREATE TRIGGER in the order in 
which they were originally defined, so that the order in which trigger actions 
are executed does not change.
Conditions:

 The defined trigger is later than the nullified trigger.
 The nullified trigger is the same as the defined table.
 The nullified trigger is the same as the trigger event (INSERT, UPDATE, or 

DELETE) (for UPDATE, the nullified trigger is considered to be the same as 
the trigger event regardless of whether a trigger event column is specified or 
the contents of the specification).

 The nullified trigger has the same trigger action timing (BEFORE or 
AFTER) as the trigger event.

 The nullified trigger has the same trigger action units (units of rows or 
statements) as the trigger event.

20. The table on which the trigger is defined or any of the following columns cannot 
be renamed:

• Trigger event columns
• Columns that are referenced in a trigger action condition, using an old or 

new-values correlation name
• Columns that are referenced in a trigger SQL statement, using an old or 

new-values correlation name

Examples
1. Add a warehouse address (PADRS) to an inventory table (STOCK):

ALTER TABLE STOCK
    ADD PADRS VARCHAR(40)

2. Add a warehouse address (PADRS) in a NOT NULL constrained column with a 
predefined value to an inventory table (STOCK):
ALTER TABLE STOCK
    ADD PADRS VARCHAR(40)
    NOT NULL WITH DEFAULT



ALTER TABLE (Alter table definition)

555

3. In the inventory table (STOCK), change the maximum length of the column of a 
variable-length data type warehouse address (PADRS) to 60:
ALTER TABLE STOCK
    CHANGE PADRS VARCHAR(60)

4. In the inventory table (STOCK), change the attribute of the cluster key that is 
assigned to the product code (PCODE) column from non-uniqueness-constrained 
to uniqueness-constrained:
ALTER TABLE STOCK
    CHANGE CLUSTER KEY UNIQUE

5. From the inventory table (STOCK), delete the warehouse address (PADRS) column:
ALTER TABLE STOCK
    DROP PADRS

6. Nullify the effective object of a procedure on the warehouse address (PADRS) in 
the inventory table (STOCK), and delete the warehouse address (PADRS) column:
ALTER TABLE STOCK
    DROP PADRS WITH PROGRAM

7. Add a warehouse map (PMAP) to the inventory table (STOCK):
ALTER TABLE STOCK
    ADD PMAP BLOB(1M) IN (RMAPLOB1)

8. Add an RDAREA in which a new hash-partitioned inventory table (NSTOCK) is 
to be stored. Also, add an index (IPCODE) and an RDAREA in which a column 
of a BLOB-type warehouse map (PMAP) is to be stored:
ALTER TABLE NSTOCK
    ADD RDAREA RDA3
      FOR COLUMN PMAP IN (RMAPLOB3)
      FOR INDEX IPCODE IN (RDA4)

9. The following is an example of modifying a boundary value for a row- partitioned 
table with a boundary value specification:
Example 1: Partitioning and combining boundary values
Before
 
CREATE FIX TABLE "T1"("C1" INT,"C2" INT) PARTITIONED BY "C1"
 
IN(("TA1")100,("TA2")200,("TA3")400,("TA4")500,("TA5")600,(
"TA6"))
CREATE INDEX "I1" ON "T1"("C1")
 IN(("IA1"),("IA2"),("IA3"),("IA4"),("IA5"),("IA6"))



ALTER TABLE (Alter table definition)

556

1. Combine (Condition 1 to condition 2)
 
ALTER TABLE "T1" CHANGE RDAREA
  ((100),(200)) INTO "TA11"
  FOR INDEX "I1" INTO "IA11"

2. Partition (Condition 2 to condition 3)
 
ALTER TABLE "T1" CHANGE RDAREA
  ((400)) INTO (("TA12")300,("TA13"))
  FOR INDEX "I1" INTO (("IA12"),("IA13"))

3. Combine (Condition 3 to condition 4)
 
ALTER TABLE "T1" CHANGE RDAREA
  ((600),(MAX)) INTO "TA11"
  FOR INDEX "I1" INTO "IA11"



ALTER TABLE (Alter table definition)

557

Example 2: The system combines adjacent boundary values (a special case of 
partitioning)
Before
 
CREATE FIX TABLE "T1"("C1" INT,"C2" INT) PARTITIONED BY "C1"
  IN(("TA1")100,("TA2")200,("TA3")400,
      ("TA4")500,("TA5")600,("TA6"))
CREATE INDEX "I1" ON "T1"("C1")
  IN(("IA1"),("IA2"),("IA3"),
     ("IA4"),("IA5"),("IA6"))
 

Changing boundary values
 
ALTER TABLE "T1" CHANGE RDAREA
  ((400)) INTO (("TA3")300,("TA4"))
FOR INDEX "I1" INTO (("IA3"),("IA4"))

10. The following is an example of modifying an RDAREA of a row-partitioned table 
with a storage condition specification:
Before change <<State 1>>
 
CREATE FIX TABLE "T1"("C1" CHAR(3),"C2" INT)
  IN(("TA1")"C1"='001',("TA2")"C1"='002',
  ("TA3")"C1"='003',("TA4")"C1"=('004','005'),("TA5"))



ALTER TABLE (Alter table definition)

558

CREATE INDEX "I1" ON "T1"("C1")
  IN(("IA1"),("IA2"),("IA3"),("IA4"),("IA5"))

Example 1: Adding a storage condition
1. Partitioning <<State 1  State 2>>
 
ALTER TABLE "T1" CHANGE RDAREA PARTITIONED CONDITION
  (("TA5")) INTO (("TA6")"C1"='006',("TA5"))
   FOR INDEX "I1" INTO (("IA6"),("IA5"))

Example 2: Deleting a storage condition
2. Combining <<State 1  State 3>>
 
ALTER TABLE "T1" CHANGE RDAREA PARTITIONED CONDITION
  (("TA1"),("TA5")) INTO "TA5"
   FOR INDEX "I1" INTO "IA5"

Example 3: Partitioning an RDAREA
3. Partitioning <<State 1  State 4>>
 
ALTER TABLE "T1" CHANGE RDAREA PARTITIONED CONDITION
  (("TA4")) INTO (("TA4")"C1"='004',("TA7")"C1"='005')



ALTER TABLE (Alter table definition)

559

   FOR INDEX "I1" INTO (("IA4"),("IA7"))

Example 4: Combining RDAREAs
4. Combining <<State 1  State 5>>
 
ALTER TABLE "T1" CHANGE RDAREA PARTITIONED CONDITION
  (("TA1"),("TA2")) INTO "TA2"
   FOR INDEX "I1" INTO "IA2"

11. Change a non-falsification-prevented order table (ORDER) to a 
falsification-prevented table with the following conditions:
Table definition conditions

• In advance, define an OINSDATE column as an insert history maintenance 
column.

• Define a UACOL column as an updatable column after the table is changed to 
a falsification-prevented table.

 
  CREATE TABLE ORDER
      (FNO CHAR(6),TCODE CHAR(5),PCODE CHAR(4),
       UACOL CHAR(60) UPDATE,
       OQTY INTEGER,ODATE DATE,OTIME TIME,
       OINSDATE DATE NOT NULL WITH DEFAULT SYSTEM GENERATED)

Condition for changing the table definition

• Set a deletion-prevented duration of 10 years.
 
  ALTER TABLE ORDER
      CHANGE INSERT ONLY WHILE 10 YEARS BY OINSDATE



ALTER TRIGGER (Recreate a trigger SQL object)

560

ALTER TRIGGER (Recreate a trigger SQL object)

Function
Recreates a trigger SQL object.

Privileges
Owner of a trigger

This user can recreate SQL objects for his or her own trigger.
DBA privilege users

These users can recreate their own triggers and SQL objects that are owned by 
other users.

Format

Operands
[authorization-identifier.]trigger-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the trigger for which an SQL 
object is to be recreated. The default is the authorization identifier of the user who 
executes ALTER TRIGGER.

trigger-identifier
Specifies the identifier for the trigger for which an SQL object is to be recreated.
{CHANGE|ALTER} ROUTINE OBJECT

This indicates that a trigger is to be recreated. Either CHANGE or ALTER can be 
specified without a change in meaning.

SQL compile-option::={ISOLATION data-guarantee-level [FOR UPDATE 

 
  ALTER TRIGGER [authorization-identifier.]trigger-identifier
      {CHANGE|ALTER} ROUTINE OBJECT
      [SQL compile-option[SQL compile-option]...]
 
  SQL compile-option ::={ISOLATION data-guarantee-level [FOR UPDATE EXCLUSIVE]
           |OPTIMIZE LEVEL SQL-optimization-option
                 [,SQL-optimization-option]...
                  |ADD OPTIMIZE LEVEL SQL-extension-optimizing-option
                 [,SQL-extension-optimizing-option]...
|SUBSTR LENGTH maximum-character-length}
 



ALTER TRIGGER (Recreate a trigger SQL object)

561

EXCLUSIVE]
     |OPTIMIZE LEVEL SQL-optimization-option
      [, SQL-optimization-option]...
     |ADD OPTIMIZE LEVEL SQL-extension-optimizing-option
      [, SQL-extension-optimizing-option]...
|SUBSTR LENGTH maximum-character-length}

In SQL compile-option, ISOLATION, OPTIMIZE LEVEL, ADD OPTIMIZE, and 
SUBSTR LENGTH can each be specified only once.
[ISOLATION data-guarantee-level [FOR UPDATE EXCLUSIVE]]

Specifies an SQL data integrity guarantee level.
data-guarantee-level

A data integrity guarantee level specifies the point to which the integrity of 
the transaction data must be guaranteed. The following data integrity 
guarantee levels can be specified:

• 0
This option is specified when the integrity of data is not to be 
guaranteed.
Level 0 permits the referencing of data even when the data is being 
updated by another user, without waiting for completion of the update 
process. However, if the table to be referenced is a shared table and 
another user is executing the LOCK statement in the lock mode, the 
system waits until the lock condition is released.

• 1
This option is specified when the integrity of data is to be guaranteed 
until the end of the retrieval process.
Level 1 prevents other users from updating retrieved data until the 
retrieval process is completed (until HiRDB finishes viewing the page 
or row).

• 2
This option is specified when the integrity of retrieved data is to be 
guaranteed until the end of a transaction.
Level 2 prevents other users from updating retrieved data until 
termination of the transaction.

[FOR UPDATE EXCLUSIVE]



ALTER TRIGGER (Recreate a trigger SQL object)

562

Specify this operand if WITH EXCLUSIVE LOCK is always to be assumed, 
irrespective of the data guarantee level specified in SQL compile-option for 
a cursor or query in a procedure for which the FOR UPDATE clause is 
specified or assumed. If level 2 is specified in data-guarantee-level, WITH 
EXCLUSIVE LOCK is assumed for the cursor or query in a procedure for 
which the FOR UPDATE clause is specified or assumed, in which case it is 
not necessary to specify FOR UPDATE EXCLUSIVE. If a data guarantee level 
is specified in SQL compile-option and FOR UPDATE EXCLUSIVE is 
omitted, it is assumed that FOR UPDATE EXCLUSIVE is not specified.

Relationship to client environment definition

Any specification of PDISLLVL or PDFORUPDATEEXLOCK with respect to 
ALTER TRIGGER has no effect.

Relationship to SQL statements

If the lock option is specified in an SQL statement in a procedure, the lock 
option specified in the SQL statement takes precedence over the data 
guarantee level specified in SQL compile-option or the lock option assumed 
from FOR UPDATE EXCLUSIVE.

The default for this operand is the value that was specified during the previous 
SQL object creation (during the execution of CREATE TRIGGER, ALTER 
TRIGGER, or ALTER ROUTINE).
For data guarantee levels, see the HiRDB Version 8 UAP Development Guide.

[OPTIMIZE LEVEL SQL-optimization-option[, SQL-optimization-option]...]
Specifies an optimization method for determining the most efficient access path 
by taking the condition of the database into consideration.
An SQL optimization option can be specified using either an identifier (character 
string) or a numeric value. For most cases, Hitachi recommends the use of an 
identifier.
The default for this operand is the value that was specified during the previous 
SQL object creation (CREATE TRIGGER, ALTER TRIGGER, or ALTER ROUTINE).
Specifying with an identifier

 
OPTIMIZE LEVEL "identifier"[, "identifier"]...
 

Specification examples

• Applying prioritized nest-loop-join and rapid grouping processing:
OPTIMIZE LEVEL "PRIOR_NEST_JOIN", "RAPID_GROUPING"



ALTER TRIGGER (Recreate a trigger SQL object)

563

• Applying no optimization:
OPTIMIZE LEVEL "NONE"

Rules

1. Specify one or more identifiers.
2. When specifying two or more identifiers, delimit them with commas 

(,).
3. For details about what can be specified in identifier (optimization 

methods), see Table 3-8 SQL optimization option specification values.
4. If no optimization is to be applied, specify NONE in identifier. If an 

identifier other than NONE is specified at the same time, NONE is 
nullified.

5. Identifiers can be specified in both lower case and upper case 
characters.

6. If the same identifier is specified more than once, it is treated as if it was 
specified only once; however, where possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specifying a numeric value
 
OPTIMIZE LEVEL unsigned-integer[, unsigned-integer]...
 

Specification examples

• Creating multiple SQL objects, suppressing the use of AND multiple 
indexes, and forcing the use of multiple indexes
For specifying unsigned integers by delimiting them with commas:
OPTIMIZE LEVEL 4, 10, 16
For specifying the sum of unsigned integers:
OPTIMIZE LEVEL 30

• Adding 16 when 14 (4 + 10) is already specified:
OPTIMIZE LEVEL 14, 16

• Applying no optimization:
OPTIMIZE LEVEL 0

Rules

1. When HiRDB is upgraded from a version older than Version 06-00 to a 



ALTER TRIGGER (Recreate a trigger SQL object)

564

Version 06-00 or later, the total value specification in the older version 
also remains valid. If the optimization option does not need to be 
modified, the specification value for this operand need not be changed 
when HiRDB is upgraded to a Version 06-00 or later.

2. Specify one or more unsigned integers.
3. When specifying two or more unsigned integers, separate them with 

commas (,).
4. For details about what can be specified in an unsigned integer 

(optimization method), see Table 3-8 SQL optimization option 
specification values.

5. When not applying any optimization, specify 0 in unsigned-integer. If 
non-zero identifiers are specified at the same time, the specification of 
0 is nullified.

6. If the same unsigned integer is specified more than once, it is treated as 
if it was specified only once; however, where possible, precautions 
should be taken to avoid specifying a given unsigned integer in 
duplicate.

7. When specifying multiple optimization methods, you can specify the 
sum of their unsigned integers. However, care should be taken not to 
add the value of the same optimization method multiple times (to 
prevent the possibility of the resulting sum from being interpreted as a 
separate optimization method).

8. To specify multiple optimization methods by adding their values, 
Hitachi recommends to separate each optimization method 
specification with a comma to avoid ambiguities regarding which 
optimization method is being specified. If a new optimization method 
needs to be specified after multiple optimization methods have been 
specified by adding their values, you can specify the new value by 
appending it, separated with a comma.

Relationship to system definitions

1. The system-defined pd_optimize_level operand, if specified for 
ALTER TRIGGER, has no effect.

2. If the system-defined pd_floatable_bes or 
pd_non_floatable_bes operand is specified, any specification of 
Increasing the target floatable servers (back-end servers for fetching 
data) or Limiting the target floatable servers (back-end servers for 
fetching data) has no effect.

3. If KEY is specified for the system-defined pd_indexlock_mode 
operand, (for index key value-locking), any specification of 



ALTER TRIGGER (Recreate a trigger SQL object)

565

Suppressing creation of update-SQL work tables has no effect.
Relationship to client definitions

PDSQLOPTLVL, if specified, has no effect on ALTER TRIGGER.
Relationship to SQL

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL optimization option specification values

Table 3-8 shows SQL optimization option specification values. For details 
about optimization methods, see the HiRDB Version 8 UAP Development 
Guide.

Table 3-8: SQL optimization option specification values (ALTER TRIGGER)

No. Optimization method Specification value

Identifier Unsigned 
integer

1 Forced nest-loop-join "FORCE_NEST_JOIN" 4

2 Making multiple SQL objects "SELECT_APSL" 10

3 Increasing the target floatable servers 
(back-end servers for fetching data)#1, #2

"FLTS_INC_DATA_BES" 16

4 Prioritized nest-loop-join "PRIOR_NEST_JOIN" 32

5 Increasing the number of floatable server 
candidates#2

"FLTS_MAX_NUMBER" 64

6 Priority of OR multiple index use "PRIOR_OR_INDEXES" 128

7 Group processing, ORDER BY processing, 
and DISTINCT set function processing at 
the local back-end server#2

"SORT_DATA_BES" 256

8 Suppressing the use of AND multiple 
indexes

"DETER_AND_INDEXES" 512

9 Rapid grouping processing "RAPID_GROUPING" 1024

10 Limiting the target floatable servers 
(back-end servers for fetching data)#1, #2

"FLTS_ONLY_DATA_BES" 2048

11 Separating data collecting servers#1, #2 "FLTS_SEPARATE_COLLECT_SVR" 2064



ALTER TRIGGER (Recreate a trigger SQL object)

566

#1: If both Increasing the target floatable servers (back-end servers for fetching 
data) and Limiting the target floatable servers (back-end servers for fetching 
data) are specified together, the respective optimization method does not take 
effect; instead, the specification operates as a separating data collecting server.
#2: When specified on a HiRDB/Single Server, this option has no effect.

[ADD OPTIMIZE LEVEL SQL-extension-optimizing-option[, 
SQL-extension-optimizing-option]...]

Specifies an optimization method for determining the most efficient access path 
by taking the condition of the database into consideration.
An SQL optimization option can be specified using either an identifier (character 
string) or a numeric value. For most cases, Hitachi recommends the use of an 
identifier.
The default for this operand is the value that was specified during the previous 
SQL object creation (CREATE TRIGGER, ALTER TRIGGER, or ALTER ROUTINE).
Specifying with an identifier

 
ADD OPTIMIZE LEVEL "identifier"[, "identifier"]...
 

Specification examples

• Applying Optimizing mode 2 based on cost and Hash join, subquery 
hash execution:
ADD OPTIMIZE LEVEL "COST_BASE_2", "APPLY_HASH_JOIN"

12 Suppressing index use (forced table scan) "FORCE_TABLE_SCAN" 4096

13 Forcing use of multiple indexes "FORCE_PLURAL_INDEXES" 32768

14 Suppressing creation of update-SQL work 
tables

"DETER_WORK_TABLE_FOR_UPDATE" 131072

15 Derivation of rapid search conditions "DERIVATIVE_COND" 262144

16 Applying key conditions including scalar 
operations

"APPLY_ENHANCED_KEY_COND" 524288

17 Facility for batch acquisition from 
functions provided by plug-ins

"PICKUP_MULTIPLE_ROWS_PLUGIN" 1048576

No. Optimization method Specification value

Identifier Unsigned 
integer



ALTER TRIGGER (Recreate a trigger SQL object)

567

• Applying no optimization:
ADD OPTIMIZE LEVEL "NONE"

Rules

1. Specify one or more identifiers.
2. When specifying two or more identifiers, delimit them with commas 

(,).
3. For details about what can be specified in identifier (optimization 

methods), see Table 3-9 SQL extension optimizing option specification 
values.

4. If no optimization is to be applied, specify NONE in identifier.
5. Identifiers can be specified in both lower case and upper case 

characters.
6. If the same identifier is specified more than once, it is treated as if it was 

specified only once; however, where possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specifying a numeric value
 
ADD OPTIMIZE LEVEL unsigned-integer[, unsigned-integer]...
 

Specification examples

• Applying Optimizing mode 2 based on cost and Hash join, subquery 
hash execution:
ADD OPTIMIZE LEVEL 1, 2

• Applying no optimization:
ADD OPTIMIZE LEVEL 0

Rules

1. Specify one or more unsigned integers.
2. When specifying two or more unsigned integers, separate them with 

commas (,).
3. For details about what can be specified in an unsigned integer 

(optimization method), see Table 3-9 SQL extension optimizing option 
specification values.

4. When not applying any optimization, specify 0 in unsigned-integer.
5. If the same unsigned integer is specified more than once, it is treated as 



ALTER TRIGGER (Recreate a trigger SQL object)

568

if it was specified only once; however, where possible, precautions 
should be taken to avoid specifying a given unsigned integer in 
duplicate.

Relationship to system definitions

The system-defined pd_optimize_level operand, if specified for ALTER 
TRIGGER, has no effect.

Relationship to client environment definition

PDADDITIONALOPTLVL, when specified, has no effect for ALTER TRIGGER.
Relationship with SQL

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL extension optimizing option specification values

Table 3-9 shows SQL extension optimizing option specification values. For 
details about optimization methods, see the HiRDB Version 8 UAP 
Development Guide.

Table 3-9: SQL extension optimizing option specification values (ALTER 
TRIGGER)

No. Optimization method Specification value

Identifier Unsigned 
integer

1 Application of optimizing mode 2 
based on cost

"COST_BASE_2" 1

2 Hash join, subquery hash 
execution

"APPLY_HASH_JOIN" 2

3 Suppressing the foreign server 
execution of SQL statements 
including joins

"DETER_JOIN_SQL" 67108864

4 Forced foreign server execution 
of SQL statements including 
direct products

"FORCE_CROSS_JOIN_SQL" 134217728

5 Suppressing the derivation of 
rapid search conditions that are 
unconditionally generated and 
can be executed on a foreign 
server

"DETER_FSVR_DERIVATIVE_COND" 1073741824



ALTER TRIGGER (Recreate a trigger SQL object)

569

Note 1

Items 2-5 take effect when Application of optimizing mode 2 based on cost is 
specified.

Note 2

Optimization items 3-5 are effective for retrieving foreign tables; for other 
purposes, these items have no effect.

[SUBSTR LENGTH maximum-character-length]
Specifies the maximum number of bytes for representing a single character.
The value specified for the maximum character length must be in the range from 
3 to 6.
This operand is valid only when utf-8 is specified for the character code type in 
the pdntenv command (pdsetup command in the case of the UNIX version); it 
affects the length of the result of the SUBSTR scalar function. For details about 
SUBSTR, see 2.16.1(21) SUBSTR.
Rules

When HiRDB is upgraded from a version earlier than version 08-00 to 
version 08-00 or later, 3 is assumed. If there is no need to change the 
maximum character length, you do not need to specify this operand when 
upgrading to HiRDB of version 08-00 or later.

Relationships to system definition

When SUBSTR LENGTH is specified in ALTER TRIGGER, the 
pd_substr_length system definition operand has no effect. For details 
about the pd_substr_length operand, see the manual HiRDB Version 8 
System Definition.

Relationship to client environmental definition

The specification of PDSUBSTREN has no applicability to ALTER TRIGGER. 
For details about PDSUBSTRLEN, see the manual HiRDB Version 8 UAP 
Development Guide.

Relationship to the character code type specified in the pdntenv or pdsetup 
command

This operand is valid only when utf-8 is specified for the character code 
type.
For all other character code types, only a syntax check is performed and the 
specification is ignored.

When this operand is omitted, the value specified during creation of the most 
recent SQL object (execution of a CREATE TRIGGER, ALTER TRIGGER, or ALTER 



ALTER TRIGGER (Recreate a trigger SQL object)

570

ROUTINE statement) is assumed.

Common rules
1. Upon normal termination of the execution of ALTER TRIGGER for a trigger for 

which an SQL object is not in effect, the SQL object for that trigger takes effect.
2. Upon normal termination of the execution of ALTER TRIGGER for a trigger for 

which the SQL object is in an index-disabled state, the trigger's SQL object is 
released from the index-disabled state. Triggers for which the SQL object is in an 
index-disabled state may result in a runtime error.

3. When specifying an SQL compile option in ALTER TRIGGER, make sure that the 
SQL statement that is generated as a result of the SQL compile option with respect 
to CREATE TRIGGER for the source trigger to be recreated does not exceed the 
maximum allowable length for an SQL statement.

4. Under the following condition, ALTER TRIGGER cannot be executed from a Java 
procedure:

• The SQL object being executed is recreated.

Notes
1. ALTER TRIGGER cannot be specified from an X-Open compliant UAP running 

under OLTP.
2. Executing a GET DIAGNOSTICS statement immediately after the execution of 

ALTER TRIGGER enables you to acquire diagnostic information on ALTER 
TRIGGER. In this case, the trigger for which the re-creation process terminated 
normally produces an SQL code of 0.

3. The data guarantee level of the trigger SQL statement in the trigger, the SQL 
optimization option, the SQL extension optimizing option, and the maximum 
character length are determined by what is specified when the trigger is being 
defined or modified, and are not affected by the system definition or client 
environment variable definition that is in effect when the trigger action is 
executed.

Example
1. Recreate an SQL object for a trigger (TRIG1) that has been nullified:

ALTER TRIGGER TRIG1
    CHANGE ROUTINE OBJECT



COMMENT (Comment)

571

COMMENT (Comment)

Function
COMMENT inserts a comment into a table or a column or changes an existing comment.

Privileges
Owner of the base table
A user can write comments into base tables owned by that user.

Format
COMMENT ON {TABLE [authorization-identifier.]table-identifier
            |COLUMN [authorization-identifier.]table-identifier.column-
             name}
            IS 'character-string'

Operands
COMMENT ON

Specifies that a comment is to be processed for a base table or column owned by the 
user.

{TABLE [authorization-identifier.] table-identifier
      |COLUMN [authorization-identifier.] table-identifier.column- name}

Specifies TABLE to write a comment into a table; specifies COLUMN to write a comment 
into a column.
When specifying a public view in table-identifier, in authorization-identifier specify 
the word PUBLIC, all in uppercase, enclosed in double quotation marks (").

character-string
Specifies a comment in a character string. The length of a character string that can be 
specified is 0 to 255 bytes.
When specifying a national character string literal as a character string, you need not 
specify 'N'. Hexadecimal character string literals cannot be specified as a comment.

Notes
1. An assigned comment can be referenced by retrieving the SQL_TABLES table or 

the SQL_COLUMNS table of the data dictionary table.
2. When specified for an existing comment, the COMMENT function deletes the 

existing comment and sets the new comment.



COMMENT (Comment)

572

3. A comment cannot be inserted into a data dictionary table.
4. The COMMENT statement cannot be specified from an X/Open-compliant UAP 

running under OLTP.

Examples
1. Insert a comment into a stock table (STOCK):

COMMENT ON TABLE STOCK IS 'CREATED JULY 1995'

2. Insert a comment into the unit price column (PRICE) of a stock table (STOCK):
COMMENT ON COLUMN STOCK.PRICE IS 'REVISED JULY 1995'



CREATE ALIAS (Define alias)

573

CREATE ALIAS (Define alias)

Function
CREATE ALIAS defines a table alias to permit access to tables that exist in other RD 
nodes.

Privileges
Users with DBA privilege

These users can define table aliases for tables that exist in other RD nodes, using 
their own authorization identifiers or other users' authorization identifiers.

Users with schema privilege
These users can define table aliases for tables that exist in other RD nodes, using 
their own authorization identifiers.

Format
CREATE ALIAS [authorization-identifier.]table-alias
   FOR RD-node-name.authorization-identifier.table-identifier

Operands
[authorization-identifier.]table-alias

authorization-identifier
Specifies the authorization identifier of the user who owns the table alias being 
defined. The default is the authorization identifier of the user who is executing 
this function.

table-alias
Specifies the desired alias for the table.
RD-node-name.authorization-identifier.table-identifier

RD-node-name
Specifies the name of the RD node that contains the table for which the alias is 
being defined. The RD node name of the user's own RD node cannot be specified.

authorization-identifier
Specifies the authorization identifier of the user who owns the table alias being 
defined.

table-identifier
Specifies the name of the table for which the alias is being defined. The table can 



CREATE ALIAS (Define alias)

574

be a base table, a view table, or a foreign table.

Common rules
1. Table aliases can be defined without a schema.
2. Defining a table alias for a table that exists on one RD node does not affect other 

RD nodes.
3. Users who do not have the privilege to define a table alias can use previously 

defined table aliases.
4. The privilege to access tables of aliases is the same as the privilege to access 

tables in which the aliases are defined. The access privilege for a table that exists 
in a given RD node can be checked from other RD nodes.

5. A table alias that is being defined must be distinct from the names of any base 
tables, view tables, or foreign tables, and from table aliases having the same 
authorization identifier on the local RD node as the table alias being defined.

6. The execution of CREATE ALIAS does not result in an error if the RD node, the 
authorization identifier, or the table identifier that is defined in the command does 
not exist.

Notes
1. The CREATE ALIAS statement cannot be specified from an X/Open-compliant 

UAP running under OLTP.
2. Defining a table alias in a table alias will not result in an error during the execution 

of CREATE ALIAS. It can, however, produce an error when an attempt is made to 
access the table by specifying the nested alias.

Example
Define table alias ALS1 for a table with an RD node name NOD1, an authorization 
identifier USR1, and a table identifier TBL1:
CREATE ALIAS ALS1 FOR NOD1.USR1.TBL1



CREATE AUDIT (Define the target audit event)

575

CREATE AUDIT (Define the target audit event)

Function
Defines the target audit event to be recorded as an audit trail, and its target.

Privileges
Audit-privilege users

These users can execute CREATE AUDIT definition statements.

Format

Details about items

No. Format

1 CREATE AUDIT
  [AUDITTYPE {PRIVILEGE | EVENT | ANY}]

2   FOR  operation-type

9    [selection-option]

3   [WHENEVER {SUCCESSFUL|UNSUCCESSFUL|ANY}]

No. Format

2 operation-type::= {ANY
              | SESSION [{session-type | ANY}]
              | PRIVILEGE [{privilege-operation-type | ANY}]
              | DEFINITION [{object-definition-event-type | ANY}]
              | ACCESS  [{object-operation-event-type | ANY}]
              | UTILITY     [{utility-event-type | ANY}]}

9 selection-option::=ON object-name



CREATE AUDIT (Define the target audit event)

576

Operands
1) [AUDITTYPE {PRIVILEGE | EVENT | ANY}]

Specifies whether an audit trail during a privilege check is to be acquired or an 
audit trail on the final results of an event is to be acquired.
PRIVILEGE

Acquires an audit trail during a privilege check.
EVENT

Acquires an audit trail on the final results of an event.
ANY

Acquires an audit trail on any of the above types.

  object-name::=
       {ALIAS authorization-identifier.table-alias
        |FOREIGN INDEX authorization-identifier.index-identifier
      |FOREIGN TABLE authorization-identifier.table-identifier
      |FUNCTION authorization-identifier.routine-identifier
      |INDEX authorization-identifier.index-identifier
      |LIST authorization-identifier.table-identifier
      |PROCEDURE authorization-identifier.routine-identifier
      |RDAREA RDAREA-name
      |SCHEMA authorization-identifier
      |SERVER foreign-server-definition-owner.foreign-server-name
      |TABLE [authorization-identifier.]table-identifier
      |TRIGGER authorization-identifier.trigger-identifier
      |TYPE authorization-identifier.data-type-identifier
      |USER MAPPING SERVER foreign-server-name
      |VIEW authorization-identifier.table-identifier}
      

4   session-type::=
   {CONNECT | AUTHORIZATION}

5   privilege-operation-type::=
   {GRANT | REVOKE}

6   object-definition-event-type::=
   {CREATE |DROP | ALTER}

7   object-operation-event-type::=
   {SELECT | INSERT | UPDATE | DELETE | PURGE | ASSIGN | CALL | LOCK}

8   utility-event-type::=
   {PDLOAD | PDRORG | PDEXP | PDCONSTCK}

No. Format



CREATE AUDIT (Define the target audit event)

577

The PRIVILEGE, EVENT, and ANY operands can be defined and deleted 
individually. For example, if only ANY is deleted using DROP AUDIT on a given 
audit event for which PRIVILEGE, EVENT, and ANY are all defined, both the 
PRIVILEGE and EVENT definitions remain intact (remain subject to auditing).

2) operation-type::= ANY
 | SESSION [{session-type | ANY}]
 | PRIVILEGE [{privilege-operation-type | ANY}]
 | DEFINITION [{object-definition-event-type | ANY}]
 | ACCESS [{object-operation-event-type | ANY}]
 | UTILITY [{utility-event-type | ANY}]
Specifies the type of operation to be audited. The individual operation types and 
ANY are individually defined and deleted. For example, if only ANY is deleted 
using DROP AUDIT for a given condition for which SESSION, PRIVILEGE, and 
ANY are all defined, both the SESSION and PRIVILEGE definitions remain intact 
(remain subject to auditing).
ANY

Specifies all operation types as being subject to auditing.
SESSION [{session-type | ANY}]

Specify this operand when session security events are to be made subject to 
auditing.
ANY makes any session security event subject to auditing. The individual 
session types and ANY are individually defined and deleted. For example, if 
only ANY is deleted using DROP AUDIT on a given condition for which 
CONNECT, AUTHORIZATION, and ANY are defined, both the CONNECT and 
AUTHORIZATION definitions remain intact (remain subject to auditing).

PRIVILEGE [{privilege-operation-type | ANY}]
Specify this operand when privilege management events are to be made 
subject to auditing. ANY makes any privilege management event subject to 
auditing. The individual privilege operation types and ANY are individually 
defined and deleted. For example, if only ANY is deleted using DROP AUDIT 
for a given condition for which GRANT, REVOKE, and ANY are defined, both 
the GRANT and REVOKE definitions remain intact (remain subject to 
auditing).

DEFINITION [{object-definition-event-type | ANY}]
Specify this operand when definition SQL events are to be made subject to 
auditing. ANY makes any definition SQL event subject to auditing. The 



CREATE AUDIT (Define the target audit event)

578

individual object definition event types and ANY are individually defined and 
deleted. For example, if only ANY is deleted using DROP AUDIT for a given 
condition for which CREATE, DROP, and ANY are defined, both the CREATE 
and DROP definitions remain intact (remain subject to auditing).

ACCESS [{object-operation-event-type | ANY}]
Specify this operand when manipulation SQL events are to be made subject 
to auditing. ANY makes any manipulation SQL event subject to auditing. The 
individual object operation types and ANY are individually defined and 
deleted. For example, if only ANY is deleted using DROP AUDIT for a given 
condition for which SELECT, INSERT, and ANY are defined, both the 
SELECT and INSERT definitions remain intact (remain subject to auditing).

UTILITY [{utility-event-type | ANY}]
Specify this operand when utility events are to be made subject to auditing. 
ANY makes any utility event subject to auditing. The individual utility event 
types and ANY are individually defined and deleted. For example, if only ANY 
is deleted using DROP AUDIT for a given condition for which PDLOAD, 
PDRORG, and ANY are defined, both the PDLOAD and PDRORG definitions 
remain intact (remain subject to auditing).

3) [WHENEVER {SUCCESSFUL | UNSUCCESSFUL | ANY}]
Specifies whether a given audit event is to be audited, depending on whether the 
file result of the audit event or a privilege check is successful.
Table 3-10 shows the audit trail that is acquired based on the specification in 
WHENEVER.
Table 3-10: Audit trail that is acquired based on the specification in 
WHENEVER

Some final results of an event can be partially unsuccessful. For a partially 

WHENEVER
specification

When PRIVILEGE or
ANY is specified in AUDITTYPE

When EVENT or
ANY is specified in AUDITTYPE

SUCCESSFUL Audit trail during a privilege check is 
collected only when the privilege check is 
successful.

Audit trail of the final result of an audit 
event is collected only when the audit 
event is successful.

UNSUCCESSFUL Audit trail during a privilege check is 
collected only when the privilege check is 
unsuccessful.

Audit trail of the final result of an audit 
event is collected only when the audit 
event is unsuccessful.

ANY Audit trail during a privilege check is 
collected regardless of whether or not the 
privilege check is successful.

Audit trail of the final result of an audit 
event is collected regardless of whether 
or not the audit event is successful.



CREATE AUDIT (Define the target audit event)

579

unsuccessful event, an audit trail is output regardless of whether SUCCESSFUL, 
UNSUCCESSFUL, or ANY is specified.
SUCCESSFUL, UNSUCCESSFUL, and ANY are individually defined and deleted. 
For example, if only ANY is deleted using DROP AUDIT for a given audit event for 
which SUCCESSFUL, UNSUCCESSFUL, and ANY are defined, both the 
SUCCESSFUL and UNSUCCESSFUL definitions remain intact (remain subject to 
auditing).

4) session-type: : = {CONNECT | AUTHORIZATION}
Specifies a change in users who are connected or who are connecting to the 
HiRDB that is subject to auditing. The following table shows session types and 
the operations that are generated by the associated audit events.
Table 3-11: Session types and operations generated by the associated audit 
events

5) privilege-operation-type::= {GRANT | REVOKE}
Specify this operand when operations related to privileges are to be subject to 
auditing. The following table shows privilege operation types and the operations 
that are generated by the associated audit events.

Table 3-12:  Privilege operation types and operations generated by the 
associated audit events

6) object-definition-event-type::={CREATE | DROP | ALTER}
Specifies creation, deletion, or definition change operations on the object to be 
monitored. The following table shows object definition event types and the 
operations that are generated by the associated audit events.

Session type Operation generated by privilege 
check audit event (PRIVILEGE 

specified in AUDITTYPE)

Operation generated by audit event 
acquiring audit trail on final results of 

an event (EVENT specified in 
AUDITTYPE)

CONNECT Connection to HiRDB Same as indicated at left

AUTHORIZATION Execution of SET SESSION 
AUTHORIZATION statement

Same as indicated at left

Privilege 
operation type

Operation generated by privilege 
check audit event (PRIVILEGE 

specified in AUDITTYPE)

Operation generated by audit event 
acquiring audit trail on final results of 

an event (EVENT specified in 
AUDITTYPE)

GRANT Execution of GRANT Same as indicated at left

REVOKE Execution of REVOKE Same as indicated at left



CREATE AUDIT (Define the target audit event)

580

Table 3-13:  Object definition event types and operations generated by the 
associated audit events

Object definition 
event type

Operation generated by privilege 
check audit event (PRIVILEGE 

specified in AUDITTYPE)

Operation generated by audit event 
acquiring audit trail on final results of 

an event (EVENT specified in 
AUDITTYPE)

CREATE Execution of the following SQL 
statements:
• ALTER PROCEDURE1

• ALTER ROUTINE1

• ALTER TRIGGER1

• ASSIGN LIST statement
• CREATE ALIAS
• CREATE FOREIGN INDEX
• CREATE FOREIGN TABLE
• CREATE FUNCTION
• CREATE INDEX
• CREATE PROCEDURE
• CREATE SCHEMA
• CREATE SERVER
• CREATE TABLE
• CREATE TRIGGER
• CREATE TYPE
• CREATE USER MAPPING
• CREATE VIEW
• CREATE PUBLIC VIEW
• CALL statement from a UAP2

Same as indicated at left

DROP Execution of the following SQL 
statements:
• DROP ALIAS
• DROP DATA TYPE
• DROP FOREIGN INDEX
• DROP FOREIGN TABLE
• DROP FUNCTION
• DROP INDEX
• DROP LIST statement
• DROP PROCEDURE
• DROP SCHEMA
• DROP SERVER
• DROP TABLE
• DROP TRIGGER
• DROP USER MAPPING
• DROP VIEW
• DROP PUBLIC VIEW
• REVOKE3

Same as indicated at left



CREATE AUDIT (Define the target audit event)

581

1 Internally, CREATE PROCEDURE is executed.
2 If index information on the procedure being called is invalid, CREATE 
PROCEDURE is internally executed on each call. In this case, the execution of 
CREATE PROCEDURE on every call can be suppressed by recreating the SQL 
object for the procedure that is called by using either ALTER PROCEDURE or 
ALTER ROUTINE.
3 If the SELECT privilege from a view base table is deleted, DROP VIEW is 
internally executed to delete the view table.
The following privilege checks are performed in an object definition event:

• Schema definition privilege check in an audit event
• Access privilege check on data manipulation SQL and control SQL 

statements in an SQL procedure statement either during the creation of a 
stored procedure or during the re-creation of an SQL object for a stored 
procedure

• Access privilege check on data manipulation SQL and control SQL 
statements in an SQL procedure statement either during the definition of a 
user-defined type in which a member includes a procedure, or during the 
re-creation of an SQL object for a user-defined type member

• Access privilege check on data manipulation SQL and control SQL 
statements in an SQL procedure statement either during the definition of a 
trigger or during the re-creation of an SQL object for a trigger

• Access privilege check on a base table during the definition of a view
7) object-operation-event-type::=

{SELECT|INSERT|UPDATE|DELETE|PURGE|ASSIGN|CALL|LOCK}
This operand specifies an operation on the object to be audited. If an audit target 
definition for an object operation event is specified, object operations in a 

ALTER Execution of the following SQL 
statements:
• ALTER PROCEDURE
• ALTER ROUTINE
• ALTER TABLE
• ALTER TRIGGER
• COMMENT

Same as indicated at left

Object definition 
event type

Operation generated by privilege 
check audit event (PRIVILEGE 

specified in AUDITTYPE)

Operation generated by audit event 
acquiring audit trail on final results of 

an event (EVENT specified in 
AUDITTYPE)



CREATE AUDIT (Define the target audit event)

582

procedure and in a trigger SQL statement are also subject to auditing. The 
following table shows object operation event types and the operations generated 
by the associated audit events.
Table 3-14:  Object operation event types and operations generated by the 
associated audit events

* Includes dynamic SELECT statements.
Queries in the following SQL statements produce an audit trail if an object 
operation event type is defined in SELECT:

• Query specification specified in an INSERT statement
• Subquery specified in a search condition in an UPDATE or DELETE statement

Object 
operation 
event type

Operation generated by privilege 
check audit event (PRIVILEGE 

specified in AUDITTYPE)

Operation generated by audit event 
acquiring audit trail on final results of 

an event (EVENT specified in 
AUDITTYPE)

SELECT • Execution of single-row SELECT 
statement*

• Execution of INSERT statement with 
query specification*

• Execution of UPDATE statement with 
subquery specification in a search 
condition*

• Execution of DELETE statement with 
subquery specification in a search 
condition*

• Execution of a query on a list*

• Same as indicated at left

INSERT • Execution of INSERT statement* • Same as indicated at left

UPDATE • Execution of UPDATE statement* • Same as indicated at left

DELETE • Execution of DELETE statement* • Same as indicated at left

PURGE • Execution of PURGE TABLE statement* • Same as indicated at left

CALL • No privilege check events • Execution of a procedure by CALL 
statement*

LOCK • Execution of LOCK statement* • Same as indicated at left

ASSIGN • Execution of ASSIGN LIST statement 
Format 1

• Execution of ASSIGN LIST statement 
Format 1

• Execution of ASSIGN LIST statement 
Format 2



CREATE AUDIT (Define the target audit event)

583

• Queries on a list
8) utility-event-type::=

{PDLOAD | PDRORG | PDEXP | PDCONSTCK}
This operand defines a utility event as being subject to auditing. The following 
table shows utility event types and the operations generated by the associated 
audit events.
Table 3-15:  Utility event types and operations generated by the associated audit 
events

9) selection-option::=ON object-name
Specify this operand to select an object from which to collect an audit trail. In 
object-name, specify the object from which you want to collect the audit trail. For 
details about the naming rules for object names, see 1.1.7 Specification of names.
When a public view is specified for the object, specify PUBLIC as the 
authorization identifier.
To specify a dictionary table, specify TABLE for the object name, and specify only 
the table identifier without the authorization identifier. In this case, the object 
owner column of the dictionary table SQL_AUDITS stores '(Data 
dictionary)'.

Rules
1. For details about the security audit facility, see the HiRDB Version 8 System 

Operation Guide.
2. Actual recording of an audit trail requires either the setting of the pd_audit 

operand of the system definition or the execution of the pdaudbegin command.
3. When the security audit facility is enabled, audit trails from the execution of 

CREATE AUDIT or DROP AUDIT are always recorded.

Utility event type Operation generated by privilege 
check audit event (PRIVILEGE 

specified in AUDITTYPE)

Operation generated by audit event 
acquiring audit trail on final results of 

an event (EVENT specified in 
AUDITTYPE) 

PDLOAD Execution of pdload Same as indicated at left

PDRORG Execution of pdrorg Same as indicated at left

PDEXP Execution of pdexp or pddefrev Same as indicated at left

PDCONSTCK Execution of pdconstck Same as indicated at left



CREATE AUDIT (Define the target audit event)

584

Notes
1. CREATE AUDIT cannot be specified from an X/Open-compliant UAP running 

under OLTP.
2. A trail may not always be output when an audit-target event is defined, depending 

on the combination of the operation type and other operands. When such a 
definition is specified, the KFPA19680-E message is output. The following table 
shows details about specifiable combinations.
Table 3-16:  Event type, event subtype, and specifiability of AUDITTYPE

Legend:
: Not applicable

Y: Specifiable
N: Not specifiable (KFPA19680-E message generated)

C: Specifiable with or without audit trail output#

#: Does not output an audit trail for event CALL privilege checks.
Table 3-17: Event type, event subtype, and specifiability of object name (1/2)

Event type Event subtype AUDITTYPE specifiability

PRIVILEGE EVENT ANY

ANY C* Y C*

SESSION Any subtype Y Y Y*

PRIVILEGE Any subtype Y Y Y*

DEFINITION Any subtype Y Y Y*

ACCESS CALL N Y C*

ANY C* Y C*

Any subtype other 
than the above

Y Y Y

UTILITY Any subtype Y Y Y

Event type Event 
subtype

ALIAS FRGN
INDEX

FRGN
TABLE

FCTN INDEX LIST PRCDR

ANY C C C C C C C



CREATE AUDIT (Define the target audit event)

585

Legend:
FRGN: FOREIGN
FCTN: FUNCTION
PRCDR: PROCEDURE

SESSION All N N N N N N N

PRIVILEGE GRANT N N Y N N N N

REVOKE N N Y N N N N

ANY N N Y N N N N

DEFINITION CREATE Y Y Y Y Y N Y

DROP Y Y Y Y Y N Y

ALTER N N Y Y Y N Y

ANY C C Y Y Y N Y

ACCESS SELECT Y N Y N N Y N

INSERT Y N Y N N N N

UPDATE Y N Y N N N N

DELETE Y N Y N N N N

PURGE Y N N N N N N

ASSIGN N N N N N Y N

CALL N N N N N N Y

LOCK Y N Y N N N N

ANY C N C N N C C

UTILITY PDLOAD N N N N N N N

PDRORG N N N N N N N

PDEXP Y N N N N N Y

PDCONSTCK N N N N N N N

ANY C N N N N N C

Event type Event 
subtype

ALIAS FRGN
INDEX

FRGN
TABLE

FCTN INDEX LIST PRCDR



CREATE AUDIT (Define the target audit event)

586

: Not applicable
Y: Specifiable
N: Not specifiable (KFPA19680-E message generated)
C: Specifiable with or without audit trail output
Table 3-18: Event type, event subtype, and specifiability of object name (2/2)

Event type Event 
subtype

RD SCHM SVR TBL TRGR TYP USR
MPG

VIEW

ANY C C C C C C C C

SESSION All N N N N N N N N

PRIVILEGE GRANT N N N Y N N N Y

REVOKE N N N Y N N N Y

ANY N N N Y N N N Y

DEFINITION CREATE Y Y Y Y Y Y Y Y

DROP N Y Y Y Y Y Y Y

ALTER Y N N Y Y N N Y

ANY C C C Y Y C C Y

ACCESS SELECT N N N Y N N N Y

INSERT N N N Y N N N Y

UPDATE N N N Y N N N Y

DELETE N N N Y N N N Y

PURGE N N N Y N N N N

ASSIGN N N N Y N N N N

CALL N N N N N N N N

LOCK N N N Y N N N Y

ANY N N N C N N N C



CREATE AUDIT (Define the target audit event)

587

Legend:
RD: RDAREA
SCHM: SCHEMA
SVR: SERVER
TBL: TABLE
TRGR: TRIGGER
TYP: TYPE
USR MPG: USER MAPPING

: Not applicable
Y: Specifiable
N: Not specifiable (KFPA19680-E message generated)

C: Specifiable with or without audit trail output
1. When the HiRDB version is upgraded with ANY specified in the AUDITTYPE 

clause, in FOR <operation-type> and each type, or in the WHENEVER clause, if the 
number of individual types increases as a result, all of these types are included as 
audit targets.
For example, if the version is upgraded with CREATE AUDIT FOR ANY defined 
and the number of operation types increases as a result, the increased operation 
types also become audit targets.

2. You cannot execute the definition of an already defined audit event in a CREATE 
AUDIT statement. If you attempt to do so, the KFPA11908-E message is output.

Examples
1. Define privilege checks on all audit events as being subject to auditing.

 
CREATE AUDIT FOR ANY WHENEVER ANY

UTILITY PDLOAD N N N Y N N N N

PDRORG N Y N Y N N N N

PDEXP N N N Y Y N N Y

PDCONSTCK N N N Y N N N N

ANY N C N Y C N N C

Event type Event 
subtype

RD SCHM SVR TBL TRGR TYP USR
MPG

VIEW



CREATE AUDIT (Define the target audit event)

588

 

2. Define privilege checks on connection to HiRDB as being subject to auditing.
 
CREATE AUDIT FOR SESSION CONNECT
 

3. Define privilege checks on the execution of the GRANT statement as being subject 
to auditing.
 
CREATE AUDIT FOR PRIVILEGE GRANT
 

4. Define privilege checks on the creation of an object as being subject to auditing.
 
CREATE AUDIT FOR DEFINITION CREATE
 

5. Define privilege checks on INSERT as being subject to auditing.
 
CREATE AUDIT FOR ACCSESS INSERT
 

6. Define all audit events as being subject to auditing.
 
CREATE AUDIT AUDITTYPE ANY FOR ANY
 

7. Define the termination of any audit event as being subject to auditing.
 
CREATE AUDIT AUDITTYPE EVENT FOR ANY
 

8. Specify the object from which to acquire an audit trail as table USER1.T1.
 
  CREATE AUDIT AUDITTYPE EVENT FOR ANY ON TABLE "USER1"."T1"



CREATE CONNECTION SECURITY (Define the connection security facility)

589

CREATE CONNECTION SECURITY (Define the connection security 
facility)

Function
Defines security items related to the connection security facility.

Privilege
Users who have DBA privilege

Users who have the DBA privilege can execute definition statements related to 
CREATE CONNECTION SECURITY.

Format

Operands
security-object::=
{CONNECT [PERMISSION COUNT literal
   [LOCK {literal DAY [S] | literal HOUR [S]
   | literal MINUTE [S] | UNLIMITED}]]
 | PASSWORD [TEST] password-character-limit-definition}
In security-object, CONNECT and PASSWORD can each be specified only once.
If security-object is omitted, the omitted security object is not defined. For each 
security-object specification, you can omit either CONNECT or PASSWORD, but not 
both. 
If only CONNECT or PASSWORD is specified in security-object and all operands 
after CONNECT or PASSWORD are omitted, the default values for the omitted 
operands are assigned.

CONNECT [PERMISSION COUNT literal

 
 CREATE CONNECTION SECURITY FOR security-object [, security-object]
 
 security-object::= {CONNECT [PERMISSION COUNT literal
   [LOCK {literal DAY[S]|literal HOUR[S]
   | literal MINUTE[S]|UNLIMITED}]]
  | PASSWORD [TEST] password-character-limit-definition}
 
 password-character-limit-definition::= [MIN LENGTH literal]
   [USER IDENTIFIER {RESTRICT|UNRESTRICT}]
   [SIMILAR {RESTRICT|UNRESTRICT}]
 



CREATE CONNECTION SECURITY (Define the connection security facility)

590

   [LOCK {literal DAY [S] | literal HOUR [S] | literal MINUTE [S]
   | UNLIMITED}]]
Specifies the default for a consecutive certification failure limit.
PERMISSION COUNT literal

Specifies a permission count for the permitted number of consecutive 
certification failures until a consecutive certification failure account lock 
state occurs. A consecutive certification failure account lock state occurs 
when the permitted number of consecutive certification failures exceeds a 
specified value.
The default for PERMISSION COUNT is 2. If a PERMISSION COUNT 
specification is omitted, the LOCK option cannot be specified.

literal
Specifies a permission count for the permitted number of consecutive 
certification failures until a consecutive certification failure account lock 
state occurs.
The minimum is 1 (time); the maximum is 10 (times).
In literal, specify an unsigned integer.

LOCK {literal DAY [S] | literal HOUR [S] | literal MINUTE [S] | UNLIMITED}
Specifies the duration over which the consecutive certification failure account 
lock state is to be continued.
The default for LOCK is LOCK 1440 MINUTE(LOCK 1 DAY,LOCK 24 HOUR).
In literal, specify an unsigned integer.
literal DAY[S]

Specifies the period over which the consecutive certification failure account 
lock state is to be continued by day.
The minimum is 1 (day); the maximum is 31 (days).

literal HOUR[S]
Specifies the period over which the consecutive certification failure account 
lock state is to be continued by the hour.
The minimum is 1 (hour); the maximum is 744 (hours).

literal MINUTE[S]
Specifies the period over which the consecutive certification failure account 
lock state is to be continued by the minute.



CREATE CONNECTION SECURITY (Define the connection security facility)

591

The minimum is 10 (minutes); the maximum is 44640 (minutes).
UNLIMITED

Specifies that the consecutive certification failure account lock state is to be 
continued indefinitely.

PASSWORD [TEST] password-character-limit-definition
Specifies the default for strengthening the password character limit.

TEST
Before defining a password character limit, specify this operand to check in 
advance an authorization identifier that has a password unsuitable for the limit to 
be changed.
The TEST option determines whether the current password is compatible with the 
character limit specified in password-character-limit-definition.
If TEST is specified, the settings in password-character-limit-definition are not 
defined.
password-character-limit-definition::=
[MIN LENGTH literal]
[USER IDENTIFIER {RESTRICT | UNRESTRICT}]
[SIMILAR {RESTRICT | UNRESTRICT}]

MIN LENGTH literal
Specifies the minimum required length for passwords in bytes.
Passwords less than a specified literal in bytes are prohibited.
The default for MIN LENGTH is 8.
The minimum is 6; the maximum is 15.
In literal, specify an unsigned integer.

USER IDENTIFIER {RESTRICT | UNRESTRICT}
Specifies whether passwords containing an authorization identifier are to be 
prohibited. The default for USER IDENTIFIER is RESTRICT.
RESTRICT

Specify this operand if passwords containing an authorization identifier are 
to be prohibited.

UNRESTRICT
Specify this operand if passwords containing an authorization identifier are 



CREATE CONNECTION SECURITY (Define the connection security facility)

592

to be allowed.
SIMILAR {RESTRICT | UNRESTRICT}

Specifies whether all characters composing a password must be restricted to a 
single character type.
The default for SIMILAR is RESTRICT.
Specifies whether the type of password given in the following example is to be 
prohibited:
Examples:
FDBGLAOT (uppercase alphabetic characters only)
24681357 (numerics only)
RESTRICT

Specify this operand when prohibiting the restriction of all characters 
composing a password to a single character type.

UNRESTRICT
Specify this operand when not prohibiting the restriction of all characters 
composing a password to a single character type.

Common rules
1. If a specified security object is already defined, the same security object cannot 

be defined in duplicate.
2. When modifying the definition of an item related to the connection security 

facility, delete the definition of the item related to the connection security facility, 
and then redefine the item related to the connection security facility.

3. If any DBA privilege holder or auditor is in violation of a specified password 
character limit definition, the CREATE CONNECTION SECURITY FOR 
PASSWORD flags an error. The TEST option does not generate an error.

Notes
1. The default for the single-character type limit is RESTRICT, which puts the limit 

in effect. If no restriction is intended, the UNRESTRICT option should be 
specified.

2. Even when a password character limit is defined, you can check passwords in 
advance by specifying the TEST operand.

3. An attempt to define the connection security facility when the directory server 
linkage facility is in use can cause an error.



CREATE CONNECTION SECURITY (Define the connection security facility)

593

Examples
1. Define security parameters for the connection security facility by specifying the 

following settings:
Definition for consecutive certification failure limit

 Permitted number of consecutive certification failures: 5
 Lock duration: 7 days

Password character limit definition
 Minimum password length in bytes: 10 characters
 Prohibit passwords containing an authorization identifier
 Prohibit single-character type passwords

 
CREATE CONNECTION SECURITY FOR
  CONNECT PERMISSION COUNT 5
          LOCK 7 DAY,
  PASSWORD MIN LENGTH 10
           USER IDENTIFIER RESTRICT
           SIMILAR RESTRICT

2. Define security parameters for the connection security facility by specifying the 
following settings:
Definition for consecutive certification failure limit

 Permitted number of consecutive certification failures: 5
 Lock duration: 15 hours

Password character limit definition
 Assign a default value

 
CREATE CONNECTION SECURITY FOR
  CONNECT PERMISSION COUNT 5
          LOCK 15 HOUR,
  PASSWORD

3. Define security parameters for the connection security facility by specifying the 
following settings:
Definition for consecutive certification failure limit

 Not defined
Password character limit definition

 Assign a default value



CREATE CONNECTION SECURITY (Define the connection security facility)

594

 
CREATE CONNECTION SECURITY FOR PASSWORD
 



CREATE FOREIGN INDEX (Define a foreign index)

595

CREATE FOREIGN INDEX (Define a foreign index)

Function
Defines a foreign index for a column in a foreign table.
Foreign indexes are used as information for the optimization of access to a foreign 
table. Defining a foreign index causes the creation of definition information only in 
HiRDB without creating an object. This command cannot be used to define an index 
on a foreign server.

Privileges
Owner of a foreign table

This user can define a foreign index only for his or her own foreign tables.

Format

Operands
UNIQUE

This operand is specified if the foreign database index is a UNIQUE-specified index.
[authorization-identifier.]index-identifier

authorization-identifier
Specifies the authorization identifier of the user who owns the foreign index that 
was created.

index-identifier
Specifies the name of the foreign index to be defined.
Multiple indexes and foreign indexes of the same name cannot be specified on a 
single authorization identifier.
on [authorization-identifier.]table-identifier

authorization-identifier

 
 CREATE [UNIQUE] FOREIGN INDEX
   [authorization-identifier.]index-identifier
   on [authorization-identifier.]table-identifier
   (column-name[{ASC|DESC}][, column-name[{ASC|DESC}]]...)
   [exception-value-specification]
 
 exception-value-specification::=EXCEPT VALUES (NULL[, NULL]...)
 



CREATE FOREIGN INDEX (Define a foreign index)

596

Specifies the authorization identifier of the user of the foreign table for which a 
foreign index is to be defined.

table-identifier
Specifies the name of the foreign table for which a foreign index is to be defined.
column-name[{ASC|DESC}][, column-name[{ASC|DESC}]]...

column-name
Specifies the name of the column for which a foreign index is to be defined.
A maximum of 16 column names can be specified. If multiple column names are 
specified, each column name must be unique.

ASC
This operand is specified if the index on a foreign database associated with the 
foreign index is in ascending order.

DESC
This operand is specified if the index for the foreign database associated with the 
foreign index is in descending order.
exception-value-specification

This operand is specified if the index for the foreign database associated with the 
foreign index does not contain the null value.
An exception value cannot be specified if the index for the foreign database contains 
NOT NULL-constrained columns.

Common rules
1. Foreign indexes are used as information on the optimization of access to a foreign 

table. For details about under which circumstances such information is to be 
defined, see the section on performance design for access to foreign tables in the 
manual HiRDB External Data Access Version 7.

2. Exception values cannot be specified repetitively.
3. A maximum of 255 foreign indexes can be defined per foreign table.
4. A foreign index cannot be defined for a BINARY-type column.
5. Only one foreign index having the same constituent columns can be defined. For 

single-column indexes, an ascending-order foreign index and a descending-order 
foreign index are considered to be the same; therefore, they cannot be defined 
separately. For multiple-column indexes, if the ascending or descending order 
column specifications are opposite for all constituent columns, they are 
considered to be the same.



CREATE FOREIGN INDEX (Define a foreign index)

597

Notes
1. CREATE FOREIGN INDEX cannot define an index for a foreign server.
2. CREATE FOREIGN INDEX cannot be specified from an X/Open compliant UAP 

running under OLTP.



CREATE FOREIGN TABLE (Define a foreign table)

598

CREATE FOREIGN TABLE (Define a foreign table)

Function
Defines a foreign table.
Creates definition information in HiRDB. Foreign tables on a foreign server cannot be 
defined.

Privileges
Users who own a schema and a foreign server definition

These users can define foreign tables associated with tables on a foreign server 
that they have defined in a foreign server definition that they own.

Format

Operands
[authorization-identifier.]table-identifier

authorization-identifier
Specifies the authorization identifier of the user who will be the owner of the 
foreign table to be defined.
The default is the authorization identifier of the user who executes CREATE 
FOREIGN TABLE.

table-identifier
Specifies the name of the foreign table to be defined.
Only one table identifier can be specified per authorization identifier.
column-name data-type[general-column-option][, column-name 
data-type[general-column-option]]...

column-name

 
 CREATE FOREIGN TABLE [authorization-identifier.]table-identifier
   (column-name data-type[general-column-option]
   [, column-name data-type[general-column-option]]...)
   SERVER foreign-server-name
   [OPTIONS (option-name 'option-value' [, option-name 'option-value']...)]
 
 general-column-option::=
   OPTIONS (option-name 'option-value' [, option-name 'option-value']...)
 



CREATE FOREIGN TABLE (Define a foreign table)

599

Specifies the name of the column that comprises the table.
In column-name, specify the column name that was defined for the associated 
table for the foreign server. The same column name cannot be specified more than 
once.

data-type
Specifies the data type of the column.
Specifiable data types are HiRDB's predefined types. Specify a predefined type 
that is compatible with the data type of the column of the table on the foreign 
server. Specifying an incompatible data type can cause an error. For data type 
compatibility, see C. Correspondence Between Data Types When a Foreign Table 
is used.
Any of the following data types cannot be specified:

• CHAR, VARCHAR, MCHAR, or MVARCHAR with a definition length of 256 bytes 
or greater

• NCHAR or NVARCHAR with a definition length of 128 characters or greater
• BLOB
• BINARY with a definition length of 256 bytes or greater

general-column-option::=OPTIONS (option-name 'option-value' [, 
option-name 'option-value']...)

Specify options for a column.
The following option names and option values can be specified; option names cannot 
be specified in duplicate.
COLLATING_SEQUENCE {'SAME'|'DIFFERENT'}

If a given column is of the character string type, specify whether the character 
code and collating sequence applicable to the given column on the foreign server 
are the same as those of HiRDB.
The default is SAME.
This option can be specified for character string-type (CHAR, VARCHAR, NCHAR, 
NVARCHAR, MCHAR, and MVARCHAR) columns only.
SAME

This operand is specified when using the same character code and collating 
sequence.

DIFFERENT
This operand is specified when using a character code or a collating sequence 



CREATE FOREIGN TABLE (Define a foreign table)

600

that is different, or when both items are different.
If DIFFERENT is specified, HiRDB performs a collating sequence 
comparison on the character string (<, <=, >, >=) and processes the BETWEEN 
predicate, the set functions (MIN, MAX), and ORDER BY. Specifying SAME 
when the foreign database and the HiRDB have different character code sets 
or collating sequences can produce different results of collating sequence 
comparisons (<, <=, >, >=) and of the processing of the BETWEEN predicate, 
the set functions (MIN, MAX), and ORDER BY on the character string.

TRAILING_SPACE {'YES'|'NO'}
For a variable-length character string (VARCHAR, NVARCHAR, or MVARCHAR), 
specifies whether the character string to be stored in a given column has a trailing 
single-byte space or double-byte space character string.
The default is NO.
This option can be specified only for columns of a variable-length character string 
type (VARCHAR, NVARCHAR, or MVARCHAR).
Specifying an option value different from the data stored in a foreign database can 
produce unexpected results from a character string comparison.
YES

This option is specified if the character string to be stored in a given column 
has a trailing single-byte space or double-byte space character string, either 
actual or potential.
If YES is specified and the value 2 is specified in the 
pd_hub_opt_trailing_spc operand of the Hub optimization 
information definition, HiRDB processes those parts in the following items 
that have specifications differences: character string comparisons (=, !=, < 
>, <, <=, >, and >=), quantified predicates, BETWEEN predicate, IN predicate, 
set functions (MIN, MAX), SELECT DISTINCT specification, DISTINCT set 
function, set operations other than UNION ALL, GROUP BY, and ORDER BY. 
However, if DIFFERENT is specified at the same time in the 
COLLATING_SEQUENCE option, HiRDB always performs character string 
comparisons (=, !=, < >, <, <=, >, and >=), BETWEEN predicate, set 
functions (MIN, MAX), and ORDER BY. For Hub optimization information 
definitions, see the manual HiRDB Version 8 System Definition.

NO
This option is specified if the character string to be stored in a given column 
does not have a trailing single-byte space or double-byte space character 
string.

NULLABLE {'YES'|'NO'}



CREATE FOREIGN TABLE (Define a foreign table)

601

Specifies whether the column is to allow the null value.
The default is YES.
Specifying an option different from a column in the foreign database can cause a 
decline in HiRDB performance or produce incorrect processing results. For 
details about performance design with respect to access to foreign tables, see the 
manual HiRDB External Data Access Version 7.
YES

This option is specified when allowing the null value.
If the value 2 is specified in the pd_hub_opt_nullable operand of the 
Hub optimization information definition and YES is specified in the character 
string column, HiRDB performs any concatenation operations (||) involving 
the specified column.

NO
This option is specified when not allowing the null value (for NOT NULL 
constraint). Specifying NO causes HiRDB to assume NOT NULL WITH 
DEFAULT for the column.

foreign-server-name
Specifies the name of the foreign server (the name defined in CREATE SERVER) on 
which the foreign table is located.

OPTIONS (option-name 'option-value'[, option-name 'option-value']...)
Specifies any of the following options on the foreign table; an option cannot be 
specified in duplicate.
The operands schema-name and table-identifier-on-foreign-server can each be 
specified in a maximum of 30 bytes.
SCHEMA 'schema-name'

Specifies the schema name of the table to be accessed from a foreign table.
If the foreign server is HiRDB, the schema name is equivalent to the authorization 
identifier.
The default for the schema name is the name that was specified in 
authorization-identifier. If both a schema name and an authorization identifier are 
omitted, the default is the authorization identifier of the user who executes 
CREATE FOREIGN TABLE.
If a table accessed from a foreign table is defined as a public view on the foreign 
server, specify PUBLIC in the schema name.

TABLE 'table-identifier-on-foreign-server'



CREATE FOREIGN TABLE (Define a foreign table)

602

Specifies the name defined on the foreign server of the table accessed from the 
foreign table.
The default is the name specified in table-identifier.

Common rules
1. A maximum of 30,000 columns can be defined per foreign table.
2. The user who executes CREATE FOREIGN TABLE is granted the privilege to access 

the applicable foreign table.

Notes
1. Tables on the foreign server side cannot be defined by using CREATE FOREIGN 

TABLE.
2. CREATE FOREIGN TABLE cannot be specified from an X/Open compliant UAP 

running under OLTP.
3. If you define a read-only view table on a foreign server as a foreign table, you 

cannot perform row insertion, updating, or deletion for that foreign table. If an 
attempt is made to execute an SQL statement for such an operation, accessing the 
foreign server may result in an error. Do not grant the user the UPDATE, INSERT, 
or DELETE privilege to such a table.

4. When the NOT NULL constraint is specified for a table on a foreign server and in 
the foreign table there is no column defined that does not have a default value 
specified, an INSERT statement cannot be executed for that foreign table. If an 
attempt is made to execute an INSERT statement, accessing the foreign server 
may result in an error. Do not grant the user the INSERT privilege to such a table. 
When you insert a row into a foreign table, include in the definition of the foreign 
table a column for which the NOT NULL constraint is specified and for which no 
default value is specified.

5. The access privilege granted by virtue of the execution of CREATE FOREIGN 
TABLE cannot be granted to tables on the foreign server corresponding to the 
applicable foreign table. If a table without access privilege on the foreign server 
is defined as a foreign table, any access to the table on the foreign server may 
result in an error. Care should be taken so that access privileges not valid on the 
foreign server are not granted to other users.

6. Any of the following definition lengths that are specified in CREATE FOREIGN 
TABLE should be the same as the table defined on the foreign server; if they are 
not the same, an error can occur on the foreign server:

• DECIMAL-type precision and scaling
• TIMESTAMP-type precision
• Fixed-length character string type



CREATE FOREIGN TABLE (Define a foreign table)

603

• Variable-length character string type
• Fixed-length national character string type
• Variable-length national character string type
• Fixed-length mixed character string type
• Variable-length mixed character string type
• BINARY type



CREATE FUNCTION (Define function)

604

CREATE FUNCTION (Define function)

Function
CREATE FUNCTION defines a function.

Privileges
Owner of a schema
A user can define functions that will be owned by that user.

Format
CREATE function-body
function-body::=FUNCTION [authorization-identifier.] routine-identifier
                    ([SQL-parameter-name data-type
                        [, SQL-parameter-name data-type] ...])
                   RETURNS data-type
                    [LANGUAGE {SQL|JAVA}]
[SQL-compilation-option]
                     {SQL-procedure-statement
                      |external-routine-specification}
SQL-compilation-option::=SUBSTR LENGTH maximum-character-length
external-routine-specification ::= EXTERNAL NAME external-routine-name
                           PARAMETER STYLE parameter-style
parameter-style ::= JAVA

Operands
[authorization-identifier.] routine-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the function that is being 
defined.

routine-identifier
Specifies a routine identifier for the function being defined. The same routine 
identifier can be used in all the owner's routines. However, the owner of the 
function being defined cannot define routines that are identical in terms of the 
routine identifier, number of SQL parameters, and positions at which the data 
types of the SQL parameters occur.
([SQL-parameter-name data-type [,SQL-parameter-name data-type] ...])

SQL-parameter-name
Specifies the name of a parameter for the function. The same SQL parameter 



CREATE FUNCTION (Define function)

605

name cannot be specified more than once for the same function.
data-type

Specifies the data type of the paired parameter for the function. The BOOLEAN 
data type cannot be specified.
If the specified data type is an abstract data type, no authorization identifier is 
specified, and the default authorization identifier does not have an abstract data 
type of the same name, and if there is an abstract data type of the same name in 
the 'MASTER' authorization identifier, that abstract data type is assumed to have 
been specified.
When JAVA is specified in the LANGUAGE clause, an abstract data type cannot be 
specified as a data type. See 1.9.2 Type mapping for the specifiable data types.
RETURNS data-type

data-type
Specifies the data type for return values of the function.
The following data types cannot be specified:

• BOOLEAN
• An abstract data type when JAVA is specified in the LANGUAGE clause (see 

1.9.2 Type mapping for the specifiable data types).
If the data type being specified is the abstract data type and the authorization 
identifier is omitted, and the default authorization identifier does not have an 
abstract data type of the same name, the specified abstract data type is assumed, 
provided that the authorization identifier 'MASTER' has an identically named 
abstract data type.
LANGUAGE {SQL |JAVA}

Specifies the language used to write the function.
For an external routine, specify JAVA.
SQL

Specifies that the processing part of the function is made up of SQL statements.
JAVA

Specifies that the processing part of the function is specified as an external routine 
and the function is to be implemented as a Java class method.

Which of these operands is specified determines the other operands that can be 
specified. Table 3-19 shows the operands that can be specified in conjunction with the 
LANGUAGE clause.



CREATE FUNCTION (Define function)

606

Table 3-19: Specifiable operands depending on the specification of the 
LANGUAGE clause of CREATE FUNCTION

1 Governed by the type mapping rules; for details of type mapping, see 1.9.2 Type 
mapping.
2 BOOLEAN cannot be specified.

SQL-compilation-option::=SUBSTR LENGTH maximum-character-length
[SUBSTR LENGTH maximum-character-length]

Specifies the maximum number of bytes for representing a single character.
The value specified for the maximum character length must be in the range from 
3 to 6.
This operand is valid only when utf-8 is specified for the character code type in 
the pdntenv command (pdsetup command in the case of the UNIX version); it 
affects the length of the result of the SUBSTR scalar function. For details about 
SUBSTR, see 2.16.1(21) SUBSTR.
Relationships to system definition

When SUBSTR LENGTH is omitted, the value specified in the 
pd_substr_length operand in the system definition is assumed. For 
details about the pd_substr_length operand, see the manual HiRDB 
Version 8 System Definition.

Relationship to client environmental definition
The specification of PDSUBSTREN has no applicability to CREATE 
FUNCTION. For details about PDSUBSTRLEN, see the manual HiRDB Version 
8 UAP Development Guide.

Relationship to the character code type specified in the pdntenv or pdsetup 
command

Other operand LANGUAGE clause specification

SQL JAVA

SQL parameter data type Y Y1

RETURNS clause data type Y2 Y1, 2

EXTERNAL NAME Y

PARAMETER STYLE Y

SQL procedure statement Y



CREATE FUNCTION (Define function)

607

This operand is valid only when utf-8 is specified for the character code 
type.
For all other character code types, only a syntax check is performed and the 
specification is ignored.

SQL-procedure-statements
Specifies the SQL procedure statements to be executed by the SQL function (for 
details of SQL procedure statements, see the General rules section in 7. Routine 
Control SQL). Only compound statements can be specified in an SQL procedure 
statement. The last SQL procedure statement executed in an SQL function must be the 
RETURN statement.

EXTERNAL NAME external-routine-name
Specifies the external routine, written in Java, that constitutes a Java method. For the 
external routine name specification conventions, see 1.9.1 Specification of external 
routines.

PARAMETER STYLE parameter-style
Specifies items to be passed as parameters when an external routine is called.
Java function parameters that are defined as an SQL data type are passed as Java 
method parameters in the Java data type that is associated with the SQL data type.
Return values from the Java method defined in the Java data type are returned as return 
values from the Java function of the SQL data type associated with the Java data type.

Common rules
1. An SQL parameter cannot be specified in the target of an assignment statement.
2. The maximum number of function parameters is 30,000. If anything other than 

SQL is specified in the LANGUAGE clause, an error may result at the time of 
execution due to external language specification limitations even though the 
number of specified function parameters is less than 30,000.

3. SQL parameters become input SQL parameters.
4. Only predefined functions can be specified in the SQL procedure statements.
5. When a function is defined, the HiRDB system defines a special name that 

identifies that function uniquely. Following are the conventions for determining 
special names:
special-name::=F function-name object-ID

• First byte is the constant 'F'.
• Function name begins in byte 2 (if the name of the function is longer than 19 

bytes, only the first 19 bytes are used).



CREATE FUNCTION (Define function)

608

• Object ID occupies 10 bytes following the function name (left-justified and 
padded with trailing zeros).

6. A function that is defined must not be the same as any system-provided function. 
Any function that satisfies either of the following sets of conditions cannot be 
defined:
(a)

• The function is associated with two SQL parameters.
• The data type of the first SQL parameter is an abstract data type.
• An attribute with the same name as the function name is defined as an 

attribute in the abstract data type specified by the first SQL parameter.
• The data type of the second SQL parameter is identical to the data type of an 

attribute with the same name as the function name.
(b)

• The function is associated with one SQL parameter.
• The data type of the SQL parameter is an abstract data type.
• An attribute with the same name as the function name is defined as an 

attribute in the abstract data type specified by the SQL parameter.
7. If the LANGUAGE clause is omitted or SQL is specified in the LANGUAGE clause, 

an external routine cannot be specified.
8. If anything other than SQL is specified in the LANGUAGE clause, an SQL 

procedure statement cannot be specified.
9. A function identical to the function being defined in terms of the authorization 

identifier, routine identifier, and number of arguments cannot be specified in an 
SQL procedure statement.

10. A CREATE FUNCTION statement cannot be executed if a function that satisfies all 
the following conditions is already defined:

• Has the same authorization identifier as the function being defined
• Has the same function name as the function being defined
• Has the same number of parameters as the function being defined
• Has the same parameter data type as the function being defined

11. When the SQL compile option is specified in ALTER ROUTINE, the length of the 
SQL statement that is created by incorporating the SQL compile option in the 
source CREATE FUNCTION for the procedure to be re-created must not exceed the 
maximum allowable length for SQL statements.



CREATE FUNCTION (Define function)

609

12. CREATE FUNCTION cannot be executed from a Java procedure if the execution 
result invalidates the SQL object being executed.

Notes
1. The CREATE FUNCTION statement cannot be specified from an X/

Open-compliant UAP running under OLTP.
2. SQL parameters can have the NULL value.
3. To execute multiple SQL statements in an SQL procedure statement, use a routine 

control SQL statement, such as a compound statement.
4. Defining an SQL function results in creation of an SQL object that specifies 

access procedures for execution of functions.
5. When defining a function, if a function having the same number of owners, 

routine identifiers, and SQL parameters already exists, any SQL object with an 
effective function, procedure, or trigger that uses the existing function is nullified. 
Similarly, if a function having the same number of routine identifiers and SQL 
parameters as the function being defined is in the authorization identifier MASTER, 
then, of the SQL objects with effective functions, procedures, triggers that use the 
function in the MASTER authorization identifier, the SQL object with the 
authorization identifier for the function being defined is nullified.

6. If an SQL object with an effective function, procedure, or trigger is nullified, any 
rows containing the function, procedure, and trigger that have been nullified in the 
SQL_ROUTINE_RESOURCES dictionary table are deleted.

7. Before executing the SQL object with a nullified function, procedure, and trigger, 
you need to execute ALTER ROUTINE, ALTER PROCEDURE, or ALTER TRIGGER 
to recreate the SQL object with the function, procedure, or trigger.

8. Stacks in the operating system may overflow if routine calls are repeated 
extensively or infinitely in a routine.

9. SUBSTR LENGTH of the SQL compile option is determined by what is specified 
when the function is defined or modified; it is not affected by the system 
definition or client environment variable definition that is in effect when the 
function is called.



CREATE INDEX Format 1 (Define index)

610

CREATE INDEX Format 1 (Define index)

Function
CREATE INDEX (format 1) defines an index for one or more columns of a base table.

Privileges
Owner of the table
A user can define indexes in public user RDAREAs for tables owned by that user.
Table owner who has the usage privilege for private user RDAREAs
A user can define indexes for tables owned by that user in private user RDAREAs for 
which the user has the usage privilege.

Format 1 (Define Index)
CREATE [UNIQUE] INDEX [authorization-identifier.] index-Identifier
     ON [authorization-identifier.] table-identifier(column-name [{ASC|DESC}]
                                     [, column-name [{ASC|DESC}]]...)
     [IN {RDAREA-name
          |(RDAREA-name|
          |((RDAREA-name)[, (RDAREA- name)]...)
          |matrix-partitioned-index-storage-RDAREA-specification}]
     [index-option]...
matrix-partitioned-index-storage-RDAREA-specification::=
     two-dimensional-storage-RDAREA-specification
two-dimensional-storage-RDAREA-specification::=
     (matrix-partitioning-RDAREA-list
       [, matrix-partitioning-RDAREA-list]...)
matrix-partitioning-RDAREA-list::=
     (RDAREA-name[, RDAREA-name]...)
>index-option ::={PCTFREE =unused-space-percentage
              |UNBALANCED SPLIT
              |EMPTY
              |exception-value-specification}
exception-value-specification ::=EXCEPT VALUES (NULL [, NULL]...)

Operands
[UNIQUE]

Specifies that the key values (all the values in the column or columns defined for the 
index) must be different (the value in each row must be unique).
If duplicate key values are detected during creation or updating of an index that has the 
UNIQUE attribute, HiRDB returns an error. However, a null value may be duplicated.



CREATE INDEX Format 1 (Define index)

611

When the UNIQUE option is specified, the considerations discussed below should be 
noted.
1. When table row-partitioning is performed
Table 3-20 shows the specifiability of UNIQUE in conjunction with row-partitioning of 
a table.

Table 3-20: Specifiability of UNIQUE in conjunction with row-partitioning of a 
table

Table partitioning method1 Index constituent column for 
which UNIQUE is specified2

Index partitioning 
method4

UNIQUE 
specifi- 
ability

Row-partitioning 
within a server

Key range 
partitioning 
(not matrix 
partitioning) 
and FIX hash 
partitioning

Partitioning key index Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

Non-partitioning 
key index

Including 
partitioning 
keys (in any 
order)

Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions (no 
row-partitioning).

Y

Not including 
partitioning 
keys (in any 
order)

Matches the number 
of table partitions.

N

Does not match the 
number of table 
partitions (no 
row-partitioning).

Y3

Flexible hash 
partitioning

Not applicable Not applicable N

Matrix 
partitioning

Partitioning key index Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

Non-partitioning 
key index

Including all 
partitioning 
keys (in any 
order)

Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

N



CREATE INDEX Format 1 (Define index)

612

Not including 
any 
partitioning 
key (in any 
order)

Matches the number 
of table partitions.

N

Does not match the 
number of table 
partitions (no 
row-partitioning).

Row-partitioning 
among servers 
(no partitioning 
within a server)

Key range 
partitioning 
(not matrix 
partitioning) 
and FIX hash 
partitioning

Partitioning key index Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

Non-partitioning 
key index

Including all 
partitioning 
keys (in any 
order)

Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

Not including 
any 
partitioning 
key (in any 
order)

Matches the number 
of table partitions.

N

Does not match the 
number of table 
partitions.

Flexible hash 
partitioning

Not applicable Not applicable N

Matrix 
partitioning

Partitioning key index Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

Non-partitioning 
key index

Including all 
partitioning 
keys (in any 
order)

Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

Table partitioning method1 Index constituent column for 
which UNIQUE is specified2

Index partitioning 
method4

UNIQUE 
specifi- 
ability



CREATE INDEX Format 1 (Define index)

613

Not including 
any 
partitioning 
key (in any 
order)

Matches the number 
of table partitions.

N

Does not match the 
number of table 
partitions.

Row-partitioning 
among servers 
(with partitioning 
within a server)

Key range 
partitioning 
(not matrix 
partitioning) 
and FIX hash 
partitioning

Partitioning key index Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

Non-partitioning 
key index

Including all 
partitioning 
keys (in any 
order)

Matches the number 
of table partitions 
(also partitioned on 
the server)

Y

Does not match the 
number of table 
partitions (not 
partitioned on the 
server)

Y

Not including 
any 
partitioning 
key (in any 
order)

Matches the number 
of table partitions 
(also partitioned on 
the server)

N

Does not match the 
number of table 
partitions (not 
partitioned on the 
server)

N

Flexible hash 
partitioning

Not applicable Not applicable N

Matrix 
partitioning

Partitioning key index Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

Table partitioning method1 Index constituent column for 
which UNIQUE is specified2

Index partitioning 
method4

UNIQUE 
specifi- 
ability



CREATE INDEX Format 1 (Define index)

614

Legend:
Y: UNIQUE can be specified.
N: UNIQUE cannot be specified.

: An index cannot be defined.
1 Row-partitioning within a server refers to either row-partitioning on a HiRDB/Single 
Server or row-partitioning that is closed on a back-end server on a HiRDB/Parallel 
Server. Row-partitioning among servers refers to row-partitioning that extends across 
multiple servers on a HiRDB/Parallel Server. If a server contains a mix of tables, some 
whose table partitioning method is row-partitioning within a server and some whose 
table partitioning method is row-partitioning among servers, that server is classified as 
row-partitioning among servers. For details about row-partitioning of tables, see the 
HiRDB Version 8 Installation and Design Guide.
2 Partitioning key index refers to an index in which the column (partitioning key) in 
which a storage condition is specified for the row-partitioning of a table is the first 
constituent column, and such indexes include the following:

Single-column partitioning:
A single-column index that is created in a partitioning key, or a 
multiple-column index that is created in multiple columns for which the 
partitioning key is the first column

Multiple-column partitioning:
A multiple-column index that is created in multiple columns and that contain 
all of the columns specified for partitioning from the beginning in the same 
order

Non-partitioning 
key index

Including all 
partitioning 
keys (in any 
order)

Matches the number 
of table partitions.

Y

Does not match the 
number of table 
partitions.

Not including 
any 
partitioning 
key (in any 
order)

Matches the number 
of table partitions.

N

Does not match the 
number of table 
partitions.

Table partitioning method1 Index constituent column for 
which UNIQUE is specified2

Index partitioning 
method4

UNIQUE 
specifi- 
ability



CREATE INDEX Format 1 (Define index)

615

Indexes that are not partitioning key indexes are referred to as non-partitioning 
key indexes.

3 The N mark indicates the use of the rebalancing facility for hash-partitioned tables 
(due to the fact that UNIQUE cannot be specified if an RDAREA is added to change the 
partitioning to row-partitioning among servers).
4 The method by which an index is partitioned depends on how the index storage 
RDAREA is specified. With the exception of flexible hash partitioning. omitting the 
IN operand may prevent specification of UNIQUE, due to the index partitioning 
method. Notice that explicitly specifying an index storage RDAREA in the IN operand 
may prevent the specification of UNIQUE.
2. When a repetition column is used
A repetition column cannot be specified as a constituent column of an index for which 
UNIQUE is specified.

[authorization-identifier.] index-identifier
Specifies the authorization identifier of the user who will own the created index and a 
name for the index.
The index name cannot be the same as the table name.

[authorization-identifier.] table-identifier
Specifies the authorization identifier of the user who owns the table that is to be 
indexed and the name of the base table for which the index is being created.

(column-name [{ASC|DESC}][,column-name[{ASC|DESC}]]...)
column-name

Specifies the name of a column for which the index is being defined.
A maximum of 16 column names can be specified.
When multiple column names are specified, each column name must be unique.

ASC
Specifies that the index is to be organized in ascending order of the key values.

DESC
Specifies that the index is to be organized in descending order of the key values.
IN{RDAREA-name
|(RDAREA-name)
|((RDAREA-name) [, (RDAREA-name)]...)
|matrix-partitioned-index-storage-RDAREA-specification}



CREATE INDEX Format 1 (Define index)

616

|matrix-partitioned-index-storage-RDAREA-specification::=
     |two-dimensional-storage-RDAREA-specification
two-dimensional-storage-RDAREA-specification::=
     (matrix-partitioning-RDAREA-list
       [, matrix-partitioning-RDAREA-list]...)
matrix-partitioning-RDAREA-list::=
     (RDAREA-name[, RDAREA-name]...)

Specifies the names of the RDAREAs in which the index is to be stored.
Specify matrix-partitioned-index-storage-RDAREA-specification when defining an 
index for a matrix-partitioned table. RDAREA names are subject to the same rules as 
non-matrix-partitioned tables.
The following rules apply to RDAREAs that store indexes:
1. In addition, the following restrictions apply to HiRDB/Parallel Servers: If the 

table specified in table-identifier is a shared table, the RDAREA name must be a 
shared RDAREA. If the table specified in table-identifier is not a shared table, a 
shared RDAREA cannot be specified in the RDAREA name.

2. The specified RDAREAs must have already been created by the database 
initialization utility or added by the database structure modification utility.

3. If no RDAREA names are specified, the index is stored in the RDAREAs in 
which the table specified by the table identifier is stored. However, if the table is 
partitioned in a HiRDB/Single Server or is partitioned in the same back-end 
server in a HiRDB/Parallel Server, an index in which a column other than the 
partitioning key is specified at the beginning of the index is stored in the first 
table-storage RDAREA for which a partitioning condition was specified. For a 
matrix-partitioned table, a two-dimensional RDAREA specification cannot be 
omitted unless all the columns specified in a partitioned key are specified in the 
same order from the beginning of index constituent columns.

4. When multiple RDAREA names are specified, each RDAREA name must be 
unique. However, RDAREA names can be specified in duplicate if table storage 
RDAREA names are duplicated in a partitioned table with a boundary value 
specification or in a matrix-partitioned table.

5. When a table is stored in multiple RDAREAs on a split basis, index storage 
RDAREAs must be specified as follows:

• For a partitioning key index, specify the same number of RDAREA names 
as the number of RDAREAs containing the table. In this case, the index will 
be stored in the order in which the table storage RDAREAs are specified in 
CREATE TABLE.



CREATE INDEX Format 1 (Define index)

617

• If there are duplicate table storage RDAREA names in a partitioned table 
with a boundary value specification or in a matrix-partitioned table, specify 
corresponding index storage RDAREA names.

Definition examples are as follows:
Example 1: Partitioning by rows based on storage conditions:

Example 2: Partitioning by rows based on a boundary value:

Example 3: Matrix partitioning



CREATE INDEX Format 1 (Define index)

618

6. For a HiRDB/Parallel Server, the RDAREAs that store the table and the 
RDAREAs that store the associated index must be located in the same back-end 
server.

7. For a non-partitioning key index, specify RDAREAs as follows:
• If an index is not row-partitioned within a server, specify RDAREA names 

in a number equal to the servers on which partitioned tables are stored. For a 
HiRDB/Parallel Server, specify an RDAREA for each back-end server 
containing a table. For a HiRDB/Single Server, only one RDAREA can be 
specified. Matrix-partitioned tables are treated in the same way as a 
partitioned key index.

• If an index is to be row-partitioned within a server, specify RDAREA names 
in a number equal to the RDAREAs storing the table. In this case, the targets 
of index storage correspond to the order in which table storage RDAREAs 
were specified in CREATE TABLE. If there are duplicate table storage 
RDAREA names in a partitioned table with a boundary value specification, 
or in a matrix-partitioned table, specify corresponding index storage 
RDAREA names.
The RDAREAs can be specified in any order; the indexes associated with the 
table storage RDAREAs at the same server will be stored respectively.

8. User RDAREAs storing rebalancing tables cannot be specified.
9. When an index for a rebalancing table is defined, an RDAREA name must be 

specified.
PCTFREE=unused-space-percentage

Specifies the percentage of unused space to be left in each index page when the index 
is created. The range of specifiable values is 0 to 99, and the default is 30.
When created in batch by the database load utility and the database reorganization 



CREATE INDEX Format 1 (Define index)

619

utility, indexes are created in a percentage equal to the percentage of unused space. In 
other addition or update operations by INSERT or UPDATE statements, the default 
PCTFREE=0 is assumed.
If rows will be added frequently after the index has been created, a high percentage of 
unused space should be specified.

UNBALANCED SPLIT
Specifies that the key values are to be allocated unevenly among the pages when a page 
is split.
If the location where a key value is to be inserted is in the first half of the page to be 
split, more empty space is allocated to the left-side page after the split. If the key value 
insertion location is in the second half of the page, more empty space is allocated to 
the right-side page after the split. This is called an unbalanced index split.
For details of unbalanced index splits, see the HiRDB Version 8 System Operation 
Guide.

EMPTY
Specifies that an unfinished index is to be created.
The EMPTY option improves the capacity for concurrent execution of index definitions. 
This option is also effective when a table contains a large amount of data and the 
definitions of multiple indexes must be executed concurrently. The option is not 
effective for tables that do not contain data.
For details of using the EMPTY option, see the HiRDB Version 8 System Operation 
Guide.

exception-value-specification
Specifies that when the index is created, key values that are composed solely of null 
values are to be excluded.
The exception values option cannot be specified for an index that contains NOT NULL 
constraint columns. When the exception values option is specified for an index, 
indexes cannot be unloaded in index order by the database reorganization utility.
Constituent columns of an index for which the exception values option is specified 
cannot include repetition columns.

Common rules
1. A maximum of 255 indexes can be created for a table.
2. An index can be defined for columns that contain the null value and for columns 

that do not have any rows.
3. An index cannot be defined for columns of the following data types:



CREATE INDEX Format 1 (Define index)

620

• DECIMAL with a precision exceeding 19
• BLOB
• BINARY
• Abstract data type

4. If an index is composed of multiple columns, columns of the following data types, 
in addition to item 3, cannot be specified:

• FLOAT
• SMALLFLT

5. The total length of columns comprising an index must satisfy the following 
formula:
Total length of columns 
MIN((page size of index storage RDAREAs  2) - 1242, 4036)
Table 3-21 shows the lengths of columns that comprise an index.
Table 3-21: Lengths of multicolumn index columns

Data type When the combined length of the 
columns does not exceed 255 bytes

When the combined length of the 
columns exceeds 255 bytes

Columns 
comprising 

a single 
column 
index

Columns 
comprising a 

multicolumn index

Columns 
comprising 

a single 
column 
index

Columns 
comprising a 

multicolumn index

Fixed 
length 

columns 
only

Variable 
length 

columns 
are also 
included

Fixed 
length 

columns 
only

Variable 
length 

columns 
are also 
included

INTEGER 4 5 6 5 7

SMALLINT 2 3 4 3 5

DECIMAL[(m[,n])]  m  2  
+ 1

 m  2 
 + 2

 m  2 
 + 3

 m  2 
 + 2

 m  2 
 + 4

FLOAT 8

SMALLFLT 4

CHAR(n), MCHAR(n) n1 n1 + 1 n1 + 2 n1 n1 + 1 n1 + 3

NCHAR(n) 2  n2 2  n2 + 
1

2  n2 + 
2

2  n2 2  n2 + 
1

2  n2 + 
3



CREATE INDEX Format 1 (Define index)

621

m, n: Positive integers
n1: Actual data length

n2: Number of characters

p: Fractional second precision
: Not applicable

6. Only one index can be defined for a single column, regardless of whether it is 
sorted in ascending order or descending order. For a multicolumn index, two 
indexes are considered to be identical if all their member columns sorted in 
ascending order are exact inverses of their descending-order counterparts.

7. If a procedure and a trigger are already defined for the table for which an index is 
to be defined, index information in the SQL object is nullified, and the trigger 
cannot be executed. Because the affected procedure or the trigger cannot be 
executed from another procedure, the SQL object needs to be recreated.

8. The same index option cannot be specified more than once.

DATE 4 5 6 5 7

TIME 3 4 5 4 6

TIMESTAMP 7 + p  2 8 + p  2 9 + p  2 8 + p  2 10 + p  
2

INTERVAL YEAR TO 
DAY

5 6 7 6 8

INTERVAL HOUR TO 
SECOND

4 5 6 5 7

VARCHAR, MVARCHAR n1 + 1 n1 + 2 n1 + 2 n1 + 3

NVARCHAR 2  n2 + 1 2  n2 + 
2

2  n2 + 2 2  n2 + 
3

Data type When the combined length of the 
columns does not exceed 255 bytes

When the combined length of the 
columns exceeds 255 bytes

Columns 
comprising 

a single 
column 
index

Columns 
comprising a 

multicolumn index

Columns 
comprising 

a single 
column 
index

Columns 
comprising a 

multicolumn index

Fixed 
length 

columns 
only

Variable 
length 

columns 
are also 
included

Fixed 
length 

columns 
only

Variable 
length 

columns 
are also 
included



CREATE INDEX Format 1 (Define index)

622

9. If an index composed of multiple repetition columns is defined, the repetition 
columns must have the same number of current elements.

10. ALTER TABLE cannot be executed from a Java procedure if the execution result 
invalidates the SQL object being executed.

11. RDAREAs using the inner replica facility and those not using the facility cannot 
be specified on a mixed basis in the index storage RDAREAs. When specifying 
an RDAREA to which the inner replica facility is applied, specify the name of the 
original RDAREA.

12. For execution conditions for CREATE INDEX using the inner replica facility, see 
the manual HiRDB Staticizer Option Version 7.

13. A maximum of 500 indexes can be stored per RDAREA.

Notes
1. When a value in an indexed column is updated, the associated index is also 

updated.
2. When a multicolumn index is defined, the order in which the columns are 

specified is the order in which the key values are created.
3. A multicolumn index can include a column for which a single-column index is 

defined.
4. The CREATE INDEX statement cannot be specified from an X/Open-compliant 

UAP running under OLTP.
5. When an index is defined with the EMPTY option specified, it must be re-created 

with the index re-creation function of the database reorganization utility; for 
details, see the manual HiRDB Version 8 Command Reference.

6. For rules on defining an index for a table with a WITHOUT ROLLBACK 
specification, see the rules on WITHOUT ROLLBACK in CREATE TABLE (Define 
table).

7. An index for which the exception values option is specified cannot be used in an 
SQL statement that is subject to selection of exception value rows.

Examples
1. Define an ascending-order index (IDX1) for the product code (PCODE) column of 

a stock table (STOCK); assume that rows will be added frequently after the index 
has been defined (specify 50 as the percentage of unused space to be left in the 
index pages):
CREATE INDEX IDX1
   ON STOCK(PCODE ASC)
   PCTFREE = 50



CREATE INDEX Format 1 (Define index)

623

2. Define a multicolumn index (IDX2) for the product name (PNAME) and color 
(COLOR) columns of a stock table (STOCK), and store the index in a user RDAREA 
(RDA1):
CREATE INDEX IDX2
   ON STOCK(PNAME,COLOR)
   IN RDA1

3. Define an ascending-order index (IDX3) for the product code (PCODE) column of 
a stock table (STOCK); partition the index and store it in RDAREAs RDA1, RDA2, 
and RDA3; assume that the stock table is stored on a split basis in three RDAREAs, 
using the product code as the partitioning key:
CREATE INDEX IDX3
   ON STOCK(PCODE)
   IN ((RDA1),(RDA2),(RDA3))



CREATE INDEX Format 2 (Define index)

624

CREATE INDEX Format 2 (Define index)

Function
CREATE INDEX (format 2) defines an index of a specified index type.

Privileges
Owner of the table
A user can define indexes in public user RDAREAs for tables owned by that user.
Table owner who has the usage privilege for private user RDAREAs
A user can define indexes for tables owned by that user in private user RDAREAs for 
which the user has the privilege.

Format 2 (Define index of a specified index type)
CREATE INDEX [authorization-identifier.] index-identifier
    USING TYPE [authorization-identifier.] index-type-identifier
    ON [authorization-identifier.] table-identifier (column-name)
    IN {RDAREA-name
        |(RDAREA-name)
        |((RDAREA-name)[, (RDAREA-name)]...)
        |matrix-partitioned-index-storage-RDAREA-specification}
     [index-option]...
     [PLUGIN plug-in-option]
matrix-partitioned-index-storage-RDAREA-specification::=
    two-dimensional-storage-RDAREA-specification
two-dimensional-storage-RDAREA-specification::=
    (matrix-partitioning-RDAREA-list
      [, matrix-partitioning-RDAREA-list]...)
matrix-partitioning-RDAREA-list::=
    (RDAREA-name[, RDAREA-name]...)
index-option ::= EMPTY

Operands
[authorization-identifier.] index-identifier

Specifies the authorization identifier of the user who will own the created index and 
specifies a name for the index.
The index name cannot be the same as the table name.

USING TYPE [authorization-identifier.] index-identifier
authorization-identifier



CREATE INDEX Format 2 (Define index)

625

Specifies the authorization identifier of the owner of the index type.
When the authorization identifier is omitted, the default authorization identifier 
does not include an index type of the same name, and there is an index type of the 
same name in the 'MASTER' authorization identifier, that index type is assumed 
to have been specified.

index-type-identifier
Specifies the index type. For the index type identifiers, see the manual for the 
appropriate plug-in.
[authorization-identifier.] table-identifier (column-name)

authorization-identifier
Specifies the authorization identifier of the user who will own the created table.

table-identifier
Specifies the name of the base table on which the created index is to be based.
FIX tables cannot be specified.

column-name
Specifies the name of the column for which the index is being defined. The only 
permissible data type for the column is an abstract data type.
IN{RDAREA-name
    |(RDAREA-name)
    |((RDAREA-name)[, (RDAREA-name)]...)
    |matrix-partitioned-index-storage-RDAREA-specification}
matrix-partitioned-index-storage-RDAREA-specification::=
    two-dimensional-storage-RDAREA-specification
two-dimensional-storage-RDAREA-specification::=
    (matrix-partitioning-RDAREA-list
      [, matrix-partitioning-RDAREA-list]...)
matrix-partitioning-RDAREA-list ::=
    (RDAREA-name[, RDAREA-name]...)

Specifies the name of the RDAREA for storing indexes.
When defining an index for a matrix-partitioned table, specify a matrix-partitioned 
index storage RDAREA.
The following rules apply to RDAREAs that store an index:



CREATE INDEX Format 2 (Define index)

626

1. The RDAREA name must be a user LOB RDAREA.
2. The RDAREA must be created or added in advance by using either the database 

initialization utility or the database structure modification utility, respectively.
3. When specifying more than one RDAREA name, you cannot specify the same 

RDAREA name. However, if there are duplicate table storage RDAREA names 
in a partitioned table with a boundary value specification or in a 
matrix-partitioned table, duplicate RDAREA names can be specified.

4. If a table is stored in multiple RDAREAs on a partitioned basis, index storage 
RDAREAs can be specified as follows:

• Specify RDAREA names in a number equal to the RDAREAs storing tables. 
In this case, the targets of index storage correspond to the order in which 
table storage RDAREAs are specified in CREATE TABLE.

• If there are duplicate table storage RDAREA names in a partitioned table 
with a boundary value specification or in a matrix-partitioned table, specify 
corresponding index storage RDAREA names.

EMPTY
Specifies that an empty plug-in index is being created.
The EMPTY option improve the capacity for concurrent execution of plug-in index 
definitions. This option is also effective when a table contains a large amount of data 
and the definitions of multiple indexes must be executed concurrently. This option is 
not effective for tables that do not contain data.
For details of using the EMPTY option, see the HiRDB Version 8 System Operation 
Guide.

PLUGIN plug-in-option
Specifies as a character string literal (of up to 255 characters) parameter information 
for the plug-in index. Hexadecimal character string literals cannot be specified as 
parameter information. For details about the parameter information, see the 
documentation for the appropriate plug-in.

Common rules
1. A maximum of 255 indexes can be defined per table.
2. An index can be defined for a column that contains NULL values as well as for a 

column that does not contain any rows.
3. RDAREAs using the inner replica facility and those not using the facility cannot 

be specified on a mixed basis in the index storage RDAREAs. When specifying 
an RDAREA to which the inner replica facility is applied, specify the name of the 
original RDAREA.



CREATE INDEX Format 2 (Define index)

627

4. For execution conditions for CREATE INDEX using the inner replica facility, see 
the manual HiRDB Staticizer Option Version 7.

5. A maximum of 500 indexes can be stored per RDAREA.

Notes
1. When a value in an indexed column is updated by a user, the index is also updated.
2. The CREATE INDEX statement cannot be specified from an X/Open-compliant 

UAP running under OLTP.
3. A plug-in index that is defined with the EMPTY option specified must be re-created 

by the database reorganization utility. For details of re-creating an index, see the 
manual HiRDB Version 8 Command Reference.



CREATE PROCEDURE (Define procedure)

628

CREATE PROCEDURE (Define procedure)

Function
CREATE PROCEDURE defines a procedure.

Privileges
Users who own a schema
These users can define their own procedures.

Format
CREATE procedure-body
    procedure-body::=PROCEDURE [authorization-identifier.] routine-identifier
                   ([{IN|OUT|INOUT} SQL-parameter-name data-type
                       [, {IN|OUT|INOUT}
                          SQL-parameter-name data-type]...])
             [DYNAMIC RESULT SETS number-of-results-sets]
             [LANGUAGE clause]
             [SQL-compile-option[SQL-compile-option]...]
             {SQL-procedure-statements |external-routine-specification}
 
LANGUAGE clause ::= LANGUAGE {SQL|JAVA}
SQL-compile-option ::= {ISOLATION data-guarantee-level [FOR UPDATE 
EXCLUSIVE]
    |OPTIMIZE LEVEL SQL-optimization-option
                      [,SQL-optimization-option]...
    |ADD OPTIMIZE LEVEL SQL-extension-optimizing-option
                      [,SQL-extension-optimizing-option]...
|SUBSTR LENGTH maximum-character-length}
external-routine-specification ::= EXTERNAL NAME external-routine-name
                             PARAMETER STYLE parameter-style
parameter-style ::= JAVA

Operands
[authorization-identifier.] routine-identifier

authorization-identifier
Specifies the authorization identifier of the user who owns the procedure being 
defined.

routine-identifier
Specifies the name of a routine in the procedure being defined. The routine 
identifier must be unique among the procedures owned by this owner.



CREATE PROCEDURE (Define procedure)

629

([{IN|OUT|INOUT}SQL-parameter-name data-type [, 
{IN|OUT|INOUT}SQL-parameter-name data-type]...])

{IN|OUT|INOUT}
I/O mode (parameter mode) must be specified for procedure parameters.
IN

This keyword specifies that the parameter is an input parameter.
OUT

This keyword specifies that the parameter is an output parameter.
INOUT

This keyword specifies that the parameter is an input/output parameter.
SQL-parameter-name

Specifies the name of the parameter in the procedure. SQL parameter names must 
be unique within a procedure.

data-type
Specifies the data type of the parameter in the procedure.
If the specified data type is an abstract data type, no authorization identifier is 
specified, and the default authorization identifier does not have an abstract data 
type of the same name, and if there is an abstract data type of the same name in 
the 'MASTER' authorization identifier, that abstract data type is assumed to have 
been specified.
When JAVA is specified in the LANGUAGE clause, an abstract data type cannot be 
specified as a data type. See 1.9.2 Type mapping for the specifiable data types.
DYNAMIC RESULT SETS number-of-results-sets

Specifies as an integer the maximum number of results sets that can be returned by the 
procedure that is being defined.
The specifiable range of values is 0 to 1023. When 0 is specified or this operand is 
omitted, the default is that the procedure does not return a results set.

LANGUAGE {SQL |JAVA}
Specifies the language used to write the function.
For an external routine, SQL must not be specified.
SQL

Specifies that the processing part of the function is made up of SQL statements.
JAVA



CREATE PROCEDURE (Define procedure)

630

Specifies that the processing part of the function is specified as an external routine 
and the function is to be implemented as a Java class method.

Which of these operands is specified determines the other operands that can be 
specified. Table 3-22 shows the operands that can be specified in conjunction with the 
LANGUAGE clause.

Table 3-22: Specifiable operands depending on the specification of the 
LANGUAGE clause of CREATE PROCEDURE

Legend:
Y: Specifiable

: Not specifiable
1 Governed by the type mapping rules; for details of type mapping, see 1.9.2 Type 
mapping.

SQL-compile-option::={ISOLATION data-guarantee-level [FOR UPDATE 
EXCLUSIVE]
             |OPTIMIZE LEVEL SQL-optimization-option
                                                 [,SQL-optimization-option]...
             |ADD OPTIMIZE LEVEL SQL-extension-optimizing-option
                                                 [,SQL-extension-optimizing-option]...
|SUBSTR LENGTH maximum-character-length}

In SQL-compile-option, ISOLATION, OPTIMIZE LEVEL, ADD OPTIMIZE LEVEL, 
and SUBSTR LENGTH can each be specified only once.
ISOLATION data-guarantee-level [FOR UPDATE EXCLUSIVE]

Specifies an SQL data integrity guarantee level.

data-guarantee-level

Other operand LANGUAGE clause specification

SQL JAVA

SQL-parameter data-type Y Y1

DYNAMIC RESULTS SETS Y Y

EXTERNAL NAME Y

PARAMETER STYLE Y

SQL-procedure-statement Y



CREATE PROCEDURE (Define procedure)

631

A data integrity guarantee level specifies the point to which the integrity of 
the transaction data must be guaranteed. The following data integrity 
guarantee levels can be specified:

• 0
Do not guarantee data integrity. Specifying 0 for a set of data allows the 
user to reference the data even when it is being updated by another user. 
However, if the table to be referenced is a shared table, and another user 
is executing the LOCK statement in the lock mode, the system waits until 
the lock condition is released.

