
Scalable Database Server

HiRDB Version 8
UAP Development Guide Part II

3020-6-356(F)

Relevant program products
List of program products:
For the HP-UX 11.0, HP-UX 11i, or HP-UX 11i V2 (PA-RISC) operating system:
P-1B62-1182 HiRDB/Single Server Version 8 08-00
P-1B62-1382 HiRDB/Parallel Server Version 8 08-00
P-1B62-1582 HiRDB/Single Server Version 8 (64) 08-00
P-1B62-1782 HiRDB/Parallel Server Version 8 (64) 08-00
P-1B62-1B82 HiRDB/Run Time Version 8 08-00
P-1B62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-1B62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-1B62-1E82 HiRDB/Developer's Kit Version 8 (64) 08-00
P-F1B62-11823 HiRDB Staticizer Option Version 8 08-00
P-F1B62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F1B62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F1B62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the HP-UX 11i V2 (IPF) operating system:
P-1J62-1582 HiRDB/Single Server Version 8 (64) 08-00
P-1J62-1782 HiRDB/Parallel Server Version 8 (64) 08-00
P-1J62-1D82 HiRDB/Run Time Version 8 (64) 08-00
P-1J62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F1J62-11823 HiRDB Staticizer Option Version 8 08-00
P-F1J62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F1J62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F1J62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the Solaris 8, 9, or 10 operating system:
P-9D62-1182 HiRDB/Single Server Version 8 08-00
P-9D62-1382 HiRDB/Parallel Server Version 8 08-00
P-9D62-1582 HiRDB/Single Server Version 8 (64) 08-00
P-9D62-1782 HiRDB/Parallel Server Version 8 (64) 08-00
P-9D62-1B82 HiRDB/Run Time Version 8 08-00
P-9D62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-9D62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-9D62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F9D62-11823 HiRDB Staticizer Option Version 8 08-00
P-F9D62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F9D62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F9D62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the AIX(R) 5L V5.1, V5.2, or V5.3 operating system:
P-1M62-1182 HiRDB/Single Server Version 8 08-00
P-1M62-1382 HiRDB/Parallel Server Version 8 08-00
P-1M62-1582 HiRDB/Single Server Version 8 (64) 08-00
P-1M62-1782 HiRDB/Parallel Server Version 8 (64) 08-00
P-1M62-1B82 HiRDB/Run Time Version 8 08-00
P-1M62-1C82 HiRDB/Developer's Kit Version 8 08-00

P-1M62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-1M62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F1M62-11823 HiRDB Staticizer Option Version 8 08-00
P-F1M62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F1M62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F1M62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the Red Hat Linux 7.1, Red Hat Linux 7.2, Red Hat Enterprise Linux AS 2.1, Red Hat Enterprise Linux AS 3 (x86), Red Hat
Enterprise Linux ES 3 (x86), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise
Linux AS 3 (AMD64 & Intel EM64T),* Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), or Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T) operating system:
P-9S62-1182 HiRDB/Single Server Version 8 08-00
P-9S62-1382 HiRDB/Parallel Server Version 8 08-00
P-9S62-1B82 HiRDB/Run Time Version 8 08-00
P-9S62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-F9S62-11823 HiRDB Staticizer Option Version 8 08-00
P-F9S62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F9S62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F9S62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
* Only operating systems that run on the Intel EM64T are supported.

For the Red Hat Enterprise Linux AS 3 (AMD64 & Intel EM64T),* Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), or
Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T) operating system:
P-9W62-1182 HiRDB/Single Server Version 8 08-00
P-9W62-1382 HiRDB/Parallel Server Version 8 08-00
P-9W62-1B82 HiRDB/Run Time Version 8 08-00
P-9W62-1C82 HiRDB/Developer's Kit Version 8 08-00
* Only operating systems that run on the Intel EM64T are supported.
For the Red Hat Enterprise Linux AS 3 (IPF) or Red Hat Enterprise Linux AS 4 (IPF) operating system:
P-9V62-1182 HiRDB/Single Server Version 8 08-00
P-9V62-1382 HiRDB/Parallel Server Version 8 08-00
P-9V62-1B82 HiRDB/Run Time Version 8 08-00
P-9V62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-F9V62-11823 HiRDB Staticizer Option Version 8 08-00
P-F9V62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F9V62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F9V62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the Windows 2000, Windows XP Professional, Windows XP x64 Edition, Windows Server 2003, Windows Server 2003 x64
Edition, Windows Server 2003 R2, or Windows Server 2003 R2 x64 Edition operating system:
P-2462-7187 HiRDB/Single Server Version 8 08-00
P-2462-7387 HiRDB/Parallel Server Version 8 08-00
P-2462-7H87 HiRDB Non Recover Front End Server Version 8 08-00
P-2462-7J87 HiRDB Advanced High Availability Version 8 08-00
P-2462-7K87 HiRDB Advanced Partitioning Option Version 8 08-00
For the Windows XP x64 Edition or Windows Server 2003 x64 Edition operating system:
P-2962-7187 HiRDB/Single Server Version 8 08-00
P-2962-7387 HiRDB/Parallel Server Version 8 08-00

P-2962-1187 HiRDB/Run Time Version 8 08-00
P-2962-1287 HiRDB/Developer's Kit Version 8 08-00
For the Windows Server 2003 (IPF) operating system:
P-2862-7187 HiRDB/Single Server Version 8 08-00
P-2862-7387 HiRDB/Parallel Server Version 8 08-00
P-2862-1187 HiRDB/Run Time Version 8 08-00
P-2862-1287 HiRDB/Developer's Kit Version 8 08-00
P-2862-7H87 HiRDB Non Recover Front End Server Version 8 08-00
P-2862-7J87 HiRDB Advanced High Availability Version 8 08-00
P-2862-7K87 HiRDB Advanced Partitioning Option Version 8 08-00
For the Windows 2000, Windows XP, Windows XP x64 Edition, Windows Server 2003, or Windows Server 2003 x64 Edition
operating system:
P-2662-1187 HiRDB/Run Time Version 8 08-00
P-2662-1287 HiRDB/Developer's Kit Version 8 08-00
This edition of the manual is released for the preceding program products, which have been developed under a quality management
system that has been certified to comply with ISO9001 and TickIT. This manual may also apply to other program products; for
details, see Before Installing or Readme file (for the UNIX version, see Software Information or Before Installing).

Trademarks
ActiveX is a trademark of Microsoft Corp. in the U.S. and other countries.
AIX is a registered trademark of the International Business Machines Corp. in the U.S.
CORBA is a registered trademark of Object Management Group, Inc. in the United States.
DataStage, MetaBroker, MetaStage and QualityStage are trademarks of International Business Machines Corporation in the United
States, other countries, or both.
DB2 is a registered trademark of the International Business Machines Corp. in the U.S.
HACMP/6000 is a trademark of the International Business Machines Corp. in the U.S.
HP-UX is a product name of Hewlett-Packard Company.
IBM is a registered trademark of the International Business Machines Corp. in the U.S.
Itanium is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.
JBuilder is a trademark of Borland Software Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds.
Lotus, 1-2-3 are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
Microsoft Access is a registered trademark of Microsoft Corporation in the U.S. and other countries.
Microsoft Excel is a product name of Microsoft Corp.
Microsoft is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Motif is a registered trademark of the Open Software Foundation, Inc.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ODBC is Microsoft's strategic interface for accessing databases.
OLE is the name of a software product developed by Microsoft Corporation and the acronym for Object Linking and Embedding.
ORACLE is a registered trademark of Oracle Corporation.
Oracle8i is a trademark of ORACLE Corporation.
Oracle9i is a trademark of ORACLE Corporation.
Oracle 10g is a trademark of ORACLE Corporation.
OS/390 is a trademark of the International Business Machines Corp. in the U.S.
POSIX stands for Portable Operating System Interface for Computer Environment, which is a set of standard specifications

published by the Institute of Electrical and Electronics Engineers, Inc.
RISC System/6000 is a registered trademark of the International Business Machines Corp. in the U.S.
Solaris is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun Microsystems is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
The right to use the trademark DCE in Japan is sub-licensed from OSF.
UNIFY2000 is a product name of Unify Corp.
UNIX is a registered trademark of The Open Group in the United States and other countries.
VERITAS is a trademark or registered trademark of Symantec Corporation in the U.S. and other countries.
Visual Basic is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual C++ is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual Studio is a registered trademark of Microsoft Corp. in the U.S. and other countries.
WebLogic is a registered trademark of BEA Systems, Inc.
Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows NT is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows Server is a registered trademark of Microsoft Corp. in the U.S. and other countries.
X/Open is a registered trademark of X/Open Company Limited in the U.K. and other countries.
X Window System is a trademark of X Consortium, Inc.
The following program products include material copyrighted by Sun Microsystems, Inc.: P-9D62-1182, P-9D62-1382,
P-9D62-1582, P-9D62-1782, P-9D62-1B82, P-9D62-1C82, P-9D62-1D82, P-9D62-1E82, P-F9D62-11823, P-F9D62-11825,
P-F9D62-11826, and P-F9D62-11827.
The following program products include material copyrighted by UNIX System Laboratories, Inc.: P-9D62-1182, P-9D62-1382,
P-9D62-1582, P-9D62-1782, P-9D62-1B82, P-9D62-1C82, P-9D62-1D82, P-9D62-1E82, P-F9D62-11823, P-F9D62-11825,
P-F9D62-11826, and P-F9D62-11827.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3020-6-356(E)): March, 2007

Copyright
All Rights Reserved. Copyright (C) 2007, Hitachi, Ltd.

i

Preface

This manual describes the following items:
• Basic information needed to develop user application programs using SQL.

HiRDB Scalable Database Server Version 8 uses SQL as a database language.
• Environment setup for HiRDB Client

In this manual, a user application program is referred to as a UAP.

Intended readers
This manual is intended for users who will be constructing or operating HiRDB
Version 8 ("HiRDB") relational database systems.
It is assumed that readers of this manual have the following:

• For Windows systems, a basic knowledge of managing Windows
• For UNIX Systems, a basic knowledge of managing UNIX or Linux
• A basic knowledge of SQL
• A basic knowledge of programming in C language, COBOL, or Java

Because this manual assumes knowledge of the information presented in HiRDB
Version 8 Description, readers should read that manual first.

Organization of this manual
This manual consists of the following 16 chapters and 9 appendixes:
Chapter 1. Overview

This chapter explains the work flow for creating UAPs and the types of SQL
statements to be used.

Chapter 2. Database Operations
This chapter explains the data expressions used in a HiRDB database and the
basic database operations.

Chapter 3. UAP Design
This chapter explains issues to be taken into consideration in designing a UAP.

Chapter 4. UAP Design for Improving Performance and Handling
This chapter describes issues that UAP designers should consider to improve
UAP performance and usability.

ii

Chapter 5. Notes about Creating UAPs that Access Object Relational Databases
This chapter describes notes about creating UAPs that access object relational
databases.

Chapter 6. Client Environment Setup
This chapter explains the procedure for installing a HiRDB client and describes
the environment definition for creating and executing a UAP.

Chapter 7. UAP Creation
This chapter explains the creation of embedded SQL UAPs written in C or
COBOL.

Chapter 8. Preparation for UAP Execution
This chapter explains the flow from UAP preprocessing to execution and the
methods used in those operations.

Chapter 9. Java Stored Procedures and Java Stored Functions
This chapter explains the development of stored procedures and stored functions
with Java.

Chapter 10. UAP Troubleshooting
This chapter explains collection of historical information for UAP execution and
error information; also explains the UAP error types and recovery methods.

Chapter 11. Using a Distributed Database
This chapter explains the creation of a UAP that accesses a distributed database.

Chapter 12. Command Execution from UAPs
This chapter explains the execution of commands from UAPs.

Chapter 13. HiRDB Access from ODBC Application Programs
This chapter explains the ODBC driver installation procedure and ODBC
functions.

Chapter 14. HiRDB Access from OLE DB Application Programs
This chapter explains HiRDB access from OLE DB application programs.

Chapter 15. HiRDB Access from ADO.NET-compatible Application Programs
This chapter describes how to access HiRDB from application programs that are
compliant with ADO.NET.

Chapter 16. Type2 JDBC Driver
This chapter explains the Type2 JDBC driver installation and JDBC functions.

iii

Chapter 17. Type4 JDBC Driver
This chapter explains the Type4 JDBC driver installation and JDBC functions.

Chapter 18. SQLJ
This chapter explains how to use SQLJ to develop a UAP.

Appendix A. SQL Communications Area
This appendix explains the organization and contents of the SQL
Communications Area, as well as expansion of the SQL Communications Areas.

Appendix B. SQL Descriptor Area
This appendix explains the organization and contents of the SQL Descriptor Area,
as well as expansion of the SQL Descriptor Area.

Appendix C. Column Name Descriptor Area
This appendix explains the organization and contents of the Column Name
Descriptor Area, as well as expansion of the Column Name Descriptor Area.

Appendix D. Type Name Descriptor Area
This appendix explains the organization and contents of the Type Name
Descriptor Area and expansion of the area.

Appendix E. SQL Data Types and Data Descriptions
This appendix explains the correspondence between the SQL data types and the
C data descriptions, and the correspondence between the SQL data types and the
COBOL data descriptions.

Appendix F. Data Dictionary Table Retrieval
This appendix explains the contents of the data dictionary tables and how to
reference them.

Appendix G. Functions provided by HiRDB
This appendix explains the hash function for table partitioning, the space
conversion function, the function for conversion to a DECIMAL signed
normalized number, and the function that sets the character code classification.

Appendix H. Maximum and Minimum HiRDB Values
This appendix explains the HiRDB maximum and minimum values.

Related publications
This manual is related to the following manuals, which should be read as required.
HiRDB (for Windows)

iv

• For Windows Systems HiRDB Version 8 Description (3020-6-351(E))
• For Windows Systems HiRDB Version 8 Installation and Design Guide

(3020-6-352(E))
• For Windows Systems HiRDB Version 8 System Definition (3020-6-353(E))
• For Windows Systems HiRDB Version 8 System Operation Guide

(3020-6-354(E))
• For Windows Systems HiRDB Version 8 Command Reference (3020-6-355(E))

HiRDB (for UNIX)
• For UNIX Systems HiRDB Version 8 Description (3000-6-351(E))
• For UNIX Systems HiRDB Version 8 Installation and Design Guide

(3000-6-352(E))
• For UNIX Systems HiRDB Version 8 System Definition (3000-6-353(E))
• For UNIX Systems HiRDB Version 8 System Operation Guide (3000-6-354(E))
• For UNIX Systems HiRDB Version 8 Command Reference (3000-6-355(E))
• HiRDB Staticizer Option Version 7 Description and User's Guide

(3000-6-282(E))
• For UNIX Systems HiRDB Version 8 Disaster Recovery System Configuration

and Operation Guide (3000-6-364)*

HiRDB (for UNIX and Windows)
• HiRDB Version 8 SQL Reference (3020-6-357(E))
• HiRDB Version 8 Messages (3020-6-358(E))
• HiRDB Datareplicator Version 8 Description, User's Guide and Operator's

Guide (3020-6-360(E))
• HiRDB Dataextractor Version 8 Description, User's Guide and Operator's Guide

(3020-6-362(E))
* This manual has been published in Japanese only; it is not available in English.
You must use the UNIX or the Windows manuals, as appropriate to the platform you
are using.
Others

• HiRDB External Data Access Version 7 Description and User's Guide
(3000-6-284(E))

• Distributed Database System DF/UX (3000-3-248(E))

v

• COBOL85 Operations Guide (3020-3-747(E))
• OpenTP1 Version 6 System Definition (3000-3-943(E))
• OpenTP1 Version 6 Programming Reference C Language (3000-3-945(E))
• OpenTP1 Version 6 Programming Reference COBOL Language (3000-3-946(E))
• TP1/LINK USER'S GUIDE (3000- 3-390(E))
• TPBroker User's Guide (3000-3-555(E))

Organization of HiRDB manuals
The HiRDB manuals are organized as shown below. For the most efficient use of these
manuals, it is suggested that they be read in the order they are shown, going from left
to right.

vi

Conventions: Abbreviations
Unless otherwise required, this manual uses the following abbreviations for product
and other names.

vii

Name of product or other entity Representation

HiRDB/Single Server Version 8 HiRDB/Single
Server

HiRDB or
HiRDB Server

HiRDB/Single Server Version 8(64)

HiRDB/Parallel Server Version 8 HiRDB/Parallel
Server

HiRDB/Parallel Server Version 8(64)

HiRDB/Developer's Kit Version 8 HiRDB/
Developer's Kit

HiRDB Client

HiRDB/Developer's Kit Version 8(64)

HiRDB/Run Time Version 8 HiRDB/Run Time

HiRDB/Run Time Version 8(64)

HiRDB Datareplicator Version 8 HiRDB Datareplicator

HiRDB Dataextractor Version 8 HiRDB Dataextractor

HiRDB Text Search Plug-in Version 7 HiRDB Text Search Plug-in

HiRDB Spatial Search Plug-in Version 3 HiRDB Spatial Search Plug-in

HiRDB Staticizer Option Version 8 HiRDB Staticizer Option

HiRDB LDAP Option Version 8 HiRDB LDAP Option

HiRDB Advanced Partitioning Option Version 8 HiRDB Advanced Partitioning Option

HiRDB Advanced High Availability Version 8 HiRDB Advanced High Availability

HiRDB Non Recover Front End Server Version 8 HiRDB Non Recover FES

HiRDB Disaster Recovery Light Edition Version 8 HiRDB Disaster Recovery Light
Edition

HiRDB External Data Access Version 8 HiRDB External Data Access

HiRDB External Data Access Adapter Version 8 HiRDB External Data Access Adapter

HiRDB Adapter for XML - Standard Edition HiRDB Adapter for XML

HiRDB Adapter for XML - Enterprise Edition

HiRDB Control Manager HiRDB CM

HiRDB Control Manager Agent HiRDB CM Agent

viii

Hitachi TrueCopy TrueCopy

Hitachi TrueCopy basic

TrueCopy

TrueCopy remote replicator

JP1/Automatic Job Management System 2 JP1/AJS2

JP1/Automatic Job Management System 2 - Scenario Operation JP1/AJS2-SO

JP1/Cm2/Extensible SNMP Agent JP1/ESA

JP1/Cm2/Extensible SNMP Agent for Mib Runtime

JP1/Cm2/Network Node Manager JP1/NNM

JP1/Integrated Management - Manager JP1/Integrated Management or JP1/IM

JP1/Integrated Management - View

JP1/Magnetic Tape Access EasyMT

EasyMT

JP1/Magnetic Tape Library MTguide

JP1/NETM/DM JP1/NETM/DM

JP1/NETM/DM Manager

JP1/Performance Management JP1/PFM

JP1/Performance Management Agent for HiRDB JP1/PFM-Agent for HiRDB

JP1/Performance Management - Agent for Platform JP1/PFM-Agent for Platform

JP1/Performance Management/SNMP System Observer JP1/SSO

JP1/VERITAS NetBackup BS v4.5 NetBackup

JP1/VERITAS NetBackup v4.5

JP1/VERITAS NetBackup BS V4.5 Agent for HiRDB License JP1/VERITAS NetBackup Agent for
HiRDB License

JP1/VERITAS NetBackup V4.5 Agent for HiRDB License

JP1/VERITAS NetBackup 5 Agent for HiRDB License

OpenTP1/Server Base Enterprise Option TP1/EE

Name of product or other entity Representation

ix

Virtual-storage Operating System 3/Forefront System Product VOS3/FS VOS3

Virtual-storage Operating System 3/Leading System Product VOS3/LS

Extensible Data Manager/Base Extended Version 2
XDM basic program XDM/BASE E2

XDM/BASE E2

XDM/Data Communication and Control Manager 3
XDM Data communication control XDM/DCCM3

XDM/DCCM3

XDM/Relational Database XDM/RD XDM/RD XDM/RD

XDM/Relational Database Extended Version 2
XDM/RD E2

XDM/RD E2

VOS3 Database Connection Server DB Connection Server

DB2 Universal Database for OS/390 Version 6 DB2

DNCWARE ClusterPerfect (Linux Version) ClusterPerfect

Microsoft(R) Excel Microsoft Excel or Excel

Microsoft(R) Visual C++(R) Visual C++ or C++

Oracle 8i ORACLE

Oracle 9i

Oracle 10g

Sun JavaTM System Directory Server Sun Java System Directory Server or
Directory Server

HP-UX 11i V2 (IPF) HP-UX or HP-UX (IPF)

Red Hat Linux Linux

Red Hat Enterprise Linux

Red Hat Enterprise Linux AS 3 (IPF) Linux (IPF) Linux

Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux AS 3 (AMD64 & Intel EM64T) Linux (EM64T)

Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

turbolinux 7 Server for AP8000 Linux for AP8000

Name of product or other entity Representation

x

Microsoft(R) Windows NT(R) Workstation Operating System Version
4.0

Windows NT

Microsoft(R) Windows NT(R) Server Network Operating System
Version 4.0

Microsoft(R) Windows(R) 2000 Professional Operating System Windows 2000

Microsoft(R) Windows(R) 2000 Server Operating System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating System

Microsoft(R) Windows(R) 2000 Advanced Server Operating System Windows 2000 or Windows 2000
Advanced Server

Microsoft(R) Windows ServerTM 2003, Standard Edition Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Enterprise Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard Edition Windows Server 2003 R2 or Windows
Server 2003

Microsoft(R) Windows ServerTM 2003 R2, Enterprise Edition

64 bit Version Microsoft(R) Windows ServerTM 2003, Enterprise
Edition (IPF)

Windows Server 2003 (IPF) or
Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Standard x64 Edition Windows Server
2003 or Windows
Server 2003 x64
Editions

Windows (x64)

Microsoft(R) Windows ServerTM 2003, Enterprise x64 Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard x64 Edition Windows Server
2003, Windows
Server 2003 R2 or
Windows Server
2003 x64 Editions

Microsoft(R) Windows ServerTM 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows(R) XP Professional x64 Edition Windows XP or
Windows XP x64
Edition

Microsoft(R) Windows(R) XP Professional Operating System Windows XP
Professional

Windows XP

Microsoft(R) Windows(R) XP Home Edition Operating System Windows XP Home
Edition

Single server SDS

Name of product or other entity Representation

xi

• Windows 2000, Windows XP, and Windows Server 2003 may be referred to
collectively as Windows.

• The hosts file means the hosts file stipulated by TCP/IP (including the /etc/
hosts file). As a rule, a reference to the hosts file means the
%windir%\system32\drivers\etc\hosts file.

This manual also uses the following abbreviations:

System manager MGR

Front-end server FES

Dictionary server DS

Back-end server BES

Abbreviation Full name or meaning

ACK Acknowledgement

ADM Adaptable Data Manager

ADO ActiveX Data Objects

ADT Abstract Data Type

AP Application Program

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BES Back End Server

BLOB Binary Large Object

BOM Byte Order Mark

CD-ROM Compact Disc - Read Only Memory

CGI Common Gateway Interface

CLOB Character Large Object

CMT Cassette Magnetic Tape

COBOL Common Business Oriented Language

CORBA(R) Common ORB Architecture

Name of product or other entity Representation

xii

CPU Central Processing Unit

CSV Comma Separated Values

DAO Data Access Object

DAT Digital Audio Taperecorder

DB Database

DBM Database Module

DBMS Database Management System

DDL Data Definition Language

DF for Windows NT Distributing Facility for Windows NT

DF/UX Distributing Facility/for UNIX

DIC Dictionary Server

DLT Digital Linear Tape

DML Data Manipulate Language

DNS Domain Name System

DOM Document Object Model

DS Dictionary Server

DTD Document Type Definition

DTP Distributed Transaction Processing

DWH Data Warehouse

EUC Extended UNIX Code

EX Exclusive

FAT File Allocation Table

FD Floppy Disk

FES Front End Server

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GUI Graphical User Interface

Abbreviation Full name or meaning

xiii

HBA Host Bus Adapter

HD Hard Disk

HTML Hyper Text Markup Language

ID Identification number

IP Internet Protocol

IPF Itanium(R) Processor Family

JAR Java Archive File

Java VM Java Virtual Machine

JDBC Java Database Connectivity

JDK Java Developer's Kit

JFS Journaled File System

JFS2 Enhanced Journaled File System

JIS Japanese Industrial Standard code

JP1 Job Management Partner 1

JRE Java Runtime Environment

JTA Java Transaction API

JTS Java Transaction Service

KEIS Kanji processing Extended Information System

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LIP loop initialization process

LOB Large Object

LRU Least Recently Used

LTO Linear Tape-Open

LU Logical Unit

LUN Logical Unit Number

LVM Logical Volume Manager

Abbreviation Full name or meaning

xiv

MGR System Manager

MIB Management Information Base

MRCF Multiple RAID Coupling Feature

MSCS Microsoft Cluster Server

NAFO Network Adapter Fail Over

NAPT Network Address Port Translation

NAT Network Address Translation

NIC Network Interface Card

NIS Network Information Service

NTFS New Technology File System

ODBC Open Database Connectivity

OLAP Online Analytical Processing

OLE Object Linking and Embedding

OLTP On-Line Transaction Processing

OOCOBOL Object Oriented COBOL

ORB Object Request Broker

OS Operating System

OSI Open Systems Interconnection

OTS Object Transaction Service

PC Personal Computer

PDM II E2 Practical Data Manager II Extended Version 2

PIC Plug-in Code

PNM Public Network Management

POSIX Portable Operating System Interface for UNIX

PP Program Product

PR Protected Retrieve

PU Protected Update

Abbreviation Full name or meaning

xv

RAID Redundant Arrays of Inexpensive Disk

RD Relational Database

RDB Relational Database

RDB1 Relational Database Manager 1

RDB1 E2 Relational Database Manager 1 Extended Version 2

RDO Remote Data Objects

RiSe Real time SAN replication

RM Resource Manager

RMM Resource Manager Monitor

RPC Remote Procedure Call

SAX Simple API for XML

SDS Single Database Server

SGML Standard Generalized Markup Language

SJIS Shift JIS

SNMP Simple Network Management Protocol

SQL Structured Query Language

SQL/K Structured Query Language / VOS K

SR Shared Retrieve

SU Shared Update

TCP/IP Transmission Control Protocol / Internet Protocol

TM Transaction Manager

TMS-4V/SP Transaction Management System - 4V / System Product

UAP User Application Program

UOC User Own Coding

VOS K Virtual-storage Operating System Kindness

VOS1 Virtual-storage Operating System 1

VOS3 Virtual-storage Operating System 3

Abbreviation Full name or meaning

xvi

Path name representations
• The backslash (\) is used as the delimiter in path names. Readers who are using

a UNIX version of HiRDB must replace the backslash with a forward slash (/).
When the path names in the Windows and UNIX versions differ, both path names
are given.

• The HiRDB directory path is represented as %PDDIR%. However, when the path
names in the Windows and UNIX versions differ, the directory path in the UNIX
version is represented as $PDDIR, as shown in the following example:

 Windows version: %PDDIR%\CLIENT\UTL\
 UNIX version: $PDDIR/client/lib/

• %windir% refers to a Windows installation directory path.

Log representations
 Windows version

The application log that is displayed by Windows Event Viewer is referred to as
the event log. The following procedure is used to view the event log.

To view the event log:
1. Choose Start, Programs, Administrative Tools (Common), and then Event
Viewer.
2. Choose Log, and then Application.

WS Workstation

WWW World Wide Web

XDM/BASE E2 Extensible Data Manager / Base Extended Version 2

XDM/DF Extensible Data Manager / Distributing Facility

XDM/DS Extensible Data Manager / Data Spreader

XDM/RD E2 Extensible Data Manager / Relational Database Extended Version 2

XDM/SD E2 Extensible Data Manager / Structured Database Extended Version 2

XDM/XT Extensible Data Manager / Data Extract

XFIT Extended File Transmission program

XML Extensible Markup Language

Abbreviation Full name or meaning

xvii

3. The application log is displayed. Messages with HiRDBSingleServer or
HiRDBParallelServer displayed in the Source column were issued by HiRDB.
If you specified a setup identifier when you installed HiRDB, the specified setup
identifier follows HiRDBSingleServer or HiRDBParallelServer.

 UNIX version

The OS log is referred to generically as syslogfile. syslogfile is the log output
destination specified in /etc/syslog.conf. Typically, the following files are
specified as syslogfile.

Conventions: Diagrams
This manual uses the following conventions in diagrams:

Conventions: Fonts and symbols
Font and symbol conventions are classified as:

• General font conventions

OS File

HP-UX /var/adm/syslog/syslog.log

Solaris /var/adm/messages or /var/log/syslog

AIX 5L /var/adm/ras/syslog

Linux /var/log/messages

xviii

• Conventions in syntax explanations
These conventions are described below.
General font conventions

The following table lists the general font conventions:

Examples of coding and messages appear as follows (although there may be some
exceptions, such as when coding is included in a diagram):
MakeDatabase
...
StoreDatabase temp DB32

In examples of coding, an ellipsis (...) indicates that one or more lines of coding are not
shown for purposes of brevity.

Font conventions in syntax explanations and examples
Conventions used in syntax explanations are explained as follows. When typing an
actual command, omit the syntax conventions, attributes, and syntax elements
described here.
Conventions in syntax explanations

Syntax definitions appear as follows:
StoreDatabase [temp|perm] (database-name ...)
The following table lists the conventions used in syntax explanations:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus,
menu options, buttons, radio box options, or explanatory labels. For example, bold is used in
sentences such as the following:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text provided by the user or system.
Italics are also used for emphasis. For example:
• Write the command as follows:

copy source-file target-file
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as messages) output
by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

xix

Syntax element conventions

Syntax element conventions explain the types of user-specified values.

Example font or symbol Convention

StoreDatabase Code-font characters must be entered exactly as shown.

database-name This font style marks a placeholder that indicates where appropriate characters are
to be entered in an actual command.

SD Bold code-font characters indicate the abbreviation for a command.

perm Underlined characters indicate the default value.

[] Square brackets enclose an item or set of items whose specification is optional.

| Only one of the options separated by a vertical bar can be specified at the same
time.

... An ellipsis (...) indicates that the item or items enclosed in () or [] immediately
preceding the ellipsis may be specified as many times as necessary.

() Parentheses indicate the range of items to which the vertical bar (|) or ellipsis (...)
is applicable.

The tilde is followed by the attribute of a user-specified value.

<< >> Double angle brackets enclose the default value that the system assumes when the
specification is omitted.

< > Angle brackets enclose the syntax element notation for a user-specified value.

(()) Double parentheses enclose the permitted range of user-specified values.

Syntax element Convention

<unsigned-integer> Numeric characters

<unsigned-decimal>1 Numeric value (0-9), period (.), numeric value (0-9)

<identifier>2 Alphanumeric character string beginning with an alphabetic character

<character-string> String of any characters

<alphabetics-and-special-characters> The alphabetic characters (A-Z and a-z) and the special characters #,
@, and \.

<symbolic-name> Alphanumeric name beginning with an alphabetic character or a
special character

xx

Use all single-byte characters. Alphabetic characters are case-sensitive. The path name
depends on the OS in use.
1

If the numeric value preceding the period is 0, it can be omitted. Similarly, if the
numeric value following the period is 0, both the period and the 0 can be omitted.

2
An RDAREA name can begin with an alphabetic character or symbol, an
alphanumeric, an underscore (_), or a space. However, when an RDAREA name
includes a space, the entire name must be enclosed in double quotation marks (").
A host name is a character string that can consist of alphabetic characters (A to Z,
a to z), numeric characters, periods (.), hyphens (-), and underscores (_). Host
names can begin with a numeric character.

3
If you use a space or a parenthesis in a path name, you must enclose the entire path
name in double quotation marks (").

Notations used in computational expressions

The following notations are used in computational expressions

Notes on Windows path names
• In this manual, the Windows terms directory and folder are both referred to as

directory.

<path-name>3 Alphanumeric characters, backslashes (\) or forward slashes (/), and
periods (.)
In Windows, path names may include spaces and parentheses.

Symbol Meaning

 Round up the result to the next integer.
Example: The result of 34 3 is 12.

 Discard digits following the decimal point.

Example: The result of 34 3 is 11.

MAX Select the largest value as the result.
Example: The result of Max(10, 2 4, 3 + 8) is 11.

MIN Select the smallest value as the result.
Example: The result of Min(10, 2 4, 3 + 8) is 8.

Syntax element Convention

xxi

• Include the drive name when you specify an absolute path name.
Example: C:\win32app\hitachi\hirdb_s\spool\tmp

• When you specify a path name in a command argument, in a control statement
file, or in a HiRDB system definition file, and that path name includes a space or
a parenthesis, you must enclose the entire path name in double quotation marks
(").

Example: pdinit -d "C:\Program
Files(x86)\hitachi\hirdb_s\conf\mkinit"
However, double quotation marks are not necessary when you use the set command
in a batch file or at the command prompt to set an environment variable, or when you
specify the installation directory. If you do use double quotation marks in such a case,
the double quotation marks become part of the value assigned to the environment
variable.
Example: set PDCLTPATH=C:\Program Files\hitachi\hirdb_s\spool

• HiRDB cannot use files on a networked drive, so you must install HiRDB and
configure the HiRDB environment on a local drive. Files used by utilities, such
as utility input and output files, must also be on the local drive.

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.
• Version 2.05 is written as 02-05.
• Version 2.50 (or 2.5) is written as 02-50.
• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

xxii

Sources of the HiRDB Relational database language
The HiRDB relational database language described in this manual was developed by
adding Hitachi's unique interpretations and specifications to the following standards.
Hitachi expresses its appreciation to the developers and acknowledges the sources of
these specifications.
HiRDB Relational Database
JIS X3005-1997 Database Language SQL
IS ISO9075-1992 Information processing systems - Database Language SQL
ANS X3.135-1986 Information systems - Database Language SQL

Relationships to ANSI Standard
The specifications for the HiRDB relational database language have been developed
by adding Hitachi's unique interpretations to the specifications of ANS X3.135-1986
Information systems - Database Language SQL.
Hitachi has been granted ANSI's permission for the creation of this manual; however,
ANSI is not responsible for this product or the contents of this manual.
Note

JIS: Japanese Industrial Standard
IS: International Standard
ANS: American National Standard
ANSI: American National Standards Institute

Acknowledgements
The COBOL language specifications were developed by CODASYL. The following
statements acknowledges Hitachi's indebtedness to the developers, as requested by
CODASYL. This acknowledgement restates a portion of the acknowledgement
provided in the original specifications of COBOL, CODASYL COBOL Journal of
Development 1984:
Any organization interested in reproducing the COBOL report and specifications in
whole or in part, using ideas from this report as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such organizations are requested
to reproduce the following acknowledgement paragraphs in their entirety as part of the
preface to any such publication. Any organization using a short passage from this
document, such as in a book review, is requested to mention COBOL in
acknowledgement of the source, but need not quote the acknowledgement.
COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

xxiii

No warranty, expressed or implied, is made by any contributor or by the CODASYL
COBOL Committee as to the accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.
The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the
UNIVAC I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.
Note
The DB2 linkage facility was unavailable at the time of this publication because the
English version of DF/UX Extension could not be supported in time for the document
release.

Important notes on this manual
The following facilities are explained, but they are not supported:

• Distributed database facility
• Server mode system switchover facility
• User server hot standby
• Rapid system switchover facility
• Standby-less system switchover (1:1) facility
• Standby-less system switchover (effects distributed) facility
• HiRDB External Data Access facility
• Inner replica facility (supported only in the Windows versions of HiRDB)
• Updatable online reorganization (supported only in the Windows versions of

HiRDB)
• Sun Java System Directory Server linkage facility
• Simple setup tool

The following products and option program products are explained, but they are not
supported:

• HiRDB Control Manager

xxiv

• HiRDB Disaster Recovery Light Edition
• HiRDB External Data Access
• HiRDB LDAP Option

Notes on printed manuals
Please note that even though the printed manuals are separated into Part I and Part II,
the chapters and page numbers sequentially continue from Part I to Part II. Also, please
note that the index is only included in Part II.

xxv

Contents

Preface i
Intended readers ...i
Organization of this manual ...i
Related publications .. iii
Organization of HiRDB manuals ..v
Conventions: Abbreviations ...vi
Path name representations ..xvi
Log representations ..xvi
Conventions: Diagrams ...xvii
Conventions: Fonts and symbols...xvii
Font conventions in syntax explanations and examples...................................... xviii
Notes on Windows path names ...xx
Conventions: KB, MB, GB, and TB ..xxi
Conventions: Version numbers...xxi
Sources of the HiRDB Relational database language ...xxii
Relationships to ANSI Standard..xxii
Acknowledgements ...xxii
Important notes on this manual ... xxiii
Notes on printed manuals ...xxiv

1. Overview 1
1.1 UAP development flow ..2
1.2 UAP characteristics ..3

1.2.1 UAP format ...3
1.2.2 List of SQL statements usable in HiRDB ...4

1.3 Interface with HiRDB...20
1.4 UAP operation environment...21

2. Database Operations 31
2.1 Database data expressions ..32

2.1.1 Relational database tables ...32
2.1.2 Object relational database tables ...34

2.2 Cursor usage ...36
2.3 Data retrieval ..39

2.3.1 Retrieval from a single table ...39
2.3.2 Retrieval from multiple tables...43
2.3.3 Retrieval of a table with FIX attribute ..45

2.4 Data updating..47

xxvi

2.4.1 Updating using a cursor .. 47
2.4.2 Updating with a condition specified... 48
2.4.3 Updating a table with the FIX attribute .. 49
2.4.4 Updating a table with repetition columns... 50

2.5 Data deletion .. 53
2.5.1 Deletion using a cursor ... 53
2.5.2 Deletion with a condition specified .. 54
2.5.3 Deleting all rows in a table ... 55

2.6 Data insertion ... 57
2.6.1 Inserting rows on a column basis ... 57
2.6.2 Inserting rows on a row basis (to a table with the FIX attribute) 58
2.6.3 Inserting rows into a table with repetition columns 59

2.7 Specific data search ... 61
2.7.1 Searching for data within a specified range of values 61
2.7.2 Searching for a specific character pattern... 64
2.7.3 Searching for non-NULL data .. 65
2.7.4 Searching for data that satisfies multiple conditions 66
2.7.5 Searching for data using a Boolean predicate .. 67
2.7.6 Searching for data using a structured repetition predicate 67
2.7.7 Searching for data using a subquery... 68

2.8 Data operations .. 73
2.8.1 Arithmetic operations on numeric data .. 73
2.8.2 Date and time data operations .. 74

2.9 Data processing.. 76
2.9.1 Data grouping ... 76
2.9.2 Data sorting... 77
2.9.3 Duplicated data elimination.. 78

2.10 Outer joining of tables ... 80
2.11 Defining and manipulating a view table .. 85
2.12 Manipulating data in a table with abstract data types .. 93

2.12.1 Abstract data types provided by the HiRDB Text Search Plug-in.............. 93
2.12.2 User-defined abstract data types... 102

3. UAP Design 107
3.1 Basic SQL configuration in a UAP.. 108
3.2 Overview of UAPs..115

3.2.1 UAP descriptive languages..115
3.2.2 Interface areas..116
3.2.3 Integrity constraints ...117
3.2.4 Retrieval methods using SQL statements ..117
3.2.5 Static and dynamic SQLs...119

3.3 Transaction control .. 128
3.3.1 Connection to and disconnection from a HiRDB system........................... 128
3.3.2 Transaction startup and termination ... 128

xxvii

3.3.3 Synchronization point setting and rollback...128
3.3.4 UAP transaction management in an OLTP environment129
3.3.5 Moving a transaction...131

3.4 Locking...133
3.4.1 Units of locking...133
3.4.2 Lock modes ...134
3.4.3 Lock period ...155
3.4.4 Deadlocks and corrective measures ..156
3.4.5 Unlocked conditional search ...163
3.4.6 Non-locking of index key values ..165
3.4.7 Lock and suppression implementable with a UAP168
3.4.8 Lock sequence based on SQL statement and index types170
3.4.9 Creating locked resources for index key values..181

3.5 Use of a cursor..183
3.5.1 Notes on table operations when a cursor is used...183
3.5.2 FOR UPDATE and FOR READ ONLY clauses ...186
3.5.3 Cursor declarations and locks ...187
3.5.4 Holdable cursor ...190
3.5.5 Examples of cursor use ...194

3.6 SQL error identification and corrective measures..198
3.6.1 Error identification ..198
3.6.2 Automatic error identification...201

4. UAP Design for Improving Performance and Handling 203
4.1 Using indexes ...204

4.1.1 Indexes and processing time ...204
4.1.2 Index priority...204
4.1.3 Changing indexes during retrieval ..205

4.2 Manipulation of tables with the FIX attribute ..206
4.3 Stored procedures and stored functions..207

4.3.1 Defining a stored procedure ..207
4.3.2 Defining a stored function...217
4.3.3 Defining and deleting stored functions ...228

4.4 Triggers...230
4.5 SQL optimization ...232

4.5.1 SQL optimizing modes..233
4.5.2 Optimization method types ...246
4.5.3 Specifying SQL optimization..248
4.5.4 Allocating floatable servers (HiRDB/Parallel Server only)249
4.5.5 Grouping processing methods (HiRDB/Parallel Server only)256
4.5.6 Join methods..261
4.5.7 Search Methods ...276
4.5.8 Execution of subqueries with no external references..................................284
4.5.9 Execution of subqueries with external references.......................................290

xxviii

4.5.10 Preparing for application of hash join and subquery hash execution 296
4.5.11 Deriving high-speed search conditions... 303

4.6 Data guarantee levels ... 314
4.6.1 Specifying the data guarantee level .. 314
4.6.2 Data guarantee level types.. 315
4.6.3 Example of search results when a data guarantee level is specified 316

4.7 Block transfer facility .. 319
4.8 Facilities using arrays .. 323

4.8.1 FETCH facility using arrays... 323
4.8.2 INSERT facility using arrays.. 332
4.8.3 UPDATE facility using arrays .. 345
4.8.4 DELETE facility using arrays .. 348

4.9 Rapid grouping facility .. 352
4.9.1 Overview .. 352
4.9.2 Application criteria ... 352
4.9.3 Specification method .. 353
4.9.4 Tuning method.. 353

4.10 Multi-connection facility ... 355
4.11 Using tables for managing numbers... 370
4.12 Narrowed search .. 379

4.12.1 What is a narrowed search? .. 379
4.12.2 Preparations for executing a narrowed search.. 379
4.12.3 Search using lists .. 380
4.12.4 Action if a rollback occurs for a transaction that uses a list 382
4.12.5 Automatic list deletion at HiRDB startup and termination 383
4.12.6 Notes about using lists .. 383

4.13 File output facility for BLOB data... 386
4.13.1 What is the file output facility for BLOB data? 386
4.13.2 Application criteria ... 387
4.13.3 Specification method .. 388
4.13.4 Notes about using the file output facility for BLOB data......................... 388
4.13.5 Examples of using the file output facility for BLOB data........................ 388

4.14 Addition update and partial extraction facility for BLOB and BINARY data 391
4.14.1 What is the addition update and partial extraction facility for BLOB and

BINARY data? ... 391
4.14.2 Examples of using the addition update and partial extraction facility for

BLOB data.. 391
4.14.3 Notes about using the addition update and partial extraction facility for

BLOB and BINARY data... 393
4.15 Retrieve first n records facility .. 395

4.15.1 Overview .. 395
4.15.2 Notes... 395
4.15.3 Checking the access path.. 396

4.16 Automatic reconnect facility.. 397

xxix

4.16.1 Application criteria..397
4.16.2 Reconnect timings ...397
4.16.3 CONNECT processing during automatic reconnect400
4.16.4 Notes about using the automatic reconnect facility400

4.17 Locator facility ...402
4.17.1 What is the locator facility? ..402
4.17.2 Application standard ...404
4.17.3 Usage method..404
4.17.4 Usage example ..404

4.18 Facility for returning the total number of hits ..407
4.18.1 Overview ...407
4.18.2 Usage examples...407
4.18.3 Note ...408

5. Notes about Creating UAPs that Access Object Relational Databases 409
5.1 Using abstract data types and user-defined functions ..410
5.2 Restrictions on functions provided by plug-ins..412

6. Client Environment Setup 421
6.1 Types of HiRDB clients..422
6.2 Environment setup procedure for HiRDB clients...423
6.3 HiRDB client installation ...424

6.3.1 Installing a HiRDB client on a UNIX client ...424
6.3.2 Installing a HiRDB client on a Windows client ..424

6.4 Organization of directories and files for a HiRDB client427
6.4.1 Directories and files for UNIX clients ..427
6.4.2 Directories and files for Windows clients ...444

6.5 Setting the hosts file ...458
6.6 Client environment definitions (setting environment variables)459

6.6.1 Environment setup format ...459
6.6.2 Specifications for using a UAP under OLTP as the client471
6.6.3 Client environment definitions..487
6.6.4 Environment definition information..498
6.6.5 Environment variables and connection types for HiRDB servers...............607
6.6.6 Specifying client environment definitions for foreign table access608

6.7 Registering an environment variable group..610
6.7.1 Registering an environment variable group in a UNIX environment610
6.7.2 Registering an environment variable group in a Windows environment

(registry registration) ..611
6.7.3 Registering an environment variable group in a Windows environment (file

registration) ...618

7. UAP Creation 619
7.1 Overview ..620

xxx

7.1.1 UAP basic configuration .. 620
7.1.2 UAP configuration elements .. 620

7.2 Writing a UAP in C.. 622
7.2.1 Coding rules.. 622
7.2.2 Program example.. 628

7.3 Writing a UAP in COBOL... 658
7.3.1 Coding rules.. 658
7.3.2 Program example.. 663

7.4 Writing a UAP in C++ ... 694
7.4.1 Coding rules.. 694

7.5 Writing a UAP in OOCOBOL... 695
7.5.1 Coding rules.. 695

8. Preparation for UAP Execution 697
8.1 UAP execution procedure .. 698

8.1.1 Executing a UAP written in C .. 698
8.1.2 Executing a UAP written in COBOL ... 699

8.2 Preprocessing ... 701
8.2.1 Overview .. 701
8.2.2 Preprocessing in UNIX... 702
8.2.3 Preprocessing in Windows ... 714
8.2.4 Validating preprocessor declaration statements.. 726
8.2.5 Dispensing with the embedded SQL declare section 727
8.2.6 Specifying pointers as environment variables .. 728
8.2.7 Referencing structures .. 731
8.2.8 Use of pointers, structures, and structure qualifiers when the -E2 or -E3 option

of the preprocessor is specified .. 733
8.3 Compiling and linking ... 737

8.3.1 Libraries for compiling and linking.. 737
8.3.2 Compiling and linking in UNIX... 743
8.3.3 Compiling and linking in Windows.. 750
8.3.4 Compiling and linking when the multi-connection facility is used............ 752

8.4 Notes on UAP execution.. 759
8.4.1 Executing UAPs that use an X/Open-based API (TX_function) 759
8.4.2 Creating UAPs that support the 64-bit mode.. 767
8.4.3 Converting UAPs created with XDM/RD or UNIFY2000 768
8.4.4 Notes on UAP execution .. 769

9. Java Stored Procedures and Java Stored Functions 771
9.1 Overview.. 772
9.2 Procedure from Java stored routine creation to execution..................................... 775

9.2.1 Coding a Java stored routine .. 775
9.2.2 Registering the JAR file in HiRDB .. 778
9.2.3 Defining the Java stored routine... 779

xxxi

9.2.4 Executing the Java stored routine..779
9.3 Sample programs of Java stored routine...781

9.3.1 Sample program ..781
9.3.2 Sample Java stored routines provided with HiRDB....................................785

9.4 Notes about Java program creation ..806
9.4.1 Unsupported methods..806
9.4.2 Package, class, and method definitions ...807
9.4.3 Parameter input/output mode mapping (Java stored procedures only)808
9.4.4 Results-set return facility (Java stored procedures only)809
9.4.5 Connection in a Java stored procedure..815
9.4.6 Releasing the result sets ..815

9.5 Notes about testing and debugging...816
9.5.1 Java program for a Java stored procedure ...816
9.5.2 Java program for a Java stored function..817

9.6 Notes about JAR file creation...819
9.6.1 Integrating Class files..820
9.6.2 Integrating Java files ...820

10. UAP Troubleshooting 823
10.1 Gathering error information..824

10.1.1 SQL tracing ...824
10.1.2 Error logging ...839
10.1.3 Facility for output of extended SQL error information.............................842
10.1.4 UAP statistical report facility ..856
10.1.5 Command trace facility ...885
10.1.6 SQL trace dynamic acquisition facility ...887
10.1.7 Reconnect trace facility ...889
10.1.8 HiRDB SQL Tuning Advisor access path information file892

10.2 UAP error recovery ..894

11. Using a Distributed Database (Limited to HP-UX and AIX 5L) 897
11.1 Format of a distributed database...898

11.1.1 Accessing a distributed database and its relationship to RD-nodes898
11.1.2 Relationship between a connection between RD-nodes and an SQL

connection ...898
11.1.3 Generating and terminating an SQL connection899
11.1.4 Current SQL connection and database access ...901
11.1.5 SQL connection and transaction control ...902

11.2 Creating a UAP that accesses a remote database..904
11.2.1 Rules governing distributed clients and servers ..904
11.2.2 Using the default SQL connection ..905
11.2.3 Using an SQL connection to a distributed RD-node907

11.3 Available SQL statements...909
11.3.1 SQL statements usable for remote database access...................................909

xxxii

11.3.2 Details about available SQL statements ... 910
11.4 Available data types ... 922

11.4.1 Data types of variables usable in remote database access 922
11.4.2 Correspondence between distributed server data types and HiRDB data

types ... 922
11.5 Handling distributed server errors.. 930

11.5.1 Return codes set by the distributed client ... 930
11.5.2 Obtaining and using detailed error information.. 930

11.6 Notes about using a distributed database ... 933
11.6.1 Notes about using a distributed client... 933
11.6.2 Notes about using a distributed server.. 934

12. Command Execution from UAPs 937
12.1 Overview.. 938
12.2 Preparations for executing commands from a UAP .. 939
12.3 Command executability ... 946

13. HiRDB Access from ODBC Application Programs 953
13.1 ODBC application programs ... 954
13.2 Installing the ODBC2.0 driver... 955
13.3 Installing the ODBC3.0 driver and setting the environment variables................ 959

13.3.1 Installation .. 959
13.3.2 Setting the environment variables .. 962
13.3.3 Determining the version number of the ODBC3.0 driver 962

13.4 ODBC functions provided by HiRDB ... 963
13.5 ODBC function data types and HiRDB data types.. 967
13.6 Asynchronous execution of ODBC functions ... 972
13.7 Setting cursor libraries ... 976
13.8 File DSNs... 977
13.9 Executing a UAP in Unicode... 978
13.10 Tuning and troubleshooting ... 981
13.11 Facilities that cannot be used when HiRDB is accessed with ODBC 982

14. HiRDB Access from OLE DB Application Programs 983
14.1 Overview.. 984
14.2 Connection interface .. 985

14.2.1 Registry information... 985
14.2.2 Connection properties... 986

14.3 Schema information... 988
14.4 Data type correspondences .. 990
14.5 Error handling procedures ... 991

14.5.1 Troubleshooting facility.. 991
14.6 Notes .. 992

xxxiii

15. HiRDB Access from ADO.NET-compatible Application Programs 993
15.1 Overview ..994

15.1.1 HiRDB.NET Data Provider...994
15.1.2 Prerequisite programs for HiRDB.NET Data Provider.............................994

15.2 Installing HiRDB.NET Data Provider..995
15.2.1 Installation procedure ..995
15.2.2 Files that are installed..995
15.2.3 Checking the version information ...995

15.3 List of classes provided by HiRDB.NET Data Provider996
15.4 List of members provided by HiRDB.NET Data Provider997

15.4.1 List of HiRDBCommand members...997
15.4.2 List of HiRDBCommandBuilder members...998
15.4.3 List of HiRDBConnection members ...998
15.4.4 List of HiRDBDataAdapter members ...999
15.4.5 List of HiRDBDataReader members...1000
15.4.6 List of HiRDBException members ...1001
15.4.7 List of HiRDBParameter members ...1002
15.4.8 List of HiRDBParameterCollection members...1003
15.4.9 List of HiRDBRowUpdatedEventArgs members1004
15.4.10 List of HiRDBRowUpdatingEventArgs members1004
15.4.11 List of HiRDBTransaction members...1004

15.5 Interfaces of HiRDB.NET Data Provider...1006
15.5.1 HiRDBCommand ..1006
15.5.2 HiRDBCommandBuilder ..1010
15.5.3 HiRDBConnection ..1011
15.5.4 HiRDBDataAdapter ..1015
15.5.5 HiRDBDataReader..1016
15.5.6 HiRDBException ..1025
15.5.7 HiRDBParameter ..1026
15.5.8 HiRDBParameterCollection..1030
15.5.9 HiRDBRowUpdatedEventArgs...1035
15.5.10 HiRDBRowUpdatingEventArgs ...1036
15.5.11 HiRDBTransaction ..1036

15.6 Notes about HiRDB.NET Data Provider..1039
15.7 Data types of HiRDB.NET Data Provider..1041

15.7.1 DbType and HiRDBType properties ...1041
15.7.2 Data types and accessories used by a UAP ...1043
15.7.3 Type conversion by HiRDB.NET Data Provider1044

15.8 Example of a UAP using HiRDB.NET Data Provider.......................................1051
15.8.1 Connecting to the database..1051
15.8.2 Executing the SQL statement ..1052
15.8.3 Executing a transaction ...1053
15.8.4 Executing a search statement ..1055
15.8.5 Executing the INSERT facility using arrays ...1056

xxxiv

15.8.6 Executing a repetition column.. 1057

16. Type2 JDBC Driver 1059
16.1 Installation and environment setup .. 1060

16.1.1 Installing ... 1060
16.1.2 Environment setup.. 1060
16.1.3 Abbreviation of methods .. 1061

16.2 JDBC1.0 facility .. 1062
16.2.1 Driver class ... 1062
16.2.2 Connection class ... 1071
16.2.3 Statement class.. 1072
16.2.4 PreparedStatement class ... 1073
16.2.5 CallableStatement class .. 1073
16.2.6 ResultSet class .. 1074
16.2.7 ResultSetMetaData class .. 1075
16.2.8 DatabaseMetaData class ... 1078
16.2.9 SQLWarning class... 1078

16.3 JDBC2.0 basic facility ... 1080
16.3.1 Result set enhancements ... 1080
16.3.2 Batch updating.. 1082
16.3.3 Added data types .. 1086

16.4 JDBC2.0 Optional Package ... 1096
16.4.1 Database connection using DataSource and JNDI 1096
16.4.2 Connection pooling... 1099
16.4.3 Distributed transactions ...1101

16.5 JAR file access facility ...1104
16.5.1 Class name...1104
16.5.2 Method name ...1104

16.6 Array class ..1107
16.7 Specifying a value when using a repetition column as the ? parameter1109
16.8 Functions provided by the HiRDB JDBC driver ..1112

16.8.1 Provided class ..1112
16.8.2 setBlockUpdate..1112
16.8.3 getBlockUpdate ...1113

16.9 Notes on using the BLOB type ...1115
16.10 Setting system properties ..1117

16.10.1 Setting the array facility ..1117
16.10.2 Setting the maximum number of SQL search items or ? parameters1118

16.11 Connection information setup/acquisition interface ...1121
16.11.1 setDescription ..1122
16.11.2 getDescription..1124
16.11.3 setDBHostName ..1125
16.11.4 getDBHostName..1126
16.11.5 setEncodeLang...1126

xxxv

16.11.6 getEncodeLang..1128
16.11.7 setUser ...1128
16.11.8 getUser...1129
16.11.9 setPassword ...1130
16.11.10 getPassword...1131
16.11.11 setXAOpenString...1131
16.11.12 getXAOpenString ..1132
16.11.13 setXACloseString ..1133
16.11.14 getXACloseString..1133
16.11.15 setRMID ..1134
16.11.16 getRMID..1135
16.11.17 setXAThreadMode...1135
16.11.18 getXAThreadMode ..1136
16.11.19 setCommit_Behavior...1136
16.11.20 getCommit_Behavior ..1138
16.11.21 setBlockUpdate ...1139
16.11.22 getBlockUpdate ...1140
16.11.23 setLONGVARBINARY_Access ...1141
16.11.24 getLONGVARBINARY_Access...1141
16.11.25 setSQLInNum..1142
16.11.26 getSQLInNum ...1143
16.11.27 setSQLOutNum ...1144
16.11.28 getSQLOutNum...1145
16.11.29 setSQLWarningLevel...1145
16.11.30 getSQLWarningLevel ..1146
16.11.31 setClear_Env ...1147
16.11.32 getClear_Env ...1148

16.12 Data types and character codes...1149
16.12.1 Data types ..1149
16.12.2 Character code conversion facility ..1150

16.13 Classes and methods with limitations...1152
16.13.1 Driver class..1152
16.13.2 Connection class..1152
16.13.3 Statement class ..1153
16.13.4 PreparedStatement class ..1154
16.13.5 CallableStatement class...1154
16.13.6 ResultSet class...1155
16.13.7 ResultSetMetaData class ...1156
16.13.8 DatabaseMetaData class..1157
16.13.9 Blob class ..1164
16.13.10 Array class...1164

17. Type4 JDBC Driver 1165
17.1 Installation and environment setup...1166

xxxvi

17.1.1 Installation ...1166
17.1.2 Environment setup...1166
17.1.3 Abbreviation of methods ...1167

17.2 Database connection using the DriverManager class ...1168
17.2.1 Registering the Driver class...1168
17.2.2 Connecting to HiRDB with the getConnection method1169

17.3 Database connection using a DataSource object and JNDI................................1188
17.4 JDBC1.2 core API ..1192

17.4.1 Driver interface..1192
17.4.2 Connection interface..1193
17.4.3 Statement interface ..1199
17.4.4 PreparedStatement interface ... 1203
17.4.5 ResultSet interface.. 1208
17.4.6 DatabaseMetaData interface... 1216
17.4.7 ResultSetMetaData interface .. 1222
17.4.8 Blob interface ... 1223
17.4.9 SQLException interface ... 1224
17.4.10 SQLWarning interface .. 1224
17.4.11 Unsupported interfaces ... 1226

17.5 JDBC2.1 Core API .. 1227
17.5.1 Expansion of the result set.. 1227
17.5.2 Batch update ... 1227
17.5.3 Added data types .. 1231
17.5.4 Unsupported interfaces ... 1231

17.6 JDBC2.0 Optional Package ... 1233
17.6.1 JNDI support... 1233
17.6.2 Connection pool.. 1234
17.6.3 Distributed transactions .. 1236
17.6.4 Unsupported interfaces ... 1239

17.7 Connection information setup and acquisition interface 1240
17.7.1 setDescription ... 1242
17.7.2 getDescription... 1245
17.7.3 setDBHostName ... 1245
17.7.4 getDBHostName... 1246
17.7.5 setJDBC_IF_TRC... 1246
17.7.6 getJDBC_IF_TRC .. 1247
17.7.7 setTRC_NO .. 1248
17.7.8 getTRC_NO.. 1249
17.7.9 setUapName.. 1249
17.7.10 getUapName ... 1250
17.7.11 setUser .. 1251
17.7.12 getUser.. 1252
17.7.13 setPassword .. 1252
17.7.14 getPassword .. 1253

xxxvii

17.7.15 setXAOpenString ..1254
17.7.16 getXAOpenString..1255
17.7.17 setXACloseString..1256
17.7.18 getXACloseString ...1256
17.7.19 setLONGVARBINARY_Access ...1257
17.7.20 getLONGVARBINARY_Access...1258
17.7.21 setSQLInNum..1258
17.7.22 getSQLInNum ...1259
17.7.23 setSQLOutNum...1260
17.7.24 getSQLOutNum ..1261
17.7.25 setSQLWarningLevel ..1261
17.7.26 getSQLWarningLevel ..1262
17.7.27 setXALocalCommitMode ...1263
17.7.28 getXALocalCommitMode...1264
17.7.29 setSQLWarningIgnore ...1265
17.7.30 getSQLWarningIgnore...1265
17.7.31 setHiRDBCursorMode ..1266
17.7.32 getHiRDBCursorMode..1267
17.7.33 setNotErrorOccurred ...1268
17.7.34 getNotErrorOccurred...1269
17.7.35 setEnvironmentVariables...1269
17.7.36 getEnvironmentVariables ..1270
17.7.37 setEncodeLang ..1271
17.7.38 getEncodeLang..1273
17.7.39 setMaxBinarySize ...1273
17.7.40 getMaxBinarySize ...1275
17.7.41 setStatementCommitBehavior...1275
17.7.42 getStatementCommitBehavior ..1276
17.7.43 setLONGVARBINARY_AccessSize ..1277
17.7.44 getLONGVARBINARY_AccessSize..1278
17.7.45 setLONGVARBINARY_TruncError ..1279
17.7.46 getLONGVARBINARY_TruncError ..1280

17.8 Data types ...1281
17.8.1 Mapping SQL data types...1281
17.8.2 Mapping during retrieval data acquisition ..1282
17.8.3 Mapping when a ? parameter is set ...1285
17.8.4 Data conversion of TIME, DATE, and TIMESTAMP columns1290
17.8.5 Overflow handling...1294

17.9 Character conversion facility..1304
17.10 Supported client environment definitions ..1305
17.11 Connection information priorities...1312
17.12 JDBC interface method trace..1318

17.12.1 Setup for trace acquisition...1318
17.12.2 Acquisition rules ...1318

xxxviii

17.12.3 Output example... 1319
17.13 Exception trace log .. 1321

17.13.1 Methods to be acquired and setup for log acquisition 1321
17.13.2 Output formats .. 1328
17.13.3 Output example and analysis method... 1334
17.13.4 Required memory size and file size.. 1339
17.13.5 Notes... 1340

18. SQLJ 1343
18.1 Overview.. 1344

18.1.1 What is SQLJ? .. 1344
18.1.2 Environment settings .. 1346

18.2 SQLJ Translator ... 1348
18.3 UAP coding rule .. 1349

18.3.1 Labeling rule... 1349
18.3.2 SQL coding rule.. 1349
18.3.3 SQL statements that can be used in SQLJ.. 1354
18.3.4 Correspondence between HiRDB data types and SQLJ data types........ 1357
18.3.5 Output variable settings (limited to the native interface version) 1359
18.3.6 Using data types when a cursor is declared (limited to the native interface

version)... 1361
18.3.7 Description of connection to and disconnection from a HiRDB server . 1362
18.3.8 Description of cursor-based retrieval.. 1368
18.3.9 Receiving a dynamic result set ... 1372
18.3.10 Using JDBC and SQLJ together... 1373
18.3.11 Creating and executing a UAP ... 1376
18.3.12 Migrating an SQLJ source from the standard interface version to the native

interface version ... 1379
18.3.13 Notes about UAP development .. 1382

18.4 Native Runtime .. 1383
18.4.1 Package configuration .. 1383
18.4.2 Public classes of Native Runtime ... 1383
18.4.3 Cluster specifications.. 1384
18.4.4 Coding examples using the native interface ... 1390

Appendixes 1395
A. SQL Communications Area.. 1396

A.1 Organization and contents of the SQL Communications Area................... 1396
A.2 Expanding the SQL Communications Area ... 1403

B. SQL Descriptor Area... 1406
B.1 Organization and contents of the SQL Descriptor Area 1406
B.2 Expanding the SQL Descriptor Area .. 1417

C. Column Name Descriptor Area... 1429
C.1 Organization and contents of the Column Name Descriptor Area 1429

xxxix

C.2 Expanding the Column Name Descriptor Area...1431
D. Type Name Descriptor Area ..1433

D.1 Organization of the Type Name Descriptor Area..1433
D.2 Contents of the Type Name Descriptor Area ..1433
D.3 Expanding the Type Name Descriptor Area..1434

E. SQL Data Types and Data Descriptions...1436
E.1 SQL data types and C data descriptions ..1436
E.2 SQL data types and COBOL data descriptions ...1454

F. Data Dictionary Table Retrieval ...1469
F.1 Examples of SQL statements for retrieval ...1473
F.2 Data dictionary table details ...1476

G. Functions provided by HiRDB...1553
G.1 Hash function for table partitioning...1553
G.2 Space conversion function ...1578
G.3 Function for conversion to a DECIMAL signed normalized number1585
G.4 Character code type specification function..1587

H. Maximum and Minimum HiRDB Values ..1590

Index 1593

xl

List of figures

Figure 1-1: UAP development flow... 2
Figure 1-2: SQL functional organization ... 4
Figure 1-3: Interface between a UAP and HiRDB... 20
Figure 1-4: Operating mode using a machine other than the server machine as a client......... 22
Figure 1-5: Operating mode using the same server machine as the HiRDB server as the

client ... 23
Figure 1-6: Operating mode using a UAP under OLTP as a client.. 24
Figure 1-7: Operating mode using an ODBC-compatible UAP as a client 25
Figure 1-8: Operating mode using an OLE DB-compatible UAP as a client 26
Figure 1-9: Operating mode using an ADO.NET-compatible UAP as a client 27
Figure 1-10: Operating mode using a Java (JDBC-compatible) application program as a

client ... 28
Figure 1-11: Operating mode using a VOS3 system or Linux for AP8000 UAP as a client ... 29
Figure 2-1: Basic table configuration example .. 32
Figure 2-2: Configuration example of a table with repetition columns 33
Figure 2-3: Example of a base table and view table .. 34
Figure 2-4: Basic configuration example of a table with abstract data types 35
Figure 2-5: Retrieval from a single table ... 39
Figure 2-6: UAP data processing sequence for a retrieval results table 40
Figure 2-7: Cursor position immediately following cursor opening.. 41
Figure 2-8: Example of extracting retrieved contents and storing them in the UAP............... 42
Figure 2-9: Example of retrieval from two tables .. 44
Figure 2-10: Example of retrieval on a row basis .. 46
Figure 2-11: Procedure for updating a table... 47
Figure 2-12: Example of using cursor to update a table .. 48
Figure 2-13: Example of updating with condition specified.. 49
Figure 2-14: Example of updating on a row basis ... 50
Figure 2-15: Example of updating a table with repetition columns... 52
Figure 2-16: Procedure for deleting a table.. 53
Figure 2-17: Example of using a cursor to delete rows ... 54
Figure 2-18: Example of deletion with a condition specified .. 55
Figure 2-19: Example of deleting all rows in a table ... 56
Figure 2-20: Example of row insertion on a column basis .. 58
Figure 2-21: Example of row insertion on a row basis .. 59
Figure 2-22: Example of inserting a row into a table with repetition columns........................ 60
Figure 2-23: Data search example using a comparison predicate.. 62
Figure 2-24: Data search example using a BETWEEN predicate ... 63
Figure 2-25: Data search example using an IN predicate .. 64
Figure 2-26: Data search example using a LIKE predicate ... 65
Figure 2-27: Data search example using a NULL predicate with NOT 66

xli

Figure 2-28: Data search example involving multiple conditions ..67
Figure 2-29: Data search example using a structured repetition predicate...............................68
Figure 2-30: Data search example using a subquery ..69
Figure 2-31: Data search example using a subquery and a quantified predicate......................70
Figure 2-32: Example of a subquery using the EXISTS predicate...71
Figure 2-33: Example of numeric data operations..74
Figure 2-34: Example of time data operation ...75
Figure 2-35: Data grouping example ..77
Figure 2-36: Data sorting example ...78
Figure 2-37: Duplicated data elimination example...79
Figure 2-38: Example of outer joining ...81
Figure 2-39: Example of outer joining with three or more tables ..83
Figure 2-40: Tables used in examples of manipulating view tables ...85
Figure 2-41: Example of defining a view table for limiting the columns to be searched.........87
Figure 2-42: Example of using search conditions to define a view table88
Figure 2-43: Example of defining a read-only view table ..89
Figure 2-44: Example of defining a view table from which duplications are eliminated90
Figure 2-45: Example of defining a view table from another view table91
Figure 2-46: Example of manipulating a view table...92
Figure 2-47: Example of retrieval with a plug-in (1)..94
Figure 2-48: Example of retrieval with a plug-in (2)..95
Figure 2-49: Example of updating with a plug-in...97
Figure 2-50: Example of deletion with a plug-in..99
Figure 2-51: Example of insertion with a plug-in...101
Figure 2-52: Example of retrieval from a table with abstract data types................................102
Figure 2-53: Example of updating a table with abstract data types..103
Figure 2-54: Example of deleting rows from a table with abstract data types104
Figure 2-55: Example of inserting rows into a table with abstract data types........................105
Figure 3-1: Basic SQL configuration in a UAP..108
Figure 3-2: Example of values provided at the time of SQL execution120
Figure 3-3: Dynamic SQL execution mode..121
Figure 3-4: Example of inserting data into a dynamically specified table125
Figure 3-5: Example of dynamic processing when the preprocessed SQL is a dynamic SELECT

statement..126
Figure 3-6: Examples of transaction startup and termination...128
Figure 3-7: Locked resources and inclusive relationships..133
Figure 3-8: Example of deadlock..157
Figure 3-9: Example of deadlock in page-locking..158
Figure 3-10: Example of global deadlock...159
Figure 3-11: Processing flows of an ordinary retrieval and of a retrieval using an unlocked

conditional search..164
Figure 3-12: Example of deadlock avoidance by applying non-locking of index key values 167
Figure 3-13: Creation of a key value locked resource when pd_key_resource_type=TYPE1 is

used..181

xlii

Figure 3-14: Creation of a key value locked resource when pd_key_source_type=TYPE2 is
used... 182

Figure 4-1: Benefits of using an SQL stored procedure .. 208
Figure 4-2: Defining and executing an SQL stored procedure .. 209
Figure 4-3: Example of an SQL stored procedure ... 210
Figure 4-4: Overview of results-set return facility (for SQL stored procedures) 214
Figure 4-5: Defining and executing an SQL stored function ... 218
Figure 4-6: SQL stored function example.. 218
Figure 4-7: Correspondences between a table with abstract data types and the called

function... 225
Figure 4-8: Trigger overview ... 230
Figure 4-9: SQL statement query processing in a HiRDB/Parallel Server 250
Figure 4-10: Floatable server allocation when the optimization method is omitted.............. 253
Figure 4-11: Floatable server allocation when increasing the target floatable servers (back-end

servers for fetching data) is applied.. 254
Figure 4-12: Floatable server allocation when limiting the target floatable servers (back-end

servers for fetching data) is applied.. 255
Figure 4-13: Floatable server allocation when separating data collecting servers is applied 256
Figure 4-14: Grouping processing method when the optimization method is omitted.......... 258
Figure 4-15: Grouping processing when rapid grouping processing is applied..................... 259
Figure 4-16: Grouping processing when group processing, ORDER BY processing, and

DISTINCT set function processing are applied at the local back-end server 260
Figure 4-17: Processing of SORT MERGE JOIN.. 263
Figure 4-18: Processing of KEY SCAN MERGE JOIN.. 263
Figure 4-19: Processing of LIST SCAN MERGE JOIN ... 264
Figure 4-20: Processing of NESTED LOOPS JOIN.. 265
Figure 4-21: Processing of R-LIST NESTED LOOPS JOIN .. 266
Figure 4-22: Processing of HASH JOIN.. 267
Figure 4-23: Processing method of batch hash join ... 269
Figure 4-24: Processing method of bucket partitioning hash join ... 271
Figure 4-25: Processing method of continuous hash join .. 272
Figure 4-26: Processing method of intermittent hash join ... 273
Figure 4-27: Processing method of DISTRIBUTED NESTED LOOPS JOIN 275
Figure 4-28: CROSS JOIN processing method ... 275
Figure 4-29: TABLE SCAN processing method.. 278
Figure 4-30: INDEX SCAN processing method.. 278
Figure 4-31: KEY SCAN processing method.. 279
Figure 4-32: MULTI COLUMNS INDEX SCAN processing method.................................. 279
Figure 4-33: MULTI COLUMNS KEY SCAN processing method 279
Figure 4-34: PLUGIN INDEX SCAN processing method .. 280
Figure 4-35: PLUGIN KEY SCAN processing method .. 280
Figure 4-36: AND PLURAL INDEXES SCAN processing method..................................... 281
Figure 4-37: OR PLURAL INDEXES SCAN processing method.. 282
Figure 4-38: LIST SCAN processing method.. 282

xliii

Figure 4-39: ROWID FETCH processing method ...283
Figure 4-40: FOREIGN SERVER SCAN processing method ...283
Figure 4-41: FOREIGN SERVER LIMIT SCAN processing method284
Figure 4-42: WORK TABLE ATS SUBQ processing method...287
Figure 4-43: WORK TABLE SUBQ processing method ...288
Figure 4-44: ROW VALUE SUBQ processing method ...289
Figure 4-45: HASH SUBQ processing method..290
Figure 4-46: NESTED LOOPS WORK TABLE SUBQ processing method293
Figure 4-47: NESTED LOOPS ROW VALUE SUBQ processing method294
Figure 4-48: HASH SUBQ processing method..295
Figure 4-49: Data guarantee range of data guarantee level 0 ...315
Figure 4-50: Data guarantee range of data guarantee level 1 ...315
Figure 4-51: Data guarantee range of data guarantee level 2 ...316
Figure 4-52: Example of search results when a data guarantee level is specified..................317
Figure 4-53: Overview of block transfer facility ..319
Figure 4-54: Overview of multi-connection facility processing (when multithreading is not

used) ..356
Figure 4-55: Overview of multi-connection facility processing (when multithreading is

used) ..357
Figure 4-56: Overview of multi-connection facility processing (when a connection is shared by

multiple threads)..358
Figure 4-57: Overview of multi-connection facility processing (when an AP uses an

X/Open-compliant API in a single-thread OLTP system)...................................359
Figure 4-58: Overview of multi-connection facility processing (when an AP uses an

X/Open-compliant API in a multi-thread OLTP system)....................................360
Figure 4-59: Coding example (C) of a UAP that uses the multi-connection facility362
Figure 4-60: Coding example (COBOL) of a UAP that uses the multi-connection facility ..364
Figure 4-61: Coding example (C) in which the multi-connection facility is used by a UAP that

uses an X/Open-compliant API under OLTP..366
Figure 4-62: Coding example (COBOL) in which the multi-connection facility is used by a UAP

that uses an X/Open-compliant API under OLTP...367
Figure 4-63: Example of a table that manages numbers...371
Figure 4-64: Example of a search that uses lists...381
Figure 4-65: Overview of the file output facility for BLOB data...387
Figure 4-66: Reconnect timing (when the HiRDB client executes an SQL statement

immediately after executing the CONNECT statement, or when the transaction for
the previous SQL statement is completed)..398

Figure 4-67: Reconnect timing (when the HiRDB client executes an SQL statement while the
HiRDB server is processing the transaction for the previous SQL statement) ...399

Figure 4-68: Reconnect timing (when the HiRDB client executes the CONNECT
statement) ..400

Figure 4-69: Overview of the locator facility ...403
Figure 6-1: Differences between fixing and not fixing the communication-target server......484

xliv

Figure 6-2: Relationships among PDCWAITTIME, PDSWAITTIME, and
PDSWATCHTIME ... 542

Figure 6-3: Overview of processing for each setting of PDCURSORLVL................................ 592
Figure 7-1: Example of the basic configuration of an embedded SQL UAP......................... 620
Figure 7-2: Flowchart example of an embedded SQL UAP written in C.............................. 629
Figure 7-3: Flowchart example of an embedded SQL UAP written in C.............................. 630
Figure 7-4: PAD chart for program example 2 (1/4).. 636
Figure 7-5: PAD chart for program example 2 (2/4).. 637
Figure 7-6: PAD chart for program example 2 (3/4).. 638
Figure 7-7: PAD chart for program example 2 (4/4).. 639
Figure 7-8: PAD chart for program example 3 (1/3).. 648
Figure 7-9: PAD chart for program example 3 (2/3).. 649
Figure 7-10: PAD chart for program example 3 (3/3).. 650
Figure 7-11: Flowchart of program example 4 (1/3).. 664
Figure 7-12: Flowchart of program example 4 (2/3) ... 665
Figure 7-13: Flowchart of program example 4 (3/3) ... 666
Figure 7-14: PAD chart for program example 5 (1/4).. 679
Figure 7-15: PAD chart for program example 5 (2/4).. 680
Figure 7-16: PAD chart for program example 5 (3/4).. 682
Figure 7-17: PAD chart for program example 5 (4/4).. 683
Figure 8-1: Execution procedure for UAP written in C... 699
Figure 8-2: Execution procedure for a UAP written in COBOL ... 700
Figure 9-1: Procedure from Java stored routine creation to execution 773
Figure 9-2: Example of Java program coding.. 775
Figure 9-3: Example of compilation .. 776
Figure 9-4: Overview of testing and debugging .. 777
Figure 9-5: Example of archiving in the JAR format .. 777
Figure 9-6: Overview of JAR file registration ... 778
Figure 9-7: Example of a Java stored routine definition.. 779
Figure 9-8: Example of Java stored routine execution... 780
Figure 9-9: Method execution control using security policy ... 807
Figure 9-10: Example of parameter input/output mod mapping.. 809
Figure 9-11: Overview of the results-set return facility (for a Java stored procedure) 810
Figure 9-12: Procedure for testing and debugging a Java program for a Java stored

procedure .. 817
Figure 9-13: Procedure for testing and debugging a Java program for a Java stored

function... 818
Figure 9-14: Location at which class files are created ... 819
Figure 9-15: Example of integrating Class files in JAR files .. 820
Figure 11-1: Distributed database connection format .. 899
Figure 11-2: Examples of transaction startup and termination using an SQL connection to a

distributed RD-node ... 903
Figure 12-1: Overview of command execution from UAPs .. 938
Figure 12-2: Sample server-client configuration for a HiRDB/Single Server 939

xlv

Figure 12-3: Sample server-client configuration for a HiRDB/Parallel Server......................942
Figure 17-1: Flow of mutual character code conversion between HiRDB character data and

Unicode ...1304
Figure 18-1: Flow of UAP development that uses SQLJ ...1344
Figure 18-2: Execution of a UAP that uses SQLJ ..1345
Figure A-1: Configuration of SQL Communications Area ..1397
Figure B-1: Organization of the SQL Descriptor Area...1406
Figure C-1: Organization of the Column Name Descriptor Area...1429
Figure D-1: Organization of the Type Name Descriptor Area..1433

xlvi

List of tables

Table 1-1: List of SQL statements (definition SQL).. 5
Table 1-2: List of SQL statements (data manipulation SQL)... 10
Table 1-3: List of SQL statements (control SQL) .. 14
Table 1-4: List of SQL statements (embedded language) .. 15
Table 1-5: List of SQL statements (routine control SQL).. 18
Table 2-1: Descriptions of abstract data type functions provided by the HiRDB Text Search

Plug-in .. 93
Table 3-1: UAP descriptive languages ..115
Table 3-2: Interface area types and uses..116
Table 3-3: Classification of UAP retrieval methods using SQL statements118
Table 3-4: Execution characteristics of static and dynamic SQLs ..119
Table 3-5: SQL statements preprocessed by the PREPARE statement, and SQL statements

preprocessed and executed by the EXECUTE IMMEDIATE statement 121
Table 3-6: Synchronization points and transactions... 129
Table 3-7: Scope of the LOCK TABLE UNTIL DISCONNECT specification when OpenTP1

is used ... 132
Table 3-8: Simultaneous execution by two users based on lock modes................................. 135
Table 3-9: Lock mode transition rules.. 136
Table 3-10: Typical lock mode combinations (row locking) (1/2)... 137
Table 3-11: Typical lock mode combinations (row locking) (2/2)... 139
Table 3-12: Typical lock mode combinations (page locking) (1/2) 141
Table 3-13: Typical lock mode combinations (page locking) (2/2) 143
Table 3-14: Typical lock mode combinations (non-locking of index key values) (1/2) 144
Table 3-15: Typical lock mode combinations (non-locking of index key values) (2/2) 147
Table 3-16: Typical lock mode combinations (when check pending status is set) (1/2)........ 149
Table 3-17: Typical lock mode combinations (when check pending status is set) (2/2)........ 150
Table 3-18: Lock release timings in tables for which the WITHOUT ROLLBACK option is

specified in CREATE TABLE (when an index is not defined) (1/2) 151
Table 3-19: Lock release timings in tables for which the WITHOUT ROLLBACK option is

specified in CREATE TABLE (when an index is not defined) (2/2) 152
Table 3-20: Lock release timings in tables for which the WITHOUT ROLLBACK option is

specified in CREATE TABLE (when an index is defined) (1/2) 153
Table 3-21: Lock release timings in tables for which the WITHOUT ROLLBACK option is

specified in CREATE TABLE (when an index is defined) (2/2) 154
Table 3-22: Deadlocks and their countermeasures... 160
Table 3-23: Relationships between cursor updatability and operations that do not use a

cursor .. 183
Table 3-24: Specifying FOR UPDATE and FOR READ ONLY clauses 187

xlvii

Table 3-25: Relationships between the lock option specified during cursor declaration or
dynamic SELECT statement preprocessing and the lock option specified during
table operations ...188

Table 3-26: Values set in variables and SQL statement execution status198
Table 3-27: Relationship among SQLSTATE, SQLCODE, and SQLWARN0 values when

normal termination with a warning occurs..199
Table 3-28: Additional return code information and items referred to by the information200
Table 4-1: Priorities of pre-defined data types..223
Table 4-2: Priorities of abstract data types..224
Table 4-3: Features of the SQL optimizing modes ...233
Table 4-4: SQL optimizing modes in which the SQL optimization option and SQL extension

optimizing option are valid ...245
Table 4-5: Optimization features related to floatable server allocation..................................251
Table 4-6: Optimization features related to number of floatable server allocation

candidates ..252
Table 4-7: Optimization features related to grouping processing methods257
Table 4-8: Join method types and features..261
Table 4-9: Hash join processing methods and features...267
Table 4-10: Search method types and features ...276
Table 4-11: Execution methods and features of subqueries with no external references284
Table 4-12: Optimal execution method of subqueries with no external references................286
Table 4-13: Execution methods and features of subqueries with external references291
Table 4-14: Tuning methods for hash table size ...301
Table 4-15: Tuning information for the hashing mode ...303
Table 4-16: Relationships between the SQL optimization and SQL extension optimizing options

and deriving high-speed search conditions ...305
Table 4-17: Relationships between the SQL optimization options and deriving high-speed

search conditions ...309
Table 4-18: Relationship between data guarantee level and lock option................................314
Table 5-1: Types of plug-in distribution functions ...412
Table 5-2: Correspondences between receive and send functions for passing inter-function

values...413
Table 5-3: Combinations that trigger an error when a plug-in distribution function is

executed...416
Table 5-4: Passing inter-function values in set operation results..420
Table 6-1: Files and directories for workstation - HiRDB/Developer's Kit427
Table 6-2: Files and directories for HiRDB/Run Time (UNIX client)431
Table 6-3: Files and directories for HiRDB/Developer's Kit (UNIX client in IPF machine).433
Table 6-4: Files and directories for HiRDB/Run Time (UNIX client in IPF machine)..........437
Table 6-5: Files and directories for HiRDB/Developer's Kit (Linux (EM64T))439
Table 6-6: Files and directories for HiRDB/Run Time (Linux (EM64T))442
Table 6-7: Archived files used for each purpose (UNIX client) ...442
Table 6-8: Shared library files used for each purpose (UNIX client)443
Table 6-9: Library files used by each transaction manager (UNIX client).............................444

xlviii

Table 6-10: Files and directories for HiRDB/Developer's Kit (Windows client) 445
Table 6-11: Files and directories for HiRDB/Run Time (Windows client)............................ 447
Table 6-12: Files and directories for HiRDB/Developer's Kit (Windows client in IPF

machine) ... 449
Table 6-13: Files and directories for HiRDB/Run Time (Windows client in IPF machine) .. 451
Table 6-14: Files and directories for HiRDB/Developer's Kit (EM64T machine Windows

client) .. 452
Table 6-15: Files and directories for HiRDB/Run Time (EM64T machine Windows client) 454
Table 6-16: Files and directories for ODBC driver (Windows client) 456
Table 6-17: Linkage library files used according to purpose (Windows client) 456
Table 6-18: Library files used by each transaction manager (Windows client) 457
Table 6-19: List of libraries and compilers (Windows client).. 457
Table 6-20: OpenTP1 definitions in which the environment variables are specified 471
Table 6-21: TP1/LiNK definitions in which the environment variables are specified........... 475
Table 6-22: TPBroker definitions in which the environment variables are specified............ 478
Table 6-23: Environment variable specification status (for a UAP under TUXEDO)........... 480
Table 6-24: Environment variable specification status (for a UAP under WebLogic Server)482
Table 6-25: Client environment definitions ... 487
Table 6-26: Differences in character code conversions when UTF8, UTF8_EX, and UTF8_EX2

are specified (for characters received from a HiRDB server) 521
Table 6-27: Differences in character code conversions when UTF8, UTF8_EX, and UTF8_EX2

are specified (for characters entered at the HiRDB client)................................. 522
Table 6-28: Specification values of the SQL optimization option ... 564
Table 6-29: Recommended specification values for the SQL optimization option (for

HiRDB/Parallel Server).. 566
Table 6-30: Relationships between SQL statements that create work tables and suppressing

creation of update SQL-work tables... 575
Table 6-31: Specification values of the SQL extension optimizing option............................ 583
Table 6-32: Relationships between environment variables and connection types 607
Table 7-1: Items that can be described within an embedded SQL declare section 624
Table 7-2: Locations where SQL statements can be described.. 625
Table 7-3: Divisions in COBOL for describing SQL statements... 662
Table 8-1: Character codes that can be specified for LANG ... 702
Table 8-2: Preprocessing options (for C in the UNIX environment) 704
Table 8-3: SQL preprocessor return codes (for C programs in a UNIX environment).......... 708
Table 8-4: SQL preprocessor standard input and output (for C programs in a UNIX

environment)... 709
Table 8-5: Preprocessing options (for COBOL in the UNIX environment)711
Table 8-6: SQL preprocessor return codes (for COBOL programs in a UNIX environment)714
Table 8-7: SQL preprocessor standard input and output (for COBOL programs in a UNIX

environment)... 714
Table 8-8: Preprocessing options (for C in the Windows environment) 716
Table 8-9: SQL preprocessor return codes (for C programs in a Windows environment) 719

xlix

Table 8-10: SQL preprocessor standard input and output (for C programs in a Windows
environment) ...720

Table 8-11: Preprocessing options (for COBOL in the Windows environment)....................722
Table 8-12: SQL preprocessor return codes (for COBOL programs in a Windows

environment) ...725
Table 8-13: SQL preprocessor standard input and output (for COBOL programs in a Windows

environment) ...725
Table 8-14: Use of pointers, structures, and pointer qualifiers when the -E2 or -E3 option is

specified ..734
Table 8-15: Libraries to be specified for compiling and linking (in non-OLTP

environment) ...737
Table 8-16: Libraries to be specified for compiling and linking (in OLTP environment)......740
Table 8-17: Items set with Setup...750
Table 8-18: Item to be set with Edit Project in COBOL85...751
Table 8-19: Item to be set with Project Setup in COBOL2002 ..751
Table 8-20: Item to be set for Compilation Environment in COBOL85751
Table 8-21: Libraries to be linked when the multi-connection facility is used.......................753
Table 8-22: Items to be set with Set..756
Table 8-23: Items to be specified with the Option menu ..757
Table 8-24: UAP transferability from XDM/RD or UNIFY2000 ..769
Table 8-25: LANG and PDLANG settings for each platform ..769
Table 10-1: Relationship between the use of an API (TX_function) conforming to X/Open and

created SQL trace files ..825
Table 10-2: Relationship between use of API (TX_function) conforming to X/Open and created

error log files ...840
Table 10-3: Relationship between the value of PDUAPREPLVL and information to be

obtained ...857
Table 10-4: UAP error types and recovery methods...894
Table 11-1: Generating an SQL connection..900
Table 11-2: Current SQL connection setting ..901
Table 11-3: Current SQL connection and range of databases that can be accessed902
Table 11-4: SQL statements supported by distributed client facility......................................909
Table 11-5: Details about SQL statements usable for remote database access.......................910
Table 11-6: Data types of variables supported by distributed client facility922
Table 11-7: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of a HiRDB distributed server ..923
Table 11-8: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of an XDM/RD distributed server.....................................924
Table 11-9: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of an ORACLE distributed server.....................................926
Table 11-10: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of an RDB1 E2 distributed server927
Table 11-11: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of an SQL/K distributed server ...928

l

Table 11-12: SQLCODEs set by distributed client when errors occur at distributed server.. 930
Table 11-13: Statement information items obtained by GET DIAGNOSTICS statement when

error occurs at distributed server .. 931
Table 11-14: Condition information items obtained by specifying condition number 1 (error at

the distributed server) ... 931
Table 11-15: Space conversion when the distributed server is HiRDB 934
Table 12-1: Command executability from UAPs... 946
Table 13-1: ODBC3.0 driver installation directory.. 959
Table 13-2: ODBC functions provided by HiRDB .. 963
Table 13-3: ODBC function data types and HiRDB data types... 967
Table 13-4: Available facilities .. 969
Table 13-5: Options that can be set with the SQLSetConnectOption and SQLGetConnectOption

functions ... 970
Table 13-6: ODBC functions that can be used by a UAP in Unicode 978
Table 14-1: Schema information provided by the HiRDB OLE DB provider....................... 988
Table 14-2: Correspondences between the HiRDB data types and the OLE DB type

indicators .. 990
Table 15-1: List of HiRDB.NET Data Provider classes... 996
Table 15-2: Notes about HiRDB.NET Data Provider .. 1039
Table 15-3: HiRDBType property values that are automatically set when the DbType property

is set .. 1041
Table 15-4: DbType property values that are automatically set when the HiRDBType property

is set .. 1042
Table 15-5: Data types and accessories for HiRDB-type UAPs .. 1043
Table 15-6: List of type conversions for INSERT (1/2)... 1044
Table 15-7: List of type conversions for INSERT (2/2)... 1045
Table 15-8: List of type conversions for SELECT (1/2).. 1046
Table 15-9: List of type conversions for SELECT (2/2).. 1047
Table 16-1: JDBC driver's installation directory and file... 1060
Table 16-2: Arguments of the getConnection method ... 1063
Table 16-3: Information to be specified for Properties info... 1064
Table 16-4: Return values of the getColumnDisplaySize method for each SQL data type in

HiRDB.. 1076
Table 16-5: Availability of result set types with JDBC driver ... 1081
Table 16-6: Mapping between the getXXX methods and JDBC SQL types of ResultSet and

CallableStatement (1/2) .. 1087
Table 16-7: Mapping between the getXXX methods and JDBC SQL types of ResultSet and

CallableStatement (2/2) .. 1089
Table 16-8: setXXX methods and JDBC SQL types to be mapped for PreparedStatement

class .. 1091
Table 16-9: Mapping between the setXXX methods and JDBC SQL types of PreparedStatement

and CallableStatement (1/2) ... 1092
Table 16-10: Mapping between the setXXX methods and JDBC SQL types of

PreparedStatement and CallableStatement (2/2) .. 1093

li

Table 16-11: Classes related to connection pools ...1100
Table 16-12: Classes related to distributed transactions ...1102
Table 16-13: Object types returned by getArray...1107
Table 16-14: Attribute values of the result sets returned by getResultSet1108
Table 16-15: Object types returned during data acquisition using the Array.getArray() method

without any argument..1109
Table 16-16: Data type of the SQL statement specified by the setObject method and the data

type of the array object.. 1110
Table 16-17: Method processing and notes .. 1115
Table 16-18: Methods of setting/acquiring connection information.....................................1121
Table 16-19: Correspondence of SQL data types between HiRDB and JDBC1149
Table 16-20: Correspondence between HiRDB character codes and Java character sets

(UNIX) ..1150
Table 16-21: Correspondence between HiRDB character codes and Java Character sets

(Windows) ...1151
Table 16-22: Limitations to the methods in the Connection class that are defined in the JDBC1.0

standard ...1152
Table 16-23: Limitations to the methods in the Connection class that are added in the JDBC2.0

basic standard ..1153
Table 16-24: Limitations to the methods in the Statement class that are defined in the JDBC1.0

standard ...1153
Table 16-25: Limitations to the methods in the Statement class that are added in the JDBC2.0

basic standard ..1153
Table 16-26: Limitations to the methods in the PreparedStatement class that are added in the

JDBC2.0 basic standard ..1154
Table 16-27: Limitations to the methods in the CallableStatement class that are added in the

JDBC2.0 basic standard ..1154
Table 16-28: Limitations to the methods in the ResultSet class that are added in the JDBC2.0

basic standard ..1155
Table 16-29: Limitations to the methods in the ResultSetMetaData class that are defined in the

JDBC1.0 standard..1156
Table 16-30: Limitations to the methods in the DatabaseMetaData class that are defined in the

JDBC1.0 standard..1157
Table 16-31: Limitations to the methods in the DatabaseMetaData class that are added in the

JDBC2.0 basic standard ..1163
Table 16-32: Limitations to the methods added by JDBC2.0 basic standards for Blob

class ...1164
Table 16-33: Restrictions on the methods added by the JDBC2.0 basic specification for the

Array class...1164
Table 17-1: Specification details of the getConnection method arguments..........................1169
Table 17-2: HiRDB character codes and corresponding conversion character sets1172
Table 17-3: Status of ResultSet objects and Statement objects after commit execution1176
Table 17-4: Return values of the DatabaseMetaData method ..1176
Table 17-5: Properties that can be specified in the getConnection method..........................1178

lii

Table 17-6: Differences in how the HiRDB driver gets BLOB and BINARY data (HiRDB data
types) ...1185

Table 17-7: Driver interface methods..1192
Table 17-8: Connection interface methods..1193
Table 17-9: Effective holdability specifications (1/2)...1197
Table 17-10: Effective holdability specifications (2/2)...1198
Table 17-11: Statement interface methods ..1199
Table 17-12: Priorities for number of rows that the JDBC driver requests the HiRDB server to

transfer in one transmission.. 1201
Table 17-13: PreparedStatement interface methods... 1204
Table 17-14: ResultSet interface methods.. 1208
Table 17-15: Fields supported by the ResultSet interface.. 1212
Table 17-16: Data retrieved and accumulated from the database during execution of the next

method .. 1214
Table 17-17: Data retrieved and accumulated from the database during execution of the

absolute, relative, last, or afterLast method.. 1215
Table 17-18: Number of retrieved rows that ResultSet objects can obtain from the HiRDB

server .. 1215
Table 17-19: DatabaseMetaData interface methods... 1216
Table 17-20: ResultSetMetaData interface methods.. 1222
Table 17-21: Blob interface methods ... 1224
Table 17-22: Conditions for generation of SQLWarning objects... 1225
Table 17-23: DataSource interface methods .. 1233
Table 17-24: ConnectionPoolDataSource interface methods... 1234
Table 17-25: PooledConnection interface methods ... 1236
Table 17-26: XAConnection interface methods... 1237
Table 17-27: XADataSource interface methods... 1237
Table 17-28: XAResource interface methods .. 1238
Table 17-29: Methods for setting and getting connection information................................ 1240
Table 17-30: SQL data type correspondences between HiRDB and JDBC (Type4 JDBC

driver) ... 1281
Table 17-31: Mapping between getXXX methods of the ResultSet class and JDBC's SQL data

types (1/2) ... 1282
Table 17-32: Mapping between getXXX methods of the ResultSet class and JDBC's SQL data

types (2/2) ... 1283
Table 17-33: JDBC SQL types mapped by the setXXX methods of the PreparedStatement

class .. 1286
Table 17-34: Mapping between the setXXX methods of the PreparedStatement class and

JDBC's SQL data types (1/2).. 1286
Table 17-35: Mapping between the setXXX methods of the PreparedStatement class and

JDBC's SQL data types (2/2).. 1288
Table 17-36: Conversion processing for combinations of the TIME, DATE, and TIMESTAMP

types and the setXXX methods .. 1291

liii

Table 17-37: Conversion processing for combinations of the TIME, DATE, TIMESTAMP, and
character string types and the getXXX methods...1293

Table 17-38: Possibility of overflow when the setXXX method is used (1/2)1294
Table 17-39: Possibility of overflow when the setXXX method is used (2/2)1295
Table 17-40: Possibility of overflow when the setObject method is used (1/2)1297
Table 17-41: Possibility of overflow when the setObject method is used (2/2)1297
Table 17-42: Possibility of overflow when the getXXX method is used (1/2).....................1299
Table 17-43: Possibility of overflow when the getXXX method is used (2/2).....................1300
Table 17-44: Possibility of overflow when the getObject method is used (1/2)...................1301
Table 17-45: Possibility of overflow when the getObject method is used (2/2)...................1302
Table 17-46: Client environment variables that can be specified with the JDBC driver......1305
Table 17-47: Priorities for connection information ..1312
Table 17-48: Specifications that become effective when an authorization identifier is not

specified ..1316
Table 17-49: Methods that are acquisition targets of the Exception trace log and their trace

acquisition levels ...1322
Table 17-50: System property settings for acquisition of the Exception trace log1327
Table 17-51: Example in which the Exception trace log is arranged in time sequence........1337
Table 17-52: Transfer of the method execution history accumulated in the JDBC driver

memory..1340
Table 18-1: Files that are generated and referenced by the SQLJ Translator1348
Table 18-2: SQL statement coding formats ..1349
Table 18-3: SQL statements that can be used in SQLJ...1354
Table 18-4: Correspondence between HiRDB data types and SQLJ data types...................1357
Table 18-5: Initial value for each data type and the data length set in SQL Descriptor

Area ...1359
Table 18-6: Description when a cursor is declared, and the acceptance area setting1361
Table 18-7: Combinations of keyword in the WITH clause and setting values1369
Table 18-8: SQLJ Translator options ..1377
Table 18-9: Migrating an SQLJ source to the native interface version1379
Table 18-10: Configuration of the Native Runtime packages ..1383
Table 18-11: Public classes of Native Runtime ..1383
Table A-1: Contents of the SQL Communications Area ..1398
Table B-1: Contents of the SQL Descriptor Area...1407
Table B-2: Data codes and data lengths set in the SQL Descriptor Area1413
Table B-3: Contents of SQLVAR_LOB..1416
Table B-4: SQL Descriptor Area expansion procedure ..1423
Table B-5: SQL Descriptor Area operation macros..1424
Table B-6: Macros for specifying data types ..1424
Table B-7: Repetition column expansion format ..1427
Table C-1: Contents of the Column Name Descriptor Area ...1430
Table D-1: Contents of the Type Name Descriptor Area..1433
Table E-1: SQL data types and C data descriptions..1436
Table E-2: SQL data types and C data descriptions when arrays are used1441

liv

Table E-3: SQL data types and C data descriptions when repetition columns are used 1443
Table E-4: Macros for referencing or setting embedded variables 1445
Table E-5: Pointer variables and C language data description.. 1448
Table E-6: Macros for pointer-type repetition columns .. 1452
Table E-7: Structures to be specified in batches ... 1454
Table E-8: SQL data types and COBOL data descriptions .. 1455
Table E-9: SQL data types and COBOL data descriptions when arrays are used 1460
Table E-10: SQL data types and COBOL data descriptions when repetition columns are

used... 1464
Table F-1: Data dictionaries ... 1469
Table F-2: SQL_PHYSICAL_FILES table contents ... 1476
Table F-3: SQL_RDAREAS table contents ... 1477
Table F-4: SQL_TABLES table contents... 1479
Table F-5: SQL_COLUMNS table contents .. 1487
Table F-6: Values that are stored when the DEFAULT clause is specified.......................... 1493
Table F-7: SQL_INDEXES table contents... 1498
Table F-8: SQL_USERS table contents ... 1500
Table F-9: SQL_RDAREA_PRIVILEGES table contents .. 1502
Table F-10: SQL_TABLE_PRIVILEGES table contents .. 1502
Table F-11: SQL_VIEW_TABLE_USAGE table contents ... 1503
Table F-12: SQL_VIEWS table contents ... 1504
Table F-13: SQL_DIV_TABLE table contents .. 1504
Table F-14: SQL_INDEX_COLINF table contents... 1505
Table F-15: SQL_DIV_INDEX table contents .. 1506
Table F-16: SQL_DIV_COLUMN table contents ... 1507
Table F-17: SQL_ROUTINES table contents.. 1507
Table F-18: SQL_ROUTINE_RESOURCES table contents ... 1515
Table F-19: SQL_ROUTINE_PARAMS table contents .. 1517
Table F-20: SQL_ALIASES table contents ... 1520
Table F-21: SQL_TABLE_STATISTICS table contents.. 1521
Table F-22: SQL_COLUMN_STATISTICS table contents... 1521
Table F-23: SQL_INDEX_STATISTICS table contents.. 1523
Table F-24: SQL_DATATYPES table contents.. 1523
Table F-25: SQL_DATATYPE_DESCRIPTORS table contents ... 1524
Table F-26: SQL_TABLE_RESOURCES table contents .. 1526
Table F-27: SQL_PLUGINS table contents... 1527
Table F-28: SQL_PLUGIN_ROUTINES table contents ... 1528
Table F-29: SQL_PLUGIN_ROUTINE_PARAMS table contents 1529
Table F-30: SQL_INDEX_TYPES table contents ... 1531
Table F-31: SQL_INDEX_RESOURCES table contents .. 1532
Table F-32: SQL_INDEX_DATATYPE table contents ... 1532
Table F-33: SQL_INDEX_FUNCTION table contents ... 1533
Table F-34: SQL_TYPE_RESOURCES table contents... 1534
Table F-35: SQL_INDEX_TYPE_FUNCTION table contents ... 1534

lv

Table F-36: SQL_EXCEPT table contents ...1535
Table F-37: SQL_FOREIGN_SERVERS table contents..1535
Table F-38: SQL_USER_MAPPINGS table contents..1537
Table F-39: SQL_IOS_GENERATIONS table contents ..1538
Table F-40: SQL_TRIGGERS table contents...1538
Table F-41: SQL_TRIGGER_COLUMNS table contents ...1540
Table F-42: SQL_TRIGGER_DEF_SOURCE table contents..1541
Table F-43: SQL_TRIGGER_USAGE table contents..1542
Table F-44: SQL_PARTKEY table contents ..1543
Table F-45: SQL_PARTKEY_DIVISION table contents...1543
Table F-46: SQL_AUDITS table contents..1544
Table F-47: SQL_REFERENTIAL_CONSTRAINTS table contents..................................1546
Table F-48: SQL_KEYCOLUMN_USAGE table contents ...1547
Table F-49: SQL_TABLE_CONSTRAINTS table contents ..1548
Table F-50: SQL_CHECKS table contents...1548
Table F-51: SQL_CHECK_COLUMNS table contents ...1549
Table F-52: SQL_DIV_TYPE table contents ...1550
Table F-53: SQL_SYSPARAMS table contents ...1551
Table G-1: Execution conditions in the HiRDB client ...1554
Table G-2: Items to be set in the HiRDB server with Set Project or Set1556
Table G-3: Items to be set in the HiRDB client with Set Project or Set1557
Table G-4: Double-byte space characters specified in ncspace ..1560
Table G-5: Hash function codes for hash functions..1564
Table G-6: Area for setting partitioning keys ...1565
Table G-7: Data type codes and data length codes ...1565
Table G-8: Area for setting the data address of a partitioning key1566
Table G-9: Macros for maximum values ..1567
Table H-1: HiRDB maximum and minimum values ..1590

823

Chapter

10. UAP Troubleshooting

This chapter explains the collection of historical information for UAP execution and
the collection of error information to be used for troubleshooting. It also describes the
types of UAP errors and the recovery methods.
This chapter contains the following sections:

10.1 Gathering error information
10.2 UAP error recovery

10. UAP Troubleshooting

824

10.1 Gathering error information

When an error occurs in a UAP, the troubleshooting functions can be used to
investigate the cause of the error. The troubleshooting functions are as follows:

• SQL tracing
• Error logging
• Facility for output of extended SQL error information
• UAP statistical report facility

• Command trace facility
• SQL trace dynamic acquisition facility
• Reconnect trace facility
• Access path information file for HiRDB SQL Tuning Advisor

10.1.1 SQL tracing
This function collects in an SQL trace file the SQL trace information for an executed
UAP.
If an SQL error occurs during UAP execution, the SQL trace information can be used
to identify the SQL statement that caused the error.
When the current SQL trace file becomes full, a new file is swapped in and the
previous information in that file can be overwritten.

(1) Collecting SQL trace information
SQL trace information is collected by setting values in the PDCLTPATH and
PDSQLTRACE environment variables during client environment definition. For details
about the client environment definition, see 6.6 Client environment definitions (setting
environment variables).
The two SQL trace files in which information is collected are created under a specified
directory. The file names that are created depend on whether or not an API
(TX_function) conforming to X/Open is used.
Table 10-1 shows the relationship between the TX_function and the files that are
created.

10. UAP Troubleshooting

825

Table 10-1: Relationship between the use of an API (TX_function) conforming
to X/Open and created SQL trace files

xxxxx: Process ID during UAP execution
(2) Examining SQL trace information

SQL trace information is output after the execution of SQL statements is completed.
An example of output of SQL trace information is shown as follows, followed by an
explanation.
Output example

Use of TX_function Created SQL trace files

No pdsql1.trc and pdsql2.trc

Yes pdsqlxxxxx-1.trc and pdsqlxxxxx-2.trc

 [20] [19] [22]
 ** UAP TRACE (CLT:VV-RR(Mmm dd yyyy) SVR:VV-RR US) WIN32(WIN32) **

 USER APPLICATION PROGRAM FILE NAME : XXXXXXXX [1]
 USERID : YYYYYYYY [2]
 UAP START TIME : YYYY/MM/DD HH:MM:SS [3]
 UAP ENVIRONMENT : [4]
 LANG(ja_JP.SJIS)
 USER("YYYYYYY")
 HOST(dcm3500)
 NAMEPORT(20281)
 FESHOST()
 SVCGRP() SVCPORT() SRVTYPE()
 SWAIT(600) CWAIT(0) SWATCH(0)

 BLKF(1) LOCKLMT(0) ISLLVL(2) DBLOG(ALL) DFLNVAL(NOUSE)
 AGGR(1024) DLKPRIO(64) EXWARN(NO) VWOPTMODE(0)
 LOCKSKIP(NO) CLTGRP(A) PLGIXMK(NO)
 CLTRCVPORT(5000) CLTRCVADDR(192.134.35.4) PLGPFSZ(8192)
 PLGPFSZEXP(8192) SPACELVL(-1) STJTRNOUT()
 OPTLVL("SELECT_APSL","RAPID_GROPING")
 ADDITIONALOPTLVL("COST_BASE_2","APPLY_HASH_JOIN")
 UAPREPLVL() REPPATH()
 TRCPATH()

10. UAP Troubleshooting

826

 IPC(MEMORY) SENDMEMSIZE(16) RECVMEMSIZE(32)
 HASHTBLSIZE(128) CMMTBFDDL(NO) PRPCRCLS()
 SQLTRCOPENMODE(SQL) AUTOCONNECT(ON) CWAITTIMEWRNPNT(-1) TCPCONOPT(0)
 WRTLNFILSZ(-1) WRTLNCOMSZ(1024)
 WRTLNPATH() UAPENVFILE()
 TP1SERVICE(NO) AUTORECONNECT(NO) RCCOUNT(0) RCINTERVAL(0)
 KALVL(0) KATIME(0) CLTCNVMODE(NOUSE)
 PRMTRC(YES) PRMTRCSIZE(256) BESCONHOLD() BESCONHTI(-1)
 BLKBUFFSIZE(0) BINARYBLKF(NO) FORUPDATEEXLOCK(NO)
 CNSTRNTNAME() SQLTEXTSIZE(4096) RCTRACE(-1)
 FESGRP()
 NBLOCKWAITTIME(0) CONNECTWAITTIME(300) DBBUFLRU(YES)
 UAPEXERLOGUSE() UAPEXERLOGPRMSZ() HJHASHINGMODE(TYPE1)
 DDLDEAPRP(NO) DELRSVWDFILE() HATRNQUEUING()
 ODBSPLITSIZE(100) CURSORLVL(0)
 TAAPINFPATH() TAAPINFMODE(0) TAAPINFSIZE(409600)
 JETCOMPATIBLE(NO) SUBSTRLEN()
 CONNECTION STATUS : [5]
 CURHOST(dcm3500) CURPORT(4439) SRVNAME(fes1)
 CNCTNO(1) SVRPID(8945) CLTPID(9155) CLTTID() CLTCNCTHDL(0x0)

 [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [23]
 CNCT CLPID CLTID NO OP SEC SQL SQL START-TIME END-TIME OP EXEC-TIME
 NO CODE NO CODE WARN TION
 ---- ----- ----- -- ---- --- ---- ----- ------------ ------------ ---- -----------
 1 9155 0 1 CNCT 0 0 WC040 16:03:55.720 16:03:58.080 0001 2356125
 1 9155 0 2 AUI2 1 0 -0000 16:03:58.630 16:03:59.400 M000 769651

 SQL INSERT INTO STOCK(GNO,GNAME,PLAN,PRICE,QUANTITY,DISCOUNT) VALUES(?,?,
.........17
 ?,?,?,?)
..17

 1 9155 0 3 SET 2 0 -0000 16:04:00.820 16:04:01.540 M000 719825

 SQL SELECT GNO,GNAME,PLAN,PRICE,QUANTITY,DISCOUNT FROM STOCK
......................17

 1 9155 0 4 OPEN 2 0 -0000 16:04:02.090 16:04:02.800 M000 709123
 1 9155 0 5 FETC 2 -204 -0000 16:04:03.080 16:04:03.790 M000 708902
 1 9155 0 6 SET 2 0 W8800 16:04:04.060 16:04:04.830 M000 765147

 SQL(AUTHID) INSERT INTO TBL01 VALUES('12345',12345) 17

10. UAP Troubleshooting

827

1. UAP name: Displays the name specified in the PDCLTAPNAME environment
variable.

2. Authorization identifier: Displays the authorization identifier of the user who
executed the UAP.

3. UAP start time: Displays the time at which execution of the UAP started.
4. UAP execution environment: Displays the values of the environment variables

when the UAP was executed.
5. UAP execution status: Displays the status of the connection with the server when

the UAP was executed:
• CURHOST: Connection-destination host name
• CURPORT: Connection port number
• SRVNAME: Front-end server name or single-server name
• CNCTNO: Connection serial number
• SVRPID: Connected server process status
• CLTPID: UAP process number
• CLTTID: UAP thread number
• CLTCNCTHDL: Connection handle

If information cannot be obtained, an invalid value may be displayed (Windows).
6. Connection serial number: Displays the connection serial number. Connection

serial numbers are assigned sequentially each time the server accepts CONNECT.
7. Displays the process number of the UAP.

If the correct process number cannot be obtained, an invalid value may be
displayed (Windows).

 1 9155 0 7 SAUT 0 0 -0000 16:04:04.834 16:04:04.835 M000 912

 USER hirdb01
..18

 1 9155 0 8 AUI2 3 0 -0000 16:05:05.110 16:05:05.121 M000 9456

 SQL INSERT INTO TBL01 VALUES(?,100) ...21
 PARAM NO= 1 COD=c5 XDIM= 1 SYS= 0 LEN= 15 IND= 0 21
 DATA=30 35 2d 30 35 00 00 00 00 00 00 00 00 00 00 *05-05.........* ..21

 1 9155 9 DISC 0 0 -0000 16:05:55.110 16:05:56.660 M004 1547893

10. UAP Troubleshooting

828

8. UAP thread number: Displays the UAP thread number when the UAP is running
in a multi-thread environment. Displays 0 if the UAP is not running in a
multi-thread environment. A thread number that cannot be allocated can
sometimes be displayed as an invalid value.

9. SQL counter: Displays the SQL counter values. Each time an SQL statement is
accepted, the counter value is incremented (from 1 through 999999, after which
the counter value returns to 1).

10. Operation code: Displays the operation code that corresponds to each SQL
statement.
The following table shows the SQL statements that correspond to the displayed
operation codes.

Operation code Corresponding SQL statement

AUI2 DELETE statement (static SQL), INSERT statement (static SQL), UPDATE statement (static
SQL), LOCK statement (static SQL), PURGE TABLE statement (static SQL), single-row
SELECT statement (static SQL), FREE LOCATOR statement (static SQL)

AUI3 Assignment statement (static SQL)

AUX EXECUTE statement

AUXI EXECUTE IMMEDIATE statement, all definition SQL statements

AUXO EXECUTE statement (INTO specified)

CALL CALL statement

CLOS CLOSE statement

CMIT COMMIT statement

CNCT CONNECT statement

CPRP Commit prepare*

DESC DESCRIBE statement (OUTPUT specified)

DEST DESCRIBE TYPE statement

DISC DISCONNECT statement, COMMIT statement (RELEASE specified)

DISR ROLLBACK statement (RELEASE specified)

DIST Disconnect + Tran Check*

DSCM Used by the system.

DSPR Used by the system.

10. UAP Troubleshooting

829

DSRL Used by the system.

FETC FETCH statement

GETD GET DIAGNOSTICS

HVAR DESCRIBE statement (INPUT specified)

JARI INSTALL JAR

JARR REPLACE JAR

JARU REMOVE JAR

OPEN OPEN statement (dynamic SQL)

OPN2 OPEN statement (static SQL)

OPNR OPEN statement (dynamic SQL (multiple cursors))

RENV Used by the system.

RNCN CONNECT statement (TO specified)

RNDS DISCONNECT statement (TO specified)

RNSC SET CONNECTION statement

ROLL ROLLBACK statement

RSDC DESCRIBE statement (OUTPUT and RESULT SET specified)

RSFT FETCH statement (RESULT SET specified)

RSCL CLOSE statement (RESULT SET specified)

SAUT SET SESSION AUTHORIZATION statement

SET PREPARE statement

SINF Used by the system.

SOPT Used by the system.

SVLS Used by the system.

THRE Used by the system.

THSU Used by the system.

TRCK Used by the system.

TRC2 Used by the system.

Operation code Corresponding SQL statement

10. UAP Troubleshooting

830

* Applicable only when the XA interface is used.
11. Section number: Displays a number for verifying SQL statement correspondence;

this number is assigned automatically by the SQL preprocessor.
12. SQLCODE: Displays the SQLCODE that occurs as a result of SQL statement

execution.
13. SQLWARN: Displays warning information (in hexadecimal). Starting from the left,

one bit each is allocated to warning information SQLWARN0 through SQLWARNF.
A 16-bit value is obtained by setting each bit to 1 if the warning flag is set and to
0 if it is not set. This obtained value is displayed as a 4-digit hexadecimal number.
W is displayed at the beginning if at least one warning flag is set; - is displayed if
no warning flags are set.
Example 1

Example 2

TRST Used by the system.

TSCM Used by the system.

TSRL Transfer Rollback*

TSPR Transfer Prepare*

ALCR ALLOCATE CURSOR statement

DSET DEALLOCATE PREPARE statement

Operation code Corresponding SQL statement

10. UAP Troubleshooting

831

14. SQL statements execution request receipt time: Displays the time at which the
SQL execution request was received (in HH:MM:SS:mmm format).

15. SQL statement execution request termination time: Displays the time at which the
SQL statement execution request was terminated (in HH:MM:SS:mmm format).

16. Information used by the system: Displays the information used by the system. If
the first byte is M, memory is used for process-to-process communication. The
other part of the information is used by the HiRDB developer for maintenance
purposes.

17. SQL statement: Displays the SQL statement, but only when the operation code is
SET, AUXI, AUI2, or OPN2.
The maximum SQL statement length that can be output is 4,096 bytes; any excess
is truncated. If the -A option was specified during preprocessing or the /A option
was used during preprocessing to specify the authorization identifier to be
assumed when the authorization identifier in the SQL statement is omitted, *SQL*
is displayed as *SQL (assumed-authorization-identifier)*.

18. New user identifier: Displays a new user identifier if the user identifier was
changed during a single connection. This information is also displayed if the user
identifier change operation fails.

19. Platform for UAP:

Platform Character string to be displayed

HP-UX 11.0 HP32

HP-UX 11.0 (64-bit mode) HP64

Solaris SOL

Solaris (64-bit mode) SOL64

AIX 5L AIX

AIX 5L (64-bit mode) AIX64

Linux LINUX

Windows WIN32

HP-UX (IPF) 32-bit mode HPI32

HP-UX (IPF) 64-bit mode HPI64

Linux (IPF) LINI64

Linux (EM64T) LINX64

Windows Server 2003 (IPF) WINI64

10. UAP Troubleshooting

832

20. Library creation date: Displays the creation date of the linked library in the
following format:
Mmm: Month (first three letters of the month in English with the first letter in
upper case). For example, June is displayed as Jun.
dd: Date
yyyy: Year

21. Parameter trace: Displays input parameter information, output parameter
information, and retrieved data when PDPRMTRC=YES, IN, OUT, or INOUT is
specified in the client environment definitions.
The parameter information data is displayed up the length specified in
PDPRMTRCSIZE (or 256 bytes if omitted), and any excess part is discarded. For
details, see (4) Parameter trace output examples.
NO

Parameter number
COD

Data type code
XDIM

Number of array elements
SYS

Length of one element, including gaps
LEN

Data length
IND

Value of indicator variable
ARRAY NUM

Number of elements in repetition array
ROW NUM

Number of execution rows in SQL that uses embedded variables in an array

Windows (x64) 64-bit mode WINX64

Type4 JDBC driver Type4

Platform Character string to be displayed

10. UAP Troubleshooting

833

DATA
Data (dump format)

22. Linked library name

Library name Displayed characters

libzclt.sl, libclt.a UNIX, UNIX_32

libzclts.sl, libclts.a UNIX_S, UNIX_32S

libzcltm.sl, libcltm.a UNIX_M, UNIX_32M

libzcltk.sl, libcltk.a UNIX_K, UNIX_32K

libzcltx.sl, libcltxa.a UNIX_XA, UNIX_XA_32

libzcltxs.sl, libcltxas.a UNIX_XA_S, UNIX_XA_32S

libzcltxm.sl, libcltxam.a UNIX_XA_M, UNIX_XA_32M

libzcltxk.sl, libcltxak.a UNIX_XA_K, UNIX_XA_32K

libzclt64.sl, libclt64.a UNIX_64

libzcltk64.sl, libcltk64.a UNIX_64K

libzclts64.sl UNIX_64S

libzcltx64.sl, libzclty64.sl UNIX_XA_64

libzcltxk64.sl, libzcltyk64.sl UNIX_XA_64K

libzcltxs64.sl, libzcltys64.sl UNIX_XA_64S

CLTDLL.DLL WIN_32

PDCLTM32.DLL WIN_M32

PDCLTM50.DLL WIN_M50

PDCLTP32.DLL WIN_P32

PDCLTX32.DLL WIN_XA_32

PDCLTXM.DLL WIN_XA_32M

PDCLTXS.DLL WIN_XA_32S

PDCLTXM5.DLL WIN_XA_50M

PDCLTM64.DLL WIN_M64

PDCLTX64.DLL WIN_XA_64

10. UAP Troubleshooting

834

23. SQL runtime: Displays the SQL runtime in microseconds when
PDSQLEXECTIME=YES is specified in the client environment definitions.

(3) Making a backup of an SQL trace file
If the SQL trace file becomes full while SQL trace information is being output, HiRDB
stops writing to that file and outputs SQL trace information to another SQL trace file.
Any information that already exists in the switched-in SQL trace file is overwritten in
chronological order by the new SQL trace information. To prevent that information
from being lost, copy the contents of the SQL trace file into a backup file whenever
execution of a UAP is completed.
To determine the SQL trace file that is being used currently, check the most recent
update dates/times of the files. The SQL trace file that was updated most recently is
the current file.
For a Windows version HiRDB client, you use the dir command or the Explorer to
check the file update dates/times.
For a UNIX version HiRDB client, you use the OS's 1s -1 command to check the file
update dates/times.

(4) Parameter trace output examples
Output examples of representative parameter traces are shown below.

PDCLTXM64.DLL WIN_XA_64M

PDCLTXS64.DLL WIN_XA_64S

PDJDBC2.JAR Type4

Library name Displayed characters

10. UAP Troubleshooting

835

(a) INSERT statement (with null value and repetition column)

Explanation
This is an output example of parameter trace information when INTEGER and
VARCHAR(10) repetition column (five elements) values are inserted with the
INSERT statement. The values are output in the sequence in which the ?
parameters are specified.
1. For input parameters, *INPRM* is displayed. However, when

PDPRMTRC=YES, *PARAM* is displayed.
2. For a repetition column, the number of repeated elements is displayed in

ARRAY NUM.

10. UAP Troubleshooting

836

3. The number before each DATA clause is the indicator variable of each
element in the repetition column.

4. The number in parentheses in each DATA clause is the repetition column
element number.

5. For VARCHAR-type data, the first 2 bytes of DATA is the data length area (the
first 4 bytes for BINARY-type data, and the first 8 bytes for BLOB-type data).
When PDPRMTRC is YES, the size of the output information is the sum of the
defined length and the data area length. When PDPRMTRC is IN, OUT, or
INOUT, the size of the output information is the sum of the actual data length
and the data area length.

6. If the indicator variable is a negative value, only the information up to DATA=
is displayed.

7. If the data extends beyond one line, --- SAME x LINES --- (x is the
number of lines) is output. However, when PDPRMTRC=YES, all data is
output.

(b) Single-row SELECT statement

Explanation
This is an output example of parameter trace information when
PDPRMTRC=INOUT is specified. The retrieval data information is output first in
retrieval item sequence, and the input parameter information is output later in the
specification sequence.
1. This is the retrieval data information. This information is not output when

PDPRMTRC=IN. When PDPRMTRC=YES, *PARAM* is displayed instead of
OUTPM.

10. UAP Troubleshooting

837

2. This is the input parameter information. This information is not output when
PDPRMTRC=OUT. When PDPRMTRC=YES, *PARAM* is displayed instead of
INPRM.

(c) Stored procedure execution (CALL statement)

Explanation
1. This is the IN parameter. When PDPRMTRC=OUT, this information is not

output.
2. This is the input parameter of the INOUT parameter. However, the contents

of the DATA clause become output data.
3. This is the OUT parameter. This information is not output when

PDPRMTRC=IN or YES.
4. This is the output parameter of the INOUT parameter. This information is not

output when PDPRMTRC=IN or YES.

10. UAP Troubleshooting

838

(d) Retrieval (FETCH statement)

Explanation
This is an output example of parameter trace information for the FETCH
statement. A parameter trace is not output when PDPRMTRC=IN or YES.
1. If the SQLCODE of the FETCH statement is a value other than 0, a parameter

trace is not output.

10. UAP Troubleshooting

839

(e) Retrieval (FETCH facility using arrays)

Explanation
This is an output example of parameter trace information for the FETCH facility
using arrays. A parameter trace is not output when PDPRMTRC=IN or YES.
1. ROW NUM displays the number of array elements (number of retrieval rows).
2. The number before each DATA clause is the indicator variable of each array

element.
3. The number in parentheses in each DATA clause is the array element number.
4. If the SQLCODE of the FETCH statement is a value other than 0, parameter

trace information is output for the number of rows returned from the server.

10.1.2 Error logging
If an error occurs during communication between a client and the HiRDB server or in
the XA interface specified by X/Open, error information is collected as an error log in
an error log file.
When the current error log file becomes full, a new file is swapped in and the oldest

10. UAP Troubleshooting

840

information in that file can be overwritten.
(1) Collecting error log information

An error log can be collected by setting values in the PDCLTPATH and PDUAPERLOG
environment variables during client environment definition. For details about client
environment definition, see 6.6 Client environment definitions (setting environment
variables).
The two error log files in which information is collected are created under a specified
directory. The files that are created depend on whether or not an API (TX_function)
conforming to X/Open is used.
Table 10-2 shows the relationship between the use of an API (TX_function)
conforming to X/Open and the error log file that is created.

Table 10-2: Relationship between use of API (TX_function) conforming to X/
Open and created error log files

xxxxx: Process ID during UAP execution
(2) Interpreting an error log

Error log information is output when an error occurs during SQL execution, during
communication, or during execution of an XA interface function specified by X/Open.
An example of output of error log information is shown as follows, followed by an
explanation.
Output example

1. Error log leading identifier: >> is displayed for an error that occurred during SQL
execution; > is displayed for any other error.

2. UAP process number: Displays the process number of the UAP where the error

Use of TX_function Created error log files

No pderr1.trc and pderr2.trc

Yes pderrxxxxx-1.trc and pderrxxxxx-2.trc

10. UAP Troubleshooting

841

occurred. If the correct process number cannot be obtained, an invalid value may
be displayed (Windows).

3. UAP thread number: Displays the UAP thread number when the UAP in which
the error occurred is running in a multi-thread environment. Displays 0 if the UAP
is not running in a multi-thread environment. The correct thread number cannot
be assigned, and an invalid numeric value can sometimes be displayed as a result.

4. Server process number: Displays the process number at the server that is
connected.

5. Error log counter: Displays the error log counter values. Each time error log
information is accepted, the counter value is incremented (from 0 through
65535).

6. Collection date and time: Displays the date and time at which the error log
information was collected (in YYYY/MM/DD HH:MM:SS format).

7. Log data: Displays the error information (error message).
8. SQLCODE: Displays the SQLCODE when the error log corresponds to an SQLCODE

to be returned to the UAP.
9. SQL counter: Displays the SQL counter value for the SQL statement in which the

error occurred. For details about the SQL counter, see the output example
explanation in Section 10.1.1 SQL tracing.

10. Error collection time: Displays (in milliseconds) the amount of time used to
collect the error log information.

11. Error detection location: Displays the name of the source file and the row number
where the error was detected.

12. Operation code: Displays the operation code of the SQL statement in which the
error occurred.

(3) Making a backup of an error log file
If the error log file becomes full while error log information is being output, HiRDB
stops writing to that file and outputs error log information to another error log file. Any
information that already exists in the switched-in error log file is overwritten in
chronological order by the new error log information. To prevent that information from
being lost, copy the contents of the error log file into a backup file whenever execution
of a UAP is completed.
To determine the error log file that is being used currently, check the most recent
update dates/times of the files. The error log file that was updated most recently is the
current file.
For a Windows version HiRDB client, you use the dir command or the Explorer to
check the file update dates/times.

10. UAP Troubleshooting

842

For a UNIX version HiRDB client, you use the OS's 1s -1 command to check the file
update dates/times.

10.1.3 Facility for output of extended SQL error information
(1) What is the facility for output of extended SQL error information

The facility for output of extended SQL error information performs the following
functions:

• Outputs the affected SQL statement and parameter information to the information
of the error log facility. (The information produced when the SQL statement and
parameter information are added to the information of the error log facility is
called SQL error information.)

• Outputs SQL error information to the server as well. (The file to which SQL error
information is output is called the SQL error report file.)

(2) Benefits
Centralized management of SQL error information
If an SQL error occurs, SQL error information is output on the server side, as well
as on the client side. Since SQL error information for multiple clients can be
output to the SQL error report file of one server, centralized management of SQL
error information is possible.
Output of the affected SQL statement and parameter information
The SQL statement affected by the error and the related parameter information are
output. The affected SQL statement can be investigated from this information.

(3) Usage method
When you use the facility for output of extended SQL error information, specify the
following system definitions or client environment definitions:

Whether or not the facility for output of extended SQL error information is to be
used
Use the pd_uap_exerror_log_use operand or PDUAPEXERLOGUSE to set
whether or not the facility for output of extended SQL error information is to be
used. Specify the pd_uap_exerror_log_use operand to set a value for the
entire HiRDB system, and specify PDUAPEXERLOGUSE to set a value for each
application.
Output destination directory and maximum size of the SQL error report file
Use the pd_uap_exerror_log_dir operand to set the output directory of the
SQL error report file. Use the pd_uap_exerror_log_size operand to set the
maximum size of the SQL error report file.

10. UAP Troubleshooting

843

Maximum data length of the parameter information output to the error log file or
the SQL error report file
Use the pd_uap_exerror_log_param_size operand or
PDUAPEXERLOGPRMSZ to set the maximum data length of the parameter
information output to the error log file or the SQL error report file. Specify the
pd_uap_exerror_log_param_size operand to set a value for the entire
HiRDB system, and specify PDUAPEXERLOGPRMSZ to set a value for each
application.

(4) Interpreting SQL error information
(a) Output format of the SQL error report file

The output format of the SQL error report file is shown below.
Output format

** UAP ERROR INFORMATION aa...aa bbbbbbbbbbbbbbbbbbbbbbbbbb ** [1]

* UAP INFORMATION * [2]
 UAP_NAME(cc...cc) USERID(dd...dd)
 IPADDR(ee...ee) CLTPID(ff...ff) THRDID(gg...gg)
 START_TIME(hhhhhhhhhhhhhhhhhhh)

* SERVER INFORMATION * [3]
 HOST(ii...ii) PORT(jj...jj) PLATFORM(kk...kk)
 SVRNAME(ll...ll) SVRPID(mm...mm)

* SQL INFORMATION * [4]
 OPTIMIZE_LEVEL(nn...nn) ADDITIONAL_OPTIMIZE_LEVEL(oo...oo)
 ISOLATION_LEVEL(pp...pp)

CNCTNO SQL- OP SEC SQL SQL OP ERROR
 COUNTER CODE NO CODE WARN TION COUNTER
---------- ---------- ---- ---- ----- ----- ---- -----
rrrrrrrrrr ssssssssss tttt uuuu vvvvv wwwww xxxx yyyyy

START-TIME END-TIME EXEC-TIME
--------------- --------------- -----------------
zzzzzzzzzzzzzzz AAAAAAAAAAAAAAA BB...BB

* SQL MESSAGE * [5]
 "CC...CC" [DD...DD]

* SQL STATEMENT * [6]
 "EE...EE"

10. UAP Troubleshooting

844

* PARAMETER * [7]
ELM NO= FFFFF
GGGGG NO=HHHHH COD=III XDIM=JJJJJ SYS=KKKKK LEN=LLLLLLLLLLL
IND=MMMMMMMMMMM
 ARRAY NUM=NNNNN
 DATA=OO...OO

Explanation
1. Title of SQL error report file
2. UAP information
3. Server information
4. SQL information
5. SQL message
6. SQL statement
7. Parameter information
aa...aa

Displays the HiRDB version in the format shown below. (The maximum size
of the displayed characters is 8 bytes.)
vv-rr-zz
If there is no -zz value, -zz is not output.

bbbbbbbbbbbbbbbbbbbbbbbbbb
Displays the date and time that the error information was output. The output
format is shown below. (The maximum size of the displayed characters is 26
bytes.)
YYYY/MM/DD hh:mm:ss.uuuuuu
YYYY: Year
MM: Month
DD: Day
hh: Hour
mm: Minute
ss: Second
uuuuuu: Microsecond

10. UAP Troubleshooting

845

cc...cc
Displays the UAP name that was specified in the PDCLTAPNAME client
environment definition. (The maximum size of the displayed characters is 30
bytes.)

dd...dd
Displays the authorization identifier of the connected user. (The maximum
size of the displayed characters is 8 bytes.)

ee...ee
Displays the IP address of the UAP. (The maximum size of the displayed
characters is 15 bytes.)

ff...ff
Displays the UAP process number. (The maximum size of the displayed
characters is 10 bytes.)
If the correct process number cannot be obtained, an invalid value may be
displayed (Windows).

gg...gg
Displays the UAP thread number if the UAP is operating in multiple threads.
(The maximum size of the displayed characters is 11 bytes.) If the UAP is
not operating in multiple threads, 0 is displayed.
An incorrect number may be displayed if the correct thread number cannot
be obtained. If the client version is 07-01 or earlier, * is displayed.

hhhhhhhhhhhhhhhhhhh
Displays the UAP execution time in the format shown below. (The maximum
size of the displayed characters is 19 bytes.)
YYYY/MM/DD hh:mm:ss
YYYY: Year
MM: Month
DD: Day
hh: Hour
mm: Minute
ss: Second

ii...ii
Displays the name of the host in which the server process is operating. (The

10. UAP Troubleshooting

846

maximum size of the displayed characters is 30 bytes.)
jj...jj

Displays the communication port number of the server process. (The
maximum size of the displayed characters is 5 bytes.)

kk...kk
Displays the platform supported by the client library. (The maximum size of
the displayed characters is 6 bytes.)
For details about the output information, see the UAP operation platform in
10.1.1(2) Examining SQL trace information. If the client version is 07-01 or
earlier, * is output.

ll...ll
Displays the server name of the single server or the front-end server. (The
maximum size of the displayed characters is 8 bytes.)

mm...mm
Displays the process number of the server process. (The maximum size of
the displayed characters is 10 bytes.)

nn...nn
Displays the value of the SQL optimization option in decimal format. (The
maximum size of the displayed characters is 10 bytes.)

oo...oo
Display the value of the SQL extension optimizing option in decimal format.
(The maximum size of the displayed characters is 10 bytes.)

pp...pp
Displays the value of the data guarantee level. (The maximum size of the
displayed characters is 10 bytes.)

rrrrrrrrrr
Displays the connection sequence number each time the server accepts
CONNECT. (The maximum size of the displayed characters is 10 bytes.) The
displayed connection sequence number is right-justified and padded with
leading single-byte space characters.

ssssssssss
Displays the incremented SQL counter value each time an SQL statement is
accepted. (The maximum size of the displayed characters is 10 bytes.) The
displayed SQL counter value is right-justified and padded with leading
single-byte space characters.

10. UAP Troubleshooting

847

tttt
Displays the operation code for the SQL statement. (The maximum size of
the displayed characters is 4 bytes.)

uuuu
Displays the section number of the SQL statement. (The maximum size of
the displayed characters is 4 bytes.) The displayed section number is
right-justified and padded with leading single-byte space characters. If an
error occurs during execution of a control SQL, **** is displayed.

vvvvv
Displays the SQLCODE of the SQL execution result. (The maximum size of
the displayed characters is 5 bytes.) The displayed SQLCODE is right-justified
and padded with leading single-byte space characters.

wwwww
Displays warning information in hexadecimal format. (The maximum size of
the displayed characters is 5 bytes.) In the warning information, one bit is
assigned to each of the items SQLWARN0 to SQLWARNF, starting from the left.
If a warning flag is set to one of these items, the corresponding bit is set to
1. If a warning flag is not set, the bit is set to 0. All of these bits combined
are output as a 4-digit hexadecimal value. If at least one warning flag is set,
the 4-digit hexadecimal value is preceded by W. If no warning flag is set, the
value is preceded by -. Examples are shown below.
Example:

xxxx
Displays information that the system uses. (The maximum size of the
displayed characters is 4 bytes.)
If the first byte is M, it indicates that the inter-process memory
communication facility is being used. The other three bytes represent
maintenance information. However, if the client version is 07-01 or earlier,

10. UAP Troubleshooting

848

**** is displayed.
yyyyy

Displays the error log number. (The maximum size of the displayed
characters is 5 bytes.)
The output error log number is right-justified and padded with leading
single-byte space characters. However, If the client version is 07-01 or
earlier, ***** is displayed.

zzzzzzzzzzzzzzz
Displays the time that the SQL execution request was received from the
client. The time is displayed in the format shown below. (The maximum size
of the displayed characters is 15 bytes.)
hh:mm:ss.uuuuuu
hh: Hour
mm: Minute
ss: Second
uuuuuu: Microsecond

AAAAAAAAAAAAAAA
Displays the time that processing of the client request ended. The time is
displayed in the format shown below. (The maximum size of the displayed
characters is 15 bytes.)
hh:mm:ss.uuuuuu
hh: Hour
mm: Minute
ss: Second
uuuuuu: Microsecond

BB...BB
Displays the processing time of the client request in the format shown below.
(The maximum size of the displayed characters is 17 bytes.) The displayed
seconds value is right-justified and padded with leading single-byte space
characters.
ssssssssss.uuuuuu
ssssssssss: Seconds
uuuuuu: Microseconds

10. UAP Troubleshooting

849

CC...CC
Displays the message that was output during SQL execution. (The maximum
size of the displayed characters is 254 bytes.)

DD...DD
Displays information that the system uses. (The maximum size of the
displayed characters is 21 bytes.)

EE...EE
Displays the SQL statement. (The maximum size of the displayed characters
is 2,000,000 bytes.)
If comments or SQL optimization specifications are described in the SQL
statement, those are also displayed. If an error occurred during execution of
a control SQL statement, * is displayed. For details about comments and
SQL optimization specifications, see the manual HiRDB Version 8 SQL
Reference.

FFFFF
Displays the affected element number if an error occurs in an SQL statement
that uses an array. (The maximum size of the displayed characters is 5 bytes.)

GGGGG
Displays INPRM for input parameter information or OUTRM for output
parameter information. For input/output parameter information, this variable
displays INPRM for input information and OUTRM for output information.
(The maximum size of the displayed characters is 5 bytes.)

HHHHH
Displays the parameter number. (The maximum size of the displayed
characters is 5 bytes.)

III
Displays the data-type code. (The maximum size of the displayed characters
is 3 bytes.)

JJJJJ
Displays the number of array elements. (The maximum size of the displayed
characters is 5 bytes.)

KKKKK
Displays the area length of one element, including gaps. (The maximum size
of the displayed characters is 5 bytes.)

LLLLLLLLLLL

10. UAP Troubleshooting

850

Displays the data length. (The maximum size of the displayed characters is
11 bytes.)

MMMMMMMMMMM
Displays the indicator variable value. (The maximum size of the displayed
characters is 11 bytes.)

NNNNN
Displays the number of elements in the repetition column if the SQL
statement contains a repetition column. (The maximum size of the displayed
characters is 5 bytes.) If the SQL statement does not contain a repetition
column, this information is not displayed.

OO...OO
Displays parameter information. (The size of the displayed characters is the
value specified for the pd_uap_exerror_log_param_size operand.)
The types of parameter information are input parameter information, output
parameter information, and input/output parameter information. The rules
pertaining to parameter information are as follows:

• If an input parameter is a BLOB-type or BINARY-type locator, the value
of the BLOB-type or BINARY-type locator is displayed.

• If the indicator variable is a negative value, only the portion up to
DATA= is displayed.

• If there is information for several parameters, the parameter information
is displayed in the sequence that the parameters were specified.

• If similar data extends beyond one line, --- SAME x LINES --- (x is
the number of lines) is displayed.

• The size of the displayed parameter information is the sum of the actual
data length and the data area length.

• For a repetition column, the number of elements in the repetition
column is displayed in ARRAY NUM.

• For a repetition column, DATA is preceded by an indicator variable for
each repetition element.

• For a repetition column, DATA is followed by the repetition column
element number enclosed in parentheses.

(b) Output format of the error log file
Shown below is the output format of the error log file when the facility for output of
extended SQL error information is used.
Output format

10. UAP Troubleshooting

851

> 8355 0 8393 9 2005/08/12 14:06:30 KFPZ03000-I Error
information, type=CONNECT STATUS,
 inf=CLT=07-02(Aug 4 2005):WS SVR=07-02 US:WS LIBTYPE=UNIX_32
> 8355 0 8393 10 2005/08/12 14:06:30 KFPZ03000-I Error
information, type=SQL STREAM,
 inf=insert into t1 values (? , ? ,?)
>> 8355 0 8393 11 2005/08/12 14:06:30 SQLCODE:-404
47(140630218) sqaexp0.c :2348 AUX
 KFPA11404-E Input data too long for column or assignment target
in variable 3
 UAP userprog1,hiuser01 [1]
 SVR host03,1146,sds,hp [2]
 SQLINF
1034,1,2,7,17,-0000,0000,14:06:30.216463,14:06:30.217765,0.001
302 [3]
 SQL INSERT INTO T1 VALUES(?,?,?) [4]
 PRM [5]
 INPRM 1,f1,1,0,4,0
 DATA=00 00 ff ff *....
*
 INPRM 2,c1,10,258,255,9
 ARRAY NUM= 9
 0 DATA(0)=00 01 61 *..a
*
 0 DATA(1)=00 02 61 62 *..ab
*
 0 DATA(2)=00 03 61 62 63
*..abc *
 0 DATA(3)=00 04 61 62 63 64
*..abcd *
 0 DATA(4)=00 05 61 62 63 64 65
*..abcde *
 0 DATA(5)=00 06 61 62 63 64 65 66
*..abcdef *
 0 DATA(6)=00 07 61 62 63 64 65 66 67
*..abcdefg *
 0 DATA(7)=00 08 61 62 63 64 65 66 67 68
*..abcdefgh *
 -1 DATA(8)=
 INPRM 3,93,1,0,32002,0
 DATA=00 00 00 00 00 00 7d 02 41 41 41 41 41 41 41 41
......}.AAAAAAAA
 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
AAAAAAAAAAAAAAAA
 --- SAME 14 LINES ---

10. UAP Troubleshooting

852

Explanation
1. UAP information

UAP name

The name of the UAP that was specified in the PDCLTAPNAME client
environment definition is displayed.