• 1
Guarantee the integrity of data until a retrieval process is completed. 
When level 1 is specified, data that has been retrieved cannot be updated 
by other users until the retrieval process is completed (until HiRDB 
finishes viewing the current page or row).

• 2
Guarantee the integrity of data that has been retrieved until the 
transaction is completed. When level 2 is specified, data that has been 
retrieved cannot be updated by other users until the transaction is 
completed.

[FOR UPDATE EXCLUSIVE]
Specify this operand if WITH EXCLUSIVE LOCK is always to be assumed, 
irrespective of the data guarantee level specified in SQL-compile-option for a 
cursor or query in a procedure for which the FOR UPDATE clause is specified or 
assumed. If level 2 is specified in data-guarantee-level, WITH EXCLUSIVE LOCK 
is assumed for the cursor or query in a procedure for which the FOR UPDATE 
clause is specified or assumed, in which case it is not necessary to specify FOR 
UPDATE EXCLUSIVE.
Relationship with client environment definition

Any specification of PDISLLVL or PDFORUPDATEEXLOCK with respect to 
CREATE PROCEDURE has no effect.

Relationship to SQL statements

If a lock option is specified in an SQL statement in a procedure, the lock 
option specified in the SQL statement takes precedence over any data 
guarantee level specified in SQL-compile-option or the lock option assumed 
because of FOR UPDATE EXCLUSIVE.

The default for data-guarantee-level is 2.
For data guarantee levels, see the HiRDB Version 8 UAP Development Guide.



CREATE PROCEDURE (Define procedure)

632

OPTIMIZE LEVEL SQL-optimization-option[,SQL-optimization-option]...
Specifies the optimization method for determining the most efficient access path 
by taking the database's status into consideration.
SQL optimization options can be specified with identifiers (character strings) or 
numeric values. Hitachi recommends that identifiers be used.
Specification with identifiers:

OPTIMIZE LEVEL "identifier"[, "identifier"] ...

Specification examples
• Apply the Prioritized nest-loop-join and the Rapid grouping facility 

options:
OPTIMIZE LEVEL "PRIOR_NEST_JOIN",
"RAPID_GROUPING"

• Do not apply any optimization:
OPTIMIZE LEVEL "NONE"

Rules
1. At least one identifier must be specified.
2. When multiple identifiers are specified, separate them with the comma 

(,).
3. For the optimization option identifiers, see Table 3-23 SQL optimization 

option specification values below.
4. If no optimization options are to be applied, specify "NONE" as the 

identifier. If "NONE" and some other identifier are both specified, the 
"NONE" specification is ignored.

5. The identifiers are case-sensitive.
6. If the same identifier is specified more than once, it is treated as if it was 

specified only once; however, where possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specification with numeric values:
OPTIMIZE LEVEL unsigned-integer[, unsigned-integer] ...

Specification examples
• Apply the 2. Making multiple SQL objects, 8. Suppressing use of AND 

multiple indexes, and 13. Forcing use of multiple indexes options:
Specify unsigned integers separated by commas:

OPTIMIZE LEVEL 4,10,16



CREATE PROCEDURE (Define procedure)

633

Specify a sum of unsigned integers:
OPTIMIZE LEVEL 30

• Add the new value 16 to the previously specified value 14 (4 + 10):
OPTIMIZE LEVEL 14,16

• Do not apply any optimization:
OPTIMIZE LEVEL 0

Rules
1. When HiRDB is upgraded from a version older than Version 06-00 to a 

Version 06-00 or later, the total value specification in the older version 
also remains valid. If the optimization option does not need to be 
modified, the specification value for this operand need not be changed 
when HiRDB is upgraded to a Version 06-00 or later.

2. At least one integer must be specified.
3. When multiple integers are specified, separate them with the comma 

(,).
4. For the optimization option integers, see Table 3-23 SQL optimization 

option specification values below.
5. If no optimization options are to be applied, specify 0 as the integer. If 

0 and another integer are both specified, the 0 specification is ignored.
6. If the same integer is specified more than once, it will be treated as a 

single instance of the integer. However, avoid multiple specifications of 
the same integer

7. When multiple optimization options are to be applied, you can specify 
the sum of the appropriate unsigned integers. However, the same 
optimization option value must not be added in more than once to avoid 
the possibility of the addition result being interpreted as a different set 
of optimization options.

8. Specifying multiple optimization options by adding their values can be 
ambiguous as to which optimization options are actually intended, so 
Hitachi recommends that the option values be specified individually 
separated by commas. If multiple optimization option have already been 
specified by the addition method and another optimization option is 
required, you can specify the new option's value following the previous 
summed value by separating them with a comma.

Relationships to system definition
1. If no SQL optimization option values are specified, the values specified 

in the pd_optimize_level operand of the system definition are 



CREATE PROCEDURE (Define procedure)

634

assumed as the default. For details of the pd_optimize_level 
operand, see the manual HiRDB Version 8 System Definition.

2. When the pd_floatable_bes operand or the 
pd_non_floatable_bes operand is specified, specification of the 
Increasing the target floatable servers (back-end servers for fetching 
data) option or the Limiting the target floatable servers (back-end 
servers for fetching data) option, respectively, is invalid.

3. When KEY is specified in the pd_indexlock_mode operand of the 
system definition (i.e., in the case of index key value lock), specification 
of the Suppressing creation of update-SQL work tables option is invalid.

Relationship to client environment definition
The specification of PDSQLOPTLVL has no applicability to CREATE 
PROCEDURE.

Relationship with SQL

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL optimization option specification values
Table 3-23 shows the SQL optimization option specification values. For 
details about optimization methods, see the HiRDB Version 8 UAP 
Development Guide.

Table 3-23: SQL optimization option specification values (CREATE 
PROCEDURE)

No. Optimization option Specification values 

Identifier Unsigned 
integer

1 Forced nest-loop-join FORCE_NEXT_JOIN 4

2 Making multiple SQL objects SELECT_APSL 10

3 Increasing the target floatable servers 
(back-end servers for fetching data)#1, #2

FLTS_INC_DATA_BES 16

4 Prioritized nest-loop-join PRIOR_NEST_JOIN 32

5 Increasing the number of floatable server 
candidates#2

FLTS_MAX_NUMBER 64

6 Priority of OR multiple index use PRIOR_OR_INDEXES 128



CREATE PROCEDURE (Define procedure)

635

#1: If the 3. Increasing the target floatable servers (back-end servers for fetching data) 
option and the 10. Limiting the target floatable servers (back-end servers for fetching 
data) option are both specified, neither of these options will be applied; instead, the 11. 
Separating data collecting servers option will be applied.
#2: This option is ignored if specified for a HiRDB/Single Server.
ADD OPTIMIZE LEVEL 
SQL-extension-optimizing-option[,SQL-extension-optimizing-option]...

Specifies optimizing options for determining the most efficient access path, 
taking into consideration the status of the database.
SQL extension optimizing options can be specified with identifiers (character 
strings) or numeric values. Hitachi recommends that identifiers be used.
Specification with identifiers:

ADD OPTIMIZE LEVEL "identifier"[, "identifier"] ...

7 Group processing, ORDER BY processing, 
and DISTINCT set function processing at 
the local back-end server#2

SORT_DATA_BES 256

8 Suppressing use of AND multiple indexes DETER_AND-INDEXES 512

9 Rapid grouping facility RAPID_GROUPING 1024

10 Limiting the target floatable servers 
(back-end servers for fetching data)#1, #2

FLTS_ONLY_DATA_BES 2048

11 Separating data collecting servers#1,#2 FLTS_SEPARATE_COLLECT_SVR 2064

12 Suppressing index use (forced table scan) FORCE_TABLE_SCAN 4096

13 Forcing use of multiple indexes FORCE_PLURAL_INDEXES 32768

14 Suppressing creation of update-SQL work 
tables

DETER_WORK_TABLE_FOR_UPDATE 131072

15 Deriving rapid search conditions "DERIVATIVE_COND" 262144

16 Applying key conditions, including scalar 
operations

"APPLY_ENHANCED_KEY_COND" 524288

17 Facility for batch acquisition from 
functions provided by plug-ins

"PICKUP_MULTIPLE_ROWS_PLUGIN" 1048576

No. Optimization option Specification values 

Identifier Unsigned 
integer



CREATE PROCEDURE (Define procedure)

636

Specification examples
• Apply the Application of optimizing mode 2 based on cost and Hash 

join, subquery hash execution options:
ADD OPTIMIZE LEVEL
        "COST_BASE_2","APPLY_HASH_JOIN"

• Do not apply any optimizing:
ADD OPTIMIZE LEVEL "NONE"

Rules
1. At least one identifier must be specified.
2. When multiple identifiers are specified, separate them with the comma 

(,).
3. For details of specifying optimization option identifiers, see Table 3-24 

SQL extension optimizing option specification values below.
4. If no extension optimizing options are to be applied, specify "NONE" as 

the identifier.
5. The identifiers are case-sensitive.
6. If the same identifier is specified more than once, it is treated as if it was 

specified only once; however, where possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specification with numeric values:
ADD OPTIMIZE LEVEL unsigned-integer[, unsigned-integer] ...

Specification examples
• Apply the Application of optimizing mode 2 based on cost and Hash 

join, subquery hash execution options:
ADD OPTIMIZE LEVEL 1,2

• Do not apply any optimizing:
ADD OPTIMIZE LEVEL 0

Rules
1. At least one integer must be specified.
2. When multiple integers are specified, separate them with the comma 

(,).
3. For details of specifying extension optimizing option integers, see Table 

3-24 SQL extension optimizing option specification values below.
4. If no extension optimizing options are to be applied, specify 0 as the 



CREATE PROCEDURE (Define procedure)

637

integer.
5. If the same integer is specified more than once, it will be treated as a 

single instance of the integer. However, multiple specifications of the 
same integer should be avoided.

Relationship to the system definition
If no SQL extension optimizing option values are specified, the values 
specified in the pd_additional_optimize_level operand of the system 
definition are assumed as the default. For details of the 
pd_additional_optimize_level operand, see the manual HiRDB 
Version 8 System Definition.

Relationship to the client environment definition
The specification of PDADDITIONALOPTLVL has no applicability to CREATE 
PROCEDURE.

Relationship with SQL

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL extension optimizing option specification values
Table 3-24 shows the SQL extension optimizing option specification values. 
For details about optimization methods, see the HiRDB Version 8 UAP 
Development Guide.

Table 3-24: SQL extension optimizing option specification values (CREATE 
PROCEDURE)

No. Optimizing option Specification values 

Identifier Unsigned integer

1 Application of optimizing mode 2 based on cost "COST_BASE_2" 1

2 Hash join, subquery hash execution "APPLY_HASH_JOIN" 2

3 Suppressing the execution of a foreign server in SQL 
statements that contain joins

"DETER_JOIN_SQL" 67108864

4 Forcing the execution of SQL statements including a 
direct product on a foreign server

"FORCE_CROSS_JOIN_
SQL"

134217728

5 Suppressing the derivation of rapid search that can be 
generated unconditionally and executed on a foreign 
server

"DETER_FSVR_DERIVA
TIVE_COND"

1073741824



CREATE PROCEDURE (Define procedure)

638

Note 1

Items 2-5 take effect when Application of optimizing mode 2 based on cost is 
specified.

Note 2

Optimization items 3-5 take effect when a foreign table is retrieved; in other 
cases, these items have no effect.

[SUBSTR LENGTH maximum-character-length]
Specifies the maximum number of bytes for representing a single character.
The value specified for the maximum character length must be in the range from 
3 to 6.
This operand is valid only when utf-8 is specified for the character code type in 
the pdntenv command (pdsetup command in the case of the UNIX version); it 
affects the length of the result of the SUBSTR scalar function. For details about 
SUBSTR, see 2.16.1(21) SUBSTR.
Relationships to system definition

When SUBSTR LENGTH is omitted, the value specified in the 
pd_substr_length operand in the system definition is assumed. For 
details about the pd_substr_length operand, see the manual HiRDB 
Version 8 System Definition.

Relationship to client environmental definition
The specification of PDSUBSTREN has no applicability to CREATE 
PROCEDURE. For details about PDSUBSTRLEN, see the manual HiRDB 
Version 8 UAP Development Guide.

Relationship to the character code type specified in the pdntenv or pdsetup 
command

This operand is valid only when utf-8 is specified for the character code 
type.
For all other character code types, only a syntax check is performed and the 
specification is ignored.

SQL-procedure-statements
Specifies the SQL procedure statements to be executed in the procedure. For details of 
SQL procedure statements, see the General rules section in 7. Routine Control SQL.

EXTERNAL NAME external-routine-name
Specifies the external routine, written in Java, that constitutes a Java method. For the 
external routine name specification conventions, see 1.9.1 Specification of external 



CREATE PROCEDURE (Define procedure)

639

routines.
PARAMETER STYLE parameter-style

Specifies items to be passed as parameters when an external routine is called.
Java procedure parameters that are defined as an SQL data type are passed as Java 
method parameters in the Java data type that is associated with the SQL data type.
The OUT and INOUT parameters for Java procedures in SQL data type definitions are 
of the Java data type for the SQL data type; these parameters are passed as Java method 
parameters, as an array of one element. After the Java method has terminated, any 
array written by the Java method is treated as output parameters of the Java procedure.

Common rules
1. An input parameter cannot contain an I/O parameter for a routine that is subject 

to the CALL statement and defined with the OUT or INOUT option; also, it cannot 
be specified in a FETCH statement, in the INTO clause of a single-row SELECT 
statement, or in the target of an assignment statement.

2. Output parameters cannot be specified in any location with the exception of the 
following: input/output parameters for the arguments for the routines, subject to 
the CALL statement, defined in either OUT or INOUT; the INTO clause of the 
FETCH statement; the INTO clause of the single-row SELECT statement; the target 
of an assignment statement; or a value expression in the WRITE LINE statement.

3. In a table specification for SQL in a procedure, names cannot be qualified using 
an RD node name. Thus, access to a remote database cannot be performed using 
the distributed database function from a procedure.

4. The maximum number of function parameters is 30,000. If anything other than 
SQL is specified in the LANGUAGE clause, an error may result at the time of 
execution due to external language specification limitations even though the 
number of specified function parameters is less than 30,000.

5. The designated name for designating a procedure is the same as 
[authorization-identifier.] routine-identifier.

6. The BOOLEAN data type cannot be specified in an input or output parameter.
7. A procedure that is identical to the procedure being defined in terms of 

authorization identifier and routine identifier cannot be specified in the SQL 
procedure statement.

8. When the SQL compile option is specified in an ALTER PROCEDURE or ALTER 
ROUTINE statement, the length of the SQL statement that is created by 
incorporating the SQL compile option into the source CREATE PROCEDURE 
statement of the procedure being recreated must not exceed the maximum 
permissible length for SQL statements.



CREATE PROCEDURE (Define procedure)

640

9. A WRITE specification cannot be specified in a query specification in an SQL 
procedure statement.

Notes
1. The CREATE PROCEDURE statement cannot be specified from an X/

Open-compliant UAP running under OLTP.
2. The SQL parameter can assume the null value.
3. When executing multiple SQL statements in a procedure, routine control SQL, 

such as compound statements must be used.
4. When a procedure is defined, an SQL object is created that codes an access 

procedure for executing the procedure. If a Java procedure is defined, no objects 
that specify access procedures for execution of SQL statements in the procedure 
are created.

5. The data type data guarantee level of the SQL statement in the procedure, the SQL 
optimization option, the SQL extension optimizing option, and the maximum 
character length are determined by what is specified when the procedure is being 
defined or modified, and are not affected by the system definition or client 
environment variable definition that is in effect when the procedure is called.

6. Stacks in the operating system may overflow if routine calls are repeated 
extensively or infinitely in a routine.

7. The following SQL statements cannot be executed from a Java procedure:
• Control SQL statements other than the COMMIT, LOCK, and ROLLBACK 

statements
• Routine control SQL statements

8. A results set cannot be received in an SQL procedure.
9. A results set (Result Set) that is returned by a method in the 

DatabaseMetaData class acquired in a Java procedure cannot be returned as a 
dynamic results set. Information should be acquired by using the meta data for the 
connection in the source that calls the Java procedure.



CREATE SCHEMA (Define schema)

641

CREATE SCHEMA (Define schema)

Function
CREATE SCHEMA defines a schema.

Privileges
Users with the schema definition privilege
These users can define schemas for themselves only.
Users with the DBA privilege
Can define schemas of other users who have the CONNECT or DBA privilege.

Format
CREATE SCHEMA schema-name-clause
schema-name-clause::=[AUTHORIZATION authorization-identifier]

Operands
[AUTHORIZATION authorization-identifier]

Specifies the authorization identifier of the user for whom a schema is to be defined. 
The default is the executing user's own authorization identifier.

Notes
1. Once a schema has been defined, tables, indexes, abstract data types, index types, 

functions, procedures, triggers, and access privileges can be defined.
2. Only one schema can be defined for each user.
3. The authorization identifier specified as the owner of a table or an index must be 

the same authorization identifier specified in the schema definition for that user.
4. A user who receives a schema defined for that user by a user with the DBA 

privilege is granted the schema definition privilege.
5. The CREATE SCHEMA statement cannot be specified from an X/Open-compliant 

UAP running under OLTP.

Example
Define a schema for a user (USER1):
CREATE SCHEMA
  AUTHORIZATION USER1



CREATE SERVER (Define a foreign server)

642

CREATE SERVER (Define a foreign server)

Function
Defines a foreign database as a foreign server.

Privileges
Users with the DBA privilege

These users can define foreign servers.

Format

Operands
foreign-server-name 

Specifies the name of the foreign database that HiRDB accesses.
The specified name must be a name that can uniquely identify a server within HiRDB 
or a foreign server. The foreign server name specified in this operand is for HiRDB to 
identify a foreign database; it can be different from the actual name of the foreign 
database.

TYPE 'server-type' VERSION 'server-version'
For server-type and server-version, specify the server type and server version of the 
DBMS to be accessed.
The following server types and server versions are available:

 
 CREATE SERVER foreign-server-name
    TYPE 'server-type' VERSION 'server-version'
    OPTIONS (option-name 'option-value')
 

DBMS Server type Server version

XDM/RD E2#1 XDMRD 6.0

HiRDB Version 5.0 HIRDB 5.0

HiRDB Version 6 or later HIRDB 6.0

ORACLE 8i ORACLE 8.1.5#2

ORACLE 9i ORACLE 9.2

ORACLE 10g ORACLE 10.1



CREATE SERVER (Define a foreign server)

643

#1: Uses the XDM/RD E2 connection facility that connects to XDM/RD E2 from the 
HiRDB client via the DB connection server.
#2: The Oracle version that can be connected depends on the foreign server platform:

HP-UX: Can be connected to Oracle 8i, version 8.1.5 or later.
Other than HP-UX: Can be connected to Oracle 8i, version 8.1.7.

#3: Limited to the HP-UX and AIX versions.
OPTIONS (option-name 'option-value')

Specifies the following options on foreign databases; options cannot be specified in 
duplicate.
USING_BES 'back-end-server-name'

Specifies the name of the back-end server that accesses the foreign database. This 
option is required.

Common rules
1. To access a foreign database, you need to define a user mapping by using CREATE 

USER MAPPING.
2. CREATE SERVER can be specified in an environment where HiRDB External Data 

Access is installed and on a HiRDB/Parallel Server.

Note
1. CREATE SERVER cannot be specified from an X/Open compliant UAP running 

under OLTP.

DB2#3 DB2_UDB_OS390 6.0

DBMS Server type Server version



CREATE TABLE (Define table)

644

CREATE TABLE (Define table)

Function
CREATE TABLE defines a table.

Privileges
Owner of a schema
The owner of a schema can define tables in either private user RDAREAs or public 
user RDAREAs for which the owner has the RDAREA usage privilege.

Format
The numbers in the left column below correspond to the section numbers on the 
following pages where the operands are explained.

No. Format

1 CREATE [[SHARE] FIX] TABLE 

2      [authorization-identifier.]table-identifier

3      (table-element [, table-element]...)

4      [{IN {table-storage-RDAREA-name
           |(table-storage-RDAREA-name)
           |([(table-storage-RDAREA-name) storage-condition,]...
             (table-storage-RDAREA-name) [storage-condition])}
       |PARTITIONED BY column-name
          IN([(table-storage-RDAREA-name) boundary-value,]...
              (table-storage-RDAREA-name) boundary-value,
                (table-storage-RDAREA-name))
       |PARTITIONED BY MULTIDIM
           (first-dimension-column-name first-dimension-boundary-value-list
            , {second-dimension-column-name second-dimension-boundary-value-list
          | [FIX] HASH [hash-function-name]
            BY second-dimension-column-name [,second-dimension-column-name]...})
           IN matrix-partitioned-table-storage-RDAREA-specification
       |[FIX] HASH [hash-function-name] BY column-name
                 [, column-name]...
         IN(table-storage-RDAREA-name, table-storage-RDAREA-
                 name,...)}]

5      [table-option]...

6      [table-restriction-definition]...

27   [WITH PROGRAM]



CREATE TABLE (Define table)

645

Details of format

No. Format

3 table-element ::= {column-definition|table-restriction-definition}

7   column-definition ::= column-name data-type [ARRAY
                       [maximum-number-of-elements]]
                 [NO SPLIT]
                 [{column-data-suppression-specification
                       |[column-recovery-restriction]
                   {IN {LOB-column-storage-RDAREA-name
                       |(LOB-column-storage-RDAREA-name)
                       |((LOB-column-storage-RDAREA-name)
                         [,(LOB-column-storage-RDAREA-name)]...)
                       |matrix-partitioned-LOB-column-storage-RDAREA-specification}
                    |abstract-data-type-LOB-column-storage-
                        RDAREA-specification}}]
                 [plug-in-specification]
                 [DEFAULT clause]
                 [column-restriction...]
                 [updatable-column-attribute]

8    column-data-suppression-specification ::= [SUPPRESS]

9    column-recovery-restriction ::= [RECOVERY [{ALL|PARTIAL|NO}]]

10    abstract-data-type-LOB-column-storage-RDAREA-specification ::=
      ALLOCATE (attribute-name[..attribute-name]...
         IN {LOB-attribute-storage-RDAREA-name
             |(LOB-attribute-storage-RDAREA-name)
             |((LOB-attribute-storage-RDAREA-name)
                 [,(LOB-attribute-storage-RDAREA-name)])
             |matrix-partitioned-LOB-attribute-storage-RDAREA-specification}
         [,attribute-name[..attribute-name]...
            IN {LOB-attribute-storage-RDAREA-name
                |(LOB-attribute-storage-RDAREA-name)
                |((LOB-attribute-storage-RDAREA-name)
                  [,(LOB-attribute-storage-RDAREA-name)])
                |matrix-partitioned-LOB-attribute-storage-RDAREA-specification}]...)

11    plug-in-specification ::= PLUGIN plug-in-option

12    DEFAULT clause::=DEFAULT [predefined-value]
   predefined-value::={literal|USER|CURRENT_DATE|CURRENT DATE
             |CURRENT_TIME|CURRENT TIME
             |CURRENT_TIMESTAMP[(fractional-second-precision)] [USING BES]
             |CURRENT TIMESTAMP[(fractional-second-precision)] [USING BES]
             |NULL}



CREATE TABLE (Define table)

646

13    column-restriction ::= {NOT-NULL-constraint-specification
                       |single-column-uniqueness-constraint-definition
                          [index-option [index-option]]
                       | {single-column-check-constraint-definition [constraint-name-definition]
                         | [constraint-name-definition] single-column-check-constraint-definition}3
                       | {single-column-referential-constraint-definition [constraint-name-definition]
                         | [constraint-name-definition] 
single-column-referential-constraint-definition}}3

14   updatable-column-attribute::= UPDATE [ONLY FROM NULL]

15    NOT-NULL-constraint-specification ::=
          {[NULL|NOT NULL[WITH DEFAULT[SYSTEM GENERATED]]]2
           |[[NOT NULL] WITH DEFAULT[SYSTEM GENERATED]]}1

16      single-column-uniqueness-constraint-definition ::=
                  {[{UNIQUE|PRIMARY}] CLUSTER KEY [{ASC|DESC}]
                     [IN {index-storage-RDAREA-name
                          |(index-storage-RDAREA-name)
                          |((index-storage-RDAREA-name)
                           [,(index-storage-RDAREA-name)]...)}]
                   |PRIMARY KEY [{ASC|DESC}]
                     [IN {index-storage-RDAREA-name
                          |(index-storage-RDAREA-name)
                          |((index-storage-RDAREA-name)
                             [,(index-storage-RDAREA-name)]...)}]}

17      index-option ::= {PCTFREE = percentage-of-free-area
                      |UNBALANCED SPLIT}

18    single-column-check-constraint-definition::= CHECK (search-condition)

19    single-column-referential-constraint-definition::= reference-specification

6     table-constraint-definition::= {multicolumn-uniqueness-constraint-definition
   [index-option [index-option]]
   | {multicolumn-check-constraint-definition [constraint-name-definition]
   | [constraint-name-definition] multicolumn-check-constraint-definition}3
   | {multicolumn-referential-constraint-definition [constraint-name-definition]
   | [constraint-name-definition] multicolumn-referential-constraint-definition}}3

No. Format



CREATE TABLE (Define table)

647

20     multicolumn-uniqueness-constraint-definition ::=
      {[{UNIQUE|PRIMARY}] CLUSTER KEY
         (column-name [{ASC|DESC}][,column-name [{ASC|DESC}]]...)
         [IN {index-storage-RDAREA-name
              |(index-storage-RDAREA-name)
              |((index-storage-RDAREA-name)
                 [,(index-storage-RDAREA-name)]...)
              |matrix-partitioned-index-storage-RDAREA-specification}]
       |PRIMARY KEY (column-name [{ASC|DESC}]
         [,column-name [{ASC|DESC}]]...)
         [IN {index-storage-RDAREA-name
              |(index-storage-RDAREA-name)
              |((index-storage-RDAREA-name)
                 [,(index-storage-RDAREA-name)]...)
              |matrix-partitioned-index-storage-RDAREA-specification}]}

21     multicolumn-check-constraint-definition::= CHECK (search-condition)

22     multicolumn-referential-constraint-definition::= FOREIGN KEY (column-name [, 
column-name]...) reference-specification

23 storage-condition ::= column-name {=| < > | ^=|!=| <| < =| > | > =}
                   {literal| (literal[,literal]...)

- first-dimension-column-name::=column-name
second-dimension-column-name::=column-name
first-dimension-boundary-value-list::=boundary-value-list
second-dimension-boundary-value-list::=boundary-value-list
  boundary-value-list::=((boundary-value)[,(boundary-value)]...)
matrix-partitioned-table-storage-RDAREA-specification::=two-dimensional-storage-RDAREA-specific
ation
matrix-partitioned-index-storage-RDAREA-specification::=two-dimensional-storage-RDAREA-specific
ation
matrix-partitioned-LOB-column-storage-RDAREA-specification::=two-dimensional-storage-RDAREA-
specification
matrix-partitioned-LOB-attribute-storage-RDAREA-specification::=two-dimensional-storage-RDAREA
-specification
  two-dimensional-storage-RDAREA-specification::=(matrix-partitioning-RDAREA-list
                               [,matrix-partitioning-RDAREA-list]...)
  matrix-partitioning-RDAREA-list::=(RDAREA-name[,RDAREA-name]...)

24 hash-function-name ::= {HASH1|HASH2|HASH3|HASH4|HASH5|HASH6|HASH0
                     |HASHA|HASB|HASHC|HASHD|HASHE HASHF}

No. Format



CREATE TABLE (Define table)

648

Legend:
: See applicable items.

1 For a column in a FIX table or a column that is a member of a cluster key or primary 
key
2 For a column other than the above
3 The position of a restriction definition is determined by the specification value in the 
system common definition, pd_constraint_name operand, or that in the client 
environment variable PDCNSTRNTNAME. For details, see 6) 
Table-restriction-definition.

Operands
1) [SHARE]FIX
Specifies that the table is to have a fixed row length. To store table data in a shared 
RDAREA and make it a shared table, specify SHARE.
However, on a HiRDB/Single Server that has no shared RDAREAs, a shared table can 
be defined by specifying SHARE to maintain SQL compatibility with HiRDB/Parallel 
Server. In this case, table data is stored in the regular user RDAREA.
When the FIX option is specified, database operations that change the row length 
cannot be performed; however, the efficiency of row storage is enhanced. When used 
in conjunction with the row-unit interface, the FIX option can improve access 

25 reference-specification::= REFERENCES referenced-table 
[referential-constraint-operation-specification]
referenced-table::= table-name
referential-constraint-operation-specification::= {delete-operation [update-operation] | 
update-operation [delete-operation]}
delete-operation::= ON DELETE reference-operation
update-operation::= ON UPDATE reference-operation
reference-operation::= {CASCADE | RESTRICT}

26 constraint-name-definition::= CONSTRAINT constraint-name

5 table-option ::=
       {PCTFREE = {percentage-of-free-area
        |([percentage-of-free-area],percentage-of-free-pages-in-segment)}
        |{LOCK ROW|LOCK PAGE}
        |SUPPRESS [DEC [IMAL]]
        |WITHOUT ROLLBACK
        |INDEX LOCK {NONE|PAGE}
        |SEGMENT REUSE {[number-of-segments[{K|M|G}]]|NO}
        |INSERT ONLY [WHILE {date-interval-data|labeled-duration} BY column-name]}

No. Format



CREATE TABLE (Define table)

649

efficiency for a table that contains a large number of columns.
The following rules apply to the FIX option:
1. The FIX option is incompatible with the following data types:

• VARCHAR
• NVARCHAR
• MVARCHAR
• BLOB
• Abstract data type

2. A repetition column for which FIX has been specified cannot be specified.
3. The FIX option can be specified only if the row length does not exceed the 

following value:

Page length of RDAREA in which rows are stored |1000  1000
4. The NOT NULL option is assumed for all columns of a table for which the FIX 

option is defined.
5. If both SHARE and FIX are specified, table data cannot be saved on a split basis 

in multiple RDAREAs.
2) [authorization-identifier.] table-identifier
authorization-identifier

Specifies the authorization identifier of the owner of the base table being defined.
table-identifier

Specifies a name for the base table being defined. Each table identifier must be 
unique among the tables of the specified owner.

3) table-element::={column-definition ||table-restriction-definition}
column-definition

Defines a column (column name, data type, etc.) that is to compose the table. The 
NOT NULL constraint, uniqueness constraint, check constraint, and referential 
constraint items can be specified for each column.

4) {IN {table-storage-RDAREA-name
  |(table-storage-RDAREA-name)
  |([(table-storage-RDAREA-name) storage-condition,] ...
   (table-storage-RDAREA-name) [storage-condition])}



CREATE TABLE (Define table)

650

|PARTITIONED BY column-name
  IN ([(table-storage-RDAREA-name) boundary-value,] ...
     (table-storage-RDAREA-name) boundary-value,
       (table-storage-RDAREA-name))
|PARTITIONED BY MULTIDIM
     (first-dimension-column-name first-dimension-boundary-value-list
      {second-dimension-column-name second-dimension-boundary-value-list
       | [FIX] HASH [hash-function-name]
         BY second-dimension-column-name [, 
second-dimension-column-name]...})
  IN matrix-partitioned-table-storage-RDAREA-specification
|[FIX] HASH [hash-function-name] BY column-name [, column-name] ...
  IN (table-storage-RDAREA-name, table-storage-RDAREA-name,...)}

IN
Specifies the RDAREAs in which table rows are to be stored.

table-storage-RDAREA-name
Specifies the name of a user RDAREA in which rows of the table are to be stored.
However, HiRDB/Parallel Server is subject to the following restrictions. If SHARE 
is specified, the name of a shared RDAREA must be specified. Conversely, if 
SHARE is not specified, the name of a shared RDAREA cannot be specified.
If an RDAREA name is omitted, the RDAREA for storing the table is determined 
as described below. In addition, if SHARE is specified on HiRDB/Parallel Server, 
a shared RDAREA is identified as a candidate storage area. Conversely, if SHARE 
is not specified, a shared RDAREA is not identified as a candidate storage area.
A user RDAREA that stores rebalancing tables cannot be specified.



CREATE TABLE (Define table)

651

Table 3-25: How a table storage RDAREA is determined by default

Legend:
: Not applicable

Primary key 
or cluster key 

specified

Index storage 
RDAREA 
specified*

Table storage RDAREA determination method

No A table storage RDAREA is determined according to the following 
priority:
1. Of the public RDAREAs to which the inner replica facility is not 

applied, the public RDAREA that has the fewest defined tables
2. If there is more than one RDAREA meeting condition 1, the first 

RDAREA found by HiRDB
3. If a determination cannot be made on the basis of conditions 1 and 

2, of the RDAREAs (the original public RDAREAs subject to the 
inner replica facility), the public RDAREA having the fewest 
defined tables

4. If there is more than one RDAREA meeting condition 3, the first 
RDAREA found by HiRDB

Yes No A table storage RDAREA is determined according to the following 
priority:
1. Of the public RDAREAs to which the inner replica facility is not 

applied, the public RDAREA that has the fewest defined tables
2. If there is more than one RDAREA meeting condition 1, the 

public RDAREA having the fewest index definitions
3. If there is more than one RDAREA meeting conditions 1 and 2, 

the first RDAREA found by HiRDB
4. If a determination cannot be made on the basis of conditions 1, 2, 

and 3, of the RDAREAs (the original public RDAREAs subject to 
the inner replica facility), the public RDAREA having the fewest 
defined tables

5. If there is more than one RDAREA meeting condition 4, the 
public RDAREA having the fewest index definitions

6. If there is more than one RDAREA meeting conditions 4 and 5, 
the first RDAREA found by HiRDB

RDAREA not 
subject to inner 
replica facility

1. Of the public RDAREAs to which the inner replica facility is not 
applied, the public RDAREA that has the fewest defined tables

2. If there is more than one RDAREA meeting condition 1, the first 
RDAREA found by HiRDB

RDAREA (original 
RDAREA) subject 
to inner replica 
facility

1. Of the RDAREAs subject to the inner replica facility, the original 
and public RDAREAs having equal numbers of replica 
RDAREAs

2. If there is more than one RDAREA meeting condition 1, the first 
RDAREA found by HiRDB



CREATE TABLE (Define table)

652

* On HiRDB/Parallel Server, if an RDAREA for index is specified, the RDAREA 
residing on the same server as the RDAREA for index is subject to table-storage 
RDAREA selection.
storage-condition

Specifies conditions for storing the table in multiple RDAREAs on a split basis 
(row-partitioning of the table). If a storage condition is specified, single-column 
partitioning will be used in partitioning the table.
Multiple literals can be specified as the storage condition for a column such as the 
following:

• Column whose values cannot be grouped for specification of ranges (e.g., 
store numbers, organization codes)

• Column consisting of noncontiguous values, such as character strings
The following rules apply to storage-condition:
1. When multiple storage conditions are specified, the same column name must 

be specified in all of them.
2. When multiple storage conditions are specified, HiRDB evaluates them in 

the order in which they are specified; rows are stored in the RDAREA 
associated with the first storage condition that tests TRUE. Rows for which 
no condition is TRUE are stored in an RDAREA for which no storage 
conditions are specified. If there is no RDAREA for which no storage 
conditions are specified, rows cannot be stored.

3. If there is an RDAREA in which no rows are stored as a result of HiRDB's 
evaluation of storage conditions, the table is not defined.

4. For data insertion, data cannot be inserted if there is no RDAREA 
corresponding to the data.

5. For data updating, you cannot update column values that are specified in 
storage conditions.

6. Each storage condition is associated with one RDAREA. A maximum of 
1,024 RDAREAs can be specified. The same RDAREA cannot be specified 
for more than one storage condition.

PARTITIONED BY column-name
Specifies that the table is to be partitioned by boundary values for storage in 
multiple RDAREAs. The maximum number of RDAREAs into which a table can 
be partitioned is 1,024, exclusive of duplications.

column-name
Specifies the name of the column for which boundary values are to be specified. 



CREATE TABLE (Define table)

653

The column data types that can be specified are the data types on which storage 
condition comparison operations can be performed. When PARTITIONED BY 
column-name is specified, the resulting partitioning will be single-column 
partitioning.
The following rules apply to BY column-name:
1. Values in the column that is specified in column-name cannot be updated.
2. The column specified in column-name should be a NOT NULL column (NOT 

NULL constrained, FIX specification, cluster key, or primary key).
3. If a cluster key is specified for any column, boundary values cannot be 

specified for any other columns.
4. If multiple columns constitute a cluster key, boundary values cannot be 

specified for any of those columns except the first column.
5. A repetition column cannot be specified.

boundary-value
Specifies a boundary value for determining where the table's rows are to be 
partitioned. Specify a literal as a boundary-value.
The following rules apply to boundary values:
1. Any of the following items cannot be specified in literal:

 Character string literals, national character string literals, or mixed 
character string literals with a length of 0

 Character string literals with a length of 256 bytes or greater, national 
character string literals with a length of 128 characters or greater, or mixed 
or character string literals with a length of 256 bytes or greater

 Hexadecimal character string literals
2. Boundary values must be specified in ascending order; they must all be 

distinct values.
3. A maximum value should not be specified in the boundary value that is 

specified last.
4. Specify table storage RDAREAs and boundary values alternately so that the 

specification begins and ends with a table storage RDAREA.
5. The maximum number of table storage RDAREAs is 3,000.
6. The same table storage RDAREA can be specified multiple times, provided 

that it is not specified twice in succession.
7. The first RDAREA for which a boundary value is specified will store the 

rows whose value is less than or equal to the specified boundary value. In 



CREATE TABLE (Define table)

654

each subsequent RDAREA (except for the last one), rows are stored that 
have a value greater than the previously specified boundary value and less 
than or equal to the next boundary value that is specified. The last RDAREA 
that is specified stores rows with a value that is greater than any of the 
previously specified boundary values.

PARTITIONED BY MULTIDIM
Specify this operand when partitioning table data into a column (first dimension 
partitioning column) and partitioning boundary value data into another column 
(second dimension partitioning column). Partitioning by this type of specification 
is called matrix partitioning, and tables that are partitioned in this manner are 
referred to as matrix-partitioned tables.
Defining a matrix-partitioned table requires HiRDB Advanced Partitioning 
Option.
first-dimension-column-name::=column-name

Specifies a first-dimension partitioned column name.
The following rules apply to first-dimension partitioned column names:
1. The specified column should be made NOT NULL. The following 

methods can be used to make a column NOT NULL:
 Defining the column as a FIX table
 Specifying NOT NULL in the column definition
 Defining a cluster key or the primary key

2. The values in the specified column cannot be updated.
3. A repetition column cannot be specified in column-name.
4. For the data type of the column specified in column-name, see the data 

types of columns that can be compared under storage conditions.
first-dimension-boundary-value-list::=boundary-value-list

boundary-value-list::=((boundary-value)[, (boundary-value)]...)
Specifies the column boundary value list that was specified in 
first-dimension-column-name.
In boundary-value, specify the boundary value to be used for partitioning the 
rows in a table. The following rules apply to boundary values:
1. Specify a literal in boundary-value.
2. Specify boundary values in ascending order.
3. Any of the following items cannot be specified in boundary-value:



CREATE TABLE (Define table)

655

 Character string literals, national character string literals, or mixed 
character string literals with a length of 0

 Character string literals and mixed or character string literals with a 
length of 256 bytes or greater

 National character string literals with a length of 128 characters or 
greater

 Hexadecimal character string literals
The maximum value cannot be specified in the boundary value that is 
specified last.

second-dimension-column-name::=column-name
Specifies a second-dimension partitioned column name.
For details on rules, see the explanation of the first-dimension column name.

second-dimension-boundary-value-list::=boundary-value-list
boundary-value-list::=((boundary-value)[, (boundary-value)]...)
Specify a list of column boundary values that were specified in 
second-dimension-column-name.
For rules on boundary values, see the explanation of boundary values for the 
first-dimension boundary-value list.

[FIX] HASH [hash-function-name]
 BY second-dimension-column-name [, second-dimension-column-name]...

second-dimension-column-name::= column-name
Specifies the names of the hash function and second-dimension column to be 
used.
For details about specification methods and rules, see the [FIX] HASH item.

matrix-partitioned-table-storage-RDAREA-specification::=two-dimensional-st
orage-RDAREA-specification

two-dimensional-storage-RDAREA-specification::=
  (matrix-partitioning-RDAREA-list
   [, matrix-partitioning-RDAREA-list]...)
matrix-partitoning-RDAREA-list ::=
  (RDAREA-name[, RDAREA-name]...)
When defining a matrix-partitioned table, a cluster key, the primary key, a 
BLOB column, or an abstract data type of the BLOB attribute for a 



CREATE TABLE (Define table)

656

matrix-partitioned table, specifies the RDAREA that stores them.
The following rules apply to the RDAREA for the storage of 
matrix-partitioned tables:
1. For rules on RDAREA names, see the explanation of RDAREAs under 

each operand.
2. The number of RDAREAs specified per matrix-partitioned RDAREA 

list is the number of boundary values specified in second-dimension 
boundary value list + 1. If a hash function is used in 
second-dimension-partitioning-column, the number of RDAREAs is a 
user-specified number.

3. The specifiable number of matrix-partitioned RDAREA lists is the 
number of boundary values specified in first-dimension boundary value 
list + 1.

4. When defining a cluster key, the primary key, a BLOB column, and an 
abstract data type having the BLOB attribute for a matrix-partitioned 
table, specify RDAREAs in correspondence with the RDAREAs for 
storing matrix-partitioned tables.

5. The maximum number of RDAREAs that can be specified, exclusive of 
duplicates, is 1,024.

6. The total number of specifiable RDAREAs is 3,000.
7. Although the same RDAREA name can be specified successively, the 

same RDAREA name cannot be specified for all RDAREAs. If a hash 
function is used in second-dimension-partitioning-column, table 
storage RDAREAs in the matrix-partitioning RDAREA list should be 
specified without any duplication.

8. Cluster keys cannot be specified in a single column.
9. If a cluster key extends over two or more columns, the columns 

specified for partitioning must be included in the same order from the 
beginning.

[FIX] HASH
Specifies that the table is to be partitioned by means of a hash function for storage 
in multiple RDAREAs. The same RDAREA name cannot be specified more than 
once. This operand is also specified when using a hash function in 
second-dimension-partitioning-column.
In this case, table storage RDAREAs in the matrix-partitioning RDAREA list 
should be specified without any duplication.
When a table is to be partitioned by flexible hash partitioning, specify HASH only; 



CREATE TABLE (Define table)

657

for FIX hash partitioning, specify FIX HASH.
[hash-function-name]

Specifies the hash function to be used for hash partitioning of the table.
If a hash function name is omitted, the following hash function is assumed, 
depending on the partitioning method involved:

• If the table is partitioned by using a hash function, HASH1 is assumed.
• If a hash function is specified in a second-dimension partitioning column in 

the matrix-partitioning table, HASH6 is assumed.
BY column-name[, column-name] ...

Specifies the names of the columns to be operated on by the hash function. The 
column data types that can be specified are data types that are eligible for storage 
condition comparison operations.
Specifying one column name only results in single-column partitioning; 
specifying multiple columns results in multicolumn partitioning.
For a single-column partitioned table:

• If there is a column for which a cluster key is specified, no other 
columns can be specified.

• If the cluster key includes more than one column, no columns other than 
the first cluster key column can be specified.

For a multicolumn partitioned table:
• A cluster key cannot be specified for a single column.
• The cluster key columns must include all columns that are specified for 

partitioning, beginning with the first column and in the same sequence.
Partitioning a second-dimension partitioning column in a matrix-partitioning 
table into single columns:

• A cluster key cannot be specified for a single column.
• If a cluster key is multiple columns, a column other than the second 

column from the beginning cannot be specified as a column name.
Partitioning a second-dimension partitioning column in a matrix-partitioning 
table into multiple columns:

• A cluster key cannot be specified for a single column.
• If a cluster key is multiple columns, the second and subsequent columns 

from the beginning must be specified in the same sequence (the second 
and subsequent columns from the beginning of the cluster key 



CREATE TABLE (Define table)

658

constituent columns need not all be included).
If there is a column for which the primary key is specified, whether or not the 
primary key can be defined depends on how the table is partitioned. For details 
about primary key definability (UNIQUE specifiability) see Table 3-20 
Specifiability of UNIQUE in conjunction with row-partitioning of a table.
The following rules apply to BY column-name:
1. A maximum of 16 columns can be specified for multicolumn partitioning. If 

a hash function is specified in second-dimension partitioning columns of a 
matrix-partitioned table, the maximum number of columns that can be 
specified is 15.

2. The same column name cannot be specified more than once for multicolumn 
partitioning.

3. For multicolumn partitioning, specify a combination of columns that have 
values that are not mutually dependent.

4. A column specified in column-name should be a NOT NULL column (NOT 
NULL constrained, FIX specification, cluster key, or primary key).

5. If flexible hash partitioning is specified for a flexible hash partitioned table 
or for second-dimension partitioning columns of a matrix-partitioned table, 
a cluster key with the UNIQUE specification, the primary key, or an index 
with the UNIQUE specification cannot be specified.

6. For FIX hash-partitioning, the values in a column specified in column-name 
cannot be updated during data updating.

7. A repetition column cannot be specified.
8. If a column name is specified in a second-dimension partitioning column of 

a matrix-partitioned table, the column name specified in the first-dimension 
column name cannot be specified.

5) table-option ::=
{PCTFREE = {percentage-of-free-area
   |([percentage-of-free-area],percentage-of-free-pages-in-segment)}
|{LOCK ROW|LOCK PAGE}
|SUPPRESS [DEC [IMAL]]
|WITHOUT ROLLBACK
|INDEX LOCK {NONE|PAGE}
|SEGMENT REUSE {[number-of-segments[{K|M|G}]]|NO}
|INSERT ONLY [WHILE {date-interval-data|labeled-duration} BY column-name]}



CREATE TABLE (Define table)

659

{PCTFREE = {percentage-of-free-area
  |([percentage-of-free-area], percentage-of-free-pages-in-segment)}
The same option cannot be specified more than once for the same table.
The specification of parentheses is critical in the meaning of the PCTFREE 
specification:
PCTFREE = 30 specifies that 30% of the area is to be left unused (free area).
PCTFREE = (,30) specifies that 30% of the pages in each segment are to be left 
unused (free pages).
percentage-of-free-area

Specifies, in the range 0 to 99, a percentage of free area to be allocated in the 
database when the table is initialized. The default is 30 (%).
The percentage of unused space is applied when the database load utility or 
the database reorganization utility is executed. During other addition or 
update operations, such as the execution of the INSERT or UPDATE 
statements, the value PCTFREE = (0,0) is assumed.
The following rules apply to specifying percentage-of-free-area:
1. When a cluster key is defined, PCTFREE should be specified for the 

following purposes:
To create free space in the table so that data to be inserted after data 

initialization or reorganization can be clustered.
If the table contains variable-length data, to create free space in the 

table so that data that is updated after data initialization or 
reorganization and that results in increasing a row length can be stored 
as close together as possible.

2. PCTFREE = (0,0) should be specified for a fixed-length table that does 
not have a cluster key.

3. When PCTFREE is specified for a fixed-length table that does not have 
a cluster key and updating increases the record length within a page, the 
specified free area in the page will be used.

4. A high free area percentage should be specified for a table containing 
variable-length data and for which a cluster key is defined if rows will 
be added frequently after the table has been created or if frequent 
updating will result in increased row lengths.

percentage-of-free-pages-in-segment
Specifies, in the range 0 to 50, a percentage of free pages to be allocated in 
each segment when the table is created. The default is 10 (%).



CREATE TABLE (Define table)

660

The following formula can be used to calculate the percentage of free pages in a 
segment that should be specified:

The specified percentage of free pages in a segment is applied when the database load 
utility or the database reorganization utility is executed.
If the addition of rows occurs frequently in a table for which a cluster key is defined, 
or updates that increase the row length occur frequently, and if the data from the 
increase cannot fit in the unused area on the page, this value should be specified.
{LOCK ROW |LOCK PAGE}

Specifies the minimum unit of locked resources for retrieval and updating 
operations. Specification of LOCK ROW means that the row is the minimum locked 
resources unit; specification of LOCK PAGE means that the page is the minimum 
locked resources unit. The default is LOCK ROW.
LOCK ROW

Specifies that the row is the minimum unit for resources locking.
LOCK PAGE

Specifies that the page is the minimum unit for resources locking.
SUPPRESS [DEC[IMAL]]

For a non-FIX table, specifies that when data is stored in the table, part of the data 
can be omitted. The SUPPRESS option is useful for reducing the database's 
storage space requirements when the number of effective digits in the data to be 
stored in a column of the table is less than the column's defined length. For 
decimal-type data, the effective digits excludes leading zeros.
DEC[IMAL]

Specifies that when decimal-type data is stored in the table, leading zeros are 
to be omitted.
The following rules apply to the DECIMAL option:
1. If SUPPRESS is specified and DECIMAL is omitted, DECIMAL is 

assumed.
2. When the number of effective digits in decimal-type data is equal to the 

definition length, the data is stored with a length equal to definition 
length + 1. Note that this increases the data length compared to the case 
where the SUPPRESS option is specified.



CREATE TABLE (Define table)

661

3. Note also that if the defined precision (total number of digits) of 
decimal-type data is 1, the length of the stored data is greater than when 
the SUPPRESS option is omitted.

4. The DECIMAL attribute for the abstract data type is not subject to this 
function.

WITHOUT ROLLBACK
Specifies that the table is to be defined such that whenever updating of the 
table (including additions and deletions) is completed, the locking of the 
rows in the table is to be released without waiting for a commit of the 
updating transaction.
The following rules apply to the WITHOUT ROLLBACK option:
1. The following table shows the applicability of row-locking and rollback 

during the updating (including additions and deletions) of rows in a 
given table.

Table 3-26: Applicability of row-locking and rollback during the updating 
(including additions and deletions) of rows with a WITHOUT ROLLBACK 
specification

Object of operation Operation on the table

Row 
insertion

Updating a column in a row Row deletion

Updated 
value same 

as 
pre-update 

value

Updated 
value 

different 
from 

pre-update 
value

WITHOUT 
ROLLBACK-specified 
table with an index 
definition

The column 
to be updated 
is an index 
constituent 
column.

Row-locking is 
released when 
the transaction 
terminates. 
Even after 
processing, the 
transaction can 
be rolled back 
if it is not 
finished.

Row-locking is 
released upon 
completion of 
the update. 
After 
processing, the 
update cannot 
be rolled back.

Cannot be 
executed.

Row-locking is 
released when 
the transaction 
terminates. 
Even after 
processing, the 
transaction can 
be rolled back 
if it is not 
finished.

The column 
to be updated 
is not an 
index 
constituent 
column.

Row-locking is 
released when 
the transaction 
terminates. 
After 
processing, the 
update cannot 
be rolled back.



CREATE TABLE (Define table)

662

2. This option is ignored during execution of the database load utility and 
the database reorganization utility.

3. When this option is specified, the FIX option should also be specified 
for the table. This option is not specifiable if SHARE is specified.

4. This option is not compatible with a BLOB column definition or with a 
LOCK PAGE specification.

INDEXLOCK {NONE| PAGE}
This option is provided for compatibility with XDM/RD; it is ignored if 
specified.
Index key value no-lock is specified in the pd_indexlock_mode operand 
of the system definition; for details of the pd_indexlock_mode operand, 
see the manual HiRDB Version 8 System Definition.

SEGMENT REUSE {[number-of-segments[{K|M|G}]]|NO}
This operand is specified when using the free space reusage facility on the table 
being defined. For details about the free space reusage facility, see the HiRDB 
Version 8 Installation and Design Guide.
number-of-segments[{K|M|G}]

When using the free space reusage facility and setting an upper limit on the 
number of segments for the table, specify the limit segment count. The 
number-of-segments operand is specified in the 1 to 268,435,440 range as an 
unsigned integer. Units K (kilo), M (mega), or G (giga) can be specified.
The use of this operand can improve row insertion efficiency for tables that 
are subject to frequent row insertions or deletions, and the storage efficiency 
in the specified segments.

number-of-segments not specified

WITHOUT ROLLBACK-specified table 
without an index definition

Row-locking is released upon completion of the update. After processing, 
the update cannot be rolled back.

Object of operation Operation on the table

Row 
insertion

Updating a column in a row Row deletion

Updated 
value same 

as 
pre-update 

value

Updated 
value 

different 
from 

pre-update 
value



CREATE TABLE (Define table)

663

The operand number-of-segments can be omitted when using the free space 
reusage facility on a table and an upper limit is not set on the number of 
segments in the table.
Use this operand when a table is subject to frequent row insertions or 
deletions and only the specified table is to be stored in the RDAREA. This 
operand also improves row insertion performance and the storage efficiency 
of free space in the RDAREA in which the specified table is to be stored.

NO
This operand is specified when not using the free space reusage facility.
Specify NO for tables that are not subject to frequent row insertions or 
deletions.

The following rules apply to SEGMENT REUSE:
1. The free space reusage facility has no effect on LOB columns, abstract data 

type columns of the LOB attribute, or indexes.
2. The free space reusage facility cannot be specified for rebalancing tables.

INSERT ONLY [WHILE {date-interval-data|labeled-duration} BY column-name]
This option is specified when making a given table into a falsification-prevented 
table. For details about falsification-prevented tables, see the HiRDB Version 8 
Installation and Design Guide.
If a table is made into a falsification-prevented table, its values cannot be updated. 
However, its updatable columns can be updated.
Not all columns in a falsification-prevented table can be made into updatable 
columns.
For a falsification-prevented table, you can specify a period in which any deletion 
of rows is prohibited (a deletion-prevented duration). When specifying a 
deletion-prevented duration, specify a period in WHILE, and in column-name, 
specify an insert history maintenance column (a DATE-type column that is a 
SYSTEM GENERATED column). If a deletion-prevented duration is not specified 
for a given falsification-prevented table rows can no longer be deleted from the 
table, permanently.
date-interval-data

Specifies a deletion-prevented duration in the decimal representation of date 
interval data. For details about decimal representation of date interval data, 
see 1.3.4 Decimal representation of date interval data.
Note that date interval data can be specified in positive values only.

labeled-duration



CREATE TABLE (Define table)

664

In labeled-duration, specifies a deletion-prevented duration. For details 
about labeled durations, see 2.11 Date operations.
Only positive integer literals, not enclosed in parentheses, can be specified 
in the value expression of labeled-duration.

column-name
Specifies a DATE-type column that is SYSTEM GENERATED.
The deletion-prevented duration should include the date when a row was 
inserted. The deletion-prevented duration should be calculated according to 
the Rules for addition and subtraction of date data and date interval data in 
2.11 Date operations. The last day of deletion prevention and the 
deletion-allowed date can be calculated as follows:

• Last day of deletion prevention = row insertion date + 
deletion-prevented duration - 1

• Deletion-allowed data = row insertion date + deletion-prevented 
duration

Table 3-27 shows the relationship between the last day of deletion prevention 
and the deletion-allowed data in terms of specified values of row insertion 
date and deletion-prevented duration.

Table 3-27: Relationship between last day of deletion prevention and the 
deletion-allowed data

1 Actual specification format: 00010000. for date interval data, 1 YEAR for labeled 
duration
2 Actual specification format: 00000100. for date interval data, 1 MONTH for labeled 
duration
3 Actual specification format: 00000001. for date interval data, 1 DAY for labeled 
duration

Date of row 
insertion

Specified value for 
deletion-prevented 

duration

Last day of deletion 
prevention

Deletion-allowed date

2002-03-01 1 year1 2003-02-28 2003-03-01

1995-03-01 1 year1 1996-02-29 1996-03-01

2002-02-28 1 month2 2002-03-27 2002-03-28

2002-05-01 1 day3 2002-05-01 2002-05-02



CREATE TABLE (Define table)

665

6) table-restriction-definition ::= {multicolumn-uniqueness-constraint-definition
   [index-option [index-option]]
   | {multicolumn-referential-constraint-definition [constraint-name-definition]
   | [constraint-name-definition] multicolumn-referential-constraint-definition }
   | {multicolumn-referential-constraint-definition [constraint-name-definition]
   | [constraint-name-definition] multicolumn-referential-constraint-definition}}

This operand specifies a uniqueness constraint, check constraint, and referential 
constraint for multiple columns.
The position in which constraint-name-definition is specified is determined by the 
specification value of the system common definition pd_constraint_name operand 
or the specification value of the client environment variable PDCNSTRNTNAME. The 
following table shows allowable specification positions for the constraint name 
definition.

Table 3-28: Specification positions for the constraint name definition

Legend:
Before: A constraint name definition is specified before a constraint definition 
(standard SQL specifications).
After: A constraint name definition is specified after a constraint definition 
(XDM/RD-compatible specifications).

A multicolumn referential constraint cannot be specified if SHARE and FIX are 
specified.
7) column-definition::=

 column-name data-type [ARRAY [maximum-number-of-elements]]
[NO SPLIT]
[{column-data-suppression-specification|[column-recovery-restriction]

Client environment variable System common definition

pd_constraint_name

Not specified LEADING TRAILING

PDCNSTRNTNAME Not specified Before Before After

LEADING Before Before Before

TRAILING After After After



CREATE TABLE (Define table)

666

  {IN {LOB-column-storage-RDAREA-name
      |(LOB-column-storage-RDAREA-name)
      |((LOB-column-storage-RDAREA-name)
        [,(LOB-column-storage-RDAREA-name)]...)
      |matrix-partitioned-LOB-column-storage-RDAREA-specification}
   |abstract-data-type-LOB-column-storage-
     RDAREA-specification}}]
[plug-in-specification]
[DEFAULT clause]
[column-restriction...]
[updatable-column-attribute]

column-name
Specifies a name for a column that is to compose the table. Each column name 
must be unique.

data-type
Specifies the data type of the column; see 1.2 Data types for an explanation of 
data types.
Neither a super-type abstract data type with BLOB defined nor the BOOLEAN data 
type can be specified.
If the specified data type is an abstract data type, no authorization identifier is 
specified, and the default authorization identifier does not have an abstract data 
type of the same name, and if there is an abstract data type of the same name in 
the 'MASTER' authorization identifier, that abstract data type is assumed to have 
been specified.

ARRAY [max-number-of-elements]
When a repetition column is being defined, specifies the maximum number of 
elements, as an unsigned integer in the range 2 to 30,000.
A repetition column cannot be specified for any of the following data types:

• BLOB
• BINARY
• Abstract data type

NO SPLIT



CREATE TABLE (Define table)

667

Specifies that when the actual data length of a variable-length character string 
exceeds 255 bytes, one row of data is to be stored on a single page. In some cases, 
the NO SPLIT option will reduce the database's storage space requirements. This 
is called the no-split option; for details of the no split option, see the HiRDB 
Version 8 Installation and Design Guide.
The no-split option is applicable only to variable-length character string data 
types (VARCHAR, NVARCHAR, and MVARCHAR).

LOB-column-storage-RDAREA-name
Specifies the name of the user LOB RDAREA for storing BLOB column data.
The following rules apply to LOB column storage RDAREAs:
1. If the BLOB data type is specified for a column, a LOB column storage 

RDAREA must be specified for it. A LOB column storage RDAREA cannot 
be specified for a column of a non-BLOB data type.

2. When a table is partitioned, you must specify the same number of user LOB 
RDAREAs as the number of partitions into which the table is to be split. 
Thus, the partitioning must be specified so that the user RDAREAs and the 
user LOB RDAREAs at the same server will be in the same sequence. An 
example is shown below:

             CREATE TABLE MOVIE (ID INT NOT NULL,
                    IMAGE BLOB IN ((LU01),(LU02))
                    IN ((RU01) ID<120,(RU02))

LU01, LU02, RU01, and RU02 denote RDAREA names.
RU01 and LU01, and RU02 and LU02, are RDAREAs for the respective servers.
1. Before CREATE TABLE can be execute LOB column storage RDAREA must 

be created using the database initialization utility or must be added using the 
database structure modification utility.

2. LOB column storage RDAREA names cannot be specified in duplicate. If 
there are duplicate table storage RDAREA names in a partitioned table with 
a boundary value specification or in a matrix-partitioned table, specify 
corresponding LOB storage RDAREA names.

matrix-partitioned-LOB-column-storage-RDAREA-specification::=two-dimensional
-storage-RDAREA-specification

This operand is specified when defining a matrix-partitioned table.
For specification methods, see the explanation of two-dimensional storage 
RDAREA names in PARTITIONED BY MULTIDIM. For details about 
RDAREAs that can be specified, see the explanation of LOB column storage 
RDAREA names.



CREATE TABLE (Define table)

668

8) column-data-suppression-specification::=[SUPPRESS]
Specifies that column data is to be suppressed. This option reduces the amount of disk 
space that is required when much of the data is in fixed-size character format with 
trailing spaces.
The following rules apply to column data suppression specifications:
1. If the last character in column data is the space, a search is made for contiguous 

spaces to the left and the data is stored in the database by suppressing the string 
of consecutive spaces that are found as a result of this search. If there is a break 
in the string of consecutive spaces, no spaces to the left of the break are 
suppressed.

2. When the data type is CHAR or MCHAR, four or more one-byte spaces are 
suppressed.

3. When the data type is NCHAR, three or more two-byte spaces are suppressed.
4. This option cannot be specified for a FIX table.
5. Column data suppression cannot be specified if the data type is an abstract data 

type.
6. This option can be specified only when the data type is CHAR, MCHAR, or NCHAR.
7. Column data suppression cannot be specified for a repetition column.
8. One byte of additional information is added to a column for which this option is 

specified even if data suppression does not occur.
9. Specification of this option is invalid in the following cases:

• Data type is CHAR and the column data size is shorter than CHAR(5)
• Data type is MCHAR and the column data size is shorter than MCHAR(5)
• Data type is NCHAR and the column data size is shorter than NCHAR(3)

If spaces are exhausted, any space preceding that location is not suppressed.
9) column-recovery-restriction ::=[RECOVERY [{ALL|PARTIAL|NO}]]
Specifies the database update logging method for a LOB column storage RDAREA or 
a LOB storage RDAREA within an abstract data type definition.
LOB column storage RDAREA:

If the BLOB data type is specified, specifies the database update logging method 
for user LOB RDAREAs. This option cannot be specified for columns with a data 
type other than BLOB.

LOB storage RDAREA within an abstract data type definition:
If the BLOB attribute is in an abstract data type definition, specifies the database 



CREATE TABLE (Define table)

669

update logging method for user LOB RDAREAs.
ALL

Specifies that the user LOB RDAREA is to be operated in the log acquisition 
mode. Operation in this mode means that a database update log needed for 
rollback and rollforward is acquired.

PARTIAL
Specifies that the user LOB RDAREA is to be operated in the pre-update log 
acquisition mode. Operation in this mode means that a database update log 
needed for rollback is acquired.

NO
Specifies that the user LOB RDAREA is to be operated in the no-log mode. 
Operation in this mode means that a database update log is not to be acquired.
The UAP execution method and the method of recovering a user LOB RDAREA 
when an error occurs depend on the specified update log acquisition mode for the 
database. For details of operation in the no-log mode, see the HiRDB Version 8 
System Operation Guide.

10) abstract-data-type-LOB-column-storage-RDAREA-specification::=
ALLOCATE (attribute-name[..attribute-name]...
  IN {LOB-attribute-storage-RDAREA-name
     |(LOB-attribute-storage-RDAREA-name)
     |((LOB-attribute-storage-RDAREA-name)
      [, (LOB-attribute-storage-RDAREA-name)])
     |matrix-partitioned-LOB-attribute-storage-RDAREA-specification}
  [, attribute-name[..attribute-name]...
    IN {LOB-attribute-storage-RDAREA-name
       |(LOB-attribute-storage-RDAREA-name)
       |((LOB-attribute-storage-RDAREA-name)
        [, (LOB-attribute-storage-RDAREA-name)])
       |matrix-partitioned-LOB-attribute-storage-RDAREA-specification}]...)

attribute-name[..attribute-name]
Specifies the names of attributes that comprise an abstract data type. If the 
attribute of the abstract data type is the abstract data type and if the attribute of 
nested abstract data types includes a LOB-type attribute, specify the attribute name 



CREATE TABLE (Define table)

670

of the LOB type.
Specify an attribute name in the following cases:

• If the data type of the attribute of an abstract data type is the LOB type
• If the attribute of an abstract data type is the abstract data type and if the 

attribute of nested abstract data types is the LOB-type attribute (specify the 
attribute name of that LOB type)

LOB-attribute-storage-RDAREA-name
Specifies the name of a user LOB RDAREA for storage of BLOB-attribute data, 
located at any level of the abstract data type.
The following rules apply to LOB attribute storage RDAREAs:
1. If an abstract data type with the BLOB type is specified as a data type, a LOB 

RDAREA must be specified for each BLOB attribute. A LOB attribute 
storage RDAREA cannot be specified for an attribute whose data type is not 
of the BLOB type.

2. When a table is being partitioned, specify the same number of user LOB 
RDAREAs as the number of partitions into which the table is to be 
partitioned. You must ensure that the user RDAREAs and user LOB 
RDAREAs on the same server are specified in the same order.

3. Required LOB attribute storage RDAREAs must be created or added in 
advance with the database initialization utility or the database structure 
modification utility.

4. The operand LOB-attribute-storage-RDAREA-name cannot be specified in 
duplicate. However, if there are duplicate partitioned tables with a boundary 
value specification or table storage RDAREA names in a matrix-partitioned 
table, specify corresponding LOB attribute storage RDAREA names.

matrix-partitioned-LOB-attribute-storage-RDAREA 
::=two-dimensional-storage-RDAREA-specification

This operand is specified when defining a matrix-partitioned table.
For specification methods, see the explanation of two-dimensional storage 
RDAREA names in PARTITIONED BY MULTIDIM. For details about 
RDAREAs that can be specified, see the explanation of LOB attribute storage 
RDAREA names.

11) plug-in-specification ::= PLUGIN plug-in-option
plug-in-option

Specifies as a character string literal (of up to 255 bytes) parameter information 
to be passed to the plug-in facility for a column that is defined as an abstract data 



CREATE TABLE (Define table)

671

type for which the plug-in facility is implemented. Hexadecimal character string 
literals cannot be specified as parameter information. For details of the parameter 
information, see the manual for the applicable plug-in.

12) DEFAULT clause ::=DEFAULT[predefined-value]
If a value is omitted during the insertion of data, the value that was specified in 
DEFAULT clause is assumed.
The following rules apply to DEFAULT clause:
1. The DEFAULT clause and the WITH DEFAULT clause cannot be specified for the 

same item.
2. The DEFAULT clause cannot be specified for items of the BLOB type, the abstract 

data type, or the BINARY type with a definition length of 32,001 bytes or greater.
3. The DEFAULT clause cannot be specified for a repetition column.
predefined-value ::={literal|USER|CURRENT_DATE|CURRENT DATE

|CURRENT_TIME|CURRENT TIME
|CURRENT_TIMESTAMP[(fractional-second-precision)][USING BES]
|CURRENT TIMESTAMP[(fractional-second-precision)][USING BES]
|NULL}
The default value must be a value that can be inserted into a specified item.
The following rules apply to predefined-value:
1. If predefined-value is omitted, the predefined value for WITH DEFAULT is 

assumed.
2. In predefined-value, a data type in which the effective upper digits are 

nullified during insertion cannot be specified.
3. NULL as a predefined value cannot be specified in a NOT NULL constrained 

column.
4. If USER, CURRENT_DATE(current-date), CURRENT_TIME(current-time), 

or CURRENT_TIMESTAMP[(fractional-second-precision)] (CURRENT 
TIMESTAMP[(fractional-second-precision)]) is specified, the following 
value is assigned:

• USER:
The value of the authorization identifier of the execution user who inserted 
the row is assigned.

• CURRENT_DATE(current-date):
The date of row insertion is assigned. The database load utility (pdload), 



CREATE TABLE (Define table)

672

however, assigns the date the utility is started.
• CURRENT_TIME(current-time):

The time of row insertion is assigned. The database load utility (pdload), 
however, assigns the time the utility is started.

• CURRENT_TIMESTAMP [(fractional-second-precision) [USING BES]] 
(CURRENT TIMESTAMP [(fractional-second-precision)] [USING BES])
Assigns the time stamp at the time a row was inserted. However, for the 
database load utility (pdload), the time stamp at the time the utility was 
started is assigned. In operations using a multi-front-end server 
configuration on HiRDB/Parallel Server, the time stamp is obtained from the 
front-end server to which the UAP established a connection.
If USING BES is specified, the current time stamp is acquired from the 
back-end server that manages the RDAREA in which update rows or 
insertion rows are stored in the case of a HiRDB/Parallel Server; for a 
HiRDB/Single Server, the current time stamp is acquired from the single 
server.
If USING BES is omitted, the current time stamp is acquired from the 
front-end server in the case of a HiRDB/Parallel Server; and the current time 
stamp is acquired from the single server in the case of a HiRDB/Single 
Server.
In the default-value acquisition server type specification, a column for which 
USING BES is specified cannot be specified in partitioning-key.

13) column-restriction ::= 
{NOT-NULL-constraint|single-column-uniqueness-constraint-definition| 
[index-option [index-option]]}

 | {single-column-check-constraint-definition [constraint-name-definition]
   | [constraint-name-definition] single-column-check-constraint-definition}
 | {single-column-referential-constraint-definition [constraint-name-definition]
 | [constraint-name-definition] single-column-referential-constraint-definition}}

The following restrictions can be specified for a column:
• NOT NULL constraint
• Single-column uniqueness constraint definition
• Single-column check constraint definition
• Single-column referential constraint definition

The position in which constraint-name-definition is specified is determined by the 



CREATE TABLE (Define table)

673

specification value in the system common definition pd_constraint_name operand 
or the specification value in the client environment variable PDCNSTRNTNAME. For 
details, see Table 3-28 on table constraint definitions.
A single-column referential constraint cannot be specified if both SHARE and FIX are 
specified.
14) updatable-column-attribute:: = UPDATE [ONLY FROM NULL]

Specify this operand when defining a falsification-prevented table or defining an 
updatable column in a table that will be changed into a falsification-prevented 
table.
The updatable column attribute is valid only with a falsification-prevented table.
For details about the falsification-prevented table, see the INSERT ONLY option. 
For details about how to change a given table into a falsification-prevented table, 
see the INSERT ONLY option in CHANGE in ALTER TABLE.
The following rules apply to the updatable clause attribute:

1. The attribute cannot be specified for columns for which SYSTEM 
GENERATED is specified.

2. The attribute cannot be specified for any of the following non-updatable 
columns:

 Cluster key constituent column
 Partitioning key constituent column (exclusive of partitioning key 

constituent columns in a flexible hash partitioning table)
UPDATE

Specify this operand when defining an updatable column in a 
falsification-prevented table.

UPDATE ONLY FROM NULL
Specify this operand when defining a column in a falsification-prevented 
table in which row values can be updated only once from the null value to a 
non-null value.
The following table shows the updatability of column values in a 
falsification-prevented table for which UPDATE ONLY FROM NULL is 
specified.

Column value before update Column value after update Updatability

Null value Null value Y

Null value Non-null value Y



CREATE TABLE (Define table)

674

Legend:
Y: Updatable
N: Not updatable

Note

Repetition columns can be updated only from the null value (a value in 
which the number of elements is 0) to unsubscripted columns.

* Includes the same value as a pre-update value.
The following rules apply to the UPDATE ONLY FROM NULL operand :

• This operand cannot be specified for columns for which NOT NULL is 
specified.

• This operand cannot be specified for FIX tables.
• This operand cannot be specified for the primary key or for cluster key 

constituent columns.
• This operand cannot be specified for partitioning key constituent 

columns.
• This operand cannot be specified for BLOB type columns and for 

BINARY type columns with a minimum definition length of 32,001 
bytes or greater.

If the attribute is specified, the column value of the updatable column attribute can 
be updated under the following conditions:

Non-null value Null value N

Non-null value Non-null value* N

Table type UPDATE specification UPDATE ONLY FROM 
NULL specification

No specification

Specifiable Column 
value 

updatable

Specifiable Column 
value 

updatable

Specifiable Column 
value 

updatable

Non-falsificati
on-prevented 
table

Y Y Y Y Y

Falsification-p
revented table

Y Y Y Y* N

Column value before update Column value after update Updatability



CREATE TABLE (Define table)

675

Legend:
Y: Updatable
N: Not updatable

: Not applicable
* Can be updated only once from the null value to a non-null value.

15) NOT-NULL-constraint-specification::=
{[NULL
|NOT NULL [WITH DEFAULT[SYSTEM GENERATED]]]2

|[NOT NULL] WITH DEFAULT[SYSTEM GENERATED]]}1

1For a column of a FIX table, a cluster key column, or a column that belongs to 
the primary key.
2 For a column other than the above.

NULL
Specifies that the null value is to be permitted in the specified column.
The NULL option cannot be specified for a column of a FIX table, a cluster key 
column, or a column that belongs to the primary key.

NOT NULL
Specifies the NOT NULL constraint, which means that the column cannot contain 
the null value.
NOT NULL cannot be specified for an abstract data type or a repetition column.

WITH DEFAULT
If the column names to be inserted and the insertion values are omitted during data 
loading using either the INSERT statement or the database creation utility, the 
WITH DEFAULT option must be specified when the default values are inserted into 
NOT NULL constrained columns.
The following rules apply to the WITH DEFAULT option:
1. NOT NULL can be omitted when specifying WITH DEFAULT for a FIX table.
2. WITH DEFAULT cannot be omitted if the data type is the abstract data type.
3. The following table shows column default values that are assigned when 

WITH DEFAULT is specified.



CREATE TABLE (Define table)

676

Table 3-29: Default values for a column with the WITH DEFAULT clause

Note
When the WITH DEFAULT clause is not specified, the null value becomes the 
default value for the column.

SYSTEM GENERATED
This option can be specified when the data type of the column is either the DATE 
type or TIME type. The column for which SYSTEM GENERATED is specified is 
called an insert history maintenance column. Columns for which SYSTEM 
GENERATED is specified are used to specify a deletion-prevented duration for a 
falsification-prevented table.
Columns for which SYSTEM GENERATED is specified receive the insertion of the 

Data type Column default value

INTEGER 0

SMALLINT

FLOAT

SMALLFLT

DECIMAL

CHAR Space

NCHAR

MCHAR

VARCHAR 1-byte space

NVARCHAR 1-character space

MVARCHAR 1-byte space

DATE Current date when a row is added

TIME Current time when a row is added

TIMESTAMP Current time stamp when a row is added

INTERVAL YEAR TO DAY 0 years, 0 months, 0 days

INTERVAL HOUR TO SECOND 0 hours, 0 minutes, 0 seconds

BLOB Data with a length of 0 bytes

BINARY



CREATE TABLE (Define table)

677

current date (CURRENT_DATE) for the DATE type, or the current time 
(CURRENT_TIME) for the TIME type during the insertion of data by means of an 
INSERT statement, irrespective of whether a value is specified.

16) single-column-uniqueness-constraint-definition::=
{[{UNIQUE |PRIMARY}] CLUSTER KEY [{ASC |DESC}]
  [IN {index-storage-RDAREA-name
      |(index-storage-RDAREA-name)
      |((index-storage-RDAREA-name)
        [, (index-storage-RDAREA-name)]...)}]
  |PRIMARY KEY [{ASC |DESC}]
    [IN {index-storage-RDAREA-name
        |(index-storage-RDAREA-name)
        |((index-storage-RDAREA-name)
         [, (index-storage-RDAREA-name)]...)}]}

{[{UNIQUE |PRIMARY}] CLUSTER KEY [{ASC |DESC}]
  [IN {index-storage-RDAREA-name
     |(index-storage-RDAREA-name)
     |((index-storage-RDAREA-name)
      [, (index-storage-RDAREA-name)]...)}]
Specifies that the column is to be defined as a cluster key.
The following rules apply to the cluster key:
1. None of the following data types can be specified for a column that 

composes a cluster key:
 DECIMAL with a precision exceeding 19
 BLOB
 BINARY
 Abstract data type

2. A repetition column cannot be specified as a column that composes a cluster 
key.

3. When a cluster key is specified, an index is defined for the specified column. 
A defined index cannot be deleted.



CREATE TABLE (Define table)

678

4. The NOT NULL option is assumed for a cluster key column.
5. Duplicated data cannot be inserted into a cluster key for which UNIQUE or 

PRIMARY is specified.
6. Only one cluster key can be defined per table.
7. When a cluster key is specified, the HASHA to HASHF hash functions cannot 

be specified.
8. The total length of columns comprising a cluster key must satisfy the 

following formula:
Total length of columns

 MIN((page size of index storage RDAREAs  2) - 1242, 4036)
9. The following rules apply to specifying a cluster key on a partitioned table:
key/range-partitioning (storage-condition, boundary-value)

Specify partitioning keys for columns that compose a cluster key.
hash-partitioning
single-column-partitioning
Specify partitioning keys for columns that compose a cluster key.
multicolumn-partitioning
A cluster key cannot be specified for a single column.
matrix-partitioning
A cluster key cannot be specified for a single column.

UNIQUE
Specifies the restriction that the value in each row in the cluster key column 
must be unique (i.e., no value can be duplicated in the cluster key column).

PRIMARY
Specifies that a column belonging to the cluster key is being defined as the 
primary key.

ASC
Specifies that the cluster key index is to be generated in ascending order of 
the key values.

DESC
Specifies that the cluster key index is to be generated in descending order of 
the key values.



CREATE TABLE (Define table)

679

index-storage-RDAREA-name
Specifies the name of an RDAREA in which the cluster key index is to be 
stored.
If the index is to be partitioned by rows for storage, an index storage 
RDAREA name must be specified for each component into which the table 
is to be partitioned.
On HiRDB/Parallel Server, the operand is subject to the following 
restrictions:

• If SHARE is specified, the index storage RDAREA name should be a 
shared RDAREA.

• If SHARE is not specified, the index storage RDAREA name cannot be 
specified as a shared RDAREA.

The following rules apply to the index storage RDAREAs:
1. Each specified RDAREA either must have already been created by the 

database initialization utility or must be added by the database structure 
modification utility.

2. If no index storage RDAREA names are specified, the index is stored in 
the same RDAREAs that store the defined table.

3. When multiple index storage RDAREA names are specified, the same 
RDAREA name cannot be specified more than once. However, if there 
are duplicate table storage RDAREA names in a partitioned table with 
a boundary-value specification or in a matrix-partitioned table, specify 
corresponding index storage RDAREA names.

4. A user RDAREA that stores a rebalancing table cannot be specified. 
Similarly, if a cluster key is defined for a rebalancing table, the 
specification of an RDAREA name cannot be omitted.

5. The number of index storage RDAREA names must equal the number 
of table partitions that are stored (tables are partitioned by rows). In this 
case, the specified index storage RDAREAs are used in the same order 
in which the table storage RDAREAs are specified. All specified 
RDAREAs must be in the same server.
Examples are provided below:

Example 1: Partitioning by rows based on storage conditions



CREATE TABLE (Define table)

680

Example 2: Partitioning by rows based on a boundary value

RDA1 to RDA6 denote RDAREA names.
The arrows indicate that RDAREAs RDA4, RDA5, and RDA6 of the RDAREAs in 
the table are associated with RDAREAs RDA1, RDA2, and RDA3 of the index, 
respectively.

PRIMARY KEY [{ASC |DESC}]
   [IN {index-storage-RDAREA-name
       |(index-storage-RDAREA-name)
       |((index-storage-RDAREA-name)
         [, (index-storage-RDAREA-name)]...)}]

Specifies that the column specified in column-name is being defined as the 
primary key.
The following rules apply to the primary key:
1. The following data types cannot be specified for the columns that make up 

the primary key:
 DECIMAL with a precision greater than 19 digits
 BLOB
 BINARY
 Abstract data type



CREATE TABLE (Define table)

681

2. A repetition column cannot be specified as a column comprising the primary 
key.

3. Specifying a primary key causes an index to be defined for the specified 
columns. An index defined in this manner cannot be deleted.

4. NOT NULL is assumed for a column that comprises the primary key.
5. Duplicated data cannot be inserted into a primary key column.
6. Only one primary key can be defined per table.
7. For definability (UNIQUE specifiability) of row-partitioned tables, see Table 

3-20.
8. The total length of columns comprising the primary key must satisfy the 

following formula:
Total length of columns

 MIN((page size of index storage RDAREAs  2) - 1242, 4036)
9. For a matrix-partitioned table, the primary key cannot be specified for a 

single column.
ASC

Specifies that the primary key index is to be created in ascending order.
DESC

Specifies that the primary key index is to be created in descending order.
index-storage-RDAREA-name

Specifies the name of an RDAREA for storing the primary key index.
The specified index storage RDAREA should be a user RDAREA.
On HiRDB/Parallel Server, the operand is subject to the following 
restrictions:

• If SHARE is specified, the index storage RDAREA name should be a 
shared RDAREA.

• If SHARE is not specified, the index storage RDAREA name cannot be 
specified as a shared RDAREA.

The following rules apply to the index storage RDAREAs:
1. The RDAREA must be created in advance using the database 

initialization utility or added using the database structure modification 
utility.

2. If no RDAREA name is specified, the index will be stored in the 



CREATE TABLE (Define table)

682

RDAREAs that store the table that is being defined. However, in the 
case of a row-partitioned table in a HiRDB/Single Server or a 
row-partitioned table at one back-end server in a HiRDB/Parallel 
Server, the index will be stored as follows:
For a single-column partitioned table

If a column other than the partitioning key is specified as the primary 
key, the index is stored in the first table storage RDAREA for which a 
partitioning condition is specified.
For a multicolumn partitioned table

The index is stored in the first table storage RDAREA for which a 
partitioning condition is specified.
Matrix-partitioned tables

The primary key cannot be specified for a single column.
3. When multiple index storage RDAREA names are specified, the same 

RDAREA name cannot be specified more than once. However, if there 
are duplicate table storage RDAREA names in a partitioned table with 
a boundary-value specification or in a matrix-partitioned table, this 
operand can be specified.

4. A user RDAREA that stores a rebalancing table cannot be specified. 
Similarly, if a cluster key is defined for a rebalancing table, specification 
of an RDAREA name cannot be omitted.

5. If a table is stored on a split basis into multiple RDAREAs, the index 
storage RDAREAs must be specified by one of the following methods:
(a) Specifying a column specified as a partitioning key in a 
single-column-partitioned table, at the beginning of the primary key
(b) Specifying all columns specified as a partitioning key in a 
multicolumn-partitioned table, in the same order at the beginning of the 
primary key
(c) Matrix-partitioned tables
(d) Other than items (a) to (c), specifying all columns specified in a 
partitioned key as constituent columns of the primary key (in any order)
For items (a) to (c), specify RDAREA names in a number equal to the 
number of table storage RDAREA names. In this case, the destination 
of index storage corresponds with the order in which table storage 
RDAREAs are specified.
For (d), specify RDAREA names in a number equal to the number of 
servers that are stored by partitioning tables. For a HiRDB/Single 



CREATE TABLE (Define table)

683

Server, specify only one RDAREA name; for a HiRDB/Parallel Server, 
specify an RDAREA per back-end server that contains a table.
In any other cases, the primary key cannot be defined for a table that is 
stored on a partitioned basis.

17) index-option ::={PCTFREE=percentage-of-free-area|UNBALANCED SPLIT}
PCTFREE =percentage-of-free-area

Specifies the percentage of unused space to be left in index pages when an index 
is created. The specifiable range of values is 0 to 99, and the default is 30.
When created in batch by the database load utility and the database reorganization 
utility, indexes are created in a percentage equal to the percentage of unused 
space. In other addition or update operations by INSERT or UPDATE statements, 
the default PCTFREE=0 is assumed.
If rows are to be added frequently after an index has been created, a high 
percentage of unused space should be specified.

UNBALANCED SPLIT
Specifies that the key values are to be allocated unevenly among the pages when 
a page is split.
If the location where a key value is to be inserted is in the first half of the page to 
be split, more empty space is allocated to the left-side page after the split. If the 
key value insertion location is in the second half of the page, more empty space 
is allocated to the right-side page after the split. This is called an unbalanced index 
split.
For details of unbalanced index splits, see the HiRDB Version 8 System Operation 
Guide.

18) single-column-check-constraint-definition::= CHECK (search-condition)
Specify this operand when defining a check constraint for the column specified in 
column-name.
search-condition

Specifies the condition that constrains the value of a column. If this condition 
is FALSE, no insertion or updating can be performed on the table.
The column specified in search-condition should be one that was specified 
in column-name.
The following items cannot be specified in search-condition:

• Subquery
• Set function



CREATE TABLE (Define table)

684

• Window function
• Repetition column
• Function call
• USER
• CURRENT DATE, CURRENT_DATE
• CURRENT TIME, CURRENT_TIME
• CURRENT TIMESTAMP, CURRENT_TIMESTAMP
• ? parameter, embedded variable
• CAST specification specifying conversion from TIME to TIMESTAMP
• Scalar function VARCHAR_FORMAT specifying TIME type in a value 

expression
• Value expression in the abstract data type
• System-defined scalar function
• Scalar function IS_USER_CONTAINED_IN_HDS_GROUP
• Structured repetition predicate

19) single-column-referential-constraint-definition::= reference-specification
Specify this operand when defining the column specified in column-name as a 
foreign key.
The following rules apply to foreign keys:
1. If a foreign key is specified for a column, the following data types cannot be 

specified on the column:
 DECIMAL with a minimum precision of 20
 BLOB
 BINARY
 Abstract data type

2. A repetition column cannot be specified for a foreign key column.
3. The foreign key and the primary key that references it must agree in all of the 

following items:
 Corresponding data type
 Corresponding data length

20) multicolumn-uniqueness-constraint-definition::=



CREATE TABLE (Define table)

685

{[{UNIQUE |PRIMARY}] CLUSTER KEY (column-name [{ASC |DESC}]
     [, column-name [{ASC|DESC}]] ...)
     [IN {index-storage-RDAREA-name
         |(index-storage-RDAREA-name)
         |(index-storage-RDAREA-name)
           [,(index-storage-RDAREA-name)]...)
         |matrix-partitioned-index-storage-RDAREA-specification}]
  |PRIMARY KEY [{ASC |DESC}]
     [IN {index-storage-RDAREA-name
         |(index-storage-RDAREA-name)
         |((index-storage-RDAREA-name)
           [, (index-storage-RDAREA-name)]...)
         |matrix-partitioned-index-storage-RDAREA-specification}]}

{[{UNIQUE |PRIMARY}] CLUSTER KEY (column-name [{ASC |DESC}]
     [, column-name [{ASC|DESC}]] ...)
     [IN {index-storage-RDAREA-name
         |(index-storage-RDAREA-name)
         |(index-storage-RDAREA-name)
           [,(index-storage-RDAREA-name)]...)
         |matrix-partitioned-index-storage-RDAREA-specification}]
Specifies that multiple columns are to be defined as a cluster key.
The following rules apply to cluster keys:
1. None of the following data types can be specified for the columns that 

comprise a cluster key:
 DECIMAL with a precision exceeding 19
 BLOB
 BINARY
 Abstract data type

2. If a cluster key is comprised of multiple columns, the following data types, 
in addition to item 1, cannot be specified:



CREATE TABLE (Define table)

686

 FLOAT
 SMALLFLT

3. A repetition column cannot be specified as a column that composes a cluster 
key.

4. When a cluster key is specified, an index is defined for the specified 
columns. When a defined index is deleted, the associated table should also 
be deleted.

5. The NOT NULL option is assumed for the columns that comprise a cluster key.
6. Duplicated data cannot be inserted into a cluster key for which UNIQUE or 

PRIMARY is specified.
7. Only one cluster key can be defined per table.
8. The maximum number of columns comprising a cluster key for which 

PRIMARY is specified is 16.
9. When a cluster key is specified, the HASHA to HASHF hash functions cannot 

be specified.
10. The total length of columns comprising an index must satisfy the following 

formula:
Total length of columns

 MIN((page size of index storage RDAREAs  2) - 1242, 4036)
11. The following rules apply to specifying a cluster key for a partitioned table:
key/range-partitioning (storage-condition, boundary-value)
Specify partitioning keys for columns that compose a cluster key.
hash-partitioning
single-column-partitioning
Specify partitioning keys at the beginning of the columns that compose a cluster 
key.
multicolumn-partitioning
Specify this item so that it includes all partitioning keys in the same sequence, 
from the beginning of the columns that compose a cluster key.
Matrix-partitioning
Specify this item so that it includes all partitioning keys in a first-dimension 
partitioned column and second-dimension partitioned column sequence from the 
beginning of the columns that compose a cluster key.



CREATE TABLE (Define table)

687

When multicolumn-partitioning a second-dimension partitioned clause, specify 
this item so that it includes all partitioning keys in a first-dimension partitioned 
column - second-dimension partitioned column sequence.
UNIQUE

Specifies the restriction that the value in each row in the cluster key column 
must be unique (i.e., no value can be duplicated in the cluster key column).

PRIMARY
Specifies that a multicolumn cluster key is being defined as the primary key.

column-name
Specifies the name of a column that defines the cluster key.
The names of all columns that comprise the cluster key must be unique. 
When a cluster key is defined to consist of multiple columns, the key values 
are generated in the order in which the columns are specified.

ASC
Specifies that the index of the cluster key values is to be generated in 
ascending order of the values.

DESC
Specifies that the index of the cluster key values is to be generated in 
descending order of the values.

index-storage-RDAREA-name
Specifies the name of an RDAREA in which the cluster key index is to be 
stored.
If the index is to be partitioned by values for storage, an index storage 
RDAREA name must be specified for each component into which the table 
is partitioned.
The specified index storage RDAREAs must be user RDAREAs.
The following rules apply to the index storage RDAREAs:
1. Each specified RDAREA either must have been created by the database 

initialization utility or must be added by the database structure 
modification utility.

2. If no index storage RDAREA names are specified, the index is stored in 
the same RDAREAs that store the defined table.

3. When multiple index storage RDAREA names are specified, the same 
RDAREA name cannot be specified more than once. However, if there 
are duplicate table storage RDAREA names in a partitioned table with 



CREATE TABLE (Define table)

688

a boundary-value specification or in a matrix-partitioned table, specify 
corresponding index storage RDAREA names.

4. The number of index storage RDAREAs must equal the number of table 
partitions that are stored (tables are partitioned by rows). In this case, 
the specified index storage RDAREAs are used in the same order in 
which the table storage RDAREAs are specified. All specified 
RDAREAs must be in the same server.
For an example, see the section on index storage RDAREA names for 
the single-column uniqueness restriction definition.

5. A user RDAREA that stores a rebalancing table cannot be specified. 
Similarly, if a cluster key is defined for a rebalancing table, specification 
of an RDAREA name cannot be omitted.

matrix-partitioned-index-storage-RDAREA-specification::=two-dimensional-st
orage-RDAREA-specification

This operand is specified when defining a matrix-partitioned table.
For specification methods, see the explanation of two-dimensional storage 
RDAREA names in PARTITIONED BY MULTIDIM. For details about 
RDAREAs that can be specified, see the explanation of index storage 
RDAREA names.

PRIMARY KEY (column-name [{ASC |DESC}]
   [, column-name [{ASC |DESC}]]...)
   [IN {index-storage-RDAREA-name
    |(index-storage-RDAREA-name)
    |((index-storage-RDAREA-name)
      [,(index-storage-RDAREA-name)]...)
    |matrix-partitioned-index-storage-RDAREA-specification}]
Specifies multiple columns that are being defined as the primary key.
The following rules apply to the primary key:
1. The following data types cannot be specified for the columns that make up 

the primary key:
 DECIMAL with a precision greater than 19 digits
 BLOB
 BINARY
 Abstract data type



CREATE TABLE (Define table)

689

2. When the primary key is composed of multiple columns, the following data 
types, in addition to item 1, cannot be specified:

 FLOAT
 SMALLFLT

3. A repetition column cannot be specified as a column comprising the primary 
key.

4. Specifying a primary key causes an index to be defined for the specified 
columns. To delete the defined index, the entire table must be deleted.

5. NOT NULL is assumed for a column that comprises the primary key.
6. Duplicated data cannot be inserted into a primary key column.
7. Only one primary key can be defined per table.
8. The maximum number of columns comprising a cluster key for which 

PRIMARY is specified is 16.
9. For definability of the primary key (UNIQUE specifiability) for 

row-partitioned tables, see Table 3-20 Specifiability of UNIQUE in 
conjunction with row-partitioning of a table.

10. The total length of columns comprising an index must satisfy the following 
formula:
Total length of columns

 MIN((page size of index storage RDAREAs  2) - 1242, 4036)
column-name

Specifies the name of a column for which the primary key is to be defined.
The column names that comprise the primary key must all be unique. When 
multiple columns are defined for the primary key, the key values are created 
in the order in which the columns are specified.

ASC
Specifies that the primary key index is to be created in ascending order.

DESC
Specifies that the primary key index is to be created in descending order.

index-storage-RDAREA-name
Specifies the name of the RDAREA that stores the index for the primary key.
1. If index-storage-RDAREA-name is omitted, the index also is stored in 

the RDAREA that stores the defined table. However, for a 



CREATE TABLE (Define table)

690

row-partitioned table on HiRDB/Single Server, or for a row-partitioned 
table on the same back-end server on HiRDB/Parallel Server, indexes 
are stored as follows:
For a single-column-partitioned table:

The RDAREA that stores the defined table also stores the index.
For a multicolumn-partitioned table:

The multicolumn-partitioned table is stored in the first table storage 
RDAREA for which partitioning conditions are specified, unless all 
columns that are specified as partitioning keys are specified in the same 
order from the beginning of the primary key.
For a matrix-partitioned table:

The table cannot be defined unless all columns that are specified as 
partitioning keys are specified in the same order from the beginning of 
the primary key. If all columns that are specified as partitioning keys are 
not specified from the beginning of the primary key in the same order, 
specify the name of an index storage RDAREA.

For an explanation of index storage RDAREA names and rules regarding 
those names, see the explanation of index storage RDAREA names in 
PRIMARY KEY of the single-column uniqueness constraint definition.

matrix-partitioned-index-storage-RDAREA-specification::=two-dimensional-st
orage-RDAREA-specification

This operand is specified when defining a matrix-partitioned table.
For details about how to specify this, see the explanation of two-dimensional 
storage RDAREA names in PARTITIONED BY MULTIDIM. For details 
about the RDAREA name to be specified, see the explanation of index 
storage RDAREA names for [{UNIQUE|PRIMARY}] CLUSTER KEY for the 
multicolumn uniqueness constraint definition.

21) multicolumn-check-constraint-definition::= CHECK(search-condition)
Specify this operand when defining a check constraint for multiple columns.
search-condition

Specifies the condition under which multiple columns are restricted. If this 
condition is FALSE, no insertions or updates can be performed on the table.
In search-condition, specify the column that was specified in the table 
definition.
For restrictions in a search condition, see search-condition in 18) 
Single-column-check-constraint-definition.



CREATE TABLE (Define table)

691

22) multicolumn-referential-constraint-definition::= FOREIGN KEY(column-name 
[, column-name]...) reference-specification

Specify this operand when defining multiple columns as a foreign key.
The following rules apply to foreign keys:
1. When a foreign key is specified, the following data types cannot be specified 

for columns that compose the foreign key:
 DECIMAL with a minimum precision of 20
 BLOB
 BINARY
 Abstract data type

2. A repetition column cannot be specified for a column that composes a 
foreign key.

3. The foreign key and the primary key that is referenced must be identical in 
all of the following items:

 Corresponding data type
 Corresponding data length
 Number of columns

If more than one column is specified as a foreign key, HiRDB checks the 
correspondence between columns in the order in which they are specified.

FOREIGN KEY (column-name [, column-name]...) reference-specification
Specifies the names of columns that compose a foreign key.
A maximum of 16 column names can be specified.
All specified column names must be distinct.

23) storage-condition ::=
column-name {= |< > | ^= |!= |< |<= | > | > =} {literal |(literal[, literal])}

Specifies conditions for storing the table in multiple RDAREAs on a split basis 
(row-partitioning of the table).
The following rules apply to the storage conditions:
1. Multiple literals can be specified only when the = comparison operator is used.
2. When multiple literals are specified, the same value cannot be specified more than 

once.
3. Columns with the following data types can be used in comparison operations:



CREATE TABLE (Define table)

692

• INTEGER
• SMALLINT
• DECIMAL
• FLOAT
• SMALLFLT
• CHARACTER1

• VARCHAR1

• NCHAR2

• NVARCHAR2

• MCHAR1

• MVARCHAR1

• DATE
• TIME
• TIMESTAMP4

• INTERVAL YEAR TO DAY3

• INTERVAL HOUR TO SECOND3

1 Comparison operation can be specified only on columns with a defined 
length not exceeding 255 bytes.
2 Comparison operation can be specified only on columns with a defined 
length not exceeding 127 characters.
3 The DCVALUES column in the SQL_DIV_TABLE data dictionary table 
(storage assignment condition value) contains corrected values:
Examples

19921225. 19930025.

99981315. 99990115.
4 This item cannot be specified if the fractional second precision is greater 
than 0. Also, it cannot be specified if a default value including USING BES 
is specified in the DEFAULT clause.

4. The following items cannot be specified in literal:



CREATE TABLE (Define table)

693

• Character string literals, national character string literals, or mixed character 
string literals with a length of 0.

• Character string literals with a length of 256 bytes or greater, national 
character string literals with a length of 128 characters or greater, or mixed 
character string literals with a length of 256 bytes or greater

• Hexadecimal character string literals
5. The value specified in column-name cannot be updated.
6. The number of literals specified in each storage condition must be such that the 

total number of literals specified in all storage conditions does not exceed 5,000. 
If a storage condition is omitted, the number of literals used is counted as 1.

7. If a cluster key is specified for a column, storage conditions cannot be specified 
for any other columns.

8. The column specified in column-name must be NOT NULL (NOT NULL constraint, 
FIX specification, or a cluster key).

9. When a multicolumn cluster key is specified, a storage condition cannot be 
specified for columns other than the leading column.

10. A storage condition cannot be specified for a repetition column.
24) hash-function -name::=

{HASH1 |HASH2 |HASH3 |HASH4 |HASH5 |HASH6 |HASH0 |HASHA |HASHB |HASHC 
|HASHD |HASHE |HASHF}

If the table is not a rebalancing table, or when a hash function is specified in the 
second dimension of a matrix-partitioned table:

Specify one of the hash functions HASH1 through HASH6 or HASH0.
HASH6 is usually specified, because it provides the most uniform hashing. 
However, some partitioning key data is not amendable to uniform hashing, in 
which case another hash function should be specified.
Specify HASH0 to use the year and month values to rotate the data storage 
destination RDAREA every month.

Rebalancing table:
Specify one of the hash functions HASHA to HASHF.
HASHF is usually specified, because it provides the most uniform hashing. 
However, some partitioning key data is not amendable to uniform hashing, in 
which case another hash function should be specified.

HASH1, HASHA
This hash function can be used for column hash partitioning for all data types. It 



CREATE TABLE (Define table)

694

hashes by using all bytes* of the data in all the columns specified for partitioning. 
HASH1 can be specified for columns whose data length is at least 0 bytes.

HASH2, HASHB
This hash function can be used for column hash partitioning for all data types. It 
hashes by using all bytes* of the data in all the columns specified for partitioning. 
HASH2 can be specified for columns whose data length is at least 0 bytes.

HASH3, HASHC
This hash function can be used only when the data type of the columns specified 
for partitioning is INTEGER or SMALLINT. Hashing is performed using the last 2 
bytes* of each partitioning column. HASH3 can be specified for columns whose 
data size is at least 2 bytes.

HASH4, HASHD
This hash function can be used only when the data type of the columns specified 
for partitioning is DATE. Hashing is performed using the first 4 bytes* of each 
partitioning column. HASH4 can be specified for columns whose data size is at 
least 4 bytes.

HASH5, HASHE
This hash function can be used only when the data type of the columns specified 
for partitioning is TIME. Hashing is performed using the first 3 bytes* of each 
partitioned column. HASH4 can be specified for columns whose data size is at least 
3 bytes.

HASH6, HASHF
This hash function can be used for column hash partitioning for all data types. It 
is well suited for DECIMAL applications. It hashes by using all data bytes* in all 
the columns specified for partitioning. HASH6 can be specified for columns whose 
data length is at least 0 bytes.

HASH0
Specify this hash function to use the year and month values in the partitioning 
column to rotate and allocate the data storage destination RDAREA every month.
When this hash function is specified, the partitioning key must be a single column 
and its data type must be DATE, TIMESTAMP, CHAR(8), or CHAR(6). Use the date 
format 'YYYYMMDD' for CHAR(8), and use 'YYYYMM' for CHAR(6).
Use the following values for YYYY and MM:
 YYYY: 0001-9999 (year)
 MM: 01-12 (month)



CREATE TABLE (Define table)

695

* For the VARCHAR, MVARCHAR, or C type, hashing is performed by ignoring 
trailing spaces. If the sign portion is F in the DECIMAL, INTERVAL YEAR TO DAY, 
or INTERVAL HOUR TO SECOND type, hashing is performed by converting F to C.

25) reference-specification::= REFERENCES referenced-table 
[referential-constraint-operation-specification]
Specifies the referenced table to be referenced. When specifying a constraint 
operation, specify referential-constraint-operation-specification.
If reference-specification is specified, the table (referencing table) for which 
reference-specification is specified is subject to the operating rules shown in Table 
3-30. The table (referenced-table) that is referenced by the table for which 
reference-specification is specified is subject to the operating rules shown in Tables 
3-31 and 3-32.

Table 3-30: Operation on referencing tables with a reference-specification 
specification

Legend:

Y: Can be operated on the referencing table.

Operation on 
foreign key 
constituent 

columns

Relationship between rows of a foreign key constituent 
column and rows of the referenced table referenced by the 

foreign key

Results

Add (INSERT) A row having a primary key constituent column value equal to the value 
of the foreign key constituent column for the row to be inserted exists in 
the referenced table.

Y

A row having a primary key 
constituent column value equal to 
the value of the foreign key 
constituent column for the row to be 
inserted does not exist in the 
referenced table.

The null value is found in the 
foreign key constituent column 
for the row to be inserted.

Y

The null value is not found in the 
foreign key constituent column 
for the row to be inserted.

N

Update (UPDATE) A row having a primary key constituent column value equal to the value 
of the updated foreign key constituent column exists in the referenced 
table.

Y

A row having a primary key 
constituent column value equal to 
the value of the updated foreign key 
constituent column does not exist in 
the referenced table.

The null value is found in the 
updated foreign key constituent 
column.

Y

The null value is not found in the 
updated foreign key constituent 
column.

N



CREATE TABLE (Define table)

696

N: A constraint violation error occurs.
referenced-table:: = table-name

Specifies the name of the table to be referenced.
The following rules apply to table names:

• Specify the name of the table that has the primary key.
• The table name should be a base table.
• The table name cannot be qualified with an RD node name.
• The table owned by the user should be specified.
• The table identifier being defined cannot be specified.

referential-constraint-operation-specification:: = {delete-operation 
[update-operation] | update-operation [delete-operation]}

Specifies an operation that is performed in synchronization with the updating or 
deletion of the primary key.

delete-operation:: = ON DELETE reference-operation
Specifies the operation to be performed when a row in the referenced table is 
deleted.

update-operation:: = ON UPDATE reference-operation
Specifies the operation to be performed when a row in the referenced table is 
updated.
reference-operation

CASCADE
Specify this operand when an operation on the primary key is to be 
communicated to a foreign key to maintain data integrity.
The following table shows operations that are allowed on referenced tables 
and the influence of those operations on the referencing table.



CREATE TABLE (Define table)

697

Table 3-31: Allowable operations on referenced tables with CASCADE 
specification, and the influence of those operations on the referencing table

RESTRICT
Specify this operand to check whether or not operations on the primary key 
affect the foreign key and to restrict the operations so that data integrity can 
be maintained.
The following table shows allowable operations on the referenced table.

Operations on the 
primary key 

constituent column of 
the referenced table 

referenced by the 
foreign key 

constituent column

Relationship between rows of a foreign key 
constituent column and rows of the 

referenced table referenced by the foreign 
key

Impact on referencing 
table

Delete (DELETE) A row having a foreign key constituent column value 
equal to the value of the primary key constituent 
column for the row to be deleted exists in the 
referencing table.

Deletes row

A row having a foreign key constituent column value 
equal to the value of the primary key constituent 
column for the row to be deleted does not exist in the 
referencing table.

No impact

Update (UPDATE) A row having a foreign key constituent column value 
equal to the value of the primary key constituent 
column for the pre-update row exists in the 
referencing table.

Updates using a value 
equal to the primary key

A row having a foreign key constituent column value 
equal to the value of the primary key constituent 
column for the pre-update row does not exist in the 
referencing table.

No impact



CREATE TABLE (Define table)

698

Table 3-32: Operations on the referenced table with RESTRICT specification

Legend:
Y: Operation can be performed on the referenced table.
N: A restriction violation error occurs.

The default for the reference restriction operation itself is ON DELETE RESTRICT 
ON UPDATE RESTRICT.
The default for delete-operation is ON DELETE RESTRICT; the default for 
update-operation is ON UPDATE RESTRICT.
If CASCADE is specified for the referential constraint operation, HiRDB generates 
a trigger to perform restriction operations.
The following table shows the names of triggers that are created. All trigger 
names are 21 bytes in length.
Table 3-33: Names of triggers created by HiRDB

Operations on the 
primary key 

constituent column of 
the referenced table 

referenced by the 
foreign key 

constituent column

Relationship between rows of a foreign key 
constituent column and rows of the 

referenced table referenced by the foreign 
key

Results

Delete (DELETE) A row having a foreign key constituent column value 
equal to the value of the primary key constituent 
column for the row to be deleted exists in the 
referencing table.

N

A row having a foreign key constituent column value 
equal to the value of the primary key constituent 
column for the row to be deleted does not exist in the 
referencing table.

Y

Update (UPDATE) A row having a foreign key constituent column value 
equal to the value of the primary key constituent 
column for the pre-update row exists in the 
referencing table.

N

A row having a foreign key constituent column value 
equal to the value of the primary key constituent 
column for the pre-update row does not exist in the 
referencing table.

Y

Referential constraint operation Trigger name

delete-operation (DRAyyyymmddhhmmssth)



CREATE TABLE (Define table)

699

The SQL compile option for a trigger is the same as the default SQL compile 
option that is in effect in the trigger definition. For details about the default value, 
see CREATE TRIGGER (Define a trigger) in this chapter.
If more than one foreign key is specified, restrictions are performed in the 
following sequence:
1. CASCADE
2. RESTRICT
If CASCADE is specified more than once, CASCADE restriction is performed in the 
order in which CASCADE is specified in tables.
If RESTRICT is specified more than once, HiRDB determines the order in which 
restriction is performed so that an optimal restrict check can be performed, and 
RESTRICT is performed in that order.

26) constraint-name-definition::= CONSTRAINT constraint-name
Specify this operand when defining a constraint name for a specified constraint.
constraint-name

Duplicate constraint names cannot be specified in a given schema.
If constraint-name is omitted, HiRDB assigns a default constraint name.
The following table shows constraint names that HiRDB assigns by default:
Table 3-34: Default constraint names assigned by HiRDB

Note

update-operation (URAyyyymmddhhmmssth)

Type Constraint name Notes

Referential 
constraint

Single column 
check 
constraint 
definition

The name of the column for which a 
constraint is specified

None

Multicolumn 
referential 
constraint 
definition

The first column name specified in 
the foreign key

None

Check constraint CK_table-number_yyyymmddhhmm
ssth

30 characters, fixed (table number: 10 
characters, time: 16 characters)

Referential constraint operation Trigger name



CREATE TABLE (Define table)

700

yyyymmddhhmmssth is a time stamp at the time of constraint definition 
(containing information up to 1/100 second).
The table number is 10 characters long, right justified, and zero filled on the right.
Constraint names specified by users carry the potential for duplication. Therefore, 
constraint names in the above format should not be specified.

27) WITH PROGRAM
When defining a foreign key, specify this operand to disable the applicable function, 
procedure, or an SQL object for which a trigger is enabled. If a foreign key is not 
defined, any WITH PROGRAM specification is ignored. The following table shows 
objects that are disabled by this operand.

Table 3-35: Disabled objects

Common rules
1. A maximum of 500 tables can be defined for a single RDAREA.
2. Columns for which a cluster key is defined cannot be updated.

However, if a column for which a cluster key is defined contains a variable-length 
character type column with a definition length of 256 bytes or greater, the column 
can be updated. If the cluster key is updated, the updated row can lose its 
clustering effect.

3. The null value cannot be inserted into a table for which a cluster key is defined.
4. Columns that belong to a cluster key cannot be updated.
5. An RDAREA that is already assigned to a BLOB column or BLOB attribute cannot 

be specified as a LOB column storage RDAREA or LOB attribute storage 
RDAREA.

6. The same columns cannot be specified as constituent columns in the CLUSTER 
KEY clause and the PRIMARY KEY clause. To define the same columns as cluster 
key and primary key constituents, specify the PRIMARY CLUSTER KEY clause. In 
this context, same columns means columns that satisfy all the following 
conditions:

Version used to 
create object

Object description

Object type Disabling condition

07-00 or later Function, procedure, and 
trigger objects

When the object contains an UPDATE or DELETE 
statement that uses a table specified in REFERENCES

Before 07-00 When the object contains an SQL table that uses a table 
specified in REFERENCES



CREATE TABLE (Define table)

701

• The lists of column names specified in CLUSTER KEY and PRIMARY KEY 
clauses and number of specified columns are identical.

• Either the ascending order/descending order specifications are all in 
agreement or they are all in reverse.

7. RDAREAs using the inner replica facility and those not using the facility cannot 
be specified on a mixed basis in the table storage RDAREAs, LOB column 
storage RDAREAs, LOB attribute storage RDAREAs, or index storage 
RDAREAs. When specifying an RDAREA to which the inner replica facility is 
applied, specify the name of the original RDAREA.

8. For execution conditions for CREATE TABLE using the inner replica facility, see 
the manual HiRDB Staticizer Option Version 7.

9. HiRDB Dataextractor and HiRDB Datareplicator should not be used to affect data 
on the following tables:

• Falsification-prevented tables
• Tables containing columns for which NOT NULL-constrained and SYSTEM 

GENERATED are specified
10. If a cluster key or the primary key is defined, the index identifier for the index 

being defined is determined according to the rules shown in Table 3-36:
Table 3-36: Index identifier that is defined

Note

The table number part is a value consisting of 10 characters, right-justified 
and zero-filled on the left.
A fixed value is specified as a total of 19 characters (of which 9 characters 
are the parentheses and the characters shown previously).

11. A maximum of 30,000 columns can be specified per table.
The sum of the column lengths (data lengths) must satisfy the formulas shown 
below.
Table 3-37 shows the lengths (data lengths) of columns.

• Table without FIX specification (table manipulation)

Specification item Index identifier

CLUSTER (CLUSTER table number)

PRIMARY (PRIMARY table number)

PRIMARY CLUSTER (PRI-CLS table number)



CREATE TABLE (Define table)

702

• Table with FIX specification (table definition)

Table 3-37: Predefined-type data lengths

Classification Data type and condition Data length
(in bytes)

Numeric data INTEGER 4

SMALLINT 2

LARGE DECIMAL(m,n)1   m  2  
 + 12

FLOAT or DOUBLE PRECISION 8

SMALLFLT or REAL 4

Character data CHARACTER(n) n3

VARCHAR(n) d  
255

Elements of a repetition column d + 2

Other than the above d + 1

d  256 6

VARCHAR(n)
No-split option 
specified

n  
255

Attributes of abstract data type d + 3

Elements of a repetition column d + 2

Other than the above d + 1

n  256 6



CREATE TABLE (Define table)

703

National 
character data

NCHAR(n) or NATIONAL CHARACTER(n) 2  n4

NVARCHAR(n) d  
127

Elements of a repetition column 2  d + 2

Other than the above 2  d + 1

d  128 6

NVARCHAR(n)
No-split option 
specified

n  
127

Attributes of abstract data type 2  d + 3

Elements of a repetition column 2  d + 2

Other than the above 2  d + 1

n  128 6

Mixed character 
data

MCHAR(n) n3

MVARCHAR(n) d  
255

Elements of a repetition column d + 2

Other than the above d + 1

d  256 6

MVARCHAR(n)
No-split option 
specified

n  
255

Attributes of abstract data type d + 3

Elements of a repetition column d + 2

Other than the above d + 1

n  256 6

Date data DATE 4

Time data TIME 3

Time stamp data TIMESTAMP(n) 7 + (n  2)

Date interval 
data

INTERVAL YEAR TO DAY 5

Time interval 
data

INTERVAL HOUR TO SECOND 4

Large-object 
data

BLOB 9

Binary data BINARY(n) n  255 d + 3

n  256 15

Classification Data type and condition Data length
(in bytes)



CREATE TABLE (Define table)

704

Legend:
d: Actual data length (number of characters)
m, n: Positive integers

1 This is a fixed-point number with a total of m digits with n decimal places. The 
default for m is 15.
2 If SUPPRESS DECIMAL is specified as a table option during the definition of the table, 
the data length is (  k  2  + 2), where k denotes the number of effective digits at 
the time of data storage (the number of digits exclusive of the leading zeros). The 
SUPPRESS DECIMAL option should not be used in the following case, where a denotes 
the total value of data lengths of the columns in the table when either SUPPRESS 
DECIMAL or the column data suppress specification is not used:

32717 < (a + number-of-columns-in-table  2 + 8)
3 If column data suppression is specified and data is suppressed, n is (n - b + 4). Data 
suppression is executed only if the last character of column data is a space and if there 
are 4 or more single-byte spaces that are contiguous with the last character, at the time 
of the column data suppress specification. b denotes the number of spaces that are 
contiguous with the last character in the column data.

If, however, column data suppression is specified and no data is suppressed, one 
byte of additional information is added per column.
The column data suppress specification should not be used in the following case, 
where a denotes the total value of the data lengths of the columns in the table 
when either SUPPRESS DECIMAL or the column data suppress specification is not 
used:
32717 < (a + number-of-columns-in-table  2 + 8)

4 If column data suppression is specified and data is suppressed, 2  n is (2  n - 2  
b + 5). Data suppression is executed only if the last character of column data is a space 
and if there are 3 or more double-byte spaces that are contiguous with the last 
character, at the time of the column data suppress specification. b denotes the number 
of spaces that are contiguous with the last character in the column data.

If, however, column data suppression is specified and no data is suppressed, one 
byte of additional information is added per column.
The column data suppress specification should not be used in the following case, 
where a denotes the total value of the data lengths of the columns in the table 
when either SUPPRESS DECIMAL or the column data suppress specification is not 
used:
32717 < (a + number-of-columns-in-table  2 + 8)



CREATE TABLE (Define table)

705

Rules on referential constraints
1. A given referenced table cannot be referenced from a foreign key for the same 

foreign key constituent column (even though it may not have the same sorting 
order).

2. A foreign key cannot be specified for a table that was defined by specifying 
WITHOUT ROLLBACK.

3. If the table defined by specifying WITHOUT ROLLBACK contains the primary key, 
foreign keys that reference the primary key cannot be defined.

4. Foreign keys cannot be specified for a shared table.
5. Foreign keys cannot be specified for a falsification-prevented table.
6. A maximum of 255 foreign keys can be defined per table.
7. A maximum of 255 foreign keys can be defined per primary key.

Rules on check constraints
1. A maximum of 254 check constraints can be defined in a table. The maximum 

allowable sum of Boolean operators (except for AND and OR in WHEN search 
conditions of CASE expressions) specified in check constraints in a table and the 
number of check constraints is also 254.

2. When specifying more than one condition, Hitachi recommends that check 
constraints be defined on the basis of separate conditions instead of grouping the 
conditions into a single check constraint. In this manner, if a constraint violation 
arises, the violating condition can easily be determined from a constraint name.

3. A check constraint definition cannot be specified for a falsification-prevented 
table.

4. If the BLOB type is specified in a search condition in a check constraint, or a 
BINARY type column with a definition length of 32,001 bytes or greater is 
specified, the following SQL statement cannot be executed:

• Updating by concatenation operations in an UPDATE statement of the BLOB 
type or the BINARY type with a definition length of 32,001 bytes or greater, 
specified in the search condition in the check constraint.

Notes
1. The CREATE TABLE statement cannot be specified from an X/Open-compliant 

UAP running under OLTP.
2. PCTFREE=(0,0) must be specified to set 0% for both the table's unused space 

percentage and the percentage of free pages per segment.
3. To pass or receive date data using CHAR(10) by means of the row-unit interface, 



CREATE TABLE (Define table)

706

the columns must be defined using CHAR(10) instead of the date data type.
4. To pass or receive time data using CHAR(8) by means of the row-unit interface, 

the columns must be defined using CHAR(8) instead of the time data type.
5. When passing or receiving time stamp data in CHAR in 19, 22, 24, or 26 bytes by 

using the by-row interface, specify columns in CHAR in 19, 22, 24, or 26 bytes 
without using the time stamp data type.

6. When you define a falsification-prevented table, Hitachi recommends that only 
the falsification-prevented table is stored in the table storage RDAREA. If 
pdrorg terminates abnormally relative to the falsification-prevented table, the 
affected RDAREA cannot be released from the hold status until the 
reorganization process is complete. Consequently, if other tables and indexes are 
stored in the RDAREA storing the falsification-prevented table, those tables and 
indexes also become unavailable if pdrorg fails.

7. If table definition changes are made for a referencing table specifying CASCADE 
as a reference operation, the trigger, generated by HiRDB, for performing 
constraint operations can be disabled in some cases. The trigger is disabled under 
the following conditions:

• Condition under which the generated trigger is disabled when the referential 
constraint operation specification is ON UPDATE CASCADE

 When table definitions are changed for a referencing table (changing 
SPLIT for the table or modifying the default for the table)

 When an index is defined for a referencing table
 When the index for a referencing table is deleted
 When a trigger with a trigger timing UPDATE is defined for a referencing 

table
 When a trigger with a trigger timing UPDATE defined for a referencing 

table is deleted
 When a table definition is changed for the primary key constituent column 

of the referenced table referenced by a referencing table
• Condition that disables the trigger that is generated when the referential 

constraint operation specification is ON DELETE CASCADE
 When table definitions are changed for a referencing table (changing 

SPLIT for a column or modifying the default for a column)
 When an index is defined for a referencing table
 When the index for a referencing table is deleted
 When a trigger with a trigger timing DELETE is defined for a referencing 



CREATE TABLE (Define table)

707

table
 When a trigger with a trigger timing DELETE defined for a referencing 

table is deleted
Any disabled trigger should be recreated using ALTER ROUTINE.

8. If more than one referential constraint specifying ON UPDATE CASCADE as a 
reference operation is specified, the same table name should not be specified for 
the referenced table.
However, the above rule does not apply if all of the following conditions are met:

• The applicable multiple foreign key constituent columns with a reference 
specification are not duplicated.

• Check constraints and referential constraints related to the applicable 
multiple foreign key constituent elements with a reference specification are 
not defined.

Examples
1. Define a stock table (STOCK):

CREATE TABLE STOCK
    (PCODE CHAR(4),PNAME NCHAR(8),
     COLOR NCHAR(1),PRICE INTEGER,SQTY INTEGER)

2. Define a stock table (STOCK) with the following conditions:
• Table is a FIX table
• Table data is to be stored in a user RDAREA (RDA1)
• Because the inventory table is a fixed-length table without a cluster key, the 

percentage of free area and the percentage of free pages per segment are both 
to be 0

CREATE FIX TABLE STOCK
    (PCODE CHAR(4),PNAME NCHAR(8),
     COLOR NCHAR(1),PRICE INTEGER,SQTY INTEGER)
  IN RDA1
  PCTFREE=(0,0)

3. Define a stock table (STOCK) with the following conditions:
• The product code column (PCODE) is to be defined as a 

uniqueness-constrained cluster key
• The table data and index are to be partitioned into three RDAREAs, each 

with the following storage conditions:



CREATE TABLE (Define table)

708

CREATE TABLE STOCK
   (PCODE CHAR(4)
       UNIQUE CLUSTER KEY ASC
       IN ((RDA4),(RDA5),(RDA6)),
   PNAME NCHAR(10),
   COLOR NCHAR(5),
   PRICE INTEGER,
   SQTY INTEGER)
   IN ((RDA1)PCODE<='202M',
     (RDA2)PCODE<='412M',
     (RDA3))

4. Define a stock table (STOCK) with the following conditions:
• The product name column (PNAME) and the color column (COLOR) are to be 

defined as a cluster key, and the index for the cluster key is to be sorted in 
ascending order of the product names and descending order of the colors

• The table data is to be stored in a user RDAREA (RDA1)
• The index is to be stored in a user RDAREA (RDA2)

CREATE TABLE STOCK
   (PCODE CHAR(4),PNAME NCHAR(10),
    COLOR NCHAR(5),PRICE INTEGER,SQTY INTEGER)
 IN RDA1
 CLUSTER KEY (PNAME ASC,COLOR DESC) IN RDA2

5. Define an employee table containing the abstract data type t_EMPLOYEE.
 CREATE TABLE STAFF_TABLE
   (EMPLOYEENO INTEGER,
    DOCUMENT_DATA_BLOB (6000) IN (LRDA1),(LRDA2))
    EMPLOYEE T_EMPLOYEE ALLOCATE(PHOTOGRAPH_OF_THE_FACE
       IN ((LRDA03),(LRDA04))
     ) IN ((RDA1) EMPLOYEE_NO<=700000,(RDA2))

6. Define an order table (ORDER) under the following conditions:
• The table is designated as a falsification-prevented table.
• The deletion-prevented duration is 10 years.

Storage conditions Storage RDAREAs

Table data Index

101M |PCODE |202M RDA1 RDA4

302S |PCODE |412M RDA2 RDA5

591L |PCODE |591S RDA3 RDA6



CREATE TABLE (Define table)

709

• An OINSDATE column is defined as an insert history maintenance column.
 CREATE TABLE ORDER
    (FNO CHAR(6),CCODE CHAR(5),PCODE CHAR(4),
     OQTY INTEGER,ODATE DATE,OTIME TIME,
     OINSDATE DATE NOT NULL
     WITH DEFAULT SYSTEM GENERATED)
 INSERT ONLY WHILE 10 YEARS BY OINSDATE

7. Define an inventory table (STOCK) under the following conditions:
• Store the table as a matrix-partitioned table on a partitioned basis in 6 user 

RDAREAs.
• The following storage conditions apply:

 CREATE TABLE STOCK
    (PCODE CHAR(4) NOT NULL,
     PRICE INTEGER NOT NULL)
  PARTITIONED BY MULTIDIM (PCODE(('202M'),('412M')),
                           PRICE((5000)))
  IN ((RDA1,RDA2),(RDA3,RDA4),(RDA5,RDA6))

8. Define an inventory table (STOCK) with the following conditions:
• In the product code (PCODE) column, define a check constraint so that data 

cannot be inserted into the column or the column cannot be updated with a 
product with a size other than S, M, or L:

  CREATE TABLE STOCK
      (PCODE CHAR(4) CONSTRAINT CHECK_SIZE
      CHECK(PCODE LIKE '%S' OR PCODE LIKE '%M
      OR PCODE LIKE '%L'),
      PNAME NCHAR(8),
      COL NCHAR(1),PRICE INTEGER,SQTY INTEGER)

9. Define a referential constraint for a single column:
• If a row in a parts name table is deleted, also delete the corresponding row in 

Storage condition Storing RDAREA

PCODE  202M AND PRICE  5000 RDA1

PCODE  202M AND PRICE > 5000 RDA2

202M < PCODE  412M AND PRICE  5000 RDA3

202M < PCODE  412M AND PRICE > 5000 RDA4

PCODE > 412M AND PRICE  5000 RDA5

PCODE > 412M AND PRICE > 5000 RDA6



CREATE TABLE (Define table)

710

the name table.
Define a referenced table (parts name table (DEPT1)), and designate the parts 
code (DNO) column as the primary key:

  CREATE TABLE DEPT1
      (DNO CHAR(3) PRIMARY KEY,DNAME NVARCHAR(20),MGR 
CHAR(8))

Define a referencing table (employee name table (EMP1)), and designate the parts 
code (DNO) column as a foreign key.
 
  CREATE TABLE EMP1
      (ENO CHAR(8),ENAME NVARCHAR(25),
       DNO CHAR(3)
           CONSTRAINT EMP1_K 
           REFERENCES DEPT1 ON DELETE CASCADE)

10. Define a referential constraint for multiple columns.
• If a row in a section name table is deleted and a row in the name table 

contains the same value as the section name table row being deleted, the 
following code suppresses the deletion of the section name table. Similarly, 
if a row in the section name table is to be updated and a row in the name table 
contains the same value as the section name table row being updated, the 
following code suppresses the updating of the section name table.
Define a referenced table (section name table (DEPT2)), and designate the 
parts code (DNO) column and the section code (SNO) column as the primary 
key.

 
  CREATE TABLE DEPT2
      (DNO CHAR(3),SNO CHAR(3),
      SNAME CHAR(20),SHEAD CHAR(8),
      PRIMARY KEY(DNO,SNO))
 



CREATE TABLE (Define table)

711

Define a referencing table (employee name table (EMP2)), and designate the parts 
code (DNO) column and the section code (SNO) column as foreign keys:
 
  CREATE TABLE EMP2
      (ENO CHAR(8),ENAME CHAR(25),
      DNO CHAR(3),SNO CHAR(3),
      CONSTRAINT EMP2_K 
      FOREIGN KEY(DNO,SNO) REFERENCES DEPT2)
 



CREATE TRIGGER (Define a trigger)

712

CREATE TRIGGER (Define a trigger)

Function
Upon operation on a specified table (INSERT, UPDATE, and DELETE statements), 
defines an action (trigger) that automatically executes SQL statements.

Privileges
A user can define a trigger on tables that he or she owns.

Format

Operands
[authorization-identifier.]trigger-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the trigger being defined. 
The default is the authorization identifier of the user who executes CREATE 
TRIGGER.

 
 CREATE TRIGGER [authorization-identifier.]trigger-identifier
   trigger-action-time
   trigger-event
   ON [authorization-identifier.]table-identifier
   [REFERENCING old-or-new-values-alias-list]
   trigger-action
   [SQL-compile-option[SQL-compile-option]...]
   [WITH PROGRAM]
 
 trigger-action-time ::={BEFORE|AFTER}
 trigger-event ::={INSERT|DELETE|UPDATE[OF column-name[, column-name]...]}
 old-or-new-values-alias-list ::=old-or-new-values-alias[old-or-new-values-alias]
 old-or-new-values-alias ::={OLD [ROW] [AS] old-values-correlation-name
     |NEW [ROW] [AS] new-values-correlation-name}
 old-values-correlation-name, new-values-correlation-name ::=correlation-name
 trigger-action ::=[{FOR EACH ROW|FOR EACH STATEMENT}]
     [WHEN (search-condition)]
     trigger-SQL-statement
   trigger-SQL-statement ::=SQL-procedure-statement
 SQL-compile-option ::={ISOLATION data-guarantee-level [FOR UPDATE EXCLUSIVE]
     |OPTIMIZE LEVEL SQL-optimization-option
      [, SQL-optimization-option]...
      |ADD OPTIMIZE LEVEL SQL-extension-optimizing-option
      [, SQL-extension-optimizing-option]...
|SUBSTR LENGTH maximum-character-length }
 



CREATE TRIGGER (Define a trigger)

713

trigger-identifier
Specifies the name of the trigger being defined.
trigger-action-time::={BEFORE|AFTER}

BEFORE
Executes the trigger action before an operation is performed on the table.
If BEFORE is specified, function calls other than data update SQL statements 
(INSERT, UPDATE, or DELETE statements), the CALL statement, and the default 
constructor function cannot be specified in trigger-SQL-statement.
The trigger for which BEFORE is specified in trigger-action-time is called a 
BEFORE trigger.

AFTER
Executes the trigger action after an operation is performed on the table.
The trigger for which AFTER is specified in trigger-action-time is called an 
AFTER trigger.
trigger-event::={INSERT|DELETE|UPDATE[OF column-name[, 
column-name]...]}

Specifies the type of operation that induces the execution of the trigger.
INSERT

Executes a trigger when a row is inserted into the table. The trigger for which 
INSERT is specified in trigger-event is called an INSERT trigger.
If INSERT is specified in trigger-event, OLD[ROW][AS] 
old-values-correlation-name cannot be specified in old-or-new-values-alias.

DELETE
Executes a trigger when a row is deleted from the table. The trigger for which 
DELETE is specified in trigger-event is called a DELETE trigger.
If DELETE is specified in trigger-event, NEW[ROW][AS] 
new-values-correlation-name cannot be specified in old-or-new-values-alias.

UPDATE
Executes a trigger when a row is updated in the table. The trigger for which 
UPDATE is specified in trigger-event is called an UPDATE trigger.
If UPDATE is specified in trigger-event, a trigger is executed even if the value does 
not change before and after the update, provided that the trigger action conditions 
are satisfied.
OF column-name[, column-name]...



CREATE TRIGGER (Define a trigger)

714

For executing a trigger upon updating of a specific column, specify OF 
column-name[, column-name].... The columns specified here are called 
trigger event columns.
The following rules apply to trigger event columns:
1. In column-name, specify the column name of the table for which a 

trigger is defined.
2. Column names cannot be specified in duplicate.
3. If a repetition column is specified, a trigger is executed when an 

UPDATE statement containing only an ADD or DELETE clause is 
executed for the column.

4. If a trigger event column is omitted, the default is all column names for 
the target table (including columns that are added after the trigger is 
defined). The trigger is executed when an UPDATE statement containing 
only an ADD or DELETE clause is executed.

[authorization-identifier.]table-identifier
Specifies the table name of the base table for which a trigger is being defined.
A user can define a trigger only for the tables that he or she owns. A trigger cannot be 
defined for a view table, foreign table, or other RD node tables.

REFERENCING 
old-or-new-values-alias-list::=old-or-new-values-alias[old-or-new-values-alia
s]

When referencing a row before and after an update as part of a trigger definition, 
specifies an alias.
In old-or-new-values-alias, either OLD[ROW][AS] old-values-correlation-name or 
NEW[ROW][AS]new-values-correlation-name can be specified only once.

old-or-new-values-alias::={OLD [ROW] [AS] 
old-values-correlation-name|NEW [ROW] [AS] new-values-correlation-name}
old-values-correlation-name::=correlation-name
new-values-correlation-name::=correlation-name

This option is specified when referencing a row either before or after updating by 
assigning a name to it.
The following rules apply to old or new values aliases:
1. ROW and AS have the same effect, irrespective of whether or not they are specified.
2. The same correlation name cannot be specified in both 

old-values-correlation-name and new-values-correlation-name.



CREATE TRIGGER (Define a trigger)

715

3. The scope of a correlation name specified in either old-values-correlation-name 
or new-values-correlation-name is the entire trigger definition.

4. If a column qualified with new-values-correlation-name is updated by using a 
BEFORE trigger, the update takes effect in the table. However, a BEFORE trigger, 
cannot update any of the following columns qualified with 
new-values-correlation-name; an attempt to update such a column may produce 
a runtime error:

• Columns for which SYSTEM GENERATED is specified
The BEFORE trigger for which the trigger event is INSERT cannot update any of 
the following columns by qualifying them with new-values-correlation-name; an 
attempt to update such a column may produce a runtime error:

• Columns that are specified in the partitioning key for a partitioned table 
(exclusive of flexible hash-partitioned tables)

For the BEFORE trigger, even when the updating is performed by qualifying a 
name with new-values-correlation-name, the insertion value (trigger event: 
INSERT) or the update value (trigger event: UPDATE) before updating must be a 
value that can be inserted into a specified column or a value that can be used for 
updating the column. For example, NULL cannot be specified as an insertion or 
update value before updating by means of a trigger action if the specified column 
is NOT NULL-constrained. With regard to uniqueness constraints, however, 
insertion and updating can be performed if the value that is updated by a trigger 
action satisfies the uniqueness constraint.

5. Repetition columns and abstract data-type columns cannot be referenced by 
qualifying them with new-values-correlation-name and 
old-values-correlation-name (in a trigger definition, repetition columns and 
abstract data-type columns cannot be referenced in the table in which a trigger is 
defined).

6. ROW cannot be specified in old-values-correlation-name or in 
new-values-correlation-name.

OLD [ROW] [AS] old-values-correlation-name
This operand is specified when referencing a row, before updating it, by assigning 
a name to it.
The value stored in the column qualified with old-values-correlation-name is a 
value that was in effect before the SQL statement that caused the trigger was 
executed. For the UPDATE statement, it is a pre-update value; for the DELETE 
statement, it is the column value of the row to be deleted.

NEW [ROW] [AS] new-values-correlation-name
This operand is specified when referencing a row, after updating it, by assigning 



CREATE TRIGGER (Define a trigger)

716

a name to it.
The value stored in the column qualified with new-values-correlation-name is a 
value that is the result of execution of the SQL statement that caused the trigger. 
For the UPDATE statement, it is a post-update value; for the INSERT statement, it 
is the inserted value. If, however, a column qualified with 
new-values-correlation-name is updated during the trigger event, the updated 
value is inherited.
trigger-action::=
[{FOR EACH ROW|FOR EACH STATEMENT}]
[WHEN (search-condition)]
trigger-SQL-statement

FOR EACH ROW
This option is specified when executing a trigger by updated row. The trigger for 
which FOR EACH ROW is specified in trigger-action is called a trigger by row. The 
FOR EACH ROW option causes the execution of the trigger each time the one row 
in the table is updated.

FOR EACH STATEMENT
This option is specified when executing a trigger by SQL statement. The trigger 
for which FOR EACH STATEMENT is specified in trigger-action is called a trigger 
by statement.
FOR EACH STATEMENT causes the execution of the trigger by each SQL statement, 
in which case the trigger is executed even where there are no rows to be updated.
FOR EACH STATEMENT cannot be specified together with 
old-or-new-values-alias-list.

search-condition
When a trigger event occurs, the trigger SQL statement is executed if the 
condition specified here is true. Such a search condition is called a trigger action 
condition.
If the operand trigger-action-condition is omitted, the trigger SQL statement is 
always executed when a specified trigger event occurs. Any of the following 
items cannot be specified in the trigger-action-condition operand:

• Subqueries
• Set functions
• Window function
• Repetition columns



CREATE TRIGGER (Define a trigger)

717

• Embedded variables, ? parameters, SQL variables, and SQL parameters
• Columns of any of the following data types:

 BLOB (however, the item can be specified in the scalar functions LENGTH 
and POSITION, and in function calls for a user-defined function).

 BINARY with a maximum length of 32,001 bytes or greater (however, the 
item can be specified in the scalar functions LENGTH and POSITION, and in 
function calls for a user-defined function).

 Abstract data type
• Structured repetition predicates
• Plug-in functions
• Value expressions producing a result that is an abstract data type (not 

specifiable in a value expression)
When referencing a column of the table for which a trigger is defined in a trigger 
action condition, qualify the column with old-or-new-values-correlation-name 
(non-qualified columns cannot be specified, and columns qualified with a table 
name cannot be specified).

trigger-SQL-statement
Specifies an SQL procedure statement. For details about SQL procedure 
statements, see 7. Routine Control SQL.
SQL procedure statements that are specified as a trigger SQL statement are 
subject to the following restrictions:
1. The table name of a table for which a trigger is defined cannot be specified.
2. Columns in the table for which a trigger is defined cannot be specified either 

without qualifying them or by qualifying them with a table name (columns 
qualified with an old- or new-values alias can be specified). A column 
qualified with an old- or new-values correlation name can be specified in the 
trigger SQL statement in the same locations as locations where an SQL 
parameter can be specified in an SQL statement. For details about locations 
where an SQL parameter can be specified, see 1.5 Embedded variables, 
indicator variables, ? parameters, SQL parameters, and SQL variables. 
Such a column, however, cannot be specified in the LIMIT clause.

3. Table names of foreign tables cannot be specified.
4. ROLLBACK, COMMIT, and PURGE TABLE statements cannot be specified. 

Calling a procedure specifying any of these statements using a CALL 
statement can produce a runtime error.

5. JAVA stored procedures and the GET_JAVA_STORED_ROUTINE_SOURCE 



CREATE TRIGGER (Define a trigger)

718

specification cannot be specified. Calling a procedure specifying a JAVA 
stored procedure using a CALL statement can produce a runtime error.

SQL-compile-option::={ISOLATION data-guarantee-level [FOR UPDATE 
EXCLUSIVE]
     |OPTIMIZE LEVEL SQL-optimization-option
      [, SQL-optimization-option]...
     |ADD OPTIMIZE LEVEL SQL-extension-optimizing-option
      [, SQL-extension-optimizing-option]...
|SUBSTR LENGTH maximum-character-length }

In SQL-compile-option, ISOLATION, OPTIMIZE LEVEL, ADD OPTIMIZE LEVEL, 
and SUBSTR LENGTH can each be specified only once.
[ISOLATION data-guarantee-level] [FOR UPDATE EXCLUSIVE]]

Specifies an SQL data integrity guarantee level.
data-guarantee-level

A data integrity guarantee level specifies the point to which the integrity of 
the transaction data must be guaranteed. The following data integrity 
guarantee levels can be specified:

• 0
This option is specified when the integrity of data is not to be 
guaranteed. Level 0 permits the referencing of data even when the data 
is being updated by another user, without waiting for completion of the 
update process. However, if the table to be referenced is a shared table 
and another user is executing the LOCK statement in the lock mode, the 
system waits until the lock condition is released.

• 1
This option is specified when the integrity of data is to be guaranteed 
until the end of the retrieval process. Level 1 prevents other users from 
updating retrieved data until the retrieval process is completed (until 
HiRDB finishes viewing the page or row).

• 2
This option is specified when the integrity of retrieved data is to be 
guaranteed until the end of a transaction. Level 2 prevents other users 
from updating retrieved data until termination of the transaction.

[FOR UPDATE EXCLUSIVE]
Specify this operand if WITH EXCLUSIVE LOCK is always to be assumed, 



CREATE TRIGGER (Define a trigger)

719

irrespective of the data guarantee level specified in SQL-compile-option for a 
cursor or query in a procedure for which the FOR UPDATE clause is specified or 
assumed. If level 2 is specified in data-guarantee-level, WITH EXCLUSIVE LOCK 
is assumed for the cursor or query in a procedure for which the FOR UPDATE 
clause is specified or assumed, in which case it is not necessary to specify FOR 
UPDATE EXCLUSIVE.
Relationship to the client environment definition

PDISLLVL and PDFORUPDATEEXLOCK, if specified on CREATE TRIGGER, 
have no effect.

Relationship to SQL statements

If a lock option is specified in an SQL statement in a procedure, the lock 
option specified in the SQL statement takes precedence over any data 
guarantee level specified in SQL-compile-option or the lock option assumed 
due to FOR UPDATE EXCLUSIVE.

The default for this operand is Level 2.
For data guarantee levels, see the HiRDB Version 8 UAP Development Guide.

[OPTIMIZE LEVEL SQL-optimization-option[, SQL-optimization-option]...]
Specifies an optimization method for determining the most efficient access path 
by taking the condition of the database into consideration.
An SQL optimization option can be specified using either an identifier (character 
string) or a numeric value. For most cases, Hitachi recommends the use of an 
identifier.
Specifying with an identifier

 
OPTIMIZE LEVEL "identifier"[, "identifier"]...
 

Specification examples

• Applying prioritized nest-loop-join and rapid grouping processing:
OPTIMIZE LEVEL "PRIOR_NEST_JOIN", "RAPID_GROUPING"

• Applying no optimization:
OPTIMIZE LEVEL "NONE"

Rules

1. Specify one or more identifiers.
2. When specifying two or more identifiers, delimit them with commas 

(,).



CREATE TRIGGER (Define a trigger)

720

3. For details about what can be specified in identifier (optimization 
methods), see Table 3-38 SQL optimization option specification values.

4. If no optimization is to be applied, specify NONE in identifier. If an 
identifier other than NONE is specified at the same time, NONE is 
nullified.

5. Identifiers can be specified in both lower case and upper case 
characters.

6. If the same identifier is specified more than once, it is treated as if it was 
specified only once; however, when possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specifying with a numeric value
 
OPTIMIZE LEVEL unsigned-integer[, unsigned-integer]...
 

Specification examples

• Making multiple SQL objects, suppressing the use of AND multiple 
indexes, and forcing the use of multiple indexes
For specifying unsigned integers by delimiting them with commas:
OPTIMIZE LEVEL 4, 10, 16
For specifying the sum of unsigned integers:
OPTIMIZE LEVEL 30

• Adding a new value, 16, with the value 14 (4 + 10) already specified:
OPTIMIZE LEVEL 14, 16

• Applying no optimization:
OPTIMIZE LEVEL 0

Rules

1. When HiRDB is upgraded from a version older than Version 06-00 to a 
Version 06-00 or later, the total value specification in the older version 
also remains valid. If the optimization option does not need to be 
modified, the specification value for this operand need not be changed 
when HiRDB is upgraded to a Version 06-00 or later.

2. Specify one or more unsigned integers.
3. When specifying two or more unsigned integers, separate them with 

commas (,).



CREATE TRIGGER (Define a trigger)

721

4. For details about what can be specified as an unsigned integer 
(optimization method), see Table 3-38 SQL optimization option 
specification values.

5. When not applying any optimization, specify 0 in unsigned-integer. 
However, specifying an identifier other than 0 at the same time nullifies 
the 0.

6. If the same unsigned integer is specified more than once, it is treated as 
if it was specified only once; however, when possible, precautions 
should be taken to avoid specifying a given unsigned integer in 
duplicate.

7. When specifying multiple optimization methods, you can specify the 
sum of their unsigned integers. However, care should be taken not to 
add the value of the same optimization method multiple times (to 
prevent the possibility of the resulting sum from being interpreted as a 
separate optimization method).

8. To specify multiple optimization methods by adding their values, 
Hitachi recommends to separate each optimization method 
specification with a comma to avoid ambiguities regarding which 
optimization method is being specified. If a new optimization method 
needs to be specified after multiple optimization methods have been 
specified by adding their values, specify the new value by appending it, 
separated with a comma.

Relationship to system definitions

1. The default for the SQL optimization option is the value specified in the 
pd_optimize_level operand of the system definitions. For details 
about the pd_optimize_level operand, see the manual HiRDB 
Version 8 System Definition.

2. When the pd_floatable_bes operand or the 
pd_non_floatable_bes operand is specified, specification of the 
Increasing the target floatable servers (back-end servers for fetching 
data) option or the Limiting the target floatable servers (back-end 
servers for fetching data) option, respectively, is invalid.

3. When KEY is specified in the pd_indexlock_mode operand of the 
system definition (i.e., for index key value lock), specification of the 
Suppressing creation of update-SQL work tables option is invalid.

Relationship to the client environment definition

Specification of PDSQLOPTLVL has no effect on CREATE TRIGGER.
Relationship with SQL



CREATE TRIGGER (Define a trigger)

722

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL optimization option specification values

Table 3-38 shows SQL optimization option specification values. For details 
about optimization methods, see the HiRDB Version 8 UAP Development 
Guide.

Table 3-38: SQL optimization option specification values (CREATE 
TRIGGER)

No. Optimization method Specification value

Identifier Unsigned 
integer

1 Forced nest-loop-join "FORCE_NEST_JOIN" 4

2 Making multiple SQL objects "SELECT_APSL" 10

3 Increasing the target floatable servers 
(back-end servers for fetching data)#1, #2

"FLTS_INC_DATA_BES" 16

4 Prioritized nest-loop-join "PRIOR_NEST_JOIN" 32

5 Increasing the number of floatable server 
candidates#2

"FLTS_MAX_NUMBER" 64

6 Priority of OR multiple indexes "PRIOR_OR_INDEXES" 128

7 Group processing, ORDER BY processing, 
and DISTINCT set function processing at the 
local back-end server#2

"SORT_DATA_BES" 256

8 Suppressing the use of AND multiple 
indexes

"DETER_AND_INDEXES" 512

9 Rapid grouping processing "RAPID_GROUPING" 1024

10 Limiting the target floatable servers 
(back-end servers for fetching data)#1, #2

"FLTS_ONLY_DATA_BES" 2048

11 Separating data collecting servers#1, #2 "FLTS_SEPARATE_COLLECT_SVR" 2064

12 Suppressing index use (forced table scan) "FORCE_TABLE_SCAN" 4096

13 Forcing use of multiple indexes "FORCE_PLURAL_INDEXES" 32768

14 Suppressing creation of update-SQL work 
tables

"DETER_WORK_TABLE_FOR_UPDATE" 131072



CREATE TRIGGER (Define a trigger)

723

#1: If both Increasing the target floatable servers (back-end servers for fetching 
data) and Limiting the target floatable servers (back-end servers for fetching 
data) are specified together, the respective optimization method does not take 
effect; instead, the specification operates as a separating data collecting server.
#2: When specified on a HiRDB/Single Server, this option has no effect.

[ADD OPTIMIZE LEVEL SQL-extension-optimizing-option[, 
SQL-extension-optimizing-option]...]

Specifies an optimization method for determining the most efficient access path 
by taking the condition of the database into consideration.
An SQL extension optimizing option can be specified using either an identifier 
(character string) or a numeric value.
Specifying with an identifier

 
ADD OPTIMIZE LEVEL "identifier"[, "identifier"]...
 

Specification examples

• Applying Optimizing mode 2 based on cost and Hash join, subquery 
hash execution:
ADD OPTIMIZE LEVEL "COST_BASE_2", "APPLY_HASH_JOIN"

• Applying no optimization:
ADD OPTIMIZE LEVEL "NONE"

Rules

1. Specify one or more identifiers.
2. When specifying two or more identifiers, delimit them with commas 

(,).
3. For details about what can be specified in identifier (optimization 

15 Derivation of rapid search conditions "DERIVATIVE_COND" 262144

16 Applying key conditions including scalar 
operations

"APPLY_ENHANCED_KEY_COND" 524288

17 Facility for batch acquisition from functions 
provided by plug-ins

"PICKUP_MULTIPLE_ROWS_PLUGIN" 1048576

No. Optimization method Specification value

Identifier Unsigned 
integer



CREATE TRIGGER (Define a trigger)

724

methods), see Table 3-39 SQL extension optimizing option specification 
values.

4. If no optimization is to be applied, specify NONE in identifier.
5. Identifiers can be specified in both lower case and upper case 

characters.
6. If the same identifier is specified more than once, it is treated as if it was 

specified only once; however, when possible, precautions should be 
taken to avoid specifying a given identifier in duplicate.

Specifying with a numeric value
 
ADD OPTIMIZE LEVEL unsigned-integer[, unsigned-integer]...
 

Specification examples

• Applying Optimizing mode 2 based on cost and Hash join, subquery 
hash execution:
ADD OPTIMIZE LEVEL 1, 2

• Applying no optimization:
ADD OPTIMIZE LEVEL 0

Rules

1. Specify one or more unsigned integers.
2. When specifying two or more unsigned integers, separate them with 

commas (,).
3. For details about what can be specified as an unsigned integer 

(optimization method), see Table 3-39 SQL extension optimizing option 
specification values.

4. When not applying any optimization, specify 0 in unsigned-integer.
5. If the same unsigned integer is specified more than once, it is treated as 

if it was specified only once; however, when possible, precautions 
should be taken to avoid specifying a given unsigned integer in 
duplicate.

Relationship to system definitions

The default for the SQL extension optimizing option is the value specified in 
the pd_additional_optimize_level operand of system definitions. 
For details about the pd_additional_optimize_level operand, see the 
manual HiRDB Version 8 System Definition.



CREATE TRIGGER (Define a trigger)

725

Relationship to the client environment definition

Specification of PDADDITIONALOPTLVL has no effect on CREATE 
TRIGGER.

Relationship with SQL

If SQL optimization is specified in an SQL statement, the SQL optimization 
specification takes precedence over SQL optimization options. For SQL 
optimization specifications, see 2.24 SQL optimization specification.

SQL extension optimizing option specification values

Table 3-39 shows SQL extension optimizing option specification values. For 
details about optimization methods, see the HiRDB Version 8 UAP 
Development Guide.

Table 3-39: SQL extension optimizing option specification values (CREATE 
TRIGGER)

Note 1

Items 2-5 take effect when Application of optimizing mode 2 based on cost is 
specified.

Note 2

Optimization items 3-5 are effective for retrieving foreign tables; for other 

No. Optimization method Specification value

Identifier Unsigned 
integer

1 Application of optimizing mode 2 
based on cost

"COST_BASE_2" 1

2 Hash join, subquery hash 
execution

"APPLY_HASH_JOIN" 2

3 Suppressing the foreign server 
execution of SQL statements 
including joins

"DETER_JOIN_SQL" 67108864

4 Forced foreign server execution 
of SQL statements including 
direct products

"FORCE_CROSS_JOIN_SQL" 134217728

5 Suppressing the derivation of 
rapid search conditions that are 
unconditionally generated and 
can be executed on a foreign 
server

"DETER_FSVR_DERIVATIVE_COND" 1073741824



CREATE TRIGGER (Define a trigger)

726

purposes, these items have no effect.
[SUBSTR LENGTH maximum-character-length]

Specifies the maximum number of bytes for representing a single character.
The value specified for the maximum character length must be in the range from 
3 to6.
This operand is valid only when utf-8 is specified for the character code type in 
the pdntenv command (pdsetup command in the case of the UNIX version); it 
affects the length of the result of the SUBSTR scalar function. For details about 
SUBSTR, see 2.16.1(21) SUBSTR.
Relationships to system definition

When SUBSTR LENGTH is omitted, the value specified in the 
pd_substr_length operand in the system definition is assumed. For 
details about the pd_substr_length operand, see the manual HiRDB 
Version 8 System Definition.

Relationship to client environmental definition
The specification of PDSUBSTREN has no applicability to CREATE 
TRIGGER. For details about PDSUBSTRLEN, see the manual HiRDB Version 
8 UAP Development Guide.

Relationship to the character code type specified in the pdntenv or pdsetup 
command

This operand is valid only when utf-8 is specified for the character code 
type.
For all other character code types, only a syntax check is performed and the 
specification is ignored.

WITH PROGRAM
When defining a trigger, if there is a function, a procedure, or an SQL object for which 
a trigger is in effect and that uses the table for which the trigger is being defined, 
specify this option when nullifying the SQL object:

• If trigger-event is INSERT, a function, a procedure, or a trigger that inserts rows 
into the table for which the trigger is being defined

• If trigger-event is UPDATE, a function, a procedure, or a trigger that updates rows 
in the table for which the trigger is being defined

• If trigger-event is DELETE, a function, a procedure, or a trigger that deletes rows 
from the table for which the trigger is being defined

All functions and procedures that created an SQL object in HiRDB of Version 07-00 
or earlier are nullified even if they do not meet the above conditions.



CREATE TRIGGER (Define a trigger)

727

Common rules
1. Defining a trigger causes the creation of an SQL object called a trigger action 

procedure, which is stored in the data dictionary LOB RDAREA. For this reason, 
before defining a trigger, you need to allocate sufficient space in the LOB 
RDAREA. For details about how to estimate the required space for a data 
dictionary LOB RDAREA, see the HiRDB Version 8 Installation and Design 
Guide.

2. The routine identifier for the trigger action procedure takes the following name 
with a length of 22 bytes:
'(TRIGyyyymmddhhmmssth)'
yyyymmddhhmmssth: trigger-definition-time-stamp (in 10 milliseconds)

3. The specific name for the trigger action procedure is the same as 
[authorization-identifier.]trigger-action-procedure-routine-identifier. The 
trigger action procedure routine identifier is stored in the SPECIFIC_NAME 
column of the SQL_TRIGGERS dictionary table.

4. The user defining a trigger must have the privilege necessary for the execution of 
the trigger SQL statement. Whether the user defining a trigger has the requisite 
privilege is checked when the trigger is defined and executed.

5. If WITH PROGRAM is omitted, a trigger cannot be defined if there is a function or 
a procedure that uses the table for which the trigger is being defined and needs to 
modify the SQL object, and there is an SQL object for which a trigger is in effect.

6. When specifying an SQL compile option in ALTER TRIGGER or ALTER ROUTINE, 
make sure that any SQL statements created by incorporating the SQL compile 
option into the source CREATE TRIGGER statement of the trigger that is 
regenerating the SQL object do not exceed the maximum allowable length for 
SQL statements.

7. If the SQL object being executed becomes nullified, CREATE TRIGGER cannot be 
executed from within a Java procedure.

Rules on executing a trigger-inducing SQL statement
1. A trigger occurs only on a specified trigger event (UPDATE or DELETE statement); 

it does not occur on a PURGE TABLE statement, the database load utility, the 
database reorganization facility, or on re-initialization of the RDAREA.

2. The sequence in which a trigger is executed is shown as follows:



CREATE TRIGGER (Define a trigger)

728

3. If multiple triggers having the same trigger action time, trigger event, and trigger 
action unit (by statement or by row) are defined, the trigger actions are executed 
in the order they are defined (in the order of the values of the CREATE_TIME 
columns in the SQL_TRIGGERS table).

4. If an error occurs during execution of a trigger, the affected transaction is nullified 
(a rollback is triggered implicitly). If, during the execution of a trigger-inducing 
SQL statement, an error occurs after a trigger is executed once, the affected 
transaction is nullified irrespective of whether the trigger is being executed or 
whether the transaction is to be nullified. However, a rollback does not occur for 
a table for which WITHOUT ROLLBACK is specified, after completion of row 
updating (including additions and deletions). For details, see the rules applicable 
to WITHOUT ROLLBACK in CREATE TABLE (Define table) in this chapter.

5. The user executing the trigger-inducing SQL statement need not have the 
privilege necessary for execution of the trigger SQL statement.

6. Other triggers can also be executed upon encountering an SQL statement in the 
trigger SQL statement (in nesting of triggers). Only 16 levels of triggers can be 
nested. If a 16th level trigger causes an operation that sets off other triggers, an 
error may occur.

7. A row-by-row trigger for which UPDATE is specified in trigger-event is executed 
only once relative to the row to be updated. Even when triggers are started by 
nesting, and the same trigger is started as an extension of the nesting, the 
row-by-row trigger is executed only once, the first time.

8. Any of the following items cannot be specified on a table for which the UPDATE 
trigger is defined:



CREATE TRIGGER (Define a trigger)

729

• An update using a component specification on a table for which an UPDATE 
trigger specifying a new-values correlation name is defined.

• An update of the BLOB type using a concatenation operation or the BINARY 
type with a definition length of 32,001 bytes or greater, for a table for which 
the UPDATE trigger is defined

9. When referencing a table that is updated by a trigger operation or its extension in 
an SQL subquery that causes a row-unit AFTER trigger, make sure that the 
subquery does not include an external reference.

Notes
1. CREATE TRIGGER cannot be specified from an X/Open compliant UAP running 

under OLTP.
2. When you specify an update SQL statement (UPDATE, DELETE, or INSERT 

statement) in a trigger SQL statement, the following SQL errors can occur during 
the execution of the specified update SQL statement:

• The table specified in the update SQL statement is included in the SQL 
statement that executes the FOR EACH ROW trigger specifying the update SQL 
statement.

• The table specified in the update SQL statement is included in the FOR EACH 
ROW trigger definition (including the nesting of multiple trigger definitions) 
that executes the FOR EACH ROW trigger definition specifying the update SQL 
statement.

In this case, either specify index key-value-non-locking in system definitions or 
change the trigger definition.

3. Specifying an update SQL statement in a trigger SQL statement can affect the 
retrieval of the SQL during the execution of the specified update SQL statement. 
To avoid any impact on the retrieval of the SQL statement being executed, search 
conditions and data need to be modified so that the update SQL statement does 
not match the retrieval conditions for the SQL statement being executed. Special 
care should be exercised if trigger definitions are nested.

4. If a function, a procedure, or an SQL object for which a trigger is in effect is 
nullified through the specification of WITH PROGRAM, any rows related to the 
nullified function, procedure, or trigger are deleted from the 
SQL_ROUTINE_RESOURCES dictionary table.

5. Before executing the function, procedure, or trigger SQL object that was nullified 
through the specification of WITH PROGRAM, you need to recreate the nullified 
function, procedure, and trigger SQL object by executing ALTER ROUTINE, 
ALTER PROCEDURE, or ALTER TRIGGER.

6. The data guarantee level of the trigger SQL statement in the trigger, the SQL 



CREATE TRIGGER (Define a trigger)

730

optimization option, the SQL extension optimizing option, and the maximum 
character length are determined by what is specified when the trigger is being 
defined or modified, and are not affected by the system definition or client 
environment variable definition that is in effect when the trigger action is 
executed.

7. The trigger action is also executed if the operation specified in trigger-event is 
executed on the view table for which the table specified in ON 
[authorization-identifier.]table-identifier is the base table.

8. If the trigger SQL object is not in effect and any of the following SQL statements 
is executed by using the table defining that trigger, an error occurs irrespective of 
whether the trigger action condition is true or false. Similarly, if the index for the 
trigger SQL object is not in effect and any of the following SQL statements is 
executed by using the table that defined the trigger, an error occurs if the trigger 
action condition is true:

• If trigger-event is INSERT, an INSERT statement that inserts rows into the 
table defining the trigger

• If trigger-event is UPDATE, an UPDATE statement that updates rows in the 
table defining the trigger

• If trigger-event is DELETE, a DELETE statement that deletes rows from the 
table defining the trigger

9. Nested triggers can degrade performance; to the maximum possible extent, 
nesting of triggers should be avoided.

10. When creating nested triggers, creating triggers from the leading trigger can result 
in an error during the creation of nested triggers. A WITH PROGRAM specification 
can create nested triggers, but in this case the first trigger is in a nullified state. 
Therefore, when creating nested triggers, create them in sequence beginning with 
the trigger that is at the end of the nesting levels.

Examples
The CREATE TRIGGER example uses an inventory history table (HSTOCK), a Glasgow 
inventory table, and a Edinburgh inventory table in addition to an inventory table 
(STOCK). The Glasgow and Edinburgh inventory tables have the same organization as 
the inventory table. The inventory history table is organized as follows:

1. After a row is inserted into the inventory table (STOCK), define a trigger 



CREATE TRIGGER (Define a trigger)

731

(INSERTTRIG1) that inserts information on the inserted row into the inventory 
history table (HSTOCK):
CREATE TRIGGER INSERTTRIG1
  AFTER INSERT ON STOCK
  REFERENCING NEW ROW X1
  FOR EACH ROW
  INSERT INTO HSTOCK
    VALUES(X1.PCODE,NULL,X1.SQTY,
           CURRENT_DATE,CURRENT_TIME)

2. After the quantity (SQTY) is updated in the inventory table (STOCK), define a 
trigger (INSERTTRIG2) that inserts pre- and post-update values into the inventory 
history table (HSTOCK):
CREATE TRIGGER INSERTTRIG2
  AFTER UPDATE OF SQTY ON STOCK
  REFERENCING NEW ROW X1 OLD ROW Y1
  FOR EACH ROW
  INSERT INTO HSTOCK
    VALUES(Y1.PCODE,Y1.SQTY,X1.SQTY,
           CURRENT_DATE,CURRENT_TIME)

3. After a row is deleted from the inventory table (STOCK), define a trigger 
(INSERTTRIG3) that inserts information on the deleted row into the inventory 
history table (HSTOCK):
CREATE TRIGGER INSERTTRIG3
  AFTER DELETE ON STOCK
  REFERENCING OLD ROW Y1
  FOR EACH ROW
  INSERT INTO HSTOCK
    VALUES(Y1.PCODE,Y1.SQTY,NULL,
    CURRENT_DATE,CURRENT_TIME)

4. Use a routine control SQL (a compound statement) in trigger-action. After the 
inventory table (STOCK) is updated, define a trigger (UPDATELOCAL) that puts the 
update into effect in the Glasgow and Edinburgh inventory tables. If a compound 
statement is not used, two triggers that are set off upon the updating of the 
inventory table must be defined.
CREATE TRIGGER UPDATELOCAL
  AFTER UPDATE OF SQTY ON STOCK
  REFERENCING NEW ROW X1 OLD ROW Y1
  BEGIN
    UPDATE glasgow-inventory-table SET SQTY=X1.SQTY
      WHERE PCODE=Y1.PCODE;
    UPDATE edinburgh-inventory-table SET SQTY=X1.SQTY
      WHERE PCODE=Y1.PCODE;
  END



CREATE TRIGGER (Define a trigger)

732

5. Use a routine control SQL (an assignment statement) in trigger-action. Define a 
trigger (SETPRICE) that assigns the following amount to the row to be inserted 
into the inventory table (STOCK): an amount equal to the unit price (PRICE) to be 
inserted plus 50.00 dollars if the product code (PCODE) is 101M, 201M, or an 
amount equal to the unit price to be inserted multiplied by 1.2 if the (PCODE) is 
not 101M, 201M, or 301M:
CREATE TRIGGER SETPRICE
  BEFORE INSERT ON STOCK
  REFERENCING NEW ROW AS X1
  FOR EACH ROW
  SET X1.PRICE=CASE X1.PCODE
      WHEN '101M' THEN X1.PRICE + 50
      WHEN '201M' THEN X1.PRICE + 50
      WHEN '301M' THEN X1.PRICE + 50
      ELSE X1.PRICE * 1.2
    END

6. Use an SQL diagnostic statement (SIGNAL statement) in trigger-action. Define a 
trigger (SIGNALTRIG) that suppresses the deletion of rows from the inventory 
table before rows in the inventory table (STOCK) are deleted:
CREATE TRIGGER SIGNALTRIG
  BEFORE DELETE ON STOCK
  SIGNAL SQLSTATE '99001'



CREATE TYPE (Define type)

733

CREATE TYPE (Define type)

Function
CREATE TYPE defines an abstract data type.

Privileges
Owner of a schema
A user can define abstract data types that will be owned by that user.

Format
CREATE TYPE [authorization-identifier.] data-type-identifier
             [subtype-clause]
             [default-constructor-option]
             [member-list]
subtype-clause::=UNDER [authorization-identifier.] data-type-identifier
default-constructor-option::=CONSTRUCTOR {PRIVATE|PROTECTED|PUBLIC}
 
member-list::=(member[,member]...)
   member::={attribute-definition|routine-declaration}
      attribute-definition::=[encapsulation-level]
                           attribute-name data-type [NO SPLIT]
      encapsulation-level::= {PRIVATE|PROTECTED|PUBLIC}
      routine-declaration::=[encapsulation-level] routine-body
      routine-body::={function-body|procedure-body}

Operands
[authorization-identifier.] data-type-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the abstract data type that is 
being defined.

data-type-identifier
Specifies a name for the abstract data type being defined.
subtype-clause::=UNDER [authorization-identifier.] data-type-identifier

A subtype clause is specified when what is being defined is a subtype that will inherit 
a specified abstract data type. The subtype clause is used to specify the authorization 
identifier and data type identifier of the abstract data type that will become the 
super-type for the abstract data type being defined.
Specifying a subtype clause causes all the attributes and routines defined in the 



CREATE TYPE (Define type)

734

super-type to be inherited by the abstract data type that is being defined.
authorization-identifier.

Specifies the authorization identifier of the owner of the super-type abstract data 
type.
If the authorization identifier is omitted, the default authorization identifier does 
not have an abstract data type of the same name, and an abstract data type of the 
same name exists in the 'MASTER' authorization identifier, that abstract data type 
is assumed to have been specified.

data-type-identifier
Specifies the super-type abstract data type.
default-constructor-option::=CONSTRUCTOR {PRIVATE|PROTECTED|PUBLIC}

Specifies the encapsulation level for the default constructor function. The default is 
PRIVATE.
For the default constructor function, a function that has the same name as the defined 
abstract data type is defined. The default constructor function takes no arguments. This 
function returns values of an abstract data type in which null values are set for the 
attributes of the abstract data type.
PRIVATE

Specifies that the default constructor function of the abstract data type can be used 
only in this abstract data type definition statement.

PROTECTED
Specifies that the abstract data type is partially encapsulated, which means that 
the default constructor function of the abstract data type can be used only in the 
abstract data type being defined and in subtype definitions for that abstract data 
type.

PUBLIC
Specifies that the default constructor function of the abstract data type can be used 
regardless of the inheritance.
attribute-definition ::= [encapsulation-level] attribute-name data-type [NO 
SPLIT]

Specifies an attribute that makes up the abstract data type.
encapsulation-level

Specifies one of three encapsulation levels. The encapsulation level can be 
specified for routines that code operations on attributes and abstract data types. 
The default is the encapsulation level that is next higher than the encapsulation 



CREATE TYPE (Define type)

735

level in the definition part. If no encapsulation level is specified at the first level, 
PUBLIC is assumed as the default.
PRIVATE

This option encapsulates the specified attribute, in which case the attribute 
can be used only in the definition of the abstract data type.

PROTECTED
This option partially encapsulates the specified attribute, in which case the 
attribute can be used only in the definition of the abstract data type and in the 
definition of all subtypes of that abstract data type.

PUBLIC
This option allows the specified attribute to be used regardless of any 
inheritance relationships that may be in effect.

attribute-name
Specifies the name of the attribute of the abstract data type.

data-type
Specifies the data type of the attribute of the abstract data type.
If the specified data type is an abstract data type, no authorization identifier is 
specified, and the default authorization identifier does not have an abstract data 
type of the same name, and if there is an abstract data type of the same name in 
the 'MASTER' authorization identifier, that abstract data type is assumed to have 
been specified.

NO SPLIT
When the actual data length of a variable-length character string is at least 256 
bytes, specifies that each row is to be stored on a single page.
In some cases, the NO SPLIT option reduces the database storage space 
requirements. This option is called the no-split option; for details, see the HiRDB 
Version 8 Installation and Design Guide.
The no-split option is applicable only to the variable-length character string types 
(VARCHAR, NVARCHAR, and MVARCHAR).
routine-declaration::=[encapsulation-level] routine-body
routine-body::={function-body | procedure-body}

The routine declaration is where the routine in which data manipulations are specified 
is written. The same encapsulation levels as for attribute definition are applicable to 
routine declarations.
The routine body is where either the function or the procedure to be used is written (for 



CREATE TYPE (Define type)

736

details of functions and procedures, see the CREATE FUNCTION and CREATE 
PROCEDURE statements).

Common rules
1. When an authorization identifier is specified in a routine, it must be the 

authorization identifier of the user who executes the routine.
2. The procedure in a CALL statement or the function call function specified in the 

function body or procedure body must be one of the following:
• A function or procedure that was already defined outside of the CREATE 

TYPE statement
• A function or procedure that was already defined in a routine declaration 

prior to declaration of this routine
3. The attribute name of each abstract data type must be unique among all abstract 

data types that have an interconnected inheritance relationship.
4. The maximum permissible number of generations for inherited subtypes is 

30,000.
5. Abstract data types that are defined in a CREATE TYPE statement must satisfy the 

following formula; Table 3-40 shows the lengths of attributes (data lengths):

Table 3-40: Data lengths

Category Data type Date length 
(bytes)

Numeric data INTEGER (4-byte binary integer) 4

SMALLINT (2-byte binary integer) 2

[LARGE] DECIMAL [m, n]* (packed decimal floating-point 
number)

m/2  + 1

FLOAT (8-byte floating point number) 8

SMALLFLT (4-byte floating point number) 4

Character data CHARACTER [n] (n-byte fixed-length character string) n

VARCHAR [n] (n-byte variable-length character string) 35



CREATE TYPE (Define type)

737

m, n: Positive integers.
p: Integer 0, 2, 4, or 6
* This is a fixed-point number with a total of m digits and n decimal places. If m 
is omitted, the default that is assumed is 15.

6. When the SQL compile option is specified in an ALTER PROCEDURE or ALTER 
ROUTINE statement, the length of the SQL statement that is created by 
incorporating the SQL compile option into the source CREATE PROCEDURE 
statement of the routine being recreated must not exceed the maximum 
permissible length for SQL statements.

7. CREATE TYPE cannot be executed from within a Java procedure if the execution 
results in invalidation of the SQL object being executed.

Notes
1. The CREATE TYPE statement cannot be specified from an X/Open-compliant 

UAP running under OLTP.
2. When defining an abstract data type, if there is an SQL object for which functions, 

procedures, and triggers are in effect that use an abstract data type (all subtypes 
of the highest-level data type) that has the same inheritance relationship as that 
abstract data type, that SQL object is nullified. If the authorization identifier 
MASTER contains the same abstract data type as the abstract data type being 

National character data NCHAR [n] (n-character fixed-length national character string) 2n

NVARCHAR [n] (n-character variable-length national character 
string)

35

Mixed character data MCHAR [n] (n-byte fixed-length mixed character string) n

MVARCHAR [n] (n-byte variable-length mixed character string) 35

Date data DATE (date) 4

Date interval data INTEVAL YEAR TO DAY (date interval) 5

Time data TIME (time) 3

Time interval data INTERVAL HOUR TO SECOND (time interval) 4

Time stamp data TIMESTAMP[p] (fractional second with p digits) (time stamp) 7 + p/2

Large object data BLOB (binary string in n bytes) 35

Abstract data User-defined data type defined in CREATE TYPE 35

Category Data type Date length 
(bytes)



CREATE TYPE (Define type)

738

defined, of the SQL objects for which functions, procedures, and triggers are in 
effect that use the data type with the authorization identifier MASTER, the SQL 
object of the owner of the abstract data type being defined is nullified.

3. When defining a function by specifying a function body, if there is an SQL object 
for which functions, procedures, and triggers are in effect that use a function that 
has the same owner, the same routine identifier, and the same number of SQL 
parameters as the function being defined, that SQL object is nullified.

4. If an SQL object for which functions, procedures, and triggers are in effect is 
nullified, any rows of nullified functions, procedures, and triggers in the 
SQL_ROUTINE_RESOURCES dictionary table are deleted.

5. Before executing the SQL object for nullified functions, procedures, and triggers, 
you need to execute ALTER ROUTINE, ALTER PROCEDURE, or ALTER TRIGGER 
to recreate the SQL object for the functions, procedures, and triggers.

6. The subtype of an abstract data type that is provided by the developer of a plug-in 
cannot be defined by inheriting an abstract data type that is registered in the 
system through use of the pdplgrgst command.



CREATE USER MAPPING (Define user mapping)

739

CREATE USER MAPPING (Define user mapping)

Function
When accessing a foreign database using a foreign database user ID and a password 
that are different from the authorization identifier and the password used for the 
execution of an SQL statement in HiRDB, defines a mapping of authorization 
identifiers and passwords.

Privileges
Users with the DBA privilege

These users can define user mapping for any user.

Format

Operands
FOR PUBLIC

Defines user mapping for all authorized identifiers that are registered in HiRDB. The 
user mapping is also effective for authorization identifiers that are added after the 
execution of CREATE USER MAPPING.

foreign-server-name
Specifies the name of the foreign server that is accessed by converting the 
authorization identifier and the password.

OPTIONS (option-name 'option-value' [, option-name 'option-value']...)
Specify any of the following options; each option can be specified only once:
USER 'user-ID'

Specifies the user ID of the foreign database that is used for access to a foreign 
database.
The operand user-ID can be specified in a maximum of 30 bytes. This is a 
required option.

PASSWD 'password'
Specifies the password for the foreign database to be used for access to a foreign 

 
 CREATE USER MAPPING
   FOR PUBLIC
   SERVER foreign-server-name
   OPTIONS (option-name 'option-value' [, option-name 'option-value']...)
 



CREATE USER MAPPING (Define user mapping)

740

database.
The operand password can be specified in a maximum of 30 bytes. The default is 
for HiRDB to connect to the foreign database without a password. For details 
about how to establish a connection to a foreign database without a password, see 
the respective DBMS manuals.

Common rules
1. If access is made to a foreign server for which user mapping is not defined, a 

runtime error may occur. When defining a foreign server using CREATE SERVER, 
be sure to define user mapping at the same time.

2. If user mapping is defined, any access to a foreign database, specified in 
foreign-server-name, is performed using the user ID and the password that are 
specified in OPTIONS.

3. Executing CREATE USER MAPPING for a second time on a foreign server for 
which user mapping is previously defined may result in a runtime error.

Notes
1. To change a user mapping definition, first delete the user mapping by using DROP 

USER MAPPING, and then define it by using CREATE USER MAPPING.
2. CREATE USER MAPPING cannot be specified from an X/Open compliant UAP 

running under OLTP.



CREATE VIEW (Define view)

741

CREATE VIEW (Define view)

Function
CREATE VIEW defines a view table.
It can also define view tables (public views) that can be used by any user, using the 
same table identifier not qualified with an authorization identifier.

(1) CREATE VIEW (Define view)
Privileges

Users who can use derived query expressions
These users can specify available derived query expressions and define their own 
view tables.
The following users are permitted to use derived query expressions (for details of 
derived query expressions, see 2.2 Query expressions; for details of the privilege 
for specifying a query in a derived query expression, see the privileges topic in 
2.3 Query specification).

• Owner of a base table, foreign table, or view table
• User with the SELECT privilege on base tables, foreign tables, or view tables

If a user defines a view table by receiving the SELECT privilege for tables owned 
by another user, only the receiving user, not the user who granted the SELECT 
privilege, can perform view definitions from that view table. If the directory 
server linkage facility is used, view tables cannot be defined even when using the 
SELECT privilege that is granted to a role.

Format
CREATE [READ ONLY] VIEW [authorization-identifier.] table-identifier
      [(column-name [,column-name]...)]
  AS derived-query-expression
 
 derived-query-expression::= query-expression-body
 query-expression-body :: = {query-specification
          |(query-expression-body)
          |query-expression-body {UNION | EXCEPT}[ALL]
           {query-specification|(query-expression-body)}}
 

Operands
[READ ONLY]



CREATE VIEW (Define view)

742

Specifies that the view table being defined is to be a read-only table.
[authorization-identifier.] table-identifier [(column-name [, column-name]...)]

authorization-identifier
Specifies the authorization identifier of the user who is to own the view table 
being defined.

table-identifier
Specifies a name for the view table being defined.
This name must not already be specified for a table (base table, foreign table, or 
view table) owned by the user specified as the owner of the view table being 
defined.

column-name
Specifies a name for a column that is to comprise the view table.
If no column name is specified, the default column names are as explained below:

• If no set operation is specified in the derived query expression, the column 
names of the columns for the derived table specified in the query 
specification (when AS column-name is specified, the column names 
specified in the AS clause) will be the column names of the columns that 
constitute the view table.

• When a set operation is specified in the derived query expression, the column 
names of the columns for the derived table specified in the first query 
specification (when AS column-name is specified, the column names 
specified in the AS clause) of the derived query expression will be the column 
names of the columns that constitute the view table.

A column name must be specified if the derived table specified in the derived 
query expression contains either multiple columns with the same name or 
unnamed columns.
The following rules apply to the column names:
1. When the column in the derived table is a column derived from one of the 

following items, and when the specification of AS column-name is omitted, 
the column becomes a nameless column:

 Scalar operation
 Function call
 Set functions
 Literals
 USER



CREATE VIEW (Define view)

743

 CURRENT_DATA
 CURRENT_TIME
 CURRENT_TIMESTAMP[(p)]

2. Each column name must be unique. The number of column names specified 
should be the same as the number of columns in the derived table obtained 
as a result of the derived query expression.

3. The maximum number of column names that can be specified is 30,000.
derived-query-expression

Specifies a derived query expression that expresses the contents of the definition of a 
view table (for details of search conditions, see the following sections in this manual: 
2.2 Query expressions, 2.3 Query specification, 2.5 Table expressions, and 2.7 Search 
conditions).
The following rules apply to the derived query expression:
1. [table-specification.] ROW cannot be specified in a selection expression in a 

derived query expression for a view definition.
2. A subscripted repetition column in a directly contained SELECT clause cannot be 

specified in a derived query expression for a view definition.
3. Even though * or table.* is specified in a SELECT clause that is directly 

contained in a derived query expression, columns that are added to the base table 
for a view table after definition of the view table will not be added to the view 
table.

4. Base tables, foreign tables, and view tables can be specified in a derived query 
expression for a view definition. Similarly, a new table based on a view table can 
be defined.

5. Embedded variables and the ? parameter cannot be specified in a search condition 
in a derived query expression for a view definition.

6. Plug-in functions and component specifications cannot be specified in a derived 
query expression in a view definition.

7. Value expressions containing any of the following data types cannot be specified 
in a derived query expression in a view definition:

 BOOLEAN
 Abstract data type

8. A table alias, a table belonging to another RD-node, or a view table belonging to 
another RD-node cannot be specified in a derived query expression in a view 
definition.



CREATE VIEW (Define view)

744

Common rules
1. A view table can be a read-only view table or a writable view table. Operations 

such as inserting, updating, and deleting rows, or specifying the FOR UPDATE 
clause in a cursor declaration, cannot be performed on a read-only view table.
The following view tables are read-only:

• View tables that are defined by specifying READ ONLY in a view definition 
statement

• View tables that include a table join, SELECT DISTINCT, a GROUP BY clause, 
a HAVING clause, or a set function with respect to the outermost query 
specification in a view definition statement.

• View tables that are defined by specifying the same column in the base table 
more than once in a SELECT clause in a view definition statement.

• View tables that include a value expression other than a column specification 
in the SELECT clause in the outermost query specification in a view 
definition statement

• Of the view tables defined before Version 07-02, a view table that contains a 
subquery that specifies in the FROM clause the same table as the FROM clause 
in the outermost query specification in a view definition statement (if the 
table specified in the FROM clause is a view table, includes tables that are a 
base for the view table).
Note: To make the view table an updatable table, delete the view table, and 
then redefine it.

• A view table that is defined by specifying a derived table in the FROM clause 
in the outermost query specification in a view definition statement.

• A view table defined by specifying a set operation in a view definition 
statement.

All other view tables (those that are not read-only) are writable view tables.
2. The table that is specified in the derived query expression for a view definition 

serves as the base table that comprises the view table. The table that is specified 
in a FROM clause in the derived query expression for a view definition is the base 
table from which the view table is derived.

3. The table that is specified in a FROM clause contained in the outermost query in a 
derived query expression for a view definition is the base table that is subject to 
operations on that view table.
The owner of an updatable view table directly inherits the following access 
privileges with respect to the base table subject to operations on the view table:

• SELECT privilege



CREATE VIEW (Define view)

745

• INSERT privilege
• DELETE privilege
• UPDATE privilege

The owner of a read-only view table inherits only the INSERT privilege with 
respect to the base table that is subject to operations on the view table.
The owner of a view table that is defined from tables owned by that user can grant 
and revoke the same access privileges for other users.

4. Rows that are added or updated using a view table need not satisfy the search 
conditions specified in the derived query expression during definition of the view 
table. However, rows that do not satisfy the search conditions specified in the 
derived query expression during definition of the view table cannot be searched, 
updated, or deleted by using the view table.

5. The attributes (data type, data length, any NOT NULL constraints that may be in 
effect, and maximum number of elements) of columns comprising a view table 
will be the same as the attributes of the corresponding columns in the derived 
table specified in the derived query expression for the view definition.

6. The table that is the base table for a view table must be defined before the view 
definition can be executed.

7. View definition statements cannot be specified from an X/Open compliant UAP 
running under OLTP.

8. A column in a view table, defined in terms of a date, time, or time stamp literal 
represented in a character string, or a date interval or time interval literal 
represented in a decimal number, are treated in terms of the data type for that 
column, even when the column is specified in a location where date, time, time 
stamp, date interval, or time interval data is required; it is not converted into the 
respective required data type, except when such a column is specified as an 
argument in the scalar function DATE, TIME, or TIMESTAMP.
Example:
 
  UPDATE T1 SET C1=(SELECT VC2 FROM V1 WHERE VC1='E')
  ... Cannot be specified.
 

(C1 is a column of date data type, VC2 is a column of VARCHAR(10) defined in 
terms of a literal that is represented in a date character string)

9. A subscripted repetition column in a directly contained SELECT clause cannot be 
specified in the derived query expression for a view definition.

10. If a CASE expression is specified in a selection expression in the outermost query 
specification, a repetition column cannot be specified in the CASE expression in a 



CREATE VIEW (Define view)

746

derived query expression for a view definition.
11. Any of the following items cannot be specified in a selection expression in a 

derived query expression in a view definition:
• WRITE specification
• GET_JAVA_STORED_ROUTINE_SOURCE specification
• SUBSTR scalar function that produces results of the BLOB data type
• Function calls that produce results of the BLOB data type
• Window function

12. Scalar operations, literals, function calls, and scalar subqueries of the following 
attributes cannot be specified in a selection expression in the outermost query in 
the view definition, or in a query selection expression that is subject to set 
operations:

• BLOB
• BINARY with a maximum length of 32,001 bytes or greater

13. If a view table defined by specifying function call is operated, user-defined 
functions that are candidates for function call are solely user-defined functions 
that were defined before the view table was defined.

14. If the platform is moved from a 32-bit mode HiRDB to a 64-bit mode HiRDB 
using the SQL object migration utility, view tables meeting all of the following 
conditions may produce different search results before and after migration:
(1) Defining the view table by specifying a user-defined function in a derived 
query expression in the view definition
(2) After defining a view table in (1), defining a user-defined function that can be 
a calling candidate for the user-defined function specified in the derived query 
expression in (1)
(3) The user-defined function defined in (2) has higher calling priority than the 
user-defined function specified in the derived query expression in (1)
After performing steps (1) to (3) above, use the SQL object migration utility to 
move from 32-bit mode HiRDB to 64-bit mode HiRDB.
For rules on the determination of which user-defined function is called, see (6) 
Rules for determining the function to be called and the data type of the result in 
2.20 Function calls.

Examples
1. From a stock table (STOCK), define a view table (VSTOCK1) composed of the 

product code (PCODE), quantity in stock (SQTY), and unit price (PRICE) columns 



CREATE VIEW (Define view)

747

for the rows containing socks in the product name (PNAME) column; assume that 
the columns are sorted on product code, quantity in stock, and unit price:
CREATE VIEW VSTOCK1
   AS SELECT PCODE,SQTY,PRICE
         FROM STOCK
         WHERE PNAME=N'socks'

2. Define a read-only view table (VSTOCK2) with the same organization as the 
STOCK stock table:
CREATE READ ONLY VIEW VSTOCK2
   AS SELECT * FROM STOCK

(2) CREATE PUBLIC VIEW (Define public view)
Privileges

Owner of a base table

The owner of a base table can define a public view owned by him or her from his 
or her own base table.

Owner of a foreign table

The owner of a foreign table can define a public view owned by him or her from 
his or her own foreign table.

Owner of a view table

The owner of a view table can define a public view owned by him or her from a 
view table based on his or her own base table and foreign table.

Format

Operands
For an explanation of the operands other than PUBLIC and table-identifier, see (1) 
CREATE VIEW.

PUBLIC

 
 CREATE PUBLIC[READ ONLY] VIEW table-identifier
     [(column-name[, column-name]...)]
  AS derived-query-expression
 
 derived-query-expression::= query-expression-body
 query-expression-body::= {query-expression
           | (query-expression-body)
           | query-expression-body {UNION|EXCEPT} [ALL]
            {query-expression | (query-expression-body)}}
 



CREATE VIEW (Define view)

748

Specify this operand when defining a view table as a public view.
When a view table is defined as a public view, a single view table can be used by more 
than one user by specifying a table identifier, without the need to define view tables of 
identical contents for different users.

table-identifier
Specifies the name of the public view to be defined.
In table-identifier, a name identical to a previously defined public view cannot be 
specified.

Common rules
1. As the name of a public view being defined, the same table identifier as that for a 

previously defined table (base table, foreign table, or view table) can be specified. 
However, if a table identifier is used by omitting an authorization identifier, the 
tables (base tables, foreign tables, or view tables) owned by the user who is 
executing the UAP take precedence over the public view. When qualifying a 
public view, in authorization-identifier, specify the word PUBLIC in upper case 
characters enclosed in double quotation marks (").

2. The other rules are the same as the common rules given in (1) CREATE VIEW.

Notes
1. In columns (such as the TABLE_SCHEMA column in the SQL_TABLES table) that 

store the owner of a dictionary table, the word PUBLIC is assigned. The 
authorization identifier used to define the public view is stored in the 
TABLE_CREATOR column in the SQL_TABLES table.

2. If a definition SQL statement specifying a table (base table, foreign table, or view 
table) with the same name as the public view being used is issued while 
preprocessing on an SQL statement using the public view is in effect, the 
definition SQL statement goes into a lock release wait state.

3. After defining a procedure and a trigger using a public view, if a table (base table, 
foreign table, or view table) having the same name as the public view is defined, 
the procedure and the trigger are not disabled, and they operate as the procedure 
and trigger that use the public view. However, if the procedure and trigger are 
recreated (including the case in which a procedure with a nullified index is 
internally created by HiRDB), they operate as the procedure and trigger that use 
the table (base table, foreign table, or view table) having the same name as the 
public view.

4. Public views can be deleted using DROP PUBLIC VIEW.

Examples
1. From an inventory table (STOCK) define a public view comprised of a row for 



CREATE VIEW (Define view)

749

which the product name (PNAME) is socks, and columns of product code 
(PCODE), quantity in stock (SQTY), and unit price (PRICE), such that the columns 
are sorted by product code, quantity in stock, and unit price:
 
  CREATE PUBLIC VIEW PVSTOCK1
      AS SELECT PCODE,SQTY,PRICE
      FROM STOCK
      WHERE PNAME = N'socks'



DROP ALIAS (Delete alias)

750

DROP ALIAS (Delete alias)

Function
DROP ALIAS deletes a table alias that was created to permit access to tables that exist 
in other RD nodes.

Privileges
Owners of the table alias

This owner can delete his or her own table alias.
Users with DBA privilege

These owners can delete table aliases belonging to other users.

Format
DROP ALIAS [authorization-identifier.] table-alias

Operands
[authorization-identifier.] table-alias

authorization-identifier
Specifies the authorization identifier of the user who owns the table alias being 
deleted. The default is the authorization identifier of the user who is executing the 
DROP ALIAS function.

table-alias
Specifies the table alias to be deleted.

Common rules
1. Deleting an alias of a table does not cause the table itself to be deleted.
2. Deleting the schema for a table alias does not delete the table alias.
3. Deleting the table for which an alias is defined does not delete the table alias.
4. Revoking the schema privilege of the owner of a table alias does not delete the 

table alias.

Notes
1. The DROP ALIAS statement cannot be specified from an X/Open-compliant UAP 

running under OLTP.

Example
Delete table alias ALS1 defined on a table with RD node name NOD1, authorization 



DROP ALIAS (Delete alias)

751

identifier USR1, and table identifier TBL1:
DROP ALIAS



DROP AUDIT (Delete an audit target event)

752

DROP AUDIT (Delete an audit target event)

Function
Deletes definitions that match the target audit event defined in CREATE AUDIT from 
the targets of auditing.

Privileges
Users with the audit privilege

These users can execute DROP AUDIT definition statements.

Format

Details about items

No. Format

1 DROP AUDIT
   [AUDITTYPE {PRIVILEGE | EVENT | ANY}]

2    FOR operation-type

9    [selection-option]

3    [WHENEVER {SUCCESSFUL | UNSUCCESSFUL | ANY}]

No. Format

2 operation-type::= ANY
              | SESSION [{session-type |ANY}]
              | PRIVILEGE [{privilege-operation-type | ANY}]
              | DEFINITION [{object-definition-event-type | ANY}]
              | ACCESS  [{object-operation-event-type | ANY}]
              | UTILITY     [{utility-event-type | ANY}]



DROP AUDIT (Delete an audit target event)

753

Operands
For details about each item, see CREATE AUDIT (Define the target audit event) in this 
chapter.
1) AUDITTYPE {PRIVILEGE | EVENT | ANY}

Specifies the audit trail to be deleted.
2) FOR operation-type

Specifies the operation type to be deleted from the audit object.
3) WHENEVER {SUCCESSFUL | UNSUCCESSFUL | ANY}

Deletes the WHENEVER clause specification specified in CREATE AUDIT from 

9 selection-option::=ON object-name

  object-name::=
       {ALIAS authorization-identifier.table-alias
      |FOREIGN INDEX authorization-identifier.index-identifier
      |FOREIGN TABLE authorization-identifier.table-identifier
      |FUNCTION authorization-identifier.routine-identifier
      |INDEX authorization-identifier.index-identifier
      |LIST authorization-identifier.table-identifier
      |PROCEDURE authorization-identifier.routine-identifier
      |RDAREA RDAREA-name
      |SCHEMA authorization-identifier
      |SERVER foreign-server-definition-owner.foreign-server-name
      |TABLE [authorization-identifier.]table-identifier
      |TRIGGER authorization-identifier.trigger-identifier
      |TYPE authorization-identifier.data-type-identifier
      |USER MAPPING SERVER foreign-server-name
      |VIEW authorization-identifier.table-identifier}

4 session-type::=
  {CONNECT | AUTHORIZATION}

5 privilege-operation-type::=
  {GRANT | REVOKE}

6 object-definition-event-type::=
  {CREATE | DROP | ALTER}

7 object-operation-event-type::=
  {SELECT | INSERT | UPDATE | DELETE | PURGE | ASSIGN | CALL |LOCK}

8 utility-event-type::=
  {PDLOAD | PDRORG | PDEXP | PDCONSTCK}

No. Format



DROP AUDIT (Delete an audit target event)

754

audit-object.
4) session-type

Specifies the connection to HiRDB to be deleted from the audit object, or a 
change in users being connected.

5) privilege-operation-type
Specifies the privilege operations on HiRDB to be deleted from the object of the 
audit.

6) object-definition-event-type
Specifies the object definition operations on HiRDB to be deleted from the object 
of the audit.

7) object-operation-event-type
Specifies the object operations on HiRDB to be deleted from the object of the 
audit.

8) utility-event-type
Specifies the utility event on HiRDB to be deleted from the object of the audit.

9) selection-option
Specifies a selection option to be deleted from the audit object.

Rules
1. For the security audit facility, see the HiRDB Version 8 System Operation Guide.
2. Recording actual audit trails requires either the specification of the system 

definition pd_audit operand or the execution of the pdaudbegin command.

3. An audit trail from the execution of CREATE AUDIT or DROP AUDIT is always 
recorded, provided that the security audit facility is enabled.

4. DROP AUDIT can be executed by the same specification as the combination of 
AUDITTYPE, FOR <operation-type>, WHENEVER statements that were specified in 
CREATE AUDIT.
Example:

For deleting CREATE AUDIT AUDITTYPE EVENT FOR SESSION, simply 
specify DROP AUDIT AUDITTYPE EVENT FOR SESSION.

5. DROP AUDIT cannot be used in such a way as to only delete a part of a defined 
audit target range from the audit object. If such a specification is attempted, the 
system generates the KFPA11909-E message.
Example 1:



DROP AUDIT (Delete an audit target event)

755

If all audit events are defined as audit objects in CREATE AUDIT FOR ANY, 
DROP AUDIT FOR ACCESS cannot be executed by specifying SELECT 
because SELECT as it applies to a table is deleted from the audit object.
To delete SELECT as it applies to a table from the audit object, define a 
required audit object other than SELECT for a table, and then execute DROP 
AUDIT FOR ANY.

Example 2:
If all audit events during a privilege check are defined as audit objects in 
CREATE AUDIT AUDITTYPE PRIVILEGE FOR ANY, the task cannot be 
executed by specifying DROP AUDIT AUDITTYPE PRIVILEGE because the 
PRIVILEGE in AUDITTYPE is deleted from the audit object.

Notes
1. DROP AUDIT cannot be specified from an X/Open-compliant UAP running under 

OLTP.

Examples
1. Delete the target of the audit defined in CREATE AUDIT FOR ANY.

 
DROP AUDIT FOR ANY
 

2. Delete the target of the audit defined in CREATE AUDIT FOR SESSION.
 
DROP AUDIT FOR SESSION CONNECT
 

3. Delete the target of the audit defined in CREATE AUDIT FOR PRIVILEGE.
 
DROP AUDIT FOR PRIVILEGE GRANT
 

4. Delete the target of the audit defined in CREATE AUDIT FOR DEFINITION.
 
DROP AUDIT FOR DEFINITION CREATE WHENEVER ANY
 

5. Delete the target of the audit defined in CREATE AUDIT FOR ACCESS.
 
DROP AUDIT FOR ACCESS INSERT
 

6. Delete the target of the audit defined in CREATE AUDIT AUDITTYPE ANY FOR 
ANY.
 



DROP AUDIT (Delete an audit target event)

756

DROP AUDIT AUDITTYPE ANY FOR ANY
 

7. Delete the target of the audit defined in CREATE AUDIT AUDITTYPE 
PRIVILEGE FOR ANY.
 
DROP AUDIT AUDITTYPE PRIVILEGE FOR ANY
 

8. Delete the target of the audit defined in CREATE AUDIT AUDITTYPE EVENT 
FOR ANY ON TABLE "USER1"."T1".
 
  DROP AUDIT AUDITTYPE EVENT FOR ANY ON TABLE "USER1"."T1"
 



DROP CONNECTION SECURITY (Delete the connection security facility)

757

DROP CONNECTION SECURITY (Delete the connection security 
facility)

Function
Deletes security items related to the connection security facility.

Privileges
User with DBA privileges

Users with DBA privileges can execute DROP CONNECTION SECURITY 
definition statements.

Format

Operands
security-object::= {CONNECT | PASSWORD}

In security-object, CONNECT and PASSWORD can each be specified only once.
CONNECT

Specify this operand when deleting settings related to a consecutive certification 
failure limit.

PASSWORD
Specify this operand when deleting settings related to password character limit 
enhancement.

Notes
1. If settings related to the consecutive certification failure limit are deleted, all users 

are released from the consecutive certification failure account lock state (the null 
value is assigned to the consecutive certification failure account lock date and 
time, and to the permitted number of consecutive certification failures in 
SQL_USERS).

2. If settings related to the password character limit are deleted, all users are released 
from the password-invalid account lock state (the null value is assigned to the 
password-invalid account lock date and time of SQL_USERS).

3. An undefined security object cannot be specified.

 
 DROP CONNECTION SECURITY FOR security-object [, security-object]
 
 security-object::={CONNECT|PASSWORD}



DROP CONNECTION SECURITY (Delete the connection security facility)

758

4. An error may occur if an attempt is made to delete both CONNECT and PASSWORD 
when either CONNECT or PASSWORD, but not both, is defined. Any defined items 
that are specified as objects of deletion are not deleted.

5. If the directory server linkage facility is used after the connection security facility 
is defined, the connection security facility becomes disabled; however, items 
related to the connection security facility can be deleted.

Examples
1. Delete settings related to password character limit enhancement.

 
DROP CONNECTION SECURITY FOR PASSWORD
 



DROP DATA TYPE (Delete user-defined data type)

759

DROP DATA TYPE (Delete user-defined data type)

Function
DROP DATA TYPE deletes an abstract data type.

Privileges
Owners of abstract data types
A user can delete an abstract data type owned by that user.
Users with the DBA privilege
These users can delete abstract data types owned by other users.

Format
DROP DATA TYPE [authorization-identifier.] data-type-identifier
        [WITH PROGRAM]

Operands
[authorization-identifier.] data-type-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the data type that is to be 
deleted.

data-type-identifier
Specifies the identifier of the data type that is to be deleted.
WITH PROGRAM

When deleting an abstract data type, this option is specified to nullify an SQL object 
for which any of the following functions, procedures, and triggers are in effect:

• An SQL object for which functions, procedures, and triggers are in effect that use 
an abstract data type (all subtypes of the highest-level data type) that has the same 
inheritance relationship as the abstract data type to be deleted

• An SQL object for which functions, procedures, and triggers are in effect that use 
the same functions and procedures as those defined in the abstract data type to be 
deleted

• An SQL object for which functions, procedures, and triggers are in effect that use 
a function having the same owner, routine identifier, or number of parameters as 
the function that was defined in the abstract data type to be deleted

If WITH PROGRAM is omitted and if there is an SQL object for which any of the 



DROP DATA TYPE (Delete user-defined data type)

760

following functions, procedures, and triggers are in affect, the abstract data type cannot 
be deleted:

• An SQL object for which functions, procedures, and triggers are in effect that use 
an abstract data type that has the same inheritance relationship as the abstract data 
type to be deleted

• An SQL object for which functions, procedures, and triggers are in effect that use 
the functions and procedures that were defined in the abstract data type to be 
deleted

• An SQL object for which functions, procedures, and triggers are in effect that use 
a function having the same owner, routine identifier, and number of parameters as 
the function defined in the abstract data type to be deleted

Common rules
1. The specified abstract data type is not deleted if there are base tables, indexes, 

abstract data types, routines in an abstract data type, routines, and triggers that use 
the specified abstract data type.

2. Even when WITH PROGRAM is specified, if a function defined in the abstract data 
type definition is used in a view definition, that abstract data type cannot be 
deleted.

3. DROP DATA TYPE cannot be executed from within a Java procedure if the deletion 
results in invalidation of the SQL object being executed.

Notes
1. The DROP DATA TYPE statement cannot be specified from an X/Open-compliant 

UAP running under OLTP.
2. If the specified abstract data type contains an abstract data type function, its 

plug-in information will also be deleted.
3. If an SQL object for which functions, procedures, or triggers are in effect is 

nullified by specifying WITH PROGRAM, any rows associated with the nullified 
functions, procedures, or triggers in the SQL_ROUTINE_RESOURCES dictionary 
table are deleted.

4. Before executing the SQL object associated with the function, procedure, or 
trigger that was nullified by specifying WITH PROGRAM, you need to recreate the 
function, procedure, or trigger by executing ALTER ROUTINE, ALTER 
PROCEDURE, or ALTER TRIGGER.

5. Before executing the SQL object associated with the trigger that was nullified by 
specifying WITH PROGRAM, you need to execute either ALTER TRIGGER or ALTER 
ROUTINE to recreate the trigger SQL object. However, to execute an SQL object 
associated with a trigger that was using the function and procedure that were 



DROP DATA TYPE (Delete user-defined data type)

761

defined in the deleted abstract data type definition, you need to perform either of 
the following operations:

• Redefine the abstract data type and execute either ALTER TRIGGER or ALTER 
ROUTINE to recreate the trigger SQL object.

• Delete the nullified trigger by using DROP TRIGGER, and then redefine the 
trigger by using CREATE TRIGGER so that the deleted functions and 
procedures are not reused in the deleted abstract data type definition. If 
triggers satisfying all of the following conditions exist, use DROP TRIGGER 
to delete them all, and redefine the triggers using CREATE TRIGGER in the 
order in which they were defined, so that there is no change in the sequence 
of execution of trigger actions.
Conditions:

 The defined trigger is later than the nullified trigger.
 The nullified trigger is the same as the defined table.
 The nullified trigger is the same as the trigger event (INSERT, UPDATE, or 

DELETE) (for UPDATE, the nullified trigger is considered to be the same as 
the trigger event regardless of whether a trigger event column is specified or 
the contents of the specification).

 The nullified trigger has the same trigger action timing (BEFORE or 
AFTER) as the trigger event.

 The nullified trigger has the same trigger action units (units of rows or 
statements) as the trigger event.

Example
Delete the SGML type defined by the user with authorization identifier USER1:
DROP DATA TYPE USER1.SGML



DROP FOREIGN INDEX (Delete a foreign index)

762

DROP FOREIGN INDEX (Delete a foreign index)

Function
Deletes the definition of a foreign index without deleting indexes on the foreign server 
side.

Privileges
Owner of a foreign index

This user can delete the definition of his or her own index.
Users with the DBA privilege

These users can delete the definitions of foreign indexes owned by other users.

Format

Operands
[authorization-identifier.]index-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the foreign index to be 
deleted. The default is the authorization identifier of the user who is issuing DROP 
FOREIGN INDEX.

index-identifier
Specifies the name of the foreign index to be deleted.

Notes
1. DROP FOREIGN INDEX cannot delete indexes on the foreign server side.
2. DROP FOREIGN INDEX cannot be specified from an X/Open compliant UAP 

running under OLTP.

 
 DROP FOREIGN INDEX [authorization-identifier.]index-identifier
 



DROP FOREIGN TABLE (Delete a foreign table)

763

DROP FOREIGN TABLE (Delete a foreign table)

Function
Deletes the definition of a foreign table without deleting tables on the foreign server 
side.

Privileges
Owner of a foreign table

This user can delete the definitions of his or her own foreign tables.
Users with the DBA privilege

These users can delete the definitions of foreign tables owned by other users.

Format

Operands
[authorization-identifier.]table-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the foreign table to be 
deleted. The default is the authorization identifier of the user issuing DROP 
FOREIGN TABLE.

table-identifier
Specifies the name of the foreign table to be deleted.
WITH PROGRAM

When deleting a foreign table, specify this operand to disable functions that use the 
foreign table in an SQL procedure statement or a valid SQL object in the procedure.
If WITH PROGRAM is omitted, and if there is a function that uses the foreign table or an 
SQL object with a valid procedure, the foreign table cannot be deleted.

Common rules
1. Deleting a foreign table also deletes any foreign index, view tables (including 

public views), comments, and access privileges defined for the foreign table.
2. If the SQL object being executed becomes nullified, DROP FOREIGN TABLE 

cannot be executed from a Java procedure.

 
 DROP FOREIGN TABLE [authorization-identifier.]table-identifier [WITH PROGRAM]
 



DROP FOREIGN TABLE (Delete a foreign table)

764

Notes
1. DROP FOREIGN TABLE cannot delete tables on the foreign server side.
2. DROP FOREIGN TABLE cannot be specified from an X/Open compliant UAP 

running under OLTP.
3. If a function, or an SQL object with a valid procedure is disabled by specifying 

WITH PROGRAM, information in the dictionary table SQL_ROUTINE_RESOURCES 
on any disabled functions and procedures is deleted.

4. To execute the function or procedure that was disabled by specifying WITH 
PROGRAM, it is necessary to recreate the function or the SQL object for the 
procedure by executing either ALTER ROUTINE or ALTER PROCEDURE.



DROP FUNCTION (Delete function)

765

DROP FUNCTION (Delete function)

Function
DROP FUNCTION deletes a function.

Privileges
Owner of a function
The owner of a function can delete that function.
Users with the DBA privilege
These users can delete functions that are owned by other users.

Format
DROP FUNCTION [authorization-identifier.] routine-identifier
              ([data-type [,data-type]...])
        [WITH PROGRAM]

Operands
[authorization-identifier.] routine-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the function that is to be 
deleted.

routine-identifier
Specifies the name of the function that is to be deleted.
data-type

Specifies the data type that was specified in the parameter for the function that is to be 
deleted.

WITH PROGRAM
When deleting a function, this option is specified to nullify an SQL object for which 
any of the following functions, procedures, and triggers are in affect:

• SQL objects for which functions, procedures, and triggers are in effect that use 
the function being deleted

• SQL objects for which functions, procedures, and triggers are in effect that use a 
function that has the same owner, routine identifier, and number of parameters as 
the function being deleted

If WITH PROGRAM is omitted, and if there is an SQL object for which any of the 



DROP FUNCTION (Delete function)

766

following functions, procedures, and triggers are in effect, that function cannot be 
deleted:

• SQL objects for which functions, procedures, and triggers are in effect that use 
the function being deleted

• SQL objects for which functions, procedures, and triggers are in effect that use a 
function that has the same owner, routine identifier, and number of parameters as 
the function being deleted

Common rules
1. DROP FUNCTION cannot be executed from within a Java procedure if the deletion 

results in invalidation of the SQL object being executed.
2. A function that is defined in an abstract data type cannot be deleted.
3. If there are multiple functions with the same name, specify the data type 

parameters so that the functions to be deleted can be identified uniquely.
4. If there are view tables (including public views) that use a specified function, the 

function cannot be deleted.

Notes
1. DROP FUNCTION cannot be specified from an X/Open-compliant UAP running 

under OLTP.
2. If an SQL object for which functions, procedures, or triggers are in effect is 

nullified by specifying WITH PROGRAM, any rows associated with the nullified 
functions, procedures, or triggers in the SQL_ROUTINE_RESOURCES dictionary 
table are deleted.

3. Before executing the SQL object associated with the function, procedure, or 
trigger that was nullified by specifying WITH PROGRAM, you need to recreate the 
function, procedure, or trigger by executing ALTER ROUTINE, ALTER 
PROCEDURE, or ALTER TRIGGER.

4. To execute the SQL object associated with the trigger that was nullified by 
specifying WITH PROGRAM, you need to perform either of the following 
operations; however, if the trigger was using a function having the same owner, 
routine identifier, and number of parameters as the function that was deleted, you 
can recreate the trigger SQL object by executing either ALTER TRIGGER or 
ALTER ROUTINE:

• Redefine the function, and recreate the trigger SQL object by executing 
either ALTER TRIGGER or ALTER ROUTINE.

• Delete the nullified trigger by using DROP TRIGGER, and then redefine the 
trigger by using CREATE TRIGGER so that the deleted functions are not 
reused. If triggers satisfying all of the following conditions exist, use DROP 



DROP FUNCTION (Delete function)

767

TRIGGER to delete them all, and redefine the triggers using CREATE 
TRIGGER in the order in which they were defined so that there is no change 
in the sequence of execution of trigger actions:
Conditions:

 The defined trigger is later than the nullified trigger.
 The nullified trigger is the same as the defined table.
 The nullified trigger is the same as the trigger event (INSERT, UPDATE, or 

DELETE) (for UPDATE, the nullified trigger is considered to be the same as 
the trigger event regardless of whether a trigger event column is specified or 
the contents of the specification).

 The nullified trigger has the same trigger action timing (BEFORE or 
AFTER) as the trigger event.

 The nullified trigger has the same trigger action units (units of rows or 
statements) as the trigger event.

5. If the function that was being used in the trigger action conditions was deleted by 
specifying WITH PROGRAM, an error occurs, not only during the execution of the 
SQL object associated with the nullified trigger, but also during the preprocessing 
of the SQL statement that induces the trigger.



DROP INDEX (Delete index)

768

DROP INDEX (Delete index)

Function
DROP INDEX deletes an index.

Privileges
Owner of the index
The owner of an index can delete that index.
Users with the DBA privilege
A user with the DBA privilege can delete indexes owned by other users.

Format
DROP INDEX [authorization-identifier.] index-identifier [WITH PROGRAM]

Operands
[authorization-identifier.] index-name [WITH PROGRAM]

authorization-identifier
Specifies the authorization identifier of the user who owns the index.
When this operand is omitted, the authorization identifier of the user who is 
executing the command is assumed.

index-identifier
Specifies the name of the index to be deleted.

WITH PROGRAM
Specifies that when the index is deleted, the SQL objects for active procedures 
and triggers that use the index are to be made inactivate.
When WITH PROGRAM is omitted, the index cannot be deleted if a procedure and 
triggers that uses the index is still active in an SQL object.

Common rules
1. DROP INDEX cannot be executed from within a Java procedure if the deletion 

results in invalidation of the SQL object being executed.
2. If the index to be deleted, the table from which the index is to be deleted, the index 

defined for the table, and columns of the abstract data type containing LOB 
columns and LOB attributes that are defined for the table are stored in an 
RDAREA to which the inner replica facility is applied, the index can be deleted, 
provided that certain conditions are met. For details about DROP INDEX execution 



DROP INDEX (Delete index)

769

conditions under a condition in which the inner replica facility is used, see the 
manual HiRDB Staticizer Option Version 7.

Notes
1. The DROP INDEX statement cannot be specified from an X/Open-compliant UAP 

running under OLTP.
2. If an SQL object for which procedures or triggers are in effect is nullified by 

specifying WITH PROGRAM, any information associated with the nullified 
procedures or triggers in the SQL_ROUTINE_RESOURCES dictionary table is 
deleted.

3. Before executing the SQL object associated with the procedures and triggers that 
were nullified by specifying WITH PROGRAM, you need to recreate the SQL object 
associated with the procedures and triggers by executing ALTER ROUTINE, 
ALTER PROCEDURE, or ALTER TRIGGER.

4. Regardless or whether or not WITH PROGRAM is specified, if there are procedures 
and triggers (exclusive of triggers that are defined for the table) associated with 
the table for which the index to be deleted is defined, any index information in the 
SQL object is nullified, in which case the triggers can no longer be executed. 
Because the procedure cannot be executed from another procedure or trigger, you 
need to recreate the SQL object.

Example
Delete the index (IDX1) defined for the product code (PCODE) column of a stock table 
(STOCK):
DROP INDEX IDX1



DROP PROCEDURE (Delete procedure)

770

DROP PROCEDURE (Delete procedure)

Function
DROP PROCEDURE deletes a procedure.

Privileges
Owner of the procedure
This user can delete his or her own procedures.
Users with the DBA privilege
These users can delete procedures belonging to other users.

Format
DROP PROCEDURE [authorization-identifier.] routine-identifier
         [WITH PROGRAM]

Operands
[authorization-identifier.] routine-identifier

authorization-identifier
Specifies the authorization identifier of the user who owns the procedure being 
deleted.
When this operand is omitted, the authorization identifier of the user who is 
executing the command is assumed.

routine-identifier
Specifies the routine name of the procedure being deleted.
WITH PROGRAM

When deleting a procedure, this option is specified if there is an SQL object for which 
functions, procedures, and triggers are in effect that use the procedure.
If WITH PROGRAM is omitted, and if there is an SQL object associated with functions, 
procedures, and triggers that use the function, the function cannot be deleted.

Common rules
1. If there is an SQL routine, or a routine or a trigger in the abstract data type that 

calls a specified procedure, the procedure is not deleted.
2. Procedures defined in an abstract data type cannot be deleted.
3. In the following cases, DROP PROCEDURE cannot be executed from within a Java 



DROP PROCEDURE (Delete procedure)

771

procedure:
• The SQL object being executed will be invalidated or deleted.
• The Java procedure being executed will be deleted.

Notes
1. The DROP PROCEDURE statement cannot be specified from an X/Open-compliant 

UAP running under OLTP.
2. If an SQL object for which functions, procedures, or triggers are in effect is 

nullified by specifying WITH PROGRAM, any rows associated with the nullified 
functions, procedures, or triggers in the SQL_ROUTINE_RESOURCES dictionary 
table are deleted.

3. Before executing the SQL object associated with the function, procedure, or 
trigger that was nullified by specifying WITH PROGRAM, you need to recreate the 
function, procedure, or trigger by executing ALTER ROUTINE, ALTER 
PROCEDURE, or ALTER TRIGGER.

4. To execute the SQL object associated with the trigger that was nullified by 
specifying WITH PROGRAM, you need to perform either of the following 
operations:

• Redefine the procedure, and execute either ALTER TRIGGER or ALTER 
ROUTINE to recreate the SQL object.

• Delete the nullified trigger by using DROP TRIGGER, and then redefine the 
trigger by using CREATE TRIGGER so that the deleted procedures are not 
reused. If triggers satisfying all of the following conditions exist, use DROP 
TRIGGER to delete them all, and redefine the triggers using CREATE 
TRIGGER in the order in which they were defined so that there is no change 
in the sequence of execution of trigger actions:
Conditions:

 The defined trigger is later than the nullified trigger.
 The nullified trigger is the same as the defined table.
 The nullified trigger is the same as the trigger event (INSERT, UPDATE, or 

DELETE) (for UPDATE, the nullified trigger is considered to be the same as 
the trigger event regardless of whether a trigger event column is specified or 
the contents of the specification).

 The nullified trigger has the same trigger action timing (BEFORE or 
AFTER) as the trigger event.

 The nullified trigger has the same trigger action units (units of rows or 
statements) as the trigger event.



DROP PROCEDURE (Delete procedure)

772

5. The identifier specified in the trigger action procedure cannot be specified in 
routine-identifier. To delete the trigger, you need to execute DROP TRIGGER.



DROP SCHEMA (Delete schema)

773

DROP SCHEMA (Delete schema)

Function
DROP SCHEMA deletes a schema defined in a schema definition.

Privileges
Owner of the schema
The owner of a schema can delete that schema.
Users with the DBA privilege
A user with the DBA privilege can delete schemas owned by other users.

Format
DROP SCHEMA authorization-identifier [WITH PROGRAM]

Operands
authorization-identifier [WITH PROGRAM]

authorization-identifier
Specifies the authorization identifier of the user who owns the schema.

WITH PROGRAM
When deleting a schema, this option is specified to nullify any of the following: 
base tables in the specified schema, view tables, foreign tables, indexes, foreign 
indexes, abstract data types, routines, and SQL objects of other uses for which 
functions, procedures, and triggers that use a trigger are in effect.
If WITH PROGRAM is omitted, and if there are base tables in the schema, view 
tables, foreign tables, indexes, foreign indexes, abstract data types, procedures, 
and SQL objects of other uses for which functions, procedures, and triggers that 
use a trigger are in effect, the schema cannot be deleted.

Common rules
1. The following items are deleted: all base tables in the schema of a specified 

authorization identifier, view tables (including public views), foreign tables, 
indexes, foreign indexes, comments, access privileges, routines, triggers, abstract 
data types, and index types.

2. Even if WITH PROGRAM is specified, the schema cannot be deleted if there are 
abstract data types in the specified schema, and SQL object of other users for 
which functions, procedures, and triggers are in effect that use functions, 
procedures, or triggers.