Authorization identifier

The authorization identifier of the connected user is displayed.
2. Server information

Host name

The name of the host in which the server process is operating is displayed.
Port number

The communication port number of the server process is displayed.
Server name

The server name of the single server or front-end server is displayed.
Platform

The platform supported by the client library is displayed.
For details about the displayed information, see the UAP operation platform
in 10.1.1(2) Examining SQL trace information. If the client version is 07-01
or earlier, * is displayed.

3. SQL information

SQL optimization option

The value of the SQL optimization option is displayed in decimal format.
SQL extension optimizing option

The value of the SQL extension optimizing option is displayed in decimal
format.

Data guarantee level

The value of the data guarantee level is displayed.
Connection sequence number

The connection sequence number, which is incremented sequentially each
time the server accepts CONNECT, is displayed.

Section number

10. UAP Troubleshooting

853

The section number of the SQL statement is displayed.
SQLWARN

Warning information is displayed in hexadecimal format. In the warning
information, one bit is assigned to each of the items SQLWARN0 to
SQLWARNF, starting from the left. If a warning flag is set to one of these
items, the corresponding bit is set to 1. If a warning flag is not set, the bit is
set to 0. All of these bits combined are output as a 4-digit hexadecimal value.
If at least one warning flag is set, the 4-digit hexadecimal value is preceded
by W. If no warning flag is set, the value is preceded by -. (For examples, see
the explanation for wwwww in (a) Output format of the SQL error report
file.)

System information

Information used by the system is displayed.
If the first byte is M, it indicates that the inter-process memory
communication facility is being used. The other three bytes represent
maintenance information. However, if the client version is 07-01 or earlier,
**** is displayed.

SQL start time

The time when the SQL execution request from the client was received is
displayed in the following format:
hh:mm:ss.uuuuuu
hh: Hour
mm: Minute
ss: Second
uuuuuu: Microsecond

SQL end time

The time when the process requested by the client ended is displayed in the
following format:
hh:mm:ss.uuuuuu
hh: Hour
mm: Minute
ss: Second
uuuuuu: Microsecond

SQL runtime

10. UAP Troubleshooting

854

The processing time of the client request is output in the following format.
The displayed seconds value is right-justified and padded with leading
single-byte space characters.
ssssssssss.uuuuuu
ssssssssss: Second
uuuuuu: Microsecond

4. SQL statement

SQL statement

The SQL statement is displayed.
If comments or SQL optimization specifications are described in the SQL
statement, those are also displayed. The size of the displayed SQL statement
is the value specified for PDSQLTEXTSIZE in the client environment
definitions.
If an error occurs during execution of a control SQL statement, that SQL
statement cannot be obtained and * is displayed instead.
For details about comments and SQL optimization specifications, see the
manual HiRDB Version 8 SQL Reference.

5. Parameter information

ELM NO

If an error occurs in an SQL statement that uses an error, the number of that
element is displayed.

Parameter information type

INPRM is displayed for input parameter information and OUTRM for output
parameter information. For input/output parameter information, INPRM is
displayed for input information and OUTRM for output information.

NO

The parameter number is displayed.
COD

The data type code is displayed.
XDIM

The number of array elements is displayed.
SYS

The area length of one element, including gaps, is displayed.

10. UAP Troubleshooting

855

LEN

The data length is displayed.
IND

The value of the indicator variable is displayed.
ARRAY NUM

If the SQL statement contains a repetition column, the number of elements
in the repetition column is displayed. If the SQL statement does not contain
a repetition column, this information is not displayed.

DATA

Parameter information is displayed.
The types of parameter information are input parameter information, output
parameter information, and input/output parameter information.
The rules pertaining to parameter information are as follows:

• If an input parameter is a BLOB-type or BINARY-type locator, the value
of the BLOB-type or BINARY-type locator is displayed.

• If the indicator variable is a negative value, only the portion up to
DATA= is displayed.

• If there is information for several parameters, the parameter information
is displayed in the sequence that the parameters were specified.

• If similar data extends beyond one line, --- SAME x LINES --- (x is
the number of lines) is displayed.

• The size of the displayed parameter information is sum of the actual
data length and the data area length.

• For a repetition column, the number of elements in the repetition
column is displayed in ARRAY NUM.

• For a repetition column, DATA is preceded by an indicator variable for
each repetition element.

• For a repetition column, DATA is followed by the repetition column
element number enclosed in parentheses.

(5) Rules for SQL error report files
The rules pertaining to the SQL error report files are described below. To view an SQL
error report file, use a text editor or similar software.
1. HiRDB executes SQL statements, and each time it detects an error, it opens the

SQL error report file, writes SQL error information, and then closes the file. Since

10. UAP Troubleshooting

856

the SQL error information is appended to the final position of the SQL error report
file, SQL error information accumulates in the file in chronological order.

2. Two SQL error report files are created (pduaperrlog1 and pduaperrlog2). If
the size of the file to which data is currently being written exceeds the specified
value of the pd_uap_exerror_log_size operand in the system definition, the
output destination is switched to the other file. The system uses the two files
alternately by performing this switching process on the other file as well. (After
switching takes place, the contents of the previous file are deleted.) After HiRDB
is started, the file that was most recently updated becomes the output destination.

3. When SQL processing ends, the SQL error report files are closed. Therefore,
when an SQL statement is not being executed, you can use an OS command to
back up or view the files. Even while an SQL statement is being executed, you
can back up or view the file that is not the output destination.

4. To determine the SQL error report file that is being used currently, use the OS's
dir command (1s -1 command in UNIX) to check the most recent update dates
of the files. The SQL error report file that was updated most recently is the current
file.

(6) Notes
1. When the facility for output of extended SQL error information is used, time is

required for executing a system call that retrieves the SQL start time and runtime,
even if SQL error information is not output.

2. If the OS detects an error (such as a file system failure or an inappropriate file
write privilege) while information is being output to an error log file or an SQL
error report file, SQL error information is not output to the SQL error report file.

3. When the facility for output of extended SQL error information is used, memory
space becomes necessary because parameter information is output.

10.1.4 UAP statistical report facility
The UAP statistical report facility outputs UAP statistical information during UAP
execution to a UAP statistical report file.

(1) How to obtain the UAP statistical report
To obtain UAP statistical reports, specify values to PDCLTPATH, PDSQLTRACE, and
PDUAPREPLVL in the client environment definitions.
The UAP statistical report facility creates two UAP statistical report files in the
directory specified by PDCLTPATH.
To create the report files in a different directory from the one specified by PDCLTPATH,
specify a value to PDREPPATH. Also, to open and close SQL trace files in CONNECT
and DISCONNECT units, specify CNCT in PDSQLTRCOPENMODE.

10. UAP Troubleshooting

857

For details about the individual client environment definitions, see 6.6 Client
environment definitions (setting environment variables).
You can specify the information to be obtained using PDUAPREPLVL in the client
environment definitions. Table 10-3 shows the relationship between the value of
PDUAPREPLVL and the information to be obtained.

Table 10-3: Relationship between the value of PDUAPREPLVL and
information to be obtained

Y: Information is obtained.
N: Information is not obtained.
1 If s is specified, SQL trace information is also obtained.
2 When access path information or SQL runtime interim results are obtained, the

Value of PDUAPREPLVL Information to be obtained

By SQL By UAP Access path
information2

SQL runtime
interim
results2

s1 Y N N N

u N Y N N

p N N Y N

r N N N Y

su1 Y Y N N

sp1 Y N Y N

sr1 Y N N Y

up N Y Y N

ur N N Y Y

pr N N Y Y

sur1 Y Y N Y

spr1 Y N Y Y

upr N Y Y Y

a or sup1 Y Y Y Y

10. UAP Troubleshooting

858

server's workload may increase because the system re-creates an SQL object even if
the SQL object is found in the buffer.

Size of an SQL trace file
You can determine the size of an SQL trace file using the following formula:
Size of SQL trace file = 3208 + A + 80 number of operations + total length of SQL
statements (maximum of 4096) (bytes)
A: Total length of character strings specified in PDHOST, PDFESHOST, PDSQLOPTLVL,
PDADDITIONALOPTLVL, PDREPPATH, and PDTRCPATH in the client environment
definitions
To output information by SQL, information by UAP, access path information, and SQL
runtime interim results, add the following sizes (bytes):

Information by SQL: 83* number of SQL statements

Information by UAP: 2740* number of DISCONNECTs
Access path information: See (2)(b) Access path information.
SQL runtime interim results: See (2)(c) SQL runtime interim results.
* This is the maximum value. The value changes according to the number of digits to
be displayed.

Notes
1. If a program uses an API conforming to X/Open under OLTP, the facility

does not output the information by the UAP.
2. The facility does not display the access path information if its size exceeds

one gigabyte.

3. SQL runtime interim results are not output if the interim results during SQL
execution exceed 1 gigabyte.

4. For a HiRDB/Parallel Server, the information by the UAP does not include
the privilege checking executed at the connected dictionary server.

5. If you specify values that enable both the output of access path information
and the inter-process memory facility (if you specify PDIPC=MEMORY in the
client environment definitions), the PDIPC specification becomes invalid.

6. If you specify output of access path information or SQL runtime interim
results, and use the inter-process memory communication facility (if you
specify PDIPC=MEMORY in the client environment definitions), the PDIPC
specification becomes invalid.

10. UAP Troubleshooting

859

(2) Interpreting a UAP statistical report
The following shows a sample UAP statistical report, followed by explanations (a)
through (d):
Output example

 CNCT CLPID CLTID NO OP SEC SQL SQL START-TIME END-TIME OP
 NO CODE NO CODE WARN TION
 ---- ----- ----- -- ---- --- ---- ----- ------------ ------------ ----
 1 9155 0 1 CNCT 0 0 WC040 16:03:55.720 16:03:58.080 0001
 1 9155 0 2 AUI2 1 0 -0000 16:03:58.630 16:03:59.400 0000

SQL INSERT INTO T1(C1,C2,C3,C4,C5,C6) VALUES(?,?,?,?,?,?)
00:00:00.770 00:00:00.430000 340 1 0 0 0 0 0(a)
 [1] [2] [3] [4] [5] [6] [7] [8] [9]

 1 9155 0 3 SET 2 0 -0000 16:04:00.820 16:04:01.540 0000

SQL SELECT * from T1, T2, T3 where ((T1.C1='a' and T1.C2='A')
 or (T1.C1='a' and T1.C2='B')) and T1.C1=T2.C1 and T1.C2=T2.C2 and T2.C3>=1995
 and T1.C1=T3.C1 and T1.C2=T3.C2 order by T1.C1

00:00:00.720 00:00:00.240000 480 1 0 0 0

Result of SQL Optimizer : ...(b)
 Connect No : 1

 --
 Section No : 2
 UAP Source :XXXXXXXX.ec
 Optimize Mode : COST_BASE_2
 SQL Opt Level : 0x00000420(1056) = "PRIOR_NEST_JOIN"(32),"RAPID_GROUPING"(1024)
 Add Opt Level : 0x00000003(3) = "COST_BASE_2"(1),"APPLY_HASH_JOIN"(2)
 Work Table : 0
 Table Cost : 12672.66944
 ----- QUERY EXPRESSION BODY ID : 1 -----
 :
 ----- QUERY ID : 1 -----
 :
 JOIN
 :
 SCAN
 :

 --

 1 9155 0 4 OPEN 2 0 -0000 16:04:02.090 16:04:02.800 0000

10. UAP Troubleshooting

860

(a) Information by the SQL
1. SQL execution time (milliseconds)

Result of SQL Execution : ...(c)
--
Connect No : 1
UAP Source : XXXXXXXX.ec
Section No : 2
----- QUERY EXPRESSION BODY ID : 1 -----
 :
----- QUERY ID : 1 -----
 :
JOIN
 :
SCAN
 :
--

 1 9155 0 9 DISC 0 0 -0000 16:05:55.110 16:05:56.660 0004

UAP INFORMATION: ...(d)
 [1]UAPNAME()
 [2]SVHOST(dcm3500) [3]SVPORT(4439) [4]SVNAME(fes1) [5]CNCTNO(1)
 [6]SVPID(8945) [7]CLPID(9155) [8]CLTTID(0)
 [9]WAITT(0) [10]CTIME(0)
 [11]ROREQ(0) [12]ROHITS(0)

 [13]SOREQ(10) [14]SOHITS(3) [15]SOCRT(0) [16]SOMAX(0)
 [17]COMT(0) [18]ROLB(0) [19]FROW(0) [20]DROW(0) [21]IROW(3)
 [22]UROW(0) [23]SET(1) [24]OPEN(2) [25]FETC(1) [26]CLOS(0)
 [27]DESC(0) [28]SEL(1) [29]INS(3) [30]UPD(0) [31]DEL(0)
 [32]LOCK(0) [33]CRTT(0) [34]DRPT(0) [35]ALTT(0) [36]CRTI(0)
 [37]DRPI(0) [38]CMTT(0) [39]CMTC(0) [40]CRTS(0) [41]DRPS(0)
 [42]GRTR(0) [43]GRTS(0) [44]GRTA(0) [45]GRTC(0) [46]GRTD(0)
 [47]RVKR(0) [48]RVKS(0) [49]RVKA(0) [50]RVKC(0) [51]RVKD(0)
 [52]CRTV(0) [53]DRPV(0) [54]PRGT(0) [55]CRTP(0) [56]DRPP(0)
 [57]ALTP(0) [58]CALL(0) [59]DESI(0) [60]MISC(0)
 [61]MAXIO(0) [62]MAXIOM(0) [63]MINIO(0) [64]MINIOM(0)
 [65]IOTIM(0) [66]IOTIMM(0)

 [67]DIDRC(0) [68]DIDUC(0) [69]DIDHC(0) [70]DIDRD(0) [71]DIDWT(0)
 [72]LBRFC(0) [73]LBUPC(0) [74]LBRHC(0) [75]LBUHC(0) [76]LBRDC(0)
 [77]LBWTC(0) [78]BFSHC(2320) [79]BRDWC(0) [80]BWTWC(50)
 [81]BLKWC(2) [82]MWFN(0) [83]MWFEC(0) [84]MWFVL(0)
 [85]WFRDC(0) [86]WFWTC(0) [87]WBFOC(0)
 [88]MWHTS(0) [89]MBSL1(0) [90]MBSL2(0) [91]MBSL3(0)
 [92]SCHSKD(0) [93]SCHCHG(0)
 [94]CINSM(0) [95]CAFLS(0) [96]CAFWR(0) [97]CFMAX(0) [98]CFAVG(0)
 [99]LDIRC(0) [100]LDIUC(0) [101]LDIHC(0) [102]LDIRD(0)
[103]LDIWT(0) [104]LBFSHC(0)
[105]ARREQ(0) [106]ARWC(0) [107]ARWT(0) [108]ARWTM(0)
[109]ARWTA(0) [110]ARWTMA(0) [111]ARSTA(0) [112]ARSTMA(0)
[113]HJMAX(0) [114]HJCMC(0) [115]HJHTC(0)

10. UAP Troubleshooting

861

Displays the SQL execution time in the format HH:MM:SS.mmm. If YES is
specified in the PDSQLEXECTIME client environment definition, the unit becomes
microseconds.

2. SQL execution time at server (microseconds)
Displays the SQL execution time at the server in the format
HH:MM:SS.mmmmmm.

3. Difference between 1 and 2 (milliseconds)
Provides a guideline for communication time. If YES is specified in the
PDSQLEXECTIME client environment definition, the unit becomes microseconds.

4. Number of processed rows
Displays the number of rows processed by the SQL statements that were issued
during the session.

5. Work table creations count
Displays the number of times a work table was created during internal processing
for the SQL statements that were issued during the session.

6. Work table deletions count
Displays the number of times a work table was deleted during internal processing
for the SQL statements that were issued during the session.

7. SQL object size (bytes)
Displays the size of the SQL object created by the SQL statements that were
issued during the session.

8. Total comparison count during hash table search processing by hash join,
subquery hash execution
Displays the total number of comparisons that the SQL statements issued during
this connection perform on the data having the same hash value during the hash
table search.

9. Total hash join search count during hash join, subquery hash execution
Displays the number of times that the hash table was searched by the SQL
statements issued during this connection.

(b) Access path information
A UAP statistical report displays access path information. Connect No displays the
connect number. By executing an upward search based on the connect number, you can
identify the SQL statements displayed in the SQL trace information. You can also use
the connect number to find out the execution request start and end times of the SQL
statements displayed in the SQL trace information. For dynamic SQL, execute a

10. UAP Troubleshooting

862

downward search based on the connect number, while for static SQL, execute an
upward search. If you specify information acquisition in SQL units, the SQL execution
times are also displayed. If you find an SQL statement that has a long SQL execution
time, tune the UAP.
The UAP statistical report facility does not include the following information in the
access path information: HiRDB version, number of back-end servers, UAP name,
authorization identifier, SQL optimization processing time, and SQL statements.
However, if the routine contains data manipulation SQL statements, the facility
displays them as the SQL statements.
If the access path is SELECT-APSL for a HiRDB/Single Server (access path is to be
selected from multiple candidates by the boundary value during execution), the facility
displays the boundary value at the beginning, followed by multiple candidates
separated by Section No.
For details about the access path information, see the access path display utility in the
manual HiRDB Version 8 Command Reference.

Notes
1. The facility does not display the access path information for a Java routine.
2. For an SQL routine, the facility displays the access path information if the

SQL object's index information becomes invalid due to an index addition or
deletion made to the table used within the routine.

3. The access path information increases the size of the SQL trace file. You can
determine this increase in size using the following formula. This is just a
guideline; the actual size of the access path information depends on the table
definitions, index definitions, and SQL statement used.

(c) SQL runtime interim results
A UAP statistical report displays SQL runtime interim results.
When SQL runtime interim results are displayed, the information listed below can be
checked. (The number of rows displayed in the results is the number of rows that
HiRDB actually processed at the stage that the interim results are displayed.)

• Number of rows fetched from the table

10. UAP Troubleshooting

863

• Number of rows narrowed by the index
• Number of rows in the results for each join
• Number of input/output rows for any duplicate exclusion, GROUP BY, ORDER BY,

or LIMIT specified in the query and number of rows in the query results
• Number of rows in the results for each set operation

Use the SQL runtime interim results and the access path information to carry out SQL
tuning. For details about using access path information for SQL tuning, see the
description of the access path display utility in the manual HiRDB Version 8 Command
Reference.
Output format

Explanation
1. Set operation process information

For details about set operation process information, see Set operation
process information.

2. Query process information
For details about query process information, see Query process information.

3. Join process information
For details about join process information, see Join process information.

4. Base table search process information
For details about base table search process information, see Base table
search process information.

aa...a
Displays the connection sequence number.

Connect No : aa...a
UAP Source : bb...b
Section No : cc...c
 ----- QUERY EXPRESSION BODY ID : ... ----- 1
 :
 ----- QUERY ID : ... ----- 2
 :
 JOIN ...3
 :
 SCAN ...4
 :

10. UAP Troubleshooting

864

bb...b
Displays the UAP source file name.

cc...c
Displays the section number (number for checking the SQL
correspondence).

The information after Connect No is repeated for each SQL statement. By
conducting a search using a connection sequence number and a section number,
you can identify correspondences with the SQL statements displayed in SQL
trace information and the access path information.
Set operation process information

Explanation
aa...a

Displays the query express body ID.
An ID number is assigned to each query expression body that includes a set
operation. If the SQL statement consists of multiple query expression bodies,
this line is used to separate the information displayed for each query
expression body.
When (b) Access path information is being displayed, this value corresponds
to the query expression body ID displayed in the access path information.

bb...b
Displays the number of rows in the results of the query expression.

cc...c ROWS <-- dd...d ROWS
Displays the final number of rows for the process (LIMIT process) that gets
search results for the maximum number of rows to return.
If LIMIT clause is not specified, this line is not displayed.
cc...c
Displays the number of output rows in the LIMIT process.

----- QUERY EXPRESSION BODY ID : aa...a -----
Query : bb...b ROWS
Limit : cc...c ROWS <-- dd...d ROWS
Order by : ee...e ROWS
SetOpe Process : ff...f = gg...g ROWS <-- hh...h ii...i hh...h
 :

10. UAP Troubleshooting

865

dd...d
Displays the number of input rows in the LIMIT process.

ee...e
Displays the number of rows of the sort process (ORDER BY process).
This line is not displayed if any one of the following conditions applies:

• An ORDER BY clause is not specified.
• The sort processing specified in the ORDER BY clause is omitted.
• A LIMIT clause is specified.

ff...f = gg...g ROWS <-- hh...h ii...i hh...h
Displays the number of rows in the results of the set operation.
If multiple set operations are specified, the information is displayed over
several lines.
If the facility that executes partitioned scanning of UNION ALL is applied
(this facility returns the search results of each query in succession without
creating a work table), this line is not displayed.
ff...f
Displays the set operation number of the set operation results in the format
LID(set-operation-number).
If access path information is being displayed, this corresponds to the set
operation number displayed in the access path information.
gg...g
Displays the number of rows in the set operation results.
hh...h
If the query expression body to be operated is a query specification, this
information is displayed in the format QID(query-ID). If the query
expression body to be operated is the joined result of multiple query
specifications, LID(set-operation-number) is displayed.
ii...i
Displays the set operation type (UNION, UNION ALL, EXCEPT, or EXCEPT
ALL). The hh...h values before and after this value form the query expression
body.

Query process information

10. UAP Troubleshooting

866

Explanation
aa...a

Displays the query ID.
A number is assigned to each query specification. If the SQL statement
consists of multiple query specifications, this line is used to separate the
information displayed for each specification.
If access path information is being displayed, this value corresponds to the
query ID displayed in the access path information.

bb...b
Displays the number of rows in the query results.

cc...c ROWS <-- dd...d ROWS
Displays the final number of rows for the process (LIMIT process) that gets
the search results for the maximum number of rows to return.
If LIMIT is not specified, this line is not displayed.

cc...c
Displays the number of output rows in the LIMIT process.
dd...d
Displays the number of input rows in the LIMIT process.

ee...e
The number of rows in sort processing (ORDER BY processing) is displayed.
Note that ORDER BY processing may be executed implicitly even if an ORDER
BY clause is not specified.
This line is not displayed if any one of the following conditions applies:

• An ORDER BY clause is not specified.
• The sort processing specified in the ORDER BY clause is omitted.

 ----- QUERY ID : aa...a -----
 Query : bb...b ROWS
 Limit : cc...c ROWS <-- dd...d ROWS
 Order by : ee...e ROWS
 Distinct : ff...f ROWS <-- gg...g ROWS
 Having : hh...h ROWS
 Group by : ii...i ROWS <-- jj...j ROWS

10. UAP Troubleshooting

867

• ORDER BY processing is not executed implicitly.
• A LIMIT clause is specified.

ff...f ROWS <-- gg...g ROWS
Displays the number of rows processed by duplicate exclusion. Note that
duplicate exclusion may be executed implicitly even if duplicate exclusion is
not specified.
This line is not displayed if any one of the following conditions applies:

• Duplicate exclusion is not specified.
• Duplicate exclusion is not executed implicitly.
• A LIMIT clause is specified.

ff...f
The number of output rows in duplicate exclusion processing is displayed.
gg...g
The number of input rows in duplicate exclusion processing is displayed.

hh...h
Displays the number of rows after the HAVING clause is evaluated.
If a HAVING clause is not specified, this line is not displayed.

ii...i ROWS <-- jj...j ROWS
Displays the number of rows processed by grouping (including implicit
grouping).
If grouping is not executed, this line is not displayed.
ii...i
Displays the number of output rows in grouping.
jj...j
Displays the number of input rows in grouping.

Join process information

 JOIN
 # Join ID : aa...a
 Row Count : bb...b ROWS
 Left : cc...c ROWS
 Right : dd...d ROWS
 Join Type : ee...e(ff...f)

10. UAP Troubleshooting

868

Explanation
aa...a

Displays the join process ID.
An ID number is assigned to each join process unit, and if there are multiple
join processes, the processes are separated with this line.
If access path information is being displayed, this value corresponds to the
join process ID displayed in the access path information.

bb...b
Displays the number of rows in the join process results.

cc...c
Displays the number of rows that were fetched from the join partner on the
left side.

dd...d
Displays the number of rows that were fetched from the join partner on the
right side.

ee...e
• For HiRDB/Single Server and for HiRDB/Parallel Server when the join

method is not determined dynamically during SQL execution
Displays the join process type (MERGE JOIN, NESTED LOOPS JOIN,
CROSS JOIN, or HASH JOIN).

• For HiRDB/Parallel Server when the join method is determined
dynamically during SQL execution
Displays SELECT-APSL as the join process type.

ff...f
Displays the execution type of the join process (INNER, LEFT OUTER,
EXIST, NOT EXIST, ALL, or VALUE).

Base table search process information
• When no index or only one index is used in the search process

10. UAP Troubleshooting

869

Explanation
aa...a(aa...a)

Displays the name of the table to be searched and the correlation name (in
parentheses). If a correlation name is not being used, the correlation name (in
parentheses) is not displayed. If there are several search processes, this line
is used to separate the information displayed for each search.

0xbbbbbbbb(bb...b)
Displays the ID of the table to be searched in hexadecimal and decimal (in
parentheses) formats.

cc...c
Displays the number of rows fetched from the base table.

dd...d
Displays the index name to be used in the search.
This line is not displayed in the following cases:

• The search is performed without the use of an index.
• HiRDB/Parallel Server dynamically determines the search method

during SQL execution.
0xeeeeeeee(ee...e)

Displays the ID of the index used in the search. The ID is displayed in
hexadecimal and decimal (in parentheses) formats.

ff...f
Displays the number of rows in the results narrowed by the search condition.
When an index is used in the search, the number of rows that make up the
index is displayed, even if there is no search condition.
This line is not displayed when the surrogate facility for plug-in indexes is
used to determine the results of a set function.

gg...g

 SCAN
 # Table Name : aa...a(aa...a) 0xbbbbbbbb(bb...b)
 Row Count : cc...c ROWS
 Index Name : dd...d 0xeeeeeeee(ee...e)
 Search : ff...f gg...g
 Key : hh...h gg...g

10. UAP Troubleshooting

870

Displays ELEMENTS for an index that contains a repetition column and ROWS
for all other cases.

hh...h
Displays the number of rows in the results narrowed by the key condition.
If there is no key condition, this line is not displayed.

• When multiple indexes are used in the search process

Explanation
aa...a(aa...a)

Displays the name of the table to be searched and the correlation name (in
parentheses).
If a correlation name is not being used, the correlation name (in parentheses)
is not displayed. If there are multiple search processes, this line is used to
separate the information displayed for each process.

0xbbbbbbbb(bb...b)
Displays the ID of the table to be searched in hexadecimal and decimal (in
parentheses) formats.

cc...c
Displays the number of rows fetched from the base table.

dd...d
Displays the number of the work table created when AND PLURAL INDEXES
SCAN* is executed. The work table number is displayed in the
LID(work-table-number) format.
If access path information is being displayed, this value corresponds to the

 SCAN
 # Table Name : aa...a(aa...a) 0xbbbbbbbb(bb...b)
 Row Count : cc...c ROWS
 Index Name : dd...d = ee...e 0xffffffff(ff...f)
 Search : gg...g hh...h
 Key : ii...i hh...h
 Row Count : jj...j ROWS
 dd...d = ee...e 0xffffffff(ff...f)
 Search : gg...g hh...h
 Key : ii...i hh...h
 Row Count : jj...j ROWS
 dd...d = kk...k ROWS <-- ll...l mm...m ll...l

10. UAP Troubleshooting

871

work table number displayed in the access path information.
ee...e

Displays the name of the index used to create the work table when AND
PLURAL INDEXES SCAN* or OR PLURAL INDEXES SCAN* is executed.
The index name is displayed in multiple lines. However, if a work table is
created without the use of an index, (NO USE) is displayed as the index
name.

0xffffffff(ff...f)
Displays the index IDs used in the search. The IDs are displayed in
hexadecimal and decimal (in parentheses) formats.

gg...g
Displays the number of rows in the results narrowed by the search condition.
Even if there is no search condition, the number of rows that make up the
index is displayed when a search using an index is executed.

hh...h
Displays ELEMENTS for an index that contains a repetition column and ROWS
for all other cases.

ii...i
Displays the number of rows in the results narrowed by the key condition.
If there is no key condition, this line is not displayed.

jj...j
Displays the number of rows fetched from the base table.

dd...d = kk...k ROWS <-- ll...l mm...m ll...l
Displays the creation sequence of the work tables created when AND PLURAL
INDEXES SCAN* is executed. When three or more indexes are used in the
search process, this information is displayed in multiple lines.
kk...k
Displays the number of rows in the operation results.
ll...l
Displays the work table that becomes the input for the operation. The work
table is displayed in the LID(work-table-number) format.
mm...m
Displays the operation type (AND, OR, or ANDNOT) performed on the work

10. UAP Troubleshooting

872

tables.
* For details about AND PLURAL INDEXES SCAN and OR PLURAL INDEXES
SCAN, see the description of the access path display utility in the manual HiRDB
Version 8 Command Reference.

• When a work table is created for retrieving the results of a view table

Explanation
aa...a(aa...a)

Displays the view name and the correlation name (in parentheses).
If a correlation name is not being used, the correlation name (in parentheses)
is not displayed.

0xbbbbbbbb(bb...b)
Displays the view ID in hexadecimal and decimal (in parentheses) formats.

cc...c
Displays the number of rows that were fetched from the table.

• When a work table is created for the WITH clause

Explanation
aa...a(aa...a)

Displays the WITH clause query name and the correlation name (in
parentheses).
If a correlation name is not being used, the correlation name (in parentheses)
is not displayed.

bb...b
Displays the number of rows that were fetched from the table.

• When a work table is created for the derived table specified in the FROM clause

 SCAN
 # Table Name : aa...a(aa...a) 0xbbbbbbbb(bb...b)
 Row Count : cc...c ROWS

 SCAN
 # Table Name : aa...a(aa...a)
 Row Count : bb...b ROWS

10. UAP Troubleshooting

873

Explanation
aa...a(aa...a)

Displays (NO NAME) or (NO NAME)(correlation-name).
bb...b

Displays the number of rows that were fetched from the table.
• When a work table that HiRDB creates internally is searched

Explanation
aa...a

Displays the name of the work table that HiRDB created internally.
The name of the work table that HiRDB created internally is displayed in
(DUMMY work-table-number) format.
The work table number is a three-digit integer.

bb...b
Displays the number of rows fetched from the work table that HiRDB
created internally.

• When the query results for an external server are retrieved

Explanation
aa...a

Displays the name of the table identifier that is created internally so that the

 SCAN
 # Table Name : aa...a(aa...a)
 Row Count : bb...b ROWS

 SCAN
 # Table Name : aa...a
 Row Count : bb...b ROWS

 SCAN
 # Table Name : aa...a
 Row Count : bb...b ROWS

10. UAP Troubleshooting

874

local HiRDB can access results fetched from an external server. The table
identifier name is displayed in (FOREIGNSQL table-number) format.

bb...b
Displays the number of rows that were fetched from the external server.

Notes
1. SQL runtime interim results are displayed when of one of the following SQL

statements is executed:

• Definition SQL1

• ASSIGN LIST statement5

• CLOSE statement

• DELETE statement6

• EXECUTE statement1

• EXECUTE IMMEDIATE statement 2

• INSERT statement3, 6

• PREPARE statement4

• PURGE TABLE statement1

• Single-row SELECT statement

• UPDATE statement6

• COMMIT statement1

• DISCONNECT statement1

• ROLLBACK statement1

• If an error that has implicit rollback occurs1

1 SQL runtime interim results are displayed if there is a cursor that has not been
closed.
2 SQL runtime interim results are displayed for the following SQL statements:

 ASSIGN LIST statement
 DELETE statement
 INSERT statement

10. UAP Troubleshooting

875

 UPDATE statement
3 SQL runtime interim results are displayed when a scalar subquery or a query
specification is specified in the VALUES clause.
4 If YES is specified in the PDPRPCRCLS client environment definition and an
SQL identifier being used by an open cursor is reused by a PREPARE statement,
the SQL runtime interim results of the open cursor are displayed.
5 SQL runtime interim results are not displayed when FOR ALTER LIST is
specified.
6 SQL runtime interim results are not displayed when a foreign table is specified
as the table target.

2. SQL runtime interim results are not displayed for an SQL statement described in
a stored procedure, even if the CALL statement is executed.

3. SQL runtime interim results are not displayed for a trigger SQL statement
described in a trigger, even if the trigger is executed.

4. When HiRDB/Parallel Server is used, the total number of rows of all servers is
displayed.

5. The displayed number of rows may not be an accurate value.
6. When SQL runtime interim results are displayed, the size of the SQL trace file

increases by the size shown in the expression below. Note this increase when
estimating the size of the SQL trace file. However, the size of the interim results
varies significantly depending on the table definitions, the index definitions, and
the SQL statements. The value estimated with the following expression should be
used only as a rough guideline.

(d) Information by the UAP
1. UAP name

This is the name of the UAP for which statistical information was edited.
2. Host name

This is the name of the host at the connected server.
3. Port number

Size of SQL runtime interim results
 n

 = 0.8 + 0.1 set-operation-count + 0.9 (Si) (kilobytes)
 i=1

10. UAP Troubleshooting

876

This is the port number at the connected server.
4. Connected server name

This is the name of the front-end server or single server that was connected.
5. Connection sequence number

This is the sequence number assigned by the server each time CONNECT is
accepted.

6. Server process number
This is the connected server's process number.

7. Client process number
This is the UAP's process number.

8. Client's thread number
This is the thread number of the UAP that is running in multi-thread.

9. Lock release wait time (milliseconds)1

This is the length of time during which a lock acquisition request in the server was
placed on lock release wait status because another user locked the requested
resource.

10. CPU time (milliseconds)1

This is the CPU time at the server that was used by transaction during UAP
execution.

11. Stored procedure's SQL object acquisition requests count
This is the number of times a stored procedure's SQL object acquisition request
was issued for the SQL object buffer at the single server or front-end server.

12. Stored procedure object buffer hits count
This is the number of times requested information was found in the SQL object
buffer at the single server or front-end server.

13. SQL object acquisition requests count
This is the number of times an SQL object acquisition request was issued for the
SQL statements issued during the session.

14. SQL object buffer hits count
This is the number of times requested information was found in the SQL object
buffer for the SQL statements issued during the session.

15. SQL object creations count

10. UAP Troubleshooting

877

This is the number of times an SQL object was created for the SQL statements
issued during the session.

16. Maximum size of SQL object created (bytes)
This is the maximum size of the SQL object created with the SQL statements
issued during the session.

17. COMMIT statement executions count during the session.
18. ROLLBACK statement executions count during the session.
19. Number of retrieval rows passed to UAP by the FETCH and SELECT statements

during the session.
20. Number of rows deleted by the DELETE statements during the session.
21. Number of rows inserted by the INSERT statements during the session.
22. Number of rows updated by the UPDATE statements during the session.
23. Preprocessing time during the session.
24. OPEN statement executions count during the session.
25. FETCH statement executions count during the session.
26. CLOSE statement executions count during the session.
27. DESCRIBE statement executions count during the session.
28. SELECT statement executions count during the session.
29. INSERT statement executions count during the session.
30. UPDATE statement executions count during the session.
31. DELETE statement executions count during the session.
32. LOCK statement executions count during the session.
33. CREATE TABLE executions count during the session.
34. DROP TABLE executions count during the session.
35. ALTER TABLE executions count during the session.
36. CREATE INDEX executions count during the session.
37. DROP INDEX executions count during the session.
38. COMMENT (TABLE) executions count during the session.
39. COMMENT (COLUMN) executions count during the session.
40. CREATE SCHEMA executions count during the session.
41. DROP SCHEMA executions count during the session.

10. UAP Troubleshooting

878

42. GRANT RDAREA executions count during the session.
43. GRANT SCHEMA executions count during the session.
44. GRANT access privilege executions count during the session.
45. GRANT CONNECT executions count during the session.
46. GRANT DBA executions count during the session.
47. REVOKE RDAREA executions count during the session.
48. REVOKE SCHEMA executions count during the session.
49. REVOKE access privilege executions count during the session.
50. REVOKE CONNECT executions count during the session.
51. REVOKE DBA executions count during the session.
52. CREATE VIEW executions count during the session.
53. DROP VIEW executions count during the session.
54. PURGE TABLE statement executions count during the session.
55. CREATE PROCEDURE executions count during the session.
56. DROP PROCEDURE executions count during the session.
57. ALTER PROCEDURE executions count during the session.
58. CALL statement executions count during the session.
59. DESCRIBE statement (INPUT) executions count during the session.
60. Other SQL executions count during the session.
61. Maximum input/output time (seconds).
62. Maximum input/output time (microseconds).
63. Maximum input/output time (seconds).
64. Maximum input/output time (microseconds)

Check whether the input and output times are appropriate. If input/output
processing takes longer than necessary, obtain and check the hardware log for any
hardware errors.
If you used the asynchronous READ facility, the input and output times for batch
look-ahead reading by the asynchronous READ process are not included.

65. Cumulative input/output time for database (seconds).
66. Cumulative input/output time for database (microseconds)

Use this information to determine whether the cause is input/output or CPU.

10. UAP Troubleshooting

879

If you used the asynchronous READ facility, the input and output times for batch
look-ahead reading by the asynchronous READ process are not included.

67. Data, index, and directory page references count
This is the number of times a data, index, or directory page was referenced from
this UAP.

68. Data, index, and directory page updates count
This is the number of times a data, index, or directory page was updated from this
UAP.

69. Data, index, and directory page buffer hits count
This is the number of times a requested data, index, or directory page was found
in the buffer. If the hit rate ((item 69 item 67) 100) is low, obtain the global
buffer statistical information and tune the global buffer with a low hit rate. In this
case, all global buffers are subject to tuning except for the LOB global buffer.

70. Data, index, and directory page real READs count
This is the number of times a data, index, or directory page was actually read by
this UAP.
If you are using the prefetch facility, the number of look-ahead READs by the
prefetch facility is included. If you used the asynchronous READ facility, the
number of look-ahead READs by the asynchronous READs process is also
included.
If the buffer hit rate is low, the READs count becomes high.

71. Data, index, and directory page real WRITEs count
This is the number of times a data, index, or directory page was actually written
by this UAP. If the commit output facility is used, this count includes the number
of outputs to the database during commit processing.

72. LOB page references count
This is the number of times a LOB page was referenced by this UAP. This count
includes the LOB data and plug-in retrieval operations.

73. LOB page updates count
This is the number of times a LOB page was updated by this UAP. This count
includes the LOB data and plug-in update operations.

74. LOB page reference buffer hits count
This is the reference buffer hits count. This information is applicable if the LOB
global buffer is used. If the hit rate ((item 74 item 72) 100) is low, obtain the
global buffer statistical information and tune the global buffer with a low hit rate.

10. UAP Troubleshooting

880

In this case, the LOB global buffer is subject to tuning. If the LOB global buffer
is not used, the hit rate is 0.

75. LOB page update buffer hits count
This is the update buffer hits count. This information is applicable if the LOB
global buffer is used. If the hit rate (item 75 item 73 100) is low for LOB
data updating or plug-in index updating, obtain the global buffer statistical
information and tune the global buffer with a low hit rate. In this case, the LOB
global buffer is subject to tuning. If the LOB global buffer is not used, the hit rate
is 0. Update buffer hits are not applicable to addition of new LOB data.

76. LOB page real READs count
This is the number of times a LOB page was actually read by this UAP. If the LOB
global buffer is used and the READ buffer hit rate is low, the READs count
becomes high.

77. LOB page real WRITEs count
This is the number of times a LOB page was actually written by this UAP. When
updating a plug-in index, you can reduce the real WRITEs count by using the
LOB global buffer.

78. Global buffer flushes count
This is the number of times the buffer was flushed to create space for a new page.
This indicates the number of times a page was swept out of memory because the
buffer was full.2

79. Global buffer READ waits count
This is the number of times the UAP was placed on wait status because a page in
the global buffer was being read from a HiRDB file by another user. This indicates
the number of times the UAP was placed on wait status until a READ operation
was completed because the page to be referenced was under READ operation by
another user.2

80. Global buffer WRITE waits count
This is the number of times the UAP was placed on wait status because a page in
the global buffer was being output to a HiRDB file by another user. This indicates
the number of times the UAP was placed on wait status until a WRITE operation
was completed because the page to be updated was under WRITE operation by
another user.2

81. Global buffer lock release waits count
This is the number of times the UAP was placed on wait status because a page in
the global buffer was in use by another user. This indicates the number of times

10. UAP Troubleshooting

881

the UAP was placed in wait status until update processing was completed because
the page to be referenced or updated was under update processing by another
UAP.2

82. Maximum work table files count

This is the maximum number of work table files used by this UAP.3 You can
determine the validity of the -l option value (maximum number of files)
specified in the pdfmkfs command. The value of the -l option must satisfy the
following condition:4

Value of -l option total number of work table files for all UAPs that are
executed concurrently + 20

83. Maximum work table file extensions count
This is the maximum number of work table file extensions for this UAP. You can
determine the validity of the -e option value (maximum number of extensions)
specified in the pdfmkfs command. The value of the -e option must satisfy the
following condition:4

Value of -e option total number of work table file extensions for all UAPs that
are executed concurrently

84. Maximum size of work table file (MB)
This is the maximum size of a work table file for this UAP. You can determine the
validity of the -n option value (maximum number of extensions) specified in the
pdfmkfs command. The value of the -n option must satisfy the following
condition:4

Value of -n option total size of work table files for all UAPs that are executed
concurrently + management area size for HiRDB file system area

85. Work table file READs count

This is the number of times work table data was input from file to buffer.1

86. Work table file WRITEs count

This is the number of times work table data was output from buffer to file.1

87. Forced outputs count for the work table buffer
This is the number of times buffer contents in use were forcibly output to a file
due to a shortage of the work table buffer.1 If this value is not 0, increase the value
of the pd_work_buff_size operand (size of the work table buffer) in the
system definitions.

88. Estimated value for expanding hash table in batch mode (KB)

10. UAP Troubleshooting

882

This is the estimated size of the hash table required to expand the processed hash
data in batch mode during hash join or subquery hash execution.3

If the size of the hash table is greater than this value, batch hash join is assumed,
which does not involve any packet division.5 If this value exceeds the specified
range of the hash table size, batch hash join is not possible. If this value is 0, hash
join or subquery hash execution has not taken place.

89. Maximum packet size at level 1 (KB)
This is the maximum packet size after level 1 packet division during hash join or
subquery hash execution.3

If the size of the hash table is at least this value, packet division was completed at
level 1. If the packet division level is 2 or more, you can complete the packet
division at level 1 by specifying this value as the hash table size.6 For a batch hash
join that does not involve any packet division, this value is 0.

90. Maximum packet size at level 2 (KB)
This is the maximum packet size after level 2 packet division during hash join or
subquery hash execution.3

If the size of the hash table is at least this value, packet division was completed at
level 2. If the packet division level is 3 or more, you can complete the packet
division at level 2 by specifying this value as the hash table size.6 If level 2 packet
division did not take place, this value is 0.

91. Maximum packet size at level 3 (KB)
This is the maximum packet size after level 3 packet division during hash join or
subquery hash execution.3

If the size of the hash table is at least this value, data was processed in packets
with a maximum level of 3. If the hash table size is not greater than this value, a
packet was partially expanded in the hash table, thereby adversely affecting the
processing efficiency. In this case, specify at least this value as the hash table
size.6 Alternatively, performance may improve by avoiding the hash join or
subquery hash execution. If level 3 packet division did not take place, this value
is 0.

92. Unsuccessful page searches count during free space reusage execution
This is the number of times that the mode was returned to new page allocation
mode because the free space reusage facility was unable to find reusable free
space when the mode was switched from new page allocation mode to free page
reuse mode. If this value is a value other than 0, an inefficient page search process
may have occurred during an update or insertion process executed by the UAP.

10. UAP Troubleshooting

883

For details about the free space reusage facility, see the HiRDB Version 8
Installation and Design Guide.

93. Mode switches count from new page allocation mode to free page reuse mode
This is the number of times that the mode was switched from new page allocation
mode to free page reuse mode when the free area reusage facility was executed.
If this value is close to the number of update and insertion processes executed by
the UAP, an inefficient page search process may have occurred.

94. Cache buffer shortage occurrences count
This is internal information used by the system.

95. Cache buffer allocation flushes count
This is internal information used by the system.

96. WRITEs count during cache buffer area allocation flushing
This is internal information used by the system.

97. Maximum cache buffer allocation flushes count
This is internal information used by the system.

98. Average cache buffer allocation flushes count
This is internal information used by the system.

99. Data and index page references count when local buffer used
This is the number of times a data or index page was referenced from this UAP.

100. Data and index page updates count when local buffer used
This is the number of times a data or index page was updated from this UAP.

101. Data and index page buffer hits count in local buffer
This is the buffer hits count for data pages and index pages.
If the buffer hit rate (101 99 100) is low for a UAP that performs random
access, tune the buffer.

102. Data and index page real READs count when local buffer is used
This is the number of times a data or index page was actually read by this UAP.
If the prefetch facility is being used, the number of look-ahead READs by the
prefetch facility is also included. If the buffer hit rate is low, the READs count
becomes high.

103. Data and index page real WRITEs count when local buffer is used
This is the number of times a data or index page was actually written by this UAP.

10. UAP Troubleshooting

884

104. Local buffer flush count
This is the number of times the buffer was flushed to create space for a new page.
This indicates the number of times a page was swept out of memory because the
buffer was full.

105. Asynchronous READ request count
This is the number of times the asynchronous READ process requested a batch
look-ahead read processing when the asynchronous READ facility was used.

106. Synchronization wait count during asynchronous READ
This is the number of times a synchronization wait occurred while the
asynchronous READ process performed a batch look-ahead read when the
asynchronous READ facility was used.

107. Cumulative synchronization wait time during asynchronous READ
This is the cumulative wait time (seconds) of the synchronization waits that
occurred while the asynchronous READ process performed a batch look-ahead
read when the asynchronous READ facility was used.

108. Cumulative synchronization wait time during asynchronous READ
This is the cumulative wait time (microseconds) of the synchronization waits that
occurred while the asynchronous READ process performed a batch look-ahead
read when the asynchronous READ facility was used.

109. Average synchronization wait time during asynchronous READ
This is the average wait time (seconds) of the synchronization waits that occurred
while the asynchronous READ process performed a batch look-ahead read when
the asynchronous READ facility was used.

110. Average synchronization wait time during asynchronous READ
This is the average wait time (microseconds) of the synchronization waits that
occurred while the asynchronous READ process performed a batch look-ahead
read when the asynchronous READ facility was used.

111. Average synchronous input/output time during asynchronous READ
This is the average synchronous READ time (seconds) for initial batch reads of
the first page when the asynchronous READ facility was used.

112. Average synchronous input/output time during asynchronous READ
This is the average synchronous READ time (microseconds) for initial batch
reads of the first page when the asynchronous READ facility was used.

113. Maximum comparison count3 during hash table search processing in hash join,
subquery hash execution

10. UAP Troubleshooting

885

This is the maximum number of comparisons for data items that have the same
hash value in one hash table search.

114. Total comparison count1 during hash table search processing in hash join,
subquery hash execution
This is the total number of comparisons for data items that have the same hash
value during hash table search processing.

115. Total hash table search count1 in hash join, subquery hash execution
This is the number of times the hash table is searched.

1 For HiRDB/Parallel Server, this is the total of all servers.
2 This is the sum of all global buffers.
3 For HiRDB/Parallel Server, this is the maximum value of each back-end server.
4 More resources than the value obtained from the formula may be required due to
temporary fragmentation. Therefore, specify a sufficient value.
5 If the hash table size increases, the number of packet divisions may increase;
therefore, a bigger hash table may be required than when the tuning information was
obtained. If you have increased the hash table size on the basis of this tuning
information, obtain the tuning information again. If an expected result is not obtained,
you need to increase the hash table size again on the basis of the obtained tuning
information.
6 If the hash table size increases, the number of packet divisions may increase;
therefore, a smaller hash table may be enough to complete packet division at an
intended level than when the tuning information was obtained. On the other hand, if
you reduce the hash table size, the number of packet divisions may decrease; therefore,
packet division may not be completed at the same level as when the tuning information
was obtained. Therefore, use the tuning information for the purpose of increasing the
hash table size.

10.1.5 Command trace facility
The command trace facility outputs a client's trace information to the command trace
file when a command is executed by a UAP (during the execution of the COMMAND
EXECUTE SQL statement).
When the command trace file becomes full, the facility overwrites the oldest
information.

(1) How to obtain command trace information
You can obtain command trace information by specifying appropriate values in
PDCLTPATH and PDCMDTRACE in the client environment definitions. For details about

10. UAP Troubleshooting

886

each client environment definition, see 6.6 Client environment definitions (setting
environment variables).
Two command trace files named pdccmd1.trc and pdccmd2.trc are output to the
specified directory.

(2) Interpreting command trace information
Command trace information is output when a command is executed by a UAP. The
following shows sample command trace information and explains each item:
Output example
** COMMAND TRACE (CLT:06-00:Jan 11 2001) HP32 ** [1]

 USER APPLICATION PROGRAM FILE NAME : TESTAP [2]
 COMMAND START TIME : 2001/01/11 10:55:27 [3]
 COMMAND EXECUTE ENVIRONMENT & STATUS : [4]
 PDASTHOST(dcm3500)
 PDASTPORT(20266)
 PDSYSTEMID("HRD1")
 PDUSER("hirdb")
 PDASTUSER("hirdb ")
 PDCMDWAITTIME(0)
 ENVGROUP("")
 CLTPID(9155) CLTTID(0)
 [5] [6] [7] [8] [9]
 9155 0 2001/01/11 10:55:27 0 pdhold -r RDDATA01
 9155 0 2001/01/11 10:55:27 1 KFPZ02444-E Communication
error,
 func=connect, errno=2

Explanation
1. Command trace header

The header contains the following information:
• Version of the linked library
• Library creation date (in the format Mmm dd yyyy)
• Platform in use (For details about the character strings that are displayed for

the platforms, see the Explanation section in 10.1.1(2) Examining SQL trace
information.)

2. UAP name
This is the value of PDCLTAPNAME specified in the client environment definition.

3. Command start date and time
This is the date and time the command execution began.

10. UAP Troubleshooting

887

4. Command execution environment and status
This is the value of the client environment definition and status during command
execution.

5. UAP process number
This is the UAP process number. If the correct process number cannot be
obtained, an invalid value may be displayed (Windows).

6. UAP thread number
If the UAP is running with multi-thread, this indicates the UAP thread number;
otherwise, a value of 0 is displayed. Note that the facility may display an invalid
numeric value if it is unable to obtain the correct thread number.

7. Command trace acquisition date and time
This is the date and time the command trace information was acquired.

8. Command trace counter
This is the count that was incremented each time a command trace was accepted.
The value range is from 0 to 65535.

9. Trace data
This is the trace data.

(3) Backing up the command trace file
If the command trace file becomes full while writing command trace information,
HiRDB continues output using another command trace file. In this case, existing
contents of the command trace file are overwritten, beginning with the oldest
information. Therefore, you should make a backup copy of a command trace file when
the UAP is terminated.
To determine the command trace file that is being used currently, check the most recent
update dates/times of the files. The command trace file that was updated most recently
is the current file.
For a Windows version HiRDB client, you use the dir command or the Explorer to
check the file update dates/times.
For a UNIX version HiRDB client, you use the OS's 1s -1 command to check the file
update dates/times.

10.1.6 SQL trace dynamic acquisition facility
The SQL trace dynamic acquisition facility lets you dynamically obtain SQL trace
information using a command during UAP execution. Acquisition of SQL trace
information begins at the next CONNECT.

10. UAP Troubleshooting

888

(1) Specifying the client environment definitions
Specify the SQL trace file storage directory in PDTRCPATH beforehand. The facility
creates two SQL trace files: pdcHHMMSSmmm_XXX_1.trc and
pdcHHMMSSmmm_XXX_2.trc, where HHMMSSmmm indicates the CONNECT time
(HH:MM:SS:mmm) and XXX indicates the connection sequence number.

(2) Trace acquisition command (pdtrcmgr)
If the directory specified with the -d option is the same as the directory specified in
the PDTRCPATH client environment definition variable during UAP execution, the
pdtrcmgr command issues the trace acquisition start and end requests.

(a) Format

(b) Options
-d directory-name-specified-in-PDTRCPATH

 <path name>
Specifies the absolute path name of the value (directory name) specified in the
PDTRCPATH client environment definition variable to start or stop the acquisition of
trace information for the UAP.
The facility issues a trace acquisition start or stop request for all UAPs for which the
specified directory matches the directory in PDTRCPATH.

{-b| -e}
Specifies whether to start or stop the acquisition of the SQL trace:
-b: Starts the acquisition of SQL trace.
-e: Stops the acquisition of SQL trace.

-k{[s] [u] [p] [r] | a}
Specifies the information to be output. When this option is omitted, the facility outputs
only the SQL trace information.
s: Outputs information by the SQL.
u: Outputs information by the UAP.
p: Outputs access path information.

pdtrcmgr -d directory-name-specified-in-PDTRCPATH
 [{-b| -e}]
 [-k{[s] [u] [p] [r]| a}]
 [-n PDCLTAPNAME]
 [-s SQL-trace-file-size]
 [-o]

10. UAP Troubleshooting

889

r: Outputs SQL runtime interim results.
a: Outputs all information.
 s, u, p, and r can be specified in different combinations (such as su, spr, or spr).
Specifying sup is the same as specifying a. If u, p, r, ur, pr, or upr is specified, SQL
trace information is not output.
When the -e option is specified, the specification of the -k option becomes invalid.
For details about the UAP statistical report, see 10.1.4 UAP statistical report facility.

-n PDCLTAPNAME
Specifies that only the UAP specified in the PDCLTAPNAME client environment
definition variable is to be subject to acquisition of an SQL trace. The facility ignores
this option if the -e option is specified.

-s SQL-trace-file-size
 <unsigned integer> ((0 or 32,768 to 2,000,000,000)) <<32,768>>

Specifies the size of the SQL trace file in bytes.
If 0 is specified, the maximum file size is assumed. If a value in the range from 32,768
to 2,000,000,000 is specified, the specified size of file is used.
The facility ignores this option if the -e option is specified.

-o
Specifies that SQL trace files are to opened and closed in CONNECT and DISCONNECT
units. The facility ignores this option when the -e option is specified.
When SQL trace files are opened and closed in CONNECT and DISCONNECT units
instead of operation units (SQL units), the SQL trace output time can be shortened
because the overhead is reduced.
If you omit this option, the SQL trace dynamic acquisition facility opens and closes
SQL trace files in operation units.
This facility continues to write information as long as the SQL trace file is open.
Therefore, if you specify this option, some SQL trace information may be discarded if
DISCONNECT cannot be executed properly.

10.1.7 Reconnect trace facility
When the automatic reconnect facility executes reconnection, reconnect trace
information, which consists of the connection handle value managed internally by
HiRDB, the connection information before and after reconnect, and the reconnect
time, is output to the reconnect trace file. This information is used for tracking
connection information in the trace output by the PRF trace facility of Cosminexus.

10. UAP Troubleshooting

890

(1) How to obtain the reconnect trace information
Reconnect trace information can be obtained by setting a value in the PDRCTRACE
client environment definition.
HiRDB creates two reconnect trace files in the directory specified in the PDCLTPATH
client environment definition. The names of the created files are pdrcnct1.trc and
pdrcnct2.trc.

(2) Interpreting reconnect trace information
Reconnect trace information is output when the automatic reconnect facility
establishes a connection automatically.
An output example of a reconnect trace is shown below.

Explanation
1. Connection handle value

The connection handle value that HiRDB manages internally is output in
hexadecimal format.
The value is 8 digits if the client is operating in 32-bit mode or 16 digits if
the client is operating in 64-bit mode. The UAP views traces that have the
same connection handle value as the same connection.
In the output example above, 40004250 is output twice as the connection
handle value. When viewed from the UAP that uses this connection handle,
this information indicates that reconnect processing was executed twice.

2. Reconnect result
The reconnection result is displayed.
S: Success
F: Failure

3. Reconnect start and end dates and times
After a disconnection is detected, the dates and times when the reconnection

 [1] [2] [3] [4]
40004250 S 2004/04/12 11:10:36.766 - 2004/04/12 11:10:41.846 sds:9:23763 =>
sds:10:23750
40004250 S 2004/04/12 11:11:07.491 - 2004/04/12 11:11:12.547 sds:10:23750 =>
sds:11:23765
40004850 F 2004/04/12 11:17:58.285 - 2004/04/12 11:18:23.395 sds:14:23751 =>
40005050 S 2004/04/12 11:27:35.098 - 2004/04/12 11:27:40.152 sds:1:24414 =>
sds:2:24418

10. UAP Troubleshooting

891

was started and when it ended normally are displayed in milliseconds. If
reconnect processing fails, the date and time immediately before control is
returned to the UAP is displayed.

4. Connection information before and after reconnect
Connection information for both before reconnect and after reconnect is
displayed. The connection information displays the connection server name,
the connection sequence number, and the process ID of the connection
server, with the items separated by colons.
If reconnect processing fails, the connection information for after the
reconnect is not displayed (becomes blank).

(3) Matching trace information with PRF trace information of Cosminexus
The connection information shown under 4 of the output example is output to the PRF
trace information of Cosminexus. If the automatic reconnect facility subsequently
executes reconnect processing, match the trace information with PRF trace
information as follows.
To match trace information with the PRF trace information of Cosminexus:
1. Get the HiRDB connection information in the PRF trace information.
2. In 4 of the reconnect trace file, search for the connection information obtained in

Step 1, and get the corresponding connection handle value.
3. From 1 of the reconnect trace file, track the trace information that has the same

connection handle value obtained in Step 2. If the same connection handle value
is found, and the connection information before reconnect is the same as the
connection information after reconnect for the previous instance of the same
connection handle, the connection handle can be used for tracking. If the
connection information is different, the connection handle cannot be used for
tracking because a new connection (DISCONNECT-CONNECT) was established
with the connection handle.

(4) Backing up reconnect trace information
If the reconnect log file becomes full while reconnect trace information is being output,
the reconnect log is output to the other reconnect trace file. In this case, the old
reconnect trace information stored in the takeover reconnect trace file is erased and
overwritten by new reconnect trace information. Therefore, if the system is being
operated for a long period of time, copy the contents of the reconnect trace file and
back up the information, as necessary.
To determine the reconnect trace file that is being used currently, check the most recent
update dates/times of the files. The reconnect trace file that was updated most recently
is the current file.
For a Windows version HiRDB client, you use the dir command or the Explorer to

10. UAP Troubleshooting

892

check the file update dates/times.
For a UNIX version HiRDB client, you use the OS's 1s -1 command to check the file
update dates/times.

10.1.8 HiRDB SQL Tuning Advisor access path information file
An access path information file used by the HiRDB SQL Tuning Advisor is output to
the HiRDB client side. You can use HiRDB SQL Tuning Advisor to perform analyses
by referencing this access path information file and SQL trace information. This makes
it easy to identify how the SQLs are affecting performance. For details about the
HiRDB SQL Tuning Advisor, see the Help for HiRDB SQL Tuning Advisor.

(1) Setting method
To output the HiRDB SQL Tuning Advisor access path information file, you must set
the client environment definitions explained below.

• PDTAAPINFPATH
Specifies the access path information file output directory. If an error occurs
during the output processing (for example, because the output directory does not
exist, or because the user does not have write privilege), the access path
information is not output. Even when an error occurs in the output processing, no
error occurs in the executing SQL.

• PDTAAPINFMODE
Specifies the file name format for the access path information files.

• PDTAAPINFSIZE
Specifies the file size of the access path information files. Two access path
information files are created. When the specified file size is reached in the current
file, the output destination is switched to the other file.

(2) Notes
• This function can be used only when the HiRDB server is version 06-00 or later.
• SQL objects with SQL code in a buffer may increase the workload of the HiRDB

server due to the need to re-create the SQL objects.
• When this function is used, the inter-process memory communication facility

cannot be used. Even if you specify MEMORY in the PDIPC operand of the client
environment definition, the operation when DEFAULT is specified takes
precedence.

• When you use the dynamic browsing function of the HiRDB SQL Tuning
Advisor, the specification of PDTAAPINFPATH in the client environment
definition is ignored.

10. UAP Troubleshooting

893

• If you use this function with an HiRDB server earlier than version 07-03, the
output path information for the UAP statistics report is not output, even if you
have specified that access path information is to be obtained by the UAP statistics
report facility (by specifying p or a in the PDUAPREPLVL client environment
definition).

10. UAP Troubleshooting

894

10.2 UAP error recovery

When an error occurs in a UAP, measures must be taken to prevent the entire HiRDB
system from halting. This section explains the following three methods of recovering
from UAP errors:

• UAP transaction rollback by HiRDB
• Transaction rollback by UAP instruction
• Memory capacity re-evaluation

Table 10-4 shows the UAP error types and the recovery methods.
Table 10-4: UAP error types and recovery methods

1 Front-end or back-end server.
2 Request that the HiRDB system administrator re-evaluate shared memory and
process-specific memory.

(1) Monitoring UAP processing time
When a UAP is executed, HiRDB's UAP monitors the processing time to prevent a
UAP error from halting the HiRDB processing for an extended period of time.
For time monitoring, a monitoring time must be specified in the PDSWAITTIME
environment variable during client environment definition; if omitted, the UAP

Error type Detection method System action Recovery method

UAP abnormal termination UAP processing time
Monitoring

Disconnects the UAP
process

UAP transaction
rollback

UAP endless loop

Transaction incomplete

UAP processing error Various error detection
at the servers1

Sends error response to
UAP

Transaction rollback
by UAP instruction

Error detection and rollback
request by UAP

Error detection by
UAP

Follows an instruction
from UAP

Deadlock HiRDB deadlock
detection

Sends error response to
UAP (implicit rollback)

Termination of UAP
transaction

Memory shortage Error during memory
allocation

Disables UAP activation Reevaluate shared
memory and
process-specific
memory2

10. UAP Troubleshooting

895

monitors by HiRDB's default monitoring time.
For details about client environment definition, see 6.6 Client environment definitions
(setting environment variables).

(2) Detecting errors at servers
A HiRDB/Parallel Server returns an error status to the UAP when an error, such as a
database processing error, is detected at the front-end server or back-end server while
executing SQL statements; steps such as process disconnection must be taken. When
a UAP issues a rollback request in response to an error status, HiRDB performs a
recovery process.

(3) Detecting UAP errors
When an error is detected in a UAP, a recovery process is started when a rollback
request is issued. If the UAP was processed normally, the process is disconnected
based on a disconnection instruction from the UAP.

(4) Re-evaluating memory capacity
When a shortage occurs in the shared memory or process-specific memory, a message
is output indicating the memory or disk space shortage. When such a message is
output, enough memory to activate the UAP must be allocated and the UAP must be
re-executed.
For details about how to check and, if necessary, revise shared memory and
process-specific memory, see the HiRDB Version 8 Installation and Design Guide or
contact the HiRDB system administrator.

897

Chapter

11. Using a Distributed Database
(Limited to HP-UX and AIX 5L)

This chapter explains how to create a UAP that accesses a distributed database.
A distributed database can be used with the HP-UX and AIX 5L versions of HiRDB.

11.1 Format of a distributed database
11.2 Creating a UAP that accesses a remote database
11.3 Available SQL statements
11.4 Available data types
11.5 Handling distributed server errors
11.6 Notes about using a distributed database

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

898

11.1 Format of a distributed database

This section explains the format of a distributed database.

11.1.1 Accessing a distributed database and its relationship to
RD-nodes

HiRDB can use the following DBMSs (Database Management Systems) to implement
a distributed database:

• HiRDB at other nodes
• XDM/RD (including XDM/RD E2)
• ORACLE
• RDB1 E2
• SQL/K

A distributed database between HiRDB and a DBMS of another node is implemented
using the remote database access facility of DF/UX (Distributing Facility/for UNIX).
Accessing a distributed database involves multiple DBMSs that run on multiple nodes
in a network (e.g., server machines, host computers, and PC servers). Each DBMS
identified on the basis of its location in the network is called an RD-node. However,
because multiple DBMSs may be active at the same time at a single node or a single
DBMS may be active by linking multiple nodes, there is not necessarily a one-to-one
relationship between RD-nodes and nodes in the network. Therefore, a DBMS and the
databases managed by that DBMS may sometimes be referred to collectively as an
RD-node.
An RD-node is identified by an RD-node name, and the HiRDB that is connected using
a CONNECT statement without RD-node name specification (HiRDB specified at the
connection-destination by the client environment definition) is called the default
RD-node. RD-nodes other than the default RD-node are called distributed RD-nodes,
which also include DBMSs other than the HiRDB.

11.1.2 Relationship between a connection between RD-nodes and
an SQL connection

To access a remote database, the HiRDB of the distributed client must connect to the
DBMS that acts as the distributed server. The facility for accessing the distributed
server (distributed RD-node) of another node using the HiRDB of the local node as the
distributed client (default RD-node) is called the distributed client facility.
The distributed client facility is characterized by the following two features:

• The distributed client facility enables the HiRDB to connect automatically to a

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

899

DBMS at another node, so a UAP for connecting to the DBMS at the other node
is not required.

• It is possible to simultaneously access a remote database and the local database
from a single UAP (note, however, that if the remote database and the local
database are updated in a single transaction, transaction compatibility is not
guaranteed).

The logical connection from a UAP to an RD-node for executing SQL statements is
called an SQL connection. The SQL connection to the default RD-node is called the
default SQL connection.
An SQL connection includes the authorization identifier for privilege checking at the
connection-destination RD-node. This authorization identifier can be specified
individually for each SQL connection.
Figure 11-1 shows the distributed database connection format.

Figure 11-1: Distributed database connection format

11.1.3 Generating and terminating an SQL connection
(1) Generating an SQL connection

Table 11-1 shows the times at which an SQL connection is generated, the

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

900

connection-destination RD-node for the generated SQL connection, and the
authorization identifier contained in the generated SQL connection.

Table 11-1: Generating an SQL connection

* To access the database of a distributed RD-node, both an SQL connection to that
distributed RD-node and the default SQL connection are required. Therefore, if a UAP
issues a CONNECT statement with RD-node specification before the default SQL
connection is generated, the HiRDB client generates the default SQL connection
automatically. Also, if the UAP issues an SQL statement that uses the default SQL
connection for accessing the database of a distributed RD-node before an SQL
connection to the distributed RD-node is generated, the HiRDB of the default RD-node
generates automatically an SQL connection to that distributed RD-node. For details
about how to use the default SQL connection for accessing the database of a distributed
RD-node, see 11.2.2 Using the default SQL connection.

Generation time Connection-destination
RD-node

Authorization identifier

Execution of CONNECT statement
without RD-node specification

Default RD-node Authorization identifier specified in
the CONNECT statement; if omitted,
the authorization identifier
specified in the PDUSER client
environment variable.

Execution of CONNECT statement
with RD-node specification after
the default SQL connection has
been generated

Specified distributed RDnode Authorization identifier specified in
the CONNECT statement with
RD-node specification; if omitted,
the authorization identifier
contained in the default SQL
connection.

Execution of CONNECT statement
with RD-node specification before
the default SQL connection has
been generated*

Default RD-node Authorization identifier specified in
the PDUSER client environment
variable.

Specified distributed RDnode Authorization identifier specified in
the CONNECT statement with
RD-node specification; if omitted,
the authorization identifier
specified in the PDUSER client
environment variable.

Default SQL connection is used to
execute SQL statements for
accessing the database of a
distributed RD-node before an SQL
connection to the distributed
RD-node has been generated*

Distributed RD-node where the
database to be accessed is located

Authorization identifier contained
in the default SQL connection.

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

901

(2) Terminating an SQL connection
An SQL connection is terminated in the following cases:

• All SQL connections are terminated when a DISCONNECT statement without
RD-node specification is executed

• When a DISCONNECT statement with RD-node specification is executed, only the
SQL connection to the specified RD-node is terminated

There can be only one SQL connection to a distributed RD-node at a time. After a
DISCONNECT statement with RD-node specification is used to delete the existing SQL
connection to a distributed RD-node, an SQL connection to another distributed
RDnode can be created.

11.1.4 Current SQL connection and database access
Each SQL statement for accessing a database is executed using an SQL connection
called the current SQL connection. Even if multiple SQL connections have been
generated, there is only one current SQL connection at a time. The
connection-destination RD-node for the current SQL connection is called the current
RD-node.
At any time, any of the existing SQL connections (other than the current SQL
connection) can be made into the current SQL connection by issuing the SET
CONNECTION statement.
Table 11-2 shows the times at which the current SQL connection is set and the current
RD-node after the setting.

Table 11-2: Current SQL connection setting

Table 11-3 shows the relationship between the current SQL connection and the range
of databases that can be accessed.

Setting time Current RD-node

CONNECT statement without RD-node specification is executed Default RD-node

CONNECT statement with RD-node specification is executed Specified distributed RD-node

SET CONNECTION statement with distributed RD-node specification is
executed

Specified distributed RD-node

SET CONNECTION statement with DEFAULT specified is executed Default RD-node

DISCONNECT statement with current RD-node and RD-node
specifications is executed

Default RD-node

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

902

Table 11-3: Current SQL connection and range of databases that can be accessed

* For details about how to use the default SQL connection for accessing the database
of a distributed RD-node, see 11.2.2 Using the default SQL connection.

11.1.5 SQL connection and transaction control
Unlike transaction control that does not use a distributed database, when a distributed
database is used in transaction control, execution of a DISCONNECT statement with
RD-node specification must be added when the transaction is being terminated. When
the DISCONNECT statement with RD-node specification is executed, the current
transaction is terminated normally and a synchronization point is set.
By omitting the COMMIT statement and using the DISCONNECT statement with RDnode
specification to terminate a transaction normally, the number of communication
contacts with the default RD-node can be reduced from the number required in the case
in which the COMMIT statement is used for transaction termination.
Figure 11-2 shows examples of transaction startup and termination using an SQL
connection to a distributed RD-node.

Current SQL connection Range of databases that can be accessed

Default SQL connection • Databases at the current RD-node (= default RD-node)
• Databases at all distributed RD-nodes that can be

connected to the default RD-node*

SQL connection to distributed RDnode • Databases at the current RD-node (= single distributed
RD-node)

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

903

Figure 11-2: Examples of transaction startup and termination using an SQL
connection to a distributed RD-node

If the UAP is terminated without issuing a DISCONNECT statement without RD-node
specification, the transaction that was being executed is rolled back. In this case, all
changes made by the transaction are cancelled, even if the database of the distributed
RD-node was changed by the transaction that was executing.
Because there can be only one SQL connection to a distributed RD-node at a time, only
one distributed RD-node can be accessed within a single transaction. However, two
RD-nodes can be accessed within a single transaction if the default RD-node is
included.
By issuing the SET CONNECTION statement to switch the current SQL connection, the
default SQL connection and the SQL connection to a distributed RD-node can be used
alternately within a single transaction.
A DISCONNECT statement with RD-node specification cannot be used in X/Open
application programs that execute in the OLTP environment.

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

904

11.2 Creating a UAP that accesses a remote database

This section explains how to create a UAP that accesses a remote database with the
distributed client facility.

11.2.1 Rules governing distributed clients and servers
UAP creation is subject to rules governing distributed clients and servers; these rules
are explained below.

(1) Distributed client rules
(a) Syntax rules

The syntax of the SQL coded in the UAP is checked according to the grammar of
HiRDB. If the distributed server is not an HiRDB, SQL statements that comply with
the grammar of the distributed server cannot be used because they will not comply with
the HiRDB grammar.

(b) Search data length restrictions
The data length that can be searched by an SQL statement is restricted depending on
the size of the DF/UX reception buffer. You must be especially careful when you use
the batch search function and when you search BLOB type data.
For details about the restrictions on the search data length depending on the DF/UX
reception buffer size, see the manual Distributed Database System DF/UX.

(2) Distributed server rules
(a) Syntax rules

The distributed server checks syntax according to the SQL grammar of the distributed
server. If the SQL of HiRDB does not conform to the grammar of the distributed
server, the nonconforming SQL statements cannot be used. The following SQL
statements are transferred from the client to the server in their original syntax; even
though an SQL statement is coded in the same format for HiRDB and for the
distributed server, functional differences between HiRDB and the distributed server
may produce different execution results:

• DECLARE CURSOR statement (only for direct cursor specification)
• DELETE statement
• INSERT statement
• SELECT statement
• UPDATE statement

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

905

(b) Character code conversion rules
If the distributed server is XDM/RD, RDB1D2, or SQL/K, different character code
sets are used in the distributed client and in the distributed server. This means that
when character data is sent or received, the other side must convert the data. Also,
when character string data is used for sorting, the data is sorted according to the
character code order used by the server. For this reason, you must use care and note
that the sort results may not match those produced when data is sorted according to the
character code order at the client.

11.2.2 Using the default SQL connection
This section explains use of the default SQL connection as the current SQL connection
for accessing a remote database.
When the default SQL connection is used as the current SQL connection, it is possible
to access the databases of all distributed RD-nodes that can be connected to the default
RD-node. To do this, it is necessary to use one of the following methods to notify the
default RD-node's HiRDB of the distributed RD-node where the table and procedure
to be accessed are located:
1. By qualifying the table name with the RD-node name
2. By using a table alias
3. By qualifying the procedure name with the RD-node name
Methods (a) and (c) can also be used when a table or procedure located at the default
RD-node is to be accessed. In such a case, the name is qualified with the RD-node
name of the default RD-node. Tables or procedures whose names are not modified by
an RD-node name are processed under the assumption that they are located at the
current RD-node.
Use of the default SQL connection also enables access to the database of a distributed
RD-node. However, the following restrictions apply:

• The tables of only one RD-node can be accessed from a single SQL statement
• Only one distributed RD-node can be accessed within a single transaction (two

RD-nodes can be accessed if the default RD-node is included)
(1) Qualifying the table name with the RD-node name

The following format is used to qualify the table name with the RD-node name:
RD-node-name.authorization-identifier.table-identifier

RD-node-name
Specifies the name of the RD-node where the table is located.

authorization-identifier.table-identifier

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

906

Specifies the authorization identifier and table identifier defined at the RD-node
where the table is located.

Specification example
• Retrieve the table named MANAGER.ORDERS at the RD-node named

RDNODE10:
SELECT * FROM RDNODE10.MANAGER.ORDERS

(2) Using a table alias
The following format is used to specify the table at a distributed RD-node using a table
alias. Note that a table alias is not supported if either the distributed server or the
distributed client is Solaris.
[authorization-identifier.]table-alias

[authorization-identifier.]table-alias
Specifies the name defined in CREATE ALIAS. Note that the name specified here
may not match the authorization identifier or the table identifier defined at the
RD-node where the table is located.

Specification example
• Assign the alias MANAGER.ORDERS, which is the same as the name defined

at the RD-node where the table is located, to the table named
MANAGER.ORDERS at the distributed RD-node named RDNODE10, and
retrieve the table using this defined alias:

1. Using CREATE ALIAS to define an alias
CREATE ALIAS MANAGER.ORDERS FOR RDNODE10.MANAGER.ORDERS

2. Retrieval using the alias defined above
SELECT * FROM MANAGER.ORDERS

(3) Qualifying the procedure name with the RD-node name
The following format is used to qualify the procedure name with the RD-node name:
RD-node-name.authorization-identifier.routine-identifier

RD-node-name
Specifies the name of the RD-node where the procedure is located.

authorization-identifier.routine-identifier
Specifies the authorization identifier and routine identifier defined at the
RD-node where the procedure is located.

Specification example
• Retrieve the procedure named MANAGER.PROC10 at the RD-node named

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

907

RDNODE10:
CALL RDNODE10.MANAGER.PROC10 (arguments)

(4) Access using an authorization identifier that is different from the default SQL
connection

Even when the default SQL connection is used, an SQL connection to a distributed
RD-node is required for accessing a remote database. If the UAP issues an SQL for
accessing a remote database without creating an SQL connection, the HiRDB at the
default RD-node generates automatically an SQL connection to the distributed
RD-node.
However, because the SQL connection generated automatically by the HiRDB
contains the same authorization identifier as the default SQL connection, the remote
database cannot be accessed if that authorization identifier does not have the required
privilege at the distributed RD-node. In such a case, it is possible to create an SQL
connection that contains an authorization identifier that has the required privilege at
the distributed RD-node in advance and then to use that SQL connection.
Usage example

In the example shown below, a CONNECT statement with RD-node specification
is used to create an SQL connection that contains an authorization identifier that
has the required privilege at the distributed RD-node. Because the SQL
connection to the distributed RD-node becomes the current SQL connection when
the CONNECT statement with RD-node specification is executed, the SET
CONNECTION statement is used first to revert the current SQL connection to the
default SQL connection, and then an SQL for accessing the remote database is
issued.
CONNECT TO RDNODE10 USER:USER2 USING :PSWD2SET CONNECTION
DEFAULTSELECT SQUANTITY INTO :QUANTITY FROM
RDNODE10.MANAGER.STOCK WHERE PCODE='302S'

11.2.3 Using an SQL connection to a distributed RD-node
This section explains use of an SQL connection to a distributed RD-node as the current
SQL connection for accessing a remote database.
When an SQL connection to a distributed RD-node is used as the current SQL
connection, only the databases at the current RD-node can be accessed.
Using an SQL-connection to a distributed RD-node offers the following advantage: It
is not necessary to use an RD-node name as a modifier or a table alias, as is required
when the default SQL connection is used for accessing a remote database. The table
name and procedure name defined in the current RD-node can be specified directly in
the SQL statement.

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

908

(1) Setting the current SQL connection using a CONNECT statement with
RD-node specification

Because the current SQL connection becomes the SQL connection to the distributed
RD-node when the CONNECT statement with RD-node specification is executed, the
SQL connection to the distributed RD-node can be used immediately.
Usage example

In the example shown below, the current SQL connection specified by the
CONNECT statement with RD-node specification is used to retrieve data from the
inventory table titled MANAGER.STOCK at the distributed RD-node named
RDNODE10.
CONNECT TO RDNODE10 USER:USER2 USING :PSWD2SELECT SQUANTITY
INTO :QUANTITY FROM MANAGER.STOCK WHERE PCODE='302S'

(2) Setting the current SQL connection using a SET CONNECTION statement
If the current SQL connection is not the SQL connection to the distributed RD-node
that is to be accessed, the current SQL connection can be changed with the SET
CONNECTION statement. The SQL connection to the distributed RD-node must be
created before the SET CONNECTION statement is issued.
Usage example

In the example shown below, the SET CONNECTION statement is used to set the
distributed RD-node named RDNODE10 as the current RD-node, and then the
procedure named MANAGER.PROC10 at that RD-node is called.
SET CONNECTION RDNODE10CALL MANAGER.PROC10 (arguments)

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

909

11.3 Available SQL statements

This section explains the SQL statements that can be used for remote database access
by means of the distributed client facility.

11.3.1 SQL statements usable for remote database access
Any SQL statements that are supported by the distributed client facility can be used in
accessing a remote database. Table 11-4 lists the SQL statements that are supported by
the distributed client facility.

Table 11-4: SQL statements supported by distributed client facility

Type SQL statement

Data manipulation
SQL

CALL statement (call procedure)

CLOSE statement (close cursor)

DECLARE CURSOR statement (declare cursor)

DELETE statement (delete rows)

DESCRIBE statement (receive retrieval information)

EXECUTE statement (execute SQL statement)

EXECUTE IMMEDIATE statement (preprocess and execute SQL statement)

FETCH statement (fetch data)

INSERT statement (insert rows)

OPEN statement (open cursor)

PREPARE statement (preprocess SQL statement)

PURGE TABLE statement (delete all rows)*

SELECT statement (retrieve data)

UPDATE statement (update data)

Control SQL COMMIT statement (terminate transaction normally)

LOCK TABLE statement (lock table)*

ROLLBACK statement (cancel transaction)

Embedded
language

GET DIAGNOSTICS statement (get diagnostic information)

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

910

* The SQL statement is not supported for Solaris.

11.3.2 Details about available SQL statements
Table 11-5 shows details about the SQL statements that can be used for remote
database access (for details about these SQL statements, see the HiRDB Version 8 SQL
Reference manual).

Table 11-5: Details about SQL statements usable for remote database access

Category SQL statement format Usable at distributed server

H X O R S

Variable {:embeddedvariable
[:indicatorvariable] | ? parameter}

Y9 Y9 Y9 Y9 Y9

Table name RD-node-name.authorization-identifier.
tableidentifier

Y1 Y1 Y1 Y1 Y1

[authorization-identifier.] table-alias Y1 Y1 Y1 Y1 Y1

[authorization-identifier.]
table-identifier

Y2 Y2 Y2 Y2 Y2

Table
specification

{[authorization-identifier.]
table-identifier |correlation-name}

Y3 Y3 Y Y3 Y3

Column
specification

[table-specification.] column-name Y Y Y Y Y

[table-specification.]
repetition-column-name[subscript]

Y

Value
specification

{literal | variable | USER Y Y Y Y Y4

| CURRENT DATE
| CURRENT TIME

Y Y

| [statement-label.] SQL-variable-name
|[[authorization-identifier.]
routine-identifier.] SQL-parameter-name}

Term
specification

{column-specification Y Y Y Y Y

| [statement-label.] SQL-variable-name |
[[authorization-identifier.]
routine-identifier.] SQL-parameter-name}

Set function AVG, SUM, MAX, MIN, COUNT Y Y Y Y Y

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

911

Scalar
function

VALUE Y Y

DATE, TIME, YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, DAYS,

Y Y

DECIMAL, DIGITS, FLOAT, INTEGER,
CHARACTER, HEX,

Y Y

LENGTH, SUBSTR Y Y5 Y5

Labeled
duration

(value-expression) {YEAR [S] | MONTH
[S] | DAY [S] }

Y Y

Primary {(value-expression) |
column-specification | value-specification
| set-function | scalar-function

Y Y Y Y Y4

| labeled-duration} Y Y

Value
expression

{[{+ | -}] primary |
value-expression {+ | - | * | / |
||} primary}

Y Y Y Y4 Y4

Comparison
operators

{= | < > | < | < = | > | > =} Y Y Y Y Y4

Predicate {value- expression IS [NOT] NULL Y Y Y Y Y4

| value- expression[NOT] LIKE
value-specification

Y Y Y Y Y4

| value-expression [NOT] BETWEEN
value-expression AND value-expression

Y Y Y Y Y4

| value-expression [NOT] IN
{(value-specification [,
value-specification] ...) | subquery}

Y Y Y Y Y4

| value-expression comparison-operator
value-expression

Y Y Y Y Y

| value-expression comparison-operator
subquery

Y Y Y

| value-expression
comparison-operator{ ANY | ALL |
SOME] subquery

Y Y Y

| EXISTS subquery Y Y Y

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

912

| term-specification[NOT]
XLIKE-pattern-character

Y

| ARRAY
(repetition-column-name[,repetition-col
umn-name]...)
[ANY](retrieval-condition)

Y

Search
condition

{ [NOT] {(search-condition) |
predicate}

Y Y Y Y Y4

| search-condition OR
{(search-condition) | predicate}

Y Y Y Y Y

| search-condition AND
{(search-condition) | predicate}}

Y Y Y Y Y

Selection
expression

value-expression (other than a variable) |
table-specification.*

Y Y Y Y Y

| [table-specification.] ROW}

Query
specification

{SELECT [{ ALL | DISTINCT}] Y Y Y Y

{* | selection-expression [.
selection-expression] }

Y Y Y Y Y

FROM table-name [. table-name] ... Y Y Y Y Y

[WHERE search-condition] Y Y Y Y Y

[GROUP BY column -specification] Y Y Y Y Y

[HAVING search-condition] Y Y Y Y Y

Query
expression

{query-specification |
(query-expression) | query-expression
UNION [ALL] {query-specification |
(query-expression)}}

Y Y Y

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

913

Static cursor
declaration

DECLARE cursor-name CURSOR FOR
query-expression

Y Y Y Y6 Y6

[ORDER BY
 {columnspecification |
sort-item-specification-number}
 [{ASC | DESC}]
 [, {column-specification |
sort-item-specification-number}
[{ASC | DESC}]] ...]

Y Y9 Y Y7 Y7

[{WITH {SHARE | EXCLUSIVE} LOCK Y Y

| WITHOUT LOCK [{WAIT |
NOWAIT}]}]

Y Y Y

[WITH ROLLBACK] Y Y Y

| NO WAIT}] Y

[FOR {UPDATE [OF column-name [,
column-name] ...]

Y Y Y Y Y

| READ ONLY}] Y Y

Dynamic
cursor
declaration

DECLARE cursor-name CURSOR FOR
SQL-statement-identifier-indicating-dyna
mic-SELECT-statement

Y Y Y Y Y

Dynamic
SELECT
statement
Format 1

query-expression Y Y Y Y6 Y6

[ORDER BY
{column-specification|sort-item-
specification-number}
 [{ASC | DESC}]
 [, {column-specification |
sort-item-specification-number}
 [{ASC | DESC}]] ...]

Y Y7 Y Y7 Y7

[{WITH {SHARE | EXCLUSIVE} LOCK Y Y

| WITHOUT LOCK [{WAIT |
NOWAIT}]}]

Y Y Y

[WITH ROLLBACK] Y Y Y

| NO WAIT}] Y

[FOR UPDATE] Y Y Y Y Y

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

914

Dynamic
SELECT
statement
Format 2

SELECT {{column-name
 |repetition-column[[subscript]]

|column-name..attribute-name[..attri
bute-name]..}
[,{{column-name
 |repetition-column[[subscript]]

|column-name..attribute-name[..attri
bute-name]..}]..
 |*} FROM LIST list-name
 [lock-option]

ASSIGN LIST
statement
Format 1

ASSIGN LIST list-name
 FROM
([authorization-identifier.]table-identifi
er)
 [WHERE search-condition]
 [WITHOUT LOCK [{WAIT|NOWAIT}]]
 [WITH ROLLBACK|NO WAIT]

ASSIGN LIST
statement
Format 2

ASSIGN LIST list-name
 FROM list-name-1
 [{{AND|OR|AND
NOT|ANDNOT}list-name-2
 |FOR ALTERLIST]

DROP LIST
statement

DROP {LIST list-name|ALL LIST}

OPEN
statement
Format 1

OPEN cursor-name
[USING:embeddedvariable
[, embeddedvariable] ...]

Y Y Y Y Y

OPEN
statement
Format 2

OPEN cursor-name USING DESCRIPTOR
[:] SQL-data-area-name

Y Y Y Y Y

CLOSE
statement

CLOSE cursor-name Y Y Y Y Y

FETCH
statement
Format 1

FETCH cursor-name INTO variable [,
variable] ...

Y Y Y Y Y

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

915

FETCH
statement
Format 2

FETCH cursor-name USING
DESCRIPTOR [:]SQL-data-area-name

Y Y Y Y Y

BY variable [ROWS]

FETCH
statement
Format 3

FETCH cursor-name INTO array-variable
[, array-variable] ...

Single-row
SELECT
statement

SELECT [{ALL | DISTINCT}] (* |
selectionexpression
[, selection-expression] ...} INTO
variable [, variable] ... FROM
table-name [,table-name] ... [WHERE
search-condition] [GROUP BY
column-specification] [HAVING
search-condition]

Y Y Y Y

[{WITH {SHARE | EXCLUSIVE} LOCK Y Y

| WITHOUT LOCK [{WAIT |
NOWAIT}]}]

Y Y Y

[WITH ROLLBACK] Y Y Y

| NO WAIT}] Y

Insertion
value

{value-specification | NULL} Y Y Y Y Y4

INSERT
statement
Format 1

INSERT INTO table-name [(columnname
[, columnname] ...)]
{VALUES (insertion-value
[, insertionvalue] ...) |
query-specification}

Y Y Y Y Y

[WITH ROLLBACK] Y Y Y

INSERT
statement
Format 2

INSERT INTO tablename (ROW) {VALUES
(row-insertion-value) |
query-specification} [WITH ROLLBACK]

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

916

INSERT
statement
Format 3

FOR variable
INSERT INTO
table-name[(column-name[,column-na
me]...)]
{VALUES
(insertion-value[,insertion-value]...)
|query-specification}

[WITH ROLLBACK]

INSERT
statement
Format 4

FOR variable
INSERT INTO table-name(ROW)
{VALUES
(row-insertion-value)|query-specificati
on}

[WITH ROLLBACK]

Update value {value-expression | NULL} Y Y Y Y Y4

UPDATE
statement
Format 1

UPDATE table-name SET
column-name=updatevalue
[, columnname=update-value] ...
[WHERE {search-condition|
CURRENT OF cursor-name}]

Y Y Y Y Y

UPDATE table-name SET
repetition-column-name
[{subscript|*}]
=element-value[,repetition-column-name
[{subscript|*}]
 =element-value] ...
[WHERE{retrieval-condition|
CURRENT OF cursor-name}]

Y

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

917

UPDATE tablename
ADD
repetition-column-name[{subscript|*}]
=ARRAY[element-value[,element-value]
...] [,repetition-column-name
[{subscript|*}]
=ARRAY[element-value[,element-value]
...) ... [WHERE{retrieval-condition
|CURRENT OF cursor-name}]

Y

UPDATE table-name
DELETE repetition-columnname
[{subscript|*}]
[,repetition-column-name[
{subscript|*}]...
[WHERE{retrieval-condition|
CURRENT OF cursor-name}]

Y

[WITH ROLLBACK] Y Y Y

UPDATE
statement
Format 2

UPDATE table-name
SET ROW=variable
[WHERE {search-condition| CURRENT OF
cursor-name}] [WITH ROLLBACK]

UPDATE
statement
Format 3

FOR variable
UPDATE table-name
SET
column-name=update-value[,column-na
me=update-value]...
[WHERE search-condition]

[WITH ROLLBACK]

UPDATE
statement
Format 4

FOR variable
UPDATE table-name
SET ROW=variable
[WHERE search-condition]

[WITH ROLLBACK]

DELETE
statement
Format 1

DELETE FROM table-name
[WHERE {search-condition
|CURRENT OF cursor-name}]

Y Y Y Y Y

[WITH ROLLBACK] Y Y Y

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

918

DELETE
statement
Format 2

FOR variable
DELETE FROM table-name

WHERE search-condition

[WITH ROLLBACK]

PREPARE
statement

PREPARE SQL-statement-identifier
FROM{'character-string' | variable}

Y Y Y Y Y

[WITH SQLNAME OPTION] Y Y Y

SQL
statements
preprocessabl
e by PREPARE
statement

INSERT,
UPDATE (without cursor),
DELETE (without cursor),
dynamic SELECT statement

Y Y Y Y Y

PURGE TABLE,
LOCK TABLE,
CALL

Y

Definition SQL
ASSIGN LIST,
DROP LIST,
dynamic SELECT statement Format 2

DESCRIBE
OUTPUT
statement

DESCRIBE [OUTPUT]
SQL-statement-identifier INTO [:]
SQL-Data-Area-name [[:]
column-name-data-areaname]

Y Y Y Y Y

DESCRIBE
INPUT
statement

DESCRIBE INPUT
SQL-statement-identifier INTO [:]
SQL-data-area-name [[:]
column-name-data-area-name]

Y

EXECUTE
statement
Format 1

EXECUTE SQL-statement-identifier Y Y Y Y Y

{INTO variable[,variable]... |INTO
DESCRIPTOR [:]SQL
-description-area-name}

Y

[{USING variable[,variable]... |USING
DESCRIPTOR [:]SQL
-description-area-name}]

Y Y Y Y Y

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

919

EXECUTE
statement
Format 2

EXECUTE SQL-statement-identifier
{USING
array-variable[,array-variable]...
 |USING DESCRIPTOR
[:]SQL-descriptor-area-name}
BY variable [ROWS]

SQL
statements
executable by
EXECUTE
statement

SQL statements other than dynamic
SELECT statement preprocessed by
PREPARE statement

Y Y Y Y Y

EXECUTE
IMMEDIATE
statement

EXECUTE IMMEDIATE
{'characterstring' | variable}

Y Y Y

SQL
statements
executable by
EXECUTE
IMMEDIATE
statement

INSERT, UPDATE (without cursor),
DELETE (without cursor)

Y Y Y

PURGE TABLE,
LOCK TABLE,
CALL

Y

Definition SQL
ASSIGN LIST,
DROP LIST

PURGE TABLE
statement

PURGE TABLE table-name [WITH
ROLLBACK | NO WAIT]

Y

LOCK TABLE
statement

LOCK TABLE tablename
[, tablename] ... [IN {SHARE |
EXCLUSIVE} MODE] [WITH ROLLBACK
| NO WAIT]

Y

UNTIL DISCONNECT

CALL
statement10

CALL
RD-node-name.authorization-identifier.
routine-identifier(argument-specification
)

Y

GET
DIAGNOSTIC
S statement

GET DIAGNOSTICS... Y8 Y8 Y8 Y8 Y8

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

920

The letter in each column under the Usable at distributed server column denotes the
following:

H: HiRDB
X: XDM/RD
O: ORACLE
R: RDB1 E2
S: SQL/K

Legend:
Y: Can be used.

: Cannot be used.
1 The table name formats RD-node-name.authorization-identifier.table-identifier and
[authorization-identifier.]table-alias can be used only when the default SQL
connection is used as the current SQL connection.
2 The table name format [authorization-identifier.]table-identifier can be used only
when an SQL connection to a distributed RD-node is used as the current SQL
connection.
3 If a correlation name contains both 1- and 2-byte characters, it may not be processed
by a distributed server.
4 The following functions cannot be used:

• USER literal (SQL/K only)
• NULL literal (SQL/K only)

SET SESSION
AUTHORIZAT
ION
statement

SET SESSION AUTHORIZATION
:embedded-variable-1
 [{USING|IDENTIFIED BY}
 :embedded-variable-2]

FREE
LOCATOR
statement

FREE LOCATOR :locator-reference

 [,:locator-reference]...

Assignment
statement

SET
assignment-destination=assignment-valu
e

Category SQL statement format Usable at distributed server

H X O R S

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

921

• Comparison operator || (RDB1 E2 only)
• Comparison operator <> (SQL/K only)
• Predicate and search condition NOT (SQL/K only)
• Scalar function (RDB1 E2 and SQL/K only)
• Query specifications ALL and DISTINCT (SQL/K only)

5 When the LENGTH or SUBSTR function is used on an MCHAR type column, HiRDB
processes the data length and location based on the number of characters, while XDM/
RD processes based on the number of bytes; this means that the execution results are
different. Also, in ORACLE, a character type column may contain both one-byte and
two-byte characters, so processing is performed based on the number of bytes when
the LENGTH or SUBSTR function is used.
6 For RDB1 E2 or SQL/K, define using an inquiry specification rather than an inquiry
equation.
7 When UNION[ALL] is not specified, XDM/RD, RDB1 E2, and SQL/K use a
different number for the sort specification item number in the ORDER BY clause from
the number used by other systems. In XDM/RD, RDB1 E2, and SQL/K, the number
that represents the position of the selection expression of the column to be used as the
sort key (the position specified in the SELECT clause) is specified. In other systems,
the number that represents the position of the column to be used as the sort key (the
position specified in a derived table) is specified.
8 Only errors that occur in the distributed server can be collected. For details about the
errors that can occur in a distributed server, see 11.5 Handling distributed server
errors.
9 Embedded variables and ? parameters that have repetition structures cannot be used.
10 Procedures that use the PURGE TABLE, COMMIT, or ROLLBACK statement cannot be
executed.

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

922

11.4 Available data types

This section explains the data types of distributed servers and the variables that can be
used in accessing a remote database under the distributed client facility.

11.4.1 Data types of variables usable in remote database access
In order to use a variable during access to a remote database, its data type must be
supported by the distributed client facility. Table 11-6 lists the data types of variables
that are supported by the distributed client facility.

Table 11-6: Data types of variables supported by distributed client facility

Variables of the following data types are not supported by the distributed client facility
and cannot be used: date data type (DATE), time data type (TIME), date interval data
type (INTERVAL YEAR TO DAY), time interval data type (INTERVAL HOUR TO
SECOND), and ROW.

11.4.2 Correspondence between distributed server data types and
HiRDB data types

Execution of the DESCRIBE statement converts distributed server data types into the
corresponding HiRDB data types. The results are set in the SQL Descriptor Area. If no
corresponding HiRDB data type exists for a particular distributed server data type, data

Classification Data type

Numeric data INT[EGER]

SMALLINT

DEC[IMAL]

FLOAT

SMALLFLT

Character data CHAR[ACTER]

VARCHAR

National character data NCHAR

NVARCHAR

Mixed character data MCHAR

MVARCHAR

Large-object data BLOB

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

923

code 0 is set in SQLDA.
A UAP must be created so that the DESCRIBE statement is executed first, then the
desired column in the table at the distributed server can be accessed using variables of
the appropriate data types that are set in the SQL Descriptor Area. However, there are
some exceptions to this rule (e.g., accessing a DATE-type column using a CHAR-type
variable).

(1) HiRDB distributed server
Table 11-7 shows the relationships between the data types that are set in the SQL
Descriptor Area of a HiRDB distributed client after the DESCRIBE statement has
executed and the data types of HiRDB.

Table 11-7: Data types set in SQL Descriptor Area of HiRDB after execution of
DESCRIBE statement in the case of a HiRDB distributed server

HiRDB data type Data type set in
SQL Descriptor
Area of HiRDB

Description

INTEGER INTEGER Integer (4-byte binary format)

SMALLINT SMALLINT Integer (2-byte binary format)

DECIMAL (p, s) DECIMAL (p, s) Fixed-point number
 Precision (total number of digits) = p
 Scale factor (number of digits following the decimal point)

= s
 1 p 29, 0 s p

FLOAT FLOAT Double-precision floating-point number

SMALLFLT SMALLFLT Single-precision floating-point number

CHAR (n) CHAR (n) Fixed-length character string

VARCHAR (n) VARCHAR (n) Variable-length character string

NCHAR (n) NCHAR (n) Fixed-length national character string

NVARCHAR (n) NVARCHAR (n) Variable-length national character string

MCHAR (n) MCHAR (n) Fixed-length mixed character string

MVARCHAR (n) MVARCHAR (n) Variable-length mixed character string

DATE1 DATE Date

TIME2 TIME Time

INTERVAL YEAR TO
DAY

INTERVAL YEAR TO
DAY

Date interval

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

924

1 DATE-type variables are not supported by the distributed client facility. However,
access to DATE-type columns can be performed by using CHAR(10)-type input
variables, as in local access to HiRDB.
2 TIME-type variables are not supported by the distributed client facility. However,
access to TIME-type columns can be performed by using CHAR(8)-type input
variables, as in local access to HiRDB.

(2) XDM/RD distributed server
Table 11-8 shows the relationships between the data types that are set in the SQL
Descriptor Area of a HiRDB distributed client after the DESCRIBE statement has
executed and the data types of XDM/RD.

Table 11-8: Data types set in SQL Descriptor Area of HiRDB after execution of
DESCRIBE statement in the case of an XDM/RD distributed server

INTERVAL HOUR TO
SECOND

INTERVAL HOUR TO
SECOND

Time interval

BLOB BLOB Binary

ROW ROW ROW type

XDM/RD data type Data type set in
SQL Descriptor
Area of HiRDB

Description

INTEGER INTEGER Integer (4-byte binary format)

SMALLINT SMALLINT Integer (2-byte binary format)

DECIMAL (p, s) DECIMAL (p, s) Fixed-point number
 Precision (total number of digits) = p
 Scale factor (number of digits following the decimal

point) = s
 1 p 29, 0 s p

LARGE DECIMAL (p, s)

FLOAT FLOAT Double-precision floating-point number

SMALLFLT SMALLFLT Single-precision floating-point number

CHAR (n) CHAR (n) Fixed-length character string

VARCHAR (n) VARCHAR (n) Variable-length character string

LONG VARCHAR (n)

HiRDB data type Data type set in
SQL Descriptor
Area of HiRDB

Description

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

925

1 DATE-type variables are not supported by the distributed client facility. However,
access to DATE-type columns can be performed by using CHAR(10)-type input
variables, as in local access to HiRDB.
2 TIME-type variables are not supported by the distributed client facility. However,
access to TIME-type columns can be performed by using CHAR(8)-type input
variables, as in local access to HiRDB.

(3) ORACLE distributed server
Table 11-9 shows the relationships between the data types that are set in the SQL
Descriptor Area of a HiRDB distributed client after the DESCRIBE statement has
executed and the data types of ORACLE.

NCHAR (n) NCHAR (n) Fixed-length national character string

NVARCHAR (n) NVARCHAR (n) Variable-length national character string

LONG NVARCHAR (n)

MCHAR (n) MCHAR (n) Fixed-length mixed character string

MVARCHAR (n) MVARCHAR (n) Variable-length mixed character string

LONG MVARCHAR (n)

DATE1 DATE Date

TIME2 TIME Time

INTERVAL YEAR TO DAY INTERVAL YEAR
TO DAY

Date interval

INTERVAL HOUR TO SECOND INTERVAL HOUR
TO SECOND

Time interval

ROW ROW ROW type

XDM/RD data type Data type set in
SQL Descriptor
Area of HiRDB

Description

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

926

Table 11-9: Data types set in SQL Descriptor Area of HiRDB after execution of
DESCRIBE statement in the case of an ORACLE distributed server

1 If s < 0 and data is entered by the UPDATE or INSERT statement into an appropriate
column based on the results of executing the DESCRIBE statement, the data is subject

ORACLE data type Data type set in
SQL Descriptor
Area of HiRDB

Description

NUMBER (p, s) DECIMAL (p, s) Fixed-point number
 Precision (total number of digits) = p
 Scale factor (number of digits following the decimal point) = s

 1 p 29, 0 s p

NUMBER (p, s)1 DECIMAL (p, 0) Fixed-point number
 Precision (total number of digits) = p
 Scale factor (number of digits following the decimal point) = s

 1 p 29, s < 0

NUMBER (p, s)2 DECIMAL (p, p) Fixed-point number
 Precision (total number of digits) = p
 Scale factor (number of digits following the decimal point) = s

 1 p 29, s > p

NUMBER3 FLOAT Double-precision floating-point number

NUMBER (p, s)4 Fixed-point number
 Precision (total number of digits) = p
 Scale factor (number of digits following the decimal point) = s

 30 p 38, 0 s p

CHAR (n) CHAR (n) Fixed-length character string
 n 255

VARCHAR2 (n) VARCHAR (n) Variable-length character string
 n 2000

LONG VARCHAR
(32000)5

Variable-length character string

DATE6 DATE Date

ROW Data code 0 Data code 0 is set in SQLDA because no corresponding data type
is found in the HiRDB database.

LONG ROW

ROWID

MLSLABEL

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

927

to rounding depending on the actual value of the input data.
2 If s > p and data is entered by the UPDATE or INSERT statement into an appropriate
column based on the results of executing the DESCRIBE statement, a precision error
can occur depending on the actual value of the input data.
3 The permissible range of the absolute values of NUMBER-type data is 1.0E-129
through 9.99...E125 with a precision of 38 decimal digits. NUMBER-type columns
can be accessed using a FLOAT-type output variable at the expense of reduced numeric
value precision.
4 In the case of p > 29, NUMBER-type columns can be accessed using a FLOAT-type
output variable at the expense of reduced numeric value precision.
5 A maximum of 2 GB of character data can be stored as LONG-type data. Therefore, a
VARCHAR(32000)-type output variable can retrieve only part of the data in some
cases.
6 DATE-type variables are not supported by the distributed client facility. However,
access to DATE-type columns can be performed by using CHAR(10)-type input
variables, as in local access to HiRDB. Although the DATE type of ORACLE contains
time information as part of the data, only the date information can be accessed from a
distributed client.

(4) RDB1 E2 distributed server
Table 11-10 shows the relationships between the data types that are set in the SQL
Descriptor Area of a HiRDB distributed client after the DESCRIBE statement has been
executed and the data types of RDB1 E2.

Table 11-10: Data types set in SQL Descriptor Area of HiRDB after execution
of DESCRIBE statement in the case of an RDB1 E2 distributed server

RDB1 E2 data type Data type set in
SQL Descriptor
Area of HiRDB

Description

INTEGER INTEGER Integer (4-byte binary format)

SMALLINT SMALLINT Integer (2-byte binary format)

DECIMAL (p, s) DECIMAL (p, s) Fixed-point number
Precision (total number of digits) = p
Scale factor (number of digits following the decimal number)
= s
 1 p 29, 0 s p

FLOAT FLOAT Double-precision floating-point number

SMALLFLT SMALLFLT Single-precision floating-point number

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

928

(5) SQL/K distributed server
Table 11-11 shows the relationships between the data types that are set in the SQL
Descriptor Area of a HiRDB distributed client after the DESCRIBE statement has been
executed and the data types of SQL/K.

Table 11-11: Data types set in SQL Descriptor Area of HiRDB after execution
of DESCRIBE statement in the case of an SQL/K distributed server

CHAR (n) CHAR (n) Fixed-length character string
 n 254

VARCHAR (n) VARCHAR (n) Variable-length character string
 n 254

LONG VARCHAR (n) VARCHAR (n) Variable-length character string
 255 n 4000

NCHAR (n) NCHAR (n) Fixed-length national character string
 n 127

NVARCHAR (n) NVARCHAR (n) Variable-length national character string
 n 127

ROW ROW ROW type

SQL/K data type Data type set in
SQL Descriptor
Area of HiRDB

Description

INTEGER INTEGER Integer (4-byte binary format)

SMALLINT SMALLINT Integer (2-byte binary format)

DECIMAL (p,s) DECIMAL (p,s) Fixed-point number
Precision (total number of digits) = p
Scale factor (number of digits following the decimal number)
= s
 1 p 29, 0 s p

CHAR (n) CHAR (n) Fixed-length character string
 n 32000

CHAR (n) CHAR(32000)1 Fixed-length character string
 n > 32000

RDB1 E2 data type Data type set in
SQL Descriptor
Area of HiRDB

Description

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

929

1 If n > 32000, using a VARCHAR(32000)-type output variable may result in partial
data search only.
2 If n > 16000, using an NVARCHAR(16000)-type variable may result in partial data
search only.

NCHAR (n) NCHAR (n) Fixed-length national character string
 n 16000

NCHAR (n) NCHAR (16000)2 Fixed-length national character string
 n > 16000

MCHAR (n) MCHAR (n) Fixed-length mixed character string
 n 32000

MCHAR (n) MCHAR(32000)1 Fixed-length mixed character string
 n > 32000

LARGE INT Data code 0 Data code 0 is set in SQLDA because no corresponding data
type is found in the HiRDB database.

NUMERIC
TRAILING (P,S)

NUMERIC
UNSIGNED (P,S)

XCHAR (n)
BIT (n)

SQL/K data type Data type set in
SQL Descriptor
Area of HiRDB

Description

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

930

11.5 Handling distributed server errors

This section explains the handling of errors that may occur in a distributed server.

11.5.1 Return codes set by the distributed client
If an error occurs during execution of an SQL statement at a distributed server, the
HiRDB of the distributed client sets a return code (SQLCODE) in the SQLCODE
variable.
Table 11-12 shows the SQLCODEs that are set by the distributed client when errors
occur at the distributed server.

Table 11-12: SQLCODEs set by distributed client when errors occur at
distributed server

Note
Error information (return code or message text from the distributed server) that is
returned from the distributed server is inserted into messages corresponding to the
above SQLCODEs. However, because there are restrictions on the length of
information that can be inserted into a message, sometimes only part of the
message text returned from the distributed server is displayed.

11.5.2 Obtaining and using detailed error information
When an error occurs in the distributed server and an SQLCODE shown in Table1113
is set in the distributed client, detailed information can be obtained by issuing the GET
DIAGNOSTICS statement. The type of the DBMS of the distributed server can also be
determined by displaying as part of the detailed information the contents of the
SQLCAIDE area of the SQL Communications Areas.
The GET DIAGNOSTICS statement can obtain the following four types of detailed
information:

• Return code returned by the distributed server indicating the execution results of
an SQL statement (only when SQLCODE of the distributed client is -861).

• The entire message text returned by the distributed server as a result of executing
the SQL statement

• The RD node name of the distributed server at which the error occurred

SQLCODE Description

-861 The distributed server returned a negative SQLCODE during remote database access.

-862 The distributed server returned an RDA error during remote database access.

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

931

• The diagnostic information stored in the diagnostics area of the distributed server
(in the case of the CALL statement)

The GET DIAGNOSTICS statement cannot obtain detailed information on an error that
occurs while detailed information is being obtained as a result of execution of the GET
DIAGNOSTICS statement.
Table 11-13 shows the statement information items that can be obtained by the GET
DIAGNOSTICS statement when an error occurs at the distributed server.

Table 11-13: Statement information items obtained by GET DIAGNOSTICS
statement when error occurs at distributed server

When an error occurs at the distributed server, condition information items can be
obtained by the GET DIAGNOSTICS statement by specifying condition number 1. If a
CALL statement error occurs at the distributed server, diagnostic information in the
distributed server diagnostic information area can be obtained by the GET
DIAGNOSTICS statement by specifying condition number 2 or greater.
Table 11-14 shows the condition information items that can be obtained when an error
occurs at the distributed server by specifying condition number 1.

Table 11-14: Condition information items obtained by specifying condition
number 1 (error at the distributed server)

Statement
information
item name

SQL statement Contents

NUMBER Other than CALL
statement

1

CALL statement 1 + number of errors in distributed server diagnostic area

MORE Other than CALL
statement

N

CALL statement Y
Number of errors at distributed server is greater than number
of errors in distributed server diagnostic area

N
Number of errors at distributed server equals number of
errors in distributed server diagnostic area

Condition information item
name

Information Contents

RETURNED_SQLCODE Available SQLCODE returned by distributed server1

None 02

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

932

1 Applicable when the SQLCODE of the distributed server is -861.
2 A 0 is set in SQLCODE because no SQLCODE is returned when the SQLCODE of
the distributed server is -862.

ERROR_POSITION None 0

ERROR_SQL_NO None 0

ERROR_SQL None One blank

ROUTINE_TYPE None One blank

ROUTINE_SCHEMA None One blank

ROUTINE_NAME None One blank

MESSAGE_TEXT Available Message text returned by distributed server

None One blank

RDNODE_NAME Available RD node name of distributed server

Condition information item
name

Information Contents

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

933

11.6 Notes about using a distributed database

This section provides notes about using a distributed database.

11.6.1 Notes about using a distributed client
(1) Synchronous update operation on remote and local databases is not
supported

If a communications error occurs during COMMIT processing for updating a remote
database, it cannot be determined solely on the basis of information provided by the
distributed client whether or not the distributed server has completed its COMMIT
processing or performed a rollback. In such a case, the user must check the server's
status.
When a remote database is updated, it is important that a local database not be updated
within the same transaction. If a remote database and a local database are both updated
and the COMMIT processing fails, the local database reverts to its status at the preceding
synchronization point but the remote database is updated. When only the remote
database becomes updated, it may be difficult to restore it to the status at the
synchronization point.

(2) Space character conversion
(a) Data substitution and comparison

During data substitution or comparison, the system ignores the pd_space_level
operand in the system common definitions and the value of PDSPACELVL in the client
environment definition specified with the distributed client's HiRDB.
The space conversion level specified at the distributed server takes effect (that is, the
value of the pd_space_level operand in the system common definitions if the
distributed server is HiRDB and the value of KEIS CODE SPACE LEVEL in the RD
environment definitions if the distributed server is XDM/RD). If necessary, specify the
space conversion level at the distributed server.

(b) Data retrieval
If the distributed client's pd_space_level operand in the system common
definitions or in PDSPACELVL in the client environment definitions is set to
0 or 1

Space conversion is not executed at the distributed client.
If a space conversion level is specified at the distributed server, the retrieval result
depends on the distributed server's specifications. Table 11-15 shows the space
conversion to be executed when the distributed server is HiRDB.

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

934

Table 11-15: Space conversion when the distributed server is HiRDB

Legend:
Y: Space conversion is executed when data is fetched.

: Space conversion is not executed when data is fetched.
1 If space conversion is executed when data is stored, two consecutive single-byte
spaces are converted to a single double-byte space. If the same space conversion level
is specified when data is stored as for data retrieval, all spaces in the resulting retrieval
data become double-byte spaces.
2 If space conversion is executed when data is stored, each double-byte space is
converted to two consecutive single-byte spaces. If the same space conversion level is
specified when data is stored as for data retrieval, all spaces in the resulting retrieval
data become single-byte spaces.
3 A single double-byte space is converted to two consecutive single-byte spaces during
data retrieval; therefore, all spaces in the resulting retrieval data become single-byte
spaces.

If the distributed client's pd_space_level operand in the system common
definitions or in PDSPACELVL in the client environment definitions is set to
3

The distributed client's HiRDB converts each double-byte space to two consecutive
single-byte spaces in the resulting retrieval data. This applies not only to the data types
NCHAR and NVARCHAR but also to MCHAR, MVARCHAR, CHAR, and VARCHAR.
Therefore, all the spaces in the resulting retrieval data to be returned to the UAP
become single-byte spaces.

11.6.2 Notes about using a distributed server
• When a UAP operating under a DBMS other than HiRDB accesses a HiRDB

database by using the distributed server facility of HiRDB, character strings such
as names that are specified in SQL statements must be spelled carefully. Whereas
character strings are not case sensitive in XDM/RD, HiRDB requires that
lowercase character strings be enclosed in quotation marks in order to distinguish
them from uppercase character strings. Therefore, if an SQL statement that is used

Distributed server Data type of column to be accessed

DBMS Space conversion level NCHAR,
NVARCHAR

MCHAR,
MVARCHAR

CHAR,
VARCHAR

HiRDB 1 1 2

3 Y3 2

11. Using a Distributed Database (Limited to HP-UX and AIX 5L)

935

to access a HiRDB database contains a character string that must be recognized
as lowercase characters, it must be enclosed in quotation marks.

• If a table identifier or column name contains both 1- and 2-byte characters, that
table cannot be accessed from an XDM/RD UAP.

937

Chapter

12. Command Execution from UAPs

This chapter explains how to execute commands from UAPs.
This chapter contains the following sections:

12.1 Overview
12.2 Preparations for executing commands from a UAP
12.3 Command executability

12. Command Execution from UAPs

938

12.1 Overview

You can execute commands by specifying them in a UAP. The specified commands are
executed at the HiRDB server. Such commands include HiRDB's operation
commands, utilities, and OS commands.
You use COMMAND EXECUTE of SQL to execute commands from a UAP. Because
execution of commands from a UAP is implemented by collaboration between the
HiRDB client and HiRDB Control Manager - Agent, HiRDB Control Manager - Agent
must be installed on the HiRDB server. For details about HiRDB Control Manager -
Agent, see the respective README.TXT.

Command execution from a UAP can be used only if the UAP is written in C.
Figure 12-1 shows an overview of command execution from UAPs.

Figure 12-1: Overview of command execution from UAPs

12. Command Execution from UAPs

939

12.2 Preparations for executing commands from a UAP

(1) HiRDB/Single Server
This section uses a sample UAP that executes data loading (database load utility).
Figure 12-2 shows a sample server-client configuration for a HiRDB/Single Server.

Figure 12-2: Sample server-client configuration for a HiRDB/Single Server

To execute a data-loading UAP with the server-client configuration shown in Figure
12-2, you need to define the following information beforehand:
1. Specify the following client environment definitions:

PDSYSTEMID
Specifies the HiRDB server's HiRDB identifier (HRD1).

PDASTHOST
Specifies the HiRDB Control Manager - Agent's host name (HOST1).

PDASTPORT
Specifies the HiRDB Control Manager - Agent's port number (22201).

2. Prepare the control information file and input data file needed for loading data at
the HiRDB server.

3. Suppose that the HiRDB administrator's user name is USERA (password: USERA)
and the owner of the table subject to data loading is USERB (password: USERB).

12. Command Execution from UAPs

940

In this case, specify the following client environment definitions:
PDASTUSER=USERA/USERA
PDUSER=USERB/USERB

You can now execute the data-loading UAP. For details about each client environment
definition, see 6.6.4 Environment definition information.
The following shows a sample UAP for loading data:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC SQL BEGIN DECLARE SECTION;
char CmdLine[30000]; /* CmdLine variable */
long ReturnCode; /* variable receiving return
 code */
long OutBufLen; /* size of area for receiving
 execution result */
long CmdRetCode; /* variable for receiving
 executed command's return
 code */
long OutDataLen; /* variable for receiving the
 length of execution result */
PDOUTBUF OutBuf; /* area for receiving
execution
 result */
char EnvGroup[256]; /* environment variable group
 name variable */
EXEC SQL END DECLARE SECTION;

void main()
{
strcpy(CmdLine,"pdhold -r RDDATA10"); /* specifying execution
command
 line command line (RDAREA
 shutdown) */
OutBuf = malloc(30000); /* allocating the execution
 result receiving area */
if (OutBuf == NULL){ /* memory allocation error */
printf("Memory allocation error\n");
return ;
}
OutBufLen = 30000 ; /* specifying the size of
 execution result
 receiving area */
EnvGroup[0] = '\0' ; /* specifying no environment
 variable group */

12. Command Execution from UAPs

941

/* Command execution */
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) {
 /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode==0) { /* if command execution is
 normal */

/* Specifying execution command line (to execute dataloading) */
strcpy(CmdLine,"pdload -i c -be STOCK c:\HiRDB_S\conf\LOAD");
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) {
 /* if COMMAND EXECUTE terminates
 normally */
if (CmdRetCode==0) { /* if command execution is
 normal */
printf("pdload command successfully\n");
printf("%s\n", OutBuf);
} else { /* execution command error */
printf("pdload command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
} else { /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
} else { /* execution command error */
printf("pdhold command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
strcpy(CmdLine,"pdrels -r RDDATA10");
 /* specifying execution command
 line (RDAREA shutdown
 release) */
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) {
 /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode!=0) { /* execution command error */
printf("pdrels command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
} else { /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);

12. Command Execution from UAPs

942

}
} else { /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
return ;
}

(2) HiRDB/Parallel Server
This section uses a sample UAP that executes data loading (database load utility).
Figure 12-3 shows a sample server-client configuration for a HiRDB/Parallel Server.

Figure 12-3: Sample server-client configuration for a HiRDB/Parallel Server

To execute a data-loading UAP with the server-client configuration shown in Figure
12-3, you need to define the following information beforehand:
1. Specify the following client environment definitions:

PDSYSTEMID
Specifies the HiRDB server's HiRDB identifier (HRD1).

PDASTHOST
Specifies the HiRDB Control Manager - Agent's host name (HOST1). For a
HiRDB/Parallel Server, specify the host name of the server machine where
the system manager is located.

PDASTPORT
Specifies the HiRDB Control Manager - Agent's port number (22201).

12. Command Execution from UAPs

943

2. Prepare the control information file and input data file needed for loading data at
the HiRDB server.

3. Suppose that the HiRDB administrator's user name is USERA (password: USERA)
and the owner of the table subject to data loading is USERB (password: USERB).
In this case, specify the following client environment definitions:
PDASTUSER=USERA/USERA
PDUSER=USERB/USERB

You can now execute the data-loading UAP. For details about each client environment
definition, see 6.6.4 Environment definition information.
The following shows a sample UAP for loading data:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC SQL BEGIN DECLARE SECTION;
char CmdLine[30000]; /* CmdLine variable */
long ReturnCode; /* variable receiving return
 code */
long OutBufLen; /* size of area for receiving
 execution result */
long CmdRetCode; /* variable for receiving
 executed command's return
 code */
long OutDataLen; /* variable for receiving the
 length of execution result */
PDOUTBUF OutBuf; /* area for receiving
execution
 result */
char EnvGroup[256]; /* environment variable group
 name variable */
EXEC SQL END DECLARE SECTION;

void main()
{
strcpy(CmdLine,"pdhold -r RDDATA10"); /* specifying execution
command
 line (RDAREA shutdown) */
OutBuf = malloc(30000); /* allocating the execution
 result receiving area */
if (OutBuf == NULL){ /* memory allocation error */
printf("Memory allocation error\n");
return ;
}
OutBufLen = 30000 ; /* specifying the size of
 execution result receiving

12. Command Execution from UAPs

944

 area */
EnvGroup[0] = '\0' ; /* specifying no environment
 variable group */

/* Command execution */
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) { /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode==0) { /* if command execution is
 normal */

/* Specifying execution command line (to execute dataloading) */
strcpy(CmdLine,"pdload -i c -be STOCK c:\HiRDB_P\conf\LOAD");
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) { /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode==0) { /* if command execution is
 normal */
printf("pdload command successfully\n");
printf("%s\n", OutBuf);
} else { /* execution command error */
printf("pdload command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
} else { /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
} else { /* execution command error */
printf("pdhold command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
strcpy(CmdLine,"pdrels -r RDDATA10"); /* specifying execution
command
 line (RDAREA shutdown
 release) */
EXEC SQL COMMAND EXECUTE :CmdLine, :ReturnCode, :OutBufLen,
:OutDataLen, :OutBuf, :CmdRetCode, :EnvGroup ;
if (ReturnCode == p_rdb_RC_NORM) { /* if COMMAND EXECUTE
 terminates normally */
if (CmdRetCode!=0) { /* execution command error */
printf("pdrels command Error,Code = %d\n", CmdRetCode);
printf("%s\n", OutBuf);
}
} else{ /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);

12. Command Execution from UAPs

945

printf("%s\n", OutBuf);
}
} else { /* COMMAND EXECUTE error */
printf("COMMAND EXECUTE Error,Code = %d\n", ReturnCode);
printf("%s\n", OutBuf);
}
return ;
}

12. Command Execution from UAPs

946

12.3 Command executability

Some HiRDB commands can be executed from UAPs and some cannot. Table 12-1
shows whether each command is executable from UAPs.

Table 12-1: Command executability from UAPs

Type Command Description Executability
from UAP

System operation pdadmvr Gets the HiRDB version information. E

pdcat Displays file contents. E

pdchgconf System reconfiguration command

pdconfchk Checks system definitions.

pdcspool Deletes troubleshooting information. E

pdgen Generates the system (system generator).

pdgeter Acquires error information.

pditvtrc Periodically gets the HiRDB status. E

pditvstop Stops periodic acquisition of the HiRDB
status.

E

pdjarsync Manipulates JAR files. E

pdlistls Displays list definition information. E

pdlodsv Reduces the size of the installation directory.

pdls Displays HiRDB system status. E

pdmemsv Saves memory space.

pdntenv Sets the HiRDB operation environment.

pdobjconv Migrates SQL objects into 64-bit-mode
HiRDB.

E

pdopsetup Installs an additional HiRDB program
product.

pdsetup Registers or deletes a HiRDB system in the
OS.

pdsvhostname Displays the server host name.

12. Command Execution from UAPs

947

pdvrup Upgrades HiRDB.

HiRDB file system pdfbkup Backs up the HiRDB file system. E

pdfls Displays HiRDB file system information. E

pdfmkfs Initializes a HiRDB file system area. E

pdfrm Deletes a HiRDB file. E

pdfrstr Restores the HiRDB file system. E

pdfstatfs Displays the status of a HiRDB file system
area.

E

Log files pdlogadpf Allocates a log file. E

pdlogatul Controls the automatic log unloading facility.

pdlogchg Changes the status of a log file. E

pdlogcls Closes a log file. E

pdloginit Initializes a log file. E

pdlogls Displays log file information. E

pdlogopen Opens a log file. E

pdlogrm Deletes a log file. E

pdlogswap Swaps log files. E

pdlogsync Collects a synchronization point dump. E

pdlogucat Displays unload log file information. E

pdlogunld Unloads a log file. E

Status files pdstscls Closes an open status file. E

pdstsinit Initializes a status file. E

pdstsopen Opens a status file. E

pdstsrm Deletes a status file. E

pdstsswap Swaps status files. E

HiRDB startup and
termination

pdstart Starts a HiRDB system, unit, or server. E

pdstop Terminates a HiRDB system, unit, or server. E

Type Command Description Executability
from UAP

12. Command Execution from UAPs

948

Statistics log pdstbegin Starts output of statistical information. E

pdstend Stops output of statistical information. E

pdstjswap Swaps statistics log files. E

pdstjsync Copies the contents of the statistics log buffer
to the statistics log file.

RDAREAs pdclose Closes RDAREAs. E

pddbls Displays the status of RDAREAs. E

pdhold Shuts down RDAREAs. E

pdopen Opens RDAREAs. E

pdrels Releases RDAREAs from shutdown status. E

pddbfrz Executes frozen update of full HiRDB files
in the user LOB RDAREA.

E

pdrdrefls Displays related RD area information. E

Global Buffer pdbufls Displays global buffer information. E

pdbufmod Dynamically changes the global buffer. E

Transaction control pdcmt Commits a transaction. E

pdfgt Forcibly terminates a transaction. E

pdrbk Rolls back a transaction. E

pdtrndec Forcibly completes uncompleted
transactions automatically.

Process control pdcancel Forcibly terminates UAP and utility
processing.

E

pdchprc Changes the number of server process
activations.

E

pdkill Stops a process forcibly.

pdpfresh Refreshes a server process. E

pdrpause Restarts the process service.

Type Command Description Executability
from UAP

12. Command Execution from UAPs

949

Update to HiRDB
update version

pdprgcopy Copies the HiRDB update version.

pdprgrenew Updates to the HiRDB update version.

Update to HiRDB
update version

pdprgcopy Copies the HiRDB update version.

pdprgrenew Updates HiRDB to the update version.

HiRDB
Datareplicator linkage

pdrplstart Starts HiRDB Datareplicator linkage.

pdrplstop Stops HiRDB Datareplicator linkage.

Directory Server
linkage facility

pdgrprfl Refreshes user information and role
information.

pdusrchk Checks the user's compatibility with the
Directory Server.

E

Inner replica facility pddbchg Switches the replica status of the replica
RDAREA.

E

Updatable online
reorganization

pdorbegin Commits the database for online
reorganization.

E

pdorcheck Checks the application conditions for online
reorganization.

E

pdorchg Switches the current RDAREA for online
reorganization.

E

pdorcreate Creates a reflection environment for online
reorganization.

E

pdorend Executes reflection of online reorganization. E

Security audit pdaudbegin Starts audit trail acquisition. E

pdaudend Stops audit trail acquisition. E

pdaudrm Deletes audit trail files that are shut down. E

pdaudswap Swaps the current audit trail file. E

Connection security
facility

pdacunlck Unlocks the consecutive certification failure
account lock state.

HiRDB External Data
Access facility

pddbadset Sets up the HiRDB External Data Access
Adapter.

Type Command Description Executability
from UAP

12. Command Execution from UAPs

950

Real Time SAN
Replication

pdrisechk Checks the configuration of Real Time SAN
Replication.

pdrisedbto Inherits the Real Time SAN Replication
database.

pdriseset Sets the site status of Real Time SAN
Replication.

SQL trace acquisition pdclttrc Dynamically acquires an SQL trace. E

SQL object
information display

pdobils Displays statistical information for an SQL
object.

SQL compilation pdcbl COBOL preprocessor

pdcpp C preprocessor

pdocb OOCOBOL preprocessor

pdocc C++ preprocessor

Database creation pdinit Database initialization utility

pddef Database definition utility

pdload Database load utility E

pdsql* Interactive SQL execution utility

pddefrev Generates a definition SQL statement.

Database operations pdmod Database structure modification utility E

pdrorg Database reorganization utility E

pdexp Dictionary import/export utility

pdrbal Rebalancing utility

pdreclaim Free page release utility E

pdpgbfon Global buffer residence utility E

Tuning pdstedit Statistics analysis utility

pddbst Database condition analysis utility E

pdgetcst Optimizing information collection utility

pdvwopt Access path display utility

Type Command Description Executability
from UAP

12. Command Execution from UAPs

951

E: Can be executed from UAPs.
: Cannot be executed from UAPs.

Notes

1. The following commands cannot be used in the UNIX version:
pdkill, pdntenv

2. The following commands cannot be used in the Windows version:
pddbadset, pdgen, pdgeter, pditvtrc, pditvstop, pdlodsv,
pdmemsv, pdobjconv, pdopsetup, pdplgset, pdrisechk,
pdrisedbto, pdriseset, pdrpause, pdsetup

* This command does not exist in the Windows version; instead, the HiRDB SQL
Executer is used.

Database error
handling

pdcopy Database copy utility E

pdbkupls Displays backup file information. E

pdrstr Database recovery utility E

Plug-in-related pdplgrgst Registers a plug-in. E

pdplgset Sets up a plug-in.

pdreginit Registry facility initialization utility E

Type Command Description Executability
from UAP

953

Chapter

13. HiRDB Access from ODBC
Application Programs

This chapter explains the OBDC driver installation procedure, ODBC functions, and
tuning and troubleshooting procedures that are necessary when ODBC application
programs access HiRDB.
This chapter contains the following sections:

13.1 ODBC application programs
13.2 Installing the ODBC2.0 driver
13.3 Installing the ODBC3.0 driver and setting the environment variables
13.4 ODBC functions provided by HiRDB
13.5 ODBC function data types and HiRDB data types
13.6 Asynchronous execution of ODBC functions
13.7 Setting cursor libraries
13.8 File DSNs
13.9 Executing a UAP in Unicode
13.10 Tuning and troubleshooting
13.11 Facilities that cannot be used when HiRDB is accessed with ODBC

13. HiRDB Access from ODBC Application Programs

954

13.1 ODBC application programs

Examples of ODBC application programs are Microsoft Access and Microsoft Excel.
The ODBC driver must be installed before these application programs can access
HiRDB. For information on ODBC driver installation, see 13.2 Installing the
ODBC2.0 driver. You can also access HiRDB via the ODBC driver from a UAP that
uses the ODBC functions provided by HiRDB. For information on the ODBC
functions provided by HiRDB, see 13.4 ODBC functions provided by HiRDB.
When the ODBC driver is used, you can access HiRDB from a UAP that uses the
ODBC3.x interface.

13. HiRDB Access from ODBC Application Programs

955

13.2 Installing the ODBC2.0 driver

To run an ODBC application program or a UAP that uses ODBC functions, you need
to install the ODBC driver in the HiRDB client beforehand. To execute a UAP via
ODBC on the HiRDB server, you also need to install the ODBC driver in the HiRDB
server.
This section presents the ODBC driver installation procedure. Be sure to exit all
Windows applications before starting the installation.
To install the ODBC driver:.

1. Execute hcd_inst.exe found on the integrated CD-ROM to start Hitachi
Integrated Installer.

2. At the Hitachi Integrated Installer screen, select one of the following, and then
click the Execute Installation button to start the HiRDB setup program:
For the UNIX version:

• For HiRDB/Run Time: HiRDB/Run Time
• For HiRDB/Developer's Kit: HiRDB/Developer's Kit

For the Windows version:

• For a HiRDB/Single Server: HiRDB/Single Server
• For a HiRDB/Parallel Server: HiRDB/Parallel Server

3. Perform the following operation; the setup program of the selected program
process starts:
For the UNIX version:

From the Select Program Process window of the HiRDB setup program, select
one of the following, and then click the Next button:

• For HiRDB/Run Time: Previous Product, and then HiRDB/Run Time
(ODBC 2.0)

• For HiRDB/Developer's Kit: Previous Product, and then HiRDB/
Developer's Kit (ODBC 2.0)

For the Windows version:

From the Select Program Process window of the HiRDB setup program, select
Previous Product and HiRDB/Run Time (ODBC 2.0), and then click the Next
button.

4. Select the displayed HiRDB driver and choose the OK button. Installation does
not take place if you choose OK without selecting anything.

13. HiRDB Access from ODBC Application Programs

956

5. Existing data sources are displayed. If no data source has been defined, nothing is
displayed. Choose the Add button.

6. Select the HiRDB driver as being subject to data source addition.

7. A dialog box for setting up the data source is displayed.

13. HiRDB Access from ODBC Application Programs

957

Explanation
Data source name

Specify a name identifying the data source. The name can have up to 32
single-byte characters or 16 double-byte characters. Single-byte and
double-byte characters can also be mixed.

PDHOST (host name)
Specify the host name of the server machine. This is the name specified in
the client environment definition. For details about PDHOST, see 6.6.4
Environment definition information. If this information is omitted, the
system assumes the value in the client environment definition.

PDNAMEPORT (HiRDB port number)
Specify the port number of the server machine. This is the port number
specified in the client environment definition. For details about
PDNAMEPORT, see 6.6.4 Environment definition information. If this
information is omitted, the system assumes the value in the client
environment definition.

HiRDB client environment definition file name (absolute path name) *

Specify the absolute path name of the HiRDB client environment definition
file. Use this item to change the specification values for the HiRDB client
environment variables for a particular data source. For example, if you are

13. HiRDB Access from ODBC Application Programs

958

using the high-speed connection facility (PDSERVICEPORT) to connect to
multiple HiRDB systems, you can use this item to specify the file name of
the HiRDB client environment definition file and change the connection
destination for each data source.
If this information is omitted, the system assumes HIRDB.INI. For all client
environment variables, except PDHOST and PDNAMEPORT, the system uses
the settings in the HiRDB client environment definition file specified here.
If the specified file is not HIRDB.INI, the system ignores the specifications
in HIRDB.INI.

8. After specifying all items, choose the OK button. The specified data source is
displayed. To change the settings, choose the Set button to display the previous
dialog box.

* When you install a HiRDB client, a HiRDB client environment definition file is
automatically created under the filename HiRDB.INI in the system directory. To
install the ODBC driver before installing the HiRDB client, you need to create the
HIRDB.INI file, because this file has not been created. To create a client
environment definition file, copy the HIRDB.INI file found in the
odb32\Disk1\Sampleap directory of the installation CD-ROM to an
appropriate directory, and then edit the file. For details about each client
environment variable, see 6.6.4 Environment definition information.

13. HiRDB Access from ODBC Application Programs

959

13.3 Installing the ODBC3.0 driver and setting the environment
variables

13.3.1 Installation
(1) Installation directory

Table 13-1 shows the ODBC3.0 driver installation directory.
Table 13-1: ODBC3.0 driver installation directory

Note

The default Windows directories are as follows:
• Windows Server 2003 and Windows XP: C:\WINDOWS
• Windows 2000: C:\WINNT

(2) Installation flow
The ODBC3.0 driver installation flow is described as follows.
1. Installing the ODBC3.0 driver

Insert the provided medium and follow the installation procedure.
2. Installing the ODBC driver manager

If the ODBC driver manager version is old, install the new ODBC driver manager.
3. Setting data sources

Set data sources.
(3) Installation procedure

(a) Installing the ODBC3.0 driver
To install the ODBC 3.0 driver:
1. Execute hcd_inst.exe found on the integrated CD-ROM to start Hitachi

Integrated Installer.
2. At the Hitachi Integrated Installer screen, select one of the following, and then

Platform Installation directory

Windows 2000 Windows-directory\System32

Windows Server 2003

Windows XP

13. HiRDB Access from ODBC Application Programs

960

click the Execute Installation button to start the HiRDB setup program:
For the UNIX version:

• For HiRDB/Run Time: HiRDB/Run Time
• For HiRDB/Developer's Kit: HiRDB/Developer's Kit

For the Windows version:

• For a HiRDB/Single Server: HiRDB/Single Server
• For a HiRDB/Parallel Server: HiRDB/Parallel Server

3. Perform the following operation; the setup program for the selected program
process starts:
For the UNIX version:

From the Select Program Process window of the HiRDB setup program, select
one of the following, and then click the Next button:

• For HiRDB/Run Time: HiRDB/Run Time
• For HiRDB/Developer's Kit: HiRDB/Developer's Kit

For the Windows version:

From the Select Program Process window of the HiRDB setup program, select
HiRDB/Run Time, and then click the Next button.

4. When the Select Installation Destination dialog box appears, change the
installation destination as needed and click the Next button.

5. From the Select Setup Type dialog box, select Custom and click the Next button.
6. From the Select Component dialog box, select ODBC3.0 driver and click the

Next button.
7. Both the ODBC3.0 driver and MDAC2.6RTM are copied to C:\Program

Files\HITACHI\HiRDB\utl (for the default).
8. The installation procedure is now complete.

(b) Installing the ODBC driver manager (which is included in MDAC2.6RTM)
If the version of the installed ODBC driver manager is old, you must install MDAC by
using the following procedure. To determine the version of the ODBC driver manager,
start the ODBC Administrator and double-click the About the ODBC driver
manager tab. If the driver manager version is 3.520.6526.0 or earlier, it is old.
To install the ODBC driver manager:
1. Double-click mdac_typ.exe, which has been copied to the ODBC3.0 driver

installation folder C:\Program Files\HITACHI\HiRDB\utl (for the

13. HiRDB Access from ODBC Application Programs

961

default).
2. Follow the installation procedure displayed on the screen.

(c) Setting data sources
To set data sources:
1. Start the ODBC Data Source Administrator.
2. Make sure that the tab item is User DSN and click the Add button.
3. When the Add Data Source dialog box appears, select HiRDB ODBC3.0 Driver

and click the Finish button.
4. When the HiRDB ODBC3.0 Driver Setup dialog box appears, specify the

necessary items.
Data source name

Specify a name identifying the data source. The name can have up to 32
single-byte characters or 16 double-byte characters. Single-byte and
double-byte characters can also be mixed.

PDHOST (host name)
For a HiRDB/Single Server, specify the host name of the server machine on
which the single server is located. For a HiRDB/Parallel Server, specify the
host name of the server machine on which the system manager is located.
If this item is omitted, the value specified for PDHOST in the client
environment definition is assumed. For details about PDHOST, see 6.6.4
Environment definition information.

PDNAMEPORT (HiRDB port number)
Specify the port number (the value specified for the pd_name_port operand
of the system definition) of the HiRDB server to be accessed.
If this item is omitted, the value specified for PDNAMEPORT in the client
environment definition is assumed. For details about PDNAMEPORT, see 6.6.4
Environment definition information.

HiRDB client environment definition file name
Specify the absolute path name of the HiRDB client environment definition
file. Use this item to change the specification values for the HiRDB client
environment variables for a particular data source. For example, if you are
using the high-speed connection facility (PDSERVICEPORT) to connect to
multiple HiRDB systems, you can use this item to specify the file name of
the HiRDB client environment definition file and change the connection
destination for each data source.

13. HiRDB Access from ODBC Application Programs

962

If this item is omitted, HIRDB.INI is assumed.
5. Choosing the OK button returns the window to the User DSN tab, and the

registered data sources are displayed.
Stopping data source setup

To stop data source setup, from the HiRDB ODBC3.0 Driver Setup dialog box, click
the Cancel button. When the Cancel button is clicked, no data source is registered.

Deleting a data source
To delete a data source:
1. From the Data Source dialog box, select the name of the data source to be deleted.
2. Click the Delete button to delete the data source.

13.3.2 Setting the environment variables
Set up the following environment variables:

PATH=Windows-directory;Windows-directory\System32

Note 1

The default Windows directories are as follows:
• Windows 2000: C:\WINNT
• Windows XP: C:\WINDOWS

Note 2

Set as system environment variables.

13.3.3 Determining the version number of the ODBC3.0 driver
To determine the version number of the ODBC driver, start the ODBC Data Source
Administrator and select the Driver tab.

13. HiRDB Access from ODBC Application Programs

963

13.4 ODBC functions provided by HiRDB

HiRDB provides ODBC functions, and you can access HiRDB on a server from a UAP
that utilizes these ODBC functions. Table 13-2 shows the ODBC functions provided
by HiRDB.