DROP SCHEMA (Delete schema)

774

3. If there are other users' view tables or public views that use a function in a 
specified schema, the schema cannot be deleted.

4. The schema cannot be deleted if there is a table or index of another user that uses 
the abstract data type in the schema.

5. In the following cases, DROP SCHEMA cannot be executed from within a Java 
procedure:

• The SQL object being executed will be invalidated or deleted.
• The Java procedure being executed will be deleted.

6. If tables in the specified schema, indexes, and columns of the abstract data type 
containing LOB columns and LOB attributes that are defined for the table are 
stored in an RDAREA to which the inner replica facility is applied, the schema 
can be deleted, provided that certain conditions are met. For details about 
execution conditions for DROP SCHEMA under a condition in which the inner 
replica facility is used, see the manual HiRDB Staticizer Option Version 7.

7. If a specified schema contains a falsification-prevented table and the 
falsification-prevented table contains rows, that schema cannot be deleted.

8. Users with the DBA privilege can delete schemas belonging to an auditor. 
However, if there is an audit trail table in the schema belonging to an auditor, the 
schema owned by the auditor cannot be deleted.

Notes
1. The DROP SCHEMA statement cannot be specified from an X/Open-compliant 

UAP running under OLTP.
2. If an SQL object for which functions, procedures, or triggers are in effect is 

nullified by specifying WITH PROGRAM, any information associated with the 
nullified functions, procedures, or triggers in the SQL_ROUTINE_RESOURCES 
dictionary table is deleted.

3. Before executing the SQL object associated with the function, procedure, or 
trigger that was nullified by specifying WITH PROGRAM, you need to recreate the 
function, procedure, or trigger by executing ALTER ROUTINE, ALTER 
PROCEDURE, or ALTER TRIGGER.

Example
Delete the schema owned by the user whose authorization identifier is USER1:
DROP SCHEMA
    AUTHORIZATION USER1



DROP SERVER (Delete a foreign server)

775

DROP SERVER (Delete a foreign server)

Function
Deletes the definition of a foreign server.

Privileges
Owner of a foreign server definition

This user can delete the definition of his or her own foreign servers.
Users with the DBA privilege

These users can delete the definitions of foreign servers owned by other users.

Format

Operands
foreign-server-name
Specifies the name of the foreign server to be deleted.
deletion-action::=RESTRICT
RESTRICT

If either a foreign table or user mapping is defined in a foreign server 
definition, the foreign server definition cannot be deleted.

Common rule
1. If a foreign server or user mapping is defined on the foreign server, DROP SERVER 

cannot be executed.

Note
1. DROP SERVER cannot be specified from an X/Open compliant UAP running under 

OLTP.

 
 DROP SERVER foreign-server-name-deletion-action
 deletion-action::=RESTRICT
 



DROP TABLE (Delete table)

776

DROP TABLE (Delete table)

Function
DROP TABLE deletes a table.

Privileges
Owner of the table
The owner of a table can delete that table.
Users with the DBA privilege
A user with the DBA privilege can delete tables owned by other users.

Format
DROP TABLE [authorization-identifier.] table-identifier [WITH PROGRAM]

Operands
[authorization-identifier.] table-identifier [WITH PROGRAM]

authorization-identifier
Specifies the authorization identifier of the user who owns the table.
When this operand is omitted, the authorization identifier of the user who is 
executing the command is assumed.

table-identifier
Specifies the name of the table to be deleted.

WITH PROGRAM
Specify this operand when deleting a table and when disabling any function that 
uses the table in an SQL procedure statement, a procedure, or an SQL object with 
a trigger that is in effect.
If WITH PROGRAM is omitted, the table cannot be deleted if there is a function, a 
procedure, or an SQL object with an effective trigger that uses the table (exclusive 
of triggers for performing a referential constraint operation that are internally 
defined for the referenced table referenced by the table being deleted).
If a referencing table is deleted, any of the functions, procedures, and SQL objects 
with a trigger that is in effect shown in the following table are disabled:



DROP TABLE (Delete table)

777

Table 3-41: Disabled objects

Common rules
1. Deleting a table also causes any indexes, view tables (including public views), 

comments, access privileges, and triggers defined for the table to be deleted.
If a referencing table is deleted, any triggers for performing referential constraint 
operations internally defined on the referenced table, are also deleted.

2. DROP TABLE cannot be executed from within a Java procedure if the deletion 
results in invalidation of the SQL object being executed.

3. If tables, indexes defined for a table, and columns of the abstract data type 
containing LOB columns and LOB attributes that are defined for a table are stored 
in an RDAREA to which the inner replica facility is applied, such items can be 
deleted, provided that certain conditions are met. For details about execution 
conditions for DROP TABLE under a condition in which the inner replica facility 
is used, see the manual HiRDB Staticizer Option Version 7.

4. If the frozen update specification is specified for a LOB column defined for a 
table or for an RDAREA that stores columns of the LOB attribute, that table 
cannot be deleted.

5. If a specified table is a falsification-prevented table and the 
falsification-prevented table contains rows, that table cannot be deleted.

6. Users with the DBA privilege can delete tables owned by other users, but not 
audit trail tables owned by an auditor.

7. Referenced tables that are referenced by a foreign key cannot be deleted.

Notes
1. The DROP TABLE statement cannot be specified from an X/Open-compliant UAP 

running under OLTP.
2. If an SQL object for which functions, procedures, or triggers are in effect is 

nullified by specifying WITH PROGRAM, any information associated with the 
nullified functions, procedures, or triggers in the SQL_ROUTINE_RESOURCES 

Version in 
which the object 

was created

Description of object

Object type Nullifying condition

07-00 or later Function, procedure, or trigger 
object

The object contains either an UPDATE or DELETE 
statement that uses a referenced table referenced by the 
referencing table.

Before 07-00 The object contains an SQL statement that uses a 
referenced table referenced by the referencing table.



DROP TABLE (Delete table)

778

dictionary table is deleted.
3. Before executing the SQL object associated with the function, procedure, or 

trigger that was nullified by specifying WITH PROGRAM, you need to recreate the 
function, procedure, or trigger by executing ALTER ROUTINE, ALTER 
PROCEDURE, or ALTER TRIGGER.

4. To execute the SQL object associated with the trigger that was nullified by 
specifying WITH PROGRAM, you need to perform either of the following 
operations:

• Redefine the table, and recreate the trigger SQL object by executing either 
ALTER TRIGGER or ALTER ROUTINE.

• Delete the nullified trigger by using DROP TRIGGER, and then redefine the 
trigger by using CREATE TRIGGER so that the deleted tables are not reused. 
If triggers satisfying all of the following conditions exist, use DROP TRIGGER 
to delete them all, and redefine the triggers using CREATE TRIGGER in the 
order in which they were defined so that there is no change in the sequence 
of execution of trigger actions:
Conditions:

 The defined trigger is later than the nullified trigger.
 The nullified trigger is the same as the defined table.
 The nullified trigger is the same as the trigger event (INSERT, UPDATE, or 

DELETE) (for UPDATE, the nullified trigger is considered to be the same as 
the trigger event regardless of whether a trigger event column is specified or 
the contents of the specification).

 The nullified trigger has the same trigger action timing (BEFORE or 
AFTER) as the trigger event.

 The nullified trigger has the same trigger action units (units of rows or 
statements) as the trigger event.

Example
Delete a stock table (STOCK):
DROP TABLE STOCK



DROP TRIGGER (Delete a trigger)

779

DROP TRIGGER (Delete a trigger)

Function
Deletes a trigger.

Privileges
Owner of a trigger

This user can delete his or her own triggers.
Users with the DBA privilege

These users can delete their own triggers and triggers owned by other users.

Format

Operands
[authorization-identifier.]trigger-identifier[WITH PROGRAM]

authorization-identifier
Specifies the authorization identifier of the owner of the trigger to be deleted.
The default is the authorization identifier of the user issuing DROP TRIGGER.

trigger-identifier
Specifies the name of the trigger to be deleted.

WITH PROGRAM
When deleting a trigger, this option is specified to nullify an SQL object for which 
functions, procedures, and triggers that use the trigger are in effect.
If WITH PROGRAM is omitted, and if there is an SQL object for which functions, 
procedures, and triggers that use a trigger are in effect, the trigger cannot be 
deleted.

Common rule
1. DROP TRIGGER cannot be executed from within a Java procedure if the following 

conditions are met:
• The SQL object being executed is nullified or deleted.
• The Java procedure being executed is deleted.

 
 DROP TRIGGER [authorization-identifier.]trigger-identifier[WITH PROGRAM]
 



DROP TRIGGER (Delete a trigger)

780

Notes
1. DROP TABLE cannot be specified from an X/Open compliant UAP running under 

OLTP.
2. If an SQL object for which functions, procedures, or triggers are in effect is 

nullified by specifying WITH PROGRAM, any information associated with the 
nullified functions, procedures, or triggers in the SQL_ROUTINE_RESOURCES 
dictionary table is deleted.

3. Before executing the SQL object associated with the function, procedure, or 
trigger that was nullified by specifying WITH PROGRAM, you need to recreate the 
function, procedure, or trigger by executing ALTER ROUTINE, ALTER 
PROCEDURE, or ALTER TRIGGER.

Example
Delete the trigger (TRIG1).
DROP TRIGGER TRIG1



DROP USER MAPPING (Delete user mapping)

781

DROP USER MAPPING (Delete user mapping)

Function
Deletes user mapping.

Privileges
Users with the DBA privilege

These users can delete user mappings.

Format

Operands
foreign-server-name
Specifies the name of the foreign server that was specified when the user mapping 
was defined.

Note
1. DROP USER MAPPING cannot be specified from an X/Open compliant UAP 

running under OLTP.

 
 DROP USER MAPPING
   FOR PUBLIC
   SERVER foreign-server-name
 



DROP VIEW (Delete view table)

782

DROP VIEW (Delete view table)

Function
DROP VIEW deletes a view table.
This command also deletes view tables (public views) that can be used by any user by 
means of the same table identifier without being qualified with an authorization 
identifier.

(1) DROP VIEW (Delete view table)
Privileges

Owner of the view table
The owner of a view table can delete that view table.
Users with the DBA privilege
Users with the DBA privilege can delete view tables owned by other users.

Format
DROP VIEW [authorization-identifier.] table-identifier [WITH PROGRAM]

Operands
[authorization-identifier.] table-identifier [WITH PROGRAM]

authorization-identifier
Specifies the authorization identifier of the user who owns the view table.
When this operand is omitted, the authorization identifier of the user who is 
executing the command is assumed.

table-identifier
Specifies the name of the view table to be deleted.

WITH PROGRAM
When deleting a view table, this operand is specified to nullify the SQL object for 
which functions, procedures, and triggers that use the view table are in effect.
If WITH PROGRAM is omitted, and if there is an SQL object for which functions, 
procedures, and triggers that use a view table are in effect, that view table cannot 
be deleted.

Common rules
1. DROP VIEW deletes the access privileges for the view table as well as any view 



DROP VIEW (Delete view table)

783

tables that are defined from the view table that is to be deleted.
2. DROP VIEW cannot be executed from within a Java procedure if the deletion 

results in invalidation of the SQL object being executed.

Notes
1. The DROP VIEW statement cannot be specified from an X/Open-compliant UAP 

running under OLTP.
2. If an SQL object for which functions, procedures, or triggers are in effect is 

nullified by specifying WITH PROGRAM, any information associated with the 
nullified functions, procedures, or triggers in the SQL_ROUTINE_RESOURCES 
dictionary table is deleted.

3. Before executing the SQL object associated with the function, procedure, or 
trigger that was nullified by specifying WITH PROGRAM, you need to recreate the 
function, procedure, or trigger by executing ALTER ROUTINE, ALTER 
PROCEDURE, or ALTER TRIGGER.

4. To execute the SQL object for the trigger that was nullified by specifying WITH 
PROGRAM, you need to perform one of the following operations:

• Redefine the view table, and recreate the trigger SQL object by executing 
either ALTER TRIGGER or ALTER ROUTINE.

• Delete the nullified trigger by using DROP TRIGGER and then redefine the 
trigger by using CREATE TRIGGER so that the deleted view table is not used. 
However, if there are triggers that satisfy all of the following conditions, they 
should all be deleted by using DROP TRIGGER and redefined by using 
CREATE TRIGGER in the order in which they were defined so that the order 
in which trigger actions are executed does not change:

Conditions:
 The defined trigger is later than the nullified trigger.
 The nullified trigger is the same as the defined table.
 The nullified trigger is the same as the trigger event (INSERT, UPDATE, or 

DELETE) (for UPDATE, the nullified trigger is considered to be the same as 
the trigger event regardless of whether a trigger event column is specified or 
the contents of the specification).

 The nullified trigger has the same trigger action timing (BEFORE or 
AFTER) as the trigger event.

 The nullified trigger has the same trigger action units (units of rows or 
statements) as the trigger event.



DROP VIEW (Delete view table)

784

Example
Delete view table VSTOCK1 defined from stock table STOCK:
DROP VIEW VSTOCK1

(2) DROP PUBLIC VIEW (Delete public view)
Privileges

Owner (definer) of a specified public view

A user can delete any public view that he or she owns (defines).
User with DBA privileges

These users can delete public views owned by other users.

Format

Operands
For details about operands other than PUBLIC or table-identifier, see (1) DROP VIEW.

PUBLIC
Specify this operand when deleting a public view.

table-identifier
Specifies the name of the public view to be deleted.

Common rules
1. See the Common Rules in (1) DROP VIEW.

Notes
1. See the Notes in (1) DROP VIEW.

Example
Delete the public view (PVSTOCK1) defined for an inventory table (STOCK).
 
DROP PUBLIC VIEW PVSTOCK1
 

 
 DROP PUBLIC VIEW table-identifier [WITH PROGRAM]
 



GRANT Format 1 (Grant privileges)

785

GRANT Format 1 (Grant privileges)

Function
GRANT grants to users the DBA, schema definition, CONNECT, and private user 
RDAREA usage privileges (see subsection (1) below); it also grants access privileges 
to users (see subsection (2) below).
The access privilege is granted to roles under the Sun Java System Directory Server 
linkage facility.

(1) GRANT DBA (grant DBA privilege), GRANT SCHEMA (grant schema 
definition privilege), GRANT CONNECT (grant CONNECT privilege), and 
GRANT RDAREA (grant RDAREA usage privilege)
Privileges

Users with the DBA privilege
A user with the DBA privilege can grant the DBA, schema definition, CONNECT, and 
private user RDAREA usage privileges.
Users with the CONNECT privilege
A user with the CONNECT privilege can change passwords.

Format
GRANT {DBA TO authorization-identifier[, authorization-identifier]...
         [IDENTIFIED BY password [, password]...]
       |SCHEMA TO authorization-identifier[, authorization-identifier]...
       |CONNECT TO authorization-identifier[, authorization- identifier]...
          [IDENTIFIED BY password[, password]...]
       |RDAREA RDAREA-name [RDAREA-name]...
           TO {authorization-identifier [, 
authorization-identifier]...|PUBLIC}}

Operands
DBA TO authorization-identifier [, authorization-identifier]...
[IDENTIFIED BY password [, password]...]

DBA TO
Specifies that the DBA privilege is to be granted to one or more users.

authorization-identifier [, authorization-identifier]...
Specifies the authorization identifiers of the users to whom the DBA privilege is to 
be granted.



GRANT Format 1 (Grant privileges)

786

IDENTIFIED BY password [, password]...
Specifies passwords for the users to whom the DBA privilege is to be granted.
Table 3-42 shows the relationship between the IDENTIFIED BY clause and the 
user privilege.
Table 3-42: Relationship between the IDENTIFIED BY clause of the GRANT 
DBA statement and the user privilege

SCHEMA TO authorization-identifier [, authorization-identifier]...
SCHEMA TO

Specifies that the schema definition privilege is to be granted to one or more 
users.

authorization-identifier [, authorization-identifier]...
Specifies the authorization identifiers of the users to whom the schema definition 
privilege is to be granted.
CONNECT TO authorization-identifier [, authorization-identifier]...
[IDENTIFIED BY password [, password]...]

CONNECT TO
Specifies that the CONNECT privilege is to be granted to one or more users.

authorization-identifier [, authorization-identifier]...
Specifies the authorization identifiers of the users to whom the CONNECT 
privilege is to be granted.

IDENTIFIED BY password [, password]...
Specifies passwords for the users to whom the CONNECT privilege is to be granted.
Table 3-43 shows the relationship between the IDENTIFIED BY clause and the 
user privilege.

User privilege IDENTIFIED BY clause of GRANT DBA statement

Specified Not specified

Already has 
CONNECT 
privilege

Has password Grants DBA privilege and changes to the 
specified password.

Grants DBA privilege.

No password Grants DBA privilege and changes to the 
specified password.

KFPA11571 error

No CONNECT privilege Grants CONNECT privilege, DBA privilege, and 
the specified password.

KFPA11571 error



GRANT Format 1 (Grant privileges)

787

Table 3-43: Relationship between the IDENTIFIED BY clause of the GRANT 
CONNECT statement and the user privilege

Legend:
: Not applicable.
RDAREA RDAREA-name [RDAREA-name]...
TO {authorization-identifier [, authorization-identifier]...|PUBLIC}

RDAREA RDAREA-name [, RDAREA-name]
Specifies the names of the RDAREAs for which the usage privilege is to be 
granted.

authorization-identifier [, authorization-identifier]...
Specifies the authorization identifiers of the users to whom the RDAREA usage 
privilege is to be granted for the specified RDAREAs.

PUBLIC
Specifies that the specified RDAREAs are to be public user RDAREAs.

Common rules
1. The usage privilege cannot be granted to a replica RDAREA through the use of 

User privilege Password 
character 
restriction 
definition

IDENTIFIED BY clause of GRANT CONNECT 
statement

Specified Not Specified

Already 
has 
CONNECT 
privilege

Has 
password

Has DBA 
privilege

Changes to the specified 
password.

KFPA11571-E error

No DBA 
privilege

No Changes to the specified 
password.

Changes to No password.

Yes Changes to the specified 
password.

KFPA19634-E error

No 
password

No DBA 
privilege

No Changes to the specified 
password.

Changes to No password.

Yes Changes to the specified 
password.

KFPA19634-E error

No CONNECT privilege No Grants CONNECT privilege 
and password.

Grants CONNECT privilege 
only with No password.

Yes Grants CONNECT privilege 
and password.

KFPA19634-E error



GRANT Format 1 (Grant privileges)

788

GRANT RDAREA.
2. For details about a GRANT execution condition when the inner replica facility is in 

use, see the manual HiRDB Staticizer Option Version 7.
3. If the password character limit enhancement facility is used, this command checks 

the password character limit during the execution of the GRANT DBA or GRANT 
CONNECT statement.

Notes
1. A maximum of 16 private user RDAREAs and 1,600 authorization identifiers can 

be specified.
2. The schema definition privilege cannot be granted to users who do not have the 

DBA or CONNECT privilege.
3. The RDAREA usage privilege for public user RDAREAs cannot be granted to 

individual users, nor can RDAREAs granted to individual users be defined as 
public user RDAREAs (PUBLIC cannot be specified for such an RDAREA).

4. The DBA privilege includes the CONNECT privilege.
5. When the DBA privilege is granted to a user, a password must also be specified for 

that user. Even when the DBA privilege is granted, a user who does not have a 
password cannot use the DBA privilege.

6. A user can change a password assigned to that user by specifying the GRANT 
CONNECT option. In this case, the individual who issues the GRANT statement can 
change his or her password solely on the basis of his or her CONNECT privilege.

7. The GRANT statement cannot be specified from an X/Open-compliant UAP 
running under OLTP.

8. When specifying more than one authorization identifier in the GRANT DBA and 
GRANT CONNECT statements and granting privileges to multiple users 
simultaneously, you cannot partially omit the password specified in the 
IDENTIFIED BY clause; either specify passwords in a number equal to the 
number of specified authorization identifiers or omit the entire IDENTIFIED BY 
clause. However, if the entire IDENTIFIED BY clause is omitted in the GRANT 
CONNECT statement, a specification that registers a DBA without a password 
causes an error (see Tables 3-42 and 3-43), nullifying the entire GRANT statement. 
In this case, execute the command by specifying the error-generating user with the 
IDENTIFIED BY clause in another GRANT statement.

9. If, in the use of the password character limit facility, more than one authorization 
identifier is specified in both GRANT DBA and GRANT CONNECT statements, and, 
at the same time, privileges are granted to multiple users, and if even a single user 
makes a specification that violates the password character limit, an error occurs 
(see Tables 3-42 and 3-43), and the entire GRANT statement is nullified.



GRANT Format 1 (Grant privileges)

789

10. The GRANT DBA statement cannot be used to grant DBA privileges to or change 
passwords for a user who is in a password-invalid account lock state. In this case, 
the GRANT CONNECT statement should be used to clear the password-invalid 
account lock state, and then the GRANT DBA statement should be executed.

11. The DBA privilege cannot be granted to auditors.
12. If the RDAREA usage privilege for an RDAREA is granted solely to an auditor, 

other users cannot be granted the RDAREA usage privilege for that RDAREA.

Notes on using the directory server linkage facility
Under the directory server linkage facility, users' CONNECT privileges are managed by 
the directory server, not by HiRDB. HiRDB manages privilege information other than 
the CONNECT privilege. For details about the directory server linkage facility, see the 
HiRDB Version 8 System Operation Guide.
1. The CONNECT privilege cannot be granted to a user by using GRANT; it is granted 

by registering the user by specifying password attributes on the directory server.
2. The DBA privilege cannot be granted to users who are not registered with the 

directory server; similarly, it cannot be granted to roles.
3. When granting the DBA privilege, in the IDENTIFIED BY clause specify the 

password that is registered with the directory server. The password should not be 
omitted. Table 3-44 shows the relationship between the IDENTIFIED BY clause 
of GRANT DBA and directory server user privileges.
Table 3-44: Relationship between the IDENTIFIED BY clause of GRANT 
DBA and directory server user privileges

* Users without password attributes are registered as users without the CONNECT 
privilege.
4. Granting the DBA privilege does not affect any information that is stored on the 

directory server.
5. The schema definition privilege is not granted to users who are not registered with 

the directory server, nor is it granted to roles.

Directory server user 
privileges

IDENTIFIED BY clause of GRANT DBA

Specified Not specified

User already registered with 
directory server*

The DBA privilege is granted, and 
the specified password is 
registered with HiRDB

The DBA privilege is granted and 
the user privilege is registered with 
HiRDB without a password

User not registered with directory 
server (no CONNECT privilege)

KFPA11559-E error KFPA11559-E error



GRANT Format 1 (Grant privileges)

790

6. If the schema definition privilege is granted to a user who does not have any 
privileges, the schema definition privilege is granted, and it is registered with 
HiRDB without a password.

7. The RDAREA usage privilege can also be granted to users who are not registered 
with the directory server, but not to roles.

Notes on changing the directory server linkage facility to the unavailable 
status

1. If the directory server linkage facility is made unavailable, the user's CONNECT 
privilege is controlled by HiRDB, not by the directory server.

2. If, after the directory server linkage facility is rendered unavailable, there is a user 
with No-password DBA privileges, that user cannot exercise the No-password 
DBA privileges. If such a user attempts to use the No-password DBA privileges, 
a KFPA11552-E error may occur. To prevent registration of users with 
No-password DBA privileges, when the directory server linkage facility is used, 
holders of DBA privileges should be assigned passwords that are registered in the 
directory server.

Examples
1. Grant the DBA privilege to the user whose authorization identifier is USER1 and 

assign the password PSWD:
GRANT DBA TO USER1 IDENTIFIED BY PSWD

2. Grant the schema definition privilege to the user whose authorization identifier is 
USER2:
GRANT SCHEMA TO USER2

3. Grant the CONNECT privilege to the user whose authorization identifier is USER3 
and assign the password PSWD:
GRANT CONNECT TO USER 3
     IDENTIFIED BY PSWD

4. Change the password for the user (authorization-identifier: USER3) to ABCD.
  GRANT CONNECT TO USER3
      IDENTIFIED BY ABCD

5. Grant the RDAREA usage privilege (for RDAREAs RDA1 and RDA2) to users 
whose authorization identifiers are USER4, USER5, and USER6:
GRANT RDAREA RDA1,RDA2
  TO USER4,USER5,USER6

6. Define RDAREA RDA3 as a public user RDAREA:
GRANT RDAREA RDA3 TO PUBLIC



GRANT Format 1 (Grant privileges)

791

(2) GRANT access privilege (grant access privileges)
Privileges

Owner of the table
This user can grant to other users his or her access privilege with respect to base 
tables and foreign tables that the user owns, and view tables owned by user and 
defined from his or her base table, view table, or foreign table. However, if the 
user receives the SELECT privilege with respect to a table owned by another user 
and defines a view table, subsequently he or she cannot grant this access privilege 
to other users.
Under the directory server linkage facility, the access privilege can be granted to 
users, or roles who are registered with the directory server.

Format
GRANT {access-privilege [, access-privilege] |ALL [PRIVILEGES]}
  ON [authorization-identifier.] table-identifier
  TO {authorization-identifier [, authorization-identifier]...|PUBLIC
      |GROUP role-name [,role-name]...}
 
access-privilege::={SELECT|INSERT|DELETE|UPDATE}

Operands
{access-privilege [, access-privilege] |ALL [PRIVILEGES]}

access-privilege
Specifies an access privilege that is to be granted for a specified table. Identical 
access privileges cannot be specified.

ALL [PRIVILEGES]
Specifies that all applicable access privileges are to be granted for the specified 
table.
If the specified table is a view table, the ALL option grants all access privileges 
possessed by the owner of the view table.
access-privilege::={SELECT|INSERT|DELETE|UPDATE}

SELECT
Specifies that the SELECT privilege is to be granted.

INSERT
Specifies that the INSERT privilege is to be granted.

DELETE



GRANT Format 1 (Grant privileges)

792

Specifies that the DELETE privilege is to be granted.
UPDATE

Specifies that the UPDATE privilege is to be granted.
ON [authorization-identifier.] table-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the table for which the 
specified access privileges are to be granted.
To grant access privileges to public views, specify the word PUBLIC in 
authorization-identifier, in uppercase characters enclosed in double quotation 
marks (").

table-identifier
Specifies the name of the table for which the specified access privileges are to be 
granted.
TO {authorization-identifier [, authorization-identifier]...|PUBLIC
    |GROUP role-name [, role-name]...}

authorization-identifier
Specifies the authorization identifier of a user to whom the specified access 
privileges for the specified table are to be granted. A maximum of 1,600 user 
authorization identifiers can be specified. Duplicate authorization identifiers are 
not allowed.

PUBLIC
Specifies that the specified access privileges to the specified table are to be 
granted to all users.
Under the directory server linkage facility, the access privilege is granted to all 
roles.

GROUP role-name
Specifies the role name to which the access privilege is granted. The role name is 
one of the information items managed by the Sun Java System Directory Server.
The following rules apply to role names:
1. A maximum of 1,600 or role names can be specified.
2. Each role name specified must be unique.
3. Role names can be specified only when the directory server linkage facility 

is in use.



GRANT Format 1 (Grant privileges)

793

Common rule
1. For details about the GRANT execution conditions under the inner replica facility, 

see the manual HiRDB Staticizer Option Version 7.

Notes
1. The GRANT statement cannot be specified from an X/Open-compliant UAP 

running under OLTP.
2. When the Directory Server linkage facility is used, you can also grant privileges 

to users and roles that are not registered in Directory Server. However, to access 
a table, the user must be registered in Directory Server. Also, a privilege granted 
to a role cannot be used to create a view table.

3. In the case of granting a privilege to a user, if the privilege has already been 
granted to a role that has the same name as the user, do not grant the privilege to 
that user. In the case of granting a privilege to a role, if the privilege has already 
been granted to a user ID that has the same name as the role, do not grant the 
privilege to that role.

4. INSERT, UPDATE, or DELETE privileges on audit trails or view tables based on an 
audit trail table cannot be granted to users other than an auditor.

Examples
1. Grant the SELECT access privilege for the stock (STOCK) table to the user whose 

authorization identifier is USER1:
GRANT SELECT
 ON STOCK TO USER1

2. Grant all access privileges for the stock table (STOCK) to all users:
GRANT ALL
 ON STOCK TO PUBLIC

3. Grant the privilege (UPDATE privilege) to update the inventory table (STOCK) to 
a  role (role-name: ADMIN):
GRANT UPDATE
    ON STOCK TO GROUP ADMIN



GRANT Format 2 (Change auditor's password)

794

GRANT Format 2 (Change auditor's password)

Function
Changes the auditor's password.

Privileges
Users with the audit privilege

These users can change the password owned by an auditor.

Format

Operands
password

Specifies a new password for the auditor.
If the password is to be case-sensitive, specify it by enclosing it in double quotation 
marks (").

Examples
Change the auditor's password to a0h7Fc3:
GRANT AUDIT IDENTIFIED BY "a0h7Fc3"

 
 GRANT AUDIT IDENTIFIED BY password
 



REVOKE (Revoke privileges)

795

REVOKE (Revoke privileges)

Function
REVOKE revokes the DBA, schema definition, CONNECT, and private user RDAREA 
usage privileges (see subsection (1) below); it also revokes access privileges granted 
to users (see subsection (2) below).
This command can revoke the access privilege granted to a role when the Sun Java 
System Directory Server linkage facility is in use.

(1) REVOKE DBA (revoke DBA privilege), REVOKE SCHEMA (revoke 
schema definition privilege), REVOKE CONNECT (revoke CONNECT 
privilege), and REVOKE RDAREA (revoke RDAREA usage privilege)
Privileges

Users with the DBA privilege
A user with the DBA privilege can revoke the DBA, schema definition, CONNECT, and 
private user RDAREA usage privileges.

Format
REVOKE {DBA FROM authorization-identifier [, authorization-identifier]...
        |SCHEMA FROM authorization-identifier
           [, authorization-identifier]...
        |CONNECT FROM authorization-identifier
           [, authorization-identifier]...
        | [RDAREA RDAREA-name [,RDAREA-name]...
           FROM {authorization-identifier
                  [, authorization-identifier]...|PUBLIC}

Operands
DBA FROM authorization-identifier [, authorization-identifier]...

DBA FROM
Specifies that one or more users' DBA privilege is to be revoked.

authorization-identifier [, authorization-identifier]...
Specifies the authorization identifiers of the users whose DBA privilege is to be 
revoked.
SCHEMA FROM authorization-identifier [, authorization-identifier]...

SCHEMA FROM
Specifies that one or more users' schema definition privilege is to be revoked.



REVOKE (Revoke privileges)

796

authorization-identifier [, authorization-identifier]...
Specifies the authorization identifiers of the users whose schema definition 
privilege is to be revoked.
CONNECT FROM authorization-identifier [, authorization-identifier]...

CONNECT FROM
Specifies that one or more users' CONNECT privilege is to be revoked.

authorization-identifier [, authorization-identifier]...
Specifies the authorization identifiers of the users whose CONNECT privilege is to 
be revoked.
RDAREA RDAREA-name [, RDAREA-name]...
FROM {authorization-identifier [, authorization-identifier]...|PUBLIC}

RDAREA-name [, RDAREA-name]
Specifies the names of RDAREAs for which the RDAREA usage privilege is to 
be revoked.

authorization-identifier [, authorization-identifier]...
Specifies the authorization identifiers of the users whose usage privilege for the 
specified RDAREAs is to be revoked.

PUBLIC
Specifies that the usage privilege for the specified RDAREAs as public user 
RDAREAs is to be revoked.

Notes
1. REVOKE can revoke a privilege that has not been granted or a privilege that has 

already been revoked.
2. A user's RDAREA usage privilege cannot be revoked if the user has tables or 

indexes in the RDAREA.
3. The schema privilege for a specific schema cannot be revoked if the schema 

contains tables.
4. A maximum of 16 private user RDAREAs can be specified.
5. A maximum of 1,600 authorization identifiers can be specified.
6. Privileges granted with the PUBLIC option of GRANT must be revoked with the 

PUBLIC option of REVOKE.
7. A user cannot revoke his or her own DBA privilege.
8. The CONNECT privilege of a user who has either the DBA privilege or a schema 



REVOKE (Revoke privileges)

797

cannot be revoked.
9. Revoking the CONNECT privilege also revokes the schema definition privilege.
10. The REVOKE statement cannot be specified from an X/Open-compliant UAP 

running under OLTP.
11. The auditor's schema definition privilege or CONNECT privilege cannot be 

revoked.

Examples
1. Revoke the DBA privilege for the user whose authorization identifier is USER1:

REVOKE DBA FROM USER1

2. Revoke the schema definition privilege for the user whose authorization identifier 
is USER2:
REVOKE SCHEMA FROM USER2

3. Revoke the CONNECT privilege for the user whose authorization identifier is 
USER3:
REVOKE CONNECT FROM USER3

4. Revoke RDAREA usage privileges for RDAREAs RDA1 and RDA2 for the users 
whose authorization identifiers are USER4, USER5, and USER6:
REVOKE RDAREA RDA1,RDA2
  FROM USER4,USER5,USER6

5. Redefine public user RDAREA RDA3 as a private user RDAREA and grant 
RDAREA usage privilege to USER1:
REVOKE RDAREA RDA3 FROM PUBLIC
GRANT RDAREA RDA3 TO USER1

(2) REVOKE access privilege (revoke access privileges)
Privileges

Owner of the table
The owner of a table can revoke an access privilege granted with GRANT access 
privilege.

Format
REVOKE {access-privilege [, access-privilege]...|All [privilege]}
   ON  [authorization-identifier.] table-identifier
   FROM [authorization-identifier [, authorization-identifier]...| PUBLIC
         |GROUP role-name[, role-name]...}
     [WITH PROGRAM]
 
access-privilege::={SELECT|INSERT|DELETE|UPDATE}



REVOKE (Revoke privileges)

798

Operands
{access-privilege [, access-privilege]...|All [privilege]}

access-privilege
Specifies an access privilege for a specified table that is to be revoked. Identical 
access privileges cannot be specified.

ALL [PRIVILEGES]
Specifies that all applicable access privileges for a specified table are to be 
revoked.
access-privilege::={SELECT|INSERT|DELETE|UPDATE}

SELECT
Specifies that the SELECT privilege is to be revoked.

INSERT
Specifies that the INSERT privilege is to be revoked.

DELETE
Specifies that the DELETE privilege is to be revoked.

UPDATE
Specifies that the UPDATE privilege is to be revoked.
ON [authorization-identifier.] table-identifier

authorization-identifier
Specifies the authorization identifier of the owner of the table whose access 
privileges are to be revoked.
To revoke access privileges to public views, specify the word PUBLIC in 
authorization-identifier, in uppercase characters enclosed in double quotation 
marks (").

table-identifier
Specifies the name of the table to which access privileges are to be revoked.
FROM [authorization-identifier [, authorization-identifier] ... |PUBLIC|
GROUP role-name [, role-name]...} [WITH PROGRAM]

authorization-identifier
Specifies the authorization identifier of a user whose access privileges for the 
specified table are to be revoked. A maximum of 1,600 user authorization 
identifiers can be specified. Duplicate authorization identifiers are not allowed.



REVOKE (Revoke privileges)

799

PUBLIC
Specifies that the privilege granted by means of the PUBLIC option of GRANT is 
to be revoked.

GROUP role-name
Specifies the role name whose access privilege is to be revoked. The role name is 
one of the information items managed by the Sun Java System Directory Server.
The following rules apply to role names:
1. A maximum of 1,600 role names can be specified.
2. Each role name that is specified must be unique.
3. A role name can be specified only when the directory server linkage facility 

is used.
WITH PROGRAM

When revoking the SELECT privilege for a table that is the base for a view table, 
this option is specified to nullify the SQL object for which functions, procedures, 
and triggers are in effect that use the view table that is deleted by the revocation 
of the SELECT privilege.

Common rules
1. A user cannot revoke his or her own access privileges.
2. REVOKE can revoke a privilege that has not been granted or a privilege that has 

already been revoked.
3. Any privilege granted using the PUBLIC option of GRANT must be revoked using 

the PUBLIC option of REVOKE.

If a privilege was granted by specifying the PUBLIC option and it is desired to 
block access by a specific user, the privilege must be revoked using the PUBLIC 
option and regranted to the desired users by specifying their authorization 
identifiers.

4. When the table owner revokes the SELECT privilege that was granted to another 
person, any view table defined by that person using that table is deleted.

5. The following shows the rules for revoking access privileges to tables used in a 
view definition or the access privileges to the base table for a view table.
Defining view table V1:
CREATE VIEW V11 (VPCODE,VPNAME,VPRICE)
   AS SELECT PCODE, PNAME, PRICE
        FROM STOCK2 WHERE PCODE =
        (SELECT PCODE FROM ORDERS3)



REVOKE (Revoke privileges)

800

Defining view table V2:
CREATE VIEW V24 (VSPCODE, VSDATE_IN_STOCK)
   AS SELECT PCODE, DATE_IN_STOCK
        FROM INTO_STOCK5

Defining view table VV1 from view table V1:
CREATE VIEW VV16 (VVPCODE, VVPRICE)
   AS SELECT VPCODE, VPRICE
        FROM V11 WHERE PCODE =
        (SELECT VSPCODE FROM V24)
            WHERE VSDATE_IN_STOCK >
                  DATE('1995-09-21'))

• When the SELECT privilege of the owner of a view table for a table (2, 3, 5) 
used in a view definition is revoked, both the view table itself (1, 4) and any 
other view tables (6) that are defined in terms of the view table are also 
deleted.

Example 1:
When the SELECT privilege of the owner of the view table for ORDERS table 
(5) is revoked, both V1 (4) and VV1 (6) are deleted.

Example 2:
When the SELECT privilege of the owner of the view table for INTO_STOCK 
table (5) is revoked, both V2 (4) and VV1 (6) are deleted.

When the access privilege of the owner of the view table for a base table 
(2, 5) for a view table is revoked, the access privilege to the view table itself 
is also revoked (1, 4) as well as the access privileges to any other view tables 
(6) that are defined in terms of the view table. In this context, the term access 
privilege refers to privileges other than the SELECT privilege.

Example 1:

When the access privilege of the owner of the view table for STOCK table (2) 
is revoked, access privileges to V1 (1) and VV1 (6) are also revoked.

Example 2:
When the access privilege of the owner of the view table for INTO_STOCK 
table (5) is revoked, the access privilege to V2 (4) is also revoked.
To regrant an access privilege that has been revoked, reassign the access 
privilege to the base table on which the privilege-revoke view table is 



REVOKE (Revoke privileges)

801

defined, delete the view table, and then redefine the view table.
For Example 1, grant access privileges to the owner of the STOCK view table 
(2), delete V1 (1) (this also deletes VV1), and then redefine V1 (1) and VV1 (6) 
in the indicated order.
For Example 2, grant access privileges to the owner of the INTO_STOCK 
view table (5), delete V2 (4), and then redefine V2 (4).

6. If WITH PROGRAM is omitted, and if there is an SQL object for which a procedure 
and trigger are in effect that use the view table that is deleted by the revocation of 
the SELECT privilege, that privilege cannot be deleted.

7. REVOKE cannot be executed from within a Java procedure if execution results in 
invalidation of the SQL object being executed.

Note
1. The revocation of the privileges granted to PUBLIC, to a specific user, or to a role 

can produce different results depending on various combinations. Figure 3-1 
shows various combinations.



REVOKE (Revoke privileges)

802

Figure 3-1: Revocation of privileges granted to PUBLIC, to a specific user, or 
to a role

2. The REVOKE statement cannot be specified from an X/Open-compliant UAP 
running under OLTP.

3. If WITH PROGRAM is specified to nullify an SQL object for which a function, a 
procedure, and a trigger are in effect, any information in the 
SQL_ROUTINE_RESOURCES dictionary table about the nullified function, 
procedure, and trigger is deleted.

4. Before executing the SQL object of a function, procedure, and trigger that is 
nullified by specifying WITH PROGRAM, you need to execute ALTER ROUTINE, 



REVOKE (Revoke privileges)

803

ALTER PROCEDURE, or ALTER TRIGGER to recreate the SQL object for which the 
function, procedure, and trigger are in effect.

Examples
1. Revoke the privilege (SELECT privilege) to retrieve the stock table (STOCK) for 

the user whose authorization identifier is USER1:
REVOKE SELECT ON STOCK FROM USER1

2. For the stock table (STOCK), revoke only the DELETE privilege from the access 
privileges that were granted to all users:
REVOKE DELETE ON STOCK FROM PUBLIC

3. Revokes all privileges that were granted to the role (role name: ADMIN) for access 
to the inventory table (STOCK).
REVOKE ALL ON STOCK GROUP ADMIN
 





805

Chapter

4. Data Manipulation SQL

This chapter explains the syntax and structure of the data manipulation SQL.
General rules
ALLOCATE CURSOR statement Format 1 (Allocate a statement cursor)
ALLOCATE CURSOR statement Format 2 (Allocate a result set cursor)
ASSIGN LIST statement Format 1 (Create list)
ASSIGN LIST statement Format 2 (Create list)
CALL statement (Call procedure)
CLOSE statement (Close cursor)
DEALLOCATE PREPARE statement (Nullify the preprocessing of SQL)
DECLARE CURSOR Format 1 (Declare cursor)
DECLARE CURSOR Format 2 (Declare cursor)
DELETE statement Format 1 (Delete rows)
DELETE statement Format 2 (Delete row using an array)
Preparable dynamic DELETE statement: locating (Delete row using a 

preprocessable cursor)
DESCRIBE statement Format 1 (Receive retrieval information and I/O 

information)
DESCRIBE statement Format 2 (Receive retrieval information and I/O 

information)
DESCRIBE CURSOR statement (Receive cursor retrieval information)
DESCRIBE TYPE statement (Receive definition information on user-defined 

data type)
DROP LIST statement (Delete list)
EXECUTE statement Format 1 (Execute SQL)
EXECUTE statement Format 2 (Execute an SQL statement using an array)
EXECUTE IMMEDIATE statement (Preprocess and execute SQL)
FETCH statement Format 1 (Fetch data)
FETCH statement Format 2 (Fetch data)
FETCH statement Format 3 (Fetch data)
FREE LOCATOR statement (Invalidate locator)
INSERT statement Format 1 (Insert row)
INSERT statement Format 2 (Insert row)
INSERT statement Format 3, Format 4 (Insert row using an array)
OPEN statement Format 1 (Open cursor)
OPEN statement Format 2 (Open cursor)
PREPARE statement (Preprocess SQL)



806

PURGE TABLE statement (Delete all rows)
Single-row SELECT statement (Retrieve one row)
Dynamic SELECT statement Format 1 (Retrieve dynamically)
Dynamic SELECT statement Format 2 (Retrieve dynamically)
UPDATE statement Format 1 (Update data)
UPDATE statement Format 2 (Update data)
UPDATE statement Format 3, Format 4 (Update row using an array)
Preparable dynamic UPDATE statement: locating Format 1 (Update data using a 

preprocessable cursor)
Preparable dynamic UPDATE statement: locating Format 2 (Update data using a 

preprocessable cursor)
Assignment statement Format 1 (Assign a value to an SQL variable or SQL 

parameter)
Assignment statement Format 2 (Assign a value to an embedded variable or a ? 

parameter)



General rules

807

General rules

Types and functions of the data manipulation SQL
The data manipulation SQL performs operations on table data (retrieving, adding, 
deleting, and updating).
Table 4-1 lists the types and functions of the data manipulation SQL.

Table 4-1: Types and functions of the data manipulation SQL

Type Function

ALLOCATE CURSOR statement (Allocate 
a cursor)

Allocates the cursor to the SELECT statement preprocessed by the 
PREPARE statement or a group of result sets returned by a procedure.

ASSIGN LIST statement (Create list) Creates a list from a base table.

CALL statement (Call procedure) Calls a procedure.

CLOSE statement (Close cursor) Closes a cursor.

DEALLOCATE PREPARE statement 
(Nullify the preprocessing of SQL 
statements)

Nullifies the SQL statement preprocessed by the PREPARE statement, 
and releases any allocated SQL statement identifier or extended 
statement name.

DECLARE CURSOR (Declare cursor) Declares a cursor so that the results of a retrieval by the SELECT 
statement can be fetched row by row with the FETCH statement.

DELETE statement (Delete rows) Deletes either the rows that satisfy specified search conditions or the 
row indicated by a cursor.

Preparable dynamic DELETE statement: 
locating (Delete row using a 
preprocessable cursor)

Deletes the row pointed to by a specified cursor. This command is 
used for dynamic execution.

DESCRIBE statement (Receive retrieval 
information and I/O information)

Returns to the SQL descriptor area retrieval information, output 
information, or input information on SQL preprocessed by the 
PREPARE statement.

DESCRIBE CURSOR statement (Receive 
cursor retrieval information)

Returns retrieval information for the cursor that references a result set 
returned by a procedure to the SQL descriptor area.

DESCRIBE TYPE statement (Receive 
definition information on a user-defined 
data type)

Returns to the SQL descriptor area definition information (attribute 
data codes and data lengths) on a user-defined data type that is directly 
or indirectly contained in SQL retrieval item information that is 
preprocessed by a PREPARE statement.

DROP LIST statement (Delete list) Deletes a list.

EXECUTE statement (Execute SQL) Executes an SQL preprocessed by the PREPARE statement.



General rules

808

Data manipulation SQL statements for remote database access under a 
distributed database

Table 4-2 shows the data manipulation SQL statements for accessing tables in 
another RD node under a distributed database.

EXECUTE IMMEDIATE statement 
(Prepare and execute SQL)

Prepares and executes an SQL provided in a character string.

FETCH statement (Fetch data) Advances to the next row the cursor that indicates the row to be 
fetched, and reads column values in that row into the embedded 
variables specified in the INTO clause.

FREE LOCATOR statement (Invalidate 
locator)

Nullifies the locator.

INSERT statement (Insert rows) Inserts rows into a table (a row can be inserted by direct specification 
of values or the SELECT statement can insert one or more rows).

OPEN statement (Open cursor) Opens a cursor. Locates the cursor declared in a DECLARE CURSOR 
statement or a cursor allocated by an ALLOCATE CURSOR statement 
before the first row of retrieval results so that the retrieval results can 
be fetched.

PREPARE statement (Prepare SQL) Prepares an SQL provided in a character string and assigns a name 
(SQL statement identifier or extended statement name) to the SQL.

PURGE TABLE statement (Delete all 
rows)

Deletes all rows in a base table.

Single-row SELECT statement (Retrieve 
one row)

Retrieves table data (fetches only one row of data from a table without 
using a cursor).

Dynamic SELECT statement (Retrieve 
dynamically)

Retrieves table data. The dynamic SELECT statement is preprocessed 
by the PREPARE statement. After a cursor is declared in a DECLARE 
CURSOR statement or it is allocated in an ALLOCATE CURSOR 
statement, the cursor is used to fetch retrieval results row by row.

UPDATE statement (Update data) Updates the values of columns in the rows that satisfy specified search 
conditions or in the row indicated by a cursor.

Preparable dynamic UPDATE statement: 
locating (Update data using a 
preprocessable cursor)

Updates the value of a specified column of the row pointed to by a 
specified cursor. This command is used for dynamic execution.

Assignment statement (Assign a value) Assigns a value to an assign-to item.

Type Function



General rules

809

Table 4-2: Remote Database Access in a Distributed System (Data Manipulation 
SQL)

Data manipulation SQL Remote database access

ALLOCATE CURSOR statement N

ASSIGN LIST statement N

CALL statement Y

CLOSE statement Y

DEALLOCATE PREPARE statement N

DECLARE CURSOR Y*

DELETE statement Y

Preparable dynamic DELETE statement: locating N

DESCRIBE statement Y

DESCRIBE TYPE statement N

DESCRIBE CURSOR statement N

DROP LIST statement N

EXECUTE statement Y

EXECUTE IMMEDIATE statement Y

FETCH statement Y

FREE LOCATOR statement N

INSERT statement Y

OPEN statement Y

PREPARE statement Y

PURGE TABLE statement Y

Single-row SELECT statement Y

Dynamic SELECT statement Y

UPDATE statement Y

Preparable dynamic UPDATE statement: locating N

Assignment statement N



General rules

810

Y: Remote database access supported
N: Remote database access not supported
* In a distributed system, cursor declarations are treated as dynamically executable 
statements. When a cursor declaration is encountered, HiRDB issues a processing 
request to the server when the cursor is opened.



ALLOCATE CURSOR statement Format 1 (Allocate a statement cursor)

811

ALLOCATE CURSOR statement Format 1 (Allocate a statement 
cursor)

Function
Defines and allocates a cursor to the SELECT statement (dynamic SELECT statement) 
preprocessed by a PREPARE statement.

Privileges
None.

Format 1: Allocating a cursor to the SELECT statement (dynamic SELECT 
statement) preprocessed by a PREPARE statement

Operands
extended-cursor-name
Specifies the extended cursor name for the cursor to be allocated.
For extended cursor names, see 2.27 Extended cursor name.
[WITH HOLD]
Specify this operand when allocating a cursor as a holdable cursor. A holdable 
cursor, however, cannot be used in the following cases:

• Remote database access
• When specifying a table containing an abstract data type for which a plug-in 

is used in a FROM clause
• A query for a named derived table that was derived by specifying a function 

call using a plug-in
• A retrieval through a list
• A foreign table, or a view table based on a foreign table

For holdable cursors, see the HiRDB Version 8 UAP Development Guide.
extended-statement-name
Within the scope of this command, specifies an extended statement name that 
identifies the SELECT statement preprocessed by a PREPARE statement.
For extended statement names, see 2.26 Extended statement name.

 
 ALLOCATE extended-cursor-name CURSOR [WITH HOLD] FOR extended-statement-name
 



ALLOCATE CURSOR statement Format 1 (Allocate a statement cursor)

812

Common rules
1. Any allocated cursor is closed.
2. If more than one cursor is allocated to an extended statement name that identifies 

a given SELECT statement, cursors that reference other RD nodes cannot be 
opened.

3. If more than one cursor is allocated to an extended statement name that identifies 
a given SELECT statement, a cursor allocation with a WITH HOLD specification 
and a cursor allocation without that specification cannot be specified on a mixed 
basis.

4. Updates and deletions using a cursor cannot be performed by means of an SQL 
statement that specifies a foreign table or a view table based on a foreign table.

Notes
1. An error may occur if a specified extended cursor name is already allocated in the 

prevailing scope.

Examples
1. Allocate a cursor (extended-cursor-name: cr (scope: GLOBAL)) to fetch rows, row 

by row, from the inventory table (STOCK):
 
PREPARE GLOBAL :sel FOR 'SELECT * FROM STOCK'
ALLOCATE GLOBAL :cr CURSOR FOR GLOBAL :sel
 

2. While retrieving all rows from the inventory table (STOCK) using a cursor 
(extended-cursor-name: cr (scope: GLOBAL, value: CR1)), dynamically update 
the unit price (PRICE) in the row at the cursor position to a 10% discount.
 
PREPARE GLOBAL :sel FOR 'SELECT * FROM STOCK FOR UPDATE'
Assign CR1 to the embedded variable cr
ALLOCATE GLOBAL :cr CURSOR FOR GLOBAL :sel
PREPARE PRE1 FOR
'UPDATE SET PRICE = 10% discount value on the unit price WHERE CURRENT 
OF GLOBAL CR1'
OPEN GLOBAL :cr
FETCH GLOBAL :cr INTO Name of the variable into which columns are fetched
EXECUTE PRE1
CLOSE GLOBAL :cr
DEALLOCATE PREPARE GLOBAL :sel



ALLOCATE CURSOR statement Format 2 (Allocate a result set cursor)

813

ALLOCATE CURSOR statement Format 2 (Allocate a result set 
cursor)

Function
Allocates a cursor to a group of ordered result sets that were returned from a procedure.

Privileges
None.

Format 2: Allocating a cursor to the group of result sets returned from a 
procedure

Operands
extended-cursor-name

Specifies the extended cursor name for the cursor to be allocated.
For extended cursor names, see 2.27 Extended cursor name.

[authorization-identifier.] routine-identifier
authorization-identifier

Specifies the authorization identifier of the owner of the procedure that returned 
the result set to which a cursor is to be allocated.

routine-identifier
Specifies the name of a routine in the procedure that returned the result set to 
which a cursor is to be allocated.

Common rules
1. Specify a procedure that has already been called in the current SQL session (from 

the time HiRDB is connected to the time it is disconnected).
2. If a procedure specified in the current SQL session is called two times or more, 

the cursor is allocated to the group of result sets that was returned by the last 
called procedure.

3. An error may occur if a cursor is already allocated to the group of result sets 
returned by the last called procedure among the specified procedures.

 
 ALLOCATE extended-cursor-name FOR
    PROCEDURE [authorization-identifier.]routine-identifier
 



ALLOCATE CURSOR statement Format 2 (Allocate a result set cursor)

814

4. The following return codes are assigned if a specified procedure does not return 
any result sets:

• A return code 100 to the SQLCODE area of the SQL communications area
• A return code 100 to the SQLCODE variable
• A return code 02001 to the SQLSTATE variable

5. When the ALLOCATE CURSOR statement is executed, the cursor references the 
first result set among the result sets returned by the procedure, and it can fetch the 
data in the result set using a FETCH statement. The CLOSE statement is executed 
to reference the second result set and beyond. Upon execution of the CLOSE 
statement, if any of the following return codes is assigned, it indicates that another 
result set exists, and the cursor references the next result set:

• A return code 121 to the SQLCODE area of the SQL communications area
• A return code 121 to the SQLCODE variable
• A return code 0100D to the SQLSTATE variable

On the other hand, upon execution of the CLOSE statement, if any of the following 
return codes is assigned, it indicates that another result set does not exist, in which 
case the extended cursor name does not identify any cursor:

• A return code 100 to the SQLCODE area of the SQL communications area
• A return code 100 to the SQLCODE variable
• A return code 02001 to the SQLSTATE variable

6. The definition of the allocated cursor is the same as the cursor declaration in the 
procedure that generated the result set being referenced.

7. The allocated cursor remains open.
8. The allocated cursor is located at the cursor position that would be in effect when 

the procedure terminated.
9. Updates and deletions using a cursor cannot be performed using an SQL 

statement that specifies a foreign table or a view table based on a foreign table.

Notes
1. An error may occur if a specified extended cursor name is already allocated in the 

prevailing scope.

Examples
See 1.8.3 Results-set return facility for examples.



ASSIGN LIST statement Format 1 (Create list)

815

ASSIGN LIST statement Format 1 (Create list)

Function
The Format 1 ASSIGN LIST statement creates a list from a base table.

Privileges
A user who has the SELECT privilege for a base table can create a list from that base 
table.

Format 1: Creating a list from a base table
ASSIGN LIST list-name FROM ([authorization-identifier.] table-identifier)
      [WHERE search-condition]
      [WITHOUT LOCK [{WAIT|NOWAIT} ]]
      [ {WITH ROLLBACK|NO WAIT} ]

Operands
list-name

Specifies a name for the list that is to be created.
If an existing list name is specified, the existing list is deleted and a new list is created.

([authorization-identifier.] table-identifier)
Specifies the authorization identifier of the table's owner and the name of the base table 
from which the list to be created.
The following tables cannot be specified in table-identifier:

• Shared tables
• Tables with WITHOUT ROLLBACK specification
• View tables
• Foreign tables
• Table aliases

[WHERE search-condition]
Specifies conditions for determining the rows that are to be retrieved.
If no search conditions are specified, the list will be created from all the rows in the 
specified table.
The ANDNOT logical operator can be specified in an ASSIGN LIST statement search 
condition. The ANDNOT logical operator is evaluated in the same priority order as AND.
The following table shows the results of ANDNOT logical operations:



ASSIGN LIST statement Format 1 (Create list)

816

T: TRUE
F: FALSE
?: Indeterminate
* C1 = V1 ANDNOT V2 = C2 is not equivalent to C1 = V1 AND NOT C2 = V2.

If predicate-1 = (predicate-2 ANDNOT predicate-3), the set satisfying predicate-1 
is the difference between the set satisfying predicate-2 and the set satisfying 
predicate-3.
If predicate-1 = (predicate-2 AND NOT predicate-3), the set satisfying predicate-1 
is the result of the AND logical operation between predicate-2 and NOT 
predicate-3.
Therefore, in the case of AND NOT, the result indicated by the asterisk in the above 
truth table will be ? (indeterminate).

The following roles apply to search condition statements:
1. None of the following items can be specified in a search condition:

• A subquery (table subqueries without an external reference in an IN 
predicate without a NOT specification can be specified).

• An arithmetic operation, date operation, time operation, concatenation 
operation, scalar function, CASE expression, or CAST specification

• Comparison of one column against another when written with a comparison 
operator as follows:
column-specification comparison-operator column-specification

• A comparison predicate whose both sides are a literal, USER, 
CURRENT_DATE, CURRENT_TIME, or CURRENT_TIMESTAMP[(p)]

• A BETWEEN predicate where value-expression-1 is a column specification 
and either value-expression-2 or value-expression-3 is a column 
specification

• A component specification

Left side Right side

T F ?

T F T T*

F F F F

? F ? ?



ASSIGN LIST statement Format 1 (Create list)

817

• A function call (functions provided by a plug-in in which index-using logic 
is implemented can be specified)

• Logical predicates IS FALSE and IS UNKNOWN
2. A table name or a correlation name cannot be specified in column-name in a 

search condition.
3. If a repetition column is specified in a search condition, the subscript ANY must 

also be specified.
4. An index (except for an index having an exception key for a column that is 

specified to the IS NULL predicate) must be defined for all columns that are 
specified in a search condition. For a structured repetition predicate, a 
multicolumn index that contains all repetition columns in its constituent columns, 
specified in a search condition in the structured repetition predicate, must be 
defined.

5. When evaluating the predicate for the non-repetition column by using an index 
that contains both a repetition column and a non-repetition column as constituent 
columns, the index can be used if a condition is specified for one of the repetition 
columns.

6. Either of the following indexes must be defined on a column in an IN predicate 
with a table subquery specification. Notice that case (b) is limited to the situation 
in which the SQL optimization mode is optimizing mode 2 based on cost:
(a) Single-column index
(b) Column in the IN predicate with a table subquery specification that is not the 
first column in a multicolumn index
Even if the column in the IN predicate with a table subquery specification is not 
the first column in a multicolumn index, a column need not be defined if one of 
the following is specified in an index constituent column preceding this column: 
a comparison predicate (=), the NULL predicate (IS NULL), or an IN predicate 
(IN) for which the right-hand side is a value specification. This rule, however, 
excludes indexes that contain a repetition column as an index constituent column. 
For the IN predicate for which a value is specified on the right side, the number 
of value specifications must satisfy one of the following conditions:

• If IN is in only one column, the number of value specifications is 5 or less
• If IN is in two or more columns, the product of numbers of value 

specifications specified in the columns is 5 or less.
7. If no search conditions are specified, an index (other than a plug-in index or an 

index that has an exception key) must be defined for one of the columns (other 
than a repetition column) for each of the tables from which the list is derived.

8. A predicate in which a repetition column is specified cannot be negated by the 



ASSIGN LIST statement Format 1 (Create list)

818

NOT logical operator.
9. A predicate that includes the ANDNOT logical operator cannot be negated by the 

NOT logical operator.
10. Logical predicates cannot be negated by NOT.
11. The IN predicate for which a table subquery is specified cannot be negated by the 

NOT Boolean operator.
[WITHOUT LOCK [{WAIT | NOWAIT}]]

Omission of this operand specifies that once data has been retrieved, it must be 
guaranteed until completion of the transaction.
WITHOUT LOCK [WAIT]

Specifies that once data has been retrieved, it does not have to be guaranteed until 
completion of the transaction. The WITHOUT LOCK [WAIT] option causes HiRDB 
to release the lock without waiting for completion of the transaction, thus 
improving the system's capacity for concurrent execution.

WITHOUT LOCK NOWAIT
Specifies immediate lock release when data being updated by another user must 
be referenced immediately, or the integrity of data after it has been retrieved once 
need not be maintained before the transaction has been completed.
When the WITHOUT LOCK NOWAIT option is specified, HiRDB does not perform 
locking. Because a table that is being updated can be retrieved without waiting for 
locking, the system's capacity for concurrent execution can be improved. 
However, retrieving data while it is being updated may produce incorrect results.
[WITH ROLLBACK | NOWAIT]

Omission of this operand specifies that if the table to be retrieved is being used by 
another user, this operation is to be placed on hold until the other transaction is 
completed, and then this operation is to be executed (except when the WITHOUT LOCK 
NOWAIT option is specified).
WITH ROLLBACK

Specifies that this transaction is to be canceled and invalidated if the table to be 
retrieved is being used by another user.

NO WAIT
Specifies that if the table to be retrieved is being used by another user, this 
transaction is to be flagged as an error but is not to be canceled. However, locking 
applied during execution of this SQL statement is not released.



ASSIGN LIST statement Format 1 (Create list)

819

Common rules
1. A list can be used only by its owner; lists are not subject to privilege definition or 

revocation. If the executing user is not the owner of the list, the SET SESSION 
AUTHORIZATION statement can be used to change the executing user.

2. Lists are not deleted when exported from HiRDB.
3. All lists are deleted automatically when HiRDB stops.
4. The disposition of lists when an error occurs is indicated below (an attempt to 

retrieve such a list results in an error); lists that cannot be retrieved must be either 
deleted or re-created:

• In the event of abnormal termination of all units:
All lists are deleted automatically.

• In the event of abnormal termination of some but not all units:
Lists created at the abnormally terminated units cannot be retrieved.

5. While a list is in existence, none of the following operations can be performed on 
the base table from which the list was derived:

• Schema deletion
• Table deletion
• Table definition modification

6. When a list is created, the number of rows created is returned to SQLERRD[2] of 
SQLCA.

7. Lists cannot be specified in an SQL routine.

8. Although the ASSIGN LIST statement can be executed dynamically, it cannot be 
executed by embedding it directly in a host program.

9. The same user cannot manipulate a list by connecting to HiRDB concurrently in 
multiple sessions.

10. The maximum number of lists that can be stored in a list RDAREA is determined 
by the maximum number of lists registered (500 to 50,000), which is specified by 
the database initialization utility (pdinit) or the database structure modification 
utility (pdmod).

Notes
1. Lists are created in list RDAREAs at the same server where the base table is 

located. Before a list can be created, a list RDAREA must have been created.
2. A list that is exported from HiRDB is not deleted. Lists that are no longer needed 

should be deleted with the DROP LIST statement.



ASSIGN LIST statement Format 1 (Create list)

820

3. If any of the following operations is performed on the base table from which a list 
was derived while the list is still in existence, the list must be re-created:

• PURGE TABLE statement
• Reorganization of the table
• Data loading in the load mode
• RDAREA reinitialization

Example
See the examples provided in the section on the ASSIGN LIST statement Format 2 
(Create list).



ASSIGN LIST statement Format 2 (Create list)

821

ASSIGN LIST statement Format 2 (Create list)

Function
The Format 2 ASSIGN LIST statement copies a list or performs a set operation on lists 
in order to create a list from the results. The Format 2 ASSIGN LIST statement can also 
rename a list.

Privileges
Owner of the list
The owner of a list can create lists from that list.

Format 2: Creating a list from a list; renaming a list
ASSIGN LIST list-name FROM list-name-1
     [{{AND|OR|AND NOT|ANDNOT} list-name-2|FOR ALTER LIST}]

Operands
list-name

Specifies a name for the list that is to be created.
If an existing list name is specified, the existing list is deleted and a new list is created.

list-name-1 {{AND | OR | AND NOT | ANDNOT} list-name-2 | FOR ALTER LIST}]
The lists that are specified in list-name-1 and list-name-2 must be derived from the 
same base table.
The list names specified in list-name, list-name-1, and list-name-2 must be unique.
list-name-1

Specifies a list that is to be copied.
list-name-1 AND list-name-2

Specifies lists from which a set product is to be derived.
list-name-1 OR list-name-2

Specifies lists from which a set union is to be derived.
list-name-1 {AND NOT | ANDNOT} list-name-2

Specifies lists from which the set difference is to be derived.
list-name-1 FOR ALTER LIST

Specifies a new name for the list.



ASSIGN LIST statement Format 2 (Create list)

822

Common rules
See the rules for Format 1.

Notes
See the notes for Format 1.

Examples

1. Create from table T1 a list (LIST1) of those rows with the value Y in the CHECK1 
column:
ASSIGN LIST LIST1 FROM (T1) WHERE CHECK1='Y'

2. Create from table T1 a list (LIST2) of those rows with the value Y in the CHECK2 
column:
ASSIGN LIST LIST2 FROM (T1) WHERE CHECK2='Y'



ASSIGN LIST statement Format 2 (Create list)

823

3. Create a list (LIST3) from the set product of LIST1 and LIST2:
ASSIGN LIST LIST3 FROM LIST1 AND LIST2



CALL statement (Call procedure)

824

CALL statement (Call procedure)

Function
The CALL statement calls a procedure.

Privileges
Users with the DBA or CONNECT privilege
These users can call procedures. If SQL statements are to be executed in a procedure, 
the user needs to have the privilege to execute all the SQL.

Format
CALL [[RD-node-name.]authorization-identifier.]routine-identifier ([argument
          [, argument]...])
argument ::= {{IN|OUT|INOUT} :embedded-variable[:indicator-variable]
              |[{IN|OUT|INOUT}] {SQL-variable|SQL-parameter
                                    |?-parameter}
              |[IN] value-expression}

Operands
[[RD-node-name.]authorization-identifier.] routine-identifier

RD-node-name
Specifies the RD node name of the RD node to which remote database access is 
to be made. An RD node name cannot be specified in a routine definition.

authorization-identifier
Specifies the authorization identifier of the owner of the procedure being called.

routine-identifier
Specifies the routine name of the procedure being called.
argument ::= {{IN|OUT|INOUT} :embedded-variable[:indicator-variable]
              |[{{IN|OUT|INOUT}} SQL-variable|SQL-parameter
              |{{IN|OUT|INOUT}] ?-parameter
              |[IN] value-expression}

Specifies arguments for a parameter of the procedure to be called. IN, OUT, or INOUT 
specifies the I/O mode (parameter mode) for the parameter for a procedure specified 
in a CREATE PROCEDURE statement.
Table 4-3 shows specification rules for IN, OUT, and INOUT.



CALL statement (Call procedure)

825

Table 4-3: Specification rules for IN, OUT, and INOUT

Y: Can be specified.
N: Cannot be specified.
1 IN, OUT, or INOUT may be specified; or the specification may be omitted.
2 IN, OUT, or INOUT must be specified.
3 IN can be specified or may be omitted.

Common rules
1. Arguments are associated with parameters by the order in which they are 

specified.
2. The data type of an argument must be compatible with the data type of the 

parameter with which the argument is associated.
3. If the parameter mode of the associated parameter is OUT or INOUT and the NULL 

value is output as a parameter value, the receiving argument must have an 
indicator variable.

4. ? parameters that are specified as arguments for parameters with an IN, OUT, or 
INOUT parameter mode become, respectively, the input ? parameter, the output ? 
parameter, or the input ? parameter and output ? parameter.
The ? parameter in the value expression will be the input ? parameter.

5. The BOOLEAN data type cannot be specified for an input or output parameter.
6. An embedded variable (indicator variable) and the ? parameter must be a simple 

structure.
7. The following cannot be specified as an argument when the parameter mode is 

Argument specification Type of CALL statement

Dynamic 
execution

UAP 
embedding

In routine 
definition

:embedded-variable[:indicator-variable] N Y2 N

SQL-variable, SQL-parameter N N Y1

Component specification based on SQL-variable, 
SQL-parameter

N N Y1

?-parameter Y1 N N

Value expression other than above Y3 Y3 Y3



CALL statement (Call procedure)

826

IN:
• A value expression containing a set function
• A value expression containing the window function
• A value expression containing a column specification
• A value expression containing a component specification that exhibits the 

attribute of an abstract data type column
8. A component specification that exhibits the attribute of an abstract data type 

column cannot be specified as an argument when the parameter mode is OUT or 
INOUT.

9. In argument, a SUBSTR scalar function with a result data type of BLOB or BINARY 
with a maximum length of 32,001 bytes or greater cannot be specified as a single 
value expression.

10. A subquery cannot be specified in a value expression specified as an argument.
11. If a procedure in which the number 1 or greater is specified in the DYNAMIC 

RESULT SETS clause of a procedure definition, the procedure returns one of the 
groups of result sets shown in the following table. If, however, the number of 
result sets shown in the following table is greater than the number specified in the 
DYNAMIC RESULT SETS clause, only result sets up to the number specified in 
the DYNAMIC RESULT SETS clause are returned.
Table 4-4: Result sets returned by a procedure and their order

12. If the called procedure returns a result set, one of the following return codes is 
assigned:

• A return code 120 to the SQLCODE area of the SQL communications area
• A return code 120 to the SQLCODE variable
• A return code 0100C to the SQLSTATE variable

However, if the number of result set cursors that are open at the time of procedure 

Procedure 
type

Returned result sets Order in 
which result 

sets are 
returned

Java procedure The result set specified in a java.sql.ResultSet[] type parameter for 
the Java method specified in a foreign routine specification in the 
procedure definition.

Order of 
parameter 
specifications

SQL procedure Of the result set cursors declared in the procedure, the result set of cursors 
that are open when the procedure terminates.

Order in which 
cursors are 
opened



CALL statement (Call procedure)

827

termination is greater than the number specified in the DYNAMIC RESULT SETS 
clause, a code 0100E is assigned to the SQLSTATE variable.

Notes
1. If index information in an SQL object in the procedure is invalidated by addition 

or deletion of an index, the procedure cannot be executed. In such a case, the SQL 
object in the procedure must be recreated.

2. Procedures using PURGE TABLE, COMMIT, and ROLLBACK statements cannot be 
used in the following environment:

• Calling a procedure from a UAP running under OLTP
• Calling a procedure defined on a distributed RD node in remote database 

access using the distributed database facility



CLOSE statement (Close cursor)

828

CLOSE statement (Close cursor)

Function
The CLOSE statement closes a cursor and terminates fetching of retrieval results by the 
FETCH statement.

Privileges
None.

Format
CLOSE {cursor-name | extended-cursor-name}

Operands
{cursor-name | extended-cursor-name}

cursor-name
Specifies the cursor that is to be closed, which must be a cursor opened by the 
OPEN statement.

extended-cursor-name
Specifies the name of an extended cursor that identifies the cursor to be closed. 
The cursor to be closed is one that is opened by the OPEN statement or one that is 
allocated to a result set returned by a procedure and one that references the result 
set.
For extended cursor names, see 2.27 Extended cursor name.

Common rules
1. Executing any of the SQL statements listed below closes all cursors that are open 

at that time. All cursors are also closed when an error with implicit rollback 
occurs.

 Definition SQL statements (when YES is specified for PDCMMTBFDDL in the 
client environment definition)

 PURGE TABLE statement
 COMMIT statement
 DISCONNECT statement
 ROLLBACK statement
 PREPARE statement (when YES is specified for PDPRPCRCLS in the client 

environment definition)



CLOSE statement (Close cursor)

829

 Internal DISCONNECT (termination of a UAP without executing a 
DISCONNECT statement)
Note that holdable cursors are not closed when a COMMIT statement is executed. 
When a PURGE TABLE statement is executed and a table opened using a holdable 
cursor is set to check pending status, the holdable cursor is closed.

2. If the CLOSE statement is executed on the cursor allocated to the group of result 
sets returned by a procedure by the ALLOCATE CURSOR statement Format 2, and 
if there is a result set next to the result set currently referenced, the currently 
referenced result set is closed. In that case, the cursor references another result set, 
and the following return codes are assigned:

• A return code 121 to the SQLCODE area of the SQL communications area
• A return code 121 to the SQLCODE variable
• A return code 0100D to the SQLSTATE variable

In this case, the cursor remains open.
If another result set does not exist, the currently referenced result set is closed, and 
the following return codes are assigned:

• A return code 100 to the SQLCODE area of the SQL communications area
• A return code 100 to the SQLCODE variable
• A return code 02001 to the SQLSTATE variable

In this case, the extended cursor name ceases to identify any cursor.
For details about the series of operations to be performed when a cursor is 
allocated to the group of result sets returned from a procedure, see 1.8.3 
Results-set return facility.

Note
A cursor name, similar to an embedded variable name, is effective within a 
compile-unit module. Therefore, multiple SQLs related to the same cursor cannot be 
used in multiple modules.

Example
Close cursor CR1:
CLOSE CR1



DEALLOCATE PREPARE statement (Nullify the preprocessing of SQL)

830

DEALLOCATE PREPARE statement (Nullify the preprocessing of 
SQL)

Function
Nullifies the SQL statement preprocessed by the PREPARE statement, and releases the 
SQL statement identifier or the extended statement name from its allocated state.

Privileges
None.

Format

Operands
{SQL-statement-identifier | extended-statement-name}

SQL-statement-identifier
Specifies the name that was assigned to identify the SQL statement preprocessed 
by the SQL-statement-identifier PREPARE statement.
For SQL statement identifiers, see 1.1.7 Specification of names.
HiRDB reserved words can also be used. If a HiRDB reserved word is used, the 
SQL statement identifier, even if it is identical to the reserved word, should not be 
enclosed in quotation marks ("). However, the words SELECT and WITH cannot 
be used.

extended-statement-name
Specifies the extended statement name that was assigned to identify the SQL 
statement preprocessed by the PREPARE statement.
For extended statement names, see 2.26 Extended statement name.

Common rules
1. If a cursor exists that was either declared by DECLARE CURSOR for the SQL 

statement identified by a specified SQL statement identifier or an extended 
statement name, or that was allocated by an ALLOCATE CURSOR statement, and 
if that cursor is open, the cursor cannot be nullified.

2. All cursors that are declared for or allocated to a specified SQL statement or 
extended statement name and that are closed are also nullified. In addition, all 

 
 DEALLOCATE PREPARE {SQL-statement-identifier|extended-statement-name}
 



DEALLOCATE PREPARE statement (Nullify the preprocessing of SQL)

831

preprocessed SQL statements that reference those cursors are also nullified.

Notes
1. If the SQL statement for the nullified SQL statement identifier is a holdable 

cursor, the SQL statement identifier is not enabled, even if it is rolled back.
2. The SQL statement identifier, similar to embedded variable names, is a name that 

is in effect within compile-by-compile modules; more than one SQL statement 
with respect to a given SQL statement identifier cannot be used across multiple 
modules.

Examples
Deallocate the results of preprocessing of the SQL statement identified by the SQL 
statement identifier (PRESQL) specified in a PREPARE statement.
 
DEALLOCATE PREPARE PRESQL



DECLARE CURSOR Format 1 (Declare cursor)

832

DECLARE CURSOR Format 1 (Declare cursor)

Function
DECLARE CURSOR declares a cursor to be used by the FETCH statement to fetch on a 
row-by-row basis the results of a retrieval by a query specification.
In Format 1, this SQL statement declares a cursor for a direct cursor specification.

Privileges
None.

Format 1: Declaring a cursor relative to a direct cursor specification
DECLARE cursor-name CURSOR [WITH HOLD][ {WITH RETURN | WITHOUT 
RETURN} ] FOR
(Cursor-Specification-Format-1)
  (Query-Expression)
    (Query-Specification)
    {SELECT [{ALL|DISTINCT}]{selection-expression
                                   [,selection-expression]...|*}
    (Table-Expression)
    FROM table-reference [, table-reference]...
          [WHERE search-condition]
          [GROUP BY value-expression [, value-expression]...]
          [HAVING search-condition]
          | query-expression }
    [ORDER BY {column-specification|sort-item-specification-number}
          [{ASC|DESC}]
        [, {column-specification|sort-item-specification-number}
            [{ASC|DESC}]...]]
    [LIMIT { [offset, ] {row_count | ALL}
        | {row_count | ALL} [OFFSET offset] } ]
(Lock-Option)
 [[(WITH {SHARE|EXCLUSIVE} LOCK
    |WITHOUT LOCK [{WAIT|NOWAIT}]}]
 [{WITH ROLLBACK|NO WAIT}]]
   [FOR {UPDATE [OF column-name [, column-name]...]|READ ONLY}]
   [UNTIL DISCONNECT]

Operands
cursor-name

Specifies the name of the desired cursor.
When a cursor name is specified in a UAP, it must not be enclosed in quotation marks, 



DECLARE CURSOR Format 1 (Declare cursor)

833

even when the cursor name is the same as an SQL reserved word. However, when a 
cursor name that is the same as an SQL reserved name is specified in a procedure, it 
must be enclosed in quotation marks.
For details on cursor names, see 1.1.7 Specification of names.

[WITH HOLD]
Specifies that a holdable cursor is to be used.
Because WITH HOLD provides the same function as specifying UNTIL DISCONNECT, 
see the section on UNTIL DISCONNECT for an explanation. The result is the same 
whether WITH HOLD or UNTIL DISCONNECT is specified.

[ {WITH RETURN | WITHOUT RETURN} ]
In a cursor declaration in an SQL statement, these operands specify the 
returnability of the result set for the cursor.
A cursor declared by specifying WITH RETURN is referred to as a result set cursor.
If the procedure terminates when the result set cursor declared in an SQL 
procedure is still open, the result set for the cursor cannot be returned to the 
calling source for the procedure.
A value greater than or equal to 1 should be specified in the DYNAMIC RESULT 
SETS clause of the definition of the SQL procedure that declares a result set 
cursor.
For details about how to use a returned result set, see 1.8.3 Results-set return 
facility.
Cursor-Specification-Format-1

Specifies the cursor that expresses the contents of a query.
See 2.1.1 Cursor specification: Format 1 for cursor specifications, 2.2 Query 
expressions for query expressions, 2.3 Query specification for query specifications, 2.5 
Table expressions for table expressions, and 2.7 Search conditions for search 
conditions.

Lock-Option
Specifies the lock mode for specifying queries, and the action to be taken by the system 
when the necessary resources for performing a query are being used exclusively by 
another user.
See 2.19 Lock option for details on the lock option.

[FOR {UPDATE [OF column-name [, column-name]...]|READ ONLY}]
The FOR UPDATE [OF column-name [, column-name]] clause is called the FOR 
UPDATE clause.



DECLARE CURSOR Format 1 (Declare cursor)

834

FOR UPDATE
In the case of a table that is being searched using the cursor, specifies that a row 
on which the cursor is used can only be updated or deleted, and a row on which 
the cursor is not used can be updated, deleted, or added.
If a module contains the UPDATE statement for updating rows using the specified 
cursor or contains the DELETE statement for deleting rows and the FOR UPDATE 
OF clause is omitted, then FOR UPDATE is assumed as the default, thus enabling 
updating, adding, or deleting of any column.
This operand should be omitted for a table being retrieved using the cursor that 
has no rows to be updated or deleted using that cursor or any other cursors, and 
no rows to be updated, deleted, or added without using a cursor. If a lock option 
in the SQL statement is omitted, the lock option is determined by a specified value 
in PDISLLVL or a specified value for the data guarantee level specified in 
SQL-compile-option. However, if YES is indicated for PDFORUPDATEEXLOCK or 
if FOR UPDATE EXCLUSIVE is specified after the data guarantee level in 
SQL-compile-option, the lock option for the cursor with that specification is 
assumed to be WITH EXCLUSIVE LOCK. For details, see the HiRDB Version 8 
UAP Development Guide.

OF column-name [, column-name]
Specifies the columns to be updated in a table being searched using the cursor 
when only the rows retrieved with that cursor are to be updated.
This operand can also specify columns that are not specified in a selection 
expression of the SELECT statement. A column can be specified only once in a 
SELECT statement.
If a table being searched using the cursor has no rows to be updated or deleted 
using that cursor or any other cursors and no rows to be updated, deleted, or added 
without using a cursor, this operand should be omitted.
When a column name is specified, instead of using the column name that was 
specified in AS column-name, specify the column of the table that was specified 
in the FROM clause for the outermost query specification.

FOR READ ONLY
In the case of a table being searched using the cursor, specifies that the rows are 
to be updated either using another cursor or by specifying a direct search 
condition. The purpose of this specification is to ensure that the update operation 
performed during searching is not affected by the retrieval results.
[UNTIL DISCONNECT]

Specifies that a holdable cursor is to be used.
The function provided by this specification is exactly the same as specifying WITH 



DECLARE CURSOR Format 1 (Declare cursor)

835

HOLD. The result is the same whether WITH HOLD or UNTIL DISCONNECT is specified.
For details on holdable cursors, see the HiRDB Version 8 UAP Development Guide.
The following rules apply to holdable cursors:
1. A holdable cursor cannot be used in the following cases:

• In conjunction with remote database access
• When a column of the abstract data type using a plug-in is specified
• When a function call using a plug-in is specified
• A query with respect to a named derived table that was derived by specifying 

a function call using a plug-in
• A foreign table or a view table having a foreign table as a base table

2. Definition SQL statements cannot be executed while a holdable cursor is open.
3. If, after an OPEN statement is executed for a SELECT statement using a holdable 

cursor, a PURGE TABLE statement is executed for a table used in the SELECT 
statement, the cursor is placed into closed status.

4. If, after an OPEN statement is executed for a SELECT statement using a holdable 
cursor and before a DISCONNECT is performed, another user issues a definition 
SQL statement for a table used in the SELECT statement, the definition SQL 
statement is placed into lock-wait status. Similarly, if, during the period when 
preprocessing relative to a SELECT statement using a holdable cursor is still in 
effect, another user issues a definition SQL statement for a table that is being used 
in the SELECT statement, the definition SQL statement is placed into lock-wait 
status.

Common rules
1. The declared cursor remains closed.
2. The value (the value of an embedded variable, an SQL variable, or an SQL 

parameter value that is specified in the SELECT statement of DECLARE CURSOR) 
that is in effect when the OPEN statement for the cursor is executed remains in 
effect from the time the cursor is opened until it is closed. To modify such values, 
the cursor must be closed and then reopened.

3. A maximum of 1,023 cursors can be declared per UAP.
4. If either the cursor specification or the cursor lock option contains any of the 

following specifications, updating and deletion using that cursor cannot be 
performed and the FOR UPDATE clause cannot be specified:
If the cursor includes an (10) specification for remote database access, the FOR 
UPDATE clause can be specified; however, any updating or deletion operation 
using the cursor cannot be performed.



DECLARE CURSOR Format 1 (Declare cursor)

836

1. UNION [ALL] or EXCEPT [ALL]
2. A table specified in the FROM clause of the outermost query specification in the 
FROM clause of a subquery.
3. Joined tables in the outermost query specification.
4. A derived table in a FROM clause in the outermost query specification
5. SELECT DISTINCT in the outermost query specification
6. A GROUP BY clause in an outermost query specification
7. A HAVING clause in an outermost query specification
8. A set function on the outermost query specification
9. The window function on the outermost query specification
10. Specifying a foreign table in the FROM clause of the outermost query 
specification
11. Any of the following view tables in the FROM clause of the outermost query 
specification:

 A view table defined by specifying (1) to (10) above in CREATE VIEW
 A view table defined by specifying a value expression other than a column 

specification in the SELECT clause of the outermost query specification in a view 
definition statement

 A view table for which READ ONLY is specified in CREATE VIEW
12. WITHOUT LOCK NOWAIT
13. A query specification name specified in the FROM clause of the outermost 
query specification in the query expression body in which a WITH clause is 
specified

5. The FOR READ ONLY clause cannot be specified for a cursor if rows are to be 
updated or deleted using that cursor.

6. When a FOR READ ONLY clause is specified, the following restrictions apply:
1. Scalar operations, function calls, and component specifications that produce 
results in any of the following data types cannot be specified in a selection 
expression:

 BLOB
 BINARY with a maximum length of 32,001 bytes or greater
 BOOLEAN
 Abstract data type



DECLARE CURSOR Format 1 (Declare cursor)

837

2. Only a column specification can be specified for an output BLOB value with a 
WRITE specification in a selection expression.
3. A GET_JAVA_STORED_ROUTINE_SOURCE specification cannot be specified.

7. An SQL statement specifying a foreign table or a view table having a foreign table 
as a base table cannot perform cursor-based updates or deletions.

Rule related to referential constraints
1. A holdable cursor that is used to retrieve a table in which a foreign key is defined 

is closed when the table being retrieved goes into check pending status.

Notes
1. Similar to an embedded variable, a cursor name is effective within a compile-unit 

module. Multiple SQLs relative to the same cursor cannot be used in different 
modules.

2. A cursor declaration must be coded before any SQL statement that references the 
cursor name used in the declaration.

3. Because DECLARE CURSOR is not an executable statement, no return code is 
returned to SQLCODE (and return code testing should not be performed).

4. By applying the work table creation suppression feature of the update SQL 
statement in the SQL optimization option and using the index key-value no-lock 
facility, you can update, add, or delete rows while using a cursor for which neither 
FOR UPDATE nor FOR UPDATE OF is specified.

5. Specifying FOR READ ONLY may cause HiRDB to create a work table. In this case, 
the FOR READ ONLY processing may be subject to restrictions depending on the 
row length of the work table. For details about work table row lengths, see the 
HiRDB Version 8 Installation and Design Guide.

Examples
1. Declare cursor CR1 to fetch rows, one row at a time, from stock table STOCK:

DECLARE CR1 CURSOR FOR
  SELECT PCODE,PNAME,COLOR,PRICE,SQTY
    FROM STOCK

2. Declare cursor CR1 for stock table STOCK to fetch rows, one row at a time, in 
which the unit price (PRICE) is $50 or greater:
DECLARE CR1 CURSOR FOR
  SELECT * FROM STOCK
    WHERE PRICE  = 50

3. Use cursor CR1 to retrieve all rows from stock table STOCK, apply a 10% discount 
to the unit price (PRICE), and then insert rows:
DECLARE CR1 CURSOR FOR



DECLARE CURSOR Format 1 (Declare cursor)

838

  SELECT * FROM STOCK
    FOR UPDATE
OPEN CR1
FETCH CR1 INTO <Name of variable into which column is fetched>
UPDATE STOCK
  SET PRICE = <Value of unit price after 10% discount>
    WHERE CURRENT OF CR1
INSERT INTO STOCK VALUES (<Insertion values for columns>)
CLOSE CR1

4. Use cursor CR1 to retrieve all rows from stock table STOCK, and apply a 10% 
discount to the unit price (PRICE):
DECLARE CR1 CURSOR FOR
  SELECT * FROM STOCK
    FOR UPDATE OF PRICE
OPEN CR1
FETCH CR1 INTO <Name of variable into which column is fetched>
UPDATE STOCK
  SET PRICE = <Value of unit price after 10% discount>
    WHERE CURRENT OF CR1
CLOSE CR1

5. Use cursor CR1 to retrieve all rows from stock table STOCK, and delete, without 
using the cursor, rows whose product name (PNAME) is sweater:
DECLARE CR1 CURSOR FOR
  SELECT * FROM STOCK
    FOR READ ONLY
OPEN CR1
FETCH CR1 INTO <Name of variable into which column is fetched>
DELETE FROM STOCK
    WHERE PNAME=N'sweater'
CLOSE CR1



DECLARE CURSOR Format 2 (Declare cursor)

839

DECLARE CURSOR Format 2 (Declare cursor)

Function
DECLARE CURSOR declares a cursor to be used by the FETCH statement to fetch on a 
row-by-row basis the results of a retrieval by a query specification.
In Format 2, this SQL statement declares a cursor for a SELECT statement 
preprocessed by a PREPARE statement (dynamic SELECT statement).

Privileges
None.

Format 2: Declaring a cursor relative to a SELECT statement (dynamic 
SELECT statement) preprocessed by the PREPARE statement

DECLARE cursor-name CURSOR
   [WITH HOLD][ {WITH RETURN | WITHOUT RETURN} ] FOR 
SQL-statement-identifier

Operands
cursor-name

Specifies the name of the desired cursor.
When a cursor name is specified in a UAP, it must not be enclosed in quotation marks, 
even when the cursor name is the same as an SQL reserved word. However, when a 
cursor name that is the same as an SQL reserved name is specified in a procedure, it 
must be enclosed in quotation marks.
See 1.1.7 Specification of names for details on cursor names.

[WITH HOLD]
Specifies that a holdable cursor is to be used. A holdable cursor cannot be used in the 
following cases:

• During remote database access
• When a column of the abstract data type using a plug-in is specified
• When a function call using a plug-in is specified
• A query with respect to a named derived table that was derived by specifying a 

function call using a plug-in
• A search using a list
• A foreign table or a view table having a foreign table as a base table



DECLARE CURSOR Format 2 (Declare cursor)

840

For details on holdable cursors, see the HiRDB Version 8 UAP Development Guide.
[ {WITH RETURN | WITHOUT RETURN} ]

In a cursor declaration in an SQL statement, these operands specify the returnability of 
the result set for the cursor. A cursor declared by specifying WITH RETURN is referred 
to as a result set cursor. If the procedure terminates when the result set cursor declared 
in an SQL procedure is still open, the result set for the cursor cannot be returned to the 
calling source for the procedure. For details about how to use a returned result set, see 
1.8.3 Results-set return facility.

SQL-statement-identifier
Specifies the SQL statement identifier assigned to the SELECT statement that was 
preprocessed by the PREPARE statement.

Common rules
1. The declared cursor remains closed.
2. A declared cursor cannot be used in the UPDATE or DELETE statement.
3. If multiple cursor declarations are made relative to the same SQL statement 

identifier, cursors that reference other RD nodes cannot be opened.
4. When multiple cursor declarations are made for the same SQL statement 

identifier, cursor declarations with and without the WITH HOLD specification 
cannot be mixed.

5. An SQL statement specifying a foreign table or a view table having a foreign table 
as a base table cannot perform cursor-based updates or deletions.

Rule related to referential constraints
1. A holdable cursor that is used to retrieve a table in which a foreign key is defined 

is closed when the table being retrieved goes into check pending status.

Notes
1. Similar to an embedded variable, a cursor name is effective within a compile-unit 

module. Multiple SQLs relative to the same cursor cannot be used in different 
modules.

2. The corresponding PREPARE statement must be coded before the cursor 
declaration.

3. A cursor declaration must be coded before any SQL statement that references the 
cursor name used in the declaration.

4. Because DECLARE CURSOR is not an executable statement, no return code is 
returned to SQLCODE (and return code testing should not be performed).

5. By applying the work table creation suppression feature of the update SQL 



DECLARE CURSOR Format 2 (Declare cursor)

841

statement in the SQL optimization option and using the index key-value no-lock 
facility, you can update, add, or delete rows while using a cursor for which neither 
FOR UPDATE nor FOR UPDATE OF is specified.

Example
Declare cursor CR1 to fetch rows, one row at a time, that have been specified by a 
prepared SELECT statement (SQL statement identifier is SEL):
DECLARE CR1 CURSOR FOR SEL



DELETE statement Format 1 (Delete rows)

842

DELETE statement Format 1 (Delete rows)

Function
The DELETE instruction deletes from a table the rows that satisfy a specified search 
condition or the row indicated by a cursor.

Privileges
A user who has the DELETE privilege for a table can delete rows from that table.
However, if a subquery is specified in the search condition, the user needs the SELECT 
privilege for the table for which the subquery is specified.

Format
DELETE FROM [[RD-node-name.]authorization-identifier.]table-identifier
                 [ [AS] correlation-name]
            [SQL-optimization-specification-for-used-index]
            [WHERE {search-condition|CURRENT OF {cursor-name | 
extended-cursor-name }}]
            [WITH ROLLBACK]

Operands
[[RD-node-name.]authorization-identifier.]table-identifier

RD-node name
Specify the RD node name of the RD node to be accessed.

authorization-identifier
Specifies the authorization identifier of the user who owns the table.
MASTER cannot be specified as an authorization identifier. For the case in which 
the authorization identifier is omitted, see 1.1.8 Qualifying a name.

table-identifier
Specifies a table containing the row to be deleted.
The following rules apply to table identifiers:
1. Row insertion, updating, or deletion cannot be performed on a read-only 

view table.
2. For details of read-only view tables, see the Common Rules in CREATE 

VIEW (Define view) for definition SQL statements.
3. If the deletion of a row from a view table is specified, HiRDB deletes the row 

from the base table which is subject to the view table operation.



DELETE statement Format 1 (Delete rows)

843

4. The scope of table-name is the entire DELETE statement.
[AS]correlation-name

Specify this operand when using a correlation name for the table to be deleted.
The scope of the correlation name is the entire DELETE statement. The table identifier 
to be deleted does not have a scope.

SQL-optimization-specification-for-used-index
For details about the SQL optimization specification for a used index, see 2.24 SQL 
optimization specification.

WHERE {search-condition|CURRENT OF {cursor-name | extended-cursor-name} }
WHERE

When the WHERE clause is omitted, all rows in the specified table are deleted and 
the W warning flag is set in SQLWARN4 in the SQL Communications Area.

search-condition
Specifies criteria for selecting the rows to be deleted.
Embedded variables, ? parameters, SQL variables, and SQL parameters can be 
specified in a search condition. Only ? parameters can be specified in a search 
condition in a DELETE statement that is preprocessed by the PREPARE statement.
SQL variables or SQL parameters are used in an SQL procedure. For details about 
specification values in a Java procedure, see JDBC drivers or SQLJ in the HiRDB 
Version 8 UAP Development Guide. For details on search conditions, see 2.7 
Search conditions.
cursor-name

Specifies the name of the cursor that indicates the row to be deleted.
The cursor name specified in cursor-name is a cursor declared in a cursor declaration.
The cursor specified in cursor-name must be positioned at a row opened by the OPEN 
statement and closed by the FETCH statement. Any OPEN, FETCH, CLOSE, or DELETE 
statement that is directed at the cursor should be executed in the same transaction 
(except when a holdable cursor is used).
After the DELETE statement has executed, the cursor specified in cursor-name 
becomes a cursor that does not point to any row. To update or delete the row following 
the deleted row, the FETCH statement must be executed on the cursor in order to 
advance the cursor.
extended-cursor-name

This operand specifies the extended cursor name that identifies the cursor that 
points to the row to be deleted.



DELETE statement Format 1 (Delete rows)

844

The extended cursor name that identifies the cursor allocated by the ALLOCATE 
CURSOR statement should be specified. However, a result set cursor cannot be 
specified.
The cursor identified in extended-cursor-name should be open and positioned on 
the row to be deleted.
The cursor identified in extended-cursor-name does not have any row that it can 
point to, after the execution of the DELETE statement. If any row after the deleted 
row is to be updated or deleted, the FETCH statement should be executed on the 
cursor to move it.
For extended cursor names, see 2.27 Extended cursor name.
WITH ROLLBACK
Specifies that if the table to be deleted is being used by another user, the 
transaction issued by that user is to be cancelled and invalidated.
If the WITH ROLLBACK option is omitted and the table to be deleted is being used 
by another user, the current user must wait until the transaction issued by the other 
user is completed.

Common rules
1. Normal execution of the DELETE statement sets the number of deleted rows in 

SQLERRD[2] in the SQL Communications Area.
2. If there are no rows to be deleted, the system returns the following return codes:

• Return code 100 to SQLCODE in the SQL Communications Area
• Return code 100 to the SQLCODE variable
• Return code '02000' to the SQLSTATE variable

3. If the user LOB RDAREA that stores a LOB column or LOB attribute is in the 
frozen update status, the LOB column or LOB attribute cannot be deleted (an 
attempt to delete it causes an already frozen error).

4. If the table is a falsification prevented table and the rows that satisfy specified 
search conditions include a row that is subject to a deletion prohibition duration, 
HiRDB deletes none of the rows satisfying the search conditions, and generates 
an error.

5. If the table is a falsification prevented table and the row pointed to by a specified 
cursor is subject to a deletion prohibition duration, HiRDB generates an error 
without deleting the row.

6. If the DELETE statement is executed on a table with a WITHOUT ROLLBACK 
specification, the timing at which the row-locking is released can vary according 
to whether an index is defined. For details, see the rules on WITHOUT ROLLBACK 



DELETE statement Format 1 (Delete rows)

845

in CREATE TABLE (Define table).
7. Before deleting a row in a shared table, the LOCK statement for the table should 

be executed in the lock mode. An attempt to delete a row in a shared table without 
executing the LOCK statement can cause an error that prevents the row from being 
deleted. For details about how to update shared tables, see the HiRDB Version 8 
Installation and Design Guide. For objects of locking in the execution of the 
LOCK statement, see the notes in LOCK statement (Lock control on tables).

Rules on referential constraints
1. For rules on deleting rows in a referenced table or referencing table, see the 

reference operation in CREATE TABLE (Define table).
2. For the deletion of rows in a referenced table for which constraint operations are 

defined in RESTRICT, the referencing table is referenced to determine whether 
the value of the primary key constituent column in the rows to be deleted is 
included in the value of a foreign key constituent column in the referencing table. 
The data guarantee level during the search through the referencing table assumes 
the share mode. For this reason, if during the deletion of rows in the referenced 
table for which constraint operations are defined in RESTRICT, operations are 
performed on the referencing table by another transaction, the row deletion action 
goes into a wait state until the transaction is settled.

3. If any combination of the following conditions occurs, data incompatibility can 
occur between the referenced table and the referencing table subject to referential 
constraints. Such incompatibility can also occur regardless of whether the 
constraint operation is RESTRICT or CASCADE. For rules on referential 
constraints, see the HiRDB Version 8 Installation and Design Guide.

• The transaction involving the deletion of rows in the referencing table is 
different from the transaction that updates or deletes rows in the referenced 
table.

• The above two transactions are executed simultaneously.
• The value of the primary key constituent column for the row in the 

referencing table to be deleted is equal to the value of the foreign key 
constituent column of the row in the referenced table to be updated or 
deleted.

• The transaction that deletes referencing table rows is committed, and the 
transaction that updates or deletes referenced table rows is rolled back.

Notes
1. Similar to an embedded variable, a cursor name is effective within a compile-unit 

module. Multiple SQLs relative to the same cursor cannot be used in different 
modules.



DELETE statement Format 1 (Delete rows)

846

2. If the table is a falsification prevented table and a deletion prohibition duration is 
specified, an overflow occurs if the sum of the date of insertion of the row to be 
deleted and the deletion prohibition duration exceeds December 31, 9999.

Examples
1. Delete from stock table STOCK those rows whose product code (PCODE) column 

is '302S':
DELETE FROM STOCK
       WHERE PCODE = '302S'

2. Delete from stock table STOCK those rows whose product code (PCODE) column 
is read into embedded variable :XPCODE:
DELETE FROM STOCK
       WHERE PCODE = :XPCODE

3. Delete the row specified by cursor CR1 from stock table STOCK:
DELETE FROM STOCK
       WHERE CURRENT OF CR1



DELETE statement Format 2 (Delete row using an array)

847

DELETE statement Format 2 (Delete row using an array)

Function
Deletes rows that satisfy specified search conditions from a table. Multiple deletion 
actions can be executed in batch by specifying an embedded variable of an array 
format.

Privileges
A user who has the DELETE privilege for a table can delete rows from that table.
However, if a subquery is specified in the search condition, the user needs the SELECT 
privilege for the table for which the subquery is specified.

Format: Deleting several times using an embedded variable array

Operands
For details about operands other than FOR and search-condition, and for rules 
regarding these items, see Format 1.

FOR : embedded-variable
Specifies the embedded variable in which the number of times deletion operations are 
performed using an embedded variable array is assigned. An embedded variable of the 
SMALLINT type should be specified. The allowable range is from 1 to 4,096, no greater 
than the number of elements in the embedded variable array or in the indicator variable 
array. Zero and negative values are not allowed. An out-of-range value can produce a 
run-time error.
embedded-variable-array

This is the embedded variable declared in the array format. Specify an array 
variable to be used as a search condition using a value other than the NULL value. 
Values to be used as search conditions should be assigned to the elements of the 
variable array. If a value to be used as a search condition contains the NULL value, 
both embedded-variable-array and indicator-variable-array should be specified.

indicator-variable-array
This is the indicator variable declared in the array format. Values indicating 

 
 FOR : embedded-variable
 DELETE FROM [[RD-node-name.]authorization-identifier.]table-identifier [[AS] correlation-name]
         [used-index-SQL-optimization-specification]
         WHERE search-condition
         [WITH ROLLBACK]



DELETE statement Format 2 (Delete row using an array)

848

whether the values of the elements in embedded-variable-array are the NULL 
value should be assigned to the corresponding elements in 
indicator-variable-array. For values that can be assigned, see 1.5.5 Setting a 
value for an indicator variable.
WHERE search-condition

search-condition
Specifies the criteria by which the rows to be deleted are selected. An embedded 
variable not in the array format cannot be specified in search-condition.

Common rules
1. One or more variable arrays should be specified in a clause other than the FOR 

clause. An error may occur if such an array is not specified.
2. Specifying an embedded variable not in the array format in a clause other than the 

FOR clause can cause an error.
3. The data type of embedded-variable-array should be the data type of the 

corresponding column or a convertible data type.
4. The number of elements in the embedded variable array or the indicator variable 

array should be in the range of 1 to 4,096. Specifying an out-of-range value can 
cause an error. The number of elements should be greater than the maximum 
value specified in FOR:embedded-variable.

5. The elements that are evaluated in one deletion operation in a given embedded 
variable array and indicator variable array are the elements having the same 
element number.

6. Because it contains embedded variable arrays and indicator variable arrays, the 
DELETE statement Format 2 cannot be preprocessed by a PREPARE statement. For 
details about how to execute DELETE statement Format 2 dynamically, see  
EXECUTE statement Format 2 (Execute an SQL statement using an array).

7. DELETE using an array cannot be used in a procedure.
8. DELETE using an array cannot accept the BLOB type, the BINARY type with a 

maximum length of 32,001 bytes or greater, or the abstract data type.
9. Upon normal completion of the DELETE statement, the number of rows deleted is 

assigned to the SQLERRD[2] area of the SQL communications area.
10. If the row to be deleted is not found, the following return codes are assigned:

• A return code of 100 to the SQLCODE area of the SQL communications area
• A return code of 100 to the SQLCODE variable
• A return code of 02000 to the SQLSTATE variable



DELETE statement Format 2 (Delete row using an array)

849

11. If the given table is a falsification-prevented table, and if the rows satisfying 
specified search conditions include a row in the deletion prohibited duration, an 
error occurs, and the command terminates without deleting any of the rows 
satisfying the search conditions.

12. If an error occurs in any of the rows to be deleted, the DELETE statement is rolled 
back.

13. If the DELETE statement is executed on a table with a WITHOUT ROLLBACK 
specification, the timing at which the row-locking is released varies according to 
whether or not an index is defined. See the rules on WITHOUT ROLLBACK in 
CREATE TABLE (Define table).

14. Before deleting rows in a shared table, the LOCK statement in the lock mode 
should be executed on the table. An attempt to delete rows in a shared table 
without executing the LOCK statement can cause an error and a failure to delete 
the rows. For details about how to perform updates on a shared table, see the 
HiRDB Version 8 Installation and Design Guide. For objects of locking in the 
execution of the LOCK statement on a shared table, see the notes in LOCK 
statement (Lock control on tables).

Rules on referential constraints
1. For rules on deleting rows in a referenced table or referencing table, see the 

reference operation in CREATE TABLE.
2. For the deletion of rows in a referenced table for which constraint operations are 

defined in RESTRICT, the referencing table is referenced to determine whether 
the value of the primary key constituent column in the rows to be deleted is 
included in the value of a foreign key constituent column in the referencing table. 
The data guarantee level during the search through the referencing table assumes 
the share mode. For this reason, if during the deletion of rows in the referenced 
table for which constraint operations are defined in RESTRICT operations are 
performed on the referencing table by another transaction, the row deletion action 
goes into a wait state until the transaction is settled.

3. If any combination of the following conditions occurs, data incompatibility can 
occur between the referenced table and the referencing table subject to referential 
constraints. Such incompatibility can also occur regardless of whether the 
constraint operation is RESTRICT or CASCADE. For rules on referential 
constraints, see the HiRDB Version 8 Installation and Design Guide.

• The transaction involving the deletion of rows in the referencing table is 
different from the transaction that updates or deletes rows in the referenced 
table.

• The above two transactions are executed simultaneously.
• The value of the primary key constituent column for the row in the 



DELETE statement Format 2 (Delete row using an array)

850

referencing table to be deleted is equal to the value of the foreign key 
constituent column of the row in the referenced table to be updated or 
deleted.

• The transaction that deletes referencing table rows is committed, and the 
transaction that updates or deletes referenced table rows is rolled back.

Note
1. When row deletion is executed on a foreign table, deletion using an array is not 

carried out between the local HiRDB and a foreign server. The deletion operation 
is repeated the number of times specified in the embedded variable to delete the 
rows.

Examples
1. Execute, in batch, several deletion operations on rows of the inventory table 

(STOCK) by value of the product code (PCODE) that is assigned to an array variable 
in the C language:

 
XDELETE_NUM = 5;
EXEC SQL FOR :XDELETE_NUM
      DELETE FROM STOCK
WHERE PCODE = :XPCODE:IPCODE;



Preparable dynamic DELETE statement: locating (Delete row using a preprocessable cursor)

851

Preparable dynamic DELETE statement: locating (Delete row using a 
preprocessable cursor)

Function
Deletes the row pointed to by a cursor. This command is used to delete a row by means 
of an EXECUTE statement after performing preprocessing by a PREPARE statement, or 
to perform preprocessing and execution at once by means of an EXECUTE IMMEDIATE 
statement.

Privileges
A user who has the DELETE privilege for a table can delete rows from that table.

Format

Operands
For details about operands other than GLOBAL or cursor-name, and for rules on 
operands, see DELETE statement Format 1.

WHERE CURRENT OF GLOBAL cursor-name
GLOBAL

Specifies GLOBAL as the scope for cursor-name.
cursor-name

Specifies the name of the cursor that points to the row to be deleted.
The cursor specified in cursor-name is the cursor identified by the extended 
cursor name specified in the ALLOCATE CURSOR statement. The value of the 
extended cursor name specified in the ALLOCATE CURSOR statement should be 
specified in cursor-name. However, a result set cursor cannot be specified in 
cursor-name.
At execution time, the cursor specified in cursor-name must be open and must be 
positioned on the row to be deleted.
The cursor identified in cursor-name does not have any row that it can point to, 
after the execution of the DELETE statement. If any row after the deleted row is to 
be updated or deleted, the FETCH statement should be executed on the cursor to 

 
 DELETE [FROM [[RD-node-name.]authorization-identifier.]table-identifier[ [AS] correlation-name]
      [used-index-SQL-optimization-specification]]
            WHERE CURRENT OF GLOBAL cursor-name
         [WITH ROLLBACK]
 



Preparable dynamic DELETE statement: locating (Delete row using a preprocessable cursor)

852

move it.

Common rules
1. After performing preprocessing using a PREPARE statement, use the EXECUTE 

statement to execute, or use the EXECUTE IMMEDIATE statement to preprocess 
and execute at once.