Table 13-2: ODBC functions provided by HiRDB

Classification ODBC functions ODBC2.0 driver ODBC3.0 driver

Provided? Expansion
level

Provided? Expansion
level

Connection to data
source

SQLAllocEnv Y Core

SQLAllocHandle Y Core

SQLAllocConnect Y Core

SQLConnect Y Core Y Core

SQLDriverConnect Y 1 Y Core

SQLBrousConnect Y 2 Y 1

Driver and data
source information
acquisition

SQLDataSources Y1 2 Y1 Core

SQLDrivers Y1 Core

SQLGetInfo Y 1 Y Core

SQLGetFunctions Y1 Core

SQLGetTypeInfo Y 1 Y Core

Driver option
setting and
acquisition

SQLSetConnectOption Y 1

SQLGetConnectOption Y 1

SQLSetStmtOption Y 1

SQLGetStmtOption Y 1

SQLSetConnectAttr Y Core

SQLGetConnectAttr Y Core

SQLSetEnvAttr Y Core

SQLGetEnvAttr Y Core

13. HiRDB Access from ODBC Application Programs

964

SQLSetStmtAttr 1 Y Core

SQLGetStmtAttr 1 Y Core

Descriptor value
setup

SQLGetDescField Y Core

SQLGetDescRec Y Core

SQLSetDescField Y Core

SQLSetDescRec Y Core

SQLCopyDesc Y Core

SQL request
creation

SQLAllocStmt Y Core

SQLPrepare Y Core Y Core

SQLBindParameter Y 11 Y Core

SQLSetParam2 Y 1

SQLGetCursorName Y Core Y Core

SQLSetCursorName Y Core Y Core

SQLDescribeParam Y 2

SQLNumParam Y 2

SQLParamOptions N 2

SQLSetScrollOptions N3 2 N 2

SQL execution SQLExecute Y Core Y Core

SQLExecDirect Y Core Y Core

SQLNativeSql Y 2 Y Core

SQLDescribeParams Y 2

SQLNumParams Y Core

SQLParamData Y 1 Y Core

SQLPutData Y 1 Y Core

Classification ODBC functions ODBC2.0 driver ODBC3.0 driver

Provided? Expansion
level

Provided? Expansion
level

13. HiRDB Access from ODBC Application Programs

965

Execution result
and execution
result information
acquisition

SQLRowCount Y Core Y Core

SQLNumResultCols Y Core Y Core

SQLDescribeCol Y Core Y Core

SQLColAttributes Y Core Y Core

SQLBindCol Y Core Y Core

SQLFetch Y Core Y Core

SQLFetchScroll Y4 Core

SQLExtendedFetch N3 2 Y Core

SQLGetData Y 1 Y Core

SQLSetPos N3 2 Y4 1

SQLBulkOperations N 1

SQLMoreResults Y 2 Y 1

SQLError Y Core

SQLGetDiagField Y Core

SQLGetDiagRec Y Core

Data source system
information
acquisition

SQLColumnPrivileges Y 2 Y 2

SQLColumns Y 1 Y Core

SQLForeignKeys Y 2 Y 2

SQLPrimaryKeys Y 2 Y 1

SQLProcedureColumns Y 2 Y 1

SQLProcedure Y 2 Y 1

SQLSpecialColumns Y 1 Y Core

SQLStatistics Y 1 Y Core

SQLTablePrivileges Y 2 Y 2

SQLTables Y 1 Y Core

Classification ODBC functions ODBC2.0 driver ODBC3.0 driver

Provided? Expansion
level

Provided? Expansion
level

13. HiRDB Access from ODBC Application Programs

966

Legend:
Y: The applicable ODBC function is provided.
N: The applicable ODBC function is not provided.

: Not applicable
1: Level 1
2: Level 2
Core: Core level

1 This function is provided by the drive manager.
2 Although the SQLSetParam function was included in SQLBindParameter
beginning with ODBC 2.0, this function is provided to maintain compatibility with
applications that do not support ODBC 2.0.
3 Because this function is installed in the ODBC2.0 cursor library, the range of
functions specified by the cursor library can be used. To use SQLExtendedFetch, set
up a cursor library. For details on setting up a cursor library, see 13.7 Setting cursor
libraries.
4 To use these ODBC functions, you must use the cursor library provided by Microsoft.

SQL execution
termination

SQLFreestmt Y Core Y Core

SQLCloseCursor Y Core

SQLCancel Y Core Y Core

SQLTransact Y Core Y Core

SQLEndTran Y Core

Disconnection SQLDisconnect Y Core Y Core

SQLFreeConnect Y Core

SQLFreeEnv Y Core

SQLFreeHandle Y Core

Classification ODBC functions ODBC2.0 driver ODBC3.0 driver

Provided? Expansion
level

Provided? Expansion
level

13. HiRDB Access from ODBC Application Programs

967

13.5 ODBC function data types and HiRDB data types

Table 13-3 shows the correspondence between ODBC function data types and server
HiRDB data types.
ODBC function data type refers to an SQL data type that is specified in an argument
of an ODBC function.

Table 13-3: ODBC function data types and HiRDB data types

Classification ODBC data type HiRDB data type Description Availability

Character data SQL_CHAR CHAR(n) Fixed-length character
string

U

SQL_VARCHAR VARCHAR(n) Variable-length character
string

U

SQL_LONGVARCHAR VARCHAR(n) Variable-length character
string

U

SQL_CHAR NCHAR(n) Fixed-length national
character string NATIONAL
CHARACTER(n)

U

SQL_VARCHAR NVARCHAR(n) Variable-length national
character string

U

SQL_CHAR MCHAR(n) Fixed-length mixed
character string

U

SQL_VARCHAR MVARCHAR(n) Variable-length mixed
character string

U

13. HiRDB Access from ODBC Application Programs

968

Numeric data SQL_DECIMAL DEC[IMAL](p,s) Fixed-point number
Precision (total number of
digits) = p, Scale (number
of digits below the decimal
point) = s
1 p 15, 0 s
p

U

SQL_NUMERIC NU

SQL_SMALLINT SMALLINT Integer from -32,768 to
32,767

U

SQL_INTEGER INTEGER Integer from
-2,147,483,648 to
2,147,483,647

U

SQL_TINYINT Integer from -256 to 255 NU

SQL_BIGINT 1-digit sign and 19-digit
integer

NU

SQL_REAL SMALLFLT,REAL Single-precision
floating-point number

U

SQL_FLOAT FLOAT, DOUBLE
PRECISION

Double-precision
floating-point number

U

SQL_DOUBLE FLOAT, DOUBLE
PRECISION

Double-precision
floating-point number

U

SQL_BIT Bit NU

SQL_BINARY Fixed-length binary data NU

SQL_LONGVARBINARY BINARY(n) Variable-length binary
data

U

SQL_LONGVARBINARY BLOB Variable-length binary
data

U

Date and time
data

SQL_TYPE_DATE DATE Date U

SQL_TYPE_TIMESTAM
P

TIMESTAMP Date/time U

SQL_TYPE_TIME TIME Time U

* INTERVAL YEAR
TO DAY

Date interval NU

SQL_INTERVAL_HOUR
_TO_SECOND

INTERVAL HOUR
TO SECOND

Time interval U

Classification ODBC data type HiRDB data type Description Availability

13. HiRDB Access from ODBC Application Programs

969

: Data type not available in ODBC.
U: Can be used.
NU: Cannot be used.
* Database data types in the server are reported without change.
Note

For details about the maximum character string lengths and value ranges for the
various data types, see the manual HiRDB Version 8 SQL Reference.

(1) Facilities available to ODBC functions
When a UAP uses ODBC functions to access the HiRDB system in the server, not all
HiRDB facilities are available to the UAP. Table 13-4 lists the facilities that can be
used by such a UAP.

Table 13-4: Available facilities

User-defined
type

Abstract data type Abstract data type NU

Facility Availability

Obtaining special column information

Obtaining index information U

Using date and time data types U1

Using repetition columns NU3

Using array columns

Obtaining table and column headers

Asynchronous processing NU

Using the escape character for the LIKE predicate U

Obtaining an updated row count U

Setting the timeout value for logging in NU

Using Japanese data types U2

Executing definition SQL statements U

Classification ODBC data type HiRDB data type Description Availability

13. HiRDB Access from ODBC Application Programs

970

U: Can be used.
NU: Cannot be used.

: Not a DBMS function
1 The INTERVAL YEAR TO DAY data type cannot be used.
2 The database data types are reported without change.
3 A repetition column can be accessed if it has a simple structure without repeated ?
parameters.

Example
Column C1 of table T1 is a repetition column.
SELECT C1[1],C1[2] FROM T1 A
SELECT C1 FROM T1
INSERT INTO T1 VALUES(ARRAY[?,?]) A
INSERT INTO T1 VALUES(?)

A: Can be accessed
: Cannot be accessed

(2) Setting update and deletion operations that use cursors
The SQLGetCursorName function obtains the user cursor name that was set with the
SQLSetCursorName function. If no cursor name has been set, the
SQLGetCursorName function cannot obtain a system-defined cursor. Therefore, set
an appropriate user cursor name to update or delete an item with a cursor.

(3) Setting driver options
The options that can be set with the SQLSetConnectOption or
SQLGetConnectOption function are limited. Table 13-5 shows the options that can
be set.

Table 13-5: Options that can be set with the SQLSetConnectOption and
SQLGetConnectOption functions

Option Setting

SQL_ACCESS_MODE SQL_MODE_READ_WRITE

SQL_AUTOCOMMIT SQL_AUTOCOMMIT_OFF or SQL_AUTOCOMMIT_ON

SQL_LOGIN_TIMEOUT

SQL_TRANSLATE_DLL

SQL_TRANSLATE_OPTION

13. HiRDB Access from ODBC Application Programs

971

: Cannot be set

SQL_TXN_ISOLATION

Option Setting

13. HiRDB Access from ODBC Application Programs

972

13.6 Asynchronous execution of ODBC functions

(1) About asynchronous execution of ODBC functions
When an ODBC application program accesses HiRDB, the program can execute the
ODBC functions asynchronously.
When ODBC functions are executed simultaneously, the ODBC driver does not return
control to the application until function calling ends. However, when ODBC functions
are executed asynchronously, the ODBC driver can return control to the application
program at any time. The application program can therefore execute other processes
when the ODBC functions are being executed asynchronously.
The following ODBC functions can be executed asynchronously:

• SQLColumnPrivileges
• SQLColumns
• SQLExecute
• SQLExecDirect
• SQLParamData
• SQLProcedureColumns
• SQLFetch
• SQLStatistics
• SQLTablePrivileges
• SQLTables
• SQLProcedures

(2) Procedure for asynchronous execution of ODBC functions
To execute asynchronous ODBC functions:
1. To enable asynchronous execution in a specific hstmt (statement handle) only,

use the SQL_ASYNC_ENABLE option to call SQLSetStmtOption.1 To enable
asynchronous execution in all hstmt handles related to hdbc (connection
handle), use the SQL_ASYNC_ENABLE option to call SQLSetConnectOption.2

2. When an ODBC function that can be executed asynchronously1 is called with an
hstmt for which asynchronous execution has been enabled, the ODBC driver
starts asynchronous execution of that function and returns
SQL_STILL_EXECUTING. (If asynchronous execution is not set or if an error
occurs, the ODBC driver returns a synchronous execution code, such as

13. HiRDB Access from ODBC Application Programs

973

SQL_SUCCESS or SQL_ERROR.)
3. The application program can execute another process while an ODBC function is

being executed asynchronously. An application program can call only the
SQLAllocStmt, SQLCancel, and SQLGetFunctions with the hstmt that is
executing the function asynchronously. If any other function is called (except the
function being executed asynchronously), the driver manager returns a sequence
error.

4. The application program calls the ODBC function that was being executed
asynchronously to check whether execution of that function terminated. If the
function is still executing, SQL_STILL_EXECUTING is returned. If the process
has terminated, a return code such as SQL_SUCCESS or SQL_ERROR is returned.
When an application program calls a function to check the execution status, all
specified arguments, except hstmt, are ignored. (However, the specified
argument values must be effective; otherwise, an error can occur if an incorrect
address or value is specified.) For example, if SQLExecDirect is executed
asynchronously with the INSERT statement function, and SQLExecDirect is
called again, the execution status of the INSERT statement is returned, even if the
UPDATE statement is specified.

Note

To disable asynchronous execution in a specific hstmt only, use the
SQL_ASYNC_ENABLE option to call SQLSetStmtOption. To disable
asynchronous execution in all hstmt handles related to hdbc, use the
SQL_ASYNC_ENABLE option to call SQLSetConnectOption.

1 The settings for SQLSetStmtOption are shown as follows.

2 The settings for SQLSetConnectOption are shown as follows.

Option Setting

SQL_ASYNC_ENABLE SQL_ASYNC_ENABLE_OFF or SQL_ASYNC_ENABLE_ON

SQL_BIND_TYPE Cannot be set.

SQL_MAX_LENGTH Limit specified by server or value specified by user

SQL_NOSCAN (Default=FALSE) SQL_NOSCAN_OFF or SQL_NOSCAN_ON

SQL_QUERRY_TIMEOUT Cannot be set.

SQL_MAX_ROWS Limit specified by server or value specified by user

Option Setting

SQL_ACCESS_MODE Fixed to SQL_MODE_READ_WRITE

13. HiRDB Access from ODBC Application Programs

974

(3) Cancelling asynchronous execution for an ODBC function
(a) Cancelling asynchronous execution of an ODBC function

To cancel an ODBC function during asynchronous execution, call SQLCancel.
SQLCancel issues a process cancellation request to the server as soon as it confirms
that the specified hstmt is currently undergoing asynchronous execution.
The return value for SQLCancel only reports whether the cancel request was
completed. To find out whether asynchronous execution of the function was actually
cancelled, call the function that was being processed asynchronously and check the
return value. If the function is still executing, SQL_STILL_EXECUTING is returned. If
cancel processing was completed, SQL_ERROR and SQLSTATE S1008 (process
cancellation) are returned. If the function has already terminated normally, or if an
error occurred, a code such as SQL_SUCCESS or SQL_ERROR is returned.

(b) Cancelling asynchronous execution in a multi-thread application
program
A multi-thread application program can cancel an ODBC function that is being
executed asynchronously with hstmt. To cancel the function, the application program
calls SQLCancel from a different thread and uses the same hstmt as that used by the
function being cancelled.
The return value of SQLCancel indicates whether the driver received the request
correctly. The return values of the original function are SQL_SUCCESS, or SQL_ERROR
and SQLSTATE S1008 (process cancellation).
Note

The HiRDB cancel process is executed for an individual connection, and the

SQL_AUTOCOMMIT SQL_AUTOCOMMIT_OFF or SQL_AUTOCOMMIT_ON

SQL_LOGON_TIMEOUT Cannot be set.

SQL_OPT_TRACE Fixed to 0 (Off). This option is returned from the ODBC
driver manager.

SQL_OPT_TRACEFILE Fixed to NULL. This option is returned from the ODBC
driver manager.

SQL_TRANSLATE_DLL Cannot be set.

SQL_TRANSLATE_OPTION Cannot be set.

SQL_TXN_ISOLATION SQL_TXN_READ_UNCOMMITED

SQL_ASYNC_ENABLE SQL_ASYNC_ENABLE_OFF or SQL_ASYNC_ENABLE_ON

Option Setting

13. HiRDB Access from ODBC Application Programs

975

connection with the server is forcibly disconnected. (The server outputs
KFPS00993-I: Server process termination
REQUEST=clt_attention). Consequently, all statements of the hstmt
handlers related to the specified hstmt are cancelled (the transaction is rolled
back). Carefully consider any data being updated before cancelling an ODBC
function that is being executed asynchronously.

(4) Coding example
The following is an example of coding for asynchronous execution:
SQLSetStmtOption(hstmst, SQL_ASYNC_ENABLE,
SQL_ASYNC_ENABLE_ON);
 ...
 Retrieval processing with SQLFetch
rc=SQLFetch(hstmt);
while(rc==SQL_STILL_EXECUTING)
{
 ...
 Continue processing of UAP being executed asynchronously
 ...
 if(process cancel request was issued)
 {
 rc=SQL_Cancel(hstmt);
 if(rc==SQL_ERROR){ To error processing for cancel
 request failure }
 }
 rc=SQLFetch(hstmt);
}
if(rc == SQL_ERROR){ To error processing }
 To retrieval data manipulation processing
 ...

13. HiRDB Access from ODBC Application Programs

976

13.7 Setting cursor libraries

A cursor library must be set before SQLExtendedFetch can be used in an ODBC
UAP. A cursor library can be set in two ways:
When the SetConnectOption ODBC function is used:

Use the SetConnectOption ODBC function and specify SQL_ODBC_CURSORS
in the fOption argument and SQL_CUR_USE_ODBC in the vParam argument.

When RDO of Visual Basic is used:
Specify rdUseOdbc in the CursorDriver property of the rdoEnvironment
object. The following is an example of coding when RDO of Visual Basic is used:
Dim mrdoEnv as rdoEnvironment
Set mrdoEnv = rdoEngine.rdoCreateEnvironment("","","")
 mrdoEnv.CursorDriver = rdUseOdbc
 Src = "DSN=host1; UID=USER_A;PWD=USER_A"
 Set mrdoConn = mrdoEnv.OpenConnection
 ("", rdDriverComplete, False, Src)
 ...
 ...

See the simple sample UAPs found in the Sampleap directory of the installation
floppy disk for the ODBC driver.

13. HiRDB Access from ODBC Application Programs

977

13.8 File DSNs

When an application program uses a file DSN, it can connect to a data source without
obtaining information from ODBC.INI or the registry because the DSN file stores
information for connecting to the data source.
By sharing the file, multiple users can connect to the HiRDB system without having to
register the data source (formerly the machine data source) to each machine. A file
DSN can be used when the ODBC component version is 3.0 or higher.
File DSNs can be created by the ODBC data source administrator.

Creating file DSNs
To create a file DSN, select a file DSN, add the file DSN, select a driver (HiRDB
32-bit driver), and then specify the storage file name. A connection request is then
issued to the HiRDB system, and the driver manager creates the file based on the
complete connection character string returned by SQLDriverConnect.
However, in this case, the password is not stored in the file DSN. If the password
is to be shared, add the line PWD=password to the created file.

13. HiRDB Access from ODBC Application Programs

978

13.9 Executing a UAP in Unicode

This section explains the ODBC functions that can be used by a UAP in Unicode.
(1) ODBC functions that can be used by a UAP in Unicode

Table 13-6 shows the ODBC functions that can be used by a UAP in Unicode.
Table 13-6: ODBC functions that can be used by a UAP in Unicode

Classification Function name Function

Connection with data
source

SQLConnectW Connects to a specific driver based on the
data source name, authorization identifier,
and password.

SQLDriverConnectW Connects to a specific driver based on the
connection character string. Also, requests
to the driver manager and driver that a
connection dialog box be displayed for the
user.

SQLBrowseConnectW Returns the continuous level connection
attributes and valid attribute values. If a
value is specified for each connection
attribute, connects to the data source.

SQLDriversW Returns the installed driver and a list of its
attributes.

Driver and data source
information

SQLDataSources Returns a list of data sources that can be
used.

SQLGetInfoW Returns a specific driver and data source
information.

Setting and acquisition of
driver options

SQLSetConnectAttrW Sets the connection attributes.

SQLGetConnectAttrW Returns the connection attribute values.

SQLSetStmtAttrW Sets the statement attribute.

SQLGetStmtAttrW Returns the statement attribute value.

Descriptor setting and
acquisition

SQLSetDescFieldW Sets one descriptor field.

SQLGetDescFieldW Returns one descriptor field value.

SQLSetDescRecW Sets multiple descriptor fields.

13. HiRDB Access from ODBC Application Programs

979

SQLGetDescRecW Returns multiple descriptor field values.

SQLPrepareW Prepares an SQL statement to be executed
later.

SQL request creation SQLSetCursorNameW Specifies a cursor name.

SQLGetCursorNameW Returns the cursor name related to the
statement handle.

SQL execution SQLExecDirectW Executes a statement.

SQLNativeSqlW Returns the text of the SQL statement that
the driver converted.

Acquisition of execution
results and execution
results information

SQLDescribeColW Describes the results set columns.

SQLColAttributeW Describes the attributes of the results set
columns.

SQLGetDiagFieldW Returns additional diagnosis information
(one field of the diagnosis data structure).

SQLGetDiagRecW Returns additional diagnosis information
(multiple fields of the diagnosis data
structure).

SQLColumnPrivilegesW Returns a list of columns and privileges
related to one or more tables.

Acquisition of data source
system information

SQLColumnsW Returns a list of column names of specified
tables.

SQLForeignKeysW Returns a list of column names that
compose an external key when there is an
external key in a specified table.

SQLPrimaryKeysW Returns a list of column names that
compose a main key of a specified table.

SQLProcedureColumnsW Returns a list of input or output parameters
and columns that compose the results set of
a specified procedure.

SQLProceduresW Returns a list of procedure names in a
specified data source.

Classification Function name Function

13. HiRDB Access from ODBC Application Programs

980

(2) Notes
The following notes apply when UCS2_UJIS or UCS2_UTF8 is set in PDCLTCNVMODE
of the client environment definition:

• The SQL data type returned when the column attribute is acquired is as follows:
When the HiRDB data type is CHAR, MCHAR, or NCHAR: SQL_WCHAR
When the HiRDB data type is VARCHAR, MVARCHAR, or NVARCHAR:
SQL_WVARCHAR

• When the column attribute is acquired, if the HiRDB data type is character string
system data type, the column definition length x 2 is set for the column length.
For example, in case of char(10), 20 is returned for the column length.

SQLSpecialColumnsW Returns the optimum column for identifing
lines in a specified table or the column
information that is corrected automatically
when line values are changed by a
transaction.

SQLStatisticsW Returns statistical information related to a
single table and a list of indexes related to
the table.

SQLTablePrivilegesW Returns a list of tables and the privileges
related to each table.

SQLTablesW Returns a list of table names in the specified
data source.

Classification Function name Function

13. HiRDB Access from ODBC Application Programs

981

13.10 Tuning and troubleshooting

This section explains how to tune and troubleshoot ODBC UAPs.
(1) Poor performance in a UAP that retrieves multiple rows

Use the block transfer facility. To use this facility, specify the PDBLKF operand in the
client environment definition. A specification value between 40 and 50 is
recommended. Specifying a larger value has little effect in reducing the number of
communications and instead may delay processing because of the increased
processing overhead. For details about the block transfer facility, see 4.7 Block transfer
facility.

(2) If a UAP executes connect and disconnect processing frequently
Use the high-speed connection facility. To use this facility, specify the PDFESHOST,
PDSERVICEPORT, and PDSERVICEGRP operands in the client environment definition.
The high-speed connection facility shortens the time for connection to HiRDB. For
details about the PDFESHOST, PDSERVICEPORT, and PDSERVICEGRP operands of the
client environment definition, see 6.6.4 Environment definition information.

(3) Checking SQL statements requested of HiRDB
If a UAP accesses the HiRDB system via ODBC, the SQL statements specified in the
UAP may differ from the SQL statements requested of the HiRDB system, depending
on the environment in which the UAP was created. To check what kind of SQL
statements are issued to the HiRDB system, use the SQL trace facility. To use this
facility, specify the PDSQLTRACE operand in the client environment definition. It is
recommended to also specify the trace output destination directory in the PDCLTPATH
operand at this time. For details about the SQL trace facility, see 10.1.1 SQL tracing.

(4) Other
If an application program, such as Microsoft Access, specifies the lock option in
a retrieval SQL statement, a syntax error may occur in that application program.
If this happens, examine whether the problem can be corrected by specifying the
PDISLLVL operand of the client environment definition.
If you use the Microsoft Jet database engine to access HiRDB, a lock error may
occur in HiRDB during updating, depending on how the UAP was created. This
occurs when the Microsoft Jet database engine establishes multiple connections
to HiRDB and referencing or updating is executed on the same line from different
connections. To avoid this, specify 0 or 1 for the PDISLLVL operand in the client
environment definition. In the Sampleap directory on the installation floppy disk
for the ODBC driver, there is a sample UAP that uses DAO (Data Access Object)
of Visual Basic and no lock error occurs during access; refer to this UAP.

13. HiRDB Access from ODBC Application Programs

982

13.11 Facilities that cannot be used when HiRDB is accessed with
ODBC

When an application program accesses the HiRDB system with ODBC, some of the
facilities cannot be used.

Access using the row interface
Queries with ROW specifications, UPDATE statements, and INSERT statements
cannot be executed.
Update and deletion using a cursor
Update and deletion using CURRENT OF cursor-name cannot be executed.
However, if the cursor library facility is used, the cursor library can sometimes
execute such operations to change CURRENT OF cursor-name to a WHERE
condition.
Portable cursors
Portable cursors (cursors with the WITH HOLD specification or cursors defined by
queries with the UNTIL DISCONNECT specification) cannot be used.

983

Chapter

14. HiRDB Access from OLE DB
Application Programs

This chapter provides an overview of the OLE DB and discusses its connection
interface, schema information, and error handling procedures.
This chapter contains the following sections:

14.1 Overview
14.2 Connection interface
14.3 Schema information
14.4 Data type correspondences
14.5 Error handling procedures
14.6 Notes

14. HiRDB Access from OLE DB Application Programs

984

14.1 Overview

(1) What is OLE DB?
OLE DB is an API, like ODBC, for accessing a wide range of data sources. Unlike
ODBC, OLE DB contains interface definitions suitable for accessing data other than
SQL data.

(2) HiRDB OLE DB Provider
To access HiRDB from an OLE DB-supported application program, you need a
HiRDB OLE DB provider. The HiRDB OLE DB provider is included in HiRDB/Run
Time and HiRDB/Developer's Kit.

(3) Installing the HiRDB OLE DB provider
To install the HiRDB OLE DB provider when installing HiRDB/Run Time or HiRDB/
Developer's Kit, in the Setup Type dialog box, choose Custom, and in the Select
Components dialog box, select OLE DB provider for HiRDB.
When you install the HiRDB OLE DB provider, the following files are created:

• PDOLEDB.DLL
• PDCLTL32.DLL

(4) HiRDB OLE DB provider name
The name of the HiRDB OLE DB provider (provider program ID) is
HiRDBProvider. When using an interface that requires the provider name (such as
ActiveX Data Object (ADO)), you can use the HiRDB OLE DB provider by specifying
this provider name in the connection object's Provider property.

14. HiRDB Access from OLE DB Application Programs

985

14.2 Connection interface

This section explains the registry information and connection property.

14.2.1 Registry information
(1) Adding to the HKEY_CLASSES_ROOT key

(a) Provider program ID = provider name
"HiRDBProvider"="Hitachi HiRDB OLE DB Provider"

(b) Provider class ID
"HiRDBProvider\\ClSID"
 ="{6A708561-748A-11d3-B810-0000E2212E58}"

(2) Adding to the HKEY_CLASSES_ROOT\CLSID subkey
(a) Provider program ID

{"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}"
 ="HiRDBProvider"

(b) Provider name
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}\\ProgID"
 ="HiRDBProvider"

(c) Program ID by version
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\VersionIndependentProgID"="HiRDBProvider"

(d) Provider DLL name
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\InprocServer32"="pdoledb.dll"
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\InprocServer32\\ThreadingModel"="Both"

(e) Comment
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\OLE DB Provider"="Hitachi HiRDB OLE DB Provider"

(f) Extended error name
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\ExtendedErrors"="Hitachi HiRDB OLE DB Provider"

(g) Extended error comment
"CLSID\\{6A708561-748A-11d3-B810-0000E2212E58}
 \\ExtendedErrors\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}"
 = "Hitachi HiRDB OLE DB Provider"

14. HiRDB Access from OLE DB Application Programs

986

(3) Adding to the HKEY_CLASSES_ROOT key
(a) Provider error program ID

" HiRDBProviderErrors"="Hitachi HiRDB OLE DB Provider"

(b) Provider error class ID
"HiRDBProviderErrors\\ClSID"
 ="{5F6D492E-40BA-11D3-BD66-0000E21F878E}"

(4) Adding to the HKEY_CLASSES_ROOT\CLSID subkey
(a) Provider error program ID

"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}"
 ="HiRDBProvider Error Lookup"

(b) Provider error lookup name
"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}\\ProgID"
 ="HiRDBProvider Error Lookup"

(c) Error lookup program ID by version
"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}
 \\VersionIndependentProgID"="HiRDBProvider Error Lookup"

(d) Provider error lookup DLL name
"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}
 \\InprocServer32"="pdoledb.dll"
"CLSID\\{5F6D492E-40BA-11D3-BD66-0000E21F878E}
 \\InprocServer32\\ThreadingModel"="Both"

14.2.2 Connection properties
Three Initialization properties are used for connection. These three properties
are optional.

(1) DBPROP_INIT_DATASOURCE
This is the client's environment variable group name. If this property is omitted, the
system assumes HiRDB.INI. For details about the client's environment variable
group, see 6.7 Registering an environment variable group.

(2) DBPROP_AUTH_USERID
This is the authorization identifier used for connection.
If this property is omitted, the authorization identifier is acquired from PDUSER of the
applicable client environment variables group. If there is no
DBPROP_INIT_DATASOURCE specification, the authorization identifier is acquired
from HiRDB.INI.

14. HiRDB Access from OLE DB Application Programs

987

(3) DBPROP_AUTH_PASSWORD
This is the password to be used for connection. If this property is omitted, but
DBPROP_INIT_DATASOURCE is specified, the system obtains the password from
PDUSER in the corresponding client environment variable group. If
DBPROP_INIT_DATASOURCE is also omitted, the system obtains the password from
HiRDB.INI.

14. HiRDB Access from OLE DB Application Programs

988

14.3 Schema information

Table 14-1 lists the schema information provided by the HiRDB OLE DB provider.
Table 14-1: Schema information provided by the HiRDB OLE DB provider

Type of OLE DB schema
information

Description Provided

ASSERTIONS Assertion information

CATALOGS Catalog information

CHARACTER_SETS Character set identification

CHECK_CONSTRAINTS CHECK constraint identification

COLLATIONS Character collation identification

COLUMN_DOMAIN_USAGE Domain-dependent column information

COLUMN_PRIVILEGES Column privilege information

COLUMNS Column information P
(required)

CONSTRAINT_COLUMN_USAGE Various constraint (reference, UNIQUE, CHECK)
column information

CONSTRAINT_TABLE_USAGE Various constraint (reference, UNIQUE, CHECK) table
information

FOREIGN_KEYS External key information

INDEXES Index information P

KEY_COLUMN_USAGE Key column information

PRIMARY_KEYS Primary key information

PROCEDURE_COLUMNS Column information for row set returned by
procedure

PROCEDURE_PARAMETERS Procedure parameter information P

PROCEDURES Procedure information P

PROVIDER_TYPES Provider data type identification P
(required)

REFERENTIAL_CONSTRAINTS Reference constraints

SCHEMATA Schema information P

14. HiRDB Access from OLE DB Application Programs

989

P: Provided.
: Not provided.

SQL_LANGUAGES Match level for processing SQL installation and
language type

STATISTICS Statistical information

TABLE_CONSTRAINTS Table constraints

TABLE_PRIVILEGES Table privilege information P

TABLES Table information P
(required)

TRANSLATIONS Character conversion identification

USAGE_PRIVILEGES User privilege information

VIEW_COLUMN_USAGE View column information

VIEWS View information

Type of OLE DB schema
information

Description Provided

14. HiRDB Access from OLE DB Application Programs

990

14.4 Data type correspondences

Table 14-2 shows the correspondences between the HiRDB data types and the OLE
DB type indicators.

Table 14-2: Correspondences between the HiRDB data types and the OLE DB
type indicators

HiRDB data types OLE DB type indicators

CHAR, MCHAR, and NCHAR DBTYPE_STR

VARCHAR, MVARCHAR, and NVARCHAR

DECIMAL(p,s) DBTYPE_NUMERIC

SMALLINT (signed) DBTYPE_I2

INTEGER (signed) DBTYPE_I4

REAL DBTYPE_R4

SMALLFLT

FLOAT DBTYPE_R8

DOUBLE PRECISION

BLOB DBTYPE_BYTES

BINARY

DATE DBTYPE_DBDATE

TIME DBTYPE_DBTIME

TIMESTAMP DBTYPE_DBTIMESTAMP

INTERVAL YEAR TO DAY DBTYPE_DECIMAL

INTERVAL HOUR TO SECOND DBTYPE_DECIMAL

14. HiRDB Access from OLE DB Application Programs

991

14.5 Error handling procedures

14.5.1 Troubleshooting facility
This facility collects trace information about the OLE DB interface (for each method)
issued by consumers.

(1) Collection method
Specify appropriate values in the following registry keys:
HKEY_LOCAL_MACHINE

Trace information is collected only when the value of
Software\HITACHI\HiRDB\oleprovtrc is 1.
Specify the absolute path of the output file name in
Software\HITACHI\HiRDB\oletrcfile. (If oletrcfile is omitted, the system
outputs trace information to c:\temp\pdoletrc.txt.)
Trace information is output to Software\HITACHI\HiRDB\oletrcdumpsize with
GetData() and input with Execute(). Specify the void* type data dump output
size in bytes. (If oletrcdumpsize is omitted, the system assumes 256.)

14. HiRDB Access from OLE DB Application Programs

992

14.6 Notes

(1) About a cursor in ADO
HiRDB does not allow you to use the server cursor (specify adUseServer in the
CursorLocation property of the Recordset object) in ADO. To use a cursor in
ADO, use the client cursor (specify adUseClient in the CursorLocation property
of the Recordset object).

993

Chapter

15. HiRDB Access from
ADO.NET-compatible Application
Programs

This chapter describes the installation and functions of HiRDB.NET Data Provider,
which is required to access HiRDB from ADO.NET-compatible application programs.

15.1 Overview
15.2 Installing HiRDB.NET Data Provider
15.3 List of classes provided by HiRDB.NET Data Provider
15.4 List of members provided by HiRDB.NET Data Provider
15.5 Interfaces of HiRDB.NET Data Provider
15.6 Notes about HiRDB.NET Data Provider
15.7 Data types of HiRDB.NET Data Provider
15.8 Example of a UAP using HiRDB.NET Data Provider

15. HiRDB Access from ADO.NET-compatible Application Programs

994

15.1 Overview

15.1.1 HiRDB.NET Data Provider
.NET Framework provides a common-language runtime that does not depend on the
platform or development language being used. It also provides the .NET Framework
class libraries. ADO.NET is a library that can be used when .NET Framework
applications that access databases are created.
HiRDB provides HiRDB.NET Data Provider, which is required to access HiRDB
using ADO.NET. HiRDB.NET Data Provider complies with ADO.NET
specifications.
HiRDB.NET Data Provider provides the common basic interface group that is
provided in .NET Framework's System.Data address space. It also provides the
INSERT facility using arrays and accesses to repetition columns as unique extended
functions.

15.1.2 Prerequisite programs for HiRDB.NET Data Provider
(1) Supported platforms

• Windows 2000
• Windows XP
• Windows Server 2003

(2) Required programs
In the application program execution environment, the following programs are
required:

• Microsoft Internet Explorer 5.01 or later
• .NET Framework version 1.1 package that can be re-distributed (can be installed

by Windows Update)
When application programs are developed, the following programs are also required:

• Microsoft Visual Studio .NET 2003
Operation with Microsoft Visual Studio .NET 2002 + .NET Framework SDK
version 1.1 cannot be guaranteed.

15. HiRDB Access from ADO.NET-compatible Application Programs

995

15.2 Installing HiRDB.NET Data Provider

15.2.1 Installation procedure
To install HiRDB.NET Data Provider, during installation of HiRDB/Run Time or
HiRDB/Developer's Kit, in the Setup Method window, choose Custom, and then in the
Select Component window, select HiRDB Data Provider.

15.2.2 Files that are installed
When HiRDB.NET Data Provider is installed, the following files are created:

• pddndp.dll
• pddndpcore.dll

15.2.3 Checking the version information
You can check the version information of HiRDB.NET Data Provider by displaying
the DLL properties provided by HiRDB.NET Data Provider.

15. HiRDB Access from ADO.NET-compatible Application Programs

996

15.3 List of classes provided by HiRDB.NET Data Provider

HiRDB.NET Data Provider complies with ADO.NET specifications.
Table 15-1 lists and describes the classes provided by HiRDB.NET Data Provider.

Table 15-1: List of HiRDB.NET Data Provider classes

Class Function

HiRDBCommand Represents an SQL statement or stored procedure that is executed
on a database.

HiRDBCommandBuilder Automatically creates a single table command to make a change to
DataSet that has been associated with a database.

HiRDBConnection Represents an open connection to a database.

HiRDBDataAdapter Represents a series of data commands and database connections
that are used to store data in DataSet and update a database.

HiRDBDataReader Provides a method for reading a forward stream in data rows from
a database.

HiRDBException Represents an exception that is created when a warning or error is
returned from HiRDB.NET Data Provider.

HiRDBParameter Represents a HiRDBCommand parameter and a map for
DataColumn as an option.

HiRDBParameterCollection Represents a parameter collection associated with HiRDBCommand
and a map of each parameter for DataSet columns.

HiRDBRowUpdatedEventArgs Provides data for a RowUpdated event.

HiRDBRowUpdatingEventArgs Provides data for a RowUpdating event.

HiRDBTransaction Represents a transaction that is executed on a database.

15. HiRDB Access from ADO.NET-compatible Application Programs

997

15.4 List of members provided by HiRDB.NET Data Provider

This section presents a list of interface members provided by HiRDB.NET Data
Provider.

15.4.1 List of HiRDBCommand members
(1) Constructor

HiRDBCommand
(2) Inheritance classes

Component, IDbCommand, ICloneable
(3) Properties

(4) Methods

Member Function

CommandText Acquires or sets the text command that is executed on a database.

CommandTimeout Acquires or sets the wait time before command retries are cancelled and an error is
generated.

CommandType Acquires or sets a value that indicates how to interpret the CommandText property.

Connection Acquires or sets the HiRDBConnection that is used by this HiRDBCommand.

Parameters Acquires HiRDBParameterCollection.

Transaction Acquires or sets the HiRDBTransaction on which this HiRDBCommand is executed.

UpdatedRowSource Acquires or sets how to apply the command result to DataRow when
HiRDBDataAdapter's Update method uses the command result.

Member Function

Cancel Cancels execution of HiRDBCommand.

Clone Creates a new object which is a copy of the current instance.

CreateParameter Creates a new instance of the HiRDBParameter object.

ExecuteNonQuery Executes an SQL statement on the HiRDBConnection object and returns the number of
affected rows.

ExecuteReader Executes CommandText on HiRDBConnection and creates HiRDBDataReader using
one of the CommandBehavior values.

15. HiRDB Access from ADO.NET-compatible Application Programs

998

15.4.2 List of HiRDBCommandBuilder members
(1) Constructor

HiRDBCommandBuilder
(2) Inheritance class

Component
(3) Property

(4) Methods

15.4.3 List of HiRDBConnection members
(1) Constructor

HiRDBConnection
(2) Inheritance classes

Component, IDbConnection, ICloneable

ExecuteScalar Executes a query and returns the first column of the first row in the result set returned by
the query. Any excess column or row will be ignored.

Prepare Creates a prepared version of a command (compiled) in a database.

Member Function

DataAdapter Acquires or sets the HiRDBDataAdapter object for which an SQL statement is to be
created automatically.

Member Function

GetDeleteCommand Acquires the automatically created HiRDBCommand object for executing deletion
processing on the database.

GetInsertCommand Acquires the automatically created HiRDBCommand object for executing insertion
processing on the database.

GetUpdateCommand Acquires the automatically created HiRDBCommand object for executing update
processing on the database.

RefreshSchema Updates database schema information to create the INSERT, UPDATE, or DELETE
statement.

Member Function

15. HiRDB Access from ADO.NET-compatible Application Programs

999

(3) Properties

(4) Methods

15.4.4 List of HiRDBDataAdapter members
(1) Constructor

HiRDBDataAdapter
(2) Inheritance classes

DbDataAdapter, IDbDataAdapter
(3) Properties

Member Function

ConnectionString Acquires or sets the character string that is used to open a database.

ConnectionTimeout Acquires the wait time for establishing a connection before retries are cancelled and
an error is generated.

Database Acquires the name of the current database or the database that is used when a
connection is established.

LifeTime Acquires or sets the time remaining before actual disconnection occurs.

Pooling Acquires or sets whether or not pooling is to be performed.

State Acquires the current connection status.

Member Function

BeginTransaction Starts the database transaction using the specified IsolationLevel value.

ChangeDatabase Changes the current database for the open HiRDBConnection object.

Clone Creates a new object which is a copy of the current instance.

Close Closes the connection to the database.

CreateCommand Creates and returns the HiRDBCommand object associated with the connection.

Dispose Releases all resources used by HiRDBConnection.

Open Opens the database connection with the settings specified in the ConnectionString
property of the HiRDBConnection object.

Member Function

DeleteCommand Acquires or sets the SQL statement for deleting records from a data set.

InsertCommand Acquires or sets the SQL statement for inserting new records in a database.

15. HiRDB Access from ADO.NET-compatible Application Programs

1000

15.4.5 List of HiRDBDataReader members
(1) Constructor

HiRDBDataReader
(2) Inheritance classes

MarshalByRefObject, IEnumerable, IDataReader, IDisposable,
IDataRecord

(3) Properties

(4) Methods

SelectCommand Acquires or sets the SQL statement for selecting records in a database.

UpdateCommand Acquires or sets the SQL statement for updating records in a database.

Member Function

Depth Acquires the value indicating the nesting level of the current row.

FieldCount Acquires the number of columns in the current row.

IsClosed Acquires the value indicating whether or not the data reader is closed.

RecordsAffected Acquires the number of rows changed, inserted, or deleted by execution of the SQL
statement.

Member Function

Close Closes the HiRDBDataReader object.

GetBoolean Acquires the value of the specified column as a Boolean value.

GetByte Acquires an unsigned 8-bit integer value in the specified column.

GetBytes Reads a byte stream as array into the buffer starting at the specified column offset
relative to the specified buffer offset, which is the start position.

GetChar Acquires the character string value in the specified column.

GetChars Reads a character stream as array into the buffer starting at the specified column
offset relative to the specified buffer offset, which is the start position.

GetData The purpose of this member is to support the .NET Framework infrastructure. It
cannot be used directly in a unique coding that has been created.

GetDataTypeName Acquires data-type information for the specified field.

Member Function

15. HiRDB Access from ADO.NET-compatible Application Programs

1001

15.4.6 List of HiRDBException members
(1) Constructor

HiRDBException
(2) Inheritance class

Exception

GetDateTime Acquires or sets the date and time data value in the specified field.

GetDecimal Acquires the fixed position value in the specified field.

GetDouble Acquires the double-precision floating-point number in the specified field.

GetEnumerator Returns the enumerator that can perform iterative operation on a collection.

GetFieldArrayCount Acquires the size of field array.

GetFieldType Acquires Type information corresponding to the type of Object that is returned
from GetValue.

GetFloat Acquires the single-precision floating-point number in the specified field.

GetGuid Returns the GUID value of the specified field.

GetInt16 Acquires a signed 16-bit integer value in the specified field.

GetInt32 Acquires a signed 32-bit integer value in the specified field.

GetInt64 Acquires a signed 64-bit integer value in the specified field.

GetName Acquires the name of the field to be searched.

GetOrdinal Returns the index of the specified field.

GetSchemaTable Returns the DataTable that describes HiRDBDataReader's column metadata.

GetString Acquires a character string in the specified field.

GetValue Returns a value in the specified field.

GetValues Acquires all attribute fields in the current record collection.

IsDBNull Returns a value indicating whether or not the specified field is set to null.

NextResult Advances the data reader to the next result when the result of a batch SQL statement
is read.

Read Advances HiRDBDataReader to the next record.

Member Function

15. HiRDB Access from ADO.NET-compatible Application Programs

1002

(3) Properties

15.4.7 List of HiRDBParameter members
(1) Constructor

HiRDBParameter
(2) Inheritance classes

MarshalByRefObject, IDbDataParameter, IDataParameter, ICloneable
(3) Properties

Member Function

ErrorCode Acquires the error code part as an int.

Message Acquires text with a complete error.

Member Function

DbType Acquires or sets DbType for a parameter. When DbType is to be set, this member sets
the corresponding data type in the HiRDBType property according to Table 15-3.

Direction Acquires or sets a value indicating whether the parameter is input only, output only,
bidirectional, or the stored procedure's return value.

HiRDBType Acquires or sets an enumeration indicating the data type in HiRDB. When an
enumeration is to be set, this member sets the corresponding data type in the DbType
property according to Table 15-4.
HiRDBType enumeration:

Integer, SmallInt, Decimal, Float, SmallFlt, Char, VarChar, NChar,
NVarChar, MChar, MVarChar, Date, Time, TimeStamp, IntervalYearToDay,
IntervalHourToSecond, Blob, Binary

IsNullable Acquires a value indicating whether or not the parameter accepts the null value.

ParameterName Acquires or sets the name of HiRDBParameter.

Precision Acquires or sets the number of significant digits for a numeric parameter.

Repetition Acquires or sets an array structure in HiRDB.

Scale Acquires or sets the number of decimal places for a numeric parameter.

Size Sets the size of the column definition length or character string data that can be stored
after charcter code conversion. Also acquires the current setting. For TIMESTAMP
(DateTime), this value is the number of digits in the fractional part.

SourceColumn Acquires or sets the name of the source column that has been assigned to DataSet and
is used to read or return Value.

SourceVersion Acquires or sets the DataRowVersion that is used to read Value.

15. HiRDB Access from ADO.NET-compatible Application Programs

1003

(4) Method

15.4.8 List of HiRDBParameterCollection members
(1) Constructor

HiRDBParameterCollection
(2) Inheritance classes

MarshalByRefObject, IDataParameterCollection, IList, ICollection,
IEnumerable

(3) Properties

(4) Methods

Value Acquires or sets a parameter value.

Member Function

Clone Creates a new object which is a copy of the current instance.

Member Function

Count Acquires the number of HiRDBParameter objects stored in
HiRDBParameterCollection.

IsFixedSize Acquires a value indicating whether the size of HiRDBParameterCollection is fixed.

IsReadOnly Acquires a value indicating whether or not HiRDBParameterCollection is read only.

IsSynchronized Acquires a value indicating whether or not an access to HiRDBParameterCollection
is synchronized (thread-safe).

SyncRoot Acquires an object that can be used to synchronize an access to
HiRDBParameterCollection.

Member Function

Add Adds items to HiRDBParameterCollection.

Clear Deletes all items from HiRDBParameterCollection.

Contains Acquires a value indicating whether or not HiRDBParameter is in the collection.

CopyTo Copies the elements of HiRDBParameterCollection to Array using Array's specific
index as the start position.

GetEnumerator Returns an enumerator that can perform iterative operation on a collection.

Member Function

15. HiRDB Access from ADO.NET-compatible Application Programs

1004

15.4.9 List of HiRDBRowUpdatedEventArgs members
(1) Constructor

HiRDBRowUpdatedEventArgs
(2) Inheritance class

RowUpdatedEventArgs
(3) Property

15.4.10 List of HiRDBRowUpdatingEventArgs members
(1) Constructor

HiRDBRowUpdatingEventArgs
(2) Inheritance class

RowUpdatingEventArgs
(3) Property

15.4.11 List of HiRDBTransaction members
(1) Constructor

HiRDBTransaction
(2) Inheritance classes

MarshalByRefObject, IDbTransaction, IDisposable

IndexOf Acquires the location of HiRDBParameter in a collection.

Insert Inserts an item at the specified location in HiRDBParameterCollection.

Remove Deletes the first occurrence of the specified object in HiRDBParameterCollection.

RemoveAt Deletes HiRDBParameter from the collection.

Member Function

Command Acquires the HiRDBCommand that is executed when Update is called.

Member Function

Command Acquires or sets the HiRDBCommand that is executed during Update processing.

Member Function

15. HiRDB Access from ADO.NET-compatible Application Programs

1005

(3) Properties

(4) Methods

Member Function

Connection Acquires the HiRDBConnection object used to associate a transaction.

IsCompleted Acquires a value indicating whether or not the transaction is completed.

IsolationLevel Specifies this transaction's IsolationLevel.

Member Function

Commit Commits a database transaction.

Rollback Rolls back a database transaction from the hold status.

15. HiRDB Access from ADO.NET-compatible Application Programs

1006

15.5 Interfaces of HiRDB.NET Data Provider

15.5.1 HiRDBCommand
(1) Constructor

(a) HiRDBCommand
void HiRDBCommand ()

Description: Initializes a new instance of HiRDBCommand.
void HiRDBCommand (string)

Argument
string cmdText: SQL text (CommandText property)

Description: Specifies an SQL text to initialize a new instance of the
HiRDBCommand class.

void HiRDBCommand (string, Hitachi.HiRDB.HiRDBConnection)
Arguments

string cmdText: SQL text (CommandText property)
HiRDBConnection rConnection: HiRDBConnection object
representing the connection to the database (Connection property)

Description: Uses an SQL text and HiRDBConnection object to initialize a new
instance of the HiRDBCommand class.

void HiRDBCommand (string, Hitachi.HiRDB.HiRDBConnection,
Hitachi.HiRDB.HiRDBTransaction)

Arguments
string cmdText: SQL text (CommandText property)
HiRDBConnection rConnection: HiRDBConnection object
representing the connection to the database (CommandText property)
HiRDBTransaction rTransaction: HiRDBTransaction object that
executes HiRDBCommand (Transaction property)

Description: Uses an SQL text and the HiRDBConnection and
HiRDBTransaction objects to initialize a new instance of the HiRDBCommand
class.

15. HiRDB Access from ADO.NET-compatible Application Programs

1007

(2) Properties
(a) CommandText

Type: string
Default value: ""
Description: Acquires or sets the text command that is executed on a database.

(b) CommandTimeout
Type: int
Default value: 30
Description: Acquires or sets the wait time before command retries are cancelled and
an error is generated.
Exception: HiRDBException

(c) CommandType
Type: System.Data.CommandType
Default value: CommandType.Text
Description: Acquires or sets how to interpret the CommandText property.

(d) Connection
Type: HiRDBConnection
Default value: null
Description: Acquires or sets the HiRDBConnection that is used by this
HiRDBCommand.
Exception: HiRDBException

(e) Parameters
Type: HiRDBParameterCollection
Description: Acquires HiRDBParameterCollection (read only).

(f) Transaction
Type: HiRDBTransaction
Default value: null
Description: Acquires or sets the HiRDBTransaction on which this HiRDBCommand
is executed.

(g) UpdatedRowSource
Type: System.Data.UpdateRowSource

15. HiRDB Access from ADO.NET-compatible Application Programs

1008

Default value: UpdatedRowSource.None
Description: Acquires or sets how to apply the command result to DataRow when
HiRDBDataAdapter's Update method uses the command result.
Exception: HiRDBException

(3) Methods
(a) Cancel

void Cancel ()
Return: void
Description: Cancels execution of HiRDBCommand.

(b) Clone
object Clone ()
Return

object: New object which is a copy of this instance
Description: Creates a new object which is a copy of the current instance.

(c) CreateParameter
Hitachi.HiRDB.HiRDBParameter CreateParameter ()
Return

HiRDBParameter: HiRDBParameter object
Description: Creates a new instance of the HiRDBParameter object.

(d) ExecuteNonQuery
int ExecuteNonQuery ()

Return
int: Number of affected rows

Description: Executes an SQL statement on the HiRDBConnection object and
returns the number of affected rows.
Exception: HiRDBException

int ExecuteNonQuery (int)
Argument

int nArraySize: Number of array elements
Return

15. HiRDB Access from ADO.NET-compatible Application Programs

1009

int: Number of affected rows
Description: Uses the INSERT facility using arrays to execute an SQL statement
on the HiRDBConnection object and returns the number of affected rows.
Exception: HiRDBException

(e) ExecuteReader
Hitachi.HiRDB.HiRDBDataReader ExecuteReader ()

Return
HiRDBDataReader: HiRDBDataReader object

Description: Executes CommandText on HiRDBConnection to create
HiRDBDataReader.
Exception: HiRDBException

ExecuteReader (System.Data.CommandBehavior)
Argument

System.DataCommandBehavior behavior: One of the
CommandBehavior values

Return
HiRDBDataReader: HiRDBDataReader object

Description: Executes CommandText on HiRDBConnection and creates
HiRDBDataReader using one of the CommandBehavior values.
Exception: HiRDBException

(f) ExecuteScalar
object ExecuteScalar ()
Return

object: First column of the first row in the result set
Description: Executes a query and returns the first column of the first row in the result
set returned as .NET Framework's data type by that query. Any remaining column or
row will be ignored.
Exception: HiRDBException

(g) Prepare
void Prepare ()
Return: void
Description: Creates a prepared version of a command (compiled) in a database.

15. HiRDB Access from ADO.NET-compatible Application Programs

1010

Exception: HiRDBException
15.5.2 HiRDBCommandBuilder
(1) Constructor

(a) HiRDBCommandBuilder
void HiRDBCommandBuilder ()

Description: Initializes a new instance of HiRDBCommandBuilder.
void HiRDBCommandBuilder (HiRDBDataAdapter adapter)

Argument
HiRDBDataAdapter adapter: HiRDBDataAdapter object
(DataAdapter property)

Description: Specifies the HiRDBDataAdapter object and initializes a new
instance of HiRDBCommandBuilder.

(2) Properties
(a) DataAdapter

Type: HiRDBDataAdapter
Default value: null
Description: Acquires or sets the HiRDBDataAdapter object for which an SQL
statement is to be created automatically.

(3) Methods
(a) GetDeleteCommand

HiRDBCommand GetDeleteCommand (string)
Argument

string s TableName: Table name
Return

HiRDBCommand: HiRDBCommand object that was automatically created to
execute deletion processing

Description: Acquires the automatically created HiRDBCommand object for executing
deletion processing on the database.
Exception: HiRDBException

(b) GetInsertCommand
HiRDBCommand GetInsertCommand (string)

15. HiRDB Access from ADO.NET-compatible Application Programs

1011

Argument
string s TableName: Table name

Return
HiRDBCommand: HiRDBCommand object that was automatically created to
execute insertion processing

Description: Acquires the automatically created HiRDBCommand object for executing
insertion processing on the database.
Exception: HiRDBException

(c) GetUpdateCommand
HiRDBCommand GetUpdateCommand (string)
Argument

string s TableName: Table name
Return

HiRDBCommand: HiRDBCommand object that was automatically created to
execute update processing

Description: Acquires the automatically created HiRDBCommand object for executing
update processing on the database.
Exception: HiRDBException

(d) RefreshSchema
void RefreshSchema (string)
Argument

string s TableName: Table name
Return: void
Description: Updates database schema information to create the INSERT, UPDATE, or
DELETE statement.
Exception: HiRDBException

15.5.3 HiRDBConnection
(1) Constructor

(a) HiRDBConnection
void HiRDBConnection ()

Description: Initializes a new instance of HiRDBConnection.

15. HiRDB Access from ADO.NET-compatible Application Programs

1012

void HiRDBConnection (string)
Argument

string ConnectionString: Character string storing the connection
settings (ConnectionString property)

Description: Specifies a connection character string and initializes a new instance
of the HiRDBConnection class.

(2) Properties
(a) ConnectionString

Type: string
Default value: ""
Description: Acquires or sets the character string that is used to open a database.
Exception: HiRDBException
For this property, you must specify one string-type argument. The character string
to be specified is called a connection character string. This is the same type of
connection character string as those used for Connection in ADO and ADO.NET.
The following table lists and describes the character strings that can be specified:

If nothing is specified, the default setting (HiRDB.ini) is used to establish the
connection. If a client environment variable group name is available, this name is used.
If the authorization identifier, password, and client environment definition are
specified, their use takes precedence. This character string is not case sensitive. To
distinguish upper-case letters from lower-case letters, enclose the applicable part in
quotation marks. All spaces and tabs are ignored (except those enclosed in quotation
marks).
If the specified character string is not one of the connection character strings listed
above, an exception occurs. However, for Provider, the specified invalid character
string is ignored; no exception occurs. This maintains compatibility with OleDb Data

Character string Description

• datasource
• dsn
• env

Settings for the registry to be used. Specify the name of the environment variable
group that was created using the tool for registering HiRDB client environment
variables.

• uid
• userid

Authorization identifier used for DB connection

• password
• Pwd

Password to be used for the database connection

• PD* Settings in the client environment definition

15. HiRDB Access from ADO.NET-compatible Application Programs

1013

Provider in the DataProvider layer.
(b) ConnectionTimeout

Type: int
Default value: 15
Description: Acquires the wait time for establishing a connection before retries are
cancelled and an error is generated (read only).

(c) Database
Type: string
Default value: ""
Description: Acquires the name of the current database or the database that is used
when a connection is established (read only).

(d) LifeTime
Type: int
Default value: 60
Description: Acquires or sets the time remaining before actual disconnection occurs.
Exception: HiRDBException

(e) Pooling
Type: bool
Default value: true
Description: Acquires or sets whether or not pooling is to be performed. If pooling is
performed, the value is true; if not, the value is false.
Exception: HiRDBException

(f) State
Type: System.Data.ConnectionState
Default value: ConnectionState.Closed
Description: Acquires the current connection status (read only).

(3) Methods
(a) BeginTransaction

BeginTransaction ()
Return

HiRDBTransaction: Object representing a new transaction

15. HiRDB Access from ADO.NET-compatible Application Programs

1014

Description: Starts the database transaction.
Exception: HiRDBException

BeginTransaction (System.Data.IsolationLevel)
Argument

System.Data.IsolationLevel: One of the IsolationLevel values
Return

HiRDBTransaction: Object representing a new transaction
Description: Starts the database transaction using the specified
IsolationLevel value.
Exception: HiRDBException

(b) ChangeDatabase
void ChangeDatabase (string)
Argument

string databaseName: Name of the database to be changed
Return: void
Description: Changes the current database for the open HiRDBConnection object.
Exception: HiRDBException

(c) Clone
object Clone ()
Return

object: New object which is a copy of this instance
Description: Creates a new object which is a copy of the current instance.

(d) Close
void Close ()
Return: void
Description: Closes the connection to the database.

(e) CreateCommand
Hitachi.HiRDB.HiRDBCommand CreateCommand ()
Return

HiRDBCommand: HiRDBCommand object

15. HiRDB Access from ADO.NET-compatible Application Programs

1015

Description: Creates and returns the HiRDBCommand object associated with the
connection.

(f) Dispose
void Dispose ()
Return: void
Description: Releases all resources used by HiRDBConnection. Because
Disconnect is called from within this method, when the HiRDBConnection object
disappears, the database is automatically disconnected.

(g) Open
void Open ()
Return: void
Description: Opens the database connection with the settings specified in the
ConnectionString property of the HiRDBConnection object.
Exception: HiRDBException

15.5.4 HiRDBDataAdapter
(1) Constructor

(a) HiRDBDataAdapter
void HiRDBDataAdapter ()

Description: Initializes a new instance of the HiRDBDataAdapter class.
void HiRDBDataAdapter (Hitachi.HiRDB.HiRDBCommand)

Argument
HiRDBCommand selectCommand: HiRDBCommand object representing the
SQL SELECT statement (SelectCommand property)

Description: Uses the specified HiRDBCommand to initialize a new instance of the
HiRDBDataAdapter class.

void HiRDBDataAdapter (string, Hitachi.HiRDB.HiRDBConnection)
Arguments

string selectCommandText: SQL SELECT statement
HiRDBConnection selectConnection: HiRDBConnection object
representing the connection

Description: Uses the HiRDBConnection specifying the SQL SELECT statement
to create HiRDBCommand (SelectCommand property). This constructor

15. HiRDB Access from ADO.NET-compatible Application Programs

1016

initializes a new instance of the HiRDBDataAdapter class.
void HiRDBDataAdapter (string, string)

Arguments
string selectCommandText: SQL SELECT statement
string selectConnectionString: connection character string

Description: Uses a connection character string to create HiRDBConnection.
The constructor then uses the created HiRDBConnection to create
HiRDBCommand (SelectCommand property). This constructor initializes a new
instance of the HiRDBDataAdapter class.

(2) Properties
(a) DeleteCommand

Type: HiRDBCommand
Default value: null
Description: Acquires or sets the SQL statement for deleting records from a data set.

(b) InsertCommand
Type: HiRDBCommand
Default value: null
Description: Acquires or sets the SQL statement for inserting new records in a
database.

(c) SelectCommand
Type: HiRDBCommand
Default value: null
Description: Acquires or sets the SQL statement for selecting records in a database.

(d) UpDateCommand
Type: HiRDBCommand
Default value: null
Description: Acquires or sets the SQL statement for updating records in a database.

15.5.5 HiRDBDataReader
(1) Constructor

HiRDBDataReader
Description: To create HiRDBDataReader, you must call the ExecuteReader

15. HiRDB Access from ADO.NET-compatible Application Programs

1017

method of the HiRDBCommand object without directly using the constructor.
(2) Properties

(a) Depth
Type: int
Default value: 0
Description: Acquires the value indicating the nesting level of the current row.

(b) FieldCount
Type: int
Description: Acquires the number of columns in the current row.

(c) IsClosed
Type: bool
Default value: false
Description: Acquires the value indicating whether or not the data reader is closed. If
the data reader is closed, the value is true; if not, the value is false.

(d) RecordsAffected
Type: int
Default value: 0
Description: Acquires the number of rows changed, inserted, or deleted by execution
of an SQL statement.

(3) Methods
(a) Close

void Cancel ()
Return: void
Description: Closes the HiRDBDataReader object.

(b) GetBoolean
bool GetBoolean (int)
Argument

int i: Ordinal number of the column that begins at 0
Return

bool: Column value

15. HiRDB Access from ADO.NET-compatible Application Programs

1018

Description: Acquires the value of the specified column as a Boolean value.
Exception: HiRDBException

(c) GetByte
byte GetByte (int)
Argument

int i: Ordinal number of the column that begins at 0
Return

byte: Unsigned 8-bit integer value in the specified column
Description: Acquires an unsigned 8-bit integer value in the specified column.
Exception: HiRDBException

(d) GetBytes
long GetBytes (int, long, byte[], int,int)
Arguments

int i: Ordinal number of the column that begins at 0
long fieldOffset: Index of the row where the read operation begins
byte[] buffer: Buffer for reading byte streams
int bufferoffset: Index of buffer where the read operation begins
int length: Number of bytes to be read

Return
long: Number of bytes actually read

Description: Reads a byte stream as array into the buffer starting at the specified
column offset relative to the specified buffer offset, which is the start position.
Exception: HiRDBException

(e) GetChar
char GetChar (int)
Argument

int i: Ordinal number of the column that begins at 0
Return

char: Character value in the specified column
Description: Acquires the character string value in the specified column.

15. HiRDB Access from ADO.NET-compatible Application Programs

1019

Exception: HiRDBException
(f) GetChars

long GetChars (int, long,char[], int, int)
Arguments

int i: Ordinal number of the column that begins at 0
long fieldOffset: Index of the row where the read operation begins
char[] buffer: Buffer for reading byte streams
int bufferoffset: Index of buffer where the read operation begins
int length: Number of bytes to be read

Return
long: Number of characters actually read

Description: Reads a character stream as array into the buffer starting at the specified
column offset relative to the specified buffer offset, which is the start position.
Exception: HiRDBException

(g) GetData
GetData (int)
Argument

int i: Ordinal number of the column that begins at 0
Return: Currently not supported.
Description: The purpose of this member is to support the .NET Framework
infrastructure. It cannot be used directly in a unique coding that has been created.

(h) GetDataTypeName
string GetDataTypeName (int)
Argument

int i: Index of the field to be searched
Return

string: Data-type information for the specified field
Description: Acquires data-type information for the specified field.
Exception: HiRDBException

15. HiRDB Access from ADO.NET-compatible Application Programs

1020

(i) GetDateTime
System.DateTime GetDateTime (int)
Argument

int i: Index of the field to be searched
Return

System.DateTime: Date and time data value in the specified field
Description: Acquires or sets the date and time data value in the specified field.
Exception: HiRDBException

(j) GetDecimal
decimal GetDecimal (int)
Argument

int i: Index of the field to be searched
Return

decimal: Fixed position value in the specified field
Description: Acquires the fixed position value in the specified field.
Exception: HiRDBException

(k) GetDouble
double GetDouble (int)
Argument

int i: Index of the field to be searched
Return

double: Double-precision floating-point number in the specified field
Description: Acquires the double-precision floating-point number in the specified
field.
Exception: HiRDBException

(l) GetEnumerator
System.Collections.IEnumerator GetEnumerator ()
Return

System.Collections.IEnumerator: IEnumerator that can be used to
perform iterative operation on a collection

15. HiRDB Access from ADO.NET-compatible Application Programs

1021

Description: Returns the enumerator that can perform iterative operation on a
collection.

(m) GetFieldArrayCount
int GetFieldArrayCount (int)
Argument

int i: Index of the field to be searched
Return

int: Size of field array
Description: Acquires the size of field array.
Exception: HiRDBException

(n) GetFieldType
System.Type GetFieldType (int)
Argument

int i: Index of the field to be searched
Return

System.Type: Type information corresponding to the type of object that is
returned from GetValue

Description: Acquires Type information corresponding to the type of Object that is
returned from GetValue.
Exception: HiRDBException

(o) GetFloat
float GetFloat (int)
Argument

int i: Index of the field to be searched
Return

float: Single-precision floating-point number in the specified field
Description: Acquires the single-precision floating-point number in the specified field.
Exception: HiRDBException

(p) GetGuid
System.Guid GetGuid (int)
Argument

15. HiRDB Access from ADO.NET-compatible Application Programs

1022

int i: Index of the field to be searched
Return

System.Guid: GUID value of the specified field
Description: Returns the GUID value of the specified field.

(q) GetInt16
short GetInt16 (int)
Argument

int i: Index of the field to be searched
Return

short: Signed 16-bit integer value in the specified field
Description: Acquires a signed 16-bit integer value in the specified field.
Exception: HiRDBException

(r) GetInt32
int GetInt32 (int)
Argument

int i: Index of the field to be searched
Return

int: Signed 32-bit integer value in the specified field
Description: Acquires a signed 32-bit integer value in the specified field.
Exception: HiRDBException

(s) GetInt64
long GetInt64 (int)
Argument

int i: Index of the field to be searched
Return

long: Signed 64-bit integer value in the specified field
Description: Acquires a signed 64-bit integer value in the specified field.
Exception: HiRDBException

(t) GetName
string GetName (int)

15. HiRDB Access from ADO.NET-compatible Application Programs

1023

Argument
int i: Index of the field to be searched

Return
string: Field name (if there is no value to be returned, returns the null
character string (""))

Description: Acquires the name of the field to be searched.
Exception: HiRDBException

(u) GetOrdinal
int GetOrdinal (string)
Argument

string name: Name of the field to be searched
Return

int: Index of the specified field
Description: Returns the index of the specified field.
Exception: HiRDBException

(v) GetSchemaTable
System.Data.DataTable GetSchemaTable ()
Return

System.Data.DataTable: DataTable that describes column metadata
Description: Returns the DataTable that describes HiRDBDataReader's column
metadata.
Exception: HiRDBException

(w) GetString
string GetString (int)
Argument

int i: Index of the field to be searched
Return

string: Character string in the specified field
Description: Acquires a character string in the specified field.
Exception: HiRDBException

15. HiRDB Access from ADO.NET-compatible Application Programs

1024

(x) GetValue
object GetValue (int)

Argument
int i: Index of the field to be searched

Return
object: Object for storing the returned field value, if any

Description: Returns a value in the specified field.
Exception: HiRDBException

object GetValue (int, int)
Arguments

int i: Index of the field to be searched
int j: Index of the field to be searched

Return
object: Object for storing the returned field value, if any

Description: Returns a value in the specified field (for array).
Exception: HiRDBException

(y) GetValues
int GetValues (object[])
Argument

object values: Object array which is the target of a copy operation on the
attribute field

Return
int: Number of Object instances in array

Description: Acquires all attribute fields in the current record collection.
(z) IsDBNull

bool IsDBNull (int)
Argument

int i: Index of the field to be searched
Return

bool: If the specified field is set to null, the value is true; if not, the value is

15. HiRDB Access from ADO.NET-compatible Application Programs

1025

false.
Description: Returns a value indicating whether or not the specified field is set to
null.
Exception: HiRDBException

(aa) NextResult
bool NextResult ()
Return

bool: If there are further rows, the value is true; if not, the value is false.
Description: Advances the data reader to the next result when the result of a batch SQL
statement is read.
Exception: HiRDBException

(ab)Read
bool Read ()
Return

bool: If there are further rows, the value is true; if not, the value is false.
Description: Advances HiRDBDataReader to the next record.
Exception: HiRDBException

15.5.6 HiRDBException
(1) Properties

(a) ErrorCode
Type: int
Default value: 0
Description: Acquires an error code as an int.

(b) Message
Type: String
Default value: ""
Description: Acquires text with a complete error.

15. HiRDB Access from ADO.NET-compatible Application Programs

1026

15.5.7 HiRDBParameter
(1) Constructor

(a) HiRDBParameter
void HiRDBParameter ()

Description: Initializes a new instance of the HiRDBParameter class.
void HiRDBParameter (string, object)

Arguments
string name: Name of the parameter to be allocated (ParameterName
property)
object value: Value of the new HiRDBParameter object (Value
property)

Description: Specifies the parameter name and HiRDBParameter object to
initialize a new instance of the HiRDBParameter class.

void HiRDBParameter (string, Hitachi.HiRDB.HiRDBType)
Arguments

string name: Name of the parameter to be allocated (ParameterName
property)
Hitachi.HiRDB.HiRDBType dataType: One of the HiRDBType values
(HiRDBType property)

Description: Specifies a parameter name and data type to initialize a new instance
of the HiRDBParameter class.

void HiRDBParameter (string, Hitachi.HiRDB.HiRDBType, int)
Arguments

string name: Name of the parameter to be allocated (ParameterName
property)
Hitachi.HiRDB.HiRDBType dataType: One of the HiRDBType values
(HiRDBType property)
int size: Parameter width (Size property)

Description: Uses a parameter name, data type, and length to initialize a new
instance of the HiRDBParameter class.

void HiRDBParameter (string, Hitachi.HiRDB.HiRDBType, int,
string)

Arguments

15. HiRDB Access from ADO.NET-compatible Application Programs

1027

string name: Name of the parameter to be allocated (ParameterName
property)
Hitachi.HiRDB.HiRDBType dataType: One of the HiRDBType values
(HiRDBType property)
int size: Parameter width (Size property)
string srcColumn: Name of the source column (SourceColumn
property)

Description: Specifies a parameter name, data type, length, and source column
name to initialize a new instance of the HiRDBParameter class.

void HiRDBParameter (string, Hitachi.HiRDB.HiRDBType, int,
System.Data.ParameterDirection, Byte, Byte, String,
System.Data.DataRowVersion, Object)

Arguments
string parameterName: Parameter name (ParameterName property)
Hitachi.HiRDB.HiRDBType dataType: One of the HiRDBType values
(HiRDBType property)
int size: Parameter width (Size property)
System.Data.ParameterDirection direction: One of the
ParameterDirection values (Direction property)
byte precision: Total length in digits used to resolve Value
(Precision property)
byte scale: Length of the fractional part in digits used to resolve Value
(Scale property)
string srcColumn: Name of the source column (SourceColumn
property)
System.Data.DataRowVersion srcVersion: One of the
DataRowVersion values (SourceVersion property)
object value: Object which is the value of HiRDBParameter (Value
property)

Description: Specifies a parameter name, data type, length, source column name,
parameter direction, precision of numeric value, and other properties to initialize
a new instance of the HiRDBParameter class.

(2) Properties
(a) DbType

Type: System.Data.DbType

15. HiRDB Access from ADO.NET-compatible Application Programs

1028

Default value: DbType.String
Description: Acquires or sets DbType for a parameter. When DbType is to be set, this
member sets the corresponding data type in the HiRDBType property according to
Table 15-3.

(b) Direction
Type: System.Data.ParameterDirection
Default value: ParameterDirection.Input
Description: Acquires or sets a value indicating whether the parameter is input only,
output only, bidirectional, or the stored procedure's return value.

(c) HiRDBType
Type: Hitachi.HiRDB.HiRDBType
Default value: HiRDBType.MVarChar
Description: Acquires or sets an enumeration indicating the data type in HiRDB. When
the enumeration is to be set, this member sets the corresponding data type in the
DbType property according to Table 15-4.
HiRDBType enumeration:

Integer, SmallInt, Decimal, Float, SmallFlt, Char, VarChar, NChar,
NVarChar, MChar, MVarChar, Date, Time, TimeStamp,
IntervalYearToDay, IntervalHourToSecond, Blob, Binary

(d) IsNullable
Type: bool
Default value: true (fixed)
Description: Acquires a value indicating whether or not the parameter accepts the
null value (read only). If the null value is accepted, the value is true; if not, the
value is false.

(e) ParameterName
Type: string
Default value: ""
Description: Acquires or sets the name of the HiRDBParameter.

(f) Precision
Type: byte
Default value: 0
Description: Acquires or sets the number of significant digits for a numeric parameter.

15. HiRDB Access from ADO.NET-compatible Application Programs

1029

(g) Repetition
Type: short
Default value: 1
Description: Acquires or sets an array structure in HiRDB.

(h) Scale
Type: byte
Default value: 0
Description: Acquires or sets the number of decimal places for a numeric parameter.

(i) Size
Type: int
Default value: 0
Description: Sets the size of the column definition length or character string data that
can be stored after character code conversion. Also acquires the current setting. For
TIMESTAMP (DateTime), this value is the number of digits in the fractional part.

(j) SourceColumn
Type: string
Default value: ""
Description: Acquires or sets the name of the source column that has been assigned to
DataSet and is used to read or return Value.

(k) SourceVersion
Type: System.Data.DataRowVersion
Default value: DataRowVersion.Default
Description: Acquires or sets the DataRowVersion that is used to read Value.

(l) Value
Type: object
Default value: null
Description: Acquires or sets a parameter value.

(3) Methods
(a) Clone

object Clone ()
Return

15. HiRDB Access from ADO.NET-compatible Application Programs

1030

object: New object which is a copy of this instance
Description: Creates a new object which is a copy of the current instance.

15.5.8 HiRDBParameterCollection
(1) Constructor

(a) HiRDBParameterCollection
void HiRDBParameterCollection ()
Description: Initializes a new instance of the HiRDBParameterCollection class.

(2) Properties
(a) Count

Type: int
Default value: 0
Description: Acquires the number of HiRDBParameter objects stored in
HiRDBParameterCollection (read only).

(b) IsFixedSize
Type: bool
Default value: false
Description: Acquires a value indicating whether the size of
HiRDBParameterCollection is fixed (read only). If the size of the value is fixed,
the value is true; if not, the value is false.

(c) IsReadOnly
Type: bool
Default value: false
Description: Acquires a value indicating whether or not
HiRDBParameterCollection is read only (read only). If it is read only, the value is
true; if not, the value is false.

(d) IsSynchronized
Type: bool
Default value: false
Description: Acquires a value indicating whether or not an access to
HiRDBParameterCollection is synchronized (thread-safe) (read only). If the
access is synchronized, the value is true; if not, the value is false.

15. HiRDB Access from ADO.NET-compatible Application Programs

1031

(e) SyncRoot
Type: object
Default value: null
Description: Acquires an object that can be used to synchronize an access to
HiRDBParameterCollection (read only).

(3) Methods
(a) Add

int Add (object)
Argument

object value: HiRDBParameter object to be added to
HiRDBParameterCollection

Return
int: Index in the new HiRDBParameter object's collection

Description: Adds items to HiRDBParameterCollection.
int Add (Hitachi.HiRDB.HiRDBParameter)

Argument
HiRDBParameter value: HiRDBParameter to be added to
HiRDBParameterCollection

Return
int: Index of the new HiRDBParameter

Description: Adds items to HiRDBParameterCollection.
int Add (string, object)

Arguments
string parameterName: Parameter name
object parameterValue: Parameter value

Return
int: Index of the new HiRDBParameter

Description: Specifies the name and value of the parameter to add items to
HiRDBParameterCollection.

int Add (string, HiRDBType)
Arguments

15. HiRDB Access from ADO.NET-compatible Application Programs

1032

string parameterName: Parameter name
HiRDBType dataType: One of the HiRDBType values

Return
int: Index of the new HiRDBParameter

Description: Specifies the name and data type of the parameter to add items to
HiRDBParameterCollection.

int Add (string, HiRDBType, int)
Arguments

string parameterName: Parameter name
HiRDBType dataType: One of the HiRDBType values
int size: Parameter size

Return
int: Index of the new HiRDBParameter

Description: Specifies the name, data type, and size of the parameter to add items
to HiRDBParameterCollection.

int Add (string, HiRDBType, int, string)
Arguments

string parameterName: Parameter name
HiRDBType dataType: One of the HiRDBType values
int size: Parameter size
string srcColumn: Name of the source column

Return
int: Index of the new HiRDBParameter

Description: Specifies the name, data type, size, and source column of the
parameter to add items to HiRDBParameterCollection.

(b) Clear
void Clear ()
Return: void
Description: Deletes all items from HiRDBParameterCollection.

(c) Contains
bool Contains (string)

15. HiRDB Access from ADO.NET-compatible Application Programs

1033

Argument
string parameterName: Parameter name

Return
bool: If the parameter is stored in the collection, the value is true; if not,
the value is false.

Description: Acquires a value indicating whether or not HiRDBParameter is in
the collection.

bool Contains (object)
Argument

object value: Object that is searched for in
HiRDBParameterCollection

Return
bool: If Object is in HiRDBParameterCollection, the value is true;
if not, the value is false.

Description: Acquires a value indicating whether or not HiRDBParameter is in
the collection.

(d) CopyTo
void CopyTo (System.Array, int)
Arguments

System.Array array: One-dimensional Array to which elements are copied
from HiRDBParameterCollection
int index: Index number, beginning at 0, at the location where value is
inserted

Return: void
Description: Copies the elements of HiRDBParameterCollection to Array using
Array's specific index as the start position.

(e) GetEnumerator
System.Collections.IEnumerator GetEnumerator ()
Return

System.Collections.Ienumerator: IEnumerator that can be used to
perform iteration processing on a collection

Description: Returns the enumerator that can perform iterative operation on a
collection.

15. HiRDB Access from ADO.NET-compatible Application Programs

1034

(f) IndexOf: overload
int IndexOf (string)

Argument
string parameterName: Parameter name

Return
int: Location of HiRDBParameterCollection in the collection that
begins at 0

Description: Acquires the location of HiRDBParameter in a collection.
Exception: HiRDBException

int IndexOf (object)
Argument

object value: Object that is searched for in
HiRDBParameterCollection

Return
int: If the object is in the list, the value is the index of value; if not, the
value is -1.

Description: Acquires the location of HiRDBParameter in a collection.
(g) Insert

void Insert (int, Hitachi.HiRDB.HiRDBParameter)
Arguments

int index: Index number, which begins at 0, at the location where value is
inserted
HiRDBParameter value: HiRDBParameter to be added to
HiRDBParameterCollection

Return: void
Description: Inserts an item at the specified location in
HiRDBParameterCollection.

(h) Remove
void Remove (object)
Argument

object value: HiRDBParameter to be deleted from
HiRDBParameterCollection

15. HiRDB Access from ADO.NET-compatible Application Programs

1035

Return: void
Description: Deletes the first occurrence of the specified object in
HiRDBParameterCollection.

(i) RemoveAt
void RemoveAt (string)

Argument
string parameterName: Parameter name

Return: void
Description: Deletes HiRDBParameter from a collection.
Exception: HiRDBException

void RemoveAt (int)
Argument

int index: Index of the item to be deleted that begins at 0
Return: void
Description: Deletes HiRDBParameter from a collection.

15.5.9 HiRDBRowUpdatedEventArgs
(1) Constructor

(a) HiRDBRowUpdatedEventArgs
void HiRDBRowUpdatedEventArgs (System.Data.DataRow,
System.Data.IdbCommand, System.Data.StatementType,
System.Data.Common.DataTableMapping)
Arguments

System.Data.DataRow dataRow: DataRow that was sent through Update
System.Data.IDbCommand command: IDbCommand that was executed when
Update was called
System.Data.StatementType statementType: Type of SQL statement
that was executed
System.Data.Common.DataTableMapping tableMapping:
DataTableMapping that was sent through Update

Description: Initializes a new instance of the HiRDBRowUpdatedEventArgs class.

15. HiRDB Access from ADO.NET-compatible Application Programs

1036

(2) Properties
(a) Command

Type: HiRDBCommand
Default value: null
Description: Acquires the HiRDBCommand that is executed when Update is called
(read only).

15.5.10 HiRDBRowUpdatingEventArgs
(1) Constructor

(a) HiRDBRowUpdatingEventArgs
void HiRDBRowUpdatingEventArgs (System.Data.DataRow,
System.Data.IDbCommand, System.Data.StatementType,
System.Data.Common.DataTableMapping)
Arguments

System.Data.DataRow dataRow: DataRow that executes Update
System.Data.IDbCommand command: IDbCommand that is executed when
Update is called
System.Data.StatementType statementType: Type of SQL statement to
be executed
System.Data.Common.DataTableMapping tableMapping:
DataTableMapping that is sent through Update

Description: Initializes a new instance of the HiRDBRowUpdatingEventArgs class.

(2) Properties
(a) Command

Type: HiRDBCommand
Default value: null
Description: Acquires or sets the HiRDBCommand that is executed during Update
processing.

15.5.11 HiRDBTransaction
(1) Constructor

(a) HiRDBTransaction
void HiRDBTransaction (Hitachi.HiRDB.HiRDBConnection)

Argument

15. HiRDB Access from ADO.NET-compatible Application Programs

1037

HiRDBConnection rConnection: Connection object (Connection
property)

Description: Initializes a new instance of the HiRDBTransaction class.
void HiRDBTransaction (Hitachi.HiRDB.HiRDBConnection,
System.Data.IsolationLevel)

Arguments
HiRDBConnection rConnection: Connection object (Connection
property)
System.Data.IsolationLevel eIsolationLevel: Transaction lock
operation (IsolationLevel property)

Description: Initializes a new instance of the HiRDBTransaction class.
(2) Properties

(a) Connection
Type: HiRDBConnection
Default value: null
Description: Specifies the HiRDBConnection object used to associate a transaction
(read only).

(b) IsCompleted
Type: bool
Default value: false
Description: Acquires a value indicating whether or not the transaction is completed
(read only). If the transaction is completed, the value is true; if not, the value is
false.

(c) IsolationLevel
Type: System.Data.IsolationLevel
Default value: IsolationLevel.ReadCommitted
Description: Specifies this transaction's IsolationLevel (read only).

(3) Methods
(a) Commit

void Commit ()
Return: void
Description: Commits a database transaction.

15. HiRDB Access from ADO.NET-compatible Application Programs

1038

Exception: HiRDBException
(b) Rollback

void Rollback ()
Return: void
Description: Rolls back a database transaction from the hold status.
Exception: HiRDBException

15. HiRDB Access from ADO.NET-compatible Application Programs

1039

15.6 Notes about HiRDB.NET Data Provider

Table 15-2 gives notes about HiRDB.NET Data Provider.
Table 15-2: Notes about HiRDB.NET Data Provider

Object Method or property Details

HiRDBCommand CommandTimeout property The setting is ignored because the timeout value during
execution depends on the settings in the client
environment definition (PDCWAITTIME, PDSWAITTIME,
PDSWATCHTIME).

Cancel method System.NotSupportedException is returned because
there is no cancellation function.

ExecuteReader method When the CommandBehavior.KeyInfo,
CommandBehavior.SchemaOnly, or
CommandBehavior.SequentialAccess argument is
specified, it is treated as CommandBehavior.Default
because a function for acquiring only column or primary
key information is not available.

UpdatedRowSource
property

When UpdatedRowSource.Both or
UpdatedRowSource.FirstReturnedRecord is
specified, HiRDBException is returned because there is
no batch query function that returns rows.

HiRDBConnection Database property The null character always results because there is no
function for acquiring database names.

State property ConnectionState.Connecting,
ConnectionState.Executing,
ConnectionState.Fetching, or
ConnectionState.Broken will never result because
this property is a reserved value for future product
versions.

BeginTransaction
method

IsolationLevel is ignored, if specified, because this
method is set for each SQL statement or acquired from
HiRDB environment variables.

ChangeDatabase method System.NotSupportedException is returned because
a function for changing the connected database is not
available.

HiRDBDataReader Depth property Always 0 because there is no hierarchy concept.

GetBoolean method NotSupportedException is returned because there is
no corresponding type.

15. HiRDB Access from ADO.NET-compatible Application Programs

1040

GetByte method NotSupportedException is returned because there is
no corresponding type.

GetChar method NotSupportedException is returned because there is
no corresponding type.

GetData method NotSupportedException is returned because there is
no corresponding type.

GetGuid method NotSupportedException is returned because there is
no corresponding type.

NextResult method false is returned because there is no multiple record set
function.

HiRDBParameter DbType property If DbType.Boolean, DbType.Currency,
DbType.Guid, or DbType.VarNumeric is specified,
HiRDBException is returned because there is no
corresponding type.

Direction property If HiRDBCommand class's ExecuteNonQuery,
ExecuteReader, ExecuteScalar, or Prepare method
is executed while Direction.ReturnValue is
specified, HiRDBException is returned because there is
no function for acquiring the stored procedure's return
value.

IsNullable property Acquisition only; setting is not available. (The null value
can always be specified.)

Object Method or property Details

15. HiRDB Access from ADO.NET-compatible Application Programs

1041

15.7 Data types of HiRDB.NET Data Provider

15.7.1 DbType and HiRDBType properties
When the DbType property of the HiRDBParameter class is set, the HiRDBType
property of the same class is automatically set. When the HiRDBType property is set,
the DbType property is automatically set. Table 15-3 lists the HiRDBType property
values that are automatically set when the DbType property is set, and Table 15-4 lists
the DbType property values that are automatically set when the HiRDBType property
is set.

Table 15-3: HiRDBType property values that are automatically set when the
DbType property is set

DbType property HiRDBType property

AnsiString VarChar

AnsiStringFixedLength Char

Binary Binary

Boolean [NotSupportedException exception]

Byte SmallInt

Currency [NotSupportedException exception]

Date Date

DateTime TimeStamp

Decimal Decimal

Double Float

Guid [NotSupportedException exception]

Int16 SmallInt

Int32 Integer

Int64 Decimal

Object Binary

SByte SmallInt

Single SmallFlt

String MvarChar

15. HiRDB Access from ADO.NET-compatible Application Programs

1042

Table 15-4: DbType property values that are automatically set when the
HiRDBType property is set

StringFixedLength Mchar

Time Time

UInt16 Integer

UInt32 Decimal

UInt64 Decimal

VarNumeric [NotSupportedException exception]

HiRDBType property DbType property

Binary Object

Blob Object

Char AnsiStringFixedLength

Date Date

Decimal Decimal

Float Double

Integer Int32

IntervalYearToDay String

IntervalHourToSecond String

MChar StringFixedLength

MVarChar String

NChar StringFixedLength

NVarChar String

SmallFlt Single

SmallInt Int16

Time Time

TimeStamp DateTime

VarChar AnsiString

DbType property HiRDBType property

15. HiRDB Access from ADO.NET-compatible Application Programs

1043

15.7.2 Data types and accessories used by a UAP
Table 15-5 lists the data types that are set in the Value property of the
HiRDBParameter class, for example during execution of the INSERT and GetXXXX
methods of the HiRDBDataReader class that are used during execution of SELECT.
Note that HiRDB's NULL is represented by DBNull.Value of the .NET Framework
type.

Table 15-5: Data types and accessories for HiRDB-type UAPs

Classification HiRDB data type .NET Framework
type used by

UAPs, for example
in INSERT

Accessory used
by UAP for

SELECT

Character CHAR[ACTER] String GetString()

VARCHAR/CHAR[ACTER]VARYING String GetString()

NCHAR/NATIONAL CHAR[ACTER] String GetString()

NVARCHAR/NCHAR VARYING String GetString()

MCHAR String GetString()

MVARCHAR String GetString()

Numeric value [LARGE]DEC[IMAL]/NUMERIC Decimal GetDecimal()

SMALLINT Int16 GetInt16()

INT[EGER] Int32 GetInt32()

SMALLFLT/REAL Single GetFloat()

FLOAT/DOUBLE PRECISION Double GetDouble()

Date and time DATE DateTime GetDateTime()

TIME DateTime GetDateTime()

TIMESTAMP DateTime GetDateTime()

Other BINARY Byte[] GetBytes()

BLOB Byte[] GetBytes()

INTERVAL YEAR TO DAY String GetString()

INTERVAL HOUR TO SECOND TimeSpan GetString()

15. HiRDB Access from ADO.NET-compatible Application Programs

1044

15.7.3 Type conversion by HiRDB.NET Data Provider
When no .NET Framework type or accessory listed in Table 15-5 is used, type
conversion takes place automatically within the HiRDB data provider. No .NET
Framework type or accessory is used when Int32-type data is inserted in a table that
contains items with the CHAR attribute or the GetInt32 method is used for acquisition.
Tables 15-6 and 15-7 list the type conversions for INSERT, and Tables 15-8 and 15-9
list the type conversions for SELECT.
For the definition of symbols used in tables 15-6 through 15-9, see 15.7.3(1) Definition
of symbols.

Table 15-6: List of type conversions for INSERT (1/2)

.NET Framework
type

HiRDB data type

I SI DE F SF C VC NC NVC

Boolean E1 E1 E1 E1 E1 E1 E1 E1 E1

Int16 N N N N N N N E1 E1

Int32 N C1 N N N N N E1 E1

Int64 C2 C1 N N N N N E1 E1

UInt16 N N N N N N N E1 E1

UInt32 N C1 N N N N N E1 E1

UInt64 C2 C1 N N N N N E1 E1

Single data with
fractional part

C4 C3 N N N N N E1 E1

Single data with no
fractional part

C2 C1 N N N N N E1 E1

Double data with
fractional part

C4 C3 N N N N N E1 E1

Double data with no
fractional part

C2 C1 N N N N N E1 E1

Decimal data with
fractional part

C4 C3 N N N N N E1 E1

Decimal data with no
fractional part

C2 C1 N N N N N E1 E1

Char N1 N1 E1 E1 E1 N N N N

Char[] E1 E1 E1 E1 E1 E1 E1 E1 E1

15. HiRDB Access from ADO.NET-compatible Application Programs

1045

Table 15-7: List of type conversions for INSERT (2/2)

String C2 C1 N N N N N N N

DateTime E1 E1 E1 E1 E1 N N E1 E1

TimeSpan E1 E1 E1 E1 E1 N N E1 E1

Guid E1 E1 E1 E1 E1 N N E1 E1

Byte N N N N N N N E1 E1

Byte[] E1 E1 E1 E1 E1 E1 E1 E1 E1

Sbyte N N N N N N N E1 E1

SByte[] E1 E1 E1 E1 E1 E1 E1 E1 E1

.NET Framework
type

HiRDB data type

MC MVC DA T TS IY IHS BI BL

Boolean E1 E1 E1 E1 E1 E1 E1 E1 E1

Int16 N N E1 E1 E1 E2 E2 E1 E1

Int32 N N E1 E1 E1 E2 E2 E1 E1

Int64 N N E1 E1 E1 E2 E2 E1 E1

UInt16 N N E1 E1 E1 E2 E2 E1 E1

UInt32 N N E1 E1 E1 E2 E2 E1 E1

UInt64 N N E1 E1 E1 E2 E2 E1 E1

Single data with
fractional part

N N E1 E1 E1 E3 E3 E1 E1

Single data with no
fractional part

N N E1 E1 E1 E2 E2 E1 E1

Double data with
fractional part

N N E1 E1 E1 E3 E3 E1 E1

Double data with no
fractional part

N N E1 E1 E1 E2 E2 E1 E1

Decimal data with
fractional part

N N E1 E1 E1 E3 E3 E1 E1

.NET Framework
type

HiRDB data type

I SI DE F SF C VC NC NVC

15. HiRDB Access from ADO.NET-compatible Application Programs

1046

Note 1: INSERT operation on NCHAR/NVARCHAR
If the size of data obtained after S-JIS conversion consists of an odd number of
bytes, the [Hitachi.HiRDB.HiRDBException]KFPZ24026-E format
conversion error occurs.

Note 2: During array INSERT
If the type is not an Object array type, the
[Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion
error occurs. Because no array can be inserted in BLOB, the same error occurs if
an attempt is made.
Table 15-8: List of type conversions for SELECT (1/2)

Decimal data with no
fractional part

N N E1 E1 E1 E2 E2 E1 E1

Char N N E1 E1 E1 E3 E3 E1 E1

Char[] E1 E1 E1 E1 E1 E3 E3 E1 E1

String N N N N N N N E1 E1

DateTime N N N N N E3 E3 E1 E1

TimeSpan N N E1 E1 E1 E3 N E1 E1

Guid N N E1 E1 E1 E3 E3 E1 E1

Byte N N E1 E1 E1 E3 E3 N N

Byte[] E1 E1 E1 E1 E1 E3 E3 N N

Sbyte N N E1 E1 E1 E3 E3 E1 E1

SByte[] E1 E1 E1 E1 E1 E3 E3 E1 E1

Accessory HiRDB data type

I SI DE F SF C VC NC NVC

GetBoolean E4 E4 E4 E4 E4 E4 E4 E4 E4

GetByte E4 E4 E4 E4 E4 E4 E4 E4 E4

GetBytes N N E1 N N N N N N

GetChar E4 E4 E4 E4 E4 E4 E4 E4 E4

.NET Framework
type

HiRDB data type

MC MVC DA T TS IY IHS BI BL

15. HiRDB Access from ADO.NET-compatible Application Programs

1047

Table 15-9: List of type conversions for SELECT (2/2)

GetChars N N N N N N N N N

GetData E4 E4 E4 E4 E4 E4 E4 E4 E4

GetDateTime E1 E1 E1 E1 E1 C6 C6 C6 C6

GetDecimal N N N N N C7 C7 C7 C7

GetDouble N N N N N C8 C8 C8 C8

GetFloat N N N N N C9 C9 C9 C9

GetGuid E4 E4 E4 E4 E4 E4 E4 E4 E4

GetInt16 C1 N C1 C1 C1 C1 C1 C1 C1

GetInt32 N N C2 C2 C2 C2 C2 C2 C2

GetInt64 N N C10 C10 C10 C10 C10 C10 C10

GetString N N N N N N N N N

GetValue N N N N N N N N N

GetValues N N N N N N N N N

Accessory HiRDB data type

MC MVC DA T TS IY IHS BI BL

GetBoolean E4 E4 E4 E4 E4 E4 E4 E4 E4

GetByte E4 E4 E4 E4 E4 E4 E4 E4 E4

GetBytes N N E1 E1 E1 E1 E1 N N

GetChar E4 E4 E4 E4 E4 E4 E4 E4 E4

GetChars N N E1 E1 E1 E1 E1 E1 E1

GetData E4 E4 E4 E4 E4 E4 E4 E4 E4

GetDateTime C6 C6 N N N E1 E1 E1 E1

GetDecimal C7 C7 E1 E1 E1 E1 E1 E1 E1

GetDouble C8 C8 E1 E1 E1 E1 E1 E1 E1

Accessory HiRDB data type

I SI DE F SF C VC NC NVC

15. HiRDB Access from ADO.NET-compatible Application Programs

1048

Note 1: During DATE acquisition
When the GetDateTime method is used, 00:00:00 is set in the time field. When
the GetString method is used, the value is set in the format YYYY/MM/DD.

Note 2: During TIME/TIMESTAMP acquisition
When the GetDateTime method is used, the current date is set in the date field.
When the GetString method is used, the value is set in the following format:
TIME: hh:mm:ss
TIMESTAMP(0): YYYY/MM/DD hh:mm:ss
TIMESTAMP(2): YYYY/MM/DD hh:mm:ss.nn
TIMESTAMP(4): YYYY/MM/DD hh:mm:ss.nnnn
TIMESTAMP(6): YYYY/MM/DD hh:mm:ss.nnnnnn

Note 3: During INTERVALYEARTODAY acquisition

When the GetString method is used, the value is set in the format YYYY/
MM/DD.

Note 4: During INTERVALHOURTOSECOND acquisition

When the GetString method is used, the value is set in the format hh:mm:ss.
(1) Definition of symbols

(a) HiRDB data types
The following table defines the symbols used for the HiRDB data types:

GetFloat C9 C9 E1 E1 E1 E1 E1 E1 E1

GetGuid E4 E4 E4 E4 E4 E4 E4 E4 E4

GetInt16 C1 C1 E1 E1 E1 E1 E1 E1 E1

GetInt32 C2 C2 E1 E1 E1 E1 E1 E1 E1

GetInt64 C10 C10 E1 E1 E1 E1 E1 E1 E1

GetString N N N N N N N N N

GetValue N N N N N N N N N

GetValues N N N N N N N N N

Accessory HiRDB data type

MC MVC DA T TS IY IHS BI BL

15. HiRDB Access from ADO.NET-compatible Application Programs

1049

(b) Whether or not type conversion is supported
N indicates normal; C indicates a conditional; and E indicates error. Some of these
letters are followed by a number; they are defined as follows:

Symbol Definition

I INTEGER

SI SMALLINT

DE DECIMAL and LARGE DECIMAL

F FLOAT/DOUBLE PRECISION

SF SMALLFLT and REAL

C CHARACTER

VC VARCHAR

NC NCHAR and NATIONAL CHARACTER

NVC NVARCHAR

MC MCHAR

MVC MVARCHAR

DA DATE

T TIME

TS TIMESTAMP

IY INTERVAL YEAR TO DAY

IHS INTERVAL HOUR TO SECOND

BI BINARY

BL BLOB

Symbol Definition

N Numeric character code is set.

C1 -32768 to 32767: Normal
0 to 32767: Normal
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

15. HiRDB Access from ADO.NET-compatible Application Programs

1050

C2 -2147483648 to 2147483647: Normal
0 to 2147483647: Normal
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C3 -32768 to 32767: Normal (rounded)
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C4 -2147483648 to 2147483647: Normal (rounded)
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C5 0 to 255: Normal
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C6 DateTime format data: Normal
Other: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C7 Decimal format data: Normal
Other: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C8 Double format data: Normal
Other: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C9 Float format data: Normal
Other: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

C10 -9223372036854775808 to 9223372036854775807: Normal
Out of range: [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

E1 [Hitachi.HiRDB.HiRDBException] KFPZ24026-E format conversion error

E2 [Hitachi.HiRDB.HiRDBException] KFPZ24107-E Decimal, date and time, time interval type
overflow

E3 [Hitachi.HiRDB.HiRDBException] KFPZ24106-E date and time, time interval type format error

E4 [System.NotSupportedException] unsupported error

Symbol Definition

15. HiRDB Access from ADO.NET-compatible Application Programs

1051

15.8 Example of a UAP using HiRDB.NET Data Provider

This section describes an example of a UAP using HiRDB.NET Data Provider.
Although the sample program is coded in Visual C# .NET, its contents are almost
identical in Visual Basic.NET. If necessary, change the information as appropriate.

15.8.1 Connecting to the database
The following example connects to HiRDB and then disconnects from HiRDB:

Explanation
1. First, create a HiRDBConnection object. This object manages all

communications with HiRDB. Because Disconnect is called from within
the HiRDBConnection: Dispose method, when this object disappears,

using System;
using Hitachi.HiRDB;

namespace test_C
{
 class Sample
 {
 [STAThread]
 static void Main(string[] args)
 {

 try
 {
 // Create a Connection object
 HiRDBConnection cn = new HiRDBConnection("dsn=pc;"); ...1

 // Connect to the database
 cn.Open(); ...2

 // Disconnect from the database
 cn.Close(); ..3
 }

 catch (HiRDBException ex)
 {
 Console.WriteLine(ex);
 }
 catch (System.Exception ex)
 {
 Console.WriteLine(ex);
 } ..4
 }
 }
}

15. HiRDB Access from ADO.NET-compatible Application Programs

1052

the database is automatically disconnected.
For this method, you must specify one string-type argument. The character
string to be specified is called a connection character string. This is the same
type of connection character string as those used for Connection in ADO
and ADO.NET. For details about the character strings that can be specified,
see 15.5.3(2)(a) ConnectionString.

2. To connect to the database, use the Open method.
3. To disconnect from the database, use the Close method. Using the Close

method while a connection is not established does not result in an exception.
4. An exception occurs if the server is not running, communication is disabled,

the SQL statement is invalid, or in similar cases. Basically, a block using
HiRDB.NET Data Provider detects exceptions by try through catch, and
then displays an exception message.
In the case of an overall HiRDB error, System.Exception occurs, and in
the case of a HiRDB.NET Data Provider-specific error, HiRDBException
occurs. Make sure that System.Exception is not abbreviated as
Exception.
A HiRDB Client Library or HiRDB.NET Data Provider-specific error code
is stored in the ErrorCode property of the exception object that is created
by HiRDB.NET Data Provider.
A 3-digit (-XXX) or 4-digit (-XXXX) error code indicates KFPA1XXXX and
a 5-digit error code (-24XXX) indicates KFPZ24XXX.

15.8.2 Executing the SQL statement
This example creates a table named ex:

using System;
using Hitachi.HiRDB;

namespace test_C
{
 class Sample
 {
 [STAThread]
 static void Main(string[] args)
 {
 try

15. HiRDB Access from ADO.NET-compatible Application Programs

1053

Explanation
1. To execute an SQL statement, use the Execute method. Specify a

string-type SQL statement as is in the CommandText property of
HiRDBCommand. This method can execute most SQL statements. Special
SQL statements such as commit cannot be executed by this method, as well
as statements such as select that must receive a result set. To execute these
SQL statements, use dedicated methods.

15.8.3 Executing a transaction
This example inserts data 1 to the ex table:

 {
 // Create a Connection object
 HiRDBConnection cn = new HiRDBConnection("dsn=pc;"); ...1

 // Connect to the database
 cn.Open();

 // Create a Command object
 HiRDBCommand cm = new HiRDBCommand();

 // Create a table
 cm.Connection = cn;
 cm.CommandText = "create table ex (a int)";
 cm.ExecuteNonQuery(); 1

 // Disconnect from the database
 cn.Close();
 }
 catch (HiRDBException ex)

 {
 Console.WriteLine(ex);
 }
 catch (System.Exception ex)
 {
 Console.WriteLine(ex);
 }
 }
 }
}

15. HiRDB Access from ADO.NET-compatible Application Programs

1054

using System;
using System.Data;
using Hitachi.HiRDB;

namespace test_C
{
 class Sample
 {
 [STAThread]
 static void Main(string[] args)

 {
 // Create a Connection object
 HiRDBConnection cn = new HiRDBConnection("dsn=pc;");

 // Connect to the database
 cn.Open();

 // Create a Transaction object
 HiRDBTransaction tran;
 // Start of transaction
 tran = cn.BeginTransaction(IsolationLevel.ReadCommitted); ..1
 // Create a Command object
 HiRDBCommand cm = new HiRDBCommand();
 cm.Connection = cn;
 cm.Transaction = tran;
 try

 {
 // Insert data in the table
 cm.CommandText = "insert into ex values (1)";
 cm.ExecuteNonQuery();

 // Transaction was successful
 tran.Commit(); ...2

 // Disconnect from the database
 cn.Close();
 }
 catch (HiRDBException ex)
 {
 // Transaction failed
 tran.Rollback(); 3

 Console.WriteLine(ex);
 }
 catch (System.Exception ex)
 {
 // Transaction failed
 tran.Rollback(); 3

 Console.WriteLine(ex);
 }
 }
 }
}

15. HiRDB Access from ADO.NET-compatible Application Programs

1055

Explanation
1. To start a transaction, use the BeginTransaction method.
2. To complete the transaction, call the Commit method.
3. To restore, call the Rollback method.

15.8.4 Executing a search statement
This example displays all table data:

using System;
using System.Data;
using Hitachi.HiRDB;

namespace test_C
{
 class Sample
 {
 [STAThread]
 static void Main(string[] args)

 {
 try
 {
 // Create a Connection object
 HiRDBConnection cn = new HiRDBConnection("dsn=pc;");

 // Connect to the database
 cn.Open();

 // Create a Command object
 HiRDBCommand cm = new HiRDBCommand();
 cm.Connection = cn;
 cm.CommandText = "select a from ex";

 // Create a DataReader object
 HiRDBDataReader rd = cm.ExecuteReader(); 1
 int i;
 while(rd.Read())
 {
 for (i = 0 ; i < rd.FieldCount ; i++)
 {
 Console.WriteLine(rd.GetName(i) + " - " +rd.GetValue(i));
 }
 } ..2

15. HiRDB Access from ADO.NET-compatible Application Programs

1056

Explanation
1. To execute a search, use the ExecuteReader method to create a

HiRDBDataReader.
2. Use the Read method to move on to the next row. Use the GetName method

to acquire a column name, and use the GetValue method to acquire a
column value.

15.8.5 Executing the INSERT facility using arrays
This example inserts 123, 200, and null in the ex table:

 // Disconnect from the database
 cn.Close();
 }
 catch (HiRDBException ex)
 {
 Console.WriteLine(ex);
 }
 catch (System.Exception ex)
 {
 Console.WriteLine(ex);
 }
 }
 }
}

 // Create objects such as a connection object
 HiRDBConnection pConn = new HiRDBConnection("connection-character-string");
 HiRDBCommand pCom = pConn.CreateCommand();

 // Connect to the database
 pConn.Open();

 // Create a parameter object
 HiRDBParameter pPar = pCom.CreateParameter();

 // Set parameters
 pPar.Direction = ParameterDirection.Input;
 pPar.HiRDBType = HiRDBType.Integer;
 object [] aValue = new object[3];
 aValue[0] = 123;
 aValue[1] = 200;
 aValue[2] = null;
 pPar.Value = aValue;
 pCom.Parameters.Add(pPar); ...1

15. HiRDB Access from ADO.NET-compatible Application Programs

1057

Explanation
1. Set the parameter value in the value parameter. Because value is the

object type, it can reference all types. The Int32 type is specified in
normal INSERT statements, but in the INSERT statement using an array, the
array of object is set in value, and each element of the object array is
set to point to the Int32 type. The same applies when other types are used;
always set an array of object in value.

2. To execute the SQL statement, use :overload of ExecuteNonQuery. The
normal ExecuteNonQuery has no argument, but when the INSERT
statement using an array is used, specify the size of the array.

Note

The codes for setting value for parameters and for executing SQL statements
vary depending on whether or not an array is used.

15.8.6 Executing a repetition column
This example inserts 123, 456, and 789 in the first column of the ex table:

 // Use parameters to execute SQL statement
 pCom.CommandText = "insert into ex values(?)";
 pCom.ExecuteNonQuery(aValue.Length); 2

 // Disconnect from the database
 pConn.Close();

 // Create objects such as a connection object
 HiRDBConnection pConn = new HiRDBConnection("connection-character-string");
 HiRDBCommand pCom = pConn.CreateCommand();

 // Connect to the database
 pConn.Open();

 // Create a table
 pCom.Connection = pConn;
 pCom.CommandText = "create table ex(a int array[3])";
 pCom.ExecuteNonQuery();

15. HiRDB Access from ADO.NET-compatible Application Programs

1058

Explanation
1. The object array is set in value for the same reason as for the INSERT

statement using an array. For a repetition column, also set the Repetition
extended property. This property specifies the number of repetition columns.
There is no argument during the execution of the SQL statement.

2. For FETCH, an extended method for repetition columns is also provided with
DataReader. First, use GetFieldArrayCount to acquire the number of
repetition columns for the data obtained by FETCH. To acquire the value of
the data obtained by FETCH, use :overload of GetValue. In the second
argument, specify the number of the repetition column. An indexer
[int,int] equivalent to this method is also provided.

Note

The usage of repetition columns is similar to that of the INSERT facility using
arrays. The differences occur in the part that specifies the repetition count in the
parameter and the part that executes the SQL statement.

 // Create a parameter object
 HiRDBParameter pPar = pCom.CreateParameter();

 // Set parameters
 pPar.Direction = ParameterDirection.Input;
 pPar.HiRDBType = HiRDBType.Integer;
 object [] aValue = new object[3];
 aValue[0] = 123;
 aValue[1] = 456;
 aValue[2] = 789; pPar.Value = aValue;
 pPar.Repetition = (short)aValue.Length;
 pCom.Parameters.Add(pPar); ..1

 // Use parameters to execute SQL statement
 pCom.CommandText = "insert into ex values(?)";
 pCom.ExecuteNonQuery();

 // Execute the select statement
 pCom.CommandText = "select * from ex";
 HiRDBDataReader pReader = pCom.ExecuteReader();

 // Fetch until there is no more data
 while (pReader.Read())
 {
 for (int i = 0; i < pReader.FieldCount; ++ i)
 for (int j = 0; j < pReader.GetFieldArrayCount(i); ++ j)
 Console.WriteLine(pReader.GetValue(i, j));
 } ...2

 // Disconnect from the database
 pConn.Close();

1059

Chapter

16. Type2 JDBC Driver

This chapter explains the JDBC driver installation, environment setup, and JDBC
functions. Note that the JDBC driver cannot be used in the Linux for AP8000 version
of a client.
Hereafter in this chapter, the Type2 JDBC driver is referred to as JDBC driver.

16.1 Installation and environment setup
16.2 JDBC1.0 facility
16.3 JDBC2.0 basic facility
16.4 JDBC2.0 Optional Package
16.5 JAR file access facility
16.6 Array class
16.7 Specifying a value when using a repetition column as the ? parameter
16.8 Functions provided by the HiRDB JDBC driver
16.9 Notes on using the BLOB type
16.10 Setting system properties
16.11 Connection information setup/acquisition interface
16.12 Data types and character codes
16.13 Classes and methods with limitations

16. Type2 JDBC Driver

1060

16.1 Installation and environment setup

16.1.1 Installing
You can select the installation of a JDBC driver when installing HiRDB.
Table 16-1 shows the JDBC driver's installation directory and file.

Table 16-1: JDBC driver's installation directory and file

Note

The underline indicates the HiRDB client's installation directory.
1 For the 32-bit mode HP-UX (IPF) version, the file is pdjdbc32.jar.
2 For the 32-bit mode HP-UX (IPF) version, the file is libjjdbc32.so.
To use the JDBC driver in an HP-UX (IPF), Linux (IPF), or Windows Server 2003
(IPF) environment, you need J2SDK v1.4.2. Note that J2SDK v1.4.2 must be run on
an IPF-compliant Java Virtual Machine.

16.1.2 Environment setup
The following shows the environment variable definition required for JDBC driver
operation.

(1) UNIX environment
Specify the following information in the environment variable for the execution
environment:
CLASSPATH=$CLASSPATH:[installation-directory]/pdjdbc.jar*

Platform Type Installation directory File

UNIX HiRDB server $PDDIR/client/lib/ pdjdbc.jar1

libjjdbc.sl(libjjdbc.so)2

HiRDB client /HiRDB/client/lib/ pdjdbc.jar1

libjjdbc.sl(libjjdbc.so)2

Windows HiRDB server %PDDIR%\CLIENT\UTL\ pdjdbc.jar
jjdbc.dll

HiRDB client \HiRDB\CLIENT\UTL\ pdjdbc.jar
jjdbc.dll

16. Type2 JDBC Driver

1061

* For the 32-bit mode HP-UX (IPF) version, the file is pdjdbc32.jar. Do not set
pdjdbc.jar and pdjdbc32.jar at the same time.

(2) Windows environment
From Control Panel, choose System, then in the System Properties dialog box,
choose Advanced, and specify the following information as the environment variable:
CLASSPATH=%CLASSPATH%;[installation-directory]\pdjdbc.jar

16.1.3 Abbreviation of methods
• The following methods are referred to collectively as the getXXX method:

getArray method, getAsciiStream method, getBigDecimal method,
getBinaryStream method, getBlob method, getBoolean method, getByte
method, getBytes method, getCharacterStream method, getClob method,
getDate method, getDouble method, getFloat method, getInt method,
getLong method, getObject method, getRef method, getShort method,
getString method, getTime method, and getTimestamp method

• The following methods are referred to collectively as the setXXX method:
setArray method, setAsciiStream method, setBigDecimal method,
setBinaryStream method, setBlob method, setBoolean method, setByte
method, setBytes method, setCharacterStream method, setClob method,
setDate method, setDouble method, setFloat method, setInt method,
setLong method, setNull method, setObject method, setRef method,
setShort method, setString method, setTime method, and setTimestamp
method

16. Type2 JDBC Driver

1062

16.2 JDBC1.0 facility

16.2.1 Driver class
(1) Overview

The Driver class provides the following functions:
• Database connection
• Validity checking on a specified URL
• Acquisition of the connection properties specified with the

DriverManager.getConnection method
• Acquisition of driver version information

For details about and usage of each method provided with the Driver class, see the
applicable JDBC manual. This section explains the database connection procedure and
the URL syntax unique to this JDBC driver.

(2) Database connection using the DriverManager
To execute DB connection using the DriverManager class provided by the Java
execution environment:
1. Register the Driver class in the Java Virtual Machine.
2. Call the DriverManager.getConnection method using the connection

information as the argument.
(a) Registering in Java Virtual Machine with the Driver class

Register the Driver class in the Java Virtual Machine by using the Class.forName
method or by registering in the system properties. The package name and Driver
class name of the JDBC driver specified for registration are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Driver class name: PrdbDriver

• Using the Class.forName method
Call the Class.forName method from within the application as follows:

• Registering in the system properties
Call the System.setProperty method from within the application as follows:

Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDriver");

System.setProperty("jdbc.drivers","JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDriver");

16. Type2 JDBC Driver

1063

(b) Defining the connection information and establishing a database
connection
To connect to the database, use one of the following methods:

• Using the DriverManager.getConnection method

• Specification with an internal driver
When an internal driver is used, the information called by the routine at the
HiRDB side is assumed as the connection information (such as the authorization
identifier). However, when a trace is acquired within the JDBC driver, INNER is
assumed as the authorization identifier.

• Directly calling the connect method in the Driver class

In the arguments of the previous methods, specify the information required for
database connection.
If a database connection is successful, the JDBC driver returns a Connection object
as a result of the method call. If required information is not specified in each argument,
or invalid information is specified, the JDBC driver throws an SQLException as a
result of the method call.
Table 16-2 lists the arguments of the getConnection method, and Table 16-3 lists
the information to be specified for Properties info.

Table 16-2: Arguments of the getConnection method

Legend:

Connection con = DriverManager.getConnection(String url, String user, String password)
;
or
Connection con = DriverManager.getConnection(String url, Properties info) ;

Specification for internal driver only:
Connection con = DriverManager.getConnection(String url) ;

Driver drv = new JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDriver();
Connection con = drv.connect(String url, Properties info) ;

Argument Description Specification

String url URL; For URL, see (3) URL syntax. R

String user Authorization identifier1 R2

String password Password O

Properties info See Table 16-3.

16. Type2 JDBC Driver

1064

R: Required.
O: Optional.

: Not applicable.
1 If null or space characters are specified for the authorization identifier, this method
throws an SQLException. The method also throws an SQLException if the
driver-converted character codes and, as a result, the size of the character string
specified for the authorization identifier exceed 30 bytes. For details about character
code conversion, see 16.12.2 Character code conversion facility.
2 The argument can be omitted, if specified with the internal driver.

Table 16-3: Information to be specified for Properties info

Key Description Specification

user Authorization identifier1 R2

password Password O

ENCODELANG In a Java program, Unicode is used for the character codes. Therefore,
during character data processing with HiRDB, the JDBC driver
performs mutual character code conversion between HiRDB's
character data and Unicodes. For this character code conversion
processing, the JDBC driver uses the encoder and decoder provided by
the Java Virtual Machine. You must specify the character set names
specified by the JDBC driver for the provided encoder and decoder.
The settings can be for any character set (such as MS932) supported by
Java. For details about this operation if you specify OFF or have not
specified anything in Properties info (including the settings using
the DataSource.setEncodeLang method and ENCODELANG of the
URL), see 16.11.5 setEncodeLang.

O

COMMIT_BEHAVIO
R

When HiRDB commits, this key specifies whether or not the following
classes are to remain valid after commit has executed:
• ResultSet class
• Statement class, PreparedStatement class, and

CallableStatement class
For details about the specification values, see 16.11.19
setCommit_Behavior.

O

Note:
See Notes on COMMIT_BEHAVIOR following this table.

16. Type2 JDBC Driver

1065

BLOCK_UPDATE Specifies whether or not multiple parameters are to be processed at one
time when the ? parameter is used to update databases. When this
information is omitted, FALSE is assumed.
TRUE:

Processes multiple parameters at one time.
FALSE:

Processes parameter sets individually.
Other:

Assumes that FALSE is specified.
Notes:
• When TRUE is set, the batch update function supports HiRDB

facilities using arrays.
• Only INSERT, UPDATE, and DELETE SQL statements can use

facilities using arrays. All other SQL statements are processed
sequentially, not in batch mode.

• Even the SQL statements that can use facilities using arrays are
processed sequentially, not in batch mode, if they do not satisfy the
conditions for facilities using arrays.

• To use facilities using arrays, see 16.3.2 Batch updating.
• For details about the facilities using arrays, see 4.8 Facilities using

arrays.
• This function can also be specified using the

HiRDB_for_Java_BLOCK_UPDATE system property. However,
when BLOCK_UPDATE is set, the
HiRDB_for_Java_BLOCK_UPDATE system property setting is
ignored.

O

LONGVARBINARY_
ACCESS

Specifies the access method for a LONGVARBINARY database (column
attribute is BLOB or BINARY). When this key is omitted, REAL is
assumed.
REAL:

Accesses real data from HiRDB.
LOCATOR:

Uses the HiRDB locator.
Other:

Assumes that REAL is specified.

O

Key Description Specification

16. Type2 JDBC Driver

1066

HiRDB_for_Java
_SQL_IN_NUM

Specifies the maximum number of input or input/output ? parameters
in the SQL statements to be executed. This is the number of input or
input/output ? parameter information items that is acquired during SQL
preprocessing.
If the actual number of input or input/output ? parameters is greater
than this property value, the input or input/output ? parameter
information is acquired after the SQL preprocessing.
The permitted value range is from 1 to 30,000 (default is 64).
Specifying any other value or non-numeric value results in an error.
Notes:
• This item can also be specified using the

HiRDB_for_Java_SQL_IN_NUM system property. However, when
HiRDB_for_Java_SQL_IN_NUM is specified for Properties
info, the system property setting is ignored.

• If you do not execute any SQL statement that uses input or input/
output ? parameters, we recommend that you specify a value of 1.

• This property value is applicable only when the version of the
connected HiRDB server is 07-02 or later.

O

HiRDB_for_Java
_SQL_OUT_NUM

Specifies the maximum number of output items for the SQL statement
to be executed. This is the number of output items that is acquired
during SQL preprocessing.
If the actual number of output items is greater than this property value,
the output items are acquired after the SQL preprocessing.
The permitted value range is from 1 to 30,000 (default is 64).
Specifying any other value or non-numeric value results in an error.
Note:
• This item can also be specified using the

HiRDB_for_Java_SQL_OUT_NUM system property. However,
when HiRDB_for_Java_SQL_OUT_NUM is specified for
Properties info, the system property setting is ignored.

• If you do not execute any SQL statement that contains a search item
or output or input/output ? parameter, we recommend that you
specify a value of 1.

• This property value is applicable only when the version of the
connected HiRDB server is 07-02 or later.

O

HiRDB_for_Java
_SQLWARNING_LE
VEL

Specifies the retention level of warning information that has been
issued during execution of the SQL statement. The permitted warning
retention levels are as follows:
• IGNORE
• SQLWARN (default)
• ALLWARN

In this method, information specified in the arguments is not case
sensitive.
For details about the above values, see 16.2.9 SQLWarning class.

O

Key Description Specification

16. Type2 JDBC Driver

1067

Legend:
R: Required.
O: Optional.

1 If null or space characters are specified for the authorization identifier, this method
throws an SQLException. This method also throws an SQLException if the
driver-converted character codes and, as a result, the size of the character string
specified for the authorization identifier exceed 30 bytes. For details about character
code conversion, see 16.12.2 Character code conversion facility.
2 The key can be omitted, if specified with the internal driver.
Notes on COMMIT_BEHAVIOR

• If another user specifies CLOSE or PRESERVE to execute a definition SQL on
a resource (such as a table or index) that is being accessed by SELECT,
INSERT, DELETE, UPDATE, PURGE TABLE, or CALL, and PDDDLDEAPRP in
the client environment definition is set to NO, the definition SQL goes into
lock-release wait status until the connection to the resource is disconnected.
If PDDDLDEAPRP in the client environment definition is set to YES, the
preprocessing result becomes invalid. If an SQL for which the preprocessing

HiRDB_for_Java
_CLEAR_ENV

Specifies whether or not the HiRDB client environment definition set
as OS environment variables is to be ignored during database
connection.
TRUE:

Ignores the HiRDB client environment definition registered as OS
environment variables when the database is connected for the first
time after the process has started. When TRUE is specified, you can
apply the value of the HiRDB client environment definition that has
been set by a method other than the OS environment variables
(such as environment variable groups).

FALSE (default):
Does not ignore the HiRDB client environment definition
registered as OS environment variables.

Notes:
• In this method, information specified in the arguments is not case

sensitive.
• Once the database is connected, the HiRDB client environment

definition set as OS environment variables is not ignored even if an
attempt is made to specify TRUE within a native method installed by
a method such as C language.

• Once the database is connected with TRUE specified, the client
environment definition value remains ignored even if FALSE is
specified the next time the database is connected.

O

Key Description Specification

16. Type2 JDBC Driver

1068

result has been invalidated in this manner is executed, an SQLException
exception occurs (the value acquired by the getErrorCode method is
-1542).

• When PRESERVE is specified, the JDBC driver uses HiRDB's holdable
cursor.

• By specifying1 CLOSE or PRESERVE, the only precompiled SQL statements
that are valid after commit2 are SELECT, INSERT, DELETE, UPDATE, PURGE
TABLE, and CALL (SQL statements can be precompiled by executing the
Connection.prepareStatement method or the
Connection.prepareCall method).
Other precompiled SQL statements become invalid during commit even
though you specify CLOSE or PRESERVE for COMMIT_BEHAVIOR.
When SQL statements that include these invalid SQL statements are
executed with the PreparedStatement class object or
CallableStatement object, an error occurs. An example of such an error
is shown below:
Example

Explanation

Because the SQL statement to be executed is a LOCK statement, even though
COMMIT_BEHAVIOR specifies CLOSE, PreparedStatement becomes invalid
after commit and an error occurs.

1 Refers to specification of one of the following:

 COMMIT_BEHAVIOR=CLOSE specified for the URL specified by the
getConnection method.

 COMMIT_BEHAVIOR=PRESERVE specified for the URL specified by the
getConnection method.

 setCommit_Behavior method of the JdbhDataSource,
JdbhConnectionPoolDataSource, or JdbhXADataSource class used to

PreparedStatement pstmt1 = con.prepareStatement("lock table tb1");
PreparedStatement pstmt2 = con.prepareStatement("lock table tb2");
pstmt1.execute(); //No error occurs.
con.commit();
pstmt2.execute(); //An error occurs.
pstmt1.close();
pstmt2.close();

16. Type2 JDBC Driver

1069

specify CLOSE.
 setCommit_Behavior method of the JdbhDataSource,

JdbhConnectionPoolDataSource, or JdbhXADataSource class used to
specify PRESERVE.

2 Means one of the following:

 Explicit commit using the commit method
 Implicit commit by automatic commit
 Execution of a definition SQL statement
 Execution of a PURGE TABLE statement
 Explicit rollback by rollback method
 Implicit rollback by an SQL execution error

(3) URL syntax
This section explains the URL syntax supported by the JDBC driver. Do not place any
space inside each item or between items in a URL. To specify both an additional
connection information item and a database host name item, separate them by a comma
(,).

(a) URL syntax

(b) URL items
jdbc:hitachi:PrdbDrive

This is the protocol name and the subprotocol name. This item is required.
additional-connection-information

Specify HiRDB's port number (this corresponds to PDNAMEPORT in the client
definitions). Alternatively, specify a HiRDB environment variable group.
If this item is omitted, the default value for PDNAMEPORT is assumed.
Notes about specifying a HiRDB environment variable group in additional
connection information

• When you specify the name of a HiRDB environment variable group,

 jdbc:hitachi:PrdbDrive[://[DBID=additional-connection-information]
 [[{://|,}]DBHOST=database-host-name]
 [[{://|,}]ENCODELANG=conversion-character-set]
 [[{://|,}]COMMIT_BEHAVIOR=cursor-operation-mode]
 [[{://|,}]CLEAR_ENV=environment-variable-invalidation-setting]]

16. Type2 JDBC Driver

1070

place @ at the beginning of the group name.
• If the environment variable name contains single-byte spaces or

single-byte @ characters, enclose the name in single-byte quotation
marks ("). When an environment variable group name is enclosed in
single-byte quotation marks, all characters following the last
single-byte quotation mark up to the next item or all characters through
the end of the character string are ignored. An environment variable
group name containing single-byte quotation marks or single-byte
commas cannot be specified.

• The environment variables registered in an environment variable group
have precedence over the user environment variables and the
environment variables registered by HiRDB.INI.

• The following priority applies to the specification of additional
connection information and database host name:
1. HiRDB environment variable group specified in the additional
connection information
2. Database host name or the port number specified in the additional
connection information
For example, if a HiRDB environment variable group name has been
specified in DBID, information about the HiRDB environment variable
group takes effect. A database host name does not take effect even if it
is specified in DBHOST in the URL. In this case, if PDHOST is omitted in
the HiRDB environment variable group, a connection error results.

database-host-name
Specify HiRDB's host name. This corresponds to PDHOST in the client definitions.
If this item is omitted, the default value for PDHOST is assumed.

conversion-character-set
Specify the conversion character set to be used for character type conversion.

cursor-operation-mode
Specify whether the cursor is valid following COMMIT.

environment-variable-invalidation-setting
Specifies whether or not the HiRDB client environment definition set as OS
environment variables is to be ignored during database connection. For details
about the specification value and notes, see HiRDB_for_Java_CLEAR_ENV in
Table 16-3.

16. Type2 JDBC Driver

1071

(c) Example of specifying a HiRDB environment variable group name in
additional connection information

In UNIX
In this example, the path of the HiRDB environment variable group name is /
HiRDB_P/Client/HiRDB.ini:

In Windows
1. In this example, the environment variable group name registered using the tool for

registering HiRDB client environment variables is HiRDB_ENV_GROUP:

2. In this example, the path of the HiRDB environment variable group name is
C:\HiRDB_P\Client\HiRDB.ini:

3. In this example, the path of the HiRDB environment variable group name is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini (: single-byte space
character):

16.2.2 Connection class
(1) Overview

The Connection class provides the following functions:
• Creation of objects in the Statement, PreparedStatement, and

CallableStatement classes
• Transaction settlement (COMMIT or ROLLBACK)
• Specification of AUTO commit mode

For details about and usage of each method provided with the Connection class, see

String url = "jdbc:hitachi:PrdbDrive://DBID=@HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini";

String url = "jdbc:hitachi:PrdbDrive://DBID=@HIRDBENVGRP=HiRDB_ENV_GROUP";

String url = "jdbc:hitachi:PrdbDrive://
DBID=@HIRDBENVGRP=C:\\HiRDB_P\\Client\\HiRDB.ini";

String url = "jdbc:hitachi:PrdbDrive://DBID=@HIRDBENVGRP=" +
 "\"C:\Program Files\\HITACHI\\HiRDB\\HiRDB.ini\"";

16. Type2 JDBC Driver

1072

the applicable JDBC manual.
(2) Notes

(a) Catalog
The JDBC driver does not use a catalog regardless of the connected database type.
Therefore, the getCatalog method unconditionally returns the null value, and the
setCatalog method does nothing.

(b) Access mode
The JDBC driver does not allow the access mode to be changed. Therefore, the
isReadOnly method unconditionally returns false, and the setReadOnly method
processes nothing.

(c) Transaction isolation mode
The JDBC driver does not allow the transaction mode to be changed. Therefore, the
getTransactionIsolation method unconditionally returns
TRANSACTION_READ_COMMITTED, and the setTransactionIsolation method
does nothing.

16.2.3 Statement class
(1) Overview

The Statement class provides the following functions:
• SQL execution
• Creation of a result set (ResultSet object) as a retrieval result
• Return of the number of updated rows as an updating result

For details about and usage of each method provided with the Statement class, see
the applicable JDBC manual.

(2) Notes
(a) Multi-thread

To use a single Statement object with multiple threads, a series of processing, such
as SQL execution, acquisition of result set, and closing of the result set, needs to be
serialized per thread. If they are processed in parallel, operation cannot be guaranteed.
Therefore, you should allocate a separate Statement object for each thread.

(b) Cursor name
The JDBC driver does not support positioned updating or deletion. Therefore, the
setCursorName method does nothing.

16. Type2 JDBC Driver

1073

(c) Limitation of retrieval time
The JDBC driver does not support the monitoring of a retrieval time. Therefore, the
setQueryTimeout method, if specified, is ignored.

(d) Specification of the maximum number of rows to be retrieved
The maximum number of rows to be retrieved cannot be specified in the JDBC driver.

16.2.4 PreparedStatement class
(1) Overview

The PreparedStatement class provides the following functions:
• Execution of SQL specifying the ? parameter
• Specification of the ? parameter
• Generation and return of the ResultSet object as a search result
• Return of the number of updated rows as an updating result

Because the PreparedStatement class is a subclass of the Statement class, it
inherits all of the Statement class functions.
For details about and usage of each method provided with the PreparedStatement
class, see the applicable JDBC manual.

(2) Notes
All of the notes about the Statement class are applicable to the
PreparedStatement class, because the PreparedStatement class is a subclass of
the Statement class. The following describes the other notes about the
PreparedStatement class.

(a) Specification of the ? parameter
For details about the setXXX method used to set the ? parameter, see 16.3.3(2) Data
mapping when the ? parameter is specified. For details about the JDBC SQL types
supported by the connected database, see 16.12 Data types and character codes.

(b) Multiple result sets
The function for returning multiple result sets is not available. Therefore, the
getMoreResults method unconditionally returns false and closes any currently
open result set.

16.2.5 CallableStatement class
(1) Overview

The CallableStatement class provides the following functions:
• Execution of Java stored routines

16. Type2 JDBC Driver

1074

• Specification of IN and INOUT parameters (a setXXX method of the
PreparedStatement class is used)

• Registration of OUT and INOUT parameters
• Acquisition of OUT and INOUT parameters
• Acquisition of a result set

Because the CallableStatement class is a subclass of the PreparedStatement
class, it inherits all of the PreparedStatement class functions and the Statement
class functions. Note that the result set obtained with the DatabaseMetaData class
within a Java stored routine can be used only within the Java stored routine. The
CallableStatement class's getResultSet cannot acquire it as a dynamic result
set.
For details about and usage of each method provided with the CallableStatement
class, see the applicable JDBC manual.

(2) Notes
1. All of the notes about the PreparedStatement and Statement classes

applicable to the CallableStatement class, because the
CallableStatement class is a subclass of the PreparedStatement class.

2. Parameter information is erased when the clearParameters method is
executed. If the clearParameters method is executed after execution of the
execute method but before execution of the getXXX method, the
KFPJ20506-E message is output when the getXXX method is executed.

3. If you use the INOUT parameter of a Java stored routine, the java.sql.Types
specified using the registerOutParameter method and the data type set using
the setXXX method must be the same.

16.2.6 ResultSet class
(1) Overview

The ResultSet class provides the following functions:
• Moving within a result set in units of rows
• Returning resulting data
• Issuing a message indicating whether or not the retrieval result data is the NULL

value
For details about and usage of each method provided with the ResultSet class, see
the applicable JDBC manual.

16. Type2 JDBC Driver

1075

(2) Notes
(a) Multi-thread

If a single ResultSet object is used with multiple threads in parallel, operation
cannot be guaranteed. Therefore, you should process a single ResultSet object by a
single thread.

(b) Data mapping (conversion)
For details about the getXXX method used during the acquisition of results, see
16.3.3(1) Data mapping during retrieval data acquisition. For details about the JDBC
SQL types supported by the connected database, see 16.12 Data types and character
codes.

16.2.7 ResultSetMetaData class
(1) Overview

The ResultSetMetaData class provides the following functions:
• Returning meta-information, such as data type and length of each column, in

ResultSet (result set)
(2) Details of method

(a) isSearchable (int column) method
true is returned if the column specified by the column parameter can be used for the
WHERE clause; otherwise, false is returned as the return value. In the case of the
WHERE clause, true is always returned to enable use of all data type columns.
However, for the first column of ResultSet, which is the return value of the
Array.getResultSet method, false is returned. For details about
getResultSet, see 16.6 Array class.
Example:

Column C1 is in table T1. Regardless of its data type, C1 can be used in the WHERE
clause as shown below:
SELECT * FROM T1 WHERE LENGTH (C1) > 5

(b) getColumnDisplaySize (int column) method
The return value is the maximum number of characters when the column specified by
the column parameter is expressed in a character string. However, for the first column
of ResultSet, which is the return value of the Array.getResultSet method, 10
is returned. Table 16-4 lists the return values for this method for each SQL data type
in HiRDB.

16. Type2 JDBC Driver

1076

Table 16-4: Return values of the getColumnDisplaySize method for each SQL
data type in HiRDB

SQL data type in HiRDB Return value (int) Return value format

INTEGER 11 1 sign character + 10 digits,
which is the maximum
number of digits

SMALLINT 6 1 sign character + 5 digits,
which is the maximum
number of digits

DECIMAL(m,n)
NUMERIC(m,n)
• m: Accuracy (total number of digits)
• n: Decimal scaling position (number

of digits after decimal point)

m + 2 1 sign character + accuracy m
+ 1 decimal point digit

FLOAT
DOUBLE PRECISION

23 1 sign character + 17 digits,
which is the maximum
number of significant digits +
1 decimal point character + 4,
which is the maximum
number of characters in the
index area

SMALLFLT
REAL

13 1 sign character + 8 digits,
which is the maximum
number of significant digits +
1 decimal point character + 3,
which is the maximum
number of characters in the
index area

CHAR(n)
• n: Number of bytes of the definition

length

n NA

VARCHAR(n)
CHAR VARYING(n)
• n: Number of bytes of the maximum

length

n NA

NCHAR(n)
NATIONAL CHAR(n)
• n: Number of characters of the

definition length

n NA

16. Type2 JDBC Driver

1077

Legend:
NA: Not applicable.

* Calculation result 2147483648 becomes 2147483647.

NVARCHAR(n)
NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)
• n: Number of characters of the

maximum length

n NA

MCHAR(n)
• n: Number of bytes of the maximum

length

n NA

MVARCHAR(n)
• n: Number of bytes of the maximum

length

n NA

DATE 10 yyyy-mm-dd, which is 10
characters

TIME 8 hh:mm:ss, which is 8
characters

TIMESTAMP(p)
• p: Number of digits of the fractional

part of the second

(1) When p is 0:
19

(2) When p is 2, 4, or 6:
20 + p

(1) yyyy-mm-dd hh:mm:ss,
which is 19 characters
(2) 19 characters shown
above + 1 decimal point
character + p, which is the
number of digits of the
decimal part

BLOB(n[K|M|G])
• n: Maximum length
• K: Kilobytes
• M: Megabytes
• G: Gigabytes

If the unit is omitted, bytes is assumed.

When the unit specification is
omitted:

n
When K is specified for the unit:

n x 1024*

When M is specified for the unit:
n x 1024 x 1024*

When M is specified for the unit:
n x 1024 x 1024 x 1024#

NA

BINARY(n)
• n: Number of bytes of the maximum

length.

N NA

SQL data type in HiRDB Return value (int) Return value format

16. Type2 JDBC Driver

1078

16.2.8 DatabaseMetaData class
The DatabaseMetaData class provides the following functions:

• Returning various information about a connected database
• Storing or returning listing information (such as a list of tables or columns) in

ResultSet (result set)
Note that the result set obtained with the DatabaseMetaData class within a Java
stored routine can be used only within the Java stored routine.
For details about the methods provided by the DatabaseMetaData class and how to
use them, see the applicable JDBC documentation. For details about the values that are
actually returned, see 16.13 Classes and methods with limitations. Note that the value
returned by each method is information related to the HiRDB server, whose version
has to be the same as that of the JDBC driver being used.

16.2.9 SQLWarning class
(1) Overview

The SQLWarning class provides the following function:
• Providing information about database access warnings

The SQLWarning object is accumulated without an issuance of exception in the
method object that caused the warning.

(2) Notes
(a) Releasing the accumulated SQLWarning object

The SQLWarning object is accumulated by chain from the method object that caused
the warning (Connection, Statement, PreparedStatement,
CallableStatement, or ResultSet).
To explicitly release the accumulated SQLWarning object, you must execute
clearWarnings from the object connecting the chain.

(b) SQLWarning object generation conditions
If the warnings caused by execution of SQL statements are to be retained in the JDBC
driver according to the warning retention level specification, the SQLWarning objects
are generated and the warning information is retained. The following table describes
the SQLWarning generation conditions:

Execution result of SQL statement Warning retention level

IGNORE SQLWARN ALLWARN

SQLCODE is greater than 0 and is not 100,
nor 110, nor 120

N N Y

16. Type2 JDBC Driver

1079

Legend:
Y: Generated
N: Not generated

Note

You can specify the warning retention level using the
HiRDB_for_Java_SQLWARNING_LEVEL property or the
setSQLWarningLevel method. The default is SQLWARN.

(c) Warning message
The following table presents the messages that can be acquired from SQLWarning:

(d) Batch updating
When warning occurs during updating of multiple rows during batch updating, only
one SQLWarning is generated.

SQLWARN0 in the SQL Communications
Area is W (except when SQLWARN6 is W)

N Y Y

Warning occurred in the JDBC driver N Y Y

Condition Message acquired by getMessage

SQLWARN0 is W KFPJ01074-W

SQLWARN0 is ' ' and SQLCODE is greater than 0 (except when
SQLCODE=100, 110, or 120)

KFPAXXXXX-X

Warning occurred in the JDBC driver KFPJXXXXX-W

Execution result of SQL statement Warning retention level

IGNORE SQLWARN ALLWARN

16. Type2 JDBC Driver

1080

16.3 JDBC2.0 basic facility

16.3.1 Result set enhancements
The JDBC2.0 basic standard has added scroll and parallel processing as the extended
features of result sets (ResultSet class).

(1) Scroll types
There are three different scroll types for result sets:

(a) Forward-only type
This is the standard scroll type from JDBC1.0. It allows a result set to be scrolled in
the forward direction only (from top to bottom).

(b) Scroll-insensitive type
This is a new scroll type added with JDBC2.0. It allows a result set to be scrolled in a
forward or backward direction. It also allows a movement specifying a location
relative to the current location or a movement to an absolute location.
Scroll-insensitive means that a change made while a result set is open does not take
effect on the result set. In other words, the scroll-insensitive type provides a static view
of base data. The rows contained in a result set, their order, and column values are all
fixed when the result set is created.

(c) Scroll-sensitive type
This is a new scroll type added with JDBC2.0. While a result set is open, any change
made takes effect on the result set.
Changes that take effect may be made directly to the current result set, or made by
another result set within the same transaction, or made by another transaction. The
number of changes applied depends on the driver's implementation level and DBMS
transaction cut-off level.

(2) Parallel processing type
There are two different parallel processing types for result sets:

(a) Read-only type
This is the standard parallel processing type from JDBC1.0. It does not allow data to
be updated from its result set.

(b) Updatable type
This is a new parallel processing type added with JDBC2.0. It allows data to be
updated (UPDATE, INSERT, and DELETE) from its result set.

16. Type2 JDBC Driver

1081

(3) Types of result set
When the scroll type and parallel processing type are combined, there are six result set
types. Specify the result set type to acquire an instance of the Statement class (or its
subclass) using the createStatement method, prepareStatement method, or
prepareCall method of the Connection class.
Table 16-5 shows the availability of the result set type when you use the JDBC driver.

Table 16-5: Availability of result set types with JDBC driver

Legend:
A: Available.
NA: Not available.

Notes

1. An error occurs if an unavailable result set is specified. In this case, the
JDBC driver creates an instance of the Statement class (or its subclass)
using the result set that is closest to the specified type, then stores a warning
message in SQLWarning of the Connection class.

2. Some of the methods in the ResultSet class are not available because the
JDBC driver does not provide the updatable parallel processing type. If such
an unavailable method is called, the JDBC driver unconditionally throws an
SQLException. For details about the unavailable methods, see 16.13
Classes and methods with limitations.

(4) Notes about using scroll-type result sets
A scroll-type result set caches all retrieval data in the JDBC driver. If there is a large
amount of data, a memory shortage or performance reduction may occur. Therefore, to
use a scroll-type result set, you must suppress the retrieval data volume in advance by
adding a condition to an SQL statement, for example.

Result set type Availability with JDBC driver

Scroll type Parallel processing type

Forward-only Read-only A

Updatable NA

Scroll-insensitive Read-only A

Updatable NA

Scroll-sensitive Read-only NA

Updatable NA

16. Type2 JDBC Driver

1082

16.3.2 Batch updating
The JDBC2.0 basic standard adds the batch updating feature to the Statement,
PreparedStatement, and CallableStatement classes. The batch update facility
enables multiple SQL statements or multiple parameter values to be registered for
batch execution.
To use the batch update facility, you need to set the Connection class's AUTO commit
mode to off. This is because, if an error occurs during the batch updating, the
application needs to control the transaction's validity. If the AUTO commit mode is on
(initial status) and an error occurs during the batch updating, the SQL execution
immediately preceding the error takes effect.
When you execute batch updating, you can use HiRDB facilities using arrays.
The facilities using arrays are useful for updating a large amount of HiRDB data at
high speed. For details about the facilities using arrays, see 4.8 Facilities using arrays.
Notes about using the facilities using arrays

1. The facilities using arrays are supported by HiRDB version 07-01 or later.
2. During Connect, you must specify the BLOCK_UPDATE=TRUE property (if

DataSource is used, specify setBlockUpdate(true)) or
setBlockUpdate(true) in JdbcDbpsvPreparedStatement.

3. If you specify the HiRDB_for_Java_BLOCK_UPDATE=TRUE system
property, you can enable the array facilities. For details about
HiRDB_for_Java_BLOCK_UPDATE, see BLOCK_UPDATE in Table 16-3.

4. The SQL statement to be executed must contain at least one ? parameter (this
does not apply to stored procedures). Additionally, you must use the
addBatch() method of the CallableStatement class or the
PreparedStatement class (using the addBatch(String sql) method
of the Statement class results in a HiRDB error).
Executable SQL statements include INSERT, UPDATE, and DELETE. All
other SQL statements are executed sequentially, not in batch mode.

5. There must be two or more parameter sets that have been registered by the
addBatch() method. If there is only one parameter set, it is processed
normally, not in batch mode. If there are more than 30,000 parameter sets,
each group of 30,000 parameter sets is executed at one time.

6. If the length of BINARY data specified in the ? parameter is 32,001 bytes or
greater, sequential execution takes place because facilities using arrays are
not applied.

7. If the length of data specified for HiRDB BLOB-type columns is 32,001 bytes
or greater, sequential execution takes place because facilities using arrays are

16. Type2 JDBC Driver

1083

not applied.2

8. Make sure that the same data type is specified for each and every column.1

9. When DECIMAL-type data is inserted, the precision and scaling of the
DECIMAL-type data specified for array are replaced by HiRDB's table
definition attributes. If the length of integer part of the DECIMAL-type data
specified for array is greater than that of the HiRDB table definition attribute,
an overflow occurs, resulting in an error.

10. If you specify HiRDB's repetition column in the ? parameter, you cannot use
the facilities using arrays.

11. If an error occurs during batch updating with facilities using arrays, the
execution results immediately preceding the error are ignored.

12. Facilities using arrays cannot be used from the basic Cosminexus J2EE
server mode.

13. When facilities using arrays are used from Cosminexus, the
setBlockUpdate method of PreparedStatement is not available.

14. When a large amount of data is updated using the addBatch function, a
large amount of Java memory is used. Depending on the performance of Java
memory, the advantages of batch updating may not be obtained. When you
use a large amount of data, specify a heap size at the start of Java (java
-Xms32m JavaUP: set the Java heap at the start of Java to 32 megabytes).

1 For example, if you use setInt() to specify the first addBatch for the column
1 data, you must also use setInt() for the subsequent addBatch.
2 If you use facilities using arrays and specify the ? parameter for HiRDB's
BLOB-type columns, note the following:

• If the length of data specified in the ? parameter is less than 32,001
bytes, the data is treated as BINARY-type data in the JDBC driver,
thereby executing facilities using arrays. If the length is 32,001 bytes or
greater, facilities using arrays are not executed.

(1) Batch updating with the Statement class
Following are notes about batch updating with the Statement class:

• Use the addBatch method to register multiple updating SQL statements.
• Use the executeBatch method to execute the registered updating SQL

statements in batch mode.
• An array of the number of rows updated by each updating SQL statement is

returned as the batch execution result.

16. Type2 JDBC Driver

1084

• If an error occurs during batch execution, the JDBC driver throws a
BatchUpdateException.

• If a retrieval SQL statement is registered, the JDBC driver throws a
BatchUpdateException when calling the executeBatch method.

The JDBC driver executes registered SQL statements sequentially because it cannot
execute them in batch mode.

(2) Batch updating with the PreparedStatement class
Following are notes about batch updating with the PreparedStatement class:

• Use a normal procedure (setXXX method) to specify the ? parameter for an
updating SQL statement that is specified during the creation of a
PreparedStatement instance.

• Use the addBatch method to register ? parameter sets.
• Use the executeBatch method to execute the registered multiple? parameter

sets in batch mode.
• An array of the number of rows updated by each ? parameter set is returned as the

batch execution result.
• If an error occurs during batch execution, the JDBC driver throws a

BatchUpdateException.
• If a retrieval SQL statement is specified during the creation of a

PreparedStatement instance, the JDBC driver throws a
BatchUpdateException when calling the executeBatch method.

When facilities using arrays are used, the JDBC driver can execute multiple lines of ?
parameters in batch mode. When facilities using arrays are not used, multiple lines of
? parameters are executed sequentially.
Notes

• If you use HiRDB facilities using arrays, see the notes in 16.3.2 Batch
updating.

• In the second or subsequent addBatch, if there are not enough parameters
to be specified in the setXXX method, the previous values are inherited. The
following shows an example.

Example: When there are 2 INTEGER-type columns (columns 1 and 2)

prepstmt.setInt(1,100);
prepstmt.setInt(2,100);
prepstmt.addBatch();
prepstmt.setInt(1,200);
prepstmt.addBatch();

16. Type2 JDBC Driver

1085

prepstmt.executeBatch();

Explanation
• The values that are set in the first addBatch are 100 for both columns

1 and 2.
If there are not enough parameters in the first addBatch, an error
occurs.

• The values that are set in the second addBatch are 200 for column 1
and 100 for column 2.
Because information for column 2 has not been updated by the second
addBatch, information for the first addBatch is inherited.

(3) Batch updating with the CallableStatement class
Following are notes about batch updating with the CallableStatement class:

• Use a normal procedure (setXXX method) to specify input parameters for the
Java stored routine that is specified during the creation of a
CallableStatement instance.

• Use the addBatch method to register input parameter sets.
• Use the executeBatch method to execute the registered multiple input

parameter sets in batch mode.
• An array of the values (number of updated rows) that are returned by the Java

stored routine executed by each input parameter set is returned as the batch
execution result.

• If an error occurs during batch execution, the JDBC driver throws a
BatchUpdateException.

• If the Java stored routine specified during the creation of a CallableStatement
instance does not return the number of updated rows, the JDBC driver throws a
BatchUpdateException when calling the executeBatch method.

• If the Java stored routine specified during the creation of a CallableStatement
instance has an output parameter or input/output parameter, the JDBC driver
throws a BatchUpdateException when calling the addBatch method.

The JDBC driver cannot execute multiple lines of ? parameters in stored procedures;
therefore, multiple lines of ? parameters in stored procedures are executed
sequentially.
Notes

• Batch updating of stored procedures is supported only for the IN parameter.
If an OUT parameter, INOUT parameter, or result set (ResultSet) is used, an

16. Type2 JDBC Driver

1086

error results.
• In the case of a stored procedure that returns a result set (ResultSet),

whether or not it returns a result set is unknown until the stored procedure is
executed during batch updating. Therefore, if data is updated within the
stored procedure, updated information may be applied.1

• Facilities using arrays are not supported in stored procedures. They are
supported only in the SQL statements with ? parameters.

• In the second or subsequent addBatch, if there are not enough parameters
to be specified in the setXXX method, the previous values are inherited.2

• If you use the facilities using arrays, see the notes in 16.3.2 Batch updating.
1 For example, if a stored procedure that searches and acquires the result of
updating is executed during batch updating, BatchUpdateException occurs,
but updated information may still be applied.
2 Example: When there are 2 INTEGER-type columns (columns 1 and 2)

callstmt.setInt(1,100);
callstmt.setInt(2,100);
callstmt.addBatch();
callstmt.setInt(1,200);
callstmt.addBatch();
callstmt.executeBatch();

Explanation
• The values that are set in the first addBatch are 100 for both columns

1 and 2.
If there are not enough parameters in the first addBatch, an error
occurs.

• The values that are set in the second addBatch are 200 for column 1
and 100 for column 2.
Because information for column 2 has not been updated by the second
addBatch, information for the first addBatch is inherited.

16.3.3 Added data types
Several new JDBC SQL types have been added to JDBC2.0 basic standard. They are
as follows:

• BLOB
• CLOB

16. Type2 JDBC Driver

1087

• ARRAY
• REF
• DISTINCT
• STRUCT
• JAVA OBJECT

Note that the JDBC driver can use only the ARRAY JDBC SQL type.
(1) Data mapping during retrieval data acquisition

Tables 16-6 and 16-7 show the mapping between the getXXX methods and JDBC SQL
types of ResultSet and CallableStatement.
If a getXXX method is called for an unsupported JDBC SQL type, the JDBC driver
throws an SQLException. For details about the JDBC SQL types supported by the
connected database, see 16.12 Data types and character codes.
Note that the getCharacterStream method has been added because the
getUnicodeStream method is no longer recommended in the JDBC2.0 basic
standard.

Table 16-6: Mapping between the getXXX methods and JDBC SQL types of
ResultSet and CallableStatement (1/2)

getXXX method JDBC SQL type

SMALLINT INTEGER FLOAT REAL DECIMAL CHAR

getByte M M M M M M2

getShort R M M M M M2

getInt M R M M M M2

getLong M M M M M M2

getFloat M M M R M M2

getDouble M M R M M M2

getBigDecimal M M M M R M2

getBoolean M M M M M M

getString M M M M M R

getBytes

getDate M2

16. Type2 JDBC Driver

1088

Legend:
R: Mapping is recommended.
M: Can be mapped.

: Cannot be mapped.
1 Not supported by the JDBC driver.
2 When the data from the character string is converted, any single-byte spaces that
precede or follow the character string data acquired from the database are stripped,
before the data is converted to the Java data type that is to be returned by the getXXX
method.
Note the following when you convert data to a Java data type:

• If there is an expression following the decimal point in text string data and
the getByte, getInt, getShort, or getLong method is executed, the
data following the decimal point is truncated and only the integer digits are
converted and returned.

• If character string data contains double-byte characters, the method throws
an SQLException. Double-byte characters include double-byte spaces
filled when a character string shorter than the definition length of a column

getTime M2

getTimestamp M2

getAsciiStream M

getUnicodeStream M

getBinaryStream

getObject M M M M M M

getCharacterStream M

getArray

getBlob

getClob1

getRef1

getXXX method JDBC SQL type

SMALLINT INTEGER FLOAT REAL DECIMAL CHAR

16. Type2 JDBC Driver

1089

is stored in an NCHAR column.
• If overflow occurs when character string data is converted to the Java data

type, the method throws an SQLException.
• If the execution environment of the UAP is JDK or JRE 1.2 and the character

string data uses exponential notation (such as 1.23E-23) and the getLong
method or getBigDecimal method is executed, the method throws an
SQLException.

Table 16-7: Mapping between the getXXX methods and JDBC SQL types of
ResultSet and CallableStatement (2/2)

getXXX method JDBC SQL type

VARCHA
R

DATE TIME TIMESTAMP LONGVARBI
NARY

ARRAY

getByte M2

getShort M2

getInt M2

getLong M2

getFloat M2

getDouble M2

getBigDecimal M2

getBoolean M2

getString R M M M M

getBytes M

getDate M2 R3 M

getTime M2 R M

getTimestamp M2 M R

getAsciiStream M M

getUnicodeStream M M

getBinaryStream R

getObject M M M M M M

16. Type2 JDBC Driver

1090

Legend:
R: Mapping is recommended.
M: Can be mapped.

: Cannot be mapped.
1 Not supported by the JDBC driver.
2 In data conversion from character string data, any single-byte spaces that exist before
and after the character string data is acquired from the database are removed, and then
the data is converted to the Java data type returned by the getXXX method.
Note the following when you convert data to a Java data type:

• If there is an expression following the decimal point in text string data and
the getByte, getInt, getShort, or getLong method is executed, the
data following the decimal point is truncated and only the integer digits are
converted and returned.

• If character string data contains double-byte characters, the method throws
an SQLException. Double-byte characters include double-byte spaces
filled when a character string shorter than the definition length of a column
is stored in an NCHAR column.

• If overflow occurs when character string data is converted to the Java data
type, the method throws an SQLException.

• If the execution environment of the UAP is JDK or JRE 1.2 and the character
string data uses exponential notation (such as 1.23E-23) and the getLong
method or getBigDecimal method is executed, the method throws an
SQLException.

3 When the JDBC SQL type is the DATA type and conversion is executed by specifying
a java.util.Calendar object for the setDate method, the specified

getCharacterStream M M

getArray R

getBlob M

getClob1

getRef1

getXXX method JDBC SQL type

VARCHA
R

DATE TIME TIMESTAMP LONGVARBI
NARY

ARRAY

16. Type2 JDBC Driver

1091

java.util.Calendar object is used for data conversion, time data is truncated, and
only date data is stored in the database. In such a case, even if you specify the
java.util.Calendar object for the getDate method to acquire the data stored
using the setDate method, a different date than the date specified for the setDate
method may be acquired.
Example:

The following is an example of when a java.util.Calendar object using
Universal Time (UTC) is specified for the setDate and getDate methods in a
UAP that uses Japanese standard time as the default time zone.
When you specify a java.sql.Date object that represents 2005-10-03 for the
setDate method and then execute it, the JDBC driver adds 00:00:00 in the
time part, and then stores the date part as 2005-10-02 in the database by
delaying 9 hours because of the time zone difference. If this data is acquired using
the getDate method, the date part 2005-10-02 is acquired from the database
and 00:00:00 is added for the time part, and then 2005-10-02 09:00:00 is
set by advancing 9 hours because of the time zone difference. Because of this,
2005-10-02 is set in the java.sql.Date object return value of the getDate
method, which is different from the 2005-10-03 date specified for the setDate
method.

(2) Data mapping when the ? parameter is specified
Table 16-8 shows setXXX methods and JDBC SQL types to be mapped for the
PreparedStatement class and CallableStatement. For an unsupported JDBC
SQL type, the setXXX method throws an SQLException. For details about the JDBC
SQL types supported by the connected database, see 16.12 Data types and character
codes.
Note that the setCharacterStream method has been added because the
setUnicodeStream method is no longer recommended in the JDBC2.0 basic
standard.

Table 16-8: setXXX methods and JDBC SQL types to be mapped for
PreparedStatement class

PreparedStatement class's setXXX method JDBC SQL type to be mapped

setCharacterStream CHAR, VARCHAR, or LONGVARCHAR

SetRef* REF

setBlob LONGVARBINARY

setClob* CLOB

setArray ARRAY

16. Type2 JDBC Driver

1092

* Not supported by the JDBC driver.
Tables 16-9 and 16-10 show the mapping between the setXXX methods and JDBC
SQL types of PreparedStatement and CallableStatement.

Table 16-9: Mapping between the setXXX methods and JDBC SQL types of
PreparedStatement and CallableStatement (1/2)

setXXX method JDBC SQL type

SMALLINT INTEGER FLOAT REAL DECIMAL CHAR

setByte M M M M M M

setShort R M M M M M

setInt M R M M M M

setLong M M M M M M

setFloat M M M R M M

setDouble M M R M M M

setBigDecimal M M M M R M

setBoolean M M M M M M

setString M M M M M R

setBytes

setDate M

setTime M

setTimestamp M

setAsciiStream M

setUnicodeStream M

setBinaryStream

setObject M M M M M M

setCharacterStream M

setArray

setBlob

setClob*

setRef*

16. Type2 JDBC Driver

1093

Legend:
R: Mapping is recommended.
M: Can be mapped. Note that data may be missing or a conversion error may
occur depending on the format of source data.

: Cannot be mapped.
* Not supported by the JDBC driver.

Table 16-10: Mapping between the setXXX methods and JDBC SQL types of
PreparedStatement and CallableStatement (2/2)

setXXX method JDBC SQL type

VARCHAR DATE TIME TIMESTAMP LONGVARBINARY ARRAY

setByte M

setShort M

setInt M

setLong M

setFloat M

setDouble M

setBigDecimal M

setBoolean M

setString R M M M M

setBytes M

setDate M R2 M

setTime M R M

setTimestamp M M R

setAsciiStream M M

setUnicodeStre
am

M M

setBinaryStrea
m

R

setObject M M M M M M

16. Type2 JDBC Driver

1094

Legend:
R: Mapping is recommended.
M: Can be mapped. Note that data may be missing or a conversion error may
occur depending on the format of source data.

: Cannot be mapped.
1 Not supported by the JDBC driver.
2 When the JDBC SQL type is the DATA type and conversion is executed by specifying
a java.util.Calendar object for the setDate method, the specified
java.util.Calendar object is used for data conversion, time data is truncated, and
only date data is stored in the database. In such a case, even if you specify the
java.util.Calendar object for the getDate method to acquire the data stored
using the setDate method, a different date than the date specified for the setDate
method may be acquired.
Example:

The following is an example of what happens when a java.util.Calendar
object using Universal Time (UTC) is specified for the setDate and getDate
methods in a UAP that uses Japanese standard time as the default time zone.
When you specify a java.sql.Date object that represents 2005-10-03 for the
setDate method, and then execute it, the JDBC driver adds 00:00:00 in the
time part and then stores the date part as 2005-10-02 in the database by delaying
9 hours because of the time zone difference. If this data is acquired using the
getDate method, the date part 2005-10-02 is acquired from the database and
00:00:00 is added for the time part, and then 2005-10-02 09:00:00 is set by
advancing 9 hours because of the time zone difference. Because of this,
2005-10-02 is set in the java.sql.Date object return value of the getDate
method, which is different from the 2005-10-03 date specified for the setDate

setCharacterSt
ream

M M

setArray R

setBlob M

setClob1

setRef1

setXXX method JDBC SQL type

VARCHAR DATE TIME TIMESTAMP LONGVARBINARY ARRAY

16. Type2 JDBC Driver

1095

method.

16. Type2 JDBC Driver

1096

16.4 JDBC2.0 Optional Package

16.4.1 Database connection using DataSource and JNDI
Database connection using DataSource and JNDI can now be used by the JDBC2.0
Optional Package.
Although it is not essential to use JNDI, using it offers a benefit in that you need to
specify the connection information only once. Because DataSource class interface
definition and JNDI are not included in JDK as standard features, you need to obtain
them from the JavaSoft web site when developing application programs.
To connect to a database using DataSource and JNDI:
1. Create a DataSource object.
2. Set up connection information.
3. Register DataSource in JNDI.
4. Obtain DataSource from JNDI.
5. Connect to the database.
If you do not use JNDI, the operations in Steps 3 and 4 are unnecessary.
If you use JNDI, execute the operations in Steps 1 through 3 only once. Afterwards,
you can connect to the database by performing the operations in Steps 4 and 5 only.
Furthermore, after the operation in Step 4, you can modify the connection information
as needed.

(1) Creating a DataSource object
Generate the DataSource class objects provided by the JDBC driver.
The DataSource class name of the JDBC driver required to generate the
DataSource class objects is JdbhDataSource.
A DataSource class object creation example follows:

(2) Setting up connection information
Call up a connection information setup method for the DataSource object and set up
connection information. Because a connection information acquisition method can
also be used, you can also check the current connection information. For details on the
connection information setup/acquisition method, see 16.11 Connection information
setup/acquisition interface.

 JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource ds = null ;
 ds = new JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource() ;

16. Type2 JDBC Driver

1097

(3) Registering DataSource in JNDI
Register the DataSource object in JNDI.
In JNDI, you can select a service provider from several that are available.
An example of obtaining a DataSource object in JNDI is shown as follows (for
Windows). Note that this obtaining example uses File System, which is one of the
service providers. For information on other service providers, see the JNDI
documentation.

Note that the JDBC2.0 specification recommends that the logical name to be registered
in JNDI be registered under a subcontext called jdbc (jdbc/TestDataSource in
the registration example).

(4) Obtaining DataSource from JNDI
Obtain the DataSource object from JNDI.
An example of obtaining a DataSource object from JNDI is shown as follows (for
Windows). Note that this obtaining example uses File System, which is one of service
providers. For information on other service providers, see the JNDI documentation.

 // Generate a DataSource class object provided by the JDBC driver.
JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource ds;
ds = new JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource();

 // Specify connection information.
 ...

 // Obtain system properties.
 Properties sys_prop = System.getProperties() ;

 // Set up properties for the File System service provider.
 sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

 // Set up the directory to be used by the File System service provider.
 // (In this case, the directory is registered under c:\JNDI_DIR.)
 sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

 // Update the system properties.
 System.setProperties(sys_prop) ;

 // Initialize JNDI.
 Context ctx = new InitialContext();

 // Register a DataSource class object provided by the HiRDB driver in JNDI
 // under a logical name called jdbc/TestDataSource.
 ctx.bind("jdbc" + "\\" + "TestDataSource", ds);
 ...

16. Type2 JDBC Driver

1098

(5) Connecting to the database
Invoke the getConnection method for the DataSource object.
An example of calling the getConnection method follows:

* The method's arguments (authorization identifier and password) take precedence
over the connection information set for the DataSource objects. If the necessary
connection information is not set for the DataSource object and the connection
information is invalid or connection with the HiRDB server fails, the
getConnection method throws an SQLException.
You can set connection information again as necessary after the Datasource object
is obtained from JNDI. In such a case, you must cast the Datasource object to the
DataSource class type provided by the JDBC driver and then set the connection

 // Obtain system properties.
 Properties sys_prop = System.getProperties() ;

 // Set up properties for the File System service provider.
 sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

 // Set up the directory to be used by the File System service provider.
 // (In this case, the directory is registered under c:\JNDI_DIR.)
 sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

 // Update the system properties.
 System.setProperties(sys_prop) ;

 // Initialize JNDI.
 Context ctx = new InitialContext();

 // Obtain an object with a logical name jdbc/TestDataSource from JNDI.
 Object obj = ctx.lookup("jdbc" + "\\" + "TestDataSource") ;

 // Cast the extracted object into the DataSource class type.
 DataSource ds = (DataSource)obj;
 ...

 DataSource ds

 // Obtain a DataSource object from JNDI.
 ...

 // Issue the getConnection method.
 Connection con = ds.getConnection();
 or
 Connection con = ds.getConnection("USERID", "PASSWORD");*

16. Type2 JDBC Driver

1099

information.

16.4.2 Connection pooling
A function is provided in the JDBC2.0 Optional Package for pooling connections to a
database. An overview of connection pooling is provided below:

• Connection pooling has no effect on existing applications. This means that
applications do not need to be aware of connection pooling. However, this
assumes that the database is not connected by DriverManager, but rather by
DataSource and JNDI provided by the JDBC2.0 Optional Package.

• The connection pooling function itself is outside the functional scope of the JDBC
specifications. This is intended to allow the user to select a desired connection
pooling function when building a system (the user can create one, use one
provided by an APServer vendor, or use one provided by a JDBC vendor).

• With the connection pooling function, the Datasource class can be used as an
interface with applications. This DataSource class is different from the
DataSource class provided by the JDBC driver.

• With the JDBC driver, the ConnectionPoolDataSource class and
PooledConnection class can be used as an interface with the connection
pooling function.

• The ConnectionPoolDataSource class provided by the JDBC driver can use
the connection information setting and acquisition methods in the same way as the
Datasource class provided by the JDBC driver.

Table 16-11 shows classes related to connection pooling.

 DataSource ds
 JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource hirdb_ds;

 // Obtain a DataSource object from JNDI.
 ...

 // Cast the DataSource object to the DataSource class type provided by the JDBC driver.
 dbp_ds = (JP.co.Hitachi.soft.HiRDB.JDBC.JdbhDataSource)ds;

 // Reset the connection information.
 ...

16. Type2 JDBC Driver

1100

Table 16-11: Classes related to connection pools

Depending on the JDK version, the interface definition of the classes shown in Table
16-11 might not be included in the JDK standard; you will need to check the JavaSoft
website if you intend to use the connection pooling function.
The following are the package name and class names of the classes provided by the
JDBC driver and shown in Table 16-11.
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
ConnectionPoolDataSource class name: JdbhConnectionPoolDataSource
PooledConnection class name: JdbhPooledConnection
Note that the setting of the connection information of the
ConnectionPoolDataSource class provided by the JDBC driver is the same as the
setting of the connection information of the DataSource class provided by the JDBC
driver.

Class Overview

javax.sql.DataSource • Provided by a connection pooling function.
• Used as the interface to applications during database

connection.
• Normally, connection pools are controlled in this class.
• Normally, registered in JNDI for use.
• Different from the DataSource class provided by the

JDBC driver.

javax.sql.ConnectionPoolDataSource • Provided by the JDBC driver.
• Can use a method for setting/acquiring connection

information necessary for database connection.
• Normally not used directly from an application, and is used

by a connection pooling function.
• Normally, registered in JNDI for use.
• A connection pooling function acquires a

PooledConnection object from this class of objects.

javax.sql.PooledConnection • Provided by the JDBC driver.
• Normally not used directly from an application, and is used

by a connection pooling function.
• A connection pooling function targets this class of objects

for pooling.
• A connection pooling function acquires a Connection

object to be used by an application from this class of objects.

javax.sql.ConnectionEventListener • Provided by a connection pooling function.
• A connection pooling function senses a connection pooling

trigger by detecting a disconnection or SQL error through
this class of objects.

16. Type2 JDBC Driver

1101

16.4.3 Distributed transactions
In the JDBC2.0 Optional Package, distributed transactions in cooperation with the
transaction manager (TM) based on the XA standard of X/Open are defined as an
extension of the connection pooling function. The following provides an overview of
distributed transactions:

• Connection pooling has almost no effect on existing applications. However, there
are certain restrictions, such as that direct commit is not allowed. Also, as with
connection pooling, it is a precondition that database connection is not performed
by using DriverManager, but rather by using DataSource and JNDI
introduced by the JDBC2.0 Optional Package.

• As with connection pooling, the transaction linkage function for linking with a
TM is outside the functional scope of the JDBC specifications.

• Normally, a transaction linkage function is installed as an extension of a
connection pooling function, and uses TM-provided JTA and JTS as the interface
with the TM. Note that operations complying with JTA standard 1.0 are not
guaranteed.

• In the transaction linkage facility, as with connection pooling, the DataSource
class can be used as the interface with applications. This DataSource class is
different from the one provided by the JDBC driver.

• The JDBC driver can use the XADataSource class and XAConnection class as
an interface with the transaction linkage facility. Also, the JDBC driver can use
XAResource class as an interface with TM.

• As with the DataSource class provided by the JDBC driver, the XADataSource
class provided by the JDBC driver can use the connection information setting/
acquisition methods.

As with connection pooling, Connection objects used by applications are generated
by the XAConnection class. However, there are certain differences compared with
the Connection objects generated by the DataSource class provided by the
PooledConnection class or JDBC driver.

• The method of invoking a commit method or rollback method for the
Connection class is based on an SQLException. That is, an application cannot
directly complete a transaction.

• The default mode for AutoCommit is OFF.
• Issuance of a Connection class's setAutoCommit (true) method that turns

on the AutoCommit mode results in an SQLException.
Table 16-12 lists the classes related to distributed transactions.

16. Type2 JDBC Driver

1102

Table 16-12: Classes related to distributed transactions

Because the interface definition of the classes listed in Table 16-12 is not included in
JDK as a standard feature, you must acquire them from the JavaSoft website when you
develop a transaction linkage facility.
The following are the package names and class names of the classes provided by the
JDBC driver and shown in Table 16-12.

Class Overview

javax.sql.DataSource • Provided by a transaction linkage function.
• Used as the interface to applications during database

connection.
• Normally, linkage to a TM and connection pools are controlled

in this class.
• Normally, registered in JNDI for use.
• Different from the DataSource class provided by the JDBC

driver.

javax.sql.XADataSource • Provided by the JDBC driver.
• Can use a method for setting/acquiring connection information

necessary for database connection.
• Normally not used directly from an application, and is used by

a transaction linkage function.
• Normally, registered in JNDI for use.
• A transaction linkage function acquires an XAConnection

object from this class of objects.

javax.sql.XAConnection • Provided by the JDBC driver.
• This is a subclass of the PooledConnection class. That is, it

inherits all methods related to connection pooling.
• Normally not used directly from an application, and is used by

a transaction linkage function.
• A transaction linkage function targets this class of objects for

pooling.
• A transaction linkage function acquires a Connection object

to be used by an application from this class of objects.

javax.sql.ConnectionEventListene
r

• Provided by a transaction linkage function.
• A transaction linkage function senses a connection pooling

trigger by detecting a disconnection or SQL error through this
class of objects.

javax.transaction.xa.XAResource • Provided by the JDBC driver.
• Can use the XA-related methods used by a TM.

javax.transaction.xa.Xid • Provided by the JDBC driver and TM.
• Used as the argument/return value of an XAResource class

method.

16. Type2 JDBC Driver

1103

Package name: JP.co.Hitachi.soft.HiRDB.JDBC
XADataSource class name: JdbhXADataSource
XAConnection class name: JdbhXAConnection
XAResource class name: JdbhXAResource
Xid class name: JdbhXid
Note that the setting of the connection information of the XADataSource class
provided by the JDBC driver is the same as the setting of the connection information
of the DataSource class provided by the JDBC driver.

16. Type2 JDBC Driver

1104

16.5 JAR file access facility

To use a Java stored routine, you need to register the JAR file in HiRDB. This
processing takes place via the JDBC driver.
This section explains the class and method names used to register, delete, and
re-register JAR files.

16.5.1 Class name
The class name follows:
JP.co.Hitachi.soft.HiRDB.JDBC.Jdbh_JARAccess

16.5.2 Method name
(1) Registering a JAR file in HiRDB

(a) Format

(b) Arguments
con

Specifies a Java.sql.Connection object to register the JAR file.
JarName

Specifies the name of the JAR file.
Specify either the absolute path name or relative path name. You cannot specify
a file located in another server machine, nor a wildcard.

(c) Return value
None.

(d) Exception
SQLException

A database access error occurred.
(e) Function

This method registers the specified JAR file in HiRDB using the
Java.sql.Connection object. If HiRDB already contains a file with the same
name, an error occurs.

public void Jdbh_JARInstall(java.sql.Connection con,
 String JarName)

16. Type2 JDBC Driver

1105

(2) Deleting a JAR file from HiRDB
(a) Format

(b) Arguments
con

Specifies a Java.sql.Connection object to delete the JAR file.
JarName

Specifies the name of the JAR file.
You cannot specify an absolute path name, nor a relative path name, nor a
wildcard.

(c) Return value
None.

(d) Exception
SQLException

A database access error occurred.
(e) Function

This method deletes the specified JAR file from HiRDB using the
Java.sql.Connection object.

(3) Re-registering a JAR file in HiRDB
(a) Format

(b) Arguments
con

Specifies a Java.sql.Connection object to re-register the JAR file.
JarName

Specifies the name of the JAR file.
You cannot specify an absolute path name, nor a relative path name, nor a
wildcard.

public void Jdbh_JARUnInstall(java.sql.Connection con,
 String JarName)

public void Jdbh_JARReInstall(java.sql.Connection con,
 String JarName)

16. Type2 JDBC Driver

1106

(c) Return value
None.

(d) Exception
SQLException

A database access error occurred.
(e) Function

This method re-registers the specified JAR file in HiRDB using the
Java.sql.Connection object. If HiRDB already contains a file with the same
name, it is overwritten (an error does not occur).

16. Type2 JDBC Driver

1107

16.6 Array class

The JDBC driver can access repetition columns using the Array class. Note the
following when using each method:

(1) getArray
• MAP cannot be used.
• Table 16-13 shows the object types returned by this method.

Table 16-13: Object types returned by getArray

(2) getResultSet
• MAP cannot be used.
• The result set returned by this method includes one row in each array element, and

each row has two columns. The second column stores the value of the element,
while the first column stores the index of the corresponding element inside the
array (the index of the first array element is 1). Rows are arranged in ascending
order based on the indexes.

HiRDB data type Object type

INTEGER java.lang.Integer[]

SMALLINT java.lang.Short[]

DECIMAL java.math.BigDecimal[]

FLOAT, DOUBLE PRECISION java.lang.Double[]

SMALLFLT, REAL java.lang.Float[]

CHAR java.lang.String[]

VARCHAR java.lang.String[]

NCHAR java.lang.String[]

NVARCHAR java.lang.String[]

MCHAR java.lang.String[]

MVARCHAR java.lang.String[]

DATE java.sql.Date[]

TIME java.sql.Time[]

TIMESTAMP java.sql.Timestamp[]

16. Type2 JDBC Driver

1108

• Closing a statement also closes the result returned by this method.
• Table 16-14 shows the attribute values of the result sets returned by this method.

Table 16-14: Attribute values of the result sets returned by getResultSet

ResultSetMetaData class
method name

Values returned by the method

First column Second column

getCatalogName null null

getColumnClassName java.lang.Integer Depends on the database column
attribute.

getColumnDisplaySize 10 Depends on the database column
length.

getColumnLabel JDBC_Array_Index Depends on the database column
name.

getColumnName

getColumnType java.sql.Types.INTEGER Depends on the database column
attribute.

getColumnTypeName INTEGER

getPrecision 10 Depends on the database column
attribute and column length.

getScale 0

getSchemaName null null

getTableName

isAutoIncrement true false

isCaseSensitive false Depends on the database column
attribute.

isCurrency false

isDefinitelyWritable

isNullable java.sql.ResultSetMetaData.
columnNoNulls

Depends on the database column
attribute.

isReadOnly true false

isSearchable false true

isSigned Depends on the database column
attribute.

isWritable false

16. Type2 JDBC Driver

1109

16.7 Specifying a value when using a repetition column as the ?
parameter

This section explains how to specify a value when using a repetition column as the ?
parameter.
To specify a value for the ? parameter, use the setObject method to specify an object
in the class in which the Array interface was installed or a column object.

(1) Specifying an object in the class in which the Array interface was installed
• Create an object in the class in which the Array interface was installed, and use

the setArray or setObject method to specify that object.
• The JDBC driver uses the Array.getBaseType method to check the data type

of that object. If the data type of the database turns out to be different from the
data type of the object, the JDBC driver throws an SQLException. For details
on database and object data types, see 16.12.1 Data types.

• The actual data is acquired using the Array.getArray() method without any
argument. Table 16-15 shows the object types that must be returned during this
data acquisition. If the object type returned is different from those shown in Table
16-15, the JDBC driver throws an SQLException.
Table 16-15: Object types returned during data acquisition using the
Array.getArray() method without any argument

Data type returned by the
Array.getBaseType method

Object types returned during data acquisition
using the Array.getArray() method without any

argument

java.sql.Types.INTEGER int[] or java.lang.Integer[]

java.sql.Types.SMALLINT short[] or java.lang.Short[]

java.sql.Types.DECIMAL java.math.BigDecimal[]

java.sql.Types.FLOAT double[] or java.lang.Double[]

java.sql.Types.REAL float[] or java.lang.Float[]

java.sql.Types.CHAR java.lang.String[]

java.sql.Types.VARCHAR java.lang.String[]

java.sql.Types.DATE java.sql.Date[]

java.sql.Types.TIME java.sql.Time[]

java.sql.Types.LONGVARBINARY java.io.DataInputStream[]

16. Type2 JDBC Driver

1110

(2) Using the setObject method to specify an array object
• If the database data type is different from the array object data type, the JDBC

driver throws an SQLException.
• If the data type of the SQL statement specified by the setObject method and the

data type of the array object are different from those shown in Table 16-16, the
JDBC driver throws an SQLException.
Table 16-16: Data type of the SQL statement specified by the setObject method
and the data type of the array object

(3) Relationship between repetition column elements and the object specified as
the ? parameter

The sequence of the array objects obtained by the Array.getArray() method from
the objects in the class in which the Array interface was installed is the same as the
sequence of the repetition columns. Consequently, the first element of the array object
becomes the first element of the repetition column, and the second element of the array
object becomes the second element of the repetition column.

java.sql.Types.TIMESTAMP java.sql.Timestamp[]

Data type of the SQL statement specified
by the setObject method

Data type of the array object

java.sql.Types.INTEGER int[] or java.lang.Integer[]

java.sql.Types.SMALLINT short[] or java.lang.Short[]

java.sql.Types.DECIMAL java.math.BigDecimal[]

java.sql.Types.FLOAT double[] or java.lang.Double[]

java.sql.Types.REAL float[] or java.lang.Float[]

java.sql.Types.CHAR java.lang.String[]

java.sql.Types.VARCHAR java.lang.String[]

java.sql.Types.DATE java.sql.Date[]

java.sql.Types.TIME java.sql.Time[]

java.sql.Types.LONGVARBINARY java.io.DataInputStream[]

java.sql.Types.TIMESTAMP java.sql.Timestamp[]

Data type returned by the
Array.getBaseType method

Object types returned during data acquisition
using the Array.getArray() method without any

argument

16. Type2 JDBC Driver

1111

The same also holds true for the array objects specified by the setObject method.
You can also specify an array object consisting of only one element.

(4) Specifying a null value for an element in the middle of a repetition column
Regardless of whether an object is in the class in which the Array interface was
installed or an array object, if you specify a null value for an element in the middle of
an element, the element of the applicable array becomes null. Therefore, to set a null
value for the second element of a repetition column, specify a null value for the second
element of the array object obtained by the Array.getArray() method from the
objects in the class in which the Array interface was installed.
The same also holds true for the array objects specified by the setObject method.

16. Type2 JDBC Driver

1112

16.8 Functions provided by the HiRDB JDBC driver

This section describes the HiRDB JDBC driver functions that are not standardized by
JDBC2.0.

16.8.1 Provided class
To use the functions provided only by the HiRDB JDBC driver, you must use the
following class:

16.8.2 setBlockUpdate
(a) Function

setBlockUpdate specifies whether or not multiple parameters are to be processed at
one time when the ? parameter is used to update databases.

(b) Format

public void setBlockUpdate(boolean Mode)

(c) Arguments
boolean Mode

Specifies whether or not multiple parameter sets are to be processed at one time.
When this argument is omitted, false is assumed.
true

Processes multiple parameter sets at one time.
false

Processes one parameter set at a time.*

* During database connection, if BLOCK_UPDATE=TRUE is specified in the
argument of the getConnection method of the DriverManager class, the

Interface name Main function Class name

PreparedStatement • Executing SQL statements
with the ? parameter

• Setting values for the ?
parameter

• Statement functions (all
functions are inherited
because this is Statement's
subclass)

JdbcDbpsvPreparedStatement

16. Type2 JDBC Driver

1113

default for this function is true. Also, when
HiRDB_for_Java_BLOCK_UPDATE=TRUE is specified in the system property,
the default for this function is true.

(d) Return value
None.

(e) Functional detail
This function sets whether or not multiple parameter sets are to be processed at one
time during database updating using the ? parameter (INSERT, UPDATE, or DELETE).
Whether or not the parameter sets are actually processed at one time depends on the
method for using the facilities using arrays. For details about how to use the facilities
using arrays, see 4.8 Facilities using arrays.

(f) Exception
None.

(g) Notes
For details about how to process multiple lines of ? parameters in batch mode, see
Table 16-3 Information to be specified for Properties info and 16.3.2 Batch updating.

16.8.3 getBlockUpdate
(a) Function

This function acquires a value indicating whether or not multiple parameter sets are to
be processed at one time during database updating using the ? parameter.

(b) Format

public boolean getBlockUpdate()

(c) Arguments
None.

(d) Return value
boolean

Specifies whether or not multiple parameter sets are to be processed at one time.
When this information is omitted, false is assumed.
true

Processes multiple parameter sets at one time.
false

16. Type2 JDBC Driver

1114

Processes one parameter set at a time.*

* During database connection, if BLOCK_UPDATE=TRUE is specified in the
argument of the getConnection method of the DriverManager class, the
default for this function is true.

(e) Functional detail
This function acquires a value indicating whether or not multiple parameter sets are to
be processed at one time during database updating using the ? parameter (INSERT,
UPDATE, or DELETE).

(f) Exception
None.

16. Type2 JDBC Driver

1115

16.9 Notes on using the BLOB type

This section provides notes about the processing of methods when the BLOB type is
used.

(1) Method processing and notes
Table 16-17 describes the processing of each method.

Table 16-17: Method processing and notes

Note

If you have acquired data using the locator facility and execute
ResultSet.close() or Statement.close(), you can no longer acquire

Method name of Blob interface
class

Processing and notes

getBinaryStream Returns the InputStream class equipped with JdbhInputStream.
The maximum length of data that can be acquired is 2,147,483,639.

getBytes(long pos, int length) Returns the maximum length of data from the specified pos location
using the byte[] object. If the database contents are the null value, no
data can be acquired from the specified location; or if the data length
is 0 bytes, the method returns null. The maximum value is
2,147,483,639. If this length is exceeded, the method throws an
SQLException.

length() Returns the actual data length.

position(Blob pattern,long
start)

Executes position(pattern.getBytes(1,
(int)(pattern.length())), start). If null is specified in
pattern, the method throws a NullPointerException.

position(byte[] pattern,long
start)

Returns the position corresponding to pattern from the specified
start location. The return value is >=start. If there is no location
that corresponds to pattern, the method returns -1. The maximum
value of pattern.length is 2,147,483,639. If this value is exceeded,
the method throws an SQLException. If null is specified in
pattern, the method throws a NullPointerException.

setBinaryStream(long pos) Unconditionally throws an SQLException.

setBytes(long pos,byte[]
bytes)

setBytes(long pos,byte[]
bytes,int offset,int len)

truncate(long len)

16. Type2 JDBC Driver

1116

data.
(2) Specification method using the ? parameter

To specify a value in the ? parameter, you can use the PreparedStatement.
setBlob() and CallableStatement.setBlob() methods. This subsection
provides notes about using these methods.

(a) When using objects equipped with the Blob interface
When using the setBlob() method, you must specify an object equipped with the
Blob interface. Additionally, the UAP must create the object equipped with the Blob
interface.
JDBC uses the Blob.getBytes() method to acquire the value to be set in the
byte[] format. The following method is used to acquire the value to be used:

Blob.getBytes(1, (int)(Blob.length()))

In the UAP, the getBytes() and length() methods must return normal values.
JDBC assumes that the values returned by these methods are correct.

(b) When using the Blob object acquired by the ResultSet.getBlob() or
CallableStatement.getBlob() method
When the Blob object acquired by the ResultSet.getBlob() or
CallableStatement.getBlob() method as the execution result from JDBC is to
be used as is, operation depends on whether or not the object was acquired by using
the locator facility for access.

• When the locator facility was not used for access
The data acquired by the ResultSet.getBlob() or
CallableStatement.getBlob() method is used as the value of the ?
parameter.

• When the locator facility was used for access
When the setBlob() method is called, Blob.getBytes(1,
(int)(Blob.length())) is executed internally. The data acquired by
Blob.getBytes(1, (int)(Blob.length())) is used as the value of the ?
parameter.

16. Type2 JDBC Driver

1117

16.10 Setting system properties

16.10.1 Setting the array facility
(1) Overview

If you set the HiRDB_for_Java_BLOCK_UPDATE system property during program
execution, you can specify whether or not to process multiple parameter sets at one
time during database updating using the ? parameter (INSERT, UPDATE, or DELETE).

(2) Setting method
During program execution, use the -D option of the java command to set the
HiRDB_for_Java_BLOCK_UPDATE system property.

(a) Function
This function sets whether or not multiple parameter sets are to be processed at one
time during database updating using the ? parameter (INSERT, UPDATE, or DELETE).

(b) Format

java -D<name>=<value> class-name

(c) Description
name

HiRDB_for_Java_BLOCK_UPDATE
value

TRUE: Processes multiple parameter sets at one time.
FALSE: Processes one parameter set at a time.
Other: Processes one parameter set at a time.

(d) Functional detail
This function sets whether or not multiple parameter sets are to be processed at one
time during database updating using the ? parameter.
Whether or not the parameter sets are actually processed at one time depends on the
method for using the facilities using arrays. For details about how to use the facilities
using arrays, see 4.8 Facilities using arrays.

(e) Notes
• When you specify -D<name>=<value>, make sure that there is no space in the

specified information. The specified information cannot be set correctly if it has

16. Type2 JDBC Driver

1118

any of the following formats, where indicates a space:
• -D <name>=<value>
• -D<name> =<value>
• -D<name>= <value>

• If BLOCK_UPDATE is set during database connection (setBlockUpdate method
during data source connection), BLOCK_UPDATE or the value set in the
setBlockUpdate method takes effect.

• If you used the PreparedStatement class's setBlockUpdate method, you
can change the setting as to whether or not multiple parameter sets are to be
processed at one time.

• For details about how to process multiple lines of ? parameters in batch mode, see
Table 16-3 Information to be specified for Properties info and 16.3.2 Batch
updating.

(f) Example
The following shows an example of setting the HiRDB_for_Java_BLOCK_UPDATE
system property:

java -DHiRDB_for_Java_BLOCK_UPDATE=TRUE TestUP

16.10.2 Setting the maximum number of SQL search items or ?
parameters
(1) Overview

If you set the HiRDB_for_Java_SQL_IN_NUM or
HiRDB_for_Java_SQL_OUT_NUM system property during program execution, you
can specify the maximum number of search items, output ? parameters, input ?
parameters, or input/output ? parameters that are to be acquired during SQL
preprocessing.

(2) Setting method
During program execution, set the system property
HiRDB_for_Java_SQL_OUT_NUM or HiRDB_for_Java_SQL_IN_NUM or both in
the -D option of the java command.

(a) Function
This function specifies the maximum number of search items, output ? parameters,
input ? parameters, or input/output ? parameters that are to be acquired during SQL
preprocessing.

16. Type2 JDBC Driver

1119

(b) Format

java -D<name>=<value> class-name

(c) Description
The following table describes the information that can be specified in <name> and
<value>:

(d) Functional detail
This function specifies the maximum number of search items, output ? parameters,
input ? parameters, or input/output ? parameters that are to be acquired during SQL
preprocessing. A sufficient value enables you to acquire search item, output ?
parameter, input ? parameter, or input/output parameter information during SQL
preprocessing, thereby improving performance compared to when this information is
acquired after preprocessing.

(e) Notes
• When you specify -D<name>=<value>, make sure that there is no space in the

specified information. The specified information cannot be set correctly if it has
any of the following formats, where indicates a space:

• -D <name>=<value>
• -D<name> =<value>
• -D<name>= <value>

<name> <value>

HiRDB_for_Java_SQL_IN_NUM Specifies the maximum number of input or input/output ? parameters
in the SQL statements to be executed. This is the number of input or
input/output ? parameter information items acquired during SQL
preprocessing. If the actual number of input or input/output ?
parameters is greater than this property value, the input or input/output
? parameter information is acquired after the SQL preprocessing.
The permitted value range is from 1 to 30,000 (default is 64).
Specifying any other value or a non-numeric value results in an error
during database connection.

HiRDB_for_Java_SQL_OUT_NUM Specifies the maximum number of output items for the SQL statement
to be executed. This is the number of output items acquired during SQL
preprocessing. If the actual number of output items is greater than this
property value, the output items are acquired after the SQL
preprocessing.
The permitted value range is from 1 to 30,000 (default is 64).
Specifying any other value or a non-numeric value results in an error
during database connection.

16. Type2 JDBC Driver

1120

• If HiRDB_for_Java_SQL_IN_NUM is set during database connection
(setSQLInNum method during data source connection),
HiRDB_for_Java_SQL_IN_NUM or the value set in the setSQLInNum method
takes effect.

• If HiRDB_for_Java_SQL_OUT_NUM is set during database connection
(setSQLOutNum method during data source connection),
HiRDB_for_Java_SQL_OUT_NUM or the value set in the setSQLOutNum
method takes effect.

• To acquire search item, output ? parameter, input ? parameter, or input/output
parameter information during SQL preprocessing, the version of the connected
HiRDB server must be 07-02 or later.

(f) Example
The following shows an example of setting the HiRDB_for_Java_SQL_IN_NUM and
HiRDB_for_Java_SQL_OUT_NUM system properties:

java -DHiRDB_for_Java_SQL_IN_NUM=128
-DHiRDB_for_Java_SQL_OUT_NUM=128 TestUP

16. Type2 JDBC Driver

1121

16.11 Connection information setup/acquisition interface

The JdbhDataSource, JdbhConnectionPoolDataSource, and
JdbhXADataSource classes, which are provided by the JDBC driver, provide
methods of setting/acquiring the connection information necessary for database
connection, besides the methods specified by the JDBC2.0 Optional Package
specification.
Table 16-18 lists the methods of setting/acquiring connection information.

Table 16-18: Methods of setting/acquiring connection information

Method Function

setDescription Sets the additional connection information needed by the database to be
connected.

getDescription Acquires the additional connection information needed by the database to be
connected.

setDBHostName Sets the host name of the HiRDB to be connected.

getDBHostName Acquires the host name of the HiRDB to be connected.

setEncodeLang Uses the specified encoding character code to convert data.

getEncodeLang Returns the encoding characters to be used for data conversion.

setUser Sets the authorization identifier.

getUser Acquires the authorization identifier.

setPassword Sets a password.

getPassword Acquires a password.

setXAOpenString* Sets an XA_OPEN character string.

getXAOpenString* Acquires an XA_OPEN character string.

setXACloseString* Sets an XA_CLOSE character string.

getXACloseString* Acquires an XA_CLOSE character string.

setRMID* Sets a resource manager identifier.

getRMID* Acquires a resource manager identifier.

setXAThreadMode* Sets a thread mode for using XA.

16. Type2 JDBC Driver

1122

* These methods are provided by the JdbhXADataSource class only.

16.11.1 setDescription
(a) Function

Sets the additional connection information needed by the database to be connected.
(b) Format

getXAThreadMode* Acquires a thread mode for using XA.

setCommit_Behavior Sets whether a cursor remains valid following COMMIT.

getCommit_Behavior Acquires whether a cursor remains valid following COMMIT.

setBlockUpdate Specifies whether or not multiple parameter sets are to be processed at one time.

getBlockUpdate Acquires a value indicating whether or not multiple parameter sets are to be
processed at one time.

setLONGVARBINARY_Access Specifies the access method for a LONGVARBINARY database (column attribute
is BLOB or BINARY).

getLONGVARBINARY_Access Acquires the access method for a LONGVARBINARY database (column attribute
is BLOB or BINARY).

setSQLInNum Specifies the maximum number of input or input/output ? parameters in the
SQL statements to be executed.

getSQLInNum Acquires the maximum number of input or input/output ? parameters in the
SQL statements to be executed that has been set by setSQLInNum.

setSQLOutNum Specifies the maximum number of search items, output ? parameters, or input/
output ? parameters in the SQL statements to be executed.

getSQLOutNum Acquires the maximum number of search items, output ? parameters, or input/
output ? parameters in the SQL statements to be executed that has been set by
setSQLOutNum.

setSQLWarningLevel Specifies the warning retention level that occurred during execution of SQL
statements.

getSQLWarningLevel Acquires the warning retention level specified in setSQLWarningLevel.

setClear_Env Specifies whether or not the HiRDB client environment definition set as OS
environment variables is to be ignored during database connection.

getClear_Env Acquires the environment variable invalidation setting specified by
setClear_Env.

Method Function

16. Type2 JDBC Driver

1123

public void setDescription (String description)

(c) Argument
String description

Specifies additional connection information.
(d) Return value

None.
(e) Functional detail

Sets the additional connection information needed by the database to be connected.
Setting details and whether setting is required are shown as follows.

Note 1

The environment variables registered in an environment variable group have
precedence over the user environment variables and the environment variables
registered by HiRDB.INI.

Note 2

Specification examples are shown below. In these examples, ds represents the
name of a variable that has reference to the JdbhDataSource class's instance.
In UNIX:

Example 1: When the path of the HiRDB environment variable group name is /
HiRDB_P/Client/HiRDB.ini

Setting Setting details Setting required?

HiRDB port number Sets the HiRDB port number expressed as a character
string.

Optional

HiRDB environment
variable group name

Sets the HiRDB environment variable group name
following @HIRDBENVGRP=, expressed as a character
string. If the environment variable name contains
single-byte spaces or single-byte @ characters, enclose the
name in single-byte quotation marks ("). When an
environment variable group name is enclosed in
single-byte quotation marks, all characters following the
last single-byte quotation mark through the end of the
character string are ignored. An environment variable
group name containing single-byte quotation marks or
single-byte commas cannot be specified.

Optional

HiRDB environment
variable group identifier

Sets the HiRDB environment variable group identifier
expressed as four alphanumeric characters.

Required during XA
connection

16. Type2 JDBC Driver

1124

ds.setDescription("@HIRDBENVGRP=/HiRDB_P/Client/
HiRDB.ini");

In Windows

Example 1: When specifying the HiRDB port number

ds.setDescription("22200");

Example 2: When specifying the environment variable group name
HiRDB_ENV_GROUP that has been registered using the tool for registering
HiRDB client environment variables

ds.setDescription("@HIRDBENVGRP=HiRDB_ENV_GROUP");

Example 3: When the path of the HiRDB environment variable group name is
C:\HiRDB_P\Client\HiRDB.ini

ds.setDescription("@HIRDBENVGRP=C:\\HiRDB_P\\Client\\Hi
RDB.ini");

Example 4: When the path of the HiRDB environment variable group name is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini (: single-byte space)

ds.setDescription("@HIRDBENVGRP=\"C:\\Program Files\\H
ITACHI\\HiRDB\HiRDB.ini\"");

Example 5: When the HiRDB environment variable group identifier is HDB1

ds.setDescription("HDB1");

(f) Exception that occurs
If an environment variable group name beginning with @ is specified during a
connection other than the XA connection, and the specified information following @
contains a single-byte space, this method throws an SQLException.

16.11.2 getDescription
(a) Function

Acquires the additional connection information needed by the database to be

16. Type2 JDBC Driver

1125

connected.
(b) Format

public String getDescription()

(c) Argument
None.

(d) Return value
String

This is the additional connection information. If none is set, null is returned.
(e) Functional detail

Returns the additional connection information needed by the database to be connected
that was specified by the setDescription method.

(f) Exception that occurs
None.

16.11.3 setDBHostName
(a) Function

Sets the host name of the HiRDB to be connected.
(b) Format

public void setDBHostName (String db_host_name)

(c) Argument
String db_host_name

Sets a HiRDB host name.
(d) Return value

None.
(e) Functional detail

Sets the host name of the HiRDB to be connected (host name set in the PDHOST client
environment definition).
If the connection is not XA and the environment variable group name of a HiRDB
client is specified in the additional connection information, the value specified by this
method will be ignored.

16. Type2 JDBC Driver

1126

(f) Exception that occurs
None.

16.11.4 getDBHostName
(a) Function

Acquires the host name of the HiRDB to be connected.
(b) Format

public String getDBHostName()

(c) Argument
None.

(d) Return value
String

This is the HiRDB host name. If none is set, null is returned.
(e) Functional detail

Returns the host name of the HiRDB to be connected that was specified by the
setDBHostName method.

(f) Exception that occurs
None.

16.11.5 setEncodeLang
(a) Function

Specifies the character set used for character code conversion in the JDBC driver.
(b) Format

public void setEncodeLang (String encode_lang)

(c) Argument
String encode_lang

Specifies a character set supported by Java (such as MS932).
If OFF is specified with this method or if nothing is specified (including in the
ENCODELANG settings of Properties info and the URL), the following
operation takes place.

16. Type2 JDBC Driver

1127

OFF:
The JDBC driver determines the character set that corresponds to the
character codes type of the connected HiRDB. The following table shows the
correspondence between the connected HiRDB character codes type and the
character encoding used by the JDBC driver:

* The specification value is in the -c option of the pdsetup command for
UNIX and the -c option of the pdntenv command for Windows. For the
character codes types when the pdntenv command is not executed, see the
HiRDB Version 8 Installation and Design Guide.

None:
For UNIX:
The JDBC driver determines the character set that corresponds to the HiRDB
character codes type.
For Windows:
The JDBC driver uses the following rules to determine the character set:

(d) Return value
None.

(e) Functional detail
In a Java program, Unicode is used for the character codes. Therefore, during character
data processing with HiRDB, the JDBC driver performs mutual character code
conversion between the HiRDB character data and Unicodes. For this character code

HiRDB character codes type* Character encoding used

lang-c 8859_1

sjis Java Virtual Machine standard encoding

ujis EUCJIS

utf-8 UTF-8

chinese GB2312

Java Virtual Machine standard
encoding

HiRDB character codes type

SJIS Other than SJIS

MS932 MS932 Character set corresponding to the
HiRDB character codes type

Other than MS932 SJIS

16. Type2 JDBC Driver

1128

conversion processing, the JDBC driver uses the encoder and decoder provided by the
Java Virtual Machine. This method specifies the character set names specified by the
JDBC driver for the encoder and decoder that are provided by the Java Virtual
Machine.

(f) Exception that occurs
None.

16.11.6 getEncodeLang
(a) Function

Acquires the specified character set.
(b) Format

public String getEncodeLang()

(c) Argument
None.

(d) Return value
String

Returns the character set.
(e) Functional detail

Returns the character set specified by the setEncodeLang method. If no character set
is specified, null is returned.

(f) Exception that occurs
None.

16.11.7 setUser
(a) Function

Sets the authorization identifier.
(b) Format

public void setUser (String user)

(c) Argument
String user

16. Type2 JDBC Driver

1129

Sets the authorization identifier.
(d) Return value

None.
(e) Functional detail

Sets the authorization identifier.
You can specify the authorization identifier using an argument of the
DataSource.getConnection method,
ConnectionPoolDataSource.getPooledConnection method, or
XADataSource.getXAConnection method (which are referred to generically as
the DB connection methods).
If this method is used to set an authorization identifier, and if a DB connection method
that has an authorization identifier and a password set as arguments is also called, the
authorization identifier setting specified by the DB connection method takes
precedence.
For details about specifying an authorization identifier, see Table 16-2 Arguments of
the getConnection method.

(f) Exception that occurs
None.

16.11.8 getUser
(a) Function

Acquires the authorization identifier.
(b) Format

public String getUser()

(c) Argument
None.

(d) Return value
String

Sets the authorization identifier. If no authorization identifier has been set, null
is returned.

(e) Functional detail
Returns the authorization identifier specified by the setUser method.

16. Type2 JDBC Driver

1130

If the setUser method is used to set a password, and if a DB connection method
(DataSource.getConnection method,
ConnectionPoolDataSource.getPooledConnection method, or
XADataSource.getXAConnection method) that has an authorization identifier and
a password set as arguments is also called, the authorization identifier setting specified
by the DB connection method is returned.

(f) Exception that occurs
None.

16.11.9 setPassword
(a) Function

Sets a password.
(b) Format

public void setPassword (String password)

(c) Argument
String password

Specifies a password.
(d) Return value

None.
(e) Functional detail

Sets a password.

You can specify the password using an argument of the
DataSource.getConnection method,
ConnectionPoolDataSource.getPooledConnection method, or
XADataSource.getXAConnection method (which are referred to generically as
the DB connection methods).
If this method is used to set a password, and if a DB connection method that has an
authorization identifier and a password set as arguments is also called, the password
setting specified by the DB connection method takes precedence.

(f) Exception that occurs
None.

16. Type2 JDBC Driver

1131

16.11.10 getPassword
(a) Function

Acquires a password.
(b) Format

public String getPassword()

(c) Argument
None.

(d) Return value
String

This is a password. If none is set, null is returned.
(e) Functional detail

Returns the password specified by the setPassword method.
If the setPassword method is used to set a password, and if a DB connection method
(DataSource.getConnection method,
ConnectionPoolDataSource.getPooledConnection method, or
XADataSource.getXAConnection method) that has an authorization identifier and
a password set as arguments is also called, the password setting specified by the DB
connection method is returned.

(f) Exception that occurs
None.

16.11.11 setXAOpenString
(a) Function

Sets an XA open character string.
(b) Format

public void setXAOpenString (String xa_string)

(c) Argument
String xa_string

Specifies an XA open character string.

16. Type2 JDBC Driver

1132

(d) Return value
None.

(e) Functional detail
Sets an XA open character string.
This method is provided by the JdbhDbpsvXADataSource class only.
Specify the XA open character string in the format
HiRDB-environment-variable-group-identifier+HiRDB-environment-variable-group-
name. This HiRDB environment variable group identifier must be the one set in the
setDescription method. The following shows examples.
Example 1

When setting the environment variable group name HiRDB_ENV_GROUP that has
been registered by the tool for registering HiRDB client environment variables

ds.setDescription("HDB1");
ds.setXAOpenString("HDB1+HiRDB_ENV_GROUP");

Example 2

When the path of the HiRDB environment variable group name is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini (: single-byte space)

ds.setDescription("HDB1");
ds.setXAOpenString("HDB1+C:\\Program Files\\HITACHI\\HiRDB
\\HiRDB.ini");

(f) Exception that occurs
None.

16.11.12 getXAOpenString
(a) Function

Acquires an XA open character string.
(b) Format

public String getXAOpenString()

(c) Argument
None.

16. Type2 JDBC Driver

1133

(d) Return value
String

This is an XA open character string. If none is set, null is returned.
(e) Functional detail

Returns the XA open character string specified by the setXAOpenString method.
This method is provided by the JdbhDbpsvXADataSource class only.

(f) Exception that occurs
None.

16.11.13 setXACloseString
(a) Function

Sets an XA close character string.
(b) Format

public void setXACloseString (String xa_string)

(c) Argument
String xa_string

Sets an XA close character string.
(d) Return value

None.

(e) Functional detail
Sets an XA close character string.
This method is provided by the JdbhDbpsvXADataSource class only.

(f) Exception that occurs
None.

16.11.14 getXACloseString
(a) Function

Acquires an XA close character string.
(b) Format

public String getXACloseString()

16. Type2 JDBC Driver

1134

(c) Argument
None.

(d) Return value
String

This is an XA close character string. If none is set, null is returned.
(e) Functional detail

Returns the XA close character string specified by the setXACloseString method.
This method is provided by the JdbhDbpsvXADataSource class only.

(f) Exception that occurs
None.

16.11.15 setRMID
(a) Function

Sets an identifier for the Resource Manager.
(b) Format

public void setRMID (int rmid)

(c) Argument
int rmid

Specifies an identifier for the Resource Manager.
(d) Return value

None.
(e) Functional detail

Sets a positive numeric value of 1 or greater as the identifier for the Resource Manager.
If multiple Resource Managers are used, a unique identifier must be set for each
Resource Manager.
If this method is not invoked, the default identifier of 1 is used.
This method is provided by the JdbhDbpsvXADataSource class only.

(f) Exception that occurs
If the argument value is smaller than 1, the method throws an SQLException.

16. Type2 JDBC Driver

1135

16.11.16 getRMID
(a) Function

Acquires an identifier for the Resource Manager.
(b) Format

public int getRMID()

(c) Argument
None.

(d) Return value
int

This is an identifier for the Resource Manager. If none is set, 1 is returned.
(e) Functional detail

Returns the Resource Manager identifier specified by the setRMID method.
This method is provided by the JdbhDbpsvXADataSource class only.

(f) Exception that occurs
None.

16.11.17 setXAThreadMode
(a) Function

Sets a thread mode for using XA.
(b) Format

public void setXAThreadMode (boolean mode)

(c) Argument
boolean mode

Specifies a thread mode for using XA.
true: Multi-thread mode
false: Single-thread mode

(d) Return value
None.

16. Type2 JDBC Driver

1136

(e) Functional detail
Sets a thread mode for using XA. If this method is not invoked, the default value is
false (single-thread mode).
This method is provided by the JdbhDbpsvXADataSource class only.
If the XA library provided by the RM (Resource Manager) supports multi-thread and
if the application operates in the multi-thread mode, this method must be invoked in
the true setting (multi-thread mode).

(f) Exception that occurs
None.

16.11.18 getXAThreadMode
(a) Function

Acquires a thread mode for using XA.
(b) Format

public boolean getXAThreadMode()

(c) Argument
None.

(d) Return value
boolean

Specifies a thread mode for using XA.

true: Multi-thread mode
false: Single-thread mode

(e) Functional detail
Returns the thread mode for using XA, specified by the setXAThreadMode method.
This method is provided by the JdbhDbpsvXADataSource class only.

(f) Exception that occurs
None.

16.11.19 setCommit_Behavior
(a) Function

Sets whether or not the following classes are to be valid after commit execution when
HiRDB commits:

16. Type2 JDBC Driver

1137

• ResultSet class
• Statement class, PreparedStatement class, and CallableStatement

class
(b) Format

public void setCommit_Behavior (String type)

(c) Argument
String type

Sets whether or not the objects of the Statement class, PreparedStatement
class, CallableStatement class, and ResultSet class remain valid even after
a transaction terminates.

1 The condition that invalidates objects of the ResultSet class after commit
execution is that the getXXX method of the ResultSet class can be executed by
executing the following methods of the ResultSet class:

• next method
• first method
• last method
• absolute method
• relative method

Correct execution of a method using objects of a ResultSet class that was
invalidated is not guaranteed.
2 Objects that are invalid after commit execution include the following:

• SQL statements precompiled by the
Connection.prepareStatement method

• SQL statements precompiled by the Connection.prepareCall
method

Specification value ResultSet class Statement class,
PreparedStatement class,
CallableStatement class

DELETE (default value) Invalid1 Invalid2

CLOSE Invalid1 Valid

PRESERVE Valid3 Valid3

16. Type2 JDBC Driver

1138

• ResultSet class objects acquired by the executeQuery method of
the Statement class, PreparedStatement class. or
CallableStatement class.

3 If the version of the connected HiRDB is earlier than 07-01, using LOCK TABLE
to lock the table is required.

(d) Return value
None.

(e) Functional detail
Sets whether or not the objects of the Statement class, PreparedStatement class,
CallableStatement class, and ResultSet class remain valid even after the
transaction terminates. If this method is not called, the default is DELETE.
Executing this method is equivalent to setting the COMMIT_BEHAVIOR property that is
performed when a database is connected using DriverManager.

(f) Exception that occurs
When XADataSource is used for the connection, DELETE always results, regardless
of the specified value. However, getCommit_Behavior returns the value specified
in the type argument.

(g) Notes
For notes, see Notes on COMMIT_BEHAVIOR following Table 16-3.

16.11.20 getCommit_Behavior
(a) Function

Sets whether or not objects of the Statement class, PreparedStatement class,
CallableStatement class, and ResultSet class are to be valid even after the
transaction terminates.

(b) Format

public String getCommit_Behavior()

(c) Argument
None.

(d) Return value
String

Returns Delete if there is no setting of the type that determines whether or not
objects of the Statement class, PreparedStatement class,

16. Type2 JDBC Driver

1139

CallableStatement class and ResultSet class remain valid even after the
transaction ends.

(e) Functional detail
The information specified by the setCommit_Behavior method is returned.

(f) Exception that occurs
None.

16.11.21 setBlockUpdate
(a) Function

Sets whether or not multiple parameter sets are to be processed at one time during
database updating using the ? parameter (INSERT, UPDATE, and DELETE).

(b) Format

public void setBlockUpdate(boolean Mode)

(c) Argument
boolean Mode

Specifies whether or not multiple parameter sets are to be processed at one time.
When this information is omitted, false is assumed.
true

Processes multiple parameter sets at one time.
false

Processes one parameter set at a time.
(d) Return value

None.
(e) Functional detail

This function sets whether or not multiple parameter sets are to be processed at one
time during database updating using the ? parameter.
Whether or not the parameter sets are actually processed at one time depends on the
method for using the facilities using arrays. For details about how to use the facilities
using arrays, see 4.8 Facilities using arrays.

(f) Exception that occurs
None.

16. Type2 JDBC Driver

1140

(g) Notes
For details about how to process multiple lines of ? parameters in batch mode, see
Table 16-3 Information to be specified for Properties info and 16.3.2 Batch updating.
This function can also be specified by the HiRDB_for_Java_BLOCK_UPDATE system
property. If the setBlockUpdate method has been set, the
HiRDB_for_Java_BLOCK_UPDATE system property setting is ignored.

16.11.22 getBlockUpdate
(a) Function

Acquires a value indicating whether or not multiple parameter sets are to be processed
at one time during database updating using the ? parameter (INSERT, UPDATE, and
DELETE).

(b) Format

public boolean getBlockUpdate()

(c) Argument
None.

(d) Return value
boolean

Specifies whether or not multiple parameter sets are to be processed at one time.
When this information is omitted, false is assumed.
true

Processes multiple parameter sets at one time.
false

Processes one parameter set at a time.
(e) Functional detail

This function acquires a value indicating whether or not multiple parameter sets are to
be processed at one time during database updating using the ? parameter.

(f) Exception that occurs
None.

(g) Notes
None.

16. Type2 JDBC Driver

1141

16.11.23 setLONGVARBINARY_Access
(a) Function

Specifies the database access method for LONGVARBINARY (column attribute is BLOB
or BINARY).

(b) Format

public void setLONGVARBINARY_Access(String Mode)

(c) Argument
String Mode

Specifies the database access method for LONGVARBINARY (column attribute is
BLOB or BINARY). When this argument is omitted, "REAL" is assumed.
"REAL"

Accesses real data.
"LOCATOR"

Uses HiRDB's locator facility to access data.
Other:

Assumes that "REAL" has been specified.
(d) Return value

None.
(e) Functional detail

Specifies the database access method for LONGVARBINARY (column attribute is BLOB
or BINARY).

(f) Exception that occurs
None.

16.11.24 getLONGVARBINARY_Access
(a) Function

Acquires the database access method for LONGVARBINARY (column attribute is BLOB
or BINARY).

(b) Format

public String getLONGVARBINARY_Access()

16. Type2 JDBC Driver

1142

(c) Argument
None.

(d) Return value
String

Indicates the information set as the database access method for LONGVARBINARY
(column attribute is BLOB or BINARY). When no information has been set,
"REAL" is assumed.
"REAL"

Accesses real data.
"LOCATOR"

Uses HiRDB's locator facility to access data.
(e) Functional detail

Returns the information specified by the setLONGVARBINARY_Access method.
(f) Exception that occurs

None.

16.11.25 setSQLInNum
(a) Function

Specifies the maximum number of input or input/output ? parameters in the SQL
statements to be executed.

(b) Format

public void setSQLInNum(int inNum)

(c) Argument
int inNum:

Specifies the maximum number of input or input/output ? parameters in the SQL
statements to be executed. The permitted value range is from 1 to 30,000
(default is 64).

(d) Return value
None.

(e) Functional detail
Specifies the maximum number of input or input/output ? parameters to be acquired

16. Type2 JDBC Driver

1143

during SQL preprocessing.
If the actual number of ? parameters is greater than this property value, this method
acquires information about the input or input/output ? parameters after SQL
preprocessing.
The value specified in this method is used as the value of
HiRDB_for_Java_SQL_IN_NUM property during database connection.

(f) Exception that occurs
If the specified argument value falls beyond the permitted range, the method throws an
SQLException.

(g) Notes
• This function can also be specified by the HiRDB_for_Java_SQL_IN_NUM

system property. If the setSQLInNum method has been set, the
HiRDB_for_Java_SQL_IN_NUM system property setting is ignored.

• If you do not execute any SQL statement that uses input or input/output ?
parameters, we recommend that you specify a value of 1.

16.11.26 getSQLInNum
(a) Function

Specifies the maximum number of input or input/output ? parameters in the SQL
statements to be executed that has been set by setSQLInNum.

(b) Format

public int getSQLInNum()

(c) Argument
None.

(d) Return value
int

This is the maximum number of input or input/output ? parameters in the SQL
statements to be executed that has been set by setSQLInNum. If no value has
been set, the method returns the default value (64).

(e) Functional detail
Acquires the maximum number of input or input/output ? parameters in the SQL
statements to be executed that has been set by setSQLInNum.

16. Type2 JDBC Driver

1144

(f) Exception that occurs
None.

16.11.27 setSQLOutNum
(a) Function

Specifies the maximum number of search items, output ? parameters, or input/output
? parameters in the SQL statements to be executed.

(b) Format

public void setSQLOutNum(int outNum)

(c) Argument
int outNum

Specifies the maximum number of search items, output ? parameters, or input/
output ? parameters in the SQL statements to be executed. The permitted value
range is from 1 to 30,000 (default is 64).

(d) Return value
None.

(e) Functional detail
Specifies the maximum number of search items, output ? parameters, or input/output
? parameters in the SQL statements to be executed.
This specification is used as the number of output items that are to be acquired during
SQL preprocessing.
If the number of actual output items is greater than the value of this property, the
method acquires information about the output items after SQL preprocessing.
The value specified in this method is used as the value of the
HiRDB_for_Java_SQL_OUT_NUM property during database connection.

(f) Exception that occurs
If the specified argument value falls beyond the permitted range, the method throws an
SQLException.

(g) Notes
• This function can also be specified by the HiRDB_for_Java_SQL_OUT_NUM

system property. If the setSQLOutNum method has been set, the
HiRDB_for_Java_SQL_OUT_NUM system property setting is ignored.

• If there is no search item, output ? parameter, or input/output ? parameter, we

16. Type2 JDBC Driver

1145

recommend that you specify a value of 1.

16.11.28 getSQLOutNum
(a) Function

Acquires the maximum number of search items, output ? parameters, or input/output
? parameters in the SQL statements to be executed that has been set by
setSQLOutNum.

(b) Format

public int getSQLOutNum()

(c) Argument
None.

(d) Return value
int

This is the maximum number of search items, output ? parameters, or input/
output ? parameters in the SQL statements to be executed that has been set by
setSQLOutNum. If this value has not been set, the method returns the default
value (64).

(e) Functional detail
Acquires the maximum number of search items, output ? parameters, or input/output
? parameters in the SQL statements to be executed that has been set by
setSQLOutNum.

(f) Exception that occurs
None.

16.11.29 setSQLWarningLevel
(a) Function

Specifies the warning retention level that occurred during execution of SQL
statements.

(b) Format

public void setSQLWarningLevel (String warningLevel)

(c) Argument
String warningLevel

16. Type2 JDBC Driver

1146

Specifies the retention level of warning information that has been issued during
execution of SQL statements. The permitted warning retention levels are listed
below. For details about the relationship between the specified value and the
retained warning, see 16.2.9 SQLWarning class.

• IGNORE
• SQLWARN (default)
• ALLWARN

The value specified in the argument of this method is not case sensitive.
(d) Return value

None.
(e) Functional detail

Specifies the retention level of warning information that has been issued during
execution of SQL statements.
The value specified in this method is used as the value of the
HiRDB_for_Java_SQLWARNING_LEVEL property during database connection.

(f) Exception that occurs
If the specified argument value is invalid, the method throws an SQLException.

16.11.30 getSQLWarningLevel
(a) Function

Acquires the warning retention level specified in setSQLWarningLevel.
(b) Format

public String getSQLWarningLevel ()

(c) Argument
None.

(d) Return value
String

Returns the warning retention level set by setSQLWarningLevel (IGNORE,
SQLWARN, or ALLWARN). For details about the relationship between the returned
value and the retained warning, see 16.2.9 SQLWarning class.

(e) Functional detail
Acquires the warning retention level specified in setSQLWarningLevel. If this

16. Type2 JDBC Driver

1147

information has not been set, the method returns the default value (SQLWARN).
(f) Exception that occurs

None.

16.11.31 setClear_Env
(a) Function

Specifies whether or not the HiRDB client environment definition set as OS
environment variables is to be ignored during database connection.

(b) Format

public void setClear_Env(boolean Mode)

(c) Argument
boolean Mode

Specifies whether or not the HiRDB client environment definition is to be
ignored.
true: Ignores.
false: Does not ignore.

(d) Return value
None.

(e) Functional detail
Specifies whether or not the HiRDB client environment definition set as OS
environment variables is to be ignored during database connection.
The value specified in this method is equivalent to the
HiRDB_for_Java_CLEAR_ENV property setting that is specified during database
connection.

(f) Exception that occurs
None.

(g) Notes
For details, see HiRDB_for_Java_CLEAR_ENV in Table 16-3 Information to be
specified for Properties info.

16. Type2 JDBC Driver

1148

16.11.32 getClear_Env
(a) Function

Acquires the environment variable invalidation setting specified by setClear_Env.
(b) Format

public boolean getClear_Env()

(c) Argument
None.

(d) Return value
String

Returns the environment variable invalidation setting specified by
setClear_Env.
true

Ignores the HiRDB client environment definition set as OS environment
variables during database connection.

false
Does not ignore the HiRDB client environment definition set as OS
environment variables during database connection.

(e) Functional detail
Acquires the environment variable invalidation setting specified by setClear_Env.
If this setting has not been specified, the method returns the default value (false).

(f) Exception that occurs
None.

16. Type2 JDBC Driver

1149

16.12 Data types and character codes

16.12.1 Data types
JDBC's SQL data types and the SQL data types connected via a HiRDB client library
do not match perfectly. The JDBC driver maps JDBC's SQL data types and HiRDB's
SQL data types. If an unmappable SQL data type is used for data access, the JDBC
driver throws an SQLException.
The SQL data types are mapped with the getXXX and setXXX methods in the
ResultSet, PreparedStatement, and CallableStatement classes. For the
SQL data types and the getXXX and setXXX method mapping rules, see the
documentation for the JDBC1.0 standard.
Table 16-19 shows the correspondence of SQL data types between HiRDB and JDBC.

Table 16-19: Correspondence of SQL data types between HiRDB and JDBC

HiRDB's SQL data type JDBC's SQL data type

INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL DECIMAL

FLOAT, DOUBLE PRECISION FLOAT

SMALLFLT, REAL REAL

CHAR CHAR

VARCHAR VARCHAR

NCHAR CHAR

NVARCHAR VARCHAR

MCHAR CHAR

MVARCHAR VARCHAR

DATE DATE

TIME TIME

BLOB LONGVARBINARY

TIMESTAMP TIMESTAMP

BINARY* LONGVARBINARY

16. Type2 JDBC Driver

1150

* Data is handled in the same way as BLOB.

16.12.2 Character code conversion facility
In a Java program, Unicode is used for the character codes. Therefore, the JDBC driver
performs mutual character code conversion between the HiRDB character data and the
Unicodes. For this character code conversion processing, the JDBC driver uses the
encoder and decoder provided by the Java Virtual Machine. At this time, ENCODELANG
of Properties info specifies the character set names specified by the JDBC driver
for the encoder and decoder that are provided by the Java Virtual Machine.
Tables 16-20 and 16-21 show the correspondences between the HiRDB character
codes and the Java character sets.

Table 16-20: Correspondence between HiRDB character codes and Java
character sets (UNIX)

Note

If ENCODELANG of Properties info is set using the following methods, this
setting takes precedence for encoding.

• Set using Properties info passed as the argument of the
DriverManager.getConnection method

• Set using the JdbhDataSource.setEncodLang method,
rce.setEncodLang method, or JdbhXADataSource method

For details about operation when ENCODELANG is not set using the above methods
or when OFF is set, see 16.11.5 setEncodeLang.

* You cannot use external character codes assigned to EUC code set 3 (character codes
expressed by three bytes in the range of (8F)16 to (XXXX)16.

HiRDB character codes Character set Remarks

sjis
(Shift JIS kanji)

"SJIS" Double-byte characters include external
characters.

ujis
(EUC Japanese kanji)

"EUC_JP"
(Japanese EUC)

Double-byte characters do not include
external characters*

chinese
(EUC Chinese kanji)

"EUC_CN"
(Simplified Chinese)

Double-byte characters do not include
external characters*

lang-c
(8-bit codes)

"ISO-8859-1"
(ISO Latin-1)

Can be used with US ASCII and 8-bit
codes.

UTF-8 UTF-8 None

16. Type2 JDBC Driver

1151

Table 16-21: Correspondence between HiRDB character codes and Java
Character sets (Windows)

Note

If ENCODELANG of Properties info is set using the following methods, this
setting takes precedence for encoding:

• Set using Properties info passed as the argument of the
DriverManager.getConnection method

• Set using the JdbhDataSource.setEncodLang method,
JdbhDataSource.setEncodLang method, or JdbhXADataSource
method.

For details about operation when ENCODELANG is not set using the above methods
or when OFF is set, see 16.11.5 setEncodeLang.

HiRDB character codes Character set Remarks

sjis
(Shift JIS kanji)

MS932 when the Java Virtual
Machine standard encoding is
MS932; otherwise, it is SJIS.

Double-byte characters include external
characters.

UTF-8 UTF-8 None

16. Type2 JDBC Driver

1152

16.13 Classes and methods with limitations

This section explains the classes defined in the JDBC1.0 standard.
The JDBC driver does not support the following classes that are defined in the
JDBC2.0 basic standard:

• Clob class
• Struct class
• Ref class

• SQLData class
• SQLInput class
• SQLOutput class

16.13.1 Driver class
There is no limitation to this class.

16.13.2 Connection class
Table 16-22 lists limitations to the methods in the Connection class that are defined
in the JDBC1.0 standard, while Table 16-23 lists limitations to the methods added in
the JDBC2.0 basic standard.

Table 16-22: Limitations to the methods in the Connection class that are defined
in the JDBC1.0 standard

Method defined in JDBC1.0
standard

Limitation

setReadOnly Not usable.

isReadOnly Unconditionally returns false.

setCatalog Not usable.

getCatalog Returns null unconditionally.

setTransactionIsolation Not usable.

getTransactionIsolation Returns TRANSACTION_REPEATABLE_READ unconditionally.

16. Type2 JDBC Driver

1153

Table 16-23: Limitations to the methods in the Connection class that are added
in the JDBC2.0 basic standard

16.13.3 Statement class
Table 16-24 lists limitations to the methods in the Connection class that are defined
in the JDBC1.0 standard, while Table 16-25 lists limitations to the methods added in
the JDBC2.0 basic standard.

Table 16-24: Limitations to the methods in the Statement class that are defined
in the JDBC1.0 standard

Table 16-25: Limitations to the methods in the Statement class that are added in
the JDBC2.0 basic standard

Method added in JDBC2.0 basic
standard

Limitation

createStatement A result set reflecting updating results is not usable. Therefore, if
TYPE_SCROLL_SENSITIVE is specified for the result set type, the
method changes it to TYPE_SCROLL_INSENSITIVE and sets an
SQLWarning.

prepareStatement

prepareCall

getTypeMap Unconditionally throws SQLException because a user-defined type
is not usable.

setTypeMap

Method defined in JDBC1.0
standard

Limitation

setCursorName Not usable (because positioned updating or deletion is not available).

getMaxFieldSize Returns the value specified with setMaxFieldSize.

getMoreResults Unconditionally returns false.

setMaxRows Not usable.

setQueryTimeout

Method added in JDBC2.0 basic
standard

Limitation

setFetchDirection Throws SQLException if anything other than FETCH_FORWARD is
specified.

getFetchSize Returns the value specified with the setFetchSize method.

16. Type2 JDBC Driver

1154

16.13.4 PreparedStatement class
Table 16-26 lists limitations to the methods in the PreparedStatement class that are
added in the JDBC2.0 basic standard.

Table 16-26: Limitations to the methods in the PreparedStatement class that are
added in the JDBC2.0 basic standard

16.13.5 CallableStatement class
Table 16-27 lists limitations to the methods in the CallableStatement class that are
added in the JDBC2.0 basic standard.

Table 16-27: Limitations to the methods in the CallableStatement class that are
added in the JDBC2.0 basic standard

Method added in JDBC2.0 basic
standard

Limitation

setBlob For the JDBC driver, the method treats the JDBC SQL type as
LONGVARBINARY.

setClob Unconditionally throws SQLException because the SQL CLOB type is
not available.

setRef Unconditionally throws SQLException because the SQL structured
type is not available.

setNull If the complete name of an SQL user-defined type is specified, the
method unconditionally throws SQLException because the SQL
structured type or the SQL array type is not available.

setObject Ignores the specified scale and obtains the value of scale from the
actual value specified.

Method added in JDBC2.0 basic
standard

Limitation

getObject If Map is specified, the method throws SQLException because the Map
specification is not available.

getBlob For the JDBC driver, the method treats the JDBC SQL type as
LONGVARBINARY.

getClob Unconditionally throws SQLException because the SQL CLOB type is
not available.

getRef Unconditionally throws SQLException because the SQL structured
type is not available.

16. Type2 JDBC Driver

1155

16.13.6 ResultSet class
Table 16-28 lists limitations to the methods in the ResultSet class that are added in
the JDBC2.0 basic standard.

Table 16-28: Limitations to the methods in the ResultSet class that are added in
the JDBC2.0 basic standard

Method added in JDBC2.0 basic
standard

Limitation

setFetchDirection Throws SQLException if anything other than FETCH_FORWARD is
specified.

rowUpdated Unconditionally throws SQLException because an updatable result
set is not available.

rowInserted

rowDeleted

updateNull

updateBoolean

updateByte

updateShort

updateInt

updateLong

updateFloat

updateDouble

updateBigDecimal

updateString

updateBytes

updateDate

updateTime

updateTimestamp

updateAsciiStream

updateBinaryStream

updateCharacterStream

16. Type2 JDBC Driver

1156

16.13.7 ResultSetMetaData class
Table 16-29 lists limitations to the methods in the ResutlSetMetaData class that are
defined in the JDBC1.0 standard. However, for details about the return value of each
method of the MetaData class acquired from the result set generated by the
getResultSet method of the Array class, see Table 16-14.

Table 16-29: Limitations to the methods in the ResultSetMetaData class that are
defined in the JDBC1.0 standard

updateObject

insertRow

updateRow

deleteRow

refreshRow

cancelRowUpdates

moveToInsertRow

moveToCurrentRow

getObject If Map is specified, the method throws SQLException because the
Map specification is not available.

getBlob For the JDBC driver, the method treats the JDBC SQL type as
LONGVARBINARY.

getClob Unconditionally throws SQLException because the SQL CLOB type is
not available.

getRef Unconditionally throws SQLException because the SQL structured
type is not available.

Method defined in JDBC1.0
standard

Limitation

isAutoIncrement Unconditionally returns false.

isCaseSensitive Unconditionally returns true.

isCurrency Unconditionally returns false.

getColumnLabel Returns a column name because the column label (column header) is
not available.

Method added in JDBC2.0 basic
standard

Limitation

16. Type2 JDBC Driver

1157

16.13.8 DatabaseMetaData class
Table 16-30 lists limitations to the returned contents of methods in the
DatabaseMetaData class that are defined in the JDBC1.0 standard, while Table
16-31 lists limitations to the returned contents of the methods added by the JDBC2.0
basic standard. Note that the value returned by each method is information related to
the HiRDB server, whose version has to be the same as the JDBC driver being used.

Table 16-30: Limitations to the methods in the DatabaseMetaData class that are
defined in the JDBC1.0 standard

getSchemaName Unconditionally returns null.

getTableName

getCatalogName

isReadOnly Unconditionally returns false.

isWritable

isDefinitelyWritable

Method defined in JDBC1.0 standard Limitation or return value

allProceduresAreCallable Returns false.

allTablesAreSelectable Returns false.

getURL Returns the JDBC URL of the connected database.

getUserName Returns the authorization identifier used when
connecting to the database.

isReadOnly Unconditionally returns false because the access
mode cannot be changed.

nullsAreSortedHigh Returns true.

nullsAreSortedLow Returns false.

nullsAreSortedAtStart Returns false.

nullsAreSortedAtEnd Unconditionally returns false.

getDatabaseProductName Returns HiRDB.

getDatabaseProductVersion Returns null.

getDriverName Returns HiRDB_for_JDBC.

Method defined in JDBC1.0
standard

Limitation

16. Type2 JDBC Driver

1158

getDriverVersion Returns 08.00.0000.

getDriverMajorVersion 8

getDriverMinorVersion 0

usesLocalFiles Unconditionally returns false.

usesLocalFilePerTable Unconditionally returns false.

supportsMixedCaseIdentifiers Unconditionally returns false.

storesUpperCaseIdentifiers Returns true.

storesLowerCaseIdentifiers Unconditionally returns false.

storesMixedCaseIdentifiers Returns false.

supportsMixedCaseQuotedIdentifiers Returns true.

storesUpperCaseQuotedIdentifiers Returns false.

storesLowerCaseQuotedIdentifiers Unconditionally returns false.

storesMixedCaseQuotedIdentifiers Returns true.

getIdentifierQuoteString Unconditionally returns a quotation mark.

getSQLKeywords Returns a HiRDB-specific SQL keyword.

getNumericFunctions Returns a list of mathematical functions.

getStringFunctions Returns a list of character string functions.

getSystemFunctions Returns a list of system functions.

getTimeDateFunctions Returns a list of time and date functions.

getSearchStringEscape Returns \.

getExtraNameCharacters Returns a special character that can be used as an SQL
identification name.

supportsAlterTableWithAddColumn Returns true.

supportsAlterTableWithDropColumn

supportsColumnAliasing

nullPlusNonNullIsNull

supportsConvert (no argument) Returns true.

Method defined in JDBC1.0 standard Limitation or return value

16. Type2 JDBC Driver

1159

supportsConvert (with arguments) Returns either true or false depending on the
combination of data types specified in arguments.

supportsTableCorrelationNames Returns true.

supportsDifferentTableCorrelationNames

supportsExpressionsInOrderBy Returns false.

supportsOrderByUnrelated Returns true.

supportsGroupBy

supportsGroupByUnrelated

supportsGroupByBeyondSelect

supportsLikeEscapeClause

supportsMultipleResultSets Unconditionally returns true.

supportsMultipleTransactions

supportsNonNullableColumns Returns true.

supportsMinimumSQLGrammar Unconditionally returns true.

supportsCoreSQLGrammar

supportsExtendedSQLGrammar Returns false.

supportsANSI92EntryLevelSQL Unconditionally returns true.

supportsANSI92IntermediateSQL Unconditionally returns false.

supportsANSI92FullSQL

supportsIntegrityEnhancementFacility Returns false.

supportsOuterJoins Returns true.

supportsFullOuterJoins Returns false.

supportsLimitedOuterJoins Returns true.

getSchemaTerm Returns schema.

getProcedureTerm Returns procedure.

getCatalogTerm Returns null.

isCatalogAtStart Returns false.

Method defined in JDBC1.0 standard Limitation or return value

16. Type2 JDBC Driver

1160

getCatalogSeparator Returns null.

supportsSchemasInDataManipulation Unconditionally returns true.

supportsSchemasInProcedureCalls Returns true.

supportsSchemasInTableDefinitions

supportsSchemasInIndexDefinitions

supportsSchemasInPrivilegeDefinitions

supportsCatalogsInDataManipulation Returns false.

supportsCatalogsInProcedureCalls

supportsCatalogsInTableDefinitions

supportsCatalogsInIndexDefinitions Unconditionally returns false.

supportsCatalogsInPrivilegeDefinitions

supportsPositionedDelete

supportsPositionedUpdate

supportsSelectForUpdate

supportsStoredProcedures Returns true.

supportsSubqueriesInComparisons

supportsSubqueriesInExists

supportsSubqueriesInIns

supportsSubqueriesInQuantifieds

supportsCorrelatedSubqueries

supportsUnion

supportsUnionAll

supportsOpenCursorsAcrossCommit Returns true if any of the following values is
PRESERVE:
• Setting of COMMIT_BEHAVIOR in URL
• Setting of COMMIT_BEHAVIOR in Properties

info
• Argument when the setCommit_Behavior

method is executed

Method defined in JDBC1.0 standard Limitation or return value

16. Type2 JDBC Driver

1161

supportsOpenCursorsAcrossRollback Unconditionally returns false.

supportsOpenStatementsAcrossCommit Returns true if any of the following values is
PRESERVE or CLOSE:
• Setting of COMMIT_BEHAVIOR in URL
• Setting of COMMIT_BEHAVIOR in Properties

info
• Argument when the setCommit_Behavior

method is executed

supportsOpenStatementsAcrossRollback Unconditionally returns false.

getMaxBinaryLiteralLength Returns a value of 64000.

getMaxCharLiteralLength Returns a value of 32000.

getMaxColumnNameLength Returns a value of 30.

getMaxColumnsInGroupBy Returns a value of 255.

getMaxColumnsInIndex Returns a value of 16.

getMaxColumnsInOrderBy Returns a value of 255.

getMaxColumnsInSelect Returns a value of 30000.

getMaxColumnsInTable

getMaxConnections Returns a value of 0.

getMaxCursorNameLength Returns a value of 30.

getMaxIndexLength Returns a value of 4036.

getMaxSchemaNameLength Returns a value of 8.

getMaxProcedureNameLength Returns a value of 30.

getMaxCatalogNameLength Returns a value of 0.

getMaxRowSize

doesMaxRowSizeIncludeBlobs Returns false.

getMaxStatementLength Returns a value of 2000000.

getMaxStatements Returns a value of 64.

getMaxTableNameLength Returns a value of 30.

getMaxTablesInSelect Returns a value of 64.

Method defined in JDBC1.0 standard Limitation or return value

16. Type2 JDBC Driver

1162

getMaxUserNameLength Returns a value of 8.

getDefaultTransactionIsolation Unconditionally returns
TRANSACTION_REPEATABLE_READ.

supportsTransactions Unconditionally returns true.

supportsTransactionIsolationLevel Returns true when the given transaction isolation
level is any of the following:
• TRANSACTION_READ_COMMITTED
• TRANSACTION_READ_UNCOMMITTED
• TRANSACTION_REPEATABLE_READ

SupportsDataDefinitionAndDataManipulation
Transactions

Returns false.

supportsDataManipulationTransactionsOnly Returns false.

dataDefinitionCausesTransactionCommit Returns true.

dataDefinitionIgnoredInTransactions Unconditionally returns false.

getProcedures Returns information about the Java stored routines.

getProcedureColumns Returns information about the parameters of the Java
stored routines.

getTables Returns information about tables. Only the table types
returned by getTableTypes can be specified in the
list of table types to be obtained (types).

getSchemas Returns information about schemas.

getCatalogs Always returns a 0 result.

getTableTypes Returns information about table types. The following
values are returned:
"SYSTEM TABLE": System table
"BASE TABLE": Base table
"VIEW": View table
"READ ONLY VIEW": Read-only view table
"ALIAS": Another table

getColumns Returns information about columns.

getColumnPrivileges Returns information about column privileges.

getTablePrivileges Returns information about table privileges.

Method defined in JDBC1.0 standard Limitation or return value

16. Type2 JDBC Driver

1163

Table 16-31: Limitations to the methods in the DatabaseMetaData class that are
added in the JDBC2.0 basic standard

getBestRowIdentifier Always returns a 0 result.

getVersionColumns

getPrimaryKeys Returns information about primary key columns
(always returns a 0 result).

getImportedKeys Always returns a 0 result.

getExportedKeys Returns information about external key columns that
reference the primary key columns (always returns a 0
result).

getCrossReference Returns information about the external key columns in
the table with external keys that reference the primary
key columns in the table with the primary key (always
returns a 0 result).

getTypeInfo Returns information about the standard SQL types
supported for the database.

getIndexInfo Returns information about indexes.

Method added in JDBC2.0 basic
standard

Limitation or return value

supportsResultSetType Returns true if the result set type is TYPE_FORWARD_ONLY or
TYPE_SCROLL_INSENSITIVE.

SupportsResultSet
Concurrency

Returns true if the result set type is TYPE_FORWARD_ONLY or
TYPE_SCROLL_INSENSITIVE and the parallel processing type is
CONCUR_READ_ONLY.

ownUpdatesAreVisible Unconditionally returns false.

ownDeletesAreVisible

ownInsertsAreVisible

othersUpdatesAreVisible

othersDeletesAreVisible

othersInsertsAreVisible

updatesAreDetected

deletesAreDetected

Method defined in JDBC1.0 standard Limitation or return value

16. Type2 JDBC Driver

1164

16.13.9 Blob class
Table 16-32 lists limitations to the methods in the Blob class that are added in the
JDBC2.0 basic standard.

Table 16-32: Limitations to the methods added by JDBC2.0 basic standards for
Blob class

16.13.10 Array class
Table 16-33 lists limitations to the methods in the Array class that are added by the
JDBC2.0 basic standard.

Table 16-33: Restrictions on the methods added by the JDBC2.0 basic
specification for the Array class

insertsAreDetected

supportsBatchUpdates Unconditionally returns true.

getUDTs Always returns a 0 result.

getConnection Returns the Connection instance that is the DatabaseMetaData
instance generation source.

Method added by JDBC2.0 basic
standard

Limitation

setBinaryStream Cannot be used for JDBC1.4 methods. If used, the method
unconditionally throws an SQLException.

setBytes

truncate

Methods added in the JDBC2.0 basic
specification

Restrictions

getArray Because MAP cannot be used, the method throws an
SQLException if MAP is specified for the argument.

getResultSet

Method added in JDBC2.0 basic
standard

Limitation or return value

1165

Chapter

17. Type4 JDBC Driver

This chapter explains the Type4 JDBC driver installation, environment setup, and
JDBC functions. Note that the Type4 JDBC driver cannot be used in the Linux for
AP8000 version of a client.
Hereafter in this chapter, the Type4 JDBC driver is referred to as the JDBC driver.

17.1 Installation and environment setup
17.2 Database connection using the DriverManager class
17.3 Database connection using a DataSource object and JNDI
17.4 JDBC1.2 core API
17.5 JDBC2.1 Core API
17.6 JDBC2.0 Optional Package
17.7 Connection information setup and acquisition interface
17.8 Data types
17.9 Character conversion facility
17.10 Supported client environment definitions
17.11 Connection information priorities
17.12 JDBC interface method trace
17.13 Exception trace log

17. Type4 JDBC Driver

1166

17.1 Installation and environment setup

17.1.1 Installation
The JDBC driver can be installed when you install HiRDB. After the driver is installed,
the file configuration is as follows:
For UNIX

For Windows (HiRDB server product)

For Windows (HiRDB/Run Time or HiRDB/Developer's Kit)

Note

The underlined portion indicates the HiRDB installation directory.

17.1.2 Environment setup
Before you use the JDBC driver to execute UAPs, you must specify the installed file
in the OS's CLASSPATH environment variable. Also, before you compile a UAP you
must set up the CLASSPATH environment variable in order to directly manipulate the
classes provided by the JDBC driver, which is necessary for the methods provided by
the JDBC driver that do not comply with the JDBC standards.
If you are using the JDBC driver from an application server, such as Cosminexus, the
environment setup depends on the environment setup for the application server. Refer
to the documentation for the particular application server, and check the specifications.

(1) UNIX environment
(a) Bourne shell

HiRDB/client/lib/pdjdbc2.jar

HiRDB\client\utl\pdjdbc2.jar

HiRDB\utl\pdjdbc2.jar

CLASSPATH=${CLASSPATH}:/HiRDB/client/lib/pdjdbc2.jar
export CLASSPATH

17. Type4 JDBC Driver

1167

Note

The underlined portion indicates the HiRDB installation directory.
(b) C shell

Note

The underlined portion indicates the HiRDB installation directory.
(2) Windows environment (executing the program from the command prompt)

Note

The underlined portion indicates the HiRDB installation directory.

17.1.3 Abbreviation of methods
• This manual uses the notation getXXX method to represent the following

methods generically:
getArray, getAsciiStream, getBigDecimal, getBinaryStream,
getBlob, getBoolean, getByte, getBytes, getCharacterStream,
getClob, getDate, getDouble, getFloat, getInt, getLong, getObject,
getRef, getShort, getString, getTime, and getTimestamp

• This manual uses the notation setXXX method to represent the following
methods generically:
setArray, setAsciiStream, setBigDecimal, setBinaryStream,
setBlob, setBoolean, setByte, setBytes, setCharacterStream,
setClob, setDate, setDouble, setFloat, setInt, setLong, setNull,
setObject, setRef, setShort, setString, setTime, and setTimestamp

• This manual uses the notation executeXXX method to represent the following
methods generically:
execute, executeBatch, executeQuery, and executeUpdate

• This manual uses the notation DataSource-type interface to represent the
following interfaces generically:
DataSource, ConnectionPoolDataSource, and XADataSource

setenv CLASSPATH ${CLASSPATH}:/HiRDB/client/lib/pdjdbc2.jar

set CLASSPATH=%CLASSPATH%;C:\Program Files\HITACHI\HiRDB\client\utl\pdjdbc2.jar

17. Type4 JDBC Driver

1168

17.2 Database connection using the DriverManager class

The procedure for connecting from the DriverManager class to HiRDB and
generating an instance of the Connection class is as follows:
1. Register the Driver class into the Java Virtual Machine.
2. Set the connection information in the arguments, and use the getConnection

method of the DriverManager class to connect to HiRDB.

17.2.1 Registering the Driver class
The procedure for registering the JDBC driver into the Java Virtual Machine is
described below.
The driver name that must be used to register the Driver class into the Java Virtual
Machine is package-name.class-name. The package and class names of the JDBC
driver are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: HiRDBDriver

(1) Registering using the forName method of the Class class
Call the forName method of the Class class from within the application as follows:

(2) Registering in the system properties
Set the following value in the jdbc.drivers system property of the Java Virtual
Machine:

(3) Registering into the operation setup file of the Java Virtual machine (Applet)
Specify in the [JAVA_HOME]\.hotjava\properties file the information shown
below (the value of [JAVA_HOME] depends on the Java execution environment). If
you register multiple JDBC drivers, delimit them with colons (:).

 Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver");

 System.setProperty("jdbc.drivers", "JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver");

 jdbc.drivers="JP.co.Hitachi.soft.HiRDB.JDBC.HiRDBDriver"

17. Type4 JDBC Driver

1169

17.2.2 Connecting to HiRDB with the getConnection method
The getConnection method of the DriverManager class is provided in the
following three formats, each with its own set of arguments:

• public static Connection getConnection(String url)
• public static Connection getConnection(String url, String

user, String password)
• public static Connection getConnection(String url,

Properties info)
The arguments (url, user, password, and info) in these method formats specify
connection information that is needed in order to connect to HiRDB.
When connection to HiRDB is established successfully, the JDBC driver returns a
reference to a Connection class instance as the result of calling the method.
However, the method throws an SQLException in the following cases:

• The required connection information is not specified in an argument.
• Specified connection information is invalid.
• Connection cannot be established (for example, because HiRDB has not been

started at the connection destination).
Table 17-1 describes the details of specifying the getConnection method arguments.

Table 17-1: Specification details of the getConnection method arguments

Argument Specification details

String url Specifies the URL. For details, see (1) URL syntax.

String user Specifies the authorization identifier.
If the null value is specified, the JDBC driver assumes
that no authorization identifier has been specified. If the
character string has a length of 0, the method throws an
SQLException and user is set to aa....aaa, which are
characters embedded in the KFPJ20212-E message.
For details about the specification priorities, see 17.11
Connection information priorities.

String password Specifies the password. For details about the
specification priorities, see 17.11 Connection
information priorities.
If the null value is specified, or if a character string of
length 0 is specified, the JDBC driver assumes that no
password was specified.

Properties info Specifies various connection information items. For
details, see (2) User properties.

17. Type4 JDBC Driver

1170

(1) URL syntax
This section explains the URL syntax supported by the JDBC driver.
You must not specify any spaces within an item or between items in a URL. Note that
the item names are case sensitive.

(a) URL syntax

(b) Explanation of URL items
jdbc:hitachi:hirdb

This item consists of the protocol name, subprotocol name, and subname. You
must specify this item. This item is case sensitive.

DBID=additional-connection-information
Specifies the port number of the HiRDB server (corresponds to the PDNAMEPORT
value in the client environment definitions). You can also specify a HiRDB
environment variable group for this item.
If no port number is specified for the HiRDB server, one of the following values
becomes effective:

• The PDNAMEPORT value in the HiRDB client environment variables
specified by HiRDB_for_Java_ENV_VARIABLES in the Properties
argument of the getConnection method

• The PDNAMEPORT value in the environment variable group specified by
DBID in the URL

For details about the specification priorities, see 17.11 Connection information
priorities.
If neither value is specified, the getConnection method throws an
SQLException when it executes.
Notes

You should note the following points about specifying an HiRDB
environment variable group for the additional connection information:

• When you specify the name of the HiRDB environment variable group,
specify @HIRDBENVGRP= followed by the absolute path name. If no

 jdbc:hitachi:hirdb[://[DBID=additional-connection-information]
 [,DBHOST=database-host-name]
 [,ENCODELANG=conversion-character-set]
 [,HIRDB_CURSOR=cursor-operation-mode]
 [,STATEMENT_COMMIT_BEHAVIOR=Statement-object-status-after-commit-execution]]

17. Type4 JDBC Driver

1171

value is specified after the equal sign, such as @HIRDBENVGRP=,, the
JDBC driver assumes that no value is specified for this item.

• Note that an environment variable group name is case sensitive. Also,
the environment variable group name depends on the OS.

• If the environment variable group name contains any single-byte space
or single-byte @ characters, you must enclose the name in single-byte
double quotation marks ("). When an environment variable group name
is enclosed in single-byte double quotation marks, the characters from
the closing single-byte quotation mark to the next setting item or to the
final character are ignored. Note that an environment variable group
that includes a single-byte quotation mark or a single-byte comma
cannot be specified.
Below are examples of specifications that trigger an error:

Note: represents a single-byte space character.
DBHOST=database-host-name

Specifies the name of the HiRDB host.
When this specification is omitted, one of the following values becomes effective:

• The PDHOST value in the HiRDB client environment variables that were
specified by HiRDB_for_Java_ENV_VARIABLES in the Properties
argument of the getConnection method

• The PDHOST value in the HiRDB environment variable group that was
specified by DBID in the URL

For details about the specification priorities, see 17.11 Connection information
priorities.
If neither value is specified, the getConnection method throws an
SQLException when it executes.

ENCODELANG=conversion-character-set
Specifies the conversion character set for the HiRDB character codes of the
connection destination when the JDBC driver uses the String class to exchange
data with HiRDB. Select a specifiable conversion character set from the encoding
list shown under Internationalization in the JavaTM 2 SDK, Standard Edition

@ HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP =/HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP= /HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini

17. Type4 JDBC Driver

1172

documentation.
Table 17-2 lists the character codes of HiRDB and their corresponding conversion
character sets.
Table 17-2: HiRDB character codes and corresponding conversion character
sets

#
The specification of SJIS or MS932 depends on the handling of Windows
special characters in the application.

When OFF is specified, the JDBC driver operates assuming that the conversion
character set for the HiRDB character codes shown in Table 17-2 was specified.
If the HiRDB character code set is sjis, the conversion character set determined
by the OS running the JDBC driver is as follows:
For UNIX: SJIS
For Windows: MS932
Note that the specification is case sensitive (except for OFF).
If a conversion character set that is not supported by the Java Virtual Machine is
specified, the JDBC driver throws an SQLException during connection with the
HiRDB server.
If this specification is omitted, the JDBC driver converts characters using the
appropriate conversion character set shown in Table 17-2. However, if one of the
following is specified, the JDBC driver converts characters by using the default
conversion character set of the Java Virtual Machine:

• Specification value for the UAP name (value specified by the UAPNAME
property)

• Authorization identifier or password (value specified by the
getConnection method)

HiRDB character codes
(character code set with pdntenv or pdsetup

command)

Conversion character set to be specified

lang-c ISO8859_1

sjis SJIS or MS932#

ujis EUC_JP

utf-8 UTF-8

chinese EUC_CN

17. Type4 JDBC Driver

1173

• Specification value for the client environment definition specified by
EnvironmentVariables

• Specification value for an environment variable specified by the
environment variable group name of the HiRDB client

HIRDB_CURSOR=cursor-operation-mode
Specifies whether objects of the ResultSet class are to be validated or
invalidated after HiRDB executes commit processing.
TRUE: Validate objects of the ResultSet class even after commit processing.
FALSE: Invalidate objects of the ResultSet class after commit processing.
If this specification is omitted, FALSE is assumed.
If a value other than TRUE or FALSE is specified, the JDBC driver throws an
SQLException.
If an invalidated ResultSet object executes an operation other than calling the
close method, the JDBC driver throws an SQLException.
Note

For notes about specifying HIRDB_CURSOR, see (c) Notes about
specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

STATEMENT_COMMIT_BEHAVIOR=Statement-object-status-after-commit-execution
Specifies whether objects of the Statement and PreparedStatement classes
(referred to collectively hereafter as Statement) are to be validated or
invalidated after HiRDB executes commit processing.
TRUE: Validate Statement objects even after HiRDB executes commit
processing.
FALSE: Invalidate Statement objects after HiRDB executes commit processing.

The entities that are invalidated after commit execution are SQL statements
that were precompiled by the prepareStatement method of the
Connection class, and ResultSet class objects obtained by the
executeQuery method of Statement.

If this specification is omitted, TRUE is assumed.
Note

For notes about specifying STATEMENT_COMMIT_BEHAVIOR, see (c) Notes
about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

17. Type4 JDBC Driver

1174

(c) Notes about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR
The notes that follow apply to specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.
When TRUE is specified in HIRDB_CURSOR or
STATEMENT_COMMIT_BEHAVIOR

• If the value of the PDDDLDEAPRP client environment definition is NO and
another user executes a definition SQL statement for a schema resource
(table or index) to be accessed by a SELECT, INSERT, DELETE, UPDATE,
PURGE TABLE, or CALL statement, the definition SQL statement remains in
lock-release wait status until the connection that was accessing the schema
resource is disconnected.

• If the value of the PDDDLDEAPRP client environment definition is YES and
another user executes a definition SQL statement for a schema resource
(table or index) to be accessed by a SELECT, INSERT, DELETE, UPDATE,
PURGE TABLE, or CALL statement, the preprocessing result of the SELECT,
INSERT, DELETE, UPDATE, PURGE TABLE, or CALL statement becomes
invalid. If an SQL statement with an invalid preprocessing result is executed,
an SQLException occurs (the value obtained by the getErrorCode
method is -1542).

• When TRUE is specified for HIRDB_CURSOR or
STATEMENT_COMMIT_BEHAVIOR,#1 the only precompiled SQL
statements#2 that are valid after execution of commit processing#3 are the
SELECT, INSERT, DELETE, UPDATE, PURGE TABLE, and CALL statements.

#1
This also applies to either of the following specifications:

• TRUE is set for the following items in the properties specified by the
getConnection method:

 HIRDB_CURSOR
 HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR

• true is specified by the following methods of the PrdbDataSource,
PrdbConnectionPoolDataSource, or PrdbXADataSource class:

 setHiRDBCursorMode
 setStatementCommitBehavior

#2
SQL statements are precompiled by execution of the prepareStatement

17. Type4 JDBC Driver

1175

method of the Connection class.
#3

In addition to explicit commit processing by the commit method, the
following cases also apply:

• Implicit commit processing by the AUTO commit mode
• Execution of a definition SQL statement
• Execution of the PURGE TABLE statement
• Implicit rollback processing by the rollback method
• Implicit rollback processing because of an SQL execution error

In the case of SQL statements other than SELECT, INSERT, DELETE, UPDATE,
PURGE TABLE, and CALL, precompiled SQL statements become invalid during
commit processing.
If a PreparedStatement class object that stores an invalidated precompiled
SQL statement is used in executing the SQL statement, an error occurs. Shown
below is an example that triggers an error:

Because the SQL statements to be executed in this example are LOCK statements,
after commit processing is executed, PreparedStatement becomes invalid and
an error occurs, even if TRUE is specified for STATEMENT_COMMIT_BEHAVIOR.

• When TRUE is specified for HIRDB_CURSOR, the JDBC driver uses the holdable
cursor facility of HiRDB.

Combinations of HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR
specification values

Table 17-3 shows whether ResultSet and Statement objects are validated or
invalidated after commit execution for each combination of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR specification values.

 PreparedStatement pstmt1 = con.prepareStatement("lock table tb1");
 PreparedStatement pstmt2 = con.prepareStatement("lock table tb2");
 pstmt1.execute(); //Triggers an error.
 con.commit();
 pstmt2.execute(); //Does not trigger an error.
 pstmt1.close();
 pstmt2.close();

17. Type4 JDBC Driver

1176

Table 17-3: Status of ResultSet objects and Statement objects after commit
execution

Table 17-4 shows the return value of the DatabaseMetaData method for each
combination of HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR
specification values.
Table 17-4: Return values of the DatabaseMetaData method

Examples of JDBC driver operation during COMMIT execution

The operation of the JDBC driver during COMMIT execution depends on the
specification values of HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR.
Specification examples

STATEMENT_COM
MIT_BEHAVIOR

specification value

HIRDB_CURSOR specification value

TRUE FALSE

TRUE ResultSet object:
Valid

Statement object:
Valid

ResultSet object:
Invalid

Statement object:
Valid

FALSE ResultSet object:
Invalid

Statement object:
Invalid

STATEMENT_COM
MIT_BEHAVIOR

specification value

HIRDB_CURSOR specification value

TRUE FALSE

TRUE supportsOpenStatementsAcrossCom
mit:

true
supportsOpenCursorsAcrossCommit
:

true

supportsOpenStatementsAcrossCo
mmit:

true
supportsOpenCursorsAcrossCommi
t:

false

FALSE supportsOpenStatementsAcrossCo
mmit:

false
supportsOpenCursorsAcrossCommi
t:

false

17. Type4 JDBC Driver

1177

Driver operation at COMMIT execution

#1: This represents the case when TRUE is specified for both HIRDB_CURSOR
and STATEMENT_COMMIT_BEHAVIOR.
#2: This represents the case when FALSE is specified for HIRDB_CURSOR
and TRUE is specified for STATEMENT_COMMIT_BEHAVIOR.
#3: This represents the case when FALSE is specified for both
HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR.

[A]
pstmt1=con.prepareStatement("select c1 from tb1"); [1]
[B]
rs1=pstmt1.executeQuery(); [2]
[C]
rs1.next() [3]
[D]
v1=rs1.getInt(1) [4]
[E]
rs1.next() [5]
[F]
v1=rs1.getInt(1) [6]
[G]
rs1.close() [7]

COMMIT
timing

H=T and S=T#1 H=F and S=T#2 H=F and S=F#3

[A] [1]-[7]: Operates normally.

[B] [1]-[7]: Operates normally. [1], [2], and [7]: Operates
normally.
[3]-[6]: Throws an
SQLException.

[C] [1]-[7]: Operates normally. [1], [2], and [7]: Operates normally.
[3]-[6]: Throws an SQLException.

[D] [1]-[7]: Operates normally. [1]-[3] and [7]: Operates normally.
[4]-[6]: Throws an SQLException.

[E] [1]-[7]: Operates normally. [1]-[4] and [7]: Operates normally.
[5] and [6]: Throws an SQLException.

[F] [1]-[7]: Operates normally. [1]-[5] and [7]: Operates normally.
[6]: Throws an SQLException.

[G] [1]-[7]: Operates normally.

17. Type4 JDBC Driver

1178

Other notes

For notes about the PDDDLDEAPRP client environment definition, see 6.6.4
Environment definition information.
For details about the rules for the DECLARE CURSOR holdable cursor, see the
manual HiRDB Version 8 SQL Reference.

(2) User properties
Table 17-5 shows the properties that you can specify in the getConnection method
of the DriverManager class. If the null value is specified for a property, the JDBC
driver assumes that specification was omitted.

Table 17-5: Properties that can be specified in the getConnection method

Item Property Specified information

(a) user Authorization identifier

(b) password Password

(c) UAPNAME UAP identifier

(d) JDBC_IF Whether or not a JDBC interface method trace is to be
obtained

(e) TRC_NO Number of entries in the JDBC interface method trace

(f) ENCODELANG Conversion character set for the HiRDB character codes
of the connection destination

(g) HIRDB_CURSOR Cursor operation mode

(h) LONGVARBINARY_ACCESS Method of accessing a JDBC SQL-type
LONGVARBINARY (BLOB and BINARY types, which are
HiRDB data types) database

(i) HiRDB_for_Java_SQL_IN_NUM Maximum number of input ? parameters in the SQL
statements to be executed

(j) HiRDB_for_Java_SQL_OUT_NUM Maximum number of output items for the SQL
statements to be executed

(k) HiRDB_for_Java_SQLWARNING_LEVEL Retention level for warning information that is issued
during execution of SQL statements

(l) HiRDB_for_Java_ENV_VARIABLES HiRDB client environment variables

(m) HiRDB_for_Java_STATEMENT_COMMIT_
BEHAVIOR

Statement object status after commit execution

(n) HiRDB_for_Java_LONGVARBINARY_ACC
ESS_SIZE

Length of JDBC SQL-type LONGVARBINARY data to be
requested at one time to the HiRDB server

17. Type4 JDBC Driver

1179

(a) user
Specifies the authorization identifier.
If the null value is specified, the JDBC driver assumes that no authorization identifier
was specified. If the character string has a length of 0, the JDBC driver throws an
SQLException.
If this specification is omitted, either the PDNAMEPORT specification value in the
HiRDB client environment definitions specified by
HiRDB_for_Java_ENV_VARIABLES in the Properties argument of the
getConnection method, or the PDUSER specification value in the HiRDB
environment variable group specified for DBID in the URL becomes effective. For
details about the specification priorities, see 17.11 Connection information priorities.
If neither value is specified, the JDBC driver throws an SQLException when the
getConnection method is executed.

(b) password
Specifies the password.
If the specification value is the null or has a length of 0, the JDBC driver assumes that
no password was specified.
For details about when this specification is omitted, see 17.11 Connection information
priorities.

(c) UAPNAME
Specifies UAP identification information (UAP identifier) for accessing the HiRDB
server.
In the following cases, the JDBC driver assumes that no authorization identifier was
specified:

• The null value is specified.
• A character string with a length of 0 or a character string of only single-byte space

characters is specified.
For details about character strings that can be specified, see the description of the
PDCLTAPNAME client environment definition in 6.6.4 Environment definition

(o) HiRDB_for_Java_MAXBINARYSIZE Maximum data size during acquisition of JDBC
SQL-type LONGVARBINARY data

(p) HiRDB_for_Java_LONGVARBINARY_TRU
NCERROR

Whether or not an exception is to be thrown if truncation
occurs during acquisition of JDBC SQL-type
LONGVARBINARY data

Item Property Specified information

17. Type4 JDBC Driver

1180

information.
For details about when this specification is omitted, see 17.11 Connection information
priorities.
Note

The UAP specified by this property is encoded in the conversion character set
specified by ENCODELANG, and the first 30 bytes of the encoded UAP identifier
are transferred to the HiRDB server (if the UAP identifier consists of more than
30 bytes, it is truncated to the first 30 bytes). Therefore, the UAP identifier that
the HiRDB server can obtain is up to the first 30 bytes after the identifier has been
encoded.

(d) JDBC_IF
Specifies whether or not a JDBC interface method trace is to be obtained.
ON: Obtain a JDBC interface method trace.
OFF: Do not obtain a JDBC interface method trace.
If this specification is omitted, OFF is assumed.
If any other value is specified, the JDBC driver throws an SQLException.
If the setLogWriter method has not specified valid log data, the specification of this
property is disabled.
For details about the JDBC interface method trace, see 17.12 JDBC interface method
trace.

(e) TRC_NO
~<unsigned integer>((10-1000))<<500>>
Specifies the number of entries in the JDBC interface method trace.
The specification of this property is enabled when both of the following conditions are
satisfied:

• The setLogWriter method has set valid log data.
• ON is specified for JDBC_IF.

If the specification of this property is enabled but the specification value is invalid, the
JDBC driver throws an SQLException.
For details about a JDBC interface method trace, see 17.12 JDBC interface method
trace.

(f) ENCODELANG
Specifies the conversion character set for the HiRDB character codes of the connection
destination when the JDBC driver uses the String class to exchange data with

17. Type4 JDBC Driver

1181

HiRDB.
Select a specifiable conversion character set from the encoding list shown under
Internationalization in the JavaTM 2 SDK, Standard Edition documentation.
For details about the HiRDB character codes and their corresponding conversion
character sets, see Table 17-2.
When OFF is specified, the JDBC driver operates assuming that the conversion
character set that Table 17-2 shows for the HiRDB character codes was specified. If
the HiRDB character codes are sjis, the conversion characters determined by the OS
running the JDBC driver are as follows:
For UNIX: SJIS
For Windows: MS932
Note that the specification is case sensitive (except for OFF).
If a conversion character set that the Java Virtual Machine does not support is
specified, the JDBC driver throws an SQLException during connection with the
HiRDB server.
If this specification is omitted, the JDBC driver converts characters using the
conversion character set specified by ENCODELANG in the URL.

(g) HIRDB_CURSOR
Specifies whether objects of the ResultSet class are to be validated or invalidated
after HiRDB executes commit processing.
TRUE: Validate objects of the ResultSet class even after commit processing.
FALSE: Invalidate objects of the ResultSet class after commit processing.
If this specification is omitted, the value specified by HIRDB_CURSOR in the URL
becomes valid. If a value other than TRUE or FALSE is specified, the JDBC driver
throws an SQLException.
If an invalidated ResultSet object executes an operation other than calling the
close method, the JDBC driver throws an SQLException.
Note

For notes about specifying this property, see (1)(c) Notes about specification of
HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR.

(h) LONGVARBINARY_ACCESS
Specifies the method of accessing a JDBC SQL-type LONGVARBINARY (BLOB and
BINARY types, which are HiRDB data types) database.
REAL: Access the database using real data.

17. Type4 JDBC Driver

1182

LOCATOR: Access the database using the locator facility of HiRDB.
If this specification is omitted, REAL is assumed.
If any other value is specified, the JDBC driver throws an SQLException.
Note

For notes about specification of this property, see (q) Notes about specification of
LONGVARBINARY_ACCESS.

(i) HiRDB_for_Java_SQL_IN_NUM
~<unsigned integer>((1-30000))<<300>>
Specifies the maximum number of input ? parameters in the SQL statements to be
executed.
This specification becomes the number of input ? parameters that are obtained during
SQL preprocessing. If the actual number of input ? parameters is greater than the
specification value of this property, the JDBC driver gets the input ? parameter
information from the HiRDB server after SQL preprocessing.
If the specification value is invalid, the JDBC driver throws an SQLException.
Note

If you will not be executing SQL statements that have input ? parameters, you
should specify 1.

(j) HiRDB_for_Java_SQL_OUT_NUM
~<unsigned integer>((1-30000))<<300>>
Specifies the maximum number of output items for the SQL statements that are to be
executed.
This specification becomes the number of output items obtained during SQL
preprocessing. If the actual number of output items is greater than the specification
value of this property, the JDBC driver gets output item information from the HiRDB
server after SQL preprocessing.
If the specification value is invalid, the JDBC driver throws an SQLException.
Note

If you will not be executing SQL statements that have output items, you should
specify 1.

(k) HiRDB_for_Java_SQLWARNING_LEVEL
Specifies the retention level for warning information that is issued during execution of
SQL statements. For details about the retention levels for warning information, see
17.4.10(2)(b) Issuing conditions for SQLWarning objects.

17. Type4 JDBC Driver

1183

IGNORE: Retain warning information at the IGNORE level.
SQLWARN: Retain warning information at the SQLWARN level.
ALLWARN: Retain warning information at the ALLWARN level.
If this specification is omitted, SQLWARN is assumed.
If the specification value is invalid, the JDBC driver throws an SQLException.

(l) HiRDB_for_Java_ENV_VARIABLES
Specifies environment variables of the HiRDB client, using the following format:

For details about client environment definitions supported by the JDBC driver, see
17.10 Supported client environment definitions. If a client environment definition that
is not supported by the JDBC driver is specified in a variable name, the JDBC driver
ignores the specification. Note that variable names are case sensitive.
For details about the priorities for connection information that can be specified in
multiple ways, see 17.11 Connection information priorities.
Specification example

java.util.Properties prop;
prop=new java.util.Properties();
prop.setProperty("HiRDB_for_Java_ENV_VARIABLES",
 "PDFESHOST=FES1;PDCWAITTIME=0");

(m) HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR
Specifies whether Statement objects are to be validated or invalidated after HiRDB
executes commit processing.
TRUE: Validate Statement objects after commit processing.
FALSE: Invalidate Statement objects after commit processing.

The objects that are invalidated after commit execution are SQL statements that
were precompiled by the prepareStatement method of the Connection
class, and ResultSet class objects obtained by the executeQuery method.

If this specification is omitted, the value specified for
STATEMENT_COMMIT_BEHAVIOR in the URL becomes effective.
Note

For notes about specification of this property, see (1)(c) Notes about specification
of HIRDB_CURSOR and STATEMENT_COMMIT_BEHAVIOR.

 variable-name=value;variable-name=value;...;variable-name=value

17. Type4 JDBC Driver

1184

(n) HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE
~<unsigned integer>((0-2097151))<<0>> (kilobytes)
Specifies the length of JDBC SQL-type LONGVARBINARY data to be requested at one
time to the HiRDB server. If LONGVARBINARY_ACCESS specifies data other than
LOCATOR data, this specification is invalid.
For example, suppose that 20 is specified for this property and the getBytes method
of ResultSet attempts to get 100 kilobytes of JDBC SQL-type LONGVARBINARY
data stored in the database. In such a case, the JDBC driver gets and returns the data
by dividing the operation into five executions of 20 kilobytes each. If 0 is specified,
the JDBC driver requests the data all at once.
If the specification value is invalid, the JDBC driver throws an SQLException.
Note

For notes about specification of this property, see (q) Notes about specification of
LONGVARBINARY_ACCESS.

(o) HiRDB_for_Java_MAXBINARYSIZE
~<unsigned integer>((0-2147483647)) (bytes)
Specifies the maximum data size during acquisition of JDBC SQL-type
LONGVARBINARY data.
When the JDBC driver is getting JDBC SQL-type LONGVARBINARY data, it allocates
memory of the defined length because it cannot determine the actual data length until
it actually gets the data. Therefore, to get the value of a string for which the specified
size is large (for example, 2,147,483,647 bytes, which is the maximum length for
HiRDB's BINARY and BLOB data types), the JDBC driver attempts to allocate
2,147,483,647 bytes of memory, because that is the defined length. Consequently, a
memory shortage may occur, depending on the execution environment.
You should specify for this property the maximum length of the data that is actually
stored. If the data length of the BINARY or BLOB data to be acquired is larger than the
size specified by this property, the JDBC driver truncates the acquired data to the
specified size. When the JDBC driver does truncate data, it receives a warning from
the HiRDB server when it executes the next method of ResultSet. In response to
the received warning, the JDBC driver throws an SQLException or generates (or
ignores) an SQLWarning, as determined by the specification of
setLONGVARBINARY_TruncError.
If no upper limit is set by this property, the defined length of the target acquisition data
becomes the upper limit.
If the specification value is invalid, the JDBC driver throws an SQLException.

17. Type4 JDBC Driver

1185

Note

When LOCATOR is specified for LONGVARBINARY_ACCESS, the specification
value of this property becomes invalid. The JDBC driver allocates an area based
on the actual data length and gets the entire data.

(p) HiRDB_for_Java_LONGVARBINARY_TRUNCERROR
Specifies whether an exception is or is not to be thrown if truncation occurs during
acquisition of JDBC SQL-type LONGVARBINARY data.
TRUE: Throw an exception if truncation occurs.
FALSE: Do not throw an exception if truncation occurs.
If this specification is omitted, TRUE is assumed.
If IGNORE is specified for HiRDB_for_Java_SQLWARNING_LEVEL, the JDBC driver
operates as if FALSE were specified for this property.
Any truncation that occurs during acquisition of JDBC SQL-type LONGVARBINARY
data indicates that the following condition is satisfied:

(q) Notes about specification of LONGVARBINARY_ACCESS
These notes apply to specification of LONGVARBINARY_ACCESS.
When LONGVARBINARY_ACCESS is specified together with
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE

Table 17-6 describes the differences in how the JDBC driver gets BLOB and
BINARY data (HiRDB data types) based on the
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE and
LONGVARBINARY_ACCESS specifications.
Table 17-6: Differences in how the HiRDB driver gets BLOB and BINARY data
(HiRDB data types)

Actual length of JDBC SQL-type LONGVARBINARY data obtained during SQL execution > data length specified by
HiRDB_for_Java_MAXBINARYSIZE

Execution method LONGVARBINARY_ACCESS specification value

REAL LOCATOR

ResultSet.next Gets all of the BLOB or BINARY
data from the connected database.

Gets the locator that indicates the
BLOB or BINARY data in the
connected database, instead of all
of the BLOB or BINARY data.

17. Type4 JDBC Driver

1186

Legend:
ACCESSSIZE: Specification value of
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE
InputStream and Reader: Classes of objects returned by

ResultSet.getBytes
ResultSet.getString
ResultSet.getObject

Uses the BLOB or BINARY data
obtained by ResultSet.next.

Divides the BLOB or BINARY data
into ACCESSSIZE x 1024-byte
units and gets all of the data from
the connected database.

Blob.getBytes Extracts and gets the data range
specified by the argument from
the BLOB or BINARY data obtained
by ResultSet.next.

Divides the BLOB or BINARY data
range specified by the argument
into ACCESSSIZE x 1024-byte
units, and gets the data range from
the connected database.

ResultSet.getBinaryStream
ResultSet.getAsciiStream
ResultSet.getUnicodeStream
Blob.getBinaryStream

When the InputStream read
method obtained by the executed
method is executed, the JDBC
driver extracts and gets data from
the BLOB or BINARY data obtained
by ResultSet.next.

When the InputStream read
method obtained by the executed
method is executed, the JDBC
driver gets data from the
connected database.

Blob.length Gets the data length from the
BLOB or BINARY data obtained by
ResultSet.next.

Gets the data length from the
connected database.

Blob.position Gets the position of the data
matching the search pattern from
the BLOB or BINARY data obtained
by ResultSet.next.

Gets the position of the data
matching the search pattern from
the connected database.

InputStream
obtained by
ResultSet.getBin
aryStream or
Blob.getBinarySt
ream

InputStrea
m.availabl
e

Returns a value equal to or less
than the length of the actual data
indicated by the locator.

Returns a value equal to or less
than ACCESSSIZE x 1024 bytes.

InputStrea
m.skip

Skips reading of the range up to
the length of the actual data
indicated by the locator.

Skips reading of the range up to
the maximum ACCESSSIZE x
1024 bytes.

getCharcterStream
ResultSet.getCharacterStream

When the Reader read method
obtained by
getCharcterStream is
executed, the JDBC driver
extracts and gets data from the
BLOB or BINARY data obtained by
ResultSet.next.

When the Reader read method
obtained by
getCharcterStream is
executed, the JDBC driver gets
data from the connected database.

Execution method LONGVARBINARY_ACCESS specification value

REAL LOCATOR

17. Type4 JDBC Driver

1187

getBinaryStream, getAsciiStream, or getCharacterStream of the
JDBC driver

Notes about execution performance

When LOCATOR is specified for LONGVARBINARY_ACCESS, execution
performance may drop compared to when REAL is specified.
When REAL is specified, the JDBC driver accesses the connected database once
during ResultSet.next processing to get the locator. On the other hand, when
LOCATOR is specified, in addition to the one access during ResultSet.next
processing, the JDBC driver accesses the connected database once to get the data
length and once to get the data during execution of a data acquisition method such
as getBytes.

Notes about data operations after the transaction terminates

When LOCATOR is specified for LONGVARBINARY_ACCESS, data operations
cannot be performed if the transaction terminates during the period between
acquisition of the SQL execution results (ResultSet.next) and the data
operation (such as Blob.getBytes or InputStream.read). Data operations
cannot be executed after the transaction terminates even if the HIRDB_CURSOR
specification is TRUE.
Thus, you must ensure that all data operations will execute before the transaction
terminates.

17. Type4 JDBC Driver

1188

17.3 Database connection using a DataSource object and JNDI

The JDBC2.0 Optional Package can now use database connections that use a
DataSource object and JNDI.
Although use of JNDI is not required, the advantage of using it is that you only have
to set up the connection information once. The standard JDK package does not include
interface definitions for the DataSource class or JNDI, so you have to download
these items from the JavaSoft Web site when you develop an AP.
To connect a database by using a DataSource object and JNDI:

1. Generate the DataSource object.
2. Set up the connection information.
3. Register the DataSource object into JNDI.
4. Get the DataSource object from JNDI.
5. Connect to the database.
If you are not using JNDI, steps 3 and 4 are not necessary.
If you are using JNDI, steps 1 to 3 need to be executed only once. Thereafter, you can
connect to the database by performing only steps 4 and 5. Once you have performed
step 4, you can change the connection information as necessary.

(1) Generating the DataSource object
Generate the DataSource class object to be provided by the JDBC driver.
The DataSource class name of the JDBC driver, which is necessary for generating
the DataSource class object, is PrdbDataSource.
Below is an example of generating the DataSource class object:

(2) Setting up connection information
Call the method for setting up connection information for the DataSource object, and
set up the connection information. Because there is also a method for acquiring
connection information, you can use it to check the current connection information.
For details about the connection information setup and acquisition methods, see 17.7
Connection information setup and acquisition interface.

 JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource ds = null ;
 ds = new JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource() ;

17. Type4 JDBC Driver

1189

(3) Registering the DataSource object into JNDI
Register the DataSource object into JNDI.
JNDI can select from among several service providers, depending on the execution
environment.
Shown below is an example of registering the DataSource object into JNDI (this
example is for Windows). In the registration example, the File System service
provider, which is one of the service providers, is used. For details about other service
providers, see the JNDI documentation.

When you register the logical name to be registered into JNDI, the JDBC2.0
specifications recommend that you register the logical name under a subcontext called
jdbc (jdbc/TestDataSource in the registration example).

(4) Getting the DataSource object from JNDI
Get the DataSource object from JNDI.
Shown below is a registration example for the DataSource object (this is an example

 // Generate DataSource class object to be provided by JDBC driver.
 JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource ds;
 ds = new JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource();

 // Set connection information.
 :

 // Get system properties.
 Properties sys_prop = System.getProperties() ;

 // Set properties of File System service provider.
 sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

 // Set directory to be used by File System service provider.
 // (Register under c:\JNDI_DIR.)
 sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

 // Update system properties.
 System.setProperties(sys_prop) ;

 // Initialize JNDI.
 Context ctx = new InitialContext();

 // Register DataSource class object to be provided by HiRDB driver
 // into JNDI. Use logical name jdbc/TestDataSource.
 ctx.bind("jdbc" + "\\" + "TestDataSource", ds);
 :

17. Type4 JDBC Driver

1190

for Windows). This registration example uses the File System service provider, which
is one of the service providers. For details about other service providers, see the JNDI
documentation.

(5) Connecting to the database
Call the getConnection method for the DataSource object.
Shown below is an example of calling the getConnection method.

#
The method's arguments (authorization identifier and password) take priority over

 // Get system properties.
 Properties sys_prop = System.getProperties() ;

 // Set properties of File System service provider.
 sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

 // Set directory to be used by File System service provider.
 // (Register under c:\JNDI_DIR.)
 sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

 // Update system properties.
 System.setProperties(sys_prop) ;

 // Initialize JNDI.
 Context ctx = new InitialContext();

 // Get object of local name jdbc/TestDataSource from JNDI.
 Object obj = ctx.lookup("jdbc" + "\\" + "TestDataSource") ;

 // Cast retrieved object to DataSource class type.
 DataSource ds = (DataSource)obj;
 :

 DataSource ds

 // Get DataSource object from JNDI.
 :

 // Issue getConnection method.
 Connection con = ds.getConnection();
 or
 Connection con = ds.getConnection("USERID", "PASSWORD");#

17. Type4 JDBC Driver

1191

the connection information that was set for the DataSource object. If needed
connection information has not been set for the DataSource object, or if the
contents of the connection information are invalid, or if connection with the
HiRDB server fails, the getConnection method throws an SQLException.

After getting the DataSource object from JNDI, set up the connection information
again, as necessary. In this case, you must cast the DataSource object to the
DataSource class type provided by the JDBC driver before you set up the
information. An example is shown below:

 DataSource ds
 JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource hirdb_ds;

 // Get DataSource object from JNDI.
 :

 // Cast DataSource object to DataSource class type provided
 // by JDBC driver.
 dbp_ds = (JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDataSource)ds;

 // Set up connection information again.
 :

17. Type4 JDBC Driver

1192

17.4 JDBC1.2 core API

17.4.1 Driver interface
(1) Overview

The Driver interface provides the following principal functions:
• Database checking
• Validity check on a specified URL
• Acquisition of connection properties specified with the

DriverManager.getConnection method
• Return of the driver version

(2) Methods
Table 17-7 lists the methods of the Driver interface. The interface does not support
methods that are not listed in the table. If an unsupported method is specified, the
interface throws an SQLException.

Table 17-7: Driver interface methods

Method Remarks

acceptsURL(String url) --

connect(String url,Properties info) For details about the specification values for the String url
and Properties info arguments of this method, see
17.2.2(1) URL syntax and 17.2.2(2) User properties.
This method uses the value returned by the
getLoginTimeout method of the DriverManager class as
the maximum wait time for communication during connection
with the HiRDB server. If the getLoginTimeout method
returns 0, the value specified for the PDCONNECTWAITTIME
client environment definition becomes the maximum wait
time. The wait time can be specified in the
setLoginTimeout method of the DriverManager class.
If the getLoginTimeout method of the DriverManager
class returns a value outside the range 0-300, this method
throws an SQLException.

getMajorVersion() --

getMinorVersion() --

getPropertyInfo(String
url,Properties info)

--

jdbcCompliant() --

17. Type4 JDBC Driver

1193

Legend:
--: None.

(3) Package and class names
The names of the package and class for installing this interface are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: HiRDBDriver

17.4.2 Connection interface
(1) Overview

The Connection interface provides the following principal functions:
• Creation of objects in the Statement and PreparedStatement classes
• Transaction settlement (COMMIT or ROLLBACK)
• Specification of the AUTO commit mode

(2) Methods
Table 17-8 lists the methods of the Connection interface. This interface does not
support methods that are not listed in the table. If an unsupported method is specified,
the interface throws an SQLException.

Table 17-8: Connection interface methods

Method Remarks

clearWarnings() --

close() During a normal connection, this method releases the connection
with the database. When a connection pool is used or during an XA
connection, this method does not physically disconnect the
connection.
If an error occurs during close method execution, the method does
not throw an SQLException.
If a fatal error occurs during close method execution when a
connection pool or an XA connection is being used and use of the
connection pool becomes disabled, a
connectionErrorOccurred method of the
ConnectionEventListener class does not occur.

commit() Even if this method is called while the AUTO commit mode is still
effective, the interface executes commit processing without
throwing an exception.

createStatement() --

17. Type4 JDBC Driver

1194

createStatement(int
resultSetType, int
resultSetConcurrency)

If TYPE_SCROLL_SENSITIVE is specified as the result set type, the
JDBC driver switches to TYPE_SCROLL_INSENSITIVE and sets an
SQLWarning.
The only concurrent processing type that the JDBC driver supports
is CONCUR_READ_ONLY. If CONCUR_UPDATABLE is specified, the
JDBC driver switches to CONCUR_READ_ONLY and sets an
SQLWarning.

createStatement(int
resultSetType,int
resultSetConcurrency, int
resultSetHoldability)

Same as above for the resultSetType and
resultSetConcurrency arguments.

getAutoCommit() --

getCatalog() Returns the null value.

getHoldability() --

getMetaData() --

getTransactionIsolation Always returns TRANSACTION_REPEATABLE_READ.

getTypeMap() Returns a free map.

getWarnings() --

isClosed() --

isReadOnly() Always returns false.

prepareStatement(String sql) --

prepareStatement(String sql, int
resultSetType, int
resultSetConcurrency)

If TYPE_SCROLL_SENSITIVE is specified as the result set type, the
JDBC driver switches to TYPE_SCROLL_INSENSITIVE and sets an
SQLWarning.
The only concurrent processing type that the JDBC driver supports
is CONCUR_READ_ONLY. If CONCUR_UPDATABLE is specified, the
JDBC driver switches to CONCUR_READ_ONLY and sets an
SQLWarning.

prepareStatement(String sql, int
resultSetType, int
resultSetConcurrency, int
resultSetHoldability)

Same as above for the resultSetType and
resultSetConcurrency arguments.

rollback() --

setAutoCommit(boolean
autoCommit)

If this method is called in the middle of a transaction, that
transaction is not committed.

setCatalog(String catalog) This specification is ignored.