2. When omitting a table identifier, make sure that before preprocessing is 
performed, the ALLOCATE CURSOR statement is used to allocate the cursor to the 
dynamic SELECT statement. In this operation, the table that is the object of 
retrieval specified in the dynamic SELECT statement to which the cursor is 
allocated is assumed. When specifying a table identifier, it is not necessary that 
the cursor be allocated to the dynamic SELECT statement before the 
preprocessing.

3. The common rules on the DELETE statement Format 1 are applicable to the other 
common rules.

Rules on referential constraints
1. The rules on the DELETE statement Format 1 are applicable.

Notes
1. The notes on the DELETE statement Format 1 are applicable.

Examples
1. Delete the row specified with the cursor (cr (value: CR1)) from the inventory table 

(STOCK):
 
PREPARE :sel FOR 'SELECT * FROM STOCK FOR UPDATE'
<Assign CR1 to the embedded variable cr>
ALLOCATE CURSOR GLOBAL :cr FOR GLOBAL :sel
OPEN GLOBAL :cr
FETCH GLOBAL :cr INTO <Name of the variable into which columns are 
fetched>
PREPARE PRE1 FOR
    'DELETE FROM STOCK WHERE CURRENT OF GLOBAL CR1'
EXECUTE PRE1
DEALLOCATE PREPARE GLOBAL :sel



DESCRIBE statement Format 1 (Receive retrieval information and I/O information)

853

DESCRIBE statement Format 1 (Receive retrieval information and I/
O information)

Function
Receives into an SQL descriptor area the retrieval item information or output ? 
parameter information (such as data code and data length) of an SQL statement 
pre-processed by a PREPARE statement.
For details about the information to be received, see the manual HiRDB Version 8 UAP 
Development Guide. If the SQL statement pre-processed by the PREPARE statement 
does not have SQL retrieval item information or output ? parameter information, 0 is 
set in the SQLD area of the SQL descriptor area.

Privileges
None.

Format 1: Receiving retrieval information or output ? parameter 
information

DESCRIBE [OUTPUT]{ SQL-statement-identifier | extended-statement-name} 
INTO
          [:]SQL-descriptor-area-name
                     [[:]Column-Name-Descriptor-Area-name]
          [TYPE[:]Type-Name-Descriptor-Area-name]

Operands
{SQL-statement-identifier | extended-statement-name}
SQL-statement-identifier

Specifies the SQL statement identifier that was specified in the PREPARE statement.
extended-statement-name

Specifies the extended statement name that identifies the SQL statement preprocessed 
by the PREPARE statement.
For extended statement names, see 2.26 Extended statement name.

[:]SQL-descriptor-area-name[[:]Column-Name-Descriptor-Area-name]
[TYPE:]Type-Name-Descriptor-Area-name]

SQL-descriptor-area-name
Specifies the name of the SQL descriptor area that is to receive SQL retrieval item 
information (if the preprocessed SQL is a SELECT statement) or output ? 
parameter information (if the preprocessed SQL is a CALL statement).



DESCRIBE statement Format 1 (Receive retrieval information and I/O information)

854

For SQL descriptor areas, see the HiRDB Version 8 UAP Development Guide.
Column-Name-Descriptor-Area-name

Specifies the Column Name Descriptor Area that is to receive the names retrieval 
items or the parameter names of routines.
For Column Name Descriptor Areas, see the HiRDB Version 8 UAP Development 
Guide.

Type-Name-Descriptor-Area-name
Specifies the name of the Type Name Descriptor Area for receiving a user-defined 
data type name for a retrieval item.
For Type Name Descriptor Areas, see the HiRDB Version 8 UAP Development 
Guide.

Common rules
1. Before executing the DESCRIBE statement, the UAP should set the number of 

SQLVARs (SQLN areas) in the SQL descriptor area.
2. Both SQLDATA and SQLIND are cleared when the DESCRIBE statement executes. 

Therefore, executing the DESCRIBE statement is executed, appropriate values 
must be set in SQLDATA and SQLIND.

3. When a Column Name Descriptor Area is specified, the WITH SQLNAME OPTION 
must be specified in the associated PREPARE statement.

4. A Column Name Descriptor Area name should be specified only when the names 
of retrieval items or the parameter names of routines are to be received. However, 
the parameter name of a routine can be received only when a ? parameter is 
specified singly in an argument of the CALL statement. If a value expression 
containing a ? parameter is specified, the length of the name of the Column Name 
Descriptor Area is 0.

5. When a Type Name Descriptor Area name is specified, WITH [ALL] TYPE 
OPTION must be specified in the corresponding PREPARE statement.

6. A Type Name Descriptor Area name is specified only when a user-defined data 
type name is to be received for a retrieval item.

Notes
1. As an embedded variable name, an SQL statement identifier is effective in a 

compile-unit file. Multiple SQL statements referencing the same SQL statement 
identifier cannot be used in multiple modules.

2. If the output ? parameter is a procedure of a user-defined data type, the data type 
name information will not be set in the output ? parameter of the user-defined data 
type.



DESCRIBE statement Format 1 (Receive retrieval information and I/O information)

855

3. Even if a DESCRIBE [OUTPUT] statement is not used, the same information as that 
obtained by using DESCRIBE [OUTPUT] can be obtained by specifying OUTPUT in 
a PREPARE statement.

Examples
1. Specify retrieval item information on the SELECT statement (SQL statement 

identifier: PRESQL) preprocessed by the PREPARE statement, the names of 
retrieval items, or the parameter names of routines in the SQL descriptor area and 
in the Column Name Descriptor Area:
DESCRIBE PRESQL INTO :SQLDA :SQLCNDA

2. Specify retrieval item information and the names of retrieval items for the 
SELECT statement (extended statement name: pre) preprocessed by the PREPARE 
statement in the SQL descriptor area and the Column Name Descriptor Area.
 
PREPARE GLOBAL :pre FOR :sel WITH SQLNAME OPTION
DESCRIBE GLOBAL :pre INTO :SQLDA :SQLCNDA



DESCRIBE statement Format 2 (Receive retrieval information and I/O information)

856

DESCRIBE statement Format 2 (Receive retrieval information and I/
O information)

Function
Receives into the SQL descriptor area the input ? parameter information of an SQL 
statement pre-processed by a PREPARE statement (data code, data length, etc.).
For details about the information to be received, see the manual HiRDB Version 8 UAP 
Development Guide. If the SQL statement pre-processed by the PREPARE statement 
does not have input ? parameter information, 0 is set in the SQLD area of the SQL 
descriptor area.

Privileges
None.

Format 2: Receiving input ? parameter information
DESCRIBE INPUT { SQL-statement-identifier | extended-statement-name} INTO
  [:]SQL-descriptor-area-name [[:]Column-Name-Descriptor-Area-name]

Operands
{SQL-statement-identifier | extended-statement-name}

SQL-statement-identifier
Specifies the SQL statement identifier specified in the PREPARE statement.

extended-statement-name
Specifies the extended statement name that identifies the SQL statement 
preprocessed by the PREPARE statement.
For extended statement names, see 2.26 Extended statement name.
[:]SQL-descriptor-area-name[[:]Column-Name-Descriptor-Area-name]

SQL-descriptor-area-name
Specifies the name of the SQL descriptor area into which input ? parameter 
information is to be set.
For SQL descriptor areas, see the HiRDB Version 8 UAP Development Guide.

Column-Name-Descriptor-Area-name
Specifies the Column Name Descriptor Area that is to receive the names of 
retrieval items or the parameter names of routines.
For Column Name Descriptor Areas, see the HiRDB Version 8 UAP Development 



DESCRIBE statement Format 2 (Receive retrieval information and I/O information)

857

Guide.

Common rules
1. Before executing the DESCRIBE statement, the UAP must set the number of 

SQLVAR areas in SQLN in the SQL descriptor area.
2. Because SQLDATA and SQLIND are both cleared when the DESCRIBE statement 

is executed, values should be set after the DESCRIBE statement has executed.
3. When a Column Name Descriptor Area name is specified, the WITH SQLNAME 

OPTION should be specified in the corresponding PREPARE statement.
4. A Column Name Descriptor Area name should be specified only for receipt of the 

name of a retrieval item or a routine parameter name. A routine parameter name 
can be received only if a ? parameter is specified by itself in an argument of the 
CALL statement. If a value expression including a ? parameter is specified, the 
length of the Column Name Descriptor Area name will be 0.

Notes
1. The SQL statement identifier, similar to an embedded variable name, is effective 

only within a compile-unit file. Multiple SQLs relative to the same SQL statement 
identifier cannot be used in multiple modules.

2. Even if a DESCRIBE INPUT statement is not used, the same information as that 
obtained by using DESCRIBE INPUT can be obtained by specifying INPUT in a 
PREPARE statement.



DESCRIBE CURSOR statement (Receive cursor retrieval information)

858

DESCRIBE CURSOR statement (Receive cursor retrieval 
information)

Function
Receives cursor query retrieval item information for referencing the result set returned 
from a procedure into the SQL descriptor area (data code, data length, etc.).
For details about the information to be received, see the HiRDB Version 8 UAP 
Development Guide.

Privileges
None.

Format 1: Receiving cursor retrieval item information

Operands
For operands other than the CURSOR extended-cursor-name STRUCTURE operand, see 
DESCRIBE statement Format 1.

CURSOR extended-cursor-name STRUCTURE
extended-cursor-name

Specifies the name of the extended cursor that identifies the cursor allocated to 
the group of result sets that was returned by a procedure in ALLOCATE CURSOR 
statement Format 2.
For extended cursor names, see 2.27 Extended cursor name.

Common rules
1. Before executing the DESCRIBE statement, the UAP should assign the number of 

SQLVAR (SQLN areas) in the SQL descriptor area.
2. Because the SQLDATA and SQLIND are cleared when the DESCRIBE statement is 

executed, if the DESCRIBE statement is used, a value should be assigned after the 
statement is executed.

Example
1. Assign retrieval item information on the cursor (extended cursor name: cr, scope: 

GLOBAL) allocated to the group of result sets returned by the procedure PROC1 to 

 
 DESCRIBE [OUTPUT] CURSOR extended-cursor-name STRUCTURE  INTO
       [:] SQL-descriptor-area
 



DESCRIBE CURSOR statement (Receive cursor retrieval information)

859

SQL-descriptor-area.
 
CALL PROC1()
ALLOCATE GLOBAL :cr FOR PROCEDURE PROC1
DESCRIBE CURSOR GLOBAL :cr STRUCTURE INTO :SQLDA



DESCRIBE TYPE statement (Receive definition information on user-defined data type)

860

DESCRIBE TYPE statement (Receive definition information on 
user-defined data type)

Function

When a user-defined data type is contained directly or indirectly* in retrieval item 
information for an SQL statement preprocessed by a PREPARE statement, the 
DESCRIBE TYPE statement is used to receive the definition information (attribute data 
codes and data lengths) on the user-defined data type into the SQL descriptor area.
When preprocessing is performed without specifying the WILL ALL TYPE OPTION in 
the PREPARE statement, definition information on the user-defined data type cannot be 
received. In such a case, if all encapsulation levels of the attributes of the user-defined 
data type are other than PUBLIC, 0 is set in the SQLD area of the SQL descriptor area.
* A user-defined data type is contained directly when the column containing the 
retrieval item information has a user-defined data type. A user-defined data type is 
contained indirectly when the column containing the retrieval item information has a 
user-defined data type and also contains attributes of the user-defined data type (i.e., 
nested user-defined data type).

Privileges
None.

Format
DESCRIBE TYPE :embedded-variable-1 :embedded-variable-2 
                   FOR { SQL-statement-identifier | extended-statement-name} 
INTO
              [:]SQL-descriptor-area-name
                         [[:]Column-Name-Descriptor-Area-name]
              [TYPE [:]Type-Name-Descriptor-Area-name]

Operands
TYPE : embedded-variable-1 : embedded-variable-2 FOR 
{SQL-statement-identifier | extended-statement-name}

embedded-variable-1
Specifies a VARCHAR(8) embedded variable that stores the name of the owner of 
the user-defined data type.

embedded-variable-2
Specifies a VARCHAR(30) embedded variable that stores the data type identifier 
of the user-defined data type.



DESCRIBE TYPE statement (Receive definition information on user-defined data type)

861

SQL-statement-identifier
Specifies the SQL statement identifier that was specified in the PREPARE 
statement.
[:] SQL-descriptor-area-name [[:] Column-Name-Descriptor-Area-name] 
[TYPE [:] Type-Name-Descriptor-Area-name]

SQL-descriptor-area-name
Specifies the name of the SQL descriptor area that receives attribute information 
on the user-defined data type. For details about descriptor areas, see the HiRDB 
Version 8 UAP Development Guide.

extended-statement-name
Specifies the extended statement name that identifies the SQL statement 
preprocessed by the PREPARE statement.
For extended statement names, see 2.26 Extended statement name.

Column-Name-Descriptor-Area-name
Specifies the name of the Column Name Descriptor Area that receives the 
attribute name for the user-defined data type. For details about Column Name 
Descriptor Areas, see the HiRDB Version 8 UAP Development Guide.

Type-Name-Descriptor-Area-name
When the attribute of the user-defined data type is a user-defined data type, 
specifies the name of the Type Name Descriptor Area that receives the name of 
the user-defined data type of user-defined type. For details about Type Name 
Descriptor Areas, see the HiRDB Version 8 UAP Development Guide.

Common rules
1. The number of SQLVARs (SQLN area) in the SQL descriptor area must be assigned 

by the UAP before the DESCRIBE TYPE statement is executed.
2. The following items are assigned: data type of the attribute of the user-defined 

data type (assigned in the SQL descriptor area), name of the attribute (assigned in 
the Column Name Descriptor Area), and the name of the user-defined data type 
when the data type of the attribute is the user-defined type (assigned in the Type 
Name Descriptor Area).

3. If a specified abstract data type inherited the attributes of a higher-level data type, 
information on the inherited attributes will also be assigned. In such a case, 
attributes are set in the following order: inherited attributes first, then attributes 
specific to the abstract data type.

4. User-defined data types cannot be specified, other than those that are directly or 
indirectly included in the SQL retrieval items specified in the PREPARE statement.



DESCRIBE TYPE statement (Receive definition information on user-defined data type)

862

5. Definition information on an attribute cannot be obtained if the encapsulation 
level of the attribute is not PUBLIC.

6. When a Column Name Descriptor Area is specified, WITH SQLNAME OPTION 
must be specified in the corresponding PREPARE statement.

Note
An SQL statement identifier, as embedded variables, is effective in a compile-unit file. 
Multiple SQL statements with the same SQL statement identifier cannot be used in 
multiple modules.

Example
Specify attribute information, the attribute name, and the user-defined data type for the 
attribute of a user-defined data type (embedded variable 1 is WUSERID; embedded 
variable 2 is WTYPENAME) obtained by a SELECT statement (SQL statement identifier 
is PRESQL) preprocessed by a PREPARE statement in the following areas: an SQL 
descriptor area, a Column Name Descriptor Area, and a Type Name Descriptor Area:
DESCRIBE TYPE :WUSERID :WTYPENAME
    FOR PRESQL INTO :SQLDA :SQLCNDS :SQLTNDA



DROP LIST statement (Delete list)

863

DROP LIST statement (Delete list)

Function
The DROP LIST statement deletes a list or all lists owned by the user.

Privileges
Creator of the list
The creator of a list can delete the created list.

Format
DROP {LIST list-name|ALL LIST}

Operands
LIST list-name

Specifies the name of a list that is to be deleted.
ALL LIST

Specifies that all the lists owned by the user are to be deleted.

Common rules
1. The DROP LIST statement is not subject to the ROLLBACK statement.
2. Although the DROP LIST statement can be executed dynamically, it cannot be 

executed by embedding it directly in a host program.
3. The same user cannot manipulate a list by connecting to HiRDB concurrently in 

multiple sessions.

Note
Even if there are no lists to be deleted, executing DROP ALL LIST does not result in an 
error.

Examples
1. Delete a dependent list (FAMILYT):

DROP LIST FAMILYT

2. Delete all lists owned by the user:
DROP ALL LIST



EXECUTE statement Format 1 (Execute SQL)

864

EXECUTE statement Format 1 (Execute SQL)

Function
The EXECUTE statement executes an SQL preprocessed by the PREPARE statement.

Privileges
None.

Format 1: Executing preprocessed SQL statements
EXECUTE { SQL-statement-identifier | extended-statement-name}
 [{INTO:embedded-variable [:indicator-variable]
         [, :embedded-variable [:indicator-variable]]...
   |INTO DESCRIPTOR [:]SQL-descriptor-area-name}]
 [{USING:embedded-variable [:indicator-variable]
         [, :embedded-variable [:indicator-variable]]...
   |USING DESCRIPTOR [:]SQL-descriptor-area-name}]

Operands
{SQL-statement-identifier | extended-statement-name}

SQL-statement-identifier
Specifies the SQL statement identifier assigned to the SQL preprocessed by the 
PREPARE statement.

extended-statement-name
Specifies the extended statement name that identifies the SQL statement 
preprocessed by the PREPARE statement.
For extended statement names, see 2.26 Extended statement name.
INTO:embedded-variable[:indicator-variable] [, :embedded-variable
     [:indicator-variable]]...

embedded-variable
If retrieval results from the single-row SELECT statement preprocessed by the 
PREPARE statement are to be received, or the CALL statement preprocessed by the 
PREPARE statement includes an output ? parameter, and if the resulting value is 
to be received into an embedded variable, specifies an embedded variable that 
receives the value of the column of the retrieval results or the output ? parameter.

indicator-variable
Specifies the indicator variable to which a value is returned, indicating whether 



EXECUTE statement Format 1 (Execute SQL)

865

the value of the column of the retrieval results returned to the embedded variable 
or the value of the output parameter is the null value.
The indicator variable should be declared in the embedded SQL declaration 
section as an embedded variable having the SMALLINT data type.
If you omit the indicator variable, a null value cannot be returned to the embedded 
variable.
INTO DESCRIPTOR[:]SQL-descriptor-area-name

SQL-descriptor-area-name
If retrieval results from the single-row SELECT statement preprocessed by the 
PREPARE statement are to be received or the CALL statement preprocessed by the 
PREPARE statement includes an output ? parameter, and if the resulting value is 
to be received into an SQL descriptor area, specifies an SQL descriptor area that 
receives the value of the column of the retrieval results or the output ? parameter.
USING:embedded-variable[:indicator-variable][,:embedded-variable
      [:indicator-variable]]...

embedded-variable
If an SQL statement preprocessed by the PREPARE statement contains an input ? 
parameter and a value is to be assigned to the parameter from an embedded 
variable, specifies the embedded variable containing the value.
The number of embedded variables specified in the USING clause must be the 
same as the number of input ? parameters contained in the SQL that is executed 
by the EXECUTE statement. The embedded variables and the input ? parameters 
are associated with each other in the order in which they are listed.
The data type of an embedded variables specified in the USING clause must be 
compatible with the data types that are permitted for input ? parameters.

indicator-variable
Specifies an indicator variable that indicates whether or not the value of the paired 
embedded variable is the null value.
The indicator variable should be declared in the embedded SQL declaration 
section as an embedded variable with the SMALLINT data type.
If no indicator variable is specified, the value of that embedded variable is 
assumed to be a non-null value.
USING DESCRIPTOR [:] SQL-descriptor-area-name

SQL-descriptor-area-name
If an SQL statement preprocessed by the PREPARE statement contains an input ? 



EXECUTE statement Format 1 (Execute SQL)

866

parameter and a value is to be assigned to the parameter from a descriptor area, 
specifies the name of the descriptor area that stores the value.

Common rules
1. An SQL executed by the EXECUTE statement must be preprocessed by the 

PREPARE statement.
2. The PREPARE statement and the EXECUTE statement that executes the SQL 

preprocessed by the PREPARE statement must be executed in the same 
transaction.

3. As an embedded variable name, an SQL statement identifier is effective in a 
compile-unit file. Multiple SQL statements referencing the same SQL statement 
identifier cannot be used in multiple modules.

4. The number of embedded variables specified in the INTO clause, the number of 
columns of retrieval results from the single-row SELECT statement executed by 
the EXECUTE statement, and the number of output ? parameters included in the 
CALL statement must all be equal. In the SQL statement to be executed in a 
single-row SELECT statement, if the number of embedded variables is not equal 
to the number of columns, a warning flag W is assigned to the SQLWARN3 area of 
the SQL communications area. Notice that the embedded variables, the columns 
of retrieval results, and the output ? parameters are put in correspondence with 
one another from the beginning in the order in which they are listed.

5. The data type of the embedded variables specified in the INTO clause should be 
the data type allowed in the corresponding retrieval result columns or output ? 
parameters.

6. If the data fetched into the embedded variable of the fixed-length character string 
(including national character strings and mixed character strings) specified in the 
INTO clause is shorter than the definition length of the embedded variable, the 
data is inserted left-justified, and the remaining characters are blank-filled.

7. If the value of retrieval result columns or the value of the output ? parameter in 
the CALL statement is the null value, the value of the corresponding embedded 
variable may be unpredictable.

Notes
1. The EXECUTE statement can be executed any number of times once the SQL is 

preprocessed by the PREPARE statement.
2. For details about SQL descriptor area settings, see the HiRDB Version 8 UAP 

Development Guide.

Examples
1. Execute an SQL (SQL statement identifier is PRESQL) preprocessed by the 



EXECUTE statement Format 1 (Execute SQL)

867

PREPARE statement; specify an embedded variable (QUESTION) that assigns a 
value to a ? parameter in PRESQL:
EXECUTE PRESQL USING :QUESTION

2. Execute the SQL (SQL-statement-identifier: PRESQL) preprocessed by the 
PREPARE statement. The user must specify the SQL descriptor area (SQLDA) that 
is to store the information by which a value is assigned to the ? parameter of 
PRESQL.
EXECUTE PRESQL USING DESCRIPTOR SQLDA

3. Execute the SQL (SQL-statement-identifier: PRESQL) preprocessed by the 
PREPARE statement.
CALL PROC1(?,?,?)

The parameter mode for the first SQL parameter of the procedure PROC1 must be 
set to IN, the parameter mode for the second SQL parameter must be set to 
INOUT, and the parameter mode for the third SQL parameter must be set to OUT. 
The embedded variable XPARAM1 must be specified for the first SQL parameter, 
the embedded variable XPARAM2 for the second SQL parameter, and the 
embedded variable XPARAM3 for the third SQL parameter.
EXECUTE PRESQL
   INTO  :XPARAM2, :XPARAM3
   USING :XPARAM1, :XPARAM2



EXECUTE statement Format 2 (Execute an SQL statement using an array)

868

EXECUTE statement Format 2 (Execute an SQL statement using an 
array)

Function
The EXECUTE statement executes the SQL statements, preprocessed by the PREPARE 
statement, in multiple rows in batch using an array.

Privileges
None.

Format 2: Batch execution of multiple rows or multiple times of 
preprocessed (INSERT, UPDATE, or DELETE) statement

Operands
{SQL-statement-identifier | extended-statement-name}

SQL-statement-identifier
Specifies the SQL identifier assigned to the SQL statement that was preprocessed 
by the PREPARE statement.

extended-statement-name
Specifies the extended statement name that identifies the SQL statement 
preprocessed by the PREPARE statement.
For extended statement names, see 2.26 Extended statement name.
USING :array-of-embedded-variables[:array-of-indicator-variables][, 
:array-of-embedded-variables[:array-of-indicator-variables]]...

array-of-embedded-variables
When assigning the value of an input ? parameter included in the SQL statement 
that was preprocessed by the PREPARE statement, specifies the embedded 
variable having the value to be assigned to the input ? parameter in an array 
format.
Make the number of embedded variable arrays specified in the USING clause 

 
 EXECUTE {SQL-statement-identifier|extended-statement-name}
     {USING :array-of-embedded-variables[:array-of-indicator-variables]
           [, :array-of-embedded-variables[:array-of-indicator-variables]]...
      |USING DESCRIPTOR [:]SQL-descriptor-area-name}
     BY :embedded-variable[ROWS]
 



EXECUTE statement Format 2 (Execute an SQL statement using an array)

869

equal to the number of input ? parameters that are included in the SQL statement 
executed by the EXECUTE statement. The array of embedded variables and the 
input ? parameters are put in correspondence from the beginning in their 
respective collating sequences.
The data type of the array of embedded variables specified in the USING clause 
should be the data type allowed for the corresponding input ? parameter.

array-of-indicator-variables
Specifies an indicator variable in an array format, indicating whether the value of 
embedded-variable is the null value.
The array of indicator variables should be declared in the embedded SQL declare 
section as an embedded variable in an array format having the SMALLINT data 
type.
If the array-of-indicator-variables operand is omitted, HiRDB assumes that the 
value of array-of-indicator-variables is a non-null value.
USING DESCRIPTOR [:]SQL-descriptor-area-name

When assigning the value of the input ? parameter included in the SQL statement and 
preprocessed by the PREPARE statement that is to be given in the SQL descriptor area, 
specifies the name of the SQL descriptor area storing information on the input ? 
parameter.

BY :embedded-variable[ROWS]
embedded-variable

If the SQL statement preprocessed by the PREPARE statement is an INSERT 
statement, assigns the number of rows to be processed (inserted). If the SQL 
statement preprocessed by the PREPARE statement is either an UPDATE or 
DELETE statement, specifies an embedded variable in which the number of 
operations (updating or deleting) to be performed is assigned. Specify a 
SMALLINT type embedded variable.
The following range of values can be specified:

• Specifying USING 
:array-of-embedded-variables[:array-of-indicator-variables][, 
:array-of-embedded-variables[:array-of-indicator-variables]] in the 
operand:
The range of values is 1 to 4,096.

• Specifying USING DESCRIPTOR [:]SQL-descriptor-area-name in the 
operand:
The range of values is 1 to 30,000.



EXECUTE statement Format 2 (Execute an SQL statement using an array)

870

Zero and negative values cannot be assigned. Assigning an out-of-range value 
may cause a runtime error.
The word ROW can be omitted without changing the meaning.

Common rules
1. The SQL statement executed by the EXECUTE statement must be preprocessed in 

advance using the PREPARE statement.
2. The EXECUTE statement Format 2 can be used only if the SQL statement 

preprocessed by the PREPARE statement is the INSERT, UPDATE, or DELETE 
statement shown below:

• INSERT INTO [authorization-identifier.] table-identifier [ (column-value [, 
column-value]...) ]
{VALUES (insertion-value [, insertion-value]...)
| query-expression-body }
[WITH ROLLBACK]

• INSERT INTO [[RD-node-name.]authorization-identifier.] table-identifier 
(ROW)
{VALUES(:embedded-variable-array [:indicator-variable-array])
| query-expression-body }
[WITH ROLLBACK]

• UPDATE [[RD-node-name.]authorization-identifier.] table-identifier [ [AS] 
correlation-name]
[used-index-SQL-optimization-specification]

  SET {update-object = update-value
    | (update-object, update-object [, update-object]) = row-subquery}
    [, {update-object = update-value
      | (update-object, update-object [, update-object]...) = row-subquery} ]...
[WHERE search-condition]
[WITH ROLLBACK]

• UPDATE [[RD-node-name.]authorization-identifier.] table-identifier [ [AS] 
correlation-name]
SET ROW = row-update-value
[used-index-SQL-optimization-specification]



EXECUTE statement Format 2 (Execute an SQL statement using an array)

871

[WHERE search-condition]
[WITH ROLLBACK]

• DELETE FROM [[RD-node-name.]authorization-identifier.] table-identifier
[ [AS] correlation-name]
[used-index-SQL-optimization-specification]
[WHERE search-condition]
[WITH ROLLBACK]

If the SQL statement preprocessed by the PREPARE statement is not in the above 
format, a runtime error may occur.

3. The PREPARE statement and the EXECUTE statement that executes the SQL 
statement preprocessed by the PREPARE statement should be executed in the same 
transaction.

4. The SQL statement identifier, similar to the embedded variable, is a name that is 
effective in the file in the compile unit. More than one SQL statement associated 
with the same SQL statement identifier cannot be used across multiple modules.

5. Specifying USING 
:array-of-embedded-variables[:array-of-indicator-variables][, 
:array-of-embedded-variables[:array-of-indicator-variables]]... in the 
operands is subject to the following rules:

• The number of elements in array-of-embedded-variables and 
array-of-indicator-variables should be in the 1 to 4,096 range. An 
out-of-range value may cause an error.

• The number of elements in array-of-embedded-variables and 
array-of-indicator-variables should be greater than or equal to the maximum 
number of rows specified in BY :embedded-variable[ROWS].

6. Specifying USING DESCRIPTOR [:]SQL-descriptor-area-name in the operands 
is subject to the following rules:

• For assigning the value of an input ? parameter to the area indicated by 
SQLDATA in the SQL descriptor area specified in 
SQL-descriptor-area-name, see the HiRDB Version 8 UAP Development 
Guide. The number of elements in the array should be greater than or equal 
to the maximum number of elements specified in BY 
:embedded-variable[ROWS].

• Assign a value consistent with the data type to the SQLSYS area of the SQL 
descriptor area specified in SQL-descriptor-area-name.

 For a variable-length character string type (VARCHAR, NVARCHAR, or 



EXECUTE statement Format 2 (Execute an SQL statement using an array)

872

MVARCHAR), assign a length equal to one element, including the area for 
storing the length of the character string and any gap between elements that 
arises from a boundary alignment.
Example:
In the C language, the following array variable of the VARCHAR type requires 
the value sizeof(vchr[0]) to be assigned to SQLSYS:
  struct {
      short   len;
      char    str[257];
  } vchr[128];

 For other data types, the value 0 should be assigned.
7. The BLOB type, BINARY with a maximum length of 32,001 bytes or greater, and 

the abstract data type cannot be specified.

Notes
1. The EXECUTE statement can be executed any number of times per SQL statement 

that is preprocessed by the PREPARE statement.
2. The EXECUTE statement Format 2 processes the number of rows specified in BY 

:embedded-variable. Therefore, a value equal to the specified number of rows 
should be assigned to the area pointed to by SQLDATA to which the value of 
array-of-embedded-variables, array-of-indicator-variables, or 
input-?-parameter is assigned.

Examples
1. Insert 50 rows of data into the inventory table in batch, assigned to the array 

variable in the C language:
  EXEC SQL BEGIN DECLARE SECTION;
    short   XINSERT_NUM;
    long    XPCODE[50];
    short   IPCODE[50];
    char    XPNAME[50][17];
    short   IPNAME[50];
  EXEC SQL END DECLARE SECTION;
 
  EXEC SQL
    PREPARE PRESQL FROM
        'INSERT INTO STOCK(PCODE, PNAME) VALUES (?, ?)';
 
                 :
    Assign a value to each element of the array variable.
                 :



EXECUTE statement Format 2 (Execute an SQL statement using an array)

873

 
  XINSERT_NUM = 50;
  EXEC SQL
    EXECUTE PRESQL USING :XPCODE:IPCODE, :XPNAME:IPNAME
        BY :XINSERT_NUM ROWS;

2. Update the quantity in stock (SQTY) by the value of the product code (PCODE) and 
the quantity in stock (SQTY) assigned to array variables in the C language to the 
following values:
Table 4-5: Product code and quantity in stock stored in table (before updating)

Table 4-6:  Product code and quantity in stock subject to updating (assigned to 
an embedded variable array)

Table 4-7:  Product code and quantity in stock stored in table (after updating)

Product code New quantity in stock

'101M' 40

'101L' 70

'201M' 15

'202M' 28

'302S' 7

Product code New quantity in stock

'101M' 35

'101L' 62

'201M' 13

'202M' 10

'302S' 6

Product code New quantity in stock

'101M' 35

'101L' 62

'201M' 13

'202M' 10

'302S' 6



EXECUTE statement Format 2 (Execute an SQL statement using an array)

874

 
EXEC SQL BEGIN DECLARE SECTION;
      short   XUPDATE_NUM;
      char    XPCODE[5][5];
      short   IPCODE[5];
      long    XSQTY[5];
      short   ISQTY[5];
EXEC SQL END DECLARE SECTION;

EXEC SQL
PREPARE PRESQL FROM
      'UPDATE STOCK SET SQTY = ? WHERE PCODE = ?';
    . . . Assign value to elements of variable array . . .
        Assign {'101M','101L','201M','202M','302S'} to XPCODE
        Assign {35,62,13,10,6} to XSQTY
XUPDATE_NUM = 5;
EXEC SQL
EXECUTE PRESQL USING :XSQTY:ISQTY, :XPCODE:IPCODE
BY :XUPDATE_NUM



EXECUTE IMMEDIATE statement (Preprocess and execute SQL)

875

EXECUTE IMMEDIATE statement (Preprocess and execute SQL)

Function
The EXECUTE IMMEDIATE statement preprocesses and executes an SQL provided in a 
character string.

Privileges
None.

Format
EXECUTE IMMEDIATE {'character-string'|:embedded-variable}
 [ {INTO :embedded-variable [:indicator-variable]
    [, : embedded-variable[: indicator-variable]]...
  |INTO DESCRIPTOR [:]SQL-descriptor-area-name}]
 [{USING : embedded-variable[: indicator-variable]
      [, : embedded-variable[: indicator-variable]]...
  |USING DESCRIPTOR [:]SQL-descriptor-area-name}]

Operands
{'character-string'|:embedded-variable}

character-string
Specifies directly as a character literal the character string representing the SQL 
to be executed.
An apostrophe within the character literal specification of an SQL to be executed 
must be specified as two apostrophes in succession.

embedded-variable
Specifies as an embedded variable the character string of the SQL to be executed.
An embedded variable must be preceded by a colon (:).
INTO: embedded-variable [: indicator-variable] [, : embedded-variable [: 
indicator-variable] ]...

embedded-variable
When retrieval results from a single-row SELECT statement are to be received or 
the CALL statement contains an output ? parameter and its value is to be received 
into embedded-variable, specifies the embedded variable that receives the value 
of the column of retrieval results or the value of the output ? parameter.

indicator-variable



EXECUTE IMMEDIATE statement (Preprocess and execute SQL)

876

Specifies an indicator variable to which a value indicating whether the value of a 
column of retrieval results returned to the embedded variable is the null value.
The indicator variable should be declared in the embedded SQL declaration 
section as an embedded variable having a SMALLINT data type.
If indicator-variable is omitted, the null value cannot be received.
INTO DESCRIPTOR [:] SQL-descriptor-area-name

SQL-descriptor-area-name
If retrieval results from a single-row SELECT statement are to be received or the 
CALL statement contains an output ? parameter and its value is to be received into 
the SQL descriptor area, specifies the SQL descriptor area name for receiving the 
value of the column of retrieval results or the value of the output ? parameter.
USING: embedded-variable [:indicator-variable] [, : embedded-variable [: 
indicator-variable] ]...

embedded-variable
If the SQL statement includes an input ? parameter and if its value is given by an 
embedded variable, specifies the embedded variable that contains the value to be 
assigned to the input ? parameter.
The number of embedded variables specified in the USING clause must be equal 
to the number of input ? parameters included in the SQL statement that is 
executed by the EXECUTE IMMEDIATE statement. Notice that the embedded 
variables and the input ? parameters are placed in correspondence with each other 
from the beginning in the order in which they are listed.
The embedded variable specified in the USING clause must have a data type that 
is allowed for the corresponding input ? parameter.

indicator-variable
Specifies an indicator variable that indicates whether the value of the embedded 
variable is the null value.
The indicator variable should be declared in the embedded SQL declaration 
section as an embedded variable having a SMALLINT data type.
If indicator-variable is omitted, the value of the indicator variable is assumed to 
be a non-null value.
USING DESCRIPTOR [:] SQL-descriptor-area-name

SQL-descriptor-area-name
If the SQL statement includes an input ? parameter and its value is to be assigned 
from a descriptor area, specifies the name of the descriptor area that stores 
information on the input ? parameter.



EXECUTE IMMEDIATE statement (Preprocess and execute SQL)

877

Common rules
1. Neither the SQL prefix nor the SQL terminator can be specified in the SQL 

character string that is to be executed.
2. The maximum length of an SQL to be executed is 2,000,000 bytes. If the SQL 

character string is specified as a character literal, the maximum length is the 
maximum length of character literals in the UAP description language.

3. The type of an embedded variable is the following structure:
struct {
   long  xxxxxxx;  /* Effective length of SQL statement */
   char  yyyyyyy[n]; /* SQL statement storage area */
} zzzzzzz;

The characters xxxxxxx indicate the effective length of the character string 
stored in character array yyyyyyy.

1  (value of xxxxxxx)  2000000
The effective length of a character string does not include the characters \0 
that indicate the end of the character string.
n is any value.

4. The number of embedded variables specified in the INTO clause should be equal 
to the number of retrieval result columns. If the SQL statement being executed is 
a single-row SELECT statement, and if the number of embedded variables and the 
number of columns are not equal, a warning flag W is assigned to the SQLWARN3 
area of the SQL communications area. Notice that the embedded variables, the 
columns of retrieval results, or the embedded variables and the output ? 
parameters, are placed in correspondence from the beginning in the order in 
which they are listed.

5. The embedded variable specified in the INTO clause should have a data type that 
is identical to the data type of the corresponding column or the output parameter, 
or a convertible data type.

6. If the data fetched into an embedded variable of a fixed-length character string 
(including national character strings and mixed character strings) specified in the 
INTO clause is shorter than the definition length of the embedded variable, the 
data is inserted left-justified, and the remaining data is blank-filled.

7. If the value of the retrieval result column or the value of the output ? parameter 
of the CALL statement is the null value, the value of the corresponding embedded 
variable may be unpredictable.

Notes
The EXECUTE IMMEDIATE statement produces the same result as executing the SQL 



EXECUTE IMMEDIATE statement (Preprocess and execute SQL)

878

shown below:
When an SQL specified in a character string is to be executed multiple times, the 
PREPARE statement should be used to preprocess the SQL and then the EXECUTE 
statement should be used to execute it repeatedly.

PREPARE SQL-statement-identifier FROM {'character-string' 
|:embedded-variable}
EXECUTE SQL-statement-identifier

The following SQLs can be preprocessed and executed using the EXECUTE 
IMMEDIATE statement:

Data manipulation SQLs:
ASSIGN LIST statement, CALL statement, DELETE statement, 
preparable-dynamic DELETE statement:locating, DROP LIST statement, INSERT 
statement, PURGE TABLE statement, single-row-SELECT-statement, UPDATE 
statement, and preparable-dynamic UPDATE statement:locating
Control SQLs:
LOCK TABLE statement
Definition SQLs:
ALTER PROCEDURE, ALTER ROUTINE, ALTER TABLE, ALTER TRIGGER, 
COMMENT, CREATE ALIAS, CREATE AUDIT, CREATE CONNECTION SECURITY, 
CREATE FOREIGN INDEX, CREATE FOREIGN TABLE, CREATE FUNCTION, 
CREATE INDEX, CREATE PROCEDURE, CREATE SCHEMA, CREATE SERVER, 
CREATE TABLE, CREATE TRIGGER, CREATE TYPE, CREATE USER MAPPING, 
CREATE VIEW, DROP ALIAS, DROP AUDIT, DROP CONNECTION SECURITY, DROP 
DATA TYPE, DROP FOREIGN INDEX, DROP FOREIGN TABLE, DROP FUNCTION, 
DROP INDEX, DROP PROCEDURE, DROP SCHEMA, DROP SERVER, DROP TABLE, 
DROP TRIGGER, DROP USER MAPPING, DROP VIEW, GRANT, and REVOKE 
statements

Examples
1. Preprocess and execute SQL 'PURGE TABLE STOCK' that is provided in a 

character string:
EXECUTE IMMEDIATE 'PURGE TABLE STOCK'

2. Preprocess and execute an SQL statement that is defined as an embedded variable 
(:STOCKX):
EXECUTE IMMEDIATE :STOCKX

3. Preprocess SQL 'SELECT PNAME FROM STOCK WHERE PCODE = ?' given as a 
character string, and read the retrieval results into the embedded variable 
(:XPNAME) and indicator variable (:IPNAME). In this operation, specify the 



EXECUTE IMMEDIATE statement (Preprocess and execute SQL)

879

embedded variable (:XPCODE) and the indicator variable (:IPCODE) that store 
information on the value to be assigned to the ? parameter.
 
EXECUTE IMMEDIATE 'SELECT PNAME FROM STOCK WHERE PCODE = ?'
      INTO :XPNAME:IPNAME
      USING :XPCODE:IPCODE



FETCH statement Format 1 (Fetch data)

880

FETCH statement Format 1 (Fetch data)

Function
The FETCH statement advances to the next row the cursor that indicates the row to be 
fetched and reads the column values in that row into the embedded variables specified 
in the INTO clause.

Privileges
None.

Format 1: Reading one line of retrieval results into variables
FETCH {cursor-name | extended-cursor-name} INTO
   {:embedded-variable[:indicator-variable]
    |[statement-label.]SQL-variable-name
    |[[authorization-identifier.]routine-identifier.]SQL-parameter-name
    |[statement-label.]SQL-variable-name..attribute-name
              [..attribute-name]...
    |[[authorization-identifier.]routine-identifier.] SQL-parameter-name
              ..attribute-name[..attribute-name]...}
       [, {:embedded-variable[:indicator-variable]
           |[statement-label.]SQL-variable-name
           |[[authorization-identifier.]routine-identifier.]
              SQL-parameter-name
           |[statement-label.]SQL-variable-name..attribute-name
                [..attribute-name]...
           |[[authorization-identifier.]routine-identifier.]
              SQL-parameter-name
                ..attribute-name[..attribute-name]...} ]...

Operands
{cursor-name | extended-cursor-name}

cursor-name
Specifies the name of the cursor being used to fetch retrieval results.

extended-cursor-name
Specifies the extended cursor name of the cursor into which retrieval results are 
fetched.
For extended cursor names, see 2.27 Extended cursor name.
{:embedded-variable[:indicator-variable]



FETCH statement Format 1 (Fetch data)

881

    |[statement-label.]SQL-variable-name
    |[[authorization-identifier.]routine-identifier.]SQL-parameter-name
    |[statement-label.]SQL-variable-name..attribute-name
                 [..attribute-name]...
    |[[authorization-identifier.]routine-identifier.] SQL-parameter-name
              ..attribute-name[..attribute-name]...}
       [, {:embedded-variable[:indicator-variable]
           |[statement-label.]SQL-variable-name
           |[[authorization-identifier.]routine-identifier.]
             SQL-parameter-name
           |[statement-label.]SQL-variable-name..attribute-name
                [..attribute-name]...
           |[[authorization-identifier.]routine-identifier.]
             SQL-parameter-name
                ..attribute-name[..attribute-name]...} ]...

embedded-variable
Specifies an embedded variable into which a non-null column value is to be read.
To receive a column value that is the null value, an embedded variable and an 
indicator variable must both be specified.

indicator-variable
Specifies the indicator variable that is to receive the value returned by the system 
indicating whether or not the column value read into the paired embedded 
variable is the null value.
[statement-label.]SQL-variable-name
[[authorization-identifier.]routine-identifier.] SQL-parameter-name

Specifies an SQL variable or an SQL parameter that is to receive the value 
of a column in the SQL procedure.

[statement-label.] SQL-variable-name..attribute-name [..attribute-name]
[[authorization-identifier.] 
routine-identifier.]SQL-parameter-name..attribute-name[..attribute-name]

Specify these operands in order to receive the value of an attribute in a 
column within the SQL procedure.



FETCH statement Format 1 (Fetch data)

882

Common rules
1. Unless allocated by the ALLOCATE CURSOR statement Format 2 (allocate a result 

set cursor), the cursor specified in the FETCH statement should be opened using 
the OPEN statement.

2. The number of retrieval result columns (the number of selection expressions 
specified in the SELECT statement specified in either a cursor declaration or an 
ALLOCATE CURSOR statement) must be equal to the number of embedded 
variables, SQL variables, or SQL parameters specified in the INTO clause of the 
FETCH statement. If they are not, there will be fewer column values to be read into 
the embedded variables. In such a case, a warning flag (W) is set in SQLWARN3 in 
the SQL Communications Area.
However, in the case of remote database access, no warning flag (W) is set in the 
event of an SQL error.

3. The data type of each embedded variable specified in the INTO clause must be 
either the same as the data type of the corresponding retrieval item or a data type 
that can be converted into that data type.

4. If data fetched into the embedded variable of a fixed-length character string 
(including a national character string or a mixed character string) is shorter than 
the length of the retrieval item, the data is left-justified in the embedded variable 
and trailing blanks are added.

5. If there are no rows to be fetched, the system returns the following return codes:
• Return code 100 to SQLCODE in the SQL Communications Area
• Return code 100 to the SQLCODE variable
• Return code '02000' to the SQLSTATE variable

However if a row that existed when the list was created during a search using the 
list or the value of an attribute is deleted or updated, codes 110, 110, and 
'R2000' will be set, respectively.

Notes
1. If a retrieval result column contains the null value, the value of the corresponding 

embedded variable is unpredictable.
2. The cursor name, similar to an embedded variable name, is effective only within 

a compile-unit module. Multiple SQLs relative to the same cursor cannot be used 
in multiple files.

Examples
Use a cursor (CR1) to read retrieval results from a stock table (STOCK) into the 
embedded variables and indicator variables associated with the product code (PCODE), 



FETCH statement Format 1 (Fetch data)

883

product name (PNAME), color (COLOR), unit price (PRICE), and quantity-in-stock 
(SQTY) columns:
1. With embedded variables specified:

FETCH CR1
  INTO :XPCODE,:XPNAME,:XCOLOR,
       :XPRICE,:XSQTY

2. With embedded variables and indicator variables specified:
FETCH CR1
  INTO :XPCODE:IPCODE,
       :XPNAME:IPNAME,
       :XCOLOR:ICOLOR,
       :XPRICE:IPRICE,
       :XSQTY:ISQTY



FETCH statement Format 2 (Fetch data)

884

FETCH statement Format 2 (Fetch data)

Function
Fetches one or more rows of the search results into the area specified in the SQL 
descriptor area.

Privileges
None.

Format 2: Reading one or more lines of retrieval results into specified 
receive areas in the SQL descriptor area

FETCH {cursor-name | extended-cursor-name} USING DESCRIPTOR 
[:]SQL-descriptor-area-name
     [BY : embedded-variable [ROWS]]

Operands
{cursor-name | extended-cursor-name}

cursor-name
Specifies the name of the cursor being used to fetch the retrieval results

extended-cursor-name
Specifies the extended cursor name of the cursor into which retrieval results are 
fetched.
For extended cursor names, see 2.27 Extended cursor name.
[:]SQL-descriptor-area-name

Specifies the name of the SQL descriptor area to be used in order for the UAP to 
receive the retrieval results.

[BY : embedded-variable [ROWS]]
By using an array that is set in the SQL descriptor area, specifies the embedded 
variable in which the size of the FETCH area is set in terms of the number of elements. 
A SMALLINT data type embedded variable with a value in the range 1 to 30000 should 
be specified. An error may result if 0 or a negative value is set. The behavior of the 
FETCH statement cannot be guaranteed if a client library older than Version 05-03 is 
used.

Common rules
1. Unless allocated by the ALLOCATE CURSOR statement Format 2 (allocate a result 

set cursor), the cursor specified in the FETCH statement should be opened using 



FETCH statement Format 2 (Fetch data)

885

the OPEN statement.
2. The information needed by the UAP for the execution of the FETCH statement 

should be assigned to the SQL descriptor area specified in 
SQL-descriptor-area-name. For details about the SQL descriptor area, see the 
HiRDB Version 8 UAP Development Guide.

3. If there are no rows to be fetched, the system returns the following return codes:
• Return code 100 to SQLCODE in the SQL Communications Area
• Return code 100 to the SQLCODE variable
• Return code '02000' to the SQLSTATE variable

However if a row that existed when the list was created during a search using the 
list or the value of an attribute is deleted or updated, codes 110, 110, and 
'R2000' will be set, respectively.

4. The data type of a receive area in the specified SQL descriptor area must be either 
the data type of the corresponding retrieval item or a data type that can be 
converted into that data type.

5. When BY : embedded-variable [ROWS] is specified, a value that corresponds with 
the data type in the SQLSYS area of the SQL descriptor area should be set.

• Variable-length character string type (VARCHAR, NVARCHAR, or MVARCHAR):
Set an area that stores the length of the character string and a value equivalent 
to one element, including any gap between elements that is necessitated by 
boundary alignment.
For example, in the case of the following array variable of VARCHAR data 
type, the value set in SQLSYS will be sizeof(vchr[0]):

struct {
    short  len;
    char   str[257];
} vchr[128];

• Other data types:
Set the value 0.

Note
The cursor name, similar to an embedded variable name, is effective only within a 
compile-unit module. Multiple SQLs relative to the same cursor cannot be used in 
multiple files.

Example
Use a cursor (CR2) to read retrieval results from a stock table into receive areas in a 



FETCH statement Format 2 (Fetch data)

886

specified SQL descriptor area:
FETCH CR2
  USING DESCRIPTOR SQLDA



FETCH statement Format 3 (Fetch data)

887

FETCH statement Format 3 (Fetch data)

Function
Fetches multiple rows of the search results into the embedded variable specified in the 
INTO clause.

Privileges
None.

Format 3: Reading more line of retrieval results all at once into embedded 
variables specified in the INTO clause

FETCH {cursor-name | extended-cursor-name} INTO : 
embedded-variable-array[:indicator-variable-array]
                   [,:embedded-variable-array[:indicator-variable-array]]...

Operands
{cursor-name | extended-cursor-name}

cursor-name
Specifies the name of the cursor being used to fetch the retrieval results.

extended-cursor-name
Specifies the extended cursor name of the cursor into which retrieval results are 
fetched.
For extended cursor names, see 2.27 Extended cursor name.
: embedded-variable-array[:indicator-variable-array]
[,:embedded-variable-array[:indicator-variable-array]]...

embedded-variable-array
Specifies the array variables (embedded variables declared in array format) into 
which the values of columns that do not contain the null value are to be fetched. 
To receive values from columns that contain the null value, both embedded 
variables and indicator variables must be specified.

indicator-variable-array
Specifies the indicator variables (indicator variables declared in array format) to 
which the values indicating whether or not the values of the columns to be read 
into the embedded variables contain the null value are returned.



FETCH statement Format 3 (Fetch data)

888

Common rules
1. Unless allocated by the ALLOCATE CURSOR statement Format 2 (allocate a result 

set cursor), the cursor specified in the FETCH statement should be opened using 
the OPEN statement.

2. An embedded variables array and its paired indicator variables array must have 
the same number of elements. If they do not, the number of rows fetched will 
equal the number of elements in the smaller of the specified arrays.

3. The cumulative number of rows actually fetched is set in the SQL 
Communications Area's SQLERRD2 in the case of the C language and in 
SQLERRD(3) in the case of COBOL.

4. A FETCH statement that uses arrays cannot be used in a procedure.
5. A FETCH statement that uses arrays cannot handle LOB data.
6. Block transfer cannot be specified in a FETCH statement that uses arrays.
7. If there are no more rows to be fetched, the system returns the following return 

codes; in such a case, the data in the preceding rows is returned:
• Return code 100 to SQLCODE in the SQL Communications Area
• Return code 100 to the SQLCODE variable
• Return code '02000' to the SQLSTATE variable

If a row that was present at the time the list was created during a retrieval through 
a list is deleted, or if an attribute value is deleted or updated, a return code 
indicating that fact is not set. In this case, HiRDB continues to perform the 
retrieval, ignoring the event.

8. If an event requiring a warning occurs in any of the fetched rows, the warning 
information is set in SQLWARN of the SQL Communications Area.

9. If an error occurs in any of the fetched rows, the data in the rows up to that row is 
returned.

10. A FETCH statement that uses an array cannot be used for searching unsubscripted 
repetition columns.

Notes
1. If the value in a column of the retrieval results is the null value, the value in the 

element of the corresponding embedded variable array cannot be guaranteed.
2. Array-type and non-array-type variables cannot be mixed.
3. SQL descriptor area cannot be specified.
4. The cursor is positioned at the last fetched row. If an updating operation using the 



FETCH statement Format 3 (Fetch data)

889

cursor is then executed, the last fetched row is updated.

Example
Use a cursor (CR3) to read retrieval results from an inventory table into an array 
variable in C language:
EXEC SQL BEGIN DECLARE SECTION;
  long  XPCODE[50];
  short IPCODE[50];
  char  XPNAME[50][17];
  short IPNAME[50];
EXEC SQL END DECLARE SECTION;
 
EXEC SQL FETCH CR3
    INTO :XPCODE :IPCODE,
           :XPNAME :INAME;



FREE LOCATOR statement (Invalidate locator)

890

FREE LOCATOR statement (Invalidate locator)

Function
Deletes the link between a locator and the data allocated to it, and nullifies the locator.

Privileges
None.

Format

Operands
locator-reference:: = : embedded-variable

Specifies the embedded variable for the locator to be nullified.

Common rule
1. Specifying an embedded variable having the value for an invalid locator causes 

an error. If multiple embedded variables are specified, and those embedded 
variables include an embedded variable having the value of an invalid locator, an 
error occurs, and all valid locators are nullified.

 
FREE LOCATOR locator-reference [, locator-reference]...
locator-reference:: = : embedded-variable
 



INSERT statement Format 1 (Insert row)

891

INSERT statement Format 1 (Insert row)

Function
Inserts rows into a table in units of columns. The statement can be used to insert one 
row by directly specifying values. In addition, this command can also insert one or 
more rows by using a query expression body.

Privileges (Format 1)
A user who has the INSERT privilege for a table can insert rows into that table.
However, if a query is specified in the INSERT statement, the user needs the SELECT 
privilege for the table for which the query is specified.

Format 1: Inserting rows into a table on a column-by-column basis
INSERT INTO [[RD-node-name.]authorization-identifier.]
              table-identifier
     {[(column-name [, column-name]...)]
       {VALUES (insertion-value [, insertion-value]...)
      |query-expression-body}
      |DEFAULT VALUES}
     [WITH ROLLBACK]
 
 query-expression-body:: = {query-specification
            |(query-expression-body)
            |query-expression-body {UNION|EXCEPT}[ALL]
             query-specification|(query-expression-body)}}
 query-specification :: = SELECT[{ALL|DISTINCT}]{selection-expression[, 
selection-expression]...|*} table-expression
 table-expression  :: = FROM table-reference[, table-reference]...
            [WHERE search-condition]
            [GROUP BY value-expression[, value-expression]...]
            [HAVING search-condition]

Operands
[[RD-node-name.]authorization-identifier.]table-identifier

RD-node-name
Specify the RD node name of the RD node to be accessed.

authorization-identifier
Specifies the authorization identifier of the owner of the table.
MASTER cannot be specified as an authorization identifier.



INSERT statement Format 1 (Insert row)

892

table-identifier
Specifies the name of the table into which rows are to be inserted.
[(column-name [, column-name])]

Specifies the names of the columns into which data is to be inserted.
The following rules apply to column names:
1. Rows cannot be inserted, updated, or deleted from a read-only view table (for 

details about read-only view tables, see Common Rules in CREATE VIEW (Define 
view) in 3).

2. When row insertion into a view table is specified, the system inserts the rows into 
the base table of the view table. Any columns in the view table's base table that 
are not associated with a column in the view table receive the null value. 
Therefore, in the case of a view table defined from a base table with the FIX 
attribute, rows are not inserted if there are columns of the view table's base table 
that are not associated with columns in the view table.

3. Any column that is not specified receives the null value.
4. The number of elements in unspecified repetition columns will be 0.
5. Not specifying any column names is equivalent to specifying all columns in the 

specification order of the columns when the columns were defined in the table 
definition.

6. A subscript cannot be specified as part of a column name.
VALUES (insertion-value [, insertion-value])

insertion-value
Specifies an insertion value for a specified column. The following items can be 
specified:

• Value expressions
• NULL (represents the null value)
• DEFAULT
• ARRAY [element-value[, element-value]...]*

* The following can be specified in element-value:
• Value expression
• NULL (represents the null value)
• DEFAULT

The following rules apply to insertion values:



INSERT statement Format 1 (Insert row)

893

1. Insertion values must be specified in the order in which the column names 
are specified.

2. To assign the null value as an insertion value, NULL must be specified.
3. If DEFAULT is specified in insertion-value or as a value of an element in 

insertion-value, the predefined value of the column that is the target of 
insertion is inserted. If the DEFAULT clause is present, the insertion value is 
the specified predefined value. If the DEFAULT clause is not present but WITH 
DEFAULT is specified, the insertion value is the predefined value for WITH 
DEFAULT. If neither the DEFAULT clause nor WITH DEFAULT is present, 
NULL is the predefined value.

4. If SYSTEM GENERATED is specified for the column associated with 
insertion-value, the specified insertion value is ignored; instead, the current 
date (CURRENT_DATE) is inserted for the DATE type, or the current time 
(CURRENT_TIME) for the TIME type.

5. In the case of preprocessing using the PREPARE statement, an embedded 
variable or an indicator variable cannot be specified.

6. Embedded variables must be of the same structures as the column structures 
of the associated columns.

7. In the case of an embedded variable used to assign a value to a ? parameter, 
the same structure as the structure of the associated column must be 
specified.

8. ARRAY [element-value [, element-value] ...] can be specified only if the 
corresponding column is a repetition column. The maximum number of 
elements that can be specified is 30,000, provided that they do not exceed the 
maximum number of elements allowed in the column into which they are 
inserted. The embedded variable (indicator variable) and the ? parameter for 
element values should be of a simple structure.

9. A value expression containing a column name or a set function cannot be 
specified in an insertion value.

10. Neither a WRITE specification nor a 
GET_JAVA_STORED_ROUTINE_SOURCE specification can be specified in an 
insertion value.

query-expression-body:: = {query-specification
           | (query-expression-body)
           | query-expression-body {UNION | EXCEPT} [ALL]
            {query-specification | (query-expression-body) } }

Specifies the query specification body that fetches the data to be inserted.



INSERT statement Format 1 (Insert row)

894

For details about query expression bodies, see 2.2 Query expressions.
query-specification:: = SELECT [{ ALL | DISTINCT}]
{selection-expression [, selection-expression]... | *} table-expression

For details about query specifications, see 2.3 Query specification.
If the column into which the fetched data is to be inserted is a repetition column, 
specify an unsubscripted repetition column in the selection expression in the query 
specification associated with that column.

table-expression:: = FROM table-reference [, table-reference]...
            [WHERE search-condition]
            [GROUP BY value-expression [, value-expression]...]
            [HAVING search-condition]

For table expressions, see 2.5 Table expressions. For table referencing, see 2.6 Table 
reference. For search conditions, see 2.7 Search conditions.

DEFAULT VALUES
Inserts a predefined value for all columns in the row to be inserted.
DEFAULT VALUES has the same meaning as the specification of the following format:
VALUES(DEFAULT,DEFAULT,...)

The number of DEFAULT specifications above is equal to the number of columns in the 
table that is subject to the insertion operation.

[WITH ROLLBACK]
Specifies that if the table that is subject to the insertion operation is being used by 
another user, the transaction issued by that user is to be cancelled and invalidated.
When the WITH ROLLBACK option is omitted and the table subject to the insertion 
operation is being used by another user, the current user must wait until the transaction 
issued by that user is completed.

Common rules
1. Care must be taken that the embedded variable, SQL variable, or SQL parameter 

has either the same data type as the data type of the corresponding column or a 
data type that can be converted into the data type of the corresponding column.

2. The ? parameter can be specified in the INSERT statement only if the INSERT 
statement is preprocessed by the PREPARE statement. The value to be assigned to 
a ? parameter is specified in an embedded variable in the USING clause of the 
EXECUTE statement that is associated with the PREPARE statement that prepares 
the INSERT statement.



INSERT statement Format 1 (Insert row)

895

3. Embedded variables and indicator variables cannot be used in the INSERT 
statement or in an SQL procedure that is preprocessed by the PREPARE statement. 
For details about specification values in a Java procedure, see JDBC drivers or 
SQLJ in the HiRDB Version 8 UAP Development Guide. For details on search 
conditions, see 2.7 Search conditions.

4. The number of columns in a row to be inserted must equal the number of columns 
for which column names are specified.
The values of these columns must be of either the data types of the columns or 
data types that can be converted into those data types. (Note that if the column into 
which the data is to be inserted is of the national character data type and a 
character string literal is specified as the insertion value, the character string 
literal will be treated as a national character string literal. When a character string 
literal is treated as a national character string literal, only the character data length 
is checked; the character codes are not checked.) When rows are to be inserted, 
the number of columns retrieved by a query specification body must be equal to 
the number of columns specified in column-name. The data types of the 
corresponding columns must be convertible data types. (If the column into which 
data is to be inserted is the national character data type and if a character string 
literal is specified in the selection expression for the query expression body, the 
character string literal is treated as a national character string literal. When a 
character string literal is treated as a national character string literal, only the 
character data length is checked; the character codes are not checked.)

5. When fixed-point or floating-point data is inserted into any of the following data 
type columns, any digits following the decimal point are rounded off:

• INTEGER
• SMALLINT

During the insertion of fixed-point data into a column of the DECIMAL type, any 
digits below the scaling for the column are rounded off.

6. Character data greater than the length specified when the table was defined cannot 
be inserted.

7. Numeric data outside the range of the data types defined for a column cannot be 
inserted.

8. If the data to be inserted into a fixed-length character string column (including a 
national character string or a mixed character string column) is shorter than the 
length of the column, the data is left-justified in the column and trailing blanks are 
added.

9. The following items can be specified when data is inserted into a column of BLOB 
data type: embedded variables, ? parameters, SQL variables, SQL parameters, 
SUBSTR scalar function, function calls, and NULL.



INSERT statement Format 1 (Insert row)

896

10. When data is inserted into a column of an abstract data type, embedded variables 
and ? parameters cannot be specified in the values to be inserted.

11. A component specification cannot be specified in a selection expression in the 
query expression body.

12. When data is inserted into a column of an abstract data type, the following item 
cannot be specified in the values to be inserted: values of an abstract data type, 
including the BLOB attribute for which no LOB attribute storage RDAREA name was 
specified in the table definition.

13. Neither a WRITE specification nor a GET_JAVA_STORED_ROUTINE_SOURCE 
specification can be specified in a selection expression in the query expression 
body.

14. If the INSERT statement is executed on a table with a WITHOUT ROLLBACK 
specification, the timing for the release of row locking can vary depending on 
whether an index is defined. For details, see the rules on WITHOUT ROLLBACK in 
CREATE TABLE (Define table) in Chapter 3.

15. Before inserting data into a shared table, the LOCK statement with respect to the 
table should be executed in the lock mode. An attempt to insert data into a shared 
table without executing the LOCK statement can cause an error. For details about 
updating a shared table, see the HiRDB Version 8 Installation and Design Guide. 
For the objects of locking during execution of the LOCK statement on a shared 
table, see the notes in  LOCK statement (Lock control on tables) in Chapter 5.

Rules on referential constraints
1. For the rules on inserting rows into a referenced table or referencing table, see the 

explanation of referencing actions in  CREATE TABLE (Define table) in iChapter 
3.

Examples
1. Insert rows with the values read into embedded variables into all columns of a 

stock table named STOCK:
INSERT INTO STOCK
    VALUES(:XPCODE,:XPNAME,:XCOLOR,
           :XPRICE,:XSQTY)

2. Insert rows with the values read into embedded variables into the product code 
(PCODE), product name (PNAME), and quantity-in-stock (SQTY) columns of a 
stock table named STOCK:
INSERT INTO STOCK
    (PCODE,PNAME,SQTY)
    VALUES(:XPCODE,:XPNAME,:XSQTY)

3. Insert into stock table STOCK all table data from stock table 2 (STOCK2) with the 



INSERT statement Format 1 (Insert row)

897

same column definition information as the STOCK stock table:
INSERT INTO STOCK
  SELECT * FROM STOCK2

4. Insert data representing 612S PANTS, and WHITE into the following columns in a 
stock table (STOCK): product code (PCODE), product name (PNAME), and color 
(COLOR):
INSERT INTO STOCK (PCODE,PNAME,COLOR)
  VALUES('612S',N'PANTS',N'WHITE')

5. Insert the following items into columns in an orders table (ORDERS): 02561, 
TT001, 302S, 50, current date (CURRENT_DATE), and current time 
(CURRENT_TIME):
INSERT INTO ORDERS
  VALUES('02561','TT001','302S',50,
         CURRENT_DATE,CURRENT TIME)



INSERT statement Format 2 (Insert row)

898

INSERT statement Format 2 (Insert row)

Function
Treats an entire row as a data item and inserts rows in units of rows into a FIX-attribute 
table. Can insert a single row through the direct specification of a value. In addition, 
this command can also insert one or more rows by using a query expression body.

Privileges (Format 2)
A user who has the INSERT privilege for a table can insert rows into that table.
However, if a query is specified in the INSERT statement, the user needs the SELECT 
privilege for the table for which the query is specified.

Format 2: Inserting one row into a table with the FIX attribute on a 
row-by-row basis, by treating the entire row as a set of data

INSERT INTO 
[[RD-node-name.]authorization-identifier.]table-identifier|(ROW)
     {VALUES (row-insertion-value)
      
    |query-expression-body }
   [WITH ROLLBACK]
 query-expression-body:: = {query-specification
           |(query-expression-body)
           |query-expression-body {UNION|EXCEPT}[ALL]
            {query-specification|(query-expression-body)}}
             query-specification :: = SELECT 
               [{ALL|DISTINCT}]{selection-expression
                       [, selection-expression]...|*}
                         table-expression
 table-expression:: = FROM table-reference[, table-reference]...
            [WHERE search-condition]
            [GROUP BY value-expression[, value-expression]...]
            [HAVING search-condition]
 

Operands
For details about operands other than ROW and VALUES, see INSERT statement Format 
1 (Insert row).

(ROW)
Specifies that data is to be inserted on a row-by-row basis. The following rules apply 
to the specifying of ROW:



INSERT statement Format 2 (Insert row)

899

1. The ROW operand can be specified only for a base table with the FIX attribute. The 
operand ROW refers to an entire row. When ROW is specified, the system treats the 
entire row as a set of data and inserts data from one area. The data type of the data 
that is inserted should be the ROW type, regardless of the data types of the 
individual columns. (Variables corresponding to CHAR(n) (where n is the row 
length) or structures of the same length can be specified as ROW-type data; if a 
structure is specified, the structure should not contain any boundary alignment 
blanks.) The data length should be equal to the row length (the sum of the data 
lengths of the columns).

2. The platform on which the UAP runs and the platform on which the HiRDB 
server runs should have the same endian. The ROW option cannot be used between 
different endians. For example, if ROW is used in a Windows version UAP, the 
HiRDB server should also use the Windows version of the same endian.
{VALUES (row-insertion-values)|query-specification}

row-insertion-values
Specifies the values to be inserted into the row corresponding to ROW. Any of the 
following items can be specified:

• Embedded variables (and indicator variables)
• ? parameters
• SQL variables or SQL parameters

query-expression-body:: = {query-specification
        | (query-expression-body)
        | query-expression-body {UNION | EXCEPT} [ALL]
      {query-specification | (query-expression-body) } }

Specifies the query expression body that fetches the data to be inserted. For details 
about query expression bodies, see 2.2 Query expressions.

query-specification:: = SELECT [ { ALL | DISTINCT} ]
{selection-expression [, selection-expression]... | * } table-expression

For details about query specifications, see 2.3 Query specification.
table-expression:: = FROM table-reference [, table-reference]...
            [WHERE search-condition]
            [GROUP BY value-expression [, value-expression]...]
            [HAVING search-condition]

For table expressions, see 2.5 Table expressions. For table referencing, see 2.6 Table 



INSERT statement Format 2 (Insert row)

900

reference. For search conditions, see 2.7 Search conditions.

Notes
1. If the data type of a table column to be inserted is DECIMAL, or a national 

character string, HiRDB checks the contents of the applicable row insertion 
values.

2. For retrieving or updating rows (with a ROW specification), the portions that are of 
the date data type with respect to ROW in an embedded variable, SQL variable, or 
SQL parameter have a length of 4 bytes, and must be in X'YYYYMMDD' format.
When date data is received in a predefined character string representation by 
using a by-row (ROW specification) interface, during the definition of a column, 
define the column as CHAR(10) rather than a date data type. Any date arithmetic 
operations should be specified using the DATE scalar function after the data 
involved has been converted into the date data type.

3. For retrieving or updating rows (with a ROW specification), the portions that are of 
the time data type with respect to ROW in an embedded variable, SQL variable, or 
SQL parameter have a length of 3 bytes, and must be in X'hhmmss' format.
When time data is received in a predefined character string representation by 
using a by-row (ROW specification) interface, during the definition of a column, 
define the column as CHAR(8) rather than a time data type. Any time arithmetic 
operations should be specified using the TIME scalar function after the time 
involved has been converted into the time data type.

4. For performing a retrieval or updating by row (ROW specification), the time stamp 
data type portion of the embedded variable, SQL variable, or SQL parameter with 
respect to ROW is (7 + p/2) bytes long, and it should be in the 
X'YYYYMMDDhhmmss[nn...n]' format. When time stamp data is received in 
a predefined character string representation using a by-row (ROW specification), 
when defining a column, define it as CHAR with a length of 19, 22, 24, or 26 bytes 
rather than as a time stamp data type column.

5. If SYSTEM GENERATED is specified for the column in the table into which data is 
to be inserted, HiRDB ignores any data in the corresponding portion, and inserts 
the current date (CURRENT_DATE) for the DATE type, and the current time 
(CURRENT_TIME) for the TIME type.

Common rules
1. For common rules on specifying the SELECT statement, see the common rules in 

INSERT statement Format 1 (Insert row).
2. If the INSERT statement is executed on a table with a WITHOUT ROLLBACK 

specification, the timing for the release of row locking can vary depending on 
whether an index is defined. For details, see the rules on WITHOUT ROLLBACK in  



INSERT statement Format 2 (Insert row)

901

CREATE TABLE (Define table) in Chpater 3.
3. Before inserting data into a shared table, the LOCK statement with respect to the 

table should be executed in the lock mode. An attempt to insert data into a shared 
table without executing the LOCK statement can cause an error. For details about 
updating a shared table, see the HiRDB Version 8 Installation and Design Guide. 
For the objects of locking during execution of the LOCK statement on a shared 
table, see the notes in  LOCK statement (Lock control on tables) in Chapter 5.

Rules on referential constraints
1. For rules on referential constraints in specifying the SELECT statement, see the 

rules on referential constraints in INSERT statement Format 1.
2. For the insertion of rows into a referenced table, the referencing table is 

referenced to determine whether the value of the foreign key constituent column 
is included in the value of the primary key constituent column in the referenced 
table. The data guarantee level during the search through the referenced table, 
assumes the share mode. For this reason, if during the insertion of rows into the 
referencing table, operations are performed on the referenced table by another 
transaction, the row insertion operation goes into a wait state until the transaction 
is settled.

Example
Insert into a stock table named STOCK one row of values that are read into the 
embedded variable XROW:
INSERT INTO STOCK(ROW)
    VALUES(:XROW)



INSERT statement Format 3, Format 4 (Insert row using an array)

902

INSERT statement Format 3, Format 4 (Insert row using an array)

Function
Can insert rows when an embedded variable of the array format is specified.
Format 3

Inserts rows into a table by column.
Format 4

Treats an entire row as a single data item and inserts rows into a table of the FIX 
attribute row by row.

Privileges
A user who has the INSERT privilege for a table can insert rows into that table.
However, if a query is specified in the INSERT statement, the user needs the SELECT 
privilege for the table for which the query is specified.

Format 3: Inserting multiple rows by column into a table by specifying an 
embedded variable array
 
 FOR : embedded-variable
 INSERT INTO [[RD-node-name.]authorization-identifier.] table-identifier
    [(column-name [, column-name]...)]
      {VALUES (insertion-value[, insertion-value]...)
      | query-expression-body}
    [WITH ROLLBACK]
 
 query-expression-body:: = {query-specification
           | (query-expression-body)
           | query-expression-body {UNION|EXCEPT} [ALL]
            {query-specification | (query-expression-body)}}
 query-specification :: = SELECT [{ALL|DISTINCT}] {selection-expression[, selection-expression]... 
| * } table-expression
 table-expression    :: = FROM table-reference[, table-reference]...
            [WHERE search-condition]
            [GROUP BY value-expression[, value-expression]...]
            [HAVING search-condition]



INSERT statement Format 3, Format 4 (Insert row using an array)

903

Format 4: Inserting multiple rows by row into a table with the FIX attribute 
by specifying an embedded variable array

Operands
For details about operands other than FOR, VALUES, or ROW, see INSERT statement 
Format 1 (Insert row).
Format 3 operands

VALUES (insertion-value [, insertion-value]...)
insertion-value

Inserts corresponding insertion values into the columns specified in 
column-name. The following items can be specified in this operand:

• : embedded-variable-array [: indicator-variable-array]
• Value expression
• NULL (represents the null value)
• DEFAULT

However, embedded variables not in the array format cannot be specified in 
insertion-value.

Format 4 operands

(ROW)
Specify this operand when inserting data by row. Specification of the ROW operand is 
subject to the following rules:
1. The ROW operand can be specified only for base tables with the FIX attribute. ROW 

 
 FOR : embedded-variable
 INSERT INTO [[RD-node-name.]authorization-identifier.]table-identifier (ROW)
   {VALUES (:embedded-variable-array [:indicator-variable-array])
   | query-expression-body }
   [WITH ROLLBACK]
 
 query-expression-body:: = {query-specification
           | (query-expression-body)
           | query-expression-body {UNION|EXCEPT} [ALL]
            {query-specification | (query-expression-body)}}
 query-specification :: = SELECT [{ALL|DISTINCT}] {selection-expression[, selection-expression]... 
| * } table-expression
 selection-expression    :: = FROM table-reference[, table-reference]...
            [WHERE search-condition]
            [GROUP BY value-expression [, value-expression]...]
            [HAVING search-condition]



INSERT statement Format 3, Format 4 (Insert row using an array)

904

refers to an entire row. Specifying ROW causes HiRDB to treat the entire row as a 
single data item and insert it from one area. The data type of the data to be inserted 
should be the ROW type, irrespective of the data types of columns (for the ROW 
type, a variable corresponding to CHAR (n) [where n is the row length] or a 
structure of the same length can be specified, provided that the structure does not 
contain a boundary alignment gap). The data length should be equal to the row 
length (the sum of the data lengths of the columns).

2. The platform on which the UAP runs and the platform on which the HiRDB 
server runs should have the same endian. The ROW option cannot be used between 
different endians. For example, if ROW is used in a Windows version UAP, the 
HiRDB server should also use the Windows version of the same endian.

Operands common to Formats 3 and 4

FOR:embedded-variable
Specifies the embedded variable storing the number of rows to be inserted using an 
embedded variable array. An embedded variable of the SMALLINT type should be 
specified. The allowable range of values is from 1 to 4,096, less than or equal to the 
number of elements in the embedded variable array or in the indicator variable array. 
Only non-zero, positive values are allowed. An out of range value can cause a run-time 
error.
embedded-variable-array

Specifies the embedded variable that was declared in the array format. Specify an 
array variable for inserting non-null values.
The values to be inserted into the rows should be assigned to the elements of the 
embedded variable array. If the values to be inserted include the NULL value, 
specify both an embedded variable array and an indicator variable array.

indicator-variable-array
Specifies the indicator variable that was declared in the array format. Values 
indicating that the values to be inserted into the elements of the embedded 
variable array are not the NULL value should be assigned to the corresponding 
elements in the indicator variable array. For allowable values, see 1.5.5 Setting a 
value for an indicator variable. Notice that the NULL value cannot be inserted into 
a base table with the FIX attribute.

Common rules
Common rules on Format 3

1. The data type of the embedded variable array should be either the data type of the 
corresponding column or a convertible data type.

2. The number of columns per row to be inserted should be equal to the number of 
columns specified in column-name. Their values should have the data type of the 



INSERT statement Format 3, Format 4 (Insert row using an array)

905

columns or a convertible data type.
3. The following data types are not allowed in an INSERT statement using an array: 

BLOB type, BINARY type with a maximum length of 32,001 bytes or greater, and 
the abstract data type.

4. In an INSERT statement using an array, data cannot be inserted into a repetition 
column.

5. When fixed-point or floating-point data is inserted into a column of any of the 
following data types, the fractional part (below the decimal point) is truncated:

• INTEGER
• SMALLINT

Also, when fixed-point data is inserted into a DECIMAL type column, any digits 
below the scaling for the column are truncated.

6. Character data longer than the length that was specified when the table was 
defined cannot be inserted into the table.

7. Numerical data outside the range of the data type defined for the column cannot 
be inserted into the column.

8. If the data inserted into a column of a fixed-length character string (including 
national character strings and mixed character strings) is shorter than the column 
length, the data is inserted left-justified, and the remainder of the column is 
blank-filled.

Common rules for Format 3 and Format 4

1. One or more embedded variable arrays should be specified in a clause other than 
the FOR clause. A failure to specify an embedded variable array can cause an error.

2. Specifying an embedded variable not in the array format in a clause other than the 
FOR clause can cause an error.

3. The number of elements in the embedded variable array or indicator variable 
array should be in the 1 to 4,096 range. An out of range value can cause an error. 
The number of elements should be greater than or equal to the maximum number 
of rows specified in FOR:embedded-variable.

4. Because it includes embedded variable arrays and indicator variable arrays, the 
INSERT statement Format 3 cannot be preprocessed by the PREPARE statement. 
For dynamic execution of the INSERT statement Format 3, see EXECUTE 
statement Format 2 (Execute an SQL statement using an array).

5. An INSERT statement using an array cannot be specified in a procedure.
6. If a warning-generating event occurs in any of the rows to be inserted, warning 

information is assigned to the SQLWARN flag of the SQL communications area.



INSERT statement Format 3, Format 4 (Insert row using an array)

906

7. If an error occurs in any of the rows to be inserted, the transaction is rolled back.
8. If the INSERT statement is executed on a table with a WITHOUT ROLLBACK 

specification, the timing for the release of row locking can vary depending on 
whether an index is defined. For details, see the rules on WITHOUT ROLLBACK in  
CREATE TABLE (Define table) in Chapter 3.

9. Before inserting data into a shared table, the LOCK statement with respect to the 
table should be executed in the lock mode. An attempt to insert data into a shared 
table without executing the LOCK statement can cause an error. For details about 
updating a shared table, see the HiRDB Version 8 Installation and Design Guide. 
For the objects of locking during execution of the LOCK statement on a shared 
table, see the notes in  LOCK statement (Lock control on tables) in Chapter 5.

Rules on referential constraints
1. For rules on inserting referential constraints by embedded variable array or by 

row, see the rules on referential constraints in INSERT statement Format 1 (Insert 
row).

2. For the insertion of rows into a referenced table, the referencing table is 
referenced to determine whether the value of the foreign key constituent column 
is included in the value of the primary key constituent column in the referenced 
table. The data guarantee level during the search through the referenced table 
assumes the share mode. For this reason, if during the insertion of rows into the 
referencing table, operations are performed on the referenced table by another 
transaction, the row insertion operation goes into a wait state until the transaction 
is settled.

Notes
1. When row insertion is executed on a foreign table, insertion using an array is not 

carried out between the local HiRDB and a foreign server. The insertion operation 
is repeated the number of times specified in the embedded variable to insert rows.

Examples
1. Batch-insert data equivalent to 50 rows, assigned to an array variable in the C 

language, into an inventory table:
 
EXEC SQL BEGIN DECLARE SECTION;
  short   XINSERT_NUM;
  long    XPCODE[50];
  short   IPCODE[50];
  char    XPNAME[50][17];
  short   IPNAME[50];
EXEC SQL END DECLARE SECTION;
            :
Assign values to the elements of the variable array



INSERT statement Format 3, Format 4 (Insert row using an array)

907

            :
XINSERT_NUM = 50;
EXEC SQL FOR :XINSERT_NUM
    INSERT INTO STOCK(PCODE,PNAME)
      VALUES (:XPCODE:IPCODE,:XPNAME:IPNAME);
 

2. Insert the value of the entire row assigned to an array variable in the C language 
into the inventory table (STOCK) in a single operation covering 50 rows:
 
EXEC SQL BEGIN DECLARE SECTION;
  short   XINSERT_NUM;
  char    XROWS[50][31];
EXEC  SQL  END  DECLARE  SECTION;
             :
Assign values to the elements of the variable array
             :
XINSERT_NUM = 50;
EXEC  SQL  FOR :XINSERT_NUM
    INSERT INTO STOCK(ROW) VALUES(:XROWS);



OPEN statement Format 1 (Open cursor)

908

OPEN statement Format 1 (Open cursor)

Function
Opens a cursor. The OPEN statement opens a cursor either declared in the DECLARE 
CURSOR statement or allocated by the ALLOCATE CURSOR statement, and positions the 
cursor before the first row of retrieval results so that the retrieval results can be fetched.
In Format 1, the OPEN instruction opens a cursor by using an embedded variable to 
assign a value to the ? parameter.

Privileges
Users with the SELECT privilege
To open a cursor, the user must have the SELECT privilege for all tables that are 
specified in the cursor declaration or in the ALLOCATE CURSOR statement.

Format 1: Opening a cursor (by assigning values to ? parameters using 
embedded variables)

OPEN {cursor-name | extended-cursor-name} [USING 
:embedded-variable[,:embedded-variable] ...]

Operands
{cursor-name | extended-cursor-name}

cursor-name
Specifies the name of the cursor to be opened.

extended-cursor-name
Specifies the extended cursor name that identifies the cursor to be opened.
For extended cursor names, see 2.27 Extended cursor name.
USING :embedded-variable[,:embedded-variable]

Specifies new embedded variables when the embedded variables specified in the 
SELECT statement of the DECLARE CURSOR statement are to be changed.
When values are assigned to the ? parameters specified in the SELECT statement 
preprocessed by the PREPARE statement, the embedded variables to which the values 
are assigned should be specified.
The values of the embedded variables specified in the SELECT statement of the 
DECLARE CURSOR statement or the values of the ? parameters remain in effect as 
SQL-runtime values until the cursor is closed. These values can be modified by closing 
the cursor and then reopening it.



OPEN statement Format 1 (Open cursor)

909

The embedded variables specified in the USING clause replace in the order in which 
they are specified the embedded variables specified in the SELECT statement in the 
cursor declaration.
The embedded variables specified in the USING clause assign values to the ? 
parameters specified in the prepared SELECT statement in the order in which they are 
specified.

Notes
1. To reopen a cursor that is already open, it must be closed and then reopened.
2. For details about the trigger for closing a cursor by issuing a CLOSE statement 

internally, see Common rule 1 in  CLOSE statement (Close cursor) in this chapter.
3. When the FETCH statement is to be executed, the OPEN statement must be used to 

open a cursor and then the FETCH statement relative to that cursor must be 
executed.

4. When embedded variables are specified in the USING clause, values must have 
been assigned to them before the OPEN statement is executed.

5. When the OPEN statement is executed, HiRDB positions the cursor and performs 
lock control during lock of the associated FETCH statement.

6. A cursor name, similar to an embedded variable name, is effective only within a 
compile-unit module. Multiple SQLs relative to the same cursor cannot be used 
in multiple modules.

7. If multiple cursor declarations are made in SQL statement identifiers that have the 
same name, a cursor that references other RD nodes cannot be opened.

8. If more than one cursor is allocated to a given extended statement name, cursors 
that reference another RD node cannot be opened.

9. The USING clause cannot be specified in a procedure.
10. Multiple holdable cursors cannot be opened for a single table.

Example
Open cursor CR1 in order to fetch retrieval results from a stock table named STOCK:
OPEN CR1



OPEN statement Format 2 (Open cursor)

910

OPEN statement Format 2 (Open cursor)

Function
Opens a cursor. The OPEN statement opens a cursor either declared in the DECLARE 
CURSOR statement or allocated by the ALLOCATE CURSOR statement, and positions the 
cursor before the first row of retrieval results so that the retrieval results can be fetched.
In Format 2, the OPEN instruction opens a cursor by using the SQL descriptor area to 
assign a value to the ? parameter.

Privileges
Users with the SELECT privilege
To open a cursor, the user must have the SELECT privilege for all tables that are 
included in the SELECT statement specified in the cursor declaration or in the 
ALLOCATE CURSOR statement.

Format 2: Opening a cursor (by assigning values to ? parameters using an 
SQL descriptor area)

OPEN cursor-name USING DESCRIPTOR [:]SQL-descriptor-area-name

Operands
{cursor-name | extended-cursor-name}

cursor-name
Specifies the name of the cursor to be opened.

extended-cursor-name
Specifies the extended cursor name that identifies the cursor to be opened.
For extended cursor names, see 2.27 Extended cursor name.
[:]SQL-descriptor-area-name

SQL-descriptor-area-name
Specifies the name of the SQL descriptor area in which is stored the information 
needed in order to assign values to the ? parameters specified in the SELECT 
statement preprocessed by the PREPARE statement.
The variables specified in the SQLVAR array of the SQL descriptor area assign 
values to the ? parameters that are specified in the prepared SELECT statement in 
the order in which they are specified.



OPEN statement Format 2 (Open cursor)

911

Notes
1. To reopen a cursor that is already open, it must be closed and then reopened.
2. For details about the trigger for closing a cursor by issuing a CLOSE statement 

internally, see Common rule 1 in  CLOSE statement (Close cursor) in this chapter.
3. When the FETCH statement is to be executed, the OPEN statement must be used to 

open a cursor and then the FETCH statement relative to that cursor must be 
executed.

4. Before the OPEN statement is executed, the UAP must set the needed information 
in the SQL descriptor area. For details about the SQL descriptor area, see the 
HiRDB Version 8 UAP Development Guide.

5. A cursor name, similar to an embedded variable name, is effective only within a 
compile-unit module. Multiple SQLs relative to the same cursor cannot be used 
in multiple modules.

6. If multiple cursor declarations are made in SQL statement identifiers that have the 
same name, a cursor that references other RD nodes cannot be opened.

7. If more than one cursor is allocated to a given extended statement name, cursors 
that reference another RD node cannot be opened.

8. Multiple holdable cursors cannot be opened for a single table.

Example
Open cursor CR2 in order to fetch retrieval results from a stock table; also specify 
information (SQLDA) for assigning values to the ? parameters specified in the SELECT 
statement preprocessed by the PREPARE statement:
OPEN CR2
  USING DESCRIPTOR SQLDA



PREPARE statement (Preprocess SQL)

912

PREPARE statement (Preprocess SQL)

Function
The PREPARE statement preprocesses so that the SQL statement given in 
character-string can be executed, and assigns either an SQL statement identifier or an 
extended statement name to the SQL statement. In addition, by specifying either the 
OUTPUT or INPUT operand, the user can also fetch the retrieval information or input/
output information obtained by the DESCRIBE [OUTPUT] statement or the DESCRIBE 
INPUT statement.

Privileges
None.

Format
PREPARE {SQL-statement-identifier | extended-statement-name}
        FROM {'character-string'|:embedded-variable}
             [WITH {SQLNAME|[ALL] TYPE}
             [, {SQLNAME|[ALL] TYPE}] OPTION]
             [OUTPUT[:]SQL-descriptor-area-name
                   [[:]column-name-descriptor-area-name]
                TYPE[:]type-name-descriptor-area-name]]
              [INPUT[:]SQL-descriptor-area-name
                   [[:]column-name-descriptor-area-name]

Operands
{SQL-statement-identifier | extended-statement-name}

SQL-statement-identifier
Specifies the name assigned to the SQL statement in order to identify the SQL that 
is to be prepared.
For details on SQL statement identifiers, see 1.1.7 Specification of names.
HiRDB reserved words (other than SELECT and WITH) can be used as SQL 
statement identifiers. Even if an SQL statement identifier identical to a reserved 
word is used, it must not be enclosed in quotation marks.

extended-statement-name
When a cursor is to be allocated by the ALLOCATE CURSOR statement, this 
operand specifies the extended statement name that was assigned to the SQL 
statement to identify the SQL statement to be preprocessed.
For extended statement names, see 2.26 Extended statement name.



PREPARE statement (Preprocess SQL)

913

{'character-string'|:embedded-variable}
character-string

Specifies directly as a character literal the character string representing the SQL 
to be preprocessed.
The SQL prefix or the SQL terminator cannot be specified in the character string 
to be preprocessed.
An apostrophe in the character literal specification of an SQL to be preprocessed 
must be specified as two apostrophes in succession.
The maximum length of an SQL to be preprocessed is 2,000,000 bytes. If an SQL 
of the embedded type is specified directly as a character literal, the maximum 
length is the maximum length of character literals in the host language.

embedded-variable
Specifies an embedded variable of the variable-length character type.
[WITH {SQLNAME|[ALL] TYPE} [, {SQLNAME|[ALL] TYPE}] OPTION]

SQLNAME
Specifies that column information on retrieval items and attribute names of a 
user-defined data type are to be received by specifying a Column Name 
Descriptor Area in a DESCRIBE or DESCRIBE TYPE statement. If a Column Name 
Descriptor Area name is specified in either the OUTPUT or INPUT clause, the 
SQLNAME operand can be omitted.

[ALL ] TYPE
Specifies that type name information on retrieval items is to be received by 
specifying a Type Name Descriptor Area in a DESCRIBE statement.
The TYPE option can be omitted if a Type Name Descriptor Area name is 
specified in the OUTPUT clause. The ALL TYPE option should be specified if 
definition information of a user-defined type is to be received by the DESCRIBE 
TYPE statement. ALL TYPE cannot be omitted even when a Type Name 
Descriptor Area name is specified in the OUTPUT clause.
[OUTPUT [:] SQL-descriptor-area-name [ [:] 
column-name-descriptor-area-name] [TYPE [:] 
type-name-descriptor-area-name] ]

SQL-descriptor-area-name
Specifies the name of the SQL descriptor area that receives SQL retrieval item 
information (if the preprocessed SQL statement is a SELECT statement) or output 
? parameter information (if the preprocessed SQL statement is a CALL statement).
For SQL descriptor areas, see the HiRDB Version 8 UAP Development Guide.



PREPARE statement (Preprocess SQL)

914

column-name-descriptor-area-name
Specifies either the name of a retrieval item or the Column Name Descriptor Area 
that receives a routine parameter name.
For Column Name Descriptor Areas, see the HiRDB Version 8 UAP Development 
Guide.

type-name-descriptor-area-name
Specifies the Type Name Descriptor Area that receives the user-defined type 
name for a retrieval item.
For Type Name Descriptor Areas, see the HiRDB Version 8 UAP Development 
Guide.
[INPUT [:] SQL-descriptor-area-name [ [:] 
column-name-descriptor-area-name] ]

SQL-descriptor-area-name
Specifies the name of the SQL descriptor area that receives input ? parameter 
information.
For details about the SQL descriptor area, see the HiRDB Version 8 UAP 
Development Guide.

column-name-descriptor-area-name
Specifies the Column Name Descriptor Area that receives either the name of a 
retrieval item or the parameter name of a routine.
For details about Column Name Descriptor Areas, see the HiRDB Version 8 UAP 
Development Guide.

Common rules
1. The type of an embedded variable is the following structure:

struct {
   long  xxxxxxx;     /* Effective length of SQL statement */
   char  yyyyyyy[n];  /* SQL statement storage area */
} zzzzzzz;

The characters xxxxxxx indicate the effective length of the character string 
stored in character array yyyyyyy.

1  (value of xxxxxxx)  2000000
The effective length of a character string does not include the character 0 
(zero) that indicates the end of the character string.
n is any value.

2. SQLNAME cannot be specified more than once. Similarly, [ALL ] TYPE cannot be 



PREPARE statement (Preprocess SQL)

915

specified more than once.
3. Before executing the PREPARE statement, the UAP should assign the number of 

SQLVAR flags (the SQLN area) in the SQL descriptor area.
4. Because SQLDATA and SQLIND are cleared when the DESCRIBE statement is 

executed, or when a PREPARE statement is executed in which INPUT or OUTPUT 
is specified, if you use the DESCRIBE statement, or if you use a PREPARE 
statement in which INPUT or OUTPUT is specified, a value should be assigned to 
SQLDATA or SQLIND after those statements are executed.

5. The Column Name Descriptor Area should be specified only when the name of a 
retrieval item or the parameter name of a routine is to be received. Note that the 
parameter name of a routine can be received only when the ? parameter is 
specified by itself in an argument of the CALL statement. If a value expression 
including the ? parameter is specified, the length of the name of the Column 
Name Descriptor Area is 0.

6. A Type Name Descriptor Area name should be specified only when the 
user-defined type name of the retrieval result is to be received.

Notes
1. The results of preprocessing produced in a transaction remain in effect only 

within that transaction. Therefore, any DESCRIBE, EXECUTE, OPEN, FETCH, or 
CLOSE statement that references the prepared SQL must be executed in the same 
transaction. However, if the preprocessed SQL is a holdable cursor, the following 
takes place:

• When the SQL is preprocessed in the transaction and committed:
The preprocessing result remains valid until a DISCONNECT statement is 
executed.

• When the SQL is preprocessed in the transaction and rolled back:
The preprocessing result is valid only within the transaction.

2. An SQL to be preprocessed by the PREPARE statement must be preprocessed in 
advance.
The following SQLs can be preprocessed by the PREPARE statement:

• Data manipulation SQLs:
ASSIGN LIST statement (executed with EXECUTE statement)
CALL statement (executed with EXECUTE statement)
DELETE statement (executed with EXECUTE statement)
Preparable dynamic DELETE statement: locating (executed by the EXECUTE 
statement)



PREPARE statement (Preprocess SQL)

916

DROP LIST statement (executed with EXECUTE statement)
INSERT statement (executed with EXECUTE statement)
PURGE TABLE statement (executed with EXECUTE statement)
SELECT statement (executed with OPEN, FETCH, and CLOSE statements)
Single-row SELECT statement (executed by the EXECUTE statement)
Dynamic SELECT statement (executed by the OPEN, FETCH, or CLOSE 
statement)
UPDATE statement (executed with EXECUTE statement)
Preparable dynamic UPDATE statement: locating (executed by the EXECUTE 
statement)
Assignment statement (executed by the EXECUTE statement)

• Control SQLs:
LOCK TABLE statement (executed by EXECUTE statement)
SET SESSION AUTHORIZATION statement (executed by the EXECUTE 
statement)

• Definition SQLs:
ALTER PROCEDURE, ALTER ROUTINE, ALTER TABLE, ALTER TRIGGER, 
COMMENT, CREATE ALIAS, CREATE AUDIT, CREATE CONNECTION 
SECURITY, CREATE FOREIGN INDEX, CREATE FOREIGN TABLE, CREATE 
FUNCTION, CREATE INDEX, CREATE PROCEDURE, CREATE SCHEMA, 
CREATE SERVER, CREATE TABLE, CREATE TRIGGER, CREATE TYPE, 
CREATE USER MAPPING, CREATE VIEW, DROP ALIAS, DROP AUDIT, DROP 
CONNECTION SECURITY, DROP DATA TYPE, DROP FOREIGN INDEX, DROP 
FOREIGN TABLE, DROP FUNCTION, DROP INDEX, DROP PROCEDURE, DROP 
SCHEMA, DROP SERVER, DROP TABLE, DROP TRIGGER, DROP USER 
MAPPING, DROP VIEW, GRANT, and REVOKE statements (all definition SQLs 
executed by the EXECUTE statement)

3. An SQL statement identifier, similar to an embedded variable name, is effective 
only within a compile-unit module. Multiple SQLs relative to the same SQL 
statement identifier cannot be used in multiple modules.

4. When the dynamic SELECT statement preprocessed by the PREPARE statement is 
being executed (after the OPEN statement has been executed and before the CLOSE 
statement is executed), any table specified in the FROM clause of the dynamic 
SELECT statement should not be updated by another SQL statement.

5. If the SQL statement identifier or extended statement name that is specified 
already identifies another SQL statement, the DEALLOCATE PREPARE statement 



PREPARE statement (Preprocess SQL)

917

is implicitly executed, and the previously identified SQL statement is nullified. 
After that, the specified SQL statement identifier or the extended statement name 
identify the SQL statement that was preprocessed by the PREPARE statement. 
However, if an error occurs in the implicitly executed DEALLOCATE PREPARE 
statement, the previously identified SQL statement remains unchanged.

6. If OUTPUT is specified in the PREPARE statement, the PREPARE statement is 
treated in the same way as the execution of the DESCRIBE [OUTPUT] statement. 
Similarly, if INPUT is specified in the PREPARE statement, the PREPARE 
statement is treated in the same way as the execution of the DESCRIBE [INPUT] 
statement. For details about the OUTPUT and INPUT options, see DESCRIBE.

Examples
1. Preprocess the SQL 'SELECT * FROM STOCK' provided in a character string for 

execution; assume that the SQL identifier assigned to the preprocessed SQL is 
named 'PRESQL':
PREPARE PRESQL FROM
  'SELECT * FROM STOCK'

2. Prepare the SQL character string specified in an embedded variable named XSQL; 
assume that the SQL identifier assigned to the preprocessed SQL is named 
'PRESQL':
PREPARE PRESQL FROM :XSQL



PURGE TABLE statement (Delete all rows)

918

PURGE TABLE statement (Delete all rows)

Function
The PURGE TABLE statement deletes all rows in a specified base table.

Privileges
A user who has the DELETE privilege for a table can delete rows from that table.

Format
PURGE TABLE[[RD-node-name.]authorization-identifier.]table-identifier
            [{WITH ROLLBACK|NO WAIT}]

Operands
[[RD-node-name.]authorization-identifier.]table-identifier

RD-node-name
Specifies the RD node name of the RD node to be accessed.

authorization-identifier
Specifies the authorization identifier of the user who owns the table.
MASTER cannot be specified as an authorization identifier. For an explanation of 
omitting the authorization identifier, see 1.1.8 Qualifying a name.

table-identifier
Specifies the name of the base table from which all rows are to be deleted.
[{WITH ROLLBACK|NO WAIT}]

If neither the WITH ROLLBACK option nor the NO WAIT option is specified and the table 
from which all rows are to be deleted is being used by a transaction issued by another 
user, the system executes the PURGE TABLE statement after that transaction has 
terminated.
When USE is specified for the pd_check_pending operand in the system definition 
and a referencing table that is referencing a table from which all rows are to be deleted 
is being used by another user transaction, the referencing table is set to check pending 
status once the transaction terminates.
WITH ROLLBACK

Specifies that if the table from which all rows are to be deleted is being used by 
another user, the system is to cancel and invalidate the current transaction.
When USE is specified for the pd_check_pending operand in the system 



PURGE TABLE statement (Delete all rows)

919

definition and a referencing table that is referencing a table from which all rows 
are to be deleted is being used by another user transaction, the transaction is 
cancelled and invalidated.

NO WAIT
Specifies that if the table from which all rows are to be deleted is being used by 
another user, HiRDB is to invalidate the current SQL without canceling the 
transaction.
When USE is specified for the pd_check_pending operand in the system 
definition and a referencing table that is referencing a table from which all rows 
are to be deleted is being used by another user transaction, the SQL statement is 
invalidated without canceling the transaction.

Common rules
1. When executed normally, the PURGE TABLE statement is committed as soon as its 

processing has been completed.
2. If the user LOB RDAREA that stores a LOB column or LOB attribute is in the 

frozen update status, the PURGE TABLE statement cannot be executed on a table 
containing the LOB column or the LOB attribute (an attempt to execute this 
statement causes an already frozen error).

3. The PURGE TABLE statement cannot be executed on falsification prevented tables.
4. If the PURGE TABLE statement is executed on a shared table, a locking equivalent 

to the LOCK statement with an EXCLUSIVE specification is applied to the shared 
table. For HiRDB/Parallel Server, the locking is applied on all back-end servers.

Rules related to the check pending status
1. When USE is specified for the pd_check_pending operand in the system 

definition and the operation-target table is a referenced table, the referencing table 
that references the operation-target table is set to check pending status.

2. If the operation-target table is in check pending status, the status is released. 
However, if either of the conditions listed below is satisfied, the check pending 
status in the dictionary tables is not released. In such a case, use the integrity 
check utility to release the check pending status in the dictionary tables.

• NOUSE is specified for the pd_check_pending operand in the system 
definition.

• The inner replica facility is being used.

Notes
1. The PURGE TABLE statement cannot be specified for a view table.
2. The PURGE TABLE statement cannot be specified for a foreign table.



PURGE TABLE statement (Delete all rows)

920

3. The PURGE TABLE statement cannot be specified from an X/Open-compliant 
UAP running under OLTP. When calling a procedure from a UAP running under 
OLTP, you cannot execute procedures using the PURGE TABLE statement.

4. When executing a procedure defined on a distributed RD node for remote 
database access using the distributed database facility, you cannot execute 
procedures using the PURGE TABLE statement.

5. The PURGE TABLE statement cannot be executed during trigger action.

Example
Delete all rows from stock table STOCK:
PURGE TABLE STOCK



Single-row SELECT statement (Retrieve one row)

921

Single-row SELECT statement (Retrieve one row)

Function
The single-row SELECT statement retrieves table data by fetching only one row of data 
without using a cursor.
Although the single-row SELECT statement has the same operands as the SELECT 
clause with a query specification, unlike the SELECT clause as a statement in a query 
specification it does not operate on sets.
The single-row SELECT statement includes the INTO clause that specifies the area for 
receiving the retrieved results.

Privileges
Same as the SELECT clause as a statement in a query specification

Format: Fetching up to one row of data into specified embedded variables
SELECT [{ALL|DISTINCT}] {selection-expression
                            [, selection-expression]...|*}
   [INTO {:embedded-variable[:indicator-variable]
         |[statement-label.]SQL-variable-name
         |[[authorization-identifier.]routine-identifier.]
             SQL-parameter-name
         |[statement-label.]SQL-variable-name..attribute-name
                [..attribute-name]...
         |[[authorization-identifier.]routine-identifier.]
             SQL-parameter-name
                ..attribute-name[..attribute-name]...}
        [, {:embedded-variable[:indicator-variable]
            |[statement-label.]SQL-variable-name
            |[[authorization-identifier.]routine-identifier.]
                SQL-parameter-name
            |[statement-label.]SQL-variable-name..attribute-name
                   [..attribute-name]...
            |[[authorization-identifier.]routine-identifier.]
                SQL-parameter-name
                   ..attribute-name[..attribute-name]...} ]...]
  (Table-Expression)
   FROM table-reference [, table-reference]...
       [WHERE search-condition]
       [GROUP BY value-expression [, value-expression]...]
       [HAVING search-condition]
  (Lock-option)



Single-row SELECT statement (Retrieve one row)

922

 [[{WITH {SHARE|EXCLUSIVE}LOCK
    |WITHOUT LOCK [{WAIT|NOWAIT}]}]]
   [{WITH ROLLBCK|NO WAIT}]

Operands
For the SELECT clause, see 2.3 Query specification; for table expressions, see 2.5 
Table expressions; for the lock option, see 2.19 Lock option.

INTO clause
The INTO clause must always be specified when the SELECT statement is coded, either 
by itself or directly in a UAP or procedure.
However, the INTO clause cannot be specified in any of the following locations:

• A SELECT statement in an SQL statement preprocessed by the PREPARE 
statement

• A SELECT statement in an SQL statement preprocessed/executed by the EXECUTE 
IMMEDIATE statement

• A SELECT statement in a cursor declaration
{:embedded-variable[:indicator-variable]
 |[statement-label.]SQL-variable-name
 |[[authorization-identifier.]routine-identifier.]SQL-parameter-name
 |[statement-label.]SQL-variable-name..attribute-name[..attribute-name]...
 |[[authorization-identifier.]routine-identifier.]SQL-parameter-name
                ..attribute-name[..attribute-name]...}
  [, {:embedded-variable[:indicator-variable]
     |[statement-label.]SQL-variable-name
     |[[authorization-identifier.]routine-identifier.]SQL-parameter-name
     |[statement-label.]SQL-variable-name..attribute-name
                  [..attribute-name]...
     |[[authorization-identifier.]routine-identifier.]SQL-parameter-name
                   ..attribute-name[..attribute-name]...} ]...

embedded-variable
Specifies an embedded variable into which a column value in the row is to be 
read.

indicator-variable



Single-row SELECT statement (Retrieve one row)

923

Specifies when the column value to be read into the embedded variable may be 
the null value.

[statement-label.]SQL-variable-name
[[authorization-identifier.]routine-identifier.]SQL-parameter-name

Specifies either an SQL variable or an SQL parameter that is to receive the value 
of a column in a procedure. For details about specification values in a Java 
procedure, see JDBC drivers or SQLJ in the HiRDB Version 8 UAP Development 
Guide.

[statement-label.]SQL-variable-name..attribute-name[..attribute-name]...
[[authorization-identifier.] routine-identifier.]SQL-parameter-name 
attribute-name[..attribute-name]...

These operands are specified to receive the values of attributes in a column.

Common rules
1. When retrieval results are limited to no more than one row, the single-row 

SELECT statement can be used to retrieve the data without using a cursor but by 
specifying the INTO clause. If the retrieval results include more than one row, the 
single-row SELECT statement cannot be used.

• The number of retrieval result columns and the number of embedded 
variables specified in the INTO clause must agree. If they do not, the W 
warning flag is set in SQLWARN3 in the SQL Communications Area.

• The data type of each embedded variable specified in the INTO clause must 
be either the same as the data type of the corresponding column or a data type 
that can be converted into that data type.

• If the data fetched into a fixed-length character string (including a national 
character string or a mixed character string) embedded variable is shorter 
than the length of the retrieval item, the data is left-justified in the embedded 
variable and trailing blanks are added.

• If the value of a retrieval results column is the null, the value of the 
corresponding embedded variable is unpredictable.

• If the value of a retrieval results column is the null, an indicator variable must 
be specified.

2. If there are no rows to be fetched, the system returns the following return codes:
• Return code 100 to SQLCODE in the SQL Communications Area
• Return code 100 to the SQLCODE variable
• Return code '02000' to the SQLSTATE variable



Single-row SELECT statement (Retrieve one row)

924

3. UNION [ALL], EXCEPT [ALL], the ORDER BY clause, and the LIMIT clause can 
be specified according to the rules given in 2.1.1 Cursor specification: Format 1 
and 2.3 Query specification.
If UNION [ALL]and EXCEPT [ALL] are specified, the INTO clause should be 
specified only once following the first occurrence of the SELECT clause.

Examples
See the section on DECLARE CURSOR Format 1 (Declare cursor) for examples.



Dynamic SELECT statement Format 1 (Retrieve dynamically)

925

Dynamic SELECT statement Format 1 (Retrieve dynamically)

Function
The dynamic SELECT statement is used for the following purposes:

For retrieving data from one or more tables
For executing the SELECT statement dynamically
For preparing by the PREPARE statement (the DECLARE CURSOR statement is used 
to declare a cursor, and the cursor is used to fetch the retrieval results on a 
row-by-row basis)

Privileges
See 2.1.1 Cursor specification: Format 1.