Method Remarks

17. Type4 JDBC Driver

1195

Legend:
--: None

(a) checkSession
Function

Checks the current connection status.
Format

public int checkSession (int waittime) throws SQLException

Argument

int waittime:
Specifies the wait time (in seconds). If 0 is specified, the JDBC driver waits
until the time specified by the PDCWAITTIME client environment definition.

Return value

PrdbConnection.SESSION_ALIVE:
The method was able to confirm that a connection is currently established.

PrdbConnection.SESSION_NOT_ALIVE:
Because of a cause other than a timeout within the time specified in the
argument, the method was unable to confirm that a connection is currently
established.

PrdbConnection.SESSION_CHECK_TIMEOUT:
Because of a timeout within the time specified in the argument, the method
was unable to confirm that a connection is currently established.

Functional detail

Checks the current connection status.

setHoldability(int holdability) --

setReadOnly(boolean readOnly) This specification is ignored.

setTransactionIsolation(int
level)

This specification is ignored.

checkSession(int waittime) This method is specific to the JDBC driver.
For details, see (a) checkSession.

Method Remarks

17. Type4 JDBC Driver

1196

Exception that occurs

If the wait time specification value is -1 or less, the JDBC driver throws a
java.sql.SQLException.

(3) Package and class names
The names of the package and class for installing this interface are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbConnection

(4) Notes
(a) Holdability specification

If holdability is specified with one of the methods shown below, the HIRDB_CURSOR
specification value in either the URL syntax or the properties can be overwritten for
each Statement object (Statement or PreparedStatement object) and
Connection object:

• resultSetHoldability argument of the createStatement or
preparedStatement method

• holdability argument of the setHoldability method
• Whether or not UNTIL DISCONNECT is specified in the SQL statement (SELECT

statement) to be executed
For ResultSet and DatabaseMetaData objects (when the setHoldability
method is used) generated by the applicable method, the holdability specifications that
become effective change depending on the combinations of these specifications and
the HIRDB_CURSOR specifications.
Table 17-9 shows the holdability specifications that become effective for Statement
objects generated by the following methods:

• createStatement(int resultSetType,int resultSetConcurrency,
int resultSetHoldability)

• prepareStatement(int resultSetType,int
resultSetConcurrency, int resultSetHoldability)

17. Type4 JDBC Driver

1197

Table 17-9: Effective holdability specifications (1/2)

Legend:
T: The JDBC driver operates as if TRUE were specified for HIRDB_CURSOR.
F: The JDBC driver operates as if FALSE were specified for HIRDB_CURSOR.

Table 17-10 shows the holdability specifications that become effective for Statement
or DatabaseMetaData objects generated by methods other than the Table 17-9
methods.

HIRDB_CURSOR or
setHiRDBCursorMode

specification

Specification value of resultSetHoldability argument

ResultSet.
HOLD_CURSOR
S_OVER_COMMI

T

ResultSet.
CLOSE_CURSORS_AT_COMMIT

Execution of
SELECT

statement with
UNTIL

DISCONNECT
specified

Execution of other
SQL statement

TRUE specified for
HIRDB_CURSOR in
properties

TRUE specified for
HIRDB_CURSOR in
URL syntax

T T F

FALSE specified
for
HIRDB_CURSOR in
URL syntax

T T F

FALSE specified
for
HIRDB_CURSOR in
properties

TRUE specified for
HIRDB_CURSOR in
URL syntax

T T F

FALSE specified
for
HIRDB_CURSOR in
URL syntax

T T F

true specified for
setHiRDBCursorMode

T T F

false specified for
setHiRDBCursorMode

T T F

17. Type4 JDBC Driver

1198

Table 17-10: Effective holdability specifications (2/2)

Legend:
T: The JDBC driver operates as if TRUE were specified for HIRDB_CURSOR.
F: The JDBC driver operates as if FALSE were specified for HIRDB_CURSOR.

For details about HIRDB_CURSOR, see 17.2.2 Connecting to HiRDB with the

HIRDB_CURSOR or
setHiRDBCursorMode

specification

Specification value of setHoldability
method

No execution of
setHoldability method

ResultSet.
HOLD_CURS
ORS_OVER_

COMMIT

ResultSet.
CLOSE_CURSORS_AT_

COMMIT

Execution
of SELECT
statement
with UNTIL
DISCONNE

CT specified

Execution
of other

SQL
statement

Execution
of SELECT
statement
with UNTIL
DISCONNE

CT specified

Execution
of other

SQL
statement

TRUE
specified
for
HIRDB_CU
RSOR in
properties

TRUE
specified for
HIRDB_CUR
SOR in URL
syntax

T T F T T

FALSE
specified for
HIRDB_CUR
SOR in URL
syntax

T T F T F

FALSE
specified
for
HIRDB_CU
RSOR in
properties

TRUE
specified for
HIRDB_CUR
SOR in URL
syntax

T T F T T

FALSE
specified for
HIRDB_CUR
SOR in URL
syntax

T T F T F

true specified for
setHiRDBCursorMode

T T F T T

false specified for
setHiRDBCursorMode

T T F T F

17. Type4 JDBC Driver

1199

getConnection method.

17.4.3 Statement interface
(1) Overview

The Statement interface provides the following principal functions:
• SQL execution
• Creation of a result set (ResultSet object) as a retrieval result
• Return of the number of updated rows as an updating result
• Specification of the maximum number of rows to be retrieved
• Specification of the maximum query wait time

(2) Methods
Table 17-11 lists the methods of the Statement interface. This interface does not
support methods that are not listed in the table. If an unsupported method is specified,
the interface throws an SQLException.

Table 17-11: Statement interface methods

Method Remarks

addBatch(String sql) Up to 2,147,483,647 SQL statements can be registered for
execution. If the maximum is exceeded, this method throws an
SQLException.

cancel() For notes about this method, see (4)(b) Asynchronous cancellation
by the cancel method.

clearBatch() --

clearWarnings() --

close() If an error occurs during close method execution when a
connection pool or an XA connection is being used, the method
does not throw an SQLException. If a fatal error occurs and the
connection pool can no longer be used, the
connectionErrorOccurred method of the
ConnectionEventListener class does not occur.

execute(String sql) --

executeBatch() --

executeQuery(String Sql) If the SQL statement (such as an INSERT statement) does not have
retrieval results, this method throws an SQLException.

executeUpdate(String Sql) If the SQL statement (SELECT statement) returns retrieval results,
this method throws an SQLException.

17. Type4 JDBC Driver

1200

getConnection() --

getFetchDirection() --

getFetchSize() Returns the value set by setFetchSize. If no value was set by
setFetchSize, this method returns 0.

getMaxFieldSize() Returns the value set by setMaxFieldSize.

getMaxRows() Returns the value set by setMaxRows.

getMoreResults() --

getQueryTimeout() Returns the value set by setQueryTimeout. If no value was set by
setQueryTimeout, this method returns 0.

getResultSet() --

getResultSetConcurrency() --

getResultSetHoldability() --

getResultSetType() --

getUpdateCount() The method returns -1 if any of the following applies:
• No executeXXX method was executed.
• The executeXXX that was executed last was the

executeBatch method.
• The executeXXX method that was executed last was not the

executeBatch method and it returned a result set (example:
SELECT statement execution).

• The getMoreResults method was executed after the
executeXXX method that was executed last.

• The executeXXX method that was executed last threw an
SQLException.

getWarnings() --

setCursorName(String name) --

setEscapeProcessing(Boolean
enable)

--

setFetchDirection(int direction) --

setFetchSize(int rows) If no value was specified with this method or if 0 was specified, the
JDBC driver uses the value of the PDBLKF client environment
variable as an indicator of the number of rows that must be
extracted from the database when it retrieves data.
For notes about this method, see (4)(a) Using the block transfer
facility by specifying the setFetchSize method.

Method Remarks

17. Type4 JDBC Driver

1201

Legend:
--: None.

(3) Package and class names
The names of the package and class for installing this interface are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbStatement

(4) Notes
(a) Using the block transfer facility by specifying the setFetchSize method

If the value 1 or greater is specified for the setFetchSize method, the JDBC driver
uses the block transfer facility and requests the HiRDB server to transfer all at once the
retrieval results for the number of rows specified in the argument. For details about the
block transfer facility, see 4.7 Block transfer facility.

Although there is no maximum specification value for the setFetchSize method,
the block transfer facility can transfer only up to 4,096 rows at a time. Therefore, when
a value greater than 4,096 is specified, the number of rows actually transferred at once
will not exceed 4,096.
Table 17-12 shows the priorities that determine the number of rows that the JDBC
driver requests the HiRDB server to transfer in one transmission.

Table 17-12: Priorities for number of rows that the JDBC driver requests the
HiRDB server to transfer in one transmission

setMaxFieldSize(int max) --

setMaxRows(int max) --

setQueryTimeout(int seconds) Specifies the maximum wait time (seconds) for communication
with the HiRDB server during SQL execution. If this method is not
called, the time specified by the PDCWAITTIME client environment
variable becomes the maximum wait time.
If 65,536 or greater is specified, this method ignores the
specification value.

Priority Specification value

1 Value specified in the argument of the setFetchSize method of the
ResultSet class

2 Value specified in the argument of the setFetchSize method of the
Statement class

Method Remarks

17. Type4 JDBC Driver

1202

For details about the number of rows that the JDBC driver actually receives from the
HiRDB server in one communication when the driver requests the number of rows
indicated in Table 17-12, see 4.7(4) Number of rows transferred in one transmission.
However, when reading this section, replace PDBLKF with number of rows requested
for transfer as determined by the priorities shown in Table 17-12, and replace FETCH
statement with next method of the ResultSet class.
If the retrieval result is larger than the number of transfer rows shown in Table 17-12,
the JDBC driver requests transfer to the HiRDB server as many times as necessary
until retrieval is completed (or until all retrieval requests from the UAP are processed).
If one of the following conditions is satisfied, the number of rows that the JDBC driver
receives from the HiRDB server in one transmission is 1:

• A projection column of the result set contains HiRDB BLOB type data.
• A projection column of the result set contains HiRDB BINARY type data with a

defined length greater than 32,000, and the specification of the PDBINARYBLKF
client environment definition is NO.

• All of the following conditions are satisfied:
• During connection setup, LOCATOR is specified for the

LONGVARBINARY_ACCESS property or the setLONGVARBINARY_Access
argument of the DataSource class.

• One of the following is specified:
- UNTIL DISCONNECT is specified in a SELECT statement.
- ResultSet.HOLD_CURSORS_OVER_COMMIT is specified in the
resultSetHoldability argument of the createStatement or
prepareStatement method of the Connection class.
- During connection setup, TRUE is specified for the HIRDB_CURSOR setup
item in the properties or the URL.
- true is specified for the setHiRDBCursorMode argument of the
DataSource class.

(b) Asynchronous cancellation by the cancel method
You can use the cancel method to execute asynchronous cancellation of SQL
statements being processed by the HiRDB server. Even if the target Statement object
is not executing an SQL statement, asynchronous cancellation is executed if another
object is executing an SQL statement for the same connected object.

3 Value specified in the PDBLKF client environment definition

Priority Specification value

17. Type4 JDBC Driver

1203

When asynchronous cancellation is executed at the HiRDB server, all
PreparedStatement and ResultSet objects that were created before the
asynchronous cancellation become invalid, regardless of the specification for
validating or invalidating Statement and ResultSet objects after commit
execution.
The following methods specify whether or not objects are to remain valid after commit
execution:

• HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR property in the
Properties argument of the getConnection method of the DriverManager
class

• STATEMENT_COMMIT_BEHAVIOR in the URL
• setStatementCommitBehavior of the DataSource system interface
• HIRDB_CURSOR property in the Properties argument of the getConnection

method of the DriverManager class
• HIRDB_CURSOR in the URL
• setHiRDBCursorMode of a DataSource-type interface
• setHoldability method of the Connection interface
• resultSetHoldability argument of the createStatement or

prepareStatement method of the Connection interface
• SQL statement (with UNTIL DISCONNECT specification)

Asynchronous cancellation is not executed for the HiRDB server if the target
Statement object is not executing an SQL statement, and if no other object is
executing an SQL statement for that same connection object.
If XADataSource was used for the connection, an asynchronous cancellation request
is not valid.

17.4.4 PreparedStatement interface
(1) Overview

The PreparedStatement interface provides the following principal functions:
• Execution of SQL statements in which the ? parameter is specified
• Specification of the ? parameter
• Generation and return of a ResultSet object as a retrieval result
• Return of the number of updated rows as an updating result

Because the PreparedStatement interface is a subinterface of the Statement
interface, it inherits all of the Statement interface functions.

17. Type4 JDBC Driver

1204

(2) Methods
Table 17-13 lists the methods of the PreparedStatement interface. This interface
does not support methods that are not listed in the table. If an unsupported method is
specified, the interface throws an SQLException.

Table 17-13: PreparedStatement interface methods

Method Remarks

addBatch() Registers up to 2,147,483,647 parameter sets for the SQL statements to
be executed. If this upper limit is exceeded, this method throws an
SQLException.

clearParameters() --

execute() --

executeQuery() If the SQL statement (such as an INSERT statement) does not have
retrieval results, this method throws an SQLException.

executeUpdate() A retrieval SQL statement cannot be executed. If a retrieval SQL
statement is specified, this method throws an SQLException.

setAsciiStream(int
parameterIndex, InputStream
x,int length)

After input from the x argument is completed, this method does not
execute the close method for x.

setBigDecimal(int
arameterIndex,BigDecimal x)

--

setBinaryStream(int
parameterIndex, InputStream
x,int length)

After input from the x argument is completed, this method does not
execute the close method for x.

setBlob(int i, Blob x) --

setBoolean(int
parameterIndex,boolean x)

If the data type of the ? parameter specified in the parameterIndex
argument is HiRDB's CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, or
NVARHAR type, the value that is set for the ? parameter is "true" when
the x argument is true, and "false " (is a single-byte space)
when the x argument is false.

setByte(int
parameterIndex,byte x)

--

setBytes(int
parameterIndex,byte b[])

--

setCharacterStream(int
parameterIndex,Reader
reader,int length)

--

17. Type4 JDBC Driver

1205

setDate(int
parameterIndex,Date x)

--

setDate(int
parameterIndex,Date
x,Calendar cal)

--

setDouble(int
parameterIndex,double x)

--

setFloat(int
parameterIndex,float x)

--

setInt(int parameterIndex,int
x)

--

setLong(int
parameterIndex,long x)

--

setNull(int
parameterIndex,int sqlType)

The JDBC driver ignores the sqlType argument.

setObject(int
parameterIndex,Object x)

If the data type of the ? parameter specified in the parameterIndex
argument is HiRDB's CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, or
NVARHAR type and if x is a Boolean object, the value that is set for the
? parameter is "true" when the x argument value is true, and
"false " (is a single-byte space) when the x argument value is
false.

setObject(int
parameterIndex,Object x,int
targetSqlType)

If the targetSqlType argument is java.sql.Types.CHAR,
java.sql.Types.VARCHAR, or java.sql.Types.LONGVARCHAR
and if the x argument is a Boolean object, the value that is set for the
? parameter is 1 when the x argument value is true, and 0 when the x
argument value is false.
If the value 1 or 0 is set for a ? parameter that has HiRDB's NCHAR or
NVARCHAR type, this method throws an SQLException.

setObject(int
parameterIndex,Object x,int
targetSqlType,int scale)

setShort(int
parameterIndex,short x)

--

setString(int
parameterIndex,String x)

--

setTime(int
parameterIndex,Time x)

--

setTime(int
parameterIndex,Time
x,Calendar cal)

--

Method Remarks

17. Type4 JDBC Driver

1206

Legend:
--: None.

(3) Package and class names
The names of the package and class for installing this interface are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbPreparedStatement

(4) Notes
Because the PreparedStatement interface is a subinterface of the Statement
interface, all notes for the Statement interface also apply to the
PreparedStatement interface.
This section describes additional notes that apply to the PreparedStatement
interface.

(a) ? parameter setup
• For details about whether mapping is possible with a setXXX method, see 17.8.3

Mapping when a ? parameter is set.
• If the column number or name specified in a setXXX method does not exist, the

JDBC driver throws an SQLException.
• If a value specified in a setXXX method exceeds the value range that can be

represented by the data type of the corresponding ? parameter, an overflow
occurs, resulting in an SQLException. For details about the combinations of
setXXX methods for which overflow can occur and the HiRDB data types, see
17.8.5 Overflow handling.

• The values specified by a setXXX method remain effective until one of the
following operations is executed:

• The clearParameters method is executed for the target
PreparedStatement object.

• A setXXX method is executed for the target PreparedStatement object,
and the ? parameters to be specified are the same.

setTimestamp(int
parameterIndex, Timestamp x)

--

setTimestamp(int
parameterIndex, Timestamp
x,Calendar cal)

--

Method Remarks

17. Type4 JDBC Driver

1207

• The close method is executed for the target PreparedStatement object.
(b) Retaining SQL preprocessing results beyond commit or rollback

processing
For details about retaining SQL preprocessing results beyond commit or rollback
processing, see 17.2.2(1)(c) Notes about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

(c) Specification values for ? parameters of HiRDB's DECIMAL type
Described below are operations that are executed when a setXXX method is used to
specify a value for a ? parameter of HiRDB's DECIMAL type, and when the precision
and decimal scaling position of the ? parameter do not match those of the specification
value.
When the precision of the specification value is greater than the actual precision: the
HiRDB driver throws an SQLException.
When the precision of the specification value is smaller than the actual precision: the
HiRDB driver expands the precision of the specification value.
When the decimal scaling position of the specification value is greater than the actual
decimal scaling position: the HiRDB driver truncates the actual decimal scaling
position.
When the decimal scaling position of the specification value is smaller than the actual
decimal scaling position: the HiRDB driver expands the decimal scaling position by
adding zeros.

(d) Specification values for ? parameters of HiRDB's TIMESTAMP type
When a setXXX method is used to specify a value for a ? parameter of HiRDB's
TIMESTAMP type, and the fraction-of-a-second precision of the value is greater than
the fraction-of-a-second precision of the ? parameter, the JDBC driver truncates the
fraction-of-a-second precision to match that of the ? parameter.

(e) Specification values for ? parameters of HiRDB's CHAR, VARCHAR,
NCHAR, NVARCHAR, MCHAR, or MVARCHAR type
When a setXXX method is used to specify a value for a ? parameter of HiRDB's CHAR,
VARCHAR, NCHAR, NVARCHAR, MCHAR, or MVARCHAR type, and when the length of the
value after conversion to a character string expression is greater that the defined length
of the ? parameter, the JDBC driver throws an SQLException.

(f) Objects that can be specified with setObject
The objects that can be specified for the x argument of setObject are objects of the
following types:

• byte[]

17. Type4 JDBC Driver

1208

• java.lang.Byte
• java.lang.Double
• java.lang.Float
• java.lang.Integer
• java.lang.Long
• java.lang.Short
• java.lang.String
• java.math.BigDecimal
• java.sql.Blob
• java.sql.Boolean
• java.sql.Date
• java.sql.Time
• java.sql.Timestamp

17.4.5 ResultSet interface
(1) Overview

The ResultSet interface provides the following principal functions:
• Movement of data within a result set in units of rows
• Return of result data
• Notification of whether the retrieval result data is the null value

(2) Methods
Table 17-14 lists the methods of the ResultSet interface. The interface does not
support methods that are not listed in the table. If an unsupported method is specified,
the interface throws an SQLException.

Table 17-14: ResultSet interface methods

Method Remarks

absolute(int row) --

afterLast() --

beforeFirst() --

clearWarnings() --

17. Type4 JDBC Driver

1209

close() If an error caused by physical disconnection from the database occurs
during close method execution when a connection pool or an XA
connection is being used and use of the connection pool becomes
disabled, a connectionErrorOccurred method of the
ConnectionEventListener class does not occur.

findColumn(String columnName) --

first() --

getAsciiStream(int
columnIndex)

--

getAsciiStream(String
columnName)

--

getBigDecimal(int columnIndex) --

getBigDecimal(String
columnName)

--

getBinaryStream(int
columnIndex)

--

getBinaryStream(String
columnName)

--

getBlob(int i) --

getBlob(String colName) --

getBoolean(int columnIndex) If the data type of the projection column specified by the
columnIndex index is HiRDB's MVARCHAR, MCHAR, NVARCHAR,
VARCHAR, or CHAR type, one of the following values is returned (after
leading and trailing single-byte space characters have been deleted),
depending on the data obtained from the HiRDB server:
1 (not applicable for NVARCHAR): true
true (not case sensitive): true
0 (not applicable for NVARCHAR): false
Other value: false

If the data type of the projection column specified by the
columnIndex argument is HiRDB's NCHAR type, one of the following
values is retuned (after leading and trailing single-byte space
characters have been deleted), depending on the data obtained from
the HiRDB server:
First four characters are true (not case sensitive): true
Other value: false

getBoolean(String columnName)

getByte(int columnIndex) --

Method Remarks

17. Type4 JDBC Driver

1210

getByte(String columnName) --

getBytes(int columnIndex) --

getBytes(String columnName) --

getCharacterStream(int
columnIndex)

--

getCharacterStream(String
columnName)

--

getConcurrency() --

getCursorName() Returns the null value.

getDate(int columnIndex) --

getDate(int
columnIndex,Calendar cal)

--

getDate(String columnName) --

getDate(String
columnName,Calendar cal)

--

getDouble(int columnIndex) --

getDouble(String columnName) --

getFetchDirection() --

getFetchSize() Returns the value that was set for setFetchSize. If no value was set
for setFetchSize, this method returns 0.

getFloat(int columnIndex) --

getFloat(String columnName) --

getInt(int columnIndex) --

getInt(String columnName) --

getLong(int columnIndex) --

getLong(String columnName) --

getMetaData() --

getObject(int columnIndex) --

getObject(String columnName) --

Method Remarks

17. Type4 JDBC Driver

1211

getRow() If the maximum number of retrieved rows exceeds 2,147,483,647, this
method returns 2,147,483,647.

getShort(int columnIndex) --

getShort(String columnName) --

getStatement() --

getString(int columnIndex) --

getString(String columnName) --

getTime(int columnIndex) --

getTime(int
columnIndex,Calendar cal)

--

getTime(String columnName) --

getTime(String
columnName,Calendar cal)

--

getTimestamp(int columnIndex) --

getTimestamp(int columnIndex,
Calendar cal)

--

getTimestamp(String
columnName)

--

getTimestamp(String
columnName, Calendar cal)

--

getType() --

getWarnings() --

isAfterLast() --

isBeforeFirst() --

isFirst() --

isLast() --

last() --

next() The cursor opens the first time the next method is called.

previous() --

Method Remarks

17. Type4 JDBC Driver

1212

Legend:
--: None.

(3) Package and class names
The names of the package and class for installing this interface are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbResultSet

(4) Fields
Table 17-15 lists the fields supported by the ResultSet interface.

Table 17-15: Fields supported by the ResultSet interface

relative(int rows) --

setFetchDirection(int
direction)

--

setFetchSize(int rows) If no value was specified with this method, the JDBC driver uses the
number of rows specified for the Statement object as an indicator
when it retrieves data.
If no number of rows value was specified in the Statement object or
if no ResultSet object was generated from the Statement object,
the JDBC driver uses the value of the PDBLKF client environment
variable as an indicator when it retrieves data.
If 0 is specified for this method, the JDBC driver uses the value of the
PDBLKF client environment variable as an indicator when it retrieves
data.
For notes about this method, see 17.4.3(4)(a) Using the block transfer
facility by specifying the setFetchSize method.

wasNull() Returns false before a value is returned by a getXXX method.

Field Remarks

public static final int FETCH_FORWARD --

public static final int FETCH_REVERSE --

public static final int FETCH_UNKNOWN --

public static final int
TYPE_FORWARD_ONLY

--

public static final int
TYPE_SCROLL_INSENSITIVE

--

Method Remarks

17. Type4 JDBC Driver

1213

Legend:
--: None

(5) Notes
(a) Value acquisition using a getXXX method

• For details about whether mapping is possible with a getXXX method, see 17.8.2
Mapping during retrieval data acquisition.

• If the column number or name specified in a setXXX method does not exist, the
JDBC driver throws an SQLException.

• If a value specified in a setXXX method exceeds the value range that can be
represented by the data type of the corresponding ? parameter (for example, if
getShort is used to get an INTEGER-type value of 40,000), an overflow occurs
and results in an SQLException. For details about the combinations of setXXX
methods for which overflow can occur and the HiRDB data types, see 17.8.5
Overflow handling.

(b) Mapping (conversion)
For details about whether mapping is possible with a getXXX method to be used in
getting retrieval data, see 17.8.2 Mapping during retrieval data acquisition. If a
getXXX method is called for a JDBC SQL type that cannot be mapped, the JDBC
driver throws an SQLException.

(c) Using the block transfer facility by specifying the setFetchSize method
For details, see 17.4.3(4)(a) Using the block transfer facility by specifying the
setFetchSize method.

public static final int
TYPE_SCROLL_SENSITIVE

When this value is specified, the JDBC driver assumes that
TYPE_SCROLL_INSENSITIVE was specified.

public static final int
CONCUR_READ_ONLY

--

public static final int
CONCUR_UPDATABLE

When this value is specified, the JDBC driver assumes that
CONCUR_READ_ONLY was specified.

public static final int
HOLD_CURSORS_OVER_COMMIT

--

public static final int
CLOSE_CURSORS_AT_COMMIT

--

Field Remarks

17. Type4 JDBC Driver

1214

(d) Memory size used when the result set type is
ResultSet.TYPE_SCROLL_INSENSITIVE or
ResultSet.TYPE_SCROLL_SENSITIVE
When the result set type is ResultSet.TYPE_SCROLL_INSENSITIVE or
ResultSet.TYPE_SCROLL_SENSITIVE, the JDBC driver allocates memory for
accumulating the retrieval results when the following methods of the ResultSet
interface are executed:

• ResultSet.next method
• ResultSet.last method
• ResultSet.absolute method
• ResultSet.relative method
• ResultSet.afterLast method

The JDBC driver assigns and accumulates memory objects to all values in the retrieval
results. If a value has a variable length, the memory object is set to the actual size of
the retrieved data.

(e) next, absolute, relative, last, and afterLast methods
When the next method is executed, the JDBC driver retrieves and accumulates data
from the database as described in Table 17-16.

Table 17-16: Data retrieved and accumulated from the database during
execution of the next method

When the absolute, relative, last, or afterLast method is executed, the
JDBC driver retrieves and accumulates data from the database as described in Table
17-17.

Condition Result set type

TYPE_FORWARD_ONLY TYPE_SCROLL_INSENSITIVE or
TYPE_SCROLL_SENSITIVE

The data of the current row,
which was moved by the
next method, has not been
read into the JDBC driver.

The JDBC driver gets the moved
current row from the connected
database.

The JDBC driver gets the moved current
row from the connected database, then
reads and stores the row in its memory.

The data of the current row,
which was moved by the
next method, has been read
into the JDBC driver.

The JDBC driver does not retrieve data
from the connected database.

17. Type4 JDBC Driver

1215

Table 17-17: Data retrieved and accumulated from the database during
execution of the absolute, relative, last, or afterLast method

Note

If the data type of the result set is TYPE_FORWARD_ONLY, the JDBC driver throws
an SQLException.

#
If the last or afterLast method is used, the range is from the first row to the
last row.

(f) getAsciiStream, getBinaryStream, getCharacterStream, and
getUnicodeStream methods
The JDBC driver does not implicitly close objects returned by the getAsciiStream,
getBinaryStream, getCharacterStream, and getUnicodeStream methods.
You must make provision for the method-calling side to execute the close method.

(g) Number of retrieved rows
Table 17-18 shows the number of retrieved rows that ResultSet objects can obtain
from the HiRDB server. The JDBC driver discards retrieval results that exceed the
applicable number of rows shown in Table 17-18.

Table 17-18: Number of retrieved rows that ResultSet objects can obtain from
the HiRDB server

Condition Result set type is TYPE_SCROLL_INSENSITIVE or
TYPE_SCROLL_SENSITIVE

The first row to the specified
row# of the retrieval results
contain data that the JDBC
driver has not read.

The JDBC driver retrieves the rows that were not read from the connected
database and stores them in its memory.

The first row to the specified
row# of the retrieval results
do not contain data that the
JDBC driver has not read.

The JDBC driver does not retrieve data from the connected database.

ResultSet object Result set type

TYPE_SCROLL_INSENSITIVE or
TYPE_SCROLL_SENSITIVE

Other type

ResultSet object
generated by Statement
object that executed
setMaxRows method

The number of retrieved rows is the number of rows specified by setMaxRows
method.

17. Type4 JDBC Driver

1216

17.4.6 DatabaseMetaData interface
(1) Overview

The DatabaseMetaData interface provides the following principal functions:
• Return of various information related to the connected database
• Return of listing information, such as a list of tables or columns (the information

is stored in a result set)
(2) Methods

Table 17-19 lists the methods of the DatabaseMetaData interface. The interface
does not support methods that are not listed in the table. If an unsupported method is
specified, the interface throws an SQLException.

Table 17-19: DatabaseMetaData interface methods

Other ResultSet object The number of retrieved rows is the
upper limit for setMaxRows
(2,147,483,647).

No upper limit

Method Remarks

allProceduresAreCallable() --

allTablesAreSelectable() --

dataDefinitionCausesTransactionCommit() --

dataDefinitionIgnoredInTransactions() --

deletesAreDetected(int type) --

doesMaxRowSizeIncludeBlobs() --

getBestRowIdentifier (String
catalog,String schema,String table,int
scope,boolean nullable)

The JDBC driver ignores the catalog argument.
The JDBC driver returns a result set that has 0
retrieved rows.

getCatalogs() Returns a result set that has 0 retrieved rows.

getCatalogSeparator() Returns the null value.

getCatalogTerm() Returns the null value.

ResultSet object Result set type

TYPE_SCROLL_INSENSITIVE or
TYPE_SCROLL_SENSITIVE

Other type

17. Type4 JDBC Driver

1217

getColumns (String catalog,String
schemaPattern,String
tableNamePattern,String columnNamePattern)

The JDBC driver ignores the catalog argument.

getConnection --

getDatabaseMajorVersion() --

getDatabaseMinorVersion() --

getDatabaseProductName() Returns HiRDB.

getDatabaseProductVersion() --

getDefaultTransactionIsolation() --

getDriverMajorVersion() --

getDriverMinorVersion() --

getDriverName() --

getDriverVersion() --

getExtraNameCharacters() --

getIdentifierQuoteString() --

getIndexInfo (String catalog,String
schema,String table,boolean unique,boolean
approximate)

The JDBC driver ignores the catalog argument.

getMaxBinaryLiteralLength() --

getMaxCatalogNameLength() --

getMaxCharLiteralLength() --

getMaxColumnNameLength() --

getMaxColumnsInGroupBy() --

getMaxColumnsInIndex() --

getMaxColumnsInOrderBy() --

getMaxColumnsInSelect() --

getMaxColumnsInTable() --

getMaxConnections() --

getMaxCursorNameLength() --

Method Remarks

17. Type4 JDBC Driver

1218

getMaxIndexLength() --

getMaxProcedureNameLength() --

getMaxRowSize() --

getMaxSchemaNameLength() --

getMaxStatementLength() --

getMaxStatements() --

getMaxTableNameLength() --

getMaxTablesInSelect() --

getMaxUserNameLength() --

getNumericFunctions() --

getPrimaryKeys() --

getProcedureTerm() --

getSchemas() --

getSchemaTerm() Returns schema.

getSearchStringEscape() Returns \.

getSQLKeywords() --

getStringFunctions() --

getSystemFunctions() --

getTables(String catalog,String
schemaPattern,String
tableNamePattern,String[] types)

The JDBC driver ignores the catalog argument.

getTimeDateFunctions() --

getTypeInfo() --

insertsAreDetected(int type) --

isCatalogAtStart() --

isReadOnly() --

nullPlusNonNullIsNull() --

nullsAreSortedAtEnd() --

Method Remarks

17. Type4 JDBC Driver

1219

nullsAreSortedAtStart() --

nullsAreSortedHigh() --

nullsAreSortedLow() --

othersDeletesAreVisible() --

othersInsertsAreVisible() --

othersUpdatesAreVisible() --

ownDeletesAreVisible() --

ownInsertsAreVisible() --

ownUpdatesAreVisible() --

storesLowerCaseIdentifiers() --

storesLowerCaseQuotedIdentifiers() --

storesMixedCaseIdentifiers() --

storesMixedCaseQuotedIdentifiers() --

storesUpperCaseIdentifiers() --

storesUpperCaseQuotedIdentifiers() --

supportsAlterTableWithAddColumn() --

supportsAlterTableWithDropColumn() --

supportsANSI92EntryLevelSQL() --

supportsANSI92FullSQL() --

supportsANSI92IntermediateSQL() --

supportsBatchUpdates() --

supportsCatalogsInDataManipulation() --

supportsCatalogsInIndexDefinitions() --

supportsCatalogsInPrivilegeDefinitions() --

supportsCatalogsInProcedureCalls() --

supportsCatalogsInTableDefinitions() --

supportsColumnAliasing() --

Method Remarks

17. Type4 JDBC Driver

1220

supportsConvert() --

supportsConvert(int fromType,int toType) --

supportsCoreSQLGrammar() --

supportsCorrelatedSubqueries() --

supportsDataDefinitionAndDataManipulationT
ransactions()

--

supportsDataManipulationTransactionsOnly() --

supportsDifferentTableCorrelationNames() --

supportsExpressionsInOrderBy() --

supportsExtendedSQLGrammar() --

supportsFullOuterJoins() --

supportsGroupBy() --

supportsGroupByBeyondSelect() --

supportsGroupByUnrelated() --

supportsIntegrityEnhancementFacility() --

supportsLikeEscapeClause() --

supportsLimitedOuterJoins() --

supportsMinimumSQLGrammar() --

supportsMixedCaseIdentifiers() --

supportsMixedCaseQuotedIdentifiers() --

supportsMultipleResultSets() --

supportsMultipleTransactions() --

supportsNonNullableColumns() --

supportsOpenCursorsAcrossCommit() --

supportsOpenCursorsAcrossRollback() --

supportsOpenStatementsAcrossCommit() --

supportsOpenStatementsAcrossRollback() --

Method Remarks

17. Type4 JDBC Driver

1221

supportsOrderByUnrelated() --

supportsOuterJoins() --

supportsPositionedDelete() --

supportsPositionedUpdate() --

supportsResultSetConcurrency(int type, int
concurrency)

--

supportsResultSetType(int type) --

supportsSchemasInDataManipulation() --

supportsSchemasInIndexDefinitions() --

supportsSchemasInPrivilegeDefinitions() --

supportsSchemasInProcedureCalls() --

supportsSchemasInTableDefinitions() --

supportsSelectForUpdate() --

supportsStoredProcedures() --

supportsSubqueriesInComparisons() --

supportsSubqueriesInExists() --

supportsSubqueriesInIns() --

supportsSubqueriesInQuantifieds() --

supportsTableCorrelationNames() --

supportsTransactionIsolationLevel(int
level)

Returns true if the provided transaction level is
TRANSACTION_REPEATABLE_READ.

supportsTransactions() --

supportsUnion() --

supportsUnionAll() --

updatesAreDetected() --

usesLocalFilePerTable() --

usesLocalFiles() --

Method Remarks

17. Type4 JDBC Driver

1222

Legend:
--: None

(3) Package and class names
The names of the package and class for installing this interface are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbDatabaseMetaData

17.4.7 ResultSetMetaData interface
(1) Overview

The ResultSetMetaData interface provides the following principal function:
• Return of meta information, such as the data type and the data length, for each

column in the result set.
(2) Methods

Table 17-20 lists the methods of the ResultSetMetaData interface. The interface
does not support methods that are not listed in the table. If an unsupported method is
specified, the interface throws an SQLException.

Table 17-20: ResultSetMetaData interface methods

Method Remarks

getCatalogName(int column) --

getColumnClassName(int column) --

getColumnCount() --

getColumnDisplaySize(int column) --

getColumnLabel(int column) --

getColumnName(int column) --

getColumnType(int column) --

getColumnTypeName(int column) --

getPrecision(int column) --

getScale(int column) --

getSchemaName(int column) --

getTableName(int column) --

isAutoIncrement(int column) --

17. Type4 JDBC Driver

1223

Legend:
--: None

(3) Package and class names
The names of the package and class for installing this interface are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbResultSetMetaData

(4) Notes
(a) getColumnName and getColumnLabel methods

The getColumnName and getColumnLabel methods get retrieval item names from
SQLNAME in the Column Name Descriptor Area (SQLCNDA) that the HiRDB driver
sends to the JDBC driver. The methods then convert the names to Java internal codes
and return them. For a description of the return values of these methods for specified
columns, see C.1 Organization and contents of the Column Name Descriptor Area.

17.4.8 Blob interface
(1) Overview

The Blob interface provides the following principal functions:
• Acquisition of binary data
• Acquisition of the length of binary data
• Acquisition of the pattern-matching position

The JDBC driver uses the PrdbBlob class to install the Blob interface.
The JDBC driver generates PrdbBlob class objects as return values of the getBlock

isCaseSensitive(int column) --

isCurrency(int column) --

isDefinitelyWritable(int column) --

isNullable(int column) --

isReadOnly(int column) --

isSearchable(int column) --

isSigned(int column) --

isWritable(int column) --

Method Remarks

17. Type4 JDBC Driver

1224

method of ResultSet.
(2) Methods

Table 17-21 lists the methods of the Blob interface. The interface does not support
methods that are not listed in the table. If an unsupported method is specified, the
interface throws an SQLException.

Table 17-21: Blob interface methods

Legend:
--: None.

(3) Package and class names
The names of the package and class for installing this interface are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbBlob

17.4.9 SQLException interface
The SQLException interface uses the SQLException class of the java.sql
package directly. For details and usage information about each method provided by the
SQLException interface, see the JDBC documentation provided by JavaSoft.

17.4.10 SQLWarning interface
(1) Overview

The SQLWarning interface provides the following principal function:
• Provision of information related to database access warnings

If a method object triggers a warning report, an SQLWarning object is accumulated
without an exception notice to that method object.

Method Remarks

getBinaryStream() --

getBytes(long pos, int
length)

--

length() --

position(Blob pattern, long
start)

--

position(byte[] pattern,
long start)

--

17. Type4 JDBC Driver

1225

(2) Notes
(a) Releasing accumulated SQLWarning objects

SQLWarning objects are accumulated as a chain linked to the method object
(Connection, Statement, PreparedStatement, or ResultSet) that triggers the
warning reports.
To release accumulated SQLWarning objects explicitly, execute the clearWarnings
method for the method object that triggered the warnings.

(b) Issuing conditions for SQLWarning objects
If the specified warning retention level indicates that warnings that occur during SQL
execution are to be retained in the JDBC driver, the JDBC driver generates
SQLWarning objects and retains warning information. In addition, a property can be
used to specify warning retention for Connection objects.
Table 17-22 describes the conditions under which SQLWarning objects are generated.

Table 17-22: Conditions for generation of SQLWarning objects

Legend:
Yes: An SQLWarning object is generated.
No: An SQLWarning object is not generated.

Note

SQL execution result Warning retention level

IGNORE SQLWARN ALLWARN

SQLCODE is a value greater
than 0 other than 100, 110,
or 120

Generated by an object
other than a Connection
object

No No Yes

Generated by a
Connection object

No No Yes#

SQLWARN0 of the SQL
Communication Area is W
(except when SQLWARN6 is
W)

Generated by an object
other than a Connection
object

No Yes Yes

Generated by a
Connection object

No Yes# Yes#

Warning occurs in the JDBC
driver

Generated by an object
other than a Connection
object

No Yes Yes

Generated by a
Connection object

No Yes# Yes#

17. Type4 JDBC Driver

1226

You use the HiRDB_for_Java_SQLWARNING_LEVEL property or the
setSQLWarningLevel method to specify a warning retention level. The default
level is SQLWARN.

#
If the specification for not retaining warnings has been set for Connection
objects, an SQLWarning object is not generated.

17.4.11 Unsupported interfaces
The JDBC1.2 core API does not support the following interfaces:

• Array
• CallableStatement
• Clob
• ParameterMetaData
• Savepoint
• SQLData
• SQLInput
• SQLOutput

17. Type4 JDBC Driver

1227

17.5 JDBC2.1 Core API

17.5.1 Expansion of the result set
Scrolling and parallel processing have been added to the JDBC2.1 Core API as
expansion facilities for result sets (ResultSet class).

(1) Scrolling types
There are three types of scrolling for result sets:

• Forward-only scrolling
• Scroll-insensitive scrolling
• Scroll-sensitive scrolling

The JDBC2.1 Core API supports only forward-only scrolling and scroll-insensitive
scrolling.

(2) Parallel processing types
There are two types of parallel processing for result sets:

• Read-only parallel processing
• Updatable parallel processing

The JDBC2.1 Core API supports only read-only parallel processing.
(3) Notes

(a) Notes about specifying an unsupported result set or type of parallel
processing
No error results when an unsupported result set or an unsupported type of parallel
processing is specified. The JDBC2.1 Core API assumes the result set that is closest to
the specified type of result set or type of parallel processing, and generates an instance
of the Statement class or that subclass. At this time, the API generates a warning
(SQLWarning object) and associates it with an instance of the Connection class.

(b) Notes on using a scrolling-type result set
In the case of a scrolling-type result set, all retrieved data is cached in the JDBC driver.
This means that a large data size increases the possibility of a memory shortage or a
drop in performance. When you use a scrolling-type result set, you should take steps
in advance to minimize the amount of retrieved data. For example, you can add
appropriate conditions to the SQL statements.

17.5.2 Batch update
In the JDBC 2.1 Core API, a batch update facility has been added to the Statement

17. Type4 JDBC Driver

1228

and PreparedStatement classes. This facility enables you to register multiple SQL
statements or parameter values and execute them all at once.
When you execute a batch update, you can use facilities that use HiRDB arrays.
Facilities that use arrays are effective when you need to update quickly a large volume
of data for HiRDB. For details about facilities that use arrays, see 4.8 Facilities using
arrays.

(1) Batch update with the Statement class
The following notes apply to batch update with the Statement class.

• Use the addBatch method to register multiple update SQL statements.
• Use the executeBatch method to execute registered update SQL statements

collectively.
• An array of the numbers of rows updated by the individual update SQL statements

is returned as the batch execution results.
• If an error occurs during batch update, the batch update facility throws a

BatchUpdateException.
• If the registered SQL statements include a retrieval SQL statement, the batch

update facility throws a BatchUpdateException when the executeBatch
method is called.

Because the JDBC driver cannot execute multiple SQL statements simultaneously, it
executes the registered SQL statements consecutively.

(2) Batch update with the PreparedStatement class
The following notes apply to batch update with the PreparedStatement class.

• Use the normal procedure (setXXX method) to specify the ? parameters for the
update SQL statements specified during PreparedStatement instance
generation.

• Use the addBatch method to register the ? parameter sets.
• Use the executeBatch method to execute the registered ? parameter sets

collectively.
• An array of the number of rows updated by the individual ? parameter sets is

returned as the batch execution results.
• If an error occurs during batch execution, the batch update facility throws a

BatchUpdateException.
• If an SQL statement specified during PreparedStatement instance generation

is a retrieval SQL statement, the batch update facility throws a
BatchUpdateException when the executeBatch method is called.

17. Type4 JDBC Driver

1229

The JDBC driver executes processing by using facilities that use HiRDB arrays.
Notes

You must pay close attention to subsequent executions of addBatch, because the
values that were set for the previous execution are inherited when the number of
parameters specified by the setXXX method is insufficient.
The following example has two INTEGER-type arrays (array 1 and array 2):
Specification example

prepstmt.setInt(1,100);
prepstmt.setInt(2,100);
prepstmt.addBatch();
prepstmt.setInt(1,200);
prepstmt.addBatch();
prepstmt.executeBatch();

Explanation

• The values that are set by the first addBatch are array 1=100 and array
2=100.
If the number of parameters specified by addBatch is insufficient, an
error occurs.

• The values that are set by the second addBatch are array 1=200 and
array 2=100.
The second addBatch does not update the information for array 2, so
the array 2 information is inherited from the first addBatch.

(3) Notes
(a) Implicit commit by the HiRDB server

If the SQL statements registered with addBatch contain one of the following SQL
statements, you must use the batch update facility for SQL statements carefully,
because the HiRDB server commits that SQL statement implicitly when the statement
is executed:

• PURGE TABLE statement
• Any definition SQL statement in which YES is specified for the PDCMMTBFDDL

client environment variable
(b) Processing by the batch update facility when addBatch specifications for

parameters and SQL statements are combined
When addBatch specifications for parameters and addBatch specifications for SQL
statements are combined, the batch update facility executes the addBatch

17. Type4 JDBC Driver

1230

specifications sequentially instead of by batch update. An example is shown below:

When this UAP is executed, each addBatch unit becomes an SQL execution, because
there are both addBatch specifications for parameters and addBatch specifications
for SQL statements. Therefore, executing this UAP produces the same results as
executing the following UAP:

When you use the batch update facility on a combination of addBatch for parameters
and addBatch for SQL statements, it is recommended that you disable the
auto-commit mode for the Connection class.

(c) Batch update with SQL statements that contain a ? parameter for
HiRDB's BINARY type
When batch update is executed with SQL statements that contain a ? parameter for
HiRDB's BINARY type, sequential execution is executed instead of batch update when
the following condition applies:

• The length of the data to be set with the setXXX method for the ? parameter

PreparedStatement pstmt = con.prepareStatement("UPDATE T1 SET C1=? WHERE C2=?");
pstmt.setInt(1, 1);
pstmt.setInt(2, 1);
pstmt.addBatch();
pstmt.setInt(1, 2);
pstmt.setInt(2, 2);
pstmt.addBatch();
pstmt.addBatch("INSERT INTO T2 VALUES(1,2,3)");
pstmt.setInt(1, 3);
pstmt.setInt(2, 4);
pstmt.addBatch();
pstmt.setInt(1, 4);
pstmt.setInt(2, 4);
pstmt.addBatch();
pstmt.executeBatch();

PreparedStatement pstmt = con.prepareStatement("UPDATE T1 SET C1=? WHERE C2=?");
pstmt.setInt(1, 1);
pstmt.setInt(2, 1);
pstmt.executeUpdate();
pstmt.setInt(1, 2);
pstmt.setInt(2, 2);
pstmt.executeUpdate();
pstmt.executeUpdate("INSERT INTO T2 VALUES(1,2,3)");
pstmt.setInt(1, 3);
pstmt.setInt(2, 4);
pstmt.executeUpdate();
pstmt.setInt(1, 4);
pstmt.setInt(2, 4);
pstmt.executeUpdate();

17. Type4 JDBC Driver

1231

exceeds 32,000 bytes (if character data is specified with the setString method,
the data length after the data has been encoded into data to be passed to HiRDB
exceeds 32,000 bytes).

(d) Batch update for SQL statements that contain a ? parameter for HiRDB's
BLOB type
When batch update is executed with SQL statements that include a ? parameter for
HiRDB's BLOB type, the statements are executed sequentially instead of by batch
update.

(e) Registering multiple parameters with the addBatch method
The JDBC driver accumulates in the driver all parameters registered with the
addBatch method until the executeBatch method is executed. You should make
note of the amount of memory being used when you are registering multiple
parameters.
When batch update is executed with a facility that uses HiRDB arrays, the maximum
number of executions that the JDBC driver can request to the HiRDB server is 30,000.
To register more than 30,000 parameters, you must divide them into groups of no more
than 30,000 and request SQL execution to the HiRDB server for each group. Note also
that because of the amount of memory in the JDBC driver that is used in this case, the
performance enhancement expected for batch updating may not be realized. When
more than 30,000 SQL executions are necessary, it is recommended that you execute
the executeBatch method in units of 30,000 or fewer SQL executions.

17.5.3 Added data types
Several new JDBC SQL types have been added to the JDBC2.1 Core API. Although
the following JDBC SQL types have been added, the JDBC driver cannot use them:

• BLOB
• CLOB
• ARRAY
• REF
• DISTINCT
• STRUCT
• JAVA OBJECT

17.5.4 Unsupported interfaces
The JDBC2.1 Core API does not support the following interfaces:

• Array
• Clob

17. Type4 JDBC Driver

1232

• Ref
• SQLData
• SQLInput
• SQLOutput
• Struct

17. Type4 JDBC Driver

1233

17.6 JDBC2.0 Optional Package

The following functions were added to the JDBC2.0 Optional Package:
• JNDI support
• Connection pool
• Distributed transactions
• RowSets

Note, however, that the JDBC driver cannot use RowSets.

17.6.1 JNDI support
(1) DataSource interface

For details and usage information about the methods provided by the DataSource
interface, see the JDBC documentation. This section shows the DataSource interface
methods that are supported by the JDBC driver.

(a) Methods
Table 17-23 lists the methods of the DataSource interface.

Table 17-23: DataSource interface methods

Method Remarks

getConnection() For details about the priorities among the setting methods for
authorization identifiers and passwords, see 17.11 Connection
information priorities.

getConnection(String
username,String password)

If the user or password argument is the null value, this method
indicates that no authorization identifier or password was specified by
that argument.
If the password argument is a character string whose length is 0, this
method indicates that no password was specified.
For details about the setting value used when a password is not
specified, see 17.11 Connection information priorities.
If the user argument is a character string whose length is 0, this
method throws an SQLException.

getLoginTimeout() This method returns the value specified by the setLoginTimeout
method. If no value was specified by the setLoginTimeout method,
this method returns 0.

getLogWriter() --

17. Type4 JDBC Driver

1234

Legend:
--: None.

(b) Package and class names
The names of the package and class for using this interface directly are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbDataSource

17.6.2 Connection pool
(1) ConnectionPoolDataSource interface

For details and usage information about the methods provided by the
ConnectionPoolDataSource interface, see the JDBC documentation. This section
shows the ConnectionPoolDataSource interface methods that are supported by
the JDBC driver.

(a) Methods
Table 17-24 lists the methods of the ConnectionPoolDataSource interface.

Table 17-24: ConnectionPoolDataSource interface methods

setLoginTimeout(int seconds) Use this method to set the physical connection time with the HiRDB
server when a Connection object is retrieved with the
getConnection method. If the setLoginTimeout method has not
been executed, the time specified in PDCONNECTWAITTIME in the
client environment definition becomes the maximum wait time for the
HiRDB server.
If a value outside the range 0-300 is specified, this method throws an
SQLException.

setLogWriter(PrintWriter out) --

Method Remarks

getLoginTimeout() This method returns the value specified by the setLoginTimeout
method. If no value was specified by the setLoginTimeout
method, this method returns 0.

getLogWriter() --

getPooledConnection() For details about the priorities among the setting methods for
authorization identifiers and passwords, see 17.11 Connection
information priorities.

Method Remarks

17. Type4 JDBC Driver

1235

Legend:
--: None.

(b) Package and class names
The names of the package and class for using this interface directly are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbConnectionPoolDataSource

(2) PooledConnection interface
For details and usage information about the methods provided by the
PooledConnection interface, see the JDBC documentation. This section shows the
PooledConnection interface methods that are supported by the JDBC driver.

(a) Methods
Table 17-25 lists the methods of the PooledConnection interface.

getPooledConnection(String
user,String password)

If the user or password argument is the null value, this method
indicates that no authorization identifier or password was specified
by this argument.
If the password argument is a character string whose length is 0,
this method indicates that no password was specified.
For details about the setting value used when a password is not
specified, see 17.11 Connection information priorities.
If the user argument is a character string whose length is 0, this
method throws an SQLException.

setLoginTimeout(int seconds) This specification is used only for the physical connection time with
the HiRDB server. When 0 is specified or when the
setLoginTimeout method is not executed, the time that was
specified in PDCONNECTWAITTIME in the client environment
definition becomes the maximum wait time for the HiRDB server.
If a value outside the range 0-300 is specified, this method throws an
SQLException exception.

setLogWriter(PrintWriter out) --

Method Remarks

17. Type4 JDBC Driver

1236

Table 17-25: PooledConnection interface methods

Legend:
--: None

(b) Package and class names
The names of the package and class for using this interface directly are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbPooledConnection

17.6.3 Distributed transactions
(1) XAConnection interface

For details and usage information about the methods provided by the XAConnection
interface, see the JDBC documentation. This section shows the XAConnection
interface methods that are supported by the JDBC driver.

(a) Methods
Table 17-26 lists the methods of the XAConnection interface.

Method Remarks

getConnection() The returned Connection object has a 1-to-1 relationship with
the physical connection with the HiRDB server, and a physical
connection is established as necessary. Once a physical
connection is established, it is not disconnected until this class
object is closed. Even if the close method is executed for the
Connection object, the class object retains the physical
connection without closing it. The retained physical connection is
reused the next time the application calls this method to request a
connection. (The wait time that was specified with the
setLoginTimeout method or in PDCONNECTWAITTIME in the
client environment definition does not occur.)

addConnectionEventListener(Connec
tionEventListener listener)

Methods of the JDBC driver are not called from the event listener
registered with this method. If the event listener tries to call a
method, the JDBC driver may not respond.

close() This method closes a physical connection. Even if a Connection
object is obtained and the database is being accessed, this method
tries to physically close the connection when it is executed.

removeConnectionEventListener(Con
nectionEventListener listener)

--

17. Type4 JDBC Driver

1237

Table 17-26: XAConnection interface methods

Legend:
--: None.

(b) Package and class names
The names of the package and class for using this interface directly are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbXAConnection

(2) XADataSource interface
For details and usage information about the methods provided by the XADataSource
interface, see the JDBC documentation. This section shows the XADataSource
interface methods that are supported by the JDBC driver.

(a) Methods
Table 17-27 lists the methods of the XADataSource interface.

Table 17-27: XADataSource interface methods

Method Remarks

getXAResource() --

Method Remarks

getLoginTimeout() Returns the value specified by the setLoginTimeout method. If no
value was set by the setLoginTimeout method, this method returns 0.

getLogWriter() --

getXAConnection() For details about the priorities among the setting methods for
authorization identifiers and passwords, see 17.11 Connection
information priorities.

getXAConnection(String
username,String password)

If the user or password argument is the null value, this method
indicates that no authorization identifier or password was specified by
this argument.
If the password argument is a character string whose length is 0, this
method indicates that no password was specified.
For details about the setting value used when a password is not specified,
see 17.11 Connection information priorities.
If the user argument is a character string whose length is 0, this method
throws an SQLException.

17. Type4 JDBC Driver

1238

Legend:
--: None

(b) Package and class names
The names of the package and class for using this interface directly are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbXADataSource

(3) XAResource interface
For details and usage information about the methods provided by the XAResource
interface, see the JDBC documentation. This section shows the XAResource interface
methods that are supported by the JDBC driver.

(a) Methods
Table 17-28 lists the methods of the XAResource interface.

Table 17-28: XAResource interface methods

setLoginTimeout(int seconds) This specification is used only for the physical connection time with the
HiRDB server. When 0 is specified or when the setLoginTimeout
method is not executed, the time that was specified in
PDCONNECTWAITTIME in the client environment definition becomes the
maximum wait time for the HiRDB server.
If a value outside the range 0-300 is specified, this method throws an
SQLException.

setLogWriter(PrintWriter
out)

--

Method Remarks

commit(Xid xid, boolean
onePhase)

--

end(Xid xid, int flags) --

getTransactionTimeout() This method returns 0 unconditionally.

prepare(Xid xid) --

recover(int flag) --

rollback(Xid xid) --

Method Remarks

17. Type4 JDBC Driver

1239

Legend:
--: None

(b) Package and class names
The names of the package and class for using this interface directly are as follows:
Package name: JP.co.Hitachi.soft.HiRDB.JDBC
Class name: PrdbXAResource

(4) XAException interface
The XAException interface directly uses the XAException class of the
javax.transaction.xa package. For details and usage instructions about the
methods provided by the XAException interface, see the related JDBC
documentation.

17.6.4 Unsupported interfaces
The JDBC2.0 Optional Package does not support the following interfaces:

• RowSet
• RowSetInternal
• RowSetListner
• RowSetMetaData
• RowSetReader

setTransactionTimeout(int
seconds)

This method does not set the transaction timeout value. Instead, it
returns false to indicate that the transaction timeout time was not set
properly.

start(Xid xid, int flags) --

Method Remarks

17. Type4 JDBC Driver

1240

17.7 Connection information setup and acquisition interface

The DataSource, ConnectionPoolDataSource, and XADataSource classes
provided by the JDBC2.0 Optional Package provide methods for setting and getting
connection information necessary for connection to the database, in addition to the
methods prescribed by the JDBC2.0 Optional Package specifications.
Table 17-29 lists the methods for setting and getting connection information.

Table 17-29: Methods for setting and getting connection information

Method Function

setDescription Sets the additional connection information needed for connection to the
database.

getDescription Gets the additional connection information needed for connection to the
database.

setDBHostName Sets the host name of the HiRDB to be connected.

getDBHostName Gets the host name of the HiRDB to be connected.

setJDBC_IF_TRC Sets whether or not a JDBC interface method trace is to be acquired.

getJDBC_IF_TRC Gets the setting information about whether or not a JDBC interface
method trace is to be acquired.

setTRC_NO Sets the number of entries in the JDBC interface method trace.

getTRC_NO Gets the number of entries in the JDBC interface method trace.

setUapName Sets a UAP name.

getUapName Gets the UAP name.

setUser Sets an authorization identifier for database connection.

getUser Gets the authorization identifier for database connection.

setPassword Sets a password for database connection.

getPassword Gets the password for database connection.

setXAOpenString Sets an XA open character string.

getXAOpenString Gets the XA open character string.

setXACloseString Sets an XA close character string.

getXACloseString Gets the XA close character string.

17. Type4 JDBC Driver

1241

setLONGVARBINARY_Access Sets the method of accessing data of the LONGVARBINARY type (a JDBC
SQL type corresponding to HiRDB's BLOB and BINARY data types).

getLONGVARBINARY_Access Gets the method of accessing data of the LONGVARBINARY type (a JDBC
SQL type corresponding to HiRDB's BLOB and BINARY data types).

setSQLInNum Sets the maximum number of input ? parameters in the SQL statements to
be executed.

getSQLInNum Gets the maximum number of input ? parameters in the SQL statements to
be executed.

setSQLOutNum Sets the maximum number of retrieval items for the SQL statements to be
executed.

getSQLOutNum Gets the maximum number of retrieval items for the SQL statements to be
executed.

setSQLWarningLevel Sets the warning retention level for warnings that occur during SQL
execution.

getSQLWarningLevel Gets the warning retention level for warnings that occur during SQL
execution.

setXALocalCommitMode Sets whether or not the auto-commit facility is to be enabled if a
transaction during an XA connection is not a distributed transaction.

getXALocalCommitMode Gets the setting information about whether or not the auto-commit facility
is to be enabled if a transaction during an XA connection is not a
distributed transaction.

setSQLWarningIgnore Sets whether or not warnings returned from the database are to be
discarded by the Connection class.

getSQLWarningIgnore Gets the setting information about whether or not warnings returned from
the database are to be discarded by the Connection class.

setHiRDBCursorMode Sets whether or not objects of the ResultSet class are to be validated
when HiRDB executes commit processing.

getHiRDBCursorMode Gets the setting information about whether or not objects of the
ResultSet class are to be validated when HiRDB executes commit
processing.

setNotErrorOccurred Sets whether or not the calling of
ConnectionEventListener.connectionErrorOccurred is to be
suppressed.

getNotErrorOccurred Gets the setting information about whether or not the calling of
ConnectionEventListener.connectionErrorOccurred has been
suppressed.

Method Function

17. Type4 JDBC Driver

1242

17.7.1 setDescription
(a) Function

Sets the additional connection information needed for connection to the database.
(b) Format

public void setDescription (String description) throws
SQLException

(c) Arguments
String description

setEnvironmentVariables Sets client environment definitions for HiRDB.

getEnvironmentVariables Gets the client environment definitions for HiRDB that were set.

setEncodeLang Sets the name of the conversion character set for data conversion.

getEncodeLang Gets the name of the conversion character set for data conversion that was
set.

setMaxBinarySize Sets the maximum data size for retrieval of data of the LONGVARBINARY
type (a JDBC SQL type).

getMaxBinarySize Gets the maximum data size for retrieval of data of the LONGVARBINARY
type (a JDBC SQL type).

setStatementCommitBehavior Sets whether or not statement objects are to remain valid after a transaction
is committed.

getStatementCommitBehavior Gets the setting information about whether or not statement objects are to
remain valid after a transaction is committed.

setLONGVARBINARY_AccessSize Sets the LONGVARBINARY (a JDBC SQL type) data length for one access
request to the HiRDB server.

getLONGVARBINARY_AccessSize Gets the LONGVARBINARY (a JDBC SQL type) data length for one access
request to the HiRDB server.

setLONGVARBINARY_TruncError Sets whether or not an exception is to be thrown if truncation occurs
during acquisition of data of the LONGVARBINARY type (a JDBC SQL
type).

getLONGVARBINARY_TruncError Gets the setting information about whether or not an exception is to be
thrown if truncation occurs during acquisition of data of the
LONGVARBINARY type (a JDBC SQL type).

Method Function

17. Type4 JDBC Driver

1243

Specifies additional connection information. If the null value is specified, the
current additional connection information that had been set by this method is
invalidated and the settings are returned to their initial status.

(d) Return value
None.

(e) Functional detail
The following table shows the additional connection information that can be set with
this method.

Note 1:
Specification examples are shown below. In these examples ds represents the
name of a variable that has reference to the PrdbDataSource class's instance.

 represents a single-byte space character.

Setting Setting details Setting required?

HiRDB port number Sets the HiRDB port number, as a character string.
For details about the priorities among the setting methods
for the HiRDB port number, see 17.11 Connection
information priorities.

Optional

Environment variable
group name of HiRDB
client

Sets the environment variable group name of the HiRDB
client. The name is expressed as an absolute path name
that follows @HIRDBENVGRP=. Note the following points:
• If no value is set following the equal sign, as in

@HIRDBENVGRP=,, the JDBC driver assumes that
there is no specification for this item.

• The environment variable group name is case
sensitive. Also, the environment variable group name
depends on the OS.

• If the environment variable group name contains a
single-byte space or a single-byte at mark (@), you
must enclose the name in single-byte double quotation
marks ("). When an environment variable group name
is enclosed in single-byte double quotation marks, any
characters following the concluding single-byte
double quotation mark through the end of the
character string are ignored. An environment variable
group name containing a single-byte double quotation
mark or a single-byte comma cannot be specified.

• For Windows, an environment variable group name
that was specified with the HiRDB client environment
variable registration tool cannot be specified.

Optional

HiRDB environment
variable group identifier

Sets the HiRDB environment variable group identifier, as
four alphanumeric characters.

Required during XA
connection

17. Type4 JDBC Driver

1244

Example 1: When specifying the HiRDB port number

ds.setDescription ("22200");

Example 2: When the path of the environment variable group name is
C:\HiRDB_P\Client\HiRDB.ini

ds.setDescription
("@HIRDBENVGRP=C:\\HiRDB_P\\Client\\HiRDB.ini");

Example 3: When the path of the environment variable group name is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini

ds.setDescription
("@HIRDBENVGRP=\"C:\\Program Files\\HITACHI\\HiRDB\HiR
DB.ini\"");

Example 4: When the path of the environment variable group name is /
HiRDB_P/Client/HiRDB.ini

ds.setDescription ("@HIRDBENVGRP=/HiRDB_P/Client/
HiRDB.ini");

Example 5: When a HiRDB environment variable group identifier is specified
during an XA connection

ds.setDescription ("HDB1");ds.setXAOpenString
("HDB1+C:\\Program Files\\HITACHI\\HiRDB\\HiRDB.ini");

Note 2:
Do not include single-byte spaces in an environment variable group name.
Examples of specification errors are shown below:

Note: represents a single-byte space character.

@ HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP =/HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP= /HiRDB_P/Client/HiRDB.ini
@HIRDBENVGRP=/HiRDB_P/Client/HiRDB.ini

17. Type4 JDBC Driver

1245

(f) Exceptions
When an environment variable group name begins with a single-byte at mark (@) and
the information specified following the at mark includes a single-byte space, this
method throws an SQLException.

17.7.2 getDescription
(a) Function

Gets the additional connection information needed for connection to the database.
(b) Format

public String getDescription() throws SQLException

(c) Arguments
None.

(d) Return value
String

This is the additional connection information. If no information has been set, the
null value is returned.

(e) Functional detail
Returns the additional connection information needed for connection to the database,
as was set by the setDescription method.

(f) Exceptions
None.

17.7.3 setDBHostName
(a) Function

Sets the name of the HiRDB host to be connected.
(b) Format

public void setDBHostName (String db_host_name) throws
SQLException

(c) Arguments
String db_host_name

Sets a HiRDB host name.

17. Type4 JDBC Driver

1246

If the null value is specified, the current host name that had been set with this
method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets the host name of the HiRDB to be connected.
For details about the priorities among the settings methods for the HiRDB host name,
see 17.11 Connection information priorities.

(f) Exceptions
None.

17.7.4 getDBHostName
(a) Function

Gets the name of the HiRDB host to be connected.
(b) Format

public String getDBHostName() throws SQLException

(c) Arguments
None.

(d) Return value
String

This is the HiRDB host name. If no value has been set, the null value is returned.
(e) Functional detail

Returns the host name of the HiRDB to be connected, as was set with the
setDBHostName method.

(f) Exceptions
None.

17.7.5 setJDBC_IF_TRC
(a) Function

Sets whether or not a JDBC interface method trace is to be acquired.
(b) Format

17. Type4 JDBC Driver

1247

public void setJDBC_IF_TRC (boolean flag) throws SQLException

(c) Arguments
boolean flag

Specifies whether or not a trace is to be acquired:
true: Acquire a trace.
false: Do not acquire a trace.

(d) Return value
None.

(e) Functional detail
Sets whether or not a JDBC interface method trace is to be acquired.
The default value when this method is not called is false (trace is not acquired). You
can use the setLogWriter method in a separate operation to set the effective output
destination. For details about the JDBC interface method trace, see 17.12 JDBC
interface method trace.

(f) Exceptions
None.

(g) Note
Whether or not a JDBC interface method trace is to be acquired cannot be set
separately for each instance. The setting that is set by this method affects all
DataSource, ConnectionPoolDataSource, and XADataSource instances in
existence, both when the setting is set and after the setting has been set.

17.7.6 getJDBC_IF_TRC
(a) Function

Gets setting information about whether or not a JDBC interface method trace is to be
acquired.

(b) Format

public boolean getJDBC_IF_TRC() throws SQLException

(c) Arguments
None.

17. Type4 JDBC Driver

1248

(d) Return value
boolean

This is the setting information about whether or not a trace is to be acquired:
true: A trace is acquired.
false: A trace is not acquired.

(e) Functional detail
Returns the setting information about whether or not a trace is to be acquired, as was
set by the setJDBC_IF_TRC method.
For details about the JDBC interface method trace, see 17.12 JDBC interface method
trace.

(f) Exceptions
None.

17.7.7 setTRC_NO
(a) Function

Sets the number of entries in the JDBC interface method trace.
(b) Format

public void setTRC_NO (int trc_no) throws SQLException

(c) Arguments
int trc_no

Specifies the number of entries in the JDBC interface method trace.
(d) Return value

None.
(e) Functional detail

Sets the number of entries in the JDBC interface method trace, as a value in the range
from 10 to 1,000.
When this method is not called, the default number of entries in the JDBC interface
method trace is 500.
For details about the JDBC interface method trace, see 17.12 JDBC interface method
trace.

17. Type4 JDBC Driver

1249

(f) Exceptions
If a value outside the range from 10 to 1,000 is set, this method throws an
SQLException.

17.7.8 getTRC_NO
(a) Function

Gets the number of entries in the JDBC interface method trace.
(b) Format

public int getTRC_NO() throws SQLException

(c) Arguments
None.

(d) Return value
int

This is the number of entries in the JDBC interface method trace. If no value has
been set, the default value 500 is returned.

(e) Functional detail
Returns the number of entries in the JDBC interface method trace, as was set by the
setTRC_NO method.
For details about the JDBC interface method trace, see 17.12 JDBC interface method
trace.

(f) Exceptions
None.

17.7.9 setUapName
(a) Function

Sets a UAP name.
(b) Format

public void setUapName (String uap_name) throws SQLException

(c) Argument
String uap_name

Specifies a UAP name.

17. Type4 JDBC Driver

1250

If the null value is specified, the current UAP name that had been set with this
method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets a UAP name.
The specified UAP name is used for the following purposes:

• In the output information to each type of trace information
• In the UAP identification information that is output when the -d prc option is

specified in the pdls command
In the following cases, the JDBC driver assumes that no UAP name has been set by
this method (for details about how the JDBC driver handles the situation when there is
no setting, see 17.11 Connection information priorities):

• When the null value is specified in the uap_name argument
• When a character string whose length is 0 or a character string consisting of only

single-byte spaces is specified in the uap_name argument
(f) Exceptions

None.
(g) Notes

The UAP specified by this method is encoded using the conversion character set
specified by the setEncodeLang method, and the first 30 bytes of the encoded UAP
name are transferred to the HiRDB server (the name is truncated after 30 bytes even if
the 30th byte is only part of a character). The UAP name that can be obtained by the
HiRDB server is only the first 30 bytes after encoding.

17.7.10 getUapName
(a) Function

Gets the UAP name.
(b) Format

public String getUapName() throws SQLException

(c) Arguments
None.

17. Type4 JDBC Driver

1251

(d) Return value
String

This is the UAP name.
(e) Functional detail

Returns the UAP name that was set with the setUapName method. If a UAP name has
not been set, HiRDB_Type4_JDBC_Driver is returned.

(f) Exceptions
None.

17.7.11 setUser
(a) Function

Sets an authorization identifier for database connection.
(b) Format

public void setUser (String user) throws SQLException

(c) Arguments
String user

Specifies an authorization identifier.
If the null value is specified, the current authorization identifier that had been set
by this method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets an authorization identifier.
When one of the following methods is executed, the authorization identifier and
password that were specified with the setUser and setPassword methods are used
in establishing a physical connection to the database:

• getConnection method (no arguments) of the DataSource interface
• getPooledConnection method of the ConnectionPoolDataSource

interface
• getXAConnection method of the XADataSource interface

If the user argument is the null value, the JDBC driver assumes that no authorization

17. Type4 JDBC Driver

1252

identifier has been set by this method.
For details about how the JDBC driver handles the situation when there is no setting,
see 17.11 Connection information priorities.

(f) Exceptions
If the length of the character string specified by the user argument is 0, this method
throws an SQLException.

17.7.12 getUser
(a) Function

Gets the authorization identifier for database connection.
(b) Format

String void getUser() throws SQLException

(c) Arguments
None.

(d) Return value
String

This is the authorization identifier.
(e) Functional detail

Returns the authorization identifier that was set by the setUser method. If an
authorization identifier has not been set, the null value is returned.

(f) Exceptions
None.

17.7.13 setPassword
(a) Function

Sets a password for database connection.
(b) Format

public void setPassword (String password) throws SQLException

(c) Arguments
String password

17. Type4 JDBC Driver

1253

Specifies a password.
If the null value is specified, the current password that had been set by this method
is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets a password.
When one of the following methods is executed, the authorization identifier and
password that were specified with the setUser and setPassword methods are used
in establishing a physical connection to the database:

• getConnection method (no arguments) of the DataSource interface
• getPooledConnection method of the ConnectionPoolDataSource

interface
• getXAConnection method of the XADataSource interface

If the password argument is the null value or a character string whose length is 0, the
JDBC driver assumes that no password has been set by this method.
For details about how the JDBC driver handles the situation when there is no setting,
see 17.11 Connection information priorities.

(f) Exceptions
None.

17.7.14 getPassword
(a) Function

Gets the password for database connection.
(b) Format

public String getPassword() throws SQLException

(c) Arguments
None.

(d) Return value
String

This is the password.

17. Type4 JDBC Driver

1254

(e) Functional detail
Returns the password that was set by the setPassword method.

(f) Exceptions
None.

17.7.15 setXAOpenString
(a) Function

Sets an XA open character string.
(b) Format

public void setXAOpenString (String xa_string) throws
SQLException

(c) Arguments
String xa_string

Specifies an XA open character string.
If the null value is specified, the current XA open character string that had been
set by this method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets an XA open character string. This method is provided by the XADataSource
interface only. Specify the XA open character string in the following format:
Format

HiRDB-environment-variable-group-identifier +
environment-variable-group-name-of-HiRDB-client

Specify the HiRDB environment variable group identifier that was set by the
setDescription method. Unlike when the environment variable group name of the
HiRDB client is specified by the setDescription method, in this case the
environment variable group name of the HiRDB client doe not need to be enclosed in
quotation marks even if the name includes a single-byte at mark (@) or a single-byte
space.
Setting example 1

17. Type4 JDBC Driver

1255

When the path of the environment variable group name of the HiRDB client is /
HiRDB/HiRDB.ini

ds.setDescription("HDB1");
ds.setXAOpenString("HDB1+/HiRDB/HiRDB.ini");

Setting example 2

When the path of the environment variable group name of the HiRDB client is
C:\Program Files\HITACHI\HiRDB\HiRDB.ini (is a single-byte
space)

ds.setDescription("HDB1");
ds.setXAOpenString("HDB1+C:\\Program Files\\HITACHI\\HiRDB
\\HiRDB.ini");

(f) Exceptions
None.

17.7.16 getXAOpenString
(a) Function

Gets the XA open character string.
(b) Format

public String getXAOpenString() throws SQLException

(c) Arguments
None.

(d) Return value
String

This is the XA open character string. If no value has been set, the null value is
returned.

(e) Functional detail
Returns the XA open character string that was set by the setXAOpenString method.
This method is provided by the XADataSource interface only.

(f) Exceptions
None.

17. Type4 JDBC Driver

1256

17.7.17 setXACloseString
(a) Function

Sets an XA close character string.
(b) Format

public void setXACloseString (String xa_string) throws
SQLException

(c) Arguments
String xa_string

Specifies an XA close character string.
If the null value is specified, the current XA close character string that had been
set by this method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets an XA close character string. This method is provided by the XADataSource
interface only.

(f) Exceptions
None.

17.7.18 getXACloseString
(a) Function

Gets the XA close character string.
(b) Format

public String getXACloseString() throws SQLException

(c) Arguments
None.

(d) Return value
String

This is the XA close character string. If no value has been set, the null value is
returned.

17. Type4 JDBC Driver

1257

(e) Functional detail
Returns the XA close character string that was set by the setXACloseString
method. This method is provided by the XADataSource interface only.

(f) Exceptions
None.

17.7.19 setLONGVARBINARY_Access
(a) Function

Sets the method of accessing data of the LONGVARBINARY type (a JDBC SQL type
corresponding to HiRDB's BLOB and BINARY data types).

(b) Format

public void setLONGVARBINARY_Access (String mode) throws
SQLException

(c) Arguments
String mode

Specifies the method of accessing data of the LONGVARBINARY type (a JDBC
SQL type corresponding to HiRDB's BLOB and BINARY data types).
For this method, the value specified in the argument is not case sensitive.
REAL

Access the data with real data.
LOCATOR

Access the data using HiRDB's locator facility.
If the null value is specified, the current data access method that had been set is
invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets the method for accessing data of the LONGVARBINARY type (a JDBC SQL type
corresponding to HiRDB's BLOB and BINARY data types). The default value when this
method is not called is REAL.
Setting a value with this method is equivalent to setting the LONGVARBINARY_ACCESS
property, which is shown in 17.2.2(2) User properties.

17. Type4 JDBC Driver

1258

(f) Exceptions
If a value other than REAL or LOCATOR is specified in the mode argument, this method
throws a java.sql.SQLException.

(g) Notes
See 17.2.2(2)(q) Notes about specification of LONGVARBINARY_ACCESS.

17.7.20 getLONGVARBINARY_Access
(a) Function

Gets the method of accessing data of the LONGVARBINARY type (a JDBC SQL type
corresponding to HiRDB's BLOB and BINARY data types).

(b) Format

public String getLONGVARBINARY_Access()

(c) Arguments
None.

(d) Return value
String

This is the setting information for the method of accessing data of the
LONGVARBINARY type (a JDBC SQL type corresponding to HiRDB's BLOB and
BINARY data types):
REAL

The data is accessed using real data.
LOCATOR

The data is accessed using HiRDB's locator facility.
(e) Functional detail

Returns the information that was set by the setLONGVARBINARY_Access method.
(f) Exceptions

None.

17.7.21 setSQLInNum
(a) Function

Sets the maximum number of input ? parameters in the SQL statements to be executed.

17. Type4 JDBC Driver

1259

(b) Format

public void setSQLInNum (int inNum) throws SQLException

(c) Arguments
int inNum

Specifies the maximum number of input ? parameters in the SQL statements to
be executed. The specification value range is from 1 to 30,000.

(d) Return value
None.

(e) Functional detail
Sets the number of input ? parameter information items to be retrieved during SQL
preprocessing.
If the actual number of ? parameters is greater than the specification value of this
method, the input ? parameter information is retrieved after SQL preprocessing. The
default value when this method is not called is 300.
At the time of database connection, the value specified by this method becomes the
value of the HiRDB_for_Java_SQL_IN_NUM property, which is shown in 17.2.2(2)
User properties.

(f) Exceptions
If a value outside the range from 1 to 30,000 is specified in the argument, this method
throws an SQLException.

(g) Notes
If the application does not execute SQL statements that have input ? parameters, you
should specify 1 as the argument value.

17.7.22 getSQLInNum
(a) Function

Gets the maximum number of input ? parameters in the SQL statements to be
executed.

(b) Format

public int getSQLInNum() throws SQLException

17. Type4 JDBC Driver

1260

(c) Arguments
None.

(d) Return value
int

This is the maximum number of input ? parameters in SQL statements to be
executed, as set by the setSQLInNum method. If a value has not been set, the
default value 300 is returned.

(e) Functional detail
Gets the maximum number of input ? parameters in the SQL statements to be
executed, as set by the setSQLInNum method.

(f) Exceptions
None.

17.7.23 setSQLOutNum
(a) Function

Sets the maximum number of retrieval items for the SQL statements to be executed.
(b) Format

public void setSQLOutNum (int outNum) throws SQLException

(c) Arguments
int outNum

Specifies the maximum number of retrieval items for the SQL statements to be
executed. The specification value range is from 1 to 30,000.

(d) Return value
None.

(e) Functional detail
Sets the maximum number of retrieval items for the SQL statements to be executed.
This specification becomes the number of output items to be acquired during SQL
preprocessing. The default value when this method is not called is 300.
If the actual number of output items is greater than the specification value of this
method, the output item information is acquired after SQL preprocessing.
The value specified by this method becomes the value of the
HiRDB_for_Java_SQL_OUT_NUM property, which is shown in 17.2.2(2) User

17. Type4 JDBC Driver

1261

properties.
(f) Exceptions

If the specified value is outside the range from 1 to 30,000, this method throws an
SQLException.

(g) Notes
When there are no retrieval items, you should specify 1 as the argument value.

17.7.24 getSQLOutNum
(a) Function

Gets the maximum number of retrieval items for the SQL statements to be executed.
(b) Format

public int getSQLOutNum() throws SQLException

(c) Arguments
None.

(d) Return value
int

This is the maximum number of retrieval items for the SQL statements to be
executed, as set by the setSQLOutNum method. If a value has not been set, the
default value 300 is returned.

(e) Functional detail
Gets the maximum number of retrieval items for the SQL statements to be executed,
as set by the setSQLOutNum method.

(f) Exceptions
None.

17.7.25 setSQLWarningLevel
(a) Function

Sets the warning retention level for warnings that occur during SQL execution.
(b) Format

public void setSQLWarningLevel (String warningLevel) throws
SQLException

17. Type4 JDBC Driver

1262

(c) Arguments
String warningLevel

Specifies the retention level for the warning information that occurs during SQL
execution.
The following values can be specified (for details about the relationships between
the specification values and the warnings to be retained, see 17.4.10(2)(b) Issuing
conditions for SQLWarning objects):

• IGNORE
• SQLWARN
• ALLWARN

For this method, the value specified in the argument is not case sensitive. If the
null value is specified, the current warning retention level that had been set by this
method is invalidated, and the setting is returned to its initial status.

(d) Return value
None.

(e) Functional detail
Sets the retention level for the warning information that occurs during SQL execution.
The default value when this method is not called is SQLWARN.
The value specified by this method becomes the value of the
HiRDB_for_Java_SQLWARNING_LEVEL property, which is shown in 17.2.2(2) User
properties.

(f) Exceptions
If the argument is a value other than the specification values shown above, this method
throws an SQLException.

17.7.26 getSQLWarningLevel
(a) Function

Gets the warning retention level that was set by the setSQLWarningLevel method.
(b) Format

public String getSQLWarningLevel() throws SQLException

(c) Arguments
None.

17. Type4 JDBC Driver

1263

(d) Return value
String

This is the warning retention level that was set by the setSQLWarningLevel
method. For details about the return value and the warnings that are retained, see
17.4.10(2)(b) Issuing conditions for SQLWarning objects.

(e) Functional detail
Returns the information that was set by the setSQLWarningLevel method. If no
information has been set, the default value SQLWARN is returned.

(f) Exceptions
None.

17.7.27 setXALocalCommitMode
(a) Function

Sets whether or not the auto-commit facility is to be enabled if a transaction during an
XA connection is not a distributed transaction.

(b) Format

public void setXALocalCommitMode (boolean autoCommitMode)
throws SQLException

(c) Arguments
boolean autoCommitMode

Specifies the auto-commit facility:
true: Enable the auto-commit facility.
false: Disable the auto-commit facility.

(d) Return value
None.

(e) Functional detail
Sets the auto-commit facility during an XA connection. The default value is false
(the auto-commit facility is disabled). The table below shows the relationships
between this method's specification values and the JDBC driver operations.

17. Type4 JDBC Driver

1264

(f) Exceptions
None.

17.7.28 getXALocalCommitMode
(a) Function

Gets the setting information about whether or not the auto-commit facility is to be
enabled if a transaction during an XA connection is not a distributed transaction.

(b) Format

public boolean getXALocalCommitMode() throws SQLException

(c) Arguments
None.

(d) Return value
boolean

This is the setting for the auto-commit facility:
true: The auto-commit facility is enabled.
false: The auto-commit facility is disabled.

Specification value Condition JDBC driver operation

true Auto-commit default during Connection object
generation

Enables auto-commit.

Transaction termination by the con.commit or
con.rollback method

Accepts normally.

setAutoCommit(true) execution Enables auto-commit.

setAutoCommit(false) execution Disables auto-commit.

false (default) Auto-commit default during Connection object
generation

Disables auto-commit.

Transaction termination by the con.commit or
con.rollback method

SQLException

setAutoCommit(true) execution SQLException

setAutoCommit(false) execution Normal termination (the
driver does nothing because
auto-commit cannot be
enabled)

17. Type4 JDBC Driver

1265

(e) Functional detail
Gets the setting for the auto-commit facility.

(f) Exceptions
None.

17.7.29 setSQLWarningIgnore
(a) Function

Sets whether or not warnings returned from the database are to be discarded by the
Connection class.

(b) Format

public void setSQLWarningIgnore (boolean mode)

(c) Arguments
boolean mode

Specifies whether or not warnings are to be discarded:
true: Discard warnings.
false: Retain warnings.

(d) Return value
None.

(e) Functional detail
Sets whether or not warnings returned from the database are to be discarded by the
Connection class. The default value is false (warnings are retained).

(f) Exceptions
None.

17.7.30 getSQLWarningIgnore
(a) Function

Gets the setting information about whether or not warnings returned from the database
are to be discarded by the Connection class.

(b) Format

public boolean getSQLWarningIgnore()

17. Type4 JDBC Driver

1266

(c) Arguments
None.

(d) Return value
boolean

This is the setting information about whether or not warnings are to be discarded:
true: Discards warnings.
false: Retains warnings.

(e) Functional detail
Gets the setting information about whether or not warnings returned from the database
are to be discarded by the Connection class.
This method returns the information that was set by the setSQLWarningIgnore
method. If the setSQLWarningIgnore method has not been executed, the default
value false is returned.

(f) Exceptions
None.

17.7.31 setHiRDBCursorMode
(a) Function

Set whether or not objects of the ResultSet class are to be validated when HiRDB
executes commit processing.

(b) Format

public void setHiRDBCursorMode (boolean mode)

(c) Arguments
boolean mode

Specifies one of the following values:
true: Validate objects of the ResultSet class after commit processing. When
true is specified, objects of the following classes also become valid after commit
processing:

• Statement class
• PreparedStatement class

false: Invalidate objects of the ResultSet class after commit processing.

17. Type4 JDBC Driver

1267

(d) Return value
None.

(e) Functional detail
Sets whether or not objects of the ResultSet class are to be validated when HiRDB
executes commit processing. The default value if this method cannot be called is
false.
If an invalidated ResultSet object executes an operation other than close method
calling, this method throws an SQLException.
Executing this method is the same as setting the HIRDB_CURSOR item, which is shown
in 17.2.2(1) URL syntax.

(f) Exceptions
None.

(g) Notes
See 17.2.2(1)(c) Notes about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

17.7.32 getHiRDBCursorMode
(a) Function

Gets the setting information about whether or not objects of the ResultSet class are
to be validated when HiRDB executes commit processing.

(b) Format

public boolean getHiRDBCursorMode()

(c) Arguments
None.

(d) Return value
boolean

This is the setting information about whether or not objects of the ResultSet
class are to be validated when HiRDB executes commit processing:
true: Objects of the ResultSet class are valid after commit processing.
false: Objects of the ResultSet class become invalid after commit processing.

(e) Functional detail
Gets the setting information about whether or not objects of the ResultSet class are

17. Type4 JDBC Driver

1268

to be validated when HiRDB executes commit processing.
(f) Exceptions

None.
(g) Notes

None.

17.7.33 setNotErrorOccurred
(a) Function

Sets whether or not the calling of
ConnectionEventListener.connectionErrorOccurred is to be suppressed.

(b) Format

public void setNotErrorOccurred (boolean mode)

(c) Arguments
boolean mode

Specifies whether or not occurrences of connectionErrorOccurred are to be
suppressed:
true: Suppress the calling of connectionErrorOccurred.
false: Do not suppress the calling of connectionErrorOccurred (default).

(d) Return value
None.

(e) Functional detail
Specifies the setting for suppressing the calling of
ConnectionEventListener.connectionErrorOccurred, which is called
when an error occurs while ConnectionPoolDataSource or XADataSource is
being used.
If this method is not set, connectionErrorOccurred is called. Normally, do not set
this method or set false.

(f) Exceptions
None.

17. Type4 JDBC Driver

1269

17.7.34 getNotErrorOccurred
(a) Function

Gets the setting information about whether or not the calling of
ConnectionEventListener.connectionErrorOccurred is to be suppressed.

(b) Format

public boolean getNotErrorOccurred()

(c) Arguments
None.

(d) Return value
boolean

This is the setting information about whether or not
ConnectionEventListener.connectionErrorOccurred is called:
true: connectionErrorOccurred is not called.
false: connectionErrorOccurred is called (default).

(e) Functional detail
Gets the setting information about whether or not
ConnectionEventListener.connectionErrorOccurred is to be called when a
fatal connection error occurs while ConnectionPoolDataSource or
XADataSource is being used. If no setting information has been set, this method
returns false.

(f) Exceptions
None.

17.7.35 setEnvironmentVariables
(a) Function

Sets client environment definitions for HiRDB.
(b) Format

public void setEnvironmentVariables (String variables) throws
SQLException

(c) Arguments
String variables

17. Type4 JDBC Driver

1270

Specifies HiRDB client environment definitions in the format shown below:
Format

"variable-name=value;variable-name=value;...;variable-name=value"

A specification example is shown below:
Specification example

setEnvironmentVariables
("PDFESHOST=FES1;PDCWAITTIME=0");

If the null value is specified, the current client environment definitions that had
been set by this method are invalidated, and the settings are returned to their initial
status.

(d) Return value
None.

(e) Functional detail
Sets HiRDB client environment definitions.
For details about the client environment definitions that can be specified by the JDBC
driver, see 17.10 Supported client environment definitions. If a client environment
definition that cannot be specified by the JDBC driver is specified for a variable, the
specification is ignored. Note that the variable names are case sensitive.
For details about the priorities among connection information items that have multiple
setting methods, see 17.11 Connection information priorities.
This method does not check each specification of the client environment definitions.
The specification values are checked during connection to the database, and an
SQLException is thrown if an error is detected.

(f) Exceptions
None.

17.7.36 getEnvironmentVariables
(a) Function

Gets the client environment definitions for HiRDB.
(b) Format

String void getEnvironmentVariables()

17. Type4 JDBC Driver

1271

(c) Arguments
None.

(d) Return value
String

This shows the client environment definitions of HiRDB. If no definitions have
been specified, the null value is returned.

(e) Functional detail
Gets the client environment definitions of HiRDB.

(f) Exceptions
None.

17.7.37 setEncodeLang
(a) Function

Sets the name of the conversion character set for data conversion.
(b) Format

public void setEncodeLang (String encode_lang) throws
SQLException

(c) Arguments
String encode_lang

Specifies the name of the conversion character set. You must select a name from
the list of encodings shown under Internationalization in the JavaTM 2 SDK,
Standard Edition documentation.
The table below shows the HiRDB character encodings and the corresponding
conversion character sets.

HiRDB character encoding
(character encoding set with pdntenv or

pdsetup command)

Conversion character set to be specified

lang-c ISO8859_1

sjis SJIS or MS932#

ujis EUC_JP

utf-8 UTF-8

17. Type4 JDBC Driver

1272

Note:
If the specified conversion character set name is not in compliance with the
applicable name shown in this table, the operation of the JDBC driver is not
guaranteed.

#
The specification of SJIS or MS932 depends on the handling of Windows
special characters in the application.

When OFF is specified, the JDBC driver assumes that the applicable conversion
character set name shown in this table was specified. If the HiRDB character
encoding is sjis, the conversion character set determined by the OS running the
JDBC driver is as follows.
In UNIX: SJIS
In Windows: MS932
If the null value is specified, the current conversion character set name that had
been set by this method is invalidated, and the setting is returned to its initial
status.
Note that the specification values are case sensitive (except for OFF).

(d) Return value
None.

(e) Functional detail
The conversion character set that was specified by this method is used for carrying out
the following data conversions:

• Conversion to character data (Unicode) when the application uses String to get
data that was retrieved from HiRDB

• Conversion to binary data when the application uses String to set a value in
HiRDB

If this method is not specified, the JDBC driver converts characters using the
applicable conversion character set shown in the table above. However, the JDBC
driver uses the default character conversion set of the Java Virtual Machine to convert
the following items:

chinese EUC_CN

HiRDB character encoding
(character encoding set with pdntenv or

pdsetup command)

Conversion character set to be specified

17. Type4 JDBC Driver

1273

• Specification value of setUapName
• Authorization identifier and password (values specified by setUser,

setPassword, and getConnection)
• Specification values of client environment definitions specified by

setEnvironmentVariables
• Specification values of environment variables specified by the environment

variable group name of the HiRDB client
(f) Exceptions

If the specified conversion character set is not supported by the Java Virtual Machine,
this method throws an SQLException.

17.7.38 getEncodeLang
(a) Function

Gets the conversion character set for data conversion name that was set.
(b) Format

public String getEncodeLang()

(c) Arguments
None.

(d) Return value
String

This is the conversion character set name. If a conversion character set name was
not specified by the setEncodeLang method, the null value is returned.

(e) Functional detail
Returns the conversion character set name that was set by the setEncodeLang
method.

(f) Exceptions
None.

17.7.39 setMaxBinarySize
(a) Function

Sets the maximum data size for retrieval of data of the LONGVARBINARY type (a JDBC
SQL type).

17. Type4 JDBC Driver

1274

(b) Format

public void setMaxBinarySize (int size) throws SQLException

(c) Arguments
int size

Specifies the maximum data size, in the range from 0 to 2,147,483,647.
If 0 is specified, the defined length of the data to be retrieved is set as the
maximum size.

(d) Return value
None.

(e) Functional detail
Sets the maximum data size (bytes) when data of the LONGVARBINARY JDBC SQL
type is retrieved.
When the JDBC driver retrieves LONGVARBINARY data, it allocates memory of the
defined length because it cannot recognize the actual data length until it retrieves the
data. Consequently, if the JDBC driver retrieves values from a column that is very
large, such as 2,147,483,647 bytes (the maximum size for HiRDB's BINARY and BLOB
data types), it attempts to allocate memory space of the defined length (2,147,483,647
bytes) as the defined length. Depending on the execution environment, this may cause
a memory shortage.
You should use this method to specify the maximum length of the data that is actually
stored. If the defined length of the BINARY and BLOB data to be retrieved is larger than
the size specified by this method, the JDBC driver truncates the retrieved data to the
specified size. When data has been truncated, the JDBC driver receives a warning from
the HiRDB server when the next method of ResultSet is executed. The JDBC driver
responds to the received warning by throwing an SQLException or issuing (or
ignoring) an SQLWarning, as specified by the setLONGVARBINARY_TruncError
value.
If a maximum data size has not been set by this method, the defined length of the data
to be retrieved is used as the maximum data size.

(f) Exceptions
If a negative value is specified, this method throws an SQLException.

(g) Notes
Any value specified for this method is not effective when LOCATOR is specified in the
mode argument of the setLONGVARBINARY_Access method. In such a case, the
JDBC driver allocates an area based on the actual data length and retrieves all of the

17. Type4 JDBC Driver

1275

data.

17.7.40 getMaxBinarySize
(a) Function

Gets the maximum data size for retrieval of data of the LONGVARBINARY type (a JDBC
SQL type).

(b) Format

public int getMaxBinarySize()

(c) Arguments
None.

(d) Return value
int

This is the value that was set as the maximum data size.
(e) Functional detail

Returns the maximum data size for retrieving data of the LONGVARBINARY type (a
JDBC SQL type), as set by the setMaxBinarySize method.
If a maximum data size has not been set by the setMaxBinarySize method, 0 is
returned.

(f) Exceptions
None.

17.7.41 setStatementCommitBehavior
(a) Function

Sets whether or not statement objects are to remain valid after a transaction is
committed. Here, statement objects refer to the following classes:

• Statement class
• PreparedStatement class

(b) Format

public void setStatementCommitBehavior (boolean mode) throws
SQLException

17. Type4 JDBC Driver

1276

(c) Arguments
boolean mode

Specifies whether statement objects are to be valid both before and after a
transaction is terminated by commit processing:
true: Validate statement objects after a transaction is completed.
false: Invalidate statement objects after a transaction is completed.

(d) Functional detail
Sets whether or not statement objects are to remain valid after a transaction is
committed. The default when this method is not called is true.
Executing this method is the same as setting the STATEMENT_COMMIT_BEHAVIOR
item, which is shown in 17.2.2(1) URL syntax.

(e) Exceptions
None.

(f) Notes
See 17.2.2(1)(c) Notes about specification of HIRDB_CURSOR and
STATEMENT_COMMIT_BEHAVIOR.

17.7.42 getStatementCommitBehavior
(a) Function

Gets setting information about whether or not statement objects are to remain valid
even after a transaction is committed. Here, statement objects refer to the following
classes:

• Statement class
• PreparedStatement class

(b) Format

public boolean getStatementCommitBehavior() throws SQLException

(c) Arguments
None.

(d) Return value
boolean

Indicates whether statements objects are to remain valid after a transaction is
terminated by commit processing:

17. Type4 JDBC Driver

1277

true: The statement objects are to remain valid.
false: The statement objects are not to remain valid.

(e) Functional detail
Gets the setting information about whether objects of the following classes are to
remain valid after commit execution:

• Statement class
• PreparedStatement class

This method returns the setting value of the setStatementCommitBehavior
method. If no value has been set, true is returned.

(f) Exceptions
None.

(g) Notes
None.

17.7.43 setLONGVARBINARY_AccessSize
(a) Function

Sets the LONGVARBINARY (a JDBD SQL type) data length for one access request to
the HiRDB server.

(b) Format

public void setLONGVARBINARY_AccessSize (int access_size)
throws SQLException

(c) Arguments
int access_size

Specifies the data length (kilobytes) to be requested. The specification value
range is from 0 to 2,097,151 (the default is 0). If 0 is specified, the entire data is
requested at once.

(d) Return value
None.

(e) Functional detail
Sets the LONGVARBINARY (a JDBC SQL type) data length for one access request to the
HiRDB server.
For example, if 20 is specified for the access_size argument and the application

17. Type4 JDBC Driver

1278

uses the getBytes method of ResultSet to retrieve 100 kilobytes of
LONGVARBINARY data stored in the database, the JDBC driver retrieves the data by
dividing the operation into five executions of 20 kilobytes each.
This specification value becomes invalid if a value other than LOCATOR is specified in
the mode argument of the setLONGVARBINARY_Access method.
Specifying a value for this method is equivalent to setting the
HiRDB_for_Java_LONGVARBINARY_ACCESS_SIZE property, which is shown in
17.2.2(2) User properties.

(f) Exceptions
If a value outside the range from 0 to 2,097,151 is specified in the access_size
argument, this method throws a java.sql.SQLException.

(g) Notes
See 17.2.2(2)(q) Notes about specification of LONGVARBINARY_ACCESS.

17.7.44 getLONGVARBINARY_AccessSize
(a) Function

Gets the LONGVARBINARY (a JDBC SQL type) data length for one access request to
the HiRDB server.

(b) Format

public int getLONGVARBINARY_AccessSize() throws SQLException

(c) Arguments
None.

(d) Return value
int

This is the data length (kilobytes) for one access request. If a value has not been
set, 0 is returned.

(e) Functional detail
Gets the LONGVARBINARY (JDBC SQL type) data length for one access request to the
HiRDB server. This method returns the setting value of the
setLONGVARBINARY_AccessSize method.

(f) Exceptions
None.

17. Type4 JDBC Driver

1279

17.7.45 setLONGVARBINARY_TruncError
(a) Function

Sets whether or not an exception is to be thrown if truncation occurs during acquisition
of data of the LONGVARBINARY type (a JDBC SQL type).

(b) Format

public void setLONGVARBINARY_TruncError (boolean mode) throws
SQLException

(c) Arguments
boolean mode

Specifies whether or not an exception is to be thrown when truncation occurs:
true

Throw an exception.
false

Do not throw an exception.
(d) Return value

None.
(e) Functional detail

Sets whether or not an exception is to be thrown if truncation occurs during acquisition
of data of the LONGVARBINARY type (a JDBC SQL type). If this method is not set, the
JDBC driver assumes that true was specified.
The specification value of this method becomes invalid if IGNORE is specified in the
warningLevel argument of the setSQLWarningLevel method. In such a case, the
JDBC driver operates as if false were specified.
A truncation that occurs when LONGVARBINARY data is retrieved refers to the action
that occurs when the flowing conditional expression is satisfied:

(f) Exceptions
None.

actual-length-of-LONGVARBINARY-data-retrieved-by-SQL-execution >
data-length-specified-by-setMaxBinarySize

17. Type4 JDBC Driver

1280

17.7.46 getLONGVARBINARY_TruncError
(a) Function

Gets the setting information about whether or not an exception is to be thrown if
truncation occurs during acquisition of data of the LONGVARBINARY type (a JDBC
SQL type).

(b) Format

public boolean getLONGVARBINARY_TruncError()

(c) Arguments
None.

(d) Return value
boolean

This is the setting information about whether not an exception is to be thrown
when truncation occurs:
true

An exception is thrown.
false

An exception is not thrown.
(e) Functional detail

Gets the setting information about whether or not an exception is to be thrown when
truncation occurs during acquisition of data of the LONGVARBINARY type (a JDBC
SQL type).

(f) Exceptions
None.

17. Type4 JDBC Driver

1281

17.8 Data types

17.8.1 Mapping SQL data types
There is not an exact match between HiRDB's SQL data types and JDBC's SQL data
types. For this reason, the JDBC driver performs mapping (conversion) between
JDBC's SQL data types and the SQL data types of the HiRDB to be connected. If an
unmappable SQL data type is used for data access, the JDBC driver throws an
SQLException. If an SQL statement that uses HiRDB's ROW type, which cannot be
mapped to any of JDBC's SQL data types, is executed for an HiRDB server that uses
little endian, the JDBC driver throws an SQLException that includes the
KFPA11104-E message indicating a syntax error.
The SQL data types are mapped with getXXX and setXXX methods of the
ResultSet and PreparedStatement classes. For details about the mapping rules
for the SQL data types and the getXXX and setXXX methods, see the documentation
for the JDBC1.0 standard and JDBC2.0 basic standard.
Table 17-30 shows the correspondences between the SQL data types of HiRDB and
JDBC.

Table 17-30: SQL data type correspondences between HiRDB and JDBC
(Type4 JDBC driver)

HiRDB's SQL data type JDBC's SQL data type

INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL, NUMERIC DECIMAL (NUMERIC)#1

FLOAT, DOUBLE PRECISION FLOAT (DOUBLE)#1

SMALLFLT, REAL REAL

CHAR CHAR

VARCHAR VARCHAR (LONGVARCHAR)#1

NCHAR CHAR

NVARCHAR VARCHAR (LONGVARCHAR)#1

MCHAR CHAR

MVARCHAR VARCHAR (LONGVARCHAR)#1

DATE DATE

17. Type4 JDBC Driver

1282

#1
The data types shown in parentheses are supported only when JDBC's SQL data
types are specified in the arguments of the setNull or setObject method.
They are not supported during mapping from HiRDB's SQL data types to JDBC's
SQL data types.

#2
This refers to a BOOLEAN column in a ResultSet object that is generated by the
getTypeInfo method of DatabaseMetaData.

17.8.2 Mapping during retrieval data acquisition
Tables 17-31 and 17-32 show the mapping between getXXX methods of the
ResultSet class and JDBC's SQL data types. If a getXXX method is called for one
of JDBC's unmappable SQL data types, the JDBC driver throws an SQLException.

Table 17-31: Mapping between getXXX methods of the ResultSet class and
JDBC's SQL data types (1/2)

TIME TIME

BLOB LONGVARBINARY (BINARY, VARBINARY, BLOB)#1

BINARY LONGVARBINARY (BINARY, VARBINARY, BLOB)#1

TIMESTAMP TIMESTAMP

BOOLEAN#2 BIT

getXXX method JDBC's SQL data type

SMALLINT INTEGER FLOAT REAL DECIMAL

getByte Y Y Y Y Y

getShort Rec. Y Y Y Y

getInt Y Rec. Y Y Y

getLong Y Y Y Y Y

getFloat Y Y Y Rec. Y

getDouble Y Y Rec. Y Y

getBigDecimal Y Y Y Y Rec.

getBoolean Y Y Y Y Y

HiRDB's SQL data type JDBC's SQL data type

17. Type4 JDBC Driver

1283

Legend:
Rec.: Mapping is recommended.
Y: Can be mapped. Note, however, that data loss or an error may occur depending
on the format of the mapping-source data.
--: Cannot be mapped.
Table 17-32: Mapping between getXXX methods of the ResultSet class and
JDBC's SQL data types (2/2)

getString Y Y Y Y Y

getBytes -- -- -- -- --

getDate -- -- -- -- --

getTime -- -- -- -- --

getTimestamp -- -- -- -- --

getAsciiStream -- -- -- -- --

getBinaryStream -- -- -- -- --

getObject Y Y Y Y Y

getCharacterStream -- -- -- -- --

getBlob -- -- -- -- --

getXXX method JDBC's SQL data type

CHAR VARCHAR DATE TIMESTAMP LONGVARBINARY

getByte Y#1 Y#1 -- -- --

getShort Y#1 Y#1 -- -- --

getInt Y#1 Y#1 -- -- --

getLong Y#1 Y#1 -- -- --

getFloat Y#1 Y#1 -- -- --

getDouble Y#1 Y#1 -- -- --

getXXX method JDBC's SQL data type

SMALLINT INTEGER FLOAT REAL DECIMAL

17. Type4 JDBC Driver

1284

Legend:
Rec.: Mapping is recommended
Y: Can be mapped. Note, however, that data loss or a conversion error may occur
depending on the format of the conversion-source data.
--: Cannot be mapped.

#1
If there are any single-byte spaces preceding or following the character string data
retrieved from the database during conversion by this method, the JDBC driver
removes them. After removing the single-byte spaces, the JDBC driver converts the
data to the Java data type returned by the getXXX method.
Note the following items when data is converted to a Java data type:

• If the character string data contains a fractional part and the getByte, getInt,
getShort, or getLong method is executed, the JDBC driver discards the
fractional part and then converts and returns only the integer.

• If the character string data contains double-byte characters, the JDBC driver
throws an SQLException without converting the data. Double-byte characters

getBigDecimal Y#1 Y#1 -- -- --

getBoolean Y Y -- -- --

getString Rec. Rec. Y Y Y

getBytes -- -- -- -- Y

getDate Y#1 Y#1 Rec.#2 Y --

getTime Y#1 Y#1 -- Y --

getTimestamp Y#1 Y#1 Y Rec. --

getAsciiStream Y Y -- -- Y

getBinaryStream -- -- -- -- Rec.

getObject Y Y Y Y Y

getCharacterStream Y Y -- -- Y

getBlob -- -- -- -- --

getXXX method JDBC's SQL data type

CHAR VARCHAR DATE TIMESTAMP LONGVARBINARY

17. Type4 JDBC Driver

1285

include double-byte spaces used for padding when a character string shorter than
the defined column length is stored in a column of HiRDB's NCHAR data type.

• If overflow occurs after character string data is converted to a Java data type, the
JDBC driver throws an SQLException.

#2
When the JDBC SQL type is the DATE type and a java.util.Calender object
is specified in a setDate method that is then executed, the JDBC driver uses the
specified java.util.Calendar object to convert the data, discards the time
data, and stores only the date data in the database. Because the time data is
discarded, if an application specifies a java.util.Calendar object in the
getDate method and executes the method to retrieve the data that was stored
with the setDate method, the retrieved date may differ from the one that was
specified in the setDate method.
Example

In this example, the UAP uses Japan Standard Time as the default time zone
and specifies a java.util.Calendar object that uses Greenwich Mean
Time in the setDate and getDate methods.
When the UAP specifies a java.sql.Date object representing
2005-10-03 in the setDate method and executes the method, the JDBC
driver supplements 00:00:00 to the time portion, and then subtracts 9 hours
because of the time zone difference. The result is 2005-10-02 15:00:00,
and the JDBC driver stores the date portion 2005-10-02 of the result in the
database. When the UAP uses the getDate method to retrieve this data, the
JDBC driver gets the date portion 2005-10-02 from the database,
supplements 00:00:00 to the time portion, and adds 9 hours because of the
time difference to produce 2005-10-02 09:00:00. Consequently, in the
java.sql.Date object used as the return value of the getDate method,
the JDBC driver sets 2005-10-02, which differs from 2005-10-03, as was
specified in the SetDate method.

17.8.3 Mapping when a ? parameter is set
Table 17-33 lists the setXXX methods of the PreparedStatement class and shows
the corresponding JDBC SQL types that are mapped. If a JDBC SQL type cannot be
used, the setXXX method throws an SQLException.
The setCharacterStream method has been added as a replacement for the
setUnicodeStream method, because the JDBC2.0 basic standard does not
recommend the latter method.

17. Type4 JDBC Driver

1286

Table 17-33: JDBC SQL types mapped by the setXXX methods of the
PreparedStatement class

#
The JDBC driver cannot use this method.

Tables 17-34 and 17-35 show the mapping between the setXXX methods of the
PreparedStatement class and JDBC's various SQL types.

Table 17-34: Mapping between the setXXX methods of the PreparedStatement
class and JDBC's SQL data types (1/2)

setXXX method of PreparedStatement class Mapped JDBC SQL type

setCharacterStream CHAR or VARCHAR

setRef# REF

setBlob LONGVARBINARY

setClob# CLOB

setArray ARRAY

setXXX method JDBC's SQL data type

SMALLINT INTEGER FLOAT REAL DECIMAL#3 CHAR

setByte Y Y Y Y Y Y

setShort Rec. Y Y Y Y Y

setInt Y Rec. Y Y Y Y

setLong Y Y Y Y Y Y

setFloat Y Y Y Rec. Y Y

setDouble Y Y Rec. Y Y Y

setBigDecimal Y Y Y Y Rec. Y

setBoolean Y Y Y Y Y Y

setString Y Y Y Y Y Rec.

setBytes -- -- -- -- -- --

setDate -- -- -- -- -- Y

setTime -- -- -- -- -- Y

17. Type4 JDBC Driver

1287

Legend:
Rec.: Mapping is recommended
Y: Can be mapped. Note, however, that data loss or a conversion error may occur
depending on the format of the conversion-source data.
--: Cannot be mapped.

#1
If a setXXX method specifies a value for a ? parameter of HiRDB's TIMESTAMP
data type, and the ? parameter and the value have different precisions for the
fractional seconds part, the JDBC driver performs one of the following
operations:

• When the value has a larger fractional seconds precision than the ?
parameter: truncates the fractional seconds part of the value.

• When the value has a smaller fractional seconds precision than the ?
parameter: expands the fractional seconds part of the value.

#2
Objects of the InputStream class and the Reader class (including subclasses)
cannot be specified in the setObject method.

#3
If a setXXX method specifies a value for a ? parameter of HiRDB's DECIMAL
data type, and the ? parameter and the value have different precisions and decimal
scaling positions, the JDBC driver performs one of the following operations:

• When the value has a larger precision than the ? parameter: throws an
SQLException.

setTimestamp#1 -- -- -- -- -- Y

setAsciiStream -- -- -- -- -- Y

setBinaryStream -- -- -- -- -- --

setObject#2 Y Y Y Y Y Y

setCharacterStream -- -- -- -- -- Y#3

setBlob -- -- -- -- -- --

setXXX method JDBC's SQL data type

SMALLINT INTEGER FLOAT REAL DECIMAL#3 CHAR

17. Type4 JDBC Driver

1288

• When the value has a smaller precision than the ? parameter: expands the
precision.

• When the value has a larger decimal scaling position than the ? parameter:
truncates the value according to the actual scaling position.

• When the value has a smaller decimal scaling position than the ? parameter:
adds zeros to expand the decimal scaling position.

Table 17-35: Mapping between the setXXX methods of the PreparedStatement
class and JDBC's SQL data types (2/2)

setXXX method JDBC's SQL data type

VARCHAR DATE TIME TIMESTAMP LONGVAR
BINARY

BLOB

setByte Y -- -- -- -- --

setShort Y -- -- -- -- --

setInt Y -- -- -- -- --

setLong Y -- -- -- -- --

setFloat Y -- -- -- -- --

setDouble Y -- -- -- -- --

setBigDecimal Y -- -- -- -- --

setBoolean Y -- -- - -- --

setString Rec. Y Y Y Y --

setBytes -- -- -- - Y --

setDate Y Rec.#4 -- Y -- --

setTime Y -- Rec. Y -- --

setTimestamp#1 Y Y -- Rec. -- --

setAsciiStream Y -- -- -- Y --

setBinaryStream -- -- N -- Y --

setObject#2 Y Y Y Y Y Y

setCharacterStream Y#3 -- -- -- Y#3 --

setBlob -- -- -- - Y --

17. Type4 JDBC Driver

1289

Legend:
Rec.: Mapping is recommended
Y: Can be mapped. Note, however, that data loss or a conversion error may occur
depending on the format of the conversion-source data.
--: Cannot be mapped.

#1
If a setXXX method specifies a value for a ? parameter of HiRDB's TIMESTAMP
data type, and the ? parameter and the value have different precisions for the
fractional seconds part, the JDBC driver performs one of the following
operations:

• If the value has a larger fractional seconds precision than the ? parameter:
truncates the fractional seconds part of the value.

• If the value has a smaller fractional seconds precision than the ? parameter:
expands the fractional seconds part of the value.

#2
Objects of the InputStream class and the Reader class (including subclasses)
cannot be specified in the setObject method.

#3
If the length of the data that can be retrieved from a java.io.Reader object is
shorter than the length specified in the arguments, the JDBC driver adds zeros as
shown below until the length specified in the arguments is reached:

#4
When the JDBC SQL type is the DATE type and a java.util.Calender object
is specified in a setDate method that is then executed, the JDBC driver uses the
specified java.util.Calendar object to convert the data, discards the time

17. Type4 JDBC Driver

1290

data, and stores only the date data in the database. Because the time data is
discarded, if an application specifies a java.util.Calendar object in the
getDate method and executes the method to retrieve the data that was stored
with the setDate method, the retrieved date may differ from the one that was
specified in the setDate method.
Example

In this example, the UAP uses Japan Standard Time as the default time zone
and specifies a java.util.Calendar object that uses Greenwich Mean
Time in the setDate and getDate methods.
When the UAP specifies a java.sql.Date object representing
2005-10-03 in the setDate method and executes the method, the JDBC
driver supplements 00:00:00 to the time portion, and then subtracts 9 hours
because of the time zone difference. The result is 2005-10-02 15:00:00,
and the JDBC driver stores the date portion 2005-10-02 of the result in the
database. When the UAP uses the getDate method to retrieve this data, the
JDBC driver gets the date portion 2005-10-02 from the database,
supplements 00:00:00 to the time portion, and adds 9 hours because of the
time difference to produce 2005-10-02 09:00:00. Consequently, in the
java.sql.Date object used as the return value of the getDate method,
the JDBC driver sets 2005-10-02, which differs from 2005-10-03, which
was specified in the SetDate method.

17.8.4 Data conversion of TIME, DATE, and TIMESTAMP columns
(1) setTime, setDate, setTimestamp, and setString methods

This item explains the conversion process when data of HiRDB's TIME, DATE, or
TIMESTAMP data type is set in the setTime, setDate, setTimestamp, or
setString method.
When the setTime, setDate, setTimestamp, or setString method is used to set
data in a column of HiRDB's TIME, DATE, or TIMESTAMP data type, data conversion
takes place according to the HiRDB data type.
Table 17-36 shows the conversion processing for combinations of the different column
data types and methods.

17. Type4 JDBC Driver

1291

Table 17-36: Conversion processing for combinations of the TIME, DATE, and
TIMESTAMP types and the setXXX methods

Note:
If a non-existent date or time is specified, the specified value is returned by the
Java Virtual Machine.

setXXX method HiRDB data type

TIME type DATE type TIMESTAMP type

setTime(Time Obj)#1 Stores the UAP
setting value in
the database
without any
conversion.

Throws an
SQLException.

Stores in the database data
that has 1970-01-01
added before the UAP
setting value
hh:mm:ss[.000000].

setDate(Date Obj)#2 Throws an
SQLException.

Stores the UAP
setting value in the
database without
any conversion.

Stores data in the database
that has
00:00:00[.000000]
added after the UAP
setting value
yyyy-MM-DD.

setTimestamp(Timestamp Obj)#3 Throws an
SQLException.

Stores in the
database the data
formed when
yyyy-MM-DD is
removed from the
UAP setting value.

Stores the UAP setting
value in the database
without any conversion.

setString(character string in
hh:mm:ss format)

Converts the
specified time
with
java.sql.Time
.valueOf() and
stores the result in
the database.#5

Throws an
SQLException.

Throws an
SQLException.

setString(character string in
yyyy-MM-DD format)

Throws an
SQLException.

Converts the
specified date with
java.sql.Date.v
alueOf() and
stores the result in
the database.#5

Throws an
SQLException.

setString(character string in
yyyy-MM-DD hh:mm:ss[.ffffff]
format)#4

Throws an
SQLException.

Throws an
SQLException.

Converts the specified
date/time with
java.sql.Timestamp.
valueOf() and stores the
result in the database.#5

17. Type4 JDBC Driver

1292

#1
Time Obj is an object that has the value of a java.sql.Time object with the
format hour:minute:second.

#2
Date Obj is an object that has the value of the java.sql.Date object with the
format year-month-day.

#3
Timestamp Obj is an object that has the value of the java.sql.Timestamp
object with the format year-month-day hour:minute:second:nanosecond.

#4
For [.ffffff], the number of digits after the decimal point depends on the precision
of HiRDB's TIMESTAMP type.

 represents a single-byte space character.
#5

The result when a non-existent date or time is specified depends on
java.sql.Time.valueOf(), java.sql.Date.valueOf(), or
java.sql.Timestamp.valueOf():
Example 1: 25:00:00 becomes 01:00:00.
Example 2: 2000-01-32 becomes 2000-02-01.
Example 3: 1582-10-05 becomes 1582-10-15 (switching from the Julian to
the Gregorian calendar).

(2) getTime, getDate, and getTimestamp methods
This item explains the conversion process when data of HiRDB's TIME, DATE,
TIMESTAMP or character string (CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, or
NVARCHAR) data type is set in the getTime, getDate, or getTimestamp method.
When the getTime, getDate, or getTimestamp method is used to set data in a
column of HiRDB's TIME, DATE, TIMESTAMP, or character string data type, data
conversion takes place according to the HiRDB data type.
Table 17-37 shows the conversion processing for combinations of the different column
data types and methods.

17. Type4 JDBC Driver

1293

Table 17-37: Conversion processing for combinations of the TIME, DATE,
TIMESTAMP, and character string types and the getXXX methods

Legend:
Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR

#1
The setting value of an unspecified date item (year-month-day) is 1970-01-01,

getXXX method HiRDB data type

TIME type DATE type TIMESTAMP
type

Character string
type

getTime()#2 Gets the value
stored in the
database and sets
it as the
java.sql.Time
object without any
conversion.#1

Throws an
SQLException.

Removes the
hour:minute:sec
ond data from the
TIMESTAMP data
retrieved from the
database and sets
the result as the
java.sql.Time
object.#1

Gets only an
hh:mm:ss character
string expression of
the TIME type as the
java.sql.Time
object. For other
expressions, the
method throws an
exception.

getDate()#2 Throws an
SQLException.

Gets the value
stored in the
database and sets
it as the
java.sql.Date
object without any
conversion.#1

Removes the
year-month-day
data from the
TIMESTAMP data
retrieved from the
database and sets
the result as the
java.sql.Date
object.#1

Gets only a
yyyy-MM-DD
character string
expression of the
DATE type as the
java.sql.Date
object. For other
expressions, the
method throws an
exception.

getTimestamp()#2 Throws an
SQLException.

Appends
00:00:00.0000
00 to the DATE
data retrieved
from the database
and sets the result
as the
java.sql.Time
stamp object.

Gets the value
stored in the
database and sets
it as the
java.sql.Time
stamp object
without any
conversion.

Gets only a
yyyy-MM-DD hh:
mm:ss[.ffffff]
character string
expression of the
TIMESTAMP type as
the
java.sql.Timesta
mp object (is a
single-byte space
character). For other
expressions, the
method throws an
SQLException.

17. Type4 JDBC Driver

1294

and the setting value of an unspecified time item
(hour:minute:second.millisecond) is 00:00:00.000000.

#2
The date and time stored in the database may be different from the date and time
obtained from java.sql.Time, java.sql.Date, and
java.sql.Timestamp:
Example 1: 25:00:00 becomes 01:00:00.
Example 2: 2000-01-32 becomes 2000-02-01.
Example 3: Both 1582-10-05 and 1582-10-15 become 1582-10-15 (the
calendar switches from the Julian to the Gregorian calendar).

17.8.5 Overflow handling
This section explains when overflow is set when a program uses a setXXX method to
set a value, or uses a getXXX method to get a value.

(1) setXXX methods (except for the setObject method)
Tables 17-38 and 17-39 show for each HiRDB data type whether or not overflow
occurs when a setXXX method is used.

Table 17-38: Possibility of overflow when the setXXX method is used (1/2)

setXXX method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string types

setByte -- -- -- -- Y -

setShort -- -- -- -- Y --

setInt Y -- -- -- Y --

setLong Y Y -- -- Y --

setFloat Y Y -- -- Y --

setDouble Y Y -- -- Y --

setBigDecimal Y Y -- -- Y --

setBoolean -- -- -- -- Y --

setString Y Y -- -- Y --

setBytes N/A N/A N/A N/A N/A N/A

setDate N/A N/A N/A N/A N/A --

17. Type4 JDBC Driver

1295

Legend:
--: Overflow does not occur regardless of the value.
Y: Overflow may occur depending on the value.
N/A: This combination is not allowed.
Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR
Table 17-39: Possibility of overflow when the setXXX method is used (2/2)

setTime N/A N/A N/A N/A N/A --

setTimestamp N/A N/A N/A N/A N/A --

setBlob N/A N/A N/A N/A N/A N/A

setBinaryStream N/A N/A N/A N/A N/A N/A

setAsciiStream N/A N/A N/A N/A N/A --

setCharacterStream N/A N/A N/A N/A N/A --

setXXX method HiRDB data type

DATE# TIME# TIMESTAMP# BINARY BLOB

setByte N/A N/A N/A N/A N/A

setShort N/A N/A N/A N/A N/A

setInt N/A N/A N/A N/A N/A

setLong N/A N/A N/A N/A N/A

setFloat N/A N/A N/A N/A N/A

setDouble N/A N/A N/A N/A N/A

setBigDecimal N/A N/A N/A N/A N/A

setBoolean N/A N/A N/A N/A N/A

setString Y -- Y N/A N/A

setBytes N/A N/A N/A -- --

setXXX method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string types

17. Type4 JDBC Driver

1296

Legend:
--: Overflow does not occur regardless of the value.
Y: Overflow may occur depending on the value.
N/A: This combination is not allowed.

#
Overflow occurs when the value obtained by the getTime method of the
java.sql.Date, java.sql.Time, or java.sql.Timestamp class is an
object larger than 253,402,268,399,999 or smaller than -62,135,802,000,000. The
getTime method returns the number of milliseconds since 1970-01-01 00:00:00
(Greenwich Mean Time).
The methods shown below can be used to obtain 253,402,268,399,999 from the
maximum value that can be stored in HiRDB's TIMESTAMP type, and
-62,135,802,000,000 from the minimum value that can be represented by the
java.sql.Timestamp class.
253,402,268,399,999:

Timestamp.valueOf("9999-12-31
23:59:59.999999").getTime()

-62,135,802,000,000:

Timestamp.valueOf("0001-01-01 00:00:00.0").getTime()
(2) setObject method

Tables 17-40 and 17-41 show whether or not overflow occurs for each HiRDB data
type when the setObject method is used.

setDate Y N/A Y N/A N/A

setTime N/A Y Y N/A N/A

setTimestamp Y N/A Y N/A N/A

setBlob N/A N/A N/A -- --

setBinaryStream N/A N/A N/A -- --

setAsciiStream N/A N/A N/A -- --

setCharacterStream N/A N/A N/A -- --

setXXX method HiRDB data type

DATE# TIME# TIMESTAMP# BINARY BLOB

17. Type4 JDBC Driver

1297

Table 17-40: Possibility of overflow when the setObject method is used (1/2)

Legend:
--: Overflow does not occur regardless of the value.
Y: Overflow may occur depending on the value.
N/A: This combination is not allowed.
Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR
Table 17-41: Possibility of overflow when the setObject method is used (2/2)

setObject method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string types

Byte -- -- -- -- Y --

Short -- -- -- -- Y --

Integer Y -- -- -- Y --

Long Y Y -- -- Y --

Decimal Y Y -- -- Y --

Float Y Y -- -- Y --

Double Y Y -- Y Y --

Boolean -- -- -- -- Y --

String Y Y --- -- Y --

Date N/A N/A N/A N/A N/A --

Time N/A N/A N/A N/A N/A --

Timestamp N/A N/A N/A N/A N/A --

byte[] N/A N/A N/A N/A N/A --

Blob N/A N/A N/A N/A N/A N/A

setObject method HiRDB data type

DATE# TIME# TIMESTAMP# BINARY BLOB

Byte N/A N/A N/A N/A N/A

17. Type4 JDBC Driver

1298

Legend:
--: Overflow does not occur regardless of the value.
Y: Overflow may occur depending on the value.
N/A: This combination is not allowed.

#
Overflow occurs if the value obtained by the getTime method of the
java.sql.Date, java.sql.Time, or java.sql.Timestamp class is an
object larger than 253,402,268,399,999 or smaller than -62,135,802,000,000. The
getTime method returns the number of milliseconds since 1970-01-01 00:00:00
(Greenwich Mean Time).
The methods shown below can be used to obtain 253,402,268,399,999 from the
maximum value that can be stored in HiRDB's TIMESTAMP type, and
-62,135,802,000,000 from the minimum value that can be represented by the
java.sql.Timestamp class.
253,402,268,399,999:

Short N/A N/A N/A N/A N/A

Integer N/A N/A N/A N/A N/A

Long N/A N/A N/A N/A N/A

Decimal N/A N/A N/A N/A N/A

Float N/A N/A N/A N/A N/A

Double N/A N/A N/A N/A N/A

Boolean N/A N/A N/A N/A N/A

String Y -- Y N/A N/A

Date Y N/A Y N/A N/A

Time N/A Y N/A N/A N/A

Timestamp Y N/A Y N/A N/A

byte[] N/A N/A N/A -- --

Blob N/A N/A N/A -- --

setObject method HiRDB data type

DATE# TIME# TIMESTAMP# BINARY BLOB

17. Type4 JDBC Driver

1299

Timestamp.valueOf("9999-12-31
23:59:59.999999").getTime()

-62,135,802,000,000:

Timestamp.valueOf("0001-01-01 00:00:00.0").getTime()
(3) getXXX methods (except the getObject method)

Tables 17-42 and 17-43 show whether or not overflow occurs for each HiRDB data
type when a getXXX method is used.

Table 17-42: Possibility of overflow when the getXXX method is used (1/2)

Legend:

getXXX method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string types

getByte Y Y Y Y Y Y

getShort -- Y Y Y Y Y

getInt -- -- Y Y Y Y

getLong -- -- Y Y Y Y

getFloat -- -- -- -- -- --

getDouble -- -- -- -- -- --

getBigDecimal -- -- -- -- -- --

getBoolean -- -- -- -- -- --

getString -- -- -- -- -- --

getBytes N/A N/A N/A N/A N/A N/A

getDate N/A N/A N/A N/A N/A --

getTime N/A N/A N/A N/A N/A --

getTimestamp N/A N/A N/A N/A N/A --

getAsciiStream N/A N/A N/A N/A N/A --

getBinaryStream N/A N/A N/A N/A N/A N/A

getCharacterStream N/A N/A N/A N/A N/A --

getBlob N/A N/A N/A N/A N/A N/A

17. Type4 JDBC Driver

1300

--: Overflow does not occur regardless of the value.
Y: Overflow may occur depending on the value.
N/A: This combination is not allowed.
Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR
Table 17-43: Possibility of overflow when the getXXX method is used (2/2)

Legend:
--: Overflow does not occur regardless of the value.
Y: Overflow may occur depending on the value.

getXXX method HiRDB data type

DATE TIME TIMESTAMP BINARY BLOB

getByte N/A N/A N/A N/A N/A

getShort N/A N/A N/A N/A N/A

getInt N/A N/A N/A N/A N/A

getLong N/A N/A N/A N/A N/A

getFloat N/A N/A N/A N/A N/A

getDouble N/A N/A N/A N/A N/A

getBigDecimal N/A N/A N/A N/A N/A

getBoolean N/A N/A N/A N/A N/A

getString -- -- -- -- --

getBytes N/A N/A N/A -- --

getDate -- N/A -- N/A N/A

getTime N/A -- -- N/A N/A

getTimestamp -- N/A -- N/A N/A

getAsciiStream N/A N/A N/A -- --

getBinaryStream N/A N/A N/A -- --

getCharacterStream N/A N/A N/A -- --

getBlob N/A N/A N/A -- --

17. Type4 JDBC Driver

1301

N/A: This combination is not allowed.
(4) getObject method

Tables 17-44 and 17-45 show whether or not overflow occurs for each HiRDB data
type when the getObject method is used.

Table 17-44: Possibility of overflow when the getObject method is used (1/2)

Legend:
--: Overflow does not occur regardless of the value.
Y: Overflow may occur depending on the value.

getObject method HiRDB data type

SMALLINT INTEGER FLOAT REAL DECIMAL Character
string type

Byte Y Y Y Y Y Y

Short -- Y Y Y Y Y

Int -- -- Y Y Y Y

Long -- -- Y Y Y Y

Float -- -- Y -- Y Y

Double -- -- -- Y Y Y

BigDecimal -- -- -- Y Y Y

Boolean -- -- -- -- -- --

String -- -- -- -- -- --

Bytes N/A N/A N/A N/A N/A N/A

Date N/A N/A N/A N/A N/A --

Time N/A N/A N/A N/A N/A --

Timestamp N/A N/A N/A N/A N/A --

AsciiStream N/A N/A N/A N/A N/A --

BinaryStream N/A N/A N/A N/A N/A N/A

Object -- -- -- -- -- --

CharacterStream N/A N/A N/A N/A N/A --

Blob N/A N/A N/A N/A N/A N/A

17. Type4 JDBC Driver

1302

N/A: This combination is not allowed.
Character string types: CHAR, MCHAR, NCHAR, VARCHAR, MVARCHAR, and
NVARCHAR

Table 17-45: Possibility of overflow when the getObject method is used (2/2)

Legend:
--: Overflow does not occur regardless of the value.
Y: Overflow may occur depending on the value.

getObject method HiRDB data type

DATE TIME TIMESTAMP BINARY BLOB

Byte N/A N/A N/A N/A N/A

Short N/A N/A N/A N/A N/A

Int N/A N/A N/A N/A N/A

Long N/A N/A N/A N/A N/A

Float N/A N/A N/A N/A N/A

Double N/A N/A N/A N/A N/A

BigDecimal N/A N/A N/A N/A N/A

Boolean N/A N/A N/A N/A N/A

String -- -- -- N/A N/A

Bytes N/A N/A N/A -- --

Date -- N/A -- N/A N/A

Time N/A -- -- N/A N/A

Timestamp -- N/A -- N/A N/A

AsciiStream N/A N/A N/A -- --

BinaryStream N/A N/A N/A -- --

Object -- -- -- -- --

CharacterStream N/A N/A N/A -- --

Blob N/A N/A N/A -- --

17. Type4 JDBC Driver

1303

N/A: This combination is not allowed.

17. Type4 JDBC Driver

1304

17.9 Character conversion facility

Because character codes in Java programs are handled as Unicode, the JDBC driver
performs mutual character code conversion between HiRDB character data and
Unicode. In this character code conversion process, the JDBC driver uses the encoder
provided by the Java Virtual Machine.
Figure 17-1 shows the flow of mutual character code conversion between HiRDB
character data and Unicode.

Figure 17-1: Flow of mutual character code conversion between HiRDB
character data and Unicode

When the JDBC driver exchanges character data with HiRDB, it specifies the
character set name to the encoder of the Java Virtual Machine. At this time, the JDBC
driver gets the character encoding of the HiRDB server and specifies the character set
name that corresponds to that encoding. If a character set name was specified by the
ENCODELANG property or by the setEncodeLang method when the connection was
established, the specified character set name is specified with priority to the encoder
of the Java Virtual Machine. Therefore, if a character set name that does not
correspond to the character encoding of the HiRDB server is specified in the
ENCODELANG property or by the setEncodeLang method, an error occurs during
character code conversion.

17. Type4 JDBC Driver

1305

17.10 Supported client environment definitions

Table 17-46 lists the client environment definitions that can be specified with the
JDBC driver. The numbers in the list correspond to the numbers of the individual
environment variables in 6.6.4 Environment definition information.

Table 17-46: Client environment variables that can be specified with the JDBC
driver

No. Environment variable
name

Function Environment
variable type

1 PDHOST Specifies the host name of the HiRDB
server to be connected.

System configuration

2 PDNAMEPORT Specifies the port number of the HiRDB
server.

3 PDFESHOST Specifies the host name of the front-end
server.

4 PDSERVICEGRP Specifies the server name of the single
server or front-end server.

5 PDSRVTYPE Specifies the HiRDB server type.

6 PDSERVICEPORT Specifies the port number for high-speed
connection.

8 PDCLTRCVPORT Specifies the client receive port number.

9 PDCLTRCVADDR Specifies the IP address or host name of the
client.

19 PDUSER Specifies the authorization identifier and
password. In UNIX, this environment
variable can be omitted.

User execution
environment

20 PDCLTAPNAME Specifies UAP identification information
(UAP identifier) of the UAP that accesses
the HiRDB server.

23 PDDBLOG Specifies whether or not the database update
log is to be retrieved when the UAP is
executed.

24 PDEXWARN Specifies whether return codes with
warnings are to be accepted from the server.

25 PDSUBSTRLEN Specifies the maximum number of bytes
representing one character.

17. Type4 JDBC Driver

1306

29 PDCLTGRP Specifies a client group name when the
connection frame guarantee facility for
client groups is used.

31 PDAUTORECONNECT Specifies whether or not the automatic
reconnect facility is to be used.

32 PDRCCOUNT Specifies the number of times the CONNECT
statement is retried by the automatic
reconnect facility.

33 PDRCINTERVAL Specifies the CONNECT retry interval at
which the automatic reconnect facility
executes reconnect processing.

34 PDUAPENVFILE Specifies the UAP environment definition
file that defines the execution environment
if the UAP is to be executed in a separate
environment.

35 PDDBBUFLRU Specifies whether the LRU method is to be
applied to processing when a page accessed
by the UAP is cached to the global buffer.

36 PDHATRNQUEUING Specifies that the client does not use the
transaction queuing facility.

46 PDCWAITTIME Specifies the maximum time that the
HiRDB client waits for a response from the
HiRDB server after sending a request to the
HiRDB server.

System monitoring

47 PDSWAITTIME Specifies the maximum time that the
HiRDB server waits for the next request
from the HiRDB client to arrive after
returning a response to the previous request
from the HiRDB client.
This function monitors the time during
transaction processing.

48 PDSWATCHTIME Specifies the maximum time that the
HiRDB server waits for the next request
from the HiRDB server to arrive after
returning a response to the previous request
from the HiRDB client.
This function monitors the time other than
the transaction processing time.

No. Environment variable
name

Function Environment
variable type

17. Type4 JDBC Driver

1307

49 PDCWAITTIMEWRNPNT Specifies the output timing of the SQL
runtime warning information file when the
SQL runtime warning output facility is
used. The output timing is specified as a
percentage of the maximum time that the
HiRDB client waits, or as an amount of
time.

54 PDCONNECTWAITTIME Specifies the maximum time that the
HiRDB client waits for a response from the
HiRDB server when it connects with the
HiRDB server.

55 PDCLTPATH Specifies the storage directory for SQL trace
files and error log files created by the
HiRDB client.

Troubleshooting

56 PDSQLTRACE# Specifies the size (bytes) of the SQL trace
file into which SQL trace information for
the UAP is to be output.

59 PDPRMTRC Specifies whether parameter information
and retrieval data are to be output in the SQL
trace information.

60 PDPRMTRCSIZE Specifies the maximum data length of the
parameter information and retrieval data to
be output in the SQL trace information.

62 PDUAPREPLVL Specifies output information for UAP
statistical reports.

63 PDREPPATH Specifies whether UAP statistical report
files are to be output to a different directory
from the directory specified by PDCLTPATH.

64 PDTRCPATH Specifies the storage directory for dynamic
SQL trace files.

66 PDSQLTEXTSIZE Specifies the size of the SQL statement to be
output to the SQL trace.

68 PDRCTRACE Specifies the size of the output file for the
UAP reconnect trace information.

69 PDWRTLNPATH Specifies the storage directory for files to
which value expression values of WRITE
LINE statements are to be output.

No. Environment variable
name

Function Environment
variable type

17. Type4 JDBC Driver

1308

70 PDWRTLNFILSZ Specifies the maximum size of the files to
which value expression values of WRITE
LINE statements are to be output.

71 PDWRTLNCOMSZ Specifies the total size of the value
expression values in WRITE LINE
statements.

74 PDVWOPTMODE Specifies whether the access path
information file is to be retrieved.

Access path
information file for the
access path display
utility

78 PDSTJTRNOUT Specifies whether UAP statistical
information is to be output to a statistical log
file for each transaction.

Output unit for UAP
statistical information

79 PDLOCKLIMIT Specifies the maximum number of lock
requests that a UAP can issue to one server.

Lock

80 PDDLKPRIO Specifies the deadlock priority value of the
UAP.

81 PDLOCKSKIP Specifies whether an unlocked conditional
search is to be performed.

82 PDFORUPDATEEXLOCK Specifies whether WITH EXCLUSIVE LOCK
is to be applied to the lock option of SQL
statements in which the FOR UPDATE clause
is specified (or assumed).

83 PDISLLVL Specifies the data guarantee level of an SQL
statement

SQL-related

84 PDSQLOPTLVL Specifies optimization methods (SQL
optimization options) for determining the
most efficient access path by taking the
database status into consideration.

85 PDADDITIONALOPTLVL Specifies optimization methods (SQL
extension optimizing methods) for
determining the most efficient access path
by taking the database status into
consideration.

86 PDHASHTBLSIZE Specifies the hash table size when hash join,
subquery hash execution is applied in SQL
optimization.

No. Environment variable
name

Function Environment
variable type

17. Type4 JDBC Driver

1309

88 PDAGGR Specifies the maximum number of groups
allowed in each server so that the memory
size used in GROUP BY processing can be
determined.

89 PDCMMTBFDDL When a definition SQL is to be executed in
a transaction that is executing a data
manipulation SQL, specifies whether the
transaction is to be committed automatically
before the definition SQL is executed.

90 PDPRPCRCLS Specifies whether an open cursor is to be
closed automatically if a PREPARE
statement reuses the SQL identifier that is
using that open cursor.

92 PDDDLDEAPRP Specifies whether definition information of
a table being used by a closed holdable
cursor can be changed by another UAP
between transactions.

94 PDDELRSVWDFILE Specifies the name of the SQL reserved
word deletion file when the SQL reserved
word deletion facility is used.

95 PDHJHASHINGMODE Specifies the hashing method when
application of hash join, subquery hash
execution is selected as the SQL extension
optimizing option.

96 PDBLKF Specifies the number of rows to be sent in
one transfer when the HiRDB server
transfers retrieval results to the HiRDB
client.

Block transfer facility

97 PDBINARYBLKF Specifies whether the block transfer facility
is to be applied when a table with a
BINARY-type selection expression with a
defined length exceeding 32,00 bytes is
searched.

98 PDBLKBUFFSIZE Specifies the size of the server-client
communication buffer used by the block
transfer facility.

100 PDDBACCS When the inner replica facility is being used
and an RDAREA that is not the current
RDAREA is to be accessed, specifies that
RDAREA's generation number.

Inner replica facility

No. Environment variable
name

Function Environment
variable type

17. Type4 JDBC Driver

1310

101 PDDBORGUAP Specifies whether to execute a UAP on the
original RDAREA that is in online
reorganization hold status.

Updatable online
reorganization

102 PDSPACELVL Specifies the space conversion level for data
storage, comparison, and search processing.

Data space conversion

106 PDCNSTRNTNAME Specifies the position of the constraint name
definition when a referential or check
constraint is defined.

Referential and check
constraints

107 PDBESCONHOLD Specifies whether the BES connection
holding facility is to be used.

BES connection
holding facility

108 PDBESCONHTI Specifies the BES connection holding
period when the BES connection holding
facility is used.

109 PDRDABLKF Specifies the number of rows to be
transferred in one transfer operation when
retrieval results are transferred from a
distributed server to a distributed client.

Distributed database

117 PDPLGIXMK Specifies whether delayed batch creation of
plug-in indexes is to be used.

Plug-ins

118 PDPLUGINNSUB For details, see the manual for the target
plug-in.

119 PDPLGPFSZ Specifies the initial size of the index
information file for delayed batch creation
of plug-ins.

120 PDPLGPFSZEXP Specifies the extension size of the index
information file for delayed batch creation
of plug-ins.

121 PDJDBFILEDIR Specifies the log file output destination for
Exception trace logs in the Type4 JDBC
driver.

JDBC driver

122 PDJDBFILEOUTNUM Specifies the number of Exception trace
logs that the Type4 JDBC driver outputs to
the log file.

123 PDJDBONMEMNUM Specifies the number of Exception trace
logs acquired in memory by the Type4
JDBC driver.

No. Environment variable
name

Function Environment
variable type

17. Type4 JDBC Driver

1311

#
The name of the SQL trace file is pdjsqlxxxxxxxx_ppppp_1.trc or
pdjsqlxxxxxxxx_ppppp_2.trc.
xxxxxxxx: Name of connected server (up to 8 characters)
ppppp: Receive port number (5 characters) at the client side
This format is used even when the SQL trace file is acquired by the UAP
statistical report facility (PDREPPATH specification) or by the SQL trace dynamic
acquisition facility (PDTRCPATH specification). However, if the SQL trace file is
acquired before connection to the FES or SDS, the file name becomes
pdjsql1.trc or pdjsql2.trc.

124 PDJDBTRACELEVEL Specifies the trace acquisition level for
Exception trace logs in the Type4 JDBC
driver.

No. Environment variable
name

Function Environment
variable type

17. Type4 JDBC Driver

1312

17.11 Connection information priorities

(1) List of connection information priorities
The JDBC driver enables you to specify synonymous connection information by using
multiple setup methods (for example, DBHOST specified in the URL and PDHOST
specified in HiRDB client environment variables). Table 17-47 lists the connection
information items that have multiple setup methods, and the priorities when items are
set concurrently by multiple setup methods.

Table 17-47: Priorities for connection information

Meaning of connection
information

Setup method Priority

A B C

HiRDB host name DBHOST in URL 1 -- --

PDHOST in HiRDB client environment variables specified
by HiRDB_for_Java_ENV_VARIABLES in Properties
argument of DriverManager.getConnection

2 -- --

PDHOST in HiRDB environment variable group specified
by DBID in URL

3 -- --

setDBHostName method of DataSource interface -- 1 1

PDHOST in HiRDB client environment variables specified
by setEnvironmentVariables method of
DataSource interface

-- 2 2

PDHOST in HiRDB environment variable group specified
by setDescription method of DataSource interface

-- 3 --

PDHOST in HiRDB environment variable group specified
by XADataSource.setXAOpenString

-- -- 3

17. Type4 JDBC Driver

1313

HiRDB port number DBID in URL 1 -- --

PDNAMEPORT in HiRDB client environment variables
specified by HiRDB_for_Java_ENV_VARIABLES in
Properties argument of
DriverManager.getConnection

2 -- --

PDNAMEPORT in HiRDB environment variable group
specified by DBID in URL

3 -- --

setDescription method of DataSource interface -- 1 1

PDNAMEPORT in HiRDB client environment variables
specified by setEnvironmentVariables method of
DataSource interface

-- 2 2

PDNAMEPORT in HiRDB environment variable group
specified by setDescription method of DataSource
interface

-- 3 --

PDNAMEPORT in HiRDB environment variable group
specified by XADataSource.setXAOpenString

-- -- 3

Authorization identifier used
during connection#1

user argument or user in Properties argument of
DriverManager.getConnection

1 -- --

Argument in getConnection method of DataSource
interface or argument in getPooledConnection method
of ConnectionPoolDataSource interface

-- 1 --

Argument in getXAConnection method of
XADataSource interface

-- -- 1

setUser method of DataSource interface -- 2 2

Password used during
connection#1

password argument or password in Properties
argument of DriverManager.getConnection

1 -- --

Argument in getConnection method of DataSource
interface, or argument in getPooledConnection
method of ConnectionPoolDataSource interface

-- 1 --

Argument in getXAConnection method of
XADataSource interface

-- -- 1

setPassword method of DataSource interface -- 2 2

Meaning of connection
information

Setup method Priority

A B C

17. Type4 JDBC Driver

1314

UAP name#2 UAPNAME property in Properties argument of
DriverManager.getConnectionoperties

1 -- --

PDCLTAPNAME in HiRDB client environment variables
specified by HiRDB_for_Java_ENV_VARIABLES in
Properties argument of
DriverManager.getConnection

2 -- --

PDCLTAPNAME in HiRDB environment variable group
specified by DBID in URL

3 -- --

setUapName method of DataSource interface -- 1 1

PDCLTAPNAME in HiRDB client environment variables
specified by setEnvironmentVariables method of
DataSource interface

-- 2 2

PDCLTAPNAME in HiRDB environment variable group
specified by setDescription method of DataSource
interface

-- 3 --

PDCLTAPNAME in HiRDB environment variable group
specified by XADataSource.setXAOpenString

-- -- 3

Conversion character set ENCODELANG property in Properties argument of
DriverManager.getConnection

1 -- --

ENCODELANG in URL 2 -- --

setEncodeLang of DataSource interface -- 1 1

Cursor operation mode HIRDB_CURSOR property in Properties argument of
DriverManager.getConnection

1 -- --

HIRDB_CURSOR in URL 2 -- --

setHiRDBCursorMode of DataSource interface -- 1 1

Status after statement commit
execution

HiRDB_for_Java_STATEMENT_COMMIT_BEHAVIOR
property in Properties argument of
DriverManager.getConnection

1 -- --

STATEMENT_COMMIT_BEHAVIOR in URL 2 -- --

setStatementCommitBehavior of DataSource
interface

-- 1 1

Meaning of connection
information

Setup method Priority

A B C

17. Type4 JDBC Driver

1315

Legend:
A: For connection that uses DriverManager
B: For non-XA connection that uses the DataSource interface

C: For XA connection that uses the XADataSource interface
--: Cannot be specified for the connection method.

#1
For details about priorities when no authorization identifier or password is
specified, see (2) Priorities when the authorization identifier or password is not
specified.

#2
If this information cannot be set with the setting method shown in this table, the
JDBC driver operates with the information set by the
HiRDB_Type4_JDBC_Driver, which is the product name of the JDBC driver.

(2) Priorities when the authorization identifier or password is not specified
This item shows the priorities when the authorization identifier or password is not
specified.

Login wait time DriverManager.setLoginTimeout 1 -- --

PDCONNECTWAITTIME in HiRDB client environment
variables specified by
HiRDB_for_Java_ENV_VARIABLES in Properties
argument of DriverManager.getConnection

2 -- --

PDCONNECTWAITTIME in HiRDB environment variable
group specified by DBID in URL

3 -- --

setLoginTimeout of DataSource interface -- 1 1

PDCONNECTWAITTIME in HiRDB client environment
variables specified by setEnvironmentVariables
method of DataSource interface

-- 2 2

PDCONNECTWAITTIME in HiRDB environment variable
group specified by setDescription method of
DataSource interface

-- 3 --

PDCONNECTWAITTIME in HiRDB environment variable
group specified by XADataSource.setXAOpenString

-- -- 3

Meaning of connection
information

Setup method Priority

A B C

17. Type4 JDBC Driver

1316

When the authorization identifier is specified by the method shown in Table 17-47
and the password is not specified

The JDBC driver determines the authorization identifier according to the priority
sequence shown in Table 17-47. The driver assumes that a password has not been
specified.

When the authorization identifier is not specified

The specifications shown in Table 17-48 become effective whether or not a
password is specified.
Table 17-48: Specifications that become effective when an authorization
identifier is not specified

Specification of PDUSER in HiRDB environment variable group Authorization
identifier and
password that

become effective
Specification 1 Specification 2

[A]
PDUSER is specified in HiRDB client
environment variables specified by
HiRDB_for_Java_ENV_VARIABLES in
Properties argument of
DriverManager.getConnection.

-- Specification in [A]
becomes effective.

[A] is not specified. [B]
PDUSER is specified in the HiRDB
environment variable group specified by
DBID in the URL.

Specification in [B]
becomes effective.

[B] is not specified. Throws an
SQLException.

[C]
PDUSER is specified in HiRDB client
environment variable group specified by
setEnvironmentVariables method
of DataSource interface.

-- Specification in [C]
becomes effective.

17. Type4 JDBC Driver

1317

Legend:
--: Not related to the specification value.

[C] is not specified. [D]
PDUSER is specified in the HiRDB
environment variable group specified by
the setDescription method of the
DataSource interface.

Specification in [D]
becomes effective.

[E]
PDUSER is specified in the HiRDB
environment variable group specified by
the setXAOpenString method of the
XADataSource interface.

Specification in [E]
becomes effective.

[D] and [E] are not specified. Throws an
SQLException.

Specification of PDUSER in HiRDB environment variable group Authorization
identifier and
password that

become effective
Specification 1 Specification 2

17. Type4 JDBC Driver

1318

17.12 JDBC interface method trace

You can acquire a JDBC interface method trace as troubleshooting information when
you call a method of the JDBC interface.

17.12.1 Setup for trace acquisition
(1) Connection with the DriverManager class

Specify a valid log writer by using the setLogWrite method of the DriverManager
class, and specify acquisition of the JDBC interface method trace in the arguments
(Properties info) of the getConnection method.
For details, see 17.2.2(2)(d) JDBC_IF and 17.2.2(2)(e) TRC_NO.

(2) Connection with the DataSource class
Specify a valid log writer by using the setLogWriter method provided by the
DataSource, ConnectionPoolDataSource, and XADataSource interfaces, and
specify the setJDBC_IF_TRC method provided by the DataSource,
ConnectionPoolDataSource, and XADataSource classes, which are provided by
the JDBC2.0 Optional Package.
For details, see 17.7.5 setJDBC_IF_TRC and 17.7.7 setTRC_NO.

17.12.2 Acquisition rules
This section describes the rules for acquisition of the JDBC interface method trace.

• Trace information is acquired when a method of the JDBC interface is called and
when processing is returned from that method.
However, trace information is not acquired for methods executed before
connection to the database.
Trace information is not acquired for the following methods:
Driver interface

- acceptsURL(String url)
- getMajorVersion()
- getMinorVersion()
- getPropertyInfo(String url, Properties info)
- jdbcCompliant()

DataSource interface

- getLoginTimeout()

17. Type4 JDBC Driver

1319

- getLogWriter()
- setLoginTimeout(int seconds)
- setLogWriter(PrintWriter out)

• Trace information is stored for the number of entries and is output to the specified
log writer when the Connection.close method is called (normal termination),
or when an SQLException, XAException, or BatchUpdateException is
thrown (error occurrence).

• If the number of trace information items exceeds the number of entries, the stored
trace information is discarded in chronological sequence and the newest trace
information is retained.

• A JDBC interface method trace uses a single-entry trace area for each Entry and
each Return.

17.12.3 Output example
Shown below is an output example of a JDBC interface method trace.
Output example

Explanation

1. [HiRDB_Type4_JDBC_Driver]
Name of the JDBC driver

2. [JDBC Interface Entry], [JDBC Interface Return]
[JDBC Interface Entry]: Calling of the JDBC method
[JDBC Interface Return]: Return from the JDBC method

3. [XXXXX.YYYYY]
YYYYY method of the XXXXX class

[1] [2] [3]
[HiRDB_Type4_JDBC_Driver][JDBC Interface Entry][PrdbStatement.executeQuery]
 [4]
[HiRDB_Type4_JDBC_Driver] sql=select * from pp
[HiRDB_Type4_JDBC_Driver][JDBC Interface Return][PrdbStatement.executeQuery]
 [5]
[HiRDB_Type4_JDBC_Driver]
Return=JP.co.Hitachi.soft.HiRDB.JDBC.Prdb...
[HiRDB_Type4_JDBC_Driver][JDBC Interface Entry][PrdbResultSet.getMetaData]
[HiRDB_Type4_JDBC_Driver][JDBC Interface Return][PrdbResultSet.getMetaData]
[HiRDB_Type4_JDBC_Driver]
Return=JP.co.Hitachi.soft.HiRDB.JDBC.Prdb...

17. Type4 JDBC Driver

1320

4. select * from pp
Argument of the JDBC method (for the argument indicating the password, an
asterisk (*) is output, as in password=*)

5. JP.co.Hitachi.soft.HiRDB.JDBC.Prdb
Return value of the JDBC method

17. Type4 JDBC Driver

1321

17.13 Exception trace log

You can acquire an Exception trace log as troubleshooting information. If a failure
caused by an exception occurs in the JDBC driver, the failure cause is output to the
Exception trace log.
The following constitute the output contents:

• Information (such as error messages) when an exception occurs
• Execution record of JDBC's API methods up to the point where an exception

occurred

When this function is used, information about JDBC's API methods that are called
from the UAP is stored in the JDBC driver memory. Then if an SQLException,
BatchUpdateException, or XAException occurs, the information stored in
memory can be output to a file before the exception is thrown.

17.13.1 Methods to be acquired and setup for log acquisition
(1) Methods to be acquired in the Exception trace log

The information to be acquired in the Exception trace log is the calling and return of
methods described in the java.sql package found in the API specifications of Java 2
Platform, Standard Edition, Version 1.4.
Methods that satisfy all of the following conditions are acquired:

• The methods listed in Table 17-49, when a trace acquisition level required for
acquisition is specified for each method.

• Methods of the Blob and InputStream classes when LOCATOR is specified in
LONGVARBINARY_ACCESS.

Methods that only look up and return information found in objects or only store
information into objects, such as the ResultSet.getXXX,
PreparedStatement.setXXX, and Connection.isClosed methods, are not
acquisition targets.
Table 17-49 lists the methods that are acquisition targets of the Exception trace log.
The table also provides the trace acquisition levels of the methods.

17. Type4 JDBC Driver

1322

Table 17-49: Methods that are acquisition targets of the Exception trace log and
their trace acquisition levels

Class Method Trace acquisition level

1 2 3 4 5#
1

Connection void close() Y Y Y Y Y

void commit() -- Y Y Y Y

Statement createStatement()#2 Y Y Y Y Y

Statement createStatement(int
resultSetType, int resultSetConcurrency)#3

Y Y Y Y Y

DatabaseMetaData getMetaData() -- Y Y Y Y

PreparedStatement prepareStatement(String
sql)#2

Y Y Y Y Y

PreparedStatement prepareStatement(String
sql, int resultSetType, int
resultSetConcurrency)#3

Y Y Y Y Y

void rollback()#2 -- Y Y Y Y

void setAutoCommit(boolean autoCommit) -- Y Y Y Y

DatabaseMetaData ResultSet getBestRowIdentifier(String
catalog, String schema, String table, int
scope, boolean nullable)

-- Y Y Y Y

ResultSet getCatalogs() -- Y Y Y Y

ResultSet getColumnPrivileges(String
catalog, String schema, String table,
String columnNamePattern)

-- Y Y Y Y

ResultSet getColumns(String catalog,
String schemaPattern, String
tableNamePattern, String
columnNamePattern)

-- Y Y Y Y

Connection getConnection() -- Y Y Y Y

ResultSet getCrossReference(String
primaryCatalog, String primarySchema,
String primaryTable, String
foreignCatalog, String foreignSchema,
String foreignTable)

-- Y Y Y Y

17. Type4 JDBC Driver

1323

ResultSet getExportedKeys(String catalog,
String schema, String table)

-- Y Y Y Y

ResultSet getImportedKeys(String catalog,
String schema, String table)

-- Y Y Y Y

ResultSet getIndexInfo(String catalog,
String schema, String table, boolean
unique, boolean approximate)

-- Y Y Y Y

ResultSet getPrimaryKeys(String catalog,
String schema, String table)

-- Y Y Y Y

ResultSet getProcedureColumns(String
catalog, String schemaPattern, String
procedureNamePattern, String
columnNamePattern)

-- Y Y Y Y

ResultSet getProcedures(String catalog,
String schemaPattern, String
procedureNamePattern)

-- Y Y Y Y

ResultSet getSchemas() -- Y Y Y Y

ResultSet getTablePrivileges(String
catalog, String schemaPattern, String
tableNamePattern)

-- Y Y Y Y

ResultSet getTables(String catalog, String
schemaPattern, String tableNamePattern,
String[] types)

-- Y Y Y Y

ResultSet getTableTypes() -- Y Y Y Y

ResultSet getTypeInfo() -- Y Y Y Y

ResultSet getUDTs(String catalog, String
schemaPattern, String typeNamePattern,
int[] types)

-- Y Y Y Y

ResultSet getVersionColumns(String
catalog, String schema, String table)

-- Y Y Y Y

Driver Connection connect(String url, Properties
info)

Y Y Y Y Y

PreparedStatement boolean execute()#2 -- Y Y Y Y

ResultSet executeQuery()#2 -- Y Y Y Y

Class Method Trace acquisition level

1 2 3 4 5#
1

17. Type4 JDBC Driver

1324

int executeUpdate()#2 -- Y Y Y Y

ResultSetMetaData getMetaData() -- Y Y Y Y

boolean execute(String sql)#3, #5 Y -- Y Y Y

int[] executeBatch()#5 -- Y Y Y Y

ResultSet executeQuery(String sql)#3, #5 Y Y Y Y Y

int executeUpdate(String sql)#3, #5 Y Y Y Y Y

ResultSet boolean absolute(int row) -- Y Y Y Y

void afterLast() -- Y Y Y Y

void beforeFirst() -- Y Y Y Y

void close() -- Y Y Y Y

boolean first() -- Y Y Y Y

ResultSetMetaData getMetaData() -- Y Y Y Y

Statement getStatement() -- Y Y Y Y

boolean last() -- Y Y Y Y

boolean next() -- Y Y Y Y

boolean relative(int rows) -- Y Y Y Y

boolean isAfterLast() -- Y Y Y Y

boolean isBeforeFirst() -- Y Y Y Y

boolean isLast() -- Y Y Y Y

Statement void cancel() -- Y Y Y Y

void close() Y Y Y Y Y

boolean execute(String sql) Y Y Y Y Y

int[] executeBatch() -- Y Y Y Y

ResultSet executeQuery(String sql) Y Y Y Y Y

Class Method Trace acquisition level

1 2 3 4 5#
1

17. Type4 JDBC Driver

1325

int executeUpdate(String sql) Y Y Y Y Y

ResultSet getResultSet() -- Y Y Y Y

Blob long position(Blob pattern,long start)#2 -- Y Y Y Y

long position(byte[] pattern, long start)#3 -- Y Y Y Y

long length() -- Y Y Y Y

byte[] getBytes(long pos, int length) -- Y Y Y Y

InputStream int read()#2 -- Y Y Y Y

int read(byte[] data, int data_offset,int
data_len)#3

-- Y Y Y Y

int read(byte[] data, int data_offset,int
data_len)#4

-- Y Y Y Y

DataSource getConnection()#2 Y Y Y Y Y

getConnection(String username, String
password)#3

Y Y Y Y Y

ConnectionPoolData
Source

getPooledConnection()#2 Y Y Y Y Y

getPooledConnection(String username,
String password)#3

Y Y Y Y Y

PooledConnection close() Y Y Y Y Y

getConnection() Y Y Y Y Y

XADataSource getXAConnection()#2 Y Y Y Y Y

getXAConnection(String username, String
password)#3

Y Y Y Y Y

XAConnection getXAResource() Y Y Y Y Y

XAResource commit(Xid xid, boolean onePhase) -- -- Y Y Y

end(Xid xid, int flags) -- -- Y Y Y

forget(Xid xid) -- -- Y Y Y

Class Method Trace acquisition level

1 2 3 4 5#
1

17. Type4 JDBC Driver

1326

Legend:
Y: An Exception trace log is acquired.
--: An Exception trace log is not acquired.

#1
If the trace acquisition level is 5, an Exception trace log that includes internal
calling is acquired.

#2
method-name(1) is output as the method name.

#3
method-name(2) is output as the method name.

#4
method-name(3) is output as the method name.

#5
This method overrides the method of the Statement class.

(2) Setup for acquisition of the Exception trace log
Use the system properties or the client environment definitions to set the file output
destination of the Exception trace log, the number of outputs to the file, the number of
information items to be acquired in memory, and the trace acquisition level. The
priorities are as follows:
1. System properties
2. Client environment definitions

isSameRM(XAResource xares) -- -- Y Y Y

prepare(Xid xid) -- -- Y Y Y

recover(int flag) -- -- Y Y Y

rollback(Xid xid) -- -- Y Y Y

start(Xid xid, int flags) -- -- Y Y Y

Class Method Trace acquisition level

1 2 3 4 5#
1

17. Type4 JDBC Driver

1327

(a) Setting client environment definitions
Specify the following items in the client environment definitions:

• PDJDBFILEDIR
• PDJDBFILEOUTNUM
• PDJDBONMEMNUM
• PDJDBTRACELEVEL

For details about the specification values, see 6.6.4 Environment definition
information.
If invalid values are specified in these client environment definitions, the facility for
controlling the Exception trace log acquired when an SQLException is thrown
assumes that values were not specified for these client environment definitions. In this
situation, the defaults shown in Table 17-50 are assumed.

(b) Setting system properties
In the system properties, specify the items shown in Table 17-50.

Table 17-50: System property settings for acquisition of the Exception trace log

Item System property Description Default#

File output
destination

HiRDB_for_Java_F
ileDIR

Specify the absolute path of the directory to which the
Exception trace log is to be output. The Exception trace
log is output immediately under the specified directory.

Current
directory

Number of
outputs to
the file

HiRDB_for_Java_F
ileOutNUM

Specify the maximum number of information items to be
output to one file. Specify a value in the range from 1 to
50.
The maximum number of information items to be output
to one file is actually number of outputs to the file x
number of acquisition items to be acquired in memory.
For the number of outputs to the file, the formats from
Format 2 to Format 4 shown in 17.13.2 Output formats
are each counted as one output.
The information items are output to memory in the
sequence they were stored.
If information items exceeding the maximum value are
to be output to a file, the items are wrapped around into
two files. The file names are as follows:
• pdexc1.trc
• pdexc2.trc

However, the output destination file does not change
between Format 1 and Format 2 shown in 17.13.2
Output formats.

5

17. Type4 JDBC Driver

1328

#
When the Exception trace log is acquired in the following cases, the JDBC driver
assumes that values were not specified in the system properties (and the defaults
are assumed):

• When an invalid value is specified in the system properties and an
SQLException is thrown during connection to the database

• When the Java Virtual Machine denies the JDBC driver permission to
exchange system properties because of security manager reasons

• Before initial connection of the Java Virtual Machine is established

17.13.2 Output formats
The Exception trace log has the following four formats.
Format 1: Header section

Format 2: Method execution history (execution start of a method)

Number of
information
items to be
acquired in
memory

HiRDB_for_Java_O
nMemNUM

Specify the maximum number of information items to be
stored in memory. You can specify a value in the range
from 500 to 10,000.
For the information acquired in memory, each method
shown in Table 17-49 is counted as one item.
If the number of information items to be stored exceeds
the maximum value, old information items are
overwritten with new information items in chronological
sequence.

1,000

Trace
acquisition
level

HiRDB_for_Java_T
raceLevel

Specify a trace acquisition level. You can specify a level
in the range from 0 to 5.
If you specify 5, all methods that are trace acquisition
targets, including internally called methods, are
acquired.
If you specify 0, an Exception trace log is not acquired.

1

[AA....AA] HiRDB_Type4_JDBC_Driver BB-CC

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:[C][DD....DD]
 ConnectionID(EE....EE) : SID(FF....FF)
 GG....GG

Item System property Description Default#

17. Type4 JDBC Driver

1329

Format 3: Method execution history (normal termination of a method)

Format 4: Timing when output occurred

Format 2 and Format 3 are output repeatedly in time series sequence for each method
executed.

(1) Explanation of variables in Format 1
AA....AA

Indicates the sequence number of the output information.
The sequence number is incremented by 1 for each output (including failures
caused by output errors). After the value reaches 2,147,483,647, the sequence
returns to 0.

BB
Indicates the version of the JDBC driver.

CC
Indicates the revision of the JDBC driver.

(2) Explanation of variables in Format 2, Format 3, and Format 4
AAAAAAAAAAAAAAAAAAAAAAA

Indicates the acquisition date and time of the Exception trace log, in the following
format (a value from 0 to 9 is set in each variable):

YYYY: Year (Western calendar)
MM: Month
DD: Day
hh: Hour (24-hour clock format)

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:[C][DD....DD]
 ConnectionID(EE....EE) : SID(FF....FF)
 HH....HH

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:Exception:
II....II

YYYY/MM/DD hh:mm:ss.sss

17. Type4 JDBC Driver

1330

mm: Minute
ss.sss: Second (includes 3 digits after the decimal point)

BB....BB
Indicates thread identification information for the target thread, in the following
format:

aa....aa: Thread information, including the thread name, priority sequence, and
thread group name. The Java Virtual Machine determines the format.
bb....bb: Hash code of the object. The Java Virtual Machine determines the
format.

C
Indicates call identification information for the method:
E: Indicates that the information is history information for when the method was
started.
R: Indicates that the information is history information for when the method
terminated normally.

DD....DD
Indicates the object identifier and the method name, in the following format:

aa....aa: Object identifier (up to 32 characters)
The Java Virtual Machine determines the format.

bb....bb: Method name
EE....EE

Indicates the connection ID, in the following format:

aa....aa: Front-end server name or single-server name (up to 32 characters).
If this information cannot be retrieved, an asterisk (*) is output.

Thread[aa....aa]@bb....bb

aa....aa.bb....bb

aa....aa:bb....bb:cc....cc

17. Type4 JDBC Driver

1331

bb....bb: Connection sequence number (up to 10 characters) of the server
identified by aa....aa.

If this information cannot be retrieved, an asterisk (*) is output.
cc....cc: Process ID (up to 10 characters) of the server identified by aa....aa.

If this information cannot be retrieved, an asterisk (*) is output.
FF....FF

Indicates the section ID (up to 4 characters).
GG....GG

Indicates the method arguments, in the following format (this information is not
output for methods without arguments):

aa....aa: Argument name.
bb....bb: Argument contents (up to 256 characters).

For reference type values, the object determines the format.

One asterisk (*) is output to bb....bb for the password argument of the following
methods:

• getConnection(String username, String password) of the
DataSource class

• getPooledConnection(String username, String password) of
the ConnectionPoolDataSource

• getXAConnection(String username, String password) of
XADataSource

For the info argument in connect(String url,Properties info) of the
Driver class, the value of the each of the following properties is replaced by one
asterisk (*) and then output:

• password
• HiRDB_for_Java_ENV_VARIABLES

HH....HH

aa....aa=bb....bb
aa....aa=bb....bb
 :
aa....aa=bb....bb

17. Type4 JDBC Driver

1332

Indicates the return value of the method, in the following format:

aa....aa: Argument name.

This item is not output for methods that do not have a return value. If the return
value is a reference-type value, the Java Virtual Machine determines the format.

II....II
Indicates troubleshooting information, in the following format:

aa....aa: Effective class name of the exception object that was thrown.
bb....bb: Client environment definitions being used in the connection of the
exception object. The definitions are output in the following format (if no
definitions are to be output, this variable is replaced by an asterisk (*) and then
output):

yy....yy: Name of the client environment definition without the initial PD
characters. The following client environment definitions are the output
targets:

• PDHOST
• PDNAMEPORT
• PDFESHOST
• PDSERVICEGRP
• PDSRVTYPE

Return=aa....aa

ExceptionClass: aa....aa
UapEnvironment: bb....bb
Message: cc....cc
ErrorCode: dd....dd
SQLState: eeeee
UpdateCounts: ff....ff,<omitted>,ff....ff
Etc.: gg....gg, hh....hh, iiii
jj....jj

yy....yy (zz....zz), ...<omitted>, yy....yy (zz....zz)

17. Type4 JDBC Driver

1333

• PDSERVICEPORT
• PDCLTRCVPORT
• PDCLTRCVADDR
• PDUSER
• PDCWAITTIME
• PDSWAITTIME
• PDSWATCHTIME

zz....zz: Contents of the client environment definition. The password portion
of PDUSER is not output.

cc....cc: Message of the exception object.
dd....dd: SQLCODE error code (for XAException, error code indicated by the
errorCode field of the XAException object) (up to 11 characters).

This item is output when the effective class of the thrown exception object is
one of the following classes or subclasses:

• SQLException
• XAException

eeeee: SQLSTATE (5 characters).
This item is output when the effective class of the thrown exception object is
SQLException or a subclasss of SQLException.

ff....ff: Number of update rows for each update statement in a batch update that
was executed normally before this exception occurred (up to 11 characters).

This item is output when the effective class of the exception object is
BatchUpdateException.
If the number of update rows cannot be obtained, an asterisk (*) is output.

gg....gg: SQL counter value (up to 11 characters).
This information can be used for coordinating with the trace information
output by the SQL trace facility.
If the SQL counter cannot be obtained, an asterisk (*) is output.

hh....hh: Failure information of the HiRDB server when an error occurs in the
HiRDB server (up to 22 characters).

The failure information is used by maintenance personnel.
If no errors have occurred in the HiRDB server, an asterisk (*) is output.

17. Type4 JDBC Driver

1334

iiii: Type of request (operation code) that the JDBC driver issued to the HiRDB
server when an error occurred in the HiRDB server.

If no errors have occurred in the HiRDB server, an asterisk (*) is output.
jj....jj: Stack trace in which the exception-throwing method is set as the base point.

The Java Virtual Machine determines the format.

17.13.3 Output example and analysis method
(1) Output example

An output example of the Exception trace log is shown below:

[1] HiRDB_Type4_JDBC_Driver 08-00
2006/07/06 23:07:09.129
Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.createStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:09.160
Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.createStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbStatement@1e4cbc4
2006/07/06 23:07:09.160
Thread[main,5,main]@1259414:[E][PrdbStatement@1e4cbc4.execute]
 ConnectionID(sds:23:20484) : SID(0)
 sql=DELETE FROM SEINO_TABLE
2006/07/06 23:07:14.285 Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:14.301 Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:14.301
Thread[main,5,main]@1259414:[R][PrdbStatement@1e4cbc4.execute]
 ConnectionID(sds:23:20484) : SID(1)
 Return=false
2006/07/06 23:07:14.301
Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 sql=INSERT INTO SEINO_TABLE VALUES(?, ?)
2006/07/06 23:07:14.348
Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement@15d56d5
2006/07/06 23:07:26.567 Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)

17. Type4 JDBC Driver

1335

2006/07/06 23:07:26.567 Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:26.567
Thread[main,5,main]@1259414:[E][PrdbStatement@1e4cbc4.executeQuery]
 ConnectionID(sds:23:20484) : SID(0)
 sql=SELECT * FROM SEINO_TABLE
2006/07/06 23:07:26.676
Thread[main,5,main]@1259414:[R][PrdbStatement@1e4cbc4.executeQuery]
 ConnectionID(sds:23:20484) : SID(1)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbResultSet@3eca90
2006/07/06 23:07:28.332 Thread[main,5,main]@1259414:[E][PrdbResultSet@3eca90.close]
 ConnectionID(sds:23:20484) : SID(1)
2006/07/06 23:07:28.332 Thread[main,5,main]@1259414:[E][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:28.332 Thread[main,5,main]@1259414:[R][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:28.332 Thread[main,5,main]@1259414:[R][PrdbResultSet@3eca90.close]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:28.332
Thread[Thread-0,5,main]@30090737:[E][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 sql=SELECT * FROM SEINO_TABLE
2006/07/06 23:07:28.332
Thread[Thread-0,5,main]@30090737:[R][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement@2808b3

2006/07/06 23:07:28.348
Thread[Thread-1,5,main]@5462872:[E][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 sql=DELETE FROM SEINO_TABLE WHERE I1=?
2006/07/06 23:07:28.358
Thread[Thread-1,5,main]@5462872:[E][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:29.672
Thread[Thread-1,5,main]@5462872:[R][PrdbConnection@82c01f.commit]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:30.098
Thread[Thread-1,5,main]@5462872:[R][PrdbConnection@82c01f.prepareStatement(1)]
 ConnectionID(sds:23:20484) : SID(0)
 Return=JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement@922804
2006/07/06 23:07:30.332
Thread[Thread-2,5,main]@25253977:[E][PrdbConnection@82c01f.rollback(1)]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:42.098
Thread[Thread-2,5,main]@25253977:[R][PrdbConnection@82c01f.rollback(1)]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:42.098
Thread[Thread-2,5,main]@25253977:[E][PrdbConnection@82c01f.close]
 ConnectionID(sds:23:20484) : SID(0)
2006/07/06 23:07:42.098
Thread[Thread-2,5,main]@25253977:[R][PrdbConnection@82c01f.close]
 ConnectionID(sds:23:20484) : SID(0)

17. Type4 JDBC Driver

1336

2006/07/06 23:07:42.535 Thread[Thread-1,5,main]@5462872:Exception:
ExceptionClass: SQLException
UapEnvironment: *
Message: KFPJ20006-E Connection closed[PrdbPreparedStatement.setInt]
ErrorCode: -1020006
SQLState: R2400
Etc.: *,*,****
java.sql.SQLException: KFPJ20006-E Connection closed[PrdbPreparedStatement.setInt]
at
JP.co.Hitachi.soft.HiRDB.JDBC.JdbMakeException.generateSQLException(JdbMakeException
.java:31)
at
JP.co.Hitachi.soft.HiRDB.JDBC.PrdbStatement.generateClosedSQLException(PrdbStatement
.java:3005)
at
JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement.setInt(PrdbPreparedStatement.jav
a:1170)
at Exception1.run(ExceptionTraceSample.java:57)
[2] HiRDB_Type4_JDBC_Driver 08-00
2006/07/06 23:07:25.723
Thread[Thread-3,5,main]@13249998:[E][PrdbConnection@119cca4.prepareStatement(1)]
 ConnectionID(sds:24:20484) : SID(0)
 sql=SELECT * FROM SEINO_TABLE
2006/07/06 23:07:25.770
Thread[Thread-4,5,main]@25839584:[E][PrdbConnection@119cca4.rollback(1)]
 ConnectionID(sds:24:20484) : SID(0)
2006/07/06 23:07:25.770
Thread[Thread-4,5,main]@25839584:[R][PrdbConnection@119cca4.rollback(1)]
 ConnectionID(sds:24:20484) : SID(0)
2006/07/06 23:07:25.770
Thread[Thread-5,5,main]@24431647:[E][PrdbConnection@119cca4.prepareStatement(1)]
 ConnectionID(sds:24:20484) : SID(0)
 sql=SELECT ** FROM SEINO_TABLE
2006/07/06 23:07:25.863 Thread[Thread-5,5,main]@24431647:Exception:
ExceptionClass: SQLException
UapEnvironment: USER(USER1), NAMEPORT(20249), CWAITTIME(0), SWAITTIME(600),
HOST(dragon2), FESHOST(),
SERVICEGRP(sds), SWATCHTIME(), SERVICEPORT(), SRVTYPE(WS), CLTRCVPORT(),
CLTRCVADDR(), FESGRP()
Message: KFPA11105-E Invalid token "*" after token "*"[PrdbStatement.prepare]
ErrorCode: -105
SQLState: R0000
Etc.: 4,sqapyac1.c(651),SET
java.sql.SQLException: KFPA11105-E Invalid token "*" after token
"*"[PrdbStatement.prepare]
at JP.co.Hitachi.soft.HiRDB.JDBC.CltSection.prepare(CltSection.java:1497)
at JP.co.Hitachi.soft.HiRDB.JDBC.PrdbStatement.prepare(PrdbStatement.java:2834)
at
JP.co.Hitachi.soft.HiRDB.JDBC.PrdbPreparedStatement.<init>(PrdbPreparedStatement.jav
a:109)
at
JP.co.Hitachi.soft.HiRDB.JDBC.PrdbConnection.prepareStatement(PrdbConnection.java:10
41)
at Exception1.run(ExceptionTraceSample.java:64)

17. Type4 JDBC Driver

1337

(2) Analysis method
This item explains the analysis method of the Exception trace log. You can use a text
editor to reference the Exception trace log.
Described below is an example of analyzing the Exception trace log shown in (1)
Output example.
Analysis example

To analyze the Exception trace log:
1. Extract the sequentially numbered information, including the exception to be

investigated.
2. Categorize the information by using the thread identification information, and

separate the information by thread.
3. Arrange the information in time sequence based on the acquisition time.

Table 17-51 shows what the results look like.
Table 17-51: Example in which the Exception trace log is arranged in time
sequence

Date and time Thread 1 Thread 2 Thread 3 Thread 4

Thread[main,5,main]
@1259414

Thread[Thread-
0,5,main]

@30090737

Thread[Thread-
1,5,main]
@5462872

Thread[Thread-
2,5,main]

@25253977

2006/07/06
23:07:09.129

PrdbConnection

@82c01f.createStat
ement(1)

2006/07/06
23:07:09.160

PrdbStatement
@1e4cbc4.execute

2006/07/06
23:07:14.285

PrdbConnection
@82c01f.commit

2006/07/06
23:07:14.301

PrdbConnection
@82c01f.prepareSta
tement(1)

2006/07/06
23:07:26.567

PrdbConnection
@82c01f.commit

2006/07/06
23:07:26.567

PrdbStatement
@1e4cbc4.executeQu
ery

17. Type4 JDBC Driver

1338

4. Check the contents of the exception error.

The information indicates that an SQLException occurred in Thread 3 at 2006/
07/06 23:07:42.535, and that a Statement or Connection object had already
been closed.

5. Check the operation of the object in the time sequence.
Because the object ID of the Connection object in the next thread is the same,
we know that the four threads were being processed in the same connection.

• Thread 1 at 2006/07/06 23:07:09.129
• Thread 2 at 2006/07/06 23:07:28.332

2006/07/06
23:07:26.567

PrdbStatement
@1e4cbc4.execute

2006/07/06
23:07:28.332

PrdbResultSet
@3eca90.close

PrdbConnection
@82c01f.prepar
eStatement(1)

2006/07/06
23:07:28.332

PrdbConnection
@82c01f.commit

2006/07/06
23:07:28.348

 PrdbConnection
@82c01f.prepar
eStatement(1)

2006/07/06
23:07:28.358

 PrdbConnection
@82c01f.commit

2006/07/06
23:07:30.332

 PrdbConnection
@82c01f.rollba
ck

2006/07/06
23:07:42.098

 PrdbConnection
@82c01f.close

2006/07/06
23:07:42.535

 SQLException
occurred
KFPJ20006-E
Connection
closed

Date and time Thread 1 Thread 2 Thread 3 Thread 4

Thread[main,5,main]
@1259414

Thread[Thread-
0,5,main]

@30090737

Thread[Thread-
1,5,main]
@5462872

Thread[Thread-
2,5,main]

@25253977

17. Type4 JDBC Driver

1339

• Thread 3 at 2006/07/06 23:07:28.348
• Thread 4 at 2006/07/06 23:07:30.332

6. Search for the location of the error cause.
Because we know that the four threads have the same connection, we can search
for the locations where the Statement.close or Connection.close method
was executed, and learn that Thread 4 executed the Connection.close method
at 2006/07/06 23:07:42.098. From this, we know that the cause of the
SQLException that occurred in Thread 3 at 2006/07/06 23:07:42.535 was that
Thread 4 executed the Connection.close method at 2006/07/06 23:07:42.098.

17.13.4 Required memory size and file size
(1) Required memory size

The memory size required for acquiring the Exception trace log is determined from the
following formula:
Formula

Explanation

n: Number of information items to be acquired in memory
(2) Required file size

The file size for acquiring the Exception trace log is determined from the following
formula:
Formula

Explanation

n: Number of information items to be acquired in memory
m: File output information

360 x n /1024 (kilobytes)

180 x n x m /1024 + 1 (kilobytes)

17. Type4 JDBC Driver

1340

17.13.5 Notes
(1) If the system properties and client environment definition settings are
different

Table 17-52 shows how the method execution history that was accumulated in the
JDBC driver memory before establishment of the first HiRDB connection is
transferred if the system properties and client environment definition settings are
different.

Table 17-52: Transfer of the method execution history accumulated in the JDBC
driver memory

Item Relationship between system
properties and client

environment definition

Transfer operation

Number of information
items to be acquired in
memory

HiRDB_for_Java_OnMemNUM <
PDJDBONMEMNUM

The JDBC driver re-allocates memory for
accumulation of the method execution
history based on the PDJDBONMEMNUM
specification, and then copies the
execution history accumulated up to that
point to the re-allocated area.
However, if the PDJDBTRACELEVEL
specification is 0, memory is not
re-allocated.

HiRDB_for_Java_OnMemNUM >
PDJDBONMEMNUM

The JDBC driver re-allocates memory for
accumulation of the method execution
history based on the PDJDBONMEMNUM
specification. The driver then destroys any
accumulated execution history information
that cannot be stored in the re-allocated
area, and copies the remaining information
to the re-allocated area.
However, if the PDJDBTRACELEVEL
specification is 0, memory is not
re-allocated.

17. Type4 JDBC Driver

1341

(2) First output after startup of the Java Virtual Machine
The first time the Exception trace log is output to a file after the Java Virtual Machine
is started, the log is output to the file with the older update date and time. If the date
and time are the same for both files, the log is output to pdexc1.trc.

(3) Specification of the file output destination
If the same file output destination is specified when Exception trace logs are being
acquired from multiple processes, trace information for the different processes is
output to the same file. To acquire a trace for each process, specify a different file
output destination for each process.
The JDBC driver uses the facilities of the Java Virtual Machine to create log files in
the file system provided by the OS. Therefore, the following items depend on the Java
Virtual Machine and file system being used:

• Prefix for the absolute path name
• Path delimiter character
• Maximum number of characters for the output destination file (absolute path)
• Size per file

(4) Processing when an error occurs
Information is not output to the Exception trace log when file creation or output fails.
An error message may be returned to the UAP and file output may be retried.

Trace acquisition level HiRDB_for_Java_TraceLevel <
PDJDBTRACELEVEL

The driver simply transfers the execution
history that was accumulated up to that
point.

HiRDB_for_Java_TraceLevel >
PDJDBTRACELEVEL

If the PDJDBTRACELEVEL specification is
1 or greater, the JDBC driver simply
transfers the execution history
accumulated up to that point. The driver
also transfers the execution history of
methods that are not targeted by the trace
acquisition level specified by
PDJDBTRACELEVEL.
If the PDJDBTRACELEVEL specification is
0, the JDBC driver destroys the
accumulated execution history for each
accumulation memory.

Item Relationship between system
properties and client

environment definition

Transfer operation

17. Type4 JDBC Driver

1342

(5) Character encoding
The Exception trace log is output with the default conversion character set of the Java
Virtual Machine being used.

1343

Chapter

18. SQLJ

This chapter explains how to use SQLJ to develop a UAP. Note that SQLJ cannot be
used in the Linux for AP8000 version of a client.

18.1 Overview
18.2 SQLJ Translator
18.3 UAP coding rule
18.4 Native Runtime

18. SQLJ

1344

18.1 Overview

18.1.1 What is SQLJ?
SQLJ is a language specification for coding a static SQL statement as an embedded
SQL statement in Java and executing it.
Figure 18-1 shows the flow of UAP development that uses SQLJ.

Figure 18-1: Flow of UAP development that uses SQLJ

SQLJ consists of SQLJ Translator and SQLJ Runtime Library.
SQLJ Translator

SQLJ Translator analyzes an SQLJ source program and replaces SQL statements
with standard Java instructions for accessing a database through SQLJ Runtime
Library.
SQLJ Translator generates a Java source file and a profile that stores SQL
information. The user uses the Java compiler to compile the Java source file to
create a class file (executable file).

18. SQLJ

1345

SQLJ Runtime Library

SQLJ Runtime Library is used for executing a compiled class file.
SQLJ Runtime Library can be used in either of the following ways, depending on
the access interface used:

• Invoke the JDBC interface API (standard interface version) and execute the
SQL statements.

• Invoke an original interface (native interface version), not the JDBC
interface, and execute the SQL statements.

Figure 18-2 shows UAP execution using SQLJ.
Figure 18-2: Execution of a UAP that uses SQLJ

Explanation:
• A class file of the SQLJ source file compiled by the Java compiler accesses

a database through the SQLJ Runtime Library.

18. SQLJ

1346

• When the native interface is used, SQLJ Runtime Library directly invokes a
HiRDB client library instead of invoking JDBC. In this case, you cannot use
coding that directly invokes the JDBC API and shares connection and result
sets with JDBC.

• Because the SQLJ Runtime Library loads a profile during execution, the
class file and profile must be stored in the same directory. Also, when the
class file is stored in the jar file, you must also store the profile in the jar
file.

18.1.2 Environment settings
The environment variable settings required for SQLJ operation are shown below. Since
SQLJ uses the JDBC driver, environment settings for the JDBC driver must also be
specified.

(1) Environment settings for the UNIX version
Set the following information in the environment variables for the execution
environment.

(a) HiRDB/Developer's Kit

CLASSPATH=$CLASSPATH:[installation-directory]/pdsqlj.jar*

* For the 32-bit mode HP-UX (IPF) version, specify pdsqlj32.jar.

(b) HiRDB/Run Time

CLASSPATH=$CLASSPATH:[installation-directory]/pdruntime.jar1
CLASSPATH=$CLASSPATH:[installation-directory]/pdnativert.jar2

Note

When using the 32-bit mode HP-UX (IPF) version, do not specify the following
pairs of files at the same time:

• pdsqlj.jar and pdsqlj32.jar
• pdruntime.jar and pdruntime32.jar
• pdnativert.jar and pdnativert32.jar

1 For the 32-bit mode HP-UX (IPF) version, specify pdruntime32.jar.
2 For the 32-bit mode HP-UX (IPF) version, specify pdnativert32.jar.

18. SQLJ

1347

(2) Environment settings in the Windows version
In sequence, choose Control Panel, System, System Properties, and Environment,
and then set the contents shown below.

(a) HiRDB/Developer's Kit

CLASSPATH=%CLASSPATH%;[installation-directory]\pdsqlj.jar

(b) HiRDB/Run Time

CLASSPATH=%CLASSPATH%;[installation-directory]\pdruntime.jar
CLASSPATH=%CLASSPATH%;[installation-directory]\pdnativert.jar

18. SQLJ

1348

18.2 SQLJ Translator

SQLJ Translator analyzes an SQLJ source program and generates a Java source file
and a profile.
SQL statements are replaced with Java instructions, including the invocation of the
JDBC API, and are output as a Java source file.
SQL character strings, number of parameters, types and modes of individual
parameters, and the description of the columns to be output to a profile. The profile is
referenced from the SQLJ Runtime Library. The entity of a profile is an instance of the
java.sql.runtime.Profile class.
Table 18-1 lists the files that are generated and referenced by the SQLJ Translator.

Table 18-1: Files that are generated and referenced by the SQLJ Translator

The prefixes of the classes and variables internally generated by SQLJ Translator are
as follows:
sJT: Names of the variables internally generated
_SJ: Names of the classes and profiles internally generated

File classification File name format Explanation Type

SQLJ source file file-name.sqlj Indicates an SQLJ source file. Referenced

Java source file file-name.java Indicates a Java source file. Generated

Profile file-name_SJProfile
profile-number.ser

Stores the information of each SQL
statement extracted from an SQLJ
source file. A profile number is
assigned to each context. The
cardinal number is 0 for all.

Generated

18. SQLJ

1349

18.3 UAP coding rule

This section explains the coding rule for SQLJ source files.

18.3.1 Labeling rule
The following labels cannot be used:

• Label that begins with _sJT_
• Label that begins with _SJf
• Label that begins with p_rdb

Other rules are based on the Java language rules.

18.3.2 SQL coding rule
(1) SQL statement coding rule

Each SQL statement must be enclosed between the SQL leading character string
(#sql) and the SQL trailing character (;). The SQL statement itself must further be
enclosed between curly brackets. Connection class and cursor declarations must also
be enclosed between the SQL leading character string and the SQL trailing character.
Table 18-2 shows the SQL statement coding formats.

Table 18-2: SQL statement coding formats

Function Format Purpose

SQL execution #sql [context] { SQL-statement } ; Executes an SQL statement.
The SQL statements that can be
used differ for the standard
interface version and the native
interface version. For details,
see 18.3.3 SQL statements that
can be used in SQLJ.

Declaration of an
iterator class with
column specification

• Standard interface version
#sql modifier iterator class-name
 (data-type column-name,...) ;

• Native interface version
This function cannot be used.

Declares the class to be used for
cursor declaration. Cannot be
used in a FETCH statement.

18. SQLJ

1350

Notes

modifier
Combination of private, public, protected, final, abstract,
protected, static, native, synchronized, transient, and
volatile.

context
{connection-context|connection-context,execution-context|execution-cont
ext}

keyword
holdability or updateColumns

value
true, false, or "column-name-1,column-name-2,..."

data-type
Java data type

column-name

Declaration of an
iterator class with a
position specification

• Standard interface version
#sql modifier iterator class-name
 (data-type,...) ;

• Native interface version
#sql modifier iterator class-name
 [implements
JP.co.Hitachi.soft.HiRDB.pdjpp.runti
me.
 ForUpdate]
 [with (keyword=value,...)]

 (data-type,...) ;

Declares the class to be used in
the cursor declaration. This
function is used in a FETCH
statement.

Declaration of a
connection class

#sql modifier context class-name ; Declares the class to be used for
connection.

Declaration of a
cursor

#sql iterator-object = { SELECT-statement } ; Defines and opens a cursor.

Conversion of a result
set

• Standard interface version
#sql [context] iterator-object
 = {CAST :JDBC-result-set} ;

• Native interface version
This function cannot be used.

Converts a JDBC result set into
one that can be used by SQLJ.

Function Format Purpose

18. SQLJ

1351

Retrieval item
(2) Explicitly specifying connection context when using the multi-connection
facility

When you use the multi-connection facility, insert the connection context surrounded
by square brackets between the SQL leading character string and the SQL statement,
to explicitly specify the connection to be used. An example follows:

If no connection context is explicitly specified, the default connection context is
assumed.

(3) Explicitly specifying an execution environment
In SQLJ, a user can explicitly specify an execution environment instead of using the
default one. To specify an execution environment, insert the execution connection
context surrounded by square brackets between the SQL leading character string and
the SQL statement.
If SQL statements are simultaneously being executed in multiple threads for a single
connection, using separate multiple execution environments can prevent an execution
result from being overwritten by another SQL statement. An example follows:

If no execution connection context is explicitly specified, the default execution
environment is used.
The values described in the following table are maintained in the execution
environments. These values are set using the set<name> method and determined
using the get<name> method.

 #sql [connCtx] { DELETE FROM EMP WHERE SAL > 1000};

 ExecutionContext execCtx = new ExecutionContext();
 try {
 #sql [execCtx] { DELETE FROM STOCK WHERE PCODE > 1000 };
 System.out.println
 ("removed " + execCtx.getUpdateCount() + "goods");
 }
 catch(SQLException e){
 System.out.println("SQLException has occurred with "+ " exception " + e);
 }

Name Details

MaxRows Maximum number of rows to be returned from a search.

MaxFieldSize Maximum size of data in units of bytes to be returned in columns and OUTPUT
variable value.

QueryTimeout Maximum wait time until SQL execution is completed. This is invalid in HiRDB.

UpdateCount Number of updated, inserted, or deleted rows (reference only).

18. SQLJ

1352

If multi-connection is also specified, the connection context and execution connection
context must be specified in that order, delimited by a comma. An example follows:

(4) Specifying embedded variables
In SQLJ, BEGIN DECLARE SECTION for declaring embedded variables is not used.
Any variables, parameters, and object fields can be used as embedded variables. In an
SQL statement, a variable is described as ":variable-name" with a colon at the front.
The colon can be separated by blank spaces from the variable name.
The IN, OUT, or INOUT parameter of a CALL statement is described as
":{IN|OUT|INOUT}variable-name".
Additionally, in SQLJ, you can use ":(expression)" as an embedded variable. The
expression must be enclosed by parentheses. This is a Java method and not an SQL
method. An example follows:

(5) Specifying indicator variables
SQLJ has no indicator variable. Therefore, to set a null value for an embedded
variable, use the Wrapper type defined in the sql.lang package instead of the basic
data type. If a null value is received by a Java variable of the basic data type, the
SQLNullException exception occurs.

(6) Exception handling
SQLJ cannot handle exceptions from an embedded SQL WHENEVER statement.
Therefore, Java exception handling (try...catch) is used instead of WHENEVER. An
example follows:

If an error occurs during SQL execution, the JDBC exception object
(java.sql.SQLException) is issued.

SQLWarnings Correspond to SQLWARN0-SQLWARNF (reference only).

 #sql [connCtX, execCtx] { DELETE FROM STOCK WHERE PCODE > 1000 };

#sql { SELECT COL1, COL2 FROM TABLE1 WHERE :(x[--i]) > COL3 };

 try{
 #sql { DELETE FROM STOCK WHERE PCODE > 1000 };
 }
 catch(SQLException e){
 System.out.println("SQLCODE:" + e.getErrorCode() +
 "\nERRMSG:" + e.getMessage());
 }

Name Details

18. SQLJ

1353

SQLCODE, SQLSTATE, and error messages are stored in exception objects, and their
values can be obtained using the getErrorCode, getSQLState, and getMessage
methods.

(7) Static SQL statements and dynamic SQL statements
In SQLJ, only static SQL statements can be described. Dynamic SQL statements
cannot be described.
To use a dynamic SQL statement, use the JDBC API.

(8) Reading out the result set of a dynamic cursor
You can use a CAST statement to convert and read out the result set of a dynamic cursor
created using the JDBC API as the result set of an SQLJ cursor. An example follows:

The CAST statement cannot be used with the native interface version. If the statement
is used, a translation error results.

(9) Connecting to and disconnecting from a HiRDB server
The CONNECT and DISCONNECT statements can be used in the native interface version
but not in the standard interface version. For both the standard interface and native
interface versions, Java instructions can be used to connect to or disconnect from a
HiRDB server.

(10) Exception generation conditions
In HiRDB embedded SQL statements, an alarm is issued in the following cases. In
contrast, exceptions occur in SQLJ.

• In a single-row SELECT statement, the number of search items does not match the
number of variables specified in an INTO clause.

• In a single-row SELECT statement, the retrieval result has zero rows.
• In a single-row SELECT statement, the retrieval result has multiple rows.
• In a FETCH statement, the number of search items does not match the number of

variables specified in an INTO clause.
• The number of columns defined by an iterator with a position specification does

not match the number of retrieval items.
• The number of columns defined by an iterator with a column name specification

 #sql iterator Employees(String ename, double sal);
 Statement stmt=conn.createStatement();
 String Query="SELECT pname, pcode FROM stock WHERE pcode > 1000";
 ResultSet rs=stmt.executeQuery(query);
 Employees emps;
 #sql emps ={CAST :rs };

18. SQLJ

1354

is greater than the number of retrieval items.
(11) Comments and handling of SQL optimization specification

Comments (/*-*/) described between the SQL leading character string and the SQL
trailing character are deleted. However, in cursor declaration and SQL statement
execution, the SQL optimization specification (/*>>-<<*/) described between curly
brackets is not deleted and handled as an SQL statement. All other SQL optimization
specifications (/*>>-<<*/) are treated as comments. For details on comments and
SQL optimization specifications inside SQL statements, see the manual HiRDB
Version 8 SQL Reference.

18.3.3 SQL statements that can be used in SQLJ
Table 18-3 lists the SQL statements that can be used in SQLJ.

Table 18-3: SQL statements that can be used in SQLJ

Type SQL statement Usability Alternate
means

Standard
interface
version

Native
interface
version

Definition
SQL statement

All Y Y None

Data
manipulation
SQL
statements

ASSIGN LIST statement N (SQLJ) N (SQLJ) Use JDBC.

CALL statement Y Y None

CLOSE statement N (SQLJ) N (SQLJ) Use an
iterator.

DECLARE CURSOR N (SQLJ) N (SQLJ)

DELETE statement Y Y None

DESCRIBE statement N (JDBC) N (JDBC)* Use JDBC.

DESCRIBE TYPE statement N (JDBC) N (JDBC)*

DROP LIST statement N (JDBC) N (JDBC)*

EXECUTE statement N (JDBC) N (JDBC)*

EXECUTE IMMEDIATE statement N (JDBC) N (JDBC)*

FETCH statement (Format 1 or 3) Y Y None

FETCH statement (Format 2) N N None

INSERT statement Y Y None

18. SQLJ

1355

OPEN statement (Format 1) N (SQLJ) N (SQLJ) Use an
iterator.

OPEN statement (Format 2) N (SQLJ) N (SQLJ) Use JDBC.

PREPARE statement N (SQLJ) N (SQLJ)

PURGE TABLE statement Y Y None

Single-row SELECT statement Y Y None

Dynamic SELECT statement N (JDBC) N (JDBC)* Use JDBC.

UPDATE statement Y Y None

Control SQL
statements

COMMIT statement Y Y None

COMMIT statement (RELEASE specified) N (SQLJ) N (SQLJ) Split into
COMMIT and
DISCONNECT.

CONNECT statement N Y None

DISCONNECT statement N Y None

LOCK statement Y Y None

CONNECT statement with RD-node
specification

N N None

DISCONNECT statement with RD-node
specification

N N None

ROLLBACK statement Y Y None

ROLLBACK statement (RELEASE
specified)

N (SQLJ) N (SQLJ) Split into
ROLLBACK
and
DISCONNECT.

SET CONNECTION statement N N None

SET SESSION AUTHORIZATION
statement

N N None

Embedded
language
syntax

BEGIN DECLARE SECTION N N None

Type SQL statement Usability Alternate
means

Standard
interface
version

Native
interface
version

18. SQLJ

1356

Legend:
Y: Can be used in SQLJ.
N (SQLJ): Cannot be used in SQLJ, but a similar function is available in the
functions provided by SQLJ or JAVA.
N (JDBC): Cannot be used in SQLJ, but a similar function is available when
JDBC is used.
N: Cannot be used in SQLJ.
None: There is no alternate means.

Note

SQLJ cannot use HiRDB functions that are not provided by the JDBC driver. The
following functions cannot be used:

• UPDATE statement and DELETE statement that use an iterator
• Specification of a keyword in a WITH clause during the declaration of an

iterator
• INSERT function that uses an array

* If you use a JDBC connection object to create a connection context, you can also use
the alternate means with the native interface. If you do not use a JDBC connection
object to create a connection context, you cannot use the alternate means.

END DECLARE SECTION N N None

ALLOCATE CONNECTION HANDLE N (SQLJ) N (SQLJ) Use a
connection
context.DECLARE CONNECTION HANDLE N (SQLJ) N (SQLJ)

FREE CONNECTION HANDLE N (SQLJ) N (SQLJ)

GET CONNECTION HANDLE N N None

COPY N N None

GET DIAGNOSTICS N N None

WHENEVER N (SQLJ) N (SQLJ) Implement
using try
... catch.

Type SQL statement Usability Alternate
means

Standard
interface
version

Native
interface
version

18. SQLJ

1357

18.3.4 Correspondence between HiRDB data types and SQLJ data
types

Table 18-4 shows the correspondence between the HiRDB data types and the SQLJ
data types. To use embedded variables in SQLJ, declare variables according to this
table.

Table 18-4: Correspondence between HiRDB data types and SQLJ data types

HiRDB data types SQLJ data types (Java data types)

When a null value is included When a null value is not
included

CHAR1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.
runtime.HiRDBCHAR4

N/A

VARCHAR java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.
runtime.HiRDBVARCHAR4

N/A

NCHAR1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.
runtime.HiRDBNCHAR4

N/A

NVARCHAR1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.
runtime.HiRDBNVARCHAR4

N/A

MCHAR1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.
runtime.HiRDBMCHAR4

N/A

MVARCHAR1 java.lang.String N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.
runtime.HiRDBMVARCHAR4

N/A

DECIMAL2 java.math.BigDecimal N/A

JP.co.Hitachi.soft.HiRDB.pdjpp.
runtime.HiRDBDECIMAL4

N/A

SMALLINT java.lang.Short short

INTEGER java.lang.Integer int

18. SQLJ

1358

Legend:
N/A: Cannot be used or not applicable

Note

Repetition columns cannot be used.
1 When java.lang.String is specified in the native interface version, the data type
requested to the server is VARCHAR. When the data type is specified in an output
variable, the length of the data acceptance area is assumed to be 32,000 bytes.
2 When java.math.BigDecimal is used as an output variable in the native interface
version, the precision is set to 15 and the scale to 0.
3 When the data type is specified with byte[] in the native interface version, the data
type requested to the server is BINARY type. If the HiRDB server is version 06-02 or
earlier and the BLOB type is to be used, specify
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBBLOB, which is a HiRDB
data type. An error occurs if byte[] is specified.
4 This type can be specified for the native interface version.

REAL, SMALLFLT java.lang.Float float

FLOAT, DOUBLE PRECISION java.lang.Double double

DATE java.sql.Date N/A

TIME java.sql.Time N/A

TIMESTAMP java.sql.Timestamp N/A

INTERVAL HOUR TO SECOND N/A N/A

INTERVAL YEAR TO DAY N/A N/A

BLOB3 JP.co.Hitachi.soft.HiRDB.pdjpp.
runtime.HiRDBBLOB4

byte[]

BINARY JP.co.Hitachi.soft.HiRDB.pdjpp.
runtime.HiRDBBINARY4

byte[]

HiRDB data types SQLJ data types (Java data types)

When a null value is included When a null value is not
included

18. SQLJ

1359

18.3.5 Output variable settings (limited to the native interface
version)

When an execution request is sent to the server, the data length set in the SQL
descriptor area for an output variable used in single-line searches, and in the OUT
parameters of CALL statements when an execution request is sent to the server, differs
depending on the initial value of the output variable. Table 18-5 lists the initial value
of each data type and the data length set in the SQL descriptor area.

Table 18-5: Initial value for each data type and the data length set in SQL
Descriptor Area

Data type Initial value Length of data set in SQL Descriptor
Area

HiRDBCHAR variable = null; 30,000 bytes

variable = new HiRDBCHAR(int
n);

n bytes (1 n 30,000)

variable = new
HiRDBCHAR(String t);

Length of t (length of byte array obtained with
t.getBytes())

HiRDBVARCHAR variable = null; 32,000 bytes

variable = new
HiRDBVARCHAR(int n);

n bytes (1 n 32,000)

variable = new
HiRDBVARCHAR(String t)

Length of t (length of byte array obtained with
t.getBytes())

HiRDBNCHAR variable = null; 30,000 bytes (15,000 double-byte characters)

variable = new HiRDBNCHAR(int
n);

(n*2) bytes (n double-byte characters) (1 n
 15,000)

variable = new
HiRDBNCHAR(String t)

Length of t (length of (byte array/2) obtained
with t.getBytes())

HiRDBNVARCHAR variable = null; 32,000 bytes (16,000 double-byte characters)

variable = new
HiRDBNVARCHAR(int n);

(n 2) bytes (n double-byte characters) (1
 n 16,000)

variable = new
HiRDBNVARCHAR(String t)

Length of t (length of (byte array/2) obtained
with t.getBytes())

18. SQLJ

1360

HiRDBMCHAR variable = null; 30,000 bytes

variable = new HiRDBMCHAR(int
n);

n bytes (1 n 30,000)

variable = new
HiRDBMCHAR(String t)

Length of t (length of byte array obtained with
t.getBytes())

HiRDBMVARCHAR variable = null; 32,000 bytes

variable = new
HiRDBMVARCHAR(int n);

n bytes (1 n 32,000)

variable = new
HiRDBMVARCHAR(String t)

Length of t (length of byte array obtained with
t.getBytes())

HiRDBDECIMAL variable = null; Precision 15, scale 0

variable = new
HiRDBDECIMAL(int p,int s);

Precision p, scale s (1 p 29, 0 s
p)

variable = new
HiRDBDECIMAL(String t)

The precision is the character string length
obtained when the sign and period characters
are subtracted from t. The scale is the character
string length after the period (excluding the
period).

variable =
newHiRDBDECIMAL(java.math.Bi
gDecimal t)

The precision is the character string length
obtained when the flag and period characters of
the character string retrieved with
toString() are subtracted from t. The scale
is the value retrieved by the scale() method
of the BigDecimal object.

HiRDBBLOB variable = null; 1 megabyte

variable = new HiRDBBLOB(int
n);

n bytes (1 n 2,147,483,647)

variable = new
HiRDBBLOB(byte[] t)

Length of t

HiRDBBINARY variable = null; 1 megabyte

variable = new HiRDBBINARY(int
n);

n bytes (1 n 2,147,483,647)

variable = new
HiRDBBINARY(byte[] t)

Length of t

Data type Initial value Length of data set in SQL Descriptor
Area

18. SQLJ

1361

18.3.6 Using data types when a cursor is declared (limited to the
native interface version)

When using HiRDB data types when a cursor is declared, specify the data types as
shown in Table 18-6.

Table 18-6: Description when a cursor is declared, and the acceptance area
setting

Java.math.BigDec
imal

variable = null; Precision 15, scale 0

variable = new
java.math.BigDecimal;

The precision is set to the character string
length obtained when the flag and period
characters in the character string retrieved by
toString() are subtracted from the
BigDecimal object. The scale is set to the
value retrieved by the scale() method.

byte[] variable = null; 1 megabyte

variable = new byte[int n] n bytes (1 n 2,147,483,647)

Data type Description when cursor declared Acceptance area setting

HiRDBCHAR #sql iterator
cursor-name(HiRDBCHAR(int n));

n bytes (1 n 30,000)

HiRDBVARCHAR #sql iterator
cursor-name(HiRDBVARCHAR(int n));

n bytes (1 n 32,000)

HiRDBNCHAR #sql iterator
cursor-name(HiRDBNCHAR(int n));

(n 2) bytes (n double-byte
characters)
(1 n 15,000)

HiRDBNVARCHAR #sql iterator
cursor-name(HiRDBNVARCHAR(int n));

(n 2) bytes (n double-byte
characters)
(1 n 16,000)

HiRDBMCHAR #sql iterator
cursor-name(HiRDBMCHAR(int n));

n bytes (1 n 30,000)

HiRDBMVARCHAR #sql iterator
cursor-name(HiRDBMVARCHAR(int n));

n bytes (1 n 32,000)

HiRDBDECIMAL #sql iterator
cursor-name(HiRDBMVARCHAR(int p,int
s));

Precision p, scale s
(1 p 29, 0 s p)

Data type Initial value Length of data set in SQL Descriptor
Area

18. SQLJ

1362

18.3.7 Description of connection to and disconnection from a HiRDB
server

SQLJ has no CONNECT or DISCONNECT statement. Therefore, connection to or
disconnection from a HiRDB server is coded as Java instructions.

(1) Connection to a HiRDB server
To connect to a HiRDB server, use the following coding using a connection context.

(a) Defining a connection context class
Define a class for the connection context. Class-name indicates a Java identifier. The
defined class inherits sqlj.runtime.ConnectionContext.

(b) Declaring connection context
Using the declared class, declare the connection context (as a Java variable
declaration). Connection-context indicates a Java identifier.

(c) Connecting to a HiRDB server
Create a connection context object using a new operator. During this step, connection
is made to the HiRDB server. For the connection parameters, describe the HiRDB
server at the connection destination, port number, authorization identifier, and
password in the same format as that used for JDBC.

(d) Connecting to the HiRDB server when the native interface is used
When the native interface is used, there are three ways of connecting to the HiRDB
server:

• Describing the connection as a Java instruction
• Using the CONNECT statement

HiRDBBLOB #sql iterator
cursor-name(HiRDBBLOB(int n));

n bytes
(1 n 2,147,483,647)

HiRDBBINARY #sql iterator
cursor-name(HiRDBBINARY(int n));

n bytes
(1 n 2,147,483,647)

 #sql modifier context class-name ;

 modifier class-name connection-context ;

 connection-context = new class-name(connection-parameter) ;

Data type Description when cursor declared Acceptance area setting

18. SQLJ

1363

• Using the JDBC connection object (Connection)
These connection methods are described below.
1. Describing the connection as a Java instruction

Use the new operator to generate a connection context object. However, since
JDBC is not being used, specify an authorization identifier, a password, a server
name, and a port number in the connection parameters.

If no connection parameters are specified, the HiRDB server checks the client
environment variables.

An example of creating a connection context follows:

2. Using the CONNECT statement

Specify an authorization identifier and a password in the connection parameters.
The HiRDB server checks the client environment definitions for the port number
and the server name.

If connection parameters are not specified, the HiRDB server checks the client
environment definitions.

 connection-context = new class-name(connection-parameters);

 connection-context = new class-name();

 #sql context Ctx;
 String Userid=new String("user1");
 String Passwd=new String("puser1");
 String Host=new String("HiRDB_SV");
 short port=22000;

 Ctx con = new Ctx(:Userid,:Passwd,:Host,:port);

 #sql [connection-context]{CONNECT USER :embedded variable USING :embedded variable};
 or
 #sql [connection-context]{CONNECT :embedded variable IDENTIFIED BY :embedded variable};

 #sql [connection-context]{CONNECT};

18. SQLJ

1364

An example of the CONNECT statement follows:

3. Using the JDBC connection object (Connection)

Use the new operator to generate a connection context object. In the connection
parameters, specify the JDBC connection object (java.sql.Connection).

An example of creating a connection context follows:

(2) Disconnecting from a HiRDB server
To disconnect from the HiRDB server, invoke the close method for the connection
context. Note that there is no reconnection method. To reconnect, create a new object.

An example of invoking the close method for the connection context follows:

When using the native interface version, you can use the DISCONNECT statement
instead of invoking the close method for the connection context.

 #sql context Ctx;
 String Userid=new String("user1");
 String Passwd=new String("puser1");
 Ctx con;

 #sql [con] {CONNECT USER :Userid USING :Passwd };

 connection-context = new class-name(connection-object);

 #sql context Ctx;
 java sql.Connection con =

 java.sql.DriverManager.getConnection("jdbc:hitachi:PrdbDrive://DBID=22200,
 DBHOST=HiRDB_SV","user1","user1");

 Ctx ctx = new Ctx(con);

 connection-context.close() ;

 #sql context DeptContext;
 ...
 {
 DeptContext deptCtx = new DeptContext(deptURL,true);
 #sql [deptCtx] { DELETE FROM TAB };
 deptCtx.close();
 }

18. SQLJ

1365

An example of the DISCONNECT statement follows:

(3) Default connection
(a) Standard interface version

For the standard interface version, the default connection context is assumed if no
connection context is specified in an SQL statement.
To use the default connection context, a UAP must create a connection context in
advance, and set it as the default connection context. Once the default connection
context is set, it remains valid until the close() method for the default connection
context is issued or a new connection context is set as the default connection context.
The default connection context is held by a variable inside the default connection
context class (JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext).
The default connection context has multiple constructors that have the different
arguments described as follows.

• Constructor that has a JDBC connection object as an argument

• Constructor that has the URL of the connection destination, authorization
identifier, password, and auto commit specification as arguments

• Constructor that has the specifications of the URL of the connection destination,
Properties object, and autoCommit as arguments

• Constructor that has connection context as an argument
To specify the URL of the connection destination, authorization identifier, and
password, use the same format as is used for the JDBC driver of HiRDB.
In SQLJ, to use a constructor that includes a connection URL during the creation of a
connection context, you must specify autoCommit, and specify TRUE to enable it and
FALSE to disable it.
If the default connection context is created from the JDBC connection context, the
autoCommit setting in the JDBC connection context is inherited.

 #sql[connection-context]{DISCONNECT};

 #sql context Ctx;
 Ctx con;
 #sql[con]{CONNECT};

 #sql[con]{DISCONNECT};

18. SQLJ

1366

Creating and setting the default connection context
An example for creating and setting the default connection context follows:

Releasing and resetting the default connection context
An example of releasing and resetting the default connection context follows:

Acquiring the default connection context
When the following method is invoked, the connection context can be acquired:

JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext.getDefault
Context();

An example of specifying the default context follows:

(b) Native interface version
For the native interface version, the default connection context class is held in a
variable of JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext.
The default connection context class has the following constructors:

• Constructors with JDBC connection objects as arguments
• Constructors with the authorization identifier, password, server name, and port

number of the connection destination as arguments

 import JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext;
 ...
 PrdbContext pctx = new PrdbContext(url,user,passwd,autoCommit);
 PrdbContext.setDefaultContext(pctx);

 import JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext;
 ...
 PrdbContext pctx = new PrdbContext(url,user,passwd,autoCommit);
 PrdbContext.setDefaultContext(pctx);
 ...
 pctx.close();
 PrdbContext new_pctx = new PrdbContext(url.use,passwd,autoCommit);

 PrdbContext.setDefaultContext(new_pctx);

 void print_address(String name) throws SQLException;
 {
 String telno;
 sqlj.runtime.ConnectionContext ctx;
 ctx = JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext.getDefaultContext();
 #sql [ctx] { SELECT TELNO INTO :telno
 FROM PERSON
 WHERE :name = NAME } ;
 }

18. SQLJ

1367

• Constructors with the authorization identifier and password specification of the
connection destination as arguments

• Constructors with connection contexts as arguments
• Constructors without arguments

Creating and setting the default connection context
An example of creating and setting the default connection context follows:

Releasing and resetting the default connection context
An example of releasing and resetting the default connection context follows:

Getting the default connection context
To get the default connection context, invoke the following method:

JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext.getDefau
ltContext();

A coding example in which the default context is implicitly specified follows:

 import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext;
 :
 PrdbContext pctx = new PrdbContext();
 PrdbContext.setDefaultContext(pctx);

 import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext;
 :
 PrdbContext pctx = new PrdbContext(user,passwd,host,port);
 PrdbContext.setDefaultContext(pctx);
 :
 pctx.close();
 PrdbContext new_pctx = new PrdbContext(user,passwd,host,port);

 PrdbContext.setDefaultContext(new_pctx);

void print_address(String name) throws SQLException;
{
 String telno;
 JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ConnectionContext ctx;
 ctx = JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext.getDefaultContext();
 #sql [ctx] { SELECT TELNO INTO :telno FROM PERSON WHERE :name = NAME } ;
}

18. SQLJ

1368

18.3.8 Description of cursor-based retrieval
Because SQLJ has no DECLARE CURSOR, OPEN, or CLOSE statements, cursor
declaration, opening, and closing must be coded as Java instructions. During this step,
an iterator object is used in place of a cursor name. Because the iterator object is
declared as a reference variable to an object, the same naming rule and valid range as
in the Java rules apply here.
Depending on the iterator object type used, the retrieval result can be obtained using
or not using a FETCH statement. A FETCH statement uses an object in the iterator type
with a position specification and cannot use an object in the iterator type with a column
name specification.

(1) Retrieval using a FETCH statement
The method for describing a retrieval using a FETCH statement is explained as follows.

(a) Defining a class for an iterator with position specification and declaring
an iterator object

Standard interface version
For the standard interface version, define a class for an iterator with a position
specification and declare an iterator object. class-name indicates a Java identifier.
data-type-N indicates the data type of a Java variable that stores the N-th retrieval item
in the FETCH statement.

Native interface version
For the native interface version, the specification is as follows:

If an iterator is used in an UPDATE or DELETE statement, the
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ForUpdate interface is
inherited.
keyword in the WITH clause indicates the function of the iterator. Only a constant can
be specified. Table 18-7 shows the combinations of keyword in the WITH clause and

 #sql modifier iterator class-name
 (data-type-1,data-type-2,...) ;
 modifier class-name iterator-object ;

 #sql modifier iterator class-name
 [implements JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ForUpdate]
 [with keyword=setting-value,...]
 (data-type-1,data-type-2,...) ;
 modifier class-name iterator-object ;

18. SQLJ

1369

setting values.
Table 18-7: Combinations of keyword in the WITH clause and setting values

(b) Defining and opening a cursor
Substitute the result set from the SELECT statement into the declared iterator object.

(c) Extracting the retrieval result
Specify an iterator object instead of a cursor name and execute a FETCH statement. The
iterator object must be preceded by a colon.

(d) Determining NOT FOUND
Invoke the endFetch method for the iterator object and determine whether the result
is NOT FOUND. If there is no row to be retrieved, true is returned. If the next row is
found, false is returned. If the endFetch method is invoked after the cursor is
closed, true is returned.

(e) Closing the cursor
To close the cursor, invoke the close method.

An example of a retrieval using a FETCH statement follows:

Keyword in the WITH
clause

Function Setting

holdability Indicates a holdable cursor. TRUE

updateColumns Indicates the column to be updated. "column-name,column-name,..."

 #sql [context] iterator-object = { SELECT-statement } ;

 #sql [context] {
 FETCH :iterator-object INTO :variable-1,:variable-2,...} ;

 while(! iterator-object.endFetch()) {
 processing-on-the-extracted-row
 }

 iterator-object.close() ;

18. SQLJ

1370

(2) Retrieval without using a FETCH statement
Using the fields in the iterator with a column name specification, read out each column
of the retrieval result.

(a) Defining a class for an iterator with column name specification
Define the same name (not case sensitive) as the retrieval item as the class field. For
the data type, specify the data type of the Java variable that receives the retrieval result.
This class cannot be used for the native interface.
If the retrieval item is a value expression, a column name that includes a character that
cannot be used in Java, for example, use an AS clause to define an alias for the retrieval
item, and use that alias.

(b) Defining and opening a cursor
Substitute the result set from the SELECT statement into the declared iterator object.

(c) Extracting the next row and determining NOT FOUND
Invoke the next method for the iterator object and determine whether the result is NOT
FOUND. If the result is NOT FOUND, TRUE is returned. If a row is found, FALSE is
returned. After the cursor is opened, it is not positioned on the first line of the retrieval
result until the first next method is executed.

 #sql public iterator ByPos(String, int);
 :
 {
 ByPos positer;
 String name = null;
 int code = 0;

 #sql positer = { SELECT PNAME,PCODE FROM STOCK };
 #sql { FETCH :positer INTO :name,:code };
 while(!positer.endFetch()){
 System.out.println(name + ":" + code);
 #sql { FETCH :positer INTO :name,:pcode };
 }
 positer.close();
 }

 #sql modifier iterator class-name
 (data-type-1 column-name-1,
 data-type-2 column-name-2,...) ;
 modifier class-name iterator-object;

 #sql [context] iterator-object = { SELECT-statement } ;

18. SQLJ

1371

(d) Acquiring the retrieval result
Read data out from each field of the iterator object. If the result is NOT FOUND or if
data is read out after the cursor is closed, the result is undetermined. If data is read out
when the data type of the field is the Java basic data type and the retrieval result is a
null value, the SQLNullException object occurs.
Data substituted into a field is not reflected in the database.

(e) Closing the cursor
To close the cursor, invoke the close method for the iterator object.

An example of retrieval without using a FETCH statement follows:
Example:

(3) Updating using the cursor
For the native interface, a cursor can be used to update data.
To use an UPDATE or DELETE statement to manipulate the row on which the cursor is
positioned, specify an iterator instead of a cursor name. Note that when the class for
the iterator is being defined, it must inherit the ForUpdate interface.

 while(iterator-object.next()){
 processing-on-the-extracted-row
 }

 variable-1 = iterator-object.column-name-1 ;
 variable-2 = iterator-object.column-name-2 ;
 ...

 iterator-object.close() ;

 #sql public iterator ByName(String pname,
 int pcode);
 :
 {
 ByName nameiter;
 String s;
 int i;

 #sql nameiter = { SELECT PNAME, PCODE FROM STOCK };
 while(nameiter.next()){
 s = nameiter.pname();
 i = nameiter.pcode();
 System.out.println(s + ":" + i);
 }
 nameiter.close();
 }

18. SQLJ

1372

An example of an update that uses an iterator follows:

18.3.9 Receiving a dynamic result set
To receive a dynamic result set by invoking a procedure that returns a dynamic result
set, use the getNextResultSet() method for the execution context. For the native
interface version, a procedure that returns a dynamic result set cannot be used because
JDBC result sets cannot be used.

The getNextResultSet() method returns a dynamic result set (ResultSet object)
as a return value. Every time this method is invoked, it returns the next result set. After
it returns the last result set, it returns a null value.
For a procedure or SQL statement that does not return a dynamic result set, a null value
is returned. A null value is returned also when SQL execution is not normally
terminated.
If an error occurs during the execution of the getNextResultSet() method, the
SQLException occurs.
 An example follows:

 #sql [context] { DELETE-statement WHERE CURRENT OF :iterator-object } ;

 #sql [context] { UPDATE-statement WHERE CURRENT OF :iterator-object } ;

 #sql public iterator ByPos
 implements JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ForUpdate
 (String, int);
 :

 {
 ByPos positer;
 String name = null;
 int year = 0;
 int newyear;

 #sql positer = { SELECT FULLNAME, BIRTHYEAR FROM PEOPLE };
 #sql { FETCH :positer INTO :name,:year };
 while(!positer.endFetch()){
 newyear=year+10;
 #sql { UPDATE PEOPLE SET YEAR=:newyear WHERE CURRENT OF :positer; };
 }
 positer.close();
 }

18. SQLJ

1373

18.3.10 Using JDBC and SQLJ together
This subsection explains how to use JDBC and SQLJ together.

(1) Acquiring a JDBC result set from an SQLJ iterator
You can convert an SQLJ iterator into a JDBC result set (ResultSet object) and use
the JDBC API to obtain the retrieval result. For the native interface version, JDBC
result sets cannot be obtained.
To obtain a JDBC result set, use the getResultSet method for the iterator class
(ResultSetiterator). This method returns a JDBC result set as a return value.
After executing the next method for the iterator, do not invoke the getResultSet
method.
After you have used the getResultSet method to convert an SQLJ iterator into a
JDBC result set, do not receive a retrieval result using the original iterator.
 An example follows:

(2) Reading a JDBC result set as an iterator result set of SQLJ (limited to the
standard interface version)

The JDBC result set (ResultSet) that was created using the JDBC API is converted
with the CAST statement and read as a result set of the SQLJ cursor.
The coding example follows:

#sql [execCtx] { CALL MULTI_RESULTS() };
 ResultSet rs;
 while((rs == execCtx.getNextResultSet()) != null){
 processing-of-the-retrieval-result;
 rs.close();
 }

 public void showEmployeeName() throws SQLException
 {
 sqlj.runtime.ResultSetIterator iter;
 #sql iter = { SELECT ename FROM rmp } ;
 ResultSet rs = iter.getResultSet();
 while(rs.next()){
 System.out.println("employee name: " + rs.getString(1));
 }
 iter.close();
 }

18. SQLJ

1374

(3) Converting JDBC connection into SQLJ connection context
The SQLJ connection context defines a constructor for generating an object from a
JDBC connection. Using this constructor, you can convert a JDBC connection into an
SQLJ connection context. Note that JDBC connection is transferred as an argument of
the constructor. You can also use both types of connection together.
 An example follows:

(4) Converting SQLJ connection into JDBC connection
You can use the getConnection method to get the JDBC connection from an SQLJ
connection. You can also use both types of connection together.
With the native interface version, an SQLJ connection cannot be converted into a
JDBC connection. To use the same connection as JDBC, you must create a connection
in JDBC beforehand, and then convert the connection into an SQLJ connection
context.
 An example follows:

(5) Dynamic SQL statement
SQLJ can describe only static SQL statements. Therefore, to execute a dynamic SQL
statement, you must use the JDBC API.

(a) Executing a dynamic SQL statement
A dynamic SQL statement is executed using a PreparedStatement object in JDBC.
When the prepareStatement method for the connection context is executed using
the SQL as an argument, a PreparedStatement object is returned as a return value.

 #sql iterator Employees(String ename, double sal);
 Statement stmt=conn.createStatement();
 String query="SELECT pname, pcode FROM stock WHERE pcode > 1000";
 ResultSet rs=stmt.executeQuery(query);
 Employees emps;
 #sql emps ={CAST :rs };

 java.sql.Connection jdbcConCtx =java.sql.DriverManager.getConnection(...);
 #sql context Inventory;
 Inventory sljConCtx = new Inventory(jdbcConCtx);

 #sql context Inventory;
 Inventory sljConCtx = new Inventory(url);
 java.sql.Connection jdbcConCtx = sqljConCtx.getConnection();

18. SQLJ

1375

To set a parameter in a dynamic SQL statement, use the set method of
PreparedStatement. To execute the dynamic SQL statement, use the execute
method of the PreparedStatement object.
An example of dynamic SQL execution follows:

(b) Retrieving a dynamic cursor
Only static cursors can be used in SQLJ. Therefore, to use a dynamic cursor, you must
use the JDBC API.
When the prepareStatement method for the connection context is executed for a
character string that indicates a SELECT statement, a PreparedStatement object is
returned as a return value.
To set a parameter, use the set method of PreparedStatement. To execute the SQL
statement, use the executeQuery method of the PreparedStatement object. The
executeQuery method returns the JDBC result set.
To receive a retrieval result, use the get method for result sets.
An example of retrieval using a dynamic cursor follows:

(c) Executing a DESCRIBE statement
To determine the column name and data type of each retrieval item of a dynamic
cursor, use a ResultSetMetaData object. You can obtain a ResultSetMetaData
object from the getMetaData object of the result set.
You can also use the getColumnClassName method of the ResultSetMetaData
object to obtain the character string that indicates the data type of each retrieval item.
You can use the getColumnName method to obtain column names.
Specify the items to be retrieved using numbers (beginning with 1). You can use the
getColumnCount method to obtain the number of columns.
An example of executing the DESCRIBE statement follows:

 java.sql.PreparedStatement pstmt = con.prepareStatement(
 "INSERT INTO FOO_TABLE VALUES(?, ?)");
 pstmt.setInt(1, 100);
 pstmt.setString(2, "test");
 pstmt.execute();

 java.sql.PreparedStatement pstmt = con.prepareStatement(
 "SELECT NAME, POINT FROM FOO_TABLE WHERE BAR=100");
 ResultSet rs = pstmt.executeQuery();
 String name;
 Integer point;
 rs.next();
 name = pstmt.getString(1);
 point = pstmt.getInteger(2);

18. SQLJ

1376

18.3.11 Creating and executing a UAP
(1) Executing the SQLJE translator

1.Set environment variables.

When the HiRDB client is the IPF version of UNIX:

Set environment variables as shown below. The underlined portion is the
default installation directory.

• For HiRDB/Developer's Kit

CLASSPATH=$CLASSPATH:/HiRDB/pdsqlj.jar1

• For HiRDB/Run Time

CLASSPATH=$CLASSPATH:/HiRDB/pdruntime.jar2

CLASSPATH=$CLASSPATH:/HiRDB/pdnativert.jar3

1 For the 32-bit mode HP-UX (IPF) version, this setting becomes
pdsqlj32.jar.
2 For the 32-bit mode HP-UX (IPF) version, this setting becomes
pdruntime32.jar.
3 For the 32-bit mode HP-UX (IPF) version, this setting becomes
pdnativert32.jar.

When the HiRDB client is Windows:

Choose Control Panel, System, System Properties, and Environment in
that order, and then specify as shown below. The underlined portion is the
default installation directory:

• For HiRDB/Developer's Kit

 java.sql.PreparedStatement pstmt = con.prepareStatement(
 "SELECT * FROM FOO_TABLE");
 java.sql.ResultSetMetaData aMeta = pstmt.getMetaData();
 int columCount = aMeta.getColumnCount();
 Vector nameList = new Vector();
 Vector classLis = new Vector();
 for(int i = 1; i <= columnCount; i++){
 nameList.addElement(aMeta.getColumnName(i));
 classList.addElement(a.Meta.getColumnClassName(i));
 }
 Vector dataList = new Vector();
 rs.next();
 for(int i = 1; i <= columnCount; i++){
 dataList.addElement(rs.getObject(i));
 }

18. SQLJ

1377

CLASSPATH=%CLASSPATH%:\HiRDB\pdsqlj.jar
• For HiRDB/Run Time

CLASSPATH=%CLASSPATH%\HiRDB\pdruntime.jar
CLASSPATH=%CLASSPATH%\HiRDB\pdnativert.jar

2. Executing the SQLJ Translator

The SQLJ Translator runs on a Java virtual machine.
Format

Description

option
Table 18-8 lists the SQLJ Translator options.

file-name-1
This is a UAP source file that describes SQLJ.

file-name-2
This is a post-source file.

file-name-1 and file-name-2 may contain a path. If file-name-2.java is not
specified, file-name-1.java is assumed.
Table 18-8: SQLJ Translator options

 pdjava [option] file-name-1.sqlj [file-name-2.java]

Options Coding format Explanation

-dir -dir=directory-name Specifies the direction in which to create the
post-source file.

-d -d=directory-name

-status -status Displays the internal status for preprocessing.
This is a debugging option.

-J -J-option Specifies a Java virtual machine option to be
used during the execution of the SQLJ
Translator.

-version -version Displays the version of the SQLJ translator. No
translation is performed.

-help -help Specified to display an option explanation. No
translation is performed.

18. SQLJ

1378

Notes

1. When specifying multiple options, use spaces to separate the options.
Up to two options can be specified for the standard interface version,
and up to three options (including -native) for the native interface
version. If more options are specified, an error occurs.

2. The -native option for using the native interface version must be
specified first. If the -native option is not specified first, an error
occurs.

3. If the -help or -version option is specified, the other options are
ignored. However, it both -help and -version are specified at the
same time, both are valid.

Execution example

Execution examples are shown below.
• For the standard interface version

Example 1: pdjava file-name.sqlj
Example 2: pdjava -dir=d:\sqljsrc file-name.sqlj
Example 3: pdjava -d64 file-name.sqlj*

* This example is for the 64-bit mode HP-UX (IPF) version.

• For the native interface version

Example 1: pdjava -native file name.sqlj
Example 2: pdjava -native -dir=d:\sqljsrc file name.sqlj
Example 3: pdjava -native -d64 file name.sqlj*

* This example is for the 64-bit mode HP-UX (IPF) version.

-native -native Generates a post source for the native interface.
If you are specifying multiple options, be sure to
specify this option first.

-d 64 -d 64 Specifies that the SQLJ translator is to be
executed with the 64-bit mode HP-UX (IPF)
version.

Options Coding format Explanation

18. SQLJ

1379

(2) Compiling and executing an UAP
1. Setting environment variables

See step 1 in (1) Executing the SQLJ Translator.
2. Compiling the post-source file

Use the Java compiler to compile the post-source file generated by the SQLJ
Translator. The format used for compilation follows:

3. Setting the path to the JDBC driver in CLASSPATH

For details on setting up a path for the JDBC driver, see 16.1 Installation and
environment setup.

4. Using DriveManager to connect to a database

For details about database connection using DriverManager, see 16.2.1 Driver
class.

5. Using the Java Virtual Machine to execute the CLASS file

Use the Java Virtual Machine to execute the Class file. The execution format
follows:

When the 32-bit mode HP-UX (IPF) version is used, the execution format is as
follows:

18.3.12 Migrating an SQLJ source from the standard interface
version to the native interface version

Some portions must be revised to migrate an SQLJ source from the standard interface
version to the native interface version. Table 18-9 shows where revision is required to
migrate to the native interface version.

Table 18-9: Migrating an SQLJ source to the native interface version

 javac file-name-2.java

 java file-name-2

 java -d64 file-name-2

Command name Standard interface
version

Native interface version Revision
needed?

UAP (input) source file-name.sqlj file-name.sqlj N

18. SQLJ

1380

UAP (output) source JAVAsource-file-name.
javaprofile-name.ser

JAVAsource-file.java N

Option Specification of output file
name, others

Specification of output file name,
others

N

SQL prefix #sql #sql N

SQL terminator ; ; N

SQL declare section Unnecessary Unnecessary N

Embedded variable :variable-name :variable-name N

Declaration statement #sql context class-name
#sql iterator class-name

#sql context class-name
#sql iterator class-name1

N2

Connection context
creation

A JDBC connection object can
be specified in a parameter.

A JDBC connection object can be
specified in a parameter.

N

An object other than a JDBC
connection object can be
specified in a parameter.

There is no object that obtains the
same parameter.

Y3

Use of default
connection context

JP.co.Hitachi.soft.HiR
DB.sqj.runtime.
PrdbContext

JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.
PrdbContext

Y4

Explicit specification of
execution context

sqlj.runtime.Execution
Context

JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.
ExecutionContext

Y5

Use of the CAST
statement (acceptance
of a JDBC result set)

Can be executed. Cannot be executed. Y6

Acceptance of dynamic
result set

Can be executed. Cannot be executed. Y7

Data type byte[]
java.math.BigDecimal
java.lang.String

JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.
HiRDBBLOB
JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.
HiRDBDECIMAL
JP.co.Hitachi.soft.HiRDB.pd
jpp.runtime.
HiRDBCHAR and others

Y8

Command name Standard interface
version

Native interface version Revision
needed?

18. SQLJ

1381

Legend:
Y: Need for revision.
N: No need for revision.

1 A name iterator cannot be used. A position iterator can be used but not in an inner
class.
2 Revision becomes necessary when a name iterator or an inner class is used.
3 Change the connection process. For details, see 18.3.7(1)(d) Connecting to the
HiRDB server when the native interface is used.
4 Change the JP.co.Hitachi.soft.HiRDB.sqj.runtime.PrdbContext
package name to
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.PrdbContext.
5 Change sqlj.runtime.ExecutionContext to
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ExecutionContext.
6 CAST statements result in errors when translated. Therefore, delete all CAST
statements. Modify the UAP so that it operates the JDBC result set directly and does
not use an SQLJ iterator.
7 Since there is no method that accepts a dynamic result set, an error occurs during Java
compilation. Therefore, delete the section that issues
ExecutionContext.getNextResultSet(). To get the dynamic result set, change
the UAP so that is uses JDBC directly.
8 byte[] is requested to the HiRDB server as the BINARY type. Modification is
necessary if the HIRDB server is version 06-02 or earlier.
When the BigDecimal type is specified in an acceptance variable, the precision in set
to 15 and the scale to 0. Therefore, if any other precision or scale value is set, the value
must be changed.
When String is specified in an input variable, it is requested to the HiRDB server as
the VARCHAR type. If you want to associate the data type with a data type of the HiRDB
server, you must change the data type.

Execution of different
SELECT statements that
use the same iterator
object name

Can be executed. Cannot be executed. Y9

Command name Standard interface
version

Native interface version Revision
needed?

18. SQLJ

1382

9 The same iterator object name cannot be used to execute different SELECT
statements. In this case, a separate iterator object name must be specified for each
SELECT statement.

#sql iterator pos(HiRDBCHAR(10));
 :
pos positer = null
pos positer2 = null;
HiRDBCHAR out = null;
 :
#sql positer = {SELECT * FROM T1};
#sql {FETCH :positer INTO :out}
positer.close();

#sql positer2 = {SELECT * FROM T2};
#sql {FETCH :positer2 INTO :out}
positer2.close();

18.3.13 Notes about UAP development
When developing a UAP that uses multiple threads, do not use the default connection
text as the connection context. If multiple threads use the same connection context, an
error occurs.
When using multiple threads, be sure to specify the connection context explicitly. An
example in which the connection context is specified explicitly follows:

#sql context Ctx;

public class sample{
 public void main(String args[]){
 Ctx con = null;
 #sql [con] {CONNECT}; //Explicit
specification of connection context
 ...
 int data = 100;
 #sql [con] {INSERT INTO T1 VALUES(:data)}; //Explicit
specification of connection context

 #sql [con] {DISCONNECT}; //Explicit
specification of connection context
 }
}

When using the SQLJ native interface version, match the number of SELECT statement
retrieval items with the number of columns of the iterator object to be used. If the two
do not match, false errors may occur.

18. SQLJ

1383

18.4 Native Runtime

The SQLJ runtime library used by the native interface is called Native Runtime.
Native Runtime provides the following functions:

• Classes and interfaces used in compilation when the -native option is specified
• Access to HiRDB

18.4.1 Package configuration
Table 18-10 shows the configuration of the Native Runtime packages.

Table 18-10: Configuration of the Native Runtime packages

18.4.2 Public classes of Native Runtime
Table 18-11 lists the public classes of Native Runtime.

Table 18-11: Public classes of Native Runtime

Package name Collected contents

JP.co.Hitachi.soft.HiRDB.pdjpp.runtime Classes and interfaces

JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.error Error class

Package Class or interface
name

Function

N/A Connection context This class is generated by #sql
context class-name; of the SQLJ
translator. This corresponds to a
connection context of SQLJ.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

PrdbContext This is the default connection context.
This corresponds to the default
connection context of SQLJ.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

ExecutionContext This is an execution context. This class
corresponds to an execution context of
SQLJ and is used in managing SQL
execution.

N/A Iterator This class is generated by #sql
iterator class-name; of the SQLJ
translator. This corresponds to an
iterator of SQLJ.

18. SQLJ

1384

Legend:
N/A: No package is available.

18.4.3 Cluster specifications
This section describes the method and field values of each class.

(1) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBCHAR class
Description

This class corresponds to the CHAR type of HiRDB.
Constructors

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

RTResultSet This is a result set object. This class
corresponds to a result set of JDBC and
is used in managing results.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

ForUpdate This interface is implemented by an
iterator declaration when cursor update
using an iterator is used.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBCHAR Indicates the CHAR type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBVARCHAR Indicates the VARCHAR type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBNCHAR Indicates the NCHAR type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBNVARCHAR Indicates the NVARCHAR type of
HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBMCHAR Indicates the MCHAR type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBMVARCHAR Indicates the MVARCHAR type of
HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBDECIMAL Indicates the DECIMAL type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBBLOB Indicates the BLOB type of HiRDB.

JP.co.Hitachi.soft.HiRDB.pdjpp.r
untime

HiRDBBINARY Indicates the BINARY type of HiRDB.

Package Class or interface
name

Function

18. SQLJ

1385

Methods

(2) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBVARCHAR class
Description

This class corresponds to the VARCHAR type of HiRDB.
Constructors

Methods

Return value Method Function description

HiRDBCHAR HiRDBCHAR(String s)
 throws SQLException

Generates a new HiRDBCHAR class.
If the length of the specified character string is
30,001 bytes or greater, SQLException is thrown.

HiRDBCHAR HiRDBCHAR(int len)
 throws SQLException

Returns a HiRDBCHAR class that has a length of len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (single-byte space
character len) was specified. If the specified len
value is not in the range from 1 to 30,000,
SQLException is thrown.

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBVARCHAR HiRDBVARCHAR(String s)
 throws SQLException

Generates a new HiRDBVARCHAR class.
If the length of the specified character string is
32,001 bytes or greater, SQLException is thrown.

HiRDBVARCHAR HiRDBVARCHAR(int len)
 throws SQLException

Returns a HiRDBVARCHAR class that has a length of
len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (single-byte space
character len) was specified. If the specified len
value is not in the range from 1 to 32,000,
SQLException is thrown.

18. SQLJ

1386

(3) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBNCHAR class
Description

This class corresponds to the NCHAR type of HiRDB.
Constructors

Methods

(4) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBNVARCHAR class
Description

This class corresponds to the NVARCHAR type of HiRDB.
Constructors

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBNCHAR HiRDBNCHAR(String s)
 throws SQLException

Generates a new HiRDBNCHAR class.
If the length of the specified character string is
15,001 bytes or greater, SQLException is thrown.

HiRDBNCHAR HiRDBNCHAR(int len)
 throws SQLException

Returns a HiRDBNCHAR class that has a length of len
(len is the number of double-byte characters).
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (double-byte
space character len) was specified. If the
specified len value is not in the range from 1 to
15,000, SQLException is thrown.

Return value Methods Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBNVARCHAR HiRDBNVARCHAR(String s)
 throws SQLException

Generates a new HiRDBNVARCHAR class.
If the length of the specified character string is
16,001 characters or greater, SQLException is
thrown.

18. SQLJ

1387

Methods

(5) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBMCHAR class
Description

This class corresponds to the MCHAR type of HiRDB.
Constructors

Methods

HiRDBNVARCHAR HiRDBNVARCHAR(int len)
 throws SQLException

Returns a HiRDBNVARCHAR class that has a length
of len (len is the number of double-byte characters).
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (double-byte
space character len) was specified. If the
specified len value is not in the range from 1 to
16,000, SQLException is thrown.

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBMCHAR HiRDBMCHAR(String s)
 throws SQLException

Generates a new HiRDBMCHAR class.
If the length of the specified character string is
30,001 bytes or greater, SQLException is thrown.

HiRDBMCHAR HiRDBMCHAR(int len)
 throws SQLException

Returns a HiRDBMCHAR class that has a length of
len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (single-byte space
character len) was specified. If the specified len
value is not in the range from 1 to 30,000,
SQLException is thrown.

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

18. SQLJ

1388

(6) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBMVARCHAR class
Description

This class corresponds to the MVARCHAR type of HiRDB.
Constructors

Method

(7) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBBLOB class
Description

This class corresponds to the BLOB type of HiRDB.
Constructors

Return value Method Function description

HiRDBMVARCHAR HiRDBMVARCHAR(String s)
 throws SQLException

Generates a new HiRDBMVARCHAR class.
If the length of the specified character string is
32,001 bytes or greater, SQLException is thrown.

HiRDBMVARCHAR HiRDBMVARCHAR(int len)
 throws SQLException

Returns a HiRDBMVARCHAR class that has a length
of len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that (single-byte space
character len) was specified. If the specified len
value is not in the range from 1 to 32,000,
SQLException is thrown.

Return value Method Function description

String getString() Returns the String object.

int length() Returns the character string length.

Return value Method Function description

HiRDBLOB HiRDBBLOB(byte[] b) Generates a new HiRDBBLOB class.

HiRDBBLOB HiRDBBLOB(int len)
 throws SQLException

Returns a HiRDBBLOB class that has a length of len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that the number
(0(0x30) len) was specified. If the specified
len value is 0 or less, SQLException is thrown.

18. SQLJ

1389

Methods

(8) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBBINARY class
Description

This class corresponds to the BINARY type of HiRDB.
Constructors

Methods

(9) JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.HiRDBDECIMAL class
Description

This class corresponds to the DECIMAL type of HiRDB.
Constructors

Return value Method Function description

byte[] getBytes[] Returns byte[].

int length() Returns the byte[] length.

Return value Method Function description

HiRDBBINARY HiRDBBINARY(byte[] b) Generates a new HiRDBBINARY class.

HiRDBBINARY HiRDBBINARY(int len)
 throws SQLException

Returns a HiRDBBINARY class that has a length of
len.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that the number
(0(0x30) len) was specified. If the specified
len value is 0 or less, SQLException is thrown.

Return value Method Function description

byte[] getBytes() Returns byte[].

int length() Returns the byte[] length.

Return value Method Function description

HiRDBDECIMAL HiRDBDECIMAL(String s)
 throws SQLException

Generates a new HiRDBDECIMAL class.
If the character string of the argument contains a
character string other than a number, a period, and a
sign or if the precision and scale values obtained
from the character string are 30 or higher,
SQLException occurs.

18. SQLJ

1390

Methods

18.4.4 Coding examples using the native interface
(1) Data insertion and retrieval

A coding example (sample1.sqlj) of data insertion and retrieval follows:

HiRDBDECIMAL HiRDBDECIMAL
 (java.math.BigDecimal)
 throws SQLException

Generates a new HiRDBDECIMAL class.
If the precision and scale values in the arguments
are 30 or higher, SQLException occurs.

HiRDBDECIMAL HiRDBDECIMAL(int x,int y)
 throws SQLException

Returns a HiRDBDECIMAL class with precision x
and scale y.
This constructor is used to specify this class in a
single-row retrieval or the OUT parameter of a CALL
statement. If this constructor is specified in an input
variable, the system assumes that 0 was specified. If
x is not in the range from 1 to 29, y is not in the
range from 0 to 29, and x is less than y,
SQLException occurs.

Return value Method Function description

String getString() Returns the String object.

java.math.BigDec
imal

getBigDecimal() Returns the java.math.BigDecimal object.

int precision() Returns the precision.

int scale() Returns the scale.

import java.sql.*;
import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.*;
//Declare iterator (cursor)
#sql iterator Pos(int,HiRDBCHAR(10),HiRDBNCHAR(5),HiRDBDECIMAL(10,5));

public class sample1{
 public static void main(String args[]){

 //Connect and create table
 try{
 #sql{CONNECT}; //Refer to client environment variable and connect
 #sql{CREATE TABLE SAMPLE1(c1 int,c2 char(10),c3 nchar(5),c4 decimal(10,5))};
 }catch(SQLException e){System.out.println(e.getMessage());};

Return value Method Function description

18. SQLJ

1391

(2) Data insertion and single-row retrieval
A coding example (sample2.sqlj) of data insertion and single-row retrieval
follows:

 //Insert data
 try{
 int InInt = 100;
 HiRDBCHAR InChar = new HiRDBCHAR("CHAR");
 HiRDBNCHAR InNchar = new HiRDBNCHAR("NCHAR");
 HiRDBDECIMAL InDecimal = new HiRDBDECIMAL("12345.678");

 #sql{INSERT INTO SAMPLE1 VALUES(:InInt,:InChar,:InNchar,:InDecimal)};
 #sql{COMMIT};
 }catch(SQLException e){System.out.println(e.getMessage());};

 //Retrieve data (FETCH)
 try{
 Pos sampleCur = null;
 int OutInt = 0;
 HiRDBCHAR OutChar = null;
 HiRDBNCHAR OutNchar = null;
 HiRDBDECIMAL OutDecimal = null;

 #sql sampleCur = {SELECT * FROM SAMPLE1};
 while(true){
 #sql {FETCH :sampleCur INTO :OutInt ,:OutChar ,:OutNchar ,:OutDecimal };
 if(sampleCur.endFetch()) break;
 System.out.println("c1="+ OutInt +" c2="+ OutChar.getString() +
 " c3="+ OutNchar.getString() + " c4="+ OutDecimal.getString());
 }
 }catch(SQLException e){System.out.println(e.getMessage());};
 try{#sql{DISCONNECT};}catch(SQLException e){System.out.println(e.getMessage());}
 }
}

import java.sql.*;
import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.*;
//Iterator (cursor) declaration
#sql iterator Pos(int,HiRDBCHAR(10),HiRDBNCHAR(5),HiRDBDECIMAL(10,5));

public class sample1{
 public static void main(String args[]){

 //Connection and table creation
 try{
 #sql{CONNECT}; //Refer to the client environment variables and connect.
 #sql{CREATE TABLE SAMPLE1(c1 int,c2 char(10),c3 nchar(5),c4 decimal(10,5))};
 }catch(SQLException e){System.out.println(e.getMessage());};

18. SQLJ

1392

(3) CALL statement execution
A coding example (sample3.sqlj) of CALL statement execution follows:

 //Insert data
 try{
 int InInt = 100;
 HiRDBCHAR InChar = new HiRDBCHAR("CHAR");
 HiRDBNCHAR InNchar = new HiRDBNCHAR("NCHAR");
 HiRDBDECIMAL InDecimal = new HiRDBDECIMAL("12345.678");

 #sql{INSERT INTO SAMPLE1 VALUES(:InInt,:InChar,:InNchar,:InDecimal)};
 #sql{COMMIT};
 }catch(SQLException e){System.out.println(e.getMessage());};

 //Retrieve data (single-row retrieval)
 try{
 //Declare output variables
 int OutInt = 0;
 HiRDBCHAR OutChar = new HiRDBCHAR(10);
 HiRDBNCHAR OutNchar = new HiRDBNCHAR(5);
 HiRDBDECIMAL OutDecimal = new HiRDBDECIMAL(10,5);

 #sql {SELECT * INTO :OutInt,:OutChar,:OutNchar,:OutDecimal FROM SAMPLE1};
 System.out.println("c1="+ OutInt +" c2="+ OutChar.getString() +
 " c3="+ OutNchar.getString() + " c4="+ OutDecimal.getString());
 }catch(SQLException e){System.out.println(e.getMessage());};
 try{#sql{DISCONNECT};}catch(SQLException e){System.out.println(e.getMessage());}
 }
}

import java.sql.*;
import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.*;

public class sample3{
 public static void main(String args[]){

 Integer PInteger1 = new Integer(99);
 Integer PInteger2 = new Integer(100);
 Integer PInteger3 = new Integer(101);try{
 #sql {CONNECT};
 }catch(SQLException e){System.out.println(e.getMessage());}

18. SQLJ

1393

(4) Update using a cursor
A coding example (sample4.sqlj) of update using a cursor follows:

 try{
 #sql {DROP PROCEDURE PROCSQLJ};
 #sql {DROP TABLE PROCTABLE};
 }catch(SQLException e1){}

 try{
 #sql {CREATE TABLE PROCTABLE(c1 int, c2 int)};
 #sql {CREATE PROCEDURE PROC1(in p1 int,out p2 int,inout p3 int)
 begin
 insert into PROCTABLE values(p1,p3);
 select * into p2,p3 from PROCTABLE;
 end};
 #sql {COMMIT};
 }catch(SQLException e){System.out.println(e.getMessage());}

 try{
 #sql {CALL PROC1(in :PInteger1 ,out :PInteger2 ,inout :PInteger3)};
 }catch(SQLException e){System.out.println(e.getMessage());}

 System.out.println("IN parameter PInteger1 = " + PInteger1);
 System.out.println("OUT parameter PInteger2 = " + PInteger2);
 System.out.println("INOUT parameter PInteger3 = " + PInteger3);

 try{#sql {DISCONNECT};}catch(SQLException e){System.out.println(e.getMessage());}
 }
}

import java.sql.*;
import JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.*;
#sql iterator iterP implements
JP.co.Hitachi.soft.HiRDB.pdjpp.runtime.ForUpdate(short);

public class sample4{
 public static void main(String args[]){
 iterP positer = null;
 iterP positer2 = null;
 short indata;
 short indata2 = 0;
 short indata3 = 999;
 try{
 #sql {CONNECT};
 #sql {DROP TABLE CURTABLE};
 }catch(SQLException e){System.out.println(e.getMessage());}

18. SQLJ

1394

 //Create table
 try{#sql {CREATE TABLE CURTABLE(c1 smallint)};
 }catch(SQLException e){System.out.println(e.getMessage());}
 //Insert data
 for(short i = 0;i < 5;i++){
 indata = i;
 try{#sql{INSERT INTO CURTABLE VALUES(:indata)};}catch(SQLException e){}
 }

 //Execute SELECT and update using cursor
 try{
 #sql positer = {SELECT * FROM CURTABLE};
 }catch(SQLException e){}
 try{
 while(true){
 #sql {FETCH :positer INTO :indata2};
 if(positer.endFetch()) break;
 System.out.println(indata2);
 #sql { UPDATE CURTABLE SET C1=:indata3 WHERE CURRENT OF :positer };
 }
 }catch(SQLException e){e.getMessage();}

 //Check update results
 try{#sql positer2 = {SELECT * FROM CURTABLE};}catch(SQLException e){}
 try{
 while(true){
 #sql {FETCH :positer2 INTO :indata2};
 if(positer2.endFetch()) break;
 System.out.println(indata2);
 }
 }catch(SQLException e){System.out.println(e.getMessage());}
 try{#sql{DISCONNECT};}catch(SQLException e){}
 }
}

1395

Appendixes

A. SQL Communications Area
B. SQL Descriptor Area
C. Column Name Descriptor Area
D. Type Name Descriptor Area
E. SQL Data Types and Data Descriptions
F. Data Dictionary Table Retrieval
G. Functions provided by HiRDB
H. Maximum and Minimum HiRDB Values

A. SQL Communications Area

1396

A. SQL Communications Area

When SQL statements are executed, HiRDB sends a return code and related
information to the UAP indicating whether or not the SQL statements executed
normally. The area that receives this information is called the SQL Communications
Area. This appendix explains the organization and contents of the SQL
Communications Area and the expansion of the area.
For details about the use of the SQL Communications Area, see 3.6 SQL error
identification and corrective measures.

A.1 Organization and contents of the SQL Communications Area
The organization and contents of the area that receives SQL execution information are
explained as follows.

(1) Organization of the SQL Communications Area
Figure A-1 shows how the SQL Communications Area is organized.

A. SQL Communications Area

1397

Figure A-1: Configuration of SQL Communications Area

Note

1. Numbers in parentheses indicate length (in bytes).
2. Brackets [] in parentheses enclose a value for 64-bit mode. For 64-bit mode

Windows, SQLCA is 336 bytes.
3. In 64-bit mode, the length of SQLCABC, SQLCODE, and SQLERRD becomes

the size of the long type for each platform.
(2) Contents of the SQL Communications Area

Table A-1 shows the contents of the SQL Communications Area.

A. SQL Communications Area

1398

Table A-1: Contents of the SQL Communications Area

Level
number1

Communications
area name

Data
type

Length
(bytes)

Description

1 SQLCA 336
[368]

Denotes the overall SQL Communications Area.

2 SQLCAID 8 Denotes the SQLCAIDC, SQLCAIDS, and SQLCAIDE
areas.

3 SQLCAIDC char 5 Contains a character string (SQLCA) indicating that
the area is the SQL Communications Area.

3 SQLCAIDS char 2 Used by HiRDB.

3 SQLCAIDE char 1 Used by HiRDB.2

2 SQLCABC long 4 [8]6 Sets the size (336 [368] bytes) of the SQL
Communications Area.

2 SQLCODE long 4 [8]6 Receives one of the following return codes from
HiRDB after SQL statements have been executed:
Negative: Abnormal termination
0: Normal termination
Positive: Normal termination with a message
For details about the messages associated with
return codes, see the manual HiRDB Version 8
Messages. Return codes associated with messages
are retrieved as follows:
Return code Associated message ID
-yyy KFPA11yyy
-1yyy KFPA19yyy
-3yyy KFPA18yyy
 yyy KFPA12yyy
 3yyy KFPA13yyy
Examples:
Return code Message ID
-125 KFPA11125
-1200 KFPA19200
-3200 KFPA18200
 100 KFPA12100
 3010 KFPA13010

A. SQL Communications Area

1399

2 SQLERRM 256 Denotes the SQLERRML and SQLERRMC areas.
The contents of these areas vary depending on
whether the return code returned to the SQLCODE
area is positive or negative:
• If the return code is negative, a character string

indicating the location or the cause of the error
can be returned

• If the return code is positive, a character string
indicating message information can be returned.

3 SQLERRML short 2 Contains the length of the message returned to the
SQLERRMC area.

3 SQLERRMC char 254 Contains the message associated with the return
code returned to the SQLCODE area; for the contents
of this area, see the manual HiRDB Version 8
Messages.

2 SQLERRP char 8 Used by HiRDB.

2 SQLERRD long 4 6
[8 6]6

Contains the internal status of HiRDB. This area is
an array of six areas of the long data type:
SQLERRD[0]: Not used
SQLERRD[1]: Not used
SQLERRD[2]: One of the following values.3
• Number of rows retrieved by the SELECT

statement
• Number of rows updated by the UPDATE

statement
• Number of rows deleted by the DELETE

statement
• Number of rows inserted by the INSERT

statement
• Number of rows fetched by the FETCH

statement
• Number of rows created by the ASSIGN LIST

statement
SQLERRD[3]: Not used
SQLERRD[4]: Not used
SQLERRD[5]: Not used

2 SQLWARN0 char 1 W is set in this area when a warning flag (W) is set in
any of the areas SQLWARN1-SQLWARNF.

Level
number1

Communications
area name

Data
type

Length
(bytes)

Description

A. SQL Communications Area

1400

2 SQLWARN1 char 1 W is set in this area if an embedded variable for
receiving data during character data retrieval was
shorter than the data, and the truncated value was
received.
W is also set if the embedded variable for receiving
data during repetition retrieval had a smaller
element count than the data and values of the
discarded elements that were received; otherwise,
this area is blank.

2 SQLWARN2 char 1 W is set in this area if the null value was ignored in
set function processing; otherwise, this area is
blank.
However, in either of the following cases, a blank
may be set in this area even if the null value was
ignored during set function processing:
• When a table that defines an index that

recognizes a null value as an exception value is
retrieved.

• When the rapid grouping facility is used.
This area is not used in remote database access.

2 SQLWARN3 char 1 W is set in this area if the number of columns
containing the results of a retrieval did not match the
number of embedded variables that received the
results of the retrieval; otherwise, this area is blank4.

2 SQLWARN4 char 1 W is set in this area if an UPDATE or DELETE
statement without a WHERE clause was executed;
otherwise, this area is blank. This area is not used in
remote database access.

2 SQLWARN5 char 1 Spare

2 SQLWARN6 char 1 W is set in this area if the transaction was cancelled
implicitly; otherwise, this area is blank.

2 SQLWARN7 char 1 W is set in this area if a repetition column with
subscripts is specified in the SET or DELETE clause
of the UPDATE statement, and the update is ignored
because there are no elements in the row to be
updated; otherwise, this area is blank. This area is
not used in remote database access.

2 SQLWARN8 char 1 Spare

2 SQLWARN9 char 1 Spare

Level
number1

Communications
area name

Data
type

Length
(bytes)

Description

A. SQL Communications Area

1401

: Not Applicable.
Note

Value in brackets [] indicates the length for 64-bit mode. For 64-bite mode
Windows, SQLCA is 336 bytes.

1 Level numbers indicate the set inclusion relationships of the SQL Communications
Area. The level 1 Communications Area is composed of level 2 Communications
Areas.
2 This area stores the type of database management system at the server with which
remote database access was performed. The following values can be set in the
SQLCAIDE area:

2 SQLWARNA5 char 1 W is set in this area if an invalid date occurred as a
result of a date operation and HiRDB modified the
date automatically to the last day of the affected
month; otherwise, this area is blank. This area is not
used in remote database access.

2 SQLWARNB5 char 1 W is set in this area if either an overflow error or
division by zero error occurred in a computation
during SQL statements execution and the result of
the computation was set as a null value. Otherwise,
this area is blank. This area is not used in remote
database access.

2 SQLWARNC5 char 1 W is set in this area when the value for a day in a date
interval is more than two digits after a date
operation has been completed; otherwise, this area
is blank. This area is not used in remote database
access.

2 SQLWARND char 1 W is set in this area when a warning that occurs in a
foreign server cannot be classified into other types
of SQLWARN.

2 SQLWARNE char 1 Spare

2 SQLWARNF char 1 Spare

2 SQLCASYS char 16 Used by HiRDB.

Value Server's database management system Remote database access
protocol

K SQL/K OSI-RDA

Level
number1

Communications
area name

Data
type

Length
(bytes)

Description

A. SQL Communications Area

1402

3 For remote database access, information depends on the distributed server as follows:

4 If the server is either HiRDB or XDM/RD, a remote database access operation results
in an SQL error.
5 The first FETCH statement returns W when an SQL statement containing sort
processing or an SQL statement containing the EXISTS predicate is executed.
In the HiRDB/Parallel Server environment, the row that returns W cannot be
determined if a warning is generated at the WHERE clause.
6 In 64-bit mode, the length is the size of the long type for each platform.

O ORACLE OSI-RDA

P HiRDB OSI-RDA

R XDM/RD OSI-RDA

1 RDB1 E2 OSI-RDA

(Blank) Local access Not applicable

Other One of the following:
• A database management system other than the above
• Not connected to a server system (database management

system not applicable)

OSI-RDA

Returned value DBMS at server

HiRDB and XDM/RD Other than HiRDB or
XDM/RD

Number of rows fetched by the SELECT statement These values are set. These values are set when
a rows count is returned
from the server DBMS;
otherwise, 0 is set.

Number of rows updated by the UPDATE statement

Number of rows deleted by the DELETE statement

Number of rows inserted by the INSERT statement

Number of rows fetched by the FETCH statement These values are set.

Number of rows created by the ASSIGN LIST
statement

These values are not
usable.

These values are not
usable.

Value Server's database management system Remote database access
protocol

A. SQL Communications Area

1403

A.2 Expanding the SQL Communications Area
The SQL Communications Area need not be described in the UAP, because it is
expanded by the SQL preprocessor in the source program written in a high-level
language.
The format of the SQL Communications Area expanded by the SQL preprocessor in a
source program is shown as follows.

(1) C
This example shows SQL Communications Area expansion when C language is used.
 #define SQLCAIDE sqlca.sqlcaide
 #define SQLCODE sqlca.sqlcode
 #define SQLERRML sqlca.sqlerrml
 #define SQLERRMC sqlca.sqlerrmc
 #define SQLERRMD sqlca.sqlerrmd
 #define SQLERRD0 sqlca.sqlerrd[0]
 #define SQLERRD1 sqlca.sqlerrd[1]
 #define SQLERRD2 sqlca.sqlerrd[2]
 #define SQLERRD3 sqlca.sqlerrd[3]
 #define SQLERRD4 sqlca.sqlerrd[4]
 #define SQLERRD5 sqlca.sqlerrd[5]
 #define SQLWARN0 sqlca.sqlwarn0
 #define SQLWARN1 sqlca.sqlwarn1
 #define SQLWARN2 sqlca.sqlwarn2
 #define SQLWARN3 sqlca.sqlwarn3
 #define SQLWARN4 sqlca.sqlwarn4
 #define SQLWARN5 sqlca.sqlwarn5
 #define SQLWARN6 sqlca.sqlwarn6
 #define SQLWARN7 sqlca.sqlwarn7
 #define SQLWARN8 sqlca.sqlwarn8
 #define SQLWARN9 sqlca.sqlwarn9
 #define SQLWARNA sqlca.sqlwarna
 #define SQLWARNB sqlca.sqlwarnb
 #define SQLWARNC sqlca.sqlwarnc
 #define SQLWARND sqlca.sqlwarnd
 #define SQLWARNE sqlca.sqlwarne
 #define SQLWARNF sqlca.sqlwarnf
 typedef struct sqlca {
 char sqlcaidc[5]; /* Table ID */
 char sqlcaids[2]; /* Used by HiRDB */
 char sqlcaide; /* Used by HiRDB */
 long sqlcabc; /* SQLCA area length */
 long sqlcode; /* SQLCODE */
 short sqlerrml; /* Effective message length */
 char sqlerrmc[254]; /* Message text */
 char sqlerrp[8]; /* Used by HiRDB */
 long sqlerrd[6]; /* HiRDB internal status */

A. SQL Communications Area

1404

 char sqlwarn0; /* Warning information flag */
 char sqlwarn1; /* Warning information 1 */
 char sqlwarn2; /* Warning information 2 */
 char sqlwarn3; /* Warning information 3 */
 char sqlwarn4; /* Warning information 4 */
 char sqlwarn5; /* Warning information 5 */
 char sqlwarn6; /* Warning information 6 */
 char sqlwarn7; /* Warning information 7 */
 char sqlwarn8; /* Warning information 8 */
 char sqlwarn9; /* Warning information 9 */
 char sqlwarna; /* Warning information 10 */
 char sqlwarnb; /* Warning information 11 */
 char sqlwarnc; /* Warning information 12 */
 char sqlwarnd; /* Warning information 13 (reserved) */
 char sqlwarne; /* Warning information 14 (reserved) */
 char sqlwarnf; /* Warning information 15 (reserved) */
 char sqlcasys1[16]; /* Reserved */
 }SQLCA;
 extern SQLCA sqlca;

(2) COBOL
The next example shows SQL Communications Area expansion when COBOL is
used.
01 SQLCA IS EXTERNAL.
 02 SQLCAID PIC X(8).
 02 FILLER REDEFINES SQLCAID.
 03 SQLCAIDC PIC X(5).
 03 SQLCAIDS PIC X(2).
 03 SQLCAIDE PIC X(1).
 02 SQLCABC PIC S9(9) COMP.
 02 SQLCODE PIC S9(9) COMP.
 02 SQLERRM.
 03 SQLERRML PIC S9(4) COMP.
 03 SQLERRMC PIC X(254).
 02 SQLERRP PIC X(8).
 02 SQLERRD PIC S9(9) COMP OCCURS 6 TIMES.
 02 SQLWARN.
 03 SQLWARN0 PIC X.
 03 SQLWARN1 PIC X.
 03 SQLWARN2 PIC X.
 03 SQLWARN3 PIC X.
 03 SQLWARN4 PIC X.
 03 SQLWARN5 PIC X.
 03 SQLWARN6 PIC X.
 03 SQLWARN7 PIC X.
 02 SQLEXT.
 03 SQLWARN8 PIC X.

A. SQL Communications Area

1405

 03 SQLWARN9 PIC X.
 03 SQLWARNA PIC X.
 03 SQLWARNB PIC X.
 03 SQLWARNC PIC X.
 03 SQLWARND PIC X.
 03 SQLWARNE PIC X.
 03 SQLWARNF PIC X.
 02 SQLCASYS1 PIC X(16).

B. SQL Descriptor Area

1406

B. SQL Descriptor Area

Sometimes when SQL statements are assembled dynamically during execution of a
UAP, the number and attributes of the I/O variables (data exchange areas) necessary
for executing the SQL statements can be determined only when the UAP is executed.
Therefore, HiRDB requires an area in which I/O variables are determined dynamically
during UAP execution. The information in the area (the number, attributes, and I/O
variable addresses) is posted to HiRDB via the OPEN, FETCH, or EXECUTE statement.
The area is called the SQL Descriptor Area. The area can also be used by the
DESCRIBE statement to receive information on SQL retrieval items that were
preprocessed for dynamic execution.
For details about the UAP description languages that can use the SQL Descriptor Area,
see 3.2 Overview of UAPs.

B.1 Organization and contents of the SQL Descriptor Area
This appendix explains the organization and contents of the areas that are described in
the information on I/O variables, determined dynamically at the time of UAP
execution.

(1) Organization of the SQL Descriptor Area
Figure B-1 shows how the SQL Descriptor Area is organized.

Figure B-1: Organization of the SQL Descriptor Area

Notes

1. Numbers in parentheses indicate length (in bytes).
2. n indicates the number of SQLVARs specified in SQLN.

B. SQL Descriptor Area

1407

3. Square brackets ([]) enclose the length for 64-bit mode. For 64-bit mode
Windows, SQLDA is 16 + 24n bytes.

4. In 64-bit mode, the length of SQLDABC is the size of the long type for each
platform.

* If BLOB- or BINARY-type data is used, the area name is SQLVAR_LOB, which consists
of SQLDIM(1), SQLCOD(1), SQLXDIM(2), SQLLOBLEN(4), SQLDATA(4 [8]), and
SQLLOBIND(4 [8]).
Define the SQLVAR_LOB area in the SQLVAR area, and use it by overwriting the
SQLVAR area during the input/output of BLOB-type data. For the contents of
SQLVAR_LOB, see Table B-3 Contents of SQLVAR_LOB.

(2) Contents of the SQL Descriptor Area
Table B-1 shows the contents of the SQL Descriptor Area; for details about SQL data,
see Table B-2 Data codes and data lengths set in the SQL Descriptor Area.

Table B-1: Contents of the SQL Descriptor Area

Level
number1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

1 SQLDA 16+16n
[24+24n]

Denotes the overall SQL
Descriptor Area.

2 SQLDAID char 8 HiRDB Contains the SQLDA ID (SQLDA
), indicating the

SQLDA. This parameter is set
when the DESCRIBE or
DESCRIBE TYPE statement is
issued.

2 SQLDABC long 4 [8]6 HiRDB Contains the length of SQLDA.
This parameter is set when the
DESCRIBE or DESCRIBE TYPE
statement is issued.

2 SQLN2 short 2 UAP When an SQLDA area is allocated
or SQLDA is used, this
parameter specifies the number
of SQLVARs (1 to 4000) for the
allocated SQLDA area.

HiRDB Binary 0 is set in this area if there
is not enough SQLDA area
(SQLN < SQLD) when the
DESCRIBE or DESCRIBE TYPE
statement is issued.

B. SQL Descriptor Area

1408

2 SQLD short 2 UAP When the OPEN or EXECUTE
statement is issued, specifies the
number of input ? parameters in
SQLD of the SQL Descriptor
Area that is specified in the
USING clause.
When the EXECUTE statement is
issued, specifies the number of
output ? parameters in SQLDA
of the SQL Descriptor Area that
is specified in the INTO clause.
When the FETCH statement is
issued, specifies the number of
retrieval items (1-4000).

Level
number1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

1409

HiRDB Binary 0, the number of retrieval
items, or the number of output ?
parameters is set when the
DESCRIBE [OUTPUT] statement
is issued:
0:

The SQL statement that was
preprocessed was a
statement other than the
SELECT statement and was
not a CALL statement
containing an output ?
parameter

Number of retrieval items:
The SQL statement that was
preprocessed was the
SELECT statement

Number of output ? parameters:
The SQL statement that was
preprocessed was the CALL
statement

The number of input ?
parameters is set when the
DESCRIBE INPUT statement is
issued.
The total number of user-defined
type configuration elements that
the system tried to receive and
high-order user-defined type
configuration elements being
inherited is set when the
DESCRIBE TYPE statement is
issued. However, if the number
of configuration elements
exceeds 30,000, 30001 is set.

2 SQLVAR 16n
[24n]

Area composed of the SQLDIM,
SQLCOD, SQLXDIM, SQLLEN,
SQLSYS, SQLDATA, and SQLIND
areas. This set of areas should be
defined at least as many times as
the value specified in the SQLN
area.

3 SQLDIM unsigne
d char

1 Not used.

Level
number1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

1410

3 SQLCOD unsigne
d char

1 UAP A data code3 is specified in this
area when an EXECUTE, OPEN, or
FETCH statement is issued.

HiRDB A data code3 is set in this area
after a DESCRIBE or DESCRIBE
TYPE statement is issued.

3 SQLXDIM short 2 UAP One of the following values is
specified, depending on the
structure type of the area for the
variable specified by SQLDA
when the EXECUTE, OPEN, or
FETCH statement is issued.
Simple structure: 1
Repetition structure: 2 to 30000
(integer indicating maximum
number of elements in the area)
For details about data area
structures, see E. SQL Data
Types and Data Descriptions.

HiRDB One of the following values is set
depending on the structure type
of the retrieval item or ?
parameter when the DESCRIBE
or DESCRIBE TYPE statement is
issued.
Simple structure: 1
Repetition structure: 2 to 30000
(integer indicating maximum
number of members in the area)

3 SQLLEN3, 4 short 2 UAP A data length3 is set in this area
when an EXECUTE, OPEN, or
FETCH statement is issued.

HiRDB A data length3 is set in this area
after a DESCRIBE or DESCRIBE
TYPE statement is issued.

Level
number1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

1411

Legend:
: One blank.
: Not applicable.

Note

3 SQLSYS short 2 UAP The following value is specified
when the EXECUTE, OPEN, or
FETCH statement is issued:
• Length of the area for one

element that includes a gap
when a variable-length
character string type
(VARCHAR, NVARCHAR,
MVARCHAR) of a repetition
structure or array structure is
specified.

• 0 for all other cases

HiRDB 0 is set when the DESCRIBE or
DESCRIBE TYPE statement is
issued.

3 SQLDATA5 unsigne
d char

4 [8] UAP Specifies the address of the data
area that stores the value of the ?
parameter when either an
EXECUTE or an OPEN statement is
issued.5
When a FETCH statement is
issued, this area specifies the
address of the data area that
receives the data.

3 SQLIND5 short 4 [8] UAP Specifies the address of the area
for receiving the value of the
indicator variable only if a data
code with an indicator variable is
set in SQLCODE when an
EXECUTE, OPEN, or FETCH
statement is issued. The area for
receiving the value of the
indicator variable is 2 bytes. For
details about indicator variable
specification, see Table B-2 Data
codes and data lengths set in the
SQL Descriptor Area.

Level
number1

Data
Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

1412

Square brackets ([]) enclose the length for 64-bit mode. For 64-bit mode
Windows, SQLCA is 16 + 24n bytes.

1 Level numbers indicate the set inclusion relationships of the SQL Descriptor Area.
For example, the level 1 data area is composed of level 2 data areas.
2 The number of SQLVARs set by a UAP in the SQLN area should be either the number
of ? parameters set in the SQLD area or a value greater than the number of retrieval
items. If the number of SQLVARs is less than the number of ? parameters or less than
the number of retrieval items, HiRDB posts this fact by returning binary 0 to the SQLN
area.
3 For details about the data codes and data lengths, see Table B-2 Data codes and data
lengths set in the SQL Descriptor Area.
4 For a packed decimal number (DECIMAL, INTERVAL YEAR TO DAY, or INTERVAL
HOUR TO SECOND), the SQLLEN area is composed of the following areas:

5 Because the SQLDATA and SQLIND areas are cleared when a DESCRIBE statement is
executed, a value must be reset after the DESCRIBE statement has executed. For
repetition columns, use the following structure to set a value:

6 In 64-bit mode, the length is the size of the long type for each platform.

Data area name Data type Length
(bytes)

Description

SQLPRCSN B 1 Precision (p)

SQLSCALE B 1 Decimal scaling position (s)

B. SQL Descriptor Area

1413

Table B-2: Data codes and data lengths set in the SQL Descriptor Area

Decimal
data
code

Hexadecima
l data code

Indicator
variable

Data type Data length Unit

0 00 Data type not available in
HiRDB1

0 Bytes

48 30 No C VARCHAR(n)4 1 n 320002

49 31 Yes

68 44 No ROW Row length L in table
to be operated on:
 1 L 30,00069 45 Yes

100 64 No INTERVAL YEAR TO DAY Precision 8
Decimal scaling factor
0

Digits

101 65 Yes

110 6E No INTERVAL HOUR TO
SECOND

Precision 6
Decimal scaling factor
0111 6F Yes

112 70 No DATE 4 Bytes

113 71 Yes

120 78 No TIME 3

121 79 Yes

124 7C No TIMESTAMP[(p)] 7 p 2
p = 0, 2, 4, or 6125 7D Yes

131 83 Abstract data type3

B. SQL Descriptor Area

1414

144 90 No BINARY(n) 1 n
21474836472

Bytes

145 91 Yes

146 92 No BLOB[(n)] 1 n
2147483647

147 93 Yes

154 9A No BINARY locator 4

155 9B Yes

158 9E No BLOB locator 4

159 9F Yes

160 A0 No MVARCHAR(n) 1 n 320002

161 A1 Yes

164 A4 No MCHAR[(n)] 1 n 30000

165 A5 Yes

176 B0 No NVARCHAR(n) 1 n 160002 Characters

177 B1 Yes

180 B4 No NCHAR(n) or NATIONAL
CHAR[ACTER](n)

1 n 15,000

181 B5 Yes

192 C0 No VARCHAR(n) 1 n 32,0002 Bytes

193 C1 Yes

196 C4 No CHAR[ACTER](n) 1 n 30,000

197 C5 Yes

224 E0 No FLOAT or DOUBLE
PRECISION

8

225 E1 Yes

226 E2 No SMALLFLT or REAL 4

227 E3 Yes

Decimal
data
code

Hexadecima
l data code

Indicator
variable

Data type Data length Unit

B. SQL Descriptor Area

1415

Legend:
: Not applicable.

Note

During a remote database access to a distributed server other than HiRDB, the
DESCRIBE statement converts the data types for the distributed server to the
corresponding HiRDB data types. For details about data type conversion by the
DESCRIBE statement, see 11.4 Available data types.

1 When a DESCRIBE statement that accesses remotely a DBMS other than HiRDB is
executed, and there is no HiRDB data type corresponding to the data type at the server,
data code 0 is set. Remote database access cannot access the data in a column for which
this data code is set. You cannot set data code 0 in a UAP for SQL statements other
than the DESCRIBE statement. Also, the HiRDB dictionary table does not include data
code 0. For details about the association between a distributed server and the data type
when remote database access is performed using the distributed client facility, see 11.4
Available data types.
2 When a variable-length character string of 0 length is set in the UAP, 1 must be set
in the SQLLEN area.
3 When the DESCRIBE statement is executed, a data type is returned from the server.
The UAP can reference data types. Data type setup and data length setup and

228 E4 No [LARGE]DEC[IMAL]
[(p [, s])]

Precision p
Decimal scaling factor
s
1 p 29, 0 s

 p

Digits

229 E5 Yes

234 EA No DISPLAY SIGN LEADING
SEPARATE5

Precision p
Decimal scaling factor
s
1 p 29, 0 s

 p

235 EB Yes

240 F0 No INT[EGER] 4 Bytes

241 F1 Yes

244 F4 No SMALLINT 2

245 F5 Yes

Decimal
data
code

Hexadecima
l data code

Indicator
variable

Data type Data length Unit

B. SQL Descriptor Area

1416

referencing are disabled.
4 This data type can be set in C.
5 This data type can be set in COBOL.

Table B-3: Contents of SQLVAR_LOB

Level
number1

Data Area
name

Data
type

Length (bytes) Source
of

value

Description

2 SQLVAR_LOB 16n
[24n]

Area that consists of SQLDIM,
SQLCOD, SQLXDIM, SQLLOBLEN,
SQLDATA, SQLDATA, and
SQLLOBIND. Define this area in
the SQLVAR area, and use it by
overwriting the SQLVAR area
during the input/out of BLOB-
and BINARY-type data.

3 SQLDIM unsigned
char

1 Not used.

3 SQLCOD unsigned
char

1 UAP Specifies a data code2 when the
EXECUTE, OPEN, or FETCH
statement is issued.

HiRDB Contains a data code2 after the
DESCRIBE or DESCRIBE TYPE
statement has been issued.

3 SQLXDIM short 2 UAP Specifies 1 when the EXECUTE,
OPEN, or FETCH statement is
issued. For details about the data
area structures, see E. SQL Data
Types and Data Descriptions.

HiRDB Contains the value 1 after the
DESCRIBE or DESCRIBE TYPE
statement has been issued.

3 SQLLOBLEN2 long
[int]

4 UAP Specifies the data length2 when
the EXECUTE, OPEN, or FETCH
statement is issued.

HiRDB Contains the data length2 after
the DESCRIBE or DESCRIBE
TYPE statement is issued.

B. SQL Descriptor Area

1417

: Not applicable.
Note

The square brackets in the data type and length columns indicate the data type and
length in the 64-bit mode.

1 Level numbers indicate the set inclusion relationships of the SQL Descriptor Area.
For example, the level 2 data area is composed of the level 3 data areas.
2 For details on data length and data codes, see Table B-2 Data codes and data lengths
set in the SQL Descriptor Area.
3 The SQLDATA and SQLLOBIND data areas are cleared when a DESCRIBE statement
is executed. Therefore, if you use a DESCRIBE statement, reset the values for these data
areas after executing the DESCRIBE statement. For the structure for setting a value in
a repetition column, see footnote #5 in Table B-1 Contents of the SQL Descriptor Area.

B.2 Expanding the SQL Descriptor Area
The SQL Descriptor Area is allocated by means of a declaration within the UAP.
The format of the SQL Descriptor Area expanded in a source program is shown below,
followed by an example.

3 SQLDATA3 unsigned
char *

4 [8] UAP When the EXECUTE or OPEN
statement is issued, specifies the
address of the data area in which
a ? parameter value is stored.
When the FETCH statement is
issued, specifies the address of
the data area that receives the
data.

3 SQLLOBIND3 long *
 [int *]

4 [8] UAP Specifies the address of the area
for receiving the value of the
indicator variable only if a data
code with an indicator variable is
set in SQLCODE when an
EXECUTE, OPEN, or FETCH
statement is issued. The area for
receiving the value of the
indicator variable is 4 bytes. For
details about indicator variable
specification, see Table B-2
Data codes and data lengths set
in the SQL Descriptor Area.

Level
number1

Data Area
name

Data
type

Length (bytes) Source
of

value

Description

B. SQL Descriptor Area

1418

(1) Expansion format of the SQL Descriptor Area
(a) C

This example shows SQL Descriptor Area expansion when C is used.
struct {
 char sqldaid[8]; /* Table ID */
 long sqldabc; /* Table length */
 short sqln; /* Elements count in SQLVAR array */
 short sqld; /* ? parameters count, retrieval items count */
 struct sqlvar{ /* Data information area */
 unsigned char sqldim; /* Unused */
 unsigned char sqlcod; /* Data code */
 short sqlxdim; /* Maximum elements count */
 union {
 short sqllen; /* Data length */
 struct {
 unsigned char sqlprcsn; /* Precision */
 unsigned char sqlscale; /* Scale */
 } s_sqllen;
 } sqllen;
 short sqlsys; /* Unused */
 unsigned char *sqldata; /* Data area address */
 short *sqlind; /* Indicator variable address */
 } SQLVAR[n];1
} sqlda;2

1 n indicates the required number (1-30000).
2 Any desired character string can be specified for the structure name (sqlda portion),
except that no character string beginning with SQL is allowed.

(b) COBOL
This example shows SQL Descriptor Area expansion when COBOL is used.
01 USQLDA1
 02 USQLDAID PIC X(8) VALUE 'SQLDA'.
 02 USQLDABC PIC S9(9) COMP.
 02 USQLN PIC S9(4) COMP.
 02 USQLD PIC S9(4) COMP.
 02 USQLVAR OCCURS n TIMES.2
 03 USQLTYPE PIC S9(4) COMP.
 03 FILLER REDEFINES USQLTYPE.
 04 USQLDIM PIC X(1).
 04 USQLCOD PIC X(1).
 03 USQLXDIM PIC S9(4) COMP VALUE IS 1.
 03 USQLATTR.
 04 USQLLEN PIC S9(4) COMP.

B. SQL Descriptor Area

1419

 04 FILLER REDEFINES USQLLEN.
 05 USQLPRCSN PIC X(1).
 05 USQLSCALE PIC X(1).
 04 USQLSYS PIC S9(4) COMP.
 03 FILLER REDEFINES USQLATTR.
 04 USQLLOBLEN PIC S9(9) COMP.
 03 USQLDATA USAGE IS ADDRESS.
 03 USQLIND USAGE IS ADDRESS.
1 Any name can be specified as the name of the set item (USQLDA area); however, a
character string that begins with SQL cannot be used for a data item.
2 n indicates the required number (1-30000).