Format
(Cursor-Specification-Format-1)
 (Query-Expression)
  (Query-Specification)
   {SELECT [ {ALL|DISTINCT}] {selection-expression
             [, selection-expression]...
                |*}
   (Table-Expression)
   FROM table-reference [, table-reference]...
       [WHERE search-condition]
       [GROUP BY value-expression[, value-expression]...]
       [HAVING search-condition]
   | query-expression }
   |derived-query-expression UNION ALL 
{query-specification|(derived-query-expression)}]
[ORDER BY {column-specification|sort-item-specification-number}
               [{ASC|DESC}]
           [, {column-specification|sort-item-specification-number}
               [{ASC|DESC}]]...]
    [LIMIT {[offset, ]{row_count | ALL}
        | {row_count |ALL} [OFFSET offset]}]
(Lock-Option)
 [[{WITH {SHARE|EXCLUSIVE} LOCK
    |WITHOUT LOCK [{WAIT|NOWAIT} ] } ]
 [ {WITH ROLLBACK|NO WAIT} ]]
 [FOR {UPDATE [OF column-name [, column-name]...]|READ ONLY} ]
 [UNTIL DISCONNECT]



Dynamic SELECT statement Format 1 (Retrieve dynamically)

926

Operands
For the following items, see the indicated sections in this manual:

• Cursor-Specification-Format-1: 2.1.1 Cursor specification: Format 1
• Query-Expression: 2.2 Query expressions
• Query-specification: 2.3 Query specification
• Table-Expression: 2.5 Table expressions
• Search-condition: 2.7 Search conditions
• Lock-Option: 2.19 Lock option

 
FOR{UPDATE[OF column-name [, column-name]...]|READ ONLY}

FOR UPDATE [OF column-name [, column-name]...] is referred to as a FOR UPDATE 
clause
FOR UPDATE

This operand is specified when a table is being searched using a cursor and when 
rows in the table are updated or deleted using the cursor, and, in addition, when 
rows in the table are to be updated, added, or deleted either using another cursor 
or by directly specifying a search condition.
When the FOR UPDATE clause is omitted, the current cursor cannot be used to 
update, add, or delete rows from the table being retrieved.
The FOR UPDATE clause cannot be specified if either the cursor specification or 
the lock option contains any of the following specifications:

1. UNION[ALL] or EXCEPT[ALL]
2. A table specified in the FROM clause of the outermost query specification in 

the FROM clause of a subquery
3. Joined tables in an outermost query specification
4. SELECT DISTINCT in an outermost query specification
5. A table derived from a FROM clause in the outermost query specification
6. The GROUP BY clause in an outermost query specification
7. The HAVING clause in an outermost query specification
8. A set function in an outermost query specification
9. The window function in an outermost query specification
10. Specifying a foreign table in the FROM clause of the outermost query 



Dynamic SELECT statement Format 1 (Retrieve dynamically)

927

specification
11. Any of the following view tables in the FROM clause of an outermost query 

specification:
 A view table defined by specifying any of items (1) to (10) above in a view 

definition statement.
 View tables that are defined by specifying a value expression other than a 

column specification in the SELECT clause of the outermost query 
specification in a view definition statement.

 A view table defined by specifying the READ ONLY option in the view 
definition statement.

12. WITHOUT LOCK NOWAIT
13. A query specification name specified in the FROM clause of the outermost 

query specification in the query expression body in which a WITH clause is 
specified

OF column-name [, column-name]...
If a table is being searched using a cursor and when only searched rows using the 
cursor are to be updated, this operand specifies the column to be updated.
Columns that are not specified in the selection expression of the SELECT 
statement can also be specified in column-name. Each column specified in 
column-name must be distinct.
If a table is being searched using a cursor and rows in the table are not updated or 
deleted using that cursor or another cursor, and rows on which a cursor is not used 
are not updated, deleted, or added, this operand should not be specified.
The column name that is specified should specify a column in the table specified 
in the FROM clause of the outermost query specification, rather than the column 
name specified in AS column-name.

FOR READ ONLY
This operand is specified when performing an update by specifying another 
cursor or a direct search condition during a retrieval using a cursor. Specify FOR 
READ ONLY so that any update performed during the retrieval process does not 
affect the results of retrieval.
Specifying the FOR READ ONLY clause is subject to the following restrictions:
(a) Scalar operations, function calls, and component specifications that produce 
any of the following data types in the results cannot be specified in a selection 
expression:

• BLOB



Dynamic SELECT statement Format 1 (Retrieve dynamically)

928

• BINARY with a maximum length of 32,001 bytes or greater
• BOOLEAN
• Abstract data type

(b) Only column specifications can be specified as an output BLOB value with a 
WRITE specification.
(c) The GET_JAVA_STORED_ROUTINE_SOURCE specification cannot be 
specified.
[UNTIL DISCONNECT]

Specifies that a holdable cursor is to be used. For details on holdable cursors, see the 
HiRDB Version 8 UAP Development Guide.
The following rules apply to holdable cursors:
1. A holdable cursor cannot be used in the following cases:

• In conjunction with remote database access
• When a column of the abstract data type using a plug-in is specified
• When a function call using a plug-in is specified
• A query for a named derived table derived by specifying a function call using 

a plug-in
• Foreign tables or view tables having a foreign table as a base table

2. Definition SQL statements cannot be executed while a holdable cursor is open. If 
the holdable cursor is closed, execution of a definition SQL statement invalidates 
any preprocessing that is using the holdable cursor.

3. If, after an OPEN statement is executed for a SELECT statement using a holdable 
cursor, a PURGE TABLE statement is executed for a table used in the SELECT 
statement, the cursor is placed into closed status.

4. If, after an OPEN statement is executed for a SELECT statement using a holdable 
cursor and before a DISCONNECT is performed, another user issues a definition 
SQL statement for a table used in the SELECT statement, the definition SQL 
statement is placed into lock-wait status. Similarly, if, during the period when 
preprocessing relative to a SELECT statement using a holdable cursor is still in 
effect, another user issues a definition SQL statement for a table that is being used 
in the SELECT statement, the definition SQL statement is placed into lock-wait 
status.

Rule related to referential constraints
1. A holdable cursor that is used to retrieve a table in which a foreign key is defined 

is closed when the table being retrieved goes into check pending status.



Dynamic SELECT statement Format 1 (Retrieve dynamically)

929

Notes
1. Because specification of the FOR UPDATE clause causes a work table to be 

created, this operand should be omitted if no rows are to be updated, added, or 
deleted from the current table using a cursor.

2. By applying the work table creation suppression feature of the update SQL 
statement in the SQL optimization option and using the index key-value no-lock 
facility, you can update, add, or delete rows while using a cursor for which neither 
FOR UPDATE nor FOR UPDATE OF is specified.

Examples
For examples, see DECLARE CURSOR Format 1 (Declare cursor) and ALLOCATE 
CURSOR statement Format 1 (Allocate a statement cursor).



Dynamic SELECT statement Format 2 (Retrieve dynamically)

930

Dynamic SELECT statement Format 2 (Retrieve dynamically)

Function
The dynamic SELECT statement uses a list for retrieving data from a table.

Privileges
The owner of a list can use that list to retrieve data from tables.

Format 2: Retrieving table data using a list
(Cursor-Specification-Format-2)
  SELECT {{value-expression|WRITE 
specification|GET_JAVA_STORED_ROUTINE_SOURCE specification}
      [[AS]column-name]
         [, {value-expression|WRITE 
specification|GET_JAVA_STORED_ROUTINE_SOURCE specification}
         [[AS]column-name]]...
      |*}
    FROM LIST list-name
(Lock-Option)
 [ {WITH {SHARE|EXCLUSIVE} LOCK
      |WITHOUT LOCK [ {WAIT|NOWAIT} ]}]
 [{WITH ROLLBACK|NO WAIT} ]

Operands
For cursor specification, see 2.1.2 Cursor specification: Format 2; for the lock option, 
see 2.19 Lock option.

[Lock-Option]
Specifies that the base table to be searched is to be locked when retrieval is performed 
using a list.

Common rules
1. If a row that existed in the base table when the list was created is not found during 

retrieval processing, SQL code +110 is returned and retrieval processing 
continues.

2. The same user cannot manipulate a list by connecting to HiRDB concurrently in 
multiple sessions.

Notes
1. Rows in the base table that are deleted after the list is created cannot be retrieved 

during retrieval processing.



Dynamic SELECT statement Format 2 (Retrieve dynamically)

931

2. Rows in the base table that are updated after the list is created can be retrieved.
3. If rows are deleted and then rows are inserted into the base table after the list has 

been created, sometimes only inserted rows are retrieved.
4. Between the time an SQL for searching a table via a list is preprocessed by the 

PREPARE statement and the time the OPEN statement is executed, an ASSIGN 
LIST statement that specifies the same list name must not be executed.



UPDATE statement Format 1 (Update data)

932

UPDATE statement Format 1 (Update data)

Function
The UPDATE statement updates the values of columns in the rows that satisfy specified 
search conditions or in the row indicated by a cursor.

Privileges
A user who has the UPDATE privilege for a table can update the row values in that table.
However, if a subquery is specified in the search condition, the user needs the SELECT 
privilege for the table for which the subquery is specified.

Format 1: Updating rows in a table on a column-by-column basis
UPDATE [[RD-node-name.]authorization-identifier.]table-identifier [[AS] 
correlation-name]
         [SQL-optimization-specification-for-used-index]
         (SET {update-object = update-value
               |(update-object,update-object[,update-object]) = row-subquery}
               [,{update-object = update-value
                  |(update-object,update-object[,update-object]...)
                       = row-subquery}]...
          |ADD repetition-column-name [{subscript|*}]
                 = {ARRAY [element-value[,element-value]...]
                    |?-parameter|:embedded-variable[:indicator-variable]}
                 [,repetition-column-name [{subscript|*}]
                      = {ARRAY [element-value[,element-value]...]
                          |?-parameter|:embedded-variable
                               [:indicator-variable]}]...
          |DELETE repetition-column-name [{subscript|*}]
                   [,repetition-column-name [{subscript|*}]]...}
[WHERE {search-condition|CURRENT OF {cursor-name | 
extended-cursor-name}}]
[WITH ROLLBACK]
 
update-object ::= {column-name|component-specification
                     |column-name [{subscript|*}]}

Operands
[[RD-node-name.]authorization-identifier.]table-identifier

Specifies the table that is to be updated.
The following rules apply:



UPDATE statement Format 1 (Update data)

933

1. Rows in a read-only view table cannot be updated; for an explanation of read-only 
view tables, see the rules in the CREATE VIEW section in 3. Definition SQL.

2. If updating of a column in a view table is specified, the UPDATE statement updates 
the base table associated with that column of the view table.

3. The table name is valid throughout the entire UPDATE statement.
4. A name that is the same as the table name used in the FROM clause of the subquery 

cannot be specified if the column of the table to be updated is specified in an 
external reference in a subquery specified in the SET or ADD clause, and a value 
expression with any of the following attributes is specified in a selection 
expression in the subquery:

• BLOB
• BINARY type with a maximum length of 32,001 bytes or greater
• Repetition column
• Abstract data type

However, if a view table is specified in the table name in the FROM clause of the 
subquery, all table names specified in a derived query expression in the view table 
definition are subject to this operation.

RD-node name
Specifies the RD node name of the RD node to be accessed.

authorization-identifier
Specifies the authorization identifier of the owner of the table.
MASTER cannot be specified as an authorization identifier.

table-identifier
Specifies the name of the table that is to be updated.
[AS] correlation-name

Specify this operand when a correlation name is to be used for the table being updated.
The scope of correlation-name is the entire UPDATE statement. The table identifier to 
be updated has no scope.

SQL-optimization-specification-on-used-index
For details about SQL optimization specifications on used indexes, see 2.24 SQL 
optimization specification.

SET update-object = update-value
Specifies a table identifier when the value of a column or the value of an attribute of 



UPDATE statement Format 1 (Update data)

934

an abstract data type is to be updated.
column-name

Specifies the name of a column to be updated.
component-specification

Specifies the attribute of the abstract data type being updated.
column-name [{subscript|*}]

column-name
Specifies a repetition column whose elements are to be updated.

[{subscript|*}]
Specifies the position of the element that is to be updated; to update the last 
element, specify an asterisk (*).
If there are no elements in the repetition column that is to be updated, 
specifying an asterisk is meaningless.

update-value
Specifies any of the following items to be used as the paired column's new 
value:

• Column name
• Component specification
• Literal
• Value expression (including an arithmetic or concatenation operation)
• Scalar subquery
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• NULL (null value)
• DEFAULT (Represents the predefined value for the column to be 

updated.)
• Embedded variable (and indicator variables)
• ? parameter
• SQL variables or SQL parameters



UPDATE statement Format 1 (Update data)

935

• ARRAY [element-value [, element-value] ...]*

* None of the following can be specified as the value of an element:
 A column other than a repetition column
 A subscripted repetition column
 A literal
 A value expression (including arithmetic and concatenation 

operations)
 A scalar subquery
 USER
 CURRENT_DATE
 CURRENT_TIME
 CURRENT_TIMESTAMP[(p)]
 NULL (represents the null value)
 DEFAULT
 Embedded variables (and indicator variables)
 ? parameter
 An SQL variable or SQL parameter

Rules on update values
1. When a column name is specified as the updated value, the name of a column 

with either the same data type as the column or attribute being updated or a 
data type that can be converted to that data type must be specified.

2. When a scalar subquery is specified as the updated value, the data type of the 
column obtained as a result of the scalar subquery must be the same as that 
of the column or attribute to be updated or a data type that can be converted 
to it.

3. When an unsubscripted repetition column is specified as the update object, 
the name of an unsubscripted repetition column must be specified as the 
column name of the update value or in the selection expression for the scalar 
subquery.

4. When a subscripted repetition column is specified as the update object, the 
name of an unsubscripted repetition column cannot be specified as the 
column name of the update value or in the selection expression for the scalar 
subquery.



UPDATE statement Format 1 (Update data)

936

5. Embedded variables and indicator variables cannot be specified in UPDATE 
statements or procedures that are preprocessed by the PREPARE statement. In 
a procedure, either an SQL variable or an SQL parameter must be used.

6. When an embedded variable (indicator variable), ? parameter, SQL variable, 
or SQL parameter is specified, the data type of the embedded variable (for a 
? parameter, the embedded variable that is specified to assign a value to it), 
SQL variable, or SQL parameter should be the data type of the column or 
attribute being updated or a data type that can be converted to that data type.
If the column to be updated is a repetition column, the embedded variable 
(indicator variable) or ? parameter that holds the update value should have a 
repetition structure.

7. When an indicator variable with a negative value is specified, the value of 
the embedded variable is interpreted to be the null value and the null value is 
set in the corresponding column. When the value of a specified indicator 
variable is 0 or positive, the value of the embedded variable is assigned to the 
corresponding column.
A ? parameter can be specified only in an UPDATE statement that is 
preprocessed by the PREPARE statement.

8. The value to be assigned to the ? parameter is specified in an embedded 
variable in the USING clause of the EXECUTE statement that corresponds to 
the PREPARE statement that prepares the UPDATE statement.

9. The update value must have a data type that can be converted to or compared 
with the column to be updated.
However, if the column to be updated is of the national character data type 
and a character string literal is specified as the update value, the character 
string literal will be treated as a national character string literal. When a 
character string literal is treated as a national character string literal, only the 
character data length is checked; the character codes are not checked.

10. When the column to be updated is an unsubscripted repetition column, none 
of the following can be specified as the update value: a literal, value 
expression, USER, CURRENT_DATE, CURRENT_TIME, 
CURRENT_TIMESTAMP[(p)], SQL variable, or SQL parameter.

11. ARRAY [element-value [, element-value] ...] can be specified only if the 
column being updated is a repetition column.

12. A maximum of 30,000 element values can be specified in ARRAY 
[element-value [,element-value] ...], provided that the number does not 
exceed the maximum permissible number of elements for the column being 
updated.

13. DEFAULT, specified as an update value, takes the following predefined 



UPDATE statement Format 1 (Update data)

937

values:
 If the DEFAULT clause is specified for the column to be updated, a 

specified predefined value takes effect.
 If DEFAULT is not specified but WITH DEFAULT is specified, the 

predefined value for WITH DEFAULT takes effect.
 If neither the DEFAULT clause nor WITH DEFAULT is specified, NULL 

becomes the predefined value.
Rules on element values

1. Embedded variables and indicator variables cannot be specified in an 
UPDATE statement preprocessed by a PREPARE statement or in a procedure. 
An SQL variable or parameter should be used in a procedure.

2. When an embedded variable (indicator variable), ? parameter, SQL variable, 
or SQL parameter is specified, the data type of the embedded variable (for a 
? parameter, the embedded variable that is specified to assign a value to it), 
SQL variable, or SQL parameter should be the data type of the column or 
attribute being updated or a data type that can be converted to that data type. 
In addition, the embedded variable (indicator variable) or ? parameter should 
have a simple structure.

3. If an indicator variable is specified and its value is negative, the value of the 
embedded variable is interpreted to be NULL, and the NULL value is assigned 
to the corresponding column. If the value of the indicator variable is either 0 
or positive, the value of the embedded variable will be assigned to the 
corresponding column.

4. The ? parameter can be specified only in an UPDATE statement that is 
preprocessed by a PREPARE statement. The value to be assigned to the ? 
parameter is specified in an embedded variable in a USING clause in the 
EXECUTE statement for the PREPARE statement.

5. The value of an element should be of that can be converted into or compared 
with the data type of the column to be updated. However, if the column to be 
updated is of the national character data type and a character string constant 
is specified as the update value, the character string constant is treated as a 
national character string constant, in which case its character codes are not 
checked and only the length of the character data is checked.

6. When a scalar subquery is specified as an element value, an unsubscripted 
repetition column cannot be specified in the selection expression for the 
scalar subquery.

7. If DEFAULT is specified as the value of an element, the predefined value is 
the null value.



UPDATE statement Format 1 (Update data)

938

Rules on updating a column of the BLOB type or the BINARY type with a definition 
length of 32,001 bytes or greater, using concatenation operations

1. A column specification can be specified in the first operand of the 
concatenation operation. In the second term, an embedded variable, a ? 
parameter, an SQL variable, and an SQL parameter can be specified.

2. When specifying a concatenation operation of the BLOB type or the BINARY 
type with a definition length of 32,001 bytes or greater as an update value, 
be sure to specify the same column as the target of updating in the first 
operand of the concatenation operation.

3. A concatenation operation cannot be specified as the result of a 
concatenation operation.

4. The only data type that can be concatenated with the BLOB type is the BLOB 
type; character data, national character data, or mixed character data cannot 
be concatenated with BLOB.

5. The only data type that can be concatenated with the BINARY type is the 
BINARY type; character data, national character data, or mixed character data 
cannot be concatenated with BINARY.

6. The results of a concatenation operation allow the null value, irrespective of 
whether the value of the first or second operand is subject to NOT NULL 
constraints.

7. A concatenation operation producing the actual length of the result 
exceeding the maximum length for the BLOB type or the BINARY type 
(2,147,483,647 bytes) results in an error.

8. If any of the following definitions is in the table to be updated, an update 
using concatenation operations can cause an error:

 An UPDATE trigger is defined for the table to be updated
 The column to be updated using concatenation operations is specified in a 

search condition with a check constraint.
SET (update-object,update-object[,update-object] ...) = row-subquery

Specifies updating objects in order to update the values of multiple columns with the 
results of a row subquery. At least two update objects must be specified.
column-name

Specifies the name of a column that is to be updated.
component-specification

Specifies the attribute of an abstract data type that is to be updated.
column-name [{subscript|*}]



UPDATE statement Format 1 (Update data)

939

column-name
Specifies a repetition column whose elements are to be updated.

[{subscript|*}]
Specifies the position of the element that is to be updated; to update the last 
element, specify an asterisk (*).
If there are no elements in the repetition column that is to be updated, 
specifying an asterisk is meaningless.

row-subquery
Specifies a row subquery for retrieving the data to be updated. For details on row 
subqueries, see 2.4 Subqueries.
The following rules apply to row subqueries:
1. The number of updates and the number of selection expressions in the row 

subquery should be the same.
2. The data type of the column to be obtained as the result of a row subquery 

should be the same as the data type of the column or attribute to be updated, 
or it must be an equivalent convertible data type.

3. When an unsubscripted repetition column is specified as an object of the 
update, specify the column name of an unsubscripted repetition column for 
the column in the selection expression in the row subquery.

4. When a subscripted repetition column is specified as an object of the update, 
do not specify the column name of an unsubscripted repetition column for 
the column in the selection expression in the row subquery.

Rules for the SET clause
1. When elements of a repetition column are being updated by specifying a 

subscript in the SET clause, only one update can be specified in the same SET 
clause relative to the same element in the same column.

2. When a repetition column is updated without specifying a subscript in the 
SET clause, the repetition column cannot be updated by specifying a 
subscript in the same SET clause.

3. When a repetition column is updated by specifying the asterisk (*) as a 
subscript, the repetition column cannot be updated in the same SET clause.

ADD repetition-column-name [{subscript |*}] = {ARRAY [element-value [, 
element-value] ...] | ?-parameter |: embedded-variable [: indicator-variable]}

Specifies addition of one or more elements to a repetition column.
repetition-column-name [{subscript |*}]



UPDATE statement Format 1 (Update data)

940

repetition-column-name
Specifies the repetition column to which elements are to be added.

[{subscript | *}]
Specifies as the subscript the position at which the elements are to be added. 
The asterisk (*) is specified when the added elements will be the last 
elements in the column.

ARRAY [element-value [, element-value] ...]
Specifies the element values that are to be added. The following items can be 
specified as element values:

• Column names (other than the names of repetition columns)
• Subscripted repetition columns
• Literals
• Value expressions (including arithmetic and concatenation operations)
• Scalar subquery
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• NULL (representing the C value)
• DEFAULT
• Embedded variables (and indicator variables)
• ? parameters
• SQL variables or parameters

For rules governing the value of an element, see Rules on element values for SET 
update-object = update-value.

?-parameter
The data type of a ? parameter should be the data type of the column being 
updated or a data type that can be converted to that data type. The structure of the 
? parameter should be the repetition structure.
A ? parameter can be specified only in an UPDATE statement that is preprocessed 
by the PREPARE statement. The value to be assigned to the ? parameter can be 
specified in the embedded variable in a USING clause in the EXECUTE statement 
for the PREPARE statement that performed preprocessing.



UPDATE statement Format 1 (Update data)

941

:embedded-variable [: indicator-variable]
Embedded variables and indicator variables cannot be specified in an UPDATE 
statement preprocessed by the PREPARE statement or in a procedure.
The data type of an embedded variable (indicator variable) should be the data type 
of the column to be updated or a data type that can be converted to that data type. 
The structure of the embedded variable (indicator variable) should be the 
repetition structure.
If an indicator variable is specified and its value is negative, the value of the 
embedded variable is interpreted to be the null value, and the null value is 
assigned to the corresponding column. If the value of the indicator variable is 
either 0 or positive, the value of the embedded variable will be assigned to the 
corresponding column.
Rules for the ADD clause

1. Only one addition of elements to a column can be specified in one ADD 
clause.

2. When elements are added, it is important to ensure that the total number 
of elements in the column after the addition does not exceed the 
maximum permissible number of elements for the column.

3. A maximum of 30,000 values can be specified as element values in 
ARRAY [element-value [, element-value] ...].

4. Elements that are located following elements added by specifying a 
subscript are moved back. If a number greater by at least 2 than the 
number of elements in the repetition column to which elements are 
added is specified, null values are added until the number of elements 
in the repetition column is (specified elements - 1), and the new element 
values are added at the trailing end.

5. If a multi-column index is defined using the column to which elements 
are added, the same number of elements must be added to each of the 
repetition columns comprising the index and at the same element 
positions using a single ADD clause.

6. When an element that uses a cursor is added by specifying CURRENT OF 
cursor-name in the WHERE clause, column names or value expressions 
cannot be specified as element values in the ADD clause.

7. If DEFAULT is specified as the value of an element, the predefined value 
is the null value.

DELETE repetition-column-name [{subscript | *}]
Specifies deletion of elements from a repetition column.



UPDATE statement Format 1 (Update data)

942

repetition-column-name [{subscript | *}]
repetition-column-name

Specifies the repetition column from which an element is to be deleted.
[{subscript | *}]

Specifies as the subscript the position of the element that is to be deleted. The 
asterisk (*) is specified when the last element in the column is to be deleted.

Rules for the DELETE clause
1. When a subscript is specified in the DELETE clause, only one column 

element can be specified for deletion per DELETE clause.
2. The subscript value cannot be greater than the number of elements in the 

column.
3. When the asterisk is specified, no other elements in the column can be 

specified for deletion simultaneously in the same DELETE clause.
4. Elements that follow a deleted element move up in order.
5. If a multi-column index is defined using the column from which elements are 

deleted, the same number of elements must be deleted from each of the 
repetition columns comprising the index at the same element positions using 
a single DELETE clause.

[WHERE {search-condition|CURRENT OF cursor-name|extended-cursor-name}]
When this clause is omitted, all rows in the specified table are updated.
search-condition

Specifies criteria for selecting the rows to be updated.
The UPDATE statement updates all rows that satisfy the specified search condition.

cursor-name
Specifies the name of the cursor to be used to indicate the row to be updated.
A cursor name cannot be specified if the UPDATE statement is preprocessed by the 
PREPARE statement.
The cursor specified in cursor-name should be one that was declared in the cursor 
declaration. The name of the column to be updated using the UPDATE statement 
must be specified in the FOR UPDATE clause of the cursor declaration.
When a cursor name is specified, the cursor must be specified as updatable in the 
cursor declaration. For details on updatable cursors, see item 4 under Common 
rules in DECLARE CURSOR Format 1 (Declare cursor).
The specified cursor must be opened by the OPEN statement and positioned by the 



UPDATE statement Format 1 (Update data)

943

FETCH statement at the row to be updated.
The position of the specified cursor remains unchanged after the UPDATE 
statement has executed. To update a row that follows the updated row, the cursor 
must be moved by executing a FETCH statement for the cursor.

extended-cursor-name
Specifies an extended cursor name that identifies the cursor that points to the row 
to be updated.
An extended cursor name cannot be specified if it is preprocessed by the PREPARE 
statement.
The extended cursor name that identifies the cursor allocated by the ALLOCATE 
CURSOR statement should be specified. However, a result set cursor cannot be 
specified.
If an extended cursor name is specified, the cursor identified by the extended 
cursor name must be updatable. For details about cursors that can be updated, see 
the FOR UPDATE clause in the rules on operands in Dynamic SELECT statement 
Format 1.
The cursor identified by the extended cursor name must be open and also must be 
positioned on the row to be updated.
The position of the cursor identified by extended-cursor-name remains 
unchanged after the execution of the UPDATE statement. If a row after the updated 
row is to be updated, the FETCH statement should be executed on the cursor to 
move it.
For extended cursor names, see 2.27 Extended cursor name.
[WITH ROLLBACK]

Specifies that if the table to be updated is being used by another user, the transaction 
is to be cancelled and invalidated.
When the WITH ROLLBACK option is omitted and the table to be updated is being used 
by another user, the system executes the UPDATE statement after the transaction issued 
by the other user has terminated.

Common rules
1. When a column of the INTEGER or SMALLINT type is updated with fixed-point or 

floating-point data, any decimal places (to the right of the decimal point) are 
truncated before the update action. Similarly, when a column of the DECIMAL type 
is updated, any digits below the scaling for the column are truncated before the 
update action.

2. Character data, BLOB data, or BINARY data with a length greater than or equal to 
the length that was determined when the table was defined cannot be input as a 



UPDATE statement Format 1 (Update data)

944

value of the column to be updated.
3. Numeric data outside the defined range cannot be input as an update column 

value.
4. If the data that updates a fixed-length character string column (including a 

national character string or a mixed character string) is shorter than the length of 
the column, the data is inserted left-justified and the column is filled with trailing 
blanks.

5. When updating a column or attribute of the BLOB data type, as an update value 
you can specify a column specification, a component specification, an embedded 
variable, a ? parameter, an SQL variable, an SQL parameter, a concatenation 
operation, the SUBSTR scalar variable, a function call, a subquery, or NULL.

6. When a BLOB data type column or an attribute is updated, HiRDB deletes the 
existing data after writing the new data into the database. Therefore, the LOB 
RDAREA for data updating requires sufficient free space for writing the new data. 
An RDAREA full error may result if sufficient free space cannot be allocated.

7. When a column or an attribute of an abstract data type is updated, an embedded 
variable or a ? parameter cannot be specified as the update value.

8. When a column or an attribute of an abstract data type is updated, an abstract data 
type value cannot be specified as the update value, including a BLOB attribute for 
which no LOB attributes storage RDAREA name was specified at the time of 
table definition.

9. When elements are updated in or deleted from a column and a subscript is 
specified that is greater than the current number of elements in the column, or the 
asterisk is specified when the number of elements is 0, there will be no elements 
to be updated or deleted, in which case the specified updating or deletion action 
for the column is ignored. In such a case, W is set in the SQLWARN7 variable of the 
SQLCA.

10. Only one SET, ADD, or DELETE clause can be specified per SQL statement.
11. A maximum of 30,000 items can be specified in each SET, ADD, or DELETE 

clause.
12. SET, ADD, and DELETE clauses are executed from left to right in the specified 

order.
13. If the user LOB RDAREA that stores a LOB column or LOB attribute is in the 

frozen update status, the LOB column or LOB attribute cannot be updated (an 
attempt to update it causes an already frozen error).

14. The UPDATE statement cannot be executed on falsification prevented tables. 
However, updatable columns can be updated.
The following table shows the updatability of column values when UPDATE ONLY 



UPDATE statement Format 1 (Update data)

945

FROM NULL is specified for a falsification-prevented table:

Legend:
Y: Updatable.
N: Not updatable.

Note

For  a repetition column, only updating by column from the null value (a 
value for which the number of elements is 0) without a subscript 
specification.

* Includes the same value as the pre-update value.
15. If the index constituent column of a table with a WITHOUT ROLLBACK 

specification is the update object column, updating cannot be executed if the 
update value for the index constituent column is other than the pre-update value. 
For details, see the rules on WITHOUT ROLLBACK in  CREATE TABLE (Define 
table) in Chapter 3.

16. If the table to be updated is a shared table and if an index is defined for the column 
to be updated, the LOCK statement should be executed in the lock mode on the 
shared table before updating. An attempt to update without executing the LOCK 
statement the value of a column on which a shared table is defined can cause an 
error. However, the LOCK statement need not be executed if the value of the 
column for which an index is defined is not changed. For details about updating 
a shared table, see the HiRDB Version 8 Installation and Design Guide. For 
objects of locking for the execution of the LOCK statement on a shared table, see 
the notes in LOCK statement (Lock control on tables).

17. If the table to be updated meets all of the following conditions and if columns in 
the table are to be updated by DEFAULT, the LOCK statement in the locking mode 
should be executed on the shared table before updating; an attempt to update the 
table without executing the LOCK statement can cause an error:

• The table to be updated is a shared table.
• The column to be updated is of the timestamp data type.

Column value before update Column value after update Updatability

Null value Null value Y

Null value Non-null value Y

Non-null value Null value N

Non-null value Non-null value* N



UPDATE statement Format 1 (Update data)

946

• When the table was defined, CURRENT_TIMESTAMP USING BES was 
specified as the default.

18. If a cursor name or an extended cursor name is specified in search-condition, a 
subquery in which the table to be updated is specified in a FROM clause cannot be 
specified in the SET clause.

Rules on referential constraints
1. For the rules on updating the primary key of a referenced table and the foreign key 

of a referencing table, see the explanation of referencing actions in  CREATE 
TABLE (Define table) in Chapter 3.

2. For the updating of values of foreign key constituent columns in a referencing 
table, the referencing table is searched to determine whether the updating value is 
included in the value of the primary key constituent column in the referenced 
table. The data guarantee level during the search through the referenced table 
assumes the share mode. For this reason, if during the updating of the referencing 
table, operations are performed on the referenced table by another transaction, the 
updating action goes into a wait state until the transaction is settled.

3. For the deletion of a rows in a referenced table for which constraint operations are 
defined in RESTRICT, the referencing table is searched to determine whether the 
value of the primary key constituent column in the rows to be deleted is included 
in the value of a foreign key constituent column in the referencing table. The data 
guarantee level during the search through the referencing table assumes the share 
mode. For this reason, if, during the deletion of rows in the referenced table for 
which constraint operations are defined in RESTRICT, operations are performed 
on the referencing table by another transaction, the row deletion action goes into 
a wait state until the transaction is settled.

4. If any combination of the conditions listed below occurs, data incompatibility can 
occur between the referenced table and the referencing table subject to referential 
constraints. Such incompatibility can also occur regardless of whether the 
constraint operation is RESTRICT or CASCADE. For rules on referential 
constraints, see the HiRDB Version 8 Installation and Design Guide.

• The transaction that deletes rows in the referencing table is different from the 
transaction that updates or deletes rows in the referenced table.

• The above two transactions are executed simultaneously.
• The value of the primary key constituent column deleted from the 

referencing table is the same as the value of the foreign key constituent 
column that is either updated in or deleted from the referenced table.

• Either the transaction that deletes rows from the referencing table is 
committed or the transaction that updates or deletes rows in the referenced 
table is rolled back.



UPDATE statement Format 1 (Update data)

947

Note
A cursor name, similar to an embedded variable name, is effective only within a 
compile-unit module. Multiple SQLs relative to the same cursor cannot be used in 
multiple modules.

Examples
1. In a stock table named STOCK, change to 100 the stock quantity (SQTY) column 

for any row whose product code (PCODE) column is 302S:
UPDATE STOCK
  SET SQTY = 100
  WHERE PCODE = '302S'

2. In the product code (PCODE) column in the stock table (STOCK), apply a 20% 
discount to the unit prices (PRICE) of products that end with the letter 'S':
UPDATE STOCK
  SET PRICE = PRICE*0.8
  WHERE PCODE LIKE'%S'

3. Update the unit price (PRICE) and stock quantity (SQTY) columns in the stock 
table (STOCK) using values that have been read into embedded variables:
UPDATE STOCK
  SET PRICE=:XPRICE,SQTY=:XSQTY

4. Find the product whose product code (PCODE) column value in the STOCK table 
is 302S and change its stock quantity (SQTY) to the stock quantity (XQTY) of the 
product whose product code (PCODE) column value is 302S in stock table 2 
(STOCK2); the STOCK2 table has the same column definition as the STOCK table:
UPDATE STOCK
   SET SQTY=
       (SELECT SQTY FROM STOCK2 WHERE PCODE='302S')
   WHERE PCODE='302S'

5. Change the stock quantity (SQTY) and the unit price (PRICE) of the product whose 
product code (PCODE) column value in the STOCK table is 302S to the stock 
quantity (XQTY) and unit price (PRICE) of the product whose product code 
(PCODE) column value is 302S in stock table 2 (STOCK2); the STOCK2 table has 
the same column definition as the STOCK table:
UPDATE STOCK
   SET (PRICE,SQTY)=
       (SELECT PRICE,SQTY FROM STOCK2 WHERE PCODE='302S')
  WHERE PCODE='302S'



UPDATE statement Format 2 (Update data)

948

UPDATE statement Format 2 (Update data)

Function
Updates row by row the values of the table rows that satisfy the specified search 
condition or are indicated by a cursor.

Privileges
A user who has the UPDATE privilege for a table can update the row values in that table.
However, if a subquery is specified in the search condition, the user needs the SELECT 
privilege for the table for which the subquery is specified.

Format 2: Updating rows in a table with the FIX specification on a 
row-by-row basis

UPDATE [[RD-node-name.]authorization-identifier.]table-identifier [[AS] 
correlation-name]
      [used-index-SQL-optimization-specification]
            SET ROW= row-update-value
       [SQL-optimization-specification-for-used-index]
       [WHERE {search-condition|CURRENT OF 
{cursor-name|extended-cursor-name}}]
       [WITH ROLLBACK]

Operands
All operands other than ROW and the operand rules for them are the same as for Format 
1 of the UPDATE statement. The following rules apply to specifying ROW:
1. Row-by-row updating can be specified only on a base table with the FIX attribute. 

The operand ROW refers to an entire row. When ROW is specified, HiRDB treats the 
entire row as one set of data. The data type of the data used for updating should 
be the ROW type, regardless of the data types of the individual columns. (Variables 
corresponding to CHAR(n) (where n is the row length) or structures of the same 
length can be specified as ROW-type data; if a structure is specified, the structure 
should not contain any boundary alignment blanks.) The data length should be 
equal to the row length (the sum of the data lengths of the columns).

2. The platform on which the UAP runs and the platform on which the HiRDB 
server runs should have the same endian. The ROW option cannot be used between 
different endians. For example, if ROW is used in a Windows version UAP, the 
HiRDB server should also use the Windows version of the same endian.
SET clause

Specifies that column values are to be updated.



UPDATE statement Format 2 (Update data)

949

SET ROW=row-update-value
ROW

Specifies that data is to be updated on a row-by-row basis.
row-update-value

Any of the following items can be specified as the row update values 
corresponding to ROW:

• Embedded variables (and indicator variables)
• ? parameters
• SQL variables or SQL parameters

Common rules
1. Because the UPDATE statement by row updates the values of all columns, the 

UPDATE statement by row cannot be executed on a falsification-prevented table 
in which at least one column is not updatable.

2. If a table with a WITHOUT ROLLBACK specification for which an index is defined 
is specified in table-identifier, updating cannot be executed if the update value for 
the index constituent column is other than the pre-update value. For details, see 
the rules on WITHOUT ROLLBACK in  CREATE TABLE (Define table) in Chapter 
3.

3. If the table to be updated is a shared table and if an index is defined for one of the 
columns, the LOCK statement should be executed in the lock mode on the shared 
table before updating. An attempt to update the shared table by row (ROW 
specification) without executing the LOCK statement can cause an error. However, 
the LOCK statement need not be executed if the value of the column for which an 
index is defined is not changed. For details about updating a shared table, see the 
HiRDB Version 8 Installation and Design Guide. For objects of locking for the 
execution of the LOCK statement on a shared table, see the notes in LOCK 
statement (Lock control on tables).

Rules on referential constraints
1. For the rules on row-by-row updating of rows in a referenced table or referencing 

table, see the explanation of referencing actions in  CREATE TABLE (Define 
table) in Chapter 3.

2. For the updating of rows in a referenced table for which constraint operations are 
defined in RESTRICT, the referencing table is searched to determine whether the 
updating value is included in the value of a foreign key constituent column in the 
referencing table. The data guarantee level during the search through the 
referencing table assumes the share mode. For this reason, if, during the deletion 
of rows in the referenced table for which constraint operations are defined in 



UPDATE statement Format 2 (Update data)

950

RESTRICT, operations are performed on the referencing table by another 
transaction, the row deletion action goes into a wait state until the transaction is 
settled.

3. If any combination of the following conditions occurs, data incompatibility can 
occur between the referenced table and the referencing table subject to referential 
constraints. Such incompatibility can also occur regardless of whether the 
constraint operation is RESTRICT or CASCADE. For rules on referential 
constraints, see the HiRDB Version 8 Installation and Design Guide.

• The transaction that deletes rows in the referencing table is different from the 
transaction that updates or deletes rows in the referenced table.

• The above two transactions are executed simultaneously.
• The value of the primary key constituent column deleted from the 

referencing table is the same as the value of the foreign key constituent 
column that is either updated in or deleted from the referenced table.

• Either the transaction that deletes rows from the referencing table is 
committed or the transaction that updates or deletes rows in the referenced 
table is rolled back.

4. If a combination of the following conditions occurs, a deadlock can occur 
between the transaction that manipulates the referenced table and the transaction 
that manipulates the referencing table. A deadlock can also occur if the constraint 
operation is either RESTRICT or CASCADE. For details about a deadlock between 
referenced and referencing tables, see the HiRDB Version 8 Installation and 
Design Guide.

• The transaction that deletes the rows in the referencing table is different from 
the transaction that updates or deletes the rows in the referenced table.

• The above two transactions are executed simultaneously.
• The value of the foreign key constituent column updated in the referencing 

table is the same as the value of the primary key constituent column that is 
deleted from the referenced table.

Notes
1. If the data type of the table columns to be updated is DECIMAL, or a national 

character string, the system checks the contents of the applicable row update 
values.

2. A cursor name, similar to an embedded variable name, is effective only within a 
compile-unit module. Multiple SQLs relative to the same cursor cannot be used 
in multiple modules.

3. When performing retrieval or updating by row (ROW specification), the date data 
type portion of the embedded variable, the SQL variable, or the SQL parameter 



UPDATE statement Format 2 (Update data)

951

with respect to ROW is 4 bytes long, and is specified in an X'YYYYMMDD' 
format.
When receiving date data in a predefined character string representation using a 
by-row (ROW specification) interface, when defining a column, define it as 
CHAR(10) rather than a date data type.
For date operations, use the DATE scalar function, to be specified after the data is 
converted into the date data type.

4. When performing retrieval or updating by row (ROW specification), the time data 
type portion of the embedded variable, the SQL variable, or the SQL parameter 
with respect to ROW is 3 bytes long, and is specified in an X'hhmmss' format.
When receiving time data in a predefined character string representation using a 
by-row (ROW specification) interface, when defining a column, define it as 
CHAR(8) rather than a time data type. For time operations, use the TIME scalar 
function, to be specified after the data is converted into the time data type.

5. For performing a retrieval or updating by row (ROW specification), the time stamp 
data type portion of the embedded variable, SQL variable, or SQL parameter with 
respect to ROW is (7 + p/2) byte long, and it should be in the 
X'YYYYMMDDhhmmss[nn...n]' format.
When receiving time stamp data in a predefined character string representation 
using a by-row (ROW specification) interface, when defining a column, define it as 
CHAR with a length of 19, 22, 24, or 26 bytes rather than as a time stamp data type 
column.

Example
In a stock table named STOCK, update in a single operation the data in the row specified 
by cursor CR1 with the contents of embedded variable XROW:
UPDATE STOCK
  SET ROW = :XROW
  WHERE CURRENT OF CR1



UPDATE statement Format 3, Format 4 (Update row using an array)

952

UPDATE statement Format 3, Format 4 (Update row using an array)

Function
Multiple update operations can be performed by specifying embedded variables in an 
array format.
Format 3

In a given table, updates the values of rows meeting specified search conditions 
multiple times by column.

Format 4

In a table with a FIX specification, updates the values of rows meeting specified 
search conditions multiple times by column.

Privileges
A user who has the UPDATE privilege for a table can update the column values in that 
table.
However, if a subquery is specified in the search condition, the user needs the SELECT 
privilege for the table for which the subquery is specified.

Format 3: Specifying an embedded variable array to update rows in a table 
multiple times by column
 
 FOR : embedded-variable
 UPDATE [[RD-node-name.]authorization-identifier.]table-identifier [[AS] correlation-name]
       [used-index-SQL-optimization-specification]
       SET {update-object = update-value
           |(update-object, update-object[, update-object]) = row-subquery}
           [, {update-object = update-value
              |(update-object, update-object[, update-object]...) = row-subquery}]...
 [WHERE search-condition]
 [WITH ROLLBACK]
 
 update-object:: = {column-name|component-specification | column-name [{subscript|*}]}
 



UPDATE statement Format 3, Format 4 (Update row using an array)

953

Format 4: Specifying an embedded variable array to update rows in a table 
with a FIX specification multiple times by row

Operands
See Format 1 for operands other than FOR, the SET clause, or search condition, or for 
operand rules.
Format 3 operands and operand rules

SET clause
Updates the value of a column.
update-value

The following items can be specified in update-value as a column value in update 
value:

• : embedded-variable-array [: indicator-variable-array]
• Column name
• Literal
• Value expressions (including arithmetic and concatenation operations)
• Scalar subquery
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• NULL (represents the null value)
• DEFAULT (represents the default for the column to be updated)
• ? parameter

Embedded variables not in the array format cannot be specified in update-value.
Format 4 operands and operand rules

 
 FOR :embedded-variable
 UPDATE [[RD-node-name.]authorization-identifier.]table-identifier [ [AS] correlation-name]
       [used-index-SQL-optimization-specification]
       SET ROW = row-update-value
      [WHERE search-condition]
      [WITH ROLLBACK]
 



UPDATE statement Format 3, Format 4 (Update row using an array)

954

Specifying the ROW operand is subject to the following rules:
1. Updating by row can be used only on base tables of the FIX attribute. ROW 

refers to an entire row. Specifying ROW causes HiRDB to treat the entire row 
as a single data item and update it with data from one area. The data type of 
the data to be updated should be the ROW type, irrespective of the data types 
of columns. For the ROW type, a variable corresponding to CHAR (n) [where 
n is the row length] or a structure of the same length can be specified, 
provided that the structure does not contain a boundary alignment gap. The 
data length should be equal to the row length (the sum of the data lengths of 
the columns).

2. The platform on which the UAP runs and the platform on which the HiRDB 
server runs should have the same endian. The ROW option cannot be used 
between different endians. For example, if ROW is used in a Windows version 
UAP, the HiRDB server should also use the Windows version of the same 
endian.

SET clause
Updates the value of a column.

SET ROW = row-update-value
ROW

Specify this option when updating data by row.
row-update-value

The following items can be specified as row update values corresponding to ROW:
: embedded-variable-array [: indicator-variable-array]

Operands and operand rules common to Formats 3 and 4

FOR :embedded-variable
Specifies the embedded variable in which the number of times update operations are 
performed using an embedded variable array is assigned. An embedded variable of the 
SMALLINT type should be specified. The allowable range is from 1 to 4,096, no greater 
than the number of elements in the embedded variable array or in the indicator variable 
array. Zero and negative values are not allowed. An out-of-range value can produce a 
run-time error.
embedded-variable-array

This is the embedded variable declared in the array format. Specify an array 
variable to specify an update value other than the NULL value. Values to be used 
for updating rows should be assigned to the elements of the variable array. If a 
value to be used for updating contains the NULL value, both 
embedded-variable-array and indicator-variable-array should be specified.



UPDATE statement Format 3, Format 4 (Update row using an array)

955

indicator-variable-array
This is the indicator variable declared in the array format. Values indicating 
whether the values of the elements in embedded-variable-array are the NULL 
value should be assigned to the corresponding elements in 
indicator-variable-array. For values that can be assigned, see 1.5.5 Setting a 
value for an indicator variable.
[ WHERE search-condition ]

The default is to update all rows in the specified table.
search-condition

Specifies the criteria by which the rows to be updated are selected. All rows that 
meet the search condition are updated. If an embedded variable is used in 
search-condition, an embedded variable not in the array format cannot be 
specified.

Common rules
Format 3 rules

1. The data type of embedded-variable-array should be the data type of the 
corresponding column or a convertible data type.

2. The UPDATE statement using an array cannot handle the BLOB type, the BINARY 
type with a maximum length of 32,001 bytes or greater, or the abstract data type.

3. The UPDATE statement using an array cannot update more than one element in a 
repetition column.

4. When a column of INTEGER or SMALLINT data type is updated with fixed-point 
or floating-point data, any fractional part (below the decimal point) is truncated 
before updating. Also, when fixed-point data is inserted into a DECIMAL type 
column, any digits below the scaling for the column are truncated.

5. Character data longer than the length that was specified when the table was 
defined or BINARY data cannot be entered as a value of the column to be updated.

6. Numeric data outside the range of the definition area cannot be entered as a value 
of the column to be updated.

7. If the data used to update a column of a fixed-length character string (including 
national character strings and mixed character strings) is shorter than the column 
length, the data is inserted left-justified, and the remainder of the column is 
blank-filled.

8. The SET clause can be specified only once per SQL statement.
9. A maximum of 30,000 items can be specified in a SET clause.
10. The UPDATE statement cannot be executed on falsification-prevented tables. 



UPDATE statement Format 3, Format 4 (Update row using an array)

956

Updatable columns, however, can be updated.
The following table shows the updatability of column values when UPDATE ONLY 
FROM NULL is specified for a falsification-prevented table:

Legend:
Y: Updatable.
N: Not updatable.

Note

For a repetition column, only updating by column from the null value (a 
value for which the number of elements is 0) without a subscript 
specification.
In a falsification-prevented table, an error may result if, of the rows that meet 
specified search conditions, the column for which UPDATE ONLY FROM 
NULL contains rows with non-null values.

* Includes the same value as the pre-update value.
11. An error occurs if WITHOUT ROLLBACK is specified for the table containing the 

columns to be updated and an index is defined for the column to be updated.
12. If the index constituent column of a table with a WITHOUT ROLLBACK 

specification is the update object column, updating cannot be executed if the 
update value for the index constituent column is other than the pre-update value. 
For details, see the rules on WITHOUT ROLLBACK in  CREATE TABLE (Define 
table) in Chapter 3.

13. If the table to be updated is a shared table and if an index is defined for the column 
to be updated, the LOCK statement should be executed in the lock mode on the 
shared table before updating. An attempt to update without executing the LOCK 
statement the value of a column for which a shared table is defined can cause an 
error. However, the LOCK statement need not be executed if the value of the 
column for which an index is defined is not changed. For details about updating 
a shared table, see the HiRDB Version 8 Installation and Design Guide. For 
objects of locking for the execution of the LOCK statement for a shared table, see 
the notes in LOCK statement (Lock control on tables).

Column value before update Column value after update Updatability

Null value Null value Y

Null value Non-null value Y

Non-null value Null value N

Non-null value Non-null value* N



UPDATE statement Format 3, Format 4 (Update row using an array)

957

14. If the table to be updated meets all of the following conditions and if columns in 
the table are to be updated by DEFAULT, the LOCK statement in the locking mode 
should be executed on the shared table before updating; an attempt to update the 
table without executing the LOCK statement can cause an error:

• The table to be updated is a shared table.
• The column to be updated is of the timestamp data type.
• When the table was defined, CURRENT_TIMESTAMP USING BES was 

specified as the default.
Format 4 rules

1. If a table with a WITHOUT ROLLBACK specification for which an index is defined 
is specified in table-identifier, updating cannot be executed if the update value for 
the index constituent column is other than the pre-update value. For details, see 
the rules on WITHOUT ROLLBACK in  CREATE TABLE (Define table) in Chapter 
3.

2. If the table to be updated is a shared table and if an index is defined for one of the 
columns, the LOCK statement should be executed in the lock mode on the shared 
table before updating. An attempt to update the shared table by row (ROW 
specification) without executing the LOCK statement can cause an error. However, 
the LOCK statement need not be executed if the value of the column for which an 
index is defined is not changed. For details about updating a shared table, see the 
HiRDB Version 8 Installation and Design Guide. For objects of locking for the 
execution of the LOCK statement on a shared table, see the notes in LOCK 
statement (Lock control on tables).

3. Because the UPDATE statement by row updates the values of all columns, the 
UPDATE statement by row cannot be executed on a falsification-prevented table 
that contains even a single non-updatable column.

Rules common to Formats 3 and 4

1. One or more variable arrays should be specified in a clause other than the FOR 
clause. A failure to specify a variable array can cause an error.

2. Specifying an embedded variable not in the array format in a clause other than the 
FOR clause can cause an error.

3. The number of elements in the embedded variable array or the indicator variable 
array should be in the 1 to 4,096 range. Specifying an out-of-range value can 
cause an error. Such a number should be greater than or equal to the maximum 
number of elements specified in FOR :embedded-variable.

4. The elements that are updated in one updating operation in an embedded variable 
array or indicator variable array are elements that have the same element 
numbers.



UPDATE statement Format 3, Format 4 (Update row using an array)

958

5. Evaluation is performed sequentially from the first element of an array.
6. If more than one updating operation is performed, the object of updating is an 

update object after the previous updating using array elements was performed.
7. The total number of updated rows, including any rows updated in duplicate, is 

assigned to the SQLERRD[2] area of the SQL communications area.
8. Because it includes embedded variable arrays and indicator variable arrays, 

UPDATE statement Format 3 cannot be preprocessed by the PREPARE statement. 
For details about dynamic execution, see EXECUTE statement Format 2 (Execute 
an SQL statement using an array).

9. An UPDATE statement using an array cannot be used in a procedure.
10. If an event that requires warning occurs in any of the rows to be updated, warning 

information is assigned to the SQLWARN flag of the SQL communications area.
11. If an error occurs in any of the rows to be updated, the transaction is rolled back.
12. The UPDATE statement cannot be specified for a falsification-prevented table. If 

a falsification-prevented table is defined, the rules on Formats 3 and 4 must be 
observed.

Rules on referential constraints
1. For the rules on updating the primary key of a referenced table and the foreign key 

of a referencing table, or updating a referenced table or referencing table row by 
row, see the explanation of referencing actions in  CREATE TABLE (Define table) 
in Chapter 3.

2. For the updating of values of a foreign key constituent column in a referenced 
table for which constraint operations are defined in RESTRICT, the referencing 
table is searched to determine whether the updating value is included in the value 
of a foreign key constituent column in the referencing table. The data guarantee 
level during the search through the referencing table assumes the share mode. For 
this reason, if during the deletion of rows in the referenced table for which 
constraint operations are defined in RESTRICT, operations are performed on the 
referencing table by another transaction, the row deletion action goes into a wait 
state until the transaction is settled.

3. If any combination of the following conditions occurs, data incompatibility can 
occur between the referenced table and the referencing table subject to referential 
constraints; such incompatibility can also occur regardless of whether the 
constraint operation is RESTRICT or CASCADE:

• The transaction that deletes rows in the referencing table is different from the 
transaction that updates or deletes rows in the referenced table.

• The above two transactions are executed simultaneously.



UPDATE statement Format 3, Format 4 (Update row using an array)

959

• The value of the primary key constituent column deleted from the 
referencing table is the same as the value of the foreign key constituent 
column that is either updated in or deleted from the referenced table.

• Either the transaction that deletes rows from the referencing table is 
committed or the transaction that updates or deletes rows in the referenced 
table is rolled back.

4. If a combination of the following conditions occurs, a deadlock can occur 
between the transaction that manipulates the referenced table and the transaction 
that manipulates the referencing table. A deadlock can also occur if the constraint 
operation is either RESTRICT or CASCADE.

• The transaction that updates the rows in the referencing table is different 
from the transaction that updates the rows in the referenced table.

• The above two transactions are executed simultaneously.
• The value of the foreign key constituent column updated in the referencing 

table is the same as the value of the primary key constituent column that is 
deleted from the referenced table.

Note
1. When updating is executed on a foreign table, updating using an array is not 

carried out between the local HiRDB and a foreign server. The updating operation 
is repeated the number of times specified in the embedded variable to update the 
rows.

Examples
1. Use UPDATE statement Format 1 to update the inventory level (SQTY) by value of 

the product code (PCODE) and the inventory level (SQTY) that are assigned to an 
array variable in the C language, as follows:
Table 4-8: Product code and inventory level stored in the table (before updating)

Product code Pre-update inventory level

'101M' 40

'101L' 70

'201M' 15

'202M' 28

'302S' 7



UPDATE statement Format 3, Format 4 (Update row using an array)

960

Table 4-9: Product code and inventory level (assigned to the embedded variable 
array) in the row to be updated

Table 4-10: Product code and inventory level stored in the table (after update)

 
EXEC SQL BEGIN DECLARE SECTION;
      short   XUPDATE_NUM;
      char    XPCODE[5][5];
      short   IPCODE[5];
      long    XSQTY[5];
      short   ISQTY[5];
EXEC SQL END DECLARE SECTION;
    . . . Assign values to elements in the array variables . . .
        Assign{'101M','101L','201M','202M','302S'} to XPCODE
        Assign{35,62,13,10,6} to XSQTY
XUPDATE_NUM = 5;
EXEC SQL FOR :XUPDATE_NUM
UPDATE STOCK SET SQTY = :XSQTY:ISQTY
WHERE PCODE = :XPCODE:IPCODE;
 

2. Use UPDATE statement Format 2 to update an entire row in the inventory table 
(STOCK) by value of the product code (PCODE) assigned to an array variable in the 
C language, with the contents on the embedded variable array (XROW) in batch.
 

Product code Updated inventory level

'101M' 35

'101L' 62

'201M' 13

'202M' 10

'302S' 6

Product code Updated inventory level

'101M' 35

'101L' 62

'201M' 13

'202M' 10

'302S' 6



UPDATE statement Format 3, Format 4 (Update row using an array)

961

XUPDATE_NUM = 5;
EXEC SQL FOR :XUPDATE_NUM
UPDATE STOCK SET ROW = :XROW
WHERE PCODE = :XPCODE:IPCODE;



Preparable dynamic UPDATE statement: locating Format 1 (Update data using a preprocessable cursor)

962

Preparable dynamic UPDATE statement: locating Format 1 (Update 
data using a preprocessable cursor)

Function
Updates a specified column in the row pointed to by the cursor in the table. This 
statement is used when updating is to be executed by the EXECUTE statement after 
preprocessing by a PREPARE statement or when preprocessing and execution are to be 
performed in a single operation using the EXECUTE IMMEDIATE statement.

Privileges
A user who has the UPDATE privilege for a table can update the column values in that 
table.

Format 1: Updating rows in a table by column, using a (preprocessable) 
cursor

Operands
For operands and operand rules other than update-value in the SET clause, ARRAY 
[element-value [, element-value] ...], and WHERE CURRENT OF GLOBAL cursor-name, 
see UPDATE statement Format 1.

SET clause
update-value

The following items can be specified in update-value:

 
 UPDATE [[[RD-node-name.]authorization-identifier.]table-identifier [[AS] correlation-name]
       [used-index-SQL-optimization-specification] ]
       {SET {update-object = update-value
           | (update-object, update-object[, update-object]) = row-subquery}
           [, {update-object = update-value
              | (update-object, update-object[, update-object]...) = row-subquery} ]...
        | ADD repetition-column-name [{subscript | *}]
              = {ARRAY [element-value[, element-value]...]
               | ?-parameter}
            [, repetition-column-name [{subscript | * } ]
                 = {ARRAY [element-value [, element-value]...]
                  | ?-parameter}]...
        | DELETE repetition-column-name [{subscript | * }]
             [, repetition-column-name [ {subscript | * } ] ]...}
 WHERE CURRENT OF GLOBAL cursor-name
 [WITH ROLLBACK]
 
 update-object:: = {column-name|component-specification|column-name [{subscript | * } ] }
 



Preparable dynamic UPDATE statement: locating Format 1 (Update data using a preprocessable cursor)

963

• Column name
• Component specification
• Literal
• Value expressions (including arithmetic and concatenation operations)
• Scalar subquery
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• NULL (represents the null value)
• DEFAULT (represents the default for the column to be updated)
• ? parameter

• ARRAY [element-value [, element-value]...]*

* The following items can be specified in element-value:
• A column name other than a repetition column
• Subscripted repetition column
• Literal
• Value expressions (including arithmetic and concatenation operations)
• Scalar subquery
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP[(p)]
• NULL (represents the null value)
• DEFAULT
• ? parameter

Rules on update value

1. An update value that includes an embedded variable, an indicator variable, 
an SQL variable, or an SQL parameter cannot be specified.

2. Other update values are subject to the rules on update values of UPDATE 



Preparable dynamic UPDATE statement: locating Format 1 (Update data using a preprocessable cursor)

964

statement Format 1.
Rules on element value

1. An element value that includes an embedded variable, an indicator variable, 
an SQL variable, or an SQL parameter cannot be specified.

2. Other element values are subject to the rules on element values of UPDATE 
statement Format 1.

ARRAY [element-value [, element-value]...]
The following items can be specified as element-value:

• A column name other than a repetition column
• Subscripted repetition column
• Literal
• Value expressions (including arithmetic and concatenation operations)
• Scalar subquery
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP [(p)]
• NULL (represents the null value)
• DEFAULT
• ? parameter

For rules on element values, see Rules on element values for the SET clause in 
UPDATE statement Format 1.
WHERE CURRENT OF GLOBAL cursor-name

GLOBAL
Specifies GLOBAL as the scope of cursor-name.

cursor-name
This operand specifies the name of the cursor that points to the row to be updated.
The cursor specified in cursor-name is one identified by the extended cursor name 
that was specified in the ALLOCATE CURSOR statement. However, a result set 
cursor cannot be specified.
The cursor specified in cursor-name at run time must be open and positioned on 
the row to be updated.



Preparable dynamic UPDATE statement: locating Format 1 (Update data using a preprocessable cursor)

965

The position of the cursor specified in cursor-name remains unchanged after the 
execution of the UPDATE statement. If a row after the updated row is to be 
updated, the FETCH statement should be executed on the cursor to move it.

Common rules
1. After preprocessing is performed by the PREPARE statement, an EXECUTE 

statement is used to execute, or an EXECUTE IMMEDIATE statement is used to 
preprocess and execute in a single operation.

2. When omitting a table identifier, make sure that, before preprocessing is 
performed, the ALLOCATE CURSOR statement is used to allocate the cursor to the 
dynamic SELECT statement. In this operation, the table that is the object of 
retrieval specified in the dynamic SELECT statement to which the cursor is 
allocated is assumed. When specifying a table identifier, it is not necessary that 
the cursor be allocated to the dynamic SELECT statement before the 
preprocessing.

3. The common rules on UPDATE statement Format 1 are applicable to the other 
common rules.

Rules on referential constraints
1. Rules on referential constraints for UPDATE statement Format 1 apply.

Examples
1. Dynamically execute the SQL statement that updates the unit price (PRICE) for 

the row pointed to by the cursor (cr (scope: GLOBAL, value: CR1)) in the inventory 
table (STOCK) to a 10% discount.

 
PREPARE GLOBAL :sel FOR 'SELECT * FROM STOCK FOR UPDATE'
Assign CR1 to the embedded variable cr
ALLOCATE GLOBAL :cr CURSOR FOR GLOBAL :sel
PREPARE PRE1 FOR
    'UPDATE SET PRICE = A value equal to a 10% discount on the unit price 
WHERE CURRENT OF GLOBAL CR1'
OPEN GLOBAL :cr
FETCH GLOBAL :cr INTO Name of the variable into which columns are fetched
EXECUTE PRE1
CLOSE GLOBAL :cr
DEALLOCATE PREPARE GLOBAL :sel



Preparable dynamic UPDATE statement: locating Format 2 (Update data using a preprocessable cursor)

966

Preparable dynamic UPDATE statement: locating Format 2 (Update 
data using a preprocessable cursor)

Function
Updates a specified column in the row pointed to by the cursor in the table with a FIX 
specification. This statement is used when updating is to be executed by the EXECUTE 
statement after preprocessing by a PREPARE statement or when preprocessing and 
execution are to be performed in a single operation using the EXECUTE IMMEDIATE 
statement.

Privileges
A user who has the UPDATE privilege for a table can update the column values in that 
table.

Format 2: Updating rows by row in a table with a FIX specification, using a 
(preprocessable) cursor

Operands
For operands other than row-update-value in the SET clause and WHERE CURRENT OF 
GLOBAL cursor-name, and for operand rules, see UPDATE statement Format 2.
For details about the WHERE CURRENT OF GLOBAL cursor-name operand and about 
operand rules, see Preparable dynamic UPDATE statement: locating Format 1.

SET clause
row-update-value

The following item can be specified as a row update value associated with ROW:
• ? parameter

Common rules
1. After preprocessing is performed by the PREPARE statement, an EXECUTE 

statement is used to execute, or an EXECUTE IMMEDIATE statement is used to 
preprocess and execute in a single operation.

2. When omitting a table identifier, make sure that, before preprocessing is 

 
 UPDATE [ [[RD-node-name.]authorization-identifier.]table-identifier [ [AS] correlation-name]
      [used-index-SQL-optimization-specification] ]
       SET ROW = row-update-value
      WHERE CURRENT OF GLOBAL cursor-name
      [WITH ROLLBACK]
 



Preparable dynamic UPDATE statement: locating Format 2 (Update data using a preprocessable cursor)

967

performed, the ALLOCATE CURSOR statement is used to allocate the cursor to the 
dynamic SELECT statement. In this operation, the table that is the object of 
retrieval specified in the dynamic SELECT statement to which the cursor is 
allocated is assumed. When specifying a table identifier, it is not necessary that 
the cursor be allocated to the dynamic SELECT statement before the 
preprocessing.

3. The common rules on UPDATE statement Format 2 are applicable to the other 
common rules.

Rules on referential constraints
1. Rules on referential constraints for UPDATE statement Format 2 apply.

Notes
1. See the notes on UPDATE statement Format 2.

Example
1. Dynamically execute the SQL statement that updates in a single operation the data 

in the row pointed to by the cursor (cr (value: CR1) in the inventory table (STOCK) 
with the contents of the embedded variable (XROW).

 
PREPARE GLOBAL :sel FOR 'SELECT * FROM STOCK FOR UPDATE'
Assigns CR1 to the embedded variable cr
ALLOCATE GLOBAL :cr CURSOR FOR GLOBAL :sel
PREPARE PRE1 FOR
    'UPDATE SET ROW = ? WHERE CURRENT OF GLOBAL CR1'
OPEN GLOBAL :cr
FETCH GLOBAL :cr INTO Name of the variable into which columns are fetched
EXECUTE PRE1 USING :XROW
CLOSE GLOBAL :cr
DEALLOCATE PREPARE GLOBAL :sel



Assignment statement Format 1 (Assign a value to an SQL variable or SQL parameter)

968

Assignment statement Format 1 (Assign a value to an SQL variable 
or SQL parameter)

Function
Assigns a value to an SQL variable or SQL parameter.

Privileges
None.

Format: Assigning a value to an SQL variable or an SQL parameter

Operands
assign-to:: = { [statement-label.] SQL-variable-name
       | [ [authorization-identifier.] routine-identifier.] SQL-parameter-name
       | [statement-label.] SQL-variable-name.. attribute-name [.. 
attribute-name]...
       | [ [authorization-identifier.] routine-identifier.] SQL-parameter-name .. 
attribute-name [.. attribute-name]...}

Specifies the SQL variable or SQL parameter into which a value is assigned, or the 
attribute name of an SQL variable or the attribute name of an SQL parameter.

assignment-value:: = {value-expression | NULL | DEFAULT}
Specifies the value to be assigned.

Common rules
1. In assign-to, an SQL parameter mode for which the input/output mode (parameter 

mode) specified in SQL-routine is IN cannot be specified. The SQL parameter 
name of a function cannot be specified.

2. The data type of assign-to must be compatible with the data type of 
assignment-value.

 
 SET assign-to = assignment-value
 
 assign-to:: = {[statement-label.]SQL-variable-name
           | [[authorization-identifier.]routine-identifier.]SQL-parameter-name
           |  [statement-label.]SQL-variable-name..attribute-name [..attribute-name]...
           | [[authorization-identifier.]routine-identifier.]SQL-parameter-name..attribute-name 
[..attribute-name]...}
 assignment-value:: = {value-expression|NULL|DEFAULT}
 



Assignment statement Format 1 (Assign a value to an SQL variable or SQL parameter)

969

3. If the data type of assign-to is different from that of assignment-value, a type 
conversion is performed. If the two data types are the same, the assignment value 
is directly assigned to assign-to.

4. A subquery cannot be specified in a value expression specified in 
assignment-value.

5. IF DEFAULT is specified in assignment-value, the default for the SQL value to be 
assigned is assigned. For details about declaring the default for an SQL variable, 
see Compound statement (Execute multiple statements) in Chapter 7. If an SQL 
parameter is specified in assign-to and DEFAULT is specified in assignment-value, 
the null value is assigned to the SQL parameter for the target of assignment. If a 
column name qualified with an old or new value correlation name is specified in 
the assignment target for the assignment statement (format 1) specified in a 
trigger SQL statement, and DEFAULT is specified in assignment-value, the default 
for the column in the assignment target is assigned. However, if the default for the 
column qualified with the old and new value correlation name of the assignment 
target is CURRENT_TIMESTAMP for which USING BES is specified, DEFAULT 
cannot be specified in assignment-value. For details about the trigger SQL 
statement, see CREATE TRIGGER (Define a trigger) in Chapter 3.

Notes
1. Format 1 of the assignment statement can only be specified in an SQL routine. 

For specifying an assignment statement in a routine other than an SQL routine, 
specify Format 2 of the assignment statement.



Assignment statement Format 2 (Assign a value to an embedded variable or a ? parameter)

970

Assignment statement Format 2 (Assign a value to an embedded 
variable or a ? parameter)

Function
Assigns a value to an embedded variable or a ? parameter.

Privileges
None.

Format: Embedded-variable, or assigning to a ? parameter

Operands
assign-to::= {:embedded-variable [:indicator-variable] | ?-parameter}

Specifies the embedded variable or the ? parameter into which a value is to be 
assigned.

assignment-value::= {:embedded-variable [:indicator-variable] AS data-type
        | ?-parameter AS data-type
        | LENGTH (value-expression)
        | SUBSTR (value-expression-1, value-expression-2 [, value-expression-3])
       | POSITION (value-expression-1 IN value-expression-2 [FROM 
value-expression-3]) }

Specifies the value to be assigned.
:embedded-variable [:indicator-variable] AS data-type

The only data types that can be specified are the BLOB and the BINARY types. In 
the AS clause, specify the data type of the embedded variable. An error can occur 
if, in this operation, the actual length of the data (for a locator, the actual length 
of the data allocated to the locator) given by embedded-variable is greater than 
the maximum length of the data type specified in the AS clause.

 
 SET  assign-to = assignment-value
 assign-to::= {:embedded-variable [:indicator-variable] | ?-parameter}
 assignment-value::= {:embedded-variable [:indicator-variable] AS data-type
        | ?-parameter AS data-type
        | LENGTH (value-expression)
        | SUBSTR (value-expression-1, value-expression-2[, value-expression-3])
        |POSITION(value-expression-1 IN value-expression-2 [FROM value-expression-3])}
 



Assignment statement Format 2 (Assign a value to an embedded variable or a ? parameter)

971

?-parameter AS data-type
The only data types that can be specified are the BLOB and the BINARY types. In 
the AS clause, specify the data type of ?-parameter. An error can occur if, in this 
operation, the actual length of the data (for a locator, the actual length of the data 
allocated to the locator) given by ?-parameter is greater than the maximum length 
of the data type specified in the AS clause.

LENGTH (value-expression)
SUBSTR (value-expression-1, value-expression-2, [value-expression-3])
POSITION (value-expression-1 IN value-expression-2 [FROM value-expression-3])

The only data types that can be specified in value-expression for the scalar 
function LENGTH, in value-expression-1 for the scalar function SUBSTR, or in 
value-expression-2 for the scalar function POSITION are the BLOB and the 
BINARY types. The only items that can be specified are embedded-variable and 
?-parameter For other specification methods, see the rules on the individual 
scalar functions.

Common rules
1. The data type of the assignment target must be compatible with the data type of 

the value being assigned.
2. If the data type of the assignment target is different from that of the value being 

assigned, a type conversion is performed. If they are of the same data type, the 
assigned value is directly assigned to the assignment target.

3. The following items cannot be specified in a value expression specified as an 
assignment value:

• Column specification

• Component specification
• Scalar subquery

Notes
1. Format 2 of the assignment statement cannot be specified in an SQL routine. For 

specifying an assignment statement in an SQL routine, Format 1 of the 
assignment statement should be used.

Examples
Assign a part of the BLOB data allocated to the embedded variable (XLOC) of the BLOB 
locator to an embedded variable (XDATA) of the BLOB type.
 
SET :XDATA = SUBSTR(:XLOC AS BLOB(1M), 100, 1024)





973

Chapter

5. Control SQL

This chapter explains the syntax and structure of the control SQL.
General rules
COMMIT statement (Terminate transaction normally)
CONNECT statement (Connect a UAP to HiRDB)
DISCONNECT statement (Disconnect a UAP from HiRDB)
LOCK statement (Lock control on tables)
CONNECT statement with RD-node specification (Connect to distributed 

RD-node)
DISCONNECT statement with RD-node specification (Disconnect from 

distributed RD-node)
ROLLBACK statement (Cancel transaction)
SET CONNECTION statement (Set current RD-node)
SET SESSION AUTHORIZATION statement (Change connected user)



General rules

974

General rules

Types and functions of the control SQL
The control SQL connects a UAP to HiRDB, disconnects a UAP from HiRDB, and 
performs lock control on tables.
Table 5-1 shows the types and functions of the control SQL.

Table 5-1: Types and functions of the control SQL

Notes on specifying the control SQL
The transaction is the unit of logical work; it is the basic unit by which HiRDB 
recovers data and performs concurrent execution of UAPs. To improve the system's 
concurrent execution capability, the amount of time required by a transaction should 
be as short as possible. Especially when large quantities of data are updated, the 

Type Function

COMMIT statement (Terminate 
transaction normally)

Terminates the current transaction normally, sets synchronization 
points, generates one unit of commitment, and puts into effect the 
databases updates performed by the transaction.

CONNECT statement (Connect UAP to 
HiRDB)

Passes the authorization identifier and password to HiRDB, enabling 
the UAP to use HiRDB.

DISCONNECT statement (Disconnect 
UAP from HiRDB)

Terminates the current transaction normally, sets synchronization 
points, generates one unit of commitment, and disconnects the UAP 
from HiRDB.

LOCK statement (Lock control on 
tables)

Performs exclusive lock on specified tables.

CONNECT statement with RD-node 
specification (Connect to distributed 
RD-node)

Passes an authorization identifier and password to a distributed 
RD-node so that the UAP may use that distributed RD-node.

DISCONNECT statement with RD-node 
specification (Disconnect from 
distributed RD-node)

Terminates the current transaction normally, establishes a 
synchronization point, and creates a single commitment unit. The UAP 
is then disconnected from the distributed RD-node.

ROLLBACK statement (Cancel 
transaction)

Cancels the current transaction and nullifies the database updating 
performed by the transaction.

SET CONNECTION statement (Set 
current RD-node)

Sets the current RD-node.

SET SESSION AUTHORIZATION 
statement (Change connected user)

Changes a connected user by reporting an authorization identifier and 
password to HiRDB.



General rules

975

duration of lock control, the number of resources subject to lock control, and the 
amount of log data generated must be taken into consideration. In some cases, it may 
be necessary to divide a transaction into several subunits.

Notes on X/open-compliant UAPs running under OLTP
The following SQL statements cannot be used in X/Open-compliant UAPs running 
under OLTP:

• COMMIT statement
• CONNECT statement
• DISCONNECT statement
• DISCONNECT statement with RD-node specification
• ROLLBACK statement



COMMIT statement (Terminate transaction normally)

976

COMMIT statement (Terminate transaction normally)

Function
The COMMIT statement terminates the current transaction normally, sets 
synchronization points, generates one unit of commitment, and puts into effect the 
database updates performed by the transaction.

Privileges
None.

Format
COMMIT [WORK] [RELEASE]

Operands
WORK

This operand has no effect on the normal transaction termination function of the 
COMMIT statement. The WORK operand is supported for compatibility with JIS 
standards.

RELEASE
Specifies that the UAP is to be disconnected from HiRDB after the transaction 
terminates normally.

Common rules
1. Executing a COMMIT statement closes all cursors that are open, except for 

holdable cursors.
2. All locked resources, except for those being used by holdable cursors, are 

released.
3. Executing the COMMIT statement nullifies all effective locators.

Notes
1. The COMMIT statement cannot be specified from an X/Open-compliant UAP 

executing under OLTP or from a Java procedure. If a procedure is called from a 
UAP running under OLTP, procedures using the COMMIT statement cannot be 
executed.

2. If the COMMIT statement terminates with an error when the UAP is connected to 
a distributed RD-node, the database of the default RD-node returns to the 
previous synchronization point. However, the database of the distributed 
RD-node sometimes will not return to the previous synchronization point.



COMMIT statement (Terminate transaction normally)

977

3. When executing the COMMIT statement from a procedure, you cannot specify the 
RELEASE operand.

4. When executing a procedure defined on a distributed RD node during remote 
database access using the distributed database facility, you cannot specify 
procedures using the COMMIT statement.

5. The COMMIT statement cannot be executed during trigger action.

Examples
1. Enter a COMMIT statement with the RELEASE operand specified to terminate a 

transaction, then reconnect to HiRDB:

2. Enter a COMMIT statement to terminate a transaction either within a procedure or 
upon completion of the procedure:



COMMIT statement (Terminate transaction normally)

978



CONNECT statement (Connect a UAP to HiRDB)

979

CONNECT statement (Connect a UAP to HiRDB)

Function
The CONNECT statement passes the authorization identifier and password to HiRDB, 
enabling the UAP to use HiRDB. This operation is referred to as connecting a UAP to 
HiRDB.

Privileges
User with the DBA or CONNECT privilege
A user with the DBA or CONNECT privilege can connect a UAP to HiRDB.

Format
CONNECT [{USER:embedded-variable-1[USER:embedded-variable-2] 
          | :embedded-variable-1[IDENTIFIED BY :embedded-variable-2]}]

Operands
embedded-variable-1

Specifies an embedded variable whose value is an authorization identifier.
If the UAP is written in C, this variable's data type must be a fixed-length 
character string of no more than 31 bytes that terminates with the null value. If the 
character string does not end with the null value, the character string whose length 
is (area length - 1) is used as the authorization identifier.
If the UAP is written in COBOL, this operand is of the fixed-length character 
string data type with a length of 30 bytes or less. The character string does not 
need to end with the null value.
If the CONNECT statement is specified but all operands after USER are omitted, the 
UAP is connected to HiRDB using the value set in the PDUSER environment 
variable as the authorization identifier.
When embedded-variable-1 is specified as a case-sensitive variable, it must be 
enclosed in quotation marks (").

embedded-variable-2
Specifies an embedded variable whose value is a password.
If the UAP is written in C, this variable's data type must be a fixed-length 
character string of no more than 31 bytes that terminates with the null value. If the 
character string does not end with the null value, the character string whose length 
is (area length - 1) is used as the password.
If the UAP is written in COBOL or OOCOBOL, this operand is of the 



CONNECT statement (Connect a UAP to HiRDB)

980

fixed-length character string data type with a length of 30 bytes or less. The 
character string does not need to end with the null value.
In the case of a user who does not have a password, either the USING clause and 
the IDENTIFIED BY clause should be omitted or any character string should be 
specified in the embedded variable.

Common rule
A UAP cannot be reconnected to HiRDB before it has been disconnected from HiRDB 
with the DISCONNECT statement.

Note
The CONNECT statement cannot be specified from an X/Open-compliant UAP running 
under OLTP.

Example
Connect a UAP to HiRDB by passing to HiRDB the user's authorization identifier 
(embedded variable USER1) and password (embedded variable PSWD1):
CONNECT USER :USER1 USING :PSWD1



DISCONNECT statement (Disconnect a UAP from HiRDB)

981

DISCONNECT statement (Disconnect a UAP from HiRDB)

Function
The DISCONNECT statement terminates the current transaction normally, sets 
synchronization points, generates one unit of commitment, and disconnects the UAP 
from HiRDB.

Privileges
None.

Format
DISCONNECT

Common rules
1. The DISCONNECT statement disconnects the UAP from HiRDB after HiRDB has 

executed the COMMIT statement. During this process, all holdable cursors are also 
closed. If the UAP is connected to a distributed RD-node, it is also disconnected 
from the distributed RD-node at the same time.

2. If the UAP terminates before the DISCONNECT statement is executed, the 
DISCONNECT statement (in the case of normal termination) is assumed after 
HiRDB executes the ROLLBACK statement.

Note
The DISCONNECT statement cannot be specified from an X/Open-compliant UAP 
running under OLTP.

Example
Disconnect a UAP from HiRDB:
DISCONNECT



LOCK statement (Lock control on tables)

982

LOCK statement (Lock control on tables)

Function
The LOCK statement performs lock control on specified tables. The LOCK statement can 
reduce the overhead that results from performing lock control in units of rows or key 
values when there are many rows on which HiRDB performs lock control 
automatically, when there are many rows from which the table is accessed for 
performing lock controls in units larger than the key-value unit, or when there are 
many key values.

Privileges
A user who has the SELECT privilege to a table can lock the table in the shared mode.
A user who has the INSERT, UPDATE, or DELETE privilege to a table can lock the table 
in the lock mode.

Format
LOCK TABLE [[RD-node-name.]authorization-identifier.]table-identifier
            [,[[RD-node-name.]authorization-identifier.]table-identifier]...
            [IN {SHARE | EXCLUSIVE} MODE]
            [UNTIL DISCONNECT]
            [{WITH ROLLBACK | NO WAIT} ]

Operands
[[RD-node-name.]authorization-identifier.]table-identifier
[,[[RD-node-name.]authorization-identifier.]table-identifier]...

RD-node-name
Specifies the name of the RD node to be accessed.

authorization-identifier
Specifies the authorization identifier of the owner of a table on which lock control 
is to be performed.

table-identifier
Specifies the name of the table that is to be subject to lock control.
If a foreign table is specified in table-identifier, a lock is performed on the table 
on the foreign DB associated with the foreign table.
If a view table is specified in table-identifier, a lock is performed on the base table 
that is a base for the view table, and the table on the foreign DB corresponding to 
the foreign table that is the source of the view table. In this case, a lock is not 



LOCK statement (Lock control on tables)

983

performed on the view table.
A maximum of 64 table names can be specified; the same table name can be 
specified more than once.
[IN SHARE MODE]

Specifies that the data in the specified tables to be subject to lock control can be 
referenced but not updated by other users (shared mode). During access to a table after 
a LOCK statement in which this operand is specified has been issued, the number of 
rows in the shared mode and the number of locked resources for key values are 
reduced.

[IN EXCLUSIVE MODE]
Specifies that the data in the specified tables to be subject to lock control cannot be 
referenced or updated by other users (exclusive mode). The tables can still be retrieved 
by another user if the user specifies the WITHOUT LOCK NOWAIT lock option. During 
access to a table after a LOCK statement in which this operand is specified has been 
issued, the number of rows in the shared mode, the number of key values, the number 
of rows in the locked mode, and the number of locked resources for key values are 
reduced.

[UNTIL DISCONNECT]
This option must be specified when table data is to be locked until it is processed by 
the DISCONNECT statement. The default is to lock the table data until the transaction 
terminates.

{with rollback | NO WAIT}
Specifies that when locking competes with another user, an error is to be received 
without waiting for resolution of the contention. If this operand is omitted and locking 
competes, HiRDB waits either until the lock is released or until amount of time 
specified in the system-defined pd_lck_wait_timeout operand has elapsed.
WITH ROLLBACK

If the table subject to lock is being used by another user, this operand is specified 
when canceling and nullifying the transaction.

NO WAIT
Specifies that when a table subject to this lock control is being used by another 
user, the current SQL statement is to be nullified but the transaction is not to be 
cancelled.

Common rules
1. If the base table and the foreign table that are subject to lock are duplicated, they 

are subject to duplicate elimination. The maximum number of base tables and 
foreign tables that can be locked by one LOCK statement is 64.



LOCK statement (Lock control on tables)

984

2. Data dictionary tables are not eligible for lock control.
3. The action of a lock on foreign tables varies from one foreign DB to another. For 

details about locking, see D. Restrictions on Using a Foreign Table.
4. Locking data or executing the LOCK statement causes the locking period to 

increase and the locking level to become higher. Therefore, even if the LOCK 
statement is executed with a specification to reduce the locking period or lower 
the locking level, the locking period or level will remain the same.
Figure 5-1 illustrates the increasing and decreasing of the locking period and 
level.
Figure 5-1: Increasing and decreasing of locking period and level

5. If a PURGE TABLE statement is executed after a LOCK statement has been issued, 
the lock level changes to EXCLUSIVE. However, if the transaction has terminated 
before the PURGE TABLE statement executes, the lock level does not change to 
EXCLUSIVE even though the PURGE TABLE statement executes.

6. If a table locked by an UNTIL DISCONNECT specification is deleted by the DROP 
TABLE statement, the locking of the table is automatically reset by the HiRDB 
system.

7. Tables on which the UNTIL DISCONNECT option is specified cannot be used in 
remote database access.

8. A lock directed at a foreign table is performed on the table on the foreign server 
associated with the foreign table. If a lock fails on the table on the foreign server, 
the transaction that executed the LOCK statement is rolled back.

Notes
1. Because lock control is usually performed by HiRDB, the LOCK statement should 

be issued only for purposes of changing the unit of lock control.
2. When UNTIL DISCONNECT is specified, the duration of locking depends on the 

specification of PDXAMODE in the client environment definition. For details on 
PDXAMODE and locking control, see the HiRDB Version 8 UAP Development 



LOCK statement (Lock control on tables)

985

Guide.
3. If the LOCK statement is executed on a shared table in the lock mode (in 

EXCLUSIVE MODE), the following RDAREAs are also subject to locking in 
addition to the shared table:

• The RDAREA that stores the shared table
• If an index is defined for the shared table, the RDAREA that stores the index

For details about locking shared tables, see the HiRDB Version 8 Installation and 
Design Guide.

Example
Impose shared-mode lock control on a table named STOCK in order to retrieve all 
information from the table in a single transaction:
LOCK TABLE STOCK IN SHARE MODE



CONNECT statement with RD-node specification (Connect to distributed RD-node)

986

CONNECT statement with RD-node specification (Connect to 
distributed RD-node)

Function
The CONNECT statement with an RD-node specification reports an authorization 
identifier and a password to a distributed RD-node in order to connect the UAP to the 
distributed RD-node. When connection is made, the connected RD-node is designated 
as the current RD-node.

Privileges
For the authorization identifier that links to the specified RD-node, the user needs the 
privilege to connect to the system using the RD-node. For the privilege necessary to 
connect to the system using a specified RD-node, see the system manual for the 
RD-node.

Format
CONNECT TO {RD-node-name|:embedded-variable-1}
[USER:embedded-variable-2 [USING:embedded-variable-3]]

Operands
{RD-node-name|:embedded-variable-1}

RD-node-name
Specifies the name of the RD-node to which connection is to be made.

embedded-variable-1
Specifies an embedded variable that contains as its value the name of the 
RD-node to which connection is to be made.
If the UAP is written in C, specify a fixed-length character string of up to 31 bytes, 
the final character of which is the null value. If the character string does not 
terminate with the null value, the character string occupying (area length - 1) is 
used as the RD-node name.
If the UAP is written in COBOL, specify a fixed-length character string of up to 
30 bytes; this character string need not terminate with the null value.
embedded-variable-2

Specifies an embedded variable that contains as its value the authorization identifier 
for linking to the RD-node to which connection is to be made.
If the UAP is written in C, specify a fixed-length character string of up to 31 bytes, the 
final character of which is the null value. If the character string does not terminate with 



CONNECT statement with RD-node specification (Connect to distributed RD-node)

987

the null value, the character string occupying (area length - 1) is used as the 
authorization identifier.
If the UAP is written in COBOL, specify a fixed-length character string of up to 30 
bytes; this character string need not terminate with the null value.
If all operands following USER are omitted, the same authorization identifier and 
password as were used for the existing RD-node connection will be reported to the 
RD-node to which connection is to be made.
If values are to be case-sensitive, they must be enclosed in double quotation marks (").

embedded-variable-3
Specifies an embedded variable that contains as its value the password for linking to 
the RD-node to which connection is to be made.
If the UAP is written in C, specify a fixed-length character string of up to 31 bytes, the 
final character of which is the null value. If the character string does not terminate with 
the null value, the character string occupying (area length - 1) is used as the password.
If the UAP is written in COBOL, specify a fixed-length character string of up to 30 
bytes; this character string need not terminate with the null value.
If passwords are not required for users, either omit the USING clause or specify any 
character string in the embedded variable.

Common rules
1. The existing RD-node cannot be specified as the RD-node to which connection is 

to be made (the existing RD-node means the local RD-node specified in the 
single-server definition or front-end server definition).

2. Connection cannot be made simultaneously to multiple distributed RD-nodes.

3. A CONNECT statement with an RD-node specification cannot be executed for 
connection to the already connected distributed RD-node. Also, if HiRDB has 
connected automatically to a distributed RD-node by means of execution of an 
SQL statement that includes a table alias, a CONNECT statement with an RD-node 
specification cannot be executed for connection to that RD-node.

4. When the CONNECT statement with an RD-node specification terminates 
normally, the specified RD-node becomes the current RD-node.

5. If execution of the CONNECT statement with an RD-node specification terminates 
with an error, the current RD-node remains unchanged.

6. If a CONNECT statement with an RD-node specification is issued without first 
connecting to the existing RD-node, before connection is established with the 
specified RD-node, a connection is established automatically to the existing 
RD-node, using the authorization identifier and password that are specified in the 
PDUSER client environment variable.



CONNECT statement with RD-node specification (Connect to distributed RD-node)

988

Note
1. Once a connection is established to an RD-node by the CONNECT statement with 

an RD-node specification, that RD-node becomes the current RD-node. If the 
current RD-node is a nonexistent node, SQL statements that include table aliases 
and table names qualified with the RD-node name cannot be used. If such an SQL 
statement is issued, it is transmitted to the current RD-node in the form that 
includes table aliases or table names that are qualified with the RD-node name, so 
it will not execute successfully.

Example
Report an authorization identifier (embedded variable USER2) and a password 
(embedded variable PSWD2) in order to connect to the RD-node named RDNODE10:
CONNECT TO RDNODE10 USER :USER2 USING :PSWD2



DISCONNECT statement with RD-node specification (Disconnect from distributed RD-node)

989

DISCONNECT statement with RD-node specification (Disconnect 
from distributed RD-node)

Function
The DISCONNECT statement with RD-node specification terminates the current 
transaction normally, sets a synchronization point, generates one unit of commitment, 
and then disconnects the UAP from the distributed RD-node.

Privileges
None.

Format
DISCONNECT {RD-node-name|:embedded-variable}

Operands
{RD-node-name|:embedded-variable}

RD-node-name
Specifies the name of the RD-node from which the UAP is to be disconnected.

embedded-variable
Specifies an embedded variable that contains as its value the name of the 
RD-node from which the UAP is to be disconnected.
If the UAP is written in C, specify a fixed-length character string of up to 31 bytes, 
the final character of which is the null value. If the character string does not 
terminate with the null value, the character string occupying (area length - 1) is 
used as the RD-node name.
If the UAP is written in COBOL, specify a fixed-length character string of up to 
30 bytes; this character string need not terminate with the null value.

Common rules
1. An RD-node that is not connected cannot be specified as the distributed RD-node 

from which the UAP is to be disconnected.
2. The existing RD-node cannot be specified as the RD-node from which the UAP 

is to be disconnected (the existing RD-node means the local RD-node specified 
in the single-server definition or front-end server definition).

3. When a DISCONNECT statement with an RD-node specification is executed, the 
UAP is disconnected from the specified distributed RD-node after HiRDB has 
executed the COMMIT statement.



DISCONNECT statement with RD-node specification (Disconnect from distributed RD-node)

990

4. If the UAP is disconnected from the RD-node while it is the distributed RD-node, 
the current RD-node is switched to the existing RD-node.

5. If execution of the DISCONNECT statement with an RD-node specification 
terminates with an error, the current RD-node remains unchanged.

6. When a DISCONNECT statement with an RD-node specification is executed, the 
open cursor is closed and locked resources are released from locking. However, 
the holdable cursor for the existing RD-node is not closed and locked resources 
are not released from locking. Also, resources locked by a LOCK TABLE statement 
with UNTIL DISCONNECT specified are not released from locking.

Note
1. A DISCONNECT statement with an RD-node specification cannot be specified 

from an X/Open-compliant UAP executing under OLTP.

Example
Disconnect the UAP from the RD-node whose name is RDNODE10:
DISCONNECT RDNODE10



ROLLBACK statement (Cancel transaction)

991

ROLLBACK statement (Cancel transaction)

Function
The ROLLBACK statement cancels the current transaction and nullifies the database 
updating performed by the transaction.

Privileges
None.

Format
ROLLBACK [WORK] [RELEASE]

Operands
WORK

This operand has no effect on the transaction cancellation function of the ROLLBACK 
statement. The WORK operand is supported for compatibility with JIS standards.

RELEASE
Specifies that the UAP is to be disconnected from the HiRDB after the transaction has 
been canceled and database updates have been nullified.

Common rules
1. The ROLLBACK statement closes all cursors that are currently open.
2. The ROLLBACK statement resets any lock controls that were put into effect during 

the current transaction. However, lock controls set by a LOCK TABLE statement 
with UNTIL DISCONNECT specified are not reset.

3. Definition SQL statements are not subject to rollback.
4. Preprocessing of a dynamic SELECT statement with holdable cursor specification 

is nullified if it was performed during the current transaction. In other cases, the 
preprocessing remains effective.

5. Executing the ROLLBACK statement nullifies all effective locators.

Notes
1. The ROLLBACK statement cannot be specified from an X/Open compliant UAP 

running under OLTP. Similarly, if a procedure is called from a UAP running under 
OLTP, procedures using the ROLLBACK statement cannot be executed.

2. When executing the ROLLBACK statement from a procedure, you cannot specify 
the RELEASE operand.



ROLLBACK statement (Cancel transaction)

992

3. When executing a procedure defined on a distributed RD node during remote 
database access using the distributed database facility, you cannot execute 
procedures using the ROLLBACK statement.

4. The ROLLBACK statement cannot be executed during trigger action.

Examples
1. Cancel the current transaction:

ROLLBACK

2. Cancel the transaction either within a procedure of after the procedure has 
terminated:



SET CONNECTION statement (Set current RD-node)

993

SET CONNECTION statement (Set current RD-node)

Function
The SET CONNECTION statement sets the current RD-node.

Privileges
None.

Format
SET CONNECTION {RD-node-name| :embedded-variable|DEFAULT}

Operands
{RD-node-name| :embedded-variable|DEFAULT}

RD-node-name
Specifies the name of the distributed RD-node that is to become the current 
RD-node.

embedded-variable
Specifies the embedded variable that contains as its value the name of the 
distributed RD-node that is to become the current RD-node.
If the UAP is written in C, the data type of the variable must be a fixed-length 
character string not exceeding 31 bytes in length and terminating with the null 
value. If the character string does not terminate with the null value, that portion 
of the character string whose length is (area length -1) is used as the RD-node 
name.
If the UAP is written in COBOL, this operand must be a fixed-length character 
string not exceeding 30 bytes in length, but it need not terminate with the null 
value.

DEFAULT
Specifies that the default RD-node is to be set as the current RD-node.

Common rules
1. An RD-node that is not connected to the distributed RD-node that is currently set 

as the RD-node cannot be specified.
2. DEFAULT is specified when the existing RD-node is to be set as the current 

RD-node. The name of the existing RD-node (the RD-node name of the local 
RD-node specified in the single server or front-end server definition) cannot be 
specified.



SET CONNECTION statement (Set current RD-node)

994

3. When execution of a SET CONNECTION statement terminates with an error, the 
current RD-node is not changed.

Examples
1. Set the RD-node named RDNODE10 as the current RD-node:

SET CONNECTION RDNODE10

2. Set the existing RD-node as the current RD-node:
SET CONNECTION DEFAULT



SET SESSION AUTHORIZATION statement (Change connected user)

995

SET SESSION AUTHORIZATION statement (Change connected user)

Function
The SET SESSION AUTHORIZATION statement posts an authorization identifier and a 
password to HiRDB to make a change in the users who are connected.

Privileges
Users with the DBA or CONNECT privilege
These users can change connected users.

Format
SET SESSION AUTHORIZATION {:embedded variable-1|?-parameter-1}
    [{USING|IDENTIFIED BY} {: embedded variable-2|?-parameter-2 }]

Operands
embedded-variable-1|?-parameter-1

Specifies an embedded variable or ? parameter that has an authorization identifier as 
its value.
If the UAP is written in C, specify a fixed-length character string of up to 31 bytes, the 
final character of which is the null value. If the character string does not terminate with 
the null value, the character string occupying (area length - 1) is used as the 
authorization identifier.
If the UAP is written in COBOL, specify a fixed-length character string of up to 30 
bytes; this character string need not terminate with the null value.
If the character strings are to be case sensitive, enclose them in quotation marks (").

embedded-variable-2 | ?-parameter-2
Specifies an embedded variable or ? parameter that contains a password as its value.
If the UAP is written in C, specify a fixed-length character string of up to 31 bytes, the 
final character of which is the null value. If the character string does not terminate with 
the null value, the character string occupying (area length - 1) is used as the password.
If the UAP is written in COBOL, specify a fixed-length character string of up to 30 
bytes; this character string need not terminate with the null value.

Common rules
1. The user can be changed only if the statement is executed before the transaction 

is started or it is executed first in the transaction.
2. All results preprocessed by the PREPARE statement are nullified.



SET SESSION AUTHORIZATION statement (Change connected user)

996

3. The user cannot be changed if a holdable cursor is open.
4. The user cannot be changed if a lock specified with UNTIL DISCONNECT is 

applied by a LOCK TABLE statement.
5. When specifying SET SESSION AUTHORIZATION in an X/Open compliant UAP 

running under OLTP, specify this statement so that it is executed immediately 
after a tx_begin or xa_begin function call.

6. If SET SESSION AUTHORIZATION of the dynamic SQL statement is executed, 
the statement is committed upon completion of the processing.

7. The user cannot be changed if connection is to a distributed RD-node.



997

Chapter

6. Embedded Language Syntax

This chapter explains the syntax and structure of the embedded language.
General rules
BEGIN DECLARE SECTION (Declare beginning of embedded SQL)
END DECLARE SECTION (Declare end of embedded SQL)
ALLOCATE CONNECTION HANDLE (Allocate connection handle)
FREE CONNECTION HANDLE (Release connection handle)
DECLARE CONNECTION HANDLE SET (Declare connection handle to be 

used)
DECLARE CONNECTION HANDLE UNSET (Reset all connection handles 

being used)
GET CONNECTION HANDLE (Get connection handle)
COPY (Include library text)
GET DIAGNOSTICS (Retrieve diagnostic information)
COMMAND EXECUTE (Execute commands from a UAP)
SQL prefix
SQL terminator
WHENEVER (Declare embedded exception)
SQLCODE variable
SQLSTATE variable
PDCNCTHDL type variable declaration
INSTALL JAR (Register JAR file)
REPLACE JAR (Re-register JAR file)
REMOVE JAR (Remove JAR file)



General rules

998

General rules

The embedded language is an SQL that is used in conjunction with a program SQL for 
creating an embedded UAP, declaring embedded variables, and declaring processing 
by means of return codes.
Table 6-1 shows the types and functions of the embedded language.

Table 6-1: Types and functions of the embedded language

Type Function

BEGIN DECLARE SECTION (Declare 
beginning of embedded SQL) 

Indicates the beginning of an embedded variables declaration 
section that specifies the embedded variables and indicator 
variables used in the SQL.

END DECLARE SECTION (Declare end of 
embedded SQL) 

Indicates the end of an embedded variables declaration section.

ALLOCATE CONNECTION HANDLE (Allocate 
connection handle)

Allocates a connection handle to be used by a UAP in an 
environment where a multi-connection function is used.

FREE CONNECTION HANDLE (Release 
connection handle)

Releases a connection handle that was allocated by ALLOCATE 
CONNECTION HANDLE.

DECLARE CONNECTION HANDLE SET 
(Declare connection handle to be used)

Declares the connection handle to be used by a UAP in an 
environment where a multi-connection function is used.

DECLARE CONNECTION HANDLE UNSET 
(Reset all connection handles being used)

Resets all declarations of connection handle usage specified in 
DECLARE CONNECTION HANDLE SET statements prior to this 
statement.

GET CONNECTION HANDLE (Get connection 
handles)

Allocates the connection handle to be used by a UAP when the 
multi-connection facility is used under the X/Open XA interface 
environment.

COPY (Include library text) Includes (copies) a source library text into the source program.

GET DIAGNOSTICS (Retrieve diagnostic 
information)

If the SQL statement that was executed immediately before is 
CREATE PROCEDURE, CREATE FUNCTION, CREATE TYPE, ALTER 
PROCEDURE, ALTER ROUTINE, ALTER TRIGGER, CREATE 
TRIGGER, a CALL statement, a dynamic SELECT statement with a 
WITH clause specification, or a cursor declaration, the statement 
acquires relevant error information and diagnostic information 
from the diagnostic area. If the SQL statement that was executed 
immediately before performs remote database access, the 
statement acquires error information that was returned by the 
distributed server.

COMMAND EXECUTE (Execute commands 
from UAP)

Executes HiRDB and OS commands from within a UAP.



General rules

999

SQL prefix Indicates the beginning of an SQL.

SQL terminator Indicates the end of an SQL.

WHENEVER (Declare embedded exception) Declares UAP processing, based on the return code set by HiRDB 
in the SQL Communications Area after an SQL has executed.

SQLCODE variable Receives a return code returned by HiRDB after an SQL has 
executed.

SQLSTATE variable Receives a return code returned by HiRDB after an SQL has 
executed.

PDCNCTHDL-type variable declaration Declares the handle that has the connection information to be used 
in an environment where a multi-connection function is used.

INSTALL JAR Registers a JAR file in a HiRDB server.

REPLACE JAR Re-registers a JAR file in a HiRDB server.

REMOVE JAR Deletes a JAR file from a HiRDB server.

Type Function



BEGIN DECLARE SECTION (Declare beginning of embedded SQL)

1000

BEGIN DECLARE SECTION (Declare beginning of embedded SQL)

Function
The BEGIN DECLARE SECTION declares the beginning of an embedded SQL declare 
section. Embedded variables and indicator variables used in the SQL must be specified 
in the embedded SQL declare section.

Format
BEGIN DECLARE SECTION

Common rules
1. The end of an embedded SQL declare section is denoted by specifying an END 

DECLARE SECTION (declaring the end of an embedded SQL).
2. All embedded variables and indicator variables used in the SQL must be declared 

in the embedded SQL declare section.
3. Any number of embedded SQL declare sections (including no embedded SQL 

begin declare sections) can be specified in an embedded UAP.
4. Only the declaration of variables can be specified in an embedded SQL declare 

section. However, embedded SQL declare sections that do not contain any 
declarations of variables can be specified.

Examples
Declare embedded variables used in an SQL:
C language
EXEC SQL BEGIN DECLARE SECTION;
   char XPCODE[5];
   char XPNAME[21];
   char XCOLOR[11];
   long XPRICE;
   long XSQUANTITY;
EXEC SQL END DECLARE SECTION;

COBOL language
   EXEC SQL
      BEGIN DECLARE SECTION
   END-EXEC.
77 XPCODE     PIC X(4).
77 XPNAME     PIC X(20).
77 XCOLOR     PIC X(10).
77 XPRICE     PIC S9(9) COMP.
77 XSQUANTITY PIC S9(9) COMP.



BEGIN DECLARE SECTION (Declare beginning of embedded SQL)

1001

   EXEC SQL
       END DECLARE SECTION
   END-EXEC.



END DECLARE SECTION (Declare end of embedded SQL)

1002

END DECLARE SECTION (Declare end of embedded SQL)

Function
The END DECLARE SECTION declares the end of an embedded SQL declare section.

Format
END DECLARE SECTION

Common rules
1. The beginning of an embedded SQL declare section is denoted by specifying a 

BEGIN DECLARE SECTION (declaring the beginning of an embedded SQL).
2. All embedded variables and indicator variables used in the SQL should be 

declared in the embedded SQL declare section.

Examples
See the section on the BEGIN DECLARE SECTION for examples.



ALLOCATE CONNECTION HANDLE (Allocate connection handle)

1003

ALLOCATE CONNECTION HANDLE (Allocate connection handle)

Function
ALLOCATE CONNECTION HANDLE allocates a connection handle to be used by a UAP 
in an environment where a multi-connection function is used.

Format
ALLOCATE CONNECTION HANDLE :PDCNCTHDL-type-variable,
                           :return-code-receiving-variable
                           [, {:connection-PDHOST-variable
                              :connection-PDNAMEPORT-variable
                              |:environment-variable-group-name-variable}]

Operands
PDCNCTHDL-type-variable

Specifies an embedded variable that was declared as a PDCNCTHDL-type.
return-code-receiving-variable

Specifies an embedded variable that was declared as an INT type.
The following values are returned to the return code receiving variable:
C language

Normal allocation:
p_rdb_RC_NORM

Invalid connection handle value:
p_rdb_RC_ERRPARM

Insufficient memory:
p_rdb_RC_MEMERR

These values are defined in the pdberrno.h file.
COBOL language

Normal allocation:
P_RDB_RC_NORM

Invalid connection handle value:
P_RDB_RC_ERRPARM

Insufficient memory:



ALLOCATE CONNECTION HANDLE (Allocate connection handle)

1004

P_RDB_RC_MEMERR
These values are defined in the PDBSQLCAMTH.CBL file.
:connection-PDHOST-variable

Specifies an embedded variable that was declared as a CHAR type (area size: 511 bytes).
:connection-PDNAMEPORT-variable

Specifies an embedded variable that was declared as a SMALLINT type.
:environment-variable-group-name-variable

Specifies an embedded variable that is declared as a CHAR type (area length of 256 
bytes).
In the UNIX environment, specify the file name of the regular file in which the 
environment variable is coded in terms of an absolute path name (a maximum of 256 
bytes including the null character).
drive-name\.ini"HiRDB Version 8 UAP Development Guide

Common rules
1. ALLOCATE CONNECTION HANDLE should be issued before the CONNECT 

statement.
2. The embedded variables to be used must be declared in the embedded SQL 

declare section.
3. If allocation of a connection handle fails, the system sets the error code in the 

return code-receiving variable.
4. The connection PDHOST variable and the connection PDNAMEPORT variable 

should be declared either together or not at all. If these variables are omitted, the 
system connects to a database on the basis of a value specified in the client 
environment definition.

5. The last character in the host name that is assigned in the connection PDHOST 
variable must be the null character.

Note
Connection handles that have been allocated are not released when a DISCONNECT 
statement is issued. To release a connection handle, a FREE CONNECTION HANDLE 
statement must be issued.

Example
1. The following are examples of using a PDCNCTHDL type variable:

C language
EXEC SQL BEGIN DECLARE SECTION;



ALLOCATE CONNECTION HANDLE (Allocate connection handle)

1005

  PDCNCTHDL   CnctHdl;
  long        AlchdlRtn;
EXEC SQL END DECLARE SECTION;
EXEC SQL ALLOCATE CONNECTION HANDLE :CnctHdl,
                                    :AlchdlRtn;

COBOL language
DATA DIVISION.
WORKING-STORAGE SECTION.
  EXEC SQL
    BEGIN DECLARE SECTION
  END-EXEC.
01 CNCTHDL     SQL TYPE IS PDCNCTHDL.
01 ALCHDLRTN   PIC S9(9) COMP.
  EXEC SQL
    END DECLARE SECTION
  END-EXEC.
        :
PROCEDURE DIVISION.
        :
  EXEC SQL
    ALLOCATE CONNECTION HANDLE :CNCTHDL,
                               :ALCHDLRTN;
  END-EXEC.