(2) SQL Descriptor Area example
(a) Declaration and area allocation for using the SQL Descriptor Area

The SQL Descriptor Area is declared and allocated in the UAP.
(b) Collection of retrieval item information

This next example illustrates collecting retrieval item information. The items
identified by numbers in the code are explained as follows.
EXEC SQL BEGIN DECLARE SECTION; 1
struct{ .. 1
long* cmd_len; 1
char cmd_data[1000]; 1
}XCMND; .. 1
EXEC SQL END DECLARE SECTION; 1
XCMND.cmd_len=(long*)sprintf(XCMND.cmd_data,
 "SELECT*FROM stock WHERE GNO=1") .. 2
EXEC SQL WHENEVER SQLERROR GO TO :RERROR; 3
EXEC SQL PREPARE ST1 FROM :XCMND; 4
EXEC SQL DESCRIBE ST1 INTO :DAREA; 5

Notes

1. When a DESCRIBE statement is executed, binary 0 or the number of retrieval
items is set in the SQLD area:
0 is set when the SQL statement that was preprocessed is not a SELECT

statement.
Number of retrieval items is set when the SQL statement that was

preprocessed is a SELECT statement.
2. The data code, data length, and maximum elements count of each retrieval

item are set in SQLCOD, SQLLEN, and SQLXDIM, respectively.

B. SQL Descriptor Area

1420

* In 64-bit mode, this is int.
Explanation

1. Declares an embedded variable (XCMND) for storing the SQL statements.
2. Sets the SQL statement in the variable (XCMND).
3. Specifies the action to be taken if an error occurs after SQL statement

execution.
4. Preprocesses the SQL statements specified as the variable XCMND and

assigns an SQL statement identifier (ST1).
5. Collects the information of items retrieved by the SQL statements (ST1) into

the SQL Descriptor Area (DAREA).
(c) Fetching retrieval results with dynamic receive area allocation

In this example, retrieval results are fetched into areas allocated based on the
information obtained using a DESCRIBE statement. The items in italics in the figure
are explained as follows.
for(n=0;n<DAREA.sqld;n++){ 1
 DAREA.SQLVAR[n].sqldata=(unsigned char *)&(X_INT_DATA[n]);
.. 1
 DAREA.SQLVAR[n].sqlind=&(X_IND[n]); 1
} ... 1
EXEC SQL DECLARE CR1 CURSOR FROM ST1; 2
EXEC SQL OPEN CR1 3
EXEC SQL WHENEVER NOT FOUND GO TO:FEND; 4
for(;;){ 5
 EXEC SQL FETCH CR1 USING DESCRIPTOR:DAREA . 5
 : 5,6
} .. 5
 EXEC SQL WHENEVER NOT FOUND CONTINUE; 7
FEND:EXEC SQL CLOSE CR1; 8

Notes

Before the FETCH statement is executed, the following information must be set in
DAREA:

• Size of SQLVAR array (SQLN)
• Number of areas to receive retrieval results (SQLD): executing a DESCRIBE

statement sets this value
• Data type of receive area (SQLCOD): executing a DESCRIBE statement sets

this value
• Data length of receive area (SQLLEN): executing a DESCRIBE statement sets

this value.

B. SQL Descriptor Area

1421

Explanation

1. Sets the address of the allocated area in the SQL Descriptor Area (DAREA).
2. Declares a cursor (CR1) for the SQL statement identifier (ST1).
3. Opens the cursor (CR1).
4. Specifies the action to be taken (branching to FEND) at the termination of

retrieval.
5. Advances the cursor (CR1) to the next line, and fetches that line into the area

specified by the SQL Descriptor Area (DAREA).
6. Specifies the processing to be performed on the retrieval result (e.g., editing

and output).
7. Invalidates the action at the termination of retrieval.
8. Closes the cursor (CR1).

(d) Dynamic allocation of a data area for specifying ? parameter values
This is an example of inserting data into a dynamically specified table. The items in
italics in the figure are explained as follows.
char TNAME[30]; ... 1
scanf("%S",TNAME); 2
XCMND.cmd_len=(long*)sprint(XCMND.cmd_data,
 "SELECT * FROM %S",TNAME); 3

EXEC SQL PREPARE ST1 FROM:XCMND; 3

EXEC SQL DESCRIBE ST1 INTO:DAREA; 3
 : ... 4
for(n=0;n<DAREA.sqld;n++){ 5
DAREA.SQLVAR[n].sqldata=(unsigned char *)&(X_INT_DATA[n]);
................................ 5
DAREA.SQLVAR[n].sqlind=&(X_IND[n]); 5
} .. 3
XCMND.cmd_len=(long*)sprit(XCMND.cmd_data,
 "INSERT INTO %S VALUES(?,...,?)",TNAME);
........................... 6
 EXEC SQL PREPARE ST2 FROM:XCMND; 7
for(;;){ ... 8
 [Input insertion data (branched to IEND if there is no data)]; 8
 [Insert data in the data area and the indicator variable area]; 8
 EXEC SQL EXECUTE ST2 USING DESCRIPTOR:DAREA; 8
} .. 8
IEND:
* In 64-bit mode, this is int.

B. SQL Descriptor Area

1422

Explanation

1. Declares the variable (TNAME) that stores the table name.
2. Loads the table name from the input data into the variable (TNAME).
3. Uses the DESCRIBE statement to set the columns count of the table specified

in 2 data type, data length, and maximum elements count of each column, as
the number of ? parameters, the data type, data length, and maximum
elements count of the data area for each ? parameter, respectively, in the SQL
Descriptor Area (DAREA).

4. Allocates data area for each ? parameter.
5. Sets the address of the allocated area in the SQL Descriptor Area (DAREA).
6. Creates an INSERT statement for inserting data into the specified table.
7. Preprocesses the INSERT statement in XCMND and assigns the SQL statement

identifier (ST2).
8. Repeats data insertion on a row basis, setting in the data area, and execution

using the EXECUTE statement, as long as data to be inserted exists.
(e) Retrieving DECIMAL data using a FETCH statement

In this example, DECIMAL data is retrieved using a FETCH statement.
1. Declares a data area and an indicator variable.

EXEC SQL BEGIN DECLARE SECTION ;

 SQL TYPE IS DECIMAL(20,0) xdec1 ; /* Data area */
 short xdec1_i ; /* Indicator variable */

EXEC SQL END DECLARE SECTION ;

2. Sets an SQL Descriptor Area.

PDSQLCOD(usrsqlda, 2)=PDSQL_DECIMAL_I ; /* Sets a data code */

 PDSQLPRCSN(usrsqlda, 2)=20 ; /* Sets precision */
 PDSQLSCALE(usrsqlda, 2)= 0 ; /* Sets a scale */
 PDSQLDATA(usrsqlda, 2)=(void*)xdec1 ; /* Embedded variable
address*/
 /* Setting */
 PDSQLXDIM(usrsqlda, 2)=1; /* Not a repetition column */

PDSQLIND(usrsqlda, 2)=(void*)&xdec1_i ; /* Indicator variable address
*/
 /* Setting */

B. SQL Descriptor Area

1423

(3) SQL Descriptor Area expansion
Table B-4 shows the procedure for expanding the SQL Descriptor Area.

Table B-4: SQL Descriptor Area expansion procedure

Following is a COBOL coding example in which parameters are specified in the SQL
Descriptor Area:
EXEC SQL
 BEGIN DECLARE SECTION
END EXEC
01 IN-CHR1 PIC X(15).
01 IN-IND1 PIC S9(4) COMP.
EXEC SQL
 END DECLARE SECTION
END-EXEC
COPY SQLDA.
 :
COMPUTE USQLDABC=32
COMPUTE USQLN=1
COMPUTE USQLD=1
COMPUTE USQLDATA(1)=FUNCTION ADDR(IN-CHR1)
MOVE SQLCNST0 TO USQLDIM(1)
MOVE SQLDCOD197 TO USQLCOD(1)
COMPUTE USQLXDIM(1)=1
COMPUTE USQLLEN(1)=15
COMPUTE USQLIND(1)=FUNCTION ADDR(IN-INT1)
EXEC SQL
 EXECUTE ST1 USING DESCRIPTOR :USQLDA
END-EXEC

(4) SQL Descriptor Area operation macros
Various macros for declaring the SQLDA and for setting/referencing values are defined
in C language. These macros can be used by including the unique header file
(pdbsqlda.h) in the UAP. Table B-5 shows the SQL Descriptor Area operation
macros, and Table B-6 shows the macros for specifying data types.

Language When include file is used When directly coded by user

C #include <pdbsqlda.h> PDUSRSQLDA(n)
usrsqlda;

Expansion of SQL Descriptor Area is
coded directly.

COBOL COPY SQLDA
[REPLACING 255 BY n].

Expansion of SQL Descriptor Area is
coded directly. Level 01 must always be
specified first.

B. SQL Descriptor Area

1424

Table B-5: SQL Descriptor Area operation macros

Legend:
usrsqlda: User-defined SQL Descriptor Area name; any name can be specified.
m: Number of ? parameters (1-30000).
n: Number of ? parameters to be specified or referenced (0-29999).
Table B-6: Macros for specifying data types

Macro Function

PDUSRSQLD(m) Declares a user SQLDA.

PDSETSIZE(usrsqlda,m) Specifies the SQLDA size.

PDSQLN(usrsqlda) Specifies the ? parameter.

PDSQLD(usrsqlda) Specifies/references the ? parameter and the number of retrieval items.

PDSQLCOD(usrsqlda,n) Specifies/references the data code.

PDSQLLEN(usrsqlda,n) Specifies/references the data length (other than BLOB and decimal
number).

PDSQPRCSN(usrsqlda,n) Specifies/references the precision (decimal number only).

PDSQLSCALE(usrsqlda,n) Specifies/references the scale (decimal number only).

PDSQLDATA(usrsqlda,n) Specifies the address of the data area.

PDSQLIND(usrsqlda,n) Specifies an indicator variable address.

PDSQLLOBLEN(usrsqlda,n) Specifies/references the BLOB data length.

PDSQLDIM(usrsqldata,n) Specifies/references the value in unused area.

PDSQLXDIM(usrsqldata,n) Specifies/references the maximum number of elements for the repetition
structure.

PDSQLSYS(usrsqldata,n) Specifies the length of one element that includes the gap in
variable-length character string type for the repetition structure or array
structure.

Macro Indicator variable Corresponding data type

PDSQL_FLOAT
PDSQL_FLOAT_I

No
Yes

FLOAT

PDSQL_SMALLFLT
PDSQL_SMALLFLT_I

No
Yes

SMALLFLT

B. SQL Descriptor Area

1425

PDSQL_DECIMAL
PDSQL_DECIMAL_I

No
Yes

DECIMAL

PDSQL_INTEGER
PDSQL_INTEGER_I

No
Yes

INTEGER

PDSQL_SMALLINT
PDSQL_SMALLINT_I

No
Yes

SMALLINT

PDSQL_VARCHAR
PDSQL_VARCHAR_I

No
Yes

VARCHAR

PDSQL_CHAR
PDSQL_CHAR_I

No
Yes

CHAR

PDSQL_NVARCHAR
PDSQL_NVARCHAR_I

No
Yes

NVARCHAR

PDSQL_NCHAR
PDSQL_NCHAR_I

No
Yes

NCHAR

PDSQL_MVARCHAR
PDSQL_MVARCHAR_I

No
Yes

MVARCHAR

PDSQL_MCHAR
PDSQL_MCHAR_I

No
Yes

MCHAR

PDSQL_DATE
PDSQL_DATE_I

No
Yes

DATE

PDSQL_TIME
PDSQL_TIME_I

No
Yes

TIME

PDSQL_YEARTODAY
PDSQL_YEARTODAY_I

No
Yes

INTERVAL YEAR TO DAY

PDSQL_HOURTOSEC
PDSQL_HOURTOSEC_I

No
Yes

INTERVAL HOUR TO SECOND

PDSQL_ROW
PDSQL_ROW_I

No
Yes

ROW

PDSQL_BLOB
PDSQL_BLOB_I

No
Yes

BLOB

PDSQL_TIMESTAMP
PDSQL_TIMESTAMP_I

No
Yes

TIMESTAMP

PDSQL_BINARY
PDSQL_BINARY_I

No
Yes

BINARY

Macro Indicator variable Corresponding data type

B. SQL Descriptor Area

1426

Following is a C coding example in which parameters are specified in the SQL
Descriptor Area:
#include <pdbsqlda.h> /* Includes header file. */

EXEC SQL BEGIN DECLARE SECTION ;
short xint1 ;
char xchr1[16] ;
EXEC SQL END DECLARE SECTION ;
PDUSRSQLDA(2) usrsqlda ; /* Declares SQL Descriptor
 Area. */
 :
ClearSqlda(2); /* Clears SQL Descriptor Area */
PDSQLCOD(usrsqlda, 0)=PDSQL_SMALLINT ; /* Sets data code. */
PDSQLLEN(usrsqlda, 0)=sizeof(short) ; /* Sets data code. */
PDSQLDATA(usrsqlda, 0)=(void*)&xint ; /* Sets embedded variable
 address. */
PDSQLIND(usrsqlda, 0)=NULL ; /* Sets indicator variable
 address. */
PDSQLCOD(usrsqlda, 1)=PDSQL_CHAR ; /* Sets data code. */
PDSQLLEN(usrsqlda, 1)=sizeof(xchar)-1 ;/* Sets data code. */
PDSQLDATA(usrsqlda, 1)=(void*)xchr ; /* Sets embedded variable
 address. */
PDSQLIND(usrsqlda, 1)=NULL ; /* Sets indicator variable
 address. */

EXEC SQL
 EXECUTE ST1 USING DESCRIPTOR :usrsqlda ;

(5) Expansion format of repetition columns
During compilation, embedded variables in a repetition column are expanded into the
structures shown in Table B-7 based on macro definition. The explanation here applies
to the C language.
The macro for manipulating a repetition column uses the members of the expanded
structures to reference the elements of the repetition column.
If the user wishes to directly set an address in the SQL Descriptor Area by securing an

PDSQL_BLOB_LOC
PDSQL_BLOB_LOC_I

No
Yes

BLOB locator

PDSQL_BINARY_LOC
PDSQL_BINARY_LOC_I

No
Yes

BINARY locator

PDSQL_CVARCHAR
PDSQL_CVARCHAR_I

No
Yes

VARCHAR for C

Macro Indicator variable Corresponding data type

B. SQL Descriptor Area

1427

area, the area must be assigned to a language boundary. FLOAT ARRAY explicitly
includes a free area for language boundary adjustment. However, when setting an
address in the SQL Descriptor Area, you must set it by taking a free area into
consideration.
Specify these expansion formats only when adjusting a boundary or determining a size
during this type of area allocation. When specifying a repetition column as an
embedded variable, do not specify an expansion format. Instead, use the macros
described in E. SQL Data Types and Data Descriptions.

Table B-7: Repetition column expansion format

SQL data type Macro name Expansion format

SMALL INT ARRAY[m] PD_MV_SINT(m) struct {
 long mcnt;
 short data[m];
}

INTEGER ARRAY[m] PD_MV_INT(m) struct{
 long mcnt
 long data[m];
}

SMALL FLT ARRAY[m] PD_MV_SFLT(m) struct {
 long mcnt;
 float data[m];
}

FLOAT ARRAY[m] PD_MV_FLT(m) struct
 union {
 double resv1;
 struct {
 long resv2;
 long mcnt;
 }mcnt_dmy2;
 } mcnt_dmy1;
 double data[m];
}

CHAR(n) ARRAY[m] PD_MV_CHAR(m, n) struct {
 long mcnt;
 char data[m][(n)+1];
}

NCHAR(n) ARRAY[m] PD_MV_NCHAR(m, n) struct {
 long mcnt;
 char data[m][2*(n)+1];
}

B. SQL Descriptor Area

1428

VARCHAR(n) ARRAY[m] PD_MV_VCHAR(m, n) struct {
 long mcnt;
 struct {
 short len;
 char str[n];
 } data[m];
}

PD_MV_CVCHAR(m, n) struct {
 long mcnt;
 char data[m][(n)+1];
}

NVARCHAR(n) ARRAY[m] PD_MV_NVCHAR(m, n) struct {
 long mcnt;
 struct {
 short len;
 char str[2*(n)+1];
 } data[m];
}

DECIMAL
 [(p[,s])]ARRAY[m]

PD_MV_DEC(m, p, s) struct {
 long mcnt;
 unsigned char data[m][(p)/
2+1];
}

SQL data type Macro name Expansion format

C. Column Name Descriptor Area

1429

C. Column Name Descriptor Area

When using the SQL Descriptor Area to receive the following information, you can
also receive the column name information and routine parameter information by
specifying a Column Name Descriptor Area:

• Retrieval item information (number of retrieval items, as well as each retrieval
item's data type, data length, and maximum number of elements)

• CALL statement's input/output ? parameter information (number of ? parameters,
as well as the ? parameter's data type and data length)

C.1 Organization and contents of the Column Name Descriptor Area
(1) Organization of the Column Name Descriptor Area

Figure C-1 shows how the Column Name Descriptor Area (SQLCNDA) is organized.
Figure C-1: Organization of the Column Name Descriptor Area

Note

Numbers in parentheses indicate length (in bytes).
* SQLNAMEC is an array of variable-length character strings with a maximum length of
30 bytes. The array should be the same length as the SQLVAR array in the SQL
Descriptor Area. For details about the size of the SQLVAR array, see B.1 Organization
and contents of the SQL Descriptor Area.

(2) Contents of the Column Name Descriptor Area
Table C-1 shows what the Column Name Descriptor Area contains.

C. Column Name Descriptor Area

1430

Table C-1: Contents of the Column Name Descriptor Area

Legend:

: X'FF'
: One blank

Notes

1. The ith element of the Column Name Descriptor Area stores column name
information for the ith retrieval item.

2. If a retrieval item is a column, the column name is assigned to the retrieval
item from the beginning of the retrieval item. If the length of the column
name, including subscripts, is greater than 30 bytes, the excess bytes of the
column name are truncated.
If a retrieval item is not a column, one or two blanks (indicated by in the

Acquired information
item

Type of retrieval item Description

Retrieval item Column (without subscript
specification)

column-name

Column (with subscript
specification)

column-name [subscript]

Set function COUNT(*)
{ { | } function-name (column-name) |

{ | } function-name
(DISTINCT-column-name) | function-name (
EXP)}

Window function EXP(integer)

Value expression (including
literal)

 EXP(integer)

WRITE specification EXP(integer)

ROW ROW

CALL statement's input ?
parameter

? parameter routine's-parameter-name

CALL statement's output
? parameter

User-defined type
configuration element

Attribute attribute-name

C. Column Name Descriptor Area

1431

table) are set at the beginning of the retrieval item. If the column is greater
than 30 bytes, X'FF' is set in byte 2. The symbol in the table denotes the
value X'FF'.

3. Integer indicates the ordinal number of a retrieval item.
4. For UNION[ALL] or EXCEPT[ALL], the contents of the retrieval item in the

query specified first are set in the Column Name Descriptor Areas.
5. If an AS column name is specified, the specified column name is set.
6. The routine's parameter name is set only when the? parameter is specified

independently in the CALL statement's argument. If a value expression
including the? parameter is specified, SQLNAMEL is set to 0.

7. If the retrieval item is a column of a derived table, the derived column list is
omitted after the derived table, and the derived column has no column name
in the query selection expression, NONAME is set.

C.2 Expanding the Column Name Descriptor Area
The Column Name Descriptor Area is allocated as static area by declaring it in the
UAP.

(1) C
The following code shows the format of the Column Name Descriptor Area that is to
be expanded in the source program when C language is used:
struct {
 short sqlnz; /* Effective arrays count */
 struct {
 short sqlnamel; /* Effective column name length */
 char sqlnamec[30]; /* Column name storage area */
 } SQLNAME[n];1
 }XXXXX;2

1 n indicates the same number (1-30000) as the size of the SQLVAR array in the SQL
Descriptor Area.
2 Any desired character string can be specified as the structure name (XXXXX portion),
except that a character string beginning with SQL cannot be specified. When Column
Name Descriptor Areas are specified using a DESCRIBE statement, the name of the
allocated areas must be specified.

(2) COBOL
The following code shows the format of the Column Name Descriptor Area that is to
be expanded in the source program when COBOL is used:
01 SQLCNDA. 1
 02 SQLNZ PIC S9(4) COMP.

C. Column Name Descriptor Area

1432

 02 SQLNAME OCCURS 1 TIMES n. 2
 03 SQLNAMEL PIC S9(4) COMP.
 03 SQLNAMEC PIC X(30).
1 Any name can be specified as the name of the set item (SQLCNDA area); however, a
character string that begins with SQL cannot be used for a data item. In addition, the
set item level must always be set to 01.
2 n indicates the required number (1-30000).

D. Type Name Descriptor Area

1433

D. Type Name Descriptor Area

When the SQL Descriptor Area is used to receive retrieval item information and
user-defined type definition information, user-defined type data type names can also
be received by specifying a Type Name Descriptor Area (SQLTNDA).

D.1 Organization of the Type Name Descriptor Area
Figure D-1 shows how the Type Name Descriptor Area (SQLTNDA) is organized.

Figure D-1: Organization of the Type Name Descriptor Area

Note

Parentheses enclose a length in bytes.
* SQLTNVAR is an array of a structure composed of a variable length character string
SQLSCHEMA with a maximum length of 10 bytes, and a variable-length character string
SQLTYPE with a maximum length of 32 bytes. The array should be the same length as
the SQLVAR array in the SQL Descriptor Area. For details about the size of the SQLVAR
array, see B.1 Organization and contents of the SQL Descriptor Area.

D.2 Contents of the Type Name Descriptor Area
Table D-1 shows what the Type Name Descriptor Area contains.

Table D-1: Contents of the Type Name Descriptor Area

Level
number*

Type name
area name

Data
type

Length
(bytes)

Description

1 SQLTNDA 2+42 n Indicates the name of the entire Type Name
Descriptor Area.

2 SQLTZ short 2 Specifies the number of retrieval items.

2 SQLTNVAR 42 n Area composed of the authorization identifier and
data type identifiers.

D. Type Name Descriptor Area

1434

Legend:
: Not applicable

* Level numbers indicate the set inclusion relationships of the Type Name Descriptor
Area. For example, the level 2 data area is composed of the level 3 data areas.

D.3 Expanding the Type Name Descriptor Area
The Type Name Descriptor Area is allocated by declaring it in the UAP.

(1) C
The following code shows the format of the Type Name Descriptor Area that is to be
expanded in the source program when C is used.
struct {
 short sqlnz; /* Effective array count */
 struct {
 struct {
 short sqlchemal; /* Effective authorization identifier length */
 char sqlschemac[8]; /* Authorization identifier storage area */
 } sqlschema;
 struct {
 short sqltypel; /* Effective length of user-defined type
 name */
 char sqltypec[30]; /* User-defined type name storage area */
 } sqltnvar[n];1
} Usrsqltnda;2

3 SQLSCHEMA 10 Area storing information about the user-defined type
authorization identifier.

4 SQLSCHEMAL short 2 The authorization identifier is set in this area. 0 is set
if the data type of the corresponding retrieval item is
not a user-defined type.

4 SQLSCHEMAC char 8 The authorization identifier is set in this area.

3 SQLTYPE 32 Area storing information about the user-defined type
data type identifier.

4 SQLTYPEL short 2 The length of the user-defined type is set in this area.
0 is set if a data type of the corresponding retrieval
item is not the user-defined type.

4 SQLTYPEC char 30 The data type identifier of the user-defined type is set
in this area.

Level
number*

Type name
area name

Data
type

Length
(bytes)

Description

D. Type Name Descriptor Area

1435

1 n indicates the same number (1-30000) as the size of the SQLVAR array in the SQL
Descriptor Area.
2 Any desired character string can be specified as the structure name (usrsqltnda
portion), except that a character string beginning with SQL cannot be specified. When
the Type Name Descriptor Area is specified using a DESCRIBE statement, the name of
the allocated area must be specified.

(2) COBOL
The following code shows the format of the Type Name Descriptor Area that is to be
expanded in the source program when COBOL is used.
01 USQLTNDA.1
 02 USQLTZ PIC S9(4) COMP.
 02 USQLTNVAR OCCURS 1 TIMES n.2
 03 USQLSCHEMA.
 04 USQLSCHEMAL PIC S9(4) COMP.
 04 USQLSCHEMAC PIC X(8).
 03 USQLTYPE.
 04 USQLTYPEL PIC S9(4) COMP.
 04 USQLTYPEC PIC X(30).
1 Any name can be specified as the name of the set item (USQLTNDA portion); however,
a character string that begins with SQL cannot be used for a data item.
2 n indicates the same number (1-30000) as the size of the SQLVAR array in the SQL
Descriptor Area.

E. SQL Data Types and Data Descriptions

1436

E. SQL Data Types and Data Descriptions

This appendix shows the correspondence between SQL data types and C or COBOL
data descriptions.

E.1 SQL data types and C data descriptions
This section provides the correspondence between SQL data types and C data
descriptions. Data can be exchanged between variables of compatible data types and
between variables of either convertible or assignable data types.
Table E-1 shows how SQL data types relate to C data descriptions. Table E-2 shows
how SQL data types relate to C data descriptions when arrays are used. Table E-3
shows SQL data types and C data descriptions when repetition columns are used.

Table E-1: SQL data types and C data descriptions

SQL data type C data description Remarks

SMALLINT short variable-name;

INTEGER long variable-name;

DECIMAL [(p[,s])] SQL TYPE IS DECIMAL(p,s)
variable-name;5

1 p 29, 0 s p

SMALLFLT, REAL float variable-name;

FLOAT (DOUBLE
PRECISION)

double variable-name;

CHAR [(n)] char variable-name[n+1];1 1 n 30000

VARCHAR(n) struct {
short variable-name-1;
char variable-name-2[n];
} structure-name;

1 n 32000

SQL TYPE IS
VARCHAR(n)
variable-name;6

VARCHAR variable-name[n+1]9

NCHAR [(n)] char variable-name-2[2n+1];1 1 n 15000

E. SQL Data Types and Data Descriptions

1437

NVARCHAR(n) struct {
short variable-name-1;
char variable-name-2[2n];
} structure-name;

1 n 16000

SQL TYPE IS
NVARCHAR(n)
 variable-name;6

MCHAR [(n)] char variable-name[n+1];1 1 n 30000

MVARCHAR(n) struct {
short variable-name-1;
char variable-name-2[n];
} structure-name;

1 n 32000

SQL TYPE IS
MVARCHAR(n)
 variable-name;6

DATE char variable-name[11];2

TIME char variable-name[9];2

INTERVAL YEAR TO DAY SQL TYPE IS DECIMAL(8,0)
 variable-name;5

INTERVAL HOUR TO
SECOND

SQL TYPE IS DECIMAL(6,0)
 variable-name;5

TIMESTAMP[(p)] char variable-name[n + 1];2 If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

ROW3 char variable-name[n + 1]; 1 total length 30000

BLOB SQL TYPE IS BLOB(n[K |M |G])]
 variable-name;4

Default: 1 n 2147483647
In units of K: 1 n 2097152
In units of M: 1 n 2048
In units of G: 1 n 2

SQL data type C data description Remarks

E. SQL Data Types and Data Descriptions

1438

Legend:
: Cannot be coded.

n: Length (bytes)
p: Precision (total number of digits)
s: Scale (number of digits beyond the decimal point)

Note

In 64-bit mode, use int instead of long.

BINARY(n) struct {
 long variable-name-1;
 char variable-name-2[n];
 } structure-name;

1 n 2147483647

SQL TYPE IS BINARY(n)
 variable-name;7

BLOB locator SQL TYPE IS
BLOB AS LOCATOR
 variable-name8

BINARY locator SQL TYPE IS
BINARY AS LOCATOR
 variable-name8

Indicator
variable

Other
than
BLOB,
BINARY,
BLOB
locator, or
BINARY
locator

short variable-name;

BLOB,
BINARY,
BLOB
locator, or
BINARY
locator

long variable-name;

SQL statement struct {
long variable-name-1;
char variable-name-2[n];
} structure-name;

1 n 2000000

SQL data type C data description Remarks

E. SQL Data Types and Data Descriptions

1439

1 The following rules govern data conversion between SQL data types (CHAR(n),
NCHAR(n), and MCHAR(n)) and C-language data types (char[n+1], char[2n+1],
and char[2n+1]):

• For input (conversion from char[n+1] to CHAR(n), conversion from
char[2n+1] to NCHAR(n), or conversion from char[n+1] to MCHAR(n))
The length of a fixed-length character string received by HiRDB from a C
language-character string is equal to the length from the beginning of the
character string to one character before the null character. If no null character
is found in n+1 array elements, the length is defined as n.

• For output (conversion from CHAR(n) to char[n+1], conversion from
NCHAR(n) to char[2n+1], or conversion from MCHAR(n) to char[n+1])
A null character is appended at the end of the character string; therefore, the
length of the character string known to the UAP is the SQL character string
length + 1.

2 When retrieving date data (DATE) using a dynamic SQL, the data code for the
retrieval item information obtained by the DESCRIBE statement must be set as the
character data type with a data length of at least 10 bytes. Similarly, when retrieving
time data using a dynamic SQL, the data code for the retrieval item information
obtained by the DESCRIBE statement must be set as the character data type with a data
length of at least 8 bytes.

To retrieve time stamp data (TIMESTAMP) using a dynamic SQL statement,
specify the following:

• Set the data code for the retrieval item information obtained using a
DESCRIBE statement to the character data type.

• If p is 0, set the data size to 19 bytes or greater. If p is 2, 4, or 6, set the data
size to 20 + p bytes or greater.

3 Operations involving the ROW type are allowed only when the HiRDB server and the
HiRDB client use the same endian type.
4 The coding of a BLOB UAP is expanded internally as follows:

struct{
 long variable-name_reserved; 1
 unsigned long variable-name_length; 2
 char variable-name_data[m]; 3
} variable-name

1. variable-name_reserved is not used. In the 64-bit mode, int
variable-name_reserved; is used.

2. variable-name_length indicates the actual BLOB size. In the 64-bit mode,

E. SQL Data Types and Data Descriptions

1440

unsigned int variable-name_length; is used.
3. variable-name_data[m] is the BLOB data storage area (where m denotes

the actual data length).
5 The code for a DECIMAL UAP is internally expanded as follows:

unsigned char variable-name[p/2 +1];

One byte of DECIMAL data expresses two numeric digits. A sign is expressed by
four low-order bits of the trailing byte. Therefore, for DECIMAL data consisting
of an even number of digits, four high-order bits of the leading byte must be
padded with 0s. Do not use any number other than 0 for padding purposes.
The following table shows the standard sign representation; for details about the
sign for DECIMAL type used with HiRDB, see the manual HiRDB Version 8 SQL
Reference.

Coding examples

123.4567 (odd number of digits)
unsigned char ex1[4]={0x12,0x34,0x56,0x7c};

-123.456 (even number of digits)
unsigned char ex2[4]={0x01,0x23,0x45,0x6d};

0 (odd number of digits)
unsigned char ex3[1]={0x0c};

6 The following internal expansion takes place:

struct{
 short len;
 char str[n];
}variable-name

For NVARCHAR, str[2n] is used.
7 The following internal expansion takes place:

struct{

Sign in hexadecimal
representation

Description

X'C' Treated as a positive sign. Positive numbers include 0.

X'D' Treated as a negative sign.

E. SQL Data Types and Data Descriptions

1441

 long len;
 char str[n];
}variable-name

In 64-bit mode, long len; is replaced with int len;.
8 The following internal expansion takes place:

unsigned long variable-name;

In 64-bit mode, unsigned long variable-name; is replaced with unsigned
int variable-name;.

9 The following internal expansion takes place:
char variable-name[n+1];

The character string length is the length from the beginning of the string to the
character before the NULL character. When a character string in C is accepted, an
error occurs if there is no NULL character in the n+1-th array element.
Table E-2: SQL data types and C data descriptions when arrays are used

SQL data type C data description Remarks

SMALLINT short variable-name[m];

INTEGER long variable-name[m];

DECIMAL[(p[,s])] SQL TYPE IS DECIMAL(p,s)
 variable-name[m];

1 p 29, 0 s p

SMALLFLT, REAL float variable-name[m];

FLOAT (DOUBLE
PRECISION)

double variable-name[m];

CHAR[(n)] char variable-name[m][n+1]; 1 n 30000

VARCHAR(n) struct {
short variable-name-1;
char variable-name-2[n];
} structure-name[m];

1 n 32000

SQL TYPE IS VARCHAR(n)
 variable-name[m];

VARCHAR variable-name[m][n+1];

NCHAR[(n)] char variable-name[m][2n+1]; 1 n 15000

E. SQL Data Types and Data Descriptions

1442

NVARCHAR[(n)] struct {
short variable-name-1;
char variable-name-2[2n];
} structure-name[m];

1 n 16000

SQL TYPE IS NVARCHAR(n)
 variable-name[m];

MCHAR(n) char variable-name[m][n+1]; 1 n 30000

MVARCHAR(n) struct {
short variable-name-1;
char variable-name-2[n];
} structure-name[m];

1 n 32000

SQL TYPE IS MVARCHAR(n)
 variable-name[m];

DATE char variable-name[m][11];

TIME char variable-name[m][9];

TIMESTAMP[(p)] char variable-name[m][n + 1]; If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

INTERVAL YEAR TO
DAY

SQL TYPE IS DECIMAL(8,0)
 variable-name[m];

INTERVAL HOUR TO
SECOND

SQL TYPE IS DECIMAL(6,0)
 variable-name[m];

ROW char variable-name[m][n+1]; 1 n 30000

BLOB CN

BINARY struct {
long variable-name-1;
char variable-name-2[n];
} structure-name[m];

• FETCH that uses an array
4 n 2147483644 (n must
be a multiple of 4.)

• Other than FETCH that uses an
array4 n 32000 (n must
be a multiple of 4.)SQL TYPE IS BINARY(n)

 variable-name[m];

BLOB locator

BINARY locator SQL TYPE IS
BINARY AS LOCATOR
 variable-name[m];

SQL data type C data description Remarks

E. SQL Data Types and Data Descriptions

1443

Legend:
CN: Cannot be coded.
m: Number of array elements (1-4096)
n: Length (bytes)
p: Precision (total number of digits)
s: Scale (number of digits beyond the decimal point)

Note

In 64-bit mode, use int instead of long.
Table E-3: SQL data types and C data descriptions when repetition columns are
used

Indicator
variable

Other
than
BINARY
or
BINARY
locator

short variable-name[m];

BINARY
or
BINARY
locator

long variable-name[m];

SQL statement CN

SQL data type C data description Remarks

SMALLINT PD_MV_SINT(m) variable-name;

INTEGER PD_MV_INT(m) variable-name;

DECIMAL PD_MV_DEC(m,p,s)
variable-name;

1 p 29,
0 s p

SMALLFLT, REAL PD_MV_SFLT(m) variable-name;

FLOAT (DOUBLE
PRECISION)

PD_MV_FLT(m) variable-name;

CHAR[(n)] PD_MV_CHAR(m,n)
variable-name;

1 n 30000

SQL data type C data description Remarks

E. SQL Data Types and Data Descriptions

1444

Legend:
CN: Cannot be coded.

VARCHAR(n) PD_MV_VCHAR(m,n)
variable-name;

1 n 32000

PD_MV_CVCHAR(m,n)
variable-name;

NCHAR[(n)] PD_MV_NCHAR(m,n)
variable-name;

1 n 15000

NVARCHAR[(n)] PD_MV_NVCHAR(m,n)
variable-name;

1 n 16000

MCHAR(n) PD_MV_CHAR(m, n)
variable-name;

1 n 30000

MVARCHAR(n) PD_MV_CHAR(m, n)
variable-name;

1 n 32000

DATE PD_MV_CHAR(m,10)
variable-name;

TIME PD_MV_CHAR(m,8)
variable-name;

TIMESTAMP[(p)] PD_MV_CHAR(m,n)
variable-name;

If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

INTERVAL YEAR TO
DAY

PD_MV_DEC(m,8,0)
variable-name;

INTERVAL HOUR TO
SECOND

PD_MV_DEC(m,6,0)
variable-name;

ROW CN

BLOB CN

BINARY CN

Indicator variable (other
than BLOB, BINARY,
BLOB locator, or BINARY
locator)

PD_MV_SINT(m) variable-name;

SQL statement CN

SQL data type C data description Remarks

E. SQL Data Types and Data Descriptions

1445

m: Maximum number of repetition array elements (2-30000).
n: Length (bytes)
p: Precision (total number of digits)
s: Scale (number of digits beyond the decimal point)

Special macros for referencing or setting embedded variables for each data type are
used in the SQL data type and C data description when repetition columns are used.
Table E-4 shows the macros for referencing or setting embedded variables.

Table E-4: Macros for referencing or setting embedded variables

SQL data type Macro name Data to be referenced or set Data type

SMALLINT PD_MV_SINT_CNT
(variable-name)

Current repetition data element count long*

PD_MV_SINT_DATA
(variable-name, m)

Each repetition element short

INTEGER PD_MV_INT_CNT
(variable-name)

Current repetition data element count long*

PD_MV_INT_DATA
(variable-name, m)

Each repetition element long*

DECIMAL[(p[,s])] PD_MV_DEC_CNT
(variable-name)

Current repetition data element count long*

PD_MV_DEC_DATA
(variable-name,m)

Start address of each repetition element
in decimal

unsigned

SMALLFLT, REAL PD_MV_SFLT_CNT
(variable-name)

Current repetition data element count long*

PD_MV_SFLT_DATA
(variable-name, m)

Each repetition element float

FLOAT (DOUBLE
PRECISION)

PD_MV_FLT_CNT
(variable-name)

Current repetition data element count long*

PD_MV_FLT_DATA
(variable-name, m)

Each repetition element double

CHAR[(n)] PD_MV_CHAR_CNT
(variable-name)

Current repetition data element count long*

PD_MV_CHAR_DATA
(variable-name, m)

Leading address of character string of
each repetition element

char[]

E. SQL Data Types and Data Descriptions

1446

VARCHAR(n) PD_MV_VCHAR_CNT
(variable-name)

Current repetition data element count long*

PD_MV_VCHAR_LEN
(variable-name, m)

Actual length of character string of each
repetition element

short

PD_MV_VCHAR_STR
(variable-name)

Address of character string of each
repetition element

char[]

PD_MV_CVCHAR_CNT(vari
able-name)

Current repetition data element count long*

PD_MV_CVCHAR_DATA(var
iable-name,m)

Address of character string of each
repetition element

char[]

NCHAR[(n)] PD_MV_NCHAR_CNT
(variable-name)

Current repetition data element count long*

PD_MV_NCHAR_DATA
(variable-name, m)

Leading address of character string of
each repetition element

char[]

NVARCHAR[(n)] PD_MV_NVCHAR_CNT
(variable-name)

Current repetition data element count long*

PD_MV_NVCHAR_LEN
(variable-name, m)

Actual length of character string of each
repetition element

short

PD_MV_NVCHAR_STR
(variable-name, m)

Leading address of character string of
each repetition element

char[]

MCHAR(n) PD_MV_CHAR_CNT
(variable-name)

Current repetition data element count long*

PD_MV_CHAR_DATA
(variable-name, m)

Leading address of character string of
each repetition element

char[]

MVARCHAR(n) PD_MV_VCHAR_CNT
(variable-name)

Current repetition data element count long*

PD_MV_VCHAR_LEN
(variable-name, m)

Actual length of character string of each
repetition element

short

PD_MV_VCHAR_STR
(variable-name, m)

Address of character string of each
repetition element

char[]

DATE Same as CHAR(10)

TIME Same as CHAR(8)

SQL data type Macro name Data to be referenced or set Data type

E. SQL Data Types and Data Descriptions

1447

Legend:
: Not applicable

m: Number of each repetition column element (0 - m-1).
n: Length (bytes)
p: Precision (total number of digits)
s: Scale (number of digits beyond the decimal point)

* In 64-bit mode, the data type is int.
The following shows an example of macros used for referencing or setting embedded
variables in repetition columns:
EXEC SQL BEGIN DECLARE SECTION;
char xname[5];
PD_MV_SINT(4) xmscore;
PD_MV_CHAR(4,5) xmsubject;
EXEC SQL END DECLARE SECTION;
 :
strcpy(xname,"SMITH")
PD_MV_SINT_DATA(xmscore,0)=90;
PD_MV_SINT_DATA(xmscore,1)=65;
PD_MV_SINT_DATA(xmscore,2)=85;
PD_MV_SINT_DATA(xmscore,3)=55;
PD_MV_SINT_CNT(xmscore)=4;
strcpy(PD_MV_CHAR_DATA(xmsubject,0),"MATHEMATICS");
strcpy(PD_MV_CHAR_DATA(xmsubject,1),"ENGLISH");
strcpy(PD_MV_CHAR_DATA(xmsubject,2),"SCIENCE");

TIMESTAMP[(p)] Same as CHAR(n)
If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

INTERVAL YEAR TO
DAY

Same as DECIMAL(8,0)

INTERVAL HOUR TO
SECOND

Same as DECIMAL(6,0)

Indicator variable PD_MV_SINT_CNT
(variable-name)

Indicator of the overall repetition
column

long*

PD_MV_SINT_DATA
(variable-name, m)

Indicator of each repetition column
element

short

SQL data type Macro name Data to be referenced or set Data type

E. SQL Data Types and Data Descriptions

1448

strcpy(PD_MV_CHAR_DATA(xmsubject,3),"SOCIAL STUDIES");
PD_MV_CHAR_CNT(xmsubject)=4;
EXEC SQL
 INSERT INTO
SCORE_TABLE(NAME,SUBJECT,SCORE))VALUES(:xname,
:xmsubject;:xmscore);

Table E-5 shows pointer variables and the C language data description.
Table E-5: Pointer variables and C language data description

SQL data type C language data
description

Remarks

SMALLINT short *variable-name;

INTEGER long *variable-name;

DECIMAL[(p[,s])] SQL TYPE IS DECIMAL(p,s)
 *variable-name;

1 p 29, 0 s p

SMALLFLT, REAL float *variable-name;

FLOAT
(DOUBLE PRECISION)

double *variable-name;

CHAR[(n)] char *variable-name; 1 n 30000*

VARCHAR(n) struct {
short variable-name-1;
char variable-name-2[n];
} *structure-name;

1 n 32000

SQL TYPE IS
 VARCHAR(n)
 *variable-name;

VARCHAR *variable-name;*

NCHAR[(n)] char *variable-name; 1 n 15000*

NVARCHAR(n) struct {
short variable-name-1;
char variable-name-2[2n];
} *structure-name;

1 n 16000

SQL TYPE IS
 NVARCHAR(n)
 *variable-name;

MCHAR[(n)] char *variable-name; 1 n 30000*

E. SQL Data Types and Data Descriptions

1449

MVARCHAR(n) struct {
short variable-name-1;
char variable-name-2[n];
} *structure-name;

1 n 32000

SQL TYPE IS
 MVARCHAR(n)
 *variable-name;

DATE* char *variable-name;

TIME* char *variable-name;

TIMESTAMP* char *variable-name;

INTERVAL YEAR TO DAY SQL TYPE IS DECIMAL(8,0)
 *variable-name;

INTERVAL HOUR TO SECOND SQL TYPE IS DECIMAL(6,0)
 *variable-name;

ROW char *variable-name; 1 total-length 30000*

BLOB SQL TYPE IS
 BLOB(n[{K|M|G}])
 *variable-name;

Default: 1 n 2147483647
In units of K: 1 n 2097152
In units of M: 1 n 2048
In units of G: 1 n 2

BINARY(n) struct {
 long variable-name-1;
 char variable-name-2[n];
} *structure-name;

1 n 2147483647

SQL TYPE IS BINARY(n)
 *variable-name;

BLOB locator SQL TYPE IS
BLOB AS LOCATOR
 *variable-name;

BINARY locator SQL TYPE IS
BINARY AS LOCATOR
 *variable-name;

SQL data type C language data
description

Remarks

E. SQL Data Types and Data Descriptions

1450

Indicator
variable

Other than
BLOB,
BINARY,
BLOB
locator, or
BINARY
locator

short *variable-name;

BLOB,
BINARY,
BLOB locator,
or BINARY
locator

long *variable-name;

SQL statement struct {
 long variable-name-1;
 char variable-name-2[n];
 } *structure-name;

1 n 2000000

SMALLINT ARRAY m PD_MV_SINT(m)
 *variable-name;

INTEGER ARRAY m PD_MV_INT(m)
 *variable-name;

DECIMAL[(p[,s])] ARRAY
m

PD_MV_DEC(m,p,s)
 *variable-name;

1 p 29, 0 s p

SMALLFLT ARRAY m
(REAL)

PD_MV_SFLT(m)
 *variable-name;

FLOAT ARRAY m
(DOUBLE PRECISION)

PD_MV_FLT(m)
 *variable-name;

CHAR[(n)] ARRAY m and
MCHAR[(n)] ARRAY m

PD_MV_CHAR(m,n)
 *variable-name;

1 n 30000

VARCHAR[(n)] ARRAY m
and MVARCHAR[(n)] ARRAY
m

PD_MV_VCHAR(m,n)
 *variable-name;

1 n 32000

PD_MV_CVCHAR(m,n)
 *variable-name;

NCHAR[(n)] ARRAY m PD_MV_NCHAR(m,n)
 *variable-name;

1 n 15000

NVARCHAR[(n)] ARRAY m PD_MV_NVCHAR(m,n)
 *variable-name;

1 n 16000

SQL data type C language data
description

Remarks

E. SQL Data Types and Data Descriptions

1451

Legend:
: Not applicable

m: Number (0 - m-1) indicating each element in a repetition column
n: Length (bytes)
p: Precision (total number of digits)
s: Scale (number of digits beyond the decimal point)

Note

In 64-bit mode, use int instead of long.
* The defined length of the area cannot be determined during preprocessing. Therefore,
at the time of execution, use strlen(variable-name) to determine the length of the
character string stored in the area indicated by the pointer, and use this length in place
of the area length. To receive the retrieval result, use a character other than NULL
character to clear the area indicated by the pointer and enter the NULL character at the
end.
To reference or set a variable for a pointer-type repetition column, use a dedicated
macro. Table E-6 shows the macros for pointer-type repetition columns.

DATE ARRAY m PD_MV_CHAR(m,10)
 *variable-name;

TIME ARRAY m PD_MV_CHAR(m,8)
 *variable-name;

TIMESTAMP ARRAY m PD_MV_CHAR(m,n)
 *variable-name;

If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

INTERVAL YEAR TO DAY
ARRAY m

PD_MV_DEC(m,8,0)
 *variable-name;

INTERVAL HOUR TO SECOND
ARRAY m

PD_MV_DEC(m,6,0)
 *variable-name;

Indicator variable for
repetition column

PD_MV_SINT(m)
 *variable-name;

SQL data type C language data
description

Remarks

E. SQL Data Types and Data Descriptions

1452

Table E-6: Macros for pointer-type repetition columns

SQL data type Macro name Data to be referenced or
set

Data type

SMALLINT ARRAY
m

PD_MV_SINTP_CNT(variable-name) Current repetition data element
count

long*

PD_MV_SINTP_DATA(variable-name,
m)

Each repetition element short

INTEGER ARRAY m PD_MV_INTP_CNT(variable-name) Current repetition data element
count

long*

PD_MV_INTP_DATA(variable-name,m
)

Each repetition element long*

DECIMAL[(p[,s])
] ARRAY m

PD_MV_DECP_CNT(variable-name) Current repetition data element
count

long*

PD_MV_DECP_DATA(variable-name,m
)

Start address of each repetition
element in decimal

char[]

SMALLFLT ARRAY
m
(REAL)

PD_MV_SFLTP_CNT(variable-name) Current repetition data element
count

long*

PD_MV_SFLTP_DATA(variable-name,
m)

Each repetition element float

FLOAT ARRAY m
(DOUBLE
PRECISION)

PD_MV_FLTP_CNT(variable-name) Current repetition data element
count

long*

PD_MV_FLTP_DATA(variable-name,m
)

Each repetition element double

CHAR[(n)]
ARRAY m, or
MCHAR[(n)]
ARRAY m

PD_MV_CHARP_CNT(variable-name) Current repetition data element
count

long*

PD_MV_CHARP_DATA(variable-name,
m)

Leading address of character
string of each repetition
element

char[]

E. SQL Data Types and Data Descriptions

1453

VARCHAR(n)
ARRAY m, or
MVARCHAR(n)
ARRAY m

PD_MV_VCHARP_CNT(variable-name) Current repetition data element
count

long*

PD_MV_VCHARP_LEN(variable-name,
m)

Actual length of character
string of each repetition
element

short

PD_MV_VCHARP_STR(variable-name,
m)

Address of character string of
each repetition element

char[]

PD_MV_CVCHARP_CNT(variable-name
)

Current repetition data element
count

long*

PD_MV_CVCHARP_DATA(variable-nam
e, m)

Address of character string of
each repetition element

char[]

NCHAR[(n)]
ARRAY m

PD_MV_NCHARP_CNT(variable-name) Current repetition data element
count

long*

PD_MV_NCHARP_DATA(variable-name
,m)

Leading address of character
string of each repetition
element

char[]

NVARCHAR(n)
ARRAY m

PD_MV_NVCHARP_CNT(variable-name
)

Current repetition data element
count

long*

PD_MV_NVCHARP_LEN(variable-name
,m)

Actual length of character
string of each repetition
element

short

PD_MV_NVCHARP_STR(variable-name
,m)

Leading address of character
string of each repetition
element

char[]

DATE ARRAY m Same as CHAR(10)

TIME ARRAY m Same as CHAR(8)

TIMESTAMP[(p)]
ARRAY m

Same as CHAR(n)
If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

INTERVAL YEAR
TO DAY

Same as DECIMAL(8,0)

INTERVAL HOUR
TO SECOND

Same as DECIMAL(6,0)

SQL data type Macro name Data to be referenced or
set

Data type

E. SQL Data Types and Data Descriptions

1454

Legend:
: Not applicable

m: Number of each repetition column element (0 - m-1)
n: Length (bytes)
p: Precision (total number of digits)
s: Scale (number of digits beyond the decimal point)

* In 64-bit mode, the data type is int.
Table E-7 shows the structures to be specified in batches.

Table E-7: Structures to be specified in batches

E.2 SQL data types and COBOL data descriptions
This section provides the correspondence between SQL data types and COBOL data
descriptions.
Data can be exchanged between variables of compatible data types and between
variables of either convertible or assignable data types.
Table E-8 shows SQL data types and COBOL data descriptions. Table E-9 shows SQL
data types and COBOL data descriptions when arrays are used. Table E-10 shows SQL
data types and COBOL data descriptions when repetition columns are used. Note that
the data descriptions in these tables can also be coded as follows:

Indicator variable PD_MV_SINTP_CNT(variable-name) Indicator of the overall
repetition column

long*

PD_MV_SINTP_DATA(variable-name,
m)

Indicator of each repetition
column element

short

SQL data type C language data
description

Item coding Remarks

Multiple items Structure that contains
the data types listed in
Tables E-1 to E-3 as
members

Specifies multiple
embedded variables in a
batch.

Pointers can be declared.

Indicator variable for
multiple items

Structure that contains as
members the indicator
variables listed in Tables
E-1 to E-3

Specifies multiple
indicator variables in a
batch.

Pointers can be declared.

SQL data type Macro name Data to be referenced or
set

Data type

E. SQL Data Types and Data Descriptions

1455

PICTURE:
PIC

COMPUTATIONAL:
COMP

COMPUTATIONAL-n:
COMP-n

9(n):
99 9

X(n):
XX X

OCCURS n TIMES:
OCCURS 1 TO n TIMES 0
OCCURS 1 TO n
OCCURS n
Table E-8: SQL data types and COBOL data descriptions

SQL data type COBOL data description Item coding Remarks

SMALLINT L1 elementary-item-name
PICTURE S9(4)
COMPUTATIONAL.

elementary-item or
independent-item

INTEGER L1 elementary-item-name
PICTURE S9(9)
COMPUTATIONAL.

elementary-item or
independent-item

DECIMAL
[(p[,s])]

L1 elementary-item-name
PICTURE S9(p-s) [V9(s)]
COMPUTATIONAL-3.

elementary-item or
independent-item

If 1 p 2910,
0 s p,
and p = s, then
SV9(s).
If s = 0, then [V9(s)]
is omitted.

L1 elementary-item-name
 PICTURE S9(p-s)[V9(s)]
 DISPLAY SIGN
 LEADING SEPARATE.9

SMALLFLT (REAL) L1 elementary-item-name
COMPUTATIONAL-1.

elementary-item or
independent-item

FLOAT (DOUBLE
PRECISION)

L1 elementary-item-name
COMPUTATIONAL-2.

elementary-item or
independent-item

E. SQL Data Types and Data Descriptions

1456

CHAR [(n)] L1 elementary-item-name
PICTURE X(n).5

elementary-item or
independent-item

1 n 30000

VARCHAR (n) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(4)
COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n).5

A group item composed of
two elementary items
elementary-item-name-1:
character-string-length
elementary-item-name-2:
character-string

1 n 32000

NCHAR [(n)] L1 elementary-item-name
PICTURE N(n).

elementary-item or
independent-item

1 n 15000

NVARCHAR (n) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(4)
COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE N(n)

A group item composed of
two elementary items
elementary-item-name-1:

character-string-length
elementary-item-name-2:

character-string

1 n 16000

MCHAR [(n)] L1 elementary-item-name
PICTURE X(n).6

elementary-item or
independent-item

1 n 30000

MVARCHAR (n) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(4)
COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n).6

A group item composed of
two elementary items
elementary-item-name-1:

character-string-length
elementary-item-name-2:

character-string

1 n 32000

DATE L1 elementary-item-name
PICTURE X(10).6

elementary-item or
independent-item

TIME L1 elementary-item-name
PICTURE X(8).6

elementary-item or
independent-item

TIMESTAMP[(p)] L1 elementary-item-name
PICTURE X(n).6

elementary-item or
independent-item

If p = 0, n = 19.
If p = 2, n = 21 or 22.
If p = 4, n = 23 or 24.
If p = 6, n = 25 or 26.

INTERVAL YEAR TO
DAY

L1 elementary-item-name
PICTURE S9(8)
COMPUTATIONAL-3.

elementary-item or
independent-item

SQL data type COBOL data description Item coding Remarks

E. SQL Data Types and Data Descriptions

1457

INTERVAL HOUR TO
SECOND

L1 elementary-item-name
PICTURE S9(6)
COMPUTATIONAL-3.

elementary-item or
independent-item

ROW3 Combination of data items and
group items in this table1

A group item composed of
elementary items

1 total-length
 30000

BLOB L2 group-item-name2

[USAGE [IS]]
SQL TYPE IS
BLOB(n[K |M |G]). 4, 7

elementary-item Default: 1 n
2147483647
In units of K: 1 n

 2097152
In units of M: 1
n 2048
In units of G: 1 n

 2

BINARY(n) L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(9)
 COMPUTATIONAL.
 L3 elementary-item-name-2
 PICTURE X(n).5, 7

A group item composed of
two elementary items
elementary-item-name-1:
character-string-length
elementary-item-name-2:
character-string
character-string-length is
the byte count.

1 n
2147483647

BLOB locator L1 elementary-item-name
 SQL TYPE IS
 BLOB AS LOCATOR.8

elementary-item or
independent-item

BINARY locator L1 elementary-item-name
 SQL TYPE IS
 BINARY AS LOCATOR.8

elementary-item or
independent-item

SQL data type COBOL data description Item coding Remarks

E. SQL Data Types and Data Descriptions

1458

Legend:
L1: Level number 01-49 or 77
L2: Level number 01-48

L3: Level number 02-49 (L2 < L3)
n: Length (bytes)
p: Precision (total number of digits)
s: Scale (number of digits beyond the decimal point)

1 The following clauses can be used:
• REDEFINES
• OCCURS
• ADDRESSED BY

2 A group item name should be coded as no more than 21 characters. However, for
COBOL2002, a group item name should be 22 characters or less.
3 Operations involving the ROW type are allowed only when the HiRDB server and the

Indicator
variable

Other
than
BLOB,
BINARY
, BLOB
locator,
or
BINARY
locator

L1 elementary-item-name
PICTURE S9(4)
COMPUTATIONAL.

elementary-item or
independent-item

BLOB,
BINARY
, BLOB
locator,
or
BINARY
locator

L1 elementary-item-name
PICTURE S9(9)
COMPUTATIONAL.

SQL statement L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9)
COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n)

A group item composed of
two elementary items
elementary-item-name-1:

character-string-length
elementary-item-name-2:

character-string

1 n 2000000

SQL data type COBOL data description Item coding Remarks

E. SQL Data Types and Data Descriptions

1459

HiRDB client use the same endian type.
4 The coding of a BLOB UAP is expanded internally as follows:

L2 group-item-name.
 49 group-item-name_RESERVED PIC S(9) USAGE IS BINARY. 1
 49 group-item-name_LENGTH PIC S(9) USAGE IS BINARY. 2
 49 group-item-name_DATA PIC X(m). 3

1. group-item-name_RESERVED is not used.
2. group-item-name_LENGTH is equal to the BLOB actual length.
3. group-item-name_DATA is the BLOB data storage area (where m denotes the

actual data length).
5 This item can be defined using 9 in place of X. If 9 is used for definition, the operation
when a character string containing a character other than a number is substituted or
received as the retrieval result depends on the installed COBOL compiler.
6 Do not use 9 for X during definition, although using 9 does not cause an error during
preprocessing.
7 The maximum value that can be declared depends on the installed COBOL compiler.
For details, see the manual for the COBOL compiler to be used.
8 The following internal expansion takes place:

L1 elementary-item-name PICTURE S9(9) COMPUTATIONAL.

9 The data type for the HiRDB server is the DECIMAL type, but it is represented as a
signed external decimal item of the numeric type.
10 The value range depends on the specifications of the COBOL compiler. For
example, for COBOL85, the range is 1 p 18.

E. SQL Data Types and Data Descriptions

1460

Table E-9: SQL data types and COBOL data descriptions when arrays are used

SQL data type COBOL data description Item coding Remarks

SMALLINT L2 elementary-item-name
PICTURE S9(4)
COMPUTATIONAL
OCCURS m TIMES.

A group item composed of repetitions
of data items in which the same data
structure is repeated through
specification of OCCURS

INTEGER L2 elementary-item-name
PICTURE S9(9)
OCCURS m TIMES.

DECIMAL
[(p[,s])]

L2 elementary-item-name
PICTURE S9
(p-s)[V9(s)]
COMPUTATIONAL-3
OCCURS m TIMES.

1 p
 293,

0 s
p
If p = s,
SV9(s) is
used.
If s = 0,
[V9(s)] is
omitted.

L2 elementary-item-name
 PICTURE S9(p-s)[V9(s)]
 DISPLAY SIGN LEADING
 SEPARATE OCCURS m
 TIMES.

SMALLFLT (REAL) L2 elementary-item-name
COMPUTATIONAL-1
OCCURS m TIMES.

FLOAT (DOUBLE
PRECISION)

L2 elementary-item-name
COMPUTATIONAL-2
OCCURS m TIMES.

CHAR [(n)] L2 elementary-item-name
PICTURE X(n)
OCCURS m TIMES.1

1 n
 30000

VARCHAR (n) L2 group-item-name
OCCURS m TIMES.
L3 elementary-item-name-1

PICTURE S9(4)
COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n).*

1 n
 32000

E. SQL Data Types and Data Descriptions

1461

NCHAR [(n)] L2 elementary-item-name
PICTURE N(n)
OCCURS m TIMES.

1 n
 15000

NVARCHAR (n) L2 group-item-name
OCCURS m TIMES.
L3 elementary-item-name-1

PICTURE S9(4)
COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE N(n)

1 n
 16000

MCHAR [(n)] L2 elementary-item-name
PICTURE X(n)
OCCURS m TIMES.2

1 n
 30000

MVARCHAR (n) L2 group-item-name-2
OCCURS m TIMES.
L3 elementary-item-name-1

PICTURE S9(4)
COMPUTATIONAL.

L3 elementary-item-name-2
PICTURE X(n).2

1 n
 32000

DATE L2 elementary-item-name
PICTURE X(10)
OCCURS m TIMES.2

TIME L2 elementary-item-name
PICTURE X(8)
OCCURS m TIMES.2

TIMESTAMP(n) L2 elementary-item-name
 PICTURE X(n)
 OCCURS m TIMES.2

If p = 0, n
= 19.
If p = 2, n
= 21 or 22.
If p = 4, n
= 23 or 24.
If p = 6, n
= 25 or 26.

INTERVAL YEAR
TO DAY

L2 elementary-item-name
PICTURE S9(8)
COMPUTATIONAL-3
OCCURS m TIMES.

SQL data type COBOL data description Item coding Remarks

E. SQL Data Types and Data Descriptions

1462

INTERVAL HOUR
TO SECOND

L2 elementary-item-name
PICTURE S9(6)
COMPUTATIONAL-3
OCCURS m TIMES.

ROW L2 group-item-name-2
OCCURS m TIMES.

Combination of data items and
group items in this table

BLOB CN CN

BINARY L2 group-item-name-2
 OCCURS m TIMES.
 L3 elementary-item-name-1
 PICTURE S9(9)
 COMPUTATIONAL.
 L3 elementary-item-name-2
 PICTURE X(n).1

A group item composed of repetitions
of data items in which the same data
structure is repeated through
specification of OCCURS.

• FETCH
that
uses an
array
4 n

21474
83644
(n
must
be a
multipl
e of 4.)

• Other
than
FETCH
that
uses an
array

4 n
 32000

(n must be
a multiple
of 4.)

BLOB locator

BINARY locator L2 elementary-item-name
 SQL TYPE IS
 BINARY AS LOCATOR
 OCCURS m TIMES.

Group item consisting of iterative data
items that repeat the same data
structure according to the OCCURS
specification

SQL data type COBOL data description Item coding Remarks

E. SQL Data Types and Data Descriptions

1463

Legend:
CN: Cannot be coded.
L2: Level number 02-49 (L2 < L3). You cannot specify level number 01, 66, 77,
or 88 for L2. For details, see the syntax rules for the OCCURS clause in the COBOL
manual.
L3: Level number 03-49
m: Number of array elements (1-4,096)
n: Length (bytes)
p: Precision (total number of digits)
s: Scale (number of digits beyond the decimal point)

1 This item can be defined using 9 in place of X. If 9 is used for definition, the operation
when a character string containing a character other than a number is substituted or
received as the retrieval result depends on the installed COBOL compiler.
2 Do not use 9 for X during definition, although using 9 does not result in an error
during preprocessing.
3 The range depends on the specifications of the COBOL compiler. For example, for
COBOL85, the range is 1 p 18.

Indicato
r
variable

Other
than
BINARY
or
BINARY
locator

L2 elementary-item-name
PICTURE S9(4)
COMPUTATIONAL
OCCURS m TIMES.

BINARY
or
BINARY
locator

L2 elementary-item-name
 PICTURE S9(9)
 COMPUTATIONAL
 OCCURS m TIMES.

SQL statement CN CN

SQL data type COBOL data description Item coding Remarks

E. SQL Data Types and Data Descriptions

1464

Table E-10: SQL data types and COBOL data descriptions when repetition
columns are used

SQL data type COBOL data description Item coding Remarks

SMALLINT L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2
PICTURE S9(4) COMPUTATIONAL OCCURS
m TIMES.

A group item
composed of two
elementary items

INTEGER L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE S9(9) COMPUTATIONAL
OCCURS m TIMES.

DECIMAL
[(p[,s])]

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE S9
(p-s)[V9(s)] COMPUTATIONAL-3 OCCURS
m TIMES.

1 p
293,
0 s p
When p = s,
SV9(s) is used.
When s = 0,
[V9(s)] is
omitted.

L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(9) COMPUTATIONAL.
 L3 elementary-item-name-2
 PICTURE S9(p-s)[V9(s)]
 DISPLAY SIGN LEADING SEPARATE
 OCCURS m TIMES.

SMALLFLT (REAL) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

COMPUTATIONAL-1 OCCURS m TIMES.

FLOAT (DOUBLE
PRECISION)

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

COMPUTATIONAL-2 OCCURS m TIMES.

E. SQL Data Types and Data Descriptions

1465

CHAR [(n)] L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE X(n) OCCURS m TIMES.1

1 n
30000

VARCHAR (n) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

OCCURS m TIMES.
L4 elementary-item-name-3

PICTURE S9(4) COMPUTATIONAL.
L4 elementary-item-name-4

PICTURE X(n).1

A group item
composed of two
elementary items
and a group item
composed of one
elementary item.

1 n
32000

NCHAR [(n)] L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE N(n) OCCURS m TIMES.

A group item
composed of two
elementary items.

1 n
15000

NVARCHAR (n) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

OCCURS m TIMES.
L4 elementary-item-name-3

PICTURE S9(4) COMPUTATIONAL.
L4 elementary-item-name-4

PICTURE N(n).

A group item
composed of two
elementary items
and a group item
composed of one
elementary item.

1 n
16000

MCHAR [(n)] L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE X(n) OCCURS m TIMES.1

A group item
composed of two
elementary items.

1 n
30000

SQL data type COBOL data description Item coding Remarks

E. SQL Data Types and Data Descriptions

1466

MVARCHAR (n) L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

OCCURS m TIMES.
L4 elementary-item-name-3

PICTURE S9(4) COMPUTATIONAL.
L4 elementary-item-name-4

PICTURE X(n).1

A group item
composed of two
elementary items
and a group item
composed of one
elementary item.

1 n
32000

DATE L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE X(10) OCCURS m TIMES.2

A group item
composed of two
elementary items.

TIME L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE X(8 OCCURS m TIMES.2

TIMESTAMP[(n)] L2 group-item-name.
 L3 elementary-item-name-1
 PICTURE S9(9) COMPUTATIONAL.
 L3 elementary-item-name-2
 PICTURE X(n) OCCURS m TIMES.2

If p = 0, n = 19.
If p = 2, n = 21
or 22.
If p = 4, n = 23
or 24.
If p = 6, n = 25
or 26.

INTERVAL YEAR TO
DAY

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(8) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE S9(8) COMPUTATIONAL-3
OCCURS m TIMES.

INTERVAL HOUR TO
SECOND

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(6) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE S9(6) COMPUTATIONAL-3
OCCURS m TIMES.

ROW CN CN

BLOB CN CN

SQL data type COBOL data description Item coding Remarks

E. SQL Data Types and Data Descriptions

1467

Legend:
CN: Cannot be coded.
L2: Level number 02-49
L3 and L4: Level number 03-49
m: Maximum number of repetition column elements (2-30000)
n: Length (bytes)
p: Precision (total number of digits)
s: Scale (number of digits beyond the decimal point)

Notes

1. The value of elementary-item-name-1 must be the current element count.
2. The values of elementary-item-name-2 and group-item-name-2 must be

specified as the value of each repetition element.
3. elementary-item-name-1 of the indicator variable must be specified as the

indicator of the entire repetition column.
4. elementary-item-name-2 of the indicator variable must be specified as the

indicator of each repetition column element.
1 This item can be defined using 9 in place of X. If 9 is used for definition, the operation
when a character string containing a character other than a number is substituted or
received as the retrieval result depends on the installed COBOL compiler.
2 Do not use 9 for X during definition, although using 9 does not result in an error
during preprocessing.

BINARY CN CN

BLOB locator CN CN

BINARY locator CN CN

Indicator variable
(other than BLOB,
BINARY, BLOB
locator, or BINARY
locator)

L2 group-item-name
L3 elementary-item-name-1

PICTURE S9(9) COMPUTATIONAL.
L3 elementary-item-name-2

PICTURE S9(4) COMPUTATIONAL
OCCURS m TIMES.

A group item
composed of two
elementary items.

SQL statement CN CN

SQL data type COBOL data description Item coding Remarks

E. SQL Data Types and Data Descriptions

1468

3 The range depends on the specifications of the COBOL compiler. For example, for
COBOL85, the range is 1 p 18.

F. Data Dictionary Table Retrieval

1469

F. Data Dictionary Table Retrieval

HiRDB data dictionary tables can be referenced in the same way as an ordinary
HiRDB database by using operation SQL statements. The authorization identifier of a
dictionary table is MASTER.
This appendix provides examples of SQL descriptions for dictionary table retrievals
and explains the definition information required for referencing.
Table F-1 lists the data dictionary tables that can be referenced.

Table F-1: Data dictionaries

Number Table name Description Row contents

1 SQL_PHYSICAL_FILES HiRDB file information
(correspondences between HiRDB
file system names and RDAREA
names)

One HiRDB file

2 SQL_RDAREAS Information such as the RDAREA
names, their definition information,
the RDAREA types, the number of
stored tables, and number of indexes

One RDAREA

3 SQL_TABLES Owner name and table name of each
table (including dictionary tables) in
the database

One table

4 SQL_COLUMNS Column definition information,
such as the column names and their
data types

One column

5 SQL_INDEXES Owner name and index name of
each index (including dictionary
tables) in the database

One index

6 SQL_USERS Execution privileges and
authorization identifiers of users
authorized to access the database

One user

7 SQL_RDAREA_PRIVILEGES Grants of RDAREA usage
privileges

Use of one RDAREA
for one authorization
identifier

8 SQL_TABLE_PRIVILEGES Grants of table access privileges Access to one table
for one authorization
identifier

9 SQL_VIEW_TABLE_USAGE Names of base tables used for view
tables

One view table

F. Data Dictionary Table Retrieval

1470

10 SQL_VIEWS View definition information One view table

11 SQL_DIV_TABLE Table partitioning information
(partitioning conditions specified in
CREATE TABLE and names of
RDAREAs that store partitioned
tables)

One table (described
by n rows)

12 SQL_INDEX_COLINF Names of columns to which indexes
are assigned

One index (described
by n rows)

13 SQL_DIV_INDEX Index partitioning information
(storage RDAREA names)

One index (described
by n rows)

14 SQL_DIV_COLUMN BLOB-type column partitioning
information (storage RDAREA
names specified when CREATE
TABLE was executed)

One column
(described by n rows)

15 SQL_ROUTINES Routine definition information One routine
(described by one
row)

16 SQL_ROUTINE_RESOURCES Information about resources used in
a routine

One routine
(described by n rows)

17 SQL_ROUTINE_PARAMS Information about parameter
definitions in a routine

One routine
(described by n rows)

18 SQL_ALIASES For UNIX:
Alias information about tables
(table aliases specified when
CREATE ALIAS was executed and
the three-part name of the target
table)
For Windows:
Used by the system (table is empty)

For UNIX:
One alias
For Windows:
None

19 SQL_TABLE_STATISTICS Table statistical information One table

20 SQL_COLUMN_STATISTICS Column statistical information One column

21 SQL_INDEX_STATISTICS Index statistical information One index

22 SQL_DATATYPES Information about user-defined
types

One user-defined
type

23 SQL_DATATYPE_DESCRIPTORS Information about user-defined type
configuration attributes

One attribute

Number Table name Description Row contents

F. Data Dictionary Table Retrieval

1471

24 SQL_TABLE_RESOURCES Information about resources used in
a table

One resource

25 SQL_PLUGINS Plug-in information One plug-in

26 SQL_PLUGIN_ROUTINES Information about routines in a
plug-in

One plug-in routine

27 SQL_PLUGIN_ROUTINE_PARAMS Information about parameters in a
plug-in routine

One set of parameter
information

28 SQL_INDEX_TYPES Information about index types One index type

29 SQL_INDEX_RESOURCES Information about resources used in
an index

One set of resource
information

30 SQL_INDEX_DATATYPE Information about target items in an
index

One set of target item
information (for one
level)

31 SQL_INDEX_FUNCTION Information about abstract data type
functions used in an index

One set of abstract
data function
information

32 SQL_TYPE_RESOURCES Information about resources used in
a user-defined type

One set of resource
information

33 SQL_INDEX_TYPE_FUNCTION Information about abstract data type
functions used in an index that
defines index types

One index type
(described by n rows)

34 SQL_EXCEPT Information about exclusion key
values in an index

Exclusion key
groups in one index
(described by n rows)

35 SQL_FOREIGN_SERVERS DBMS information of the foreign
server that is accessed by HiRDB
using the HiRDB External Data
Access facility

One foreign server in
one row

36 SQL_USER_MAPPINGS Mapping information used for
accessing a foreign server using the
HiRDB External Data Access
facility

One piece of
mapping information
in one row for one
user on HiRDB

37 SQL_IOS_GENERATIONS For UNIX:
Generation information in the
HiRDB file system areas when the
inner replica facility is used
For Windows:
Used by the system (table is empty)

For UNIX:
One row per HiRDB
file system area
For Windows:
None

Number Table name Description Row contents

F. Data Dictionary Table Retrieval

1472

38 SQL_TRIGGERS Information on the trigger that is
inside the schema

One trigger in one
row

39 SQL_TRIGGER_COLUMNS UPDATE trigger event column list
information

One piece of event
column information
in one row

40 SQL_TRIGGER_DEF_SOURCE Trigger definition source
information

One piece of trigger
definition source
information in n rows

41 SQL_TRIGGER_USAGE Resource information referenced
inside a trigger action condition

One resource name
being referenced
inside the trigger
action condition in
one row

42 SQL_PARTKEY Partitioning key information of a
matrix-partitioned table

One piece of
partitioning key
information in one
row

43 SQL_PARTKEY_DIVISION Partitioning condition value
information of a matrix-partitioned
table

One piece of
partitioning
condition value
information in one
row

44 SQL_AUDITS Information on the monitoring
target

One object or
information on one
event for one user in
one row

45 SQL_REFERENTIAL_CONSTRAINT
S

Referential constraint conditions Information on one
constraint in one row

46 SQL_KEYCOLUMN_USAGE Information on the columns that
make up the external keys

Information on one
column in one row

47 SQL_TABLE_CONSTRAINTS Information on the integrity
constraints in a schema

Information on one
integrity constraint in
one row

48 SQL_CHECKS Check constraint information Information on one
check constraint in
one row

49 SQL_CHECK_COLUMNS Information on columns used by a
check constraint

Information on one
column using one
check constraint in
one row

Number Table name Description Row contents

F. Data Dictionary Table Retrieval

1473

F.1 Examples of SQL statements for retrieval
Examples of SQL statements that retrieve data dictionary tables are shown as follows:
For details about the SQL statements, see the HiRDB Version 8 SQL Reference manual.
The types of information that a particular user can retrieve depend on the setting of the
data dictionary referencing authorization. For details about how to set data dictionary
referencing authorizations, see the HiRDB Version 8 System Operation Guide.
After a dictionary table is retrieved, immediately issue a COMMIT statement or specify
WITHOUT LOCK NOWAIT as shown in the retrieval example.
Example 1

Retrieve the server names for the RDAREAs that exist in the HiRDB system, the
HiRDB filenames, and the names of the RDAREAs to which the HiRDB files
belong:
SELECT X_SERVER_NAME, PHYSICAL_FILE_NAME, X.RDAREA_NAME
 FROM MASTER.SQL_PHYSICAL_FILES X, MASTER.SQL_RDAREAS Y
 WHERE X.RDAREA_NAME=Y.RDAREA_NAME
 ORDER BY SERVER_NAME
 WITHOUT LOCK NOWAIT

Example 2
From the column definition information for tables owned by a user, retrieve the
names of the tables that contain the columns, the column names, the data types,
and the column data lengths:
SELECT TABLE_NAME, COLUMN_NAME, DATA_TYPE, DATA_LENGTH
 FROM MASTER.SQL_COLUMNS
 WHERE TABLE_SCHEMA=USER*
 ORDER BY TABLE_NAME

50 SQL_DIV_TYPE Partitioning key information for
matrix partitioning tables that
combine key range partitioning and
hash partitioning

Information on one
partitioning key in
one row

51 SQL_SYSPARAMS Restriction information on the
number of consecutive certification
failures and the password character
string

Information on one
setting item in one
row, and restriction
information on one
number of
consecutive
certification failures
or one password
character string in n
rows

Number Table name Description Row contents

F. Data Dictionary Table Retrieval

1474

 WITHOUT LOCK NOWAIT

Example 3
From the index definition information for tables owned by a user, retrieve the
names of the tables that contain the index, the index names, and the percentages
of unused space per page:
SELECT TABLE_NAME, INDEX_NAME, FREE_AREA
 FROM MASTER.SQL_INDEXES
 WHERE TABLE_SCHEMA=USER*
 ORDER BY TABLE_NAME
 WITHOUT LOCK NOWAIT

Example 4
Retrieve the tables that a user can access and the types of access privileges to
those tables (SELECT, INSERT, DELETE, and UPDATE privileges):
SELECT TABLE_NAME, SELECT_PRIVILEGE, INSERT_PRIVILEGE,
 DELETE_PRIVILEGE, UPDATE_PRIVILEGE
 FROM MASTER.SQL_TABLE_PRIVILEGES
 WHERE GRANTEE=USER* OR GRANTEE='PUBLIC'
 WITHOUT LOCK NOWAIT

Example 5
Retrieve the number of RDAREAs that become targets for group specification by
a command (RDAREAs beginning with RD1):
SELECT COUNT(*) FROM MASTER.SQL_RDAREAS
 WHERE RDAREA_TYPE='U' AND
 RDAREA_NAME LIKE 'RD1%'
 WITHOUT LOCK NOWAIT

Example 6
Retrieve the names of RDAREAs that become targets for group specification by
a command (RDAREAs beginning with RD1):
SELECT RDAREA_NAME FROM MASTER.SQL_RDAREAS
 WHERE RDAREA_TYPE='U' AND
 RDAREA_NAME LIKE 'RD1%' ORDER BY RDAREA_NAME
 WITHOUT LOCK NOWAIT

Example 7
Retrieve the name of the RDAREA that stores a non-partitioning table owned by
a user (table named T1):
SELECT X.RDAREA_NAME
 FROM MASTER.SQL_RDAREAS X, MASTER.SQL_TABLES Y
 WHERE Y.TABLE_SCHEMA=USER*
 AND Y.TABLE_NAME='T1'

F. Data Dictionary Table Retrieval

1475

 AND X.RDAREA_NAME=Y.RDAREA_NAME

* USER refers to a variable that stores a value indicating the executing user's
authorization identifier. For details about authorization identifiers, see the HiRDB
Version 8 SQL Reference manual.

Example 8
Retrieve the name of the RDAREA that stores objects for a stored procedure or
stored function, to be used during execution to re-initialize a data dictionary LOB
RDAREA.
SELECT RDAREA_NAME FROM MASTER.SQL_DIV_COLUMN
 WHERE TABLE_SCHEMA='HiRDB'
 AND TABLE_NAME='SQL_ROUTINES'
 AND COLUMN_NAME='ROUTINE_OBJECT'
 WITHOUT LOCK NOWAIT

Note

When a data dictionary LOB RDAREA is reinitialized, all its stored SQL
objects must be re-created.

Example 9
Retrieve the name of the stored procedure or stored function that has an invalid
SQL object or an invalid index:
SELECT ROUTINE_SCHEMA,ROUTINE_NAME
 FROM MASTER.SQL_ROUTINES
 WHERE ROUTINE_VALID='N'
 OR INDEX_VALID='N'
 WITHOUT LOCK NOWAIT

Example 10
Retrieve the data types of the arguments that are actually used when embedded
variables are used in arguments of the user-defined function FUNC1:
SELECT PARAMETER_NAME,DATA_TYPE,UDT_OWNER,UDT_NAME,
PARAMETER_NO
 FROM MASTER.SQL_ROUTINE_PARAMS
 WHERE ROUTINE_SCHEMA=USER AND ROUTINE_NAME='FUNC1'
 ORDER BY PARAMETER_NO
 WITHOUT LOCK NOWAIT

Example 11
To reorganize all the tables owned by user USERA, retrieve the RDAREAs
containing any of those tables (the RDAREAs that need to be placed in shutdown
status):
Non-partitioned table:

F. Data Dictionary Table Retrieval

1476

SELECT DISTINCT(RDAREA_NAME) FROM MASTER.SQL_TABLES
 WHERE TABLE_SCHEMA=USERA AND RDAREA_NAME IS NOT NULL
 WITHOUT LOCK NOWAIT

Partitioned table:
SELECT DISTINCT(RDAREA_NAME) FROM MASTER.SQL_DIV_TABLE
 WHERE TABLE_SCHEMA=USERA
 WITHOUT LOCK NOWAIT

Eliminate any duplicated RDAREA names from the result, then place all the
resulting RDAREAs in shutdown status.

F.2 Data dictionary table details
The definition information required for referencing of each data dictionary table is
shown as follows:
Each dictionary table has a column with the VARCHAR or MVARCHAR data type. This is
the dictionary datatype operand for the database initialization utility or database
structure modification utility, and must be set to either VARCHAR or MVARCHAR.

(1) SQL_PHYSICAL_FILES table
This table manages HiRDB file information (relationships between HiRDB files and
RDAREAs). (Each row describes information on one HiRDB file.)
Table F-2 shows the contents of the SQL_PHYSICAL_FILES table.

Table F-2: SQL_PHYSICAL_FILES table contents

(2) SQL_RDAREAS table
This table manages RDAREA definition information. (Each row describes
information on one RDAREA.)
Table F-3 shows the contents of the SQL_RDAREAS table.

Number Column name Data type Contents

1 SERVER_NAME CHAR(8) Server name (back-end server name or dictionary
server name)

2 PHYSICAL_FILE_NAME VARCHAR(167) HiRDB filename

3 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the RDAREA to which HiRDB files are
allocated

4 INITIAL_SIZE INTEGER Number of HiRDB file segments

5 PHYSICAL_FILE_ID INTEGER Physical file ID

F. Data Dictionary Table Retrieval

1477

Table F-3: SQL_RDAREAS table contents

Number Column name Data type Contents

1 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

RDAREA name

2 SERVER_NAME CHAR(8) Server name (back-end server name or dictionary
server name)

3 RDAREA_TYPE CHAR(1) RDAREA type:
M: Master directory RDAREA
D: Data directory RDAREA
S: Data dictionary RDAREA
W: Work RDAREA
U: User RDAREA
P: Data dictionary LOB RDAREA
L: User LOB RDAREA
R: Registry RDAREA
K: Registry LOB RDAREA
A: list RDAREA

4 PAGE_SIZE INTEGER Page length (in bytes)

5 SEGMENT_SIZE INTEGER Segment size (in pages)

6 FILE_COUNT INTEGER Number of HiRDB files

7 N_TABLE INTEGER Number of tables stored (defined number) (initial
value is 0)

8 N_INDEX INTEGER Number of indexes stored (defined number)
(initial value is 0)

9 RDAREA_ID INTEGER RDAREA ID

10 REBALANCE_TABLE CHAR(1) Rebalance table status:
Y: A rebalance table is used.
Null value: No rebalance table is used.

11 MAX_ENTRIES INTEGER Maximum number of entries in the list
NULL for any RDAREA other than the list
RDAREA or if max entries is not specified

12 EXTENSION CHAR(1) Specification of RDAREA expansion:
U: Specified.
N: Not specified.

13 EXTENSION_SEGMENT_S
IZE

INTEGER Number of extension segments
NULL if RDAREA expansion is not specified

F. Data Dictionary Table Retrieval

1478

(3) SQL_TABLES table
This table manages information of the tables found in schemas. (Each row describes
information on one table.)
The rows of the SQL_TABLES table are created during table definition, and row

14 ORIGINAL_RDAREA_NAM
E

VARCHAR(30) or
MVARCHAR(30)

For UNIX:
Name of the original RDAREA
Null value if the RDAREA is not a replica
RDAREA.
For Windows:
Used by the system (no contents)

15 ORIGINAL_RDAREA_ID INTEGER For UNIX:
ID of the original RDAREA
Null value if the RDAREA is not a replica
RDAREA.
For Windows:
Used by the system (no contents)

16 GENERATION_NUMBER SMALLINT For UNIX:
Generation number
Null value if the RDAREA is not an original
RDAREA or replica RDAREA.
For Windows:
Used by the system (no contents)

17 REPLICA_COUNT SMALLINT For UNIX:
Replica counter
Null value if the RDAREA is not an original
RDAREA or if the RDAREA has lost its replica
RDAREA.
For Windows:
Used by the system (no contents)

18 REPLICA_STATUS CHAR(1) For UNIX:
Replica status
C: Current RDAREA
S: Sub-RDAREA
Null value if the RDAREA is not an original
RDAREA or replica RDAREA.
For Windows:
Used by the system (no contents)

19 SHARED CHAR(1) Shared RDAREA
S: Shared RDAREA
Null value: Unshared RDAREA

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1479

deletion is performed during table deletion.
Table F-4 shows the contents of the SQL_TABLES table.

Table F-4: SQL_TABLES table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner or PUBLIC for a public view table

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 TABLE_TYPE CHAR(16) Table type
BASE TABLE: Base table
VIEW: View table
READ ONLY VIEW: Read-only view table
FOREIGN TABLE: External table.

4 TABLE_ID INTEGER Table ID
Indicates an internal ID that is unique within the
system.

5 N_COLS SMALLINT Number of structure columns

6 N_INDEX SMALLINT Number of defined indexes (initial value is 0)

7 DCOLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Partitioned column name (column name of the
first partitioning key for multiple column
partitioning or matrix partitioning)
Null value for a non-partitioned table, view
tables, and foreign tables

8 VDEFLEN INTEGER Length of view analysis information
Null value for base tables and foreign tables

9 FREE_AREA SMALLINT Percentage of unused space in each page
0 for a view table or a foreign table

10 FREE_PAGE SMALLINT Rate (%) of free pages (unused pages) inside a
segment
0 for a view table or a foreign table

11 TABLE_COMMENT VARCHAR(255)
or
MVARCHAR(255)

Comment (initial value is NULL)

12 CREATE_TIME CHAR(14) Table creation date and time
(YYYYMMDDHHMMSS)

F. Data Dictionary Table Retrieval

1480

13 ENQ_RESOURCE_
SIZE

CHAR(1) Locked resource unit
P: In page units
Null value for locking in row units and for view
tables, foreign tables

14 DEFAULT_COLUMN SMALLINT Number of specified columns with the default
value (DEFAULT clause or WITH DEFAULT).2
Null value for view tables and dictionary tables

15 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of storage RDAREA for non-partitioned
table (Null value for partitioned tables, view
tables, and foreign tables)

16 DEFINITION_CACHE_
SIZE

INTEGER Table definition cache size (in bytes) (Null value
for dictionary tables)

17 STATISTICS_CACHE_
SIZE

INTEGER Statistical information cache size (in bytes) (The
initial value is a null value.)

18 N_RDAREA INTEGER Number of RDAREAs for storage of table
(1-1024)
0 for a view table or a foreign table

19 FIX_TABLE CHAR(1) FIX specification
F: Specified
N: Not specified

20 VIEW_LEVEL INTEGER Number of nesting levels in view definition
Null value for base tables and foreign tables

21 N_BASETABLE INTEGER Number of base tables used for a view table
Null value for base tables and foreign tables

22 ROW_LENGTH INTEGER Row length of a FIX table
Null value for tables that are not FIX tables, view
tables, and foreign tables

23 N_NOTNULL INTEGER Number of NOT NULL values2 (Null value for
view tables and dictionary tables)

24 COMPRESS_TYPE VARCHAR(8) Data compression information:
• Compression type (first byte)

S: Data compression (SUPPRESS)
• Suppressed data type (byte 2 and beyond):

D: DECIMAL
Null value for tables without SUPPRESS
specification, view tables, dictionary tables, and
foreign tables

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1481

25 DIV_TYPE CHAR(1) Partitioning type
P: Boundary value partitioning and matrix
partitioning
H: Flexible hash partitioning
F: FIX hash partitioning
M: Hash mixed matrix partitioning
Null value for non-partitioned tables, key range
partitioning tables, view tables, and foreign
tables

26 HASH_NAME VARCHAR(8) or
MVARCHAR(8)

Hash function name
"HASH1"
"HASH2"
"HASH3"
"HASH4"
"HASH5"
"HASH6"
"HASH0"
"HASHA"
"HASHB"
"HASHC"
"HASHD"
"HASHE"
"HASHF"
Null value for tables without a HASH
specification, matrix partitioning tables, view
tables, dictionary tables, and foreign tables.

27 N_LOB_COLUMN SMALLINT Number of columns with BLOB-data type
(Null value for view tables and tables without
BLOB columns)

28 N_LOB_RDAREA INTEGER Number of user LOB RDAREAs for a table
Null value for view tables, tables without BLOB
columns, tables without abstract data containing
BLOB attributes, and foreign tables

29 CHANGE_TIME CHAR(14) Time table definition was changed
(YYYYMMDDHHMMSS)
(Null value when a table is initially created.)

30 N_DIV_COLUMN SMALLINT Number of partitioning key columns (216)
Null value for non-partitioned tables, tables with
single column partitioning keys specified, view
tables, and foreign tables.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1482

31 COLUMN_SUP_INF CHAR(1) Whether or not data suppression is specified for
each column:
Y: Specified
Null value: No specification
Null value for tables for which
column-by-column data suppression is not
specified, view tables, and foreign tables

32 N_ADT_COLUMN SMALLINT Number of columns with an abstract data type
Null value for tables in which the abstract data
type is not defined, view tables, and foreign
tables

33 WITHOUT_
ROLLBACK

CHAR(1) Whether or not a WITHOUT ROLLBACK is
specified
'Y': Specified
Null value: No specification
Null value for tables for which WITHOUT
ROLLBACK is not defined, view tables, and
foreign tables

34 N_EXCEPT_VALUES INTEGER Number of exclusion key values in an index
(Null value for indexes without exceptional value
specifications and for view tables)

35 EXCEPT_VALUES_LEN INTEGER Total length of exclusion key values in an index
(Null value for indexes without exceptional value
specifications and for view tables)

36 REBALANCE CHAR(1) Whether or not the rebalancing facility is used:
Y: Used.
Null value for tables that do not use the
rebalancing facility, view tables, and foreign
tables

37 INDEXLOCK_OPT CHAR(1) Information used by the system

38 N_PK_COLUMNS SMALLINT Number of columns for the primary key
Null value if no primary key is defined.

39 FOREIGN_SERVER_
NAME

VARCHAR(30) or
MVARCHAR(30)

External server name
Null value for tables that are not foreign tables.

40 FOREIGN_SERVER_
ID

INTEGER External server ID
Null value for tables that are not foreign tables.

41 BASE_FOREIGN_
TABLE_SCHEMA

VARCHAR(30) or
MVARCHAR(30)

Authorization identifier or schema name of the
user of a base table on a foreign server.
Null value for tables that are not foreign tables.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1483

42 BASE_FOREIGN_
TABLE_NAME

VARCHAR(30) or
MVARCHAR(30)

Name of a base table on a foreign server.
Null value for tables that are not foreign tables.

43 N_RDAREA_BEFORE_
REBALANCE

INTEGER Number of RDAREAs storing the rebalancing
table1

Null value if rebalancing is started, and for tables
that are not rebalancing tables, view tables, and
foreign tables.

44 ON_REBALANCE CHAR(1) Rebalancing status:
Y: Under execution
Null value: Execution not ongoing
Becomes Y after rebalancing has started, and
becomes a null value when rebalancing is
normally terminated.

45 SEGMENT_REUSE CHAR(1) Whether or not SEGMENT REUSE is specified
Y: Specified
Null value: Not specified
Null value if NO is specified for SEGMENT REUSE
(including when its specification is omitted), for
view tables, and foreign tables.

46 N_REUSE_SEGMENT INTEGER Number of segments that start reusing free
areas.3
Null value if NO is specified for SEGMENT REUSE
(including when its specification is omitted), for
view tables, and foreign tables.

47 REUSE_SEGMENT_SIZE CHAR(10) Specified number of segments that start reusing
free areas.4
Null value if a value other than a segment count
is specified for SEGMENT REUSE, for view tables,
and foreign tables.

48 REUSE_SEGMENT_SIZE_
TYPE

CHAR(1) Unit for the number of segments that start reusing
free areas.
K: Specifies K.
M: Specifies M.
Blank space: Specification omitted
Null value if a value other than a segment count
is specified for SEGMENT REUSE, for view tables,
and foreign tables.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1484

49 INSERT_ONLY CHAR(1) Whether or not the falsification prevention
facility is specified
Y: Specified
Null value: Not specified
Null value if the falsification prevention facility
is not used, for view tables, and foreign tables.

50 DELETE_PROHIBIT_TER
M_TYPE

CHAR(1) Type of deletion prevented duration
I: Date interval data
Y: Labeled duration (YEAR)
M: Labeled duration (MONTH)
D: Labeled duration (DAY)
Null value: Not specified
Null value if the falsification prevention facility
is not used, if no deletion prevented duration is
specified, for view tables, and foreign tables

51 DELETE_PROHIBIT_TER
M

CHAR(10) Specification value for the deletion prevented
duration5

Null value if the falsification prevention facility
is not used, if no deletion prevented duration is
specified, for view tables, and foreign tables.

52 SYSGEN_COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the insert history maintenance column
Null value if the falsification prevention facility
is not used, if no deletion prevented duration is
specified, for view tables, and foreign tables.

53 N_TRIGGER INTEGER Number of defined triggers
Null value if no trigger is defined, and for view
tables, foreign tables, and dictionary tables.

54 N_DIV_DIMENSION SMALLINT Number of division dimensions
Null value for tables that are not
matrix-partitioned tables.

55 AUDIT_TABLE_OPTION CHAR(1) Value that specifies whether this table is an audit
trail table.
Y: Audit trail table
V: View table based on an audit trail table
Null value for tables that are not audit trail tables
and not view tables based on an audit trail table

56 N_PARENTS SMALLINT Number of foreign keys
Null value for tables without a defined referential
constraint, view tables, and foreign tables.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1485

57 N_CHILDREN SMALLINT Number of foreign keys that reference the main
keys of this table
Null value for unreferenced tables that are not
referenced tables, view tables, and foreign tables.

58 N_FK_COLUMNS SMALLINT Total number of foreign key columns
Null value for tables without a defined referential
constraint, view tables, and foreign tables.

59 CHECK_PEND CHAR(1) Type of check pending status for a referential
constraint
C: Pending status
Null value: Non-pending status
Null value for view tables, and foreign tables.

60 N_CHECK INTEGER Number of defined check constraints
Null value for tables without a defined referential
constraint, view tables, and foreign tables.

61 N_CHECK_LIMIT INTEGER Check constraint limit6
Null value for tables without a defined referential
constraint, view tables, and foreign tables.

62 CHECK_PEND2 CHAR(1) Type of check pending status for a check
constraint
C: Pending status
Null value: Non-pending status
Null value for view tables, and foreign tables.

63 CHK_SOURCE_LEN INTEGER Total length of search conditions of a check
constraint
Null value for tables without a defined referential
constraint, view tables, and foreign tables.

64 SHARED CHAR(1) Shared table specification
S: Shared table
Null value: Unshared table

65 CHANGE_TIME_INSERT_
ONLY

CHAR(14) Update date and time of a falsification prevention
table (YYYYMMDDHHMMSS)
Null value when a table is defined and for view
tables, and foreign tables.

66 N_UPDATE_COLUMN SMALLINT Number of columns for which an updatable
column attribute is specified
Null value for tables without a specified
updatable column attribute, view tables, and
foreign tables.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1486

1 If an RDAREA is added to a rebalancing table using ALTER TABLE ADD RDAREA,
the column contains the number of table storage RDAREAs before the RDAREA was
added.
2 If a foreign table is created using the HiRDB External Data Access facility and NO is
specified in the NULLABLE column option, NOT NULL WITH DEFAULT is assumed.
Therefore, the columns in the DEFAULT_COLUMN column for which WITH DEFAULT
is specified are counted, as well as the columns in the N_NOTNULL column that
contains non-null values.
3 When a segment count unit is specified, the following values are stored:

When K is specified: Specified value 1024

When M is specified: Specified value 10242

4 Values are stored right-justified. Note that the segment count units (K and M) are not
included.
5 The following is stored depending on the type of deletion prevented duration:

When 'I' is specified: +YYYYMMDD. character format
When 'Y', 'M', or 'D' is specified: Right-justified character format

6 The check constraint limit is the sum of the total number of logical operators
specified in the search conditions of the check constraints (number of AND and OR
specifications, excluding the AND and OR specifications in WHEN search conditions of
CASE expressions) and the total number of check constraints.

Example

If a table is defined as follows, the check constraint limit is 4 (the total
number of operators (AND and OR) is 2 and the total number of check
constraints is 2):

CREATE TABLE "STOCK"
 ("GNO" CHAR(5),"GNAME" CHAR(8),"PRICE" INTEGER,
 "QUANTITY" INTEGER,"STOCKING DATE" DATE)

67 TABLE_CREATOR VARCHAR(30) or
MVARCHAR(30)

Creator of a public view table
Null value for table that are not public view
tables.

68 N_ENCRYPTED_COLUMN SMALLINT Used by the system; always the null value.

69 CRYPTO_LIBRARY_TYPE CHAR(1) Used by the system; always the null value.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1487

 CHECK("QUANTITY " 100 AND "QUANTITY" 1000)
 CONSTRAINT "QUANTITY RULE"
 CHECK("STOCKING DATE"=DATE('1992-08-21')
 OR "STOCKING DATE"=DATE('1992-09-21'))
 CONSTRAINT "STOCKING DATE RULE"

(4) SQL_COLUMNS table
This table manages column definition information. (Each row describes information
on one column.)
Rows of the SQL_COLUMNS table are created during table definition, and row deletion
(including schema deletion) is performed during table deletion.
Table F-5 shows the contents of the SQL_COLUMNS table.

Table F-5: SQL_COLUMNS table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner or PUBLIC for a public view table

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the column

3 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name

4 TABLE_ID INTEGER Table ID

5 COLUMN_ID SMALLINT Column ID (integer beginning with 1; values less
than 1 are not allowed)

6 DATA_TYPE CHAR(24) Data type1

7 DATA_LENGTH CHAR(7) Column data length is stored right justified in
character format (blanks are used for leading
zeros)

8 IS_NULLABLE CHAR(3) Column null information5:
YES: Null value allowed
NO: Null values not allowed

9 DIVIDED_KEY CHAR(1) Partitioning key:
Y: Partitioning key
Blank: Not a partitioning key

10 CLUSTER_KEY CHAR(1) Cluster key:
Y: Column used for cluster key
Blank: Not a column used for cluster key

F. Data Dictionary Table Retrieval

1488

11 COLUMN_COMMENT VARCHAR(255)
or
MVARCHAR(255)

Comment (The initial value is a null value.)

12 BASE_TYPE CHAR(1) Base column type8:
C: Column
F: Function, operation
E: Other
Null value for base tables and foreign tables

13 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of base table that contains base column
Null value for base tables and foreign tables

14 BASE_TABLE VARCHAR(30) or
MVARCHAR(30)

Name of base table that contains base column
Null value for base tables and foreign tables

15 BASE_COLUMN VARCHAR(30) or
MVARCHAR(30)

Base column name
Null value for base tables and foreign tables

16 DEFAULT_COLUMN CHAR(1) WITH DEFAULT specification5

Y: Specified
N: Not specified
Null value for view tables

17 COLUMN_OFFSET SMALLINT Column offset
Null value for tables that are not FIX tables, view
tables, and foreign tables.

18 HASH_KEY CHAR(1) Hash key:
Y: Hash key
Blank: Other than hash key

19 RECOVERY_TYPE CHAR(1) RECOVERY specification:
A: ALL
P: PARTIAL
N: NO
(Null value if the data type is not BLOB.)

20 LOB_LENGTH CHAR(20) Column length specification stored
right-justified in character format (blanks are
used for leading zeros)
Null value if the length is not for BLOB or
BINARY.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1489

21 LOB_LENGTH_TYPE CHAR(1) Column length type (in column lengths):
K: K specified
M: M specified
G: G specified
Blank: Default
(Null value if the data type is not BLOB.)

22 DATA_TYPE_CODE SMALLINT Data type code2

23 DATA_LENGTH_CODE SMALLINT Column data length code3

24 LOB_LENGTH_CODE CHAR(8) BLOB column data length
code4, 6

(Null value if the data type is not BLOB or
BINARY.)

25 DIVCOL_ORDER SMALLINT Partitioning key specification order (0-16)
Unique values within the applicable table,
beginning with 1.
Partitioning key specification order +1. 0 is
specified for a column that is not a partitioning
key.
Null value for non-partitioned tables, tables with
single column partitioning keys specified, view
tables, and foreign tables.

26 SUPPRESS_INF CHAR(1) Whether or not data suppression is specified:
Y: Specified
Null value: No specification
Null value for tables without data suppression
specifications, view tables, and for foreign tables

27 PLUGIN_
DESCRIPTION

VARCHAR(255) Plug-in option contents
Null value if no PLUGIN clause is specified, and
for foreign tables.

28 UDT_OWNER VARCHAR(30) Owner of a user-defined type
Null value if the type is not user-defined, and for
foreign tables.

29 UDT_NAME VARCHAR(30) Name of the user-defined type
Null value if the type is not user-defined, and for
foreign tables.

30 UDT_TYPE_ID INTEGER User-defined type ID
Null value if the type is not user-defined, and for
foreign tables.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1490

31 MAX_ELM SMALLINT Maximum number of repetition column elements
(Null value if the column is not a repetition
column.)

32 NO_SPLIT CHAR(1) Whether or not NO SPLIT is specified:
Y: Specified
Null value: No specification
Null value for view tables, foreign tables, and if
ALTER TABLE CHANGE SPLIT is executed.

33 PRIMARY_KEY CHAR(1) Primary key type
Y: Primary key
Blank: Other than the primary key

34 COLLATING_SEQUENCE CHAR(1) Character code and collating sequence for the
character string type column of a foreign server
and HiRDB External Data Access
S: SAME
D: DIFFERENT
Null value for tables that are not foreign tables
and if the data type of a foreign table column is
not the character string type.

35 TRAILING_SPACE CHAR(1) Whether or not there are trailing spaces in a
column of character string type in the external
table:
Y: There are trailing spaces.
N: There are no trailing spaces.
Null value for tables that are not foreign tables
and if the data type of a foreign table column is
not the variable character string type.

36 SYSTEM_GENERATED CHAR(1) Whether or not SYSTEM GENERATED is specified
Y: Specified
Null value: No specification
Null value if SYSTEM GENERATED is not
specified, for view tables, and foreign tables.

37 DEFAULT_CLAUSE CHAR(1) Whether or not the DEFAULT clause is specified
Y: Specified
Null value: No specification
Null value if the DEFAULT clause is not specified,
for view tables, and foreign tables.

38 DEFAULT_VALUE VARCHAR(32000
) or
MVARCHAR(3200
0)7

Default value (character format) specified for the
DEFAULT clause.9
Null value if the DEFAULT clause is not specified,
for view tables, and foreign tables.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1491

1 The stored value depends on the data type, as follows:

39 DEFAULT_VALUE2 VARCHAR(32000
) or
MVARCHAR(3200
0)7

Default value specified for the DEFAULT clause
(stores the 32,001st - 64,000th byte values in the
character format when a literal is specified).9
Null value if a literal is not specified, if the
DEFAULT clause is not specified, for view tables,
and foreign tables.

40 DEFAULT_VALUE3 VARCHAR(3) or
MVARCHAR(3)

Default value specified for the DEFAULT clause
(stores the 64,000th byte value and beyond in the
character format when a literal is specified).9
Null value if a literal is not specified, if the
DEFAULT clause is not specified, for view tables,
and foreign tables.

41 CHECK_COLUMN CHAR(1) Check constraint specification
Y: Specified
Null value for tables in which a check constraint
is not defined, view tables, and foreign tables.

42 FOREIGN_KEY CHAR(1) Foreign key type
Y: Foreign key configuration table
Null value: Non-foreign key configuration table

43 UPDATABLE CHAR(1) Updatable column attribute
U: Can be updated (UPDATE)
N: Can be updated only once from a null value to
a non-null value (UPDATE ONLY FROM NULL)
Null value for tables for which the updatable
attribute is not specified, view tables, and foreign
tables.

44 CRYPTO_LIBRARY_TYPE CHAR(1) Used by the system; always the null value.

Data type Value to be stored

INT INTEGER

INTEGER

SMALLINT SMALLINT

DEC DECIMAL

DECIMAL

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1492

2 For the specified data types and the values to be stored, see Table B-2 Data codes and
data lengths set in the SQL Descriptor Area.
3 For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB, BINARY, and abstract data types.
4 The specified column length is stored in binary format in 8 bytes divided into 4-byte
segments.

FLOAT FLOAT

DOUBLE PRECISION

SMALLFLT SMALLFLT

REAL

CHAR CHAR

VARCHAR VARCHAR

NCHAR NCHAR

NVARCHAR NVARCHAR

MCHAR MCHAR

MVARCHAR MVARCHAR

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

INTERVAL YEAR TO DAY INTERVAL YEAR TO DAY

INTERVAL HOUR TO SECOND INTERVAL HOUR TO SECOND

BINARY BINARY

BLOB BLOB

BINARY LARGE OBJECT

Abstract data type ADT

BOOLEAN BOOLEAN

Data type Value to be stored

F. Data Dictionary Table Retrieval

1493

5 If a foreign table is created using the HiRDB External Data Access facility and YES
is specified in the NULLABLE column option, YES is assumed in the IS_NULLABLE
column and N for the DEFAULT_COLUMN column. If NO is specified in the NULLABLE
column option, NOT NULL WITH DEFAULT is assumed, and NO is assumed in the
IS_NULLABLE column and Y for the DEFAULT_COLUMN column. Additionally, if NO is
specified in the NULLABLE column option, the values in the DEFAULT_COLUMN and
N_NOTNULL columns in the SQL_TABLES table are counted.
6 SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.
7 Specifies NO SPLIT.
8 E (Other) is set when the selection formula is one of the following:

• Scalar operations (four arithmetic operations, data operation, time operation,
CASE expression, and scalar functions)

• Literal
• CAST specification
• Function invocation (excluding plug-in functions)
• USER
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP

9 Table F-6 shows the values that are stored when the DEFAULT clause is specified.
Table F-6: Values that are stored when the DEFAULT clause is specified

Default value Data type1 Value stored in DEFAULT_VALUE column,
DEFAULT_VALUE2 column, or
DEFAULT_VALUE3 column2

Data size
(in char
format)

Default value (character format)

Omitted All Null value Null value

NULL All 4 'NULL'

F. Data Dictionary Table Retrieval

1494

USER CHAR and
MCHAR

4 'USER'

VARCHAR and
MVARCHAR

CURRENT DATE DATE, or
CHAR(10)

12 'CURRENT DATE'3

CURRENT_DATE 12 'CURRENT_DATE'

CURRENT TIME TIME or
CHAR(8)

12 'CURRENT TIME'3

CURRENT_TIME 12 'CURRENT_TIME'

CURRENT TIMESTAMP(p)
(p: decimal seconds precision)

TIMESTAMP,
CHAR(19),
CHAR(22),
CHAR(24), or
CHAR(26)

20 'CURRENT TIMESTAMP(p)'3, 7

CURRENT_TIMESTAMP(p)
(p: decimal seconds precision)

20 'CURRENT_TIMESTAMP(p)'7

Default value Data type1 Value stored in DEFAULT_VALUE column,
DEFAULT_VALUE2 column, or
DEFAULT_VALUE3 column2

Data size
(in char
format)

Default value (character format)

F. Data Dictionary Table Retrieval

1495

Lit Char
string
lit

Character string
literal
Example 1:
'HiRDB'
Example 2:

'2002-10-2
4
10:50:23.123
4'

CHAR or MCHAR def-val-size +
24

specified-default-value-size4

Example: ''HiRDB''VARCHAR or
MVARCHAR

DATE, TIME, or
TIMESTAMP

def-val-size +
24

specified-default-value-size4

Example:
''2002-10-24 10:50:23.1234''

Mixed character
string literal
Example:
M'100 years'

CHAR or MCHAR def-val-size +
34

specified-default-value-size4

Example: 'M'100 years''VARCHAR or
MVARCHAR

National
character string
literal
Example:
N'software'

NCHAR or
NVARCHAR

def-val-size +
34

specified-default-value-size4

Example: 'N'software'''

Hexadecimal
character string
literal
Example 1:
X'48692D43'
Example 2:
X'2002102410
502312'

CHAR,
VARCHAR,
MCHAR,
MVARCHAR, or
BINARY

def-val-size +
34

Example: 'X'48692D43''4, 6

DATE, TIME, or
TIMESTAMP(p)

Example:
'X'2002102410502312''4, 6

Default value Data type1 Value stored in DEFAULT_VALUE column,
DEFAULT_VALUE2 column, or
DEFAULT_VALUE3 column2

Data size
(in char
format)

Default value (character format)

F. Data Dictionary Table Retrieval

1496

The following abbreviations are used in this table:
Num: Numeric
Lit: Literal
Char: Character
def: default
val: value

: 1-byte blank space
1 Excludes BLOB, the abstract data type, and BINARY of 32,001 bytes or greater.

Num
lit

Integer literal
Example: 10

INTEGER,
SMALLINT,
DECIMAL,
FLOAT, or
SMALLFLT

def-val-size5 specified-default-value5

Example: '10'

Floating-point
literal
Example: 15e +
3

INTEGER,
SMALLINT,
DECIMAL,
FLOAT, or
SMALLFLT

22 or 23 specified-default-value5

Example:
'+1.500000000000000E+04'
(From the left, 1 byte for a sign, 17
bytes for the virtual number portion
(decimal literal), 1 byte for 'E', 1 byte
for a sign, 2-3 bytes for the exponential
part (power of 10))

Decimal literal
Example 1:
15.5
Example 2:
-010101.
Example 3:
00011399.

INTEGER,
SMALLINT,
DECIMAL,
FLOAT,
SMALLINT,
INTERVAL
YEAR TO DAY,
or INTERVAL
HOUR TO
SECOND

def-val-size5 specified-default-value5

Example 1: ' 15.5'
Example 2: '-010101.'
Example 3:
'+00020199.' for INTERVAL YEAR
TO DAY
' 00011399.' for INTEGER
(For INTERVAL YEAR TO DAY and
INTERVAL HOUR TO SECOND, the
value is corrected and a sign is added to
the front (the value is blank in all other
cases and for a positive value))

Default value Data type1 Value stored in DEFAULT_VALUE column,
DEFAULT_VALUE2 column, or
DEFAULT_VALUE3 column2

Data size
(in char
format)

Default value (character format)

F. Data Dictionary Table Retrieval

1497

2 If the data size is smaller than 32,001 bytes, the DEFAULT_VALUE2 column and
DEFAULT_VALUE3 column become null values. If the data size is 32,001-64,000
bytes, the DEFAULT_VALUE3 column becomes a null value.
3 Blank spaces between CURRENT and DATE, TIME, or TIMESTAMP are edited into
a single blank space.
4 The specified default value is stored as a literal expression in the character
format. The data size and default value include the literal expressions M, N, X, and
apostrophe ('). Therefore, the data size range is 2-32,002 bytes including ' ' for
a character string literal, 3-32,003 bytes including M' ' and N' ' for a mixed
character string literal and a national character string literal, and 3-64,003 bytes
including X' ' for a hexadecimal character string literal.

Bytes 1-32,000 of the specified literal are stored in the DEFAULT_VALUE
column; bytes 32,001-64,000 are stored in the DEFAULT_VALUE2 column;
and bytes 64,000 and beyond are stored in the DEFAULT_VALUE3 column.
Example:
When 32,000 bytes worth of a default value is specified for the hexadecimal
character string literal (a total of 64,003 bytes including X and an apostrophe
('))
VARCHAR(32000) DEFAULT X'C1C1C1...C1C1C1'
The first 32,000 bytes X'C1C1C1... are stored in the DEFAULT_VALUE
column.
The next 32,000 bytes C1C1C1... are stored in the DEFAULT_VALUE2
column.
The remaining 3 bytes C1' are stored in the DEFAULT_VALUE3 column.

5 The specified default value is stored as a literal expression in the character
format. Size in the character format expression is stored for the data size.

Example:
When a default value is specified for the numeric literal
INTEGER DEFAULT 100
The first 3 bytes 100 are stored in the DEFAULT_VALUE column.
Null values are stored in the DEFAULT_VALUE2 and DEFAULT_VALUE3
columns.

6 The value is all upper-case letters (upper-case letters are stored even when
lower-caser letters are specified for the value).

F. Data Dictionary Table Retrieval

1498

7 If the decimal precision (p) for the CURRENT_TIMESTAMP value to be specified
for the default value is omitted, p = 0 is assumed.

(5) SQL_INDEXES table
This table manages index information. (Each row describes information on one index.)
Table F-7 shows the contents of the SQL_INDEXES table.

Table F-7: SQL_INDEXES table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains an index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 INDEX_ID INTEGER Index ID

5 TABLE_ID INTEGER Table ID

6 UNIQUE_TYPE CHAR(1) Unique type:
U: Unique
N: Non-unique

7 COLUMN_COUNT SMALLINT Number of columns comprising the index

8 CREATE_TIME CHAR(14) Index creation date and time
(YYYYMMDDHHMMSS)

9 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of storage RDAREA for non-partitioned
index
Null value for partitioning key indexes and
foreign indexes

10 CLUSTER_KEY CHAR(1) Index type:
Y: Cluster index
N: Non-cluster index

11 DIV_INDEX CHAR(1) Type of first column of the columns that make up
the index:
Y: Partitioning key or plug-in index
(The same order from the first key of partitioning
keys specified in CREATE TABLE for
multiple-partitioning keys)
N: Not a partitioning key

F. Data Dictionary Table Retrieval

1499

12 FREE_AREA SMALLINT Percentage of unused space in each page (%)
0 for foreign indexes

13 COLUMN_ID_LIST VARCHAR(64) List of IDs of columns constituting the index1

Ascending and descending orders are indicated
with + and -. + is set to specify the descending
order of single-column indexes (other than
cluster key indexes). + is always set for plug-in
indexes.

14 SPLIT_OPT CHAR(1) Page split option:
U: Unbalanced split
Null value for indexes for which unbalanced split
is not specified, and foreign indexes.

15 ATTR_COUNT SMALLINT Number of abstract data type attributes
constituting an index
Null value for CREATE INDEX (Format 1)

16 INDEX_TYPE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of an index type
Null value for CREATE INDEX (Format 1), and
foreign indexes

17 INDEX_TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of an index type
Null value for CREATE INDEX (Format 1), and
foreign indexes

18 INDEX_TYPE_ID INTEGER Index type ID
Null value for CREATE INDEX (Format 1), and
foreign indexes

19 PLUGIN_
DESCRIPTION

VARCHAR(255) Plug-in option contents
Null value if PLUGIN is not specified, and for
foreign indexes.

20 N_FUNCTION INTEGER Number of applied functions
Null value for CREATE INDEX (Format 1), and
foreign indexes

21 EXCEPT_VALUES CHAR(1) Whether or not exclusion key values are
specified:
Y: Specified
N: Not specified

22 N_EXCEPT_VALUES SMALLINT Number of exclusion key values in an index
Null value for indexes without exception value
specifications

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1500

1 SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.

(6) SQL_USERS table
This table manages information about the execution and DBA (database administration)
privileges of users. (Each row describes information on one user.)
This table can be referenced only by owners with the DBA privilege and auditors.
Table F-8 shows the contents of the SQL_USERS table.

Table F-8: SQL_USERS table contents

23 ARRAY_TYPE CHAR(1) Type of the columns that make up the index:
M: Includes repetition columns
Null value: The columns that make up the index
do not include repetition columns.

24 LOCK_OPT CHAR(1) Information used by the system

25 PRIMARY_KEY CHAR(1) Index type
Y: Primary key index
Null value: Not a primary key index

26 DIV_IN_SRV CHAR(1) Whether or not a non-partitioning key index is
partitioned within the server:
Y: Partitioned within the server
Null value: Not partitioned within the server
Null value for partitioning key indexes as well

27 SHARED CHAR(1) Shared index specification
S: Shared index
Null value: Unshared index

Number Column name Data type Contents

1 USER_ID VARCHAR(30) or
MVARCHAR(30)

Name of the user with privileges

2 DBA_PRIVILEGE CHAR(1) DBA privilege:
Y: Has the DBA privilege
N: Does not have the DBA privilege

3 SCHEMA_PRIVILEGE CHAR(1) Schema definition privilege:
Y: Has the schema definition privilege
S: Owns a schema
N: Does not have the schema definition privilege
The initial value is N.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1501

* If the consecutive certification failure account lock is set and no connection is
established after the specified account lock period has elapsed, a null value is not set
even if the consecutive certification failure account lock state has not occurred.

(7) SQL_RDAREA_PRIVILEGES table
This table manages the assignment of RDAREA usage privileges. (Each row describes
information on one user of one RDAREA.)

4 CREATE_TIME CHAR(14) Schema creation date and time
(YYYYMMDDHHMMSS)
The initial value is a null value; also a null value
when DROP SCHEMA is executed.

5 AUDIT_PRIVILEGE CHAR(1) Audit privilege status:
Y: Granted
Null value: Not granted
Null value for any user who is not the auditor.

6 AUTH_ERR_COUNT SMALLINT Number of consecutive certification failures
Null value if the number of consecutive
certification failures is not specified, the number
of consecutive user certification failures is 0, or
the number of continuous certification failures
has been cleared.

7 CON_LOCK_TIME TIMESTAMP(0) Consecutive certification failure account lock
date and time
Null value if the number of consecutive
certification failures is not specified or if the
consecutive certification failure account lock
state has not occurred.*

8 PWD_LOCK_TIME TIMESTAMP(0) Password-invalid account lock date and time
Null value if a password character string limit is
not specified or if the password-invalid account
lock state has not occurred.

9 PASSWORD_TEST CHAR(1) Password limit violation type code
L: Minimum number of allowed bytes
U: Specification of authentication indicator
prohibited
S: Specification of single-character type
prohibited
Null value if the user for whom the
password-invalid account lock state occurs has
not been prechecked or if there is no violation
after the precheck.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1502

Table F-9 shows the contents of the SQL_RDAREA_PRIVILEGES table.
Table F-9: SQL_RDAREA_PRIVILEGES table contents

(8) SQL_TABLE_PRIVILEGES table
This table manages the granting of table access privileges. (Each row describes
information on one user.)
Rows of the SQL_TABLE_PRIVILEGES table are created when users are granted table
access privileges by GRANT. Rows are deleted when all of a user's privileges are
revoked by REVOKE.
Table F-10 shows the contents of the SQL_TABLE_PRIVILEGES table.

Table F-10: SQL_TABLE_PRIVILEGES table contents

Number Column name Data type Contents

1 GRANTEE VARCHAR(30) or
MVARCHAR(30)

Name of the user with the RDAREA usage
privilege or PUBLIC

2 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the RDAREA

3 GRANT_TIME CHAR(14) Date and time at which the relevant privilege was
granted (YYYYMMDDHHMMSS)

Number Column name Data type Contents

1 GRANTOR VARCHAR(30) or
MVARCHAR(30)

Name of the user granting the table access
privileges or the definer of the public view table

2 GRANTEE VARCHAR(30) or
MVARCHAR(30)

Name or role name, of the user who receives
table access privilege, or PUBLIC

3 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which access privilege is
to be granted. PUBLIC for a public view table.

4 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which access privileges are
to be granted

5 SELECT_PRIVILEGE CHAR(1) SELECT privilege status:
G: Granted (for a table owner)
Y: Granted
N: Not granted
The initial value is N.

6 INSERT_PRIVILEGE CHAR(1) INSERT privilege status
G: Granted (for a table owner)
Y: Granted
N: Not granted
The initial value is N.

F. Data Dictionary Table Retrieval

1503

(9) SQL_VIEW_TABLE_USAGE table
This table manages information of the base tables that serve as the basis for view
tables. (Each row describes information on one view table.)
Table F-11 shows the contents of the SQL_VIEW_TABLE_USAGE table.

Table F-11: SQL_VIEW_TABLE_USAGE table contents

7 DELETE_PRIVILEGE CHAR(1) DELETE privilege status
G: Granted (for a table owner)
Y: Granted
N: Not granted
The initial value is N.

8 UPDATE_PRIVILEGE CHAR(1) UPDATE privilege status
G: Granted (for a table owner)
Y: Granted
N: Not granted
The initial value is N.

9 GRANT_TIME CHAR(14) Date and time at which the relevant privilege was
granted (YYYYMMDDHHMMSS)

10 GRANTEE_TYPE CHAR(1) Type of table access privilege grantee:
G: Role registered in the directory server
Null if GRANTEE or the user is PUBLIC.

Number Column name Data type Contents

1 VIEW_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of a view table or PUBLIC for a public
view table

2 VIEW_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a view table

3 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the base table or the resource to be used
or PUBLIC for a public view table

4 BASE_TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the base table or the resource to be used

5 BASE_TYPE CHAR(1) Type of the base table or the resource to be used
R: Real table
V: View table
F: External table
P: User-defined function (excluding plug-in
functions)

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1504

(10) SQL_VIEWS table
This table manages view table definition information. (Each row describes information
on one view table.)
Table F-12 shows the contents of the SQL_VIEWS table.

Table F-12: SQL_VIEWS table contents

(11) SQL_DIV_TABLE table
This table manages table partitioning information in the database. (Each row describes
information on one table.)
Table F-13 shows the contents of the SQL_DIV_TABLE table.

Table F-13: SQL_DIV_TABLE table contents

Number Column name Data type Contents

1 VIEW_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of a view table or PUBLIC for a public
view table

2 VIEW_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a view table

3 SOURCE_ORDER INTEGER Order if source is divided and stored in multiple
rows (1-n)

4 IS_UPDATABLE CHAR(3) Update possibility:
YES: Possible
NO: Not possible

5 VIEW_DEFINITION VARCHAR(32000
) or
MVARCHAR(3200
0)

View definition source statements

6 VIEW_ID INTEGER View ID

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of a view table

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a view table

3 DIV_NO INTEGER Partitioning condition specification order
(unique value beginning with 1 for the
corresponding table, which is obtained by adding
1 to the partitioning condition specification
order)

F. Data Dictionary Table Retrieval

1505

(12) SQL_INDEX_COLINF table
This table manages index column information. (Each row describes information on
one index.)
Table F-14 shows the contents of the SQL_INDEX_COLINF table.

Table F-14: SQL_INDEX_COLINF table contents

4 TABLE_ID INTEGER Table ID

5 DCOND CHAR(2) Partitioning condition code
The partitioning storage condition value is stored
in character format; the storable values are =, ̂ =,
<, <=, >, and >=; if <> or != is specified, it is
stored as ^=.
For a matrix-partitioned table, <= is stored.
Blank if no partitioning storage condition is
specified or if hash partitioning is specified.

6 DCVALUES VARCHAR(256)
or
MVARCHAR(256)

Partitioning condition value
(Null value if no partitioning storage condition is
specified or if hash partitioning is specified.)

7 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of storage RDAREA

8 DCVALUES2 VARCHAR(255)
or
MVARCHAR(255)

Second dimension key partitioning condition
value (The storage format is the same as that for
DCVALUES.)
Null value for a table that is not a
matrix-partitioned table and for a
matrix-partitioned table for which no boundary
value is specified.

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains an index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 INDEX_ID INTEGER Index ID

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1506

(13) SQL_DIV_INDEX table
This table manages index partitioning information (partitioning conditions and names
of storage RDAREAs specified by CREATE TABLE). (Each row describes information
on one index.)
Table F-15 shows the contents of the SQL_DIV_INDEX table.

Table F-15: SQL_DIV_INDEX table contents

1 This value is not related to DIV_NO of SQL_DIV_TABLE.

5 INDEX_ORDER INTEGER Order of columns comprising the index (integer
beginning with 1, which identifies the name order
of columns comprising the index)

6 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name (name of columns comprising the
index)

7 ASC_DESC CHAR(1) Ascending or descending order:
A: Ascending order
D: Descending order
Blank: (for plug-in indexes)
(If descending order is specified for a
single-column index, it is stored as ascending
order.)

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains an index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 DIV_NO INTEGER RDAREA definition order (unique value
beginning with 1 for the corresponding index
which is obtained by adding 1 to the RDAREA
definition order)1

5 INDEX_ID INTEGER Index ID

6 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of partitioned storage RDAREA
comprising the index)

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1507

(14) SQL_DIV_COLUMN table
This table manages BLOB-type column partitioning information (name of storage
RDAREA specified by CREATE TABLE). (Each row describes information on one
column.)
Table F-16 shows the contents of the SQL_DIV_COLUMN table.

Table F-16: SQL_DIV_COLUMN table contents

(15) SQL_ROUTINES table
This table manages routine definition information. (Each row describes information on
one routine.)
Table F-17 shows the contents of the SQL_ROUTINES table.

Table F-17: SQL_ROUTINES table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name

4 DIV_NO INTEGER Storage order

5 RDAREA_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the user LOB RDAREA

6 STORE_NO INTEGER Always 1

7 MASTER_RDAREA_
NAME

VARCHAR(30) or
MVARCHAR(30)

Name of user RDAREA for the corresponding
table

8 N_LEVEL SMALLINT Number of levels
(Null value for BLOB type columns)

9 COMPONENT_
NAME

VARCHAR(30) or
MVARCHAR(30)

Component name
(Null value for BLOB type columns)

10 LOB_NO SMALLINT LOB attribute number
(Null value for BLOB type columns)

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Routine owner

F. Data Dictionary Table Retrieval

1508

2 ROUTINE_NAME VARCHAR(30) or
MVARCHAR(30)

Routine name10

3 OBJECT_ID INTEGER Object ID

4 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name2

5 ROUTINE_TYPE CHAR(1) Routine type:
P: Procedure
F: Function

6 ROUTINE_VALID CHAR(1) Validity flag:
Y: Validity routine
N: Invalidity routine

7 INDEX_VALID CHAR(1) Index status change flag:
Y: Index status valid1

N: Index status invalid1

8 CREATE_TIME CHAR(14) Routine creation date and time
(YYYYMMDDHHMMSS)
SQL analysis time for SQL procedure statements
or definition creation time for external routines

9 ALTER_TIME CHAR(14) Routine re-creation date and time
(YYYYMMDDHHMMSS)
(The initial value is a null value.)

10 OBJECT_SIZE INTEGER Object size (in bytes)
0 for external routines

11 SOURCE_SIZE INTEGER Definition source size (bytes)
0 for external routines and registry operation
procedures

12 ISOLATION_LEVEL SMALLINT Data guarantee level (0-2)
Valid for procedures

13 OPTIMIZE_LEVEL INTEGER SQL optimization option (converted to decimal
format)
Specifies the value of OPTIMIZE LEVEL for
CREATE PROCEDURE, ALTER PROCEDURE,
CREATE TYPE, or ALTER ROUTINE.

14 SQL_LEVEL SMALLINT SQL level (0-2)
Valid for procedures

15 N_PARAM INTEGER Number of parameters

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1509

16 N_RESOURCE INTEGER Number of resources used in an object

17 PARAM_LOCATION INTEGER Start position of a procedure statement in a
definition source statement.8

18 ROUTINE_
COMMENT

VARCHAR(255)
or
MVARCHAR(255)

Comment
(The initial value is a null value.)

19 DEF_SOURCE BLOB Definition source statement (not including
compiler options)
Null value for foreign routines (excluding Java
routines), registry operation procedures, and
trigger action procedures.

20 ROUTINE_ADT_OWNER VARCHAR(30) Owner of the abstract data type that defined
routines
(Null value for routines that are not defined
inside the abstract data type)

21 ROUTINE_ADT_NAME VARCHAR(30) Name of the abstract data type that defined
routines
(Null value for routines that are not defined
inside the abstract data type)

22 ROUTINE_BODY CHAR(1) Function routine type:
S: SQL procedure
E: External routine
T: Trigger action procedure
Null value for procedures (excluding trigger
action procedures) that are not foreign routines.

23 FUNCTION_TYPE CHAR(1) Function type:
C: System-defined function constructor
Blank: User-defined function
(Null value for procedures)

24 EXTERNAL_NAME VARCHAR(255) External routine name (library-name !
operation-name) or a Java method name if
defined in Java
Null value if the name is not for a foreign
function.

25 EXTERNAL_LANGUAGE CHAR(20) External descriptive language type:
C: C language
Java: Java language
Null value if the language type is not for a foreign
function.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1510

26 PARAMETER_STYLE VARCHAR(20) Parameter style (external routine type)
PLUGIN: Plug-in
RDSQL: System-defined scalar function
Java: Java
Null value if the parameter style is not for a
foreign function.

27 ENCAPSULATION_
LEVEL

VARCHAR(10) Encapsulation level (PUBLIC, PRIVATE, or
PROTECTED)
(Null value for routines that are not defined
inside the abstract data type.)

28 RETURN_UDT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of a return value data type
(Null value if the return value is not a
user-defined function.)

29 RETURN_UDT_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a return value data type
(Null value if the return value is not a
user-defined function.)

30 RETURN_UDT_TYPE_
ID

INTEGER ID of a return value data type
(Null value if the return value is not a
user-defined function.)

31 RETURN_DATA_TYPE CHAR(24) Return value data type
For details about the storage format, see the
DATA_TYPE column in the SQL_COLUMNS table.
(Null value if the return value data type is not a
function.)

32 RETURN_DATA_TYPE
_CODE

SMALLINT Code for a return value data type3

(Null value if the return value data type is not a
function.)

33 RETURN_DATA_
LENGTH_CODE

SMALLINT Code for a return value data length4

(Null value for procedures)

34 RETURN_DATA_
LENGTH

CHAR(7) Return value data length stored right-justified in
character format (blanks are used for leading
zeros)
(Null value for procedures)

35 RETURN_LOB_
LENGTH_CODE

CHAR(8) Code for a return value BLOB data length5, 9

(Null value for procedures, or if the return value
is not a BLOB or BINARY function.)

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1511

36 RETURN_LOB_
LENGTH

CHAR(20) Specification value of a return value BLOB data
length
Right-justified in character format (blanks are
used for leading zeros)
(Null value for procedures, or if the return value
is not a BLOB or BINARY function.)

37 RETURN_LOB_
LENGTH_TYPE

CHAR(1) Type of a return value BLOB data length:
K: K specified
M: M specified
G: G specified
Blank: Default
(Null value for procedures, or if the return value
is not a BLOB or BINARY function.)

38 ADDITIONAL_
OPTIMIZE_LEVEL

INTEGER Extended SQL optimization option (converted to
decimal format)
Specifies the value of ADD OPTIMIZE LEVEL for
CREATE PROCEDURE, ALTER PROCEDURE,
CREATE TYPE, or ALTER ROUTINE.
Null value if the routine was created by HiRDB
of Version 06-00 or earlier.

39 CLASS_NAME VARCHAR(255) package-name.class-name6

Null value if the foreign routine is not coded in
Java.

40 JAR_NAME VARCHAR(255) Java archive file name
Null value if the foreign routine is not coded in
Java.

41 DYNAMIC_RESULT_
SETS

SMALLINT Maximum number of result sets to be returned
Null value if no maximum number is specified
for the result sets.

42 SQL_
SPECIFICATION

CHAR(1) Data access specification:
C: CONTAINS SQL
M: MODIFIES SQL
N: NO SQL
R: Used by the system; always the null value.

43 RETURNS_JAVA_
DATA_TYPE

VARCHAR(255) Java return value's data type corresponding to
return value's data type7

Null value if the foreign routine is not coded in
Java.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1512

1 Index information in the routine is invalid (the routine cannot be executed). In this
case, SQL objects must be re-created by ALTER ROUTINE or ALTER PROCEDURE.
2 For procedures, this name is the same as the routine name; for functions, the system
internally generates a name from the routine name and object ID as follows:
F routine name (up to 19 bytes) object ID (10 bytes)
3 For details about the specified data type and values to be stored, see Table B-2 Data
codes and data lengths set in the SQL Descriptor Area.
4 For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB and abstract data types.
5 The specified column length is stored in binary format in 8 bytes, divided into 4-byte
segments.

44 RETURNS_JAVA_
DATA_TYPE_CODE

INTEGER Java return value's data type code corresponding
to return value's data type7

Null value if the foreign routine is not coded in
Java.

45 RETURN_DATA_
MAX_ELM

SMALLINT Maximum number of elements for return value's
data type
Null value if ARRAY is not specified for the return
value data type.

46 N_JAVA_RESULT_
SETS

INTEGER Number of Java.sql.ResultSet[]s specified
Null value if Java.sql.ResultSet[] is not
specified.

47 FOR_UPDATE_EXCLUSIV
E_LOCK

CHAR(1) Whether ISOLATION LEVEL is a value other than
2 and FOR UPDATE EXCLUSIVE is specified
Y: Yes
Null value: No
Null value for routines created with an HiRDB
versions earlier than 07-01, if FOR UPDATE
EXCLUSIVE has not been specified, and if the
ISOLATION LEVEL value is 2.

48 SUBSTR_LENGTH SMALLINT Specification value of SUBSTR LENGTH of the
SQL compile option
Null value for routines created with HiRDB
versions earlier than 08-00, or when the character
code type is not Unicode (UTF-8).

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1513

6 The following shows the storage format for package-name.class-name:
• Package name specified

package-name.class-name
• Package name not specified

class-name
7 The following Java data types are stored as a character string in
RETURN_JAVA_DATA_TYPE. The Java data types expressed in hexadecimal numbers
are stored in RETURN_JAVA_DATA_TYPE_CODE.

Java data type Value in hexadecimal

byte[] 1000

byte[][] 100A

short 1002

short[] 1003

int 1004

int[] 1005

float 1006

float[] 1007

double 1008

double[] 1009

java.match.BigDecimal 2000

java.match.BigDecimal[] 2001

java.lang.String 2002

java.lang.String[] 2003

java.sql.Date 2004

java.sql.Date[] 2005

java.sql.Time 2006

java.sql.Time[] 2007

java.lang.Double 2008

java.lang.Double[] 2009

F. Data Dictionary Table Retrieval

1514

8 The location at which the procedure statement starts is counted from the top of the
SQL statement, beginning at 1. For an external routine (Java routine), the location at
which the external routine specification (EXTERNAL NAME clause) begins is counted
from the top of the SQL statement. A value of 0 is set for the following:

• External routine (excluding Java routines)
• Registry manipulation procedure
• Trigger action procedure

9 SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.
10 For a trigger action procedure, the following routine name (22 bytes long) is stored:

'(TRIGyyyymmddhhmmssth)'
yyyymmddhhmmssth: Time stamp at the time of trigger definition (units: 1/100
seconds)

(16) SQL_ROUTINE_RESOURCES table
This table manages resource information used in routines. (n rows describe
information on one routine.)
Table F-18 shows the contents of the SQL_ROUTINE_RESOURCES table.

java.lang.Float 200A

java.lang.Float[] 200B

java.lang.Integer 200C

java.lang.Integer[] 200D

java.lang.Short 200E

java.lang.Short[] 200F

java.sql.Timestamp 2010

java.sql.Timestamp[] 2011

void 0000

Java data type Value in hexadecimal

F. Data Dictionary Table Retrieval

1515

Table F-18: SQL_ROUTINE_RESOURCES table contents

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Routine owner

2 ROUTINE_NAME VARCHAR(30) or
MVARCHAR(30)

Routine name

3 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name1

4 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Resource owner or PUBLIC for a public view
table

5 BASE_NAME VARCHAR(30) or
MVARCHAR(30)

Resource identifier

6 BASE_TYPE CHAR(1) Resource type:
R: Base table
V: View table
I: Index
D: Data type
P: Routine
F: External table
T: Trigger

7 ROUTINE_TYPE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of abstract data type for routine defined in
abstract data type
(Null value for routines that are not defined
inside the abstract data type.)

8 ROUTINE_TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of abstract data type for routine defined in
abstract data type
(Null value for routines that are not defined
inside the abstract data type.)

9 SELECT_OPERATION2 CHAR(1) Retrieval target specification status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.3

10 INSERT_OPERATION2 CHAR(1) Data insertion target status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.3

F. Data Dictionary Table Retrieval

1516

1 For procedures, this name is the same as the routine name; for functions, the system
internally generates a name from the routine name and object ID as follows:

'F' routine name (up to 19 bytes) object ID (10 bytes)
2 If a view table is used as an SQL object, information that merges the operation types
of all view tables being used is set in the base table (the highest order base table if the
base table is a view table) that is the base for the view table being used as the SQL
object.
3 If the type of resource being used is a view table (V), a null value is set for a view
table that is not actually contained in the SQL object.

(17) SQL_ROUTINE_PARAMS table
This table manages parameter information in routines. (n rows describe information on
one routine.)
Table F-19 shows the contents of the SQL_ROUTINE_PARAMS table.

11 UPDATE_OPERATION2 CHAR(1) Data update target status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.3

12 DELETE_OPERATION2 CHAR(1) Data deletion target status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.3

13 LOCK_OPERATION2 CHAR(1) Data insertion target status:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.3

14 PURGE_OPERATION2 CHAR(1) Whether or not a data deletion target is specified
in a PURGE TABLE statement:
Y: Specified
Null value: Not specified
Null value if the type of resource used is not R or
V.3

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1517

Table F-19: SQL_ROUTINE_PARAMS table contents

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Routine owner

2 ROUTINE_NAME VARCHAR(30) or
MVARCHAR(30)

Routine name

3 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name

4 PARAMETER_NAME VARCHAR(30) or
MVARCHAR(30)

Parameter name5

5 PARAMETER_NO INTEGER Parameter specification sequence (a unique
number within the routine beginning with 1)

6 DATA_TYPE CHAR(24) Data type
For details about the storage format, see the
DATA_TYPE column in the SQL_COLUMNS table.
(Null value if the data type is BLOB.)

7 DATA_LENGTH CHAR(7) Data length stored right-justified in character
format (blanks are used for leading zeros)
(Null value if the data type is BLOB, BINARY, or a
user-defined type.)

8 LOB_LENGTH CHAR(20) Column length specification value right-justified
in character format (blanks are used for leading
zeros)
(Null value if the data type is not BLOB or
BINARY.)

9 LOB_LENGTH_TYPE CHAR(1) Column length type:
K: K specified
M: M specified
G: G specified
Blank: Default
(Null value if the data type is not BLOB.)

10 PARAMETER_MODE CHAR(5) Parameter I/O mode:
IN: Input mode
NOUT: Output mode
INOUT: Input/output mode
NONE: Other than above

11 DATA_TYPE_CODE SMALLINT Data type code1

(Null value if the data type is BLOB.)

F. Data Dictionary Table Retrieval

1518

12 DATA_LENGTH_CODE SMALLINT Data length code2

(Null value if the data type is BLOB, BINARY, or a
user-defined type.)

13 LOB_LENGTH_CODE CHAR(8) Column length specification
value3, 4

(Null value if the data type is not BLOB or
BINARY.)

14 UDT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of a data type parameter
(Null value if the parameter is the system-defined
type.)

15 UDT_NAME VARCHAR(30) or
MVARCHAR(30)

Name of a data type parameter
(Null value if the parameter is the system-defined
type.)

16 UDT_TYPE_ID INTEGER ID of a data type parameter
(Null value if the parameter is the system-defined
type.)

17 JAVA_DATA_TYPE VARCHAR(255) Data type of the corresponding Java parameter
For the storage format, see the
RETURNS_JAVA_DATA_TYPE column in the
SQL_ROUTINES table.
Null value if the foreign routine is not coded in
Java.

18 JAVA_DATA_TYPE_CODE INTEGER Data type code of the corresponding Java
parameter
For the storage format, see the
RETURNS_JAVA_DATA_TYPE_
CODE column in the SQL_ROUTINES table.
Null value if the foreign routine is not coded in
Java.

19 MAX_ELM SMALLINT Maximum number of parameter elements
Null value if the number of parameter elements is
not specified.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1519

1 For the specified data types and the values to be stored, see Table B-2 Data codes and
data lengths set in the SQL Descriptor Area.
2 For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB and abstract data types.
3 The specified column length is stored in binary format in 8 bytes, divided into 4-byte
segments.
4 SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.
5 For a trigger action procedure, the following parameter name (27 bytes long) is used:

'(T#tbl_id#col_id#nnnnn)'

tbl_id
Table ID (hexadecimal, 8 digits (If the number of digits is less than 8, the

20 TRIGGER_COLUMN CHAR(1) Parameter information for the column specified
by an old or new values correlation name of the
trigger action procedure
O: Column referenced by an old values
correlation name
N: Column referenced by a new values
correlation name
Null value: Neither of the above
Null value if the parameter is not for a trigger
action procedure or does not correspond to a
column specified by an old or new values
correlation name.

21 TRIGGER_TABLE_ID INTEGER Table ID that defines the column before it is
replaced with a parameter
Null value if the ID is not for a trigger action
procedure or does not correspond to a column
specified by an old or new values correlation
name.