2. The following are examples of using a connection PDHOST variable and a 
connection PDNAMEPORT variable:
C language
EXEC SQL BEGIN DECLARE SECTION;
  PDCNCTHDL   CnctHdl;
  long        AlchdlRtn;
  char        CnctHost[31];
  short       CnctPort;
EXEC SQL END DECLARE SECTION;
strcpy(CnctHost,"HOST01");
EXEC SQL ALLOCATE CONNECTION HANDLE :CnctHdl,
                                    :AlchdlRtn,
                                    :CnctHost,
                                    :CnctPort;

COBOL language
DATA DIVISION.
WORKING-STORAGE SECTION.
  EXEC SQL
    BEGIN DECLARE SECTION
  END-EXEC.
01 CNCTHDL     SQL TYPE IS PDCNCTHDL.



ALLOCATE CONNECTION HANDLE (Allocate connection handle)

1006

01 ALCHDLRTN   PIC S9(9) COMP.
01 CNCTHOST    PIC X(31).
01 CNCTPORT    PIC S9(4) COMP.
  EXEC SQL
    END DECLARE SECTION
  END-EXEC.
        :
PROCEDURE DIVISION.
        :
  MOVE 'HOST01' & X'00' TO CNCTHOST.
  EXEC SQL
    ALLOCATE CONNECTION HANDLE :CNCTHDL,
                               :ALCHDLRTN,
                               :CNCTHOST,
                               :CNCTPORT;
  END-EXEC.

3. The following are examples of using an environment variable group name:
C language
EXEC SQL BEGIN DECLARE SECTION;
  PDCNCTHDL   CnctHdl;
  long        AlchdlRtn;
  char        GroupName[31];
EXEC SQL END DECLARE SECTION;
strcpy(GroupName,"HRD01");
EXEC SQL ALLOCATE CONNECTION HANDLE :CnctHdl,
                                    :AlchdlRtn,
                                    :GroupName;

COBOL language
DATA DIVISION.
WORKING-STORAGE SECTION.
  EXEC SQL
    BEGIN DECLARE SECTION
  END-EXEC.
01 CNCTHDL     SQL TYPE IS PDCNCTHDL.
01 ALCHDLRTN   PIC S9(9) COMP.
01 GROUPNAME   PIC X(31).
  EXEC SQL
    END DECLARE SECTION
  END-EXEC.
        :
PROCEDURE DIVISION.
        :
  MOVE 'HRD01' & X'00' TO GROUPNAME.
  EXEC SQL
    ALLOCATE CONNECTION HANDLE :CNCTHDL,
                               :ALCHDLRTN,



ALLOCATE CONNECTION HANDLE (Allocate connection handle)

1007

                               :GROUPNAME
  END-EXEC.



FREE CONNECTION HANDLE (Release connection handle)

1008

FREE CONNECTION HANDLE (Release connection handle)

Function
FREE CONNECTION HANDLE releases a connection handle that was allocated by 
ALLOCATE CONNECTION HANDLE.

Format
FREE CONNECTION HANDLE :PDCNCTHDL-type-variable
                          :return-code-receiving-variable

Operands
PDCNCTHDL-type-variable

Specifies the PDCNCTHDL-type variable that was specified in ALLOCATE CONNECTION 
HANDLE.

return-code-receiving-variable
Specifies the return code receiving variable that was specified in ALLOCATE 
CONNECTION HANDLE.
The following values are returned to the return code receiving variable:
C language

Normal allocation:
p_rdb_RC_NORM

Invalid connection handle value:
p_rdb_RC_ERRPARM

Connection handle being used:
p_rdb_RC_SIMERR

These values are defined in the pdberrno.h file.
COBOL language

Normal allocation:
P_RDB_RC_NORM

Invalid connection handle value:
P_RDB_RC_ERRPARM

Connection handle being used:



FREE CONNECTION HANDLE (Release connection handle)

1009

P_RDB_RC_SIMERR
These values are defined in the SQLCAMTH.CBL file.

Common rules
1. FREE CONNECTION HANDLE should be issued after a DISCONNECT statement.
2. The embedded variables to be used must have been declared in the embedded 

SQL declare section.
3. If release of a connection handle fails, the system sets the error code in the return 

code receiving variable.

Note
Connection handles that have been reserved are not released when a DISCONNECT 
statement is issued. To release a connection handle, a FREE CONNECTION HANDLE 
statement must be issued.

Example
Release the connection handle that was allocated in the example shown in the section 
on ALLOCATE CONNECTION HANDLE:
C language
EXEC SQL BEGIN DECLARE SECTION;
  PDCNCTHDL   CnctHdl;
  long        FrchdlRtn;
EXEC SQL END DECLARE SECTION;
EXEC SQL FREE CONNECTION HANDLE :CnctHdl,
                                :FrchdlRtn;

COBOL language
DATA DIVISION.
WORKING-STORAGE SECTION.
  EXEC SQL
    BEGIN DECLARE SECTION
  END-EXEC.
01 CNCTHDL     SQL TYPE IS PDCNCTHDL.
01 FRCHDLRTN   PIC S9(9) COMP.
  EXEC SQL
    END DECLARE SECTION
  END-EXEC.
        :
PROCEDURE DIVISION.
        :
  EXEC SQL
    FREE CONNECTION HANDLE :CNCTHDL,
                           :FRCHDLRTN;
  END-EXEC.



DECLARE CONNECTION HANDLE SET (Declare connection handle to be used)

1010

DECLARE CONNECTION HANDLE SET (Declare connection handle 
to be used)

Function
In an environment that uses the multi-connection facility, DECLARE CONNECTION 
HANDLE SET declares the connection handle that is used by SQL statements in a UAP 
or by the SQL Communications Area.

Format
DECLARE CONNECTION HANDLE SET :PDCNCTHDL-type-variable

Operands
PDCNCTHDL-type-variable

Specifies the embedded variable that was declared as a PDCNCTHDL-type variable.

Common rules
1. The scope of the connection handle specified in DECLARE CONNECTION HANDLE 

SET depends on the location in the source program where the connection handle 
appears. The variable for the connection handle specified in a DECLARE 
CONNECTION HANDLE SET is effective on all SQL statements until another 
DECLARE CONNECTION HANDLE SET or DECLARE CONNECTION HANDLE UNSET 
appears.

2. The connection handle to be used can be declared as many times as necessary in 
the same UAP.

Notes
1. For the C language, any SQL statement that was issued before DECLARE 

CONNECTION HANDLE SET was coded is processed under the assumption that the 
SQL statement was issued in the single-connection environment.
For the COBOL language, UAPs using the multi-connection facility cannot code 
an SQL statement before DECLARE CONNECTION HANDLE SET is coded.

2. What is declared in a DECLARE CONNECTION HANDLE SET statement is the name 
of a variable for a connection handle; it is not the value itself.

3. Before referencing the SQL communication area storing the results of execution 
of an SQL statement using the multi-connection facility, DECLARE CONNECTION 
HANDLE SET must be executed using the module.

Example
Declare a connection handle whose PDCNCTHDL-type variable is hCnct:



DECLARE CONNECTION HANDLE SET (Declare connection handle to be used)

1011

C language
  EXEC SQL BEGIN DECLARE SECTION;
      PDCNCTHDL CnctHdl;
  EXEC SQL END DECLARE SECTION;
 
  EXEC SQL DECLARE CONNECTION HANDLE SET :CnctHdl;

COBOL language
  EXEC SQL BEGIN DECLARE SECTION END-EXEC
      01 CNCTHDL SQL TYPE IS PDCNCTHDL.
  EXEC SQL END DECLARE SECTION END-EXEC
 
  EXEC SQL DECLARE CONNECTION HANDLE SET :CNCTHDL END-EXEC



DECLARE CONNECTION HANDLE UNSET (Reset all connection handles being used)

1012

DECLARE CONNECTION HANDLE UNSET (Reset all connection 
handles being used)

Function
DECLARE CONNECTION HANDLE UNSET resets all declarations of connection handle 
usage specified in DECLARE CONNECTION HANDLE SET statements prior to this 
statement.

Format
DECLARE CONNECTION HANDLE UNSET

Common rules
1. The scope of the connection handles specified in a DECLARE CONNECTION 

HANDLE UNSET statement depends on the location in the source program where 
the connection handles appear. Releasing connection handles by issuing 
DECLARE CONNECTION HANDLE UNSET causes use of all connection handles by 
all SQL statements to be discontinued until another DECLARE CONNECTION 
HANDLE SET appears.

2. DECLARE CONNECTION HANDLE UNSET cannot be used in the COBOL language.

Note
The system does not process a multi-connection function for SQL statements that are 
issued after a DECLARE CONNECTION HANDLE UNSET has been issued.

Example
Release all connection handles that have been declared:
DECLARE CONNECTION HANDLE UNSET;



GET CONNECTION HANDLE (Get connection handle)

1013

GET CONNECTION HANDLE (Get connection handle)

Function
When the multi-connection facility is used under the X/Open XA interface 
environment, GET CONNECTION HANDLE allocates the connection handle to be used by 
a UAP.

Format
GET CONNECTION HANDLE:PDCNCTHDL-type-variable,
              :return-code-receiving-variable,
              :environment-variable-group-identifier-variable

Operands
: PDCNCTHDL-type-variable

Specifies an embedded variable that was declared as a PDCNCTHDL-type.
: return-code-receiving-variable

Specifies an embedded variable that was declared as an INT type.
The following values are returned to the return code receiving variable:
C language

Normal receipt:
p_rdb_RC-NORM

Error:
Error code associated with the particular error

These values are defined in the pdberrno.h file.
COBOL language

Normal receipt:
P_RDB_RC_NORM

These values are defined in the SQLCAMTH.CBL file.
: environment-variable-group-identifier-variable

Specifies an embedded variable that is declared as CHAR type (5 bytes, fixed).
The specified value should be the environment variable group identifier (5 bytes, 
fixed, including null characters) that is specified in the character string for the 
xa_open function.



GET CONNECTION HANDLE (Get connection handle)

1014

Common rules
1. The variables must be declared in the embedded variables declaration section.
2. If acquisition of the connection handle fails, the resulting error code is set in the 

return code receiving variable.

Notes
1. When an SQL statement that uses the connection handle acquired in this section 

is issued, the connection handle to be used must be declared by specifying 
DECLARE CONNECTION HANDLE SET.

2. For the COBOL language, when assigning a value to the environment variable 
group identifier, the last character in the assigned value should be the null 
character.

Example
Allocate a connection handle with a PDCNCTHDL-type variable CnctHdl, return code 
receiving variable GetchdlRtn, and environment variable group identifier variable 
GroupName:
C language
EXEC SQL BEGIN DECLARE SECTION;
  PDCNCTHDL   CnctHdl;
  long        GetchdlRtn;
  char        GroupId[5];
EXEC SQL END DECLARE SECTION;
strcpy(GroupId,"HR01") ;
EXEC SQL GET CONNECTION HANDLE  :CnctHdl,
                                :GetchdlRtn,
                                :GroupId;

COBOL language
DATA DIVISION.
WORKING-STORAGE SECTION.
  EXEC SQL
    BEGIN DECLARE SECTION
  END-EXEC.
01 CNCTHDL     SQL TYPE IS PDCNCTHDL.
01 GETCHDLRTN  PIC S9(9) COMP.
01 GROUPID     PIC X(5).
  EXEC SQL
    END DECLARE SECTION
  END-EXEC.
        :
PROCEDURE DIVISION.
        :
  MOVE 'HR01' & X'00' TO GROUPID.



GET CONNECTION HANDLE (Get connection handle)

1015

  EXEC SQL
    GET CONNECTION HANDLE :CNCTHDL,
                          :GETCHDLRTN,
                          :GROUPID;
  END-EXEC.

Additional notes
If HiRDB does not support the multi-connection facility, SQL statements cannot be 
executed at that HiRDB using multiple connection handles from one transaction. If 
such a transaction is executed, the HiRDB server aborts with the Pac2354 code and the 
transaction is rolled back. Therefore, SQL statements that use multiple connection 
handles cannot be executed simultaneously within a single transaction.
For different copies of HiRDB that are connected to different sites, multiple 
connection handles can be used within a single transaction.
Following is an example of an incorrect specification:
HiRDB 1 registered in both RM01 and RM02
tx_begin()
strcpy(grpnm, "RM01")
GET CONNECTION HANDLE ;hCnct,:rc,:grpnm;
DECLARE CONNECTION HANDLE SET :hCnct;
 
SQL execution
 
strcpy(grpnm, "RM02")
GET CONNECTION HANDLE :hCnct,:rc,:grpnm;
DECLARE CONNECTION HANDLE SET :hCnct;
 
SQL execution
 
tx_commit()



COPY (Include library text)

1016

COPY (Include library text)

Function
COPY includes (copies) a source library text into the source program.

Format
COPY source-text-name

Operands
source-text-name

Specifies the name of the file (exclusive of the suffix) that contains either library 
text or a header file, as a character string of 30 characters or less.

Common rules
1. COPY must be enclosed between an SQL prefix and an SQL terminator.

The SQL terminator must be the last item of coding through the end of the row.
2. Directories in which library text and header files are cataloged are searched in the 

following sequence; the directories should therefore be stored in one of the files 
listed below:
Order in which directories are searched

• Directories cataloged by means of an environment variable (PDCBLLIB in 
the case of COBOL or OOCOBOL; PDCLIB in the case of C or C++)

• Current directory
Order in which files are searched (for COBOL and OOCOBOL)

• Suffixed files stored by PDCBLFIX environment variable
• file-name.cbl
• file-name.CBL
• file-name.cob

Order in which files are searched (for C and C++)
• file-name.h

3. In SQL, COPY cannot be specified in a text included by COPY.
4. With COBOL or OOCOBOL, the library text must be specified in the 

fixed-format reference format.



COPY (Include library text)

1017

Notes
A source library text that contains embedded variables or SQL statements should not 
be included using the COPY or INCLUDE statement of COBOL or OOCOBOL.
The #include instruction of C or C++ must not be used to include a file that contains 
SQL statements.

Example
Include the source library text with file name SAMPLE into the source program:
COBOL language
EXEC SQL
   COPY SAMPLE
END-EXEC.



GET DIAGNOSTICS (Retrieve diagnostic information)

1018

GET DIAGNOSTICS (Retrieve diagnostic information)

Function
If the SQL statement that was executed immediately before is any of the following, this 
statement acquires relevant error information and diagnostic information from the 
diagnostic area:

• Definition SQL statement
• Data manipulation SQL statement
• Control SQL statement

If the preceding SQL statement has executed remote database access, GET 
DIAGNOSTICS obtains the error information that was returned by the distributed 
server.

Format
GET DIAGNOSTICS
   {:embedded-variable=statement-information-item-name
       [,:embedded-variable=statement-information-item-name]...
    |EXCEPTION condition-number
       :embedded-variable=each-item-of-condition-name
          [,:embedded-variable=each-item-of-condition-name]...}
 
statement-information-item-name::={NUMBER | MORE}
each-item-of-condition-name::={RETURNED_SQLCODE
                         |ERROR_POSITION
                         |ERROR_SQL_NO
                         |ERROR_SQL
                         |ROUTINE_TYPE
                         |ROUTINE_SCHEMA
                         |ROUTINE_NAME
                         |TRIGGER_SCHEMA
                         |TRIGGER_NAME
                                                                           
|MESSAGE_TEXT
                         |RDNODE_NAME
                         |QUERY_NAME
                         |CONDITION_IDENTIFIER}

Operands
statement-information-item-name

NUMBER



GET DIAGNOSTICS (Retrieve diagnostic information)

1019

This operand is specified to determine the number of errors in the diagnostics 
area. The data type of statement-information-item-name should be SMALLINT.

MORE
This operand is specified to determine the results of the comparison between the 
number of errors that have occurred and the number of errors in the diagnostics 
area. The data type of statement-information-item-name should be CHAR with a 
length of 1 byte. A Y is returned if the number of errors that have occurred is 
greater than the number of errors in the diagnostics area. If these numbers are 
equal, an N is returned.
condition-number

Specifies in an embedded variable the ordinal number of diagnostic information to be 
obtained.

each-item-of-condition-name
RETURNED_SQLCODE

This operand is specified to obtain the value of the return code (SQLCODE). The 
INTEGER data type must be specified.

ERROR_POSITION
This operand is specified when acquiring the position of the error in the SQL 
statement if a syntax error occurs. The data type should be specified as INTEGER. 
If an error other than a syntax error has occurred, the value 0 is set.

ERROR_SQL_NO
This operand is specified to acquire a number indicating the type of error-ending 
SQL procedure statement in the routine when one of the following SQL 
statements is executed:

• CREATE PROCEDURE
• CREATE FUNCTION
• CREATE TYPE
• CREATE TRIGGER
• ALTER PROCEDURE
• ALTER ROUTINE
• ALTER TRIGGER
• CALL statement
• Data manipulation SQL statement that induces a trigger (only trigger 

action-related information can be acquired)



GET DIAGNOSTICS (Retrieve diagnostic information)

1020

The number indicates the position of the SQL statement in the procedure, 
beginning with 0. The data type should be specified as INTEGER.

ERROR_SQL
This operand is specified to acquire a character string indicating the type of the 
error-ending SQL procedure statement in the routine when one of the following 
SQL statements is executed:

• CREATE PROCEDURE
• CREATE FUNCTION
• CREATE TYPE
• CREATE TRIGGER
• ALTER PROCEDURE
• ALTER ROUTINE
• ALTER TRIGGER
• CALL statement
• Data manipulation SQL statement that induces a trigger (only trigger 

action-related information can be acquired)
Specify the VARCHAR data type with a length of 32 bytes. One of the following 
character strings is set: BEGIN, SET, WHILE, IF, FOR, LEAVE, OPEN, FETCH, 
CLOSE, SELECT, INSERT, DELETE, UPDATE, PURGE TABLE, LOCK, COMMIT, 
ROLLBACK, SIGNAL, RESIGNAL, WRITE LINE, DECLARE, DECLARE CURSOR, 
CREATE PROCEDURE, CREATE FUNCTION, CREATE TYPE, CREATE TRIGGER, 
RETURN, or CALL.
SELECT is set when a dynamic SELECT statement with a WITH clause specified 
and a cursor declaration has executed.

ROUTINE_TYPE
This operand is specified to acquire the type of the error-ending function or 
procedure. The CHAR data type must be specified, with a length of 1 byte. The 
character P is set for a procedure, and the character F is set for a function.

ROUTINE_SCHEMA
This operand is specified to acquire the authorization identifier of the 
error-ending function or procedure. The VARCHAR data type must be specified 
with a length of 30 bytes.

ROUTINE_NAME
This operand is specified to acquire the identifier of the error-ending function or 
procedure. The VARCHAR data type must be specified, with a length of 30 bytes.



GET DIAGNOSTICS (Retrieve diagnostic information)

1021

TRIGGER_SCHEMA
This operand is specified to acquire the authorization identifier of the 
error-ending trigger. Specify the VARCHAR data type with a length of 30 bytes.

TRIGGER_NAME
VARCHAR

CONSTRAINT_SCHEMA
VARCHARCONSTRAINT_NAME
VARCHARMESSAGE_TEXT

This operand is specified to obtain message texts. The VARCHAR data type must 
be specified, with a length of 254 bytes.

RDNODE_NAME
This operand is specified to determine the name of the RD node at which an error 
occurred during remote database access. The VARCHAR data type must be 
specified with a length of 30 bytes.

QUERY_NAME
This operand is specified to obtain the query name of the query specification 
when an error occurs during execution of a dynamic SELECT statement with a 
WITH clause specified or a cursor declaration. The VARCHAR data type must be 
specified with a length of 30 bytes.

CONDITION_IDENTIFIER
This operand is specified to acquire the SIGNAL statement, the condition name 
specified in the RESIGNAL statement, or the SQLSTATE value that was executed 
in an SQL procedure or in a trigger. Specify the VARCHAR data type with a length 
of 30 bytes.
If an SQLSTATE value is specified, 'SQLSTATE:XXXXX' (where XXXXX 
denotes the specified SQLSTATE value) is set.

Common rules
1. GET DIAGNOSTICS cannot be executed dynamically.
2. GET DIAGNOSTICS is effective only on the following SQL statements; it cannot 

be executed on any other SQL statements:
• Definition SQL statement
• Data manipulation SQL statement
• Control SQL statement
• An SQL statement that executed remote database access.



GET DIAGNOSTICS (Retrieve diagnostic information)

1022

3. The data type of the embedded variable in which a condition number is specified 
should be SMALLINT.

4. The embedded variable for receiving statement-information-item or 
each-item-of-condition should be of the same data type as the respective item.

5. A value less than 0 or a value greater than the number of errors in the diagnostics 
area cannot be specified in a condition number.

6. For details of obtaining error details and taking corrective action when remote 
database access is performed, see the HiRDB Version 8 UAP Development Guide.

7. In the case of errors that occurred before SQL analysis, it may not be possible to 
obtain diagnostic information with GET DIAGNOSTICS. If GET DIAGNOSTICS is 
executed under such a circumstance, 0 errors are returned. Such error information 
must be obtained by referring to the SQLCA that was in effect at the time the errors 
occurred.

8. If no information is provided in the explanation of the condition details name of 
an SQL, a one-byte blank or 0 is set.

9. With respect to errors that may occur during the execution of a function, GET 
DIAGNOSTICS may fail to acquire any of the following types of diagnostic 
information:

• ROUTINE_TYPE
• ROUTINE_SCHEMA
• ROUTINE_NAME

Example
Obtain the following diagnostics information for a previously executed CREATE 
FUNCTION statement:

Return code (embedded variable XSQLCODE with INTEGER data type)
Error location in the SQL statement in the event of a syntax error (embedded 
variable XPOSITION with INTEGER data type) piece
Number indicating position of an error-generating SQL procedure statement in 
the routine (embedded variable XSQL_NO with INTEGER data type)
Character string indicating the error-generating SQL procedure statement in the 
routine (embedded variable XSQL with VARCHAR(32) data type)
Message text (embedded variable XMESSAGE with VARCHAR(254) data type)



GET DIAGNOSTICS (Retrieve diagnostic information)

1023



COMMAND EXECUTE (Execute commands from a UAP)

1024

COMMAND EXECUTE (Execute commands from a UAP)

Function
COMMAND EXECUTE executes HiRDB and OS commands from within a UAP.
COMMAND EXECUTE cannot be executed if HiRDB Control Manager - Agent has not 
been installed in the HiRDB server. HiRDB Control Manager - Agent is required 
because it executes commands.

Format
COMMAND EXECUTE:command-line-variable,
               :return-code-receiving-variable,
               :execution-results-receiving-area-length-variable,
               :execution-results-length-receiving-variable,
               :execution-results-receiving-variable,
               :executed-command-return-code-receiving-variable,
               :environment-variable-group-name-variable

Operands
: command-line-variable

The command line containing the command to be executed at the HiRDB server is set 
in the command line variable.
Specify an embedded variable declared as a CHAR type (maximum area length is 
30,000 bytes). The command line must end with a null character.
Multiple commands should not be specified in the command line variable. If multiple 
commands are specified, the integrity of the operation cannot be guaranteed.

: return-code-receiving-variable
A return code from execution of COMMAND EXECUTE is set in the return code receiving 
variable. Specify an embedded variable declared as an INT type.
Following are the values that can be set in the return code receiving variable; in the 
event of an error, detailed information is set in the execution results receiving variable:
p_rdb_RC_NORM

Command executed normally at the HiRDB server.
p_rdb_RC_ERRPARM

There was an invalid argument.
p_rdb_RC_PROTO



COMMAND EXECUTE (Execute commands from a UAP)

1025

A communication error occurred.
p_rdb_RC_NOTF

No environment variable group was found.
p_rdb_RC_TIMEOUT

Timeout occurred.
p_rdb_RC_SQLERR

Some other error occurred.
: execution-results-receiving-area-length-variable

The area length of the execution results receiving variable is set in the execution results 
receiving area length variable. Specify an embedded variable declared as an INT type.
The execution results receiving area length should not exceed 2 GB.

: execution-results-length-receiving-variable
The output length for the execution results receiving variable is set in the execution 
results length receiving variable. Specify an embedded variable declared as an INT 
type.

: execution-results-receiving-variable
The address of the area allocated for receiving execution results is set in the execution 
results receiving variable. Specify an embedded variable declared as a PDOUTBUF 
type.
After COMMAND EXECUTE has executed, the following value is assigned to the 
execution results receiving variable, with any additional trailing data (specified value 
of execution-results-receiving-area-length-variable - 1) being truncated. A one-byte 
null character is set at the end of the execution results.
p_rdb_RC_NORM set in the return code receiving variable:

The results line (standard output and standard error output) of executing the 
command at the HiRDB server is set.

Anything other than p_rdb_RC_NORM set in the return code receiving variable:
A detailed message associated with the error code is set.
: executed-command-return-code-receiving-variable

The return code from the command line executed at the HiRDB server is set in the 
executed command return code receiving variable. Specify an embedded variable 
declared as an INT type.
A valid value is set in the executed command return code receiving variable only when 
COMMAND EXECUTE terminates normally (p_rdb_RC_NORM is set in the executed 



COMMAND EXECUTE (Execute commands from a UAP)

1026

command return code receiving variable).
If the executed command does not output information to the standard output device or 
to the standard error output device, the value 0 is assigned to the execution command 
return code-receiving variable.

: environment-variable-group-name-variable
UNIX version

Specify as an absolute path name the name (1-256 bytes, including NULL 
characters) of the normal file in which the client environment definition is 
defined.

Windows version
Specify a group name (1 to 31 bytes, including NULL characters) that was 
registered using the HiRDB client environment variable registration tool.

Specify an embedded variable declared as a CHAR type (maximum area length of 256 
bytes).
If environment variable groups are not used, set the NULL character in the first byte.
For details on environment variable groups, see the HiRDB Version 8 UAP 
Development Guide.

Common rules
1. All embedded variables that are used must be declared in the embedded variables 

declaration section.
2. To use COMMAND EXECUTE, the following client environment definition 

statements must be specified:

• PDASTHOST (host name of HiRDB Control Manager - Agent)
• PDASTPORT (port number of HiRDB Control Manager - Agent)
• PDSYSTEMID (HiRDB identifier of HiRDB Control Manager - Agent)
• PDASTUSER (authorization identifier for executing commands on the 

HiRDB server)
For details on client environment variable definitions, see the HiRDB Version 8 
UAP Development Guide.

3. COMMAND EXECUTE can be executed while the UAP is connected to HiRDB. 
However, because control does not return to the UAP until the command 
terminates, take care so that deadlock does not occur.

4. Do not specify a command that requires a response. HiRDB Control Manager - 
Agent does not accept requests for entry of a response, so such a command 
terminates in an error.



COMMAND EXECUTE (Execute commands from a UAP)

1027

5. Any command input file to be executed should be set up at the HiRDB server in 
advance.

6. Even if execution of the command takes a very long time, control does not return 
to the UAP until the command terminates. You can specify PDCMDWAITTIME in 
the client environment definition so that the HiRDB client does not have to wait 
for too long a time.
If the client does time out, use the OS's kill command (pdkill command in the 
Windows version) to cancel the HiRDB Control Manager - Agent process or the 
command being executed.

7. Note that if execution of the command takes a very long time during connection 
to the HiRDB server, specification of PDSWAITTIME and PDSWATCHTIME in the 
client environment definition can cause the HiRDB server to detect the timeout 
and terminate the connection.

Notes
1. During execution of COMMAND EXECUTE, only the following client environment 

definition settings are in effect:
PDCLTPATH, PDASTHOST, PDASTUSER, PDUSER, PDASTPORT, 
PDCMDWAITTIME, PDCMDTRACE, PDSYSTEMID, PDCLTAPNAME

2. For the COBOL language, COMMAND EXECUTE cannot be executed.

Example
Execute the pdls command from a UAP at a HiRDB/Single Server:
EXEC SQL BEGIN DECLARE SECTION;
   char          CmdLine[30000];
   int           ReturnCode;
   int           OutBufLen;
   int           OutDataLen;
   int           DataLength;
   PDOUTBUF      OutBuf ;
   int           CmdRetCode;
   char          EnvGroup[256];
EXEC SQL END DECLARE SECTION;
 
strcpy(CmdLine,"c:\HiRDB_S\bin\pdls -d trn");
OutBuf = malloc(30000) ;
OutBufLen = 30000 ;
EnvGroup[0] = '\0';
 
EXEC SQL COMMAND EXECUTE    :CmdLine,
                            :ReturnCode,
                            :OutBufLen,
                            :DataLength,



COMMAND EXECUTE (Execute commands from a UAP)

1028

                            :OutBuf,
                            :CmdRetCode,
                            :EnvGroup ;
 
if (ReturnCode == p_rdb_RC_NORM)
{
      if (CmdRetCode == 0)
      {
          printf("%sSuccessful execution\n",CmdLine) ;
          printf("Execution results:%s\n", OutBuf) ;
      }
      else
      {
          printf("%sExecution failed\n",CmdLine) ;
          printf("Execution results:%s\n", OutBuf) ;
      }
}
else
{
          printf("ReturnCode=%d\n",ReturnCode) ;
          printf("Error details:%s\n",OutBuf) ;
}



SQL prefix

1029

SQL prefix

Function
The SQL prefix indicates the beginning of an SQL.

Format
EXEC SQL

Common rules
1. Each SQL must be enclosed between an SQL prefix and an SQL terminator.

2. See the HiRDB Version 8 UAP Development Guide for the SQL coding rules.

Examples
Code the OPEN statement:
C language
EXEC SQL
   OPEN CR1;

COBOL language
EXEC SQL
   OPEN CR1
END-EXEC.



SQL terminator

1030

SQL terminator

Function
The SQL terminator indicates the end of an SQL.

Format
C language
;

COBOL language
END-EXEC

Common rules
1. Each SQL must be enclosed between an SQL prefix and an SQL terminator.
2. See the HiRDB Version 8 UAP Development Guide for the SQL coding rules.

Examples
See the section on the SQL prefix for examples.



WHENEVER (Declare embedded exception)

1031

WHENEVER (Declare embedded exception)

Function
WHENEVER declares processing of a UAP, based on the return code (SQLCODE) set in 
the SQL Communications Area by HiRDB after an SQL has executed.

Format
WHENEVER
    {SQLERROR | SQLWARNING | NOT FOUND}
    {CONTINUE {GO TO | GOTO} [:]host-identifier
     |PERFORM [:]host-identifier}
     |DO {break | continue | 'command-statement' }}

Operands
{SQLERROR | SQLWARNING}

SQLERROR
Specifies the processing to be performed when the SQL does not execute 
normally due to human error or an HiRDB problem (i.e., when negative values 
are returned to SQLCODE in the SQL Communications Area and to the SQLCODE 
variable).

SQLWARNING
Specifies the processing to be performed when the SQL executed normally but a 
condition requiring a warning to the user was detected (when W is returned to the 
SQLWARN0 area of the SQL Communications Area or when a positive value other 
than 100 is returned to the SQLCODE area and the SQLCODE variable of the SQL 
Communications Area).
NOT FOUND

Specifies the processing to be performed when there are no more rows to be retrieved 
during table retrieval (i.e., when the value 100 is returned to SQLCODE in the SQL 
Communications Area, the value 100 is returned to the SQLCODE variable, and the 
value 02000 is returned to the SQLSTATE variable).

{GO TO | GOTO}
Specifies the branching address when execution of the UAP is to branch; following are 
the host identifiers:

• Label (in the case of C language)
• Section or paragraph name (in the case of COBOL)

PERFORM [:] host-identifier



WHENEVER (Declare embedded exception)

1032

Specifies a procedure that is to be executed; following are the applicable procedure 
specifications:

• Function name (in the case of C language)
• Section or paragraph name (in the case of COBOL)

Object methods cannot be specified.
DO {break | continue | 'command-statement'}

This statement either causes branching of the execution of the UAP or executes an 
arbitrary command statement. The continue command and 'command-statement' 
can be used in the C and C++ languages.
DO break

Executes the break statement.
DO continue

Executes the continue statement.
DO 'command-statement'

Executes any command statement of the host language, coded as a character 
string (for example, a function call specifying an argument).

Common rules
1. If there is no WHENEVER specification, CONTINUE is assumed for all return codes.
2. WHENEVER can be specified multiple times in a UAP.
3. SQLs other than the ROLLBACK statement cannot be executed in the SQLERROR 

status.

4. After a procedure has executed, control returns to the instruction following the 
SQL at which the exception-handling event occurred.

5. The scope of the processing specified in an embedded exception declaration 
depends on its location in the source program i.e., a processing action 
specification in an embedded exception declaration is effective for all SQL 
execution results that occur in the source program until another embedded 
exception declaration specifying the processing of the same singular condition is 
encountered.
Figure 6-1 shows the scope of processing specified in an embedded exception 
declaration.



WHENEVER (Declare embedded exception)

1033

Figure 6-1: Scope of processing specified in WHENEVER declarations

6. In the event of overlapping scopes for SQLERROR, SQLWARNING, and NOT FOUND, 
the SQLs are processed according to the following priorities:

SQLERROR  NOT FOUND  SQLWARNING
Notes

1. If the need for the action declared in a WHENEVER statement ceases during 
processing of the SQL, a WHENEVER statement with the CONTINUE option (for 
continuing the processing) must be inserted at a program location where the 
statement will be a moot point in order provide for the same exception-handling 
event (SQLERROR, etc.).
Figure 6-2 shows an example of coding the WHENEVER statement.



WHENEVER (Declare embedded exception)

1034

Figure 6-2: Example of coding a WHENEVER statement (1)

Explanation
If there are no SQLs that produce the NOT FOUND condition in the SQL 
statements following (3), any processing that deals with the NOT FOUND 
condition is not required in the SQL statements following (3). Therefore, in 
WHENEVER statements following (3), the processing is CONTINUE.

2. If the ROLLBACK statement is executed at a branching address because of an 
execution error in the SQL, care must be taken that an endless loop is not created 
by a WHENEVER statement with the SQLERROR specification.
Figure 6-3 shows an example of coding the WHENEVER statement.



WHENEVER (Declare embedded exception)

1035

Figure 6-3: Example of coding a WHENEVER statement (2)

Explanation
If the WHENEVER statement in (3) is not provided, the WHENEVER statement 
in (1) is also applicable to the ROLLBACK statement in (4). In this case, an 
endless loop results if an error occurs during rollback processing. To provide 
for this contingency, the WHENEVER statement of (3) (in which CONTINUE is 
specified) is specified before the ROLLBACK statement.

3. The scope of an embedded exception declaration extends to multiple functions in 
the UAP.
The destination for the GOTO statement specified in the WHENEVER statement 
should be specified in the same function as the SQL statement. If the destination 
is specified out of the function, a compilation error can result.
A separate WHENEVER statement must be specified, as necessary, for each 
function.
Figures 6-4 and 6-5 show examples of coding the WHENEVER statement.



WHENEVER (Declare embedded exception)

1036

Figure 6-4: Example of coding a WHENEVER statement (3)

Explanation
If an SQL error (SQLERROR) occurs at (2), control branches to (3) because 
destination (3) specified in (1) is in the same function as (2). On the other 
hand, if an SQL error occurs at (4), a compile-time error results because 
destination (3) specified in (1) is not in the same function as (4).



WHENEVER (Declare embedded exception)

1037

Figure 6-5: Example of coding a WHENEVER statement (4)

Explanation
Branching is successful because destination (3) that is taken if an SQL error 
(SQLERROR) occurs at (2) and destination (6) that is taken if an SQL error 
occurs at (5) are in the same function in their respective SQL statements.

4. The WHENEVER statement should not be declared before FREE CONNECTION 
HANDLE.

Examples
• If a negative value is returned to SQLCODE after the SQL in process P1 is 

executed, branch to L1.
• If a negative value is returned to SQLCODE after the SQL in process P2 is 

executed, cancel control by the WHENEVER statement in order to use an IF 
statement to determine a branching address.

• If there are no more rows to be retrieved in the table search in process P3, branch 
to L2.

• Executes the break statement when a negative value is returned to SQLCODE 
during the retrieval of a table in the process P3.

• Calls a function if a condition about which a warning is to be issued to users 
occurs during the retrieval of a table in the process P3.



WHENEVER (Declare embedded exception)

1038



SQLCODE variable

1039

SQLCODE variable

When an SQL is executed, HiRDB sets a return code (SQLCODE). The value returned 
to the SQLCODE variable is the same as the contents of SQLCODE in the SQL 
Communications Area.
Because the system includes the necessary declaration statement in the source program 
during preprocessing, the SQLCODE variable does not need to be declared in the UAP. 
In C language, the data type of the SQLCODE variable is declared as a signed long int; 
in COBOL, it is declared as S9(9) COMPUTATIONAL.

To reference the SQLCODE variable, the variable name SQLCODE must be specified.
In an environment the uses the multi-connection facility, the connection handle used 
by SQLCODE must be declared with DECLARE CONNECTION HANDLE SET.



SQLSTATE variable

1040

SQLSTATE variable

When an SQL is executed, HiRDB sets a return code (SQLSTATE). The SQLSTATE 
variable is a 5-digit character string composed of a 2-digit class and a 3-digit subclass.
Because the system includes the necessary declaration statement in the source program 
during preprocessing, the SQLSTATE variable does not need to be declared in the UAP. 
In C language, the data type of the SQLSTATE variable is declared as char[5].; in 
COBOL, it is declared as PIC X(5).
To reference the SQLSTATE variable, the variable name SQLSTATE must be specified.

In an environment that uses the multi-connection facility, the connection handle used 
by SQLSTATE must be declared with DECLARE CONNECTION HANDLE SET.
The values of the SQLSTATE variable that can be set by HiRDB are shown below:

mm: When no class is assigned, R0 is set as the default.
nnn: When no subclass is assigned, 000 is set as the default.
The values of mm and nnn are subject to change due to functional expansions of 
HiRDB.

Class Subclass Condition

00 000 Normal termination

01 nnn Normal termination (with warning)

02 000 No data

40 nnn Abnormal termination (transaction was rolled back)

mm nnn Abnormal termination



PDCNCTHDL type variable declaration

1041

PDCNCTHDL type variable declaration

Function
The PDCNCTHDL-type variable declaration declares the connection handle-type 
variable to be used in an environment where a multi-connection function is used.

Format 1: C language

Operand
connection-handle-variable-name

Specifies the connection handle that is to be used.

Common rules
The PDCNCTHDL-type variable declaration is used when an SQL statement is executed 
in an environment where a multi-connection function is used.

Notes
1. PDCNCTHDL-type variables are declared in the embedded SQL declaration 

section.
2. A PDCNCTHDL-type variable cannot be declared as an array.

Example
Declare a PDCNCTHDL-type variable named CnctHdl:
EXEC SQL BEGIN DECLARE SECTION;
    PDCNCTHDL    CnctHdl;
EXEC SQL END DECLARE SECTION;

Format 2: COBOL language

Operands
connection-handle-variable-name

Specifies the name of the connection handle to be used.

 
 PDCNCTHDL connection-handle-variable-name
 

 
 EXEC SQL BEGIN DECLARE SECTION END-EXEC
 01 connection-handle-variable-name SQL TYPE IS PDCNCTHDL.
 EXEC SQL END DECLARE SECTION END-EXEC
 



PDCNCTHDL type variable declaration

1042

Common rule
1. Declare PDCNCTHDL-type variables when executing the SQL statement in an 

environment using the multi-connection facility.

Notes
1. PDCNCTHDL-type variables are declared in the embedded SQL declaration 

section.
2. PDCNCTHDL-type variables cannot use the OCCURS clause.

Example
Declare a PDCNCTHDL-type variable named CONNECTHDL.
EXEC SQL BEGIN DECLARE SECTION END-EXEC
  01 CONNECTHDL SQL TYPE IS PDCNCTHDL.
EXEC SQL END DECLARE SECTION END-EXEC



INSTALL JAR (Register JAR file)

1043

INSTALL JAR (Register JAR file)

Function
INSTALL JAR registers a JAR file at the HiRDB server. The file is registered in the 
JAR file storage directory associated with the authorization identifier that is 
connected.

Format
INSTALL JAR{:embedded-variable|'character-string'}

Operands
{:embedded-variable|'character-string'}

Specifies as an absolute or relative path name for the JAR file that is to be registered.
:embedded-variable

Specifies a VARCHAR-type embedded variable that contains the name that is to be 
registered as its value.

'character-string'
Specifies as a character string literal a name for the JAR file that is to be 
registered.

Common rules
1. You must be connected to the HiRDB server to execute INSTALL JAR.
2. Any error code is returned to SQLCODE.
3. A JAR file at a different server machine cannot be specified.
4. Wildcards cannot be used.
5. If a JAR file with the specified name is already registered, an error results; the 

existing file is not overwritten.
6. INSTALL JAR should be executed before any transaction is started.

Example
Register a JAR file named c:\work\sampleproc.jar by setting its name in an 
embedded variable:
EXEC SQL BEGIN DECLARE SECTION ;
struct {
   short  len ;
   char   str[256] ;
} filename ;



INSTALL JAR (Register JAR file)

1044

EXEC SQL END DECLARE SECTION ;
EXEC SQL CONNECT ;
strcpy(filename.str,"c:\work\sampleproc.jar") ;
filename.len = strlen(filename.str) ;
EXEC SQL INSTALL JAR :filename ;



REPLACE JAR (Re-register JAR file)

1045

REPLACE JAR (Re-register JAR file)

Function
REPLACE JAR re-registers a JAR file at the HiRDB server. The file is re-registered in 
the JAR file storage directory associated with the authorization identifier that is 
connected.

Format
REPLACE JAR{:embedded-variable|'character-string'}

Operands
{:embedded-variable|'character-string'}

Specifies as an absolute or relative path name a name for the JAR file that is to be 
re-registered.
:embedded-variable

Specifies a VARCHAR-type embedded variable that contains the name that is to be 
re-registered as its value.

'character-string'
Specifies as a character string literal a name for the JAR file that is to be 
re-registered.

Common rules
1. You must be connected to the HiRDB server to execute REPLACE JAR.
2. Any error code is returned to SQLCODE.
3. A JAR file at a different server machine cannot be specified.
4. Wildcards cannot be used.
5. If a JAR file with the specified name is already registered, an error results; the 

existing file is not overwritten.
6. REPLACE JAR should be executed before any transaction is started.

Example
Re-register a JAR file named c:\work\sampleproc.jar by setting its name in an 
embedded variable:
EXEC SQL BEGIN DECLARE SECTION ;
struct {
    short  len ;
    char   str[256] ;



REPLACE JAR (Re-register JAR file)

1046

} filename ;
EXEC SQL END DECLARE SECTION ;
EXEC SQL CONNECT ;
strcpy(filename.str,"c:\work\sampleproc.jar") ;
filename.len = strlen(filename.str) ;
EXEC SQL REPLACE JAR :filename ;



REMOVE JAR (Remove JAR file)

1047

REMOVE JAR (Remove JAR file)

Function
REMOVE JAR removes a JAR file from the HiRDB server. The file is removed from the 
JAR file storage directory associated with the authorization identifier that is 
connected.

Format
REMOVE JAR{:embedded-variable|'character-string'}

Operands
{:embedded-variable|'character-string'}

Specifies the name of the JAR file that is to be removed. The JAR file cannot be 
specified with an absolute or relative path name.
:embedded-variable

Specifies a VARCHAR-type embedded variable that contains the name of the JAR 
file that is to be removed as its value.

'character-string'
Specifies as a character string literal the name of the JAR file that is to be 
removed.

Common rules
1. You must be connected to the HiRDB server to execute REMOVE JAR.
2. Any error code is returned to SQLCODE.
3. A JAR file at a different server machine cannot be specified.
4. Wildcards cannot be used.
5. REMOVE JAR should be executed before any transaction is started.

Example
Remove the JAR file named sampleproc.jar by setting its name in an embedded 
variable:
EXEC SQL BEGIN DECLARE SECTION ;
struct {
    short  len ;
    char   str[256] ;
} filename ;
EXEC SQL END DECLARE SECTION ;
EXEC SQL CONNECT ;



REMOVE JAR (Remove JAR file)

1048

strcpy(filename.str,"sampleproc.jar") ;
filename.len = strlen(filename.str) ;
EXEC SQL REMOVE JAR :filename ;



1049

Chapter

7. Routine Control SQL

This chapter explains the syntax and structure of routine control SQL.
General rules
Compound statement (Execute multiple statements)
IF Statement (Execute by conditional branching)
LEAVE statement (Exit statement)
RETURN statement (Return function return value)
WHILE statement (Repeat statements)
FOR statement (Repeat a statement on rows)
WRITE LINE statement (Character string output to a file)
SIGNAL statement (Signal error)
RESIGNAL statement (Resignal error)



General rules

1050

General rules

Routine control SQL statements can be specified in a routine definition SQL procedure 
statement.
Table 7-1 shows the types and functions of routine control SQL.

Table 7-1: Types and functions of routine control SQL

* For details about the assignment statement in an SQL procedure statement, see 
Assignment statement Format 1 (Assign a value to an SQL variable or SQL 
parameter).
In addition to the routine control SQL statements shown in Table 7-1, the following 
SQL statements, which cannot be specified in a function body, can be specified as SQL 
procedure statements in a routine:

• CALL statement (Procedure call)
• CLOSE statement (Close cursor)
• DECLARE CURSOR (Declare cursor)
• DELETE statement (Delete row)

Type Function

Assignment statement (Assign value) Assigns a value to an SQL variable or an SQL parameter.*

Compound statement (Execute multiple 
statements)

Executes several SQL statements as a group, treating them as a 
single SQL statement.

IF statement (Execute by conditional 
branching)

Executes SQL statements that meet a given set of conditions.

LEAVE statement(Exit statement) Exits from a compound statement or the WHILE statement and 
terminates the execution of the statement.

RETURN statement (Return function return 
value)

Returns a return value from a function.

FOR statement (Repeat a statement on rows) Repeatedly executes the SQL statement on rows in the table.

WHILE statement (Repeat statements) Executes repeatedly a set of SQL statements.

WRITE LINE statement (Output character 
string to a file)

Outputs a character string to a file.

SIGNAL statement (Signal an error) Signals an error.

RESIGNAL statement (Resignal an error) Resignals an error.



General rules

1051

• FETCH statement (Fetch data)
• INSERT statement (Insert row)
• OPEN statement (Open cursor)
• PURGE TABLE statement (Delete all rows)
• 1-row SELECT statement (Retrieve one row)
• UPDATE statement (Update data)
• COMMIT statement (Normal termination of transaction)
• LOCK statement (Lock table)
• ROLLBACK statement (Cancel transaction)



Compound statement (Execute multiple statements)

1052

Compound statement (Execute multiple statements)

Function
This compound statement executes a group of SQL statements as a single, compound 
SQL statement.

Format
[starting-label:]
BEGIN
[{SQL-variable-declaration;|cursor-declaration;|condition-declaration;|handler
-declaration;}]...
[SQL-procedure-statement;]...
 
END[end-label]
SQL-variable-declaration::=DECLARE SQL-variable-name[, 
SQL-variable-name]...data-type [DEFAULT clause]
DEFAULT clause::= DEFAULT [default-value]
condition-declaration::=DECLARE condition-name CONDITION 
[FOR-SQLCODE-value]
handler-declaration::=DECLARE handler-type
     HANDLER FOR condition-value[, condition-value]... handler-action
handler-type::={CONTINUE|EXIT}
condition-value::={SQLERROR|NOT FOUND|condition-name|SQLCODE-value}
handler-action::=SQL-procedure-statement
SQLCODE-value::=SQLCODE [VALUE] integer-literal

Operands
[starting-label]

Specifies the statement label for a compound statement.
BEGIN

Specifies the beginning of a compound statement.
SQL-variable-declaration::=DECLARE 
SQL-variable-name[,SQL-variable-name] ...data-type [DEFAULT clause]

Declares the SQL variables that are used in the compound statement. If an SQL 
variable is allocated, the default value for the SQL variable is assigned as an initial 
value. The default for the SQL variable is specified in the DEFAULT clause. If the 
DEFAULT column is omitted, the default for the SQL variable is the null value.
SQL-variable-name

Specifies the name of the SQL variable being declared.



Compound statement (Execute multiple statements)

1053

data-type
Specifies the data type of the SQL variable being declared.

Rules on SQL variable declarations

1. The name of the SQL variable declared in SQL-variable-declaration must be 
distinct from any parameter names used in the routine.

2. The name of the SQL variable declared in SQL-variable-declaration that is 
directly included in the same compound statement cannot be specified in 
duplicate.

3. The SQL variable declared in a compound statement is allocated at the 
beginning of the compound statement and is released at the end.

4. The scope of an SQL variable is inside the compound statement in which it 
is declared and in the handler action for a handler declaration that is declared 
in the same compound statement. If a compound statement is specified in an 
SQL procedure statement in the compound statement, the SQL variable also 
remains in effect in the inner compound statement.

5. If a compound statement is specified in an SQL procedure statement in a 
compound statement, and if the SQL variable declared in the outer 
compound statement is identical to the name of the SQL variable declared in 
the inner compound statement, the SQL variable declared inside remains in 
effect in the inner compound statement. When the inner compound statement 
terminates, the SQL variable declared outside takes effect.

6. BOOLEAN cannot be specified as a data type for the SQL variable declared in 
SQL-variable-declaration.

DEFAULT clause::= DEFAULT [default-value]
For rules on the DEFAULT clause, see the rules on the DEFAULT clause in CREATE 
TABLE (Define table).
The following operands cannot be specified in default-value: 
CURRENT_TIMESTAMP[(fractional-second-precision)] USING BES and 
CURRENT TIMESTAMP[(fractional-second-precision)] USING BES.
cursor-declaration

Declares the cursor to be used in the compound statement.
Rules on cursor declarations

1. The name of the cursor declared in cursor-declaration that is directly 
included in the same compound statement cannot be specified in duplicate.

2. The cursor declared in a compound statement is allocated at the beginning of 
the compound statement and is released at the end. However, cursors that 



Compound statement (Execute multiple statements)

1054

were declared by specifying WITH RETURN are not released.
3. The scope of a cursor is inside the compound statement in which it is 

declared and in the handler action for a handler declaration that is declared 
in the same compound statement. If a compound statement is specified in an 
SQL procedure statement in the compound statement, the cursor also 
remains in effect in the inner compound statement.

4. If a compound statement is specified in an SQL procedure statement in a 
compound statement, and if the cursor declared in the outer compound 
statement is identical to the name of the cursor declared in the inner 
compound statement, the cursor declared inside remains in effect in the inner 
compound statement. When the inner compound statement terminates, the 
cursor declared outside takes effect.

condition-declaration::=DECLARE condition-name CONDITION 
[FOR-SQLCODE-value]

Declares a handler declaration, a SIGNAL statement, or the condition name to be used 
in the RESIGNAL statement, and the associated value of SQLCODE.
condition-name

Specifies the name of the condition to be declared.
FOR-SQLCODE-value

Specifies the value of SQLCODE to be associated with the condition being 
declared.

Rules on condition declarations

1. The same condition name cannot be specified in duplicate in another 
condition declaration that is directly included in the same compound 
statement.

2. The scope of a condition name is inside the compound statement in which it 
is declared and in the handler action for a handler declaration that is declared 
in the same compound statement. If a compound statement is specified in an 
SQL procedure statement in the compound statement, the condition name 
also remains in effect in the inner compound statement.

3. If a compound statement is specified in an SQL procedure statement in a 
compound statement, and if the condition name declared in the outer 
compound statement is identical to the condition name declared in the inner 
compound statement, condition name cannot be declared in the inner 
compound statement.

4. When specifying more than one condition declaration that is directly 
included in the same compound statement, the value of SQLCODE cannot be 
specified.



Compound statement (Execute multiple statements)

1055

5. When declaring the condition name to be used in the SIGNAL or RESIGNAL 
statement, omit the option FOR-SQLCODE-value; if this is specified, an 
error may occur.

handler-declaration::=DECLARE handler-type HANDLER FOR 
condition-value[, condition-value]... handler-action

Declares the handler that performs exception processing in the compound statement.
When the condition name of the SQLCODE value, SIGNAL statement, or RESIGNAL 
statement in the results of execution of the SQL statement in the compound statement 
matches the condition value specified in the handler declaration, the handler receives 
control and executes the handler-action.
handler-type::={CONTINUE|EXIT}

CONTINUE
Upon execution of handler-action, transfers control to the SQL procedure 
statement following the SQL procedure statement in which the exception 
occurred. If the SQL procedure statement in which the exception occurred is 
an IF or WHILE statement of a routine control SQL statement, control is 
transferred to the SQL procedure statement following END IF or END 
WHILE[end-label].

EXIT
After the execution of handler-action, transfers control to the end of the 
compound statement in which the handler declaration was specified.

condition-value::={SQLERROR|NOT FOUND|condition-name|SQLCODE-value}
Specifies the condition under which the handler takes effect.
SQLERROR

This option is specified when calling the handler if SQLERROR occurs. The 
condition SQLERROR corresponds to the case in which SQLCODE < 0.

NOT FOUND
This option is specified to call the handler when NOT FOUND occurs. The NOT 
FOUND option corresponds with SQLCODE = 100.

condition-name
Specifies the condition name for the condition under which a handler is called.
The condition-name operand must be defined in the condition declaration and 
must include the handler declaration in its scope.
If an SQLCODE value corresponding to condition-name is defined in the condition 
declaration, the handler is called when the SQLCODE matches the value. If an 



Compound statement (Execute multiple statements)

1056

SQLCODE value corresponding to condition-name is not defined in the condition 
declaration, the handler is called only when the SIGNAL or RESIGNAL statement 
specifying the condition name is executed.

SQLCODE-value
Specifies the value of SQLCODE that indicates the condition under which the 
handler is called.

handler-action::=SQL-procedure-statement
Specifies the SQL statement to be executed when the handler is called.

Rules on handler declarations

1. The scope of a handler is the SQL procedure statement in the compound 
statement in which the handler is declared. If a compound statement is 
specified in the SQL procedure statement in the compound statement, the 
handler is effective in the entire inner compound statement. However, any 
SQL procedure statement in the handler declaration in the compound 
statement in which the handler is declared is nullified. An example is shown 
as follows:

2. If either SQLERROR or NOT FOUND is specified in condition-value in the 
handler declaration, SQLCODE-value or condition-name cannot be 
specified at the same time.

3. In a handler declaration, the same condition value cannot be specified in 
duplicate. Similarly, a condition name indicating the same SQLCODE as 
SQLCODE-value cannot be specified.



Compound statement (Execute multiple statements)

1057

4. A condition value indicating the same condition cannot be specified in 
another handler declaration that is included in the same compound statement.

5. A handler declaration that specified either SQLERROR or NOT FOUND in 
condition-value is called a general handler declaration; all other handler 
declarations are called special handler declarations. If a general handler 
declaration and a special handler declaration specifying a condition value 
that indicates the same SQL execution status (abnormal termination, normal 
termination with warning, or no data) are defined in the same compound 
statement, only the special handler declaration takes effect on the SQLCODE 
value that was specified in the special handler declaration.

6. If a compound statement is specified as an SQL procedure statement in a 
compound statement, and if Handler A declared in the outer compound 
statement and Handler B declared in the inner compound statement specify 
the same SQLCODE or condition name, the inner Handler B prevails in the 
inner compound statement. Upon termination of the inner compound 
statement, the outer Handler A takes effect again. An example of this is 
shown in the following:

7. If the handler action does not terminate normally (SQLCODE does not equal 
0), and if there is another handler that meets the condition, that handler is 
called.

8. The value is SQLCODE = 0 immediately after the commencement of handler 
action.

SQL-procedure-statement



Compound statement (Execute multiple statements)

1058

Specifies the SQL procedure statement to be executed in the compound statement.
END [end-label] 

Specifies the end of the compound statement. In end-label, specify a statement label.
SQLCODE-value::=SQLCODE[VALUE] integer-literal

Specifies the value of SQLCODE with an integer literal.
The value 0, which indicates normal termination, cannot be specified as a value of 
SQLCODE. Table 7-2 shows integer literals that can be specified in SQLCODE-value.

Table 7-2: Integer literals specified in SQLCODE value

Table 7-3 shows messages, associated with SQLCODE, that can potentially be generated 
in HiRDB:

Table 7-3: Messages corresponding to SQLCODE that can appear in HiRDB

Common rules
1. If a compound statement is specified in the outermost SQL procedure statement 

and a begin label is omitted, the routine identifier for that routine is assumed to be 
the statement label. If a compound statement is specified in an SQL procedure 
statement in a compound statement, and a begin label for the inner compound 
statement is omitted, it is assumed that there is no statement label.

2. When specifying an end label, specify a statement label with the same name as 
the begin label.

3. The scope of a statement label is from the beginning of the compound statement 
in which the statement label is specified to the end of the compound statement. A 

Execution status of SQL statement Value of SQLCODE

Normal termination (with warning) > 0 (  100, 110)

No data 100

Abnormal termination < 0

SQLCODE Corresponding message ID

-yyy KFPA11yyy

-1yyy KFPA19yyy

-3yyy KFPA18yyy

yyy KFPA12yyy

+3yyy KFPA13yyy



Compound statement (Execute multiple statements)

1059

statement label identical to a statement label for other statements or group 
variable names included in the compound statement cannot be specified. If a 
handler declaration is included in the compound statement, that handler 
declaration is exempted from this rule. The following code provides an example 
of where statement labels of the same name can or cannot be specified:
AAA: BEGIN  ...........................................1
  DECLARE CN1 CONDITION FOR SQLCODE VALUE -800;
  DECLARE EXIT HANDLER FOR CN1
  AAA: BEGIN  .........................................2
      :
  END AAA;
  AAA: BEGIN  .........................................3
    DECLARE CN2 CONDITION FOR SQLCODE VALUE -800;
    DECLARE EXIT HANDLER FOR CN2
      :
  END AAA;
    :
END AAA

Explanation

Although the statement label in line 2 is the same name as line 1, it can be 
specified because it is in the handler declaration.
The statement label in line 3 is the same name as in line 1; it cannot be 
specified because it is not in the handler declaration.

4. Specified SQL procedure statements are executed in the order in which they are 
specified.

5. If an error occurs during the execution of an SQL procedure statement, the 
transaction is nullified only if the error is implicitly subject to a rollback. Any 
error occurring during execution of an SQL procedure statement for a trigger 
action is always implicitly subject to a rollback.

6. If an error occurs during execution of an SQL procedure statement, the error is 
handled according to the following rules:

• If an error without implicit rollback occurs:
If there is a handler meeting the conditions, the exception processing of the 
handler is executed. If a condition-meeting handler does not exist, the 
execution of the SQL routine is terminated at that time, and an error is 
returned. Any subsequent SQL procedure statements are not executed.

• If an error with an implicit rollback occurs:
Even if there is a condition-meeting handler, exception processing is not 
executed. Execution of the SQL routine or the trigger at that time is 
terminated, and an error is returned. Any subsequent SQL procedure 



Compound statement (Execute multiple statements)

1060

statements are not executed.
7. The maximum number of nesting levels for compound statements and the FOR 

statement is 255.
8. Any of the following names specified in SQL-variable-name, cursor-name, or 

condition-name should be enclosed in quotation marks ("):
• CONDITION
• EXIT
• HANDLER

Note
1. Compound statements can be specified in an SQL routine or a trigger.

Examples
1. Defines a procedure (PROC1) that applies a 30% discount on the unit price of a 

product for which the quantity indicated in the inventory table (STOCK) is 1,000 
or greater, deletes the row if the result of the discount is 0, and in other cases 
applies a 10% discount to the unit price:
CREATE PROCEDURE PROC1(OUT OUTDATA INT)
BEGIN
  DECLARE CR1 CURSOR FOR SELECT QUANTITY FROM STOCK ;
  OPEN CR1 ;
  WHILE SQLCODE=0 DO
    FETCH CR1 INTO OUTDATA ;
    IF SQLCODE=0 THEN
      IF OUTDATA|>=1000 THEN
        UPDATE STOCK SET PRICE = (1-0.3)*PRICE WHERE CURRENT 
OF CR1 ;
      ELSE IF OUTDATA=0 THEN
        DELETE FROM STOCK WHERE CURRENT OF CR1 ;
      ELSE
        UPDATE STOCK SET PRICE = (1-0.1)*PRICE WHERE CURRENT 
OF CR1 ;
      END IF ;
    END IF ;
  END;
END

2. Defines a procedure (PROC2) that updates the quantity of a specified product code 
in the inventory table (STOCK):

• The specified quantity is less than or equal to 0 (the condition 
illegal_value defined in the condition is TRUE):
The SIGNAL statement generates an error, and the exception processing sets 



Compound statement (Execute multiple statements)

1061

a message in the output parameter. Execution of the SQL procedure 
statement terminates.

• No data with a specified product code is found (NOT FOUND):
The exception processing sets a message in the output parameter. Execution 
of the SQL procedure statement terminates.

• Attempt to update a NOT NULL-constrained column with the NULL value 
(SQLCODE = -210):
The exception processing sets a message in the output parameter. Execution 
of the SQL procedure statement continues.

CREATE PROCEDURE PROC2(IN UPCODE CHAR(4), IN UQUANTITY INT,
                       OUT MSG MVARCHAR(255))
BEGIN
  DECLARE PQUANTITY INT;
  DECLARE illegal_value CONDITION ;
  DECLARE EXIT HANDLER FOR illegal_value
    SET MSG=M'Invalid value as a quantity';
  DECLARE EXIT HANDLER FOR NOT FOUND
    SET MSG=M'Specified product code not found';
  DECLARE CONTINUE HANDLER FOR SQLCODE VALUE -210
    SET MSG=M'Attempt to update a NOT NULL-constrained column 
with NULL
               Attempt ignored';
  SET MSG ='';
  IF UQUANTITY<0 THEN
    SIGNAL illegal_value;
  ELSE
    UPDATE STOCK SET SQUANTITY=UQUANTITY WHERE SPCODE=UPCODE;
    SET MSG=MSG||M'Processing complete'
    SELECT SQUANTITY INTO PQUANTITY FROM STOCK WHERE 
SPCODE=UPCODE;
    SET MSG=MSG||M'Current 
quantity:'||NUMEDIT(PQUANTITY,'<999999');
  END IF;
END

3. Defines an SQL procedure (PROC3) that registers new product data in the 
inventory table (STOCK).
It is assumed that the product code column (PCODE) is the primary key. If the 
product code for the data to be inserted is a duplicate of the product code for 
previously registered data (SQLCODE = -803), the transaction is rolled back using 
the exception processing, and a message is set in the output parameter. Execution 
of the SQL procedure statement terminates.
CREATE PROCEDURE PROC3(IN  UPCODE CHAR(4) , IN  UPNAME 
NCHAR(8),



Compound statement (Execute multiple statements)

1062

                       IN  UCOL   NCHAR(1), IN  UPRICE INT,
                       OUT MSG    MVARCHAR(255))
BEGIN
  DECLARE EXIT HANDLER FOR SQLCODE VALUE -803
    BEGIN
      ROLLBACK;
      SET MSG=M'Rollback performed due to duplicate key 
violation';
    END;
  INSERT INTO STOCK VALUES(UPCODE,UPNAME,UCOL,UPRICE,0);
  SET MSG=M'Registration complete.';
END



IF Statement (Execute by conditional branching)

1063

IF Statement (Execute by conditional branching)

Function
The IF statement executes SQL statements that meet a given set of conditions.

Format
IF search-condition THEN SQL-procedure-statement;
      [SQL-procedure-statement;]...
   [ELSEIF search-condition THEN SQL-procedure-statement;
      [SQL-procedure-statement;]...]
   [ELSE SQL-procedure-statement;[SQL-procedure-statement;]...]
END IF

Operands
IF search-condition THEN 
SQL-procedure-statement;[SQL-procedure-statement;] ...

search-condition
Specifies the conditions under which the SQL procedure statement specified in 
the THEN clause is executed.

SQL-procedure-statement
Specifies the SQL statement that is to be executed if the condition specified in the 
IF clause is met.
[ELSEIF search-condition THEN 
SQL-procedure-statement;[SQL-procedure-statement;] ...]

search-condition
Specifies the conditions under which the SQL procedure statement specified in 
the THEN clause is executed.

SQL-procedure-statement
Specifies the SQL statement that is to be executed if the condition specified in the 
IF clause is not met but the condition specified in the ELSEIF clause is met.
[ELSE SQL-procedure-statement; [SQL-procedure-statement;] ...]

SQL-procedure-statement
Specifies the SQL statement that is to be executed if the conditions specified in 
the IF and ELSEIF clauses are not met.
END IF



IF Statement (Execute by conditional branching)

1064

Specifies the end of the IF statement.

Common rules
1. SQL procedure statements are executed in the order in which they are specified. 

If an error occurs during the execution of an SQL procedure statement, any 
subsequent SQL procedure statements will not be executed.

2. A subquery cannot be specified in a search condition.

Note
IF statements can be specified in an SQL routine.



LEAVE statement (Exit statement)

1065

LEAVE statement (Exit statement)

Function
The LEAVE statement exits from a compound statement, the WHILE statement, or the 
FOR statement, and terminates the execution of those statements.

Format
LEAVE [statement-label]

Operand
statement-label

Specifies the statement label for the compound statement, WHILE statement, or FOR 
statement from which control exits, and the execution of which is to be terminated.
If the statement label is omitted, the execution of the innermost compound statement 
surrounding the LEAVE statement from which the statement label was omitted, the 
WHILE statement, or the FOR statement is terminated prematurely.

Common rules
1. For a statement label, specify the starting label of the statement (compound 

statement, WHILE statement, or FOR statement) that includes the LEAVE 
statement.

2. The LEAVE statement that causes control to leave the handler action cannot be 
specified in the handler action.

Note
1. LEAVE statements can be specified in an SQL routine.



RETURN statement (Return function return value)

1066

RETURN statement (Return function return value)

Function
The RETURN statement returns a return value from a function.

Format
RETURN return-value
return-value::={value-expression|NULL}

Operands
return-value::={value-expression | NULL}

Specifies a value expression or NULL as the return value.

Common rules
1. A return value is converted to the data type that was specified in the RETURNS 

clause when the function was defined.
2. The RETURN statement cannot be specified in a procedure.
3. A subquery cannot be specified in a value expression that is specified in 

return-value.

Note 
RETURN statements can be specified in an SQL function.



WHILE statement (Repeat statements)

1067

WHILE statement (Repeat statements)

Function
The WHILE statement executes repeatedly a set of SQL statements.

Format
 [starting-label:]
WHILE search-condition DO
  SQL-procedure-statement;[SQL-procedure-statement;]...
END [WHILE] [termination-label]

Operands
[starting-label]

Specifies the starting label for the WHILE statement.
search-condition

Specifies the condition under which the SQL procedure statements are to be executed 
repeatedly.

SQL-procedure-statement
Specifies the SQL procedure statements that are to be executed repeatedly.

END [WHILE] [termination-label]
Specifies the end of the WHILE statement. Specify a statement label as a termination 
label.
The WHILE operand has the same effect whether or it is specified.

Common rules
1. When a termination label is being specified, care must be taken that it is a 

statement label that has the same name as the starting label.
2. The scope of a statement label is from the beginning to the end of the WHILE 

statement. A statement label identical to the statement label of other statements 
contained in the WHILE statement or identical to a loop variable name cannot be 
specified. However, if there is a handler declaration in the SQL procedure 
statement, the scope of the statement label excludes the handler declaration. The 
following shows examples in which statement labels of the same name can and 
cannot be specified:
AAA: WHILE X < 100 DO
  BEGIN  ...........................................1
    DECLARE CN1 CONDITION FOR SQLCODE VALUE -800;
    DECLARE EXIT HANDLER FOR CN1



WHILE statement (Repeat statements)

1068

    AAA: BEGIN  .........................................2
        :
    END AAA;
    AAA: BEGIN  .........................................3
      DECLARE CN2 CONDITION FOR SQLCODE VALUE -800;
      DECLARE EXIT HANDLER FOR CN2
        :
    END AAA;
    SET X=X+1;
  END
END WHILE AAA

Explanation

Although the statement label in line 2 is identical to the label in line 1, it can 
be specified because it is in a handler declaration.
The statement label in line 3 is identical to that in line 1; it cannot be 
specified because it is not in a handler declaration.

3. HiRDB evaluates the search condition, executes the SQL statements if the result 
is TRUE, and executes the SQL statements repeatedly until the search condition 
becomes FALSE or indefinite.

4. SQL procedure statements are executed in the order in which they are specified. 
If an error occurs during the execution of an SQL procedure statement, any 
subsequent SQL procedure statements will not be executed, and the execution of 
the WHILE statement is also terminated.

5. A subquery cannot be specified in a search condition.

Note
WHILE statements can be specified in an SQL routine.



FOR statement (Repeat a statement on rows)

1069

FOR statement (Repeat a statement on rows)

Function
Repeats the execution of a given SQL statement with respect to rows in a table.

Format

Operands
[starting-label]
Specifies the statement label for the FOR statement.
loop-variable-name
Specifies the qualifier for the SQL variable that is implicitly declared.
During the execution of the FOR statement, the SQL variable that takes a derived 
column name with a cursor specification is implicitly declared. The implicitly 
declared SQL variable can be qualified with a loop variable name.
Loop variable names are subject to the rules on label names. Consequently, 
restrictions on label names are also applicable to loop variable names.
cursor-name
Specifies the name of a cursor.
If cursor-name is omitted, HiRDB generates a specific cursor name. For details 
about cursor names, see 1.1.7 Specification of names.
[WITH HOLD]
Specify this option when using a holdable cursor. 

 
 [starting-label:]
 FOR loop-variable-name AS
  [cursor-name CURSOR [WITH HOLD]FOR]
    cursor-specification-Format-1
  <lock-option>
   [[{WITH {SHARE|EXCLUSIVE}LOCK
     | WITHOUT LOCK [{WAIT|NOWAIT}]}]
   [{WITH ROLLBACK|NO WAIT}]]
     [FOR {UPDATE [OF column-name [,column-name]...]|READ ONLY }]
     [UNTIL DISCONNECT]
  DO
  SQL procedure-statement;[SQL procedure-statement;]...
 END FOR [end-label]
 



FOR statement (Repeat a statement on rows)

1070

Because WITH HOLD is functionally the same as specifying UNTIL DISCONNECT, 
for an explanation of this statement, see UNTIL DISCONNECT. Also, there is no 
functional difference due to whether or not this specification is duplicated with 
UNTIL DISCONNECT.
For restrictions on the holdable cursor, see DECLARE CURSOR Format 1.
cursor-specification Format 1
Specifies the cursor that represents the contents of a query.
For cursor specification, see 2.1.1 Cursor specification: Format 1.

Rules on cursor-specification that is specified in a FOR statement

• An unnamed column cannot be specified in a derived column. When 
specifying an unnamed column as a derived column, specify the AS clause, 
and assign an alias to the derived column.

• A derived column with a duplicate derived column name cannot be specified.
• [table-specification, ] ROW cannot be specified in a derived column.
• In a derived column, an unsubscripted repetition column without a flattening 

specification cannot be specified in the FROM clause.
If a derived column in the cursor specification format has been derived from any 
of the items listed below and AS column-name is omitted, that column becomes a 
nameless column. If the derived column is a scalar subquery, the derived column 
name depends on the derived column name of the selection expression of the 
scalar subquery.

• Scalar operation (including the window function)
• Function call
• Set function
• Literal
• USER
• CURRENT_DATE value function
• CURRENT_TIME value function
• CURRENT_TIMESTAMP value function
• Component specification
• GET_JAVA_STORED_ROUTINE_SOURCE specification
• WRITE specification
• SQL variable



FOR statement (Repeat a statement on rows)

1071

• SQL parameter
lock-option
Specifies the lock mode when a query is made, and the action to be taken when 
another user has exclusive use of resources.
For details about the lock option, see 2.19 Lock option.
[FOR{UPDATE [OF column-name [,column-name ]...]|READ ONLY}]
FOR UPDATE [OF column-name [,column-name ]...] is referred to as the FOR 
UPDATE clause.
FOR UPDATE [OF column-name [,column-name ]...] is referred to as the 
FOR UPDATE clause.
For details about the FOR UPDATE clause and FOR READ ONLY, see DECLARE 
CURSOR Format 1 (Declare cursor) in Chapter 4.
[UNTIL DISCONNECT]
Specify this option when using a holdable cursor.
This specification is functionally identical to the WITH HOLD specification. Also, 
there is no functional difference due to whether or not this specification is 
duplicated with WITH HOLD.
For details on restrictions on the holdable cursor, see DECLARE CURSOR 
Format 1.
SQL procedure-statement
Specifies the SQL procedure statement that is executed repeatedly.

Rules on the SQL procedure statement specified in the FOR statement

• An OPEN, FETCH, or CLOSE statement specifying the cursor in the FOR 
statement cannot be specified.

• A LEAVE statement with a loop variable name specification cannot be 
specified.

• If the cursor in the FOR statement is not a holdable cursor, the COMMIT, 
ROLLBACK, or PURGE TABLE statement cannot be specified. If a procedure 
specifying any of these statements is called by a CALL statement, a run-time 
error may occur.

• The specified SQL procedure statements are executed in the order in which 
they are specified. If an error occurs during the execution of an SQL 
procedure statement, any subsequent SQL procedure statement is not 
executed. The execution of the FOR statement also terminates.

END FOR [end-label]



FOR statement (Repeat a statement on rows)

1072

Specifies the termination of the FOR statement. In end-label, a statement label 
should be specified.

Common rules
1. When specifying end-label, specify a statement label with the same name as the 

starting label.
2. The scope of a statement label and that of a loop variable name is between the 

beginning and the end of the FOR statement. A statement label or a loop variable 
name that is identical to the statement label or loop variable name of other 
statements contained in the FOR statement cannot be specified. However, if the 
SQL procedure statement contains a handler declaration, such identical statement 
labels or loop variable names can still be specified in the handler declaration.

3. The SQL variable that is implicitly declared in the FOR statement or the cursor 
that is explicitly declared is allocated first in the FOR statement and is released 
last.

4. The scope of the SQL variable implicitly declared in the FOR statement, or the 
cursor that is explicitly declared, is within the FOR statement in which the SQL 
statement or the cursor is declared.

5. If a compound statement is declared in an SQL procedure statement in a FOR 
statement, or if a FOR statement is declared in an SQL procedure statement in a 
compound statement, and if the SQL variable implicitly declared in the FOR 
statement and the SQL variable declared in the compound statement have the 
same name, in the inner routine control SQL, the SQL variable declared in the 
inner routine control SQL statement takes effect. When the inner routine control 
SQL statement terminates, the SQL variable declared in the outer routine control 
SQL statement takes effect. An example is shown below:

6. If a FOR statement is specified in an SQL procedure statement in a FOR statement, 
and if the SQL variable implicitly declared in the outer FOR statement and the 
SQL variable implicitly declared in the inner FOR statement have the same name, 



FOR statement (Repeat a statement on rows)

1073

in the inner FOR statement, the SQL variable declared in the inner FOR statement 
takes effect. When the inner FOR statement terminates, the SQL variable declared 
in the outer FOR statement takes effect.

7. If a compound statement is specified in an SQL procedure statement in a FOR 
statement, if a FOR statement is specified in an SQL statement in the compound 
statement, and if the cursor declared in the FOR statement and the cursor declared 
in the compound statement have the same name, the cursor declared in the inner 
routine control SQL statement takes effect. When the inner routine control SQL 
statement terminates, the cursor declared outside takes effect.

8. If a FOR statement is specified in an SQL procedure statement in a FOR statement, 
and if the cursor declared in the outer FOR statement and the cursor declared in 
the inner FOR statement have the same name, the cursor declared in the inner FOR 
statement takes effect. When the inner FOR statement terminates, the cursor 
declared in the outer FOR statement takes effect.

9. If an error occurs during the execution of an SQL procedure, the transaction is 
nullified only if the error is subject to an implicit rollback. If an error occurs 
during the execution of a trigger operation SQL procedure statement, the 
transaction is always implicitly rolled back.

10. The maximum allowable number of nesting levels for FOR statements and 
compound statements is 255.

Notes
1. A FOR statement can be specified in an SQL procedure or a trigger.

Examples
Of the data listed in table T1, assign the data with a column C1(INT type) less than or 
equal to 100 to Table T2, and for other data, define a procedure (PROC1) that assigns 
the data to Table T3:
 
CREATE PROCEDURE PROC1 ()
FLBL :
FOR LVN AS SELECT C1,C2,C3 FROM T1 DO
 IF C1 <= 100 THEN
  INSERT INTO T2 VALUES(LVN.C1,LVN.C2,LVN.C3) ;
 ELSE
  INSERT INTO T3 VALUES(LVN.C1,LVN.C2,LVN.C3) ;
 END IF ;
END FOR FLBL
 

SQL statements equivalent to the FOR statements shown in the above example can be 
implemented in the following SQL statements:
 



FOR statement (Repeat a statement on rows)

1074

CREATE PROCEDURE PROC1 ()
LVN :
BEGIN 
  DECLARE C1,C2,C3 INT ; 
  DECLARE FCN CURSOR FOR SELECT C1,C2,C3 FROM T1 ;
  DECLARE AT_END CHAR(1) DEFAULT 'N' ; 
  OPEN FCN ;
  FLBL :
  WHILE AT_END != 'N' DO
    FETCH FCN INTO C1,C2,C3 ;
    IF SQLCODE = 100 THEN
      SET AT_END = 'Y' ;
    ELSE
      IF C1 <= 100 THEN
        INSERT INTO T2 VALUES(LVN.C1,LVN.C2,LVN.C3) ;
      ELSE
        INSERT INTO T3 VALUES(LVN.C1,LVN.C2,LVN.C3) ;
      END IF ;
    END IF ;
  END WHILE FLBL ;
 CLOSE FCN ;
END LVN
 



WRITE LINE statement (Character string output to a file)

1075

WRITE LINE statement (Character string output to a file)

Function
Outputs the character string in a specified value expression to a file.

Format

Operands
value-expression

Specifies the value expression to be output to the file.
The following rules apply to the value expression:
1. The following items can be specified in value-expression:

• Literals
• USER
• SQL variables or SQL parameters
• Concatenation operations
• Scalar functions
• Function calls
• CASE expressions
• CAST specifications

2. The data type of the value expression should be a character data type (CHAR or 
VARCHAR), a national character data type (NCHAR or NVARCHAR), or a mixed 
character data type (MCHAR or MVARCHAR).

3. The value expression is output to the location specified by PDWRTLNPATH in the 
client environment definition. Use PDWRTLNFILSZ in the client environment 
definition to specify the maximum size of the file to which the value expression 
is to be output. For details about PDWRTLNPATH and PDWRTLNFILSZ, see the 
manual HiRDB Version 8 UAP Development Guide.

4. The linefeed code of the environment on the HiRDB server side is appended to 
the end of the character string in the value expression. The linefeed code varies 
from one HiRDB server operating system to another. If the value of the value 

 
 WRITE LINE value-expression
 



WRITE LINE statement (Character string output to a file)

1076

expression exceeds the size specified in the PDWRTLNCOMSZ client environment 
definition, for the linefeed code on the HiRDB server side to be appended at the 
end, the trailing end of the value expression character expression is deleted so that 
the character string fits in the size specified in PDWRTLNCOMSZ, and a linefeed 
code is appended. For details about PDWRTLNCOMSZ, see the HiRDB Version 8 
UAP Development Guide.
Table 7-4 shows HiRDB server side linefeed codes that are appended:
Table 7-4: Linefeed codes on the HiRDB server side that are appended

5. If the value of the value expression is the null value, the linefeed code is not output 
to the file.

6. A subquery cannot be specified in a value expression.

Common rules
1. The WRITE LINE statement can be specified in SQL procedures and triggers; it 

cannot be specified in an SQL function.
2. The WRITE LINE statement cannot be executed without specification of the 

PDWRTLNFILSZ client environment definition.

Example
Convert the SQL parameter fromdate of the date data type into a character string and 
output the results to a file:
  CREATE PROCEDURE proc_1(IN fromdate DATE)
    BEGIN
      WRITE LINE 'fromdate='||char(fromdate);
    END;

HiRDB server OS Appended linefeed code

HP-UX NL(X'0a')

Solaris NL(X'0a')

AIX 5L NL(X'0a')

Linux NL(X'0a')

Windows CR(X'0d') + NL(X'0a')



SIGNAL statement (Signal error)

1077

SIGNAL statement (Signal error)

Function
Generates an error and signals it; clears any information that has been assigned to the 
diagnostic area up to that point.

Format

Operands
signal-value::={SQLSTATE-value|condition-name}

Specifies the value to be returned to the UAP.
SQLSTATE-value::=SQLSTATE [VALUE] character-string-literal

Specifies a value (combination of upper case characters A to Z, and numeric characters 
0 to 9) that is valid as an SQLSTATE value, in 5 characters. Specify a value according 
to the following rules for SQLSTATE in HiRDB:

• The values '00', '01', '02', and 'R2'cannot be specified as an SQLSTATE 
class (the first two characters). These values are not error-indicating classes.

• SQLSTATE classes beginning with the characters '0' to '5', 'A' to 'I', or 'R' 
cannot be specified. These values are reserved by HiRDB.

If the SQLSTATE class fails to comply with these rules, a definition-time error may 
occur. For SQLSTATE values, see SQLSTATE variable.

condition-name
Specifies the condition name that was declared in the condition declaration.
If condition-name is specified, the code 'R0000' indicating an error (abnormal 
termination without an implicit rollback) is set in the SQLSTATE.
If an SQLCODE value associated with condition-name is defined, an error may occur.

Common rules
1. Execution of the SIGNAL statement causes the value -1400 to be assigned to the 

SQLCODE.

 
 SIGNAL signal-value
 
 signal-value::={SQLSTATE-value|condition-name}
 SQLSTATE-value::=SQLSTATE [VALUE] character-string-literal
 



SIGNAL statement (Signal error)

1078

2. Execution of the RESIGNAL statement does not cause an implicit rollback. 
However, if the statement is executed in the trigger, an implicit rollback ensues, 
by excluding the tables that are defined by specifying WITHOUT ROLLBACK. 
Tables that are defined by specifying WITHOUT ROLLBACK are not rolled back 
after completion of row updating (including additions and deletions) even when 
the RESIGNAL statement is executed in the trigger.

3. Execution of the SIGNAL statement clears any condition information items that 
were assigned to the diagnostic area before execution of the SIGNAL statement.
In the statement information item NUMBER of the diagnostic area, the value i + 1, 
and the value 'N' is assigned to MORE.
In the first (condition number 1) ERROR_SQL condition information item, the 
value 'REGIONAL' is assigned. If a condition name is specified in signal-value, 
a condition name is assigned to CONDITION_IDENTIFIER. If SQLSTATE-value 
is specified, 'SQLSTATE:xxxxx' (where xxxxx is the specified SQLSTATE-value) 
is assigned to CONDITION_IDENTIFIER.

Notes
1. The SIGNAL statement can be specified in SQL procedures and triggers.
2. Execution of the SIGNAL statement clears any diagnostic information that was set 

in the diagnostic area before execution. The RESIGNAL statement can be used to 
prevent the clearing of older, history diagnostic information.

Example
1. Define an SQL procedure (STOCK_UPDATE1) that updates the quantity of a 

specified product code in the inventory table (STOCK). If the quantity specified in 
the input parameter is a negative number, use the SIGNAL statement to generate 
an error, and assign an Invalid value as a quantity to the output parameter.
CREATE PROCEDURE STOCK_UPDATE1(IN UPCODE INT, IN UQUANTITY 
INT,
                               OUT MSG NVARCHAR(50))
BEGIN
  DECLARE illegal_value CONDITION ;
  DECLARE EXIT HANDLER FOR illegal_value
    SET MSG=N'Invalid value as a quantity';
  DECLARE EXIT HANDLER FOR NOT FOUND
    SET MSG=N'Specified product code not found.';
  IF UQUANTITY<0 THEN
    SIGNAL illegal_value;
  ELSE
    UPDATE STOCK SET SQUANTITY=UQUANTITY WHERE SPCODE=UPCODE;
    SET MSG=N'Updating completed'.;
  END IF;
END



SIGNAL statement (Signal error)

1079

2. Before deleting rows in the inventory table (STOCK), use the SIGNAL statement to 
generate an error, and define a trigger (SIGNALTRIG) that suppresses the deletion 
of rows from the inventory table.:
CREATE TRIGGER SIGNALTRIG
  BEFORE DELETE ON STOCK
  SIGNAL SQLSTATE '99001'



RESIGNAL statement (Resignal error)

1080

RESIGNAL statement (Resignal error)

Function
Generates and signals an error, and adds diagnostic information to the diagnostic area.

Format

Operands
signal-value::={SQLSTATE-value|condition-name}

Specifies the value to be returned to the UAP.
SQLSTATE-value::=SQLSTATE [VALUE] character-string-literal

Specifies a value (combination of upper case characters A to Z, and numeric characters 
0 to 9) that is valid as an SQLSTATE value, in 5 characters. Specify a value according 
to the following rules for SQLSTATE in HiRDB.

• The values '00', '01', '02', and 'R2' cannot be specified as an SQLSTATE 
class (the first two characters). These values are not error-indicating classes.

• SQLSTATE classes beginning with the character '0' to '5', 'A' to 'I', or 'R' 
cannot be specified. These values are reserved by HiRDB.

If the SQLSTATE class fails to comply with these rules, a definition-time error may 
occur. For SQLSTATE values, see SQLSTATE variable.

condition-name
Specifies the condition name that was declared in the condition declaration.
If condition-name is specified, the code 'R0000' indicating an error (abnormal 
termination without an implicit rollback) is set in the SQLSTATE.
If an SQLCODE value associated with condition-name is defined, an error may occur.

Common rules
1. If the SQL procedure statement that called the handler is not found before the 

RESIGNAL statement is executed, a runtime error may occur.
2. If signal-value is not specified, the code 'R0000' indicating an error (abnormal 

 
 RESIGNAL [signal-value]
 
 signal-value::={SQLSTATE-value|condition-name}
 SQLSTATE-value::=SQLSTATE [VALUE] character-string-literal
 



RESIGNAL statement (Resignal error)

1081

termination without an implicit rollback) is set in the SQLSTATE.
3. Execution of the RESIGNAL statement causes the assignment of the following 

values in the SQLCODE:
• With signal-value not specified:

The SQLCODE is not changed. The value that was set when the SQL 
procedure statement called the handler is retained.

• With signal-value specified:
The value -1400 is assigned.

4. Execution of the RESIGNAL statement does not cause an implicit rollback. 
However, if the statement is executed in the trigger, an implicit rollback ensues, 
by excluding the tables that are defined by specifying WITHOUT ROLLBACK. 
Tables that are defined by specifying WITHOUT ROLLBACK are not rolled back 
after completion of row updating (including additions and deletions) even when 
the RESIGNAL statement is executed in the trigger.

5. Execution of the RESIGNAL statement causes the following types of information 
to be assigned to the diagnostic area:

• With signal-value not specified:
Diagnostic information is not updated.

• With signal-value specified:
In the statement information item NUMBER of the diagnostic area, the value i 
+ 1 (the value before execution of the RESIGNAL statement is i), and the 
value 'N' is assigned to MORE. The information that was assigned to the i-the 
condition information item in the diagnostic area (condition number i), is 
re-assigned to the i + 1st item (condition number i + 1). If the maximum 
number of condition information items is exceeded, the value 'Y' is set in 
the statement information item MORE. In the first (condition number 1) 
ERROR_SQL condition information item, the value 'REGIONAL' is assigned. 
If a condition name is specified in signal-value, a condition name is assigned 
to CONDITION_IDENTIFIER. If SQLSTATE-value is specified, 
'SQLSTATE:xxxxx' (where xxxxx is the specified SQLSTATE-value) is 
assigned to CONDITION_IDENTIFIER.

Note
1. The RESIGNAL statement can be specified in SQL procedures and triggers.

Example
For the inventory table (STOCK), specify an SQL procedure (STOCK_UPDATE2) that 
updates the quantity of a specified product code. If the specified quantity is less than 



RESIGNAL statement (Resignal error)

1082

0, a matching product is not found, or the update process fails, the RESIGNAL 
statement generates an error, and respective SQLSTATE values are set.
  CREATE PROCEDURE STOCK_UPDATE2(IN UPCODE INT,IN UQUANTITY INT)
  BEGIN
    DECLARE illegal_value CONDITION ;
    DECLARE EXIT HANDLER FOR illegal_value
      RESIGNAL SQLSTATE VALUE '66001';
    DECLARE EXIT HANDLER FOR NOT FOUND
      SIGNAL SQLSTATE VALUE '66002';
    DECLARE EXIT HANDLER FOR SQLERROR
      RESIGNAL SQLSTATE VALUE '66003';
    IF UQUANTITY<0 THEN
      SIGNAL illegal_value;
    ELSE
      UPDATE STOCK SET SQUANTITY=UQUANTITY WHERE SPCODE=UPCODE;
    END IF;
  END



1083

Appendixes

A. Reserved Words
B. List of SQLs
C. Correspondence Between Data Types When a Foreign Table is Used
D. Restrictions on Using a Foreign Table
E. Example Database



A. Reserved Words

1084

A. Reserved Words

This appendix contains the following sections:
A.1 SQL reserved words
A.2 HiRDB reserved words

A.1 SQL reserved words
SQL includes reserved words defined in ISO as ISO 9075-1992 Database Language 
SQL (SQL 92) and reserved words defined in JIS as JIS X 3005-1990 Database 
Language SQL. The reserved words used in HiRDB are based on the JIS standards.
Reserved words are stored as keywords that are used in SQL statements. Therefore, 
reserved words cannot be used as table or column names.
A reserved word that appears in an SQL statement must be enclosed in quotation marks 
("). When enclosed in quotation marks, a reserved word can be used as any character 
string.
Tables A-1 to A-25 show SQL reserved words.
For the tables, the following legends apply:
Y: Reserved word

: Not a reserved word
SQL92: ISO SQL 1992
SQL99: ISO SQL 1999
UNIFY: UNIFY2000
XDM/RD: XDM/RD E2
HiRDB (V6): HiRDB Version 6
HiRDB (V7): HiRDB Version 7

Table A-1: SQL reserved words (A)

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

ABS Y Y Y

ABSOLUTE Y Y Y Y

ACCESS Y Y Y

ACTION Y Y Y Y Y



A. Reserved Words

1085

ADD Y Y Y Y Y Y

ADMIN Y

AFTER Y Y Y

AGGREGATE Y

ALIAS Y Y Y

ALL Y Y Y Y Y Y

ALLOCATE Y Y Y Y Y Y

ALTER Y Y Y Y Y Y

AMOUNT Y Y Y

AND Y Y Y Y Y Y

ANDNOT Y Y Y

ANSI Y Y Y

ANY Y Y Y Y Y Y

ARE Y Y Y Y

ARRAY Y Y Y Y

AS Y Y Y Y Y Y

ASC Y Y Y Y Y Y

ASSERTION Y Y Y Y

ASSIGN Y Y Y

ASYNC Y Y

AT Y Y Y Y Y

AUTHORIZATION Y Y Y Y Y Y

AUTO Y Y Y

AVG Y Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1086

Table A-2: SQL reserved words (B)

Table A-3: SQL reserved words (C)

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

BASE Y Y Y

BEFORE Y Y Y

BEGIN Y Y Y Y Y Y

BETWEEN Y Y Y Y Y

BINARY Y Y Y Y Y

BIT Y Y Y Y

BIT_AND_TEST Y Y

BIT_LENGTH Y Y Y

BLOB Y Y Y Y

BOOLEAN Y Y Y Y

BOTH Y Y Y Y Y

BREADTH Y Y Y

BTREE Y Y Y

BUFFER Y Y Y

BY Y Y Y Y Y Y

BYTE Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

CALL Y Y Y Y

CASCADE Y Y Y Y

CASCADED Y Y

CASE Y Y Y Y Y

CAST Y Y Y Y Y

CATALOG Y Y Y Y



A. Reserved Words

1087

CHANGE Y Y Y

CHAR Y Y Y Y Y Y

CHARACTER Y Y Y Y Y Y

CHAR_LENGTH Y Y Y

CHARACTER_LENGTH Y Y Y

CHECK Y Y Y Y Y Y

CLASS Y

CLOB Y Y

CLOSE Y Y Y Y Y Y

CLUSTER Y Y Y

COALESCE Y Y Y Y

COLLATE Y Y Y Y

COLLATION Y Y Y Y

COLUMN Y Y Y Y Y Y

COLUMNS Y Y Y

COMMENT Y Y Y

COMMIT Y Y Y Y Y Y

COMPLETION Y Y Y

COMPRESSED Y

CONDITION Y Y

CONFIGURATION Y Y Y

CONNECT Y Y Y Y Y Y

CONNECTION Y Y Y Y

CONST Y Y Y

CONSTRAINT Y Y Y Y Y

CONSTRAINTS Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1088

CONSTRUCTOR Y Y Y

CONTIGUOUS Y Y Y

CONTINUE Y Y Y Y Y

CONVERT Y Y Y

CORR Y

CORRESPONDING Y Y Y Y

COUNT Y Y Y Y Y

COVAR_POP Y

COVAR_SAMP Y

CREATE Y Y Y Y Y Y

CROSS Y Y Y Y Y

CUBE Y Y

CUME_DIST Y

CURAID Y Y Y

CURRENT Y Y Y Y Y Y

CURRENT_DATE Y Y Y Y Y

CURRENT_DEFAULT_TRA
NSFORM_GROUP

Y

CURRENT_PATH Y

CURRENT_ROLL Y

CURRENT_TIME Y Y Y Y Y

CURRENT_TIMESTAMP Y Y Y Y Y

CURRENT_TRANSFORM_G
ROUP_FOR_TYPE

Y

CURRENT_USER Y Y Y Y Y

CURSOR Y Y Y Y Y Y

CYCLE Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1089

Table A-4: SQL reserved words (D)

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

DATA Y Y Y Y Y

DATABASE Y Y Y

DATE Y Y Y Y Y Y

DAY Y Y Y Y Y

DAYS Y Y Y

DBA Y Y Y Y

DEALLOCATE Y Y Y Y Y

DEC Y Y Y Y Y Y

DECIMAL Y Y Y Y Y Y

DECLARE Y Y Y Y Y Y

DEFAULT Y Y Y Y Y Y

DEFER Y Y Y

DEFERRABLE Y Y Y Y

DEFERRED Y Y Y Y Y

DELETE Y Y Y Y Y Y

DEMOTING Y Y Y

DENSE_RANK Y

DEPTH Y Y Y

DEREF Y

DESC Y Y Y Y Y Y

DESCRIBE Y Y Y Y Y Y

DESCRIPTION Y

DESCRIPTOR Y Y Y Y Y Y

DESTROY Y

DESTRUCTOR Y



A. Reserved Words

1090

Table A-5: SQL reserved words (E)

DETERMINISTIC Y

DEVICE Y Y Y

DIAGNOSTICS Y Y Y Y Y

DICTIONARY Y Y Y

DIGITS Y Y Y

DIRECT Y Y Y

DISCONNECT Y Y Y Y Y Y

DISPLAY Y

DISTINCT Y Y Y Y Y Y

DO Y Y Y Y

DOMAIN Y Y

DOUBLE Y Y Y Y Y Y

DOUBLE_PRECISION Y Y Y

DROP Y Y Y Y Y Y

DYNAMIC Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

EACH Y Y Y Y

EDIT Y Y Y

ELSE Y Y Y Y Y

ELSEIF Y Y Y Y

ENCRYPT Y

END Y Y Y Y Y Y

END-EXEC Y Y

EQUALS Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1091

Table A-6: SQL reserved words (F)

ESCAPE Y Y Y Y Y Y

ESTIMATED Y Y Y

EVERY Y Y

EXCEPT Y Y Y Y Y

EXCEPTION Y Y Y Y Y

EXCLUSIVE Y Y Y

EXEC Y Y Y Y Y

EXECUTE Y Y Y Y Y Y

EXISTS Y Y Y Y Y

EXIT Y Y

EXTERN Y Y Y

EXTERNAL Y Y Y Y

EXTRACT Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

FALSE Y Y Y Y Y

FETCH Y Y Y Y Y Y

FILE Y Y Y

FILTER Y

FIRST Y Y Y Y

FIX Y Y Y

FIXED Y Y Y

FLAT Y Y Y

FLOAT Y Y Y Y Y Y

FOR Y Y Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1092

Table A-7: SQL reserved words (G)

Table A-8: SQL reserved words (H)

FORCE Y Y Y Y

FOREIGN Y Y Y Y Y

FOUND Y Y Y Y Y

FREE Y Y

FROM Y Y Y Y Y Y

FULL Y Y Y Y Y

FUNCTION Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

GENERAL Y Y Y

GET Y Y Y Y Y Y

GET_JAVA_STORED_ROU
TINE_SOURCE

Y Y

GLOBAL Y Y Y Y

GO Y Y Y Y Y

GOTO Y Y Y Y Y

GRANT Y Y Y Y Y Y

GROUP Y Y Y Y Y Y

GROUPING Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

HANDLER Y Y

HASH Y Y Y

HAVING Y Y Y Y Y Y

HELP Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1093

Table A-9: SQL reserved words (I)

HEX Y Y Y

HOST Y

HOUR Y Y Y Y Y

HOURS Y Y Y

HUGE Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

IDENTIFIED Y Y Y

IDENTITY Y Y Y Y

IF Y Y Y Y

IGNORE Y Y Y

IMMEDIATE Y Y Y Y Y Y

IN Y Y Y Y Y Y

INDEX Y Y Y Y

INDICATOR Y Y Y Y Y Y

INITIALIZE Y

INITIALLY Y Y Y Y

INNER Y Y Y Y Y

INOUT Y Y Y Y

INPUT Y Y Y Y Y

INSENSITIVE Y Y Y

INSERT Y Y Y Y Y Y

INT Y Y Y Y Y Y

INTEGER Y Y Y Y Y Y

INTERSECT Y Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1094

Table A-10: SQL reserved words (J)

Table A-11: SQL reserved words (K)

Table A-12: SQL reserved words (L)

INTERVAL Y Y Y Y Y

INTO Y Y Y Y Y Y

IS Y Y Y Y Y Y

ISOLATION Y Y Y Y Y

IS_USER_CONTAINED_I
N_HDS_GROUP

Y Y

ITERATE Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

JOIN Y Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

KEY Y Y Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

LABEL Y

LANGUAGE Y Y Y Y Y Y

LARGE Y Y Y Y

LAST Y Y Y Y

LATERAL Y

LEADING Y Y Y Y Y Y

LEAVE Y Y Y Y

LEFT Y Y Y Y

LENGTH Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1095

Table A-13: SQL reserved words (M)

LESS Y Y Y

LEVEL Y Y Y Y Y Y

LIKE Y Y Y Y Y Y

LIMIT Y Y Y

LINES Y Y Y

LINK Y Y Y

LIST Y Y Y

LOCAL Y Y Y Y

LOCALTIME Y

LOCALTIMESTAMP Y

LOCATOR Y Y

LOCK Y Y Y

LOCKS Y Y Y

LOGID Y Y Y

LOGNAME Y Y Y

LONG Y Y Y Y

LOOP Y Y Y Y

LOWER Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

MAP Y

MATCH Y Y Y Y

MAX Y Y Y Y Y

MAXUSAGES Y Y

MCHAR Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1096

Table A-14: SQL reserved words (N)

MICROSECOND Y

MICROSECONDS Y

MIN Y Y Y Y Y

MINUTE Y Y Y Y Y

MINUTES Y Y Y

MOD Y Y Y

MODE Y Y Y Y

MODIFIES Y

MODIFY Y Y Y

MODULE Y Y Y Y Y Y

MONTH Y Y Y Y Y

MONTHS Y Y Y

MOVE Y Y Y

MVARCHAR Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

NAMES Y Y Y Y

NATIONAL Y Y Y Y Y

NATURAL Y Y Y Y

NCHAR Y Y Y Y Y

NCLOB Y

NESTING Y

NEW Y Y Y Y

NEXT Y Y Y Y

NO Y Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1097

Table A-15: SQL reserved words (O)

NONE Y Y Y

NONLOCAL Y

NOT Y Y Y Y Y Y

NOWAIT Y Y Y

NULL Y Y Y Y Y Y

NULLABLE Y Y Y

NULLIF Y Y Y Y

NUMERIC Y Y Y Y Y Y

NVARCHAR Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

OBJECT Y Y Y

OCTET_LENGTH Y Y Y

OF Y Y Y Y Y Y

OFF Y Y Y

OFFSET Y Y Y

OID Y Y

OLD Y Y Y Y

ON Y Y Y Y Y Y

ONLY Y Y Y Y Y Y

OPEN Y Y Y Y Y Y

OPERATION Y Y Y

OPERATORS Y Y

OPTION Y Y Y Y Y Y

OPTIMIZE Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1098

Table A-16: SQL reserved words (P)

OR Y Y Y Y Y Y

ORDER Y Y Y Y Y Y

ORDINALITY Y

OTHERS Y Y

OUT Y Y Y Y

OUTER Y Y Y Y Y

OUTPUT Y Y Y Y Y

OVER  
(Changed 

to Y 
beginning 
in 2001)

Y Y

OVERFLOW Y Y Y

OVERLAPS Y

OVERWRITE Y

OWN Y Y Y

OWNER Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

PAD Y Y Y Y

PAGE Y Y

PARAMETER Y

PARAMETERS Y Y Y

PARTIAL Y Y Y Y

PARTITION Y

PARTITIONED Y Y

PATH Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1099

PCTFREE Y Y Y

PENDANT Y Y

PERCENT_RANK Y

PERCENTILE_CONT Y

PERCENTILE_DISC Y

PIC Y Y Y

PICTURE Y Y Y Y

POSITION Y Y Y

POSTFIX Y

PREALLOCATED Y Y Y

PRECISION Y Y Y Y Y Y

PREFERRED Y Y Y

PREFIX Y

PREORDER Y Y Y

PREPARE Y Y Y Y Y Y

PRESERVE Y Y Y Y

PRIMARY Y Y Y Y Y Y

PRIMLEGES Y

PRIOR Y Y Y Y

PRIVATE Y Y Y Y

PRIVILEGES Y Y Y Y Y

PROCEDURE Y Y Y Y Y Y

PROGRAM Y Y Y

PROTECTED Y Y Y

PUBLIC Y Y Y Y Y Y

PURGE Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1100

Table A-17: SQL reserved words (R)

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

RANDOM Y Y

RANGE Y

RANK Y

RD Y Y

RDAREA Y Y Y

RDNODE Y

READ Y Y Y Y Y Y

READS Y

REAL Y Y Y Y Y Y

RECOMPILE Y Y

RECOVERABLE Y Y Y

RECOVERY Y Y

RECURSIVE Y Y Y Y

REDO Y

REF Y Y Y

REFERENCES Y Y Y Y Y Y

REFERENCING Y Y Y Y

REGLIKE Y Y Y

REGR_AVGX Y

REGR_AVGY Y

REGR_COUNT Y

REGR_INTERCEPT Y

REGR_R2 Y

REGR_SLOPE Y

REGR_SXX Y



A. Reserved Words

1101

REGR_SXY Y

REGR_SYY Y

RELATIVE Y Y Y Y

RELEASE Y Y Y

RELEASING Y Y Y

RENAME Y Y Y

REPEAT Y Y

RESERVED Y

RESIGNAL Y Y Y

RESTART Y Y Y

RESTRICT Y Y Y Y

RESULT Y

RETURN Y Y Y Y

RETURNS Y Y Y Y

REVOKE Y Y Y Y Y Y

RIGHT Y Y Y Y

ROLE Y Y Y

ROLLBACK Y Y Y Y Y Y

ROLLUP Y Y

ROOT Y Y Y

ROUTINE Y Y Y Y

ROW Y Y Y Y

ROW_NUMBER Y

ROWID Y Y Y Y

ROWS Y Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1102

Table A-18: SQL reserved words (S)

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

SAVEPOINT Y Y Y

SCALE Y Y Y

SCAN Y Y Y

SCATTERED Y

SCHEMA Y Y Y Y Y Y

SCHEMAS Y Y Y

SCOPE Y Y Y

SCROLL Y Y Y Y

SD Y Y

SEARCH Y Y Y

SECOND Y Y Y Y Y

SECONDS Y Y Y

SECTION Y Y Y Y Y

SEGMENT Y Y Y

SELECT Y Y Y Y Y Y

SENSITIVE Y Y

SEPARATE Y Y Y

SEPARATOR Y Y Y

SEQUENCE Y Y Y

SESSION Y Y Y Y

SESSION_USER Y Y Y Y

SET Y Y Y Y Y Y

SETS Y

SFLIKE Y Y

SHARE Y Y Y



A. Reserved Words

1103

SHLIKE Y

SHORT Y Y Y

SIGN Y

SIGNAL Y Y Y Y

SIMILAR Y Y

SIZE Y Y Y Y Y

SLOCK Y Y Y

SMALLFLT Y Y Y

SMALLINT Y Y Y Y Y Y

SOME Y Y Y Y Y Y

SPACE Y Y Y Y

SPECIFIC Y Y

SPECIFICTYPE Y

SPLIT Y Y Y

SQL Y Y Y Y Y

SQL_STANDARD Y Y Y

SQLCODE Y Y Y Y

SQLCODE_TYPE Y Y Y

SQLCOUNT Y Y Y

SQLDA Y Y Y

SQLERRM Y Y Y

SQLERRMC Y Y Y

SQLERRML Y Y Y

SQLERROR Y Y Y Y

SQLEXCEPTION Y Y Y

SQLNAME Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1104

Table A-19: SQL reserved words (T)

SQLSTATE Y Y Y Y Y

SQLWARN Y Y Y

SQLWARNING Y Y Y Y

START Y Y Y Y

STATE Y

STATEMENT Y

STATIC Y Y Y Y

STDDEV_POP Y

STOP Y Y Y

STOPPING Y Y Y

STRUCTURE Y Y Y

SUBSTR Y Y Y

SUBSTRING Y Y Y

SUM Y Y Y Y Y

SUPPRESS Y Y

SYNONYM Y Y Y

SYSTEM_USER Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

TABLE Y Y Y Y Y Y

TABLES Y

TEMPORARY Y Y Y Y

TERMINATE Y

TEST Y Y

TEXT Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1105

Table A-20: SQL reserved words (U)

THAN Y

THEN Y Y Y Y Y

THERE Y Y

TIME Y Y Y Y Y Y

TIMESTAMP Y Y Y Y Y

TIMESTAMP_FORMAT Y

TIMEZONE_HOUR Y Y Y Y

TIMEZONE_MINUTE Y Y Y Y

TO Y Y Y Y Y Y

TRAILING Y Y Y Y Y

TRANSACTION Y Y Y Y Y

TRANSLATE Y Y Y

TRANSLATION Y Y Y Y

TREAT Y Y Y

TRIGGER Y Y Y Y

TRIM Y Y Y Y

TRUE Y Y Y Y Y

TYPE Y Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

UAMT Y Y Y

UBINBUF Y Y Y

UCHAR Y Y Y

UDATE Y Y Y

UHAMT Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1106

UHANT Y Y

UHDATE Y Y Y

UNBOUNDED Y

UNDER Y Y Y Y

UNDO Y

UNIFY_2000 Y Y Y

UNION Y Y Y Y Y Y

UNIONALL Y Y

UNIQUE Y Y Y Y Y Y

UNKNOWN Y Y Y Y Y

UNLIMITED Y Y Y

UNLOCK Y Y Y

UNTIL Y Y Y Y

UNNEST Y

UPDATE Y Y Y Y Y Y

UPPER Y Y Y Y

USAGE Y Y Y Y Y Y

USE Y Y Y

USER Y Y Y Y Y Y

USER_GROUP Y

USER_LEVEL Y

USING Y Y Y Y Y Y

UTIME Y Y Y

UTXTBUF Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1107

Table A-21: SQL reserved words (V)

Table A-22: SQL reserved words (W)

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

VALUE Y Y Y Y Y Y

VALUES Y Y Y Y Y Y

VAR_POP Y

VAR_SAMP Y

VARCHAR Y Y Y Y Y

VARCHAR_FORMAT Y

VARIABLE Y Y Y

VARYING Y Y Y Y Y

VIEW Y Y Y Y Y Y

VIRTUAL Y Y

VISIBLE Y Y

VOLATILE Y Y Y

VOLUME Y Y Y

VOLUMES Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

WAIT Y Y Y

WHEN Y Y Y Y Y

WHENEVER Y Y Y Y Y

WHERE Y Y Y Y Y Y

WHILE Y Y Y Y

WINDOW Y

WITH Y Y Y Y Y Y

WITHIN Y



A. Reserved Words

1108

Table A-23: SQL reserved words (X)

Table A-24: SQL reserved words (Y)

Table A-25: SQL reserved words (Z)

A.2 HiRDB reserved words
The reserved words used by HiRDB cannot be specified as names, such as 
authorization identifiers or table identifiers.
Table A-26 shows HiRDB reserved words.

Table A-26: HiRDB reserved words

WITHOUT Y Y Y Y

WORK Y Y Y Y Y Y

WRITE Y Y Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

XLIKE Y Y

XLOCK Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

YEAR Y Y Y Y Y

YEARS Y Y Y

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)

ZONE Y

Reserved word Names that cannot be defined

ALL Authorization identifier, table identifier, RDAREA name, group ID

HiRDB Authorization identifier, group ID

MASTER* Authorization identifier, group ID

Reserved word SQL92 SQL99 UNIFY XDM/RD HiRDB 
(V6)

HiRDB 
(V7)



A. Reserved Words

1109

* Used in the following resource authorization identifiers provided by a data dictionary 
table or a plug-in:

• User defined type
• Index type
• Function

A.3 Reserved words that can be deleted using the SQL reserved 
word deletion facility

Tables A-27 to A-48 show the reserved words that can be deleted by using the SQL 
reserved word deletion facility, and the functionality that is disabled if a given reserved 
word is deleted.
The following legend is used in the tables:

: There is no facility that is disabled when a reserved word is deleted.
Table A-27:  Reserved words that can be deleted (A)

PUBLIC Authorization identifier, group ID

Names beginning with SQL or sql Embedded variable, standard variable name, host identifier

Reserved word Disabled functionality

ABS  Scalar function ABS

ALLOCATE  LOB attribute with abstract data type 
 Plug-in

AMOUNT

ANDNOT  Difference sets between lists

ANSI

ARRAY  Repetition column

ASSERTION

ASYNC

AUTO

Reserved word Names that cannot be defined



A. Reserved Words

1110

Table A-28: Reserved words that can be deleted (B)

Table A-29:  Reserved words that can be deleted (C)

Reserved word Disabled functionality

BASE

BEGIN  Compound statements of routine control SQL statements
 User-defined function

BINARY  Data types BINARY, BINARY LARGE OBJECT

BIT_AND_TEST  Scalar function BIT_ADN_TEST

BLOB  Data type BLOB

BOOLEAN  Data type BOOLEAN

BOTH

BREADTH

BTREE

BUFFER

BYTE

Reserved word Disabled functionality

CALL  Stored procedure

CASE  CASE expression

CAST  CAST specification

COALESCE  CASE abbreviation

COLUMNS

COMPLETION

CONDITION  Conditional declaration of a routine control SQL compound statement

CONFIGURATION

CONST

CONSTRAINT  Referential constraint

CONTIGUOUS

CORRESPONDING



A. Reserved Words

1111

Table A-30:  Reserved words that can be deleted (D)

CROSS

CURAID

CURRENT_DATE  CURRENT_DATE value function
 DEFAULT clause

CURRENT_TIME  CURRENT_TIME value function
 DEFAULT clause

CURRENT_TIMESTAMP  CURRENT_TIMESTAMP value function
 DEFAULT clause

CURRENT_USER

CYCLE

Reserved word Disabled functionality

DATA  Deleting an abstract data type

DATABASE

DATE  Data type DATE
 Scalar function DATE
 CURRENT_DATE value function
 DEFAULT clause

DAY  Data type INTERVAL YEAR TO DAY
 Scalar function DAY
 Date operation

DAYS  Scalar function DAYS
 Date operation

DEFER

DEMOTING

DEPTH

DEVICE

DIAGNOSTICS  Embedded language syntax GET DIAGNOSTICS

DICTIONARY

DIGITS  Scalar function DIGITS

Reserved word Disabled functionality



A. Reserved Words

1112

Table A-31:  Reserved words that can be deleted (E)

Table A-32:  Reserved words that can be deleted (F)

DIRECT

DO  Routine control SQL FOR statement, WHILE statement

DOUBLE_PRECISION

Reserved word Disabled functionality

EACH  Trigger

EDIT

ELSE  Routine control SQL IF statement

ELSEIF  Routine control SQL IF statement

ENCRYPT

END  CASE expression
 Routine control SQL compound statement, FOR statement, IF statement, 

WHILE statement

EQUALS

ESTIMATED

EXCEPTION  Embedded language syntax GET DIAGNOSTICS

EXIT  Handler declaration for routine control SQL compound statement 

EXTERN

EXTRACT

Reserved word Disabled functionality

FALSE  Boolen predicate IS FALSE

FIXED

FORCE

FREE  Data manipulation SQL FREE LOCATOR statement

FULL

Reserved word Disabled functionality



A. Reserved Words

1113

Table A-33:  Reserved words that can be deleted (G)

Table A-34:  Reserved words that can be deleted (H)

Table A-35:  Reserved words that can be deleted (I)

FUNCTION  User-defined function
 Plug-in
 Narrowing of audit trail based on object name

Reserved word Disabled functionality

GENERAL

GET  Embedded language syntax GET DIAGNOSTICS

GET_JAVA_STORED_ROUTIN
E_SOURCE

 Scalar function GET_JAVA_STORED_ROUTINE_SOURCE

Reserved word Disabled functionality

HANDLER  Routine control SQL handler declaration

HELP

HEX  Scalar function HEX

HOUR  Data type INTERVAL HOUR TO SECOND
 Scalar function HOUR
 Time operation

HOURS  Time operation

HUGE

Reserved word Disabled functionality

IF  Routine control SQL IF statement

IGNORE

INNER  Join table INNER JOIN

INOUT  Stored procedure

INTERSECT

INTERVAL  Data type INTERVAL HOUR TO SECOND, INTERVAL YEAR TO DAY

ISOLATION  SQL compile option ISOLATION

Reserved word Disabled functionality



A. Reserved Words

1114

Table A-36:  Reserved words that can be deleted (L)

Table A-37:  Reserved words that can be deleted (M)

IS_USER_CONTAINED_IN_H
DS_GROUP

 Scalar function IS_USER_CONTAINED_IN_HDS_GROUP

Reserved word Disabled functionality

LARGE  Data type LARGE DECIMAL, BINARY LARGE OBJECT

LEADING

LEAVE  Routine control SQL LEAVE statement

LENGTH  Scalar function LENGTH
 SQL compile option SUBSTR LENGTH

LESS

LEVEL  SQL compile options OPTIMIZE LEVEL, ADD OPTIMIZE LEVEL

LIMIT  LIMIT clause

LINES

LINK

LOCATOR

LOCKS

LOGID

LOGNAME

LOOP

LOWER  Scalar function LOWER

Reserved word Disabled functionality

MAXUSAGES

MINUTE  Scalar function MINUTE
 Time operation

MINUTES  Time operation

MOD  Scalar function MOD

Reserved word Disabled functionality



A. Reserved Words

1115

Table A-38:  Reserved words that can be deleted (N)

Table A-39:  Reserved words that can be deleted (O)

MONTH  Scalar function MONTH
 Date operation

MONTHS  Date operation

MOVE

Reserved word Disabled functionality

NATURAL

NEW  Trigger 

NOWAIT  Lock option NO WAIT

NULLIF  CASE abbreviation

Reserved word Disabled functionality

OFF

OID

OLD  Trigger 

ONLY  Falsification-prevented table
 Read-only view table
 FOR READ ONLY

OPERATION

OPERATORS

OPTIMIZE  SQL compile options OPTIMIZE LEVEL, ADD OPTIMIZE LEVEL

OTHERS

OUT  Stored procedure

OUTER  Join table OUTER JOIN

OVER  Window function

OVERFLOW

OWN

Reserved word Disabled functionality



A. Reserved Words

1116

Table A-40:  Reserved words that can be deleted (P)

Table A-41:  Reserved words that can be deleted (R)

Reserved word Disabled functionality

PARAMETERS

PENDANT

PIC

PICTURE

PREALLOCATED

PREFERRED

PREORDER

PRIVATE  Abstract data type

PROTECTED  Abstract data type

PURGE  Changing table partitioning conditions
 Definition SQL ALTER TABLE WITHOUT PURGE
 Data manipulation SQL PURGE TABLE statement

Reserved word Disabled functionality

RANDOM

RD

READ  Read-only view table
 FOR READ ONLY

RECOMPILE

RECOVERABLE

RECURSIVE

REF

REFERENCING  Trigger 

REGLIKE

RELEASING

RESTART

RETURN  User-defined function



A. Reserved Words

1117

Table A-42:  Reserved words that can be deleted (S)

RETURNS  User-defined function

RIGHT

ROLE

ROOT

ROUTINE  Compiling a routine

ROW  Lock LOCK ROW by row
 Trigger 
 (ROW specification) interface by row

ROWS

Reserved word Disabled functionality

SAVEPOINT

SCALE

SCAN

SCHEMAS

SCOPE

SD

SEARCH

SECOND  Data INTERVAL HOUR TO SECOND
 Scalar function SECOND
 Time operation

SECONDS  Time operation

SENSITIVE

SEPARATE

SEPARATOR

SEQUENCE

SESSION_USER

SFLIKE

Reserved word Disabled functionality



A. Reserved Words

1118

Table A-43:  Reserved words that can be deleted (T)

SHORT

SIGNAL  Routine control SQL statement SIGNAL statement

SIMILAR  SIMILAR predicate

SLOCK

SQL_STANDARD

SQLCODE_TYPE

SQLDA

SQLERRM

SQLERRMC

SQLERRML

SQLEXCEPTION

SQLWARN

STATIC

STOP

STOPPING

SUBSTR  Scalar function SUBSTR
 SQL compile option SUBSTR LENGTH

SYSTEM_USER

Reserved word Disabled functionality

TEST

TEXT

THEN  CASE expression
 Routine control SQL IF statement

THERE

Reserved word Disabled functionality



A. Reserved Words

1119

Table A-44:  Reserved words that can be deleted (U)

TIME  Data type TIME
 Scalar function TIME
 CURRENT_TIME value function
 DEFAULT clause default value

TIMESTAMP  Data type TIMESTAMP
 Scalar function TIMESTAMP
 CURRENT_TIMESTAMP value function
 DEFAULT clause default value

TIMESTAMP_FORMAT  Scalar function TIMESTAMP_FORMAT

TRAILING

TRANSACTION

TREAT

TRIGGER  Trigger 
 Narrowing of audit trail based on object name

TRIM

TRUE  Boolean predicate IS TRUE

TYPE  Abstract data type 
 Plug-in
 Foreign table
 Narrowing of audit trail based on object name

Reserved word Disabled functionality

UAMT

UBINBUF

UCHAR

UDATE

UHANT

UHDATE

UNDER  Abstract data type

UNIFY_2000

Reserved word Disabled functionality



A. Reserved Words

1120

Table A-45:  Reserved words that can be deleted (V)

Table A-46:  Reserved words that can be deleted (W)

UNIONALL

UNKNOWN  Boolean predicate IS UNKNOWN

UNLIMITED

UNLOCK

UNTIL  UNTIL DISCONNECT

UPPER  Scalar function UPPER

USAGE

USE

UTIME

UTXTBUF

Reserved word Disabled functionality

VALUE  Scalar function VALUE

VARCHAR_FORMAT  Scalar function VARCHAR_FORMAT

VARIABLE

VARYING  Data types CHARACTER VARYING, NATIONAL CHARACTER VARYING

VIRTUAL

VISIBLE

VOLATILE

VOLUME

VOLUMES

Reserved word Disabled functionality

WHEN  CASE expression
 Trigger 

WHILE  Falsification-prevented table
 Routine control SQL WHILE statement

Reserved word Disabled functionality



A. Reserved Words

1121

Table A-47:  Reserved words that can be deleted (X)

Table A-48:  Reserved words that can be deleted (Y)

Reserved word Disabled functionality

XLOCK

Reserved word Disabled functionality

YEAR  Data type INTERVAL YEAR TO DAY
 Scalar function YEAR
 Date operation

YEARS  Date operation



B. List of SQLs

1122

B. List of SQLs

The following table shows a list of the SQL statements that can be used by type. The 
"Under OLTP" column indicates whether or not the SQL statement can be used in an 
X/Open-compliant UAP running under OLTP.

Table B-1: SQL statements (definition SQL)

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB

ALTER PROCEDURE (Recreate 
SQL object of procedure)

Recreates an SQL object of a 
procedure.

Y Y N N N

ALTER ROUTINE (Recreate 
SQL objects for functions, 
procedures, and triggers)

Recreates SQL objects for 
functions, procedures, and 
triggers.

Y Y N N N

ALTER TABLE (Alter table 
definition)

Adds column to a base table.
Changes the data type.
Increases the maximum 
length of columns of the 
variable-length data type.
Deletes empty base table 
columns.
Changes the uniqueness 
constraint on empty base 
table cluster keys.
Renames tables and 
columns.

Y Y N N N

ALTER TRIGGER
(Recreate trigger SQL object)

Recreates a trigger SQL 
object.

Y Y N N N

COMMENT (Comment) Adds a comment in a table or 
a column.

Y Y N N N

CREATE ALIAS (Define table 
alias)

Defines a table alias. Y Y N N N

CREATE AUDIT
(Define audit target event)

Defines the audit event to be 
recorded as an audit trail, 
and its target.

Y Y N N N



B. List of SQLs

1123

CREATE CONNECTION 
SECURITY
(Define CONNECT security 
facility)

Defines security items 
related to the CONNECT 
security facility.

Y Y N N N

CREATE FOREIGN INDEX
(Define foreign index)

Defines a foreign index. Y Y N N N

CREATE FOREIGN TABLE
(Define foreign table)

Defines a foreign table. Y Y N N N

CREATE FUNCTION (Define 
function)

Defines a function. Y Y N N N

CREATE INDEX (Define index) Defines an index (ascending 
or descending order) on the 
columns in a base table.

Y Y N N N

CREATE PROCEDURE (Define 
procedure)

Defines a procedure. Y Y N N N

CREATE SCHEMA (Define 
schema)

Defines a schema. Y Y N N N

CREATE SERVER
(Define foreign server)

Defines a foreign server. Y Y N N N

CREATE TABLE (Define base 
table)

Defines a base table. Y Y N N N

CREATE TRIGGER
(Define trigger)

Defines a trigger. Y Y N N N

CREATE TYPE (Define type) Defines an abstract data 
type.

Y Y N N N

CREATE USER MAPPING
(Define user mapping)

Defines user mapping. Y Y N N N

CREATE VIEW (Define view 
table)

Defines a view table. Y Y N N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1124

CREATE PUBLIC VIEW
(Define public view)

Defines a public view. Y Y N N N

DROP ALIAS (Delete table 
alias)

Deletes a table alias. Y Y N N N

DROP AUDIT
(Delete audit target event)

Deletes from the audit 
targets definitions for which 
the audit target event defined 
in CREATE AUDIT matches 
the contents.

Y Y N N N

DROP CONNECTION 
SECURITY
(Delete CONNECT security 
facility)

Deletes security items 
related to the CONNECT 
security facility.

Y Y N N N

DROP DATA TYPE (Delete 
user-defined data type)

Deletes a user-defined data 
type.

Y Y N N N

DROP FOREIGN INDEX
(Delete foreign index)

Deletes the definition of a 
foreign index.

Y Y N N N

DROP FOREIGN TABLE
(Define foreign table)

Deletes the definition of a 
foreign table.

Y Y N N N

DROP FUNCTION (Delete 
function)

Deletes a function. Y Y N N N

DROP INDEX (Delete index) Deletes an index. Y Y N N N

DROP PROCEDURE (Delete a 
procedure)

Deletes a procedure. Y Y N N N

DROP SCHEMA (Delete 
schema)

Deletes a schema. Y Y N N N

DROP SERVER
(Delete foreign server)

Deletes the definition of a 
foreign server.

Y Y N N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1125

DROP TABLE (Delete table) Deletes a base table and any 
indexes, comments, access 
privilege, view tables, and 
triggers that are associated 
with it.

Y Y N N N

DROP TRIGGER
(Delete trigger)

Deletes a trigger. Y Y N N N

DROP USER MAPPING
(Delete user mapping)

Deletes user mapping. Y Y N N N

DROP VIEW (Delete view 
table)

Deletes a view table. Y Y N N N

DROP PUBLIC VIEW
(Deletes public view)

Deletes a public view. Y Y N N N

GRANT AUDIT
(Change auditor's password)

Changes the auditor's 
password.

Y Y N N N

GRANT CONNECT (Grant 
connect privilege)

Grants the connect privilege 
to a user.

Y Y N N N

GRANT DBA (Grant DBA 
privilege)

Grants the DBA privilege to 
a user.

Y Y N N N

GRANT RDAREA (Grant 
RDAREA utilization 
privilege)

Grants the RDAREA 
utilization privilege to a user.

Y Y N N N

GRANT SCHEMA (Grant schema 
definition privilege)

Grants the schema definition 
privilege to a user.

Y Y N N N

GRANT access privilege (Grant 
access privileges)

Grants access privilege to a 
user.

Y Y N N N

REVOKE CONNECT (Revoke 
connect privilege)

Revokes a user's connect 
privilege.

Y Y N N N

REVOKE DBA (Revoke DBA 
privilege)

Revokes a user's DBA 
privilege.

Y Y N N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1126

Y: Can be used.
N: Cannot be used.

Table B-2: SQL statements (data manipulation SQL)

REVOKE RDAREA (Revoke 
RDAREA utilization 
privilege)

Revokes a user's RDAREA 
utilization privilege.

Y Y N N N

REVOKE SCHEMA (Revoke 
schema definition privilege)

Revokes a user's schema 
definition privilege.

Y Y N N N

REVOKE access privilege 
(Revoke access privileges)

Revokes a user's access 
privilege.

Y Y N N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB

ALLOCATE CURSOR statement
(Allocate cursor)

Allocates a cursor to the 
SELECT statement 
preprocessed by the 
PREPARE statement or a 
group of result sets returned 
by a procedure.

Y Y Y N N

ASSIGN LIST statement 
(Create list)

Creates a list from a base 
table.

Y Y Y N N

CALL statement* (Call 
procedure)

Calls a procedure. Y Y Y Y N

CLOSE statement (Close 
cursor)

Closes a cursor. Y Y Y Y Y

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1127

DEALLOCATE PREPARE 
statement
(Nullify the preprocessing)

Releases the allocation of 
the SQL statement 
preprocessed by the 
PREPARE statement.

Y Y Y N N

DECLARE CURSOR (Declare 
cursor)

Declares a cursor to receive 
the results of retrieval by the 
SELECT statement, one row 
at a time, using the FETCH 
statement.

Y Y Y Y Y

DELETE statement (Delete 
row)

Deletes a row that satisfies a 
set of specified search 
conditions or a row that is 
indicated by the cursor.

Y Y Y Y Y

Preparable dynamic DELETE 
statement: locating
(Delete row using a 
preprocessable cursor)

Deletes the row pointed to 
by a specified cursor, used 
to execute the statement 
dynamically.

Y Y Y N N

DESCRIBE statement 
(Receive retrieval 
information and I/O 
information)

Returns to the SQL 
descriptor area SQL 
retrieval information, output 
information, or input 
information that has been 
preprocessed by the 
PREPARE statement.

Y Y Y Y Y

DESCRIBE CURSOR
statement
(Receive cursor retrieval 
information)

Returns retrieval 
information on the cursor 
that references the result set 
returned by a procedure to 
the SQL descriptor area.

Y Y Y N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1128

DESCRIBE TYPE statement 
(Receive definition 
information on a user-defined 
data type)

Returns to the SQL 
descriptor area definition 
information (attribute data 
codes and data lengths) on a 
user-defined data type that is 
directly or indirectly 
contained in SQL retrieval 
item information that is 
preprocessed by a PREPARE 
statement.

Y Y Y N N

DROP LIST statement (Delete 
list)

Deletes a list. Y Y Y N N

EXECUTE statement (Execute 
SQL)

Executes SQL preprocessed 
by the PREPARE statement.

Y Y Y Y Y

EXECUTE IMMEDIATE 
statement (Preprocess and 
execute SQL)

Preprocesses and executes 
the SQL specified in a 
character string.

Y Y Y Y Y

FETCH statement (Fetch data) Advances to the next row 
the cursor indicating the row 
to be fetched and reads to 
the embedded variable 
specified by the INTO clause 
the value of a column in that 
row.

Y Y Y Y Y

FREE LOCATOR statement
(Invalidate locator)

Nullifies the locator. Y Y Y N N

INSERT statement (Inserting 
row)

Inserts a row into a table. 
Can insert one row by direct 
value specification. Can 
also insert one or more rows 
by using the SELECT 
statement.

Y Y Y Y Y

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1129

OPEN statement (Open cursor) Opens a cursor. Positions 
the cursor declared in 
DECLARE CURSOR or 
allocated by ALLOCATE 
CURSOR at a position 
preceding the first row of 
the retrieval results so that 
retrieval results can be 
fetched.

Y Y Y Y Y

PREPARE statement 
(Preprocess SQL)

Preprocesses the SQL 
indicated by a character 
string and assigns a name 
(SQL statement identifier or 
extended statement name) to 
the SQL.

Y Y Y Y Y

PURGE TABLE statement 
(Delete all rows)

Deletes all rows in a base 
table.

Y Y N Y N

One-row SELECT statement 
(Retrieve one row)

Searches table data. When 
only one row of data is to be 
fetched from a table, the 
one-row SELECT statement, 
which fetches data without 
using a cursor, must be 
specified.

Y Y Y Y Y

Dynamic SELECT statement 
(Dynamic retrieval)

Searches table data. The 
dynamic SELECT statement 
is preprocessed by the 
PREPARE statement. When 
retrieving data, either 
declare the cursor by using 
DECLARE CURSOR or 
allocate the cursor using the 
ALLOCATE CURSOR 
statement, and then use the 
cursor to fetch retrieval 
results row by row.

Y Y Y Y Y

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1130

Y: Can be used.
N: Cannot be used.
Note

If a procedure is called under OLTP, or when a procedure defined on a distributed 
server is called, and if the procedure contains PURGE TABLE, COMMIT, or 
ROLLBACK statements, the procedure cannot be executed.

UPDATE statement (Update 
data)

Updates the value of a 
specified column in a table 
row that meets a specified 
search condition or in the 
row indicated by the cursor.

Y Y Y Y Y

Preparable dynamic UPDATE 
statement: locating
(Update data using a 
preprocessable cursor)

Updates the value of a 
specified column in the row 
pointed to by a specified 
cursor; this is used for 
dynamic execution.

Y Y Y N N

Assignment statement
(Assign value)

Assigns a value. Y Y Y N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1131

Table B-3: SQL statements (control SQL)

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB

COMMIT statement (Terminate 
transaction normally)

Terminates normally the 
current transaction, sets a 
synchronization point, and 
generates one unit of 
commitment. The 
transaction puts the contents 
of the updated database into 
effect.

Y Y N Y Y

CONNECT statement (Connect 
to HiRDB)

Posts an authorization 
identifier and password to 
HiRDB so that the UAP can 
use HiRDB.

Y Y N Y* Y*

DISCONNECT statement 
(Disconnect from HiRDB)

Terminates normally the 
current transaction, sets a 
synchronization point, and 
generates one unit of 
commitment. Afterwards, 
disconnects the UAP from 
HiRDB.

Y Y N Y Y

LOCK statement (Lock table) Locks a specified table. Y Y Y Y N

CONNECT statement with 
RD-node specification 
(Connect to distributed 
RD-node)

Passes an authorization 
identifier and password to a 
distributed RD-node so that 
the UAP can use that 
RD-node.

Y Y Y Y Y

DISCONNECT statement with 
RD-node specification 
(Disconnect from distributed 
RD-node)

Terminates the current 
transaction normally, 
establishes a 
synchronization point, and 
creates a single commitment 
unit. The UAP is then 
disconnected from the 
distributed RD-node.

Y Y N Y Y



B. List of SQLs

1132

Y: Can be used.
N: Cannot be used.
* A connection to the DBMS running at the distributed server is established by the 
system automatically during execution of the first data manipulation SQL statement 
that accesses the database at the distributed server, rather than during execution of the 
CONNECT statement. After the CONNECT statement is executed, execution of a 
CONNECT statement with an RD-node specification establishes a connection to the 
DBMS running at the distributed server.

ROLLBACK statement (Cancel 
transaction)

Cancels the current 
transaction and any database 
updates performed within 
the transaction.

Y Y N Y Y

SET CONNECTION statement 
(Set current RD-node)

Sets the current RD-node. Y Y Y Y Y

SET SESSION 
AUTHORIZATION statement 
(Change executing user)

Changes the currently 
connected user.

Y Y Y N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1133

Table B-4: SQL statements (embedded language)

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB

BEGIN DECLARE SECTION 
(Embedded SQL begin 
declaration)

Indicates the beginning of an 
embedded variable 
declaration section. 
Embedded variables and 
indicator variables used in 
SQL are specified in an 
embedded variable 
declaration section.

Y Y Y C C

END DECLARE SECTION 
(Embedded SQL end 
declaration)

Indicates the end of an 
embedded variable 
declaration section.

Y Y Y C C

ALLOCATE CONNECTION 
HANDLE (Allocate connection 
handle)

Allocates a connection 
handle to be used by a UAP 
in an environment where a 
multi-connection function is 
used.

Y Y N N N

FREE CONNECTION HANDLE 
(Release connection handle)

Releases a connection 
handle that was allocated by 
ALLOCATE CONNECTION 
HANDLE.

Y Y N N N

DECLARE CONNECTION 
HANDLE SET (Declare 
connection handle to be used)

Declares the connection 
handle to be used by a UAP 
in an environment where a 
multi-connection function is 
used.

Y Y N N N

DECLARE CONNECTION 
HANDLE UNSET (Reset all 
connection handles being 
used)

Resets all declarations of 
connection handle usage 
specified in DECLARE 
CONNECTION HANDLE SET 
statements prior to this 
statement.

Y N N N N



B. List of SQLs

1134

GET CONNECTION HANDLE 
(Get connection handle)

When the multi-connection 
facility is used under the X/
Open XA interface 
environment, allocates the 
connection handle to be used 
by the UAP.

Y Y N N N

COPY (Include library text) Includes a library text into 
the source program.

N Y Y C C

GET DIAGNOSTICS (Retrieve 
diagnostic information)

If the preceding SQL 
statement is the CREATE 
PROCEDURE or CALL 
statement, obtains error 
information and diagnostic 
information from the 
diagnostics area.

N N N N N

COMMAND EXECUTE (Execute 
command from UAP)

Executes HiRDB and OS 
commands from within a 
UAP.

Y N N N N

SQL prefix Indicates the beginning of an 
SQL.

Y Y Y C C

SQL terminator Indicates the end of an SQL. Y Y Y C C

WHENEVER (Embedded 
exception declaration)

Declares UAP processing by 
means of a return code that 
has been set in the SQL 
communication area by 
HiRDB after the SQL has 
executed.

Y Y Y C C

SQLCODE variable Receives the return code 
issued by HiRDB following 
the execution of an SQL.

Y Y Y C C

SQLSTATE variable Receives the return code 
issued by HiRDB following 
the execution of SQL.

Y Y Y C C

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1135

Y: Can be used.
N: Cannot be used.
C: Can be used in a UAP that uses the distributed database facility, but not in an SQL 
statement that is executed at the distributed server.

Table B-5: SQL statements (routine control SQL)

PDCNCTHDL-type variable 
declaration

Declares the handle that has 
the connection information 
to be used in an environment 
where a multi-connection 
function is used.

Y N N N N

INSTALL JAR (Register JAR 
file)

Installs a JAR file on the 
HiRDB server.

Y N N N N

REPLACE JAR (Re-register 
JAR file) 

Installs a JAR file on the 
HiRDB server by 
overwriting it.

Y N N N N

REMOVE JAR (Delete JAR file) Uninstalls a JAR file from 
the HiRDB server.

Y N N N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB

Compound statement 
(Execute multiple statements)

Executes a group of SQL 
statements as a single SQL 
statement.

Y Y N N N

Assignment statement 
(Assign value)

Assigns a value to an SQL 
variable or an SQL 
parameter.

Y Y N N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1136

Legend:
Y: This cannot be used directly in a UAP. However, it can be used to define SQL 
procedures, SQL functions, and trigger actions in CREATE PROCEDURE, CREATE 
FUNCTION, and CREATE TRIGGER.
N: Cannot be used.

Note

The following SQL statements, other than routine control SQL statements, can be 
specified in a procedure definition: CALL statement, CLOSE statement, DECLARE 
CURSOR statement, DELETE statement, FETCH statement, INSERT statement, 

IF statement (Execute by 
conditional branching)

Executes SQL statements 
under certain conditions.

Y Y N N N

RETURN statement (Return 
function return value)

Returns a return value from 
a function.

Y1 Y1 N N N

WHILE statement (Repeat a 
set of statements)

Executes repeatedly a set of 
SQL statements.

Y Y N N N

FOR statement (Repeat a 
statement on rows)

Repeatedly executes SQL 
statements on rows in a 
table.

Y3 Y3 N N N

LEAVE statement (Leave 
statement)

Exits from a compound 
statement or the WHILE 
statement and terminates 
the execution of the 
statement.

Y Y N N N

WRITE LINE statement
(Output of a character string 
to a file)

Outputs the character string 
of a specified value 
expression to a file.

Y Y N N N

SIGNAL statement
(Error signaling)

Generates and signals an 
error.

Y2 Y2 N N N

RESIGNAL statement
(Error resignaling)

Generates and resignals an 
error.

Y2 Y2 N N N

Type Function Available SQL

C CO- 
BOL

Under 
OLTP

Distributed 
database (server 

type)

HiRDB Other 
than 

HiRDB



B. List of SQLs

1137

OPEN statement, PURGE TABLE statement, single-row SELECT statement, UPDATE 
statement, COMMIT statement, LOCK statement, and ROLLBACK statement. SQL 
statements other than routine control SQL statements cannot be used in a 
function.

1 This cannot be used when defining an SQL procedure and a trigger action in CREATE 
PROCEDURE and CREATE TRIGGER.
2 This cannot be used to define an SQL function in CREATE FUNCTION.
3 This cannot be used in CREATE FUNCTION.



C. Correspondence Between Data Types When a Foreign Table is Used

1138

C. Correspondence Between Data Types When a Foreign Table is 
Used

This appendix explains the correspondence between data types when a foreign table is 
used, for each foreign DB.

C.1 Foreign DB: HiRDB
Tables C-1 and C-2 show data type correspondences (foreign DB: HiRDB).

Table C-1: Data type correspondence (foreign DB: HiRDB) (1/2)

Data type of 
HiRDB (foreign 

DB)

Data type of HiRDB

SMA
LLIN

T

INT
EGE

R

DECI
MAL(
m,n)
1  
m  
29, 0 

 n 
 m

SMAL
LFLTo

r 
REAL

*1

FLOA
T or 
DOU
BLE 

PREC
ISION

1

CHA
R(n)

1 
 

n 
 

255

VARC
HAR(n

)
1  n 

 
255

MCHA
R(n)

1  n 
 

255

MVAR
CHAR

(n)
1  n 

 
255

SMALLINT R         

INTEGER  R        

DECIMAL(p,s)
1  p  29
0  s  p

  R2,4       

SMALLFLT or REAL    R      

FLOAT or DOUBLE 
PRECISION

    R     

CHAR(n)
1  n  255

     R3    

CHAR(n)
256  n  
30,000

         

VARCHAR(n)
1  n  255

      R3   

VARCHAR(n)
256  n  
32,000

         



C. Correspondence Between Data Types When a Foreign Table is Used

1139

MCHAR(n)
1  n  255

       R3  

MCHAR(n)
256  n  
30,000

         

MVARCHAR(n)
1  n  255

        R3

MVARCHAR(n)
256  n  
32,000

         

NCHAR(n)
1  n  127

         

NCHAR(n)
128  n  
15,000

         

NVARCHAR(n)
1  n  127

         

VARCHAR(n)
128  n  
16,000

         

DATE          

TIME          

TIMESTAMP(p)
p = 0, 2, 4, or 6

         

INTERVAL YEAR TO 
DAY

         

INTERVAL HOUR TO 
SECOND

         

Data type of 
HiRDB (foreign 

DB)

Data type of HiRDB

SMA
LLIN

T

INT
EGE

R

DECI
MAL(
m,n)
1  
m  
29, 0 

 n 
 m

SMAL
LFLTo

r 
REAL

*1

FLOA
T or 
DOU
BLE 

PREC
ISION

1

CHA
R(n)

1 
 

n 
 

255

VARC
HAR(n

)
1  n 

 
255

MCHA
R(n)

1  n 
 

255

MVAR
CHAR

(n)
1  n 

 
255



C. Correspondence Between Data Types When a Foreign Table is Used

1140

Legend:
R: Recommended data type
Blank: Not mappable data type

Note

If a character string type of 255 bytes is specified for a column greater than or 
equal to 256 bytes on a foreign server, only a maximum of 255 bytes of data can 
be acquired.

1 The precision of values that can be represented may be reduced. The scope and 
precision of values on HiRDB are hardware-dependent.
2 An error may occur if the number of digits in the integer part is less than the data type 
of HiRDB.
If the number of digits in the fractional part is less than the data type of HiRDB, data 
is acquired by truncating the excess fractional part to match the number of digits in the 
fractional part of the data type of HiRDB.
If the number of digits in the integer or fractional part is larger than the data type of 
HiRDB, data is acquired by zero-filling any extended portion to match the number of 
digits in the data type of HiRDB.

BLOB          

BINARY(n)
1  n  255

         

BINARY(n)
256  n  
32,000

         

BINARY(n)
32,001  n  
2,147,483,647

         

Data type of 
HiRDB (foreign 

DB)

Data type of HiRDB

SMA
LLIN

T

INT
EGE

R

DECI
MAL(
m,n)
1  
m  
29, 0 

 n 
 m

SMAL
LFLTo

r 
REAL

*1

FLOA
T or 
DOU
BLE 

PREC
ISION

1

CHA
R(n)

1 
 

n 
 

255

VARC
HAR(n

)
1  n 

 
255

MCHA
R(n)

1  n 
 

255

MVAR
CHAR

(n)
1  n 

 
255



C. Correspondence Between Data Types When a Foreign Table is Used

1141

3 Make the definition length of the data type of the foreign server equal to that of 
HiRDB.
If the definition length (length = n bytes, n  255) of the data type of HiRDB is less 
than the actual length of the data type of the foreign server, only the first n bytes are 
acquired.
If the definition length of the data type of HiRDB is greater, the data is inserted 
left-justified and any excess length is blank-filled (double-byte spaces for national 
character strings, single-byte spaces for character strings or mixed character strings), 
provided that HiRDB is of a fixed-length data type.
If HiRDB is of a variable-length data type, the data is acquired "as is."
4 If p and s are omitted, different foreign servers have different default precision and 
scaling. Therefore, the precision (p) and scaling (s) on the foreign server should be 
made equal to the precision (m) and the scaling (n) in the foreign table definition 
accordingly. When specifying these operands, make DECIMAL(m,n) equal to 
DECIMAL(p,s).

Table C-2: Data type correspondence (foreign DB: HiRDB) (2/2)

Data type of 
HiRDB (foreign 

DB)

Data type of HiRDB

NCHA
R(n)

1  n 
 

127

NVAR
CHAR(

n)
1  n 

 
127

DATE TIME TIMES
TAMP(

p)
p = 0, 

2, 4, or 
6

INTER
VAL 

YEAR 
TO 

DAY

INTER
VAL 

HOUR 
TO 

SECO
ND

BINAR
Y(n)

1  n 
 

255

SMALLINT         

INTEGER         

DECIMAL(p,s)
1  p  29
0  s  p

        

SMALLFLT or REAL         

FLOAT or DOUBLE 
PRECISION

        

CHAR(n)
1  n  255

        

CHAR(n)
256  n  
30,000

        



C. Correspondence Between Data Types When a Foreign Table is Used

1142

VARCHAR(n)
1  n  255

        

VARCHAR(n)
256  n  
32,000

        

MCHAR(n)
1  n  255

        

MCHAR(n)
256  n  
30,000

        

MVARCHAR(n)
1  n  255

        

MVARCHAR(n)
256  n  
32,000

        

NCHAR(n)
1  n  127

R1        

NCHAR(n)
128  n  
15,000

        

NVARCHAR(n)
1  n  127

 R1       

NVARCHAR(n)
128  n  
16,000

        

DATE   R      

TIME    R     

TIMESTAMP(p)
p = 0, 2, 4, or 6

    R2    

Data type of 
HiRDB (foreign 

DB)

Data type of HiRDB

NCHA
R(n)

1  n 
 

127

NVAR
CHAR(

n)
1  n 

 
127

DATE TIME TIMES
TAMP(

p)
p = 0, 

2, 4, or 
6

INTER
VAL 

YEAR 
TO 

DAY

INTER
VAL 

HOUR 
TO 

SECO
ND

BINAR
Y(n)

1  n 
 

255



C. Correspondence Between Data Types When a Foreign Table is Used

1143

Legend:
R: Recommended data type
Blank: Not mappable data type

Note

If a character string type of 255 bytes is specified for a column greater than or 
equal to 256 bytes on a foreign server, only a maximum of 255 bytes of data can 
be acquired.

1 Make the definition length of the data type of the foreign server equal to that of 
HiRDB.
If the definition length (length = n bytes, n  255) of the data type of HiRDB is less 
than the actual length of the data type of the foreign server, only the first n bytes are 
acquired.
If the definition length of the data type of HiRDB is greater, the data is inserted 
left-justified and any excess length is blank-filled (double-byte spaces for national 
character strings, single-byte spaces for character strings or mixed character strings), 
provided that HiRDB is of a fixed-length data type.

INTERVAL YEAR TO 
DAY

     R   

INTERVAL HOUR TO 
SECOND

      R  

BLOB         

BINARY(n)
1  n  255

       R1

BINARY(n)
256  n  
32,000

        

BINARY(n)
32,001  n  
2,147,483,647

        

Data type of 
HiRDB (foreign 

DB)

Data type of HiRDB

NCHA
R(n)

1  n 
 

127

NVAR
CHAR(

n)
1  n 

 
127

DATE TIME TIMES
TAMP(

p)
p = 0, 

2, 4, or 
6

INTER
VAL 

YEAR 
TO 

DAY

INTER
VAL 

HOUR 
TO 

SECO
ND

BINAR
Y(n)

1  n 
 

255



C. Correspondence Between Data Types When a Foreign Table is Used

1144

If HiRDB is of a variable-length data type, the data is acquired "as is."
2 The fractional second precision of data types on the foreign server must have the 
same fractional second precision as data types on HiRDB.
If the fractional second precision of data types on HiRDB is less, data is acquired by 
truncating the excess fractional second part to match the precision of data types on 
HiRDB.
If the fractional second precision of data types on HiRDB is greater, data is acquired 
by zero-filling the expanded fractional second part to match the precision of HiRDB 
data types.

C.2 Foreign DB: XDM/RD E2
Tables C-3 and C-4 show data type correspondence (foreign DB: XDM/RD E2)

Table C-3: Data type correspondence (Foreign DB: XDM/RD E2)(1/2)

Data type of 
XDM/RD E2 

(Foreign DB)

Data type of HiRDB

SMA
LLIN

T

INT
EGE

R

DECI
MAL(
m,n)
1  
n  
29, 0 

 n 
 m

SMAL
LFLTo

r 
REAL

4

FLOA
T or 
DOU
BLE 

PREC
ISION

4

CHA
R(n)

1 
 

n 
 

255

VARC
HAR(n

)
1  n 

 
255

MCHA
R(n)

1  n 
 

255

MVAR
CHAR

(n)
1  n 

 
255

SMALLINT R         

INTEGER  R        

DECIMAL(p,s)
1  p  15, 
0  s  15

  R1, 5, 6       

LARGE 
DECIMAL(p,s) or 
NUMERIC(p,s)
1  p  29, 
0  s  p

  R1, 6       

SMALLFLT or REAL    R      

FLOAT or DOUBLE 
PRECISION

    R     

CHAR(n)
1  n  255

     R7    



C. Correspondence Between Data Types When a Foreign Table is Used

1145

CHAR(n)
256  n

         

VARCHAR(n)
1  n  255

      R7   

VARCHAR(n)
256  n

         

LONG VARCHAR(n)
1  n  255

      R2, 7   

LONG VARCHAR(n)
256  n

         

MCHAR(n)
1  n  255

       R7  

MCHAR(n)
256  n

         

MVARCHAR(n)
1  n  255

        R7

MVARCHAR(n)
256  n

         

LONG MVARCHAR(n)
1  n  255

        R2, 7

LONG MVARCHAR(n)
256  n

         

NCHAR(n)
1  n  127

         

NCHAR(n)
128  n

         

Data type of 
XDM/RD E2 

(Foreign DB)

Data type of HiRDB

SMA
LLIN

T

INT
EGE

R

DECI
MAL(
m,n)
1  
n  
29, 0 

 n 
 m

SMAL
LFLTo

r 
REAL

4

FLOA
T or 
DOU
BLE 

PREC
ISION

4

CHA
R(n)

1 
 

n 
 

255

VARC
HAR(n

)
1  n 

 
255

MCHA
R(n)

1  n 
 

255

MVAR
CHAR

(n)
1  n 

 
255



C. Correspondence Between Data Types When a Foreign Table is Used

1146

Legend:
R: Recommended data type
Blank: Not mappable data type

NVARCHAR(n)
1  n  127

         

NVARCHAR(n)
128  n

         

LONG NVARCHAR(n)
1  n  127

         

LONG NVARCHAR(n)
128  n

         

DATE          

TIME          

TIME(p)
p = 0, 2, 4, or 6

         

TIMESTAMP      R3, 7    

TIMESTAMP(p)
p = 0, 2, 4, or 6

     R3, 7    

INTERVAL YEAR TO 
DAY

         

INTERVAL HOUR TO 
SECOND

         

INTERVAL HOUR TO 
SECOND(p)
p = 0, 2, 4, or 6

         

BLOB          

Data type of 
XDM/RD E2 

(Foreign DB)

Data type of HiRDB

SMA
LLIN

T

INT
EGE

R

DECI
MAL(
m,n)
1  
n  
29, 0 

 n 
 m

SMAL
LFLTo

r 
REAL

4

FLOA
T or 
DOU
BLE 

PREC
ISION

4

CHA
R(n)

1 
 

n 
 

255

VARC
HAR(n

)
1  n 

 
255

MCHA
R(n)

1  n 
 

255

MVAR
CHAR

(n)
1  n 

 
255



C. Correspondence Between Data Types When a Foreign Table is Used

1147

Note 1

If a character string type of 255 bytes is specified for a column greater than or 
equal to 256 bytes on a foreign server, only a maximum of 255 bytes of data can 
be acquired.

Note 2

If the character code for columns in XDM/RD E2 is either EBCDIK or KEIS, an 
error may occur if the data in a character string containing double-byte characters, 
after code conversion, is greater than 255 bytes.

1 If p and s are omitted, different foreign servers have different default precision and 
scaling. Therefore, the precision (p) and scaling (s) on the foreign server should be 
made equal to the precision (m) and the scaling (n) in the foreign table definition 
accordingly. When specifying these operands, make DECIMAL(m,n) equal to 
DECIMAL(p,s).
2 Specifying a column of the LONG VARCHAR type or LONG MVARCHAR type in the 
search condition can cause an error on the foreign server. For details about the LONG 
VARCHAR and LONG MVARCHAR types, see the manual XDM E2 System XDM/RD E2 
SQL Reference.
3 This should be mapped to CHAR(n) (where n = 19, 22, 24, or 26). In HiRDB, the 
format of the datetime character string is 'YYYY-MM-DD hh:mm:ss' if n = 19, and 
'YYYY-MM-DD hh:mm:ss.xxxxxx' if n = 22, 24, or 26 (where x is 2 digits long if n 
= 22, 4 digits long if n = 24, and 6 digits long if n = 26). Comparison and arithmetic 
operations performed on a given column can cause an error on the foreign DB or 
produce unexpected results.
4 The precision of values that can be represented may be reduced. The scope and 
precision of values on HiRDB are hardware-dependent.
5 An error may occur if the precision is greater than 15 digits as a result of an operation.
6 An error may occur if the number of digits in the integer part is less than the data type 
of HiRDB.
If the number of digits in the fractional part is less than the data type of HiRDB, data 
is acquired by truncating the excess fractional part to match the number of digits in the 
fractional part of the data type of HiRDB.
If the number of digits in the integer or fractional part is larger than the data type of 
HiRDB, data is acquired by zero-filling any extended portion to match the number of 
digits in the data type of HiRDB.
7 If there is no specification, make the definition length of the data type of the foreign 
server equal to that of HiRDB.



C. Correspondence Between Data Types When a Foreign Table is Used

1148

If the definition length (length = n bytes, n  255) of the data type of HiRDB is less 
than the actual length of the data type of the foreign server, only the first n bytes are 
acquired.
If the definition length of the data type of HiRDB is greater, the data is inserted 
left-justified and any excess length is blank-filled (double-byte spaces for national 
character strings, single-byte spaces for character strings or mixed character strings), 
provided that HiRDB is of a fixed-length data type.
If HiRDB is of a variable-length data type, the data is acquired "as is."

Table C-4: Data type correspondence (Foreign DB: XDM/RD E2)(2/2)

Data type of 
XDM/RD E2
(foreign DB)

Data type of HiRDB

NCHA
R(n)

1  n 
 

127

NVAR
CHAR(

n)
1  n 

 
127

DATE TIME TIMES
TAMP(

p)
p = 0, 

2, 4, or 
6

INTER
VAL 

YEAR 
TO 

DAY

INTER
VAL 

HOUR 
TO 

SECO
ND

BINAR
Y(n)

1  n 
 

255

SMALLINT         

INTEGER         

DECIMAL(p,s)
1  p  15, 
0  s  15

        

LARGE 
DECIMAL(p,s) or 
NUMERIC(p,s)
1  p  29, 
0  s  p

        

SMALLFLT or REAL         

FLOAT or DOUBLE 
PRECISION

        

CHAR(n)
1  n  255

        

CHAR(n)
256  n

        

VARCHAR(n)
1  n  255

        

VARCHAR(n)
256  n

        



C. Correspondence Between Data Types When a Foreign Table is Used

1149

LONG VARCHAR(n)
1  n  255

        

LONG VARCHAR(n)
256  n

        

MCHAR(n)
1  n  255

        

MCHAR(n)
256  n

        

MVARCHAR(n)
1  n  255

        

MVARCHAR(n)
256  n

        

LONG MVARCHAR(n)
1  n  255

        

LONG MVARCHAR(n)
256  n

        

NCHAR(n)
1  n  127

R4        

NCHAR(n)
128  n

        

NVARCHAR(n)
1  n  127

 R4       

NVARCHAR(n)
128  n

        

LONG NVARCHAR(n)
1  n  127

 R1, 4       

LONG NVARCHAR(n)
128  n

        

Data type of 
XDM/RD E2
(foreign DB)

Data type of HiRDB

NCHA
R(n)

1  n 
 

127

NVAR
CHAR(

n)
1  n 

 
127

DATE TIME TIMES
TAMP(

p)
p = 0, 

2, 4, or 
6

INTER
VAL 

YEAR 
TO 

DAY

INTER
VAL 

HOUR 
TO 

SECO
ND

BINAR
Y(n)

1  n 
 

255



C. Correspondence Between Data Types When a Foreign Table is Used

1150

Legend:
R: Recommended data type.

Blank: Not mappable data type
Note 1

If a character string type of 255 bytes is specified for a column greater than or 
equal to 256 bytes on a foreign server, only a maximum of 255 bytes of data can 
be acquired.

Note 2

If the character code for columns in XDM/RD E2 is either EBCDIK or KEIS, an 
error may occur if the data in a character string containing double-byte characters, 
after code conversion, is greater than 255 bytes.

1 Specifying a column of the LONG VARCHAR type or LONG NVARCHAR type in the 

DATE   R      

TIME    R     

TIME(p)
p = 0, 2, 4,or 6

   R2     

TIMESTAMP         

TIMESTAMP(p)
p = 0, 2, 4, or 6

        

INTERVAL YEAR TO 
DAY

     R   

INTERVAL HOUR TO 
SECOND

      R  

INTERVAL HOUR TO 
SECOND(p)
p = 0, 2, 4, or 6

      R3  

BLOB         

Data type of 
XDM/RD E2
(foreign DB)

Data type of HiRDB

NCHA
R(n)

1  n 
 

127

NVAR
CHAR(

n)
1  n 

 
127

DATE TIME TIMES
TAMP(

p)
p = 0, 

2, 4, or 
6

INTER
VAL 

YEAR 
TO 

DAY

INTER
VAL 

HOUR 
TO 

SECO
ND

BINAR
Y(n)

1  n 
 

255



C. Correspondence Between Data Types When a Foreign Table is Used

1151

search condition can cause an error on the foreign server. For details about the LONG 
VARCHAR and LONG NVARCHAR types, see the manual XDM E2 System XDM/RD E2 
SQL Reference.
2 Mapping can be made into the TIME type only if the precision p of XDM/RD E2 is 0.
3 Mapping can be made into the INTERVAL HOUR TO SECOND type only if the precision 
p of XDM/RD E2 is 0.
4 If there is no specification, make the definition length of the data type of the foreign 
server equal to that of HiRDB.
If the definition length (length = n bytes, n  255) of the data type of HiRDB is less 
than the actual length of the data type of the foreign server, only the first n bytes are 
acquired.
If the definition length of the data type of HiRDB is greater, the data is inserted 
left-justified and any excess length is blank-filled (double-byte spaces for national 
character strings, single-byte spaces for character strings or mixed character strings), 
provided that HiRDB is of a fixed-length data type.
If HiRDB is of a variable-length data type, the data is acquired "as is."

C.3 Foreign DB: ORACLE
Tables C-5 to C-7 show data type correspondence (foreign DB: ORACLE).

Table C-5: Data type correspondence (foreign DB: ORACLE) (1/3)

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

SI INT DEC(m,n)
1  m 

 29, 0 
 n  
m

SFLT 
or 

REAL1

FLT 
or 

DP1

CH(n)
1  
n  
255

NUMBER(p,s)
p: Precision
s: Scaling

s = 0 or 
omitted

p = * or 
omitted9

M2 R3 M6, 7  M M

s = 0, 
omitted, or 
-28  s 

 -1

1  p - s 
 4

R4 M4 M6, 7  M M

5  p - s 
 9

 R5 M6, 7  M M

10  p - s 
 29

  R6, 7  M M



C. Correspondence Between Data Types When a Foreign Table is Used

1152

30  p - s 
 38

    M M

1  s  
29

1  p  
29

  R7, 8  M M

p  30     M M

s  30 or s  - 29    M  M

CHAR(n) 1  n  255     R1, 6  

256  n  2,000       

VARCHAR2(n) 1  n  255       

256  n  4,000       

NCHAR(n) 
(2-byte 
fixed-width 
national 
character set)

1  n  127       

128  n  1,000       

NCHAR(n) 
(Variable-width 
national 
character set)

1  n  255       

256  n  2,000       

NVARCHAR2(n) 
(2-byte 
fixed-width 
national 
character set)

1  n  127       

128  n  2,000       

NVARCHAR2(n) 
(Variable-width 
national 
character set)

1  n  255       

256  n  4,000       

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

SI INT DEC(m,n)
1  m 

 29, 0 
 n  
m

SFLT 
or 

REAL1

FLT 
or 

DP1

CH(n)
1  
n  
255



C. Correspondence Between Data Types When a Foreign Table is Used

1153

Legend:

LONG(n) 1  n  255       

256  n  32,000       

32,001  n  
2,000,000,000

      

DATE      D4, 6

RAW(n) 1  n  255       

256  n  2,000       

RAW(n) 1  n  255       

256  n  2,000       

LONG RAW(n) 1  n  255       

256  n  32,000       

32,001  n  
2,000,000,000

      

ROWID       

MLSLABEL       

CLOB(n) 1  n  1,999,999,999       

2,000,000,000  n  
4,000,000,000

      

NCLOB(n) 1  n  1,999,999,999       

2,000,000,000  n  
4,000,000,000

      

BLOB(n) 1  n  1,999,999,999       

2,000,000,000  n  
4,000,000,000

      

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

SI INT DEC(m,n)
1  m 

 29, 0 
 n  
m

SFLT 
or 

REAL1

FLT 
or 

DP1

CH(n)
1  
n  
255



C. Correspondence Between Data Types When a Foreign Table is Used

1154

R: Recommended data type
M: Mappable data type
D: This is a mappable data type if Y is specified in the pd_hb_use_describe 
operand of the foreign server information definition.
Blank: Not mappable data type
SI: SMALLINT
INT: INTEGER
DEC: DECIMAL
SFLT: SMALLFLT
FLT: FLOAT
DP: DOUBLE PRECISION
CH: CHAR

1 The precision of values that can be represented may be reduced. The scope and 
precision of values on HiRDB are hardware-dependent.
2 The allowable range is limited to between -32,768 and 32,767.
3 The allowable range is limited to between -2,147,483,648 and 2,147,483,647.
4 The allowable range is limited to between -9,999 and 9,999.
5 The allowable range is limited to between -999,999,999 and 999,999,999.
6 If s < 0, let DECIMAL(m,n) be DECIMAL(p - s,0). In this case, the lower (-s) digit 
is 0. If s = 0 or the operand is omitted, let DECIMAL(m,n) be DECIMAL(p,0).

Example: If NUMBER(4,-3)=nnnn000, it will be DECIMAL(7,0) under HiRDB.
7 If the number of digits in the integer part is less than the data type of HiRDB, rows 
cannot be acquired from the foreign server.
If the number of digits in the fractional part is less than the data type of HiRDB, data 
is acquired by truncating any excess fractional part to match the number of digits in the 
fractional part of the data type of HiRDB.
If the number of digits in the integer or fractional part is larger than the data type of 
HiRDB, the expanded part is zero-filled to match the number of digits in the data type 
of HiRDB, and data is acquired.
8 If p < s, let DECIMAL(m,n) be DECIMAL(s,s). In this case, the lower (s - p) digit will 
be 0. If p  s, let DECIMAL(m,n) be DECIMAL(p,s).



C. Correspondence Between Data Types When a Foreign Table is Used

1155

Example: If NUMBER(4,5)=0.01234, it is DECIMAL(5,5) under HiRDB.
9 The data type of HiRDB to be mapped should be determined depending on the 
intended application. When mapping to the DECIMAL type, specify the precision (m) 
and the scaling (n) for the foreign table definition according to the data precision (p) 
and the scaling (s) used on the foreign server.

Table C-6: Data type correspondence (foreign DB: ORACLE) (2/3)

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

VCH 
(n)

1  
n  
255

MCH 
(n)

1  
n  
255

MVC 
(n)

1  
n  
255

NCH 
(n)

1  
n  
127

NVC 
(n)

1  
n  
127

DATE

NUMBER(p,s)
p: Precision
s: Scaling

s = 0 or 
omitted

p = * or 
omitted

      

s = 0, 
omitted, or 
-28  s 

 -1

1  p - s 
 4

      

5  p - s 
 9

      

10  p - s 
 29

      

30  p - s 
 38

      

1  s  
29

1  p  
29

      

p  30       

s  30 or s  -29       

CHAR(n) 1  n  255  R2, 5     

256  n  2,000       

VARCHAR2(n) 1  n  255 R1, 5  R2, 5    

256  n  4,000       



C. Correspondence Between Data Types When a Foreign Table is Used

1156

NCHAR(n) 
(2-byte 
fixed-width 
national 
character set)

1  n  127    R5   

128  n  1,000       

NCHAR(n) 
(Variable-width 
national 
character set)

1  n  255    R3, 5   

256  n  2,000       

NVARCHAR2(n) 
(2-byte 
fixed-width 
national 
character set)

1  n  127      R5

128  n  2,000       

NVARCHAR2(n) 
(Variable-width 
national 
character set)

1  n  255      R5

256  n  4,000       

LONG(n) 1  n  255   R1, 4, 5   R2, 4, 5

256  n  32,000       

32,001  n  
2,000,000,000

      

DATE      R1

RAW(n) 1  n  255       

256  n  2,000       

LONG RAW(n) 1  n  255       

256  n  32,000       

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

VCH 
(n)

1  
n  
255

MCH 
(n)

1  
n  
255

MVC 
(n)

1  
n  
255

NCH 
(n)

1  
n  
127

NVC 
(n)

1  
n  
127

DATE



C. Correspondence Between Data Types When a Foreign Table is Used

1157

Legend:
R: Recommended data type
Blank: Non-mappable data type
VCH: VARCHAR
MCH: MCHAR
MVC: MVARCHAR
NCH: NCHAR
NVC: NVARCHAR

Note

If a character type of 255 bytes is defined for columns with 256 bytes or greater 
on the foreign server, only up to 255 bytes of data can be acquired.

1 Data not containing double-byte characters is treated as the recommended data type.

32,001  n  
2,000,000,000

      

ROWID       

MLSLABEL       

CLOB(n) 1  n  1,999,999,999       

2,000,000,000  n  
4,000,000,000

      

NCLOB(n) 1  n  1,999,999,999       

2,000,000,000  n  
4,000,000,000

      

BLOB(n) 1  n  1,999,999,999       

2,000,000,000  n  
4,000,000,000

      

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

VCH 
(n)

1  
n  
255

MCH 
(n)

1  
n  
255

MVC 
(n)

1  
n  
255

NCH 
(n)

1  
n  
127

NVC 
(n)

1  
n  
127

DATE



C. Correspondence Between Data Types When a Foreign Table is Used

1158

2 Data containing double-byte characters is treated as the recommended data type.
3 The definition data length of columns in the foreign table should be n  2.
4 Specifying an applicable column in any of the following locations may result in an 
error on the foreign DB: 

• GROUP BY clause
• ORDER BY clause 
• DISTINCT operator 
• Functions 
• Expressions
• Conditions 

5 If there is no specification, make the definition length of the data type of the foreign 
server equal to that of HiRDB.
If the definition length (length = n bytes, n  255) of the data type of HiRDB is less 
than the actual length of the data type of the foreign server, only the first n bytes are 
acquired.
If the definition length of the data type of HiRDB is greater, the data is inserted 
left-justified and any excess length is blank-filled (double-byte spaces for national 
character strings, single-byte spaces for character strings or mixed character strings), 
provided that HiRDB is of a fixed-length data type.
If HiRDB is of a variable-length data type, the data is acquired "as is."

Table C-7: Data type correspondence (foreign DB: ORACLE) (3/3)

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

TIME TSTAMP(p)
p = 0, 2, 4, or 

6

INTERVAL 
YEAR TO 

DAY

INTERVAL 
HOUR TO 
SECOND

BIN 
(n)

1  
n  
255

NUMBER(p,s)
p: Precision
s: Scaling

s = 0 or 
omitted

p = * or 
omitted

     

s = 0, 
omitted, 
or -28  
s  -1

1  p - s 
 4

     



C. Correspondence Between Data Types When a Foreign Table is Used

1159

5  p - s 
 9

     

10  p - 
s  29

     

30  p - 
s  38

     

1  s 
 29

1  p 
 29

     

p  30      

s  30 or s  -29      

CHAR(n) 1  n  255      

256  n  2,000      

VARCHAR2(n) 1  n  255      

256  n  4,000      

NCHAR(n) 
(2-byte 
fixed-width 
national 
character set)

1  n  127      

128  n  1,000      

NCHAR(n) 
(Variable-width 
national 
character set)

1  n  255      

256  n  2,000      

NVARCHAR2(n) 
(2-byte 
fixed-width 
national 
character set)

1  n  127      

128  n  2,000      

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

TIME TSTAMP(p)
p = 0, 2, 4, or 

6

INTERVAL 
YEAR TO 

DAY

INTERVAL 
HOUR TO 
SECOND

BIN 
(n)

1  
n  
255



C. Correspondence Between Data Types When a Foreign Table is Used

1160

NVARCHAR2(n) 
(Variable-width 
national 
character set)

1  n  255      

256  n  4,000      

LONG(n) 1  n  255      

256  n  32,000      

32,001  n  
2,000,000,000

     

DATE  R2    

RAW(n) 1  n  255      

256  n  2,000      

LONG RAW(n) 1  n  255     R3, 4

256  n  32,000      

32,001  n  
2,000,000,000

     

ROWID      

MLSLABEL      

CLOB(n) 1  n  
1,999,999,999

     

2,000,000,000  n 
 4,000,000,000

     

NCLOB(n) 1  n  
1,999,999,999

     

2,000,000,000  n 
 4,000,000,000

     

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

TIME TSTAMP(p)
p = 0, 2, 4, or 

6

INTERVAL 
YEAR TO 

DAY

INTERVAL 
HOUR TO 
SECOND

BIN 
(n)

1  
n  
255



C. Correspondence Between Data Types When a Foreign Table is Used

1161

Legend:
R: Recommended data type
Blank: Not mappable data type
TSTAMP: TIMESTAMP
BIN: BINARY

1 Hour, minute, and second are truncated.
2 When mapping to the TIMESTAMP type, either specify 0 in the precision p or omit 
this operand.
3 When mapping to the BINARY type, specify a value greater than or equal to the actual 
length (in bytes) of the longest data element that is stored in ORACLE.
4 If there is no specification, make the definition length of the data type of the foreign 
server equal to that of HiRDB.
If the definition length (length = n bytes, n  255) of the data type of HiRDB is less 
than the actual length of the data type of the foreign server, only the first n bytes are 
acquired.
If the definition length of the data type of HiRDB is greater, the data is inserted 
left-justified and any excess length is blank-filled (double-byte spaces for national 
character strings, single-byte spaces for character strings or mixed character strings), 
provided that HiRDB is of a fixed-length data type.
If HiRDB is of a variable-length data type, the data is acquired "as is."

C.4 Foreign DB: DB2
Tables C-8 and C-9 show data type correspondence (foreign DB: DB2).

BLOB(n) 1  n  
1,999,999,999

     

2,000,000,000  n 
 4,000,000,000

     

Data type of ORACLE
(Foreign DB)

Data type of HiRDB

TIME TSTAMP(p)
p = 0, 2, 4, or 

6

INTERVAL 
YEAR TO 

DAY

INTERVAL 
HOUR TO 
SECOND

BIN 
(n)

1  
n  
255



C. Correspondence Between Data Types When a Foreign Table is Used

1162

Table C-8: Data type correspondence (foreign DB: DB2) (1/2)

Data type of DB2 
(foreign DB)

Data type of HiRDB

SMA
LLIN

T

INTE
GER

DECI
MAL(
m,n)
1  
m  
29, 0 

 n 
 m

SMAL
LFLT 

or 
REAL

1

FLOA
T or 
DOU
BLE 

PREC
ISION

1

CHA
R(n)
1  

n 
 

255

VARC
HAR(n

)
1  n 

 
255

MCHA
R(n)

1  n 
 

255

MVAR
CHAR

(n)
1  n 

 
255

SMALLINT R M2 M3, 11 M M     

INTEGER M2 R M4, 11 M M     

DECIMAL(
p,s)
p: 
Precision
s: Scaling

1  
p  
29

M5 M6 R11, 12 M M     

30 
 p 
 

31

  M7, 11 M M     

REAL or FLOAT(n)1

1  n  21
M M M11 R M     

DOUBLE or 
FLOAT(n)1

22  n  53

M M M11 R M     

CHAR(n)
1  n  255

     R8, 13  R10, 13  

CHAR(n)
256  n

         

VARCHAR(n)
1  n  255

      R8, 13  R10, 13

VARCHAR(n)
256  n  
32,000

         

VARCHAR(n)
32,001  n

         



C. Correspondence Between Data Types When a Foreign Table is Used

1163

Legend:
R: Recommended data type
M: Mappable data type
D: For execution of the DESCRIBE statement, this is a mappable data type.
Blank: Not mappable data type

Note 1

GRAPHIC(n)
1  n  127

         

GRAPHIC(n)
128  n

         

VARGRAPHIC(n)
1  n  127

         

VARGRAPHIC(n)
128  n  
16,000

         

VARGRAPHIC(n)
16,001  n

         

DATE          

TIME          

TIMESTAMP      D9, 13    

BLOB          

CLOB          

DBLOB          

ROWID          

Data type of DB2 
(foreign DB)

Data type of HiRDB

SMA
LLIN

T

INTE
GER

DECI
MAL(
m,n)
1  
m  
29, 0 

 n 
 m

SMAL
LFLT 

or 
REAL

1

FLOA
T or 
DOU
BLE 

PREC
ISION

1

CHA
R(n)
1  

n 
 

255

VARC
HAR(n

)
1  n 

 
255

MCHA
R(n)

1  n 
 

255

MVAR
CHAR

(n)
1  n 

 
255



C. Correspondence Between Data Types When a Foreign Table is Used

1164

If a character string type of 255 bytes is defined for columns with greater than or 
equal to 256 bytes on the foreign server, only up to 255 bytes of data can be 
acquired.

Note 2

A DB2 error occurs if the number of bytes in a character string containing 
double-byte characters, after code conversion, is greater than the maximum 
number of bytes that can be accommodated on DB2.

1 The precision of values that can be represented may be reduced. The scope and 
precision of values on HiRDB are hardware-dependent.
2 The range is limited to between -32,768 and 32,767.
3 This should be declared as DECIMAL(5). The range is limited to between -32,768 
and 32,767.
4 This should be declared as DECIMAL(10). The range is limited to between 
-2,147,483,648 and 2,147,483,647.
5 This can be used if 1  p  4, s = 0.
6 This can be used if 1  p  9, s = 0.
7 If p - s  29, this can be mapped to DECIMAL(p-s,0). Any digits below the decimal 
point are truncated.
8 If the data does not include double-byte characters, the data type is the recommended 
data type.
9 This should be mapped to CHAR(n) (where n is 19 or 21 to 26). The format of the 
date or datetime character string is 'YYYY-MM-DD hh:mm:ss' if n = 19, and 
'YYYY-MM-DD hh:mm:ss.xxxxxx' if n = 21 to 26 (where x is 1 digit long if n = 21, 
and 6 digits long if n = 26). Comparison and arithmetic operations performed on a 
given column can cause an error on the foreign DB or produce unexpected results.
10 If the data includes double-byte characters, the data type is the recommended data 
type.
11 An error may occur if the number of digits in the integer part is less than the data 
type of HiRDB.
If the number of digits in the fractional part is less than the data type of HiRDB, data 
is acquired by truncating the excess fractional part to match the number of digits in the 
fractional part of the data type of HiRDB.
If the number of digits in the integer or fractional part is larger than the data type of 
HiRDB, data is acquired by zero-filling any extended portion to match the number of 



C. Correspondence Between Data Types When a Foreign Table is Used

1165

digits in the data type of HiRDB.
12 If p and s are omitted, different foreign servers have different default precision and 
scaling. Therefore, the precision (p) and scaling (s) on the foreign server should be 
made equal to the precision (m) and the scaling (n) in the foreign table definition, 
accordingly
When specifying these operands, make DECIMAL(m,n) equal to DECIMAL(p,s).
13 If there is no specification, make the definition length of the data type of the foreign 
server equal to that of HiRDB.
If the definition length (length = n bytes, n  255) of the data type of HiRDB is less 
than the actual length of the data type of the foreign server, only the first n bytes are 
acquired.
If the definition length of the data type of HiRDB is greater, the data is inserted 
left-justified and any excess length is blank-filled (double-byte spaces for national 
character strings, single-byte spaces for character strings or mixed character strings), 
provided that HiRDB is of a fixed-length data type.
If HiRDB is of a variable-length data type, the data is acquired "as is."

Table C-9: Data type correspondence (Foreign DB: DB2) (2/2)

Data type of DB2 
(foreign DB)

Data type of HiRDB

NCHA
R(n)

1  n 
 

127

NVAR
CHAR(

n)
1  n 

 
127

DATE TIME TIMES
TAMP(

p)
p = 0, 

2, 4, or 
6

INTER
VAL 

YEAR 
TO 

DAY

INTER
VAL 

HOUR 
TO 

SECO
ND

BINAR
Y(n)

1  n 
 

255

SMALLINT         

INTEGER         

DECIMAL
(p,s)
p: 
Precision
s: Scaling

1  
p  
29

        

 30  
p  
31

        

REAL or FLOAT(n)1

1  n  21
        



C. Correspondence Between Data Types When a Foreign Table is Used

1166

DOUBLE or 
FLOAT(n)1

22  n  53

        

CHAR(n)
1  n  255

        

CHAR(n)
256  n

        

VARCHAR(n)
1  n  255

        

VARCHAR(n)
256  n  
32,000

        

VARCHAR(n)
32,001  n

        

GRAPHIC(n)
1  n  127

R3, 5        

GRAPHIC(n)
128  n

        

VARGRAPHIC(n)
1  n  127

 R3, 5       

VARGRAPHIC(n)
128  n  
16,000

        

VARGRAPHIC(n)
16,001  n

        

DATE   R      

TIME    R2     

Data type of DB2 
(foreign DB)

Data type of HiRDB

NCHA
R(n)

1  n 
 

127

NVAR
CHAR(

n)
1  n 

 
127

DATE TIME TIMES
TAMP(

p)
p = 0, 

2, 4, or 
6

INTER
VAL 

YEAR 
TO 

DAY

INTER
VAL 

HOUR 
TO 

SECO
ND

BINAR
Y(n)

1  n 
 

255



C. Correspondence Between Data Types When a Foreign Table is Used

1167

Legend:
R: Recommended data type
Blank: Not mappable data type

Note 1

If a character string type of 255 bytes is specified for a column greater than or 
equal to 256 bytes on a foreign server, only a maximum of 255 bytes of data can 
be acquired.

Note 2

If the number of bytes in a character string containing double-byte characters, 
after code conversion, is greater than the maximum number of bytes that can be 
handled by DB2, an error may occur on DB2.

1 When mapping to the TIMESTAMP type, specify the value 6 in the precision p.
2 The hour 24 becomes the hour 0.
3 Whereas a maximum of 127 characters (254 bytes) can defined in the GRAPHIC type, 
for GRAPHIC-type literals the maximum size that can be specified is 124 characters 
(248 bytes). When specifying 125 characters or greater (249 bytes or greater), use the 
concatenation operation.
4 The hour 24 becomes the hour 0 of the following day. The value 
'9999-12-31-24.00.00.000000' may result in an error.
5 If there is no specification, make the definition length of the data type of the foreign 

TIMESTAMP     R1, 4    

BLOB         

CLOB         

DBLOB         

ROWID         

Data type of DB2 
(foreign DB)

Data type of HiRDB

NCHA
R(n)

1  n 
 

127

NVAR
CHAR(

n)
1  n 

 
127

DATE TIME TIMES
TAMP(

p)
p = 0, 

2, 4, or 
6

INTER
VAL 

YEAR 
TO 

DAY

INTER
VAL 

HOUR 
TO 

SECO
ND

BINAR
Y(n)

1  n 
 

255



C. Correspondence Between Data Types When a Foreign Table is Used

1168

server equal to that of HiRDB.
If the definition length (length = n bytes, n  255) of the data type of HiRDB is less 
than the actual length of the data type of the foreign server, only the first n bytes are 
acquired.
If the definition length of the data type of HiRDB is greater, the data is inserted 
left-justified and any excess length is blank-filled (double-byte spaces for national 
character strings, single-byte spaces for character strings or mixed character strings), 
provided that HiRDB is of a fixed-length data type.
If HiRDB is of a variable-length data type, the data is acquired "as is."



D. Restrictions on Using a Foreign Table

1169

D. Restrictions on Using a Foreign Table

This appendix explains restrictions applicable to the use of foreign tables.
(1) Transactions

All transactions involving a foreign server are treated as a 1-phase commit.
If, under the following circumstances, an error occurs during the post-update commit 
process, some servers (foreign servers) may be committed while other servers (foreign 
servers) may be rolled back:

• Resources of multiple foreign servers are updated simultaneously
• Resources of the local HiRDB and a foreign server are updated simultaneously

For this reason, you should update only one foreign server at a time within the same 
transaction (this applies also to updating the local HiRDB).

(2) Data guarantee levels and the lock option
HiRDB transfers the data guarantee level specified in the PDISLLVL client 
environment definition to the foreign server. The data guarantee level that is specified 
for each SQL statement by using the lock option is also transferred to the foreign 
server. However, if the lock option WITH EXCLUSIVE LOCK is specified, the lock status 
is retained until the end of the transaction. Table D-1 shows locking that is performed 
on the foreign server when the lock option is specified. Table D-2 shows locking that 
is performed on the foreign server when a lock option with WITH ROLLBACK and NO 
WAIT specifications is specified.

Table D-1: Locking on the foreign server with the lock option specified

Lock option Locking on foreign server

 HiRDB XDM/RD E2 Oracle DB2

Nothing specified The settings on the HiRDB client 
prevail.1

This is 1 when the 
data guarantee 
level is 0 or 1. FOR 
UPDATE is applied 
when the SELECT 
statement is 
executed.3

The settings on the 
HiRDB client 
prevail.2

WITH SHARE LOCK WITH SHARE LOCK applied FOR UPDATE is 
applied when the 
SELECT statement 
is executed.3

This is changed to 
2 if the data 
guarantee level is 0 
or 1.



D. Restrictions on Using a Foreign Table

1170

1 The lock option associated with the value specified in the PDISLLVL client 
environment definition is applied to the SQL statement. If the value is 0, 1, or 2, 
WITHOUT LOCK NOWAIT, WITHOUT LOCK WAIT, or WITH SHARE LOCK is applied, 
respectively. The default is application of WITH SHARE LOCK to the SQL statement.
2 Inherits the value specified in the PDISLLVL client environment definition. The 
default is 2.
3 If Y is specified in the pd_hb_get_lock operand of the foreign server information 
definition, the FOR UPDATE specification is assumed during execution of the SELECT 
statement. For details about foreign server information definitions, see the manual 
HiRDB Version 8 System Definition.
4 DB2 does not have an equivalent function. Even when WITH EXCLUSIVE LOCK is 
specified, lock in the shared mode takes effect.
5 Application of FOR UPDATE in ORACLE may cause errors in DISTINCT, GROUP BY, 
set functions, and aggregate functions. When using DISTINCT, GROUP BY, set 
functions, or aggregate functions, consider ways to prevent specification of WITH 
EXCLUSIVE LOCK in HiRDB.

Table D-2: Lock on foreign server with lock option specified with WITH 
ROLLBACK and NO WAIT specifications

WITH EXCLUSIVE 
LOCK

WITH EXCLUSIVE LOCK applied FOR UPDATE is 
applied when the 
SELECT statement 
is executed.5

This is changed to 
2 if the data 
guarantee level is 0 
or 1.4

WITHOUT 
LOCK[WAIT]

WITHOUT LOCK applied The data guarantee 
level is 1 (the lock 
option is not 
applied).

This is changed to 
1 if the data 
guarantee level is 
0. 

WITHOUT LOCK 
NOWAIT

WITHOUT LOCK NOWAIT applied The data guarantee 
level is 1 (the lock 
option is not 
applied).

This is changed to 
0 if the data 
guarantee level is 
non-zero.

Lock option Lock on foreign server

 HiRDB XDM/RD E2 Oracle DB2

WITH ROLLBACK WITH ROLLBACK applied Not applicable1, 5 Not applicable2

Lock option Locking on foreign server

 HiRDB XDM/RD E2 Oracle DB2



D. Restrictions on Using a Foreign Table

1171

1 Because no lock is performed on the foreign server, lock contention does not occur. 
If HiRDB internally specifies FOR UPDATE, NO WAIT is applied.
2 In DB2, if the value of RESOURCE TIMEOUT is 0, the result is the same as WITH 
ROLLBACK. If the value is not 0, the transaction is rolled back when the lock request 
times out.
3 Waits until locked resources are allocated, a time-out occurs, or a deadlock is 
detected. When time-out or deadlock is detected, the transaction is rolled back.
4 Because this item is not available in XDM/RD E2, an error occurs on the foreign 
server side.
5 WITH ROLLBACK cannot be specified in an update SQL statement.

(3) Cursors
A portable cursor cannot be used on a foreign table or a view table having a foreign 
table as a base table. In other words, any of the following specifications is not 
supported:

• WITH HOLD and UNTIL DISCONNECT of DECLARE CURSOR
• WITH HOLD of ALLOCATE CURSOR statement
• UNTIL DISCONNECT of dynamic SELECT statement
• UNTIL DISCONNECT of LOCK statement

(4) Update SQL statements that cannot be executed on foreign servers
1. When the target of row insertion, updating, or deletion is a foreign table, you 

cannot specify an INSERT, UPDATE, or DELETE statement that spans multiple 
foreign servers. Whether or not execution is possible is determined by the Hub 
optimization information definition and the content of the SQL statement. For 
details, see the notes on the Hub optimization information definition in the 
manual HiRDB Version 8 System Definition.

2. A syntax that cannot be executed by the foreign server cannot be used in an update 
SQL statement.

3. When the foreign server is DB2, an update SQL statement that specifies one of  
its foreign tables cannot be executed.

NO WAIT NO WAIT applied Not applicable4 Not applicable1 Not applicable3

Lock option Lock on foreign server

 HiRDB XDM/RD E2 Oracle DB2



D. Restrictions on Using a Foreign Table

1172

4. When the table into which a row is to be inserted is a foreign table, an INSERT 
statement that includes a set operation in the query expression body cannot be 
executed.

5. When WITH ROLLBACK is not supported by the foreign server, WITH ROLLBACK 
cannot be specified in an update SQL statement for one of its foreign tables.

(5) Operation by row
By-row operations cannot be performed on foreign tables.

(6) LOCK statement
If the lock on a foreign table specified in the LOCK statement fails, the transaction that 
executed the LOCK statement is rolled back.

(7) Operations on foreign server
Data greater than 256 bytes cannot be acquired from a foreign server.
If a column greater than or equal to 256 bytes on a foreign server is defined as a column 
in a foreign table (length: n bytes: n  255), the first n bytes are acquired. In this case, 
the definition length on the foreign server is assigned to the indicator variable.

(8) Subquery
Subqueries cannot be specified in SQL statements that access a foreign table. View 
tables containing a subquery cannot be specified on a mixed basis with foreign tables.

(9) Named derived tables (Foreign server: HiRDB)
If a view table meeting the conditions as an inner derived table on a foreign server is 
defined as a foreign table, and if the foreign table is specified in a query that satisfies 
the conditions as an inner derived table, an error may occur on the foreign server.

(10) Named derived tables (Foreign server: XDM/RD E2)
If 14 or more double-byte characters are used in a column name for a named derived 
table that is derived from a foreign table, and the named derived table becomes an inner 
derived table, an error may occur on the foreign server.

(11) Embedded variables and ? parameters
1. If an embedded variable and a ? parameter of any of the character types listed 

below are specified in an item other than a value expression, the processing is not 
executed on HiRDB, even if the actual length of the embedded variable and the ? 
parameter is greater than the value specified in the pd_hub_opt_data_len 
operand of the Hub optimization information definition. In this case, the 
processing is executed on the foreign server, and an error may occur. For details 
about the Hub optimization information definition, see the manual HiRDB 
Version 8 System Definition.

• Fixed-length character type



D. Restrictions on Using a Foreign Table

1173

• Variable-length character type
• Fixed-length national character type
• Variable-length national character type
• Fixed-length mixed character type
• Variable-length mixed character type

2. If an embedded variable and a ? parameter that require data conversion between 
character data and numeric data, an unexpected result may be produced 
depending on the foreign server, and a runtime error may occur.

3. If the number of ? parameters that can be executed on a foreign server is 
exceeded, an unexpected result may be produced, depending on the foreign 
server, and a runtime error may occur.

(12) Hexadecimal character string literal
If the value X'00' is included, a hexadecimal character string literal is specified on the 
foreign server. Therefore, some foreign servers may generate a runtime error.

(13) Number of retrieval items for retrieval executed on the foreign server
A runtime error may occur on a foreign server when the number of retrieval items that 
can be executed is less than on HiRDB.

(14) Correlation name
1. Any of the following names occurring in correlation-name can cause a run-time 

error:
PDHUBxx:
where xx denotes a 1-digit integer greater than or equal to 1
Example: SELECT C1 FROM FT1 PDHUB1,FT2
     
    SELECT C1 FROM T1 PDHUB1,T2 PDHUB1
   Legend: T1: Base table of FT1
        T2: Base table of FT2

2. Specifying a correlation name identical to the table identifier for the base table for 
a foreign table can cause a run-time error on some foreign servers.
Example: SELECT C1 FROM FT1 T1
     
    SELECT C1 FROM T1 T1



D. Restrictions on Using a Foreign Table

1174

   Legend: T1: Base table of FT1
3. Any of the following names occurring on the foreign server can cause a run-time 

error:
PDHUBxx:
where xx denotes a 1-digit integer greater than or equal to 1.
Example: SELECT C1 FROM FT1
     
    SELECT C1 FROM T1 PDHUB1,T2 PDHUB1
   Legend: PDHUB1: Base table of FT1

(15) Conversion and substitution into national character data types
When there is a character string literal that must be converted or substituted into a 
national character data type and the value includes a 1-byte character, an error may 
occur in the foreign server during SQL execution in the following cases:

• A character string literal is specified as the insertion value in an INSERT 
statement in which the column into which data is to be inserted is a national 
character data type.

• A character string literal is specified as the update value in an UPDATE statement 
in which the column to be updated is a national character data type. 

• A character string literal is specified as a national character data comparison 
target in the search condition.



E. Example Database

1175

E. Example Database

Figure E-1 shows an example of the basic table structure that is used in this manual.
Figure E-1: Example of basic table structure





1177

Index

Symbols
* 132
? parameter 54, 58

assigning value to 970

A
abstract data 737
abstract data type 26, 733, 759

notes on using 40
access privilege

granting 791
revoking 797

ADD OPTIMIZE LEVEL 472, 485, 560, 628, 712
AFTER trigger 713
alias

defining 573
deleting 750
list, old or new values 712
old or new values 712

ALL 109, 128, 194
ALL set function 226
ALLOCATE CONNECTION HANDLE 1003
ALLOCATE CURSOR statement Format 1 811
ALLOCATE CURSOR statement Format 2 813
ALTER PROCEDURE 472
ALTER ROUTINE 485
ALTER TABLE 497
ALTER TRIGGER 560
ANY 194
arithmetic operation 208
ASC 108, 678, 681, 687, 689
ASSIGN LIST statement 815, 821
assignment rules 70

for fixed-length target data 71
for variable-length target data 72

assignment statement 968, 970
assignment types 70

retrieval assignment 70

storage assignment 71
attribute

definition 733
name 733

AUTHORIZATION 472, 641
AVG 224, 225

B
BEFORE trigger 713
BEGIN 1052
BEGIN DECLARE SECTION 1000
BINARY 24
binary data 24, 703
BINARY LARGE OBJECT 24
BINARY type, notes on using 38
BLOB 24, 667
BOOLEAN 24
boundary value 653

list 654, 655
list, first dimension 654
list, second dimension 655

by-row (ROW specification) interface 900, 951

C
CALL statement 824
CASE abbreviation 407
CASE expression 407

searched 407
simple 407

CAST specification 454
CHAR[ACTER] 22
CHAR[ACTER] VARYING 22
character code 6
character data 22, 34, 702, 736

mixed 23, 34, 703, 737
national 22, 34, 703, 737

character length, maximum 472, 485, 560, 604, 628, 
712



Index

1178

character string item with actual length of 0, 
searching 52
character string output to file 1075
check constraint

multicolumn 690
single column 683

CLOSE statement 828
CLUSTER KEY 523
cluster key 677, 685
CLUSTER KEY UNIQUE 523
COALESCE 407
COLLATING_SEQUENCE 599
column attribute, updatable 521
column data suppression specification 668
column definition 665
column name

first dimension 654
second dimension 655

column recovery restriction 504, 668
column recovery restriction 2 520
column restriction 672
column specification 17, 107
COMMAND EXECUTE 1024
COMMENT 571
comment 5, 571
COMMIT statement 976
comparison operators 164
comparison predicate 29, 161
component specification 77
compound statement 1052
concatenation operation 221
condition details name 1018
conditional branching, executing by 1063
CONNECT privilege

granting 785
revoking 795

CONNECT statement 979
with RD-node specification 986

connected user, changing 995
connection handle 1003, 1008, 1010, 1012

allocating 1003
getting 1013
releasing 1008
to be used, declaring 1010

to be used, resetting all 1012
connection PDHOST variable 1003
connection PDNAMEPORT variable 1003
connection security facility

defining 589
deleting 757

constraint name definition 699
control SQL 974
conventions

KB, MB, GB and TB xix
version numbers xix

COPY 1016
correlation name 16, 151

new values 712
old values 712
scope for 156, 157

COUNT 224, 225
COUNT(*) 231
CREATE ALIAS 573
CREATE AUDIT 575
CREATE CONNECTION SECURITY 589
CREATE FOREIGN INDEX 595
CREATE FOREIGN TABLE 598
CREATE FUNCTION 604
CREATE INDEX 610, 624
CREATE PROCEDURE 628
CREATE PUBLIC VIEW 747
CREATE SCHEMA 641
CREATE SERVER 642
CREATE TABLE 644
CREATE TRIGGER 712
CREATE TYPE 733
CREATE USER MAPPING 739
CREATE VIEW 741
CURRENT DATE 46
CURRENT TIME 47
CURRENT_DATE 46
CURRENT_DATE value function 46
CURRENT_TIME 47
CURRENT_TIME value function 47
CURRENT_TIMESTAMP value function 47
cursor 832, 839, 908, 910

closing 828
declaring 832, 839



Index

1179

name 832
name, extended 465
opening 908, 910
retrieval information, receiving 858
specification 106

D
data

fetching 880, 884, 887
retrieving dynamically 925
updating 932, 948

data guarantee level 472, 485, 560, 628, 712
data manipulation SQL 807

for remote database access under distributed 
database 808

data type 21
correspondence between data types using 
foreign table 1138
predefined 21
that can be assigned 26
that can be compared 26
that can be converted 26
user-defined 25

DATE 23
date data 23, 703, 737

predefined character string representation 
of 43

date interval data 24, 703, 737
decimal representation of 45

date operation 211
datetime format 91

elements of 91
specifying 91

datetime interval data, decimal representation of 45
DAY[S] 212
DBA privilege

granting 785
revoking 795

DEALLOCATE PREPARE statement 830
DEC[IMAL] 22
decimal type, notes on using 35
DECLARE CONNECTION HANDLE SET 1010
DECLARE CONNECTION HANDLE UNSET 1012
DECLARE CURSOR 832, 839

DEFAULT clause 507, 520, 671
default constructor option 733
default value (WITH DEFAULT) 676
definition SQL 467, 469
DELETE statement 842, 847, 851
delimiter

inserting 3
insertion location of 3
location where delimiter is allowed 4
location where delimiter is not allowed 3

derived query expression
in WITH clause 115
in WITH clause, rule for 118

derived table 128
in FROM clause, rules on 154

DESC 108, 678, 681, 687, 689
DESCRIBE CURSOR statement 858
DESCRIBE statement 853, 856
DESCRIBE TYPE statement 860
diagnostic information, retrieving 1018
DISCONNECT statement 981

with RD-node specification 989
DISTINCT 128
DISTINCT set function 226
distributed RD-node

connecting to 986
disconnecting from 989

DOUBLE PRECISION 22
double-byte character 7
DROP ALIAS 750
DROP AUDIT 752
DROP CONNECTION SECURITY 757
DROP DATA TYPE 759
DROP DEFAULT 520
DROP FOREIGN INDEX 762
DROP FOREIGN TABLE 763
DROP FUNCTION 765
DROP INDEX 768
DROP LIST statement 863
DROP PROCEDURE 770
DROP PUBLIC VIEW 784
DROP SCHEMA 773
DROP SERVER 775
DROP TABLE 776



Index

1180

DROP TRIGGER 779
DROP USER MAPPING 781
DROP VIEW 782
duplicates exclusion 128

E
embedded exception, declaring 1031
embedded language 998
embedded SQL

declare section 1000, 1002
declaring beginning of 1000
declaring end of 1002

embedded variable 49, 58, 68
array 868, 904, 952, 953
assigning value to 970
default null values that can be set in 69
qualifying 51
relationship between embedded variable and 
SQL data type 52

embedded variable, function of
altering embedded variable 50
altering literal value 50
receipt of column value as retrieval result 50
specifying authorization identifier and 
password 51
specifying RD-node name 51
specifying SQL character string 51
specifying value for ? parameter 50

EMPTY 610, 624
encapsulation level 733
END DECLARE SECTION 1002
environment variable group name variable 1003
error

resignaling 1080
signaling 1077

ESCAPE 169, 175, 181
escape character 174, 179, 191
EXCEPT 117
EXCEPT VALUES 610
exception value specification 610
exclusive mode 417, 983
EXECUTE IMMEDIATE statement 875
EXECUTE statement 864, 868
extended cursor name 465

external routine specification 83, 604

F
FETCH statement 880, 884, 887
FIX 648
FIX hash partitioning 657
FLAT specification 226
flexible hash partitioning 656
FLOAT 22
FOR statement 1069
foreign DB

DB2 1161
HiRDB 1138
ORACLE 1151
XDM/RD E2 1144

foreign index
defining 595
deleting 762

FOREIGN KEY 691
foreign server

defining 642
deleting 775

foreign table
defining 598
deleting 763
restrictions on using 1169

free area, percentage of 659, 683
FREE CONNECTION HANDLE 1008
FREE LOCATOR statement 890
free pages in segment, percentage of 659
FROM clause, rules on derived tables in 154
function 78, 604, 765

body 604, 733
defining 604
deleting 765
system-defined 79
to be called, rules for determining 422
user-defined 78

function call 420
function return value, returning 1066

G
GB, meaning of xix
GET CONNECTION HANDLE 1013



Index

1181

GET DIAGNOSTICS 1018
GET_JAVA_STORED_ROUTINE_SOURCE 
specification 444
GRANT 785, 794
GRANT access privilege 791
GRANT CONNECT 785
GRANT DBA 785
GRANT RDAREA 785
GRANT SCHEMA 785
GROUP BY clause 139, 141

rules for 144
grouping column 140, 141
grouping condition 139
grouping operation 139, 141

H
hash function 524, 656, 693
HASH0 694
HASH1 693
HASH2 694
HASH3 694
HASH4 694
HASH5 694
HASH6 694
HASHA 693
HASHB 694
HASHC 694
HASHD 694
HASHE 694
HASHF 694
HAVING clause 140, 142

rules for 144
HAVING search condition 140, 142
HiRDB Control Manager - Agent 1024
HiRDB External Data Access, relationship to 98
holdable cursor 834, 839, 928
HOUR[S] 217

I
I/O information, receiving 853, 856
identifier

authorization 14
data type 14
host 1031

index 14
index type 14
routine 14
SQL statement 839, 853, 856, 860, 864, 912
table 14, 649
trigger 14

IF Statement 1063
index

defining 610, 624
deleting 768
name 14
option 610, 624, 683

index type name 14
INDEX USING 472
indicator variable 49, 58, 63

array 868, 904
qualifying 51

indicator variable, function of
altering literal value 50
receipt of column value as retrieval result 50
specifying value for ? parameter 50

inner derived table 427
INNER JOIN 152
inner join 152
inner replica facility, restrictions on use of 101
inner table 152
INSERT ONLY 663
INSERT statement 891, 898, 902
insertion value 891, 902

row 899
INSTALL JAR 1043
INT[EGER] 21
interface, row-by-row basis (ROW specification) 133
INTERVAL HOUR TO SECOND 24
INTERVAL YEAR TO DAY 24
INTO 853, 856, 864, 875, 880, 891, 898, 902, 903, 
921
ISOLATION 472, 485, 560, 628, 712
item specification 203

J
JAR file

re-registering 1045
registering 1043



Index

1182

removing 1047
Java routine 83
join 143

condition 143
rules for 143

joined column 143
joined table 151

rules on 154

K
KB, meaning of xix
keyword specification 2

L
labeled duration 211, 216
large object data 24, 703, 737

notes on using 37
LEAVE statement 1065
LEFT [OUTER] JOIN 152
library text, including 1016
LIMIT clause 108
limit row count 108
list

creating 815, 821
deleting 863

literals 41
character string 41, 42
decimal 41
floating-point numeric 42
hexadecimal character string literal 42
integer 41
mixed character string 41, 42
national character string 41, 42
numeric 41

LOB column storage RDAREA 505
locator 103

invalidating 890
lock control 982

on table 982
lock option 417, 832, 833, 921, 925, 930
LOCK PAGE 524, 660
lock resource, minimum unit of 523, 660
LOCK ROW 524, 660
LOCK statement 982

logical data 24
notes on using 40

logical operation 159

M
matrix partitioned LOB attribute storage 
RDAREA 670
matrix-partitioned tables 654
MAX 224, 225
MB, meaning of xix
MCHAR 23
MIN 224, 225
MINUTE[S] 217
MONTH[S] 212
multi-connection facility 1010
multi-connection function 1003
multiple statements, executing 1052
MVARCHAR 23

N
name

qualifying 14
specifying 9

NATIONAL CHAR[ACTER] 22
NATIONAL CHAR[ACTER] VARYING 22
NCHAR 22
NCHAR VARYING 22
NO SPLIT 504, 520, 666
NO WAIT 418, 918
non-partitioning key indexes 615
NOT FOUND 1031
NOT NULL 508, 675
NOT NULL constraint 675

specification 675
NULL 675
null value 74

default-setting function 69
NULLIF 407
NUMERIC 22
numeric data 21, 702, 736
numeric literals

decimal 43
floating-point numeric 43
integer 43



Index

1183

restriction on use of 43
numeric value

other than numeric literals 2
specifying 2

NVARCHAR 22

O
offset of first row to return 108
ON search condition 152
OPEN statement 908, 910
operand, order of specifying 2
OPTIMIZE LEVEL 472, 485, 560, 628, 712
ORDER BY clause 107
outer join 152
outer reference 152
outer table 152
overflow

in search condition, example of 414
in update value, example of 415

overflow error suppression feature 412

P
partitioning key index 614
password, changing auditor's 794
pattern character string 170, 176, 181

special characters in 171
PCTFREE 610, 659, 683
PDCNCTHDL type variable 1003, 1008, 1010

declaration 1041
plug-in

option 507, 624, 670
specification 507, 670

POSITION 970
predicate 161

BETWEEN 193
Boolean 198
comparison 161
EXISTS 197
IN 166
LIKE 169
NULL 165
quantified 194
results of 160
structured repetition 198

XLIKE 175
PREPARE statement 912
PRIMARY 678, 687
primary 203
primary key 680, 688
PRIVATE 734
privilege

granting 785
revoking 795

procedures
body 733
calling 824
defined in CREATE PROCEDURE 
procedure 78
defined in CREATE TYPE procedure 78
defining 628
deleting 770

PROTECTED 734
PUBLIC 734, 785, 795, 797
public view

defining 747
deleting 784

PURGE TABLE statement 918

Q
query expression 115
query expression body 115, 117

rule for 117
query name 151

scope for 156, 157
query retrieval item information 858
query specification 128

R
RD-node name 14
RDAREA list, matrix partitioning 505, 507, 616, 
625, 655
RDAREA name

index storage 679, 681, 687, 689
LOB attribute storage 506, 513, 670
LOB column storage 667
table storage 510, 650

RDAREA specification
abstract data type definition LOB storage 512



Index

1184

abstract data type LOB column storage 669
abstract date type definition LOB column 
storage 506
index storage 514
LOB column storage 505, 512
matrix partitioned index storage 616, 625, 
688, 690
matrix partitioned LOB attribute storage 507
matrix partitioned LOB column storage 505, 
667
matrix partitioned table storage 655
two dimensional storage 505, 507, 616, 625, 
655

RDAREA usage privilege
granting 785
revoking 795

READ ONLY 741, 747, 832
REAL 22
RECOVERY 668
reference specification 695
referential constraint

multicolumn 691
single column 684

regular expression specification, meaning of 184
RELEASE 976, 991
REMOVE JAR 1047
REPLACE JAR 1045
RESIGNAL statement 1080
result set cursor, allocating 813
results-set return facility 79
retrieval information, receiving 853, 856
retrieval item information 853
return code receiving variable 1003, 1008
RETURN statement 1066
REVOKE 795
REVOKE access privilege 797
REVOKE CONNECT 795
REVOKE DBA 795
REVOKE RDAREA 795
REVOKE SCHEMA 795
ROLLBACK statement 991
routine 78

name 14
routine control SQL 1050

row
deleting 842, 851
deleting all 918
in table by column, updating 962
in table multiple times by column, 
updating 952
in table on column-by-column basis, 
updating 932
in table with FIX specification multiple times 
by row, updating 953
inserting 891, 898
retrieving one 921
update value 949, 954, 966
updating by row 966
updating on row-by-row basis 948
using array, deleting 847
using array, inserting 902
using array, updating 952

row value constructors 202
row-partitioning

among servers 614
within a server 614

S
scalar function 234

list of 234
scalar operation 204
schema

defining 641
deleting 773
path 19

schema definition privilege
granting 785
revoking 795

search condition 139, 159, 683, 690
SECOND[S] 217
SEGMENT REUSE 524, 662
SELECT 128
SELECT statement

dynamic 925, 930
single-row 921

selection expression 128
SET 932, 952, 962, 968
SET clause 948, 954, 966



Index

1185

SET CONNECTION statement 993
SET DEFAULT clause 520
set function 224
set operation, results of

producing data length 121
producing data type 121

SET SESSION AUTHORIZATION statement 995
shared mode 417, 983
SIGNAL statement 1077
SIMILAR predicate 181
single-byte character 7
SMALLFLT 22
SMALLINT 21
SOME 194
sort item specification number 108
space percentage, unused 610
special character in pattern character string 171

escape character 171
meaning of (LIKE predicate) 171
meaning of (XLIKE predicate) 177
percent sign 171
underline 171

special name 607
SPLIT 520
SQL

character set of 5
coding format of 2
executing 864, 875
nullifying preprocessing of 830
preprocessing 875, 912

SQL compile option 472, 485, 560, 628, 712
SQL extension optimizing option 472, 485, 560, 
628, 712
SQL object

recreating for functions 485
recreating for procedures 472, 485
recreating for triggers 485

SQL optimization option 472, 485, 560, 628, 712
applying key conditions including scalar 
operations 479, 491, 566, 635, 723
deriving rapid search conditions 479, 491, 
566, 635, 723

facility for batch acquisition from functions 
provided by plug-ins 479, 491, 566, 635, 
723
forced nest-loop-join 479, 490, 565, 634, 
722
forcing use of multiple indexes 479, 491, 
566, 635, 722
group processing, ORDER BY processing, 
and DISTINCT set function processing at local 
back-end server 479, 490, 565, 635, 722
increasing number of floatable server 
candidates 479, 490, 565, 634, 722
increasing target floatable servers (back-end 
servers for fetching data) 479, 490, 565, 
634, 722
limiting target floatable servers (back-end 
servers for fetching data) 479, 491, 565, 
635, 722
making multiple SQL objects 479, 490, 565, 
634, 722
prioritized nest-loop-join 479, 490, 565, 
634, 722
priority of OR multiple index use 479, 490, 
565, 634, 722
rapid grouping facility 479, 491, 565, 635, 
722
separating data collecting servers 479, 491, 
565, 635, 722
suppressing creation of update-SQL work 
tables 479, 491, 566, 635, 722
suppressing index use (forced table 
scan) 479, 491, 566, 635, 722
suppressing use of AND multiple 
indexes 479, 490, 565, 635, 722

SQL optimization specification 447
for used index 448
join method 449
subquery execution method 450

SQL parameter 57, 58
assigning value to 968
name 604, 628

SQL prefix 1029
SQL procedure statement 604, 628, 1050
SQL reserved word deletion facility 13



Index

1186

SQL statement
control SQL 1131
data manipulation SQL 1126
definition SQL 1122
embedded language 1133
maximum length of 9
routine control SQL 1135
using array, executing 868

SQL terminator 1030
SQL variable 57, 58

assigning value to 968
SQLCODE 207
SQLCODE variable 1039
SQLCOUNT 207
SQLERROR 1031
SQLSTATE variable 1040
SQLWARNING 1031
statement

exiting 1065
on rows, repeating 1069
repeating 1067

statement cursor, allocating 811
statement information item name 1018
storage condition 652, 691
subquery 135
subscript 18
SUBSTR LENGTH 472, 485, 560, 604, 628, 712
subtype clause 733
SUM 224, 225
SUPPRESS 660, 668
system built-in scalar function 241

ABS 243
BIT_AND_TEST 243
CHARACTER 246
DATE 248
DAY 250
DAYS 252
DECIMAL 253
DIGITS 255
FLOAT 257
HEX 258
HOUR 262
INTEGER 263

IS_USER_CONTAINED_IN_HDS_GROUP
264

LENGTH 267
LOWER 270
MINUTE 271
MOD 272
MONTH 274
POSITION 275
SECOND 284
SUBSTR 285
TIME 293
TIMESTAMP 295
TIMESTAMP_FORMAT 300
UPPER 301
VALUE 302
VARCHAR_FORMA 304
YEAR 306

SYSTEM GENERATED 676
system-defined scalar function 307

ACOS 308
ADD_INTERVAL 309
ASCII 312
ASIN 313
ATAN 314
ATAN2 315
CEIL 316
CENTURY 317
CHR 318
COS 319
COSH 320
DATE_TIME 321
DAYNAME 323
DAYOFWEEK 324
DAYOFYEAR 325
DEGREES 326
EXP 327
FLOOR 329
GREATEST 330
HALF 332
INSERTSTR 334
INSERTSTR_LONG 334
INTERVAL_DATETIMES 338
IS_DBLBYTES 341
IS_SNGLBYTES 343



Index

1187

ISDIGITS 340
LAST_DAY 344
LEAST 345
LEFTSTR 347
LN 349
LOG10 350
LTRIM 351
LTRIMSTR 352
MIDNIGHTSECONDS 354
MONTHNAME 355
MONTHS_BETWEEN 357
NEXT_DAY 359
NUMEDIT 361
PI 364
POSSTR 365
POWER 367
QUARTER 369
RADIANS 371
REPLACE 372
REPLACE_LONG 372
REVERSESTR 374
RIGHTSTR 375
ROUND 377
ROUNDMONTH 379
RTRIM 382
RTRIMSTR 383
SIGN 385
SIN 386
SINH 387
SQRT 388
STRTONUM 389
TAN 392
TANH 393
TRANSL 394
TRANSL_LONG 394
TRUNC 397
TRUNCYEAR 399
WEEK 401
WEEKOFMONTH 403
YEARS_BETWEEN 404

T
table

alias 573, 750

defining 644
deleting 776
option 658
reference 139, 140, 150
restriction definition 665
retrieving dynamically 930
specification of 15

table definition, altering 497
table expression 128, 139, 921
table name 14, 16

scope for 156, 157
table primary 150
target audit event

defining 575
deleting 752

TB, meaning of xix
TIME 23
time data 23, 703, 737

predefined character string representation 
of 44

time interval data 24, 703, 737
decimal representation of 45

time operation 216
time stamp data 23, 703, 737

predefined character string representation 
of 44

TIMESTAMP 23
TRAILING_SPACE 600
transaction

canceling 991
terminating normally 976

trigger
action 712
action time 712
defining 712
deleting 779
event 712
name 14
SQL statement 712

trigger SQL object, recreating 560
type

defining 733
mapping 86



Index

1188

U
UAP

connecting to HiRDB 979
disconnecting from HiRDB 981
executing command from 1024

UNBALANCED SPLIT 610, 683
UNION 117
UNIQUE 610, 678, 687
uniqueness constraint, multicolumn 684
UNTIL DISCONNECT 832, 925, 982
UPDATE 832
UPDATE statement 932, 948, 952

preparable dynamic 962, 966
update value 932, 952, 962
USER 46
user mapping

defining 739
deleting 781

user-defined data type
deleting 759
name 14
receiving definition information on 860

V
value

expression 203
predefined 671
specification 203

VARCHAR 22
version number conventions xix
VIEW 741, 747
view table

deleting 782
read-only 744
writable 744

view, defining 741

W
WHENEVER 1031
WHERE 842, 847, 851, 932, 948, 952, 953, 962, 
966
WHERE search condition 139, 141
WHILE statement 1067

window function 231
window specification 231
WITH DEFAULT 508, 520, 675
WITH EXCLUSIVE LOCK 417
WITH HOLD 832
WITH PROGRAM 510, 516, 526, 527, 528, 549, 
700, 768, 773, 797
WITH query name 115
WITH ROLLBACK 418, 842, 847, 851, 891, 898, 
902, 903, 918, 932, 948, 952, 953, 962, 966, 982
WITH SHARE LOCK 417
WITHOUT LOCK [WAIT] 417
WITHOUT LOCK NOWAIT 418
WITHOUT PURGE 547
WITHOUT ROLLBACK 661
WRITE LINE statement 1075
WRITE specification 436

Y
YEAR[S] 212



Reader’s Comment Form 
We would appreciate your comments and suggestions on this manual. We will use 
these comments to improve our manuals. When you send a comment or suggestion, 
please include the manual name and manual number. You can send your comments 
by any of the following methods: 

• Send email to your local Hitachi representative. 
• Send email to the following address: 

                       WWW-mk@itg.hitachi.co.jp  
• If you do not have access to email, please fill out the following information 

and submit this form to your Hitachi representative: 

Manual name:  

Manual number:  

Your name:  

Company or 
organization: 

 

Street address:  
 

Comment: 
 

 
 
 
 
 
 
 
 

 

(For Hitachi use) 
 
 