22 TRIGGER_COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name before being replaced with a
parameter
Null value if the name is not for a trigger action
procedure or does not correspond to a column
specified by an old or new values correlation
name.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1520

front portion is zero filled.))
col_id

Column ID (hexadecimal, 8 digits (If the number of digits is less than 8, the
front portion is zero filled.))

nnnnn
00001: Parameter that corresponds to a column modified by an old values
correlation name
00002: Parameter that corresponds to a column modified by a new values
correlation name

(18) SQL_ALIASES table
This table manages table alias information (table alias specified when CREATE ALIAS
was executed and the three-part name of the target table). (Each row describes
information on one alias.) For the Windows version, the SQL_ALIASES table is empty.
Table F-20 shows the contents of the SQL_ALIASES table.

Table F-20: SQL_ALIASES table contents

(19) SQL_TABLE_STATISTICS table
This table manages table statistical information. (Each row describes information on
one table.)
If there is no statistical information (for example, immediately following CREATE
TABLE), the contents of this table are empty.

Number Column name Data type Contents

1 ALIAS_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the alias

2 ALIAS_NAME VARCHAR(30) or
MVARCHAR(30)

Alias

3 ALIAS_TYPE CHAR(1) Alias type:
T: Table
Blank: Others

4 RDNODE_NAME VARCHAR(30) or
MVARCHAR(30)

RD node name

5 BASE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the alias or PUBLIC for a public view
table.

6 BASE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the alias

F. Data Dictionary Table Retrieval

1521

Table F-21 shows the contents of the SQL_TABLE_STATISTICS table.
Table F-21: SQL_TABLE_STATISTICS table contents

(20) SQL_COLUMN_STATISTICS table
This table manages column statistical information. (Each row describes information on
one column.)
If there is no statistical information (for example, immediately after CREATE TABLE),
the contents of this table are empty.
Table F-22 shows the contents of the SQL_COLUMN_STATISTICS table.

Table F-22: SQL_COLUMN_STATISTICS table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 N_PAGE FLOAT Number of pages stored (statistical information)
Null value if lvll is specified for the -c option
of pdgetcst

4 N_ROW FLOAT Total number of rows (statistical information)

5 UPDATE_TIME CHAR(14) Update date and time (YYYYMMDDHHMMSS)

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains a column

3 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name

4 N_UNIQUE FLOAT Number of unique values (statistical information)

5 N_MAX_DUP_KEY FLOAT Maximum number of duplicate key values
(statistical information)

6 N_MIN_DUP_KEY FLOAT Minimum number of duplicate key values
(statistical information)

7 N_NULL FLOAT Number of null values

8 UPDATE_TIME CHAR(14) Update date and time (YYYYMMDDHHMMSS)

F. Data Dictionary Table Retrieval

1522

1 The maximum and minimum column values set in the pdgetcst parameter file are
stored in the RANGE_VALUES column after being converted into an internal format. To
reference these maximum and minimum values, the SQL described as follows must be
executed. The retrieval results are displayed in hexadecimal.

• SQL for retrieving the maximum column value
SELECT HEX(SUBSTR("RANGE_VALUE"),33,a)
 FROM "MASTER".SQL_COLUMN_STATISTICS
 WITHOUT LOCK NOWAIT

For a, specify the data length of the column in bytes. If the data is of the character
string type, it is truncated to 16 bytes, so a value equal to or less than 16 must be
specified.

• SQL for retrieving the minimum column value
SELECT HEX(SUBSTR("RANGE_VALUE"),49,a)
 FROM "MASTER".SQL_COLUMN_STATISTICS
 WITHOUT LOCK NOWAIT

For a, specify the data length of the column in bytes. If the data is of the character
string type, it is truncated to 16 bytes, so a value equal to or less than 16 must be
specified.

Example
Referencing the maximum column value of an INT-type column
SELECT HEX(SUBSTR("RANGE_VALUE"),33,4)
 FROM "MASTER".SQL_COLUMN_STATISTICS
 WITHOUT LOCK NOWAIT

Output result (when maximum column value is 10)
'0000000A'

(21) SQL_INDEX_STATISTICS table
This table manages index statistical information. (Each row describes information on
one index.)
If there is no statistical information (for example, immediately following CREATE
TABLE), the contents of this table are empty.
Table F-23 shows the contents of the SQL_INDEX_STATISTICS table.

9 RANGE_VALUES VARCHAR(2464) Column value frequency distribution information
(statistical information)1

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1523

Table F-23: SQL_INDEX_STATISTICS table contents

(22) SQL_DATATYPES table
This table manages user-defined type information (each row defines information on
one user-defined type).
Table F-24 shows the contents of the SQL_DATATYPES table.

Table F-24: SQL_DATATYPES table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 N_ENTRY FLOAT Number of key entries (statistical information)

5 N_IXPG FLOAT Number of leaf pages (statistical information)

6 N_LEVEL SMALLINT Number of levels (statistical information)

7 SEQ_RATIO INTEGER Sequential level (statistical information)

8 UPDATE_TIME CHAR(14) Update date and time (YYYYMMDDHHMMSS)

Number Column name Data type Contents

1 TYPE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the user-defined type

2 TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the user-defined type

3 META_TYPE CHAR(1) Type of the user-defined type:
A: Abstract data type

4 TYPE_ID INTEGER ID of the user-defined type

5 N_ATTR SMALLINT Number of attributes

6 CREATE_TIME CHAR(14) Creation date and time (YYYYMMDDHHMMSS)

7 N_SUBTYPE INTEGER Number of subtypes

8 SOURCE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the supertype abstract data type
(Null value if there is no supertype abstract data
type.)

F. Data Dictionary Table Retrieval

1524

(23) SQL_DATATYPE_DESCRIPTORS table
This table manages user-defined type attribute information. (Each row describes
information on one attribute.)

Table F-25 shows the contents of the SQL_DATATYPE_DESCRIPTORS table.
Table F-25: SQL_DATATYPE_DESCRIPTORS table contents

9 SOURCE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the supertype abstract data type
(Null value if there is no supertype abstract data
type.)

10 SOURCE_TYPE_ID INTEGER ID of the supertype abstract data type
(Null value if there is no supertype abstract data
type.)

11 ROOT_TYPE_ID INTEGER ID of the highest order abstract data type if the
supertype abstract data type also has a supertype

12 LEVEL_NO SMALLINT Number of generations from highest order
supertype abstract data type if the supertype
abstract data type also has a supertype

13 TYPE_COMMENT VARCHAR(255) Comment
(The initial value is a null value; null value is also
used if there is no comment.)

14 N_LOB_ATTR SMALLINT Number of BLOB-type attributes

15 N_ADT_ATTR SMALLINT Number of abstract-data-type attributes

16 N_LARGE_BINARY_ATTR SMALLINT Number of attributes for BINARY-type data of
32,001 bytes or more

Number Column name Data type Contents

1 TYPE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the user-defined type

2 TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the user-defined type

3 OBJECT_NAME VARCHAR(30) or
MVARCHAR(30)

Attribute name

4 TYPE_ID INTEGER ID of the user-defined type

5 META_TYPE CHAR(1) Type of the user-defined type:
S: System-defined type
A: Abstract data type

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1525

6 ORDINAL_POSITION SMALLINT Order position

7 ENCAPSULATION_
LEVEL

VARCHAR(10) Encapsulation level (PUBLIC, PRIVATE, or
PROTECTED)

8 IS_NULLABLE CHAR(3) Column null value information
YES: Null value allowed
NO: Null values not allowed

9 DATA_TYPE CHAR(24) Data type
For details about the storage format, see the
DATA_TYPE column in the SQL_COLUMNS table.

10 DATA_TYPE_CODE SMALLINT Data type code1

11 DATA_LENGTH_CODE SMALLINT Data length code2

(Null value if the data type is BLOB, BINARY, or a
user-defined type)

12 DATA_LENGTH CHAR(7) Data length stored right-justified in character
format (blanks are used for leading zeros)
(Null value if the data length is for BLOB,
BINARY, or a user-defined type.)

13 LOB_LENGTH_CODE CHAR(8) BLOB attribute length code3, 4

(Null value if the code is not for BLOB or
BINARY.)

14 LOB_LENGTH CHAR(20) BLOB attribute length specification value stored
right-justified in character format (blanks are
used for leading zeros)
Null value if the value is not for BLOB or BINARY.

15 LOB_LENGTH_TYPE CHAR(1) BLOB attribute length type (unit):
K: K specified
M: M specified
G: G specified
Blank: Default
(Null value if the type is not BLOB.)

16 UDT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the abstract data type for an abstract
data type attribute that has another abstract data
type
(Null value if the owner is for the system
definition type.)

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1526

1 For the specified data types and the values to be stored, see Table B-2 Data codes and
data lengths set in the SQL Descriptor Area.
2 For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB and abstract data types.
3 The specified column length is stored in binary format in 8 bytes, divided into 4-byte
segments.
4 SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.

(24) SQL_TABLE_RESOURCES table
This table manages resource information used in tables. (Each row describes
information on one resource.)
Table F-26 shows the contents of the SQL_TABLE_RESOURCES table.

Table F-26: SQL_TABLE_RESOURCES table contents

17 UDT_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type for an abstract
data type attribute that has another abstract data
type
(Null value if the name is for the system
definition type.)

18 DATA_COMMENT VARCHAR(255) Comment
(The initial value is a null value; null value is also
used if there is no comment.)

19 NO_SPLIT CHAR(1) Whether or not NO SPLIT is specified:
Y: Specified
Null value: No specification

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the resource used

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1527

(25) SQL_PLUGINS table
This table manages plug-in information. (Each row describes information on one
plug-in.)
Table F-27 shows the contents of the SQL_PLUGINS table.

Table F-27: SQL_PLUGINS table contents

(26) SQL_PLUGIN_ROUTINES table
This table manages plug-in routine information. (Each row describes information on

4 BASE_NAME VARCHAR(30) or
MVARCHAR(30)

ID of the resource used

5 BASE_TYPE CHAR(1) Type of the resource used:
A: Abstract data type

Number Column name Data type Contents

1 PLUGIN_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Plug-in owner

2 PLUGIN_NAME VARCHAR(30) or
MVARCHAR(30)

Plug-in name

3 PLUGIN_TYPE CHAR(1) Plug-in type:
D: Data type plug-in
I: Index type plug-in

4 TYPE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the abstract data type or index type

5 TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type or index type

6 CREATE_TIME CHAR(14) Plug-in creation time

7 PLUGIN_LIB_NAME VARCHAR(255) Library path name

8 PLUGIN_COMMENT VARCHAR(255) Comment
(The initial value is a null value; null value is also
used if there is no comment.)

9 PLUGIN_VERSION VARCHAR(10) Plug-in version
(Null value if the plug-in is the initial version.)

10 PLUGIN_EXT_FUNC VARCHAR(255) Plug-in extended function code (information
used in the system)

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1528

one plug-in routine.)
Table F-28 shows the contents of the SQL_PLUGIN_ROUTINES table.

Table F-28: SQL_PLUGIN_ROUTINES table contents

1 A plug-in routine is named in the following format:
'P' function-name registration-date-and-time

P
Code that indicates a function provided by a plug-in

function-name
The leading characters (maximum 15 characters) are truncated so that the
specific name is within 30 characters.

registration-date-and-time
Indicates the year, month, hour, minute, and second with 14 characters.

(27) SQL_PLUGIN_ROUTINE_PARAMS table
This table manages plug-in routine parameter information. (Each row describes
information on one parameter.)
Table F-29 shows the contents of the SQL_PLUGIN_ROUTINE_PARAMS table.

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Routine owner

2 PLUGIN_NAME VARCHAR(30) or
MVARCHAR(30)

Plug-in name

3 OPERATION_NAME VARCHAR(255) Operation name

4 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name1

5 N_PARAM INTEGER Number of parameters

6 TIMING_DESCRIPTOR VARCHAR(30) Timing descriptor

7 OPERATION_
DESCRIPTOR

VARCHAR(255) Operation modification information

F. Data Dictionary Table Retrieval

1529

Table F-29: SQL_PLUGIN_ROUTINE_PARAMS table contents

Number Column name Data type Contents

1 ROUTINE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner

2 PLUGIN_NAME VARCHAR(30) or
MVARCHAR(30)

Plug-in name

3 SPECIFIC_NAME VARCHAR(30) or
MVARCHAR(30)

Specific name

4 PARAMETER_NAME VARCHAR(30) or
MVARCHAR(30)

Parameter name

5 PARAMETER_MODE CHAR(7) Parameter I/O attribute:
IN: Input mode
OUT: Output mode
INOUT: Input/output mode
RETURNS: Return value attribute
PICKUP: ROWID output attribute

6 PARAMETER_
DESCRIPTOR

VARCHAR(255) Parameter modification information
Parameter modification information specified
with the plug-in IDL is held as a character string
without changes.
(Null value if no parameter modification
information is specified)

7 SPECIFIC_BIND_
OPERATION_NAME

VARCHAR(30) or
MVARCHAR(30)

Specific bind operation name
(Null value if bind operation is not specified.)

8 PARAMETER_TYPE CHAR(1) Parameter mode:
Blank: normal (data type that can be handled by
SQL)
I: Indicator
N: New data
C: Current data
D: dbifb
K: Index key inf
P: Pointer
R: rowid
U: utlifb
T: Pointer
These are plug-in specific parameter modes,
except normal.

9 PARAMETER_NO INTEGER Parameter specification order position for
abstract data type functions

F. Data Dictionary Table Retrieval

1530

10 DATA_TYPE CHAR(24) Parameter data type
For details about the storage format, see the
DATA_TYPE column in the SQL_COLUMNS table.
(Null value if the parameter mode is D, K, P, R, U,
or T.)

11 DATA_TYPE_CODE SMALLINT Parameter data code1

(Null value if the parameter mode is D, K, P, R, U,
or T.)

12 DATA_LENGTH_
CODE

SMALLINT Parameter data type definition length code2

(Null value if the parameter mode is D, K, P, R, U,
or T.)

13 DATA_LENGTH CHAR(7) Parameter data definition length stored
right-justified in character format (blanks are
used for leading zeros)
(Null value if the parameter mode is D, K, P, R, U,
or T.)

14 LOB_LENGTH_
CODE

CHAR(8) LOB column length code or BINARY column
length code3, 4

Null value if the parameter mode is normal and
the data type is not BLOB or BINARY.

15 LOB_LENGTH CHAR(20) LOB column length specification value or
BINARY column length specification value
Stored in the character format, right-justified
(higher-order 0s are left as blank spaces). Null
value if the parameter mode is normal and the
data type is not BLOB or BINARY.

16 LOB_LENGTH_TYPE CHAR(1) LOB column length type (unit):
K: K specified
M: M specified
G: G specified
Blank: Default
(Null value if the parameter mode is normal and
the data type is not BLOB or BINARY.)

17 UDT_OWNER VARCHAR(30) or
MVARCHAR(30)

Parameter data type owner
(Null value if the data type is not a user-defined
type.)

18 UDT_NAME VARCHAR(30) or
MVARCHAR(30)

Parameter data type name
(Null value if the data type is not a user-defined
type.)

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1531

1 For the specified data types and the values to be stored, see Table B-2 Data codes and
data lengths set in the SQL Descriptor Area.
2 For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO SECOND
types, precision and scale are each stored in 1 byte. In all other cases, size (number of
characters for the NCHAR and NVARCHAR types) is stored in the 2-byte binary format.
Note that the value is 0 for the BLOB and abstract data types.
3 The specified column length is stored in binary format in 8 bytes, divided into 4-byte
segments.
4 SQL results are not subject to endian conversion, even for connection modes with
different endians. Therefore, applications must handle the endian.

(28) SQL_INDEX_TYPES table
This table manages index type information. (Each row describes information on one
index type.)
Table F-30 shows the contents of the SQL_INDEX_TYPES table.

Table F-30: SQL_INDEX_TYPES table contents

19 UDT_TYPE_ID INTEGER Parameter data type ID
(Null value if the data type is not a user-defined
type.)

Number Column name Data type Contents

1 INDEX_TYPE_
SCHEMA

VARCHAR(30) or
MVARCHAR(30)

Index type owner

2 INDEX_TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Index type name

3 INDEX_TYPE_ID INTEGER Index type ID

4 CREATE_TIME CHAR(14) Creation time

5 ADT_OWNER VARCHAR(30) or
MVARCHAR(30)

Abstract data type owner

6 ADT_NAME VARCHAR(30) or
MVARCHAR(30)

Abstract data type name

7 N_FUNCTION INTEGER Number of abstract data type functions that can
be used in an index-type-defined index

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1532

(29) SQL_INDEX_RESOURCES table
This table manages resource information used in indexes. (Each row describes
information on one resource.)
Table F-31 shows the contents of the SQL_INDEX_RESOURCES table.

Table F-31: SQL_INDEX_RESOURCES table contents

(30) SQL_INDEX_DATATYPE table
This table manages target item information in indexes. (Each row describes
information on one target item (one level).)
Table F-32 shows the contents of the SQL_INDEX_DATATYPE table.

Table F-32: SQL_INDEX_DATATYPE table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the index definition table

2 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

3 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the resource used

4 BASE_NAME VARCHAR(30) or
MVARCHAR(30)

ID of the resource used

5 BASE_TYPE CHAR(1) Type of the resource used:
I: Index type

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 INDEX_ID INTEGER Index ID

5 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name (index column name)

6 N_LEVEL SMALLINT Number of levels (number used to identify the
name order of attributes constituting an abstract
data type)

F. Data Dictionary Table Retrieval

1533

(31) SQL_INDEX_FUNCTION table
This table manages abstract data type function information used in indexes. (Each row
describes information on one abstract data type function.)
Table F-33 shows the contents of the SQL_INDEX_FUNCTION table.

Table F-33: SQL_INDEX_FUNCTION table contents

(32) SQL_TYPE_RESOURCES table
This table manages resource information used in user-defined types. (Each row
describes information on one resource.)
Table F-34 shows the contents of the SQL_TYPE_RESOURCES table.

7 ADT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the abstract data type

8 ADT_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type

9 ADT_ATTR_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type attribute

10 ADT_ATTR_ID SMALLINT Attribute position

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 INDEX_ID INTEGER Index ID

5 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Column name (index column name)

6 ADT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner name of the abstract data type function

7 ADT_FUNCTION_
NAME

VARCHAR(30) or
MVARCHAR(30)

Name of the abstract data type function (routine
name)

8 ADT_FUNCTION_
OBJECT_ID

INTEGER Object ID of the abstract data type function

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1534

Table F-34: SQL_TYPE_RESOURCES table contents

(33) SQL_INDEX_TYPE_FUNCTION table
This table manages abstract data type function information that can be used in an index
that defines index types. (Each row describes information on one index type.)
Table F-35 shows the contents of the SQL_INDEX_TYPE_FUNCTION table.

Table F-35: SQL_INDEX_TYPE_FUNCTION table contents

1 This is not a specific name.
(34) SQL_EXCEPT table

This table manages index exclusion key value information. (Each row describes
information on the exclusion key group for one index.) This table manages one
exclusion key value (exclusion value group for multicolumn indexes) in each row.

Number Column name Data type Contents

1 TYPE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

User-defined type owner

2 TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

User-defined type name

3 BASE_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the resource used

4 BASE_NAME VARCHAR(30) or
MVARCHAR(30)

ID of the resource used

5 BASE_TYPE CHAR(1) ID of the resource used
A: Abstract data type

Number Column name Data type Contents

1 INDEX_TYPE_
SCHEMA

VARCHAR(30) or
MVARCHAR(30)

Index type owner

2 INDEX_TYPE_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

3 ADT_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the abstract data type function

4 ADT_FUNCTION_
NAME

VARCHAR(30) or
MVARCHAR(30)

ID of the abstract data type function1

5 ADT_FUNCTION_
OBJECT_ID

INTEGER Object ID of the abstract data type function

F. Data Dictionary Table Retrieval

1535

Table F-36 shows the contents of the SQL_EXCEPT table.
Table F-36: SQL_EXCEPT table contents

(35) SQL_FOREIGN_SERVERS table
This table manages server DBMS information. One row is created for the information
for one foreign server. (Each row describes information on one foreign server.)
If HiRDB External Data Access is not installed, this table is empty. However, if
HiRDB External Data Access is installed and a database is created, and then HiRDB
External Data Access is removed afterwards, the data in the table remains.
Table F-37 shows the contents of the SQL_FOREIGN_SERVERS table.

Table F-37: SQL_FOREIGN_SERVERS table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Index owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table that contains the index

3 INDEX_NAME VARCHAR(30) or
MVARCHAR(30)

Index name

4 INDEX_ID INTEGER Index ID

5 TABLE_ID INTEGER Table ID

6 EXCEPT_VALUE VARCHAR(573)
or
MVARCHAR(573)

Contents of the exclusion key value
The specified values for each column are
delimited with a comma in a character format.
(The initial value is a null value.)

Number Column name Data type Contents

1 FOREIGN_SERVER_
NAME

VARCHAR(30) or
MVARCHAR(30)

Foreign server name
Null value after DROP SERVER is executed.3

2 FOREIGN_SERVER_ID INTEGER Foreign server ID

3 FOREIGN_SERVER_
TYPE

VARCHAR(30) Server type1

HIRDB: HiRDB
XDMRD: HiRDB on XDM
DB2_UDB_OS390: DB2 Universal Database for
OS/390
ORACLE: Oracle
Null value after DROP SERVER is executed.3

F. Data Dictionary Table Retrieval

1536

1 The server type and server version of the foreign server accessed by HiRDB are set
as follows:

2 If the name is less than 8 bytes when left justified, the remaining spaces are filled
with blank spaces.
3 If DROP SERVER is executed to reuse a foreign server ID, the row is not deleted and
all columns except the one for a foreign server ID (FOREIGN_SERVER_ID) become
null values. Note however that the number of defined tables (N_FOREIGN_TABLE)
becomes 0. When CREATE SERVER is subsequently executed, the minimum value

4 FOREIGN_SERVER_
VERSION

VARCHAR(30) Server version1

Null value after DROP SERVER is executed.3

5 AUTHORIZATION_
IDENTIFIER

VARCHAR(30) or
MVARCHAR(30)

Foreign server owner
Null value after DROP SERVER is executed.3

6 CREATE_TIME CHAR(14) Foreign server creation time
(YYYYMMDDHHMMSS)
Null value after DROP SERVER is executed.3

7 CHANGE_TIME CHAR(14) Foreign server definition change time
(YYYYMMDDHHMMSS)
Null value when a row is created and after DROP
SERVER is executed.3

8 N_FOREIGN_TABLE INTEGER Number of tables defined in the foreign server

9 USING_BES CHAR(8) Name of the back-end server that accesses the
foreign server.2

Null value after DROP SERVER is executed.3

DBMS product name Server type Server version

XDM/RD E2 XDMRD 6.0

HiRDB Version 5.0 HIRDB 5.0

HiRDB Version 6 HIRDB 6.0

HiRDB Version 7 HIRDB 6.0

Oracle8.1.5 (for the HP-UX version) ORACLE 8.1.5

Oracle8.1.7 (for the AIX 5L version) ORACLE 8.1.5

DB2 Universal Database for OS/390 Version 6 DB2_UDB_OS390 6.0

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1537

among the unused foreign server IDs is assigned. If there are no unused foreign server
IDs, maximum-value + 1 is assigned.

(36) SQL_USER_MAPPINGS table
This table manages mapping information between authorization identifiers on HiRDB
and user IDs on the external server when an external server is accessed while the
HiRDB External Data Access facility is being used (one row is for one mapping for
one user on HiRDB).
If HiRDB External Data Access is not installed, this table is empty. However, if
HiRDB External Data Access is installed and a database is created, and then HiRDB
External Data Access is removed afterwards, the data in the table remains.
Table F-38 shows the contents of the SQL_USER_MAPPINGS table.

Table F-38: SQL_USER_MAPPINGS table contents

(37) SQL_IOS_GENERATIONS table contents
This table manages the generation information of HiRDB file system areas when the
inner replica facility is used. (Each row describes information on one HiRDB file
system area.)
If the HiRDB Staticizer Option is not installed, this table is empty. However, if a
database is created with HiRDB Staticizer Option installed, and then HiRDB Staticizer
Option is removed, any data set in the table remains.
Table F-39 shows the contents of the SQL_IOS_GENERATIONS table.

Number Column name Data type Contents

1 AUTHORIZATION_
IDENTIFIER

VARCHAR(30) or
MVARCHAR(30)

HiRDB authorization identifier that is the
conversion source of mapping (always PUBLIC)

2 FOREIGN_SERVER_
NAME

VARCHAR(30) or
VARCHAR(30)

Name of the external server

3 FOREIGN_SERVER_ID INTEGER External server ID

4 CREATE_TIME CHAR(14) User mapping creation date and time
(YYYYMMDDHHMMSS)

5 CHANGE_TIME CHAR(14) User mapping definition modification date and
time (YYYYMMDDHHMMSS)

6 USER_ID VARCHAR(30) or
VARCHAR(30)

User name at the external server

F. Data Dictionary Table Retrieval

1538

Table F-39: SQL_IOS_GENERATIONS table contents

* Even when a dictionary table of a HiRDB/Parallel Server is used in a HiRDB/Single
Server without any modification, the server name is not changed.
If the name is less than 8 characters when left justified, the remaining spaces are filled
with blank spaces.

(38) SQL_TRIGGERS table contents
This table manages the information of the triggers that are inside a schema. (Each row
describes information on one trigger.)
Table F-40 shows the contents of the SQL_TRIGGERS table.

Table F-40: SQL_TRIGGERS table contents

Number Column name Data type Contents

1 FILE_SYSTEM_NAME VARCHAR(165) HiRDB file system area name (absolute path
name)

2 GENERATION_NUMBER SMALLINT Generation number

3 SERVER_NAME CHAR(8) Server name (BES or SDS)*

4 ORIGINAL_FILE_SYSTE
M_NAME

VARCHAR(165) Original HiRDB file system area name
(absolute path name)

Number Column name Data type Contents

1 TRIGGER_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Trigger owner

2 TRIGGER_NAME VARCHAR(30)
or
MVARCHAR(30)

Trigger name

3 OBJECT_ID INTEGER Object ID

4 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the table for which the trigger is
defined.

5 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the table for which the trigger is
defined.

F. Data Dictionary Table Retrieval

1539

6 TRIGGER_VALID CHAR(1) Trigger-enabling flag
Y: Enabled
N: Disabled
Same value as the ROUTINE_VALID column of
the SQL_ROUTINES table for the trigger action
procedure

7 INDEX_VALID CHAR(1) Index-enabling flag
Y: Enabled
N: Disabled
Same value as the INDEX_VALID column of the
SQL_ROUTINES table for the trigger action
procedure

8 ACTION_TIME CHAR(1) Trigger action timing
A: AFTER
B: BEFORE

9 EVENT CHAR(1) Trigger event type
I: INSERT
D: DELETE
U: UPDATE

10 ACTION_TYPE CHAR(1) Trigger action unit
R: ROW
S: STATEMENT

11 OLD_ROW_NAME VARCHAR(30)
or
MVARCHAR(30)

Old values correlation name (correlation name
specified in OLD ROW)
Null value if OLD ROW is not specified.

12 NEW_ROW_NAME VARCHAR(30)
or
MVARCHAR(30)

New values correlation name (correlation name
specified in NEW ROW)
Null value if NEW ROW is not specified.

13 CREATE_TIME VARCHAR(16) Trigger definition creation time

14 ALTER_TIME CHAR(14) Trigger SQL object re-creation time
Same value as the ALTER_TIME column of the
SQL_ROUTINES table for the trigger action
procedure
Null value if a trigger SQL object is not
re-created.

15 DEF_SOURCE_LEN INTEGER Trigger definition source length

16 SPECIFIC_NAME VARCHAR(30)
or
MVARCHAR(30)

Specific name of the trigger action procedure

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1540

(39) SQL_TRIGGER_COLUMNS table contents
This table manages the list information of UPDATE trigger event columns. (Each row
describes information on one trigger column.)
Table F-41 shows the contents of the SQL_TRIGGER_COLUMNS table.

Table F-41: SQL_TRIGGER_COLUMNS table contents

17 N_UPDATE_COLUMNS SMALLINT Number of trigger event columns
Null value for an UPDATE trigger for which no
INSERT trigger, DELETE trigger, or trigger event
column is specified.

18 REFERENCING_TABLE_I
D

INTEGER Table ID of the referencing table
Null value for triggers that are not created by a
referential constraint action.

19 REFERENCE_ACTION CHAR(2) Referential constraint operation type
DC: ON DELETE CASCADE
UC: ON UPDATE CASCADE
Null value for triggers that are not created by a
referential constraint action.

20 CONSTRAINT_NAME VARCHAR(30)
or
MVARCHAR(30)

Constraint name of referential trigger
Null value for triggers that are not created by a
referential constraint action.

Number Column name Data type Contents

1 TRIGGER_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Trigger owner

2 TRIGGER_NAME VARCHAR(30)
or
MVARCHAR(30)

Trigger name

3 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the table for which the trigger is
defined.

4 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the table for which the trigger is
defined.

5 COLUMN_NAME VARCHAR(30)
or
MVARCHAR(30)

Column name specified for the column list

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1541

(40) SQL_TRIGGER_DEF_SOURCE table contents
This table manages the source information of trigger definitions. (Each row describes
information on one trigger definition source.)
Table F-42 shows the contents of the SQL_TRIGGER_DEF_SOURCE table.

Table F-42: SQL_TRIGGER_DEF_SOURCE table contents

(41) SQL_TRIGGER_USAGE table contents
This table manages the resource information being referenced inside trigger action
conditions. (Each row describes information on one resource name being referenced
in a trigger action condition.)
Table F-43 shows the contents of the SQL_TRIGGER_USAGE table.

6 TABLE_ID INTEGER ID of the table for which the trigger is defined.

Number Column name Data type Contents

1 TRIGGER_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Trigger owner

2 TRIGGER_NAME VARCHAR(30)
or
MVARCHAR(30)

Trigger name

3 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the table for which the trigger is
defined.

4 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the table for which the trigger is
defined.

5 SOURCE_NO INTEGER Definition source serial number

6 DEF_SOURCE VARCHAR(3200
0) or
MVARCHAR(320
00)

Definition source (excluding SQL compile
options and WITH PROGRAM)

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1542

Table F-43: SQL_TRIGGER_USAGE table contents

(42) SQL_PARTKEY table contents
This table manages the partitioning key information of matrix-partitioned tables. (Each
row describes information on one partitioning key.)
If HiRDB Advanced Partitioning Option is not installed, this table is empty. However,
if HiRDB Advanced Partitioning Option is installed and a database is created, and then
HiRDB Advanced Partitioning Option is removed afterwards, the data in the table
remains.

Number Column name Data type Contents

1 TRIGGER_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Trigger owner

2 TRIGGER_NAME VARCHAR(30)
or
MVARCHAR(30)

Trigger name

3 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the table for which the trigger is
defined.

4 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the table for which the trigger is
defined.

5 BASE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of the resource being used

6 BASE_TABLE VARCHAR(30)
or
MVARCHAR(30)

Table name of the resource being used
Null value if the type of the resource being used
is F (function).

7 BASE_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of the resource being used (specific name
or column name)

8 BASE_TYPE CHAR(1) Type of resource being used
F: Function
C: Column name

9 TABLE_ID INTEGER Table ID
Null value if the type of the resource being used
is F (function).

10 BASE_ID INTEGER ID of the resource being used (object ID or
column ID)

F. Data Dictionary Table Retrieval

1543

Table F-44 shows the contents of the SQL_PARTKEY table.
Table F-44: SQL_PARTKEY table contents

(43) SQL_PARTKEY_DIVISION table contents
This table manages the information on the partitioning condition values for a
matrix-partitioned table. (Each row describes information on one partitioning
condition value.)
If HiRDB Advanced Partitioning Option is not installed, this table is empty. However,
if HiRDB Advanced Partitioning Option is installed and a database is created, and then
HiRDB Advanced Partitioning Option is removed afterwards, the data in the table
remains.
Table F-45 shows the contents of the SQL_PARTKEY_DIVISION table.

Table F-45: SQL_PARTKEY_DIVISION table contents

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Table name

3 KEY_NO SMALLINT Partitioning key number (dimension number 1
or 2)

4 KEY_NAME VARCHAR(30)
or
MVARCHAR(30)

Partitioning key column name

5 COLUMN_ID SMALLINT Partitioning key column ID

6 N_DIVISION SMALLINT Number of divisions inside the key

7 HASH_KEY_NO SMALLINT Sequence number in hash key column
Null value for dimensions of boundary value
partitioning.

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Table owner

F. Data Dictionary Table Retrieval

1544

(44) SQL_AUDITS table contents
This table manages audit target information. (Each row describes information on one
event for one object or user.)
Table F-46 shows the contents of the SQL_AUDITS table.

Table F-46: SQL_AUDITS table contents

2 TABLE_NAME VARCHAR(30)
or
MVARCHAR(30)

Table name

3 KEY_NO SMALLINT Partitioning key number (dimension number 1
or 2)

4 IN_DIM_NO SMALLINT Serial number inside a partitioning key

5 DCVALUES VARCHAR(255)
or
MVARCHAR(255
)

Partitioning condition value (the specified
partitioning condition value is stored in the
character format).
Null value for the last boundary value within a
partitioning key and for dimensions of hash
partitioning.

Number Column name Data type Contents

1 EVENT_TYPE VARCHAR(30) Name of the event type1 specified by the
CREATE AUDIT FOR operation type or 'ANY'.

2 EVENT_SUBTYPE VARCHAR(30) Event sub-type name 2 or 'ANY'
Null value if CREATE AUDIT FOR ANY is
specified.

3 OBJECT_TYPE VARCHAR(30) Type of object specified by the CREATE AUDIT
selection option.3
Null value if no object is specified or if the
HiRDB version is earlier than 07-03.

4 OBJECT_SCHEMA VARCHAR(30)
or
MVARCHAR(30)

Owner of object specified by the CREATE
AUDIT selection option.
Null value if no object is specified or if the
HiRDB version is earlier than 07-03.

5 OBJECT_NAME VARCHAR(30)
or
MVARCHAR(30)

Name of object specified by the CREATE AUDIT
selection option.
Null value if no object is specified or if the
HiRDB version is earlier than 07-03.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1545

1 The following event types are available:
SESSION, PRIVILEGE, DEFINITION, ACCESS, and UTILITY

2 The following event sub-types are available:
CONNECT, AUTHORIZATION, GRANT, REVOKE, CREATE, DROP, ALTER, SELECT,
INSERT, UPDATE, DELETE, PURGE, CALL, OPEN, LOCK, PDLOAD, PDRORG, and
PDEXP

3 The following object types are available:
ALIAS, FOREIGN INDEX, FOREIGN TABLE, FUNCTION, INDEX, PROCEDURE,
SCHEMA, SERVER, TABLE, TRIGGER, DATA TYPE, USER MAPPING, VIEW, and
LIST

(45) SQL_REFERENTIAL_CONSTRAINTS table contents
This table manages the corresponding conditions of referential constraints. (Each row
describes information on one constraint.)

6 USER_NAME VARCHAR(30)
or
MVARCHAR(30)

Authorization identifier of event executor (null
value).

7 ANY_VALID CHAR(1) Whether or not CREATE AUDIT WHENEVER
ANY is specified:
Y: Specified
N: Not specified

8 SUCCESSFUL_VALID CHAR(1) Whether or not CREATE AUDIT WHENEVER
SUCCESSFUL is specified:
Y: Specified
N: Not specified

9 UNSUCCESSFUL_ANY_VA
LID

CHAR(1) Whether or not CREATE AUDIT WHENEVER
UNSUCCESSFUL is specified:
Y: Specified
N: Not specified

10 AUDIT_TYPE CHAR(1) Acquisition information type:
E: CREATE AUDIT AUDITTYPE EVENT is
specified
A: CREATE AUDIT AUDITTYPE ANY is
specified
Null value: CREATE AUDIT AUDITTYPE
PRIVILEGE is specified or AUDITTYPE is
omitted.

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1546

Table F-47 shows the contents of the SQL_REFERENTIAL_CONSTRAINTS table.
Table F-47: SQL_REFERENTIAL_CONSTRAINTS table contents

Number Column name Data type Contents

1 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

2 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Constraint owner

3 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint is defined

4 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint is defined

5 COLUMN_COUNT SMALLINT Number of columns in the foreign
key

6 COLUMN_NAME VARCHAR(527) or
MVARCHAR(527)

Column names of the table
containing the foreign key
Enclose each column in quotation
marks and link the columns with
commas.

7 COLUMN_NO VARCHAR(32) Column IDs (16 IDs) of the table
containing the foreign key*

8 R_OWNER VARCHAR(30) or
MVARCHAR(30)

Owner of the table to be referenced

9 R_TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table to be referenced

10 DELETE_RULE CHAR(11) Deletion rule (RESTRICT or
CASCADE)

11 UPDATE_RULE CHAR(11) Update rule (RESTRICT or
CASCADE)

12 CONSTRAINT_TIME CHAR(14) Date and time when the constraint
was defined
(YYYYMMDDHHMMSS)

13 CHECK_PEND CHAR(1) Type of check pending status
C: Pending
Null value: Non-pending

F. Data Dictionary Table Retrieval

1547

* Endian conversion is not performed on the SQL results even if the connection modes
have different endians. Therefore, when an application accesses the SQL results, the
SQL must consider the endian and convert the endian if necessary.

(46) SQL_KEYCOLUMN_USAGE table contents
This table manages information on the columns that make up foreign keys. (Each row
describes information on one column.)
Table F-48 shows the contents of the SQL_KEYCOLUMN_USAGE table.

Table F-48: SQL_KEYCOLUMN_USAGE table contents

14 DELETE_TRIGGER_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the trigger created by the
action of the ON DELETE referential
constraint
(DRAYYYYMMDDHHMMSSth)
Null value if no trigger is created by
the action of the ON DELETE
referential constraint.

15 UPDATE_TRIGGER_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the trigger created by the
action of the ON UPDATE referential
constraint
(DRAYYYYMMDDHHMMSSth)
Null value if no trigger is created by
the action of the ON UPDATE
referential constraint.

16 R_COLUMN_NAME VARCHAR(527) or
MVARCHAR(527)

Column names of the columns that
make up the main key
Enclose each column in quotation
marks and link the columns with
commas.

17 R_COLUMN_NO VARCHAR(32) Column IDs (16 IDs) of the columns
that make up the main key*

Number Column name Data type Contents

1 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Constraint owner

2 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

3 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint was defined

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1548

(47) SQL_TABLE_CONSTRAINTS table contents
This table manages information on integrity constraints found in a schemas. (Each row
describes information on one integrity constraint.)
Table F-49 shows the contents of the SQL_TABLE_CONSTRAINTS table.

Table F-49: SQL_TABLE_CONSTRAINTS table contents

(48) SQL_CHECKS table contents
This table manages information on check constraints. (Each row describes information
on one check constraint.)
Table F-50 shows the contents of the SQL_CHECKS table.

Table F-50: SQL_CHECKS table contents

4 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint was defined

5 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the column for which the
constraint was defined

6 COLUMN_ORDER SMALLINT Position of the column for which the
constraint was defined

Number Column name Data type Contents

1 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Constraint owner

2 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

3 CONSTRAINT_TYPE VARCHAR(30) Constraint type
FOREIGN KEY: Foreign key
CHECK: Check constraint

4 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint was defined

5 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint was defined

Number Column name Data type Contents

1 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Check constraint owner

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1549

(49) SQL_CHECK_COLUMNS table contents
This table manages information on the columns used by check constraints. (Each row
describes information on one column used by one check constraint.)

Table F-51 shows the contents of the SQL_CHECK_COLUMNS table.
Table F-51: SQL_CHECK_COLUMNS table contents

2 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

3 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint was defined

4 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint was defined

5 CHK_SOURCE_LEN INTEGER Length of the check constraint
search conditions

6 CHK_SOURCE BINARY(2000000) Check constraint search conditions

7 CREATE_TIME CHAR(14) Date and time when the search
constraint was defined
(YYYYMMDDHHMMSS)

8 CHECK_PEND2 CHAR(1) Check pending status type
C: Pending
Null value: Non-pending

9 N_CHK_COLUMN INTEGER Number of constraint columns
specified in the check constraint
definition (number of duplicate
exclusion columns)

Number Column name Data type Contents

1 CONSTRAINT_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Check constraint owner

2 CONSTRAINT_NAME VARCHAR(30) or
MVARCHAR(30)

Constraint name

3 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Owner of the table for which the
constraint was defined

4 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the table for which the
constraint was defined

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1550

(50) SQL_DIV_TYPE table contents
This table manages information on partitioning keys in matrix partitioning tables that
combine key range partitioning and hash partitioning. (Each row describes information
on one partitioning key.)
Table F-52 shows the contents of the SQL_DIV_TYPE table.

Table F-52: SQL_DIV_TYPE table contents

(51) SQL_SYSPARAMS table contents
This table manages information about limits on the number of consecutive certification
failures and password character strings. (Each row describes information on one
setting item. n rows describes information on one limit on the number of consecutive
certification failures or one password character string limit.) The SQL_SYSPARAMS

5 COLUMN_NAME VARCHAR(30) or
MVARCHAR(30)

Name of the column used by the
constraint

Number Column name Data type Contents

1 TABLE_SCHEMA VARCHAR(30) or
MVARCHAR(30)

Table owner

2 TABLE_NAME VARCHAR(30) or
MVARCHAR(30)

Table name

3 KEY_NO SMALLINT Partitioning key number (dimension
number)

4 DIV_TYPE CHAR(1) Partitioning type in the dimension
P: Boundary value partitioning
F: FIX hash partitioning
H: Flexible hash partitioning

5 HASH_NAME VARCHAR(30) or
MVARCHAR(30)

Hash function name
"HASH1"
"HASH2"
"HASH3"
"HASH4"
"HASH5"
"HASH6"
"HASH0"
Null value for dimensions without
hash partitioning

6 N_DIV_COLUMN SMALLINT Number of partitioning columns in
the dimension

Number Column name Data type Contents

F. Data Dictionary Table Retrieval

1551

table can be referenced only by owners with the DBA privilege and auditors.
Table F-53 shows the contents of the SQL_SYSPARAMS table.

Table F-53: SQL_SYSPARAMS table contents

* The table below shows the values that are stored for the INT-type and CHAR-type data
values.

Number Column name Data type Contents

1 PARAM_KIND VARCHAR(20) Parameter type
(CONNECTION_SECURITY)

2 FUNCTION_KEY VARCHAR(20) Function name
CONNECT: Limit on the number of
consecutive certification failures
PASSWORD: Password character sting
limit

3 PARAM_KEY VARCHAR(20) Specification item
When the function name is
CONNECT, the specification item is
one of the following:
PERMISSION_COUNT: Permitted
number of consecutive certification
failures
LOCK_MINUTE: Account lock period
(minutes)
LOCK_MINUTE_CODE: Account lock
period code
When the function name is
PASSWORD, the specification item is
one of the following:
MIN_LENGTH: Minimum number of
allowed bytes
USER_IDENTIFIER: Specification
of authorization identifier prohibited
SIMILAR: Specification of single
character type prohibited

4 INT_VALUE INTEGER INT-type data value*

5 CHAR_VALUE VARCHAR(30) CHAR-type data value*

PARAM_KEY setting value Value specified in
SQL

INT_VALUE CHAR_VALUE

PERMISSION_COUNT Constant Constant Constant

No specification 2 2

F. Data Dictionary Table Retrieval

1552

LOCK_MINUTE Constant Constant Constant

UNLIMITED Null value UNLIMITED

No specification 1440 1440

LOCK_MINUTE_CODE Constant Constant Constant

UNLIMITED Null value UNLIMITED

No specification 1000000 1000000

MIN_LENGTH Constant Constant Constant

No specification 8 8

USER_IDENTIFIER RESTRICT Null value RESTRICT

UNRESTRICT Null value UNRESTRICT

No specification Null value RESTRICT

SIMILAR RESTRICT Null value RESTRICT

UNRESTRICT Null value UNRESTRICT

No specification Null value RESTRICT

PARAM_KEY setting value Value specified in
SQL

INT_VALUE CHAR_VALUE

G. Functions provided by HiRDB

1553

G. Functions provided by HiRDB

This appendix explains the following functions provided by HiRDB:
• Hash function for table partitioning
• Space conversion facility
• Function for conversion to a DECIMAL signed normalized number
• Function that sets the character code classification

Note that the Linux for AP8000 version of a client cannot use the functions provided
by HiRDB.

G.1 Hash function for table partitioning
The hash function for table partitioning uses the partitioning key values to obtain the
order of partitioning conditions that are specified for partitioning a table. If a UAP is
executed using the hash function for table partitioning, the storage RDAREAs can be
identified before data is stored in a table, even if the table is a hash-partitioned table.
Because this function can identify each storage RDAREA, you can use the function for
the following purposes:

To evaluate whether the data to be stored will be partitioned equally when
determining the hash function and partitioning key for hash partitioning
To create an input data file for each RDAREA when loading data to a
hash-partitioned table in units of RDAREAs concurrently using the database load
utility

(1) Prerequisites for using the hash function for table partitioning
The following describes the prerequisites for using the hash function for table
partitioning.

(a) Program language
When the hash function for table partitioning is used to create a UAP, the UAP can be
written in either C or C++.

(b) Execution environment
The hash function for table partitioning can be executed on a server machine in which
a HiRDB server or HiRDB client has been installed.
However, certain combinations of a HiRDB server operating system and a HiRDB
client operating system can produce incorrect results when the function is executed
with a HiRDB client.
Table G-1 shows the UAP execution conditions in the HiRDB client.

G. Functions provided by HiRDB

1554

Table G-1: Execution conditions in the HiRDB client

E: Can be executed.
: Errors occur in the partitioning condition specification order or the partitioning

key sequence numbers because the operating systems use a different byte order.
(2) Creating and executing UAPs that use the hash function for table partitioning

Create and execute a UAP according to the following procedure:
1. Create a source program.
2. Compile and link the source program.
3. Execute the load module.

(a) Creating a source program
Specify function calling of the hash function for table partitioning in the source
program written in C or C++. Because the hash function for table partitioning is
presented in a shared library format, link the source program to use the function.
When the hash function for table partitioning is used, the distributed header files must
be included when the source program is created. Include all header files required by
the hash function for table partitioning. For details about the header files required by
the hash function for table partitioning, see (3) Function details.

(b) Compiling and linking the source program
Compile and link the source program in a server machine that has either the HiRDB
server or HiRDB client installed.
If SQL statements are embedded in the source program, preprocessing must be
executed before compiling and linking.
For details about compiling, linking, and preprocessing, see 8. Preparation for UAP
Execution.
Compiling and linking in a UNIX environment (HiRDB server)

Specification examples for compiling and linking a source program in the HiRDB
server are shown as follows:
Example (C)

HiRDB server operating system HiRDB client operating system

HP-UX, Solaris, and AIX 5L Linux and Windows

HP-UX, Solaris, and AIX 5L E

Linux and Windows E

G. Functions provided by HiRDB

1555

When the source filename is sample.c and the name of the executable file
is not specified

• Creating a UAP that is run in 32-bit mode:
cc -l $PDDIR/include sample.c -L$PDDIR/client/lib -l
sqlauxf

• Creating a UAP that is run in 64-bit mode:
cc +DD64 -l $PDDIR/include sample.c -L$PDDIR/client/lib
-l sqlauxf64

Example (C++)
When the source filename is sample.C and the name of the executable file
is not specified

• Creating a UAP that is run in 32-bit mode:
CC -l $PDDIR/include sample.C -L$PDDIR/client/lib -l
sqlauxf

• Creating a UAP that is run in 64-bit mode:
CC +DD64 -l $PDDIR/include sample.C -L$PDDIR/client/lib
-l sqlauxf64

Compiling and linking in a UNIX environment (HiRDB client)
Shown below are specification examples for compiling and linking a source
program in the HiRDB client.
Example (C)

When the source filename is sample.c and the name of the executable file
is not specified

• Creating a UAP that is run in 32-bit mode:
cc -l /HiRDB/include sample.c -L/HiRDB/client/lib -l
sqlauxf

• Creating a UAP that is run in 64-bit mode:
cc +DD64 -l /HiRDB/include sample.c -L/HiRDB/client/lib
-l sqlauxf64

Note

The underline indicates the HiRDB client's installation directory.
Example (C++)

When the source filename is sample.C and the name of the executable file
is not specified

G. Functions provided by HiRDB

1556

• Creating a UAP that is run in 32-bit mode:
CC -l /HiRDB/include sample.C -L/HiRDB/client/lib -l
sqlauxf

• Creating a UAP that is run in 64-bit mode:
CC +DD64 -l /HiRDB/include sample.C -L/HiRDB/client/lib
-l sqlauxf64

Note

The underline indicates the HiRDB client's installation directory.
Compiling and linking in a Windows environment (HiRDB server)

For a source program written in C, use an ANSI-C-compliant compiler to compile
the program. For a source program written in C++, use a C++-compliant compiler
to compile the program.
If you are using Microsoft Visual C++ Version 1.0 to compile and link the source
program, select Set Project from the Options menu for the option settings.
If you are using Microsoft Visual C++ Version 2.0 to compile and link the source
program, select Set from the Project menu for the option settings.
Table G-2 shows the items to be set in the HiRDB server with Set Project or Set.
Table G-2: Items to be set in the HiRDB server with Set Project or Set

Note

The underline indicates the HiRDB client's installation directory.
Compiling and linking in a Windows environment (HiRDB client)

For a source program written in C, use an ANSI-C-compliant compiler to compile
the program. For a source program written in C++, use a C++-compliant compiler
to compile the program.
If you are using Microsoft Visual C++ Version 1.0 to compile and link the source
program, select Set Project from the Options menu for the option settings.
If you are using Microsoft Visual C++ Version 2.0 to compile and link the source

Item Category Category setting Setting value

Compiler Code generation Structure member alignment 8 bytes

Run time library to be used Multi-thread

Processor Include file path \HiRDB\client\include

Linker Input Library \HiRDB\client\lib\pdsqlauxf.l
ib

G. Functions provided by HiRDB

1557

program, select Set from the Project menu for the option settings.
Table G-3 shows the items in the HiRDB client to be set with Set Project or Set.
Table G-3: Items to be set in the HiRDB client with Set Project or Set

Note

The underline indicates the HiRDB client's installation directory.
(3) Function details

(a) Required input information
To call the hash function for table partitioning, obtain the information for items 1
through 8, described as follows, and set the information to arguments.
1. Hash function name specified for partitioning
2. Number of columns specified in partitioning keys
3. Specification order of partitioning keys, data type codes, and data length codes
4. Number of table partitions
5. Data values stored in partitioning keys
6. Double-byte space character for each national character code type used in the

HiRDB server.
7. Space conversion level
8. Whether or not to use the facility for conversion to a DECIMAL signed

normalized number
Items 1 through 4 correspond to the following sections in the CREATE TABLE
statement:

Item Category Category setting Setting value

Compiler Code generation Structure member alignment 8 bytes

Run time library to be used Multi-thread

Processor Include file path \HiRDB\include

Linker Input Library \HiRDB\lib\pdsqlauxf.lib

G. Functions provided by HiRDB

1558

If the table is already defined, information for items 1 through 4 can be obtained by
retrieving the dictionary table. For examples of dictionary table retrieval, see (6)
Retrieval from dictionary tables (for hash partitioning).
For details about the space conversion level (space conversion facility) and the facility
for conversion to a DECIMAL signed normalized number, see the HiRDB Version 8
System Operation Guide.

(b) Specification configuration
Details about the hash function for table partitioning are explained as follows:
Description

Provides an overview of the function.
Header files

Explains the headers that are necessary for using the hash function for table
partitioning.

Format
Explains the actual specification format.

Arguments
Explains the arguments specified in the format.

Return value
Explains the return value types (specified as data types) of the hash function for
table partitioning.

(c) p_rdb_dbhash hash function for table partitioning
Description

G. Functions provided by HiRDB

1559

This function obtains the partitioning condition specification order (1 to number
of table partitions) in which the partitioning keys are stored, or the partitioning
key sequence numbers. If the function does not terminate normally, an incorrect
value is obtained for the partitioning condition specification order.
If the partitioning condition specification order is obtained from multiple rows,
the partitioning key data must be changed for each of those rows before the hash
function for table partitioning is called. In this case, only those arguments that
contain data values for partitioning keys must be changed; all other arguments do
not need to be changed.
For details about how to determine the partitioning condition specification order
from the partitioning key sequence numbers, see (7) Retrieval from dictionary
tables (for matrix partitioning).

Header files
#include<pddbhash.h>

This header file must be specified when the hash function for table
partitioning is used.

#include<pdbsqlda.h>
This header file should be specified when a macro that begins with PDSQL_
is used to set data type codes for the partitioning keys. This header file can
be omitted when the data type codes to be set are retrieved from the
dictionary table.

Format

Arguments
hashcode (input)

Specifies a hash function code that corresponds to a hash function name. For
details on hash function codes, see (4)(a) Hash function codes.

ncol (input)
Specifies the number of columns that were specified as partitioning keys

 int p_rdb_dbhash(short hashcode,
 short ncol,
 p_rdb_collst_t *collst,
 p_rdb_dadlst_t *dadlst,
 unsigned int ndiv,
 unsigned char ncspace[2],
 int flags,
 int *rdno);

G. Functions provided by HiRDB

1560

when the table was defined.
collst (input)

Specifies a pointer to a partitioning key list. A partitioning key list is a
structure that consists of the data type code and data size code of a
partitioning key, and is an area in which partitioning keys are continuously
listed. For details on the partitioning key list, see (4)(b) Partitioning key list.
You can obtain the data type code and data size code of a partitioning key by
retrieving them from a dictionary table. For examples of dictionary table
retrieval, see (6) Retrieval from dictionary tables (for hash partitioning).

dadlst (input)
Specifies the pointer to the data address list. The data address list is a
structure composed of the addresses to the data storage areas for partitioning
keys and is allocated as a contiguous area for all partitioning keys. For
details, see (4)(c) Data address list.

ndiv (input)
Specifies the number of partitions in hash partitioning.

ncspace (input)
Specifies the double-byte space character for each national character code
type used in the HiRDB server. The character is specified in a two-byte area.
When the data type of a partitioning key is NVARCHAR, this argument is used
to remove spaces that follow character strings before hashing is executed.
This argument is also used for space conversion for the partitioning key
value (NCHAR, NVARCHAR, MCHAR, or MVARCHAR) when space conversion
level 1 or 3 is specified in the flags argument.
An error results if the area specified in the ncspace argument contains no
space character in the following cases:

• Partitioning key is NVARCHAR.
• Space conversion level 1 or 3 is specified in flags and the partitioning

key is NCHAR, NVARCHAR, MCHAR, or MVARCHAR.
Table G-4 lists the double-byte space characters that can be specified in ncspace.

Table G-4: Double-byte space characters specified in ncspace

Character code type specified in pdsetup2 ncspace

ncspace[0] ncspace[1]

sjis (shift JIS kanji code) 0x81 0x40

Chinese (EUC Chinese kanji code) 0xA1 0xA1

G. Functions provided by HiRDB

1561

1 If the character code type is lang-c, NCHAR, NVARCHAR, MCHAR, or MVARCHAR
cannot be used for the column data type.
2 For a Windows environment, specify the space character code of the character
code type that was specified in the pdntenv command.
3 NCHAR or NVARCHAR cannot be used for the column data type.

flags (input)
Specifies the flag according to the space conversion level and the facility for
conversion to a DECIMAL signed normalized number (this argument is required
even if these facilities are not used). For details about the space conversion level
(space conversion facility) and the facility for conversion to a DECIMAL signed
normalized number, see the HiRDB Version 8 System Operation Guide.
The following table shows the values for flags:

ujis (EUC Japanese kanji code) 0xA1 0xA1

lang-c (single-byte character code)1 0x00 0x00

Unicode (UTF-8)3 0x00 0x00

Default value (sjis for HP-UX) 0x81 0x40

Default value (sjis for AIX 5L) 0x81 0x40

Default value (ujis for Solaris) 0xA1 0xA1

Default value (ujis for Linux) 0xA1 0xA1

Default value (sjis for Windows) 0x81 0x40

HiRDB operating environment Value of flags

Space conversion level* Omitted p_rdb_FLG_SPLVL_0

0

1 p_rdb_FLG_SPLVL_1

3 p_rdb_FLG_SPLVL_3

Character code type specified in pdsetup2 ncspace

ncspace[0] ncspace[1]

G. Functions provided by HiRDB

1562

* If the character code for the HiRDB server is Unicode (UTF-8), spaces must be
converted before this function is executed. Therefore, specify only
p_rdb_FLG_SPLVL_0 for the flags value.

rdno (output)
Sets the partitioning condition specification order (1 to number of table partitions)
or the partitioning key sequence numbers.

Return values
data type: int
p_rdb_RC_RTRN(0)

Normal termination.
p_rdb_RC_ERRHASH(-1)

Invalid hash function code (p_rdb_HASH1 to p_rdb_HASH6,
p_rdb_HASH0, p_rdb_HASHA to p_rdb_HASHF).

p_rdb_RC_ERRNCOL(-2)
Partitioning key count error (1 to p_rdb_MXDCL).

p_rdb_RC_ERRCLST(-3)
Area error for partitioning key data type or data length.

p_rdb_RC_ERRCTYP(-31)
Invalid data type for partitioning key.

p_rdb_RC_ERRCLEN(-32)
Invalid data type for partitioning key.

p_rdb_RC_ERRDLST(-4)
Area error for data address.

p_rdb_RC_ERRDADR(-41)
Data address not set.

p_rdb_RC_ERRDLEN(-42)

Facility for conversion to a DECIMAL signed
normalized number

Omitted p_rdb_FLG_DECNRM_N

N

Y p_rdb_FLG_DECNRM_Y

HiRDB operating environment Value of flags

G. Functions provided by HiRDB

1563

Actual data length is shorter than character length limit for hash function.
p_rdb_RC_ERRNDIV(-5)

Table partition count error (1 to p_rdb_MNCND)
p_rdb_RC_ERRRADR(-6)

Storage area for partitioning condition specification order or partitioning key
sequence numbers is not set.

p_rdb_RC_ERRNCSC(-7)
Area for double-byte space character is not set.

Notes
1. If the partitioning key is NCHAR, NVARCHAR, MCHAR, or MVARCHAR, the value

of rdno may be invalid unless an appropriate value corresponding to the
space conversion level is specified in flags.

2. If the partitioning key is NCHAR, NVARCHAR, MCHAR, or MVARCHAR, and 1 or
3 is specified for the space conversion level, perform one of the following:

 Use the setlocale function to set an appropriate locale for the
LC_CTYPE category or the LC_ALL category.

 Call the p_rdb_set_lang function.
Operation is not guaranteed if the character code type of the key value and
the locale specified by the setlocale function or p_rdb_set_lang
function contradict each other. If this function is called from a Windows
UAP, Linux UAP with SJIS character codes type, or UAP with CHINESE
character codes type, the p_rdb_set_lang function is used instead of the
setlocale function. For details about the p_rdb_set_lang function, see
G.4 Character code type specification function.

3. If the partitioning key value is DECIMAL, INTERVAL YEAR TO DAY, or
INTERVAL HOUR TO SECOND, the value of rdno may be invalid unless an
appropriate value is specified in flags which corresponds to the facility for
conversion to a DECIMAL signed normalized number.

4. When using the hash function for table partitioning with a HiRDB client
version earlier than 05-05, you cannot use the space conversion level in
flags or the facility for conversion to a DECIMAL signed normalized
number. In this case, the function ignores flags and assumes that the facility
for conversion to a DECIMAL signed normalized number is omitted. To use
the flags specification, either execute the function at the HiRDB server or
at a HiRDB client with version 05-05 or later.

5. If the character code for the HiRDB server is Unicode (UTF-8), this function
does not convert spaces. The partitioning key value to be specified for

G. Functions provided by HiRDB

1564

dadlst must be converted beforehand using the space conversion function
p_rdb_conv_space_utf8.

(4) Data types and macros
(a) Hash function codes

Table G-5 shows the hash function codes that correspond to the hash functions
specified in CREATE TABLE or ALTER TABLE.

Table G-5: Hash function codes for hash functions

(b) Partitioning key list
The partitioning key list is a structure composed of data type codes and data length
codes for partitioning keys, and is allocated a contiguous area for all partitioning keys.
Table G-6 shows the area for setting partitioning keys. If there are multiple partitioning
keys, the area must be specified as an array consisting of all columns specified as
partitioning keys.
Table G-7 lists the data type codes and the data length codes.

Hash function name Hash function code (value)

HASH1(when hash function name is omitted) p_rdb_HASH1(1)

HASH2 p_rdb_HASH2(2)

HASH3 p_rdb_HASH3(3)

HASH4 p_rdb_HASH4(4)

HASH5 p_rdb_HASH5(5)

HASH6 p_rdb_HASH6(6)

HASH0 p_rdb_HASH0(100)

HASHA p_rdb_HASHA(101)

HASHB p_rdb_HASHB(102)

HASHC p_rdb_HASHC(103)

HASHD p_rdb_HASHD(104)

HASHE p_rdb_HASHE(105)

HASHF p_rdb_HASHF(106)

G. Functions provided by HiRDB

1565

Table G-6: Area for setting partitioning keys

Table G-7: Data type codes and data length codes

(c) Data address list
The data address list is a structure composed of the addresses to the data storage areas
for partitioning keys, and is allocated as a contiguous area for all partitioning keys.
Table G-8 shows the area for setting the data address of a partitioning key. If there are

Data type Data type details Explanation

p_rdb_collst_t struct p_rdb_TG_collst {
 unsigned short datatype ;
 short datalen ;
} p_rdb_collst_t ;

Data type code
Data length code

Data type Data type code Data length code

INTERVAL YEAR TO DAY PDSQL_YEARTODAY 8 256

INTERVAL HOUR TO SECOND PDSQL_HOURTOSEC 6 256

DATE PDSQL_DATE 4

TIME PDSQL_TIME 3

TIMESTAMP[(p)] PDSQL_TIMESTAMP 7 + p/2 (0 is assumed
if p is omitted.)

MVARCHAR(n) PDSQL_MVARCHAR n

MCHAR[(n)] PDSQL_MCHAR n (default value is 1)

NVARCHAR(n) PDSQL_NVARCHAR n

NCHAR[(n)] PDSQL_NCHAR n (default value is 1)

VARCHAR(n) PDSQL_VARCHAR n

CHAR[(n)] PDSQL_CHAR n (default value is 1)

FLOAT PDSQL_FLOAT 8

SMALLFLT PDSQL_SMALLFLT 4

DECIMAL[(p[,q])] PDSQL_DECIMAL p 256 + q (default values
are 15 for p and 0 for q)

INTEGER PDSQL_INTEGER 4

SMALLINT PDSQL_SMALLINT 2

G. Functions provided by HiRDB

1566

multiple partitioning keys, the area must be specified as an array consisting of all
columns specified as partitioning keys.
Specify the area in binary format. For details about the binary format, see the HiRDB
Version 8 Command Reference manual.

Table G-8: Area for setting the data address of a partitioning key

Notes common to all data types
• Convert the real data in the data address list to the data type format defined

in the column.
• The boundaries of the real data area for the data address list do not have to

be adjusted.
Notes about data types DECIMAL, INTERVAL YEAR TO DAY, and
INTERVAL HOUR TO SECOND

• For positive values, use C or F in the sign section of the real data in the data
address list. If Y is specified for the facility for conversion to a DECIMAL
signed normalized number, A and E are also available.

• For negative values, use D in the sign section of the real data in the data
address list. If Y is specified for the facility for conversion to a DECIMAL
signed normalized number, B is also available.

Notes about data types CHAR, NCHAR, and MCHAR
• For CHAR and MCHAR, pad the data area of the data address list with

single-byte space characters up to the defined length.
• For NCHAR, pad the data area of the data address list with double-byte space

characters up to the defined length. The double-byte space characters must
be of the character code that was specified at HiRDB server setup.

• The data area of the data address list must be specified with the character
codes used by the HiRDB server.

Notes about data types VARCHAR, NVARCHAR, and MVARCHAR
• For the real length section in the data area of the data address list, use bytes

instead of character string length to indicate the data length.
• If the real length of the data area for the data address list is less than the

defined length of the partitioning key list, do not pad the character string that

Data type Data type details Explanation

p_rdb_dadlst_t struct p_rdb_TG_dadlst {
 unsigned char * dataaddr ;
} p_rdb_dadlst_t ;

Address to data area

G. Functions provided by HiRDB

1567

follows.
• Specify character codes used by the HiRDB server in the data area of the data

address list.
(d) Macros for maximum values

Table G-9 lists the macros for maximum values.
Table G-9: Macros for maximum values

(5) Coding examples
A partial coding example that uses C to describe hash partitioning is shown below. Use
this coding example by customizing it to suit the user needs. However, because this
example does not include error handling during SQL statement execution, code error
handling as needed. For details about error handling, see 3.6 SQL error identification
and corrective measures.

(a) Declaration section
/
**
*/
/* ALL RIGHTS RESERVED. COPYRIGHT (C) 1999,2000, HITACH, LTD. */
/* LICENSED MATERIAL OF HITACHI,LTD. */
/* Sample Program that Uses the Hash Function for Table
Partitioning */
/
**
*/
#include <stdio.h>
#include <string.h>
#include <pdbsqlda.h>
#include <pddbhash.h>

union data_area { /* Data storage area */
 short data_smallint ;
 int data_int ;
 unsigned char data_dec[15] ;
 float data_smallflt ;
 double data_float ;
 unsigned char data_char[255] ;
 struct {
 short length ;

Macro name Description (value)

p_rdb_MXDCL Maximum number of partitioning key columns (16)

p_rdb_MNCND Maximum number of table partitions (1024)

G. Functions provided by HiRDB

1568

 unsigned char data[255] ;
 } data_varchar ;
 unsigned char data_date[4] ;
 unsigned char data_time[3] ;
 unsigned char data_timestamp[10] ;
 unsigned char data_iytd[5] ;
 unsigned char data_ihts[4] ;
} ;

void print_data(short , p_rdb_collst_t * , union data_area *) ;

/
**
*/
/* Main Function */
/
**
*/
int main(int argc , char *argv[])
{

 short hashcode ; /* Hash function code */
 short ncol ; /* Number of partitioning key columns */
 p_rdb_collst_t collst[p_rdb_MXDCL] ;/* Partitioning key list */
 p_rdb_dadlst_t dadlst[p_rdb_MXDCL] ;/* Data address list */
 union data_area data[p_rdb_MXDCL] ; /* Data storage area */
 unsigned int ndiv ; /* Number of storage RDAREAs */
 unsigned char ncspace[2] ; /* Space code for each national character
code
 type */
 int flags ; /* Enhancement flag */
 int rdno ; /* Partitioning condition specification order */
 int rc ; /* Return value */
 short i, j, k ; /* Counter variables */
 struct rdarea { /* RDAREA list */
 int rdareaid ;
 char rdareaname[31] ;
 } rdarealst [p_rdb_MNCND] ;

 EXEC SQL BEGIN DECLARE SECTION ;
 struct { /* Embedded variable for hash function name */
 short length ;
 char data[9] ;
 } xhashname ;
 short xncol ; /* Embedded variable for number of partitioning key
columns */

G. Functions provided by HiRDB

1569

 short xndiv ; /* Embedded variable for number of table partitions */
 short xdatatype ; /* Embedded variable for data type code */
 short xdatalen ; /* Embedded variable for data length code */
 struct { /* Embedded variable for storage RDAREA name */
 short length ;
 char data[31] ;
 } xrdname ;
 EXEC SQL END DECLARE SECTION ;

 EXEC SQL CONNECT ;

(b) Settings for the data storage area and space code for national character
codes
for (k = 0 ; k < p_rdb_MXDCL ; k ++) {
dadlst[k].dataaddr = (unsigned char *)&data[k] ;
}
ncspace[0] = 0x81 ; /* Space code */
ncspace[1] = 0x40 ; /* Example of shift JIS kanji code */
flags = 0 ;

(c) Settings for flags
/
**
**/
/* (a) Specifying explicitly */
/* 1 specified for space conversion level and Y for facility */
/* for conversion to a DECIMAL signed normalized number */
/
**
**/
flags=p_rdb_FLG_SPLVL_1+p_rdb_FLG_DECNRM_Y;

(d) Settings for the hash function name, number of partitioning key columns,
and number of storage RDAREAs
/**/
/*(a)Setting values with codes */
/**/
hashcode = p_rdb_HASH6 ; /* When HASH6 is specified */
ncol = 4 ; /* For partitioning with 4 columns */
ndiv = 6 ; /* For 6 partitions */

/**/
/* (b) Retrieving values from the dictionary table */
/**/
 EXEC SQL
 select HASH_NAME,

G. Functions provided by HiRDB

1570

 value(N_DIV_COLUMN,1) ,
 N_RDAREA
 into :xhashname , :xncol, :xndiv
 from MASTER.SQL_TABLES
 where TABLE_SCHEMA=USER
 and TABLE_NAME='TABLE1' ;

 xhashname.data[xhashname.length] = '\0' ;
 if (strcmp(xhashname.data,"HASH1") == 0) {
 hashcode=p_rdb_HASH1 ; /* HASH1 setting */
 } else if (strcmp(xhashname.data,"HASH2") == 0) {
 hashcode=p_rdb_HASH2 ; /* HASH2 setting */
 } else if (strcmp(xhashname.data,"HASH3") == 0) {
 hashcode=p_rdb_HASH3 ; /* HASH3 setting */
 } else if (strcmp(xhashname.data,"HASH4") == 0) {
 hashcode=p_rdb_HASH4 ; /* HASH4 setting */
 } else if (strcmp(xhashname.data,"HASH5") == 0) {
 hashcode=p_rdb_HASH5 ; /* HASH5 setting */
 } else if (strcmp(xhashname.data,"HASH6") == 0) {
 hashcode=p_rdb_HASH6 ; /* HASH6 setting */
 } else if (strcmp(xhashname.data,"HASHA") == 0) {
 hashcode=p_rdb_HASH0 ; /* HASH0 setting */
 } else if (strcmp(xhashname.data,"HASHA") == 0) {
 hashcode=p_rdb_HASHA ; /* HASHA setting */
 } else if (strcmp(xhashname.data,"HASHB") == 0) {
 hashcode=p_rdb_HASHB ; /* HASHB setting */
 } else if (strcmp(xhashname.data,"HASHC") == 0) {
 hashcode=p_rdb_HASHC ; /* HASHC setting */
 } else if (strcmp(xhashname.data,"HASHD") == 0) {
 hashcode=p_rdb_HASHD ; /* HASHD setting */
 } else if (strcmp(xhashname.data,"HASHE") == 0) {
 hashcode=p_rdb_HASHE ; /* HASHE setting */
 } else if (strcmp(xhashname.data,"HASHF") == 0) {
 hashcode=p_rdb_HASHF ; /* HASHF setting */
 } else {
 /* Add when a hash function is added in the future. */
 }
 ncol = xncol ;
 ndiv = xndiv ;

 /**/
 /* Displaying table definition information */
 /**/
 printf("Hash function code:%d\n",hashcode);
 printf("Number of partitioning key columns:%d\n",ncol);
 printf("Number of table partitions:%d\n",ndiv);
 printf("\n") ;

G. Functions provided by HiRDB

1571

(e) Settings for the partitioning key specification order, data type code, and
data length code
 /**/
 /* (a) Setting values with codes */
 /**/
 collst[0].datatype=PDSQL_CHAR ; /* CHAR(10)*/
 collst[0].datalen=10 ;
 collst[1].datatype=PDSQL_DECIMAL ; /* DEC(5,2) */
 collst[1].datalen=5*256+2 ;
 collst[2].datatype=PDSQL_SMALLINT ; /* SMALLINT */
 collst[2].datalen=2 ;
 collst[3].datatype=PDSQL_NVARCHAR ; /* NVARCHAR(4) */
 collst[3].datalen=4 ;

 /**/
 /* (b) Retrieving values from the dictionary table */
 /**/

 EXEC SQL
 declare cr1 cursor for
 select value(DIVCOL_ORDER,1) ,
 DATA_TYPE_CODE,
 DATA_LENGTH_CODE
 from MASTER.SQL_COLUMNS
 where TABLE_SCHEMA=USER
 and TABLE_NAME='TABLE1'
 and DIVIDED_KEY='Y'
 order by 1 asc ;

 EXEC SQL open cr1 ;
 EXEC SQL whenever not found goto fetch_end1 ;

 for (i = 0 ; ; i++) {
 EXEC SQL fetch cr1 into :xncol , : xdatatype , : xdatalen ;
 collst[i].datatype = xdatatype ;
 collst[i].datalen = xdatalen ;
 }

 fetch_end1 :
 EXEC SQL close cr1 ;

(f) Settings for storage RDAREA name
 /**/
 /* Retrieving values from the dictionary table */
 /**/
 EXEC SQL
 declare cr2 cursor for
 select RDAREA_NAME

G. Functions provided by HiRDB

1572

 from MASTER.SQL_DIV_TABLE
 where TABLE_SCHEMA=USER
 and TABLE_NAME='TABLE1'
 order by DIV_NO asc ;

 EXEC SQL open cr2 ;
 EXEC SQL whenever not found goto fetch_end2 ;

 for (j = 0 ; ; j++) {
 EXEC SQL fetch cr2 into :xrdname ;
 strncpy(rdarealst[j].rdareaname,
 xrdname.data,
 xrdname.length) ;
 rdarealst[j].rdareaname[xrdname.length] = '\0' ;
 }

 fetch_end2 :
 EXEC SQL close cr2 ;

 EXEC SQL DISCONNECT ;

 /**/
 /* Displaying RDAREA information */
 /**/
 printf("RDAREA-name[") ;
 for (j = 0 ; j<ndiv ; j++) {
 printf("%s",rdarealst[j].rdareaname) ;
 if (j != ndiv-1) {
 printf(",") ;
 } else ;
 }
 printf("]\n") ;
 printf("\n") ;

(g) Data setting to be stored in partitioning keys
/
**
*/
/* Assigning data in binary format. */
/* Setting data and call hash function for each line. */
/
**
*/
memcpy((char *)data[0].data_char,"abcdefg ",10) ;/*"abcdefg "
*/

data[1].data_dec[0] = 0x04 ;

G. Functions provided by HiRDB

1573

data[1].data_dec[1] = 0x32 ;
data[1].data_dec[2] = 0x1D ; /* -43.21 */

data[2].data_smallint = 12345 ; /* 12345 */

/* NCHAR and NVARCHAR specify character codes used in the HiRDB server.*/
data[3].data_varchar.length = 6 ;
data[3].data_varchar.data[0] = 0x82 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[1] = 0xa0 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[2] = 0x82 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[3] = 0xa2 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[4] = 0x82 ; /* Example of shift JIS kanji code */
data[3].data_varchar.data[5] = 0xa4 ; /* Example of shift JIS kanji code */

/
**
*/
/*Displaying data type code, data length code, and data area */
/
**
*/
print_data(ncol , collst , data) ;

/
**
*/
/* Hash function call */
/
**
*/
rc =
p_rdb_dbhash(hashcode,ncol,collst,dadlst,ndiv,ncspace,flags,&r
dno);

switch (rc) {
case p_rdb_RC_RTRN :
 /
***/
 /* Normal processing */
 /
***/
 printf("Partitioning condition specification order : %d ->
%s\n",

 rdno,rdarealst[rdno-1].rdareaname) ;
 break ;
default :
/

G. Functions provided by HiRDB

1574

**
*/
/* Adding error processing */
/
**
*/
 printf("RETURN CODE=%d\n",rc) ;
 break ;
}

return ;
}

/
**
*/
/* Display function for data type code, data length code, */
/*and data area */
/
**
*/
void print_data(short ncol ,
 p_rdb_collst_t *pcollst ,
 union data_area *pdata)
{
 int i , j ; /* Counter variables */
 int len;
 p_rdb_collst_t *ccollst ;
 union data_area *cdata ;

 printf("Partitioning key specification order Data type code
Data length code Binary-format data value\n") ;
 for (i = 0 , ccollst = pcollst , cdata = pdata ;
 i<ncol ;
 i++ , ccollst++ , cdata++) {
 printf(" %2d %#.4x %#.4x ",
 i+1,ccollst->datatype, ccollst->datalen) ;

 switch (ccollst->datatype) {
 case PDSQL_CHAR :
 case PDSQL_MCHAR :
 case PDSQL_INTEGER :
 case PDSQL_SMALLFLT :
 case PDSQL_FLOAT :
 case PDSQL_SMALLINT :
 case PDSQL_DATE :
 case PDSQL_TIME :
 case PDSQL_TIMESTAMP :

G. Functions provided by HiRDB

1575

 len=ccollst->datalen ;
 break ;
 case PDSQL_VARCHAR :
 case PDSQL_MVARCHAR :
 case PDSQL_NVARCHAR :
 len=cdata->data_varchar.length+2 ;
 break ;
 case PDSQL_NCHAR :
 len=ccollst->datalen*2 ;
 break ;
 case PDSQL_DECIMAL :
 case PDSQL_YEARTODAY :
 case PDSQL_HOURTOSEC :
 len=ccollst->datalen/256/2+1 ;
 break ;
 default :
 break ;
 }
 for=(j=0 ; j<len ;j++){
 printf("%.2X",cdata->data_char[j]) ;
 }
 printf("\n") ;
 }
 printf("\n") ;
return;
}

(h) Execution results for HP-UX and shift JIS kanji codes
Hash function code: 6
Number of partitioning key columns: 4
Number of table partitions: 6
RDAREA names: [RU01, RU02, RU03, RU04, RU05, RU06]

Partitioning condition specification order: 1 > RU01

Partitioning key
specification

order

Data type code Data length code Binary format data value

1 0x00c4 0x000a 61626364656667202020

2 0x00e4 0x0502 04321D

3 0x00f4 0x0002 3039

4 0x00b0 0x0004 000682A082A282A4

G. Functions provided by HiRDB

1576

(6) Retrieval from dictionary tables (for hash partitioning)
Examples of retrieval from dictionary tables for hash partitioning are shown below.

(a) Obtaining the hash function name, number of partitioning key columns,
and number of table partitions for a hash-partitioned table
SELECT HASH_NAME, /* Hash function name */
 VALUE(N_DIV_COLUMN,1), /* Number of partitioning key columns */
 N_RDAREA /* Number of table partitioned */
 FROM MASTER.SQL_TABLES
 WHERE TABLE_SCHEMA = authorization-identifier
 /* Item with matching authorization identifier */
 AND TABLE_NAME = table-identifier
 /* Item with matching table identifier */

(b) Obtaining the partitioning key specification order, the data type code,
and the data length code
SELECT VALUE(DIVCOL_ORDER,1), /* Partitioning key specification order */
 DATA_TYPE_CODE, /* Data type code */
 DATA_LENGTH_CODE /* Data length code */
 FROM MASTER.SQL_COLUMNS
 WHERE TABLE_SCHEMA = authorization-identifier
 /* Item with matching authorization identifier */
 AND TABLE_NAME= table-identifier
 /* Item with matching table identifier */
 AND DIVIDED_KEY='Y' /* Item that is a partitioning key*/
 ORDER BY 1 ASC

(c) Obtaining the storage RDAREA name
SELECT DIV_NO, /* Partitioning condition specification order */
 RDAREA_NAME /* Storage RDAREA name */
 FROM MASTER.SQL_DIV_TABLE
 WHERE TABLE_SCHEMA = authorization-identifier
 /* Item with matching authorization identifier */
 AND TABLE_NAME = table-identifier
 /* Item with matching table identifier */
 ORDER BY 1 ASC

(7) Retrieval from dictionary tables (for matrix partitioning)
Examples of retrieval from dictionary tables for matrix partitioning are shown below.

(a) Obtaining the hash function name, number of partitioning key columns,
and number of table partitions for a hash-partitioned table

Obtaining the hash function name and the number of partitioning key columns

select HASH_NAME, /* Hash function name */
 value(N_DIV_COLUMN,1), /* Number of partitioning key columns */

G. Functions provided by HiRDB

1577

 KEY_NO /* Partitioning key number */
 from MASTER.SQL_DIV_TYPE
 where TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 and TABLE_NAME=table-identifier /* Item with matching table identifier */

Obtaining the number of partitions in the key

select distinct N_DIVISION /* Number of partitions in key */
from MASTER.SQL_PARTKEY
 where TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 and TABLE_NAME=table-identifier /* Item with matching table identifier */
 and KEY_NO=partitioning-key-number /* Set partitioning key numbers */
 /* for hash partitioning */

(b) Obtaining the partitioning key specification order, the data type code,
and the data length code

select DIVCOL_ORDER, /* Number of partitions in key */
 DATA_TYPE_CODE, /* Data type code */
 DATA_LENGTH_CODE /* Data length code */
 from MASTER.SQL_COLUMNS X,
 MASTER.SQL_PARTKEY Y
 where X.TABLE_SCHEMA=Y.TABLE_SCHEMA
 and X.TABLE_NAME=Y.TABLE_NAME
 and X.COLUMN_ID=Y.COLUMN_ID
 and Y.TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 and Y.TABLE_NAME=table-identifier /* Item with matching table
identifier */
 and Y.KEY_NO=partitioning-key-number /* Set partitioning key
number */
 /* for hash partitioning */
 order by DIVCOL_ORDER asc

(c) Obtaining the storage RDAREA name

select DIV_NO, /* Partitioning condition specification order */
 RDAREA_NAME /* Storage RDAREA name */
 from MASTER.SQL_DIV_TABLE
 where TABLE_SCHEMA=authorization-identifier /* Item with matching
authorization identifier */
 and TABLE_NAME=table-identifier /* Item with matching table identifier */
 order by 1 asc

G. Functions provided by HiRDB

1578

Note

The partitioning condition specification order is determined from the partitioning
key sequence numbers. The expression follows:

N m - (N - n)
 N: Number of partitions in second dimension
 m: Partitioning key sequence number of first partitioning
key
 n: Partitioning key sequence number of second partitioning
key

G.2 Space conversion function
The space conversion function converts single-byte spaces in a character string to
double-byte spaces, and vice versa. Because this function lets you know the
conversion result without having to store character string data in a database, you can
use the function for the following purposes:

• To evaluate whether the data to be stored will be partitioned equally when
determining the partitioning key for partitioning a table by the key range

• To create an input data file for each RDAREA when loading data to a
key-range-partitioned table in units of RDAREAs concurrently using the database
load utility

Prerequisites for using the space conversion function
The prerequisites for using the space conversion function are the same as for the
hash function for table partitioning. For details, see G.1(1) Prerequisites for using
the hash function for table partitioning.

Prerequisites for creating and executing a UAP using the space conversion
function

The prerequisites for creating and executing a UAP using the space conversion
function are the same as for the hash function for table partitioning. For details,
see G.1(2) Creating and executing UAPs that use the hash function for table
partitioning.

(1) Details about the space conversion function
(a) Specification configuration

For details about the specification configuration, see G.1(3)(b) Specification
configuration.

(b) Space conversion function (p_rdb_conv_space)
Function

G. Functions provided by HiRDB

1579

The function converts spaces according to the specified conversion type as
follows:

Single-byte space double-byte space:
Converts two consecutive single-byte spaces in a character string to one
double-byte space.

Double-byte space single-byte space:
Converts each double-byte space in a character string to two single-byte
spaces.

The function converts spaces in the character string indicated by srcp and stores
the conversion result in destp. The following table shows the combination of
stype and flags arguments and the conversion type:

* The function treats the value specified in the ncspace argument as the character
code for double-byte space.
Header files

#include<pdauxcnv.h>
This header file is required to use the space conversion function.

#include<pdbsqlda.h>
This header file lets you use macros (with a name beginning with PDSQL_)
to specify a data type code. If the data type code is to be retrieved from a data
dictionary table, this header file is not necessary.

Format

stype
(data type)

flags (conversion type)

Single-byte space
double-byte space

Double-byte space single-byte
space

NCHAR Checks two bytes at a time from the top
and converts any two consecutive
single-byte spaces to a double-byte
space.*
The function does not convert any
isolated single-byte space.

Checks two bytes at a time from the top and
converts any double-byte space* to two
single-byte spaces.NVARCHAR

MCHAR Results in an error. Checks each character code from the top and
converts any double-byte space* to two
single-byte spaces.MVARCHAR

G. Functions provided by HiRDB

1580

Arguments
srcp (input)

Specifies the start address of the character string storage area.
stype (input)

Specifies the data type before conversion. Specifiable data types are as
follows:

srcl (input)
Specifies the length of the character string specified in srcp. For a
variable-length character string, specify the length of the actual character
string (in bytes) that is stored in the area indicated by srcp.

destp (output)
Sets the start address of the character string storage area after conversion.
Allocate this area indicated by destp on the side that calls the space
conversion function.

ncspace (input)
Specifies a two-byte area that contains the double-byte space character for
the national character code used in the HiRDB server. For the double-byte
space characters that can be specified in ncspace, see Table G-4 Double-byte
space characters specified in ncspace.

flags (input)
Specifies the conversion type. Available conversion types are as follows:

int p_rdb_conv_space(char *srcp,
 unsigned char stype,
 unsigned int srcl,
 char *destp,
 unsigned char ncspace[2],
 int flags);

Macro name Data type

PDSQL_NCHAR NCHAR

PDSQL_NVARCHAR NVARCHAR

PDSQL_MCHAR MCHAR

PDSQL_MVARCHAR MVARCHAR

G. Functions provided by HiRDB

1581

Return values
data type: int
p_rdb_RC_RTRN(0)

Normal termination.
p_rdb_RC_ERRINVF(-8)

Invalid flags argument
p_rdb_RC_ERRTYPC(-9)

Invalid data type
Notes

1. The National Language Support (NLS) facility provided by the OS is used to
convert double-byte spaces into single-byte spaces. Therefore, before
invoking the space conversion function, you must use the setlocale
function to set an appropriate locale to the LC_CTYPE or LC_ALL category.
Additionally, for a Windows UAP, a Linux UAP with a character code type
of SJIS, or a UAP with a character code type of CHINESE, you must invoke
the p_rdb_set_lang function before invoking the space conversion
function. For details about the p_rdb_set_lang function, see G.4
Character code type specification function.
If the character code type of the character string indicated by the srcp
argument contradicts the locale specified by the setlocale or
p_rdb_set_lang function, the operation cannot be guaranteed.

2. Operation is guaranteed if the data input area is the same as the data output
area, or if the output area is located before the input area and the latter half
of the output area overlaps the first half of the input area.

3. Be sure to specify an appropriate value in srcl because the function does
not check the length of a character string for any error.

4. The function uses 0x20 as the character code for a single-byte space and the
character code specified in the ncspace argument as the character code for
a double-byte space.

5. The data types that can be specified for input are NCHAR, NVARCHAR, MCHAR,

Macro name Conversion type

p_rdb_HALF_TO_FULL_SPACE
Single-byte space double-byte space

p_rdb_FULL_TO_HALF_SPACE
Double-byte space single-byte space

G. Functions provided by HiRDB

1582

and MVARCHAR.
6. For a variable-length character string, the function references srcl to

determine the length of character string to be converted. Specify the length
without the real length section in the srcl argument.

7. The real length section of a variable-length character string remains
unchanged after space conversion.

8. If the character code type is Unicode, the operation of this function cannot
be guaranteed. If the character code type is Unicode, use the
p_rdb_conv_space_utf8 function. For details on this function, see (c)
Space conversion function (p_rdb_conv_space_utf8).

(c) Space conversion function (p_rdb_conv_space_utf8)
Function

This function converts double-byte spaces into single-byte spaces when the
character code is Unicode (UTF-8). It converts each double-byte space inside a
character string into two single-byte spaces.
This function applies space conversion to the space characters inside the character
string indicated by srcp. The conversion result is stored in destp and the
character string length following the conversion is stored in destl.
The following table shows the combinations of the stype and flags arguments,
along with conversion details.

* 0xE38080 is treated as a double-byte space character code.
Header files

#include <pdauxcnv.h>
This header file is required to use the space conversion function.

#include <pdbsqlda.h>
This header file lets you use macros (with a name beginning with PDSQL_)
to specify a data type code. If the data type code is to be retrieved from a data
dictionary table, this header file is not necessary.

stype (data type) flags (conversion type)

Single-byte spaces -> Double-byte
spaces

Double-byte spaces -> Single-byte
spaces

MCHAR An error occurs. Character codes are checked from the
beginning, and any double-byte spaces*
found are converted into single-byte
spaces.

MVARCHAR

G. Functions provided by HiRDB

1583

Format

Arguments

srcp (input)
Specifies the start address of the character string storage area.

stype (input)
Specifies the data type before conversion. The following table shows the data
types that can be specified:

srcl (input)
Specifies the length of the character string specified by srcp. For a
variable-length character string, this argument specifies the length (units:
bytes) of the character string actually stored in the area indicated by srcp.

destp (output)
Specifies the start address of the character string storage area after
conversion. The area indicated by destp must be allocated in the system that
invokes the space conversion function.

destl (output)
Specifies the length of the character string specified by destp. For a
variable-length character string, this argument specifies the length (units:
bytes) of the character string actually stored in the area indicated by destp.

flags (input)
Specifies a conversion type. The following table shows the conversion types:

Return values

 int p_rdb_conv_space_utf8(char *srcp,
 unsigned char stype,
 unsigned int srcl,
 char *destp,
 unsigned int *destl,
 int flags) ;

Macro name Data type

PDSQL_MCHAR MCHAR

PDSQL_MVARCHAR MVARCHAR

Macro name Conversion type

p_rdb_FULL_TO_HALF_SPACE Double-byte spaces -> Single-byte spaces

G. Functions provided by HiRDB

1584

Data type: int
p_rdb_RC_RTRN(0)

Normal termination
p_rdb_RC_ERRINVF(-8)

Invalid flags argument
p_rdb_RC_ERRTYPC(-9)

Invalid data type
Notes

1. This space conversion function is used only for Unicode (UTF-8).
2. Before invoking this function, you must set UTF8 for the lang argument and

invoke the p_rdb_set_lang function. For details about the
p_rdb_set_lang function, see G.4 Character code type specification
function.

3. If the data input area is the same as the data output area, or if the output area
is located before the input area and the second half of the output area
overlaps with the first half of the input area, the correct operation of the
function is guaranteed.

4. Because errors related to character string length are not checked, you must
enter an appropriate value in srcl.

5. The single- and double-byte space codes use 0x20 and 0xE38080,
respectively.

6. The data types that can be set for the input are MCHAR and MVARCHAR.
7. When a character string has a variable length, srcl is referenced for the

length of the character string to be converted. Specify for srcl a length that
excludes the effective-length portion.

8. Because space conversion converts each double-byte space (3 bytes) into
two single-byte spaces (2 bytes), the length of the character string following
conversion is shorter than that before the conversion.

9. When a character string has a variable length, the effective-length portion of
the area for storing character strings following conversion stores the data
length following the conversion.

10. The data inside the area for storing character strings following conversion is
guaranteed only for the length specified in destl.

11. If this function is invoked by a character code other than Unicode (UTF-8),
the operation of this function cannot be guaranteed.

G. Functions provided by HiRDB

1585

G.3 Function for conversion to a DECIMAL signed normalized
number

The function for conversion to a DECIMAL signed normalized number sets the sign
for DECIMAL data to either X'C' or X'D' (for a value of 0, the sign is X'C'). Because
this function lets you obtain the normalized sign without having to store DECIMAL data
in a database, you can use it for the following purposes:

• To evaluate whether the data to be stored will be partitioned equally when
pd_dec_sign_normalize=Y is specified in the system definition and the key
for partitioning a table is determined by the key range

• To create an input data file for each RDAREA when
pd_dec_sign_normalize=Y is specified in the system definition and data is
loaded to a key-range-partitioned table in units of RDAREAs concurrently using
the database load utility

Prerequisites for using the function for conversion to a DECIMAL signed
normalized number

The prerequisites are the same as those for the hash function for table partitioning.
For details, see G.1(1) Prerequisites for using the hash function for table
partitioning.

Prerequisites for creating and executing a UAP using the function for conversion
to a DECIMAL signed normalized number

The prerequisites are the same as those for the hash function for table partitioning.
For details, see G.1(2) Creating and executing UAPs that use the hash function for
table partitioning.

(1) Details about the function for conversion to a DECIMAL signed normalized
number

(a) Specification configuration
For details about the specification configuration, see G.1(3)(b) Specification
configuration.

(b) Function for conversion to a DECIMAL signed normalized number
(p_rdb_dec_sign_norm)
Function

The function normalizes the sign of DECIMAL data indicated by srcp as follows:

Before normalization After normalization

X'A' X'C'

X'B' X'D'*

G. Functions provided by HiRDB

1586

* If the absolute value of data is 0, the sign part is set to X'C'.
Header file

#include<pdauxcnv.h>
This header file is required to use the function for conversion to a DECIMAL
signed normalized number.

Format

Arguments
srcp (input)

Specifies the start address of the DECIMAL data to be normalized.
srcl (input)

Specifies the length code of the DECIMAL data indicated by the srcp
argument. Specifiable data length codes are as follows:

destp (output)
Sets the normalized DECIMAL data. Allocate this area indicated by destp on
the side that calls the function for conversion to a DECIMAL signed
normalized number.

X'C' X'C'

X'D' X'D'*

X'E' X'C'

X'F' X'C'

X'0' to X'9' Error

int p_rdb_dec_sign_norm(unsigned char *srcp,
 short srcl,
 unsigned char *destp);

Data type Data length code

INTERVAL YEAR TO DAY 8 256

INTERVAL HOUR TO SECOND 6 256

DECIMAL[(p[,q])] p 256 + q
(If p is omitted, 15 is assumed; if q is omitted, 0 is assumed.)

Before normalization After normalization

G. Functions provided by HiRDB

1587

Return values
data type: int
p_rdb_RC_RTRN(0)

Normal termination.
p_rdb_RC_ERRDFRM(-12)

Invalid sign part for data.
Notes

1. The function does not check anything for error other than the sign part of
DECIMAL data. Operation is not guaranteed if DECIMAL data is invalid or the
data length code specified by the srcl argument contradicts the DECIMAL
data.

2. Operation is guaranteed if the data input area is the same as the data output
area, or if the output area is located before the input area and the latter half
of the output area overlaps the first half of the input area.

G.4 Character code type specification function
The character code type specification function is used to pass the type of the character
code from a UAP to a hash function for table partitioning or a space conversion
function.
By using this function to specify the type of the character code, you can execute
processing that depends on the type of character code, such as the hash function for
table partitioning and the space conversion function.
Prerequisites for using the character code type specification function

The prerequisites are the same as those for the hash function for table partitioning.
For details, see G.1(1) Prerequisites for using the hash function for table
partitioning.

Prerequisites for creating and executing a UAP using the character code type
specification function

The prerequisites are the same as those for the hash function for table partitioning.
For details, see G.1(2) Creating and executing UAPs that use the hash function for
table partitioning.

(1) Details about the character code type specification function
(a) Specification configuration

For details about the specification configuration, see G.1(3)(b) Specification
configuration.

G. Functions provided by HiRDB

1588

(b) Character code type specification function (p_rdb_set_lang)
Function

The character code type specification function specifies the type of character code
to be handled by the hash function for table partitioning and the space conversion
function.

Header file
#include<pdauxcnv.h>

This header file is required to use the character code type specification
function.

Format

Arguments
lang (input)

Specifies the type of character encoding to be handled by the hash function
for table partitioning and the space conversion function. Specifiable
character encodings are as follows:

1 Can be specified for Linux and Windows.
2 Can be specified for Windows.
If a blank character string (for example, p_rdb_set_lang ("")) is
specified, the operation is as follows:
UNIX environment

The setlocale function executed before this function sets the character
code type corresponding to the locale that was set to the LC_ALL category. If
the setlocale function has not been executed, the character code type
corresponding to the default locale of the LC_ALL category is set.
Windows environment

int p_rdb_set_lang(char *lang);

Type of character codes Value of lang argument

Shift JIS kanji codes1 "SJIS"

EUC Chinese kanji codes "CHINESE"

Single-byte character codes2 "C"

Unicodes (UTF-8) "UTF8"

G. Functions provided by HiRDB

1589

The default character code type of the OS is set. However, if the default
character code type is set to a type that is not listed in the above table, the
operation cannot be guaranteed.

Return values
data type: int
p_rdb_RC_RTRN(0)

Normal termination.
p_rdb_RC_ERRIVLG(-10)

Invalid character encoding type.
Notes

1. You must execute p_rdb_set_lang if any of the following conditions is
applicable:

 When setting a character code type from a UAP in a Windows
environment

 When invoking p_rdb_conv_space_utf8 from a UAP in a UNIX
environment*

 When setting the character code type to SJIS from a UAP in a Linux
environment

 When setting the character code type to CHINESE from a UAP in a UNIX
environment
* Before invoking p_rdb_conv_space_utf8, execute p_rdb_set_lang.
When invoking the space conversion function p_rdb_conv_space, use the
setlocale function provided by the OS instead of p_rdb_set_lang.

2. In an UNIX environment, after setting a character code type using this
function, to use a character code type that cannot be used to use another
function, issue p_rdb_set_lang("") first and then invoke the
setlocale function to reset the character code type to an appropriate one.

H. Maximum and Minimum HiRDB Values

1590

H. Maximum and Minimum HiRDB Values

The HiRDB system defines a specific range of acceptable values for each item. This
appendix lists the maximum and minimum values allowed.
Table H-1 lists the maximum and minimum values for the HiRDB system.

Table H-1: HiRDB maximum and minimum values

Classification Item Minimum
value

Maximum
value

Unit

Database
manipulation

Number of retrieval items 1 30,000 Tables

Number of update columns 1 30,000

Number of sort columns 1 255

Number of grouped columns 0 or 11 255

Number of duplicate locked columns 1 255

Number of nested logical operations 0 255

Number of value expressions of IN
predicate

1 255

Number of nested scalar functions 0 255

Length of character string literal in SQL 0 255 Bytes

Length of national character string literal in
SQL

0 127 Characters

Length of mixed character string literal in
SQL

0 255 Bytes

Length of one SQL statement 1 2,000 Kilobytes

Number of tables that can be specified in
one SQL statement

1 64 Tables

Number of correlation names that can be
specified in one SQL statement

0 65

Number of locked base tables in LOCK
statement

1 64

Number of arguments in CALL statement 0 30,000

Row length of work table2 6 32,720 Bytes

H. Maximum and Minimum HiRDB Values

1591

1 If the GROUP BY clause is specified, the minimum value is 1. If the HAVING clause
is specified without the GROUP BY clause, or if a set function is specified in the
SELECT clause, the minimum value is 0.
2 Some SQL statements require a work table file. For details, see the HiRDB Version
8 Installation and Design Guide.

UAP Number of SQL statements in one UAP 1 4,095 Tables

Number of cursors in one UAP 0 1,023

Number of ? parameters in SQL statement 0 30,000

Number of embedded variables in SQL
statement

0 30,000

Classification Item Minimum
value

Maximum
value

Unit

1593

Index

Symbols
? parameter, specifying value using repetition column
as 1109

A
abstract data type, manipulating data in table with 93
access path information 861
access privilege

granting 9
revoking 9

ADO.NET-compatible application program, HiRDB
access from 993
alias

defining 6
deleting 7

ALLOCATE CONNECTION HANDLE 16
ALLOCATE CURSOR statement 10
ALTER PROCEDURE 5
ALTER ROUTINE 5
ALTER TABLE 5
ALTER TRIGGER 5
AND 66
AND multiple index usage [SQL optimization] 277
AND multiple indexes, suppressing use of [SQL
optimization option] 572
AND PLURAL INDEXES SCAN [SQL
optimization] 281
arithmetic operations on numeric data 73
array

DELETE facility using 348
facilities using 323
FETCH facility using 323
INSERT facility using 332
UPDATE facility using 345

Array class [Type2 JDBC driver] 1107, 1164
ASSIGN LIST statement 10
assignment statement 13
audit event

defining 6
deleting 7

auditor's password, changing 8
automatic reconnect facility 397
AVG 76

B
base table 33

defining 6
base table search process information 868
batch acquisition from functions provided by plug-ins,
facility for [SQL optimization option] 577
batch updating

JDBC2.0 basic facility 1082
JDBC2.1 Core API 1227

BEGIN DECLARE SECTION 15
BETWEEN predicate 62

data search using 63
BINARY data

addition update and partial extraction facility
for 391
addition update of 391
partial extraction of 391

Blob class [Type2 JDBC driver] 1164
BLOB data

addition update and partial extraction facility
for 391
addition update of 391
file output facility for 386
partial extraction of 391

Blob interface [JDBC1.2 core API] 1223
BLOB type, notes on using [Type2 JDBC
driver] 1115
block mode 547
block transfer facility 319
Boolean predicate, searching for data using 67

Index

1594

C
C data description 1436
CALL statement 10
CallableStatement class

JDBC1.0 facility 1073
Type2 JDBC driver 1154

cataloged text, copying 16
character code classification 702, 710
character code conversion facility [Type2 JDBC
driver] 1150
character code type specification function 1587
character conversion facility [Type4 JDBC
driver] 1304
character string, outputting to file 18
check pending status 149, 150
Class file, creating 775
client environment definition 459, 487

for foreign table access, specifying 608
supported [Type4 JDBC driver] 1305

client environment setup 421
CLOSE statement 10
COBOL data description 1454
coding example

C language 630, 639, 651
COBOL 667, 683

coding rule
C++ 694
COBOL 658

column 32
name 32

Column Name Descriptor Area 1429
contents of 1429
expanding 1431
organization of 1429

COMMAND EXECUTE 16
command trace facility 885
command trace file, backing up 887
command trace information

how to obtain 885
interpreting 886

commands, executing from UAP 16
COMMENT 5
comment, adding 5
COMMIT statement 14

COMMIT_BEHAVIOR, notes on 1067
comparison condition 69
comparison predicate 61

data search using 62
compiling 737

using multi-connection facility 752
component specification 93
compound statement 18
CONNECT privilege

granting 8
revoking 9

CONNECT statement 14
with RD-node specification 14

Connection class
JDBC1.0 facility 1071
Type2 JDBC driver 1152

connection handle
allocating 16
freeing 16
getting 16
to be used, cancelling all 16
to be used, declaring 16

connection information priorities [Type4 JDBC
driver] 1312
Connection interface [JDBC1.2 core API] 1193
connection pool [JDBC2.0 Optional Package] 1234
connection pooling [JDBC2.0 Optional
Package] 1099
connection security facility

defining 6
deleting 7

ConnectionPoolDataSource interface [JDBC2.0
Optional Package] 1234
conventions

diagrams xvii
fonts and symbols xvii
KB, MB, GB and TB xxi
version numbers xxi

COPY 16
COUNT 76
CREATE ALIAS 6
CREATE AUDIT 6
CREATE CONNECTION SECURITY 6
CREATE FOREIGN INDEX 6

Index

1595

CREATE FOREIGN TABLE 6
CREATE FUNCTION 6
CREATE INDEX 6
CREATE PROCEDURE 6
CREATE SCHEMA 6
CREATE SERVER 6
CREATE TABLE 6
CREATE TRIGGER 6
CREATE TYPE 7
CREATE USER MAPPING 7
CREATE VIEW 7
CROSS JOIN [SQL optimization] 275
current RD-node 901

setting 15
current SQL connection 901
cursor

allocating 10
closing 10
closure of 42
declaration and lock 187
declaring 10, 110, 118
definition of 40
deletion using 53
examples of using 194
opening 12, 40
receiving retrieval information for 11
retrieval using 36
retrieval without using 38
table operations using 183
updating row retrieved, using 37
updating using 47
usage of 36
use of 183
using multiple cursors simultaneously 186

cursor library, setting 976
cursor updatability 183

relationship between cursor updatability and
operations that do not use cursor 183

D
data

deletion of 53
deletion of, with condition specified 54
duplicated, eliminating 78

extraction of 41
fetching 12
grouping 76
inserting 57
operation 73
processing 76
retrieval of 39
satisfying multiple conditions, searching
for 66
sorted 77
sorting 77
specific data search 61
that uses preprocessable cursor, updating 13
updating 13, 47
updating with condition specified 48

data collecting servers, separating
SQL optimization 252
SQL optimization option 573

data dictionary table
details of 1476
examples of SQL statement retrieving 1473
list of 1469
retrieval of 1469

data guarantee level 314, 560
data guarantee level 0 315
data guarantee level 1 315
data guarantee level 2 316

data type 32
defining type 7
of variables supported by distributed client
facility 922
Type2 JDBC driver 1149
Type4 JDBC driver 1281
user-defined type, deleting 7

data type, added
JDBC2.0 basic facility 1086
JDBC2.1 Core API 1231

database operation 31
DatabaseMetaData class

JDBC1.0 facility 1078
Type2 JDBC driver 1157

DatabaseMetaData interface [JDBC1.2 core
API] 1216

Index

1596

DataSource interface [JDBC2.0 Optional
Package] 1233
DataSource object and JNDI, database connection
using [Type4 JDBC driver] 1188
date data operation 74
DBA privilege

granting 8
revoking 9

DbType property 1041
deadlock

between servers 158
causes of 156
corrective measures for 156
countermeasures for 160
example of 157
in logical file used by plug-in, avoiding 162
preventing 161

DEALLOCATE PREPARE statement 10
DECIMAL signed normalized number, function for
conversion to 1585
DECLARE CONNECTION HANDLE SET 16
DECLARE CONNECTION HANDLE UNSET 16
DECLARE CURSOR 10
default RD-node 898
default SQL connection 899
definition information for user-defined type,
receiving 11
DELETE statement 10

WHERE clause of 54
DESCRIBE CURSOR statement 11
DESCRIBE statement 11
DESCRIBE TYPE statement 11
diagnostic information, getting 16
diagram conventions xvii
DISCONNECT statement 14
distributed client

notes about using 933
rules of 904

distributed client facility 898
distributed database, using 897
DISTRIBUTED NESTED LOOPS JOIN [SQL
optimization] 274
distributed nested loops join [SQL optimization] 262
distributed RD-node 898

connecting to 14
disconnecting from 14

distributed server
handling errors occurring in 930
notes about using 934
rules of 904

distributed server data types and HiRDB data types,
correspondence between 922
distributed transaction [JDBC2.0 Optional
Package] 1101, 1236
DNL JOIN [SQL optimization] 274
Driver class [JDBC1.0 facility] 1062
Driver interface [JDBC1.2 core API] 1192
DriverManager class, database connection using
[Type4 JDBC driver] 1168
DROP ALIAS 7
DROP AUDIT 7
DROP CONNECTION SECURITY 7
DROP DATA TYPE 7
DROP FOREIGN INDEX 7
DROP FOREIGN TABLE 7
DROP FUNCTION 7
DROP INDEX 7
DROP LIST statement 11
DROP PROCEDURE 7
DROP SCHEMA 8
DROP SERVER 8
DROP TABLE 8
DROP TRIGGER 8
DROP USER MAPPING 8
DROP VIEW 8
dynamic SELECT statement 13, 119
dynamic SQL 119

execution characteristics of 119
notes on executing 120

E
embedded exception, declaring 17
embedded SQL

declaring beginning of 15
declaring end of 15

embedded SQL declare section
dispensing with 727
items that can be described within 624

Index

1597

embedded SQL UAP, overview of 620
embedded variable, declaration of 109
empty set 71
END DECLARE SECTION 15
environment definition information 498
environment setting

Type2 JDBC driver 1060
Type4 JDBC driver 1166

environment variable
access path display utility 493
access path information file for HiRDB SQL
Tuning Advisor 493
BES connection holding facility 496
block transfer facility 495
client using X/Open-compliant API in OLTP
environment 488
command execution from UAP 490
distributed database 496
inner replica facility 495
inter-process memory communication
facility 490
JDBC driver 497
lock control 493
ODBC function 496
output unit of UAP statistical
information 493
plug-in 497
referential or check constraint 496
setting 459
space conversion for data 495
specifying pointer as 728
SQL-related 494
system configuration 487
system monitoring 491
trouble-shooting 492
updatable online reorganization 495
user execution environment 488
using immediate acknowledgment for HiRDB
communication 495
XDM/RD E2 connection facility 495

environment variable group 610
registering 610

environment variable specification
using UAP under OpenTP1 as client 471

using UAP under TP1/EE as client 483
using UAP under TP1/LiNK as client 474
using UAP under TPBroker as client 477
using UAP under TUXEDO as client 480
using UAP under WebLogic Server as
client 482

error
automatic identification of 201
corrective measures for detected 200
identification of 113
re-reporting 18
reporting 18

error log file 839
making backup of 841

error log information
collecting 840
interpreting 840

error logging 839
error-handling process specification 110
EX 135
Exception trace log

methods acquired in 1321
notes 1340
output example and analysis method 1334
output format 1328
required memory size and file size 1339
setup for acquiring 1321
Type4 JDBC driver 1321

EXECUTE IMMEDIATE statement 11
EXECUTE statement 11
execution user, changing 15
EXISTS predicate 70
extended SQL error information, facility for output
of 842

F
FALSE 67
FETCH statement 12, 41
FIX attribute, manipulating table with 206
floatable server allocation

optimization features related to 251
optimization features related to number of
candidates of 252
SQL optimization 249

Index

1598

floatable server candidates, increasing number of
SQL optimization 252
SQL optimization option 570

floatable server, allocating [SQL optimization] 249
font conventions xvii
FOR READ ONLY clause 186

specifying 187
FOR statement 18
FOR UPDATE clause 186

specifying 187
forced nest-loop-join [SQL optimization option] 567
foreign index

defining 6
deleting 7

foreign server
defining 6
deleting 8

foreign server execution of SQL statements containing
direct product, forcing [SQL extension optimizing
option] 585
foreign server execution of SQL statements containing
join operation, suppressing [SQL extension optimizing
option] 585
FOREIGN SERVER LIMIT SCAN [SQL
optimization] 283
FOREIGN SERVER SCAN [SQL optimization] 283
foreign table

defining 6
deleting 7
specifying client environment definition for
access to 608

FREE CONNECTION HANDLE 16
FREE LOCATOR statement 12
function 93

defining 6
deleting 7
returning return value of 18
rules for determining called function 222

G
GB meaning xxi
GET CONNECTION HANDLE 16
GET DIAGNOSTICS 16
GET DIAGNOSTICS statement

condition information items obtained by
specifying condition number 1 (error at the
distributed server) 931
statement information items obtained by (error
at the distributed server) 931

getBlockUpdate [Type2 JDBC driver] 1113, 1140
getClear_Env [Type2 JDBC driver] 1148
getCommit_Behavior [Type2 JDBC driver] 1138
getDBHostName

Type2 JDBC driver 1126
Type4 JDBC driver 1246

getDescription
Type2 JDBC driver 1124
Type4 JDBC driver 1245

getEncodeLang
Type2 JDBC driver 1128
Type4 JDBC driver 1273

getEnvironmentVariables [Type4 JDBC driver] 1270
getHiRDBCursorMode [Type4 JDBC driver] 1267
getJDBC_IF_TRC [Type4 JDBC driver] 1247
getLONGVARBINARY_Access

Type2 JDBC driver 1141
Type4 JDBC driver 1258

getLONGVARBINARY_AccessSize [Type4 JDBC
driver] 1278
getLONGVARBINARY_TruncError [Type4 JDBC
driver] 1280
getMaxBinarySize [Type4 JDBC driver] 1275
getNotErrorOccurred [Type4 JDBC driver] 1269
getPassword

Type2 JDBC driver 1131
Type4 JDBC driver 1253

getRMID [Type2 JDBC driver] 1135
getSQLInNum

Type2 JDBC driver 1143
Type4 JDBC driver 1259

getSQLOutNum
Type2 JDBC drover 1145
Type4 JDBC driver 1261

getSQLWarningIgnore [Type4 JDBC driver] 1265
getSQLWarningLevel

Type2 JDBC driver 1146
Type4 JDBC driver 1262

Index

1599

getStatementCommitBehavior [Type4 JDBC
driver] 1276
getTRC_NO [Type4 JDBC driver] 1249
getUapName [Type4 JDBC driver] 1250
getUser

Type2 JDBC driver 1129
Type4 JDBC driver 1252

getXACloseString
Type2 JDBC driver 1133
Type4 JDBC driver 1256

getXALocalCommitMode [Type4 JDBC
driver] 1264
getXAOpenString

Type2 JDBC driver 1132
Type4 JDBC driver 1255

getXAThreadMode [Type2 JDBC driver] 1136
global deadlock 158

example of 159
GRANT access-privilege 9
GRANT AUDIT 8
GRANT CONNECT 8
GRANT DBA 8
GRANT RDAREA 8
GRANT SCHEMA 8
group

average value of 76
maximum value of 76
minimum value of 76
rows count of 76
total value of 76

group processing, ORDER BY processing, and
DISTINCT set function processing at local back-end
server

SQL optimization 257
SQL optimization option 572

grouping processing method [SQL optimization] 256
grouping processing, rapid

SQL optimization 257
SQL optimization option 573

H
hash execution [SQL optimization] 285, 292
hash function for table partitioning 1553
hash join

preparing for application of 296
SQL optimization 261
subquery hash execution [SQL extension
optimizing option] 584

HASH JOIN [SQL optimization] 266
hash join processing method 267

batch hash join 267
bucket partitioning hash join 268
continuous hash join 268
intermittent hash join 269

HASH SUBQ [SQL optimization] 289, 294
hash table size 296
hashing mode 300

tuning 303
high-speed search condition

application scope of 304
deriving 303
deriving [SQL optimization option] 575
deriving by CNF conversion 310
deriving by condition shifting 311

high-speed search condition for foreign server
execution, suppressing derivation of unconditionally
created [SQL extension optimizing option] 585
HiRDB

data type of 967
functions provided by 1553

HiRDB client
installing 424
no response status 539
organization of directory for 427
organization of file for 427
types of 422

HiRDB client environment variable, tool for
registering 611
HiRDB communication, use of immediate
acknowledgment for 495
HiRDB OLE DB provider 984
HiRDB.NET Data Provider 994

data types of 1041
example of UAP using 1051
installing 995
interfaces of 1006
list of classes provided by 996
list of members provided by 997

Index

1600

notes about 1039
prerequisite programs for 994
type conversion by 1044

HiRDB/Developer's Kit 422
HiRDB/Run Time 422
HiRDB_PDHOST 488, 512
HiRDB_PDNAMEPORT 488, 513
HiRDB_PDTMID 488, 513
HiRDB_PDXAMODE 488, 513
HiRDBCommand 1006

list of members 997
HiRDBCommandBuilder 1010

list of members 998
HiRDBConnection 1011

list of members 998
HiRDBDataAdapter 1015

list of members 999
HiRDBDataReader 1016

list of members 1000
HiRDBException 1025

list of members 1001
HiRDBParameter 1026

list of members 1002
HiRDBParameterCollection 1030

list of members 1003
HiRDBRowUpdatedEventArgs 1035

list of members 1004
HiRDBRowUpdatingEventArgs 1036

list of members 1004
HiRDB SQL Tuning Advisor access path information
file 892
HiRDBTransaction 1036

list of members 1004
HiRDBType property 1041
holdable cursor 190

example of using 196
hosts file, setting 458

I
I/O information, receiving 11
IF statement 18
IN predicate 63

data search using 64
index

benefits of using 204
changing during retrieval 205
defining 6
deleting 7
drawbacks of using 204
priority 204
processing time 204

index key value
creating locked resources for 181
non-locking of 165

INDEX SCAN [SQL optimization] 278
index scan [SQL optimization] 276
index use, suppressing [SQL optimization
option] 573
index-type plug-in-dependent function 416
forcing use of multiple indexes 573
indicator variable, declaration of 109
INSERT statement 12, 57

specifying ROW in 58
INSTALL JAR 17
installing

Type2 JDBC driver 1060
Type4 JDBC driver 1166

integrity constraint 117
inter-process memory communication facility 537
interface 20

area 116
area type of 116
between UAP and HiRDB 20
use of 116

J
JAR file

creating 777
deleting 17
re-registering 17
registering 17, 778

JAR file access facility [JDBC2.0 Optional
Package] 1104
JAR format, archiving in 777
Java file

compiling 775
creating 775

Java program, coding 775

Index

1601

Java stored function 771
Java stored procedure 771
Java stored routine 772

coding 775
debugging 776
defining 779
executing 779
features of 774
preparations for execution of 774
sample program of 781
testing 776

JDBC driver
functions provided by 1112

JDBC interface method trace
setup for acquiring 1318
Type4 JDBC driver 1318

JDBC1.0 facility 1062
JDBC1.2 core API 1192
JDBC2.0 basic facility 1080
JDBC2.0 Optional Package [Type2 JDBC
driver] 1096, 1233
JDBC2.1 Core API 1227
JNDI support [JDBC2.0 Optional Package] 1233
join method [SQL optimization] 261
join method types [SQL optimization] 261
join process information 867

K
KB meaning xxi
key conditions including scalar operation, applying
[SQL optimization option] 576
KEY SCAN [SQL optimization] 278
key scan [SQL optimization] 277
KEY SCAN MERGE JOIN [SQL optimization] 263

L
L-KEY R-LIST MERGE JOIN [SQL
optimization] 264
L-KEY R-SORT MERGE JOIN [SQL
optimization] 264
L-LIST R-KEY MERGE JOIN [SQL
optimization] 264
L-LIST R-SORT MERGE JOIN [SQL
optimization] 264

L-SORT R-KEY MERGE JOIN [SQL
optimization] 264
L-SORT R-LIST MERGE JOIN [SQL
optimization] 264
labeling rule

C language 622
C++ 694
COBOL 658
OOCOBOL 695

LANG, character codes that can be specified for 702
LEAVE statement 18
LIKE predicate 64

data search using 65
linking 737

using multi-connection facility 752
list

creating 10
deleting 11

LIST SCAN [SQL optimization] 282
LIST SCAN MERGE JOIN [SQL optimization] 263
locator facility 402
locator, invalidating 12
lock

implementable with UAP 168
period 155
referencing during 156
releasing 155
starting 155

lock control on tables 14
lock mode 134

exclusive mode 135
protected retrieve mode 134
protected update mode 135
shared retrieve mode 135
shared update mode 135
simultaneous execution by two users based
on 135
transition rule of 136
typical combination of 137, 139, 141, 143,
144, 147, 149, 150

LOCK statement 14
locked resource

inclusive relationships 133
setting minimum unit of 134

Index

1602

locking 133
based on deadlock priority value 160
page 141, 143
row 137, 139
row-level 136
units of 133

log collection mode 517
long running SQL statements, interval monitoring
of 539

M
managing numbers, using tables for 370
mapping

during retrieval data acquisition 1282
SQL data type 1281
when ? parameter is set 1285

MAX 76
maximum-hash-table-row-length 296
maximum-number-of-hash-joins-in-SELECT-
statement 299
MB meaning xxi
merge join [SQL optimization] 261
MIN 76
MULTI COLUMNS INDEX SCAN [SQL
optimization] 279
MULTI COLUMNS KEY SCAN [SQL
optimization] 279
multi-connection facility 355

N
narrowed search 379

using inner replica facility 385
Native Runtime 1383
nest-loop-join, prioritized [SQL optimization
option] 569
NESTED LOOPS JOIN [SQL optimization] 265
nested loops row value execution [SQL
optimization] 291
NESTED LOOPS ROW VALUE SUBQ [SQL
optimization] 293
nested loops work table execution [SQL
optimization] 291
NESTED LOOPS WORK TABLE SUBQ [SQL
optimization] 292

nested-loops-join [SQL optimization] 261
no-log mode 517
non-locking of index key values 144, 147
non-NULL data, searching for 65
nonblock mode 547
NOT 66
NOT NULL constraint 117
NULL predicate 65

with NOT, data search using 66

O
object relational database table 34
ODBC application program, HiRDB access from 953
ODBC function

data type of 967
facility available to 969
provided by HiRDB 963

ODBC2.0 driver, installing 955
ODBC3.0 driver

installing 959
setting environment variable 959

OLE DB 984
OLE DB application program, HiRDB access
from 983
OPEN statement 12
operation code 828
optimizing mode 2 based on cost, application of [SQL
extension optimizing option] 584
OR 66
OR multiple index usage [SQL optimization] 277
OR multiple index use, priority of [SQL optimization
option] 571
OR PLURAL INDEXES SCAN [SQL
optimization] 281
outer joining 80
overflow handling 1294

P
p_rdb_conv_space 1578
p_rdb_conv_space_utf8 1582
p_rdb_dbhash 1558
p_rdb_dec_sign_norm 1585
p_rdb_set_lang 1588
parameter trace output examples 834

Index

1603

PATH 459, 467
PDADDITIONALOPTLVL 494, 581
PDAGGR 494, 586
PDASTHOST 490, 534
PDASTPORT 490, 535
PDASTUSER 490, 536
PDAUTOCONNECT 494, 588
PDAUTORECONNECT 489, 531
PDBESCONHOLD 496, 600
PDBESCONHTI 496, 600
PDBINARYBLKF 495, 595
PDBLKBUFFSIZE 495, 595
PDBLKF 495, 594
pdcbl 711
PDCLTAPNAME 489, 515
PDCLTCNVMODE 489, 518
PDCLTGAIJIDLL 489, 525
PDCLTGAIJIFUNC 489, 525
PDCLTGRP 489, 528
PDCLTLANG 489, 515
PDCLTPATH 492, 548
PDCLTRCVADDR 488, 508
PDCLTRCVPORT 488, 506
PDCLTRDNODE 495, 598
PDCMDTRACE 490, 536
PDCMDWAITTIME 490, 536
PDCMMTBFDDL 494, 587
PDCNCTHDL-type variable, declaration of 17
PDCNSTRNTNAME 496, 600
PDCONNECTWAITTIME 492, 547
pdcpp 703
PDCURSORLVL 495, 590
PDCWAITTIME 491, 539
PDCWAITTIMEWRNPNT 491, 543
PDDBACCS 495, 596
PDDBBUFLRU 490, 533
PDDBLOG 489, 517
PDDBORGUAP 495, 596
PDDDLDEAPRP 494, 588
PDDELRSVWDFILE 495, 593
PDDFLNVAL 494, 586
PDDLKPLIO 493
PDDLKPRIO 559
PDERRSKIPCODE 492, 549

PDEXWARN 489, 518
PDFESGRP 488, 503
PDFESHOST 487, 500
PDFORUPDATEEXLOCK 494, 560
PDGDATAOPT 496, 603
PDHASHTBLSIZE 494, 585
PDHATRNQUEUING 490, 534
PDHJHASHINGMODE 495, 594
PDHOST 487, 498
PDIPC 490, 537
PDISLLVL 494, 560
PDJDBFILEDIR 497, 606
PDJDBFILEOUTNUM 497, 606
PDJDBONMEMNUM 497, 607
PDJDBTRACELEVEL 497, 607
PDJETCOMPATIBLE 497, 605
PDKALVL 491, 544
PDKATIME 491, 546
PDLANG 489, 517
PDLOCKLIMIT 493, 558
PDLOCKSKIP 493, 560
PDNAMEPORT 487, 499
PDNBLOCKWAITTIME 491, 546
PDNODELAYACK 495, 595
pdocb 711
pdocc 703
PDODBCWRNSKIP 496, 604
PDODBESCAPE 496, 602
PDODBLOCATOR 496, 604
PDODBSPLITSIZE 496, 604
PDODBSTATCACHE 496, 601
PDPLGIXMK 497, 605
PDPLGPFSZ 497, 606
PDPLGPFSZEXP 497, 606
PDPLUGINNSUB 606
PDPLUGINNSUB2 497
PDPRMTRC 492, 549
PDPRMTRCSIZE 492, 550
PDPRPCRCLS 494, 587
PDRCCOUNT 489, 532
PDRCINTERVAL 490, 532
PDRCTRACE 493, 553
PDRDABLKF 496, 601
PDRDCLTCODE 496, 599

Index

1604

PDRECVMEMSIZE 491, 538
PDREPPATH 492, 551
PDSENDMEMSIZE 490, 538
PDSERVICEGRP 487, 502
PDSERVICEPORT 488, 503
PDSPACELVL 495, 597
PDSQLEXECTIME 492, 552
PDSQLOPTLVL 494, 562
PDSQLTEXTSIZE 492, 552
PDSQLTRACE 492, 548
PDSQLTRCOPENMODE 492, 552
PDSRVTYPE 487, 502
PDSTJTRNOUT 493, 558
PDSUBSTRLEN 489, 518
PDSWAITTIME 491, 539
PDSWATCHTIME 491, 540
PDSYSTEMID 490, 536
PDTAAPINFMODE 493, 557
PDTAAPINFPATH 493, 557
PDTAAPINFSIZE 493, 558
PDTCPCONOPT 489, 529
PDTIMEDOUTRETRY 491, 546
PDTMID 488, 509
PDTP1SERVICE 496, 598
pdtrcmgr 888
PDTRCMODE 492, 550
PDTRCPATH 492, 552
PDTXACANUM 488, 510
PDUAPENVFILE 490, 533
PDUAPERLOG 492, 548
PDUAPEXERLOGPRMSZ 493, 555
PDUAPEXERLOGUSE 493, 554
PDUAPREPLVL 492, 550
PDUSER 488, 514
PDVWOPTMODE 493, 555
PDWRTLNCOMSZ 493, 554
PDWRTLNFILSZ 493, 554
PDWRTLNPATH 493, 553
PDXAMODE 488, 509
PDXARCVWTIME 488, 510
PDXATRCFILEMODE 488, 511
plug-in distribution function 415
PLUGIN INDEX SCAN [SQL optimization] 280
PLUGIN KEY SCAN [SQL optimization] 280

pointer, specifying as environment variable 728
PooledConnection interface [JDBC2.0 Optional
Package] 1235
PR 134
preparable dynamic DELETE statement: locating 10
preparable dynamic UPDATE statement: locating 13
PREPARE statement 12
PreparedStatement class

JDBC1.0 facility 1073
Type2 JDBC driver 1154

PreparedStatement interface [JDBC1.2 core
API] 1203
preprocessing 701

for C programs in UNIX environment 702
for C programs in Windows environment 714
for COBOL programs in UNIX
environment 709
for COBOL programs in Windows
environment 720
overview of 701

preprocessor declaration statement, validating 726
priority [SQL optimization] 248
procedure 207

calling 10
defining 6
deleting 7

process, avoiding survival of 540, 541
program example

C language 628
COBOL 663

PU 135
PURGE TABLE statement 12, 55

Q
quantified predicate 69
query process information 865
query processing method in HiRDB [SQL
optimization] 249
query result from foreign server, retrieving [SQL
optimization] 283

R
R-LIST NESTED LOOPS JOIN [SQL
optimization] 265

Index

1605

rapid grouping facility 352
RD-node 898
RD-node specification, DISCONNECT statement
with 14
RDAREA usage privilege

granting 8
revoking 9

reconnect trace facility 889
relational database table 32
REMOVE JAR 17
REPLACE JAR 17
RESIGNAL statement 18
result set enhancement [JDBC2.0 basic facility] 1080
result set expansion [JDBC2.1 Core API] 1227
results-set return facility

Java stored procedures only 809
limited to SQL stored procedures 213

ResultSet class
JDBC1.0 facility 1074
Type2 JDBC driver 1155

ResultSet interface [JDBC1.2 core API] 1208
ResultSetMetaData class

JDBC1.0 facility 1075
Type2 JDBC driver 1156

ResultSetMetaData interface [JDBC1.2 core
API] 1222
retrieval information, receiving 11
retrieve first n records facility 395
return code, referencing 198
RETURN statement 18
REVOKE access-privilege 9
REVOKE CONNECT 9
REVOKE DBA 9
REVOKE RDAREA 9
REVOKE SCHEMA 9
rollback

setting 130
ROLLBACK statement 14
rollback, setting 128, 130
row 32

deleting 10
deleting all 12
in table, deleting all 55
inserting 12

into table with repetition column, inserting 59
on column basis, inserting 57
on row basis, inserting 59
on row basis, inserting (to table with FIX
attribute) 58
repeating execution of each 18
retrieval on basis of 46
retrieving one 13
that uses preprocessable cursor, deleting 10
updating on basis of 50

row identifier, searching using [SQL
optimization] 282
row value execution [SQL optimization] 285
ROW VALUE SUBQ [SQL optimization] 288
ROWID FETCH [SQL optimization] 282

S
scalar function 74
schema

defining 6
deleting 8

schema definition privilege
granting 8
revoking 9

search method [SQL optimization] 276
SELECT statement

for retrieval 39
FROM clause of 43
selection clause of 45

SELECT-APSL [SQL optimization] 262, 274, 277,
280
SET CONNECTION statement 15
set operation process information 864
SET SESSION AUTHORIZATION statement 15
setBlockUpdate [Type2 JDBC driver] 1112, 1139
setClear_Env [Type2 JDBC driver] 1147
setCommit_Behavior [Type2 JDBC driver] 1136
setDBHostName

Type2 JDBC driver 1125
Type4 JDBC driver 1245

setDescription
Type2 JDBC driver 1122
Type4 JDBC driver 1242

setEncodeLang

Index

1606

Type2 JDBC driver 1126
Type4 JDBC driver 1271

setEnvironmentVariables [Type4 JDBC driver] 1269
setHiRDBCursorMode [Type4 JDBC driver] 1266
setJDBC_IF_TRC [Type4 JDBC driver] 1246
setLONGVARBINARY_Access

Type2 JDBC driver 1141
Type4 JDBC driver 1257

setLONGVARBINARY_AccessSize [Type4 JDBC
driver] 1277
setLONGVARBINARY_TruncError [Type4 JDBC
driver] 1279
setMaxBinarySize [Type4 JDBC driver] 1273
setNotErrorOccurred [Type4 JDBC driver] 1268
setPassword

Type2 JDBC driver 1130
Type4 JDBC driver 1252

setRMID [Type2 JDBC driver] 1134
setSQLInNum

Type2 JDBC driver 1142
Type4 JDBC driver 1258

setSQLOutNum
Type2 JDBC driver 1144
Type4 JDBC driver 1260

setSQLWarningIgnore [Type4 JDBC driver] 1265
setSQLWarningLevel

Type2 JDBC driver 1145
Type4 JDBC driver 1261

setStatementCommitBehavior [Type4 JDBC
driver] 1275
setTRC_NO [Type4 JDBC driver] 1248
setUapName [Type4 JDBC driver] 1249
setUser

Type2 JDBC driver 1128
Type4 JDBC driver 1251

setXACloseString
Type2 JDBC driver 1133
Type4 JDBC driver 1256

setXALocalCommitMode [Type4 JDBC driver] 1263
setXAOpenString

Type2 JDBC driver 1131
Type4 JDBC driver 1254

setXAThreadMode [Type2 JDBC driver] 1135
SIGNAL statement 18

single row retrieval 38
single-row SELECT statement 13, 118
SORT MERGE JOIN [SQL optimization] 262
source program 3
space conversion function 1578
specific character pattern, searching for 64
SQL 3

corrective measures for error of 198
error identification of 198
executing 11
for retrieving data (execution statement) 111
for updating data (execution statement) 111
functional organization of 4
information by 860
preprocessing 11
value provided at time of execution 120

SQL coding rule
C language 622
C++ 694
COBOL 658
OOCOBOL 695

SQL Communications Area 1396
contents of 1397
expanding 1403
organization of 1396

SQL connection 898, 899
generating 899
terminating 901

SQL data type 1436, 1454
SQL Descriptor Area 1406

contents of 1407
data code set in 1413
data length set in 1413
example of 1419
expanding 1417
operation macro for 1423
organization of 1406
procedure for expanding 1423

SQL extension optimizing option 232, 581
SQL object

re-creating for function 5
re-creating for procedure 5
re-creating for trigger 5

Index

1607

SQL objects, making multiple [SQL optimization
option] 568
SQL optimization 232

method types of 246
option 232
specification 232
specifying 248

SQL optimizing mode 233
optimizing mode 1 based on cost 233
optimizing mode 2 based on cost 234

SQL prefix 17
SQL preprocessor

activating 703, 711, 715, 721
return code of (for C programs in UNIX
environment) 708
return code of (for C programs in Windows
environment) 719
return code of (for COBOL programs in UNIX
environment) 714
return code of (for COBOL programs in
Windows environment) 725
standard input and output of (for C programs in
UNIX environment) 709
standard input and output of (for C programs in
Windows environment) 720
standard input and output of (for COBOL
programs in UNIX environment) 714
standard input and output of (for COBOL
programs in Windows environment) 725

SQL runtime interim results 862
SQL statement

description locations of 625
divisions in COBOL for describing 662
executing by conditional branching 18
executing multiple 18
for retrieval, examples of 1473
list of (control SQL) 14
list of (data manipulation SQL) 10
list of (definition SQL) 5
list of (embedded language) 15
list of (routine control SQL) 18
list of (usable in HiRDB) 4
preprocessed and executed by EXECUTE
IMMEDIATE statement 121

preprocessed by PREPARE statement 121
preprocessed, releasing 10
preprocessing 12
repeating 18
supported by distributed client facility 909
usable for remote database access, details
about 910

SQL stored function
defining 217
executing 217

SQL stored procedure
debugging 211
defining 208
executing 208

SQL terminator 17
SQL trace dynamic acquisition facility 887
SQL trace file 824

making backup of 834
relationship with use of API (TX_function)
conforming to X/Open 825

SQL trace information
collecting 824
examining 825

SQL tracing 824
SQL-optimization-option 562
SQL_ALIASES table 1520
SQL_AUDITS table 1544
SQL_CHECK_COLUMNS table 1549
SQL_CHECKS table 1548
SQL_COLUMN_STATISTICS table 1521
SQL_COLUMNS table 1487
SQL_DATATYPE_DESCRIPTORS table 1524
SQL_DATATYPES table 1523
SQL_DIV_COLUMN table 1507
SQL_DIV_INDEX table 1506
SQL_DIV_TABLE table 1504
SQL_DIV_TYPE table 1550
SQL_EXCEPT table 1534
SQL_FOREIGN_SERVERS table 1535
SQL_INDEX_COLINF table 1505
SQL_INDEX_DATATYPE table 1532
SQL_INDEX_FUNCTION table 1533
SQL_INDEX_RESOURCES table 1532
SQL_INDEX_STATISTICS table 1522

Index

1608

SQL_INDEX_TYPE_FUNCTION table 1534
SQL_INDEX_TYPES table 1531
SQL_INDEXES table 1498
SQL_IOS_GENERATIONS table 1537
SQL_KEYCOLUMN_USAGE table 1547
SQL_PARTKEY table 1542
SQL_PARTKEY_DIVISION table 1543
SQL_PHYSICAL_FILES table 1476
SQL_PLUGIN_ROUTINE_PARAMS table 1528
SQL_PLUGIN_ROUTINES table 1527
SQL_PLUGINS table 1527
SQL_RDAREA_PRIVILEGES table 1501
SQL_RDAREAS table 1476
SQL_REFERENTIAL_CONSTRAINTS table 1545
SQL_ROUTINE_PARAMS table 1516
SQL_ROUTINE_RESOURCES table 1514
SQL_ROUTINES table 1507
SQL_SYSPARAMS table 1550
SQL_TABLE_CONSTRAINTS table 1548
SQL_TABLE_PRIVILEGES table 1502
SQL_TABLE_RESOURCES table 1526
SQL_TABLE_STATISTICS table 1520
SQL_TABLES table 1478
SQL_TRIGGER_COLUMNS table 1540
SQL_TRIGGER_DEF_SOURCE table 1541
SQL_TRIGGER_USAGE table 1541
SQL_TRIGGERS table 1538
SQL_TYPE_RESOURCES table 1533
SQL_USER_MAPPINGS table 1537
SQL_USERS table 1500
SQL_VIEW_TABLE_USAGE table 1503
SQL_VIEWS table 1504
SQLCODE variable 17
SQLException interface [JDBC1.2 core API] 1224
SQLJ 1343
SQLJ Runtime Library 1345
SQLJ Translator 1344, 1348
SQLSTATE variable 17
SQLWarning class [JDBC1.0 facility] 1078
SQLWarning interface [JDBC2.1 core API] 1224
SR 135
Statement class

JDBC1.0 facility 1072
Type2 JDBC driver 1153

Statement interface [JDBC1.2 core API] 1199
statement, leaving 18
static SQL 119

execution characteristics of 119
stored function 217

defining 217
stored procedure 207
structure, referencing 731
structured repetition predicate, searching for data
using 67
SU 135
subqueries with external references, execution of
[SQL optimization] 290
subqueries with no external references, execution of
[SQL optimization] 284
subquery 68

searching for data using 68
using EXISTS predicate 70
using quantified predicate 69

subquery hash execution, preparing for application
of 296
SUM 76
suppression implementable with UAP 168
symbol conventions xvii
synchronization point, setting 128, 130
system property, setting [Type2 JDBC driver] 1117

T
table

basic configuration of 32
deleting 8
outer joining of 80
procedure for deleting 53
procedure for updating 47
retrieval from multiple tables 43
retrieval from single table 39
retrieval from two tables 44
using repetition columns 32
with FIX attribute, retrieval of 45
with FIX attribute, updating 49
with repetition columns, updating 50

table data, retrieving dynamically 13
table definition, altering 5
TABLE SCAN [SQL optimization] 278

Index

1609

table scan [SQL optimization] 276
table with abstract data type

deleting rows from 103
inserting row into 104
retrieving data from 102
updating 102

target floatable server
increasing (back-end servers for fetching data)
[SQL optimization option] 568
increasing (back-end servers for fetching data)
[SQL optimization] 251
limiting (back-end servers for fetching data)
[SQL optimization option] 573
limiting (back-end servers for fetching data)
[SQL optimization] 251

TB meaning xxi
time data operation 74, 75
TIME, DATE, and TIMESTAMP columns, data
conversion of 1290
total number of hits, facility for returning 407
trace acquisition command 888
transaction

cancelling 14
control 128
invalidation of 113
moving 131
startup of 128, 130
terminating normally 14
termination of 128
validation of 113

trigger 230
defining 6
deleting 8

trigger operation search conditions 230
trigger SQL statement 230
trigger-activating SQL statement 230
TRUE 67
Type Name Descriptor Area 1433

contents of 1433
expanding 1434
organization of 1433

Type2 JDBC driver 1059
Array class 1164

Type4 JDBC driver 1165

U
UAP

basic configuration of 620
basic SQL configuration in 108
characteristics of 3
command execution from 937
configuration element of 620
connecting to HiRDB 14
connection to HiRDB system 128
connection with HiRDB 110
created with XDM/RD or UNIFY2000,
converting 768
creating 619
data type and accessory used by 1043
descriptive language of 115
design for improving handling 203
design for improving performance 203
designing 107
development flow of 2
disconnecting from HiRDB 14
disconnection from HiRDB 114
disconnection from HiRDB system 128
embedded format of 3, 115
error recovery 894
execution procedure for 698
extracting retrieved contents and storing them
in 42
format of 3
in C++, writing 694
in C, writing 622
in OOCOBOL, writing 695
notes on execution of 759, 769
operation environment of 21
overview of 115
preparation for execution of 697
supporting 64-bit mode, creating 767
troubleshooting of 823
using X/Open-based API (TX_function),
executing 759
written in C, executing 698
written in COBOL, executing 699

UAP statistical report
how to obtain 856
interpreting 859

Index

1610

UAP statistical report facility 856
Unicode 517, 519
uniqueness constraint 117
UNKNOWN 67
unlocked conditional search 163
unsupported interfaces

JDBC1.2 core API 1226
JDBC2.0 Optional Package 1239
JDBC2.1 Core API 1231

UPDATE statement 13
SET clause of 49
WHERE clause 48

update-SQL work table, suppressing creation of [SQL
optimization option] 574
user mapping

defining 7
deleting 8

UTF-8 517, 519

V
value

assigning 13
set in variables and SQL statement execution
status 198

version number conventions xxi
view table 33

defining 7, 85
deleting 8
manipulating 85, 91

W
WHENEVER 17
WHILE statement 18
window function 407
work table ATS execution [SQL optimization] 284
WORK TABLE ATS SUBQ [SQL optimization] 287
work table buffer size 299
work table execution [SQL optimization] 285
WORK TABLE SUBQ [SQL optimization] 288
work table, searching internally created [SQL
optimization] 282
WRITE LINE statement 18

X
XAConnection interface [JDBC2.0 Optional
Package] 1236
XADataSource interface [JDBC2.0 Optional
Package] 1237
XAException interface [JDBC2.0 Optional
Package] 1239
XAResource interface [JDBC2.0 Optional
Package] 1238

Reader’s Comment Form
We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

